* targets.c (bfd_target): Remove unused align_power_min field.
[binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24 #include "bfd.h"
25 #include "sysdep.h"
26
27 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)
28
29 #include "libbfd.h"
30 #include "som.h"
31
32 #include <stdio.h>
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <signal.h>
36 #include <machine/reg.h>
37 #include <sys/file.h>
38 #include <errno.h>
39
40 /* Magic not defined in standard HP-UX header files until 8.0 */
41
42 #ifndef CPU_PA_RISC1_0
43 #define CPU_PA_RISC1_0 0x20B
44 #endif /* CPU_PA_RISC1_0 */
45
46 #ifndef CPU_PA_RISC1_1
47 #define CPU_PA_RISC1_1 0x210
48 #endif /* CPU_PA_RISC1_1 */
49
50 #ifndef _PA_RISC1_0_ID
51 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
52 #endif /* _PA_RISC1_0_ID */
53
54 #ifndef _PA_RISC1_1_ID
55 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
56 #endif /* _PA_RISC1_1_ID */
57
58 #ifndef _PA_RISC_MAXID
59 #define _PA_RISC_MAXID 0x2FF
60 #endif /* _PA_RISC_MAXID */
61
62 #ifndef _PA_RISC_ID
63 #define _PA_RISC_ID(__m_num) \
64 (((__m_num) == _PA_RISC1_0_ID) || \
65 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
66 #endif /* _PA_RISC_ID */
67
68
69 /* HIUX in it's infinite stupidity changed the names for several "well
70 known" constants. Work around such braindamage. Try the HPUX version
71 first, then the HIUX version, and finally provide a default. */
72 #ifdef HPUX_AUX_ID
73 #define EXEC_AUX_ID HPUX_AUX_ID
74 #endif
75
76 #if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID)
77 #define EXEC_AUX_ID HIUX_AUX_ID
78 #endif
79
80 #ifndef EXEC_AUX_ID
81 #define EXEC_AUX_ID 0
82 #endif
83
84 /* Size (in chars) of the temporary buffers used during fixup and string
85 table writes. */
86
87 #define SOM_TMP_BUFSIZE 8192
88
89 /* Size of the hash table in archives. */
90 #define SOM_LST_HASH_SIZE 31
91
92 /* Max number of SOMs to be found in an archive. */
93 #define SOM_LST_MODULE_LIMIT 1024
94
95 /* Generic alignment macro. */
96 #define SOM_ALIGN(val, alignment) \
97 (((val) + (alignment) - 1) & ~((alignment) - 1))
98
99 /* SOM allows any one of the four previous relocations to be reused
100 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
101 relocations are always a single byte, using a R_PREV_FIXUP instead
102 of some multi-byte relocation makes object files smaller.
103
104 Note one side effect of using a R_PREV_FIXUP is the relocation that
105 is being repeated moves to the front of the queue. */
106 struct reloc_queue
107 {
108 unsigned char *reloc;
109 unsigned int size;
110 } reloc_queue[4];
111
112 /* This fully describes the symbol types which may be attached to
113 an EXPORT or IMPORT directive. Only SOM uses this formation
114 (ELF has no need for it). */
115 typedef enum
116 {
117 SYMBOL_TYPE_UNKNOWN,
118 SYMBOL_TYPE_ABSOLUTE,
119 SYMBOL_TYPE_CODE,
120 SYMBOL_TYPE_DATA,
121 SYMBOL_TYPE_ENTRY,
122 SYMBOL_TYPE_MILLICODE,
123 SYMBOL_TYPE_PLABEL,
124 SYMBOL_TYPE_PRI_PROG,
125 SYMBOL_TYPE_SEC_PROG,
126 } pa_symbol_type;
127
128 struct section_to_type
129 {
130 char *section;
131 char type;
132 };
133
134 /* Assorted symbol information that needs to be derived from the BFD symbol
135 and/or the BFD backend private symbol data. */
136 struct som_misc_symbol_info
137 {
138 unsigned int symbol_type;
139 unsigned int symbol_scope;
140 unsigned int arg_reloc;
141 unsigned int symbol_info;
142 unsigned int symbol_value;
143 };
144
145 /* Forward declarations */
146
147 static boolean som_mkobject PARAMS ((bfd *));
148 static const bfd_target * som_object_setup PARAMS ((bfd *,
149 struct header *,
150 struct som_exec_auxhdr *));
151 static boolean setup_sections PARAMS ((bfd *, struct header *));
152 static const bfd_target * som_object_p PARAMS ((bfd *));
153 static boolean som_write_object_contents PARAMS ((bfd *));
154 static boolean som_slurp_string_table PARAMS ((bfd *));
155 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
156 static long som_get_symtab_upper_bound PARAMS ((bfd *));
157 static long som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
158 arelent **, asymbol **));
159 static long som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
160 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
161 arelent *, asection *,
162 asymbol **, boolean));
163 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
164 asymbol **, boolean));
165 static long som_get_symtab PARAMS ((bfd *, asymbol **));
166 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
167 static void som_print_symbol PARAMS ((bfd *, PTR,
168 asymbol *, bfd_print_symbol_type));
169 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
170 static boolean som_bfd_copy_private_symbol_data PARAMS ((bfd *, asymbol *,
171 bfd *, asymbol *));
172 static boolean som_bfd_copy_private_section_data PARAMS ((bfd *, asection *,
173 bfd *, asection *));
174 static boolean som_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
175 #define som_bfd_merge_private_bfd_data _bfd_generic_bfd_merge_private_bfd_data
176 #define som_bfd_set_private_flags _bfd_generic_bfd_set_private_flags
177 static boolean som_bfd_is_local_label PARAMS ((bfd *, asymbol *));
178 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
179 file_ptr, bfd_size_type));
180 static boolean som_get_section_contents PARAMS ((bfd *, sec_ptr, PTR,
181 file_ptr, bfd_size_type));
182 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
183 unsigned long));
184 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
185 asymbol **, bfd_vma,
186 CONST char **,
187 CONST char **,
188 unsigned int *));
189 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
190 static asection * bfd_section_from_som_symbol PARAMS ((bfd *,
191 struct symbol_dictionary_record *));
192 static int log2 PARAMS ((unsigned int));
193 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
194 asymbol *, PTR,
195 asection *, bfd *,
196 char **));
197 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
198 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
199 struct reloc_queue *));
200 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
201 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
202 struct reloc_queue *));
203 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
204 unsigned int,
205 struct reloc_queue *));
206
207 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
208 unsigned char *, unsigned int *,
209 struct reloc_queue *));
210 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
211 unsigned int *,
212 struct reloc_queue *));
213 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
214 unsigned int *,
215 arelent *, int,
216 struct reloc_queue *));
217 static unsigned long som_count_spaces PARAMS ((bfd *));
218 static unsigned long som_count_subspaces PARAMS ((bfd *));
219 static int compare_syms PARAMS ((const void *, const void *));
220 static int compare_subspaces PARAMS ((const void *, const void *));
221 static unsigned long som_compute_checksum PARAMS ((bfd *));
222 static boolean som_prep_headers PARAMS ((bfd *));
223 static int som_sizeof_headers PARAMS ((bfd *, boolean));
224 static boolean som_finish_writing PARAMS ((bfd *));
225 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
226 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
227 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
228 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
229 unsigned int *));
230 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
231 asymbol **, unsigned int,
232 unsigned *));
233 static boolean som_begin_writing PARAMS ((bfd *));
234 static reloc_howto_type * som_bfd_reloc_type_lookup
235 PARAMS ((bfd *, bfd_reloc_code_real_type));
236 static char som_section_type PARAMS ((const char *));
237 static int som_decode_symclass PARAMS ((asymbol *));
238 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
239 symindex *));
240
241 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
242 carsym **syms));
243 static boolean som_slurp_armap PARAMS ((bfd *));
244 static boolean som_write_armap PARAMS ((bfd *, unsigned int, struct orl *,
245 unsigned int, int));
246 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
247 struct som_misc_symbol_info *));
248 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
249 unsigned int *));
250 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
251 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
252 unsigned int,
253 struct lst_header));
254 static CONST char *normalize PARAMS ((CONST char *file));
255 static boolean som_is_space PARAMS ((asection *));
256 static boolean som_is_subspace PARAMS ((asection *));
257 static boolean som_is_container PARAMS ((asection *, asection *));
258 static boolean som_bfd_free_cached_info PARAMS ((bfd *));
259 static boolean som_bfd_link_split_section PARAMS ((bfd *, asection *));
260
261 /* Map SOM section names to POSIX/BSD single-character symbol types.
262
263 This table includes all the standard subspaces as defined in the
264 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
265 some reason was left out, and sections specific to embedded stabs. */
266
267 static const struct section_to_type stt[] = {
268 {"$TEXT$", 't'},
269 {"$SHLIB_INFO$", 't'},
270 {"$MILLICODE$", 't'},
271 {"$LIT$", 't'},
272 {"$CODE$", 't'},
273 {"$UNWIND_START$", 't'},
274 {"$UNWIND$", 't'},
275 {"$PRIVATE$", 'd'},
276 {"$PLT$", 'd'},
277 {"$SHLIB_DATA$", 'd'},
278 {"$DATA$", 'd'},
279 {"$SHORTDATA$", 'g'},
280 {"$DLT$", 'd'},
281 {"$GLOBAL$", 'g'},
282 {"$SHORTBSS$", 's'},
283 {"$BSS$", 'b'},
284 {"$GDB_STRINGS$", 'N'},
285 {"$GDB_SYMBOLS$", 'N'},
286 {0, 0}
287 };
288
289 /* About the relocation formatting table...
290
291 There are 256 entries in the table, one for each possible
292 relocation opcode available in SOM. We index the table by
293 the relocation opcode. The names and operations are those
294 defined by a.out_800 (4).
295
296 Right now this table is only used to count and perform minimal
297 processing on relocation streams so that they can be internalized
298 into BFD and symbolically printed by utilities. To make actual use
299 of them would be much more difficult, BFD's concept of relocations
300 is far too simple to handle SOM relocations. The basic assumption
301 that a relocation can be completely processed independent of other
302 relocations before an object file is written is invalid for SOM.
303
304 The SOM relocations are meant to be processed as a stream, they
305 specify copying of data from the input section to the output section
306 while possibly modifying the data in some manner. They also can
307 specify that a variable number of zeros or uninitialized data be
308 inserted on in the output segment at the current offset. Some
309 relocations specify that some previous relocation be re-applied at
310 the current location in the input/output sections. And finally a number
311 of relocations have effects on other sections (R_ENTRY, R_EXIT,
312 R_UNWIND_AUX and a variety of others). There isn't even enough room
313 in the BFD relocation data structure to store enough information to
314 perform all the relocations.
315
316 Each entry in the table has three fields.
317
318 The first entry is an index into this "class" of relocations. This
319 index can then be used as a variable within the relocation itself.
320
321 The second field is a format string which actually controls processing
322 of the relocation. It uses a simple postfix machine to do calculations
323 based on variables/constants found in the string and the relocation
324 stream.
325
326 The third field specifys whether or not this relocation may use
327 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
328 stored in the instruction.
329
330 Variables:
331
332 L = input space byte count
333 D = index into class of relocations
334 M = output space byte count
335 N = statement number (unused?)
336 O = stack operation
337 R = parameter relocation bits
338 S = symbol index
339 T = first 32 bits of stack unwind information
340 U = second 32 bits of stack unwind information
341 V = a literal constant (usually used in the next relocation)
342 P = a previous relocation
343
344 Lower case letters (starting with 'b') refer to following
345 bytes in the relocation stream. 'b' is the next 1 byte,
346 c is the next 2 bytes, d is the next 3 bytes, etc...
347 This is the variable part of the relocation entries that
348 makes our life a living hell.
349
350 numerical constants are also used in the format string. Note
351 the constants are represented in decimal.
352
353 '+', "*" and "=" represents the obvious postfix operators.
354 '<' represents a left shift.
355
356 Stack Operations:
357
358 Parameter Relocation Bits:
359
360 Unwind Entries:
361
362 Previous Relocations: The index field represents which in the queue
363 of 4 previous fixups should be re-applied.
364
365 Literal Constants: These are generally used to represent addend
366 parts of relocations when these constants are not stored in the
367 fields of the instructions themselves. For example the instruction
368 addil foo-$global$-0x1234 would use an override for "0x1234" rather
369 than storing it into the addil itself. */
370
371 struct fixup_format
372 {
373 int D;
374 char *format;
375 };
376
377 static const struct fixup_format som_fixup_formats[256] =
378 {
379 /* R_NO_RELOCATION */
380 0, "LD1+4*=", /* 0x00 */
381 1, "LD1+4*=", /* 0x01 */
382 2, "LD1+4*=", /* 0x02 */
383 3, "LD1+4*=", /* 0x03 */
384 4, "LD1+4*=", /* 0x04 */
385 5, "LD1+4*=", /* 0x05 */
386 6, "LD1+4*=", /* 0x06 */
387 7, "LD1+4*=", /* 0x07 */
388 8, "LD1+4*=", /* 0x08 */
389 9, "LD1+4*=", /* 0x09 */
390 10, "LD1+4*=", /* 0x0a */
391 11, "LD1+4*=", /* 0x0b */
392 12, "LD1+4*=", /* 0x0c */
393 13, "LD1+4*=", /* 0x0d */
394 14, "LD1+4*=", /* 0x0e */
395 15, "LD1+4*=", /* 0x0f */
396 16, "LD1+4*=", /* 0x10 */
397 17, "LD1+4*=", /* 0x11 */
398 18, "LD1+4*=", /* 0x12 */
399 19, "LD1+4*=", /* 0x13 */
400 20, "LD1+4*=", /* 0x14 */
401 21, "LD1+4*=", /* 0x15 */
402 22, "LD1+4*=", /* 0x16 */
403 23, "LD1+4*=", /* 0x17 */
404 0, "LD8<b+1+4*=", /* 0x18 */
405 1, "LD8<b+1+4*=", /* 0x19 */
406 2, "LD8<b+1+4*=", /* 0x1a */
407 3, "LD8<b+1+4*=", /* 0x1b */
408 0, "LD16<c+1+4*=", /* 0x1c */
409 1, "LD16<c+1+4*=", /* 0x1d */
410 2, "LD16<c+1+4*=", /* 0x1e */
411 0, "Ld1+=", /* 0x1f */
412 /* R_ZEROES */
413 0, "Lb1+4*=", /* 0x20 */
414 1, "Ld1+=", /* 0x21 */
415 /* R_UNINIT */
416 0, "Lb1+4*=", /* 0x22 */
417 1, "Ld1+=", /* 0x23 */
418 /* R_RELOCATION */
419 0, "L4=", /* 0x24 */
420 /* R_DATA_ONE_SYMBOL */
421 0, "L4=Sb=", /* 0x25 */
422 1, "L4=Sd=", /* 0x26 */
423 /* R_DATA_PLEBEL */
424 0, "L4=Sb=", /* 0x27 */
425 1, "L4=Sd=", /* 0x28 */
426 /* R_SPACE_REF */
427 0, "L4=", /* 0x29 */
428 /* R_REPEATED_INIT */
429 0, "L4=Mb1+4*=", /* 0x2a */
430 1, "Lb4*=Mb1+L*=", /* 0x2b */
431 2, "Lb4*=Md1+4*=", /* 0x2c */
432 3, "Ld1+=Me1+=", /* 0x2d */
433 /* R_RESERVED */
434 0, "", /* 0x2e */
435 0, "", /* 0x2f */
436 /* R_PCREL_CALL */
437 0, "L4=RD=Sb=", /* 0x30 */
438 1, "L4=RD=Sb=", /* 0x31 */
439 2, "L4=RD=Sb=", /* 0x32 */
440 3, "L4=RD=Sb=", /* 0x33 */
441 4, "L4=RD=Sb=", /* 0x34 */
442 5, "L4=RD=Sb=", /* 0x35 */
443 6, "L4=RD=Sb=", /* 0x36 */
444 7, "L4=RD=Sb=", /* 0x37 */
445 8, "L4=RD=Sb=", /* 0x38 */
446 9, "L4=RD=Sb=", /* 0x39 */
447 0, "L4=RD8<b+=Sb=",/* 0x3a */
448 1, "L4=RD8<b+=Sb=",/* 0x3b */
449 0, "L4=RD8<b+=Sd=",/* 0x3c */
450 1, "L4=RD8<b+=Sd=",/* 0x3d */
451 /* R_RESERVED */
452 0, "", /* 0x3e */
453 0, "", /* 0x3f */
454 /* R_ABS_CALL */
455 0, "L4=RD=Sb=", /* 0x40 */
456 1, "L4=RD=Sb=", /* 0x41 */
457 2, "L4=RD=Sb=", /* 0x42 */
458 3, "L4=RD=Sb=", /* 0x43 */
459 4, "L4=RD=Sb=", /* 0x44 */
460 5, "L4=RD=Sb=", /* 0x45 */
461 6, "L4=RD=Sb=", /* 0x46 */
462 7, "L4=RD=Sb=", /* 0x47 */
463 8, "L4=RD=Sb=", /* 0x48 */
464 9, "L4=RD=Sb=", /* 0x49 */
465 0, "L4=RD8<b+=Sb=",/* 0x4a */
466 1, "L4=RD8<b+=Sb=",/* 0x4b */
467 0, "L4=RD8<b+=Sd=",/* 0x4c */
468 1, "L4=RD8<b+=Sd=",/* 0x4d */
469 /* R_RESERVED */
470 0, "", /* 0x4e */
471 0, "", /* 0x4f */
472 /* R_DP_RELATIVE */
473 0, "L4=SD=", /* 0x50 */
474 1, "L4=SD=", /* 0x51 */
475 2, "L4=SD=", /* 0x52 */
476 3, "L4=SD=", /* 0x53 */
477 4, "L4=SD=", /* 0x54 */
478 5, "L4=SD=", /* 0x55 */
479 6, "L4=SD=", /* 0x56 */
480 7, "L4=SD=", /* 0x57 */
481 8, "L4=SD=", /* 0x58 */
482 9, "L4=SD=", /* 0x59 */
483 10, "L4=SD=", /* 0x5a */
484 11, "L4=SD=", /* 0x5b */
485 12, "L4=SD=", /* 0x5c */
486 13, "L4=SD=", /* 0x5d */
487 14, "L4=SD=", /* 0x5e */
488 15, "L4=SD=", /* 0x5f */
489 16, "L4=SD=", /* 0x60 */
490 17, "L4=SD=", /* 0x61 */
491 18, "L4=SD=", /* 0x62 */
492 19, "L4=SD=", /* 0x63 */
493 20, "L4=SD=", /* 0x64 */
494 21, "L4=SD=", /* 0x65 */
495 22, "L4=SD=", /* 0x66 */
496 23, "L4=SD=", /* 0x67 */
497 24, "L4=SD=", /* 0x68 */
498 25, "L4=SD=", /* 0x69 */
499 26, "L4=SD=", /* 0x6a */
500 27, "L4=SD=", /* 0x6b */
501 28, "L4=SD=", /* 0x6c */
502 29, "L4=SD=", /* 0x6d */
503 30, "L4=SD=", /* 0x6e */
504 31, "L4=SD=", /* 0x6f */
505 32, "L4=Sb=", /* 0x70 */
506 33, "L4=Sd=", /* 0x71 */
507 /* R_RESERVED */
508 0, "", /* 0x72 */
509 0, "", /* 0x73 */
510 0, "", /* 0x74 */
511 0, "", /* 0x75 */
512 0, "", /* 0x76 */
513 0, "", /* 0x77 */
514 /* R_DLT_REL */
515 0, "L4=Sb=", /* 0x78 */
516 1, "L4=Sd=", /* 0x79 */
517 /* R_RESERVED */
518 0, "", /* 0x7a */
519 0, "", /* 0x7b */
520 0, "", /* 0x7c */
521 0, "", /* 0x7d */
522 0, "", /* 0x7e */
523 0, "", /* 0x7f */
524 /* R_CODE_ONE_SYMBOL */
525 0, "L4=SD=", /* 0x80 */
526 1, "L4=SD=", /* 0x81 */
527 2, "L4=SD=", /* 0x82 */
528 3, "L4=SD=", /* 0x83 */
529 4, "L4=SD=", /* 0x84 */
530 5, "L4=SD=", /* 0x85 */
531 6, "L4=SD=", /* 0x86 */
532 7, "L4=SD=", /* 0x87 */
533 8, "L4=SD=", /* 0x88 */
534 9, "L4=SD=", /* 0x89 */
535 10, "L4=SD=", /* 0x8q */
536 11, "L4=SD=", /* 0x8b */
537 12, "L4=SD=", /* 0x8c */
538 13, "L4=SD=", /* 0x8d */
539 14, "L4=SD=", /* 0x8e */
540 15, "L4=SD=", /* 0x8f */
541 16, "L4=SD=", /* 0x90 */
542 17, "L4=SD=", /* 0x91 */
543 18, "L4=SD=", /* 0x92 */
544 19, "L4=SD=", /* 0x93 */
545 20, "L4=SD=", /* 0x94 */
546 21, "L4=SD=", /* 0x95 */
547 22, "L4=SD=", /* 0x96 */
548 23, "L4=SD=", /* 0x97 */
549 24, "L4=SD=", /* 0x98 */
550 25, "L4=SD=", /* 0x99 */
551 26, "L4=SD=", /* 0x9a */
552 27, "L4=SD=", /* 0x9b */
553 28, "L4=SD=", /* 0x9c */
554 29, "L4=SD=", /* 0x9d */
555 30, "L4=SD=", /* 0x9e */
556 31, "L4=SD=", /* 0x9f */
557 32, "L4=Sb=", /* 0xa0 */
558 33, "L4=Sd=", /* 0xa1 */
559 /* R_RESERVED */
560 0, "", /* 0xa2 */
561 0, "", /* 0xa3 */
562 0, "", /* 0xa4 */
563 0, "", /* 0xa5 */
564 0, "", /* 0xa6 */
565 0, "", /* 0xa7 */
566 0, "", /* 0xa8 */
567 0, "", /* 0xa9 */
568 0, "", /* 0xaa */
569 0, "", /* 0xab */
570 0, "", /* 0xac */
571 0, "", /* 0xad */
572 /* R_MILLI_REL */
573 0, "L4=Sb=", /* 0xae */
574 1, "L4=Sd=", /* 0xaf */
575 /* R_CODE_PLABEL */
576 0, "L4=Sb=", /* 0xb0 */
577 1, "L4=Sd=", /* 0xb1 */
578 /* R_BREAKPOINT */
579 0, "L4=", /* 0xb2 */
580 /* R_ENTRY */
581 0, "Te=Ue=", /* 0xb3 */
582 1, "Uf=", /* 0xb4 */
583 /* R_ALT_ENTRY */
584 0, "", /* 0xb5 */
585 /* R_EXIT */
586 0, "", /* 0xb6 */
587 /* R_BEGIN_TRY */
588 0, "", /* 0xb7 */
589 /* R_END_TRY */
590 0, "R0=", /* 0xb8 */
591 1, "Rb4*=", /* 0xb9 */
592 2, "Rd4*=", /* 0xba */
593 /* R_BEGIN_BRTAB */
594 0, "", /* 0xbb */
595 /* R_END_BRTAB */
596 0, "", /* 0xbc */
597 /* R_STATEMENT */
598 0, "Nb=", /* 0xbd */
599 1, "Nc=", /* 0xbe */
600 2, "Nd=", /* 0xbf */
601 /* R_DATA_EXPR */
602 0, "L4=", /* 0xc0 */
603 /* R_CODE_EXPR */
604 0, "L4=", /* 0xc1 */
605 /* R_FSEL */
606 0, "", /* 0xc2 */
607 /* R_LSEL */
608 0, "", /* 0xc3 */
609 /* R_RSEL */
610 0, "", /* 0xc4 */
611 /* R_N_MODE */
612 0, "", /* 0xc5 */
613 /* R_S_MODE */
614 0, "", /* 0xc6 */
615 /* R_D_MODE */
616 0, "", /* 0xc7 */
617 /* R_R_MODE */
618 0, "", /* 0xc8 */
619 /* R_DATA_OVERRIDE */
620 0, "V0=", /* 0xc9 */
621 1, "Vb=", /* 0xca */
622 2, "Vc=", /* 0xcb */
623 3, "Vd=", /* 0xcc */
624 4, "Ve=", /* 0xcd */
625 /* R_TRANSLATED */
626 0, "", /* 0xce */
627 /* R_RESERVED */
628 0, "", /* 0xcf */
629 /* R_COMP1 */
630 0, "Ob=", /* 0xd0 */
631 /* R_COMP2 */
632 0, "Ob=Sd=", /* 0xd1 */
633 /* R_COMP3 */
634 0, "Ob=Ve=", /* 0xd2 */
635 /* R_PREV_FIXUP */
636 0, "P", /* 0xd3 */
637 1, "P", /* 0xd4 */
638 2, "P", /* 0xd5 */
639 3, "P", /* 0xd6 */
640 /* R_RESERVED */
641 0, "", /* 0xd7 */
642 0, "", /* 0xd8 */
643 0, "", /* 0xd9 */
644 0, "", /* 0xda */
645 0, "", /* 0xdb */
646 0, "", /* 0xdc */
647 0, "", /* 0xdd */
648 0, "", /* 0xde */
649 0, "", /* 0xdf */
650 0, "", /* 0xe0 */
651 0, "", /* 0xe1 */
652 0, "", /* 0xe2 */
653 0, "", /* 0xe3 */
654 0, "", /* 0xe4 */
655 0, "", /* 0xe5 */
656 0, "", /* 0xe6 */
657 0, "", /* 0xe7 */
658 0, "", /* 0xe8 */
659 0, "", /* 0xe9 */
660 0, "", /* 0xea */
661 0, "", /* 0xeb */
662 0, "", /* 0xec */
663 0, "", /* 0xed */
664 0, "", /* 0xee */
665 0, "", /* 0xef */
666 0, "", /* 0xf0 */
667 0, "", /* 0xf1 */
668 0, "", /* 0xf2 */
669 0, "", /* 0xf3 */
670 0, "", /* 0xf4 */
671 0, "", /* 0xf5 */
672 0, "", /* 0xf6 */
673 0, "", /* 0xf7 */
674 0, "", /* 0xf8 */
675 0, "", /* 0xf9 */
676 0, "", /* 0xfa */
677 0, "", /* 0xfb */
678 0, "", /* 0xfc */
679 0, "", /* 0xfd */
680 0, "", /* 0xfe */
681 0, "", /* 0xff */
682 };
683
684 static const int comp1_opcodes[] =
685 {
686 0x00,
687 0x40,
688 0x41,
689 0x42,
690 0x43,
691 0x44,
692 0x45,
693 0x46,
694 0x47,
695 0x48,
696 0x49,
697 0x4a,
698 0x4b,
699 0x60,
700 0x80,
701 0xa0,
702 0xc0,
703 -1
704 };
705
706 static const int comp2_opcodes[] =
707 {
708 0x00,
709 0x80,
710 0x82,
711 0xc0,
712 -1
713 };
714
715 static const int comp3_opcodes[] =
716 {
717 0x00,
718 0x02,
719 -1
720 };
721
722 /* These apparently are not in older versions of hpux reloc.h. */
723 #ifndef R_DLT_REL
724 #define R_DLT_REL 0x78
725 #endif
726
727 #ifndef R_AUX_UNWIND
728 #define R_AUX_UNWIND 0xcf
729 #endif
730
731 #ifndef R_SEC_STMT
732 #define R_SEC_STMT 0xd7
733 #endif
734
735 static reloc_howto_type som_hppa_howto_table[] =
736 {
737 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
738 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
739 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
740 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
741 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
742 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
743 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
744 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
745 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
746 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
747 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
748 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
749 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
750 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
751 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
752 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
753 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
754 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
755 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
756 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
757 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
758 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
759 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
760 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
761 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
762 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
763 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
764 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
765 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
766 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
767 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
768 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
769 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
770 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
771 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
772 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
773 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
774 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
775 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
776 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
777 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
778 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
779 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
780 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
781 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
782 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
783 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
784 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
785 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
786 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
787 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
788 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
789 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
790 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
791 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
792 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
793 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
794 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
795 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
796 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
797 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
798 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
799 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
800 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
801 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
802 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
803 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
804 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
805 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
806 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
807 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
808 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
809 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
810 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
811 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
812 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
813 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
814 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
815 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
816 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
817 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
818 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
819 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
820 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
821 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
822 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
823 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
824 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
825 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
826 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
827 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
828 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
829 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
830 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
831 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
832 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
833 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
834 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
835 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
836 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
837 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
838 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
839 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
840 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
841 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
842 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
843 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
844 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
845 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
846 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
847 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
848 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
849 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
850 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
851 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
852 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
853 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
854 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
855 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
856 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
857 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
858 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
859 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
860 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
861 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
862 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
863 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
864 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
865 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
866 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
867 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
868 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
869 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
870 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
871 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
872 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
873 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
874 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
875 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
876 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
877 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
878 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
879 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
880 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
881 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
882 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
883 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
884 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
885 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
886 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
887 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
888 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
889 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
890 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
891 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
892 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
893 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
894 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
895 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
896 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
897 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
898 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
899 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
900 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
901 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
902 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
903 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
904 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
905 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
906 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
907 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
908 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
909 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
910 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
911 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
912 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
913 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
914 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
915 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
916 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
917 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
918 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
919 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
920 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
921 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
922 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
923 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
924 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
925 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
926 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
927 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
928 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
929 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
930 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
931 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
932 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
933 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
934 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
935 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
936 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
937 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
938 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
939 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
940 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
941 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
942 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
943 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
944 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
945 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
946 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
947 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
948 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
949 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
950 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
951 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
952 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
953 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
954 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
955 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
956 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
957 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
958 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
959 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
960 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
961 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
962 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
963 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
964 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
965 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
966 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
967 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
968 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
969 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
970 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
971 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
972 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
973 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
974 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
975 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
976 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
977 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
978 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
979 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
980 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
981 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
982 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
983 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
984 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
985 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
986 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
987 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
988 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
989 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
990 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
991 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
992 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
993
994 /* Initialize the SOM relocation queue. By definition the queue holds
995 the last four multibyte fixups. */
996
997 static void
998 som_initialize_reloc_queue (queue)
999 struct reloc_queue *queue;
1000 {
1001 queue[0].reloc = NULL;
1002 queue[0].size = 0;
1003 queue[1].reloc = NULL;
1004 queue[1].size = 0;
1005 queue[2].reloc = NULL;
1006 queue[2].size = 0;
1007 queue[3].reloc = NULL;
1008 queue[3].size = 0;
1009 }
1010
1011 /* Insert a new relocation into the relocation queue. */
1012
1013 static void
1014 som_reloc_queue_insert (p, size, queue)
1015 unsigned char *p;
1016 unsigned int size;
1017 struct reloc_queue *queue;
1018 {
1019 queue[3].reloc = queue[2].reloc;
1020 queue[3].size = queue[2].size;
1021 queue[2].reloc = queue[1].reloc;
1022 queue[2].size = queue[1].size;
1023 queue[1].reloc = queue[0].reloc;
1024 queue[1].size = queue[0].size;
1025 queue[0].reloc = p;
1026 queue[0].size = size;
1027 }
1028
1029 /* When an entry in the relocation queue is reused, the entry moves
1030 to the front of the queue. */
1031
1032 static void
1033 som_reloc_queue_fix (queue, index)
1034 struct reloc_queue *queue;
1035 unsigned int index;
1036 {
1037 if (index == 0)
1038 return;
1039
1040 if (index == 1)
1041 {
1042 unsigned char *tmp1 = queue[0].reloc;
1043 unsigned int tmp2 = queue[0].size;
1044 queue[0].reloc = queue[1].reloc;
1045 queue[0].size = queue[1].size;
1046 queue[1].reloc = tmp1;
1047 queue[1].size = tmp2;
1048 return;
1049 }
1050
1051 if (index == 2)
1052 {
1053 unsigned char *tmp1 = queue[0].reloc;
1054 unsigned int tmp2 = queue[0].size;
1055 queue[0].reloc = queue[2].reloc;
1056 queue[0].size = queue[2].size;
1057 queue[2].reloc = queue[1].reloc;
1058 queue[2].size = queue[1].size;
1059 queue[1].reloc = tmp1;
1060 queue[1].size = tmp2;
1061 return;
1062 }
1063
1064 if (index == 3)
1065 {
1066 unsigned char *tmp1 = queue[0].reloc;
1067 unsigned int tmp2 = queue[0].size;
1068 queue[0].reloc = queue[3].reloc;
1069 queue[0].size = queue[3].size;
1070 queue[3].reloc = queue[2].reloc;
1071 queue[3].size = queue[2].size;
1072 queue[2].reloc = queue[1].reloc;
1073 queue[2].size = queue[1].size;
1074 queue[1].reloc = tmp1;
1075 queue[1].size = tmp2;
1076 return;
1077 }
1078 abort();
1079 }
1080
1081 /* Search for a particular relocation in the relocation queue. */
1082
1083 static int
1084 som_reloc_queue_find (p, size, queue)
1085 unsigned char *p;
1086 unsigned int size;
1087 struct reloc_queue *queue;
1088 {
1089 if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
1090 && size == queue[0].size)
1091 return 0;
1092 if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
1093 && size == queue[1].size)
1094 return 1;
1095 if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
1096 && size == queue[2].size)
1097 return 2;
1098 if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
1099 && size == queue[3].size)
1100 return 3;
1101 return -1;
1102 }
1103
1104 static unsigned char *
1105 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1106 bfd *abfd;
1107 int *subspace_reloc_sizep;
1108 unsigned char *p;
1109 unsigned int size;
1110 struct reloc_queue *queue;
1111 {
1112 int queue_index = som_reloc_queue_find (p, size, queue);
1113
1114 if (queue_index != -1)
1115 {
1116 /* Found this in a previous fixup. Undo the fixup we
1117 just built and use R_PREV_FIXUP instead. We saved
1118 a total of size - 1 bytes in the fixup stream. */
1119 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1120 p += 1;
1121 *subspace_reloc_sizep += 1;
1122 som_reloc_queue_fix (queue, queue_index);
1123 }
1124 else
1125 {
1126 som_reloc_queue_insert (p, size, queue);
1127 *subspace_reloc_sizep += size;
1128 p += size;
1129 }
1130 return p;
1131 }
1132
1133 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1134 bytes without any relocation. Update the size of the subspace
1135 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1136 current pointer into the relocation stream. */
1137
1138 static unsigned char *
1139 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1140 bfd *abfd;
1141 unsigned int skip;
1142 unsigned char *p;
1143 unsigned int *subspace_reloc_sizep;
1144 struct reloc_queue *queue;
1145 {
1146 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1147 then R_PREV_FIXUPs to get the difference down to a
1148 reasonable size. */
1149 if (skip >= 0x1000000)
1150 {
1151 skip -= 0x1000000;
1152 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1153 bfd_put_8 (abfd, 0xff, p + 1);
1154 bfd_put_16 (abfd, 0xffff, p + 2);
1155 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1156 while (skip >= 0x1000000)
1157 {
1158 skip -= 0x1000000;
1159 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1160 p++;
1161 *subspace_reloc_sizep += 1;
1162 /* No need to adjust queue here since we are repeating the
1163 most recent fixup. */
1164 }
1165 }
1166
1167 /* The difference must be less than 0x1000000. Use one
1168 more R_NO_RELOCATION entry to get to the right difference. */
1169 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1170 {
1171 /* Difference can be handled in a simple single-byte
1172 R_NO_RELOCATION entry. */
1173 if (skip <= 0x60)
1174 {
1175 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1176 *subspace_reloc_sizep += 1;
1177 p++;
1178 }
1179 /* Handle it with a two byte R_NO_RELOCATION entry. */
1180 else if (skip <= 0x1000)
1181 {
1182 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1183 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1184 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1185 }
1186 /* Handle it with a three byte R_NO_RELOCATION entry. */
1187 else
1188 {
1189 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1190 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1191 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1192 }
1193 }
1194 /* Ugh. Punt and use a 4 byte entry. */
1195 else if (skip > 0)
1196 {
1197 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1198 bfd_put_8 (abfd, (skip - 1) >> 16, p + 1);
1199 bfd_put_16 (abfd, skip - 1, p + 2);
1200 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1201 }
1202 return p;
1203 }
1204
1205 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1206 from a BFD relocation. Update the size of the subspace relocation
1207 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1208 into the relocation stream. */
1209
1210 static unsigned char *
1211 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1212 bfd *abfd;
1213 int addend;
1214 unsigned char *p;
1215 unsigned int *subspace_reloc_sizep;
1216 struct reloc_queue *queue;
1217 {
1218 if ((unsigned)(addend) + 0x80 < 0x100)
1219 {
1220 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1221 bfd_put_8 (abfd, addend, p + 1);
1222 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1223 }
1224 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1225 {
1226 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1227 bfd_put_16 (abfd, addend, p + 1);
1228 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1229 }
1230 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1231 {
1232 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1233 bfd_put_8 (abfd, addend >> 16, p + 1);
1234 bfd_put_16 (abfd, addend, p + 2);
1235 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1236 }
1237 else
1238 {
1239 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1240 bfd_put_32 (abfd, addend, p + 1);
1241 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1242 }
1243 return p;
1244 }
1245
1246 /* Handle a single function call relocation. */
1247
1248 static unsigned char *
1249 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1250 bfd *abfd;
1251 unsigned char *p;
1252 unsigned int *subspace_reloc_sizep;
1253 arelent *bfd_reloc;
1254 int sym_num;
1255 struct reloc_queue *queue;
1256 {
1257 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1258 int rtn_bits = arg_bits & 0x3;
1259 int type, done = 0;
1260
1261 /* You'll never believe all this is necessary to handle relocations
1262 for function calls. Having to compute and pack the argument
1263 relocation bits is the real nightmare.
1264
1265 If you're interested in how this works, just forget it. You really
1266 do not want to know about this braindamage. */
1267
1268 /* First see if this can be done with a "simple" relocation. Simple
1269 relocations have a symbol number < 0x100 and have simple encodings
1270 of argument relocations. */
1271
1272 if (sym_num < 0x100)
1273 {
1274 switch (arg_bits)
1275 {
1276 case 0:
1277 case 1:
1278 type = 0;
1279 break;
1280 case 1 << 8:
1281 case 1 << 8 | 1:
1282 type = 1;
1283 break;
1284 case 1 << 8 | 1 << 6:
1285 case 1 << 8 | 1 << 6 | 1:
1286 type = 2;
1287 break;
1288 case 1 << 8 | 1 << 6 | 1 << 4:
1289 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1290 type = 3;
1291 break;
1292 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1293 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1294 type = 4;
1295 break;
1296 default:
1297 /* Not one of the easy encodings. This will have to be
1298 handled by the more complex code below. */
1299 type = -1;
1300 break;
1301 }
1302 if (type != -1)
1303 {
1304 /* Account for the return value too. */
1305 if (rtn_bits)
1306 type += 5;
1307
1308 /* Emit a 2 byte relocation. Then see if it can be handled
1309 with a relocation which is already in the relocation queue. */
1310 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1311 bfd_put_8 (abfd, sym_num, p + 1);
1312 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1313 done = 1;
1314 }
1315 }
1316
1317 /* If this could not be handled with a simple relocation, then do a hard
1318 one. Hard relocations occur if the symbol number was too high or if
1319 the encoding of argument relocation bits is too complex. */
1320 if (! done)
1321 {
1322 /* Don't ask about these magic sequences. I took them straight
1323 from gas-1.36 which took them from the a.out man page. */
1324 type = rtn_bits;
1325 if ((arg_bits >> 6 & 0xf) == 0xe)
1326 type += 9 * 40;
1327 else
1328 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1329 if ((arg_bits >> 2 & 0xf) == 0xe)
1330 type += 9 * 4;
1331 else
1332 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1333
1334 /* Output the first two bytes of the relocation. These describe
1335 the length of the relocation and encoding style. */
1336 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1337 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1338 p);
1339 bfd_put_8 (abfd, type, p + 1);
1340
1341 /* Now output the symbol index and see if this bizarre relocation
1342 just happened to be in the relocation queue. */
1343 if (sym_num < 0x100)
1344 {
1345 bfd_put_8 (abfd, sym_num, p + 2);
1346 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1347 }
1348 else
1349 {
1350 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1351 bfd_put_16 (abfd, sym_num, p + 3);
1352 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1353 }
1354 }
1355 return p;
1356 }
1357
1358
1359 /* Return the logarithm of X, base 2, considering X unsigned.
1360 Abort -1 if X is not a power or two or is zero. */
1361
1362 static int
1363 log2 (x)
1364 unsigned int x;
1365 {
1366 int log = 0;
1367
1368 /* Test for 0 or a power of 2. */
1369 if (x == 0 || x != (x & -x))
1370 return -1;
1371
1372 while ((x >>= 1) != 0)
1373 log++;
1374 return log;
1375 }
1376
1377 static bfd_reloc_status_type
1378 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1379 input_section, output_bfd, error_message)
1380 bfd *abfd;
1381 arelent *reloc_entry;
1382 asymbol *symbol_in;
1383 PTR data;
1384 asection *input_section;
1385 bfd *output_bfd;
1386 char **error_message;
1387 {
1388 if (output_bfd)
1389 {
1390 reloc_entry->address += input_section->output_offset;
1391 return bfd_reloc_ok;
1392 }
1393 return bfd_reloc_ok;
1394 }
1395
1396 /* Given a generic HPPA relocation type, the instruction format,
1397 and a field selector, return one or more appropriate SOM relocations. */
1398
1399 int **
1400 hppa_som_gen_reloc_type (abfd, base_type, format, field, sym_diff)
1401 bfd *abfd;
1402 int base_type;
1403 int format;
1404 enum hppa_reloc_field_selector_type_alt field;
1405 int sym_diff;
1406 {
1407 int *final_type, **final_types;
1408
1409 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 6);
1410 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1411 if (!final_types || !final_type)
1412 {
1413 bfd_set_error (bfd_error_no_memory);
1414 return NULL;
1415 }
1416
1417 /* The field selector may require additional relocations to be
1418 generated. It's impossible to know at this moment if additional
1419 relocations will be needed, so we make them. The code to actually
1420 write the relocation/fixup stream is responsible for removing
1421 any redundant relocations. */
1422 switch (field)
1423 {
1424 case e_fsel:
1425 case e_psel:
1426 case e_lpsel:
1427 case e_rpsel:
1428 final_types[0] = final_type;
1429 final_types[1] = NULL;
1430 final_types[2] = NULL;
1431 *final_type = base_type;
1432 break;
1433
1434 case e_tsel:
1435 case e_ltsel:
1436 case e_rtsel:
1437 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1438 if (!final_types[0])
1439 {
1440 bfd_set_error (bfd_error_no_memory);
1441 return NULL;
1442 }
1443 if (field == e_tsel)
1444 *final_types[0] = R_FSEL;
1445 else if (field == e_ltsel)
1446 *final_types[0] = R_LSEL;
1447 else
1448 *final_types[0] = R_RSEL;
1449 final_types[1] = final_type;
1450 final_types[2] = NULL;
1451 *final_type = base_type;
1452 break;
1453
1454 case e_lssel:
1455 case e_rssel:
1456 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1457 if (!final_types[0])
1458 {
1459 bfd_set_error (bfd_error_no_memory);
1460 return NULL;
1461 }
1462 *final_types[0] = R_S_MODE;
1463 final_types[1] = final_type;
1464 final_types[2] = NULL;
1465 *final_type = base_type;
1466 break;
1467
1468 case e_lsel:
1469 case e_rsel:
1470 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1471 if (!final_types[0])
1472 {
1473 bfd_set_error (bfd_error_no_memory);
1474 return NULL;
1475 }
1476 *final_types[0] = R_N_MODE;
1477 final_types[1] = final_type;
1478 final_types[2] = NULL;
1479 *final_type = base_type;
1480 break;
1481
1482 case e_ldsel:
1483 case e_rdsel:
1484 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1485 if (!final_types[0])
1486 {
1487 bfd_set_error (bfd_error_no_memory);
1488 return NULL;
1489 }
1490 *final_types[0] = R_D_MODE;
1491 final_types[1] = final_type;
1492 final_types[2] = NULL;
1493 *final_type = base_type;
1494 break;
1495
1496 case e_lrsel:
1497 case e_rrsel:
1498 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1499 if (!final_types[0])
1500 {
1501 bfd_set_error (bfd_error_no_memory);
1502 return NULL;
1503 }
1504 *final_types[0] = R_R_MODE;
1505 final_types[1] = final_type;
1506 final_types[2] = NULL;
1507 *final_type = base_type;
1508 break;
1509 }
1510
1511 switch (base_type)
1512 {
1513 case R_HPPA:
1514 /* The difference of two symbols needs *very* special handling. */
1515 if (sym_diff)
1516 {
1517 final_types[0] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1518 final_types[1] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1519 final_types[2] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1520 final_types[3] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1521 if (!final_types[0] || !final_types[1] || !final_types[2])
1522 {
1523 bfd_set_error (bfd_error_no_memory);
1524 return NULL;
1525 }
1526 if (field == e_fsel)
1527 *final_types[0] = R_FSEL;
1528 else if (field == e_rsel)
1529 *final_types[0] = R_RSEL;
1530 else if (field == e_lsel)
1531 *final_types[0] = R_LSEL;
1532 *final_types[1] = R_COMP2;
1533 *final_types[2] = R_COMP2;
1534 *final_types[3] = R_COMP1;
1535 final_types[4] = final_type;
1536 *final_types[4] = R_CODE_EXPR;
1537 final_types[5] = NULL;
1538 break;
1539 }
1540 /* PLABELs get their own relocation type. */
1541 else if (field == e_psel
1542 || field == e_lpsel
1543 || field == e_rpsel)
1544 {
1545 /* A PLABEL relocation that has a size of 32 bits must
1546 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1547 if (format == 32)
1548 *final_type = R_DATA_PLABEL;
1549 else
1550 *final_type = R_CODE_PLABEL;
1551 }
1552 /* PIC stuff. */
1553 else if (field == e_tsel
1554 || field == e_ltsel
1555 || field == e_rtsel)
1556 *final_type = R_DLT_REL;
1557 /* A relocation in the data space is always a full 32bits. */
1558 else if (format == 32)
1559 *final_type = R_DATA_ONE_SYMBOL;
1560
1561 break;
1562
1563 case R_HPPA_GOTOFF:
1564 /* More PLABEL special cases. */
1565 if (field == e_psel
1566 || field == e_lpsel
1567 || field == e_rpsel)
1568 *final_type = R_DATA_PLABEL;
1569 break;
1570
1571 case R_HPPA_COMPLEX:
1572 /* The difference of two symbols needs *very* special handling. */
1573 if (sym_diff)
1574 {
1575 final_types[0] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1576 final_types[1] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1577 final_types[2] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1578 final_types[3] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
1579 if (!final_types[0] || !final_types[1] || !final_types[2])
1580 {
1581 bfd_set_error (bfd_error_no_memory);
1582 return NULL;
1583 }
1584 if (field == e_fsel)
1585 *final_types[0] = R_FSEL;
1586 else if (field == e_rsel)
1587 *final_types[0] = R_RSEL;
1588 else if (field == e_lsel)
1589 *final_types[0] = R_LSEL;
1590 *final_types[1] = R_COMP2;
1591 *final_types[2] = R_COMP2;
1592 *final_types[3] = R_COMP1;
1593 final_types[4] = final_type;
1594 *final_types[4] = R_CODE_EXPR;
1595 final_types[5] = NULL;
1596 break;
1597 }
1598 else
1599 break;
1600
1601 case R_HPPA_NONE:
1602 case R_HPPA_ABS_CALL:
1603 case R_HPPA_PCREL_CALL:
1604 /* Right now we can default all these. */
1605 break;
1606 }
1607 return final_types;
1608 }
1609
1610 /* Return the address of the correct entry in the PA SOM relocation
1611 howto table. */
1612
1613 /*ARGSUSED*/
1614 static reloc_howto_type *
1615 som_bfd_reloc_type_lookup (abfd, code)
1616 bfd *abfd;
1617 bfd_reloc_code_real_type code;
1618 {
1619 if ((int) code < (int) R_NO_RELOCATION + 255)
1620 {
1621 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1622 return &som_hppa_howto_table[(int) code];
1623 }
1624
1625 return (reloc_howto_type *) 0;
1626 }
1627
1628 /* Perform some initialization for an object. Save results of this
1629 initialization in the BFD. */
1630
1631 static const bfd_target *
1632 som_object_setup (abfd, file_hdrp, aux_hdrp)
1633 bfd *abfd;
1634 struct header *file_hdrp;
1635 struct som_exec_auxhdr *aux_hdrp;
1636 {
1637 asection *section;
1638 int found;
1639
1640 /* som_mkobject will set bfd_error if som_mkobject fails. */
1641 if (som_mkobject (abfd) != true)
1642 return 0;
1643
1644 /* Set BFD flags based on what information is available in the SOM. */
1645 abfd->flags = NO_FLAGS;
1646 if (file_hdrp->symbol_total)
1647 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1648
1649 switch (file_hdrp->a_magic)
1650 {
1651 case DEMAND_MAGIC:
1652 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1653 break;
1654 case SHARE_MAGIC:
1655 abfd->flags |= (WP_TEXT | EXEC_P);
1656 break;
1657 case EXEC_MAGIC:
1658 abfd->flags |= (EXEC_P);
1659 break;
1660 case RELOC_MAGIC:
1661 abfd->flags |= HAS_RELOC;
1662 break;
1663 #ifdef SHL_MAGIC
1664 case SHL_MAGIC:
1665 #endif
1666 #ifdef DL_MAGIC
1667 case DL_MAGIC:
1668 #endif
1669 abfd->flags |= DYNAMIC;
1670 break;
1671
1672 default:
1673 break;
1674 }
1675
1676 /* Allocate space to hold the saved exec header information. */
1677 obj_som_exec_data (abfd) = (struct som_exec_data *)
1678 bfd_zalloc (abfd, sizeof (struct som_exec_data ));
1679 if (obj_som_exec_data (abfd) == NULL)
1680 {
1681 bfd_set_error (bfd_error_no_memory);
1682 return NULL;
1683 }
1684
1685 /* The braindamaged OSF1 linker switched exec_flags and exec_entry!
1686
1687 We used to identify OSF1 binaries based on NEW_VERSION_ID, but
1688 apparently the latest HPUX linker is using NEW_VERSION_ID now.
1689
1690 It's about time, OSF has used the new id since at least 1992;
1691 HPUX didn't start till nearly 1995!.
1692
1693 The new approach examines the entry field. If it's zero or not 4
1694 byte aligned then it's not a proper code address and we guess it's
1695 really the executable flags. */
1696 found = 0;
1697 for (section = abfd->sections; section; section = section->next)
1698 {
1699 if ((section->flags & SEC_CODE) == 0)
1700 continue;
1701 if (aux_hdrp->exec_entry >= section->vma
1702 && aux_hdrp->exec_entry < section->vma + section->_cooked_size)
1703 found = 1;
1704 }
1705 if (aux_hdrp->exec_entry == 0
1706 || (aux_hdrp->exec_entry & 0x3) != 0
1707 || ! found)
1708 {
1709 bfd_get_start_address (abfd) = aux_hdrp->exec_flags;
1710 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_entry;
1711 }
1712 else
1713 {
1714 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1715 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1716 }
1717
1718 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, pa10);
1719 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1720
1721 /* Initialize the saved symbol table and string table to NULL.
1722 Save important offsets and sizes from the SOM header into
1723 the BFD. */
1724 obj_som_stringtab (abfd) = (char *) NULL;
1725 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1726 obj_som_sorted_syms (abfd) = NULL;
1727 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1728 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1729 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1730 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
1731 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1732
1733 return abfd->xvec;
1734 }
1735
1736 /* Convert all of the space and subspace info into BFD sections. Each space
1737 contains a number of subspaces, which in turn describe the mapping between
1738 regions of the exec file, and the address space that the program runs in.
1739 BFD sections which correspond to spaces will overlap the sections for the
1740 associated subspaces. */
1741
1742 static boolean
1743 setup_sections (abfd, file_hdr)
1744 bfd *abfd;
1745 struct header *file_hdr;
1746 {
1747 char *space_strings;
1748 unsigned int space_index, i;
1749 unsigned int total_subspaces = 0;
1750 asection **subspace_sections, *section;
1751
1752 /* First, read in space names */
1753
1754 space_strings = malloc (file_hdr->space_strings_size);
1755 if (!space_strings && file_hdr->space_strings_size != 0)
1756 {
1757 bfd_set_error (bfd_error_no_memory);
1758 goto error_return;
1759 }
1760
1761 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
1762 goto error_return;
1763 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1764 != file_hdr->space_strings_size)
1765 goto error_return;
1766
1767 /* Loop over all of the space dictionaries, building up sections */
1768 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1769 {
1770 struct space_dictionary_record space;
1771 struct subspace_dictionary_record subspace, save_subspace;
1772 int subspace_index;
1773 asection *space_asect;
1774 char *newname;
1775
1776 /* Read the space dictionary element */
1777 if (bfd_seek (abfd, file_hdr->space_location
1778 + space_index * sizeof space, SEEK_SET) < 0)
1779 goto error_return;
1780 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1781 goto error_return;
1782
1783 /* Setup the space name string */
1784 space.name.n_name = space.name.n_strx + space_strings;
1785
1786 /* Make a section out of it */
1787 newname = bfd_alloc (abfd, strlen (space.name.n_name) + 1);
1788 if (!newname)
1789 goto error_return;
1790 strcpy (newname, space.name.n_name);
1791
1792 space_asect = bfd_make_section_anyway (abfd, newname);
1793 if (!space_asect)
1794 goto error_return;
1795
1796 if (space.is_loadable == 0)
1797 space_asect->flags |= SEC_DEBUGGING;
1798
1799 /* Set up all the attributes for the space. */
1800 if (bfd_som_set_section_attributes (space_asect, space.is_defined,
1801 space.is_private, space.sort_key,
1802 space.space_number) == false)
1803 goto error_return;
1804
1805 /* Now, read in the first subspace for this space */
1806 if (bfd_seek (abfd, file_hdr->subspace_location
1807 + space.subspace_index * sizeof subspace,
1808 SEEK_SET) < 0)
1809 goto error_return;
1810 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1811 goto error_return;
1812 /* Seek back to the start of the subspaces for loop below */
1813 if (bfd_seek (abfd, file_hdr->subspace_location
1814 + space.subspace_index * sizeof subspace,
1815 SEEK_SET) < 0)
1816 goto error_return;
1817
1818 /* Setup the start address and file loc from the first subspace record */
1819 space_asect->vma = subspace.subspace_start;
1820 space_asect->filepos = subspace.file_loc_init_value;
1821 space_asect->alignment_power = log2 (subspace.alignment);
1822 if (space_asect->alignment_power == -1)
1823 goto error_return;
1824
1825 /* Initialize save_subspace so we can reliably determine if this
1826 loop placed any useful values into it. */
1827 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1828
1829 /* Loop over the rest of the subspaces, building up more sections */
1830 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1831 subspace_index++)
1832 {
1833 asection *subspace_asect;
1834
1835 /* Read in the next subspace */
1836 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1837 != sizeof subspace)
1838 goto error_return;
1839
1840 /* Setup the subspace name string */
1841 subspace.name.n_name = subspace.name.n_strx + space_strings;
1842
1843 newname = bfd_alloc (abfd, strlen (subspace.name.n_name) + 1);
1844 if (!newname)
1845 goto error_return;
1846 strcpy (newname, subspace.name.n_name);
1847
1848 /* Make a section out of this subspace */
1849 subspace_asect = bfd_make_section_anyway (abfd, newname);
1850 if (!subspace_asect)
1851 goto error_return;
1852
1853 /* Store private information about the section. */
1854 if (bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1855 subspace.access_control_bits,
1856 subspace.sort_key,
1857 subspace.quadrant) == false)
1858 goto error_return;
1859
1860 /* Keep an easy mapping between subspaces and sections.
1861 Note we do not necessarily read the subspaces in the
1862 same order in which they appear in the object file.
1863
1864 So to make the target index come out correctly, we
1865 store the location of the subspace header in target
1866 index, then sort using the location of the subspace
1867 header as the key. Then we can assign correct
1868 subspace indices. */
1869 total_subspaces++;
1870 subspace_asect->target_index = bfd_tell (abfd) - sizeof (subspace);
1871
1872 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1873 by the access_control_bits in the subspace header. */
1874 switch (subspace.access_control_bits >> 4)
1875 {
1876 /* Readonly data. */
1877 case 0x0:
1878 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1879 break;
1880
1881 /* Normal data. */
1882 case 0x1:
1883 subspace_asect->flags |= SEC_DATA;
1884 break;
1885
1886 /* Readonly code and the gateways.
1887 Gateways have other attributes which do not map
1888 into anything BFD knows about. */
1889 case 0x2:
1890 case 0x4:
1891 case 0x5:
1892 case 0x6:
1893 case 0x7:
1894 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1895 break;
1896
1897 /* dynamic (writable) code. */
1898 case 0x3:
1899 subspace_asect->flags |= SEC_CODE;
1900 break;
1901 }
1902
1903 if (subspace.dup_common || subspace.is_common)
1904 subspace_asect->flags |= SEC_IS_COMMON;
1905 else if (subspace.subspace_length > 0)
1906 subspace_asect->flags |= SEC_HAS_CONTENTS;
1907
1908 if (subspace.is_loadable)
1909 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1910 else
1911 subspace_asect->flags |= SEC_DEBUGGING;
1912
1913 if (subspace.code_only)
1914 subspace_asect->flags |= SEC_CODE;
1915
1916 /* Both file_loc_init_value and initialization_length will
1917 be zero for a BSS like subspace. */
1918 if (subspace.file_loc_init_value == 0
1919 && subspace.initialization_length == 0)
1920 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD | SEC_HAS_CONTENTS);
1921
1922 /* This subspace has relocations.
1923 The fixup_request_quantity is a byte count for the number of
1924 entries in the relocation stream; it is not the actual number
1925 of relocations in the subspace. */
1926 if (subspace.fixup_request_quantity != 0)
1927 {
1928 subspace_asect->flags |= SEC_RELOC;
1929 subspace_asect->rel_filepos = subspace.fixup_request_index;
1930 som_section_data (subspace_asect)->reloc_size
1931 = subspace.fixup_request_quantity;
1932 /* We can not determine this yet. When we read in the
1933 relocation table the correct value will be filled in. */
1934 subspace_asect->reloc_count = -1;
1935 }
1936
1937 /* Update save_subspace if appropriate. */
1938 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1939 save_subspace = subspace;
1940
1941 subspace_asect->vma = subspace.subspace_start;
1942 subspace_asect->_cooked_size = subspace.subspace_length;
1943 subspace_asect->_raw_size = subspace.subspace_length;
1944 subspace_asect->filepos = subspace.file_loc_init_value;
1945 subspace_asect->alignment_power = log2 (subspace.alignment);
1946 if (subspace_asect->alignment_power == -1)
1947 goto error_return;
1948 }
1949
1950 /* Yow! there is no subspace within the space which actually
1951 has initialized information in it; this should never happen
1952 as far as I know. */
1953 if (!save_subspace.file_loc_init_value)
1954 goto error_return;
1955
1956 /* Setup the sizes for the space section based upon the info in the
1957 last subspace of the space. */
1958 space_asect->_cooked_size = save_subspace.subspace_start
1959 - space_asect->vma + save_subspace.subspace_length;
1960 space_asect->_raw_size = save_subspace.file_loc_init_value
1961 - space_asect->filepos + save_subspace.initialization_length;
1962 }
1963 /* Now that we've read in all the subspace records, we need to assign
1964 a target index to each subspace. */
1965 subspace_sections = (asection **) malloc (total_subspaces
1966 * sizeof (asection *));
1967 if (subspace_sections == NULL)
1968 goto error_return;
1969
1970 for (i = 0, section = abfd->sections; section; section = section->next)
1971 {
1972 if (!som_is_subspace (section))
1973 continue;
1974
1975 subspace_sections[i] = section;
1976 i++;
1977 }
1978 qsort (subspace_sections, total_subspaces,
1979 sizeof (asection *), compare_subspaces);
1980
1981 /* subspace_sections is now sorted in the order in which the subspaces
1982 appear in the object file. Assign an index to each one now. */
1983 for (i = 0; i < total_subspaces; i++)
1984 subspace_sections[i]->target_index = i;
1985
1986 if (space_strings != NULL)
1987 free (space_strings);
1988
1989 if (subspace_sections != NULL)
1990 free (subspace_sections);
1991
1992 return true;
1993
1994 error_return:
1995 if (space_strings != NULL)
1996 free (space_strings);
1997
1998 if (subspace_sections != NULL)
1999 free (subspace_sections);
2000 return false;
2001 }
2002
2003 /* Read in a SOM object and make it into a BFD. */
2004
2005 static const bfd_target *
2006 som_object_p (abfd)
2007 bfd *abfd;
2008 {
2009 struct header file_hdr;
2010 struct som_exec_auxhdr aux_hdr;
2011
2012 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
2013 {
2014 if (bfd_get_error () != bfd_error_system_call)
2015 bfd_set_error (bfd_error_wrong_format);
2016 return 0;
2017 }
2018
2019 if (!_PA_RISC_ID (file_hdr.system_id))
2020 {
2021 bfd_set_error (bfd_error_wrong_format);
2022 return 0;
2023 }
2024
2025 switch (file_hdr.a_magic)
2026 {
2027 case RELOC_MAGIC:
2028 case EXEC_MAGIC:
2029 case SHARE_MAGIC:
2030 case DEMAND_MAGIC:
2031 #ifdef DL_MAGIC
2032 case DL_MAGIC:
2033 #endif
2034 #ifdef SHL_MAGIC
2035 case SHL_MAGIC:
2036 #endif
2037 #ifdef EXECLIBMAGIC
2038 case EXECLIBMAGIC:
2039 #endif
2040 #ifdef SHARED_MAGIC_CNX
2041 case SHARED_MAGIC_CNX:
2042 #endif
2043 break;
2044 default:
2045 bfd_set_error (bfd_error_wrong_format);
2046 return 0;
2047 }
2048
2049 if (file_hdr.version_id != VERSION_ID
2050 && file_hdr.version_id != NEW_VERSION_ID)
2051 {
2052 bfd_set_error (bfd_error_wrong_format);
2053 return 0;
2054 }
2055
2056 /* If the aux_header_size field in the file header is zero, then this
2057 object is an incomplete executable (a .o file). Do not try to read
2058 a non-existant auxiliary header. */
2059 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
2060 if (file_hdr.aux_header_size != 0)
2061 {
2062 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
2063 {
2064 if (bfd_get_error () != bfd_error_system_call)
2065 bfd_set_error (bfd_error_wrong_format);
2066 return 0;
2067 }
2068 }
2069
2070 if (!setup_sections (abfd, &file_hdr))
2071 {
2072 /* setup_sections does not bubble up a bfd error code. */
2073 bfd_set_error (bfd_error_bad_value);
2074 return 0;
2075 }
2076
2077 /* This appears to be a valid SOM object. Do some initialization. */
2078 return som_object_setup (abfd, &file_hdr, &aux_hdr);
2079 }
2080
2081 /* Create a SOM object. */
2082
2083 static boolean
2084 som_mkobject (abfd)
2085 bfd *abfd;
2086 {
2087 /* Allocate memory to hold backend information. */
2088 abfd->tdata.som_data = (struct som_data_struct *)
2089 bfd_zalloc (abfd, sizeof (struct som_data_struct));
2090 if (abfd->tdata.som_data == NULL)
2091 {
2092 bfd_set_error (bfd_error_no_memory);
2093 return false;
2094 }
2095 return true;
2096 }
2097
2098 /* Initialize some information in the file header. This routine makes
2099 not attempt at doing the right thing for a full executable; it
2100 is only meant to handle relocatable objects. */
2101
2102 static boolean
2103 som_prep_headers (abfd)
2104 bfd *abfd;
2105 {
2106 struct header *file_hdr;
2107 asection *section;
2108
2109 /* Make and attach a file header to the BFD. */
2110 file_hdr = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
2111 if (file_hdr == NULL)
2112
2113 {
2114 bfd_set_error (bfd_error_no_memory);
2115 return false;
2116 }
2117 obj_som_file_hdr (abfd) = file_hdr;
2118
2119 if (abfd->flags & (EXEC_P | DYNAMIC))
2120 {
2121
2122 /* Make and attach an exec header to the BFD. */
2123 obj_som_exec_hdr (abfd) = (struct som_exec_auxhdr *)
2124 bfd_zalloc (abfd, sizeof (struct som_exec_auxhdr));
2125 if (obj_som_exec_hdr (abfd) == NULL)
2126 {
2127 bfd_set_error (bfd_error_no_memory);
2128 return false;
2129 }
2130
2131 if (abfd->flags & D_PAGED)
2132 file_hdr->a_magic = DEMAND_MAGIC;
2133 else if (abfd->flags & WP_TEXT)
2134 file_hdr->a_magic = SHARE_MAGIC;
2135 #ifdef SHL_MAGIC
2136 else if (abfd->flags & DYNAMIC)
2137 file_hdr->a_magic = SHL_MAGIC;
2138 #endif
2139 else
2140 file_hdr->a_magic = EXEC_MAGIC;
2141 }
2142 else
2143 file_hdr->a_magic = RELOC_MAGIC;
2144
2145 /* Only new format SOM is supported. */
2146 file_hdr->version_id = NEW_VERSION_ID;
2147
2148 /* These fields are optional, and embedding timestamps is not always
2149 a wise thing to do, it makes comparing objects during a multi-stage
2150 bootstrap difficult. */
2151 file_hdr->file_time.secs = 0;
2152 file_hdr->file_time.nanosecs = 0;
2153
2154 file_hdr->entry_space = 0;
2155 file_hdr->entry_subspace = 0;
2156 file_hdr->entry_offset = 0;
2157 file_hdr->presumed_dp = 0;
2158
2159 /* Now iterate over the sections translating information from
2160 BFD sections to SOM spaces/subspaces. */
2161
2162 for (section = abfd->sections; section != NULL; section = section->next)
2163 {
2164 /* Ignore anything which has not been marked as a space or
2165 subspace. */
2166 if (!som_is_space (section) && !som_is_subspace (section))
2167 continue;
2168
2169 if (som_is_space (section))
2170 {
2171 /* Allocate space for the space dictionary. */
2172 som_section_data (section)->space_dict
2173 = (struct space_dictionary_record *)
2174 bfd_zalloc (abfd, sizeof (struct space_dictionary_record));
2175 if (som_section_data (section)->space_dict == NULL)
2176 {
2177 bfd_set_error (bfd_error_no_memory);
2178 return false;
2179 }
2180 /* Set space attributes. Note most attributes of SOM spaces
2181 are set based on the subspaces it contains. */
2182 som_section_data (section)->space_dict->loader_fix_index = -1;
2183 som_section_data (section)->space_dict->init_pointer_index = -1;
2184
2185 /* Set more attributes that were stuffed away in private data. */
2186 som_section_data (section)->space_dict->sort_key =
2187 som_section_data (section)->copy_data->sort_key;
2188 som_section_data (section)->space_dict->is_defined =
2189 som_section_data (section)->copy_data->is_defined;
2190 som_section_data (section)->space_dict->is_private =
2191 som_section_data (section)->copy_data->is_private;
2192 som_section_data (section)->space_dict->space_number =
2193 som_section_data (section)->copy_data->space_number;
2194 }
2195 else
2196 {
2197 /* Allocate space for the subspace dictionary. */
2198 som_section_data (section)->subspace_dict
2199 = (struct subspace_dictionary_record *)
2200 bfd_zalloc (abfd, sizeof (struct subspace_dictionary_record));
2201 if (som_section_data (section)->subspace_dict == NULL)
2202 {
2203 bfd_set_error (bfd_error_no_memory);
2204 return false;
2205 }
2206
2207 /* Set subspace attributes. Basic stuff is done here, additional
2208 attributes are filled in later as more information becomes
2209 available. */
2210 if (section->flags & SEC_IS_COMMON)
2211 {
2212 som_section_data (section)->subspace_dict->dup_common = 1;
2213 som_section_data (section)->subspace_dict->is_common = 1;
2214 }
2215
2216 if (section->flags & SEC_ALLOC)
2217 som_section_data (section)->subspace_dict->is_loadable = 1;
2218
2219 if (section->flags & SEC_CODE)
2220 som_section_data (section)->subspace_dict->code_only = 1;
2221
2222 som_section_data (section)->subspace_dict->subspace_start =
2223 section->vma;
2224 som_section_data (section)->subspace_dict->subspace_length =
2225 bfd_section_size (abfd, section);
2226 som_section_data (section)->subspace_dict->initialization_length =
2227 bfd_section_size (abfd, section);
2228 som_section_data (section)->subspace_dict->alignment =
2229 1 << section->alignment_power;
2230
2231 /* Set more attributes that were stuffed away in private data. */
2232 som_section_data (section)->subspace_dict->sort_key =
2233 som_section_data (section)->copy_data->sort_key;
2234 som_section_data (section)->subspace_dict->access_control_bits =
2235 som_section_data (section)->copy_data->access_control_bits;
2236 som_section_data (section)->subspace_dict->quadrant =
2237 som_section_data (section)->copy_data->quadrant;
2238 }
2239 }
2240 return true;
2241 }
2242
2243 /* Return true if the given section is a SOM space, false otherwise. */
2244
2245 static boolean
2246 som_is_space (section)
2247 asection *section;
2248 {
2249 /* If no copy data is available, then it's neither a space nor a
2250 subspace. */
2251 if (som_section_data (section)->copy_data == NULL)
2252 return false;
2253
2254 /* If the containing space isn't the same as the given section,
2255 then this isn't a space. */
2256 if (som_section_data (section)->copy_data->container != section
2257 && (som_section_data (section)->copy_data->container->output_section
2258 != section))
2259 return false;
2260
2261 /* OK. Must be a space. */
2262 return true;
2263 }
2264
2265 /* Return true if the given section is a SOM subspace, false otherwise. */
2266
2267 static boolean
2268 som_is_subspace (section)
2269 asection *section;
2270 {
2271 /* If no copy data is available, then it's neither a space nor a
2272 subspace. */
2273 if (som_section_data (section)->copy_data == NULL)
2274 return false;
2275
2276 /* If the containing space is the same as the given section,
2277 then this isn't a subspace. */
2278 if (som_section_data (section)->copy_data->container == section
2279 || (som_section_data (section)->copy_data->container->output_section
2280 == section))
2281 return false;
2282
2283 /* OK. Must be a subspace. */
2284 return true;
2285 }
2286
2287 /* Return true if the given space containins the given subspace. It
2288 is safe to assume space really is a space, and subspace really
2289 is a subspace. */
2290
2291 static boolean
2292 som_is_container (space, subspace)
2293 asection *space, *subspace;
2294 {
2295 return (som_section_data (subspace)->copy_data->container == space
2296 || (som_section_data (subspace)->copy_data->container->output_section
2297 == space));
2298 }
2299
2300 /* Count and return the number of spaces attached to the given BFD. */
2301
2302 static unsigned long
2303 som_count_spaces (abfd)
2304 bfd *abfd;
2305 {
2306 int count = 0;
2307 asection *section;
2308
2309 for (section = abfd->sections; section != NULL; section = section->next)
2310 count += som_is_space (section);
2311
2312 return count;
2313 }
2314
2315 /* Count the number of subspaces attached to the given BFD. */
2316
2317 static unsigned long
2318 som_count_subspaces (abfd)
2319 bfd *abfd;
2320 {
2321 int count = 0;
2322 asection *section;
2323
2324 for (section = abfd->sections; section != NULL; section = section->next)
2325 count += som_is_subspace (section);
2326
2327 return count;
2328 }
2329
2330 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2331
2332 We desire symbols to be ordered starting with the symbol with the
2333 highest relocation count down to the symbol with the lowest relocation
2334 count. Doing so compacts the relocation stream. */
2335
2336 static int
2337 compare_syms (arg1, arg2)
2338 const PTR arg1;
2339 const PTR arg2;
2340
2341 {
2342 asymbol **sym1 = (asymbol **) arg1;
2343 asymbol **sym2 = (asymbol **) arg2;
2344 unsigned int count1, count2;
2345
2346 /* Get relocation count for each symbol. Note that the count
2347 is stored in the udata pointer for section symbols! */
2348 if ((*sym1)->flags & BSF_SECTION_SYM)
2349 count1 = (*sym1)->udata.i;
2350 else
2351 count1 = som_symbol_data (*sym1)->reloc_count;
2352
2353 if ((*sym2)->flags & BSF_SECTION_SYM)
2354 count2 = (*sym2)->udata.i;
2355 else
2356 count2 = som_symbol_data (*sym2)->reloc_count;
2357
2358 /* Return the appropriate value. */
2359 if (count1 < count2)
2360 return 1;
2361 else if (count1 > count2)
2362 return -1;
2363 return 0;
2364 }
2365
2366 /* Return -1, 0, 1 indicating the relative ordering of subspace1
2367 and subspace. */
2368
2369 static int
2370 compare_subspaces (arg1, arg2)
2371 const PTR arg1;
2372 const PTR arg2;
2373
2374 {
2375 asection **subspace1 = (asection **) arg1;
2376 asection **subspace2 = (asection **) arg2;
2377 unsigned int count1, count2;
2378
2379 if ((*subspace1)->target_index < (*subspace2)->target_index)
2380 return -1;
2381 else if ((*subspace2)->target_index < (*subspace1)->target_index)
2382 return 1;
2383 else
2384 return 0;
2385 }
2386
2387 /* Perform various work in preparation for emitting the fixup stream. */
2388
2389 static void
2390 som_prep_for_fixups (abfd, syms, num_syms)
2391 bfd *abfd;
2392 asymbol **syms;
2393 unsigned long num_syms;
2394 {
2395 int i;
2396 asection *section;
2397 asymbol **sorted_syms;
2398
2399 /* Most SOM relocations involving a symbol have a length which is
2400 dependent on the index of the symbol. So symbols which are
2401 used often in relocations should have a small index. */
2402
2403 /* First initialize the counters for each symbol. */
2404 for (i = 0; i < num_syms; i++)
2405 {
2406 /* Handle a section symbol; these have no pointers back to the
2407 SOM symbol info. So we just use the udata field to hold the
2408 relocation count. */
2409 if (som_symbol_data (syms[i]) == NULL
2410 || syms[i]->flags & BSF_SECTION_SYM)
2411 {
2412 syms[i]->flags |= BSF_SECTION_SYM;
2413 syms[i]->udata.i = 0;
2414 }
2415 else
2416 som_symbol_data (syms[i])->reloc_count = 0;
2417 }
2418
2419 /* Now that the counters are initialized, make a weighted count
2420 of how often a given symbol is used in a relocation. */
2421 for (section = abfd->sections; section != NULL; section = section->next)
2422 {
2423 int i;
2424
2425 /* Does this section have any relocations? */
2426 if (section->reloc_count <= 0)
2427 continue;
2428
2429 /* Walk through each relocation for this section. */
2430 for (i = 1; i < section->reloc_count; i++)
2431 {
2432 arelent *reloc = section->orelocation[i];
2433 int scale;
2434
2435 /* A relocation against a symbol in the *ABS* section really
2436 does not have a symbol. Likewise if the symbol isn't associated
2437 with any section. */
2438 if (reloc->sym_ptr_ptr == NULL
2439 || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section))
2440 continue;
2441
2442 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2443 and R_CODE_ONE_SYMBOL relocations to come first. These
2444 two relocations have single byte versions if the symbol
2445 index is very small. */
2446 if (reloc->howto->type == R_DP_RELATIVE
2447 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2448 scale = 2;
2449 else
2450 scale = 1;
2451
2452 /* Handle section symbols by storing the count in the udata
2453 field. It will not be used and the count is very important
2454 for these symbols. */
2455 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2456 {
2457 (*reloc->sym_ptr_ptr)->udata.i =
2458 (*reloc->sym_ptr_ptr)->udata.i + scale;
2459 continue;
2460 }
2461
2462 /* A normal symbol. Increment the count. */
2463 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2464 }
2465 }
2466
2467 /* Sort a copy of the symbol table, rather than the canonical
2468 output symbol table. */
2469 sorted_syms = (asymbol **) bfd_zalloc (abfd, num_syms * sizeof (asymbol *));
2470 memcpy (sorted_syms, syms, num_syms * sizeof (asymbol *));
2471 qsort (sorted_syms, num_syms, sizeof (asymbol *), compare_syms);
2472 obj_som_sorted_syms (abfd) = sorted_syms;
2473
2474 /* Compute the symbol indexes, they will be needed by the relocation
2475 code. */
2476 for (i = 0; i < num_syms; i++)
2477 {
2478 /* A section symbol. Again, there is no pointer to backend symbol
2479 information, so we reuse the udata field again. */
2480 if (sorted_syms[i]->flags & BSF_SECTION_SYM)
2481 sorted_syms[i]->udata.i = i;
2482 else
2483 som_symbol_data (sorted_syms[i])->index = i;
2484 }
2485 }
2486
2487 static boolean
2488 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2489 bfd *abfd;
2490 unsigned long current_offset;
2491 unsigned int *total_reloc_sizep;
2492 {
2493 unsigned int i, j;
2494 /* Chunk of memory that we can use as buffer space, then throw
2495 away. */
2496 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2497 unsigned char *p;
2498 unsigned int total_reloc_size = 0;
2499 unsigned int subspace_reloc_size = 0;
2500 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2501 asection *section = abfd->sections;
2502
2503 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2504 p = tmp_space;
2505
2506 /* All the fixups for a particular subspace are emitted in a single
2507 stream. All the subspaces for a particular space are emitted
2508 as a single stream.
2509
2510 So, to get all the locations correct one must iterate through all the
2511 spaces, for each space iterate through its subspaces and output a
2512 fixups stream. */
2513 for (i = 0; i < num_spaces; i++)
2514 {
2515 asection *subsection;
2516
2517 /* Find a space. */
2518 while (!som_is_space (section))
2519 section = section->next;
2520
2521 /* Now iterate through each of its subspaces. */
2522 for (subsection = abfd->sections;
2523 subsection != NULL;
2524 subsection = subsection->next)
2525 {
2526 int reloc_offset, current_rounding_mode;
2527
2528 /* Find a subspace of this space. */
2529 if (!som_is_subspace (subsection)
2530 || !som_is_container (section, subsection))
2531 continue;
2532
2533 /* If this subspace does not have real data, then we are
2534 finised with it. */
2535 if ((subsection->flags & SEC_HAS_CONTENTS) == 0)
2536 {
2537 som_section_data (subsection)->subspace_dict->fixup_request_index
2538 = -1;
2539 continue;
2540 }
2541
2542 /* This subspace has some relocations. Put the relocation stream
2543 index into the subspace record. */
2544 som_section_data (subsection)->subspace_dict->fixup_request_index
2545 = total_reloc_size;
2546
2547 /* To make life easier start over with a clean slate for
2548 each subspace. Seek to the start of the relocation stream
2549 for this subspace in preparation for writing out its fixup
2550 stream. */
2551 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) < 0)
2552 return false;
2553
2554 /* Buffer space has already been allocated. Just perform some
2555 initialization here. */
2556 p = tmp_space;
2557 subspace_reloc_size = 0;
2558 reloc_offset = 0;
2559 som_initialize_reloc_queue (reloc_queue);
2560 current_rounding_mode = R_N_MODE;
2561
2562 /* Translate each BFD relocation into one or more SOM
2563 relocations. */
2564 for (j = 0; j < subsection->reloc_count; j++)
2565 {
2566 arelent *bfd_reloc = subsection->orelocation[j];
2567 unsigned int skip;
2568 int sym_num;
2569
2570 /* Get the symbol number. Remember it's stored in a
2571 special place for section symbols. */
2572 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2573 sym_num = (*bfd_reloc->sym_ptr_ptr)->udata.i;
2574 else
2575 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2576
2577 /* If there is not enough room for the next couple relocations,
2578 then dump the current buffer contents now. Also reinitialize
2579 the relocation queue.
2580
2581 No single BFD relocation could ever translate into more
2582 than 100 bytes of SOM relocations (20bytes is probably the
2583 upper limit, but leave lots of space for growth). */
2584 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2585 {
2586 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2587 != p - tmp_space)
2588 return false;
2589
2590 p = tmp_space;
2591 som_initialize_reloc_queue (reloc_queue);
2592 }
2593
2594 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2595 skipped. */
2596 skip = bfd_reloc->address - reloc_offset;
2597 p = som_reloc_skip (abfd, skip, p,
2598 &subspace_reloc_size, reloc_queue);
2599
2600 /* Update reloc_offset for the next iteration.
2601
2602 Many relocations do not consume input bytes. They
2603 are markers, or set state necessary to perform some
2604 later relocation. */
2605 switch (bfd_reloc->howto->type)
2606 {
2607 /* This only needs to handle relocations that may be
2608 made by hppa_som_gen_reloc. */
2609 case R_ENTRY:
2610 case R_ALT_ENTRY:
2611 case R_EXIT:
2612 case R_N_MODE:
2613 case R_S_MODE:
2614 case R_D_MODE:
2615 case R_R_MODE:
2616 case R_FSEL:
2617 case R_LSEL:
2618 case R_RSEL:
2619 case R_COMP1:
2620 case R_COMP2:
2621 case R_BEGIN_BRTAB:
2622 case R_END_BRTAB:
2623 reloc_offset = bfd_reloc->address;
2624 break;
2625
2626 default:
2627 reloc_offset = bfd_reloc->address + 4;
2628 break;
2629 }
2630
2631 /* Now the actual relocation we care about. */
2632 switch (bfd_reloc->howto->type)
2633 {
2634 case R_PCREL_CALL:
2635 case R_ABS_CALL:
2636 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2637 bfd_reloc, sym_num, reloc_queue);
2638 break;
2639
2640 case R_CODE_ONE_SYMBOL:
2641 case R_DP_RELATIVE:
2642 /* Account for any addend. */
2643 if (bfd_reloc->addend)
2644 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2645 &subspace_reloc_size, reloc_queue);
2646
2647 if (sym_num < 0x20)
2648 {
2649 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2650 subspace_reloc_size += 1;
2651 p += 1;
2652 }
2653 else if (sym_num < 0x100)
2654 {
2655 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2656 bfd_put_8 (abfd, sym_num, p + 1);
2657 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2658 2, reloc_queue);
2659 }
2660 else if (sym_num < 0x10000000)
2661 {
2662 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2663 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2664 bfd_put_16 (abfd, sym_num, p + 2);
2665 p = try_prev_fixup (abfd, &subspace_reloc_size,
2666 p, 4, reloc_queue);
2667 }
2668 else
2669 abort ();
2670 break;
2671
2672 case R_DATA_ONE_SYMBOL:
2673 case R_DATA_PLABEL:
2674 case R_CODE_PLABEL:
2675 case R_DLT_REL:
2676 /* Account for any addend using R_DATA_OVERRIDE. */
2677 if (bfd_reloc->howto->type != R_DATA_ONE_SYMBOL
2678 && bfd_reloc->addend)
2679 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2680 &subspace_reloc_size, reloc_queue);
2681
2682 if (sym_num < 0x100)
2683 {
2684 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2685 bfd_put_8 (abfd, sym_num, p + 1);
2686 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2687 2, reloc_queue);
2688 }
2689 else if (sym_num < 0x10000000)
2690 {
2691 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2692 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2693 bfd_put_16 (abfd, sym_num, p + 2);
2694 p = try_prev_fixup (abfd, &subspace_reloc_size,
2695 p, 4, reloc_queue);
2696 }
2697 else
2698 abort ();
2699 break;
2700
2701 case R_ENTRY:
2702 {
2703 int tmp;
2704 arelent *tmp_reloc = NULL;
2705 bfd_put_8 (abfd, R_ENTRY, p);
2706
2707 /* R_ENTRY relocations have 64 bits of associated
2708 data. Unfortunately the addend field of a bfd
2709 relocation is only 32 bits. So, we split up
2710 the 64bit unwind information and store part in
2711 the R_ENTRY relocation, and the rest in the R_EXIT
2712 relocation. */
2713 bfd_put_32 (abfd, bfd_reloc->addend, p + 1);
2714
2715 /* Find the next R_EXIT relocation. */
2716 for (tmp = j; tmp < subsection->reloc_count; tmp++)
2717 {
2718 tmp_reloc = subsection->orelocation[tmp];
2719 if (tmp_reloc->howto->type == R_EXIT)
2720 break;
2721 }
2722
2723 if (tmp == subsection->reloc_count)
2724 abort ();
2725
2726 bfd_put_32 (abfd, tmp_reloc->addend, p + 5);
2727 p = try_prev_fixup (abfd, &subspace_reloc_size,
2728 p, 9, reloc_queue);
2729 break;
2730 }
2731
2732 case R_N_MODE:
2733 case R_S_MODE:
2734 case R_D_MODE:
2735 case R_R_MODE:
2736 /* If this relocation requests the current rounding
2737 mode, then it is redundant. */
2738 if (bfd_reloc->howto->type != current_rounding_mode)
2739 {
2740 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2741 subspace_reloc_size += 1;
2742 p += 1;
2743 current_rounding_mode = bfd_reloc->howto->type;
2744 }
2745 break;
2746
2747 case R_EXIT:
2748 case R_ALT_ENTRY:
2749 case R_FSEL:
2750 case R_LSEL:
2751 case R_RSEL:
2752 case R_BEGIN_BRTAB:
2753 case R_END_BRTAB:
2754 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2755 subspace_reloc_size += 1;
2756 p += 1;
2757 break;
2758
2759 case R_COMP1:
2760 /* The only time we generate R_COMP1, R_COMP2 and
2761 R_CODE_EXPR relocs is for the difference of two
2762 symbols. Hence we can cheat here. */
2763 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2764 bfd_put_8 (abfd, 0x44, p + 1);
2765 p = try_prev_fixup (abfd, &subspace_reloc_size,
2766 p, 2, reloc_queue);
2767 break;
2768
2769 case R_COMP2:
2770 /* The only time we generate R_COMP1, R_COMP2 and
2771 R_CODE_EXPR relocs is for the difference of two
2772 symbols. Hence we can cheat here. */
2773 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2774 bfd_put_8 (abfd, 0x80, p + 1);
2775 bfd_put_8 (abfd, sym_num >> 16, p + 2);
2776 bfd_put_16 (abfd, sym_num, p + 3);
2777 p = try_prev_fixup (abfd, &subspace_reloc_size,
2778 p, 5, reloc_queue);
2779 break;
2780
2781 case R_CODE_EXPR:
2782 /* The only time we generate R_COMP1, R_COMP2 and
2783 R_CODE_EXPR relocs is for the difference of two
2784 symbols. Hence we can cheat here. */
2785 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2786 subspace_reloc_size += 1;
2787 p += 1;
2788 break;
2789
2790 /* Put a "R_RESERVED" relocation in the stream if
2791 we hit something we do not understand. The linker
2792 will complain loudly if this ever happens. */
2793 default:
2794 bfd_put_8 (abfd, 0xff, p);
2795 subspace_reloc_size += 1;
2796 p += 1;
2797 break;
2798 }
2799 }
2800
2801 /* Last BFD relocation for a subspace has been processed.
2802 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2803 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2804 - reloc_offset,
2805 p, &subspace_reloc_size, reloc_queue);
2806
2807 /* Scribble out the relocations. */
2808 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2809 != p - tmp_space)
2810 return false;
2811 p = tmp_space;
2812
2813 total_reloc_size += subspace_reloc_size;
2814 som_section_data (subsection)->subspace_dict->fixup_request_quantity
2815 = subspace_reloc_size;
2816 }
2817 section = section->next;
2818 }
2819 *total_reloc_sizep = total_reloc_size;
2820 return true;
2821 }
2822
2823 /* Write out the space/subspace string table. */
2824
2825 static boolean
2826 som_write_space_strings (abfd, current_offset, string_sizep)
2827 bfd *abfd;
2828 unsigned long current_offset;
2829 unsigned int *string_sizep;
2830 {
2831 /* Chunk of memory that we can use as buffer space, then throw
2832 away. */
2833 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2834 unsigned char *p;
2835 unsigned int strings_size = 0;
2836 asection *section;
2837
2838 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2839 p = tmp_space;
2840
2841 /* Seek to the start of the space strings in preparation for writing
2842 them out. */
2843 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2844 return false;
2845
2846 /* Walk through all the spaces and subspaces (order is not important)
2847 building up and writing string table entries for their names. */
2848 for (section = abfd->sections; section != NULL; section = section->next)
2849 {
2850 int length;
2851
2852 /* Only work with space/subspaces; avoid any other sections
2853 which might have been made (.text for example). */
2854 if (!som_is_space (section) && !som_is_subspace (section))
2855 continue;
2856
2857 /* Get the length of the space/subspace name. */
2858 length = strlen (section->name);
2859
2860 /* If there is not enough room for the next entry, then dump the
2861 current buffer contents now. Each entry will take 4 bytes to
2862 hold the string length + the string itself + null terminator. */
2863 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2864 {
2865 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2866 != p - tmp_space)
2867 return false;
2868 /* Reset to beginning of the buffer space. */
2869 p = tmp_space;
2870 }
2871
2872 /* First element in a string table entry is the length of the
2873 string. Alignment issues are already handled. */
2874 bfd_put_32 (abfd, length, p);
2875 p += 4;
2876 strings_size += 4;
2877
2878 /* Record the index in the space/subspace records. */
2879 if (som_is_space (section))
2880 som_section_data (section)->space_dict->name.n_strx = strings_size;
2881 else
2882 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
2883
2884 /* Next comes the string itself + a null terminator. */
2885 strcpy (p, section->name);
2886 p += length + 1;
2887 strings_size += length + 1;
2888
2889 /* Always align up to the next word boundary. */
2890 while (strings_size % 4)
2891 {
2892 bfd_put_8 (abfd, 0, p);
2893 p++;
2894 strings_size++;
2895 }
2896 }
2897
2898 /* Done with the space/subspace strings. Write out any information
2899 contained in a partial block. */
2900 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2901 return false;
2902 *string_sizep = strings_size;
2903 return true;
2904 }
2905
2906 /* Write out the symbol string table. */
2907
2908 static boolean
2909 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
2910 bfd *abfd;
2911 unsigned long current_offset;
2912 asymbol **syms;
2913 unsigned int num_syms;
2914 unsigned int *string_sizep;
2915 {
2916 unsigned int i;
2917
2918 /* Chunk of memory that we can use as buffer space, then throw
2919 away. */
2920 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2921 unsigned char *p;
2922 unsigned int strings_size = 0;
2923
2924 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2925 p = tmp_space;
2926
2927 /* Seek to the start of the space strings in preparation for writing
2928 them out. */
2929 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2930 return false;
2931
2932 for (i = 0; i < num_syms; i++)
2933 {
2934 int length = strlen (syms[i]->name);
2935
2936 /* If there is not enough room for the next entry, then dump the
2937 current buffer contents now. */
2938 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2939 {
2940 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2941 != p - tmp_space)
2942 return false;
2943 /* Reset to beginning of the buffer space. */
2944 p = tmp_space;
2945 }
2946
2947 /* First element in a string table entry is the length of the
2948 string. This must always be 4 byte aligned. This is also
2949 an appropriate time to fill in the string index field in the
2950 symbol table entry. */
2951 bfd_put_32 (abfd, length, p);
2952 strings_size += 4;
2953 p += 4;
2954
2955 /* Next comes the string itself + a null terminator. */
2956 strcpy (p, syms[i]->name);
2957
2958 som_symbol_data(syms[i])->stringtab_offset = strings_size;
2959 p += length + 1;
2960 strings_size += length + 1;
2961
2962 /* Always align up to the next word boundary. */
2963 while (strings_size % 4)
2964 {
2965 bfd_put_8 (abfd, 0, p);
2966 strings_size++;
2967 p++;
2968 }
2969 }
2970
2971 /* Scribble out any partial block. */
2972 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2973 return false;
2974
2975 *string_sizep = strings_size;
2976 return true;
2977 }
2978
2979 /* Compute variable information to be placed in the SOM headers,
2980 space/subspace dictionaries, relocation streams, etc. Begin
2981 writing parts of the object file. */
2982
2983 static boolean
2984 som_begin_writing (abfd)
2985 bfd *abfd;
2986 {
2987 unsigned long current_offset = 0;
2988 int strings_size = 0;
2989 unsigned int total_reloc_size = 0;
2990 unsigned long num_spaces, num_subspaces, num_syms, i;
2991 asection *section;
2992 asymbol **syms = bfd_get_outsymbols (abfd);
2993 unsigned int total_subspaces = 0;
2994 struct som_exec_auxhdr *exec_header = NULL;
2995
2996 /* The file header will always be first in an object file,
2997 everything else can be in random locations. To keep things
2998 "simple" BFD will lay out the object file in the manner suggested
2999 by the PRO ABI for PA-RISC Systems. */
3000
3001 /* Before any output can really begin offsets for all the major
3002 portions of the object file must be computed. So, starting
3003 with the initial file header compute (and sometimes write)
3004 each portion of the object file. */
3005
3006 /* Make room for the file header, it's contents are not complete
3007 yet, so it can not be written at this time. */
3008 current_offset += sizeof (struct header);
3009
3010 /* Any auxiliary headers will follow the file header. Right now
3011 we support only the copyright and version headers. */
3012 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
3013 obj_som_file_hdr (abfd)->aux_header_size = 0;
3014 if (abfd->flags & (EXEC_P | DYNAMIC))
3015 {
3016 /* Parts of the exec header will be filled in later, so
3017 delay writing the header itself. Fill in the defaults,
3018 and write it later. */
3019 current_offset += sizeof (struct som_exec_auxhdr);
3020 obj_som_file_hdr (abfd)->aux_header_size
3021 += sizeof (struct som_exec_auxhdr);
3022 exec_header = obj_som_exec_hdr (abfd);
3023 exec_header->som_auxhdr.type = EXEC_AUX_ID;
3024 exec_header->som_auxhdr.length = 40;
3025 }
3026 if (obj_som_version_hdr (abfd) != NULL)
3027 {
3028 unsigned int len;
3029
3030 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
3031 return false;
3032
3033 /* Write the aux_id structure and the string length. */
3034 len = sizeof (struct aux_id) + sizeof (unsigned int);
3035 obj_som_file_hdr (abfd)->aux_header_size += len;
3036 current_offset += len;
3037 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
3038 return false;
3039
3040 /* Write the version string. */
3041 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
3042 obj_som_file_hdr (abfd)->aux_header_size += len;
3043 current_offset += len;
3044 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
3045 len, 1, abfd) != len)
3046 return false;
3047 }
3048
3049 if (obj_som_copyright_hdr (abfd) != NULL)
3050 {
3051 unsigned int len;
3052
3053 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
3054 return false;
3055
3056 /* Write the aux_id structure and the string length. */
3057 len = sizeof (struct aux_id) + sizeof (unsigned int);
3058 obj_som_file_hdr (abfd)->aux_header_size += len;
3059 current_offset += len;
3060 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
3061 return false;
3062
3063 /* Write the copyright string. */
3064 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
3065 obj_som_file_hdr (abfd)->aux_header_size += len;
3066 current_offset += len;
3067 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
3068 len, 1, abfd) != len)
3069 return false;
3070 }
3071
3072 /* Next comes the initialization pointers; we have no initialization
3073 pointers, so current offset does not change. */
3074 obj_som_file_hdr (abfd)->init_array_location = current_offset;
3075 obj_som_file_hdr (abfd)->init_array_total = 0;
3076
3077 /* Next are the space records. These are fixed length records.
3078
3079 Count the number of spaces to determine how much room is needed
3080 in the object file for the space records.
3081
3082 The names of the spaces are stored in a separate string table,
3083 and the index for each space into the string table is computed
3084 below. Therefore, it is not possible to write the space headers
3085 at this time. */
3086 num_spaces = som_count_spaces (abfd);
3087 obj_som_file_hdr (abfd)->space_location = current_offset;
3088 obj_som_file_hdr (abfd)->space_total = num_spaces;
3089 current_offset += num_spaces * sizeof (struct space_dictionary_record);
3090
3091 /* Next are the subspace records. These are fixed length records.
3092
3093 Count the number of subspaes to determine how much room is needed
3094 in the object file for the subspace records.
3095
3096 A variety if fields in the subspace record are still unknown at
3097 this time (index into string table, fixup stream location/size, etc). */
3098 num_subspaces = som_count_subspaces (abfd);
3099 obj_som_file_hdr (abfd)->subspace_location = current_offset;
3100 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
3101 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
3102
3103 /* Next is the string table for the space/subspace names. We will
3104 build and write the string table on the fly. At the same time
3105 we will fill in the space/subspace name index fields. */
3106
3107 /* The string table needs to be aligned on a word boundary. */
3108 if (current_offset % 4)
3109 current_offset += (4 - (current_offset % 4));
3110
3111 /* Mark the offset of the space/subspace string table in the
3112 file header. */
3113 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
3114
3115 /* Scribble out the space strings. */
3116 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
3117 return false;
3118
3119 /* Record total string table size in the header and update the
3120 current offset. */
3121 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
3122 current_offset += strings_size;
3123
3124 /* Next is the symbol table. These are fixed length records.
3125
3126 Count the number of symbols to determine how much room is needed
3127 in the object file for the symbol table.
3128
3129 The names of the symbols are stored in a separate string table,
3130 and the index for each symbol name into the string table is computed
3131 below. Therefore, it is not possible to write the symobl table
3132 at this time. */
3133 num_syms = bfd_get_symcount (abfd);
3134 obj_som_file_hdr (abfd)->symbol_location = current_offset;
3135 obj_som_file_hdr (abfd)->symbol_total = num_syms;
3136 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
3137
3138 /* Next are the symbol strings.
3139 Align them to a word boundary. */
3140 if (current_offset % 4)
3141 current_offset += (4 - (current_offset % 4));
3142 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
3143
3144 /* Scribble out the symbol strings. */
3145 if (som_write_symbol_strings (abfd, current_offset, syms,
3146 num_syms, &strings_size)
3147 == false)
3148 return false;
3149
3150 /* Record total string table size in header and update the
3151 current offset. */
3152 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
3153 current_offset += strings_size;
3154
3155 /* Next is the compiler records. We do not use these. */
3156 obj_som_file_hdr (abfd)->compiler_location = current_offset;
3157 obj_som_file_hdr (abfd)->compiler_total = 0;
3158
3159 /* Now compute the file positions for the loadable subspaces, taking
3160 care to make sure everything stays properly aligned. */
3161
3162 section = abfd->sections;
3163 for (i = 0; i < num_spaces; i++)
3164 {
3165 asection *subsection;
3166 int first_subspace;
3167 unsigned int subspace_offset = 0;
3168
3169 /* Find a space. */
3170 while (!som_is_space (section))
3171 section = section->next;
3172
3173 first_subspace = 1;
3174 /* Now look for all its subspaces. */
3175 for (subsection = abfd->sections;
3176 subsection != NULL;
3177 subsection = subsection->next)
3178 {
3179
3180 if (!som_is_subspace (subsection)
3181 || !som_is_container (section, subsection)
3182 || (subsection->flags & SEC_ALLOC) == 0)
3183 continue;
3184
3185 /* If this is the first subspace in the space, and we are
3186 building an executable, then take care to make sure all
3187 the alignments are correct and update the exec header. */
3188 if (first_subspace
3189 && (abfd->flags & (EXEC_P | DYNAMIC)))
3190 {
3191 /* Demand paged executables have each space aligned to a
3192 page boundary. Sharable executables (write-protected
3193 text) have just the private (aka data & bss) space aligned
3194 to a page boundary. Ugh. Not true for HPUX.
3195
3196 The HPUX kernel requires the text to always be page aligned
3197 within the file regardless of the executable's type. */
3198 if (abfd->flags & (D_PAGED | DYNAMIC)
3199 || (subsection->flags & SEC_CODE)
3200 || ((abfd->flags & WP_TEXT)
3201 && (subsection->flags & SEC_DATA)))
3202 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3203
3204 /* Update the exec header. */
3205 if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0)
3206 {
3207 exec_header->exec_tmem = section->vma;
3208 exec_header->exec_tfile = current_offset;
3209 }
3210 if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0)
3211 {
3212 exec_header->exec_dmem = section->vma;
3213 exec_header->exec_dfile = current_offset;
3214 }
3215
3216 /* Keep track of exactly where we are within a particular
3217 space. This is necessary as the braindamaged HPUX
3218 loader will create holes between subspaces *and*
3219 subspace alignments are *NOT* preserved. What a crock. */
3220 subspace_offset = subsection->vma;
3221
3222 /* Only do this for the first subspace within each space. */
3223 first_subspace = 0;
3224 }
3225 else if (abfd->flags & (EXEC_P | DYNAMIC))
3226 {
3227 /* The braindamaged HPUX loader may have created a hole
3228 between two subspaces. It is *not* sufficient to use
3229 the alignment specifications within the subspaces to
3230 account for these holes -- I've run into at least one
3231 case where the loader left one code subspace unaligned
3232 in a final executable.
3233
3234 To combat this we keep a current offset within each space,
3235 and use the subspace vma fields to detect and preserve
3236 holes. What a crock!
3237
3238 ps. This is not necessary for unloadable space/subspaces. */
3239 current_offset += subsection->vma - subspace_offset;
3240 if (subsection->flags & SEC_CODE)
3241 exec_header->exec_tsize += subsection->vma - subspace_offset;
3242 else
3243 exec_header->exec_dsize += subsection->vma - subspace_offset;
3244 subspace_offset += subsection->vma - subspace_offset;
3245 }
3246
3247
3248 subsection->target_index = total_subspaces++;
3249 /* This is real data to be loaded from the file. */
3250 if (subsection->flags & SEC_LOAD)
3251 {
3252 /* Update the size of the code & data. */
3253 if (abfd->flags & (EXEC_P | DYNAMIC)
3254 && subsection->flags & SEC_CODE)
3255 exec_header->exec_tsize += subsection->_cooked_size;
3256 else if (abfd->flags & (EXEC_P | DYNAMIC)
3257 && subsection->flags & SEC_DATA)
3258 exec_header->exec_dsize += subsection->_cooked_size;
3259 som_section_data (subsection)->subspace_dict->file_loc_init_value
3260 = current_offset;
3261 subsection->filepos = current_offset;
3262 current_offset += bfd_section_size (abfd, subsection);
3263 subspace_offset += bfd_section_size (abfd, subsection);
3264 }
3265 /* Looks like uninitialized data. */
3266 else
3267 {
3268 /* Update the size of the bss section. */
3269 if (abfd->flags & (EXEC_P | DYNAMIC))
3270 exec_header->exec_bsize += subsection->_cooked_size;
3271
3272 som_section_data (subsection)->subspace_dict->file_loc_init_value
3273 = 0;
3274 som_section_data (subsection)->subspace_dict->
3275 initialization_length = 0;
3276 }
3277 }
3278 /* Goto the next section. */
3279 section = section->next;
3280 }
3281
3282 /* Finally compute the file positions for unloadable subspaces.
3283 If building an executable, start the unloadable stuff on its
3284 own page. */
3285
3286 if (abfd->flags & (EXEC_P | DYNAMIC))
3287 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3288
3289 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3290 section = abfd->sections;
3291 for (i = 0; i < num_spaces; i++)
3292 {
3293 asection *subsection;
3294
3295 /* Find a space. */
3296 while (!som_is_space (section))
3297 section = section->next;
3298
3299 if (abfd->flags & (EXEC_P | DYNAMIC))
3300 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3301
3302 /* Now look for all its subspaces. */
3303 for (subsection = abfd->sections;
3304 subsection != NULL;
3305 subsection = subsection->next)
3306 {
3307
3308 if (!som_is_subspace (subsection)
3309 || !som_is_container (section, subsection)
3310 || (subsection->flags & SEC_ALLOC) != 0)
3311 continue;
3312
3313 subsection->target_index = total_subspaces++;
3314 /* This is real data to be loaded from the file. */
3315 if ((subsection->flags & SEC_LOAD) == 0)
3316 {
3317 som_section_data (subsection)->subspace_dict->file_loc_init_value
3318 = current_offset;
3319 subsection->filepos = current_offset;
3320 current_offset += bfd_section_size (abfd, subsection);
3321 }
3322 /* Looks like uninitialized data. */
3323 else
3324 {
3325 som_section_data (subsection)->subspace_dict->file_loc_init_value
3326 = 0;
3327 som_section_data (subsection)->subspace_dict->
3328 initialization_length = bfd_section_size (abfd, subsection);
3329 }
3330 }
3331 /* Goto the next section. */
3332 section = section->next;
3333 }
3334
3335 /* If building an executable, then make sure to seek to and write
3336 one byte at the end of the file to make sure any necessary
3337 zeros are filled in. Ugh. */
3338 if (abfd->flags & (EXEC_P | DYNAMIC))
3339 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3340 if (bfd_seek (abfd, current_offset - 1, SEEK_SET) < 0)
3341 return false;
3342 if (bfd_write ((PTR) "", 1, 1, abfd) != 1)
3343 return false;
3344
3345 obj_som_file_hdr (abfd)->unloadable_sp_size
3346 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3347
3348 /* Loader fixups are not supported in any way shape or form. */
3349 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3350 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3351
3352 /* Done. Store the total size of the SOM so far. */
3353 obj_som_file_hdr (abfd)->som_length = current_offset;
3354
3355 return true;
3356 }
3357
3358 /* Finally, scribble out the various headers to the disk. */
3359
3360 static boolean
3361 som_finish_writing (abfd)
3362 bfd *abfd;
3363 {
3364 int num_spaces = som_count_spaces (abfd);
3365 int i;
3366 int subspace_index = 0;
3367 file_ptr location;
3368 asection *section;
3369 unsigned long current_offset;
3370 unsigned int total_reloc_size;
3371
3372 /* Do prep work before handling fixups. */
3373 som_prep_for_fixups (abfd,
3374 bfd_get_outsymbols (abfd),
3375 bfd_get_symcount (abfd));
3376
3377 current_offset = obj_som_file_hdr (abfd)->som_length;
3378
3379 /* At the end of the file is the fixup stream which starts on a
3380 word boundary. */
3381 if (current_offset % 4)
3382 current_offset += (4 - (current_offset % 4));
3383 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
3384
3385 /* Write the fixups and update fields in subspace headers which
3386 relate to the fixup stream. */
3387 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
3388 return false;
3389
3390 /* Record the total size of the fixup stream in the file header. */
3391 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
3392
3393 obj_som_file_hdr (abfd)->som_length += total_reloc_size;
3394
3395 /* Now that the symbol table information is complete, build and
3396 write the symbol table. */
3397 if (som_build_and_write_symbol_table (abfd) == false)
3398 return false;
3399
3400 /* Subspaces are written first so that we can set up information
3401 about them in their containing spaces as the subspace is written. */
3402
3403 /* Seek to the start of the subspace dictionary records. */
3404 location = obj_som_file_hdr (abfd)->subspace_location;
3405 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3406 return false;
3407
3408 section = abfd->sections;
3409 /* Now for each loadable space write out records for its subspaces. */
3410 for (i = 0; i < num_spaces; i++)
3411 {
3412 asection *subsection;
3413
3414 /* Find a space. */
3415 while (!som_is_space (section))
3416 section = section->next;
3417
3418 /* Now look for all its subspaces. */
3419 for (subsection = abfd->sections;
3420 subsection != NULL;
3421 subsection = subsection->next)
3422 {
3423
3424 /* Skip any section which does not correspond to a space
3425 or subspace. Or does not have SEC_ALLOC set (and therefore
3426 has no real bits on the disk). */
3427 if (!som_is_subspace (subsection)
3428 || !som_is_container (section, subsection)
3429 || (subsection->flags & SEC_ALLOC) == 0)
3430 continue;
3431
3432 /* If this is the first subspace for this space, then save
3433 the index of the subspace in its containing space. Also
3434 set "is_loadable" in the containing space. */
3435
3436 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3437 {
3438 som_section_data (section)->space_dict->is_loadable = 1;
3439 som_section_data (section)->space_dict->subspace_index
3440 = subspace_index;
3441 }
3442
3443 /* Increment the number of subspaces seen and the number of
3444 subspaces contained within the current space. */
3445 subspace_index++;
3446 som_section_data (section)->space_dict->subspace_quantity++;
3447
3448 /* Mark the index of the current space within the subspace's
3449 dictionary record. */
3450 som_section_data (subsection)->subspace_dict->space_index = i;
3451
3452 /* Dump the current subspace header. */
3453 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3454 sizeof (struct subspace_dictionary_record), 1, abfd)
3455 != sizeof (struct subspace_dictionary_record))
3456 return false;
3457 }
3458 /* Goto the next section. */
3459 section = section->next;
3460 }
3461
3462 /* Now repeat the process for unloadable subspaces. */
3463 section = abfd->sections;
3464 /* Now for each space write out records for its subspaces. */
3465 for (i = 0; i < num_spaces; i++)
3466 {
3467 asection *subsection;
3468
3469 /* Find a space. */
3470 while (!som_is_space (section))
3471 section = section->next;
3472
3473 /* Now look for all its subspaces. */
3474 for (subsection = abfd->sections;
3475 subsection != NULL;
3476 subsection = subsection->next)
3477 {
3478
3479 /* Skip any section which does not correspond to a space or
3480 subspace, or which SEC_ALLOC set (and therefore handled
3481 in the loadable spaces/subspaces code above). */
3482
3483 if (!som_is_subspace (subsection)
3484 || !som_is_container (section, subsection)
3485 || (subsection->flags & SEC_ALLOC) != 0)
3486 continue;
3487
3488 /* If this is the first subspace for this space, then save
3489 the index of the subspace in its containing space. Clear
3490 "is_loadable". */
3491
3492 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3493 {
3494 som_section_data (section)->space_dict->is_loadable = 0;
3495 som_section_data (section)->space_dict->subspace_index
3496 = subspace_index;
3497 }
3498
3499 /* Increment the number of subspaces seen and the number of
3500 subspaces contained within the current space. */
3501 som_section_data (section)->space_dict->subspace_quantity++;
3502 subspace_index++;
3503
3504 /* Mark the index of the current space within the subspace's
3505 dictionary record. */
3506 som_section_data (subsection)->subspace_dict->space_index = i;
3507
3508 /* Dump this subspace header. */
3509 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3510 sizeof (struct subspace_dictionary_record), 1, abfd)
3511 != sizeof (struct subspace_dictionary_record))
3512 return false;
3513 }
3514 /* Goto the next section. */
3515 section = section->next;
3516 }
3517
3518 /* All the subspace dictiondary records are written, and all the
3519 fields are set up in the space dictionary records.
3520
3521 Seek to the right location and start writing the space
3522 dictionary records. */
3523 location = obj_som_file_hdr (abfd)->space_location;
3524 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3525 return false;
3526
3527 section = abfd->sections;
3528 for (i = 0; i < num_spaces; i++)
3529 {
3530
3531 /* Find a space. */
3532 while (!som_is_space (section))
3533 section = section->next;
3534
3535 /* Dump its header */
3536 if (bfd_write ((PTR) som_section_data (section)->space_dict,
3537 sizeof (struct space_dictionary_record), 1, abfd)
3538 != sizeof (struct space_dictionary_record))
3539 return false;
3540
3541 /* Goto the next section. */
3542 section = section->next;
3543 }
3544
3545 /* Setting of the system_id has to happen very late now that copying of
3546 BFD private data happens *after* section contents are set. */
3547 if (abfd->flags & (EXEC_P | DYNAMIC))
3548 obj_som_file_hdr(abfd)->system_id = obj_som_exec_data (abfd)->system_id;
3549 else if (bfd_get_mach (abfd) == pa11)
3550 obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC1_1;
3551 else
3552 obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC1_0;
3553
3554 /* Compute the checksum for the file header just before writing
3555 the header to disk. */
3556 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3557
3558 /* Only thing left to do is write out the file header. It is always
3559 at location zero. Seek there and write it. */
3560 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0)
3561 return false;
3562 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3563 sizeof (struct header), 1, abfd)
3564 != sizeof (struct header))
3565 return false;
3566
3567 /* Now write the exec header. */
3568 if (abfd->flags & (EXEC_P | DYNAMIC))
3569 {
3570 long tmp;
3571 struct som_exec_auxhdr *exec_header;
3572
3573 exec_header = obj_som_exec_hdr (abfd);
3574 exec_header->exec_entry = bfd_get_start_address (abfd);
3575 exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags;
3576
3577 /* Oh joys. Ram some of the BSS data into the DATA section
3578 to be compatable with how the hp linker makes objects
3579 (saves memory space). */
3580 tmp = exec_header->exec_dsize;
3581 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3582 exec_header->exec_bsize -= (tmp - exec_header->exec_dsize);
3583 if (exec_header->exec_bsize < 0)
3584 exec_header->exec_bsize = 0;
3585 exec_header->exec_dsize = tmp;
3586
3587 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
3588 SEEK_SET) < 0)
3589 return false;
3590
3591 if (bfd_write ((PTR) exec_header, AUX_HDR_SIZE, 1, abfd)
3592 != AUX_HDR_SIZE)
3593 return false;
3594 }
3595 return true;
3596 }
3597
3598 /* Compute and return the checksum for a SOM file header. */
3599
3600 static unsigned long
3601 som_compute_checksum (abfd)
3602 bfd *abfd;
3603 {
3604 unsigned long checksum, count, i;
3605 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3606
3607 checksum = 0;
3608 count = sizeof (struct header) / sizeof (unsigned long);
3609 for (i = 0; i < count; i++)
3610 checksum ^= *(buffer + i);
3611
3612 return checksum;
3613 }
3614
3615 static void
3616 som_bfd_derive_misc_symbol_info (abfd, sym, info)
3617 bfd *abfd;
3618 asymbol *sym;
3619 struct som_misc_symbol_info *info;
3620 {
3621 /* Initialize. */
3622 memset (info, 0, sizeof (struct som_misc_symbol_info));
3623
3624 /* The HP SOM linker requires detailed type information about
3625 all symbols (including undefined symbols!). Unfortunately,
3626 the type specified in an import/export statement does not
3627 always match what the linker wants. Severe braindamage. */
3628
3629 /* Section symbols will not have a SOM symbol type assigned to
3630 them yet. Assign all section symbols type ST_DATA. */
3631 if (sym->flags & BSF_SECTION_SYM)
3632 info->symbol_type = ST_DATA;
3633 else
3634 {
3635 /* Common symbols must have scope SS_UNSAT and type
3636 ST_STORAGE or the linker will choke. */
3637 if (bfd_is_com_section (sym->section))
3638 {
3639 info->symbol_scope = SS_UNSAT;
3640 info->symbol_type = ST_STORAGE;
3641 }
3642
3643 /* It is possible to have a symbol without an associated
3644 type. This happens if the user imported the symbol
3645 without a type and the symbol was never defined
3646 locally. If BSF_FUNCTION is set for this symbol, then
3647 assign it type ST_CODE (the HP linker requires undefined
3648 external functions to have type ST_CODE rather than ST_ENTRY). */
3649 else if ((som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3650 || som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3651 && bfd_is_und_section (sym->section)
3652 && sym->flags & BSF_FUNCTION)
3653 info->symbol_type = ST_CODE;
3654
3655 /* Handle function symbols which were defined in this file.
3656 They should have type ST_ENTRY. Also retrieve the argument
3657 relocation bits from the SOM backend information. */
3658 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3659 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3660 && (sym->flags & BSF_FUNCTION))
3661 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3662 && (sym->flags & BSF_FUNCTION)))
3663 {
3664 info->symbol_type = ST_ENTRY;
3665 info->arg_reloc = som_symbol_data (sym)->tc_data.hppa_arg_reloc;
3666 }
3667
3668 /* If the type is unknown at this point, it should be ST_DATA or
3669 ST_CODE (function/ST_ENTRY symbols were handled as special
3670 cases above). */
3671 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3672 {
3673 if (sym->section->flags & SEC_CODE)
3674 info->symbol_type = ST_CODE;
3675 else
3676 info->symbol_type = ST_DATA;
3677 }
3678
3679 /* From now on it's a very simple mapping. */
3680 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3681 info->symbol_type = ST_ABSOLUTE;
3682 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3683 info->symbol_type = ST_CODE;
3684 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3685 info->symbol_type = ST_DATA;
3686 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3687 info->symbol_type = ST_MILLICODE;
3688 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3689 info->symbol_type = ST_PLABEL;
3690 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3691 info->symbol_type = ST_PRI_PROG;
3692 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3693 info->symbol_type = ST_SEC_PROG;
3694 }
3695
3696 /* Now handle the symbol's scope. Exported data which is not
3697 in the common section has scope SS_UNIVERSAL. Note scope
3698 of common symbols was handled earlier! */
3699 if (bfd_is_und_section (sym->section))
3700 info->symbol_scope = SS_UNSAT;
3701 else if (sym->flags & BSF_EXPORT && ! bfd_is_com_section (sym->section))
3702 info->symbol_scope = SS_UNIVERSAL;
3703 /* Anything else which is not in the common section has scope
3704 SS_LOCAL. */
3705 else if (! bfd_is_com_section (sym->section))
3706 info->symbol_scope = SS_LOCAL;
3707
3708 /* Now set the symbol_info field. It has no real meaning
3709 for undefined or common symbols, but the HP linker will
3710 choke if it's not set to some "reasonable" value. We
3711 use zero as a reasonable value. */
3712 if (bfd_is_com_section (sym->section)
3713 || bfd_is_und_section (sym->section)
3714 || bfd_is_abs_section (sym->section))
3715 info->symbol_info = 0;
3716 /* For all other symbols, the symbol_info field contains the
3717 subspace index of the space this symbol is contained in. */
3718 else
3719 info->symbol_info = sym->section->target_index;
3720
3721 /* Set the symbol's value. */
3722 info->symbol_value = sym->value + sym->section->vma;
3723 }
3724
3725 /* Build and write, in one big chunk, the entire symbol table for
3726 this BFD. */
3727
3728 static boolean
3729 som_build_and_write_symbol_table (abfd)
3730 bfd *abfd;
3731 {
3732 unsigned int num_syms = bfd_get_symcount (abfd);
3733 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3734 asymbol **bfd_syms = obj_som_sorted_syms (abfd);
3735 struct symbol_dictionary_record *som_symtab = NULL;
3736 int i, symtab_size;
3737
3738 /* Compute total symbol table size and allocate a chunk of memory
3739 to hold the symbol table as we build it. */
3740 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3741 som_symtab = (struct symbol_dictionary_record *) malloc (symtab_size);
3742 if (som_symtab == NULL && symtab_size != 0)
3743 {
3744 bfd_set_error (bfd_error_no_memory);
3745 goto error_return;
3746 }
3747 memset (som_symtab, 0, symtab_size);
3748
3749 /* Walk over each symbol. */
3750 for (i = 0; i < num_syms; i++)
3751 {
3752 struct som_misc_symbol_info info;
3753
3754 /* This is really an index into the symbol strings table.
3755 By the time we get here, the index has already been
3756 computed and stored into the name field in the BFD symbol. */
3757 som_symtab[i].name.n_strx = som_symbol_data(bfd_syms[i])->stringtab_offset;
3758
3759 /* Derive SOM information from the BFD symbol. */
3760 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
3761
3762 /* Now use it. */
3763 som_symtab[i].symbol_type = info.symbol_type;
3764 som_symtab[i].symbol_scope = info.symbol_scope;
3765 som_symtab[i].arg_reloc = info.arg_reloc;
3766 som_symtab[i].symbol_info = info.symbol_info;
3767 som_symtab[i].symbol_value = info.symbol_value;
3768 }
3769
3770 /* Everything is ready, seek to the right location and
3771 scribble out the symbol table. */
3772 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3773 return false;
3774
3775 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3776 goto error_return;
3777
3778 if (som_symtab != NULL)
3779 free (som_symtab);
3780 return true;
3781 error_return:
3782 if (som_symtab != NULL)
3783 free (som_symtab);
3784 return false;
3785 }
3786
3787 /* Write an object in SOM format. */
3788
3789 static boolean
3790 som_write_object_contents (abfd)
3791 bfd *abfd;
3792 {
3793 if (abfd->output_has_begun == false)
3794 {
3795 /* Set up fixed parts of the file, space, and subspace headers.
3796 Notify the world that output has begun. */
3797 som_prep_headers (abfd);
3798 abfd->output_has_begun = true;
3799 /* Start writing the object file. This include all the string
3800 tables, fixup streams, and other portions of the object file. */
3801 som_begin_writing (abfd);
3802 }
3803
3804 return (som_finish_writing (abfd));
3805 }
3806
3807 \f
3808 /* Read and save the string table associated with the given BFD. */
3809
3810 static boolean
3811 som_slurp_string_table (abfd)
3812 bfd *abfd;
3813 {
3814 char *stringtab;
3815
3816 /* Use the saved version if its available. */
3817 if (obj_som_stringtab (abfd) != NULL)
3818 return true;
3819
3820 /* I don't think this can currently happen, and I'm not sure it should
3821 really be an error, but it's better than getting unpredictable results
3822 from the host's malloc when passed a size of zero. */
3823 if (obj_som_stringtab_size (abfd) == 0)
3824 {
3825 bfd_set_error (bfd_error_no_symbols);
3826 return false;
3827 }
3828
3829 /* Allocate and read in the string table. */
3830 stringtab = bfd_zalloc (abfd, obj_som_stringtab_size (abfd));
3831 if (stringtab == NULL)
3832 {
3833 bfd_set_error (bfd_error_no_memory);
3834 return false;
3835 }
3836
3837 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3838 return false;
3839
3840 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3841 != obj_som_stringtab_size (abfd))
3842 return false;
3843
3844 /* Save our results and return success. */
3845 obj_som_stringtab (abfd) = stringtab;
3846 return true;
3847 }
3848
3849 /* Return the amount of data (in bytes) required to hold the symbol
3850 table for this object. */
3851
3852 static long
3853 som_get_symtab_upper_bound (abfd)
3854 bfd *abfd;
3855 {
3856 if (!som_slurp_symbol_table (abfd))
3857 return -1;
3858
3859 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
3860 }
3861
3862 /* Convert from a SOM subspace index to a BFD section. */
3863
3864 static asection *
3865 bfd_section_from_som_symbol (abfd, symbol)
3866 bfd *abfd;
3867 struct symbol_dictionary_record *symbol;
3868 {
3869 asection *section;
3870
3871 /* The meaning of the symbol_info field changes for functions
3872 within executables. So only use the quick symbol_info mapping for
3873 incomplete objects and non-function symbols in executables. */
3874 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
3875 || (symbol->symbol_type != ST_ENTRY
3876 && symbol->symbol_type != ST_PRI_PROG
3877 && symbol->symbol_type != ST_SEC_PROG
3878 && symbol->symbol_type != ST_MILLICODE))
3879 {
3880 unsigned int index = symbol->symbol_info;
3881 for (section = abfd->sections; section != NULL; section = section->next)
3882 if (section->target_index == index && som_is_subspace (section))
3883 return section;
3884
3885 /* Could be a symbol from an external library (such as an OMOS
3886 shared library). Don't abort. */
3887 return bfd_abs_section_ptr;
3888
3889 }
3890 else
3891 {
3892 unsigned int value = symbol->symbol_value;
3893
3894 /* For executables we will have to use the symbol's address and
3895 find out what section would contain that address. Yuk. */
3896 for (section = abfd->sections; section; section = section->next)
3897 {
3898 if (value >= section->vma
3899 && value <= section->vma + section->_cooked_size
3900 && som_is_subspace (section))
3901 return section;
3902 }
3903
3904 /* Could be a symbol from an external library (such as an OMOS
3905 shared library). Don't abort. */
3906 return bfd_abs_section_ptr;
3907
3908 }
3909 }
3910
3911 /* Read and save the symbol table associated with the given BFD. */
3912
3913 static unsigned int
3914 som_slurp_symbol_table (abfd)
3915 bfd *abfd;
3916 {
3917 int symbol_count = bfd_get_symcount (abfd);
3918 int symsize = sizeof (struct symbol_dictionary_record);
3919 char *stringtab;
3920 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
3921 som_symbol_type *sym, *symbase;
3922
3923 /* Return saved value if it exists. */
3924 if (obj_som_symtab (abfd) != NULL)
3925 goto successful_return;
3926
3927 /* Special case. This is *not* an error. */
3928 if (symbol_count == 0)
3929 goto successful_return;
3930
3931 if (!som_slurp_string_table (abfd))
3932 goto error_return;
3933
3934 stringtab = obj_som_stringtab (abfd);
3935
3936 symbase = (som_symbol_type *)
3937 bfd_zalloc (abfd, symbol_count * sizeof (som_symbol_type));
3938 if (symbase == NULL)
3939 {
3940 bfd_set_error (bfd_error_no_memory);
3941 goto error_return;
3942 }
3943
3944 /* Read in the external SOM representation. */
3945 buf = malloc (symbol_count * symsize);
3946 if (buf == NULL && symbol_count * symsize != 0)
3947 {
3948 bfd_set_error (bfd_error_no_memory);
3949 goto error_return;
3950 }
3951 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
3952 goto error_return;
3953 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
3954 != symbol_count * symsize)
3955 goto error_return;
3956
3957 /* Iterate over all the symbols and internalize them. */
3958 endbufp = buf + symbol_count;
3959 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
3960 {
3961
3962 /* I don't think we care about these. */
3963 if (bufp->symbol_type == ST_SYM_EXT
3964 || bufp->symbol_type == ST_ARG_EXT)
3965 continue;
3966
3967 /* Set some private data we care about. */
3968 if (bufp->symbol_type == ST_NULL)
3969 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3970 else if (bufp->symbol_type == ST_ABSOLUTE)
3971 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
3972 else if (bufp->symbol_type == ST_DATA)
3973 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
3974 else if (bufp->symbol_type == ST_CODE)
3975 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
3976 else if (bufp->symbol_type == ST_PRI_PROG)
3977 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
3978 else if (bufp->symbol_type == ST_SEC_PROG)
3979 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
3980 else if (bufp->symbol_type == ST_ENTRY)
3981 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
3982 else if (bufp->symbol_type == ST_MILLICODE)
3983 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
3984 else if (bufp->symbol_type == ST_PLABEL)
3985 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
3986 else
3987 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3988 som_symbol_data (sym)->tc_data.hppa_arg_reloc = bufp->arg_reloc;
3989
3990 /* Some reasonable defaults. */
3991 sym->symbol.the_bfd = abfd;
3992 sym->symbol.name = bufp->name.n_strx + stringtab;
3993 sym->symbol.value = bufp->symbol_value;
3994 sym->symbol.section = 0;
3995 sym->symbol.flags = 0;
3996
3997 switch (bufp->symbol_type)
3998 {
3999 case ST_ENTRY:
4000 case ST_MILLICODE:
4001 sym->symbol.flags |= BSF_FUNCTION;
4002 sym->symbol.value &= ~0x3;
4003 break;
4004
4005 case ST_STUB:
4006 case ST_CODE:
4007 case ST_PRI_PROG:
4008 case ST_SEC_PROG:
4009 sym->symbol.value &= ~0x3;
4010 /* If the symbol's scope is ST_UNSAT, then these are
4011 undefined function symbols. */
4012 if (bufp->symbol_scope == SS_UNSAT)
4013 sym->symbol.flags |= BSF_FUNCTION;
4014
4015
4016 default:
4017 break;
4018 }
4019
4020 /* Handle scoping and section information. */
4021 switch (bufp->symbol_scope)
4022 {
4023 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
4024 so the section associated with this symbol can't be known. */
4025 case SS_EXTERNAL:
4026 if (bufp->symbol_type != ST_STORAGE)
4027 sym->symbol.section = bfd_und_section_ptr;
4028 else
4029 sym->symbol.section = bfd_com_section_ptr;
4030 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4031 break;
4032
4033 case SS_UNSAT:
4034 if (bufp->symbol_type != ST_STORAGE)
4035 sym->symbol.section = bfd_und_section_ptr;
4036 else
4037 sym->symbol.section = bfd_com_section_ptr;
4038 break;
4039
4040 case SS_UNIVERSAL:
4041 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4042 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4043 sym->symbol.value -= sym->symbol.section->vma;
4044 break;
4045
4046 #if 0
4047 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
4048 Sound dumb? It is. */
4049 case SS_GLOBAL:
4050 #endif
4051 case SS_LOCAL:
4052 sym->symbol.flags |= BSF_LOCAL;
4053 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4054 sym->symbol.value -= sym->symbol.section->vma;
4055 break;
4056 }
4057
4058 /* Mark section symbols and symbols used by the debugger.
4059 Note $START$ is a magic code symbol, NOT a section symbol. */
4060 if (sym->symbol.name[0] == '$'
4061 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$'
4062 && !strcmp (sym->symbol.name, sym->symbol.section->name))
4063 sym->symbol.flags |= BSF_SECTION_SYM;
4064 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
4065 {
4066 sym->symbol.flags |= BSF_SECTION_SYM;
4067 sym->symbol.name = sym->symbol.section->name;
4068 }
4069 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
4070 sym->symbol.flags |= BSF_DEBUGGING;
4071
4072 /* Note increment at bottom of loop, since we skip some symbols
4073 we can not include it as part of the for statement. */
4074 sym++;
4075 }
4076
4077 /* Save our results and return success. */
4078 obj_som_symtab (abfd) = symbase;
4079 successful_return:
4080 if (buf != NULL)
4081 free (buf);
4082 return (true);
4083
4084 error_return:
4085 if (buf != NULL)
4086 free (buf);
4087 return false;
4088 }
4089
4090 /* Canonicalize a SOM symbol table. Return the number of entries
4091 in the symbol table. */
4092
4093 static long
4094 som_get_symtab (abfd, location)
4095 bfd *abfd;
4096 asymbol **location;
4097 {
4098 int i;
4099 som_symbol_type *symbase;
4100
4101 if (!som_slurp_symbol_table (abfd))
4102 return -1;
4103
4104 i = bfd_get_symcount (abfd);
4105 symbase = obj_som_symtab (abfd);
4106
4107 for (; i > 0; i--, location++, symbase++)
4108 *location = &symbase->symbol;
4109
4110 /* Final null pointer. */
4111 *location = 0;
4112 return (bfd_get_symcount (abfd));
4113 }
4114
4115 /* Make a SOM symbol. There is nothing special to do here. */
4116
4117 static asymbol *
4118 som_make_empty_symbol (abfd)
4119 bfd *abfd;
4120 {
4121 som_symbol_type *new =
4122 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
4123 if (new == NULL)
4124 {
4125 bfd_set_error (bfd_error_no_memory);
4126 return 0;
4127 }
4128 new->symbol.the_bfd = abfd;
4129
4130 return &new->symbol;
4131 }
4132
4133 /* Print symbol information. */
4134
4135 static void
4136 som_print_symbol (ignore_abfd, afile, symbol, how)
4137 bfd *ignore_abfd;
4138 PTR afile;
4139 asymbol *symbol;
4140 bfd_print_symbol_type how;
4141 {
4142 FILE *file = (FILE *) afile;
4143 switch (how)
4144 {
4145 case bfd_print_symbol_name:
4146 fprintf (file, "%s", symbol->name);
4147 break;
4148 case bfd_print_symbol_more:
4149 fprintf (file, "som ");
4150 fprintf_vma (file, symbol->value);
4151 fprintf (file, " %lx", (long) symbol->flags);
4152 break;
4153 case bfd_print_symbol_all:
4154 {
4155 CONST char *section_name;
4156 section_name = symbol->section ? symbol->section->name : "(*none*)";
4157 bfd_print_symbol_vandf ((PTR) file, symbol);
4158 fprintf (file, " %s\t%s", section_name, symbol->name);
4159 break;
4160 }
4161 }
4162 }
4163
4164 static boolean
4165 som_bfd_is_local_label (abfd, sym)
4166 bfd *abfd;
4167 asymbol *sym;
4168 {
4169 return (sym->name[0] == 'L' && sym->name[1] == '$');
4170 }
4171
4172 /* Count or process variable-length SOM fixup records.
4173
4174 To avoid code duplication we use this code both to compute the number
4175 of relocations requested by a stream, and to internalize the stream.
4176
4177 When computing the number of relocations requested by a stream the
4178 variables rptr, section, and symbols have no meaning.
4179
4180 Return the number of relocations requested by the fixup stream. When
4181 not just counting
4182
4183 This needs at least two or three more passes to get it cleaned up. */
4184
4185 static unsigned int
4186 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
4187 unsigned char *fixup;
4188 unsigned int end;
4189 arelent *internal_relocs;
4190 asection *section;
4191 asymbol **symbols;
4192 boolean just_count;
4193 {
4194 unsigned int op, varname, deallocate_contents = 0;
4195 unsigned char *end_fixups = &fixup[end];
4196 const struct fixup_format *fp;
4197 char *cp;
4198 unsigned char *save_fixup;
4199 int variables[26], stack[20], c, v, count, prev_fixup, *sp, saved_unwind_bits;
4200 const int *subop;
4201 arelent *rptr= internal_relocs;
4202 unsigned int offset = 0;
4203
4204 #define var(c) variables[(c) - 'A']
4205 #define push(v) (*sp++ = (v))
4206 #define pop() (*--sp)
4207 #define emptystack() (sp == stack)
4208
4209 som_initialize_reloc_queue (reloc_queue);
4210 memset (variables, 0, sizeof (variables));
4211 memset (stack, 0, sizeof (stack));
4212 count = 0;
4213 prev_fixup = 0;
4214 saved_unwind_bits = 0;
4215 sp = stack;
4216
4217 while (fixup < end_fixups)
4218 {
4219
4220 /* Save pointer to the start of this fixup. We'll use
4221 it later to determine if it is necessary to put this fixup
4222 on the queue. */
4223 save_fixup = fixup;
4224
4225 /* Get the fixup code and its associated format. */
4226 op = *fixup++;
4227 fp = &som_fixup_formats[op];
4228
4229 /* Handle a request for a previous fixup. */
4230 if (*fp->format == 'P')
4231 {
4232 /* Get pointer to the beginning of the prev fixup, move
4233 the repeated fixup to the head of the queue. */
4234 fixup = reloc_queue[fp->D].reloc;
4235 som_reloc_queue_fix (reloc_queue, fp->D);
4236 prev_fixup = 1;
4237
4238 /* Get the fixup code and its associated format. */
4239 op = *fixup++;
4240 fp = &som_fixup_formats[op];
4241 }
4242
4243 /* If this fixup will be passed to BFD, set some reasonable defaults. */
4244 if (! just_count
4245 && som_hppa_howto_table[op].type != R_NO_RELOCATION
4246 && som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
4247 {
4248 rptr->address = offset;
4249 rptr->howto = &som_hppa_howto_table[op];
4250 rptr->addend = 0;
4251 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
4252 }
4253
4254 /* Set default input length to 0. Get the opcode class index
4255 into D. */
4256 var ('L') = 0;
4257 var ('D') = fp->D;
4258 var ('U') = saved_unwind_bits;
4259
4260 /* Get the opcode format. */
4261 cp = fp->format;
4262
4263 /* Process the format string. Parsing happens in two phases,
4264 parse RHS, then assign to LHS. Repeat until no more
4265 characters in the format string. */
4266 while (*cp)
4267 {
4268 /* The variable this pass is going to compute a value for. */
4269 varname = *cp++;
4270
4271 /* Start processing RHS. Continue until a NULL or '=' is found. */
4272 do
4273 {
4274 c = *cp++;
4275
4276 /* If this is a variable, push it on the stack. */
4277 if (isupper (c))
4278 push (var (c));
4279
4280 /* If this is a lower case letter, then it represents
4281 additional data from the fixup stream to be pushed onto
4282 the stack. */
4283 else if (islower (c))
4284 {
4285 int bits = (c - 'a') * 8;
4286 for (v = 0; c > 'a'; --c)
4287 v = (v << 8) | *fixup++;
4288 if (varname == 'V')
4289 v = sign_extend (v, bits);
4290 push (v);
4291 }
4292
4293 /* A decimal constant. Push it on the stack. */
4294 else if (isdigit (c))
4295 {
4296 v = c - '0';
4297 while (isdigit (*cp))
4298 v = (v * 10) + (*cp++ - '0');
4299 push (v);
4300 }
4301 else
4302
4303 /* An operator. Pop two two values from the stack and
4304 use them as operands to the given operation. Push
4305 the result of the operation back on the stack. */
4306 switch (c)
4307 {
4308 case '+':
4309 v = pop ();
4310 v += pop ();
4311 push (v);
4312 break;
4313 case '*':
4314 v = pop ();
4315 v *= pop ();
4316 push (v);
4317 break;
4318 case '<':
4319 v = pop ();
4320 v = pop () << v;
4321 push (v);
4322 break;
4323 default:
4324 abort ();
4325 }
4326 }
4327 while (*cp && *cp != '=');
4328
4329 /* Move over the equal operator. */
4330 cp++;
4331
4332 /* Pop the RHS off the stack. */
4333 c = pop ();
4334
4335 /* Perform the assignment. */
4336 var (varname) = c;
4337
4338 /* Handle side effects. and special 'O' stack cases. */
4339 switch (varname)
4340 {
4341 /* Consume some bytes from the input space. */
4342 case 'L':
4343 offset += c;
4344 break;
4345 /* A symbol to use in the relocation. Make a note
4346 of this if we are not just counting. */
4347 case 'S':
4348 if (! just_count)
4349 rptr->sym_ptr_ptr = &symbols[c];
4350 break;
4351 /* Argument relocation bits for a function call. */
4352 case 'R':
4353 if (! just_count)
4354 {
4355 unsigned int tmp = var ('R');
4356 rptr->addend = 0;
4357
4358 if ((som_hppa_howto_table[op].type == R_PCREL_CALL
4359 && R_PCREL_CALL + 10 > op)
4360 || (som_hppa_howto_table[op].type == R_ABS_CALL
4361 && R_ABS_CALL + 10 > op))
4362 {
4363 /* Simple encoding. */
4364 if (tmp > 4)
4365 {
4366 tmp -= 5;
4367 rptr->addend |= 1;
4368 }
4369 if (tmp == 4)
4370 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2;
4371 else if (tmp == 3)
4372 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4;
4373 else if (tmp == 2)
4374 rptr->addend |= 1 << 8 | 1 << 6;
4375 else if (tmp == 1)
4376 rptr->addend |= 1 << 8;
4377 }
4378 else
4379 {
4380 unsigned int tmp1, tmp2;
4381
4382 /* First part is easy -- low order two bits are
4383 directly copied, then shifted away. */
4384 rptr->addend = tmp & 0x3;
4385 tmp >>= 2;
4386
4387 /* Diving the result by 10 gives us the second
4388 part. If it is 9, then the first two words
4389 are a double precision paramater, else it is
4390 3 * the first arg bits + the 2nd arg bits. */
4391 tmp1 = tmp / 10;
4392 tmp -= tmp1 * 10;
4393 if (tmp1 == 9)
4394 rptr->addend += (0xe << 6);
4395 else
4396 {
4397 /* Get the two pieces. */
4398 tmp2 = tmp1 / 3;
4399 tmp1 -= tmp2 * 3;
4400 /* Put them in the addend. */
4401 rptr->addend += (tmp2 << 8) + (tmp1 << 6);
4402 }
4403
4404 /* What's left is the third part. It's unpacked
4405 just like the second. */
4406 if (tmp == 9)
4407 rptr->addend += (0xe << 2);
4408 else
4409 {
4410 tmp2 = tmp / 3;
4411 tmp -= tmp2 * 3;
4412 rptr->addend += (tmp2 << 4) + (tmp << 2);
4413 }
4414 }
4415 rptr->addend = HPPA_R_ADDEND (rptr->addend, 0);
4416 }
4417 break;
4418 /* Handle the linker expression stack. */
4419 case 'O':
4420 switch (op)
4421 {
4422 case R_COMP1:
4423 subop = comp1_opcodes;
4424 break;
4425 case R_COMP2:
4426 subop = comp2_opcodes;
4427 break;
4428 case R_COMP3:
4429 subop = comp3_opcodes;
4430 break;
4431 default:
4432 abort ();
4433 }
4434 while (*subop <= (unsigned char) c)
4435 ++subop;
4436 --subop;
4437 break;
4438 /* The lower 32unwind bits must be persistent. */
4439 case 'U':
4440 saved_unwind_bits = var ('U');
4441 break;
4442
4443 default:
4444 break;
4445 }
4446 }
4447
4448 /* If we used a previous fixup, clean up after it. */
4449 if (prev_fixup)
4450 {
4451 fixup = save_fixup + 1;
4452 prev_fixup = 0;
4453 }
4454 /* Queue it. */
4455 else if (fixup > save_fixup + 1)
4456 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4457
4458 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4459 fixups to BFD. */
4460 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4461 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4462 {
4463 /* Done with a single reloction. Loop back to the top. */
4464 if (! just_count)
4465 {
4466 if (som_hppa_howto_table[op].type == R_ENTRY)
4467 rptr->addend = var ('T');
4468 else if (som_hppa_howto_table[op].type == R_EXIT)
4469 rptr->addend = var ('U');
4470 else if (som_hppa_howto_table[op].type == R_PCREL_CALL
4471 || som_hppa_howto_table[op].type == R_ABS_CALL)
4472 ;
4473 else if (som_hppa_howto_table[op].type == R_DATA_ONE_SYMBOL)
4474 {
4475 unsigned addend = var ('V');
4476
4477 /* Try what was specified in R_DATA_OVERRIDE first
4478 (if anything). Then the hard way using the
4479 section contents. */
4480 rptr->addend = var ('V');
4481
4482 if (rptr->addend == 0 && !section->contents)
4483 {
4484 /* Got to read the damn contents first. We don't
4485 bother saving the contents (yet). Add it one
4486 day if the need arises. */
4487 section->contents = malloc (section->_raw_size);
4488 if (section->contents == NULL)
4489 return -1;
4490
4491 deallocate_contents = 1;
4492 bfd_get_section_contents (section->owner,
4493 section,
4494 section->contents,
4495 0,
4496 section->_raw_size);
4497 }
4498 else if (rptr->addend == 0)
4499 rptr->addend = bfd_get_32 (section->owner,
4500 (section->contents
4501 + offset - var ('L')));
4502
4503 }
4504 else
4505 rptr->addend = var ('V');
4506 rptr++;
4507 }
4508 count++;
4509 /* Now that we've handled a "full" relocation, reset
4510 some state. */
4511 memset (variables, 0, sizeof (variables));
4512 memset (stack, 0, sizeof (stack));
4513 }
4514 }
4515 if (deallocate_contents)
4516 free (section->contents);
4517
4518 return count;
4519
4520 #undef var
4521 #undef push
4522 #undef pop
4523 #undef emptystack
4524 }
4525
4526 /* Read in the relocs (aka fixups in SOM terms) for a section.
4527
4528 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4529 set to true to indicate it only needs a count of the number
4530 of actual relocations. */
4531
4532 static boolean
4533 som_slurp_reloc_table (abfd, section, symbols, just_count)
4534 bfd *abfd;
4535 asection *section;
4536 asymbol **symbols;
4537 boolean just_count;
4538 {
4539 char *external_relocs;
4540 unsigned int fixup_stream_size;
4541 arelent *internal_relocs;
4542 unsigned int num_relocs;
4543
4544 fixup_stream_size = som_section_data (section)->reloc_size;
4545 /* If there were no relocations, then there is nothing to do. */
4546 if (section->reloc_count == 0)
4547 return true;
4548
4549 /* If reloc_count is -1, then the relocation stream has not been
4550 parsed. We must do so now to know how many relocations exist. */
4551 if (section->reloc_count == -1)
4552 {
4553 external_relocs = (char *) malloc (fixup_stream_size);
4554 if (external_relocs == (char *) NULL)
4555 {
4556 bfd_set_error (bfd_error_no_memory);
4557 return false;
4558 }
4559 /* Read in the external forms. */
4560 if (bfd_seek (abfd,
4561 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4562 SEEK_SET)
4563 != 0)
4564 return false;
4565 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
4566 != fixup_stream_size)
4567 return false;
4568
4569 /* Let callers know how many relocations found.
4570 also save the relocation stream as we will
4571 need it again. */
4572 section->reloc_count = som_set_reloc_info (external_relocs,
4573 fixup_stream_size,
4574 NULL, NULL, NULL, true);
4575
4576 som_section_data (section)->reloc_stream = external_relocs;
4577 }
4578
4579 /* If the caller only wanted a count, then return now. */
4580 if (just_count)
4581 return true;
4582
4583 num_relocs = section->reloc_count;
4584 external_relocs = som_section_data (section)->reloc_stream;
4585 /* Return saved information about the relocations if it is available. */
4586 if (section->relocation != (arelent *) NULL)
4587 return true;
4588
4589 internal_relocs = (arelent *)
4590 bfd_zalloc (abfd, (num_relocs * sizeof (arelent)));
4591 if (internal_relocs == (arelent *) NULL)
4592 {
4593 bfd_set_error (bfd_error_no_memory);
4594 return false;
4595 }
4596
4597 /* Process and internalize the relocations. */
4598 som_set_reloc_info (external_relocs, fixup_stream_size,
4599 internal_relocs, section, symbols, false);
4600
4601 /* We're done with the external relocations. Free them. */
4602 free (external_relocs);
4603
4604 /* Save our results and return success. */
4605 section->relocation = internal_relocs;
4606 return (true);
4607 }
4608
4609 /* Return the number of bytes required to store the relocation
4610 information associated with the given section. */
4611
4612 static long
4613 som_get_reloc_upper_bound (abfd, asect)
4614 bfd *abfd;
4615 sec_ptr asect;
4616 {
4617 /* If section has relocations, then read in the relocation stream
4618 and parse it to determine how many relocations exist. */
4619 if (asect->flags & SEC_RELOC)
4620 {
4621 if (! som_slurp_reloc_table (abfd, asect, NULL, true))
4622 return -1;
4623 return (asect->reloc_count + 1) * sizeof (arelent *);
4624 }
4625 /* There are no relocations. */
4626 return 0;
4627 }
4628
4629 /* Convert relocations from SOM (external) form into BFD internal
4630 form. Return the number of relocations. */
4631
4632 static long
4633 som_canonicalize_reloc (abfd, section, relptr, symbols)
4634 bfd *abfd;
4635 sec_ptr section;
4636 arelent **relptr;
4637 asymbol **symbols;
4638 {
4639 arelent *tblptr;
4640 int count;
4641
4642 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
4643 return -1;
4644
4645 count = section->reloc_count;
4646 tblptr = section->relocation;
4647
4648 while (count--)
4649 *relptr++ = tblptr++;
4650
4651 *relptr = (arelent *) NULL;
4652 return section->reloc_count;
4653 }
4654
4655 extern const bfd_target som_vec;
4656
4657 /* A hook to set up object file dependent section information. */
4658
4659 static boolean
4660 som_new_section_hook (abfd, newsect)
4661 bfd *abfd;
4662 asection *newsect;
4663 {
4664 newsect->used_by_bfd =
4665 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
4666 if (!newsect->used_by_bfd)
4667 {
4668 bfd_set_error (bfd_error_no_memory);
4669 return false;
4670 }
4671 newsect->alignment_power = 3;
4672
4673 /* We allow more than three sections internally */
4674 return true;
4675 }
4676
4677 /* Copy any private info we understand from the input symbol
4678 to the output symbol. */
4679
4680 static boolean
4681 som_bfd_copy_private_symbol_data (ibfd, isymbol, obfd, osymbol)
4682 bfd *ibfd;
4683 asymbol *isymbol;
4684 bfd *obfd;
4685 asymbol *osymbol;
4686 {
4687 struct som_symbol *input_symbol = (struct som_symbol *) isymbol;
4688 struct som_symbol *output_symbol = (struct som_symbol *) osymbol;
4689
4690 /* One day we may try to grok other private data. */
4691 if (ibfd->xvec->flavour != bfd_target_som_flavour
4692 || obfd->xvec->flavour != bfd_target_som_flavour)
4693 return false;
4694
4695 /* The only private information we need to copy is the argument relocation
4696 bits. */
4697 output_symbol->tc_data.hppa_arg_reloc = input_symbol->tc_data.hppa_arg_reloc;
4698
4699 return true;
4700 }
4701
4702 /* Copy any private info we understand from the input section
4703 to the output section. */
4704 static boolean
4705 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
4706 bfd *ibfd;
4707 asection *isection;
4708 bfd *obfd;
4709 asection *osection;
4710 {
4711 /* One day we may try to grok other private data. */
4712 if (ibfd->xvec->flavour != bfd_target_som_flavour
4713 || obfd->xvec->flavour != bfd_target_som_flavour
4714 || (!som_is_space (isection) && !som_is_subspace (isection)))
4715 return true;
4716
4717 som_section_data (osection)->copy_data
4718 = (struct som_copyable_section_data_struct *)
4719 bfd_zalloc (obfd, sizeof (struct som_copyable_section_data_struct));
4720 if (som_section_data (osection)->copy_data == NULL)
4721 {
4722 bfd_set_error (bfd_error_no_memory);
4723 return false;
4724 }
4725
4726 memcpy (som_section_data (osection)->copy_data,
4727 som_section_data (isection)->copy_data,
4728 sizeof (struct som_copyable_section_data_struct));
4729
4730 /* Reparent if necessary. */
4731 if (som_section_data (osection)->copy_data->container)
4732 som_section_data (osection)->copy_data->container =
4733 som_section_data (osection)->copy_data->container->output_section;
4734
4735 return true;
4736 }
4737
4738 /* Copy any private info we understand from the input bfd
4739 to the output bfd. */
4740
4741 static boolean
4742 som_bfd_copy_private_bfd_data (ibfd, obfd)
4743 bfd *ibfd, *obfd;
4744 {
4745 /* One day we may try to grok other private data. */
4746 if (ibfd->xvec->flavour != bfd_target_som_flavour
4747 || obfd->xvec->flavour != bfd_target_som_flavour)
4748 return true;
4749
4750 /* Allocate some memory to hold the data we need. */
4751 obj_som_exec_data (obfd) = (struct som_exec_data *)
4752 bfd_zalloc (obfd, sizeof (struct som_exec_data));
4753 if (obj_som_exec_data (obfd) == NULL)
4754 {
4755 bfd_set_error (bfd_error_no_memory);
4756 return false;
4757 }
4758
4759 /* Now copy the data. */
4760 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
4761 sizeof (struct som_exec_data));
4762
4763 return true;
4764 }
4765
4766 /* Set backend info for sections which can not be described
4767 in the BFD data structures. */
4768
4769 boolean
4770 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
4771 asection *section;
4772 int defined;
4773 int private;
4774 unsigned int sort_key;
4775 int spnum;
4776 {
4777 /* Allocate memory to hold the magic information. */
4778 if (som_section_data (section)->copy_data == NULL)
4779 {
4780 som_section_data (section)->copy_data
4781 = (struct som_copyable_section_data_struct *)
4782 bfd_zalloc (section->owner,
4783 sizeof (struct som_copyable_section_data_struct));
4784 if (som_section_data (section)->copy_data == NULL)
4785 {
4786 bfd_set_error (bfd_error_no_memory);
4787 return false;
4788 }
4789 }
4790 som_section_data (section)->copy_data->sort_key = sort_key;
4791 som_section_data (section)->copy_data->is_defined = defined;
4792 som_section_data (section)->copy_data->is_private = private;
4793 som_section_data (section)->copy_data->container = section;
4794 som_section_data (section)->copy_data->space_number = spnum;
4795 return true;
4796 }
4797
4798 /* Set backend info for subsections which can not be described
4799 in the BFD data structures. */
4800
4801 boolean
4802 bfd_som_set_subsection_attributes (section, container, access,
4803 sort_key, quadrant)
4804 asection *section;
4805 asection *container;
4806 int access;
4807 unsigned int sort_key;
4808 int quadrant;
4809 {
4810 /* Allocate memory to hold the magic information. */
4811 if (som_section_data (section)->copy_data == NULL)
4812 {
4813 som_section_data (section)->copy_data
4814 = (struct som_copyable_section_data_struct *)
4815 bfd_zalloc (section->owner,
4816 sizeof (struct som_copyable_section_data_struct));
4817 if (som_section_data (section)->copy_data == NULL)
4818 {
4819 bfd_set_error (bfd_error_no_memory);
4820 return false;
4821 }
4822 }
4823 som_section_data (section)->copy_data->sort_key = sort_key;
4824 som_section_data (section)->copy_data->access_control_bits = access;
4825 som_section_data (section)->copy_data->quadrant = quadrant;
4826 som_section_data (section)->copy_data->container = container;
4827 return true;
4828 }
4829
4830 /* Set the full SOM symbol type. SOM needs far more symbol information
4831 than any other object file format I'm aware of. It is mandatory
4832 to be able to know if a symbol is an entry point, millicode, data,
4833 code, absolute, storage request, or procedure label. If you get
4834 the symbol type wrong your program will not link. */
4835
4836 void
4837 bfd_som_set_symbol_type (symbol, type)
4838 asymbol *symbol;
4839 unsigned int type;
4840 {
4841 som_symbol_data (symbol)->som_type = type;
4842 }
4843
4844 /* Attach an auxiliary header to the BFD backend so that it may be
4845 written into the object file. */
4846 boolean
4847 bfd_som_attach_aux_hdr (abfd, type, string)
4848 bfd *abfd;
4849 int type;
4850 char *string;
4851 {
4852 if (type == VERSION_AUX_ID)
4853 {
4854 int len = strlen (string);
4855 int pad = 0;
4856
4857 if (len % 4)
4858 pad = (4 - (len % 4));
4859 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
4860 bfd_zalloc (abfd, sizeof (struct aux_id)
4861 + sizeof (unsigned int) + len + pad);
4862 if (!obj_som_version_hdr (abfd))
4863 {
4864 bfd_set_error (bfd_error_no_memory);
4865 return false;
4866 }
4867 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
4868 obj_som_version_hdr (abfd)->header_id.length = len + pad;
4869 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
4870 obj_som_version_hdr (abfd)->string_length = len;
4871 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
4872 }
4873 else if (type == COPYRIGHT_AUX_ID)
4874 {
4875 int len = strlen (string);
4876 int pad = 0;
4877
4878 if (len % 4)
4879 pad = (4 - (len % 4));
4880 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
4881 bfd_zalloc (abfd, sizeof (struct aux_id)
4882 + sizeof (unsigned int) + len + pad);
4883 if (!obj_som_copyright_hdr (abfd))
4884 {
4885 bfd_set_error (bfd_error_no_memory);
4886 return false;
4887 }
4888 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
4889 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
4890 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
4891 obj_som_copyright_hdr (abfd)->string_length = len;
4892 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
4893 }
4894 return true;
4895 }
4896
4897 static boolean
4898 som_get_section_contents (abfd, section, location, offset, count)
4899 bfd *abfd;
4900 sec_ptr section;
4901 PTR location;
4902 file_ptr offset;
4903 bfd_size_type count;
4904 {
4905 if (count == 0 || ((section->flags & SEC_HAS_CONTENTS) == 0))
4906 return true;
4907 if ((bfd_size_type)(offset+count) > section->_raw_size
4908 || bfd_seek (abfd, (file_ptr)(section->filepos + offset), SEEK_SET) == -1
4909 || bfd_read (location, (bfd_size_type)1, count, abfd) != count)
4910 return (false); /* on error */
4911 return (true);
4912 }
4913
4914 static boolean
4915 som_set_section_contents (abfd, section, location, offset, count)
4916 bfd *abfd;
4917 sec_ptr section;
4918 PTR location;
4919 file_ptr offset;
4920 bfd_size_type count;
4921 {
4922 if (abfd->output_has_begun == false)
4923 {
4924 /* Set up fixed parts of the file, space, and subspace headers.
4925 Notify the world that output has begun. */
4926 som_prep_headers (abfd);
4927 abfd->output_has_begun = true;
4928 /* Start writing the object file. This include all the string
4929 tables, fixup streams, and other portions of the object file. */
4930 som_begin_writing (abfd);
4931 }
4932
4933 /* Only write subspaces which have "real" contents (eg. the contents
4934 are not generated at run time by the OS). */
4935 if (!som_is_subspace (section)
4936 || ((section->flags & SEC_HAS_CONTENTS) == 0))
4937 return true;
4938
4939 /* Seek to the proper offset within the object file and write the
4940 data. */
4941 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
4942 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
4943 return false;
4944
4945 if (bfd_write ((PTR) location, 1, count, abfd) != count)
4946 return false;
4947 return true;
4948 }
4949
4950 static boolean
4951 som_set_arch_mach (abfd, arch, machine)
4952 bfd *abfd;
4953 enum bfd_architecture arch;
4954 unsigned long machine;
4955 {
4956 /* Allow any architecture to be supported by the SOM backend */
4957 return bfd_default_set_arch_mach (abfd, arch, machine);
4958 }
4959
4960 static boolean
4961 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4962 functionname_ptr, line_ptr)
4963 bfd *abfd;
4964 asection *section;
4965 asymbol **symbols;
4966 bfd_vma offset;
4967 CONST char **filename_ptr;
4968 CONST char **functionname_ptr;
4969 unsigned int *line_ptr;
4970 {
4971 return (false);
4972 }
4973
4974 static int
4975 som_sizeof_headers (abfd, reloc)
4976 bfd *abfd;
4977 boolean reloc;
4978 {
4979 fprintf (stderr, "som_sizeof_headers unimplemented\n");
4980 fflush (stderr);
4981 abort ();
4982 return (0);
4983 }
4984
4985 /* Return the single-character symbol type corresponding to
4986 SOM section S, or '?' for an unknown SOM section. */
4987
4988 static char
4989 som_section_type (s)
4990 const char *s;
4991 {
4992 const struct section_to_type *t;
4993
4994 for (t = &stt[0]; t->section; t++)
4995 if (!strcmp (s, t->section))
4996 return t->type;
4997 return '?';
4998 }
4999
5000 static int
5001 som_decode_symclass (symbol)
5002 asymbol *symbol;
5003 {
5004 char c;
5005
5006 if (bfd_is_com_section (symbol->section))
5007 return 'C';
5008 if (bfd_is_und_section (symbol->section))
5009 return 'U';
5010 if (bfd_is_ind_section (symbol->section))
5011 return 'I';
5012 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
5013 return '?';
5014
5015 if (bfd_is_abs_section (symbol->section)
5016 || (som_symbol_data (symbol) != NULL
5017 && som_symbol_data (symbol)->som_type == SYMBOL_TYPE_ABSOLUTE))
5018 c = 'a';
5019 else if (symbol->section)
5020 c = som_section_type (symbol->section->name);
5021 else
5022 return '?';
5023 if (symbol->flags & BSF_GLOBAL)
5024 c = toupper (c);
5025 return c;
5026 }
5027
5028 /* Return information about SOM symbol SYMBOL in RET. */
5029
5030 static void
5031 som_get_symbol_info (ignore_abfd, symbol, ret)
5032 bfd *ignore_abfd;
5033 asymbol *symbol;
5034 symbol_info *ret;
5035 {
5036 ret->type = som_decode_symclass (symbol);
5037 if (ret->type != 'U')
5038 ret->value = symbol->value+symbol->section->vma;
5039 else
5040 ret->value = 0;
5041 ret->name = symbol->name;
5042 }
5043
5044 /* Count the number of symbols in the archive symbol table. Necessary
5045 so that we can allocate space for all the carsyms at once. */
5046
5047 static boolean
5048 som_bfd_count_ar_symbols (abfd, lst_header, count)
5049 bfd *abfd;
5050 struct lst_header *lst_header;
5051 symindex *count;
5052 {
5053 unsigned int i;
5054 unsigned int *hash_table = NULL;
5055 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5056
5057 hash_table =
5058 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
5059 if (hash_table == NULL && lst_header->hash_size != 0)
5060 {
5061 bfd_set_error (bfd_error_no_memory);
5062 goto error_return;
5063 }
5064
5065 /* Don't forget to initialize the counter! */
5066 *count = 0;
5067
5068 /* Read in the hash table. The has table is an array of 32bit file offsets
5069 which point to the hash chains. */
5070 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
5071 != lst_header->hash_size * 4)
5072 goto error_return;
5073
5074 /* Walk each chain counting the number of symbols found on that particular
5075 chain. */
5076 for (i = 0; i < lst_header->hash_size; i++)
5077 {
5078 struct lst_symbol_record lst_symbol;
5079
5080 /* An empty chain has zero as it's file offset. */
5081 if (hash_table[i] == 0)
5082 continue;
5083
5084 /* Seek to the first symbol in this hash chain. */
5085 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
5086 goto error_return;
5087
5088 /* Read in this symbol and update the counter. */
5089 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5090 != sizeof (lst_symbol))
5091 goto error_return;
5092
5093 (*count)++;
5094
5095 /* Now iterate through the rest of the symbols on this chain. */
5096 while (lst_symbol.next_entry)
5097 {
5098
5099 /* Seek to the next symbol. */
5100 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
5101 < 0)
5102 goto error_return;
5103
5104 /* Read the symbol in and update the counter. */
5105 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5106 != sizeof (lst_symbol))
5107 goto error_return;
5108
5109 (*count)++;
5110 }
5111 }
5112 if (hash_table != NULL)
5113 free (hash_table);
5114 return true;
5115
5116 error_return:
5117 if (hash_table != NULL)
5118 free (hash_table);
5119 return false;
5120 }
5121
5122 /* Fill in the canonical archive symbols (SYMS) from the archive described
5123 by ABFD and LST_HEADER. */
5124
5125 static boolean
5126 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
5127 bfd *abfd;
5128 struct lst_header *lst_header;
5129 carsym **syms;
5130 {
5131 unsigned int i, len;
5132 carsym *set = syms[0];
5133 unsigned int *hash_table = NULL;
5134 struct som_entry *som_dict = NULL;
5135 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5136
5137 hash_table =
5138 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
5139 if (hash_table == NULL && lst_header->hash_size != 0)
5140 {
5141 bfd_set_error (bfd_error_no_memory);
5142 goto error_return;
5143 }
5144
5145 som_dict =
5146 (struct som_entry *) malloc (lst_header->module_count
5147 * sizeof (struct som_entry));
5148 if (som_dict == NULL && lst_header->module_count != 0)
5149 {
5150 bfd_set_error (bfd_error_no_memory);
5151 goto error_return;
5152 }
5153
5154 /* Read in the hash table. The has table is an array of 32bit file offsets
5155 which point to the hash chains. */
5156 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
5157 != lst_header->hash_size * 4)
5158 goto error_return;
5159
5160 /* Seek to and read in the SOM dictionary. We will need this to fill
5161 in the carsym's filepos field. */
5162 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
5163 goto error_return;
5164
5165 if (bfd_read ((PTR) som_dict, lst_header->module_count,
5166 sizeof (struct som_entry), abfd)
5167 != lst_header->module_count * sizeof (struct som_entry))
5168 goto error_return;
5169
5170 /* Walk each chain filling in the carsyms as we go along. */
5171 for (i = 0; i < lst_header->hash_size; i++)
5172 {
5173 struct lst_symbol_record lst_symbol;
5174
5175 /* An empty chain has zero as it's file offset. */
5176 if (hash_table[i] == 0)
5177 continue;
5178
5179 /* Seek to and read the first symbol on the chain. */
5180 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
5181 goto error_return;
5182
5183 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5184 != sizeof (lst_symbol))
5185 goto error_return;
5186
5187 /* Get the name of the symbol, first get the length which is stored
5188 as a 32bit integer just before the symbol.
5189
5190 One might ask why we don't just read in the entire string table
5191 and index into it. Well, according to the SOM ABI the string
5192 index can point *anywhere* in the archive to save space, so just
5193 using the string table would not be safe. */
5194 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5195 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
5196 goto error_return;
5197
5198 if (bfd_read (&len, 1, 4, abfd) != 4)
5199 goto error_return;
5200
5201 /* Allocate space for the name and null terminate it too. */
5202 set->name = bfd_zalloc (abfd, len + 1);
5203 if (!set->name)
5204 {
5205 bfd_set_error (bfd_error_no_memory);
5206 goto error_return;
5207 }
5208 if (bfd_read (set->name, 1, len, abfd) != len)
5209 goto error_return;
5210
5211 set->name[len] = 0;
5212
5213 /* Fill in the file offset. Note that the "location" field points
5214 to the SOM itself, not the ar_hdr in front of it. */
5215 set->file_offset = som_dict[lst_symbol.som_index].location
5216 - sizeof (struct ar_hdr);
5217
5218 /* Go to the next symbol. */
5219 set++;
5220
5221 /* Iterate through the rest of the chain. */
5222 while (lst_symbol.next_entry)
5223 {
5224 /* Seek to the next symbol and read it in. */
5225 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET) <0)
5226 goto error_return;
5227
5228 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5229 != sizeof (lst_symbol))
5230 goto error_return;
5231
5232 /* Seek to the name length & string and read them in. */
5233 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5234 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
5235 goto error_return;
5236
5237 if (bfd_read (&len, 1, 4, abfd) != 4)
5238 goto error_return;
5239
5240 /* Allocate space for the name and null terminate it too. */
5241 set->name = bfd_zalloc (abfd, len + 1);
5242 if (!set->name)
5243 {
5244 bfd_set_error (bfd_error_no_memory);
5245 goto error_return;
5246 }
5247
5248 if (bfd_read (set->name, 1, len, abfd) != len)
5249 goto error_return;
5250 set->name[len] = 0;
5251
5252 /* Fill in the file offset. Note that the "location" field points
5253 to the SOM itself, not the ar_hdr in front of it. */
5254 set->file_offset = som_dict[lst_symbol.som_index].location
5255 - sizeof (struct ar_hdr);
5256
5257 /* Go on to the next symbol. */
5258 set++;
5259 }
5260 }
5261 /* If we haven't died by now, then we successfully read the entire
5262 archive symbol table. */
5263 if (hash_table != NULL)
5264 free (hash_table);
5265 if (som_dict != NULL)
5266 free (som_dict);
5267 return true;
5268
5269 error_return:
5270 if (hash_table != NULL)
5271 free (hash_table);
5272 if (som_dict != NULL)
5273 free (som_dict);
5274 return false;
5275 }
5276
5277 /* Read in the LST from the archive. */
5278 static boolean
5279 som_slurp_armap (abfd)
5280 bfd *abfd;
5281 {
5282 struct lst_header lst_header;
5283 struct ar_hdr ar_header;
5284 unsigned int parsed_size;
5285 struct artdata *ardata = bfd_ardata (abfd);
5286 char nextname[17];
5287 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
5288
5289 /* Special cases. */
5290 if (i == 0)
5291 return true;
5292 if (i != 16)
5293 return false;
5294
5295 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
5296 return false;
5297
5298 /* For archives without .o files there is no symbol table. */
5299 if (strncmp (nextname, "/ ", 16))
5300 {
5301 bfd_has_map (abfd) = false;
5302 return true;
5303 }
5304
5305 /* Read in and sanity check the archive header. */
5306 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
5307 != sizeof (struct ar_hdr))
5308 return false;
5309
5310 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
5311 {
5312 bfd_set_error (bfd_error_malformed_archive);
5313 return false;
5314 }
5315
5316 /* How big is the archive symbol table entry? */
5317 errno = 0;
5318 parsed_size = strtol (ar_header.ar_size, NULL, 10);
5319 if (errno != 0)
5320 {
5321 bfd_set_error (bfd_error_malformed_archive);
5322 return false;
5323 }
5324
5325 /* Save off the file offset of the first real user data. */
5326 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
5327
5328 /* Read in the library symbol table. We'll make heavy use of this
5329 in just a minute. */
5330 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
5331 != sizeof (struct lst_header))
5332 return false;
5333
5334 /* Sanity check. */
5335 if (lst_header.a_magic != LIBMAGIC)
5336 {
5337 bfd_set_error (bfd_error_malformed_archive);
5338 return false;
5339 }
5340
5341 /* Count the number of symbols in the library symbol table. */
5342 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
5343 == false)
5344 return false;
5345
5346 /* Get back to the start of the library symbol table. */
5347 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
5348 + sizeof (struct lst_header), SEEK_SET) < 0)
5349 return false;
5350
5351 /* Initializae the cache and allocate space for the library symbols. */
5352 ardata->cache = 0;
5353 ardata->symdefs = (carsym *) bfd_alloc (abfd,
5354 (ardata->symdef_count
5355 * sizeof (carsym)));
5356 if (!ardata->symdefs)
5357 {
5358 bfd_set_error (bfd_error_no_memory);
5359 return false;
5360 }
5361
5362 /* Now fill in the canonical archive symbols. */
5363 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
5364 == false)
5365 return false;
5366
5367 /* Seek back to the "first" file in the archive. Note the "first"
5368 file may be the extended name table. */
5369 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) < 0)
5370 return false;
5371
5372 /* Notify the generic archive code that we have a symbol map. */
5373 bfd_has_map (abfd) = true;
5374 return true;
5375 }
5376
5377 /* Begin preparing to write a SOM library symbol table.
5378
5379 As part of the prep work we need to determine the number of symbols
5380 and the size of the associated string section. */
5381
5382 static boolean
5383 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
5384 bfd *abfd;
5385 unsigned int *num_syms, *stringsize;
5386 {
5387 bfd *curr_bfd = abfd->archive_head;
5388
5389 /* Some initialization. */
5390 *num_syms = 0;
5391 *stringsize = 0;
5392
5393 /* Iterate over each BFD within this archive. */
5394 while (curr_bfd != NULL)
5395 {
5396 unsigned int curr_count, i;
5397 som_symbol_type *sym;
5398
5399 /* Don't bother for non-SOM objects. */
5400 if (curr_bfd->format != bfd_object
5401 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5402 {
5403 curr_bfd = curr_bfd->next;
5404 continue;
5405 }
5406
5407 /* Make sure the symbol table has been read, then snag a pointer
5408 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5409 but doing so avoids allocating lots of extra memory. */
5410 if (som_slurp_symbol_table (curr_bfd) == false)
5411 return false;
5412
5413 sym = obj_som_symtab (curr_bfd);
5414 curr_count = bfd_get_symcount (curr_bfd);
5415
5416 /* Examine each symbol to determine if it belongs in the
5417 library symbol table. */
5418 for (i = 0; i < curr_count; i++, sym++)
5419 {
5420 struct som_misc_symbol_info info;
5421
5422 /* Derive SOM information from the BFD symbol. */
5423 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5424
5425 /* Should we include this symbol? */
5426 if (info.symbol_type == ST_NULL
5427 || info.symbol_type == ST_SYM_EXT
5428 || info.symbol_type == ST_ARG_EXT)
5429 continue;
5430
5431 /* Only global symbols and unsatisfied commons. */
5432 if (info.symbol_scope != SS_UNIVERSAL
5433 && info.symbol_type != ST_STORAGE)
5434 continue;
5435
5436 /* Do no include undefined symbols. */
5437 if (bfd_is_und_section (sym->symbol.section))
5438 continue;
5439
5440 /* Bump the various counters, being careful to honor
5441 alignment considerations in the string table. */
5442 (*num_syms)++;
5443 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5444 while (*stringsize % 4)
5445 (*stringsize)++;
5446 }
5447
5448 curr_bfd = curr_bfd->next;
5449 }
5450 return true;
5451 }
5452
5453 /* Hash a symbol name based on the hashing algorithm presented in the
5454 SOM ABI. */
5455 static unsigned int
5456 som_bfd_ar_symbol_hash (symbol)
5457 asymbol *symbol;
5458 {
5459 unsigned int len = strlen (symbol->name);
5460
5461 /* Names with length 1 are special. */
5462 if (len == 1)
5463 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5464
5465 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5466 | (symbol->name[len-2] << 8) | symbol->name[len-1];
5467 }
5468
5469 static CONST char *
5470 normalize (file)
5471 CONST char *file;
5472 {
5473 CONST char *filename = strrchr (file, '/');
5474
5475 if (filename != NULL)
5476 filename++;
5477 else
5478 filename = file;
5479 return filename;
5480 }
5481
5482 /* Do the bulk of the work required to write the SOM library
5483 symbol table. */
5484
5485 static boolean
5486 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst)
5487 bfd *abfd;
5488 unsigned int nsyms, string_size;
5489 struct lst_header lst;
5490 {
5491 file_ptr lst_filepos;
5492 char *strings = NULL, *p;
5493 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5494 bfd *curr_bfd;
5495 unsigned int *hash_table = NULL;
5496 struct som_entry *som_dict = NULL;
5497 struct lst_symbol_record **last_hash_entry = NULL;
5498 unsigned int curr_som_offset, som_index, extended_name_length = 0;
5499 unsigned int maxname = abfd->xvec->ar_max_namelen;
5500
5501 hash_table =
5502 (unsigned int *) malloc (lst.hash_size * sizeof (unsigned int));
5503 if (hash_table == NULL && lst.hash_size != 0)
5504 {
5505 bfd_set_error (bfd_error_no_memory);
5506 goto error_return;
5507 }
5508 som_dict =
5509 (struct som_entry *) malloc (lst.module_count
5510 * sizeof (struct som_entry));
5511 if (som_dict == NULL && lst.module_count != 0)
5512 {
5513 bfd_set_error (bfd_error_no_memory);
5514 goto error_return;
5515 }
5516
5517 last_hash_entry =
5518 ((struct lst_symbol_record **)
5519 malloc (lst.hash_size * sizeof (struct lst_symbol_record *)));
5520 if (last_hash_entry == NULL && lst.hash_size != 0)
5521 {
5522 bfd_set_error (bfd_error_no_memory);
5523 goto error_return;
5524 }
5525
5526 /* Lots of fields are file positions relative to the start
5527 of the lst record. So save its location. */
5528 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5529
5530 /* Some initialization. */
5531 memset (hash_table, 0, 4 * lst.hash_size);
5532 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
5533 memset (last_hash_entry, 0,
5534 lst.hash_size * sizeof (struct lst_symbol_record *));
5535
5536 /* Symbols have som_index fields, so we have to keep track of the
5537 index of each SOM in the archive.
5538
5539 The SOM dictionary has (among other things) the absolute file
5540 position for the SOM which a particular dictionary entry
5541 describes. We have to compute that information as we iterate
5542 through the SOMs/symbols. */
5543 som_index = 0;
5544 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5545
5546 /* Yow! We have to know the size of the extended name table
5547 too. */
5548 for (curr_bfd = abfd->archive_head;
5549 curr_bfd != NULL;
5550 curr_bfd = curr_bfd->next)
5551 {
5552 CONST char *normal = normalize (curr_bfd->filename);
5553 unsigned int thislen;
5554
5555 if (!normal)
5556 {
5557 bfd_set_error (bfd_error_no_memory);
5558 return false;
5559 }
5560 thislen = strlen (normal);
5561 if (thislen > maxname)
5562 extended_name_length += thislen + 1;
5563 }
5564
5565 /* Make room for the archive header and the contents of the
5566 extended string table. */
5567 if (extended_name_length)
5568 curr_som_offset += extended_name_length + sizeof (struct ar_hdr);
5569
5570 /* Make sure we're properly aligned. */
5571 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5572
5573 /* FIXME should be done with buffers just like everything else... */
5574 lst_syms = malloc (nsyms * sizeof (struct lst_symbol_record));
5575 if (lst_syms == NULL && nsyms != 0)
5576 {
5577 bfd_set_error (bfd_error_no_memory);
5578 goto error_return;
5579 }
5580 strings = malloc (string_size);
5581 if (strings == NULL && string_size != 0)
5582 {
5583 bfd_set_error (bfd_error_no_memory);
5584 goto error_return;
5585 }
5586
5587 p = strings;
5588 curr_lst_sym = lst_syms;
5589
5590 curr_bfd = abfd->archive_head;
5591 while (curr_bfd != NULL)
5592 {
5593 unsigned int curr_count, i;
5594 som_symbol_type *sym;
5595
5596 /* Don't bother for non-SOM objects. */
5597 if (curr_bfd->format != bfd_object
5598 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5599 {
5600 curr_bfd = curr_bfd->next;
5601 continue;
5602 }
5603
5604 /* Make sure the symbol table has been read, then snag a pointer
5605 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5606 but doing so avoids allocating lots of extra memory. */
5607 if (som_slurp_symbol_table (curr_bfd) == false)
5608 goto error_return;
5609
5610 sym = obj_som_symtab (curr_bfd);
5611 curr_count = bfd_get_symcount (curr_bfd);
5612
5613 for (i = 0; i < curr_count; i++, sym++)
5614 {
5615 struct som_misc_symbol_info info;
5616
5617 /* Derive SOM information from the BFD symbol. */
5618 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5619
5620 /* Should we include this symbol? */
5621 if (info.symbol_type == ST_NULL
5622 || info.symbol_type == ST_SYM_EXT
5623 || info.symbol_type == ST_ARG_EXT)
5624 continue;
5625
5626 /* Only global symbols and unsatisfied commons. */
5627 if (info.symbol_scope != SS_UNIVERSAL
5628 && info.symbol_type != ST_STORAGE)
5629 continue;
5630
5631 /* Do no include undefined symbols. */
5632 if (bfd_is_und_section (sym->symbol.section))
5633 continue;
5634
5635 /* If this is the first symbol from this SOM, then update
5636 the SOM dictionary too. */
5637 if (som_dict[som_index].location == 0)
5638 {
5639 som_dict[som_index].location = curr_som_offset;
5640 som_dict[som_index].length = arelt_size (curr_bfd);
5641 }
5642
5643 /* Fill in the lst symbol record. */
5644 curr_lst_sym->hidden = 0;
5645 curr_lst_sym->secondary_def = 0;
5646 curr_lst_sym->symbol_type = info.symbol_type;
5647 curr_lst_sym->symbol_scope = info.symbol_scope;
5648 curr_lst_sym->check_level = 0;
5649 curr_lst_sym->must_qualify = 0;
5650 curr_lst_sym->initially_frozen = 0;
5651 curr_lst_sym->memory_resident = 0;
5652 curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section);
5653 curr_lst_sym->dup_common = 0;
5654 curr_lst_sym->xleast = 0;
5655 curr_lst_sym->arg_reloc = info.arg_reloc;
5656 curr_lst_sym->name.n_strx = p - strings + 4;
5657 curr_lst_sym->qualifier_name.n_strx = 0;
5658 curr_lst_sym->symbol_info = info.symbol_info;
5659 curr_lst_sym->symbol_value = info.symbol_value;
5660 curr_lst_sym->symbol_descriptor = 0;
5661 curr_lst_sym->reserved = 0;
5662 curr_lst_sym->som_index = som_index;
5663 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
5664 curr_lst_sym->next_entry = 0;
5665
5666 /* Insert into the hash table. */
5667 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
5668 {
5669 struct lst_symbol_record *tmp;
5670
5671 /* There is already something at the head of this hash chain,
5672 so tack this symbol onto the end of the chain. */
5673 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
5674 tmp->next_entry
5675 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5676 + lst.hash_size * 4
5677 + lst.module_count * sizeof (struct som_entry)
5678 + sizeof (struct lst_header);
5679 }
5680 else
5681 {
5682 /* First entry in this hash chain. */
5683 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
5684 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5685 + lst.hash_size * 4
5686 + lst.module_count * sizeof (struct som_entry)
5687 + sizeof (struct lst_header);
5688 }
5689
5690 /* Keep track of the last symbol we added to this chain so we can
5691 easily update its next_entry pointer. */
5692 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
5693 = curr_lst_sym;
5694
5695
5696 /* Update the string table. */
5697 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
5698 p += 4;
5699 strcpy (p, sym->symbol.name);
5700 p += strlen (sym->symbol.name) + 1;
5701 while ((int)p % 4)
5702 {
5703 bfd_put_8 (abfd, 0, p);
5704 p++;
5705 }
5706
5707 /* Head to the next symbol. */
5708 curr_lst_sym++;
5709 }
5710
5711 /* Keep track of where each SOM will finally reside; then look
5712 at the next BFD. */
5713 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
5714
5715 /* A particular object in the archive may have an odd length; the
5716 linker requires objects begin on an even boundary. So round
5717 up the current offset as necessary. */
5718 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5719 curr_bfd = curr_bfd->next;
5720 som_index++;
5721 }
5722
5723 /* Now scribble out the hash table. */
5724 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
5725 != lst.hash_size * 4)
5726 goto error_return;
5727
5728 /* Then the SOM dictionary. */
5729 if (bfd_write ((PTR) som_dict, lst.module_count,
5730 sizeof (struct som_entry), abfd)
5731 != lst.module_count * sizeof (struct som_entry))
5732 goto error_return;
5733
5734 /* The library symbols. */
5735 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
5736 != nsyms * sizeof (struct lst_symbol_record))
5737 goto error_return;
5738
5739 /* And finally the strings. */
5740 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
5741 goto error_return;
5742
5743 if (hash_table != NULL)
5744 free (hash_table);
5745 if (som_dict != NULL)
5746 free (som_dict);
5747 if (last_hash_entry != NULL)
5748 free (last_hash_entry);
5749 if (lst_syms != NULL)
5750 free (lst_syms);
5751 if (strings != NULL)
5752 free (strings);
5753 return true;
5754
5755 error_return:
5756 if (hash_table != NULL)
5757 free (hash_table);
5758 if (som_dict != NULL)
5759 free (som_dict);
5760 if (last_hash_entry != NULL)
5761 free (last_hash_entry);
5762 if (lst_syms != NULL)
5763 free (lst_syms);
5764 if (strings != NULL)
5765 free (strings);
5766
5767 return false;
5768 }
5769
5770 /* SOM almost uses the SVR4 style extended name support, but not
5771 quite. */
5772
5773 static boolean
5774 som_construct_extended_name_table (abfd, tabloc, tablen, name)
5775 bfd *abfd;
5776 char **tabloc;
5777 bfd_size_type *tablen;
5778 const char **name;
5779 {
5780 *name = "//";
5781 return _bfd_construct_extended_name_table (abfd, false, tabloc, tablen);
5782 }
5783
5784 /* Write out the LST for the archive.
5785
5786 You'll never believe this is really how armaps are handled in SOM... */
5787
5788 /*ARGSUSED*/
5789 static boolean
5790 som_write_armap (abfd, elength, map, orl_count, stridx)
5791 bfd *abfd;
5792 unsigned int elength;
5793 struct orl *map;
5794 unsigned int orl_count;
5795 int stridx;
5796 {
5797 bfd *curr_bfd;
5798 struct stat statbuf;
5799 unsigned int i, lst_size, nsyms, stringsize;
5800 struct ar_hdr hdr;
5801 struct lst_header lst;
5802 int *p;
5803
5804 /* We'll use this for the archive's date and mode later. */
5805 if (stat (abfd->filename, &statbuf) != 0)
5806 {
5807 bfd_set_error (bfd_error_system_call);
5808 return false;
5809 }
5810 /* Fudge factor. */
5811 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
5812
5813 /* Account for the lst header first. */
5814 lst_size = sizeof (struct lst_header);
5815
5816 /* Start building the LST header. */
5817 /* FIXME: Do we need to examine each element to determine the
5818 largest id number? */
5819 lst.system_id = CPU_PA_RISC1_0;
5820 lst.a_magic = LIBMAGIC;
5821 lst.version_id = VERSION_ID;
5822 lst.file_time.secs = 0;
5823 lst.file_time.nanosecs = 0;
5824
5825 lst.hash_loc = lst_size;
5826 lst.hash_size = SOM_LST_HASH_SIZE;
5827
5828 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
5829 lst_size += 4 * SOM_LST_HASH_SIZE;
5830
5831 /* We need to count the number of SOMs in this archive. */
5832 curr_bfd = abfd->archive_head;
5833 lst.module_count = 0;
5834 while (curr_bfd != NULL)
5835 {
5836 /* Only true SOM objects count. */
5837 if (curr_bfd->format == bfd_object
5838 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
5839 lst.module_count++;
5840 curr_bfd = curr_bfd->next;
5841 }
5842 lst.module_limit = lst.module_count;
5843 lst.dir_loc = lst_size;
5844 lst_size += sizeof (struct som_entry) * lst.module_count;
5845
5846 /* We don't support import/export tables, auxiliary headers,
5847 or free lists yet. Make the linker work a little harder
5848 to make our life easier. */
5849
5850 lst.export_loc = 0;
5851 lst.export_count = 0;
5852 lst.import_loc = 0;
5853 lst.aux_loc = 0;
5854 lst.aux_size = 0;
5855
5856 /* Count how many symbols we will have on the hash chains and the
5857 size of the associated string table. */
5858 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
5859 return false;
5860
5861 lst_size += sizeof (struct lst_symbol_record) * nsyms;
5862
5863 /* For the string table. One day we might actually use this info
5864 to avoid small seeks/reads when reading archives. */
5865 lst.string_loc = lst_size;
5866 lst.string_size = stringsize;
5867 lst_size += stringsize;
5868
5869 /* SOM ABI says this must be zero. */
5870 lst.free_list = 0;
5871 lst.file_end = lst_size;
5872
5873 /* Compute the checksum. Must happen after the entire lst header
5874 has filled in. */
5875 p = (int *)&lst;
5876 lst.checksum = 0;
5877 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
5878 lst.checksum ^= *p++;
5879
5880 sprintf (hdr.ar_name, "/ ");
5881 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
5882 sprintf (hdr.ar_uid, "%ld", (long) getuid ());
5883 sprintf (hdr.ar_gid, "%ld", (long) getgid ());
5884 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
5885 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
5886 hdr.ar_fmag[0] = '`';
5887 hdr.ar_fmag[1] = '\012';
5888
5889 /* Turn any nulls into spaces. */
5890 for (i = 0; i < sizeof (struct ar_hdr); i++)
5891 if (((char *) (&hdr))[i] == '\0')
5892 (((char *) (&hdr))[i]) = ' ';
5893
5894 /* Scribble out the ar header. */
5895 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
5896 != sizeof (struct ar_hdr))
5897 return false;
5898
5899 /* Now scribble out the lst header. */
5900 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
5901 != sizeof (struct lst_header))
5902 return false;
5903
5904 /* Build and write the armap. */
5905 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst) == false)
5906 return false;
5907
5908 /* Done. */
5909 return true;
5910 }
5911
5912 /* Free all information we have cached for this BFD. We can always
5913 read it again later if we need it. */
5914
5915 static boolean
5916 som_bfd_free_cached_info (abfd)
5917 bfd *abfd;
5918 {
5919 asection *o;
5920
5921 if (bfd_get_format (abfd) != bfd_object)
5922 return true;
5923
5924 #define FREE(x) if (x != NULL) { free (x); x = NULL; }
5925 /* Free the native string and symbol tables. */
5926 FREE (obj_som_symtab (abfd));
5927 FREE (obj_som_stringtab (abfd));
5928 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5929 {
5930 /* Free the native relocations. */
5931 o->reloc_count = -1;
5932 FREE (som_section_data (o)->reloc_stream);
5933 /* Free the generic relocations. */
5934 FREE (o->relocation);
5935 }
5936 #undef FREE
5937
5938 return true;
5939 }
5940
5941 /* End of miscellaneous support functions. */
5942
5943 /* Linker support functions. */
5944 static boolean
5945 som_bfd_link_split_section (abfd, sec)
5946 bfd *abfd;
5947 asection *sec;
5948 {
5949 return (som_is_subspace (sec) && sec->_raw_size > 240000);
5950 }
5951
5952 #define som_close_and_cleanup som_bfd_free_cached_info
5953
5954 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
5955 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
5956 #define som_truncate_arname bfd_bsd_truncate_arname
5957 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
5958 #define som_update_armap_timestamp bfd_true
5959 #define som_bfd_print_private_bfd_data _bfd_generic_bfd_print_private_bfd_data
5960
5961 #define som_get_lineno _bfd_nosymbols_get_lineno
5962 #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
5963 #define som_read_minisymbols _bfd_generic_read_minisymbols
5964 #define som_minisymbol_to_symbol _bfd_generic_minisymbol_to_symbol
5965
5966 #define som_bfd_get_relocated_section_contents \
5967 bfd_generic_get_relocated_section_contents
5968 #define som_bfd_relax_section bfd_generic_relax_section
5969 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
5970 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
5971 #define som_bfd_final_link _bfd_generic_final_link
5972
5973 const bfd_target som_vec =
5974 {
5975 "som", /* name */
5976 bfd_target_som_flavour,
5977 true, /* target byte order */
5978 true, /* target headers byte order */
5979 (HAS_RELOC | EXEC_P | /* object flags */
5980 HAS_LINENO | HAS_DEBUG |
5981 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
5982 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
5983 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
5984
5985 /* leading_symbol_char: is the first char of a user symbol
5986 predictable, and if so what is it */
5987 0,
5988 '/', /* ar_pad_char */
5989 14, /* ar_max_namelen */
5990 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5991 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5992 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
5993 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5994 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5995 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
5996 {_bfd_dummy_target,
5997 som_object_p, /* bfd_check_format */
5998 bfd_generic_archive_p,
5999 _bfd_dummy_target
6000 },
6001 {
6002 bfd_false,
6003 som_mkobject,
6004 _bfd_generic_mkarchive,
6005 bfd_false
6006 },
6007 {
6008 bfd_false,
6009 som_write_object_contents,
6010 _bfd_write_archive_contents,
6011 bfd_false,
6012 },
6013 #undef som
6014
6015 BFD_JUMP_TABLE_GENERIC (som),
6016 BFD_JUMP_TABLE_COPY (som),
6017 BFD_JUMP_TABLE_CORE (_bfd_nocore),
6018 BFD_JUMP_TABLE_ARCHIVE (som),
6019 BFD_JUMP_TABLE_SYMBOLS (som),
6020 BFD_JUMP_TABLE_RELOCS (som),
6021 BFD_JUMP_TABLE_WRITE (som),
6022 BFD_JUMP_TABLE_LINK (som),
6023 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
6024
6025 (PTR) 0
6026 };
6027
6028 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */