bfd/
[binutils-gdb.git] / bfd / section.c
1 /* Object file "section" support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23 /*
24 SECTION
25 Sections
26
27 The raw data contained within a BFD is maintained through the
28 section abstraction. A single BFD may have any number of
29 sections. It keeps hold of them by pointing to the first;
30 each one points to the next in the list.
31
32 Sections are supported in BFD in <<section.c>>.
33
34 @menu
35 @* Section Input::
36 @* Section Output::
37 @* typedef asection::
38 @* section prototypes::
39 @end menu
40
41 INODE
42 Section Input, Section Output, Sections, Sections
43 SUBSECTION
44 Section input
45
46 When a BFD is opened for reading, the section structures are
47 created and attached to the BFD.
48
49 Each section has a name which describes the section in the
50 outside world---for example, <<a.out>> would contain at least
51 three sections, called <<.text>>, <<.data>> and <<.bss>>.
52
53 Names need not be unique; for example a COFF file may have several
54 sections named <<.data>>.
55
56 Sometimes a BFD will contain more than the ``natural'' number of
57 sections. A back end may attach other sections containing
58 constructor data, or an application may add a section (using
59 <<bfd_make_section>>) to the sections attached to an already open
60 BFD. For example, the linker creates an extra section
61 <<COMMON>> for each input file's BFD to hold information about
62 common storage.
63
64 The raw data is not necessarily read in when
65 the section descriptor is created. Some targets may leave the
66 data in place until a <<bfd_get_section_contents>> call is
67 made. Other back ends may read in all the data at once. For
68 example, an S-record file has to be read once to determine the
69 size of the data. An IEEE-695 file doesn't contain raw data in
70 sections, but data and relocation expressions intermixed, so
71 the data area has to be parsed to get out the data and
72 relocations.
73
74 INODE
75 Section Output, typedef asection, Section Input, Sections
76
77 SUBSECTION
78 Section output
79
80 To write a new object style BFD, the various sections to be
81 written have to be created. They are attached to the BFD in
82 the same way as input sections; data is written to the
83 sections using <<bfd_set_section_contents>>.
84
85 Any program that creates or combines sections (e.g., the assembler
86 and linker) must use the <<asection>> fields <<output_section>> and
87 <<output_offset>> to indicate the file sections to which each
88 section must be written. (If the section is being created from
89 scratch, <<output_section>> should probably point to the section
90 itself and <<output_offset>> should probably be zero.)
91
92 The data to be written comes from input sections attached
93 (via <<output_section>> pointers) to
94 the output sections. The output section structure can be
95 considered a filter for the input section: the output section
96 determines the vma of the output data and the name, but the
97 input section determines the offset into the output section of
98 the data to be written.
99
100 E.g., to create a section "O", starting at 0x100, 0x123 long,
101 containing two subsections, "A" at offset 0x0 (i.e., at vma
102 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
103 structures would look like:
104
105 | section name "A"
106 | output_offset 0x00
107 | size 0x20
108 | output_section -----------> section name "O"
109 | | vma 0x100
110 | section name "B" | size 0x123
111 | output_offset 0x20 |
112 | size 0x103 |
113 | output_section --------|
114
115 SUBSECTION
116 Link orders
117
118 The data within a section is stored in a @dfn{link_order}.
119 These are much like the fixups in <<gas>>. The link_order
120 abstraction allows a section to grow and shrink within itself.
121
122 A link_order knows how big it is, and which is the next
123 link_order and where the raw data for it is; it also points to
124 a list of relocations which apply to it.
125
126 The link_order is used by the linker to perform relaxing on
127 final code. The compiler creates code which is as big as
128 necessary to make it work without relaxing, and the user can
129 select whether to relax. Sometimes relaxing takes a lot of
130 time. The linker runs around the relocations to see if any
131 are attached to data which can be shrunk, if so it does it on
132 a link_order by link_order basis.
133
134 */
135
136 #include "bfd.h"
137 #include "sysdep.h"
138 #include "libbfd.h"
139 #include "bfdlink.h"
140
141 /*
142 DOCDD
143 INODE
144 typedef asection, section prototypes, Section Output, Sections
145 SUBSECTION
146 typedef asection
147
148 Here is the section structure:
149
150 CODE_FRAGMENT
151 .
152 .typedef struct bfd_section
153 .{
154 . {* The name of the section; the name isn't a copy, the pointer is
155 . the same as that passed to bfd_make_section. *}
156 . const char *name;
157 .
158 . {* A unique sequence number. *}
159 . int id;
160 .
161 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *}
162 . int index;
163 .
164 . {* The next section in the list belonging to the BFD, or NULL. *}
165 . struct bfd_section *next;
166 .
167 . {* The previous section in the list belonging to the BFD, or NULL. *}
168 . struct bfd_section *prev;
169 .
170 . {* The field flags contains attributes of the section. Some
171 . flags are read in from the object file, and some are
172 . synthesized from other information. *}
173 . flagword flags;
174 .
175 .#define SEC_NO_FLAGS 0x000
176 .
177 . {* Tells the OS to allocate space for this section when loading.
178 . This is clear for a section containing debug information only. *}
179 .#define SEC_ALLOC 0x001
180 .
181 . {* Tells the OS to load the section from the file when loading.
182 . This is clear for a .bss section. *}
183 .#define SEC_LOAD 0x002
184 .
185 . {* The section contains data still to be relocated, so there is
186 . some relocation information too. *}
187 .#define SEC_RELOC 0x004
188 .
189 . {* A signal to the OS that the section contains read only data. *}
190 .#define SEC_READONLY 0x008
191 .
192 . {* The section contains code only. *}
193 .#define SEC_CODE 0x010
194 .
195 . {* The section contains data only. *}
196 .#define SEC_DATA 0x020
197 .
198 . {* The section will reside in ROM. *}
199 .#define SEC_ROM 0x040
200 .
201 . {* The section contains constructor information. This section
202 . type is used by the linker to create lists of constructors and
203 . destructors used by <<g++>>. When a back end sees a symbol
204 . which should be used in a constructor list, it creates a new
205 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
206 . the symbol to it, and builds a relocation. To build the lists
207 . of constructors, all the linker has to do is catenate all the
208 . sections called <<__CTOR_LIST__>> and relocate the data
209 . contained within - exactly the operations it would peform on
210 . standard data. *}
211 .#define SEC_CONSTRUCTOR 0x080
212 .
213 . {* The section has contents - a data section could be
214 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
215 . <<SEC_HAS_CONTENTS>> *}
216 .#define SEC_HAS_CONTENTS 0x100
217 .
218 . {* An instruction to the linker to not output the section
219 . even if it has information which would normally be written. *}
220 .#define SEC_NEVER_LOAD 0x200
221 .
222 . {* The section contains thread local data. *}
223 .#define SEC_THREAD_LOCAL 0x400
224 .
225 . {* The section has GOT references. This flag is only for the
226 . linker, and is currently only used by the elf32-hppa back end.
227 . It will be set if global offset table references were detected
228 . in this section, which indicate to the linker that the section
229 . contains PIC code, and must be handled specially when doing a
230 . static link. *}
231 .#define SEC_HAS_GOT_REF 0x800
232 .
233 . {* The section contains common symbols (symbols may be defined
234 . multiple times, the value of a symbol is the amount of
235 . space it requires, and the largest symbol value is the one
236 . used). Most targets have exactly one of these (which we
237 . translate to bfd_com_section_ptr), but ECOFF has two. *}
238 .#define SEC_IS_COMMON 0x1000
239 .
240 . {* The section contains only debugging information. For
241 . example, this is set for ELF .debug and .stab sections.
242 . strip tests this flag to see if a section can be
243 . discarded. *}
244 .#define SEC_DEBUGGING 0x2000
245 .
246 . {* The contents of this section are held in memory pointed to
247 . by the contents field. This is checked by bfd_get_section_contents,
248 . and the data is retrieved from memory if appropriate. *}
249 .#define SEC_IN_MEMORY 0x4000
250 .
251 . {* The contents of this section are to be excluded by the
252 . linker for executable and shared objects unless those
253 . objects are to be further relocated. *}
254 .#define SEC_EXCLUDE 0x8000
255 .
256 . {* The contents of this section are to be sorted based on the sum of
257 . the symbol and addend values specified by the associated relocation
258 . entries. Entries without associated relocation entries will be
259 . appended to the end of the section in an unspecified order. *}
260 .#define SEC_SORT_ENTRIES 0x10000
261 .
262 . {* When linking, duplicate sections of the same name should be
263 . discarded, rather than being combined into a single section as
264 . is usually done. This is similar to how common symbols are
265 . handled. See SEC_LINK_DUPLICATES below. *}
266 .#define SEC_LINK_ONCE 0x20000
267 .
268 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
269 . should handle duplicate sections. *}
270 .#define SEC_LINK_DUPLICATES 0x40000
271 .
272 . {* This value for SEC_LINK_DUPLICATES means that duplicate
273 . sections with the same name should simply be discarded. *}
274 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
275 .
276 . {* This value for SEC_LINK_DUPLICATES means that the linker
277 . should warn if there are any duplicate sections, although
278 . it should still only link one copy. *}
279 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x80000
280 .
281 . {* This value for SEC_LINK_DUPLICATES means that the linker
282 . should warn if any duplicate sections are a different size. *}
283 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x100000
284 .
285 . {* This value for SEC_LINK_DUPLICATES means that the linker
286 . should warn if any duplicate sections contain different
287 . contents. *}
288 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
289 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
290 .
291 . {* This section was created by the linker as part of dynamic
292 . relocation or other arcane processing. It is skipped when
293 . going through the first-pass output, trusting that someone
294 . else up the line will take care of it later. *}
295 .#define SEC_LINKER_CREATED 0x200000
296 .
297 . {* This section should not be subject to garbage collection. *}
298 .#define SEC_KEEP 0x400000
299 .
300 . {* This section contains "short" data, and should be placed
301 . "near" the GP. *}
302 .#define SEC_SMALL_DATA 0x800000
303 .
304 . {* Attempt to merge identical entities in the section.
305 . Entity size is given in the entsize field. *}
306 .#define SEC_MERGE 0x1000000
307 .
308 . {* If given with SEC_MERGE, entities to merge are zero terminated
309 . strings where entsize specifies character size instead of fixed
310 . size entries. *}
311 .#define SEC_STRINGS 0x2000000
312 .
313 . {* This section contains data about section groups. *}
314 .#define SEC_GROUP 0x4000000
315 .
316 . {* The section is a COFF shared library section. This flag is
317 . only for the linker. If this type of section appears in
318 . the input file, the linker must copy it to the output file
319 . without changing the vma or size. FIXME: Although this
320 . was originally intended to be general, it really is COFF
321 . specific (and the flag was renamed to indicate this). It
322 . might be cleaner to have some more general mechanism to
323 . allow the back end to control what the linker does with
324 . sections. *}
325 .#define SEC_COFF_SHARED_LIBRARY 0x10000000
326 .
327 . {* This section contains data which may be shared with other
328 . executables or shared objects. This is for COFF only. *}
329 .#define SEC_COFF_SHARED 0x20000000
330 .
331 . {* When a section with this flag is being linked, then if the size of
332 . the input section is less than a page, it should not cross a page
333 . boundary. If the size of the input section is one page or more,
334 . it should be aligned on a page boundary. This is for TI
335 . TMS320C54X only. *}
336 .#define SEC_TIC54X_BLOCK 0x40000000
337 .
338 . {* Conditionally link this section; do not link if there are no
339 . references found to any symbol in the section. This is for TI
340 . TMS320C54X only. *}
341 .#define SEC_TIC54X_CLINK 0x80000000
342 .
343 . {* End of section flags. *}
344 .
345 . {* Some internal packed boolean fields. *}
346 .
347 . {* See the vma field. *}
348 . unsigned int user_set_vma : 1;
349 .
350 . {* A mark flag used by some of the linker backends. *}
351 . unsigned int linker_mark : 1;
352 .
353 . {* Another mark flag used by some of the linker backends. Set for
354 . output sections that have an input section. *}
355 . unsigned int linker_has_input : 1;
356 .
357 . {* A mark flag used by some linker backends for garbage collection. *}
358 . unsigned int gc_mark : 1;
359 .
360 . {* The following flags are used by the ELF linker. *}
361 .
362 . {* Mark sections which have been allocated to segments. *}
363 . unsigned int segment_mark : 1;
364 .
365 . {* Type of sec_info information. *}
366 . unsigned int sec_info_type:3;
367 .#define ELF_INFO_TYPE_NONE 0
368 .#define ELF_INFO_TYPE_STABS 1
369 .#define ELF_INFO_TYPE_MERGE 2
370 .#define ELF_INFO_TYPE_EH_FRAME 3
371 .#define ELF_INFO_TYPE_JUST_SYMS 4
372 .
373 . {* Nonzero if this section uses RELA relocations, rather than REL. *}
374 . unsigned int use_rela_p:1;
375 .
376 . {* Bits used by various backends. The generic code doesn't touch
377 . these fields. *}
378 .
379 . {* Nonzero if this section has TLS related relocations. *}
380 . unsigned int has_tls_reloc:1;
381 .
382 . {* Nonzero if this section has a gp reloc. *}
383 . unsigned int has_gp_reloc:1;
384 .
385 . {* Nonzero if this section needs the relax finalize pass. *}
386 . unsigned int need_finalize_relax:1;
387 .
388 . {* Whether relocations have been processed. *}
389 . unsigned int reloc_done : 1;
390 .
391 . {* End of internal packed boolean fields. *}
392 .
393 . {* The virtual memory address of the section - where it will be
394 . at run time. The symbols are relocated against this. The
395 . user_set_vma flag is maintained by bfd; if it's not set, the
396 . backend can assign addresses (for example, in <<a.out>>, where
397 . the default address for <<.data>> is dependent on the specific
398 . target and various flags). *}
399 . bfd_vma vma;
400 .
401 . {* The load address of the section - where it would be in a
402 . rom image; really only used for writing section header
403 . information. *}
404 . bfd_vma lma;
405 .
406 . {* The size of the section in octets, as it will be output.
407 . Contains a value even if the section has no contents (e.g., the
408 . size of <<.bss>>). *}
409 . bfd_size_type size;
410 .
411 . {* For input sections, the original size on disk of the section, in
412 . octets. This field is used by the linker relaxation code. It is
413 . currently only set for sections where the linker relaxation scheme
414 . doesn't cache altered section and reloc contents (stabs, eh_frame,
415 . SEC_MERGE, some coff relaxing targets), and thus the original size
416 . needs to be kept to read the section multiple times.
417 . For output sections, rawsize holds the section size calculated on
418 . a previous linker relaxation pass. *}
419 . bfd_size_type rawsize;
420 .
421 . {* If this section is going to be output, then this value is the
422 . offset in *bytes* into the output section of the first byte in the
423 . input section (byte ==> smallest addressable unit on the
424 . target). In most cases, if this was going to start at the
425 . 100th octet (8-bit quantity) in the output section, this value
426 . would be 100. However, if the target byte size is 16 bits
427 . (bfd_octets_per_byte is "2"), this value would be 50. *}
428 . bfd_vma output_offset;
429 .
430 . {* The output section through which to map on output. *}
431 . struct bfd_section *output_section;
432 .
433 . {* The alignment requirement of the section, as an exponent of 2 -
434 . e.g., 3 aligns to 2^3 (or 8). *}
435 . unsigned int alignment_power;
436 .
437 . {* If an input section, a pointer to a vector of relocation
438 . records for the data in this section. *}
439 . struct reloc_cache_entry *relocation;
440 .
441 . {* If an output section, a pointer to a vector of pointers to
442 . relocation records for the data in this section. *}
443 . struct reloc_cache_entry **orelocation;
444 .
445 . {* The number of relocation records in one of the above. *}
446 . unsigned reloc_count;
447 .
448 . {* Information below is back end specific - and not always used
449 . or updated. *}
450 .
451 . {* File position of section data. *}
452 . file_ptr filepos;
453 .
454 . {* File position of relocation info. *}
455 . file_ptr rel_filepos;
456 .
457 . {* File position of line data. *}
458 . file_ptr line_filepos;
459 .
460 . {* Pointer to data for applications. *}
461 . void *userdata;
462 .
463 . {* If the SEC_IN_MEMORY flag is set, this points to the actual
464 . contents. *}
465 . unsigned char *contents;
466 .
467 . {* Attached line number information. *}
468 . alent *lineno;
469 .
470 . {* Number of line number records. *}
471 . unsigned int lineno_count;
472 .
473 . {* Entity size for merging purposes. *}
474 . unsigned int entsize;
475 .
476 . {* Points to the kept section if this section is a link-once section,
477 . and is discarded. *}
478 . struct bfd_section *kept_section;
479 .
480 . {* When a section is being output, this value changes as more
481 . linenumbers are written out. *}
482 . file_ptr moving_line_filepos;
483 .
484 . {* What the section number is in the target world. *}
485 . int target_index;
486 .
487 . void *used_by_bfd;
488 .
489 . {* If this is a constructor section then here is a list of the
490 . relocations created to relocate items within it. *}
491 . struct relent_chain *constructor_chain;
492 .
493 . {* The BFD which owns the section. *}
494 . bfd *owner;
495 .
496 . {* A symbol which points at this section only. *}
497 . struct bfd_symbol *symbol;
498 . struct bfd_symbol **symbol_ptr_ptr;
499 .
500 . struct bfd_link_order *link_order_head;
501 . struct bfd_link_order *link_order_tail;
502 .} asection;
503 .
504 .{* These sections are global, and are managed by BFD. The application
505 . and target back end are not permitted to change the values in
506 . these sections. New code should use the section_ptr macros rather
507 . than referring directly to the const sections. The const sections
508 . may eventually vanish. *}
509 .#define BFD_ABS_SECTION_NAME "*ABS*"
510 .#define BFD_UND_SECTION_NAME "*UND*"
511 .#define BFD_COM_SECTION_NAME "*COM*"
512 .#define BFD_IND_SECTION_NAME "*IND*"
513 .
514 .{* The absolute section. *}
515 .extern asection bfd_abs_section;
516 .#define bfd_abs_section_ptr ((asection *) &bfd_abs_section)
517 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
518 .{* Pointer to the undefined section. *}
519 .extern asection bfd_und_section;
520 .#define bfd_und_section_ptr ((asection *) &bfd_und_section)
521 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
522 .{* Pointer to the common section. *}
523 .extern asection bfd_com_section;
524 .#define bfd_com_section_ptr ((asection *) &bfd_com_section)
525 .{* Pointer to the indirect section. *}
526 .extern asection bfd_ind_section;
527 .#define bfd_ind_section_ptr ((asection *) &bfd_ind_section)
528 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
529 .
530 .#define bfd_is_const_section(SEC) \
531 . ( ((SEC) == bfd_abs_section_ptr) \
532 . || ((SEC) == bfd_und_section_ptr) \
533 . || ((SEC) == bfd_com_section_ptr) \
534 . || ((SEC) == bfd_ind_section_ptr))
535 .
536 .extern const struct bfd_symbol * const bfd_abs_symbol;
537 .extern const struct bfd_symbol * const bfd_com_symbol;
538 .extern const struct bfd_symbol * const bfd_und_symbol;
539 .extern const struct bfd_symbol * const bfd_ind_symbol;
540 .
541 .{* Macros to handle insertion and deletion of a bfd's sections. These
542 . only handle the list pointers, ie. do not adjust section_count,
543 . target_index etc. *}
544 .#define bfd_section_list_remove(ABFD, S) \
545 . do \
546 . { \
547 . asection *_s = S; \
548 . asection *_next = _s->next; \
549 . asection *_prev = _s->prev; \
550 . if (_prev) \
551 . _prev->next = _next; \
552 . else \
553 . (ABFD)->sections = _next; \
554 . if (_next) \
555 . { \
556 . _next->prev = _prev; \
557 . _s->next = NULL; \
558 . } \
559 . else \
560 . (ABFD)->section_last = _prev; \
561 . } \
562 . while (0)
563 .#define bfd_section_list_append(ABFD, S) \
564 . do \
565 . { \
566 . asection *_s = S; \
567 . bfd *_abfd = ABFD; \
568 . _s->next = NULL; \
569 . if (_abfd->section_last) \
570 . { \
571 . _s->prev = _abfd->section_last; \
572 . _abfd->section_last->next = _s; \
573 . } \
574 . else \
575 . _abfd->sections = _s; \
576 . _abfd->section_last = _s; \
577 . } \
578 . while (0)
579 .#define bfd_section_list_insert_after(ABFD, A, S) \
580 . do \
581 . { \
582 . asection *_a = A; \
583 . asection *_s = S; \
584 . asection *_next = _a->next; \
585 . _s->next = _next; \
586 . _s->prev = _a; \
587 . _a->next = _s; \
588 . if (_next) \
589 . _s->next->prev = _s; \
590 . else \
591 . (ABFD)->section_last = _s; \
592 . } \
593 . while (0)
594 .#define bfd_section_list_insert_before(ABFD, B, S) \
595 . do \
596 . { \
597 . asection *_b = B; \
598 . asection *_s = S; \
599 . asection *_prev = _b->prev; \
600 . _s->prev = _prev; \
601 . _s->next = _b; \
602 . _b->prev = _s; \
603 . if (_prev) \
604 . _prev->next = _s; \
605 . else \
606 . (ABFD)->sections = _s; \
607 . } \
608 . while (0)
609 .#define bfd_section_removed_from_list(ABFD, S) \
610 . ((S)->next == NULL && (S) != (ABFD)->section_last)
611 .
612 */
613
614 /* We use a macro to initialize the static asymbol structures because
615 traditional C does not permit us to initialize a union member while
616 gcc warns if we don't initialize it. */
617 /* the_bfd, name, value, attr, section [, udata] */
618 #ifdef __STDC__
619 #define GLOBAL_SYM_INIT(NAME, SECTION) \
620 { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION, { 0 }}
621 #else
622 #define GLOBAL_SYM_INIT(NAME, SECTION) \
623 { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION }
624 #endif
625
626 /* These symbols are global, not specific to any BFD. Therefore, anything
627 that tries to change them is broken, and should be repaired. */
628
629 static const asymbol global_syms[] =
630 {
631 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, &bfd_com_section),
632 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, &bfd_und_section),
633 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, &bfd_abs_section),
634 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, &bfd_ind_section)
635 };
636
637 #define STD_SECTION(SEC, FLAGS, SYM, NAME, IDX) \
638 const asymbol * const SYM = (asymbol *) &global_syms[IDX]; \
639 asection SEC = \
640 /* name, id, index, next, prev, flags, user_set_vma, */ \
641 { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \
642 \
643 /* linker_mark, linker_has_input, gc_mark, segment_mark, */ \
644 0, 0, 1, 0, \
645 \
646 /* sec_info_type, use_rela_p, has_tls_reloc, has_gp_reloc, */ \
647 0, 0, 0, 0, \
648 \
649 /* need_finalize_relax, reloc_done, */ \
650 0, 0, \
651 \
652 /* vma, lma, size, rawsize */ \
653 0, 0, 0, 0, \
654 \
655 /* output_offset, output_section, alignment_power, */ \
656 0, (struct bfd_section *) &SEC, 0, \
657 \
658 /* relocation, orelocation, reloc_count, filepos, rel_filepos, */ \
659 NULL, NULL, 0, 0, 0, \
660 \
661 /* line_filepos, userdata, contents, lineno, lineno_count, */ \
662 0, NULL, NULL, NULL, 0, \
663 \
664 /* entsize, kept_section, moving_line_filepos, */ \
665 0, NULL, 0, \
666 \
667 /* target_index, used_by_bfd, constructor_chain, owner, */ \
668 0, NULL, NULL, NULL, \
669 \
670 /* symbol, */ \
671 (struct bfd_symbol *) &global_syms[IDX], \
672 \
673 /* symbol_ptr_ptr, */ \
674 (struct bfd_symbol **) &SYM, \
675 \
676 /* link_order_head, link_order_tail */ \
677 NULL, NULL \
678 }
679
680 STD_SECTION (bfd_com_section, SEC_IS_COMMON, bfd_com_symbol,
681 BFD_COM_SECTION_NAME, 0);
682 STD_SECTION (bfd_und_section, 0, bfd_und_symbol, BFD_UND_SECTION_NAME, 1);
683 STD_SECTION (bfd_abs_section, 0, bfd_abs_symbol, BFD_ABS_SECTION_NAME, 2);
684 STD_SECTION (bfd_ind_section, 0, bfd_ind_symbol, BFD_IND_SECTION_NAME, 3);
685 #undef STD_SECTION
686
687 struct section_hash_entry
688 {
689 struct bfd_hash_entry root;
690 asection section;
691 };
692
693 /* Initialize an entry in the section hash table. */
694
695 struct bfd_hash_entry *
696 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
697 struct bfd_hash_table *table,
698 const char *string)
699 {
700 /* Allocate the structure if it has not already been allocated by a
701 subclass. */
702 if (entry == NULL)
703 {
704 entry = (struct bfd_hash_entry *)
705 bfd_hash_allocate (table, sizeof (struct section_hash_entry));
706 if (entry == NULL)
707 return entry;
708 }
709
710 /* Call the allocation method of the superclass. */
711 entry = bfd_hash_newfunc (entry, table, string);
712 if (entry != NULL)
713 memset (&((struct section_hash_entry *) entry)->section, 0,
714 sizeof (asection));
715
716 return entry;
717 }
718
719 #define section_hash_lookup(table, string, create, copy) \
720 ((struct section_hash_entry *) \
721 bfd_hash_lookup ((table), (string), (create), (copy)))
722
723 /* Initializes a new section. NEWSECT->NAME is already set. */
724
725 static asection *
726 bfd_section_init (bfd *abfd, asection *newsect)
727 {
728 static int section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */
729
730 newsect->id = section_id;
731 newsect->index = abfd->section_count;
732 newsect->owner = abfd;
733
734 /* Create a symbol whose only job is to point to this section. This
735 is useful for things like relocs which are relative to the base
736 of a section. */
737 newsect->symbol = bfd_make_empty_symbol (abfd);
738 if (newsect->symbol == NULL)
739 return NULL;
740
741 newsect->symbol->name = newsect->name;
742 newsect->symbol->value = 0;
743 newsect->symbol->section = newsect;
744 newsect->symbol->flags = BSF_SECTION_SYM;
745
746 newsect->symbol_ptr_ptr = &newsect->symbol;
747
748 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
749 return NULL;
750
751 section_id++;
752 abfd->section_count++;
753 bfd_section_list_append (abfd, newsect);
754 return newsect;
755 }
756
757 /*
758 DOCDD
759 INODE
760 section prototypes, , typedef asection, Sections
761 SUBSECTION
762 Section prototypes
763
764 These are the functions exported by the section handling part of BFD.
765 */
766
767 /*
768 FUNCTION
769 bfd_section_list_clear
770
771 SYNOPSIS
772 void bfd_section_list_clear (bfd *);
773
774 DESCRIPTION
775 Clears the section list, and also resets the section count and
776 hash table entries.
777 */
778
779 void
780 bfd_section_list_clear (bfd *abfd)
781 {
782 abfd->sections = NULL;
783 abfd->section_last = NULL;
784 abfd->section_count = 0;
785 memset (abfd->section_htab.table, 0,
786 abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
787 }
788
789 /*
790 FUNCTION
791 bfd_get_section_by_name
792
793 SYNOPSIS
794 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
795
796 DESCRIPTION
797 Run through @var{abfd} and return the one of the
798 <<asection>>s whose name matches @var{name}, otherwise <<NULL>>.
799 @xref{Sections}, for more information.
800
801 This should only be used in special cases; the normal way to process
802 all sections of a given name is to use <<bfd_map_over_sections>> and
803 <<strcmp>> on the name (or better yet, base it on the section flags
804 or something else) for each section.
805 */
806
807 asection *
808 bfd_get_section_by_name (bfd *abfd, const char *name)
809 {
810 struct section_hash_entry *sh;
811
812 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
813 if (sh != NULL)
814 return &sh->section;
815
816 return NULL;
817 }
818
819 /*
820 FUNCTION
821 bfd_get_section_by_name_if
822
823 SYNOPSIS
824 asection *bfd_get_section_by_name_if
825 (bfd *abfd,
826 const char *name,
827 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
828 void *obj);
829
830 DESCRIPTION
831 Call the provided function @var{func} for each section
832 attached to the BFD @var{abfd} whose name matches @var{name},
833 passing @var{obj} as an argument. The function will be called
834 as if by
835
836 | func (abfd, the_section, obj);
837
838 It returns the first section for which @var{func} returns true,
839 otherwise <<NULL>>.
840
841 */
842
843 asection *
844 bfd_get_section_by_name_if (bfd *abfd, const char *name,
845 bfd_boolean (*operation) (bfd *,
846 asection *,
847 void *),
848 void *user_storage)
849 {
850 struct section_hash_entry *sh;
851 unsigned long hash;
852
853 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
854 if (sh == NULL)
855 return NULL;
856
857 hash = sh->root.hash;
858 do
859 {
860 if ((*operation) (abfd, &sh->section, user_storage))
861 return &sh->section;
862 sh = (struct section_hash_entry *) sh->root.next;
863 }
864 while (sh != NULL && sh->root.hash == hash
865 && strcmp (sh->root.string, name) == 0);
866
867 return NULL;
868 }
869
870 /*
871 FUNCTION
872 bfd_get_unique_section_name
873
874 SYNOPSIS
875 char *bfd_get_unique_section_name
876 (bfd *abfd, const char *templat, int *count);
877
878 DESCRIPTION
879 Invent a section name that is unique in @var{abfd} by tacking
880 a dot and a digit suffix onto the original @var{templat}. If
881 @var{count} is non-NULL, then it specifies the first number
882 tried as a suffix to generate a unique name. The value
883 pointed to by @var{count} will be incremented in this case.
884 */
885
886 char *
887 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
888 {
889 int num;
890 unsigned int len;
891 char *sname;
892
893 len = strlen (templat);
894 sname = bfd_malloc (len + 8);
895 if (sname == NULL)
896 return NULL;
897 memcpy (sname, templat, len);
898 num = 1;
899 if (count != NULL)
900 num = *count;
901
902 do
903 {
904 /* If we have a million sections, something is badly wrong. */
905 if (num > 999999)
906 abort ();
907 sprintf (sname + len, ".%d", num++);
908 }
909 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
910
911 if (count != NULL)
912 *count = num;
913 return sname;
914 }
915
916 /*
917 FUNCTION
918 bfd_make_section_old_way
919
920 SYNOPSIS
921 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
922
923 DESCRIPTION
924 Create a new empty section called @var{name}
925 and attach it to the end of the chain of sections for the
926 BFD @var{abfd}. An attempt to create a section with a name which
927 is already in use returns its pointer without changing the
928 section chain.
929
930 It has the funny name since this is the way it used to be
931 before it was rewritten....
932
933 Possible errors are:
934 o <<bfd_error_invalid_operation>> -
935 If output has already started for this BFD.
936 o <<bfd_error_no_memory>> -
937 If memory allocation fails.
938
939 */
940
941 asection *
942 bfd_make_section_old_way (bfd *abfd, const char *name)
943 {
944 struct section_hash_entry *sh;
945 asection *newsect;
946
947 if (abfd->output_has_begun)
948 {
949 bfd_set_error (bfd_error_invalid_operation);
950 return NULL;
951 }
952
953 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
954 return bfd_abs_section_ptr;
955
956 if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
957 return bfd_com_section_ptr;
958
959 if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
960 return bfd_und_section_ptr;
961
962 if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
963 return bfd_ind_section_ptr;
964
965 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
966 if (sh == NULL)
967 return NULL;
968
969 newsect = &sh->section;
970 if (newsect->name != NULL)
971 {
972 /* Section already exists. */
973 return newsect;
974 }
975
976 newsect->name = name;
977 return bfd_section_init (abfd, newsect);
978 }
979
980 /*
981 FUNCTION
982 bfd_make_section_anyway
983
984 SYNOPSIS
985 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
986
987 DESCRIPTION
988 Create a new empty section called @var{name} and attach it to the end of
989 the chain of sections for @var{abfd}. Create a new section even if there
990 is already a section with that name.
991
992 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
993 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
994 o <<bfd_error_no_memory>> - If memory allocation fails.
995 */
996
997 sec_ptr
998 bfd_make_section_anyway (bfd *abfd, const char *name)
999 {
1000 struct section_hash_entry *sh;
1001 asection *newsect;
1002
1003 if (abfd->output_has_begun)
1004 {
1005 bfd_set_error (bfd_error_invalid_operation);
1006 return NULL;
1007 }
1008
1009 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1010 if (sh == NULL)
1011 return NULL;
1012
1013 newsect = &sh->section;
1014 if (newsect->name != NULL)
1015 {
1016 /* We are making a section of the same name. Put it in the
1017 section hash table. Even though we can't find it directly by a
1018 hash lookup, we'll be able to find the section by traversing
1019 sh->root.next quicker than looking at all the bfd sections. */
1020 struct section_hash_entry *new_sh;
1021 new_sh = (struct section_hash_entry *)
1022 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1023 if (new_sh == NULL)
1024 return NULL;
1025
1026 new_sh->root = sh->root;
1027 sh->root.next = &new_sh->root;
1028 newsect = &new_sh->section;
1029 }
1030
1031 newsect->name = name;
1032 return bfd_section_init (abfd, newsect);
1033 }
1034
1035 /*
1036 FUNCTION
1037 bfd_make_section
1038
1039 SYNOPSIS
1040 asection *bfd_make_section (bfd *, const char *name);
1041
1042 DESCRIPTION
1043 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1044 bfd_set_error ()) without changing the section chain if there is already a
1045 section named @var{name}. If there is an error, return <<NULL>> and set
1046 <<bfd_error>>.
1047 */
1048
1049 asection *
1050 bfd_make_section (bfd *abfd, const char *name)
1051 {
1052 struct section_hash_entry *sh;
1053 asection *newsect;
1054
1055 if (abfd->output_has_begun)
1056 {
1057 bfd_set_error (bfd_error_invalid_operation);
1058 return NULL;
1059 }
1060
1061 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1062 || strcmp (name, BFD_COM_SECTION_NAME) == 0
1063 || strcmp (name, BFD_UND_SECTION_NAME) == 0
1064 || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1065 return NULL;
1066
1067 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1068 if (sh == NULL)
1069 return NULL;
1070
1071 newsect = &sh->section;
1072 if (newsect->name != NULL)
1073 {
1074 /* Section already exists. */
1075 return NULL;
1076 }
1077
1078 newsect->name = name;
1079 return bfd_section_init (abfd, newsect);
1080 }
1081
1082 /*
1083 FUNCTION
1084 bfd_set_section_flags
1085
1086 SYNOPSIS
1087 bfd_boolean bfd_set_section_flags
1088 (bfd *abfd, asection *sec, flagword flags);
1089
1090 DESCRIPTION
1091 Set the attributes of the section @var{sec} in the BFD
1092 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1093 <<FALSE>> on error. Possible error returns are:
1094
1095 o <<bfd_error_invalid_operation>> -
1096 The section cannot have one or more of the attributes
1097 requested. For example, a .bss section in <<a.out>> may not
1098 have the <<SEC_HAS_CONTENTS>> field set.
1099
1100 */
1101
1102 bfd_boolean
1103 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1104 sec_ptr section,
1105 flagword flags)
1106 {
1107 section->flags = flags;
1108 return TRUE;
1109 }
1110
1111 /*
1112 FUNCTION
1113 bfd_map_over_sections
1114
1115 SYNOPSIS
1116 void bfd_map_over_sections
1117 (bfd *abfd,
1118 void (*func) (bfd *abfd, asection *sect, void *obj),
1119 void *obj);
1120
1121 DESCRIPTION
1122 Call the provided function @var{func} for each section
1123 attached to the BFD @var{abfd}, passing @var{obj} as an
1124 argument. The function will be called as if by
1125
1126 | func (abfd, the_section, obj);
1127
1128 This is the preferred method for iterating over sections; an
1129 alternative would be to use a loop:
1130
1131 | section *p;
1132 | for (p = abfd->sections; p != NULL; p = p->next)
1133 | func (abfd, p, ...)
1134
1135 */
1136
1137 void
1138 bfd_map_over_sections (bfd *abfd,
1139 void (*operation) (bfd *, asection *, void *),
1140 void *user_storage)
1141 {
1142 asection *sect;
1143 unsigned int i = 0;
1144
1145 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1146 (*operation) (abfd, sect, user_storage);
1147
1148 if (i != abfd->section_count) /* Debugging */
1149 abort ();
1150 }
1151
1152 /*
1153 FUNCTION
1154 bfd_sections_find_if
1155
1156 SYNOPSIS
1157 asection *bfd_sections_find_if
1158 (bfd *abfd,
1159 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1160 void *obj);
1161
1162 DESCRIPTION
1163 Call the provided function @var{operation} for each section
1164 attached to the BFD @var{abfd}, passing @var{obj} as an
1165 argument. The function will be called as if by
1166
1167 | operation (abfd, the_section, obj);
1168
1169 It returns the first section for which @var{operation} returns true.
1170
1171 */
1172
1173 asection *
1174 bfd_sections_find_if (bfd *abfd,
1175 bfd_boolean (*operation) (bfd *, asection *, void *),
1176 void *user_storage)
1177 {
1178 asection *sect;
1179
1180 for (sect = abfd->sections; sect != NULL; sect = sect->next)
1181 if ((*operation) (abfd, sect, user_storage))
1182 break;
1183
1184 return sect;
1185 }
1186
1187 /*
1188 FUNCTION
1189 bfd_set_section_size
1190
1191 SYNOPSIS
1192 bfd_boolean bfd_set_section_size
1193 (bfd *abfd, asection *sec, bfd_size_type val);
1194
1195 DESCRIPTION
1196 Set @var{sec} to the size @var{val}. If the operation is
1197 ok, then <<TRUE>> is returned, else <<FALSE>>.
1198
1199 Possible error returns:
1200 o <<bfd_error_invalid_operation>> -
1201 Writing has started to the BFD, so setting the size is invalid.
1202
1203 */
1204
1205 bfd_boolean
1206 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1207 {
1208 /* Once you've started writing to any section you cannot create or change
1209 the size of any others. */
1210
1211 if (abfd->output_has_begun)
1212 {
1213 bfd_set_error (bfd_error_invalid_operation);
1214 return FALSE;
1215 }
1216
1217 ptr->size = val;
1218 return TRUE;
1219 }
1220
1221 /*
1222 FUNCTION
1223 bfd_set_section_contents
1224
1225 SYNOPSIS
1226 bfd_boolean bfd_set_section_contents
1227 (bfd *abfd, asection *section, const void *data,
1228 file_ptr offset, bfd_size_type count);
1229
1230 DESCRIPTION
1231 Sets the contents of the section @var{section} in BFD
1232 @var{abfd} to the data starting in memory at @var{data}. The
1233 data is written to the output section starting at offset
1234 @var{offset} for @var{count} octets.
1235
1236 Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1237 returns are:
1238 o <<bfd_error_no_contents>> -
1239 The output section does not have the <<SEC_HAS_CONTENTS>>
1240 attribute, so nothing can be written to it.
1241 o and some more too
1242
1243 This routine is front end to the back end function
1244 <<_bfd_set_section_contents>>.
1245
1246 */
1247
1248 bfd_boolean
1249 bfd_set_section_contents (bfd *abfd,
1250 sec_ptr section,
1251 const void *location,
1252 file_ptr offset,
1253 bfd_size_type count)
1254 {
1255 bfd_size_type sz;
1256
1257 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1258 {
1259 bfd_set_error (bfd_error_no_contents);
1260 return FALSE;
1261 }
1262
1263 sz = section->size;
1264 if ((bfd_size_type) offset > sz
1265 || count > sz
1266 || offset + count > sz
1267 || count != (size_t) count)
1268 {
1269 bfd_set_error (bfd_error_bad_value);
1270 return FALSE;
1271 }
1272
1273 switch (abfd->direction)
1274 {
1275 case read_direction:
1276 case no_direction:
1277 bfd_set_error (bfd_error_invalid_operation);
1278 return FALSE;
1279
1280 case write_direction:
1281 break;
1282
1283 case both_direction:
1284 /* File is opened for update. `output_has_begun' some time ago when
1285 the file was created. Do not recompute sections sizes or alignments
1286 in _bfd_set_section_content. */
1287 abfd->output_has_begun = TRUE;
1288 break;
1289 }
1290
1291 /* Record a copy of the data in memory if desired. */
1292 if (section->contents
1293 && location != section->contents + offset)
1294 memcpy (section->contents + offset, location, (size_t) count);
1295
1296 if (BFD_SEND (abfd, _bfd_set_section_contents,
1297 (abfd, section, location, offset, count)))
1298 {
1299 abfd->output_has_begun = TRUE;
1300 return TRUE;
1301 }
1302
1303 return FALSE;
1304 }
1305
1306 /*
1307 FUNCTION
1308 bfd_get_section_contents
1309
1310 SYNOPSIS
1311 bfd_boolean bfd_get_section_contents
1312 (bfd *abfd, asection *section, void *location, file_ptr offset,
1313 bfd_size_type count);
1314
1315 DESCRIPTION
1316 Read data from @var{section} in BFD @var{abfd}
1317 into memory starting at @var{location}. The data is read at an
1318 offset of @var{offset} from the start of the input section,
1319 and is read for @var{count} bytes.
1320
1321 If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1322 flag set are requested or if the section does not have the
1323 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1324 with zeroes. If no errors occur, <<TRUE>> is returned, else
1325 <<FALSE>>.
1326
1327 */
1328 bfd_boolean
1329 bfd_get_section_contents (bfd *abfd,
1330 sec_ptr section,
1331 void *location,
1332 file_ptr offset,
1333 bfd_size_type count)
1334 {
1335 bfd_size_type sz;
1336
1337 if (section->flags & SEC_CONSTRUCTOR)
1338 {
1339 memset (location, 0, (size_t) count);
1340 return TRUE;
1341 }
1342
1343 sz = section->rawsize ? section->rawsize : section->size;
1344 if ((bfd_size_type) offset > sz
1345 || count > sz
1346 || offset + count > sz
1347 || count != (size_t) count)
1348 {
1349 bfd_set_error (bfd_error_bad_value);
1350 return FALSE;
1351 }
1352
1353 if (count == 0)
1354 /* Don't bother. */
1355 return TRUE;
1356
1357 if ((section->flags & SEC_HAS_CONTENTS) == 0)
1358 {
1359 memset (location, 0, (size_t) count);
1360 return TRUE;
1361 }
1362
1363 if ((section->flags & SEC_IN_MEMORY) != 0)
1364 {
1365 memcpy (location, section->contents + offset, (size_t) count);
1366 return TRUE;
1367 }
1368
1369 return BFD_SEND (abfd, _bfd_get_section_contents,
1370 (abfd, section, location, offset, count));
1371 }
1372
1373 /*
1374 FUNCTION
1375 bfd_malloc_and_get_section
1376
1377 SYNOPSIS
1378 bfd_boolean bfd_malloc_and_get_section
1379 (bfd *abfd, asection *section, bfd_byte **buf);
1380
1381 DESCRIPTION
1382 Read all data from @var{section} in BFD @var{abfd}
1383 into a buffer, *@var{buf}, malloc'd by this function.
1384 */
1385
1386 bfd_boolean
1387 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1388 {
1389 bfd_size_type sz = sec->rawsize ? sec->rawsize : sec->size;
1390 bfd_byte *p = NULL;
1391
1392 *buf = p;
1393 if (sz == 0)
1394 return TRUE;
1395
1396 p = bfd_malloc (sec->rawsize > sec->size ? sec->rawsize : sec->size);
1397 if (p == NULL)
1398 return FALSE;
1399 *buf = p;
1400
1401 return bfd_get_section_contents (abfd, sec, p, 0, sz);
1402 }
1403 /*
1404 FUNCTION
1405 bfd_copy_private_section_data
1406
1407 SYNOPSIS
1408 bfd_boolean bfd_copy_private_section_data
1409 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1410
1411 DESCRIPTION
1412 Copy private section information from @var{isec} in the BFD
1413 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1414 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1415 returns are:
1416
1417 o <<bfd_error_no_memory>> -
1418 Not enough memory exists to create private data for @var{osec}.
1419
1420 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1421 . BFD_SEND (obfd, _bfd_copy_private_section_data, \
1422 . (ibfd, isection, obfd, osection))
1423 */
1424
1425 /*
1426 FUNCTION
1427 _bfd_strip_section_from_output
1428
1429 SYNOPSIS
1430 void _bfd_strip_section_from_output
1431 (struct bfd_link_info *info, asection *section);
1432
1433 DESCRIPTION
1434 Remove @var{section} from the output. If the output section
1435 becomes empty, remove it from the output bfd.
1436
1437 This function won't actually do anything except twiddle flags
1438 if called too late in the linking process, when it's not safe
1439 to remove sections.
1440 */
1441 void
1442 _bfd_strip_section_from_output (struct bfd_link_info *info, asection *s)
1443 {
1444 asection *os;
1445 asection *is;
1446 bfd *abfd;
1447
1448 s->flags |= SEC_EXCLUDE;
1449
1450 /* If the section wasn't assigned to an output section, or the
1451 section has been discarded by the linker script, there's nothing
1452 more to do. */
1453 os = s->output_section;
1454 if (os == NULL || os->owner == NULL)
1455 return;
1456
1457 /* If the output section has other (non-excluded) input sections, we
1458 can't remove it. */
1459 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1460 for (is = abfd->sections; is != NULL; is = is->next)
1461 if (is->output_section == os && (is->flags & SEC_EXCLUDE) == 0)
1462 return;
1463
1464 /* If the output section is empty, flag it for removal too.
1465 See ldlang.c:strip_excluded_output_sections for the action. */
1466 os->flags |= SEC_EXCLUDE;
1467 }
1468
1469 /*
1470 FUNCTION
1471 bfd_generic_is_group_section
1472
1473 SYNOPSIS
1474 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1475
1476 DESCRIPTION
1477 Returns TRUE if @var{sec} is a member of a group.
1478 */
1479
1480 bfd_boolean
1481 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1482 const asection *sec ATTRIBUTE_UNUSED)
1483 {
1484 return FALSE;
1485 }
1486
1487 /*
1488 FUNCTION
1489 bfd_generic_discard_group
1490
1491 SYNOPSIS
1492 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1493
1494 DESCRIPTION
1495 Remove all members of @var{group} from the output.
1496 */
1497
1498 bfd_boolean
1499 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1500 asection *group ATTRIBUTE_UNUSED)
1501 {
1502 return TRUE;
1503 }