Automatic date update in version.in
[binutils-gdb.git] / bfd / section.c
1 /* Object file "section" support for the BFD library.
2 Copyright (C) 1990-2022 Free Software Foundation, Inc.
3 Written by Cygnus Support.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 Sections
25
26 The raw data contained within a BFD is maintained through the
27 section abstraction. A single BFD may have any number of
28 sections. It keeps hold of them by pointing to the first;
29 each one points to the next in the list.
30
31 Sections are supported in BFD in <<section.c>>.
32
33 @menu
34 @* Section Input::
35 @* Section Output::
36 @* typedef asection::
37 @* section prototypes::
38 @end menu
39
40 INODE
41 Section Input, Section Output, Sections, Sections
42 SUBSECTION
43 Section input
44
45 When a BFD is opened for reading, the section structures are
46 created and attached to the BFD.
47
48 Each section has a name which describes the section in the
49 outside world---for example, <<a.out>> would contain at least
50 three sections, called <<.text>>, <<.data>> and <<.bss>>.
51
52 Names need not be unique; for example a COFF file may have several
53 sections named <<.data>>.
54
55 Sometimes a BFD will contain more than the ``natural'' number of
56 sections. A back end may attach other sections containing
57 constructor data, or an application may add a section (using
58 <<bfd_make_section>>) to the sections attached to an already open
59 BFD. For example, the linker creates an extra section
60 <<COMMON>> for each input file's BFD to hold information about
61 common storage.
62
63 The raw data is not necessarily read in when
64 the section descriptor is created. Some targets may leave the
65 data in place until a <<bfd_get_section_contents>> call is
66 made. Other back ends may read in all the data at once. For
67 example, an S-record file has to be read once to determine the
68 size of the data.
69
70 INODE
71 Section Output, typedef asection, Section Input, Sections
72
73 SUBSECTION
74 Section output
75
76 To write a new object style BFD, the various sections to be
77 written have to be created. They are attached to the BFD in
78 the same way as input sections; data is written to the
79 sections using <<bfd_set_section_contents>>.
80
81 Any program that creates or combines sections (e.g., the assembler
82 and linker) must use the <<asection>> fields <<output_section>> and
83 <<output_offset>> to indicate the file sections to which each
84 section must be written. (If the section is being created from
85 scratch, <<output_section>> should probably point to the section
86 itself and <<output_offset>> should probably be zero.)
87
88 The data to be written comes from input sections attached
89 (via <<output_section>> pointers) to
90 the output sections. The output section structure can be
91 considered a filter for the input section: the output section
92 determines the vma of the output data and the name, but the
93 input section determines the offset into the output section of
94 the data to be written.
95
96 E.g., to create a section "O", starting at 0x100, 0x123 long,
97 containing two subsections, "A" at offset 0x0 (i.e., at vma
98 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
99 structures would look like:
100
101 | section name "A"
102 | output_offset 0x00
103 | size 0x20
104 | output_section -----------> section name "O"
105 | | vma 0x100
106 | section name "B" | size 0x123
107 | output_offset 0x20 |
108 | size 0x103 |
109 | output_section --------|
110
111 SUBSECTION
112 Link orders
113
114 The data within a section is stored in a @dfn{link_order}.
115 These are much like the fixups in <<gas>>. The link_order
116 abstraction allows a section to grow and shrink within itself.
117
118 A link_order knows how big it is, and which is the next
119 link_order and where the raw data for it is; it also points to
120 a list of relocations which apply to it.
121
122 The link_order is used by the linker to perform relaxing on
123 final code. The compiler creates code which is as big as
124 necessary to make it work without relaxing, and the user can
125 select whether to relax. Sometimes relaxing takes a lot of
126 time. The linker runs around the relocations to see if any
127 are attached to data which can be shrunk, if so it does it on
128 a link_order by link_order basis.
129
130 */
131
132 #include "sysdep.h"
133 #include "bfd.h"
134 #include "libbfd.h"
135 #include "bfdlink.h"
136
137 /*
138 DOCDD
139 INODE
140 typedef asection, section prototypes, Section Output, Sections
141 SUBSECTION
142 typedef asection
143
144 Here is the section structure:
145
146 CODE_FRAGMENT
147 .
148 .typedef struct bfd_section
149 .{
150 . {* The name of the section; the name isn't a copy, the pointer is
151 . the same as that passed to bfd_make_section. *}
152 . const char *name;
153 .
154 . {* A unique sequence number. *}
155 . unsigned int id;
156 .
157 . {* A unique section number which can be used by assembler to
158 . distinguish different sections with the same section name. *}
159 . unsigned int section_id;
160 .
161 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *}
162 . unsigned int index;
163 .
164 . {* The next section in the list belonging to the BFD, or NULL. *}
165 . struct bfd_section *next;
166 .
167 . {* The previous section in the list belonging to the BFD, or NULL. *}
168 . struct bfd_section *prev;
169 .
170 . {* The field flags contains attributes of the section. Some
171 . flags are read in from the object file, and some are
172 . synthesized from other information. *}
173 . flagword flags;
174 .
175 .#define SEC_NO_FLAGS 0x0
176 .
177 . {* Tells the OS to allocate space for this section when loading.
178 . This is clear for a section containing debug information only. *}
179 .#define SEC_ALLOC 0x1
180 .
181 . {* Tells the OS to load the section from the file when loading.
182 . This is clear for a .bss section. *}
183 .#define SEC_LOAD 0x2
184 .
185 . {* The section contains data still to be relocated, so there is
186 . some relocation information too. *}
187 .#define SEC_RELOC 0x4
188 .
189 . {* A signal to the OS that the section contains read only data. *}
190 .#define SEC_READONLY 0x8
191 .
192 . {* The section contains code only. *}
193 .#define SEC_CODE 0x10
194 .
195 . {* The section contains data only. *}
196 .#define SEC_DATA 0x20
197 .
198 . {* The section will reside in ROM. *}
199 .#define SEC_ROM 0x40
200 .
201 . {* The section contains constructor information. This section
202 . type is used by the linker to create lists of constructors and
203 . destructors used by <<g++>>. When a back end sees a symbol
204 . which should be used in a constructor list, it creates a new
205 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
206 . the symbol to it, and builds a relocation. To build the lists
207 . of constructors, all the linker has to do is catenate all the
208 . sections called <<__CTOR_LIST__>> and relocate the data
209 . contained within - exactly the operations it would peform on
210 . standard data. *}
211 .#define SEC_CONSTRUCTOR 0x80
212 .
213 . {* The section has contents - a data section could be
214 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
215 . <<SEC_HAS_CONTENTS>> *}
216 .#define SEC_HAS_CONTENTS 0x100
217 .
218 . {* An instruction to the linker to not output the section
219 . even if it has information which would normally be written. *}
220 .#define SEC_NEVER_LOAD 0x200
221 .
222 . {* The section contains thread local data. *}
223 .#define SEC_THREAD_LOCAL 0x400
224 .
225 . {* The section's size is fixed. Generic linker code will not
226 . recalculate it and it is up to whoever has set this flag to
227 . get the size right. *}
228 .#define SEC_FIXED_SIZE 0x800
229 .
230 . {* The section contains common symbols (symbols may be defined
231 . multiple times, the value of a symbol is the amount of
232 . space it requires, and the largest symbol value is the one
233 . used). Most targets have exactly one of these (which we
234 . translate to bfd_com_section_ptr), but ECOFF has two. *}
235 .#define SEC_IS_COMMON 0x1000
236 .
237 . {* The section contains only debugging information. For
238 . example, this is set for ELF .debug and .stab sections.
239 . strip tests this flag to see if a section can be
240 . discarded. *}
241 .#define SEC_DEBUGGING 0x2000
242 .
243 . {* The contents of this section are held in memory pointed to
244 . by the contents field. This is checked by bfd_get_section_contents,
245 . and the data is retrieved from memory if appropriate. *}
246 .#define SEC_IN_MEMORY 0x4000
247 .
248 . {* The contents of this section are to be excluded by the
249 . linker for executable and shared objects unless those
250 . objects are to be further relocated. *}
251 .#define SEC_EXCLUDE 0x8000
252 .
253 . {* The contents of this section are to be sorted based on the sum of
254 . the symbol and addend values specified by the associated relocation
255 . entries. Entries without associated relocation entries will be
256 . appended to the end of the section in an unspecified order. *}
257 .#define SEC_SORT_ENTRIES 0x10000
258 .
259 . {* When linking, duplicate sections of the same name should be
260 . discarded, rather than being combined into a single section as
261 . is usually done. This is similar to how common symbols are
262 . handled. See SEC_LINK_DUPLICATES below. *}
263 .#define SEC_LINK_ONCE 0x20000
264 .
265 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
266 . should handle duplicate sections. *}
267 .#define SEC_LINK_DUPLICATES 0xc0000
268 .
269 . {* This value for SEC_LINK_DUPLICATES means that duplicate
270 . sections with the same name should simply be discarded. *}
271 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
272 .
273 . {* This value for SEC_LINK_DUPLICATES means that the linker
274 . should warn if there are any duplicate sections, although
275 . it should still only link one copy. *}
276 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000
277 .
278 . {* This value for SEC_LINK_DUPLICATES means that the linker
279 . should warn if any duplicate sections are a different size. *}
280 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
281 .
282 . {* This value for SEC_LINK_DUPLICATES means that the linker
283 . should warn if any duplicate sections contain different
284 . contents. *}
285 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
286 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
287 .
288 . {* This section was created by the linker as part of dynamic
289 . relocation or other arcane processing. It is skipped when
290 . going through the first-pass output, trusting that someone
291 . else up the line will take care of it later. *}
292 .#define SEC_LINKER_CREATED 0x100000
293 .
294 . {* This section contains a section ID to distinguish different
295 . sections with the same section name. *}
296 .#define SEC_ASSEMBLER_SECTION_ID 0x100000
297 .
298 . {* This section should not be subject to garbage collection.
299 . Also set to inform the linker that this section should not be
300 . listed in the link map as discarded. *}
301 .#define SEC_KEEP 0x200000
302 .
303 . {* This section contains "short" data, and should be placed
304 . "near" the GP. *}
305 .#define SEC_SMALL_DATA 0x400000
306 .
307 . {* Attempt to merge identical entities in the section.
308 . Entity size is given in the entsize field. *}
309 .#define SEC_MERGE 0x800000
310 .
311 . {* If given with SEC_MERGE, entities to merge are zero terminated
312 . strings where entsize specifies character size instead of fixed
313 . size entries. *}
314 .#define SEC_STRINGS 0x1000000
315 .
316 . {* This section contains data about section groups. *}
317 .#define SEC_GROUP 0x2000000
318 .
319 . {* The section is a COFF shared library section. This flag is
320 . only for the linker. If this type of section appears in
321 . the input file, the linker must copy it to the output file
322 . without changing the vma or size. FIXME: Although this
323 . was originally intended to be general, it really is COFF
324 . specific (and the flag was renamed to indicate this). It
325 . might be cleaner to have some more general mechanism to
326 . allow the back end to control what the linker does with
327 . sections. *}
328 .#define SEC_COFF_SHARED_LIBRARY 0x4000000
329 .
330 . {* This input section should be copied to output in reverse order
331 . as an array of pointers. This is for ELF linker internal use
332 . only. *}
333 .#define SEC_ELF_REVERSE_COPY 0x4000000
334 .
335 . {* This section contains data which may be shared with other
336 . executables or shared objects. This is for COFF only. *}
337 .#define SEC_COFF_SHARED 0x8000000
338 .
339 . {* This section should be compressed. This is for ELF linker
340 . internal use only. *}
341 .#define SEC_ELF_COMPRESS 0x8000000
342 .
343 . {* When a section with this flag is being linked, then if the size of
344 . the input section is less than a page, it should not cross a page
345 . boundary. If the size of the input section is one page or more,
346 . it should be aligned on a page boundary. This is for TI
347 . TMS320C54X only. *}
348 .#define SEC_TIC54X_BLOCK 0x10000000
349 .
350 . {* This section should be renamed. This is for ELF linker
351 . internal use only. *}
352 .#define SEC_ELF_RENAME 0x10000000
353 .
354 . {* Conditionally link this section; do not link if there are no
355 . references found to any symbol in the section. This is for TI
356 . TMS320C54X only. *}
357 .#define SEC_TIC54X_CLINK 0x20000000
358 .
359 . {* This section contains vliw code. This is for Toshiba MeP only. *}
360 .#define SEC_MEP_VLIW 0x20000000
361 .
362 . {* All symbols, sizes and relocations in this section are octets
363 . instead of bytes. Required for DWARF debug sections as DWARF
364 . information is organized in octets, not bytes. *}
365 .#define SEC_ELF_OCTETS 0x40000000
366 .
367 . {* Indicate that section has the no read flag set. This happens
368 . when memory read flag isn't set. *}
369 .#define SEC_COFF_NOREAD 0x40000000
370 .
371 . {* Indicate that section has the purecode flag set. *}
372 .#define SEC_ELF_PURECODE 0x80000000
373 .
374 . {* End of section flags. *}
375 .
376 . {* Some internal packed boolean fields. *}
377 .
378 . {* See the vma field. *}
379 . unsigned int user_set_vma : 1;
380 .
381 . {* A mark flag used by some of the linker backends. *}
382 . unsigned int linker_mark : 1;
383 .
384 . {* Another mark flag used by some of the linker backends. Set for
385 . output sections that have an input section. *}
386 . unsigned int linker_has_input : 1;
387 .
388 . {* Mark flag used by some linker backends for garbage collection. *}
389 . unsigned int gc_mark : 1;
390 .
391 . {* Section compression status. *}
392 . unsigned int compress_status : 2;
393 .#define COMPRESS_SECTION_NONE 0
394 .#define COMPRESS_SECTION_DONE 1
395 .#define DECOMPRESS_SECTION_SIZED 2
396 .
397 . {* The following flags are used by the ELF linker. *}
398 .
399 . {* Mark sections which have been allocated to segments. *}
400 . unsigned int segment_mark : 1;
401 .
402 . {* Type of sec_info information. *}
403 . unsigned int sec_info_type:3;
404 .#define SEC_INFO_TYPE_NONE 0
405 .#define SEC_INFO_TYPE_STABS 1
406 .#define SEC_INFO_TYPE_MERGE 2
407 .#define SEC_INFO_TYPE_EH_FRAME 3
408 .#define SEC_INFO_TYPE_JUST_SYMS 4
409 .#define SEC_INFO_TYPE_TARGET 5
410 .#define SEC_INFO_TYPE_EH_FRAME_ENTRY 6
411 .
412 . {* Nonzero if this section uses RELA relocations, rather than REL. *}
413 . unsigned int use_rela_p:1;
414 .
415 . {* Bits used by various backends. The generic code doesn't touch
416 . these fields. *}
417 .
418 . unsigned int sec_flg0:1;
419 . unsigned int sec_flg1:1;
420 . unsigned int sec_flg2:1;
421 . unsigned int sec_flg3:1;
422 . unsigned int sec_flg4:1;
423 . unsigned int sec_flg5:1;
424 .
425 . {* End of internal packed boolean fields. *}
426 .
427 . {* The virtual memory address of the section - where it will be
428 . at run time. The symbols are relocated against this. The
429 . user_set_vma flag is maintained by bfd; if it's not set, the
430 . backend can assign addresses (for example, in <<a.out>>, where
431 . the default address for <<.data>> is dependent on the specific
432 . target and various flags). *}
433 . bfd_vma vma;
434 .
435 . {* The load address of the section - where it would be in a
436 . rom image; really only used for writing section header
437 . information. *}
438 . bfd_vma lma;
439 .
440 . {* The size of the section in *octets*, as it will be output.
441 . Contains a value even if the section has no contents (e.g., the
442 . size of <<.bss>>). *}
443 . bfd_size_type size;
444 .
445 . {* For input sections, the original size on disk of the section, in
446 . octets. This field should be set for any section whose size is
447 . changed by linker relaxation. It is required for sections where
448 . the linker relaxation scheme doesn't cache altered section and
449 . reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
450 . targets), and thus the original size needs to be kept to read the
451 . section multiple times. For output sections, rawsize holds the
452 . section size calculated on a previous linker relaxation pass. *}
453 . bfd_size_type rawsize;
454 .
455 . {* The compressed size of the section in octets. *}
456 . bfd_size_type compressed_size;
457 .
458 . {* If this section is going to be output, then this value is the
459 . offset in *bytes* into the output section of the first byte in the
460 . input section (byte ==> smallest addressable unit on the
461 . target). In most cases, if this was going to start at the
462 . 100th octet (8-bit quantity) in the output section, this value
463 . would be 100. However, if the target byte size is 16 bits
464 . (bfd_octets_per_byte is "2"), this value would be 50. *}
465 . bfd_vma output_offset;
466 .
467 . {* The output section through which to map on output. *}
468 . struct bfd_section *output_section;
469 .
470 . {* The alignment requirement of the section, as an exponent of 2 -
471 . e.g., 3 aligns to 2^3 (or 8). *}
472 . unsigned int alignment_power;
473 .
474 . {* If an input section, a pointer to a vector of relocation
475 . records for the data in this section. *}
476 . struct reloc_cache_entry *relocation;
477 .
478 . {* If an output section, a pointer to a vector of pointers to
479 . relocation records for the data in this section. *}
480 . struct reloc_cache_entry **orelocation;
481 .
482 . {* The number of relocation records in one of the above. *}
483 . unsigned reloc_count;
484 .
485 . {* Information below is back end specific - and not always used
486 . or updated. *}
487 .
488 . {* File position of section data. *}
489 . file_ptr filepos;
490 .
491 . {* File position of relocation info. *}
492 . file_ptr rel_filepos;
493 .
494 . {* File position of line data. *}
495 . file_ptr line_filepos;
496 .
497 . {* Pointer to data for applications. *}
498 . void *userdata;
499 .
500 . {* If the SEC_IN_MEMORY flag is set, this points to the actual
501 . contents. *}
502 . unsigned char *contents;
503 .
504 . {* Attached line number information. *}
505 . alent *lineno;
506 .
507 . {* Number of line number records. *}
508 . unsigned int lineno_count;
509 .
510 . {* Entity size for merging purposes. *}
511 . unsigned int entsize;
512 .
513 . {* Points to the kept section if this section is a link-once section,
514 . and is discarded. *}
515 . struct bfd_section *kept_section;
516 .
517 . {* When a section is being output, this value changes as more
518 . linenumbers are written out. *}
519 . file_ptr moving_line_filepos;
520 .
521 . {* What the section number is in the target world. *}
522 . int target_index;
523 .
524 . void *used_by_bfd;
525 .
526 . {* If this is a constructor section then here is a list of the
527 . relocations created to relocate items within it. *}
528 . struct relent_chain *constructor_chain;
529 .
530 . {* The BFD which owns the section. *}
531 . bfd *owner;
532 .
533 . {* A symbol which points at this section only. *}
534 . struct bfd_symbol *symbol;
535 . struct bfd_symbol **symbol_ptr_ptr;
536 .
537 . {* Early in the link process, map_head and map_tail are used to build
538 . a list of input sections attached to an output section. Later,
539 . output sections use these fields for a list of bfd_link_order
540 . structs. The linked_to_symbol_name field is for ELF assembler
541 . internal use. *}
542 . union {
543 . struct bfd_link_order *link_order;
544 . struct bfd_section *s;
545 . const char *linked_to_symbol_name;
546 . } map_head, map_tail;
547 .
548 . {* Points to the output section this section is already assigned to,
549 . if any. This is used when support for non-contiguous memory
550 . regions is enabled. *}
551 . struct bfd_section *already_assigned;
552 .
553 . {* Explicitly specified section type, if non-zero. *}
554 . unsigned int type;
555 .
556 .} asection;
557 .
558 .static inline const char *
559 .bfd_section_name (const asection *sec)
560 .{
561 . return sec->name;
562 .}
563 .
564 .static inline bfd_size_type
565 .bfd_section_size (const asection *sec)
566 .{
567 . return sec->size;
568 .}
569 .
570 .static inline bfd_vma
571 .bfd_section_vma (const asection *sec)
572 .{
573 . return sec->vma;
574 .}
575 .
576 .static inline bfd_vma
577 .bfd_section_lma (const asection *sec)
578 .{
579 . return sec->lma;
580 .}
581 .
582 .static inline unsigned int
583 .bfd_section_alignment (const asection *sec)
584 .{
585 . return sec->alignment_power;
586 .}
587 .
588 .static inline flagword
589 .bfd_section_flags (const asection *sec)
590 .{
591 . return sec->flags;
592 .}
593 .
594 .static inline void *
595 .bfd_section_userdata (const asection *sec)
596 .{
597 . return sec->userdata;
598 .}
599 .static inline bool
600 .bfd_is_com_section (const asection *sec)
601 .{
602 . return (sec->flags & SEC_IS_COMMON) != 0;
603 .}
604 .
605 .{* Note: the following are provided as inline functions rather than macros
606 . because not all callers use the return value. A macro implementation
607 . would use a comma expression, eg: "((ptr)->foo = val, TRUE)" and some
608 . compilers will complain about comma expressions that have no effect. *}
609 .static inline bool
610 .bfd_set_section_userdata (asection *sec, void *val)
611 .{
612 . sec->userdata = val;
613 . return true;
614 .}
615 .
616 .static inline bool
617 .bfd_set_section_vma (asection *sec, bfd_vma val)
618 .{
619 . sec->vma = sec->lma = val;
620 . sec->user_set_vma = true;
621 . return true;
622 .}
623 .
624 .static inline bool
625 .bfd_set_section_lma (asection *sec, bfd_vma val)
626 .{
627 . sec->lma = val;
628 . return true;
629 .}
630 .
631 .static inline bool
632 .bfd_set_section_alignment (asection *sec, unsigned int val)
633 .{
634 . sec->alignment_power = val;
635 . return true;
636 .}
637 .
638 .{* These sections are global, and are managed by BFD. The application
639 . and target back end are not permitted to change the values in
640 . these sections. *}
641 .extern asection _bfd_std_section[4];
642 .
643 .#define BFD_ABS_SECTION_NAME "*ABS*"
644 .#define BFD_UND_SECTION_NAME "*UND*"
645 .#define BFD_COM_SECTION_NAME "*COM*"
646 .#define BFD_IND_SECTION_NAME "*IND*"
647 .
648 .{* Pointer to the common section. *}
649 .#define bfd_com_section_ptr (&_bfd_std_section[0])
650 .{* Pointer to the undefined section. *}
651 .#define bfd_und_section_ptr (&_bfd_std_section[1])
652 .{* Pointer to the absolute section. *}
653 .#define bfd_abs_section_ptr (&_bfd_std_section[2])
654 .{* Pointer to the indirect section. *}
655 .#define bfd_ind_section_ptr (&_bfd_std_section[3])
656 .
657 .static inline bool
658 .bfd_is_und_section (const asection *sec)
659 .{
660 . return sec == bfd_und_section_ptr;
661 .}
662 .
663 .static inline bool
664 .bfd_is_abs_section (const asection *sec)
665 .{
666 . return sec == bfd_abs_section_ptr;
667 .}
668 .
669 .static inline bool
670 .bfd_is_ind_section (const asection *sec)
671 .{
672 . return sec == bfd_ind_section_ptr;
673 .}
674 .
675 .static inline bool
676 .bfd_is_const_section (const asection *sec)
677 .{
678 . return (sec >= _bfd_std_section
679 . && sec < _bfd_std_section + (sizeof (_bfd_std_section)
680 . / sizeof (_bfd_std_section[0])));
681 .}
682 .
683 .{* Return TRUE if input section SEC has been discarded. *}
684 .static inline bool
685 .discarded_section (const asection *sec)
686 .{
687 . return (!bfd_is_abs_section (sec)
688 . && bfd_is_abs_section (sec->output_section)
689 . && sec->sec_info_type != SEC_INFO_TYPE_MERGE
690 . && sec->sec_info_type != SEC_INFO_TYPE_JUST_SYMS);
691 .}
692 .
693 .#define BFD_FAKE_SECTION(SEC, SYM, NAME, IDX, FLAGS) \
694 . {* name, id, section_id, index, next, prev, flags, user_set_vma, *} \
695 . { NAME, IDX, 0, 0, NULL, NULL, FLAGS, 0, \
696 . \
697 . {* linker_mark, linker_has_input, gc_mark, decompress_status, *} \
698 . 0, 0, 1, 0, \
699 . \
700 . {* segment_mark, sec_info_type, use_rela_p, *} \
701 . 0, 0, 0, \
702 . \
703 . {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5, *} \
704 . 0, 0, 0, 0, 0, 0, \
705 . \
706 . {* vma, lma, size, rawsize, compressed_size, *} \
707 . 0, 0, 0, 0, 0, \
708 . \
709 . {* output_offset, output_section, alignment_power, *} \
710 . 0, &SEC, 0, \
711 . \
712 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \
713 . NULL, NULL, 0, 0, 0, \
714 . \
715 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \
716 . 0, NULL, NULL, NULL, 0, \
717 . \
718 . {* entsize, kept_section, moving_line_filepos, *} \
719 . 0, NULL, 0, \
720 . \
721 . {* target_index, used_by_bfd, constructor_chain, owner, *} \
722 . 0, NULL, NULL, NULL, \
723 . \
724 . {* symbol, symbol_ptr_ptr, *} \
725 . (struct bfd_symbol *) SYM, &SEC.symbol, \
726 . \
727 . {* map_head, map_tail, already_assigned, type *} \
728 . { NULL }, { NULL }, NULL, 0 \
729 . \
730 . }
731 .
732 .{* We use a macro to initialize the static asymbol structures because
733 . traditional C does not permit us to initialize a union member while
734 . gcc warns if we don't initialize it.
735 . the_bfd, name, value, attr, section [, udata] *}
736 .#ifdef __STDC__
737 .#define GLOBAL_SYM_INIT(NAME, SECTION) \
738 . { 0, NAME, 0, BSF_SECTION_SYM, SECTION, { 0 }}
739 .#else
740 .#define GLOBAL_SYM_INIT(NAME, SECTION) \
741 . { 0, NAME, 0, BSF_SECTION_SYM, SECTION }
742 .#endif
743 .
744 */
745
746 /* These symbols are global, not specific to any BFD. Therefore, anything
747 that tries to change them is broken, and should be repaired. */
748
749 static const asymbol global_syms[] =
750 {
751 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, bfd_com_section_ptr),
752 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, bfd_und_section_ptr),
753 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, bfd_abs_section_ptr),
754 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, bfd_ind_section_ptr)
755 };
756
757 #define STD_SECTION(NAME, IDX, FLAGS) \
758 BFD_FAKE_SECTION(_bfd_std_section[IDX], &global_syms[IDX], NAME, IDX, FLAGS)
759
760 asection _bfd_std_section[] = {
761 STD_SECTION (BFD_COM_SECTION_NAME, 0, SEC_IS_COMMON),
762 STD_SECTION (BFD_UND_SECTION_NAME, 1, 0),
763 STD_SECTION (BFD_ABS_SECTION_NAME, 2, 0),
764 STD_SECTION (BFD_IND_SECTION_NAME, 3, 0)
765 };
766 #undef STD_SECTION
767
768 /* Initialize an entry in the section hash table. */
769
770 struct bfd_hash_entry *
771 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
772 struct bfd_hash_table *table,
773 const char *string)
774 {
775 /* Allocate the structure if it has not already been allocated by a
776 subclass. */
777 if (entry == NULL)
778 {
779 entry = (struct bfd_hash_entry *)
780 bfd_hash_allocate (table, sizeof (struct section_hash_entry));
781 if (entry == NULL)
782 return entry;
783 }
784
785 /* Call the allocation method of the superclass. */
786 entry = bfd_hash_newfunc (entry, table, string);
787 if (entry != NULL)
788 memset (&((struct section_hash_entry *) entry)->section, 0,
789 sizeof (asection));
790
791 return entry;
792 }
793
794 #define section_hash_lookup(table, string, create, copy) \
795 ((struct section_hash_entry *) \
796 bfd_hash_lookup ((table), (string), (create), (copy)))
797
798 /* Create a symbol whose only job is to point to this section. This
799 is useful for things like relocs which are relative to the base
800 of a section. */
801
802 bool
803 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect)
804 {
805 newsect->symbol = bfd_make_empty_symbol (abfd);
806 if (newsect->symbol == NULL)
807 return false;
808
809 newsect->symbol->name = newsect->name;
810 newsect->symbol->value = 0;
811 newsect->symbol->section = newsect;
812 newsect->symbol->flags = BSF_SECTION_SYM;
813
814 newsect->symbol_ptr_ptr = &newsect->symbol;
815 return true;
816 }
817
818 unsigned int _bfd_section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */
819
820 /* Initializes a new section. NEWSECT->NAME is already set. */
821
822 static asection *
823 bfd_section_init (bfd *abfd, asection *newsect)
824 {
825 newsect->id = _bfd_section_id;
826 newsect->index = abfd->section_count;
827 newsect->owner = abfd;
828
829 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
830 return NULL;
831
832 _bfd_section_id++;
833 abfd->section_count++;
834 bfd_section_list_append (abfd, newsect);
835 return newsect;
836 }
837
838 /*
839 DOCDD
840 INODE
841 section prototypes, , typedef asection, Sections
842 SUBSECTION
843 Section prototypes
844
845 These are the functions exported by the section handling part of BFD.
846 */
847
848 /*
849 FUNCTION
850 bfd_section_list_clear
851
852 SYNOPSIS
853 void bfd_section_list_clear (bfd *);
854
855 DESCRIPTION
856 Clears the section list, and also resets the section count and
857 hash table entries.
858 */
859
860 void
861 bfd_section_list_clear (bfd *abfd)
862 {
863 abfd->sections = NULL;
864 abfd->section_last = NULL;
865 abfd->section_count = 0;
866 memset (abfd->section_htab.table, 0,
867 abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
868 abfd->section_htab.count = 0;
869 }
870
871 /*
872 FUNCTION
873 bfd_get_section_by_name
874
875 SYNOPSIS
876 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
877
878 DESCRIPTION
879 Return the most recently created section attached to @var{abfd}
880 named @var{name}. Return NULL if no such section exists.
881 */
882
883 asection *
884 bfd_get_section_by_name (bfd *abfd, const char *name)
885 {
886 struct section_hash_entry *sh;
887
888 if (name == NULL)
889 return NULL;
890
891 sh = section_hash_lookup (&abfd->section_htab, name, false, false);
892 if (sh != NULL)
893 return &sh->section;
894
895 return NULL;
896 }
897
898 /*
899 FUNCTION
900 bfd_get_next_section_by_name
901
902 SYNOPSIS
903 asection *bfd_get_next_section_by_name (bfd *ibfd, asection *sec);
904
905 DESCRIPTION
906 Given @var{sec} is a section returned by @code{bfd_get_section_by_name},
907 return the next most recently created section attached to the same
908 BFD with the same name, or if no such section exists in the same BFD and
909 IBFD is non-NULL, the next section with the same name in any input
910 BFD following IBFD. Return NULL on finding no section.
911 */
912
913 asection *
914 bfd_get_next_section_by_name (bfd *ibfd, asection *sec)
915 {
916 struct section_hash_entry *sh;
917 const char *name;
918 unsigned long hash;
919
920 sh = ((struct section_hash_entry *)
921 ((char *) sec - offsetof (struct section_hash_entry, section)));
922
923 hash = sh->root.hash;
924 name = sec->name;
925 for (sh = (struct section_hash_entry *) sh->root.next;
926 sh != NULL;
927 sh = (struct section_hash_entry *) sh->root.next)
928 if (sh->root.hash == hash
929 && strcmp (sh->root.string, name) == 0)
930 return &sh->section;
931
932 if (ibfd != NULL)
933 {
934 while ((ibfd = ibfd->link.next) != NULL)
935 {
936 asection *s = bfd_get_section_by_name (ibfd, name);
937 if (s != NULL)
938 return s;
939 }
940 }
941
942 return NULL;
943 }
944
945 /*
946 FUNCTION
947 bfd_get_linker_section
948
949 SYNOPSIS
950 asection *bfd_get_linker_section (bfd *abfd, const char *name);
951
952 DESCRIPTION
953 Return the linker created section attached to @var{abfd}
954 named @var{name}. Return NULL if no such section exists.
955 */
956
957 asection *
958 bfd_get_linker_section (bfd *abfd, const char *name)
959 {
960 asection *sec = bfd_get_section_by_name (abfd, name);
961
962 while (sec != NULL && (sec->flags & SEC_LINKER_CREATED) == 0)
963 sec = bfd_get_next_section_by_name (NULL, sec);
964 return sec;
965 }
966
967 /*
968 FUNCTION
969 bfd_get_section_by_name_if
970
971 SYNOPSIS
972 asection *bfd_get_section_by_name_if
973 (bfd *abfd,
974 const char *name,
975 bool (*func) (bfd *abfd, asection *sect, void *obj),
976 void *obj);
977
978 DESCRIPTION
979 Call the provided function @var{func} for each section
980 attached to the BFD @var{abfd} whose name matches @var{name},
981 passing @var{obj} as an argument. The function will be called
982 as if by
983
984 | func (abfd, the_section, obj);
985
986 It returns the first section for which @var{func} returns true,
987 otherwise <<NULL>>.
988
989 */
990
991 asection *
992 bfd_get_section_by_name_if (bfd *abfd, const char *name,
993 bool (*operation) (bfd *, asection *, void *),
994 void *user_storage)
995 {
996 struct section_hash_entry *sh;
997 unsigned long hash;
998
999 if (name == NULL)
1000 return NULL;
1001
1002 sh = section_hash_lookup (&abfd->section_htab, name, false, false);
1003 if (sh == NULL)
1004 return NULL;
1005
1006 hash = sh->root.hash;
1007 for (; sh != NULL; sh = (struct section_hash_entry *) sh->root.next)
1008 if (sh->root.hash == hash
1009 && strcmp (sh->root.string, name) == 0
1010 && (*operation) (abfd, &sh->section, user_storage))
1011 return &sh->section;
1012
1013 return NULL;
1014 }
1015
1016 /*
1017 FUNCTION
1018 bfd_get_unique_section_name
1019
1020 SYNOPSIS
1021 char *bfd_get_unique_section_name
1022 (bfd *abfd, const char *templat, int *count);
1023
1024 DESCRIPTION
1025 Invent a section name that is unique in @var{abfd} by tacking
1026 a dot and a digit suffix onto the original @var{templat}. If
1027 @var{count} is non-NULL, then it specifies the first number
1028 tried as a suffix to generate a unique name. The value
1029 pointed to by @var{count} will be incremented in this case.
1030 */
1031
1032 char *
1033 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
1034 {
1035 int num;
1036 unsigned int len;
1037 char *sname;
1038
1039 len = strlen (templat);
1040 sname = (char *) bfd_malloc (len + 8);
1041 if (sname == NULL)
1042 return NULL;
1043 memcpy (sname, templat, len);
1044 num = 1;
1045 if (count != NULL)
1046 num = *count;
1047
1048 do
1049 {
1050 /* If we have a million sections, something is badly wrong. */
1051 if (num > 999999)
1052 abort ();
1053 sprintf (sname + len, ".%d", num++);
1054 }
1055 while (section_hash_lookup (&abfd->section_htab, sname, false, false));
1056
1057 if (count != NULL)
1058 *count = num;
1059 return sname;
1060 }
1061
1062 /*
1063 FUNCTION
1064 bfd_make_section_old_way
1065
1066 SYNOPSIS
1067 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
1068
1069 DESCRIPTION
1070 Create a new empty section called @var{name}
1071 and attach it to the end of the chain of sections for the
1072 BFD @var{abfd}. An attempt to create a section with a name which
1073 is already in use returns its pointer without changing the
1074 section chain.
1075
1076 It has the funny name since this is the way it used to be
1077 before it was rewritten....
1078
1079 Possible errors are:
1080 o <<bfd_error_invalid_operation>> -
1081 If output has already started for this BFD.
1082 o <<bfd_error_no_memory>> -
1083 If memory allocation fails.
1084
1085 */
1086
1087 asection *
1088 bfd_make_section_old_way (bfd *abfd, const char *name)
1089 {
1090 asection *newsect;
1091
1092 if (abfd->output_has_begun)
1093 {
1094 bfd_set_error (bfd_error_invalid_operation);
1095 return NULL;
1096 }
1097
1098 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
1099 newsect = bfd_abs_section_ptr;
1100 else if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
1101 newsect = bfd_com_section_ptr;
1102 else if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
1103 newsect = bfd_und_section_ptr;
1104 else if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
1105 newsect = bfd_ind_section_ptr;
1106 else
1107 {
1108 struct section_hash_entry *sh;
1109
1110 sh = section_hash_lookup (&abfd->section_htab, name, true, false);
1111 if (sh == NULL)
1112 return NULL;
1113
1114 newsect = &sh->section;
1115 if (newsect->name != NULL)
1116 {
1117 /* Section already exists. */
1118 return newsect;
1119 }
1120
1121 newsect->name = name;
1122 return bfd_section_init (abfd, newsect);
1123 }
1124
1125 /* Call new_section_hook when "creating" the standard abs, com, und
1126 and ind sections to tack on format specific section data.
1127 Also, create a proper section symbol. */
1128 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
1129 return NULL;
1130 return newsect;
1131 }
1132
1133 /*
1134 FUNCTION
1135 bfd_make_section_anyway_with_flags
1136
1137 SYNOPSIS
1138 asection *bfd_make_section_anyway_with_flags
1139 (bfd *abfd, const char *name, flagword flags);
1140
1141 DESCRIPTION
1142 Create a new empty section called @var{name} and attach it to the end of
1143 the chain of sections for @var{abfd}. Create a new section even if there
1144 is already a section with that name. Also set the attributes of the
1145 new section to the value @var{flags}.
1146
1147 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1148 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1149 o <<bfd_error_no_memory>> - If memory allocation fails.
1150 */
1151
1152 sec_ptr
1153 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1154 flagword flags)
1155 {
1156 struct section_hash_entry *sh;
1157 asection *newsect;
1158
1159 if (abfd->output_has_begun)
1160 {
1161 bfd_set_error (bfd_error_invalid_operation);
1162 return NULL;
1163 }
1164
1165 sh = section_hash_lookup (&abfd->section_htab, name, true, false);
1166 if (sh == NULL)
1167 return NULL;
1168
1169 newsect = &sh->section;
1170 if (newsect->name != NULL)
1171 {
1172 /* We are making a section of the same name. Put it in the
1173 section hash table. Even though we can't find it directly by a
1174 hash lookup, we'll be able to find the section by traversing
1175 sh->root.next quicker than looking at all the bfd sections. */
1176 struct section_hash_entry *new_sh;
1177 new_sh = (struct section_hash_entry *)
1178 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1179 if (new_sh == NULL)
1180 return NULL;
1181
1182 new_sh->root = sh->root;
1183 sh->root.next = &new_sh->root;
1184 newsect = &new_sh->section;
1185 }
1186
1187 newsect->flags = flags;
1188 newsect->name = name;
1189 return bfd_section_init (abfd, newsect);
1190 }
1191
1192 /*
1193 FUNCTION
1194 bfd_make_section_anyway
1195
1196 SYNOPSIS
1197 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1198
1199 DESCRIPTION
1200 Create a new empty section called @var{name} and attach it to the end of
1201 the chain of sections for @var{abfd}. Create a new section even if there
1202 is already a section with that name.
1203
1204 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1205 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1206 o <<bfd_error_no_memory>> - If memory allocation fails.
1207 */
1208
1209 sec_ptr
1210 bfd_make_section_anyway (bfd *abfd, const char *name)
1211 {
1212 return bfd_make_section_anyway_with_flags (abfd, name, 0);
1213 }
1214
1215 /*
1216 FUNCTION
1217 bfd_make_section_with_flags
1218
1219 SYNOPSIS
1220 asection *bfd_make_section_with_flags
1221 (bfd *, const char *name, flagword flags);
1222
1223 DESCRIPTION
1224 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1225 bfd_set_error ()) without changing the section chain if there is already a
1226 section named @var{name}. Also set the attributes of the new section to
1227 the value @var{flags}. If there is an error, return <<NULL>> and set
1228 <<bfd_error>>.
1229 */
1230
1231 asection *
1232 bfd_make_section_with_flags (bfd *abfd, const char *name,
1233 flagword flags)
1234 {
1235 struct section_hash_entry *sh;
1236 asection *newsect;
1237
1238 if (abfd == NULL || name == NULL || abfd->output_has_begun)
1239 {
1240 bfd_set_error (bfd_error_invalid_operation);
1241 return NULL;
1242 }
1243
1244 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1245 || strcmp (name, BFD_COM_SECTION_NAME) == 0
1246 || strcmp (name, BFD_UND_SECTION_NAME) == 0
1247 || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1248 return NULL;
1249
1250 sh = section_hash_lookup (&abfd->section_htab, name, true, false);
1251 if (sh == NULL)
1252 return NULL;
1253
1254 newsect = &sh->section;
1255 if (newsect->name != NULL)
1256 {
1257 /* Section already exists. */
1258 return NULL;
1259 }
1260
1261 newsect->name = name;
1262 newsect->flags = flags;
1263 return bfd_section_init (abfd, newsect);
1264 }
1265
1266 /*
1267 FUNCTION
1268 bfd_make_section
1269
1270 SYNOPSIS
1271 asection *bfd_make_section (bfd *, const char *name);
1272
1273 DESCRIPTION
1274 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1275 bfd_set_error ()) without changing the section chain if there is already a
1276 section named @var{name}. If there is an error, return <<NULL>> and set
1277 <<bfd_error>>.
1278 */
1279
1280 asection *
1281 bfd_make_section (bfd *abfd, const char *name)
1282 {
1283 return bfd_make_section_with_flags (abfd, name, 0);
1284 }
1285
1286 /*
1287 FUNCTION
1288 bfd_set_section_flags
1289
1290 SYNOPSIS
1291 bool bfd_set_section_flags (asection *sec, flagword flags);
1292
1293 DESCRIPTION
1294 Set the attributes of the section @var{sec} to the value @var{flags}.
1295 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1296 returns are:
1297
1298 o <<bfd_error_invalid_operation>> -
1299 The section cannot have one or more of the attributes
1300 requested. For example, a .bss section in <<a.out>> may not
1301 have the <<SEC_HAS_CONTENTS>> field set.
1302
1303 */
1304
1305 bool
1306 bfd_set_section_flags (asection *section, flagword flags)
1307 {
1308 section->flags = flags;
1309 return true;
1310 }
1311
1312 /*
1313 FUNCTION
1314 bfd_rename_section
1315
1316 SYNOPSIS
1317 void bfd_rename_section
1318 (asection *sec, const char *newname);
1319
1320 DESCRIPTION
1321 Rename section @var{sec} to @var{newname}.
1322 */
1323
1324 void
1325 bfd_rename_section (asection *sec, const char *newname)
1326 {
1327 struct section_hash_entry *sh;
1328
1329 sh = (struct section_hash_entry *)
1330 ((char *) sec - offsetof (struct section_hash_entry, section));
1331 sh->section.name = newname;
1332 bfd_hash_rename (&sec->owner->section_htab, newname, &sh->root);
1333 }
1334
1335 /*
1336 FUNCTION
1337 bfd_map_over_sections
1338
1339 SYNOPSIS
1340 void bfd_map_over_sections
1341 (bfd *abfd,
1342 void (*func) (bfd *abfd, asection *sect, void *obj),
1343 void *obj);
1344
1345 DESCRIPTION
1346 Call the provided function @var{func} for each section
1347 attached to the BFD @var{abfd}, passing @var{obj} as an
1348 argument. The function will be called as if by
1349
1350 | func (abfd, the_section, obj);
1351
1352 This is the preferred method for iterating over sections; an
1353 alternative would be to use a loop:
1354
1355 | asection *p;
1356 | for (p = abfd->sections; p != NULL; p = p->next)
1357 | func (abfd, p, ...)
1358
1359 */
1360
1361 void
1362 bfd_map_over_sections (bfd *abfd,
1363 void (*operation) (bfd *, asection *, void *),
1364 void *user_storage)
1365 {
1366 asection *sect;
1367 unsigned int i = 0;
1368
1369 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1370 (*operation) (abfd, sect, user_storage);
1371
1372 if (i != abfd->section_count) /* Debugging */
1373 abort ();
1374 }
1375
1376 /*
1377 FUNCTION
1378 bfd_sections_find_if
1379
1380 SYNOPSIS
1381 asection *bfd_sections_find_if
1382 (bfd *abfd,
1383 bool (*operation) (bfd *abfd, asection *sect, void *obj),
1384 void *obj);
1385
1386 DESCRIPTION
1387 Call the provided function @var{operation} for each section
1388 attached to the BFD @var{abfd}, passing @var{obj} as an
1389 argument. The function will be called as if by
1390
1391 | operation (abfd, the_section, obj);
1392
1393 It returns the first section for which @var{operation} returns true.
1394
1395 */
1396
1397 asection *
1398 bfd_sections_find_if (bfd *abfd,
1399 bool (*operation) (bfd *, asection *, void *),
1400 void *user_storage)
1401 {
1402 asection *sect;
1403
1404 for (sect = abfd->sections; sect != NULL; sect = sect->next)
1405 if ((*operation) (abfd, sect, user_storage))
1406 break;
1407
1408 return sect;
1409 }
1410
1411 /*
1412 FUNCTION
1413 bfd_set_section_size
1414
1415 SYNOPSIS
1416 bool bfd_set_section_size (asection *sec, bfd_size_type val);
1417
1418 DESCRIPTION
1419 Set @var{sec} to the size @var{val}. If the operation is
1420 ok, then <<TRUE>> is returned, else <<FALSE>>.
1421
1422 Possible error returns:
1423 o <<bfd_error_invalid_operation>> -
1424 Writing has started to the BFD, so setting the size is invalid.
1425
1426 */
1427
1428 bool
1429 bfd_set_section_size (asection *sec, bfd_size_type val)
1430 {
1431 /* Once you've started writing to any section you cannot create or change
1432 the size of any others. */
1433
1434 if (sec->owner == NULL || sec->owner->output_has_begun)
1435 {
1436 bfd_set_error (bfd_error_invalid_operation);
1437 return false;
1438 }
1439
1440 sec->size = val;
1441 return true;
1442 }
1443
1444 /*
1445 FUNCTION
1446 bfd_set_section_contents
1447
1448 SYNOPSIS
1449 bool bfd_set_section_contents
1450 (bfd *abfd, asection *section, const void *data,
1451 file_ptr offset, bfd_size_type count);
1452
1453 DESCRIPTION
1454 Sets the contents of the section @var{section} in BFD
1455 @var{abfd} to the data starting in memory at @var{location}.
1456 The data is written to the output section starting at offset
1457 @var{offset} for @var{count} octets.
1458
1459 Normally <<TRUE>> is returned, but <<FALSE>> is returned if
1460 there was an error. Possible error returns are:
1461 o <<bfd_error_no_contents>> -
1462 The output section does not have the <<SEC_HAS_CONTENTS>>
1463 attribute, so nothing can be written to it.
1464 o <<bfd_error_bad_value>> -
1465 The section is unable to contain all of the data.
1466 o <<bfd_error_invalid_operation>> -
1467 The BFD is not writeable.
1468 o and some more too.
1469
1470 This routine is front end to the back end function
1471 <<_bfd_set_section_contents>>.
1472
1473 */
1474
1475 bool
1476 bfd_set_section_contents (bfd *abfd,
1477 sec_ptr section,
1478 const void *location,
1479 file_ptr offset,
1480 bfd_size_type count)
1481 {
1482 bfd_size_type sz;
1483
1484 if (!(bfd_section_flags (section) & SEC_HAS_CONTENTS))
1485 {
1486 bfd_set_error (bfd_error_no_contents);
1487 return false;
1488 }
1489
1490 sz = section->size;
1491 if ((bfd_size_type) offset > sz
1492 || count > sz - offset
1493 || count != (size_t) count)
1494 {
1495 bfd_set_error (bfd_error_bad_value);
1496 return false;
1497 }
1498
1499 if (!bfd_write_p (abfd))
1500 {
1501 bfd_set_error (bfd_error_invalid_operation);
1502 return false;
1503 }
1504
1505 /* Record a copy of the data in memory if desired. */
1506 if (section->contents
1507 && location != section->contents + offset)
1508 memcpy (section->contents + offset, location, (size_t) count);
1509
1510 if (BFD_SEND (abfd, _bfd_set_section_contents,
1511 (abfd, section, location, offset, count)))
1512 {
1513 abfd->output_has_begun = true;
1514 return true;
1515 }
1516
1517 return false;
1518 }
1519
1520 /*
1521 FUNCTION
1522 bfd_get_section_contents
1523
1524 SYNOPSIS
1525 bool bfd_get_section_contents
1526 (bfd *abfd, asection *section, void *location, file_ptr offset,
1527 bfd_size_type count);
1528
1529 DESCRIPTION
1530 Read data from @var{section} in BFD @var{abfd}
1531 into memory starting at @var{location}. The data is read at an
1532 offset of @var{offset} from the start of the input section,
1533 and is read for @var{count} bytes.
1534
1535 If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1536 flag set are requested or if the section does not have the
1537 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1538 with zeroes. If no errors occur, <<TRUE>> is returned, else
1539 <<FALSE>>.
1540
1541 */
1542 bool
1543 bfd_get_section_contents (bfd *abfd,
1544 sec_ptr section,
1545 void *location,
1546 file_ptr offset,
1547 bfd_size_type count)
1548 {
1549 bfd_size_type sz;
1550
1551 if (section->flags & SEC_CONSTRUCTOR)
1552 {
1553 memset (location, 0, (size_t) count);
1554 return true;
1555 }
1556
1557 if (abfd->direction != write_direction && section->rawsize != 0)
1558 sz = section->rawsize;
1559 else
1560 sz = section->size;
1561 if ((bfd_size_type) offset > sz
1562 || count > sz - offset
1563 || count != (size_t) count)
1564 {
1565 bfd_set_error (bfd_error_bad_value);
1566 return false;
1567 }
1568
1569 if (count == 0)
1570 /* Don't bother. */
1571 return true;
1572
1573 if ((section->flags & SEC_HAS_CONTENTS) == 0)
1574 {
1575 memset (location, 0, (size_t) count);
1576 return true;
1577 }
1578
1579 if ((section->flags & SEC_IN_MEMORY) != 0)
1580 {
1581 if (section->contents == NULL)
1582 {
1583 /* This can happen because of errors earlier on in the linking process.
1584 We do not want to seg-fault here, so clear the flag and return an
1585 error code. */
1586 section->flags &= ~ SEC_IN_MEMORY;
1587 bfd_set_error (bfd_error_invalid_operation);
1588 return false;
1589 }
1590
1591 memmove (location, section->contents + offset, (size_t) count);
1592 return true;
1593 }
1594
1595 return BFD_SEND (abfd, _bfd_get_section_contents,
1596 (abfd, section, location, offset, count));
1597 }
1598
1599 /*
1600 FUNCTION
1601 bfd_malloc_and_get_section
1602
1603 SYNOPSIS
1604 bool bfd_malloc_and_get_section
1605 (bfd *abfd, asection *section, bfd_byte **buf);
1606
1607 DESCRIPTION
1608 Read all data from @var{section} in BFD @var{abfd}
1609 into a buffer, *@var{buf}, malloc'd by this function.
1610 */
1611
1612 bool
1613 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1614 {
1615 *buf = NULL;
1616 return bfd_get_full_section_contents (abfd, sec, buf);
1617 }
1618 /*
1619 FUNCTION
1620 bfd_copy_private_section_data
1621
1622 SYNOPSIS
1623 bool bfd_copy_private_section_data
1624 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1625
1626 DESCRIPTION
1627 Copy private section information from @var{isec} in the BFD
1628 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1629 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1630 returns are:
1631
1632 o <<bfd_error_no_memory>> -
1633 Not enough memory exists to create private data for @var{osec}.
1634
1635 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1636 . BFD_SEND (obfd, _bfd_copy_private_section_data, \
1637 . (ibfd, isection, obfd, osection))
1638 */
1639
1640 /*
1641 FUNCTION
1642 bfd_generic_is_group_section
1643
1644 SYNOPSIS
1645 bool bfd_generic_is_group_section (bfd *, const asection *sec);
1646
1647 DESCRIPTION
1648 Returns TRUE if @var{sec} is a member of a group.
1649 */
1650
1651 bool
1652 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1653 const asection *sec ATTRIBUTE_UNUSED)
1654 {
1655 return false;
1656 }
1657
1658 /*
1659 FUNCTION
1660 bfd_generic_group_name
1661
1662 SYNOPSIS
1663 const char *bfd_generic_group_name (bfd *, const asection *sec);
1664
1665 DESCRIPTION
1666 Returns group name if @var{sec} is a member of a group.
1667 */
1668
1669 const char *
1670 bfd_generic_group_name (bfd *abfd ATTRIBUTE_UNUSED,
1671 const asection *sec ATTRIBUTE_UNUSED)
1672 {
1673 return NULL;
1674 }
1675
1676 /*
1677 FUNCTION
1678 bfd_generic_discard_group
1679
1680 SYNOPSIS
1681 bool bfd_generic_discard_group (bfd *abfd, asection *group);
1682
1683 DESCRIPTION
1684 Remove all members of @var{group} from the output.
1685 */
1686
1687 bool
1688 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1689 asection *group ATTRIBUTE_UNUSED)
1690 {
1691 return true;
1692 }
1693
1694 bool
1695 _bfd_nowrite_set_section_contents (bfd *abfd,
1696 sec_ptr section ATTRIBUTE_UNUSED,
1697 const void *location ATTRIBUTE_UNUSED,
1698 file_ptr offset ATTRIBUTE_UNUSED,
1699 bfd_size_type count ATTRIBUTE_UNUSED)
1700 {
1701 return _bfd_bool_bfd_false_error (abfd);
1702 }