BFD: Remove unused SEC_HAS_GOT_REF section flag
[binutils-gdb.git] / bfd / section.c
1 /* Object file "section" support for the BFD library.
2 Copyright (C) 1990-2018 Free Software Foundation, Inc.
3 Written by Cygnus Support.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 Sections
25
26 The raw data contained within a BFD is maintained through the
27 section abstraction. A single BFD may have any number of
28 sections. It keeps hold of them by pointing to the first;
29 each one points to the next in the list.
30
31 Sections are supported in BFD in <<section.c>>.
32
33 @menu
34 @* Section Input::
35 @* Section Output::
36 @* typedef asection::
37 @* section prototypes::
38 @end menu
39
40 INODE
41 Section Input, Section Output, Sections, Sections
42 SUBSECTION
43 Section input
44
45 When a BFD is opened for reading, the section structures are
46 created and attached to the BFD.
47
48 Each section has a name which describes the section in the
49 outside world---for example, <<a.out>> would contain at least
50 three sections, called <<.text>>, <<.data>> and <<.bss>>.
51
52 Names need not be unique; for example a COFF file may have several
53 sections named <<.data>>.
54
55 Sometimes a BFD will contain more than the ``natural'' number of
56 sections. A back end may attach other sections containing
57 constructor data, or an application may add a section (using
58 <<bfd_make_section>>) to the sections attached to an already open
59 BFD. For example, the linker creates an extra section
60 <<COMMON>> for each input file's BFD to hold information about
61 common storage.
62
63 The raw data is not necessarily read in when
64 the section descriptor is created. Some targets may leave the
65 data in place until a <<bfd_get_section_contents>> call is
66 made. Other back ends may read in all the data at once. For
67 example, an S-record file has to be read once to determine the
68 size of the data. An IEEE-695 file doesn't contain raw data in
69 sections, but data and relocation expressions intermixed, so
70 the data area has to be parsed to get out the data and
71 relocations.
72
73 INODE
74 Section Output, typedef asection, Section Input, Sections
75
76 SUBSECTION
77 Section output
78
79 To write a new object style BFD, the various sections to be
80 written have to be created. They are attached to the BFD in
81 the same way as input sections; data is written to the
82 sections using <<bfd_set_section_contents>>.
83
84 Any program that creates or combines sections (e.g., the assembler
85 and linker) must use the <<asection>> fields <<output_section>> and
86 <<output_offset>> to indicate the file sections to which each
87 section must be written. (If the section is being created from
88 scratch, <<output_section>> should probably point to the section
89 itself and <<output_offset>> should probably be zero.)
90
91 The data to be written comes from input sections attached
92 (via <<output_section>> pointers) to
93 the output sections. The output section structure can be
94 considered a filter for the input section: the output section
95 determines the vma of the output data and the name, but the
96 input section determines the offset into the output section of
97 the data to be written.
98
99 E.g., to create a section "O", starting at 0x100, 0x123 long,
100 containing two subsections, "A" at offset 0x0 (i.e., at vma
101 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
102 structures would look like:
103
104 | section name "A"
105 | output_offset 0x00
106 | size 0x20
107 | output_section -----------> section name "O"
108 | | vma 0x100
109 | section name "B" | size 0x123
110 | output_offset 0x20 |
111 | size 0x103 |
112 | output_section --------|
113
114 SUBSECTION
115 Link orders
116
117 The data within a section is stored in a @dfn{link_order}.
118 These are much like the fixups in <<gas>>. The link_order
119 abstraction allows a section to grow and shrink within itself.
120
121 A link_order knows how big it is, and which is the next
122 link_order and where the raw data for it is; it also points to
123 a list of relocations which apply to it.
124
125 The link_order is used by the linker to perform relaxing on
126 final code. The compiler creates code which is as big as
127 necessary to make it work without relaxing, and the user can
128 select whether to relax. Sometimes relaxing takes a lot of
129 time. The linker runs around the relocations to see if any
130 are attached to data which can be shrunk, if so it does it on
131 a link_order by link_order basis.
132
133 */
134
135 #include "sysdep.h"
136 #include "bfd.h"
137 #include "libbfd.h"
138 #include "bfdlink.h"
139
140 /*
141 DOCDD
142 INODE
143 typedef asection, section prototypes, Section Output, Sections
144 SUBSECTION
145 typedef asection
146
147 Here is the section structure:
148
149 CODE_FRAGMENT
150 .
151 .typedef struct bfd_section
152 .{
153 . {* The name of the section; the name isn't a copy, the pointer is
154 . the same as that passed to bfd_make_section. *}
155 . const char *name;
156 .
157 . {* A unique sequence number. *}
158 . unsigned int id;
159 .
160 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *}
161 . unsigned int index;
162 .
163 . {* The next section in the list belonging to the BFD, or NULL. *}
164 . struct bfd_section *next;
165 .
166 . {* The previous section in the list belonging to the BFD, or NULL. *}
167 . struct bfd_section *prev;
168 .
169 . {* The field flags contains attributes of the section. Some
170 . flags are read in from the object file, and some are
171 . synthesized from other information. *}
172 . flagword flags;
173 .
174 .#define SEC_NO_FLAGS 0x0
175 .
176 . {* Tells the OS to allocate space for this section when loading.
177 . This is clear for a section containing debug information only. *}
178 .#define SEC_ALLOC 0x1
179 .
180 . {* Tells the OS to load the section from the file when loading.
181 . This is clear for a .bss section. *}
182 .#define SEC_LOAD 0x2
183 .
184 . {* The section contains data still to be relocated, so there is
185 . some relocation information too. *}
186 .#define SEC_RELOC 0x4
187 .
188 . {* A signal to the OS that the section contains read only data. *}
189 .#define SEC_READONLY 0x8
190 .
191 . {* The section contains code only. *}
192 .#define SEC_CODE 0x10
193 .
194 . {* The section contains data only. *}
195 .#define SEC_DATA 0x20
196 .
197 . {* The section will reside in ROM. *}
198 .#define SEC_ROM 0x40
199 .
200 . {* The section contains constructor information. This section
201 . type is used by the linker to create lists of constructors and
202 . destructors used by <<g++>>. When a back end sees a symbol
203 . which should be used in a constructor list, it creates a new
204 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
205 . the symbol to it, and builds a relocation. To build the lists
206 . of constructors, all the linker has to do is catenate all the
207 . sections called <<__CTOR_LIST__>> and relocate the data
208 . contained within - exactly the operations it would peform on
209 . standard data. *}
210 .#define SEC_CONSTRUCTOR 0x80
211 .
212 . {* The section has contents - a data section could be
213 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
214 . <<SEC_HAS_CONTENTS>> *}
215 .#define SEC_HAS_CONTENTS 0x100
216 .
217 . {* An instruction to the linker to not output the section
218 . even if it has information which would normally be written. *}
219 .#define SEC_NEVER_LOAD 0x200
220 .
221 . {* The section contains thread local data. *}
222 .#define SEC_THREAD_LOCAL 0x400
223 .
224 . {* The section contains common symbols (symbols may be defined
225 . multiple times, the value of a symbol is the amount of
226 . space it requires, and the largest symbol value is the one
227 . used). Most targets have exactly one of these (which we
228 . translate to bfd_com_section_ptr), but ECOFF has two. *}
229 .#define SEC_IS_COMMON 0x1000
230 .
231 . {* The section contains only debugging information. For
232 . example, this is set for ELF .debug and .stab sections.
233 . strip tests this flag to see if a section can be
234 . discarded. *}
235 .#define SEC_DEBUGGING 0x2000
236 .
237 . {* The contents of this section are held in memory pointed to
238 . by the contents field. This is checked by bfd_get_section_contents,
239 . and the data is retrieved from memory if appropriate. *}
240 .#define SEC_IN_MEMORY 0x4000
241 .
242 . {* The contents of this section are to be excluded by the
243 . linker for executable and shared objects unless those
244 . objects are to be further relocated. *}
245 .#define SEC_EXCLUDE 0x8000
246 .
247 . {* The contents of this section are to be sorted based on the sum of
248 . the symbol and addend values specified by the associated relocation
249 . entries. Entries without associated relocation entries will be
250 . appended to the end of the section in an unspecified order. *}
251 .#define SEC_SORT_ENTRIES 0x10000
252 .
253 . {* When linking, duplicate sections of the same name should be
254 . discarded, rather than being combined into a single section as
255 . is usually done. This is similar to how common symbols are
256 . handled. See SEC_LINK_DUPLICATES below. *}
257 .#define SEC_LINK_ONCE 0x20000
258 .
259 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
260 . should handle duplicate sections. *}
261 .#define SEC_LINK_DUPLICATES 0xc0000
262 .
263 . {* This value for SEC_LINK_DUPLICATES means that duplicate
264 . sections with the same name should simply be discarded. *}
265 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
266 .
267 . {* This value for SEC_LINK_DUPLICATES means that the linker
268 . should warn if there are any duplicate sections, although
269 . it should still only link one copy. *}
270 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000
271 .
272 . {* This value for SEC_LINK_DUPLICATES means that the linker
273 . should warn if any duplicate sections are a different size. *}
274 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
275 .
276 . {* This value for SEC_LINK_DUPLICATES means that the linker
277 . should warn if any duplicate sections contain different
278 . contents. *}
279 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
280 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
281 .
282 . {* This section was created by the linker as part of dynamic
283 . relocation or other arcane processing. It is skipped when
284 . going through the first-pass output, trusting that someone
285 . else up the line will take care of it later. *}
286 .#define SEC_LINKER_CREATED 0x100000
287 .
288 . {* This section should not be subject to garbage collection.
289 . Also set to inform the linker that this section should not be
290 . listed in the link map as discarded. *}
291 .#define SEC_KEEP 0x200000
292 .
293 . {* This section contains "short" data, and should be placed
294 . "near" the GP. *}
295 .#define SEC_SMALL_DATA 0x400000
296 .
297 . {* Attempt to merge identical entities in the section.
298 . Entity size is given in the entsize field. *}
299 .#define SEC_MERGE 0x800000
300 .
301 . {* If given with SEC_MERGE, entities to merge are zero terminated
302 . strings where entsize specifies character size instead of fixed
303 . size entries. *}
304 .#define SEC_STRINGS 0x1000000
305 .
306 . {* This section contains data about section groups. *}
307 .#define SEC_GROUP 0x2000000
308 .
309 . {* The section is a COFF shared library section. This flag is
310 . only for the linker. If this type of section appears in
311 . the input file, the linker must copy it to the output file
312 . without changing the vma or size. FIXME: Although this
313 . was originally intended to be general, it really is COFF
314 . specific (and the flag was renamed to indicate this). It
315 . might be cleaner to have some more general mechanism to
316 . allow the back end to control what the linker does with
317 . sections. *}
318 .#define SEC_COFF_SHARED_LIBRARY 0x4000000
319 .
320 . {* This input section should be copied to output in reverse order
321 . as an array of pointers. This is for ELF linker internal use
322 . only. *}
323 .#define SEC_ELF_REVERSE_COPY 0x4000000
324 .
325 . {* This section contains data which may be shared with other
326 . executables or shared objects. This is for COFF only. *}
327 .#define SEC_COFF_SHARED 0x8000000
328 .
329 . {* This section should be compressed. This is for ELF linker
330 . internal use only. *}
331 .#define SEC_ELF_COMPRESS 0x8000000
332 .
333 . {* When a section with this flag is being linked, then if the size of
334 . the input section is less than a page, it should not cross a page
335 . boundary. If the size of the input section is one page or more,
336 . it should be aligned on a page boundary. This is for TI
337 . TMS320C54X only. *}
338 .#define SEC_TIC54X_BLOCK 0x10000000
339 .
340 . {* This section should be renamed. This is for ELF linker
341 . internal use only. *}
342 .#define SEC_ELF_RENAME 0x10000000
343 .
344 . {* Conditionally link this section; do not link if there are no
345 . references found to any symbol in the section. This is for TI
346 . TMS320C54X only. *}
347 .#define SEC_TIC54X_CLINK 0x20000000
348 .
349 . {* This section contains vliw code. This is for Toshiba MeP only. *}
350 .#define SEC_MEP_VLIW 0x20000000
351 .
352 . {* Indicate that section has the no read flag set. This happens
353 . when memory read flag isn't set. *}
354 .#define SEC_COFF_NOREAD 0x40000000
355 .
356 . {* Indicate that section has the purecode flag set. *}
357 .#define SEC_ELF_PURECODE 0x80000000
358 .
359 . {* End of section flags. *}
360 .
361 . {* Some internal packed boolean fields. *}
362 .
363 . {* See the vma field. *}
364 . unsigned int user_set_vma : 1;
365 .
366 . {* A mark flag used by some of the linker backends. *}
367 . unsigned int linker_mark : 1;
368 .
369 . {* Another mark flag used by some of the linker backends. Set for
370 . output sections that have an input section. *}
371 . unsigned int linker_has_input : 1;
372 .
373 . {* Mark flag used by some linker backends for garbage collection. *}
374 . unsigned int gc_mark : 1;
375 .
376 . {* Section compression status. *}
377 . unsigned int compress_status : 2;
378 .#define COMPRESS_SECTION_NONE 0
379 .#define COMPRESS_SECTION_DONE 1
380 .#define DECOMPRESS_SECTION_SIZED 2
381 .
382 . {* The following flags are used by the ELF linker. *}
383 .
384 . {* Mark sections which have been allocated to segments. *}
385 . unsigned int segment_mark : 1;
386 .
387 . {* Type of sec_info information. *}
388 . unsigned int sec_info_type:3;
389 .#define SEC_INFO_TYPE_NONE 0
390 .#define SEC_INFO_TYPE_STABS 1
391 .#define SEC_INFO_TYPE_MERGE 2
392 .#define SEC_INFO_TYPE_EH_FRAME 3
393 .#define SEC_INFO_TYPE_JUST_SYMS 4
394 .#define SEC_INFO_TYPE_TARGET 5
395 .#define SEC_INFO_TYPE_EH_FRAME_ENTRY 6
396 .
397 . {* Nonzero if this section uses RELA relocations, rather than REL. *}
398 . unsigned int use_rela_p:1;
399 .
400 . {* Bits used by various backends. The generic code doesn't touch
401 . these fields. *}
402 .
403 . unsigned int sec_flg0:1;
404 . unsigned int sec_flg1:1;
405 . unsigned int sec_flg2:1;
406 . unsigned int sec_flg3:1;
407 . unsigned int sec_flg4:1;
408 . unsigned int sec_flg5:1;
409 .
410 . {* End of internal packed boolean fields. *}
411 .
412 . {* The virtual memory address of the section - where it will be
413 . at run time. The symbols are relocated against this. The
414 . user_set_vma flag is maintained by bfd; if it's not set, the
415 . backend can assign addresses (for example, in <<a.out>>, where
416 . the default address for <<.data>> is dependent on the specific
417 . target and various flags). *}
418 . bfd_vma vma;
419 .
420 . {* The load address of the section - where it would be in a
421 . rom image; really only used for writing section header
422 . information. *}
423 . bfd_vma lma;
424 .
425 . {* The size of the section in *octets*, as it will be output.
426 . Contains a value even if the section has no contents (e.g., the
427 . size of <<.bss>>). *}
428 . bfd_size_type size;
429 .
430 . {* For input sections, the original size on disk of the section, in
431 . octets. This field should be set for any section whose size is
432 . changed by linker relaxation. It is required for sections where
433 . the linker relaxation scheme doesn't cache altered section and
434 . reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
435 . targets), and thus the original size needs to be kept to read the
436 . section multiple times. For output sections, rawsize holds the
437 . section size calculated on a previous linker relaxation pass. *}
438 . bfd_size_type rawsize;
439 .
440 . {* The compressed size of the section in octets. *}
441 . bfd_size_type compressed_size;
442 .
443 . {* Relaxation table. *}
444 . struct relax_table *relax;
445 .
446 . {* Count of used relaxation table entries. *}
447 . int relax_count;
448 .
449 .
450 . {* If this section is going to be output, then this value is the
451 . offset in *bytes* into the output section of the first byte in the
452 . input section (byte ==> smallest addressable unit on the
453 . target). In most cases, if this was going to start at the
454 . 100th octet (8-bit quantity) in the output section, this value
455 . would be 100. However, if the target byte size is 16 bits
456 . (bfd_octets_per_byte is "2"), this value would be 50. *}
457 . bfd_vma output_offset;
458 .
459 . {* The output section through which to map on output. *}
460 . struct bfd_section *output_section;
461 .
462 . {* The alignment requirement of the section, as an exponent of 2 -
463 . e.g., 3 aligns to 2^3 (or 8). *}
464 . unsigned int alignment_power;
465 .
466 . {* If an input section, a pointer to a vector of relocation
467 . records for the data in this section. *}
468 . struct reloc_cache_entry *relocation;
469 .
470 . {* If an output section, a pointer to a vector of pointers to
471 . relocation records for the data in this section. *}
472 . struct reloc_cache_entry **orelocation;
473 .
474 . {* The number of relocation records in one of the above. *}
475 . unsigned reloc_count;
476 .
477 . {* Information below is back end specific - and not always used
478 . or updated. *}
479 .
480 . {* File position of section data. *}
481 . file_ptr filepos;
482 .
483 . {* File position of relocation info. *}
484 . file_ptr rel_filepos;
485 .
486 . {* File position of line data. *}
487 . file_ptr line_filepos;
488 .
489 . {* Pointer to data for applications. *}
490 . void *userdata;
491 .
492 . {* If the SEC_IN_MEMORY flag is set, this points to the actual
493 . contents. *}
494 . unsigned char *contents;
495 .
496 . {* Attached line number information. *}
497 . alent *lineno;
498 .
499 . {* Number of line number records. *}
500 . unsigned int lineno_count;
501 .
502 . {* Entity size for merging purposes. *}
503 . unsigned int entsize;
504 .
505 . {* Points to the kept section if this section is a link-once section,
506 . and is discarded. *}
507 . struct bfd_section *kept_section;
508 .
509 . {* When a section is being output, this value changes as more
510 . linenumbers are written out. *}
511 . file_ptr moving_line_filepos;
512 .
513 . {* What the section number is in the target world. *}
514 . int target_index;
515 .
516 . void *used_by_bfd;
517 .
518 . {* If this is a constructor section then here is a list of the
519 . relocations created to relocate items within it. *}
520 . struct relent_chain *constructor_chain;
521 .
522 . {* The BFD which owns the section. *}
523 . bfd *owner;
524 .
525 . {* A symbol which points at this section only. *}
526 . struct bfd_symbol *symbol;
527 . struct bfd_symbol **symbol_ptr_ptr;
528 .
529 . {* Early in the link process, map_head and map_tail are used to build
530 . a list of input sections attached to an output section. Later,
531 . output sections use these fields for a list of bfd_link_order
532 . structs. *}
533 . union {
534 . struct bfd_link_order *link_order;
535 . struct bfd_section *s;
536 . } map_head, map_tail;
537 .} asection;
538 .
539 .{* Relax table contains information about instructions which can
540 . be removed by relaxation -- replacing a long address with a
541 . short address. *}
542 .struct relax_table {
543 . {* Address where bytes may be deleted. *}
544 . bfd_vma addr;
545 .
546 . {* Number of bytes to be deleted. *}
547 . int size;
548 .};
549 .
550 .{* Note: the following are provided as inline functions rather than macros
551 . because not all callers use the return value. A macro implementation
552 . would use a comma expression, eg: "((ptr)->foo = val, TRUE)" and some
553 . compilers will complain about comma expressions that have no effect. *}
554 .static inline bfd_boolean
555 .bfd_set_section_userdata (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr,
556 . void * val)
557 .{
558 . ptr->userdata = val;
559 . return TRUE;
560 .}
561 .
562 .static inline bfd_boolean
563 .bfd_set_section_vma (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, bfd_vma val)
564 .{
565 . ptr->vma = ptr->lma = val;
566 . ptr->user_set_vma = TRUE;
567 . return TRUE;
568 .}
569 .
570 .static inline bfd_boolean
571 .bfd_set_section_alignment (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr,
572 . unsigned int val)
573 .{
574 . ptr->alignment_power = val;
575 . return TRUE;
576 .}
577 .
578 .{* These sections are global, and are managed by BFD. The application
579 . and target back end are not permitted to change the values in
580 . these sections. *}
581 .extern asection _bfd_std_section[4];
582 .
583 .#define BFD_ABS_SECTION_NAME "*ABS*"
584 .#define BFD_UND_SECTION_NAME "*UND*"
585 .#define BFD_COM_SECTION_NAME "*COM*"
586 .#define BFD_IND_SECTION_NAME "*IND*"
587 .
588 .{* Pointer to the common section. *}
589 .#define bfd_com_section_ptr (&_bfd_std_section[0])
590 .{* Pointer to the undefined section. *}
591 .#define bfd_und_section_ptr (&_bfd_std_section[1])
592 .{* Pointer to the absolute section. *}
593 .#define bfd_abs_section_ptr (&_bfd_std_section[2])
594 .{* Pointer to the indirect section. *}
595 .#define bfd_ind_section_ptr (&_bfd_std_section[3])
596 .
597 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
598 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
599 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
600 .
601 .#define bfd_is_const_section(SEC) \
602 . ( ((SEC) == bfd_abs_section_ptr) \
603 . || ((SEC) == bfd_und_section_ptr) \
604 . || ((SEC) == bfd_com_section_ptr) \
605 . || ((SEC) == bfd_ind_section_ptr))
606 .
607 .{* Macros to handle insertion and deletion of a bfd's sections. These
608 . only handle the list pointers, ie. do not adjust section_count,
609 . target_index etc. *}
610 .#define bfd_section_list_remove(ABFD, S) \
611 . do \
612 . { \
613 . asection *_s = S; \
614 . asection *_next = _s->next; \
615 . asection *_prev = _s->prev; \
616 . if (_prev) \
617 . _prev->next = _next; \
618 . else \
619 . (ABFD)->sections = _next; \
620 . if (_next) \
621 . _next->prev = _prev; \
622 . else \
623 . (ABFD)->section_last = _prev; \
624 . } \
625 . while (0)
626 .#define bfd_section_list_append(ABFD, S) \
627 . do \
628 . { \
629 . asection *_s = S; \
630 . bfd *_abfd = ABFD; \
631 . _s->next = NULL; \
632 . if (_abfd->section_last) \
633 . { \
634 . _s->prev = _abfd->section_last; \
635 . _abfd->section_last->next = _s; \
636 . } \
637 . else \
638 . { \
639 . _s->prev = NULL; \
640 . _abfd->sections = _s; \
641 . } \
642 . _abfd->section_last = _s; \
643 . } \
644 . while (0)
645 .#define bfd_section_list_prepend(ABFD, S) \
646 . do \
647 . { \
648 . asection *_s = S; \
649 . bfd *_abfd = ABFD; \
650 . _s->prev = NULL; \
651 . if (_abfd->sections) \
652 . { \
653 . _s->next = _abfd->sections; \
654 . _abfd->sections->prev = _s; \
655 . } \
656 . else \
657 . { \
658 . _s->next = NULL; \
659 . _abfd->section_last = _s; \
660 . } \
661 . _abfd->sections = _s; \
662 . } \
663 . while (0)
664 .#define bfd_section_list_insert_after(ABFD, A, S) \
665 . do \
666 . { \
667 . asection *_a = A; \
668 . asection *_s = S; \
669 . asection *_next = _a->next; \
670 . _s->next = _next; \
671 . _s->prev = _a; \
672 . _a->next = _s; \
673 . if (_next) \
674 . _next->prev = _s; \
675 . else \
676 . (ABFD)->section_last = _s; \
677 . } \
678 . while (0)
679 .#define bfd_section_list_insert_before(ABFD, B, S) \
680 . do \
681 . { \
682 . asection *_b = B; \
683 . asection *_s = S; \
684 . asection *_prev = _b->prev; \
685 . _s->prev = _prev; \
686 . _s->next = _b; \
687 . _b->prev = _s; \
688 . if (_prev) \
689 . _prev->next = _s; \
690 . else \
691 . (ABFD)->sections = _s; \
692 . } \
693 . while (0)
694 .#define bfd_section_removed_from_list(ABFD, S) \
695 . ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
696 .
697 .#define BFD_FAKE_SECTION(SEC, SYM, NAME, IDX, FLAGS) \
698 . {* name, id, index, next, prev, flags, user_set_vma, *} \
699 . { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \
700 . \
701 . {* linker_mark, linker_has_input, gc_mark, decompress_status, *} \
702 . 0, 0, 1, 0, \
703 . \
704 . {* segment_mark, sec_info_type, use_rela_p, *} \
705 . 0, 0, 0, \
706 . \
707 . {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5, *} \
708 . 0, 0, 0, 0, 0, 0, \
709 . \
710 . {* vma, lma, size, rawsize, compressed_size, relax, relax_count, *} \
711 . 0, 0, 0, 0, 0, 0, 0, \
712 . \
713 . {* output_offset, output_section, alignment_power, *} \
714 . 0, &SEC, 0, \
715 . \
716 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \
717 . NULL, NULL, 0, 0, 0, \
718 . \
719 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \
720 . 0, NULL, NULL, NULL, 0, \
721 . \
722 . {* entsize, kept_section, moving_line_filepos, *} \
723 . 0, NULL, 0, \
724 . \
725 . {* target_index, used_by_bfd, constructor_chain, owner, *} \
726 . 0, NULL, NULL, NULL, \
727 . \
728 . {* symbol, symbol_ptr_ptr, *} \
729 . (struct bfd_symbol *) SYM, &SEC.symbol, \
730 . \
731 . {* map_head, map_tail *} \
732 . { NULL }, { NULL } \
733 . }
734 .
735 .{* We use a macro to initialize the static asymbol structures because
736 . traditional C does not permit us to initialize a union member while
737 . gcc warns if we don't initialize it.
738 . the_bfd, name, value, attr, section [, udata] *}
739 .#ifdef __STDC__
740 .#define GLOBAL_SYM_INIT(NAME, SECTION) \
741 . { 0, NAME, 0, BSF_SECTION_SYM, SECTION, { 0 }}
742 .#else
743 .#define GLOBAL_SYM_INIT(NAME, SECTION) \
744 . { 0, NAME, 0, BSF_SECTION_SYM, SECTION }
745 .#endif
746 .
747 */
748
749 /* These symbols are global, not specific to any BFD. Therefore, anything
750 that tries to change them is broken, and should be repaired. */
751
752 static const asymbol global_syms[] =
753 {
754 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, bfd_com_section_ptr),
755 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, bfd_und_section_ptr),
756 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, bfd_abs_section_ptr),
757 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, bfd_ind_section_ptr)
758 };
759
760 #define STD_SECTION(NAME, IDX, FLAGS) \
761 BFD_FAKE_SECTION(_bfd_std_section[IDX], &global_syms[IDX], NAME, IDX, FLAGS)
762
763 asection _bfd_std_section[] = {
764 STD_SECTION (BFD_COM_SECTION_NAME, 0, SEC_IS_COMMON),
765 STD_SECTION (BFD_UND_SECTION_NAME, 1, 0),
766 STD_SECTION (BFD_ABS_SECTION_NAME, 2, 0),
767 STD_SECTION (BFD_IND_SECTION_NAME, 3, 0)
768 };
769 #undef STD_SECTION
770
771 /* Initialize an entry in the section hash table. */
772
773 struct bfd_hash_entry *
774 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
775 struct bfd_hash_table *table,
776 const char *string)
777 {
778 /* Allocate the structure if it has not already been allocated by a
779 subclass. */
780 if (entry == NULL)
781 {
782 entry = (struct bfd_hash_entry *)
783 bfd_hash_allocate (table, sizeof (struct section_hash_entry));
784 if (entry == NULL)
785 return entry;
786 }
787
788 /* Call the allocation method of the superclass. */
789 entry = bfd_hash_newfunc (entry, table, string);
790 if (entry != NULL)
791 memset (&((struct section_hash_entry *) entry)->section, 0,
792 sizeof (asection));
793
794 return entry;
795 }
796
797 #define section_hash_lookup(table, string, create, copy) \
798 ((struct section_hash_entry *) \
799 bfd_hash_lookup ((table), (string), (create), (copy)))
800
801 /* Create a symbol whose only job is to point to this section. This
802 is useful for things like relocs which are relative to the base
803 of a section. */
804
805 bfd_boolean
806 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect)
807 {
808 newsect->symbol = bfd_make_empty_symbol (abfd);
809 if (newsect->symbol == NULL)
810 return FALSE;
811
812 newsect->symbol->name = newsect->name;
813 newsect->symbol->value = 0;
814 newsect->symbol->section = newsect;
815 newsect->symbol->flags = BSF_SECTION_SYM;
816
817 newsect->symbol_ptr_ptr = &newsect->symbol;
818 return TRUE;
819 }
820
821 static unsigned int section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */
822
823 /* Initializes a new section. NEWSECT->NAME is already set. */
824
825 static asection *
826 bfd_section_init (bfd *abfd, asection *newsect)
827 {
828 newsect->id = section_id;
829 newsect->index = abfd->section_count;
830 newsect->owner = abfd;
831
832 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
833 return NULL;
834
835 section_id++;
836 abfd->section_count++;
837 bfd_section_list_append (abfd, newsect);
838 return newsect;
839 }
840
841 /*
842 DOCDD
843 INODE
844 section prototypes, , typedef asection, Sections
845 SUBSECTION
846 Section prototypes
847
848 These are the functions exported by the section handling part of BFD.
849 */
850
851 /*
852 FUNCTION
853 bfd_section_list_clear
854
855 SYNOPSIS
856 void bfd_section_list_clear (bfd *);
857
858 DESCRIPTION
859 Clears the section list, and also resets the section count and
860 hash table entries.
861 */
862
863 void
864 bfd_section_list_clear (bfd *abfd)
865 {
866 abfd->sections = NULL;
867 abfd->section_last = NULL;
868 abfd->section_count = 0;
869 memset (abfd->section_htab.table, 0,
870 abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
871 abfd->section_htab.count = 0;
872 }
873
874 /*
875 FUNCTION
876 bfd_get_section_by_name
877
878 SYNOPSIS
879 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
880
881 DESCRIPTION
882 Return the most recently created section attached to @var{abfd}
883 named @var{name}. Return NULL if no such section exists.
884 */
885
886 asection *
887 bfd_get_section_by_name (bfd *abfd, const char *name)
888 {
889 struct section_hash_entry *sh;
890
891 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
892 if (sh != NULL)
893 return &sh->section;
894
895 return NULL;
896 }
897
898 /*
899 FUNCTION
900 bfd_get_next_section_by_name
901
902 SYNOPSIS
903 asection *bfd_get_next_section_by_name (bfd *ibfd, asection *sec);
904
905 DESCRIPTION
906 Given @var{sec} is a section returned by @code{bfd_get_section_by_name},
907 return the next most recently created section attached to the same
908 BFD with the same name, or if no such section exists in the same BFD and
909 IBFD is non-NULL, the next section with the same name in any input
910 BFD following IBFD. Return NULL on finding no section.
911 */
912
913 asection *
914 bfd_get_next_section_by_name (bfd *ibfd, asection *sec)
915 {
916 struct section_hash_entry *sh;
917 const char *name;
918 unsigned long hash;
919
920 sh = ((struct section_hash_entry *)
921 ((char *) sec - offsetof (struct section_hash_entry, section)));
922
923 hash = sh->root.hash;
924 name = sec->name;
925 for (sh = (struct section_hash_entry *) sh->root.next;
926 sh != NULL;
927 sh = (struct section_hash_entry *) sh->root.next)
928 if (sh->root.hash == hash
929 && strcmp (sh->root.string, name) == 0)
930 return &sh->section;
931
932 if (ibfd != NULL)
933 {
934 while ((ibfd = ibfd->link.next) != NULL)
935 {
936 asection *s = bfd_get_section_by_name (ibfd, name);
937 if (s != NULL)
938 return s;
939 }
940 }
941
942 return NULL;
943 }
944
945 /*
946 FUNCTION
947 bfd_get_linker_section
948
949 SYNOPSIS
950 asection *bfd_get_linker_section (bfd *abfd, const char *name);
951
952 DESCRIPTION
953 Return the linker created section attached to @var{abfd}
954 named @var{name}. Return NULL if no such section exists.
955 */
956
957 asection *
958 bfd_get_linker_section (bfd *abfd, const char *name)
959 {
960 asection *sec = bfd_get_section_by_name (abfd, name);
961
962 while (sec != NULL && (sec->flags & SEC_LINKER_CREATED) == 0)
963 sec = bfd_get_next_section_by_name (NULL, sec);
964 return sec;
965 }
966
967 /*
968 FUNCTION
969 bfd_get_section_by_name_if
970
971 SYNOPSIS
972 asection *bfd_get_section_by_name_if
973 (bfd *abfd,
974 const char *name,
975 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
976 void *obj);
977
978 DESCRIPTION
979 Call the provided function @var{func} for each section
980 attached to the BFD @var{abfd} whose name matches @var{name},
981 passing @var{obj} as an argument. The function will be called
982 as if by
983
984 | func (abfd, the_section, obj);
985
986 It returns the first section for which @var{func} returns true,
987 otherwise <<NULL>>.
988
989 */
990
991 asection *
992 bfd_get_section_by_name_if (bfd *abfd, const char *name,
993 bfd_boolean (*operation) (bfd *,
994 asection *,
995 void *),
996 void *user_storage)
997 {
998 struct section_hash_entry *sh;
999 unsigned long hash;
1000
1001 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
1002 if (sh == NULL)
1003 return NULL;
1004
1005 hash = sh->root.hash;
1006 for (; sh != NULL; sh = (struct section_hash_entry *) sh->root.next)
1007 if (sh->root.hash == hash
1008 && strcmp (sh->root.string, name) == 0
1009 && (*operation) (abfd, &sh->section, user_storage))
1010 return &sh->section;
1011
1012 return NULL;
1013 }
1014
1015 /*
1016 FUNCTION
1017 bfd_get_unique_section_name
1018
1019 SYNOPSIS
1020 char *bfd_get_unique_section_name
1021 (bfd *abfd, const char *templat, int *count);
1022
1023 DESCRIPTION
1024 Invent a section name that is unique in @var{abfd} by tacking
1025 a dot and a digit suffix onto the original @var{templat}. If
1026 @var{count} is non-NULL, then it specifies the first number
1027 tried as a suffix to generate a unique name. The value
1028 pointed to by @var{count} will be incremented in this case.
1029 */
1030
1031 char *
1032 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
1033 {
1034 int num;
1035 unsigned int len;
1036 char *sname;
1037
1038 len = strlen (templat);
1039 sname = (char *) bfd_malloc (len + 8);
1040 if (sname == NULL)
1041 return NULL;
1042 memcpy (sname, templat, len);
1043 num = 1;
1044 if (count != NULL)
1045 num = *count;
1046
1047 do
1048 {
1049 /* If we have a million sections, something is badly wrong. */
1050 if (num > 999999)
1051 abort ();
1052 sprintf (sname + len, ".%d", num++);
1053 }
1054 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
1055
1056 if (count != NULL)
1057 *count = num;
1058 return sname;
1059 }
1060
1061 /*
1062 FUNCTION
1063 bfd_make_section_old_way
1064
1065 SYNOPSIS
1066 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
1067
1068 DESCRIPTION
1069 Create a new empty section called @var{name}
1070 and attach it to the end of the chain of sections for the
1071 BFD @var{abfd}. An attempt to create a section with a name which
1072 is already in use returns its pointer without changing the
1073 section chain.
1074
1075 It has the funny name since this is the way it used to be
1076 before it was rewritten....
1077
1078 Possible errors are:
1079 o <<bfd_error_invalid_operation>> -
1080 If output has already started for this BFD.
1081 o <<bfd_error_no_memory>> -
1082 If memory allocation fails.
1083
1084 */
1085
1086 asection *
1087 bfd_make_section_old_way (bfd *abfd, const char *name)
1088 {
1089 asection *newsect;
1090
1091 if (abfd->output_has_begun)
1092 {
1093 bfd_set_error (bfd_error_invalid_operation);
1094 return NULL;
1095 }
1096
1097 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
1098 newsect = bfd_abs_section_ptr;
1099 else if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
1100 newsect = bfd_com_section_ptr;
1101 else if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
1102 newsect = bfd_und_section_ptr;
1103 else if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
1104 newsect = bfd_ind_section_ptr;
1105 else
1106 {
1107 struct section_hash_entry *sh;
1108
1109 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1110 if (sh == NULL)
1111 return NULL;
1112
1113 newsect = &sh->section;
1114 if (newsect->name != NULL)
1115 {
1116 /* Section already exists. */
1117 return newsect;
1118 }
1119
1120 newsect->name = name;
1121 return bfd_section_init (abfd, newsect);
1122 }
1123
1124 /* Call new_section_hook when "creating" the standard abs, com, und
1125 and ind sections to tack on format specific section data.
1126 Also, create a proper section symbol. */
1127 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
1128 return NULL;
1129 return newsect;
1130 }
1131
1132 /*
1133 FUNCTION
1134 bfd_make_section_anyway_with_flags
1135
1136 SYNOPSIS
1137 asection *bfd_make_section_anyway_with_flags
1138 (bfd *abfd, const char *name, flagword flags);
1139
1140 DESCRIPTION
1141 Create a new empty section called @var{name} and attach it to the end of
1142 the chain of sections for @var{abfd}. Create a new section even if there
1143 is already a section with that name. Also set the attributes of the
1144 new section to the value @var{flags}.
1145
1146 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1147 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1148 o <<bfd_error_no_memory>> - If memory allocation fails.
1149 */
1150
1151 sec_ptr
1152 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1153 flagword flags)
1154 {
1155 struct section_hash_entry *sh;
1156 asection *newsect;
1157
1158 if (abfd->output_has_begun)
1159 {
1160 bfd_set_error (bfd_error_invalid_operation);
1161 return NULL;
1162 }
1163
1164 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1165 if (sh == NULL)
1166 return NULL;
1167
1168 newsect = &sh->section;
1169 if (newsect->name != NULL)
1170 {
1171 /* We are making a section of the same name. Put it in the
1172 section hash table. Even though we can't find it directly by a
1173 hash lookup, we'll be able to find the section by traversing
1174 sh->root.next quicker than looking at all the bfd sections. */
1175 struct section_hash_entry *new_sh;
1176 new_sh = (struct section_hash_entry *)
1177 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1178 if (new_sh == NULL)
1179 return NULL;
1180
1181 new_sh->root = sh->root;
1182 sh->root.next = &new_sh->root;
1183 newsect = &new_sh->section;
1184 }
1185
1186 newsect->flags = flags;
1187 newsect->name = name;
1188 return bfd_section_init (abfd, newsect);
1189 }
1190
1191 /*
1192 FUNCTION
1193 bfd_make_section_anyway
1194
1195 SYNOPSIS
1196 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1197
1198 DESCRIPTION
1199 Create a new empty section called @var{name} and attach it to the end of
1200 the chain of sections for @var{abfd}. Create a new section even if there
1201 is already a section with that name.
1202
1203 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1204 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1205 o <<bfd_error_no_memory>> - If memory allocation fails.
1206 */
1207
1208 sec_ptr
1209 bfd_make_section_anyway (bfd *abfd, const char *name)
1210 {
1211 return bfd_make_section_anyway_with_flags (abfd, name, 0);
1212 }
1213
1214 /*
1215 FUNCTION
1216 bfd_make_section_with_flags
1217
1218 SYNOPSIS
1219 asection *bfd_make_section_with_flags
1220 (bfd *, const char *name, flagword flags);
1221
1222 DESCRIPTION
1223 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1224 bfd_set_error ()) without changing the section chain if there is already a
1225 section named @var{name}. Also set the attributes of the new section to
1226 the value @var{flags}. If there is an error, return <<NULL>> and set
1227 <<bfd_error>>.
1228 */
1229
1230 asection *
1231 bfd_make_section_with_flags (bfd *abfd, const char *name,
1232 flagword flags)
1233 {
1234 struct section_hash_entry *sh;
1235 asection *newsect;
1236
1237 if (abfd == NULL || name == NULL || abfd->output_has_begun)
1238 {
1239 bfd_set_error (bfd_error_invalid_operation);
1240 return NULL;
1241 }
1242
1243 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1244 || strcmp (name, BFD_COM_SECTION_NAME) == 0
1245 || strcmp (name, BFD_UND_SECTION_NAME) == 0
1246 || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1247 return NULL;
1248
1249 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1250 if (sh == NULL)
1251 return NULL;
1252
1253 newsect = &sh->section;
1254 if (newsect->name != NULL)
1255 {
1256 /* Section already exists. */
1257 return NULL;
1258 }
1259
1260 newsect->name = name;
1261 newsect->flags = flags;
1262 return bfd_section_init (abfd, newsect);
1263 }
1264
1265 /*
1266 FUNCTION
1267 bfd_make_section
1268
1269 SYNOPSIS
1270 asection *bfd_make_section (bfd *, const char *name);
1271
1272 DESCRIPTION
1273 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1274 bfd_set_error ()) without changing the section chain if there is already a
1275 section named @var{name}. If there is an error, return <<NULL>> and set
1276 <<bfd_error>>.
1277 */
1278
1279 asection *
1280 bfd_make_section (bfd *abfd, const char *name)
1281 {
1282 return bfd_make_section_with_flags (abfd, name, 0);
1283 }
1284
1285 /*
1286 FUNCTION
1287 bfd_get_next_section_id
1288
1289 SYNOPSIS
1290 int bfd_get_next_section_id (void);
1291
1292 DESCRIPTION
1293 Returns the id that the next section created will have.
1294 */
1295
1296 int
1297 bfd_get_next_section_id (void)
1298 {
1299 return section_id;
1300 }
1301
1302 /*
1303 FUNCTION
1304 bfd_set_section_flags
1305
1306 SYNOPSIS
1307 bfd_boolean bfd_set_section_flags
1308 (bfd *abfd, asection *sec, flagword flags);
1309
1310 DESCRIPTION
1311 Set the attributes of the section @var{sec} in the BFD
1312 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1313 <<FALSE>> on error. Possible error returns are:
1314
1315 o <<bfd_error_invalid_operation>> -
1316 The section cannot have one or more of the attributes
1317 requested. For example, a .bss section in <<a.out>> may not
1318 have the <<SEC_HAS_CONTENTS>> field set.
1319
1320 */
1321
1322 bfd_boolean
1323 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1324 sec_ptr section,
1325 flagword flags)
1326 {
1327 section->flags = flags;
1328 return TRUE;
1329 }
1330
1331 /*
1332 FUNCTION
1333 bfd_rename_section
1334
1335 SYNOPSIS
1336 void bfd_rename_section
1337 (bfd *abfd, asection *sec, const char *newname);
1338
1339 DESCRIPTION
1340 Rename section @var{sec} in @var{abfd} to @var{newname}.
1341 */
1342
1343 void
1344 bfd_rename_section (bfd *abfd, sec_ptr sec, const char *newname)
1345 {
1346 struct section_hash_entry *sh;
1347
1348 sh = (struct section_hash_entry *)
1349 ((char *) sec - offsetof (struct section_hash_entry, section));
1350 sh->section.name = newname;
1351 bfd_hash_rename (&abfd->section_htab, newname, &sh->root);
1352 }
1353
1354 /*
1355 FUNCTION
1356 bfd_map_over_sections
1357
1358 SYNOPSIS
1359 void bfd_map_over_sections
1360 (bfd *abfd,
1361 void (*func) (bfd *abfd, asection *sect, void *obj),
1362 void *obj);
1363
1364 DESCRIPTION
1365 Call the provided function @var{func} for each section
1366 attached to the BFD @var{abfd}, passing @var{obj} as an
1367 argument. The function will be called as if by
1368
1369 | func (abfd, the_section, obj);
1370
1371 This is the preferred method for iterating over sections; an
1372 alternative would be to use a loop:
1373
1374 | asection *p;
1375 | for (p = abfd->sections; p != NULL; p = p->next)
1376 | func (abfd, p, ...)
1377
1378 */
1379
1380 void
1381 bfd_map_over_sections (bfd *abfd,
1382 void (*operation) (bfd *, asection *, void *),
1383 void *user_storage)
1384 {
1385 asection *sect;
1386 unsigned int i = 0;
1387
1388 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1389 (*operation) (abfd, sect, user_storage);
1390
1391 if (i != abfd->section_count) /* Debugging */
1392 abort ();
1393 }
1394
1395 /*
1396 FUNCTION
1397 bfd_sections_find_if
1398
1399 SYNOPSIS
1400 asection *bfd_sections_find_if
1401 (bfd *abfd,
1402 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1403 void *obj);
1404
1405 DESCRIPTION
1406 Call the provided function @var{operation} for each section
1407 attached to the BFD @var{abfd}, passing @var{obj} as an
1408 argument. The function will be called as if by
1409
1410 | operation (abfd, the_section, obj);
1411
1412 It returns the first section for which @var{operation} returns true.
1413
1414 */
1415
1416 asection *
1417 bfd_sections_find_if (bfd *abfd,
1418 bfd_boolean (*operation) (bfd *, asection *, void *),
1419 void *user_storage)
1420 {
1421 asection *sect;
1422
1423 for (sect = abfd->sections; sect != NULL; sect = sect->next)
1424 if ((*operation) (abfd, sect, user_storage))
1425 break;
1426
1427 return sect;
1428 }
1429
1430 /*
1431 FUNCTION
1432 bfd_set_section_size
1433
1434 SYNOPSIS
1435 bfd_boolean bfd_set_section_size
1436 (bfd *abfd, asection *sec, bfd_size_type val);
1437
1438 DESCRIPTION
1439 Set @var{sec} to the size @var{val}. If the operation is
1440 ok, then <<TRUE>> is returned, else <<FALSE>>.
1441
1442 Possible error returns:
1443 o <<bfd_error_invalid_operation>> -
1444 Writing has started to the BFD, so setting the size is invalid.
1445
1446 */
1447
1448 bfd_boolean
1449 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1450 {
1451 /* Once you've started writing to any section you cannot create or change
1452 the size of any others. */
1453
1454 if (abfd->output_has_begun)
1455 {
1456 bfd_set_error (bfd_error_invalid_operation);
1457 return FALSE;
1458 }
1459
1460 ptr->size = val;
1461 return TRUE;
1462 }
1463
1464 /*
1465 FUNCTION
1466 bfd_set_section_contents
1467
1468 SYNOPSIS
1469 bfd_boolean bfd_set_section_contents
1470 (bfd *abfd, asection *section, const void *data,
1471 file_ptr offset, bfd_size_type count);
1472
1473 DESCRIPTION
1474 Sets the contents of the section @var{section} in BFD
1475 @var{abfd} to the data starting in memory at @var{data}. The
1476 data is written to the output section starting at offset
1477 @var{offset} for @var{count} octets.
1478
1479 Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1480 returns are:
1481 o <<bfd_error_no_contents>> -
1482 The output section does not have the <<SEC_HAS_CONTENTS>>
1483 attribute, so nothing can be written to it.
1484 o and some more too
1485
1486 This routine is front end to the back end function
1487 <<_bfd_set_section_contents>>.
1488
1489 */
1490
1491 bfd_boolean
1492 bfd_set_section_contents (bfd *abfd,
1493 sec_ptr section,
1494 const void *location,
1495 file_ptr offset,
1496 bfd_size_type count)
1497 {
1498 bfd_size_type sz;
1499
1500 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1501 {
1502 bfd_set_error (bfd_error_no_contents);
1503 return FALSE;
1504 }
1505
1506 sz = section->size;
1507 if ((bfd_size_type) offset > sz
1508 || count > sz
1509 || offset + count > sz
1510 || count != (size_t) count)
1511 {
1512 bfd_set_error (bfd_error_bad_value);
1513 return FALSE;
1514 }
1515
1516 if (!bfd_write_p (abfd))
1517 {
1518 bfd_set_error (bfd_error_invalid_operation);
1519 return FALSE;
1520 }
1521
1522 /* Record a copy of the data in memory if desired. */
1523 if (section->contents
1524 && location != section->contents + offset)
1525 memcpy (section->contents + offset, location, (size_t) count);
1526
1527 if (BFD_SEND (abfd, _bfd_set_section_contents,
1528 (abfd, section, location, offset, count)))
1529 {
1530 abfd->output_has_begun = TRUE;
1531 return TRUE;
1532 }
1533
1534 return FALSE;
1535 }
1536
1537 /*
1538 FUNCTION
1539 bfd_get_section_contents
1540
1541 SYNOPSIS
1542 bfd_boolean bfd_get_section_contents
1543 (bfd *abfd, asection *section, void *location, file_ptr offset,
1544 bfd_size_type count);
1545
1546 DESCRIPTION
1547 Read data from @var{section} in BFD @var{abfd}
1548 into memory starting at @var{location}. The data is read at an
1549 offset of @var{offset} from the start of the input section,
1550 and is read for @var{count} bytes.
1551
1552 If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1553 flag set are requested or if the section does not have the
1554 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1555 with zeroes. If no errors occur, <<TRUE>> is returned, else
1556 <<FALSE>>.
1557
1558 */
1559 bfd_boolean
1560 bfd_get_section_contents (bfd *abfd,
1561 sec_ptr section,
1562 void *location,
1563 file_ptr offset,
1564 bfd_size_type count)
1565 {
1566 bfd_size_type sz;
1567
1568 if (section->flags & SEC_CONSTRUCTOR)
1569 {
1570 memset (location, 0, (size_t) count);
1571 return TRUE;
1572 }
1573
1574 if (abfd->direction != write_direction && section->rawsize != 0)
1575 sz = section->rawsize;
1576 else
1577 sz = section->size;
1578 if ((bfd_size_type) offset > sz
1579 || count > sz
1580 || offset + count > sz
1581 || count != (size_t) count)
1582 {
1583 bfd_set_error (bfd_error_bad_value);
1584 return FALSE;
1585 }
1586
1587 if (count == 0)
1588 /* Don't bother. */
1589 return TRUE;
1590
1591 if ((section->flags & SEC_HAS_CONTENTS) == 0)
1592 {
1593 memset (location, 0, (size_t) count);
1594 return TRUE;
1595 }
1596
1597 if ((section->flags & SEC_IN_MEMORY) != 0)
1598 {
1599 if (section->contents == NULL)
1600 {
1601 /* This can happen because of errors earlier on in the linking process.
1602 We do not want to seg-fault here, so clear the flag and return an
1603 error code. */
1604 section->flags &= ~ SEC_IN_MEMORY;
1605 bfd_set_error (bfd_error_invalid_operation);
1606 return FALSE;
1607 }
1608
1609 memmove (location, section->contents + offset, (size_t) count);
1610 return TRUE;
1611 }
1612
1613 return BFD_SEND (abfd, _bfd_get_section_contents,
1614 (abfd, section, location, offset, count));
1615 }
1616
1617 /*
1618 FUNCTION
1619 bfd_malloc_and_get_section
1620
1621 SYNOPSIS
1622 bfd_boolean bfd_malloc_and_get_section
1623 (bfd *abfd, asection *section, bfd_byte **buf);
1624
1625 DESCRIPTION
1626 Read all data from @var{section} in BFD @var{abfd}
1627 into a buffer, *@var{buf}, malloc'd by this function.
1628 */
1629
1630 bfd_boolean
1631 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1632 {
1633 *buf = NULL;
1634 return bfd_get_full_section_contents (abfd, sec, buf);
1635 }
1636 /*
1637 FUNCTION
1638 bfd_copy_private_section_data
1639
1640 SYNOPSIS
1641 bfd_boolean bfd_copy_private_section_data
1642 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1643
1644 DESCRIPTION
1645 Copy private section information from @var{isec} in the BFD
1646 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1647 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1648 returns are:
1649
1650 o <<bfd_error_no_memory>> -
1651 Not enough memory exists to create private data for @var{osec}.
1652
1653 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1654 . BFD_SEND (obfd, _bfd_copy_private_section_data, \
1655 . (ibfd, isection, obfd, osection))
1656 */
1657
1658 /*
1659 FUNCTION
1660 bfd_generic_is_group_section
1661
1662 SYNOPSIS
1663 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1664
1665 DESCRIPTION
1666 Returns TRUE if @var{sec} is a member of a group.
1667 */
1668
1669 bfd_boolean
1670 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1671 const asection *sec ATTRIBUTE_UNUSED)
1672 {
1673 return FALSE;
1674 }
1675
1676 /*
1677 FUNCTION
1678 bfd_generic_discard_group
1679
1680 SYNOPSIS
1681 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1682
1683 DESCRIPTION
1684 Remove all members of @var{group} from the output.
1685 */
1686
1687 bfd_boolean
1688 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1689 asection *group ATTRIBUTE_UNUSED)
1690 {
1691 return TRUE;
1692 }
1693
1694 bfd_boolean
1695 _bfd_nowrite_set_section_contents (bfd *abfd,
1696 sec_ptr section ATTRIBUTE_UNUSED,
1697 const void *location ATTRIBUTE_UNUSED,
1698 file_ptr offset ATTRIBUTE_UNUSED,
1699 bfd_size_type count ATTRIBUTE_UNUSED)
1700 {
1701 return _bfd_bool_bfd_false_error (abfd);
1702 }