* som.c (som_begin_writing): Account for alignment needs of
[binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
3
4 Contributed by the Center for Software Science at the
5 University of Utah (pa-gdb-bugs@cs.utah.edu).
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23 #include "bfd.h"
24 #include "sysdep.h"
25
26 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)
27
28 #include "libbfd.h"
29 #include "som.h"
30
31 #include <stdio.h>
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/dir.h>
35 #include <signal.h>
36 #include <machine/reg.h>
37 #include <sys/user.h> /* After a.out.h */
38 #include <sys/file.h>
39 #include <errno.h>
40
41 /* Magic not defined in standard HP-UX header files until 8.0 */
42
43 #ifndef CPU_PA_RISC1_0
44 #define CPU_PA_RISC1_0 0x20B
45 #endif /* CPU_PA_RISC1_0 */
46
47 #ifndef CPU_PA_RISC1_1
48 #define CPU_PA_RISC1_1 0x210
49 #endif /* CPU_PA_RISC1_1 */
50
51 #ifndef _PA_RISC1_0_ID
52 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
53 #endif /* _PA_RISC1_0_ID */
54
55 #ifndef _PA_RISC1_1_ID
56 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
57 #endif /* _PA_RISC1_1_ID */
58
59 #ifndef _PA_RISC_MAXID
60 #define _PA_RISC_MAXID 0x2FF
61 #endif /* _PA_RISC_MAXID */
62
63 #ifndef _PA_RISC_ID
64 #define _PA_RISC_ID(__m_num) \
65 (((__m_num) == _PA_RISC1_0_ID) || \
66 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
67 #endif /* _PA_RISC_ID */
68
69 /* Size (in chars) of the temporary buffers used during fixup and string
70 table writes. */
71
72 #define SOM_TMP_BUFSIZE 8192
73
74 /* Size of the hash table in archives. */
75 #define SOM_LST_HASH_SIZE 31
76
77 /* Max number of SOMs to be found in an archive. */
78 #define SOM_LST_MODULE_LIMIT 1024
79
80 /* Generic alignment macro. */
81 #define SOM_ALIGN(val, alignment) \
82 (((val) + (alignment) - 1) & ~((alignment) - 1))
83
84 /* SOM allows any one of the four previous relocations to be reused
85 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
86 relocations are always a single byte, using a R_PREV_FIXUP instead
87 of some multi-byte relocation makes object files smaller.
88
89 Note one side effect of using a R_PREV_FIXUP is the relocation that
90 is being repeated moves to the front of the queue. */
91 struct reloc_queue
92 {
93 unsigned char *reloc;
94 unsigned int size;
95 } reloc_queue[4];
96
97 /* This fully describes the symbol types which may be attached to
98 an EXPORT or IMPORT directive. Only SOM uses this formation
99 (ELF has no need for it). */
100 typedef enum
101 {
102 SYMBOL_TYPE_UNKNOWN,
103 SYMBOL_TYPE_ABSOLUTE,
104 SYMBOL_TYPE_CODE,
105 SYMBOL_TYPE_DATA,
106 SYMBOL_TYPE_ENTRY,
107 SYMBOL_TYPE_MILLICODE,
108 SYMBOL_TYPE_PLABEL,
109 SYMBOL_TYPE_PRI_PROG,
110 SYMBOL_TYPE_SEC_PROG,
111 } pa_symbol_type;
112
113 struct section_to_type
114 {
115 char *section;
116 char type;
117 };
118
119 /* Assorted symbol information that needs to be derived from the BFD symbol
120 and/or the BFD backend private symbol data. */
121 struct som_misc_symbol_info
122 {
123 unsigned int symbol_type;
124 unsigned int symbol_scope;
125 unsigned int arg_reloc;
126 unsigned int symbol_info;
127 unsigned int symbol_value;
128 };
129
130 /* Forward declarations */
131
132 static boolean som_mkobject PARAMS ((bfd *));
133 static bfd_target * som_object_setup PARAMS ((bfd *,
134 struct header *,
135 struct som_exec_auxhdr *));
136 static boolean setup_sections PARAMS ((bfd *, struct header *));
137 static bfd_target * som_object_p PARAMS ((bfd *));
138 static boolean som_write_object_contents PARAMS ((bfd *));
139 static boolean som_slurp_string_table PARAMS ((bfd *));
140 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
141 static unsigned int som_get_symtab_upper_bound PARAMS ((bfd *));
142 static unsigned int som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
143 arelent **, asymbol **));
144 static unsigned int som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
145 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
146 arelent *, asection *,
147 asymbol **, boolean));
148 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
149 asymbol **, boolean));
150 static unsigned int som_get_symtab PARAMS ((bfd *, asymbol **));
151 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
152 static void som_print_symbol PARAMS ((bfd *, PTR,
153 asymbol *, bfd_print_symbol_type));
154 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
155 static boolean som_bfd_copy_private_section_data PARAMS ((bfd *, asection *,
156 bfd *, asection *));
157 static boolean som_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
158 static boolean som_bfd_is_local_label PARAMS ((bfd *, asymbol *));
159 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
160 file_ptr, bfd_size_type));
161 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
162 unsigned long));
163 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
164 asymbol **, bfd_vma,
165 CONST char **,
166 CONST char **,
167 unsigned int *));
168 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
169 static asection * som_section_from_subspace_index PARAMS ((bfd *,
170 unsigned int));
171 static int log2 PARAMS ((unsigned int));
172 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
173 asymbol *, PTR,
174 asection *, bfd *,
175 char **));
176 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
177 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
178 struct reloc_queue *));
179 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
180 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
181 struct reloc_queue *));
182 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
183 unsigned int,
184 struct reloc_queue *));
185
186 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
187 unsigned char *, unsigned int *,
188 struct reloc_queue *));
189 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
190 unsigned int *,
191 struct reloc_queue *));
192 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
193 unsigned int *,
194 arelent *, int,
195 struct reloc_queue *));
196 static unsigned long som_count_spaces PARAMS ((bfd *));
197 static unsigned long som_count_subspaces PARAMS ((bfd *));
198 static int compare_syms PARAMS ((asymbol **, asymbol **));
199 static unsigned long som_compute_checksum PARAMS ((bfd *));
200 static boolean som_prep_headers PARAMS ((bfd *));
201 static int som_sizeof_headers PARAMS ((bfd *, boolean));
202 static boolean som_write_headers PARAMS ((bfd *));
203 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
204 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
205 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
206 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
207 unsigned int *));
208 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
209 asymbol **, unsigned int,
210 unsigned *));
211 static boolean som_begin_writing PARAMS ((bfd *));
212 static const reloc_howto_type * som_bfd_reloc_type_lookup
213 PARAMS ((bfd_arch_info_type *, bfd_reloc_code_real_type));
214 static char som_section_type PARAMS ((const char *));
215 static int som_decode_symclass PARAMS ((asymbol *));
216 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
217 symindex *));
218
219 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
220 carsym **syms));
221 static boolean som_slurp_armap PARAMS ((bfd *));
222 static boolean som_write_armap PARAMS ((bfd *));
223 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
224 struct som_misc_symbol_info *));
225 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
226 unsigned int *));
227 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
228 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
229 unsigned int,
230 struct lst_header));
231 static CONST char *normalize PARAMS ((CONST char *file));
232 static boolean som_is_space PARAMS ((asection *));
233 static boolean som_is_subspace PARAMS ((asection *));
234 static boolean som_is_container PARAMS ((asection *, asection *));
235
236 /* Map SOM section names to POSIX/BSD single-character symbol types.
237
238 This table includes all the standard subspaces as defined in the
239 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
240 some reason was left out, and sections specific to embedded stabs. */
241
242 static const struct section_to_type stt[] = {
243 {"$TEXT$", 't'},
244 {"$SHLIB_INFO$", 't'},
245 {"$MILLICODE$", 't'},
246 {"$LIT$", 't'},
247 {"$CODE$", 't'},
248 {"$UNWIND_START$", 't'},
249 {"$UNWIND$", 't'},
250 {"$PRIVATE$", 'd'},
251 {"$PLT$", 'd'},
252 {"$SHLIB_DATA$", 'd'},
253 {"$DATA$", 'd'},
254 {"$SHORTDATA$", 'g'},
255 {"$DLT$", 'd'},
256 {"$GLOBAL$", 'g'},
257 {"$SHORTBSS$", 's'},
258 {"$BSS$", 'b'},
259 {"$GDB_STRINGS$", 'N'},
260 {"$GDB_SYMBOLS$", 'N'},
261 {0, 0}
262 };
263
264 /* About the relocation formatting table...
265
266 There are 256 entries in the table, one for each possible
267 relocation opcode available in SOM. We index the table by
268 the relocation opcode. The names and operations are those
269 defined by a.out_800 (4).
270
271 Right now this table is only used to count and perform minimal
272 processing on relocation streams so that they can be internalized
273 into BFD and symbolically printed by utilities. To make actual use
274 of them would be much more difficult, BFD's concept of relocations
275 is far too simple to handle SOM relocations. The basic assumption
276 that a relocation can be completely processed independent of other
277 relocations before an object file is written is invalid for SOM.
278
279 The SOM relocations are meant to be processed as a stream, they
280 specify copying of data from the input section to the output section
281 while possibly modifying the data in some manner. They also can
282 specify that a variable number of zeros or uninitialized data be
283 inserted on in the output segment at the current offset. Some
284 relocations specify that some previous relocation be re-applied at
285 the current location in the input/output sections. And finally a number
286 of relocations have effects on other sections (R_ENTRY, R_EXIT,
287 R_UNWIND_AUX and a variety of others). There isn't even enough room
288 in the BFD relocation data structure to store enough information to
289 perform all the relocations.
290
291 Each entry in the table has three fields.
292
293 The first entry is an index into this "class" of relocations. This
294 index can then be used as a variable within the relocation itself.
295
296 The second field is a format string which actually controls processing
297 of the relocation. It uses a simple postfix machine to do calculations
298 based on variables/constants found in the string and the relocation
299 stream.
300
301 The third field specifys whether or not this relocation may use
302 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
303 stored in the instruction.
304
305 Variables:
306
307 L = input space byte count
308 D = index into class of relocations
309 M = output space byte count
310 N = statement number (unused?)
311 O = stack operation
312 R = parameter relocation bits
313 S = symbol index
314 U = 64 bits of stack unwind and frame size info (we only keep 32 bits)
315 V = a literal constant (usually used in the next relocation)
316 P = a previous relocation
317
318 Lower case letters (starting with 'b') refer to following
319 bytes in the relocation stream. 'b' is the next 1 byte,
320 c is the next 2 bytes, d is the next 3 bytes, etc...
321 This is the variable part of the relocation entries that
322 makes our life a living hell.
323
324 numerical constants are also used in the format string. Note
325 the constants are represented in decimal.
326
327 '+', "*" and "=" represents the obvious postfix operators.
328 '<' represents a left shift.
329
330 Stack Operations:
331
332 Parameter Relocation Bits:
333
334 Unwind Entries:
335
336 Previous Relocations: The index field represents which in the queue
337 of 4 previous fixups should be re-applied.
338
339 Literal Constants: These are generally used to represent addend
340 parts of relocations when these constants are not stored in the
341 fields of the instructions themselves. For example the instruction
342 addil foo-$global$-0x1234 would use an override for "0x1234" rather
343 than storing it into the addil itself. */
344
345 struct fixup_format
346 {
347 int D;
348 char *format;
349 };
350
351 static const struct fixup_format som_fixup_formats[256] =
352 {
353 /* R_NO_RELOCATION */
354 0, "LD1+4*=", /* 0x00 */
355 1, "LD1+4*=", /* 0x01 */
356 2, "LD1+4*=", /* 0x02 */
357 3, "LD1+4*=", /* 0x03 */
358 4, "LD1+4*=", /* 0x04 */
359 5, "LD1+4*=", /* 0x05 */
360 6, "LD1+4*=", /* 0x06 */
361 7, "LD1+4*=", /* 0x07 */
362 8, "LD1+4*=", /* 0x08 */
363 9, "LD1+4*=", /* 0x09 */
364 10, "LD1+4*=", /* 0x0a */
365 11, "LD1+4*=", /* 0x0b */
366 12, "LD1+4*=", /* 0x0c */
367 13, "LD1+4*=", /* 0x0d */
368 14, "LD1+4*=", /* 0x0e */
369 15, "LD1+4*=", /* 0x0f */
370 16, "LD1+4*=", /* 0x10 */
371 17, "LD1+4*=", /* 0x11 */
372 18, "LD1+4*=", /* 0x12 */
373 19, "LD1+4*=", /* 0x13 */
374 20, "LD1+4*=", /* 0x14 */
375 21, "LD1+4*=", /* 0x15 */
376 22, "LD1+4*=", /* 0x16 */
377 23, "LD1+4*=", /* 0x17 */
378 0, "LD8<b+1+4*=", /* 0x18 */
379 1, "LD8<b+1+4*=", /* 0x19 */
380 2, "LD8<b+1+4*=", /* 0x1a */
381 3, "LD8<b+1+4*=", /* 0x1b */
382 0, "LD16<c+1+4*=", /* 0x1c */
383 1, "LD16<c+1+4*=", /* 0x1d */
384 2, "LD16<c+1+4*=", /* 0x1e */
385 0, "Ld1+=", /* 0x1f */
386 /* R_ZEROES */
387 0, "Lb1+4*=", /* 0x20 */
388 1, "Ld1+=", /* 0x21 */
389 /* R_UNINIT */
390 0, "Lb1+4*=", /* 0x22 */
391 1, "Ld1+=", /* 0x23 */
392 /* R_RELOCATION */
393 0, "L4=", /* 0x24 */
394 /* R_DATA_ONE_SYMBOL */
395 0, "L4=Sb=", /* 0x25 */
396 1, "L4=Sd=", /* 0x26 */
397 /* R_DATA_PLEBEL */
398 0, "L4=Sb=", /* 0x27 */
399 1, "L4=Sd=", /* 0x28 */
400 /* R_SPACE_REF */
401 0, "L4=", /* 0x29 */
402 /* R_REPEATED_INIT */
403 0, "L4=Mb1+4*=", /* 0x2a */
404 1, "Lb4*=Mb1+L*=", /* 0x2b */
405 2, "Lb4*=Md1+4*=", /* 0x2c */
406 3, "Ld1+=Me1+=", /* 0x2d */
407 /* R_RESERVED */
408 0, "", /* 0x2e */
409 0, "", /* 0x2f */
410 /* R_PCREL_CALL */
411 0, "L4=RD=Sb=", /* 0x30 */
412 1, "L4=RD=Sb=", /* 0x31 */
413 2, "L4=RD=Sb=", /* 0x32 */
414 3, "L4=RD=Sb=", /* 0x33 */
415 4, "L4=RD=Sb=", /* 0x34 */
416 5, "L4=RD=Sb=", /* 0x35 */
417 6, "L4=RD=Sb=", /* 0x36 */
418 7, "L4=RD=Sb=", /* 0x37 */
419 8, "L4=RD=Sb=", /* 0x38 */
420 9, "L4=RD=Sb=", /* 0x39 */
421 0, "L4=RD8<b+=Sb=",/* 0x3a */
422 1, "L4=RD8<b+=Sb=",/* 0x3b */
423 0, "L4=RD8<b+=Sd=",/* 0x3c */
424 1, "L4=RD8<b+=Sd=",/* 0x3d */
425 /* R_RESERVED */
426 0, "", /* 0x3e */
427 0, "", /* 0x3f */
428 /* R_ABS_CALL */
429 0, "L4=RD=Sb=", /* 0x40 */
430 1, "L4=RD=Sb=", /* 0x41 */
431 2, "L4=RD=Sb=", /* 0x42 */
432 3, "L4=RD=Sb=", /* 0x43 */
433 4, "L4=RD=Sb=", /* 0x44 */
434 5, "L4=RD=Sb=", /* 0x45 */
435 6, "L4=RD=Sb=", /* 0x46 */
436 7, "L4=RD=Sb=", /* 0x47 */
437 8, "L4=RD=Sb=", /* 0x48 */
438 9, "L4=RD=Sb=", /* 0x49 */
439 0, "L4=RD8<b+=Sb=",/* 0x4a */
440 1, "L4=RD8<b+=Sb=",/* 0x4b */
441 0, "L4=RD8<b+=Sd=",/* 0x4c */
442 1, "L4=RD8<b+=Sd=",/* 0x4d */
443 /* R_RESERVED */
444 0, "", /* 0x4e */
445 0, "", /* 0x4f */
446 /* R_DP_RELATIVE */
447 0, "L4=SD=", /* 0x50 */
448 1, "L4=SD=", /* 0x51 */
449 2, "L4=SD=", /* 0x52 */
450 3, "L4=SD=", /* 0x53 */
451 4, "L4=SD=", /* 0x54 */
452 5, "L4=SD=", /* 0x55 */
453 6, "L4=SD=", /* 0x56 */
454 7, "L4=SD=", /* 0x57 */
455 8, "L4=SD=", /* 0x58 */
456 9, "L4=SD=", /* 0x59 */
457 10, "L4=SD=", /* 0x5a */
458 11, "L4=SD=", /* 0x5b */
459 12, "L4=SD=", /* 0x5c */
460 13, "L4=SD=", /* 0x5d */
461 14, "L4=SD=", /* 0x5e */
462 15, "L4=SD=", /* 0x5f */
463 16, "L4=SD=", /* 0x60 */
464 17, "L4=SD=", /* 0x61 */
465 18, "L4=SD=", /* 0x62 */
466 19, "L4=SD=", /* 0x63 */
467 20, "L4=SD=", /* 0x64 */
468 21, "L4=SD=", /* 0x65 */
469 22, "L4=SD=", /* 0x66 */
470 23, "L4=SD=", /* 0x67 */
471 24, "L4=SD=", /* 0x68 */
472 25, "L4=SD=", /* 0x69 */
473 26, "L4=SD=", /* 0x6a */
474 27, "L4=SD=", /* 0x6b */
475 28, "L4=SD=", /* 0x6c */
476 29, "L4=SD=", /* 0x6d */
477 30, "L4=SD=", /* 0x6e */
478 31, "L4=SD=", /* 0x6f */
479 32, "L4=Sb=", /* 0x70 */
480 33, "L4=Sd=", /* 0x71 */
481 /* R_RESERVED */
482 0, "", /* 0x72 */
483 0, "", /* 0x73 */
484 0, "", /* 0x74 */
485 0, "", /* 0x75 */
486 0, "", /* 0x76 */
487 0, "", /* 0x77 */
488 /* R_DLT_REL */
489 0, "L4=Sb=", /* 0x78 */
490 1, "L4=Sd=", /* 0x79 */
491 /* R_RESERVED */
492 0, "", /* 0x7a */
493 0, "", /* 0x7b */
494 0, "", /* 0x7c */
495 0, "", /* 0x7d */
496 0, "", /* 0x7e */
497 0, "", /* 0x7f */
498 /* R_CODE_ONE_SYMBOL */
499 0, "L4=SD=", /* 0x80 */
500 1, "L4=SD=", /* 0x81 */
501 2, "L4=SD=", /* 0x82 */
502 3, "L4=SD=", /* 0x83 */
503 4, "L4=SD=", /* 0x84 */
504 5, "L4=SD=", /* 0x85 */
505 6, "L4=SD=", /* 0x86 */
506 7, "L4=SD=", /* 0x87 */
507 8, "L4=SD=", /* 0x88 */
508 9, "L4=SD=", /* 0x89 */
509 10, "L4=SD=", /* 0x8q */
510 11, "L4=SD=", /* 0x8b */
511 12, "L4=SD=", /* 0x8c */
512 13, "L4=SD=", /* 0x8d */
513 14, "L4=SD=", /* 0x8e */
514 15, "L4=SD=", /* 0x8f */
515 16, "L4=SD=", /* 0x90 */
516 17, "L4=SD=", /* 0x91 */
517 18, "L4=SD=", /* 0x92 */
518 19, "L4=SD=", /* 0x93 */
519 20, "L4=SD=", /* 0x94 */
520 21, "L4=SD=", /* 0x95 */
521 22, "L4=SD=", /* 0x96 */
522 23, "L4=SD=", /* 0x97 */
523 24, "L4=SD=", /* 0x98 */
524 25, "L4=SD=", /* 0x99 */
525 26, "L4=SD=", /* 0x9a */
526 27, "L4=SD=", /* 0x9b */
527 28, "L4=SD=", /* 0x9c */
528 29, "L4=SD=", /* 0x9d */
529 30, "L4=SD=", /* 0x9e */
530 31, "L4=SD=", /* 0x9f */
531 32, "L4=Sb=", /* 0xa0 */
532 33, "L4=Sd=", /* 0xa1 */
533 /* R_RESERVED */
534 0, "", /* 0xa2 */
535 0, "", /* 0xa3 */
536 0, "", /* 0xa4 */
537 0, "", /* 0xa5 */
538 0, "", /* 0xa6 */
539 0, "", /* 0xa7 */
540 0, "", /* 0xa8 */
541 0, "", /* 0xa9 */
542 0, "", /* 0xaa */
543 0, "", /* 0xab */
544 0, "", /* 0xac */
545 0, "", /* 0xad */
546 /* R_MILLI_REL */
547 0, "L4=Sb=", /* 0xae */
548 1, "L4=Sd=", /* 0xaf */
549 /* R_CODE_PLABEL */
550 0, "L4=Sb=", /* 0xb0 */
551 1, "L4=Sd=", /* 0xb1 */
552 /* R_BREAKPOINT */
553 0, "L4=", /* 0xb2 */
554 /* R_ENTRY */
555 0, "Ui=", /* 0xb3 */
556 1, "Uf=", /* 0xb4 */
557 /* R_ALT_ENTRY */
558 0, "", /* 0xb5 */
559 /* R_EXIT */
560 0, "", /* 0xb6 */
561 /* R_BEGIN_TRY */
562 0, "", /* 0xb7 */
563 /* R_END_TRY */
564 0, "R0=", /* 0xb8 */
565 1, "Rb4*=", /* 0xb9 */
566 2, "Rd4*=", /* 0xba */
567 /* R_BEGIN_BRTAB */
568 0, "", /* 0xbb */
569 /* R_END_BRTAB */
570 0, "", /* 0xbc */
571 /* R_STATEMENT */
572 0, "Nb=", /* 0xbd */
573 1, "Nc=", /* 0xbe */
574 2, "Nd=", /* 0xbf */
575 /* R_DATA_EXPR */
576 0, "L4=", /* 0xc0 */
577 /* R_CODE_EXPR */
578 0, "L4=", /* 0xc1 */
579 /* R_FSEL */
580 0, "", /* 0xc2 */
581 /* R_LSEL */
582 0, "", /* 0xc3 */
583 /* R_RSEL */
584 0, "", /* 0xc4 */
585 /* R_N_MODE */
586 0, "", /* 0xc5 */
587 /* R_S_MODE */
588 0, "", /* 0xc6 */
589 /* R_D_MODE */
590 0, "", /* 0xc7 */
591 /* R_R_MODE */
592 0, "", /* 0xc8 */
593 /* R_DATA_OVERRIDE */
594 0, "V0=", /* 0xc9 */
595 1, "Vb=", /* 0xca */
596 2, "Vc=", /* 0xcb */
597 3, "Vd=", /* 0xcc */
598 4, "Ve=", /* 0xcd */
599 /* R_TRANSLATED */
600 0, "", /* 0xce */
601 /* R_RESERVED */
602 0, "", /* 0xcf */
603 /* R_COMP1 */
604 0, "Ob=", /* 0xd0 */
605 /* R_COMP2 */
606 0, "Ob=Sd=", /* 0xd1 */
607 /* R_COMP3 */
608 0, "Ob=Ve=", /* 0xd2 */
609 /* R_PREV_FIXUP */
610 0, "P", /* 0xd3 */
611 1, "P", /* 0xd4 */
612 2, "P", /* 0xd5 */
613 3, "P", /* 0xd6 */
614 /* R_RESERVED */
615 0, "", /* 0xd7 */
616 0, "", /* 0xd8 */
617 0, "", /* 0xd9 */
618 0, "", /* 0xda */
619 0, "", /* 0xdb */
620 0, "", /* 0xdc */
621 0, "", /* 0xdd */
622 0, "", /* 0xde */
623 0, "", /* 0xdf */
624 0, "", /* 0xe0 */
625 0, "", /* 0xe1 */
626 0, "", /* 0xe2 */
627 0, "", /* 0xe3 */
628 0, "", /* 0xe4 */
629 0, "", /* 0xe5 */
630 0, "", /* 0xe6 */
631 0, "", /* 0xe7 */
632 0, "", /* 0xe8 */
633 0, "", /* 0xe9 */
634 0, "", /* 0xea */
635 0, "", /* 0xeb */
636 0, "", /* 0xec */
637 0, "", /* 0xed */
638 0, "", /* 0xee */
639 0, "", /* 0xef */
640 0, "", /* 0xf0 */
641 0, "", /* 0xf1 */
642 0, "", /* 0xf2 */
643 0, "", /* 0xf3 */
644 0, "", /* 0xf4 */
645 0, "", /* 0xf5 */
646 0, "", /* 0xf6 */
647 0, "", /* 0xf7 */
648 0, "", /* 0xf8 */
649 0, "", /* 0xf9 */
650 0, "", /* 0xfa */
651 0, "", /* 0xfb */
652 0, "", /* 0xfc */
653 0, "", /* 0xfd */
654 0, "", /* 0xfe */
655 0, "", /* 0xff */
656 };
657
658 static const int comp1_opcodes[] =
659 {
660 0x00,
661 0x40,
662 0x41,
663 0x42,
664 0x43,
665 0x44,
666 0x45,
667 0x46,
668 0x47,
669 0x48,
670 0x49,
671 0x4a,
672 0x4b,
673 0x60,
674 0x80,
675 0xa0,
676 0xc0,
677 -1
678 };
679
680 static const int comp2_opcodes[] =
681 {
682 0x00,
683 0x80,
684 0x82,
685 0xc0,
686 -1
687 };
688
689 static const int comp3_opcodes[] =
690 {
691 0x00,
692 0x02,
693 -1
694 };
695
696 /* These apparently are not in older versions of hpux reloc.h. */
697 #ifndef R_DLT_REL
698 #define R_DLT_REL 0x78
699 #endif
700
701 #ifndef R_AUX_UNWIND
702 #define R_AUX_UNWIND 0xcf
703 #endif
704
705 #ifndef R_SEC_STMT
706 #define R_SEC_STMT 0xd7
707 #endif
708
709 static reloc_howto_type som_hppa_howto_table[] =
710 {
711 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
712 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
713 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
714 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
715 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
716 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
717 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
718 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
719 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
720 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
721 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
722 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
723 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
724 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
725 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
726 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
727 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
728 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
729 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
730 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
731 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
732 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
733 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
734 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
735 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
736 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
737 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
738 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
739 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
740 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
741 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
742 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
743 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
744 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
745 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
746 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
747 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
748 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
749 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
750 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
751 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
752 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
753 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
754 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
755 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
756 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
757 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
758 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
759 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
760 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
761 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
762 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
763 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
764 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
765 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
766 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
767 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
768 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
769 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
770 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
771 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
772 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
773 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
774 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
775 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
776 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
777 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
778 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
779 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
780 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
781 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
782 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
783 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
784 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
785 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
786 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
787 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
788 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
789 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
790 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
791 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
792 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
793 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
794 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
795 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
796 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
797 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
798 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
799 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
800 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
801 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
802 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
803 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
804 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
805 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
806 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
807 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
808 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
809 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
810 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
811 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
812 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
813 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
814 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
815 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
816 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
817 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
818 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
819 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
820 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
821 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
822 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
823 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
824 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
825 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
826 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
827 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
828 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
829 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
830 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
831 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
832 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
833 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
834 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
835 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
836 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
837 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
838 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
839 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
840 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
841 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
842 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
843 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
844 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
845 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
846 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
847 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
848 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
849 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
850 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
851 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
852 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
853 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
854 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
855 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
856 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
857 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
858 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
859 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
860 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
861 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
862 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
863 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
864 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
865 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
866 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
867 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
868 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
869 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
870 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
871 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
872 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
873 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
874 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
875 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
876 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
877 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
878 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
879 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
880 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
881 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
882 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
883 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
884 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
885 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
886 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
887 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
888 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
889 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
890 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
891 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
892 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
893 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
894 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
895 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
896 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
897 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
898 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
899 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
900 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
901 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
902 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
903 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
904 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
905 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
906 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
907 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
908 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
909 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
910 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
911 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
912 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
913 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
914 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
915 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
916 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
917 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
918 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
919 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
920 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
921 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
922 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
923 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
924 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
925 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
926 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
927 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
928 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
929 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
930 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
931 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
932 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
933 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
934 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
935 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
936 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
937 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
938 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
939 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
940 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
941 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
942 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
943 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
944 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
945 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
946 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
947 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
948 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
949 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
950 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
951 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
952 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
953 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
954 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
955 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
956 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
957 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
958 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
959 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
960 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
961 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
962 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
963 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
964 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
965 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
966 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
967
968 /* Initialize the SOM relocation queue. By definition the queue holds
969 the last four multibyte fixups. */
970
971 static void
972 som_initialize_reloc_queue (queue)
973 struct reloc_queue *queue;
974 {
975 queue[0].reloc = NULL;
976 queue[0].size = 0;
977 queue[1].reloc = NULL;
978 queue[1].size = 0;
979 queue[2].reloc = NULL;
980 queue[2].size = 0;
981 queue[3].reloc = NULL;
982 queue[3].size = 0;
983 }
984
985 /* Insert a new relocation into the relocation queue. */
986
987 static void
988 som_reloc_queue_insert (p, size, queue)
989 unsigned char *p;
990 unsigned int size;
991 struct reloc_queue *queue;
992 {
993 queue[3].reloc = queue[2].reloc;
994 queue[3].size = queue[2].size;
995 queue[2].reloc = queue[1].reloc;
996 queue[2].size = queue[1].size;
997 queue[1].reloc = queue[0].reloc;
998 queue[1].size = queue[0].size;
999 queue[0].reloc = p;
1000 queue[0].size = size;
1001 }
1002
1003 /* When an entry in the relocation queue is reused, the entry moves
1004 to the front of the queue. */
1005
1006 static void
1007 som_reloc_queue_fix (queue, index)
1008 struct reloc_queue *queue;
1009 unsigned int index;
1010 {
1011 if (index == 0)
1012 return;
1013
1014 if (index == 1)
1015 {
1016 unsigned char *tmp1 = queue[0].reloc;
1017 unsigned int tmp2 = queue[0].size;
1018 queue[0].reloc = queue[1].reloc;
1019 queue[0].size = queue[1].size;
1020 queue[1].reloc = tmp1;
1021 queue[1].size = tmp2;
1022 return;
1023 }
1024
1025 if (index == 2)
1026 {
1027 unsigned char *tmp1 = queue[0].reloc;
1028 unsigned int tmp2 = queue[0].size;
1029 queue[0].reloc = queue[2].reloc;
1030 queue[0].size = queue[2].size;
1031 queue[2].reloc = queue[1].reloc;
1032 queue[2].size = queue[1].size;
1033 queue[1].reloc = tmp1;
1034 queue[1].size = tmp2;
1035 return;
1036 }
1037
1038 if (index == 3)
1039 {
1040 unsigned char *tmp1 = queue[0].reloc;
1041 unsigned int tmp2 = queue[0].size;
1042 queue[0].reloc = queue[3].reloc;
1043 queue[0].size = queue[3].size;
1044 queue[3].reloc = queue[2].reloc;
1045 queue[3].size = queue[2].size;
1046 queue[2].reloc = queue[1].reloc;
1047 queue[2].size = queue[1].size;
1048 queue[1].reloc = tmp1;
1049 queue[1].size = tmp2;
1050 return;
1051 }
1052 abort();
1053 }
1054
1055 /* Search for a particular relocation in the relocation queue. */
1056
1057 static int
1058 som_reloc_queue_find (p, size, queue)
1059 unsigned char *p;
1060 unsigned int size;
1061 struct reloc_queue *queue;
1062 {
1063 if (queue[0].reloc && !bcmp (p, queue[0].reloc, size)
1064 && size == queue[0].size)
1065 return 0;
1066 if (queue[1].reloc && !bcmp (p, queue[1].reloc, size)
1067 && size == queue[1].size)
1068 return 1;
1069 if (queue[2].reloc && !bcmp (p, queue[2].reloc, size)
1070 && size == queue[2].size)
1071 return 2;
1072 if (queue[3].reloc && !bcmp (p, queue[3].reloc, size)
1073 && size == queue[3].size)
1074 return 3;
1075 return -1;
1076 }
1077
1078 static unsigned char *
1079 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1080 bfd *abfd;
1081 int *subspace_reloc_sizep;
1082 unsigned char *p;
1083 unsigned int size;
1084 struct reloc_queue *queue;
1085 {
1086 int queue_index = som_reloc_queue_find (p, size, queue);
1087
1088 if (queue_index != -1)
1089 {
1090 /* Found this in a previous fixup. Undo the fixup we
1091 just built and use R_PREV_FIXUP instead. We saved
1092 a total of size - 1 bytes in the fixup stream. */
1093 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1094 p += 1;
1095 *subspace_reloc_sizep += 1;
1096 som_reloc_queue_fix (queue, queue_index);
1097 }
1098 else
1099 {
1100 som_reloc_queue_insert (p, size, queue);
1101 *subspace_reloc_sizep += size;
1102 p += size;
1103 }
1104 return p;
1105 }
1106
1107 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1108 bytes without any relocation. Update the size of the subspace
1109 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1110 current pointer into the relocation stream. */
1111
1112 static unsigned char *
1113 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1114 bfd *abfd;
1115 unsigned int skip;
1116 unsigned char *p;
1117 unsigned int *subspace_reloc_sizep;
1118 struct reloc_queue *queue;
1119 {
1120 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1121 then R_PREV_FIXUPs to get the difference down to a
1122 reasonable size. */
1123 if (skip >= 0x1000000)
1124 {
1125 skip -= 0x1000000;
1126 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1127 bfd_put_8 (abfd, 0xff, p + 1);
1128 bfd_put_16 (abfd, 0xffff, p + 2);
1129 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1130 while (skip >= 0x1000000)
1131 {
1132 skip -= 0x1000000;
1133 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1134 p++;
1135 *subspace_reloc_sizep += 1;
1136 /* No need to adjust queue here since we are repeating the
1137 most recent fixup. */
1138 }
1139 }
1140
1141 /* The difference must be less than 0x1000000. Use one
1142 more R_NO_RELOCATION entry to get to the right difference. */
1143 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1144 {
1145 /* Difference can be handled in a simple single-byte
1146 R_NO_RELOCATION entry. */
1147 if (skip <= 0x60)
1148 {
1149 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1150 *subspace_reloc_sizep += 1;
1151 p++;
1152 }
1153 /* Handle it with a two byte R_NO_RELOCATION entry. */
1154 else if (skip <= 0x1000)
1155 {
1156 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1157 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1158 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1159 }
1160 /* Handle it with a three byte R_NO_RELOCATION entry. */
1161 else
1162 {
1163 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1164 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1165 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1166 }
1167 }
1168 /* Ugh. Punt and use a 4 byte entry. */
1169 else if (skip > 0)
1170 {
1171 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1172 bfd_put_8 (abfd, skip >> 16, p + 1);
1173 bfd_put_16 (abfd, skip, p + 2);
1174 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1175 }
1176 return p;
1177 }
1178
1179 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1180 from a BFD relocation. Update the size of the subspace relocation
1181 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1182 into the relocation stream. */
1183
1184 static unsigned char *
1185 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1186 bfd *abfd;
1187 int addend;
1188 unsigned char *p;
1189 unsigned int *subspace_reloc_sizep;
1190 struct reloc_queue *queue;
1191 {
1192 if ((unsigned)(addend) + 0x80 < 0x100)
1193 {
1194 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1195 bfd_put_8 (abfd, addend, p + 1);
1196 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1197 }
1198 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1199 {
1200 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1201 bfd_put_16 (abfd, addend, p + 1);
1202 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1203 }
1204 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1205 {
1206 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1207 bfd_put_8 (abfd, addend >> 16, p + 1);
1208 bfd_put_16 (abfd, addend, p + 2);
1209 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1210 }
1211 else
1212 {
1213 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1214 bfd_put_32 (abfd, addend, p + 1);
1215 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1216 }
1217 return p;
1218 }
1219
1220 /* Handle a single function call relocation. */
1221
1222 static unsigned char *
1223 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1224 bfd *abfd;
1225 unsigned char *p;
1226 unsigned int *subspace_reloc_sizep;
1227 arelent *bfd_reloc;
1228 int sym_num;
1229 struct reloc_queue *queue;
1230 {
1231 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1232 int rtn_bits = arg_bits & 0x3;
1233 int type, done = 0;
1234
1235 /* You'll never believe all this is necessary to handle relocations
1236 for function calls. Having to compute and pack the argument
1237 relocation bits is the real nightmare.
1238
1239 If you're interested in how this works, just forget it. You really
1240 do not want to know about this braindamage. */
1241
1242 /* First see if this can be done with a "simple" relocation. Simple
1243 relocations have a symbol number < 0x100 and have simple encodings
1244 of argument relocations. */
1245
1246 if (sym_num < 0x100)
1247 {
1248 switch (arg_bits)
1249 {
1250 case 0:
1251 case 1:
1252 type = 0;
1253 break;
1254 case 1 << 8:
1255 case 1 << 8 | 1:
1256 type = 1;
1257 break;
1258 case 1 << 8 | 1 << 6:
1259 case 1 << 8 | 1 << 6 | 1:
1260 type = 2;
1261 break;
1262 case 1 << 8 | 1 << 6 | 1 << 4:
1263 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1264 type = 3;
1265 break;
1266 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1267 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1268 type = 4;
1269 break;
1270 default:
1271 /* Not one of the easy encodings. This will have to be
1272 handled by the more complex code below. */
1273 type = -1;
1274 break;
1275 }
1276 if (type != -1)
1277 {
1278 /* Account for the return value too. */
1279 if (rtn_bits)
1280 type += 5;
1281
1282 /* Emit a 2 byte relocation. Then see if it can be handled
1283 with a relocation which is already in the relocation queue. */
1284 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1285 bfd_put_8 (abfd, sym_num, p + 1);
1286 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1287 done = 1;
1288 }
1289 }
1290
1291 /* If this could not be handled with a simple relocation, then do a hard
1292 one. Hard relocations occur if the symbol number was too high or if
1293 the encoding of argument relocation bits is too complex. */
1294 if (! done)
1295 {
1296 /* Don't ask about these magic sequences. I took them straight
1297 from gas-1.36 which took them from the a.out man page. */
1298 type = rtn_bits;
1299 if ((arg_bits >> 6 & 0xf) == 0xe)
1300 type += 9 * 40;
1301 else
1302 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1303 if ((arg_bits >> 2 & 0xf) == 0xe)
1304 type += 9 * 4;
1305 else
1306 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1307
1308 /* Output the first two bytes of the relocation. These describe
1309 the length of the relocation and encoding style. */
1310 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1311 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1312 p);
1313 bfd_put_8 (abfd, type, p + 1);
1314
1315 /* Now output the symbol index and see if this bizarre relocation
1316 just happened to be in the relocation queue. */
1317 if (sym_num < 0x100)
1318 {
1319 bfd_put_8 (abfd, sym_num, p + 2);
1320 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1321 }
1322 else
1323 {
1324 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1325 bfd_put_16 (abfd, sym_num, p + 3);
1326 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1327 }
1328 }
1329 return p;
1330 }
1331
1332
1333 /* Return the logarithm of X, base 2, considering X unsigned.
1334 Abort -1 if X is not a power or two or is zero. */
1335
1336 static int
1337 log2 (x)
1338 unsigned int x;
1339 {
1340 int log = 0;
1341
1342 /* Test for 0 or a power of 2. */
1343 if (x == 0 || x != (x & -x))
1344 return -1;
1345
1346 while ((x >>= 1) != 0)
1347 log++;
1348 return log;
1349 }
1350
1351 static bfd_reloc_status_type
1352 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1353 input_section, output_bfd, error_message)
1354 bfd *abfd;
1355 arelent *reloc_entry;
1356 asymbol *symbol_in;
1357 PTR data;
1358 asection *input_section;
1359 bfd *output_bfd;
1360 char **error_message;
1361 {
1362 if (output_bfd)
1363 {
1364 reloc_entry->address += input_section->output_offset;
1365 return bfd_reloc_ok;
1366 }
1367 return bfd_reloc_ok;
1368 }
1369
1370 /* Given a generic HPPA relocation type, the instruction format,
1371 and a field selector, return one or more appropriate SOM relocations. */
1372
1373 int **
1374 hppa_som_gen_reloc_type (abfd, base_type, format, field)
1375 bfd *abfd;
1376 int base_type;
1377 int format;
1378 enum hppa_reloc_field_selector_type_alt field;
1379 {
1380 int *final_type, **final_types;
1381
1382 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 3);
1383 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1384 if (!final_types || !final_type)
1385 {
1386 bfd_set_error (bfd_error_no_memory);
1387 return NULL;
1388 }
1389
1390 /* The field selector may require additional relocations to be
1391 generated. It's impossible to know at this moment if additional
1392 relocations will be needed, so we make them. The code to actually
1393 write the relocation/fixup stream is responsible for removing
1394 any redundant relocations. */
1395 switch (field)
1396 {
1397 case e_fsel:
1398 case e_psel:
1399 case e_lpsel:
1400 case e_rpsel:
1401 final_types[0] = final_type;
1402 final_types[1] = NULL;
1403 final_types[2] = NULL;
1404 *final_type = base_type;
1405 break;
1406
1407 case e_tsel:
1408 case e_ltsel:
1409 case e_rtsel:
1410 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1411 if (!final_types[0])
1412 {
1413 bfd_set_error (bfd_error_no_memory);
1414 return NULL;
1415 }
1416 if (field == e_tsel)
1417 *final_types[0] = R_FSEL;
1418 else if (field == e_ltsel)
1419 *final_types[0] = R_LSEL;
1420 else
1421 *final_types[0] = R_RSEL;
1422 final_types[1] = final_type;
1423 final_types[2] = NULL;
1424 *final_type = base_type;
1425 break;
1426
1427 case e_lssel:
1428 case e_rssel:
1429 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1430 if (!final_types[0])
1431 {
1432 bfd_set_error (bfd_error_no_memory);
1433 return NULL;
1434 }
1435 *final_types[0] = R_S_MODE;
1436 final_types[1] = final_type;
1437 final_types[2] = NULL;
1438 *final_type = base_type;
1439 break;
1440
1441 case e_lsel:
1442 case e_rsel:
1443 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1444 if (!final_types[0])
1445 {
1446 bfd_set_error (bfd_error_no_memory);
1447 return NULL;
1448 }
1449 *final_types[0] = R_N_MODE;
1450 final_types[1] = final_type;
1451 final_types[2] = NULL;
1452 *final_type = base_type;
1453 break;
1454
1455 case e_ldsel:
1456 case e_rdsel:
1457 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1458 if (!final_types[0])
1459 {
1460 bfd_set_error (bfd_error_no_memory);
1461 return NULL;
1462 }
1463 *final_types[0] = R_D_MODE;
1464 final_types[1] = final_type;
1465 final_types[2] = NULL;
1466 *final_type = base_type;
1467 break;
1468
1469 case e_lrsel:
1470 case e_rrsel:
1471 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1472 if (!final_types[0])
1473 {
1474 bfd_set_error (bfd_error_no_memory);
1475 return NULL;
1476 }
1477 *final_types[0] = R_R_MODE;
1478 final_types[1] = final_type;
1479 final_types[2] = NULL;
1480 *final_type = base_type;
1481 break;
1482 }
1483
1484 switch (base_type)
1485 {
1486 case R_HPPA:
1487 /* PLABELs get their own relocation type. */
1488 if (field == e_psel
1489 || field == e_lpsel
1490 || field == e_rpsel)
1491 {
1492 /* A PLABEL relocation that has a size of 32 bits must
1493 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1494 if (format == 32)
1495 *final_type = R_DATA_PLABEL;
1496 else
1497 *final_type = R_CODE_PLABEL;
1498 }
1499 /* PIC stuff. */
1500 else if (field == e_tsel
1501 || field == e_ltsel
1502 || field == e_rtsel)
1503 *final_type = R_DLT_REL;
1504 /* A relocation in the data space is always a full 32bits. */
1505 else if (format == 32)
1506 *final_type = R_DATA_ONE_SYMBOL;
1507
1508 break;
1509
1510 case R_HPPA_GOTOFF:
1511 /* More PLABEL special cases. */
1512 if (field == e_psel
1513 || field == e_lpsel
1514 || field == e_rpsel)
1515 *final_type = R_DATA_PLABEL;
1516 break;
1517
1518 case R_HPPA_NONE:
1519 case R_HPPA_ABS_CALL:
1520 case R_HPPA_PCREL_CALL:
1521 case R_HPPA_COMPLEX:
1522 case R_HPPA_COMPLEX_PCREL_CALL:
1523 case R_HPPA_COMPLEX_ABS_CALL:
1524 /* Right now we can default all these. */
1525 break;
1526 }
1527 return final_types;
1528 }
1529
1530 /* Return the address of the correct entry in the PA SOM relocation
1531 howto table. */
1532
1533 static const reloc_howto_type *
1534 som_bfd_reloc_type_lookup (arch, code)
1535 bfd_arch_info_type *arch;
1536 bfd_reloc_code_real_type code;
1537 {
1538 if ((int) code < (int) R_NO_RELOCATION + 255)
1539 {
1540 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1541 return &som_hppa_howto_table[(int) code];
1542 }
1543
1544 return (reloc_howto_type *) 0;
1545 }
1546
1547 /* Perform some initialization for an object. Save results of this
1548 initialization in the BFD. */
1549
1550 static bfd_target *
1551 som_object_setup (abfd, file_hdrp, aux_hdrp)
1552 bfd *abfd;
1553 struct header *file_hdrp;
1554 struct som_exec_auxhdr *aux_hdrp;
1555 {
1556 /* som_mkobject will set bfd_error if som_mkobject fails. */
1557 if (som_mkobject (abfd) != true)
1558 return 0;
1559
1560 /* Set BFD flags based on what information is available in the SOM. */
1561 abfd->flags = NO_FLAGS;
1562 if (file_hdrp->symbol_total)
1563 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1564
1565 switch (file_hdrp->a_magic)
1566 {
1567 case DEMAND_MAGIC:
1568 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1569 break;
1570 case SHARE_MAGIC:
1571 abfd->flags |= (WP_TEXT | EXEC_P);
1572 break;
1573 case EXEC_MAGIC:
1574 abfd->flags |= (EXEC_P);
1575 break;
1576 case RELOC_MAGIC:
1577 abfd->flags |= HAS_RELOC;
1578 break;
1579 default:
1580 break;
1581 }
1582
1583 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1584 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 0);
1585 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1586
1587 /* Initialize the saved symbol table and string table to NULL.
1588 Save important offsets and sizes from the SOM header into
1589 the BFD. */
1590 obj_som_stringtab (abfd) = (char *) NULL;
1591 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1592 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1593 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1594 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1595 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
1596
1597 obj_som_exec_data (abfd) = (struct som_exec_data *)
1598 bfd_zalloc (abfd, sizeof (struct som_exec_data ));
1599 if (obj_som_exec_data (abfd) == NULL)
1600 {
1601 bfd_set_error (bfd_error_no_memory);
1602 return NULL;
1603 }
1604
1605 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1606 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1607 return abfd->xvec;
1608 }
1609
1610 /* Convert all of the space and subspace info into BFD sections. Each space
1611 contains a number of subspaces, which in turn describe the mapping between
1612 regions of the exec file, and the address space that the program runs in.
1613 BFD sections which correspond to spaces will overlap the sections for the
1614 associated subspaces. */
1615
1616 static boolean
1617 setup_sections (abfd, file_hdr)
1618 bfd *abfd;
1619 struct header *file_hdr;
1620 {
1621 char *space_strings;
1622 int space_index;
1623 unsigned int total_subspaces = 0;
1624
1625 /* First, read in space names */
1626
1627 space_strings = malloc (file_hdr->space_strings_size);
1628 if (!space_strings && file_hdr->space_strings_size != 0)
1629 {
1630 bfd_set_error (bfd_error_no_memory);
1631 goto error_return;
1632 }
1633
1634 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
1635 goto error_return;
1636 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1637 != file_hdr->space_strings_size)
1638 goto error_return;
1639
1640 /* Loop over all of the space dictionaries, building up sections */
1641 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1642 {
1643 struct space_dictionary_record space;
1644 struct subspace_dictionary_record subspace, save_subspace;
1645 int subspace_index;
1646 asection *space_asect;
1647 char *newname;
1648
1649 /* Read the space dictionary element */
1650 if (bfd_seek (abfd, file_hdr->space_location
1651 + space_index * sizeof space, SEEK_SET) < 0)
1652 goto error_return;
1653 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1654 goto error_return;
1655
1656 /* Setup the space name string */
1657 space.name.n_name = space.name.n_strx + space_strings;
1658
1659 /* Make a section out of it */
1660 newname = bfd_alloc (abfd, strlen (space.name.n_name) + 1);
1661 if (!newname)
1662 goto error_return;
1663 strcpy (newname, space.name.n_name);
1664
1665 space_asect = bfd_make_section_anyway (abfd, newname);
1666 if (!space_asect)
1667 goto error_return;
1668
1669 if (space.is_loadable == 0)
1670 space_asect->flags |= SEC_DEBUGGING;
1671
1672 /* Set up all the attributes for the space. */
1673 if (bfd_som_set_section_attributes (space_asect, space.is_defined,
1674 space.is_private, space.sort_key,
1675 space.space_number) == false)
1676 goto error_return;
1677
1678 /* Now, read in the first subspace for this space */
1679 if (bfd_seek (abfd, file_hdr->subspace_location
1680 + space.subspace_index * sizeof subspace,
1681 SEEK_SET) < 0)
1682 goto error_return;
1683 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1684 goto error_return;
1685 /* Seek back to the start of the subspaces for loop below */
1686 if (bfd_seek (abfd, file_hdr->subspace_location
1687 + space.subspace_index * sizeof subspace,
1688 SEEK_SET) < 0)
1689 goto error_return;
1690
1691 /* Setup the start address and file loc from the first subspace record */
1692 space_asect->vma = subspace.subspace_start;
1693 space_asect->filepos = subspace.file_loc_init_value;
1694 space_asect->alignment_power = log2 (subspace.alignment);
1695 if (space_asect->alignment_power == -1)
1696 goto error_return;
1697
1698 /* Initialize save_subspace so we can reliably determine if this
1699 loop placed any useful values into it. */
1700 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1701
1702 /* Loop over the rest of the subspaces, building up more sections */
1703 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1704 subspace_index++)
1705 {
1706 asection *subspace_asect;
1707
1708 /* Read in the next subspace */
1709 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1710 != sizeof subspace)
1711 goto error_return;
1712
1713 /* Setup the subspace name string */
1714 subspace.name.n_name = subspace.name.n_strx + space_strings;
1715
1716 newname = bfd_alloc (abfd, strlen (subspace.name.n_name) + 1);
1717 if (!newname)
1718 goto error_return;
1719 strcpy (newname, subspace.name.n_name);
1720
1721 /* Make a section out of this subspace */
1722 subspace_asect = bfd_make_section_anyway (abfd, newname);
1723 if (!subspace_asect)
1724 goto error_return;
1725
1726 /* Store private information about the section. */
1727 if (bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1728 subspace.access_control_bits,
1729 subspace.sort_key,
1730 subspace.quadrant) == false)
1731 goto error_return;
1732
1733 /* Keep an easy mapping between subspaces and sections. */
1734 subspace_asect->target_index = total_subspaces++;
1735
1736 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1737 by the access_control_bits in the subspace header. */
1738 switch (subspace.access_control_bits >> 4)
1739 {
1740 /* Readonly data. */
1741 case 0x0:
1742 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1743 break;
1744
1745 /* Normal data. */
1746 case 0x1:
1747 subspace_asect->flags |= SEC_DATA;
1748 break;
1749
1750 /* Readonly code and the gateways.
1751 Gateways have other attributes which do not map
1752 into anything BFD knows about. */
1753 case 0x2:
1754 case 0x4:
1755 case 0x5:
1756 case 0x6:
1757 case 0x7:
1758 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1759 break;
1760
1761 /* dynamic (writable) code. */
1762 case 0x3:
1763 subspace_asect->flags |= SEC_CODE;
1764 break;
1765 }
1766
1767 if (subspace.dup_common || subspace.is_common)
1768 subspace_asect->flags |= SEC_IS_COMMON;
1769 else if (subspace.subspace_length > 0)
1770 subspace_asect->flags |= SEC_HAS_CONTENTS;
1771
1772 if (subspace.is_loadable)
1773 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1774 else
1775 subspace_asect->flags |= SEC_DEBUGGING;
1776
1777 if (subspace.code_only)
1778 subspace_asect->flags |= SEC_CODE;
1779
1780 /* Both file_loc_init_value and initialization_length will
1781 be zero for a BSS like subspace. */
1782 if (subspace.file_loc_init_value == 0
1783 && subspace.initialization_length == 0)
1784 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD);
1785
1786 /* This subspace has relocations.
1787 The fixup_request_quantity is a byte count for the number of
1788 entries in the relocation stream; it is not the actual number
1789 of relocations in the subspace. */
1790 if (subspace.fixup_request_quantity != 0)
1791 {
1792 subspace_asect->flags |= SEC_RELOC;
1793 subspace_asect->rel_filepos = subspace.fixup_request_index;
1794 som_section_data (subspace_asect)->reloc_size
1795 = subspace.fixup_request_quantity;
1796 /* We can not determine this yet. When we read in the
1797 relocation table the correct value will be filled in. */
1798 subspace_asect->reloc_count = -1;
1799 }
1800
1801 /* Update save_subspace if appropriate. */
1802 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1803 save_subspace = subspace;
1804
1805 subspace_asect->vma = subspace.subspace_start;
1806 subspace_asect->_cooked_size = subspace.subspace_length;
1807 subspace_asect->_raw_size = subspace.subspace_length;
1808 subspace_asect->filepos = subspace.file_loc_init_value;
1809 subspace_asect->alignment_power = log2 (subspace.alignment);
1810 if (subspace_asect->alignment_power == -1)
1811 goto error_return;
1812 }
1813
1814 /* Yow! there is no subspace within the space which actually
1815 has initialized information in it; this should never happen
1816 as far as I know. */
1817 if (!save_subspace.file_loc_init_value)
1818 goto error_return;
1819
1820 /* Setup the sizes for the space section based upon the info in the
1821 last subspace of the space. */
1822 space_asect->_cooked_size = save_subspace.subspace_start
1823 - space_asect->vma + save_subspace.subspace_length;
1824 space_asect->_raw_size = save_subspace.file_loc_init_value
1825 - space_asect->filepos + save_subspace.initialization_length;
1826 }
1827 if (space_strings != NULL)
1828 free (space_strings);
1829 return true;
1830
1831 error_return:
1832 if (space_strings != NULL)
1833 free (space_strings);
1834 return false;
1835 }
1836
1837 /* Read in a SOM object and make it into a BFD. */
1838
1839 static bfd_target *
1840 som_object_p (abfd)
1841 bfd *abfd;
1842 {
1843 struct header file_hdr;
1844 struct som_exec_auxhdr aux_hdr;
1845
1846 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
1847 {
1848 bfd_set_error (bfd_error_system_call);
1849 return 0;
1850 }
1851
1852 if (!_PA_RISC_ID (file_hdr.system_id))
1853 {
1854 bfd_set_error (bfd_error_wrong_format);
1855 return 0;
1856 }
1857
1858 switch (file_hdr.a_magic)
1859 {
1860 case RELOC_MAGIC:
1861 case EXEC_MAGIC:
1862 case SHARE_MAGIC:
1863 case DEMAND_MAGIC:
1864 #ifdef DL_MAGIC
1865 case DL_MAGIC:
1866 #endif
1867 #ifdef SHL_MAGIC
1868 case SHL_MAGIC:
1869 #endif
1870 #ifdef EXECLIBMAGIC
1871 case EXECLIBMAGIC:
1872 #endif
1873 #ifdef SHARED_MAGIC_CNX
1874 case SHARED_MAGIC_CNX:
1875 #endif
1876 break;
1877 default:
1878 bfd_set_error (bfd_error_wrong_format);
1879 return 0;
1880 }
1881
1882 if (file_hdr.version_id != VERSION_ID
1883 && file_hdr.version_id != NEW_VERSION_ID)
1884 {
1885 bfd_set_error (bfd_error_wrong_format);
1886 return 0;
1887 }
1888
1889 /* If the aux_header_size field in the file header is zero, then this
1890 object is an incomplete executable (a .o file). Do not try to read
1891 a non-existant auxiliary header. */
1892 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
1893 if (file_hdr.aux_header_size != 0)
1894 {
1895 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
1896 {
1897 bfd_set_error (bfd_error_wrong_format);
1898 return 0;
1899 }
1900 }
1901
1902 if (!setup_sections (abfd, &file_hdr))
1903 {
1904 /* setup_sections does not bubble up a bfd error code. */
1905 bfd_set_error (bfd_error_bad_value);
1906 return 0;
1907 }
1908
1909 /* This appears to be a valid SOM object. Do some initialization. */
1910 return som_object_setup (abfd, &file_hdr, &aux_hdr);
1911 }
1912
1913 /* Create a SOM object. */
1914
1915 static boolean
1916 som_mkobject (abfd)
1917 bfd *abfd;
1918 {
1919 /* Allocate memory to hold backend information. */
1920 abfd->tdata.som_data = (struct som_data_struct *)
1921 bfd_zalloc (abfd, sizeof (struct som_data_struct));
1922 if (abfd->tdata.som_data == NULL)
1923 {
1924 bfd_set_error (bfd_error_no_memory);
1925 return false;
1926 }
1927 return true;
1928 }
1929
1930 /* Initialize some information in the file header. This routine makes
1931 not attempt at doing the right thing for a full executable; it
1932 is only meant to handle relocatable objects. */
1933
1934 static boolean
1935 som_prep_headers (abfd)
1936 bfd *abfd;
1937 {
1938 struct header *file_hdr;
1939 asection *section;
1940
1941 /* Make and attach a file header to the BFD. */
1942 file_hdr = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
1943 if (file_hdr == NULL)
1944
1945 {
1946 bfd_set_error (bfd_error_no_memory);
1947 return false;
1948 }
1949 obj_som_file_hdr (abfd) = file_hdr;
1950
1951 /* FIXME. This should really be conditional based on whether or not
1952 PA1.1 instructions/registers have been used. */
1953 if (abfd->flags & EXEC_P)
1954 file_hdr->system_id = obj_som_exec_data (abfd)->system_id;
1955 else
1956 file_hdr->system_id = CPU_PA_RISC1_0;
1957
1958 if (abfd->flags & EXEC_P)
1959 {
1960 if (abfd->flags & D_PAGED)
1961 file_hdr->a_magic = DEMAND_MAGIC;
1962 else if (abfd->flags & WP_TEXT)
1963 file_hdr->a_magic = SHARE_MAGIC;
1964 else
1965 file_hdr->a_magic = EXEC_MAGIC;
1966 }
1967 else
1968 file_hdr->a_magic = RELOC_MAGIC;
1969
1970 /* Only new format SOM is supported. */
1971 file_hdr->version_id = NEW_VERSION_ID;
1972
1973 /* These fields are optional, and embedding timestamps is not always
1974 a wise thing to do, it makes comparing objects during a multi-stage
1975 bootstrap difficult. */
1976 file_hdr->file_time.secs = 0;
1977 file_hdr->file_time.nanosecs = 0;
1978
1979 file_hdr->entry_space = 0;
1980 file_hdr->entry_subspace = 0;
1981 file_hdr->entry_offset = 0;
1982 file_hdr->presumed_dp = 0;
1983
1984 /* Now iterate over the sections translating information from
1985 BFD sections to SOM spaces/subspaces. */
1986
1987 for (section = abfd->sections; section != NULL; section = section->next)
1988 {
1989 /* Ignore anything which has not been marked as a space or
1990 subspace. */
1991 if (!som_is_space (section) && !som_is_subspace (section))
1992 continue;
1993
1994 if (som_is_space (section))
1995 {
1996 /* Allocate space for the space dictionary. */
1997 som_section_data (section)->space_dict
1998 = (struct space_dictionary_record *)
1999 bfd_zalloc (abfd, sizeof (struct space_dictionary_record));
2000 if (som_section_data (section)->space_dict == NULL)
2001 {
2002 bfd_set_error (bfd_error_no_memory);
2003 return false;
2004 }
2005 /* Set space attributes. Note most attributes of SOM spaces
2006 are set based on the subspaces it contains. */
2007 som_section_data (section)->space_dict->loader_fix_index = -1;
2008 som_section_data (section)->space_dict->init_pointer_index = -1;
2009
2010 /* Set more attributes that were stuffed away in private data. */
2011 som_section_data (section)->space_dict->sort_key =
2012 som_section_data (section)->copy_data->sort_key;
2013 som_section_data (section)->space_dict->is_defined =
2014 som_section_data (section)->copy_data->is_defined;
2015 som_section_data (section)->space_dict->is_private =
2016 som_section_data (section)->copy_data->is_private;
2017 som_section_data (section)->space_dict->space_number =
2018 section->target_index;
2019 }
2020 else
2021 {
2022 /* Allocate space for the subspace dictionary. */
2023 som_section_data (section)->subspace_dict
2024 = (struct subspace_dictionary_record *)
2025 bfd_zalloc (abfd, sizeof (struct subspace_dictionary_record));
2026 if (som_section_data (section)->subspace_dict == NULL)
2027 {
2028 bfd_set_error (bfd_error_no_memory);
2029 return false;
2030 }
2031
2032 /* Set subspace attributes. Basic stuff is done here, additional
2033 attributes are filled in later as more information becomes
2034 available. */
2035 if (section->flags & SEC_IS_COMMON)
2036 {
2037 som_section_data (section)->subspace_dict->dup_common = 1;
2038 som_section_data (section)->subspace_dict->is_common = 1;
2039 }
2040
2041 if (section->flags & SEC_ALLOC)
2042 som_section_data (section)->subspace_dict->is_loadable = 1;
2043
2044 if (section->flags & SEC_CODE)
2045 som_section_data (section)->subspace_dict->code_only = 1;
2046
2047 som_section_data (section)->subspace_dict->subspace_start =
2048 section->vma;
2049 som_section_data (section)->subspace_dict->subspace_length =
2050 bfd_section_size (abfd, section);
2051 som_section_data (section)->subspace_dict->initialization_length =
2052 bfd_section_size (abfd, section);
2053 som_section_data (section)->subspace_dict->alignment =
2054 1 << section->alignment_power;
2055
2056 /* Set more attributes that were stuffed away in private data. */
2057 som_section_data (section)->subspace_dict->sort_key =
2058 som_section_data (section)->copy_data->sort_key;
2059 som_section_data (section)->subspace_dict->access_control_bits =
2060 som_section_data (section)->copy_data->access_control_bits;
2061 som_section_data (section)->subspace_dict->quadrant =
2062 som_section_data (section)->copy_data->quadrant;
2063 }
2064 }
2065 return true;
2066 }
2067
2068 /* Return true if the given section is a SOM space, false otherwise. */
2069
2070 static boolean
2071 som_is_space (section)
2072 asection *section;
2073 {
2074 /* If no copy data is available, then it's neither a space nor a
2075 subspace. */
2076 if (som_section_data (section)->copy_data == NULL)
2077 return false;
2078
2079 /* If the containing space isn't the same as the given section,
2080 then this isn't a space. */
2081 if (som_section_data (section)->copy_data->container != section)
2082 return false;
2083
2084 /* OK. Must be a space. */
2085 return true;
2086 }
2087
2088 /* Return true if the given section is a SOM subspace, false otherwise. */
2089
2090 static boolean
2091 som_is_subspace (section)
2092 asection *section;
2093 {
2094 /* If no copy data is available, then it's neither a space nor a
2095 subspace. */
2096 if (som_section_data (section)->copy_data == NULL)
2097 return false;
2098
2099 /* If the containing space is the same as the given section,
2100 then this isn't a subspace. */
2101 if (som_section_data (section)->copy_data->container == section)
2102 return false;
2103
2104 /* OK. Must be a subspace. */
2105 return true;
2106 }
2107
2108 /* Return true if the given space containins the given subspace. It
2109 is safe to assume space really is a space, and subspace really
2110 is a subspace. */
2111
2112 static boolean
2113 som_is_container (space, subspace)
2114 asection *space, *subspace;
2115 {
2116 return som_section_data (subspace)->copy_data->container == space;
2117 }
2118
2119 /* Count and return the number of spaces attached to the given BFD. */
2120
2121 static unsigned long
2122 som_count_spaces (abfd)
2123 bfd *abfd;
2124 {
2125 int count = 0;
2126 asection *section;
2127
2128 for (section = abfd->sections; section != NULL; section = section->next)
2129 count += som_is_space (section);
2130
2131 return count;
2132 }
2133
2134 /* Count the number of subspaces attached to the given BFD. */
2135
2136 static unsigned long
2137 som_count_subspaces (abfd)
2138 bfd *abfd;
2139 {
2140 int count = 0;
2141 asection *section;
2142
2143 for (section = abfd->sections; section != NULL; section = section->next)
2144 count += som_is_subspace (section);
2145
2146 return count;
2147 }
2148
2149 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2150
2151 We desire symbols to be ordered starting with the symbol with the
2152 highest relocation count down to the symbol with the lowest relocation
2153 count. Doing so compacts the relocation stream. */
2154
2155 static int
2156 compare_syms (sym1, sym2)
2157 asymbol **sym1;
2158 asymbol **sym2;
2159
2160 {
2161 unsigned int count1, count2;
2162
2163 /* Get relocation count for each symbol. Note that the count
2164 is stored in the udata pointer for section symbols! */
2165 if ((*sym1)->flags & BSF_SECTION_SYM)
2166 count1 = (int)(*sym1)->udata;
2167 else
2168 count1 = som_symbol_data (*sym1)->reloc_count;
2169
2170 if ((*sym2)->flags & BSF_SECTION_SYM)
2171 count2 = (int)(*sym2)->udata;
2172 else
2173 count2 = som_symbol_data (*sym2)->reloc_count;
2174
2175 /* Return the appropriate value. */
2176 if (count1 < count2)
2177 return 1;
2178 else if (count1 > count2)
2179 return -1;
2180 return 0;
2181 }
2182
2183 /* Perform various work in preparation for emitting the fixup stream. */
2184
2185 static void
2186 som_prep_for_fixups (abfd, syms, num_syms)
2187 bfd *abfd;
2188 asymbol **syms;
2189 unsigned long num_syms;
2190 {
2191 int i;
2192 asection *section;
2193
2194 /* Most SOM relocations involving a symbol have a length which is
2195 dependent on the index of the symbol. So symbols which are
2196 used often in relocations should have a small index. */
2197
2198 /* First initialize the counters for each symbol. */
2199 for (i = 0; i < num_syms; i++)
2200 {
2201 /* Handle a section symbol; these have no pointers back to the
2202 SOM symbol info. So we just use the pointer field (udata)
2203 to hold the relocation count. */
2204 if (som_symbol_data (syms[i]) == NULL
2205 || syms[i]->flags & BSF_SECTION_SYM)
2206 {
2207 syms[i]->flags |= BSF_SECTION_SYM;
2208 syms[i]->udata = (PTR) 0;
2209 }
2210 else
2211 som_symbol_data (syms[i])->reloc_count = 0;
2212 }
2213
2214 /* Now that the counters are initialized, make a weighted count
2215 of how often a given symbol is used in a relocation. */
2216 for (section = abfd->sections; section != NULL; section = section->next)
2217 {
2218 int i;
2219
2220 /* Does this section have any relocations? */
2221 if (section->reloc_count <= 0)
2222 continue;
2223
2224 /* Walk through each relocation for this section. */
2225 for (i = 1; i < section->reloc_count; i++)
2226 {
2227 arelent *reloc = section->orelocation[i];
2228 int scale;
2229
2230 /* A relocation against a symbol in the *ABS* section really
2231 does not have a symbol. Likewise if the symbol isn't associated
2232 with any section. */
2233 if (reloc->sym_ptr_ptr == NULL
2234 || (*reloc->sym_ptr_ptr)->section == &bfd_abs_section)
2235 continue;
2236
2237 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2238 and R_CODE_ONE_SYMBOL relocations to come first. These
2239 two relocations have single byte versions if the symbol
2240 index is very small. */
2241 if (reloc->howto->type == R_DP_RELATIVE
2242 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2243 scale = 2;
2244 else
2245 scale = 1;
2246
2247 /* Handle section symbols by ramming the count in the udata
2248 field. It will not be used and the count is very important
2249 for these symbols. */
2250 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2251 {
2252 (*reloc->sym_ptr_ptr)->udata =
2253 (PTR) ((int) (*reloc->sym_ptr_ptr)->udata + scale);
2254 continue;
2255 }
2256
2257 /* A normal symbol. Increment the count. */
2258 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2259 }
2260 }
2261
2262 /* Now sort the symbols. */
2263 qsort (syms, num_syms, sizeof (asymbol *), compare_syms);
2264
2265 /* Compute the symbol indexes, they will be needed by the relocation
2266 code. */
2267 for (i = 0; i < num_syms; i++)
2268 {
2269 /* A section symbol. Again, there is no pointer to backend symbol
2270 information, so we reuse (abuse) the udata field again. */
2271 if (syms[i]->flags & BSF_SECTION_SYM)
2272 syms[i]->udata = (PTR) i;
2273 else
2274 som_symbol_data (syms[i])->index = i;
2275 }
2276 }
2277
2278 static boolean
2279 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2280 bfd *abfd;
2281 unsigned long current_offset;
2282 unsigned int *total_reloc_sizep;
2283 {
2284 unsigned int i, j;
2285 /* Chunk of memory that we can use as buffer space, then throw
2286 away. */
2287 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2288 unsigned char *p;
2289 unsigned int total_reloc_size = 0;
2290 unsigned int subspace_reloc_size = 0;
2291 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2292 asection *section = abfd->sections;
2293
2294 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2295 p = tmp_space;
2296
2297 /* All the fixups for a particular subspace are emitted in a single
2298 stream. All the subspaces for a particular space are emitted
2299 as a single stream.
2300
2301 So, to get all the locations correct one must iterate through all the
2302 spaces, for each space iterate through its subspaces and output a
2303 fixups stream. */
2304 for (i = 0; i < num_spaces; i++)
2305 {
2306 asection *subsection;
2307
2308 /* Find a space. */
2309 while (!som_is_space (section))
2310 section = section->next;
2311
2312 /* Now iterate through each of its subspaces. */
2313 for (subsection = abfd->sections;
2314 subsection != NULL;
2315 subsection = subsection->next)
2316 {
2317 int reloc_offset, current_rounding_mode;
2318
2319 /* Find a subspace of this space. */
2320 if (!som_is_subspace (subsection)
2321 || !som_is_container (section, subsection))
2322 continue;
2323
2324 /* If this subspace had no relocations, then we're finished
2325 with it. */
2326 if (subsection->reloc_count <= 0)
2327 {
2328 som_section_data (subsection)->subspace_dict->fixup_request_index
2329 = -1;
2330 continue;
2331 }
2332
2333 /* This subspace has some relocations. Put the relocation stream
2334 index into the subspace record. */
2335 som_section_data (subsection)->subspace_dict->fixup_request_index
2336 = total_reloc_size;
2337
2338 /* To make life easier start over with a clean slate for
2339 each subspace. Seek to the start of the relocation stream
2340 for this subspace in preparation for writing out its fixup
2341 stream. */
2342 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) != 0)
2343 {
2344 bfd_set_error (bfd_error_system_call);
2345 return false;
2346 }
2347
2348 /* Buffer space has already been allocated. Just perform some
2349 initialization here. */
2350 p = tmp_space;
2351 subspace_reloc_size = 0;
2352 reloc_offset = 0;
2353 som_initialize_reloc_queue (reloc_queue);
2354 current_rounding_mode = R_N_MODE;
2355
2356 /* Translate each BFD relocation into one or more SOM
2357 relocations. */
2358 for (j = 0; j < subsection->reloc_count; j++)
2359 {
2360 arelent *bfd_reloc = subsection->orelocation[j];
2361 unsigned int skip;
2362 int sym_num;
2363
2364 /* Get the symbol number. Remember it's stored in a
2365 special place for section symbols. */
2366 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2367 sym_num = (int) (*bfd_reloc->sym_ptr_ptr)->udata;
2368 else
2369 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2370
2371 /* If there is not enough room for the next couple relocations,
2372 then dump the current buffer contents now. Also reinitialize
2373 the relocation queue.
2374
2375 No single BFD relocation could ever translate into more
2376 than 100 bytes of SOM relocations (20bytes is probably the
2377 upper limit, but leave lots of space for growth). */
2378 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2379 {
2380 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2381 != p - tmp_space)
2382 {
2383 bfd_set_error (bfd_error_system_call);
2384 return false;
2385 }
2386 p = tmp_space;
2387 som_initialize_reloc_queue (reloc_queue);
2388 }
2389
2390 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2391 skipped. */
2392 skip = bfd_reloc->address - reloc_offset;
2393 p = som_reloc_skip (abfd, skip, p,
2394 &subspace_reloc_size, reloc_queue);
2395
2396 /* Update reloc_offset for the next iteration.
2397
2398 Many relocations do not consume input bytes. They
2399 are markers, or set state necessary to perform some
2400 later relocation. */
2401 switch (bfd_reloc->howto->type)
2402 {
2403 /* This only needs to handle relocations that may be
2404 made by hppa_som_gen_reloc. */
2405 case R_ENTRY:
2406 case R_EXIT:
2407 case R_N_MODE:
2408 case R_S_MODE:
2409 case R_D_MODE:
2410 case R_R_MODE:
2411 case R_FSEL:
2412 case R_LSEL:
2413 case R_RSEL:
2414 reloc_offset = bfd_reloc->address;
2415 break;
2416
2417 default:
2418 reloc_offset = bfd_reloc->address + 4;
2419 break;
2420 }
2421
2422 /* Now the actual relocation we care about. */
2423 switch (bfd_reloc->howto->type)
2424 {
2425 case R_PCREL_CALL:
2426 case R_ABS_CALL:
2427 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2428 bfd_reloc, sym_num, reloc_queue);
2429 break;
2430
2431 case R_CODE_ONE_SYMBOL:
2432 case R_DP_RELATIVE:
2433 /* Account for any addend. */
2434 if (bfd_reloc->addend)
2435 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2436 &subspace_reloc_size, reloc_queue);
2437
2438 if (sym_num < 0x20)
2439 {
2440 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2441 subspace_reloc_size += 1;
2442 p += 1;
2443 }
2444 else if (sym_num < 0x100)
2445 {
2446 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2447 bfd_put_8 (abfd, sym_num, p + 1);
2448 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2449 2, reloc_queue);
2450 }
2451 else if (sym_num < 0x10000000)
2452 {
2453 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2454 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2455 bfd_put_16 (abfd, sym_num, p + 2);
2456 p = try_prev_fixup (abfd, &subspace_reloc_size,
2457 p, 4, reloc_queue);
2458 }
2459 else
2460 abort ();
2461 break;
2462
2463 case R_DATA_ONE_SYMBOL:
2464 case R_DATA_PLABEL:
2465 case R_CODE_PLABEL:
2466 case R_DLT_REL:
2467 /* Account for any addend. */
2468 if (bfd_reloc->addend)
2469 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2470 &subspace_reloc_size, reloc_queue);
2471
2472 if (sym_num < 0x100)
2473 {
2474 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2475 bfd_put_8 (abfd, sym_num, p + 1);
2476 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2477 2, reloc_queue);
2478 }
2479 else if (sym_num < 0x10000000)
2480 {
2481 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2482 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2483 bfd_put_16 (abfd, sym_num, p + 2);
2484 p = try_prev_fixup (abfd, &subspace_reloc_size,
2485 p, 4, reloc_queue);
2486 }
2487 else
2488 abort ();
2489 break;
2490
2491 case R_ENTRY:
2492 {
2493 int *descp
2494 = (int *) som_symbol_data (*bfd_reloc->sym_ptr_ptr)->unwind;
2495 bfd_put_8 (abfd, R_ENTRY, p);
2496 bfd_put_32 (abfd, descp[0], p + 1);
2497 bfd_put_32 (abfd, descp[1], p + 5);
2498 p = try_prev_fixup (abfd, &subspace_reloc_size,
2499 p, 9, reloc_queue);
2500 break;
2501 }
2502
2503 case R_EXIT:
2504 bfd_put_8 (abfd, R_EXIT, p);
2505 subspace_reloc_size += 1;
2506 p += 1;
2507 break;
2508
2509 case R_N_MODE:
2510 case R_S_MODE:
2511 case R_D_MODE:
2512 case R_R_MODE:
2513 /* If this relocation requests the current rounding
2514 mode, then it is redundant. */
2515 if (bfd_reloc->howto->type != current_rounding_mode)
2516 {
2517 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2518 subspace_reloc_size += 1;
2519 p += 1;
2520 current_rounding_mode = bfd_reloc->howto->type;
2521 }
2522 break;
2523
2524 case R_FSEL:
2525 case R_LSEL:
2526 case R_RSEL:
2527 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2528 subspace_reloc_size += 1;
2529 p += 1;
2530 break;
2531
2532 /* Put a "R_RESERVED" relocation in the stream if
2533 we hit something we do not understand. The linker
2534 will complain loudly if this ever happens. */
2535 default:
2536 bfd_put_8 (abfd, 0xff, p);
2537 subspace_reloc_size += 1;
2538 p += 1;
2539 break;
2540 }
2541 }
2542
2543 /* Last BFD relocation for a subspace has been processed.
2544 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2545 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2546 - reloc_offset,
2547 p, &subspace_reloc_size, reloc_queue);
2548
2549 /* Scribble out the relocations. */
2550 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2551 != p - tmp_space)
2552 {
2553 bfd_set_error (bfd_error_system_call);
2554 return false;
2555 }
2556 p = tmp_space;
2557
2558 total_reloc_size += subspace_reloc_size;
2559 som_section_data (subsection)->subspace_dict->fixup_request_quantity
2560 = subspace_reloc_size;
2561 }
2562 section = section->next;
2563 }
2564 *total_reloc_sizep = total_reloc_size;
2565 return true;
2566 }
2567
2568 /* Write out the space/subspace string table. */
2569
2570 static boolean
2571 som_write_space_strings (abfd, current_offset, string_sizep)
2572 bfd *abfd;
2573 unsigned long current_offset;
2574 unsigned int *string_sizep;
2575 {
2576 /* Chunk of memory that we can use as buffer space, then throw
2577 away. */
2578 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2579 unsigned char *p;
2580 unsigned int strings_size = 0;
2581 asection *section;
2582
2583 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2584 p = tmp_space;
2585
2586 /* Seek to the start of the space strings in preparation for writing
2587 them out. */
2588 if (bfd_seek (abfd, current_offset, SEEK_SET) != 0)
2589 {
2590 bfd_set_error (bfd_error_system_call);
2591 return false;
2592 }
2593
2594 /* Walk through all the spaces and subspaces (order is not important)
2595 building up and writing string table entries for their names. */
2596 for (section = abfd->sections; section != NULL; section = section->next)
2597 {
2598 int length;
2599
2600 /* Only work with space/subspaces; avoid any other sections
2601 which might have been made (.text for example). */
2602 if (!som_is_space (section) && !som_is_subspace (section))
2603 continue;
2604
2605 /* Get the length of the space/subspace name. */
2606 length = strlen (section->name);
2607
2608 /* If there is not enough room for the next entry, then dump the
2609 current buffer contents now. Each entry will take 4 bytes to
2610 hold the string length + the string itself + null terminator. */
2611 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2612 {
2613 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2614 != p - tmp_space)
2615 {
2616 bfd_set_error (bfd_error_system_call);
2617 return false;
2618 }
2619 /* Reset to beginning of the buffer space. */
2620 p = tmp_space;
2621 }
2622
2623 /* First element in a string table entry is the length of the
2624 string. Alignment issues are already handled. */
2625 bfd_put_32 (abfd, length, p);
2626 p += 4;
2627 strings_size += 4;
2628
2629 /* Record the index in the space/subspace records. */
2630 if (som_is_space (section))
2631 som_section_data (section)->space_dict->name.n_strx = strings_size;
2632 else
2633 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
2634
2635 /* Next comes the string itself + a null terminator. */
2636 strcpy (p, section->name);
2637 p += length + 1;
2638 strings_size += length + 1;
2639
2640 /* Always align up to the next word boundary. */
2641 while (strings_size % 4)
2642 {
2643 bfd_put_8 (abfd, 0, p);
2644 p++;
2645 strings_size++;
2646 }
2647 }
2648
2649 /* Done with the space/subspace strings. Write out any information
2650 contained in a partial block. */
2651 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2652 {
2653 bfd_set_error (bfd_error_system_call);
2654 return false;
2655 }
2656 *string_sizep = strings_size;
2657 return true;
2658 }
2659
2660 /* Write out the symbol string table. */
2661
2662 static boolean
2663 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
2664 bfd *abfd;
2665 unsigned long current_offset;
2666 asymbol **syms;
2667 unsigned int num_syms;
2668 unsigned int *string_sizep;
2669 {
2670 unsigned int i;
2671
2672 /* Chunk of memory that we can use as buffer space, then throw
2673 away. */
2674 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2675 unsigned char *p;
2676 unsigned int strings_size = 0;
2677
2678 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2679 p = tmp_space;
2680
2681 /* Seek to the start of the space strings in preparation for writing
2682 them out. */
2683 if (bfd_seek (abfd, current_offset, SEEK_SET) != 0)
2684 {
2685 bfd_set_error (bfd_error_system_call);
2686 return false;
2687 }
2688
2689 for (i = 0; i < num_syms; i++)
2690 {
2691 int length = strlen (syms[i]->name);
2692
2693 /* If there is not enough room for the next entry, then dump the
2694 current buffer contents now. */
2695 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2696 {
2697 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2698 != p - tmp_space)
2699 {
2700 bfd_set_error (bfd_error_system_call);
2701 return false;
2702 }
2703 /* Reset to beginning of the buffer space. */
2704 p = tmp_space;
2705 }
2706
2707 /* First element in a string table entry is the length of the
2708 string. This must always be 4 byte aligned. This is also
2709 an appropriate time to fill in the string index field in the
2710 symbol table entry. */
2711 bfd_put_32 (abfd, length, p);
2712 strings_size += 4;
2713 p += 4;
2714
2715 /* Next comes the string itself + a null terminator. */
2716 strcpy (p, syms[i]->name);
2717
2718 /* ACK. FIXME. */
2719 syms[i]->name = (char *)strings_size;
2720 p += length + 1;
2721 strings_size += length + 1;
2722
2723 /* Always align up to the next word boundary. */
2724 while (strings_size % 4)
2725 {
2726 bfd_put_8 (abfd, 0, p);
2727 strings_size++;
2728 p++;
2729 }
2730 }
2731
2732 /* Scribble out any partial block. */
2733 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2734 {
2735 bfd_set_error (bfd_error_system_call);
2736 return false;
2737 }
2738
2739 *string_sizep = strings_size;
2740 return true;
2741 }
2742
2743 /* Compute variable information to be placed in the SOM headers,
2744 space/subspace dictionaries, relocation streams, etc. Begin
2745 writing parts of the object file. */
2746
2747 static boolean
2748 som_begin_writing (abfd)
2749 bfd *abfd;
2750 {
2751 unsigned long current_offset = 0;
2752 int strings_size = 0;
2753 unsigned int total_reloc_size = 0;
2754 unsigned long num_spaces, num_subspaces, num_syms, i;
2755 asection *section;
2756 asymbol **syms = bfd_get_outsymbols (abfd);
2757 unsigned int total_subspaces = 0;
2758 struct som_exec_auxhdr exec_header;
2759
2760 /* The file header will always be first in an object file,
2761 everything else can be in random locations. To keep things
2762 "simple" BFD will lay out the object file in the manner suggested
2763 by the PRO ABI for PA-RISC Systems. */
2764
2765 /* Before any output can really begin offsets for all the major
2766 portions of the object file must be computed. So, starting
2767 with the initial file header compute (and sometimes write)
2768 each portion of the object file. */
2769
2770 /* Make room for the file header, it's contents are not complete
2771 yet, so it can not be written at this time. */
2772 current_offset += sizeof (struct header);
2773
2774 /* Any auxiliary headers will follow the file header. Right now
2775 we support only the copyright and version headers. */
2776 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
2777 obj_som_file_hdr (abfd)->aux_header_size = 0;
2778 if (abfd->flags & EXEC_P)
2779 {
2780 /* Parts of the exec header will be filled in later, so
2781 delay writing the header itself. Fill in the defaults,
2782 and write it later. */
2783 current_offset += sizeof (exec_header);
2784 obj_som_file_hdr (abfd)->aux_header_size += sizeof (exec_header);
2785 memset (&exec_header, 0, sizeof (exec_header));
2786 exec_header.som_auxhdr.type = HPUX_AUX_ID;
2787 exec_header.som_auxhdr.length = 40;
2788 }
2789 if (obj_som_version_hdr (abfd) != NULL)
2790 {
2791 unsigned int len;
2792
2793 bfd_seek (abfd, current_offset, SEEK_SET);
2794
2795 /* Write the aux_id structure and the string length. */
2796 len = sizeof (struct aux_id) + sizeof (unsigned int);
2797 obj_som_file_hdr (abfd)->aux_header_size += len;
2798 current_offset += len;
2799 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
2800 {
2801 bfd_set_error (bfd_error_system_call);
2802 return false;
2803 }
2804
2805 /* Write the version string. */
2806 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
2807 obj_som_file_hdr (abfd)->aux_header_size += len;
2808 current_offset += len;
2809 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
2810 len, 1, abfd) != len)
2811 {
2812 bfd_set_error (bfd_error_system_call);
2813 return false;
2814 }
2815 }
2816
2817 if (obj_som_copyright_hdr (abfd) != NULL)
2818 {
2819 unsigned int len;
2820
2821 bfd_seek (abfd, current_offset, SEEK_SET);
2822
2823 /* Write the aux_id structure and the string length. */
2824 len = sizeof (struct aux_id) + sizeof (unsigned int);
2825 obj_som_file_hdr (abfd)->aux_header_size += len;
2826 current_offset += len;
2827 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
2828 {
2829 bfd_set_error (bfd_error_system_call);
2830 return false;
2831 }
2832
2833 /* Write the copyright string. */
2834 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
2835 obj_som_file_hdr (abfd)->aux_header_size += len;
2836 current_offset += len;
2837 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
2838 len, 1, abfd) != len)
2839 {
2840 bfd_set_error (bfd_error_system_call);
2841 return false;
2842 }
2843 }
2844
2845 /* Next comes the initialization pointers; we have no initialization
2846 pointers, so current offset does not change. */
2847 obj_som_file_hdr (abfd)->init_array_location = current_offset;
2848 obj_som_file_hdr (abfd)->init_array_total = 0;
2849
2850 /* Next are the space records. These are fixed length records.
2851
2852 Count the number of spaces to determine how much room is needed
2853 in the object file for the space records.
2854
2855 The names of the spaces are stored in a separate string table,
2856 and the index for each space into the string table is computed
2857 below. Therefore, it is not possible to write the space headers
2858 at this time. */
2859 num_spaces = som_count_spaces (abfd);
2860 obj_som_file_hdr (abfd)->space_location = current_offset;
2861 obj_som_file_hdr (abfd)->space_total = num_spaces;
2862 current_offset += num_spaces * sizeof (struct space_dictionary_record);
2863
2864 /* Next are the subspace records. These are fixed length records.
2865
2866 Count the number of subspaes to determine how much room is needed
2867 in the object file for the subspace records.
2868
2869 A variety if fields in the subspace record are still unknown at
2870 this time (index into string table, fixup stream location/size, etc). */
2871 num_subspaces = som_count_subspaces (abfd);
2872 obj_som_file_hdr (abfd)->subspace_location = current_offset;
2873 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
2874 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
2875
2876 /* Next is the string table for the space/subspace names. We will
2877 build and write the string table on the fly. At the same time
2878 we will fill in the space/subspace name index fields. */
2879
2880 /* The string table needs to be aligned on a word boundary. */
2881 if (current_offset % 4)
2882 current_offset += (4 - (current_offset % 4));
2883
2884 /* Mark the offset of the space/subspace string table in the
2885 file header. */
2886 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
2887
2888 /* Scribble out the space strings. */
2889 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
2890 return false;
2891
2892 /* Record total string table size in the header and update the
2893 current offset. */
2894 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
2895 current_offset += strings_size;
2896
2897 /* Next is the symbol table. These are fixed length records.
2898
2899 Count the number of symbols to determine how much room is needed
2900 in the object file for the symbol table.
2901
2902 The names of the symbols are stored in a separate string table,
2903 and the index for each symbol name into the string table is computed
2904 below. Therefore, it is not possible to write the symobl table
2905 at this time. */
2906 num_syms = bfd_get_symcount (abfd);
2907 obj_som_file_hdr (abfd)->symbol_location = current_offset;
2908 obj_som_file_hdr (abfd)->symbol_total = num_syms;
2909 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
2910
2911 /* Do prep work before handling fixups. */
2912 som_prep_for_fixups (abfd, syms, num_syms);
2913
2914 /* Next comes the fixup stream which starts on a word boundary. */
2915 if (current_offset % 4)
2916 current_offset += (4 - (current_offset % 4));
2917 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
2918
2919 /* Write the fixups and update fields in subspace headers which
2920 relate to the fixup stream. */
2921 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
2922 return false;
2923
2924 /* Record the total size of the fixup stream in the file header. */
2925 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
2926 current_offset += total_reloc_size;
2927
2928 /* Next are the symbol strings.
2929 Align them to a word boundary. */
2930 if (current_offset % 4)
2931 current_offset += (4 - (current_offset % 4));
2932 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
2933
2934 /* Scribble out the symbol strings. */
2935 if (som_write_symbol_strings (abfd, current_offset, syms,
2936 num_syms, &strings_size)
2937 == false)
2938 return false;
2939
2940 /* Record total string table size in header and update the
2941 current offset. */
2942 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
2943 current_offset += strings_size;
2944
2945 /* Next is the compiler records. We do not use these. */
2946 obj_som_file_hdr (abfd)->compiler_location = current_offset;
2947 obj_som_file_hdr (abfd)->compiler_total = 0;
2948
2949 /* Now compute the file positions for the loadable subspaces, taking
2950 care to make sure everything stays properly aligned. */
2951
2952 section = abfd->sections;
2953 for (i = 0; i < num_spaces; i++)
2954 {
2955 asection *subsection;
2956 int first_subspace;
2957
2958 /* Find a space. */
2959 while (!som_is_space (section))
2960 section = section->next;
2961
2962 first_subspace = 1;
2963 /* Now look for all its subspaces. */
2964 for (subsection = abfd->sections;
2965 subsection != NULL;
2966 subsection = subsection->next)
2967 {
2968
2969 if (!som_is_subspace (subsection)
2970 || !som_is_container (section, subsection)
2971 || (subsection->flags & SEC_ALLOC) == 0)
2972 continue;
2973
2974 /* If this is the first subspace in the space, and we are
2975 building an executable, then take care to make sure all
2976 the alignments are correct and update the exec header. */
2977 if (first_subspace
2978 && (abfd->flags & EXEC_P))
2979 {
2980 /* Demand paged executables have each space aligned to a
2981 page boundary. Sharable executables (write-protected
2982 text) have just the private (aka data & bss) space aligned
2983 to a page boundary. */
2984 if (abfd->flags & D_PAGED
2985 || ((abfd->flags & WP_TEXT)
2986 && (subsection->flags & SEC_DATA)))
2987 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
2988
2989 /* Update the exec header. */
2990 if (subsection->flags & SEC_CODE && exec_header.exec_tfile == 0)
2991 {
2992 exec_header.exec_tmem = section->vma;
2993 exec_header.exec_tfile = current_offset;
2994 }
2995 if (subsection->flags & SEC_DATA && exec_header.exec_dfile == 0)
2996 {
2997 exec_header.exec_dmem = section->vma;
2998 exec_header.exec_dfile = current_offset;
2999 }
3000
3001 /* Only do this for the first subspace within each space. */
3002 first_subspace = 0;
3003 }
3004 else if (abfd->flags & EXEC_P)
3005 {
3006 /* Have to keep proper alignments for the subspaces
3007 in executables too! */
3008 if (subsection->flags & SEC_CODE)
3009 {
3010 unsigned tmp = exec_header.exec_tsize;
3011
3012 tmp = SOM_ALIGN (tmp, 1 << subsection->alignment_power);
3013 current_offset += (tmp - exec_header.exec_tsize);
3014 exec_header.exec_tsize = tmp;
3015 }
3016 else
3017 {
3018 unsigned tmp = exec_header.exec_dsize;
3019
3020 tmp = SOM_ALIGN (tmp, 1 << subsection->alignment_power);
3021 current_offset += (tmp - exec_header.exec_dsize);
3022 exec_header.exec_dsize = tmp;
3023 }
3024 }
3025
3026 subsection->target_index = total_subspaces++;
3027 /* This is real data to be loaded from the file. */
3028 if (subsection->flags & SEC_LOAD)
3029 {
3030 /* Update the size of the code & data. */
3031 if (abfd->flags & EXEC_P
3032 && subsection->flags & SEC_CODE)
3033 exec_header.exec_tsize += subsection->_cooked_size;
3034 else if (abfd->flags & EXEC_P
3035 && subsection->flags & SEC_DATA)
3036 exec_header.exec_dsize += subsection->_cooked_size;
3037 som_section_data (subsection)->subspace_dict->file_loc_init_value
3038 = current_offset;
3039 section->filepos = current_offset;
3040 current_offset += bfd_section_size (abfd, subsection);
3041 }
3042 /* Looks like uninitialized data. */
3043 else
3044 {
3045 /* Update the size of the bss section. */
3046 if (abfd->flags & EXEC_P)
3047 exec_header.exec_bsize += subsection->_cooked_size;
3048
3049 som_section_data (subsection)->subspace_dict->file_loc_init_value
3050 = 0;
3051 som_section_data (subsection)->subspace_dict->
3052 initialization_length = 0;
3053 }
3054 }
3055 /* Goto the next section. */
3056 section = section->next;
3057 }
3058
3059 /* Finally compute the file positions for unloadable subspaces.
3060 If building an executable, start the unloadable stuff on its
3061 own page. */
3062
3063 if (abfd->flags & EXEC_P)
3064 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3065
3066 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3067 section = abfd->sections;
3068 for (i = 0; i < num_spaces; i++)
3069 {
3070 asection *subsection;
3071
3072 /* Find a space. */
3073 while (!som_is_space (section))
3074 section = section->next;
3075
3076 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3077
3078 /* Now look for all its subspaces. */
3079 for (subsection = abfd->sections;
3080 subsection != NULL;
3081 subsection = subsection->next)
3082 {
3083
3084 if (!som_is_subspace (subsection)
3085 || !som_is_container (section, subsection)
3086 || (subsection->flags & SEC_ALLOC) != 0)
3087 continue;
3088
3089 subsection->target_index = total_subspaces;
3090 /* This is real data to be loaded from the file. */
3091 if ((subsection->flags & SEC_LOAD) == 0)
3092 {
3093 som_section_data (subsection)->subspace_dict->file_loc_init_value
3094 = current_offset;
3095 section->filepos = current_offset;
3096 current_offset += bfd_section_size (abfd, subsection);
3097 }
3098 /* Looks like uninitialized data. */
3099 else
3100 {
3101 som_section_data (subsection)->subspace_dict->file_loc_init_value
3102 = 0;
3103 som_section_data (subsection)->subspace_dict->
3104 initialization_length = bfd_section_size (abfd, subsection);
3105 }
3106 }
3107 /* Goto the next section. */
3108 section = section->next;
3109 }
3110
3111 /* If building an executable, then make sure to seek to and write
3112 one byte at the end of the file to make sure any necessary
3113 zeros are filled in. Ugh. */
3114 if (abfd->flags & EXEC_P)
3115 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3116 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
3117 {
3118 bfd_set_error (bfd_error_system_call);
3119 return false;
3120 }
3121 if (bfd_write ((PTR) "", 1, 1, abfd) != 1)
3122 {
3123 bfd_set_error (bfd_error_system_call);
3124 return false;
3125 }
3126
3127 obj_som_file_hdr (abfd)->unloadable_sp_size
3128 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3129
3130 /* Loader fixups are not supported in any way shape or form. */
3131 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3132 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3133
3134 /* Done. Store the total size of the SOM. */
3135 obj_som_file_hdr (abfd)->som_length = current_offset;
3136
3137 /* Now write the exec header. */
3138 if (abfd->flags & EXEC_P)
3139 {
3140 long tmp;
3141
3142 exec_header.exec_entry = bfd_get_start_address (abfd);
3143 exec_header.exec_flags = obj_som_exec_data (abfd)->exec_flags;
3144
3145 /* Oh joys. Ram some of the BSS data into the DATA section
3146 to be compatable with how the hp linker makes objects
3147 (saves memory space). */
3148 tmp = exec_header.exec_dsize;
3149 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3150 exec_header.exec_bsize -= (tmp - exec_header.exec_dsize);
3151 if (exec_header.exec_bsize < 0)
3152 exec_header.exec_bsize = 0;
3153 exec_header.exec_dsize = tmp;
3154
3155 bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location, SEEK_SET);
3156
3157 if (bfd_write ((PTR) &exec_header, AUX_HDR_SIZE, 1, abfd)
3158 != AUX_HDR_SIZE)
3159 {
3160 bfd_set_error (bfd_error_system_call);
3161 return false;
3162 }
3163 }
3164 return true;
3165 }
3166
3167 /* Finally, scribble out the various headers to the disk. */
3168
3169 static boolean
3170 som_write_headers (abfd)
3171 bfd *abfd;
3172 {
3173 int num_spaces = som_count_spaces (abfd);
3174 int i;
3175 int subspace_index = 0;
3176 file_ptr location;
3177 asection *section;
3178
3179 /* Subspaces are written first so that we can set up information
3180 about them in their containing spaces as the subspace is written. */
3181
3182 /* Seek to the start of the subspace dictionary records. */
3183 location = obj_som_file_hdr (abfd)->subspace_location;
3184 bfd_seek (abfd, location, SEEK_SET);
3185 section = abfd->sections;
3186 /* Now for each loadable space write out records for its subspaces. */
3187 for (i = 0; i < num_spaces; i++)
3188 {
3189 asection *subsection;
3190
3191 /* Find a space. */
3192 while (!som_is_space (section))
3193 section = section->next;
3194
3195 /* Now look for all its subspaces. */
3196 for (subsection = abfd->sections;
3197 subsection != NULL;
3198 subsection = subsection->next)
3199 {
3200
3201 /* Skip any section which does not correspond to a space
3202 or subspace. Or does not have SEC_ALLOC set (and therefore
3203 has no real bits on the disk). */
3204 if (!som_is_subspace (subsection)
3205 || !som_is_container (section, subsection)
3206 || (subsection->flags & SEC_ALLOC) == 0)
3207 continue;
3208
3209 /* If this is the first subspace for this space, then save
3210 the index of the subspace in its containing space. Also
3211 set "is_loadable" in the containing space. */
3212
3213 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3214 {
3215 som_section_data (section)->space_dict->is_loadable = 1;
3216 som_section_data (section)->space_dict->subspace_index
3217 = subspace_index;
3218 }
3219
3220 /* Increment the number of subspaces seen and the number of
3221 subspaces contained within the current space. */
3222 subspace_index++;
3223 som_section_data (section)->space_dict->subspace_quantity++;
3224
3225 /* Mark the index of the current space within the subspace's
3226 dictionary record. */
3227 som_section_data (subsection)->subspace_dict->space_index = i;
3228
3229 /* Dump the current subspace header. */
3230 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3231 sizeof (struct subspace_dictionary_record), 1, abfd)
3232 != sizeof (struct subspace_dictionary_record))
3233 {
3234 bfd_set_error (bfd_error_system_call);
3235 return false;
3236 }
3237 }
3238 /* Goto the next section. */
3239 section = section->next;
3240 }
3241
3242 /* Now repeat the process for unloadable subspaces. */
3243 section = abfd->sections;
3244 /* Now for each space write out records for its subspaces. */
3245 for (i = 0; i < num_spaces; i++)
3246 {
3247 asection *subsection;
3248
3249 /* Find a space. */
3250 while (!som_is_space (section))
3251 section = section->next;
3252
3253 /* Now look for all its subspaces. */
3254 for (subsection = abfd->sections;
3255 subsection != NULL;
3256 subsection = subsection->next)
3257 {
3258
3259 /* Skip any section which does not correspond to a space or
3260 subspace, or which SEC_ALLOC set (and therefore handled
3261 in the loadable spaces/subspaces code above. */
3262
3263 if (!som_is_subspace (subsection)
3264 || !som_is_container (section, subsection)
3265 || (subsection->flags & SEC_ALLOC) != 0)
3266 continue;
3267
3268 /* If this is the first subspace for this space, then save
3269 the index of the subspace in its containing space. Clear
3270 "is_loadable". */
3271
3272 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3273 {
3274 som_section_data (section)->space_dict->is_loadable = 0;
3275 som_section_data (section)->space_dict->subspace_index
3276 = subspace_index;
3277 }
3278
3279 /* Increment the number of subspaces seen and the number of
3280 subspaces contained within the current space. */
3281 som_section_data (section)->space_dict->subspace_quantity++;
3282 subspace_index++;
3283
3284 /* Mark the index of the current space within the subspace's
3285 dictionary record. */
3286 som_section_data (subsection)->subspace_dict->space_index = i;
3287
3288 /* Dump this subspace header. */
3289 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3290 sizeof (struct subspace_dictionary_record), 1, abfd)
3291 != sizeof (struct subspace_dictionary_record))
3292 {
3293 bfd_set_error (bfd_error_system_call);
3294 return false;
3295 }
3296 }
3297 /* Goto the next section. */
3298 section = section->next;
3299 }
3300
3301 /* All the subspace dictiondary records are written, and all the
3302 fields are set up in the space dictionary records.
3303
3304 Seek to the right location and start writing the space
3305 dictionary records. */
3306 location = obj_som_file_hdr (abfd)->space_location;
3307 bfd_seek (abfd, location, SEEK_SET);
3308
3309 section = abfd->sections;
3310 for (i = 0; i < num_spaces; i++)
3311 {
3312
3313 /* Find a space. */
3314 while (!som_is_space (section))
3315 section = section->next;
3316
3317 /* Dump its header */
3318 if (bfd_write ((PTR) som_section_data (section)->space_dict,
3319 sizeof (struct space_dictionary_record), 1, abfd)
3320 != sizeof (struct space_dictionary_record))
3321 {
3322 bfd_set_error (bfd_error_system_call);
3323 return false;
3324 }
3325
3326 /* Goto the next section. */
3327 section = section->next;
3328 }
3329
3330 /* Only thing left to do is write out the file header. It is always
3331 at location zero. Seek there and write it. */
3332 bfd_seek (abfd, (file_ptr) 0, SEEK_SET);
3333 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3334 sizeof (struct header), 1, abfd)
3335 != sizeof (struct header))
3336 {
3337 bfd_set_error (bfd_error_system_call);
3338 return false;
3339 }
3340 return true;
3341 }
3342
3343 /* Compute and return the checksum for a SOM file header. */
3344
3345 static unsigned long
3346 som_compute_checksum (abfd)
3347 bfd *abfd;
3348 {
3349 unsigned long checksum, count, i;
3350 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3351
3352 checksum = 0;
3353 count = sizeof (struct header) / sizeof (unsigned long);
3354 for (i = 0; i < count; i++)
3355 checksum ^= *(buffer + i);
3356
3357 return checksum;
3358 }
3359
3360 static void
3361 som_bfd_derive_misc_symbol_info (abfd, sym, info)
3362 bfd *abfd;
3363 asymbol *sym;
3364 struct som_misc_symbol_info *info;
3365 {
3366 /* Initialize. */
3367 memset (info, 0, sizeof (struct som_misc_symbol_info));
3368
3369 /* The HP SOM linker requires detailed type information about
3370 all symbols (including undefined symbols!). Unfortunately,
3371 the type specified in an import/export statement does not
3372 always match what the linker wants. Severe braindamage. */
3373
3374 /* Section symbols will not have a SOM symbol type assigned to
3375 them yet. Assign all section symbols type ST_DATA. */
3376 if (sym->flags & BSF_SECTION_SYM)
3377 info->symbol_type = ST_DATA;
3378 else
3379 {
3380 /* Common symbols must have scope SS_UNSAT and type
3381 ST_STORAGE or the linker will choke. */
3382 if (sym->section == &bfd_com_section)
3383 {
3384 info->symbol_scope = SS_UNSAT;
3385 info->symbol_type = ST_STORAGE;
3386 }
3387
3388 /* It is possible to have a symbol without an associated
3389 type. This happens if the user imported the symbol
3390 without a type and the symbol was never defined
3391 locally. If BSF_FUNCTION is set for this symbol, then
3392 assign it type ST_CODE (the HP linker requires undefined
3393 external functions to have type ST_CODE rather than ST_ENTRY). */
3394 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3395 && sym->section == &bfd_und_section
3396 && sym->flags & BSF_FUNCTION)
3397 info->symbol_type = ST_CODE;
3398
3399 /* Handle function symbols which were defined in this file.
3400 They should have type ST_ENTRY. Also retrieve the argument
3401 relocation bits from the SOM backend information. */
3402 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3403 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3404 && (sym->flags & BSF_FUNCTION))
3405 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3406 && (sym->flags & BSF_FUNCTION)))
3407 {
3408 info->symbol_type = ST_ENTRY;
3409 info->arg_reloc = som_symbol_data (sym)->tc_data.hppa_arg_reloc;
3410 }
3411
3412 /* If the type is unknown at this point, it should be
3413 ST_DATA (functions were handled as special cases above). */
3414 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3415 info->symbol_type = ST_DATA;
3416
3417 /* From now on it's a very simple mapping. */
3418 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3419 info->symbol_type = ST_ABSOLUTE;
3420 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3421 info->symbol_type = ST_CODE;
3422 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3423 info->symbol_type = ST_DATA;
3424 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3425 info->symbol_type = ST_MILLICODE;
3426 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3427 info->symbol_type = ST_PLABEL;
3428 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3429 info->symbol_type = ST_PRI_PROG;
3430 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3431 info->symbol_type = ST_SEC_PROG;
3432 }
3433
3434 /* Now handle the symbol's scope. Exported data which is not
3435 in the common section has scope SS_UNIVERSAL. Note scope
3436 of common symbols was handled earlier! */
3437 if (sym->flags & BSF_EXPORT && sym->section != &bfd_com_section)
3438 info->symbol_scope = SS_UNIVERSAL;
3439 /* Any undefined symbol at this point has a scope SS_UNSAT. */
3440 else if (sym->section == &bfd_und_section)
3441 info->symbol_scope = SS_UNSAT;
3442 /* Anything else which is not in the common section has scope
3443 SS_LOCAL. */
3444 else if (sym->section != &bfd_com_section)
3445 info->symbol_scope = SS_LOCAL;
3446
3447 /* Now set the symbol_info field. It has no real meaning
3448 for undefined or common symbols, but the HP linker will
3449 choke if it's not set to some "reasonable" value. We
3450 use zero as a reasonable value. */
3451 if (sym->section == &bfd_com_section || sym->section == &bfd_und_section
3452 || sym->section == &bfd_abs_section)
3453 info->symbol_info = 0;
3454 /* For all other symbols, the symbol_info field contains the
3455 subspace index of the space this symbol is contained in. */
3456 else
3457 info->symbol_info = sym->section->target_index;
3458
3459 /* Set the symbol's value. */
3460 info->symbol_value = sym->value + sym->section->vma;
3461 }
3462
3463 /* Build and write, in one big chunk, the entire symbol table for
3464 this BFD. */
3465
3466 static boolean
3467 som_build_and_write_symbol_table (abfd)
3468 bfd *abfd;
3469 {
3470 unsigned int num_syms = bfd_get_symcount (abfd);
3471 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3472 asymbol **bfd_syms = bfd_get_outsymbols (abfd);
3473 struct symbol_dictionary_record *som_symtab = NULL;
3474 int i, symtab_size;
3475
3476 /* Compute total symbol table size and allocate a chunk of memory
3477 to hold the symbol table as we build it. */
3478 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3479 som_symtab = (struct symbol_dictionary_record *) malloc (symtab_size);
3480 if (som_symtab == NULL && symtab_size != 0)
3481 {
3482 bfd_set_error (bfd_error_no_memory);
3483 goto error_return;
3484 }
3485 memset (som_symtab, 0, symtab_size);
3486
3487 /* Walk over each symbol. */
3488 for (i = 0; i < num_syms; i++)
3489 {
3490 struct som_misc_symbol_info info;
3491
3492 /* This is really an index into the symbol strings table.
3493 By the time we get here, the index has already been
3494 computed and stored into the name field in the BFD symbol. */
3495 som_symtab[i].name.n_strx = (int) bfd_syms[i]->name;
3496
3497 /* Derive SOM information from the BFD symbol. */
3498 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
3499
3500 /* Now use it. */
3501 som_symtab[i].symbol_type = info.symbol_type;
3502 som_symtab[i].symbol_scope = info.symbol_scope;
3503 som_symtab[i].arg_reloc = info.arg_reloc;
3504 som_symtab[i].symbol_info = info.symbol_info;
3505 som_symtab[i].symbol_value = info.symbol_value;
3506 }
3507
3508 /* Everything is ready, seek to the right location and
3509 scribble out the symbol table. */
3510 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3511 {
3512 bfd_set_error (bfd_error_system_call);
3513 goto error_return;
3514 }
3515
3516 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3517 {
3518 bfd_set_error (bfd_error_system_call);
3519 goto error_return;
3520 }
3521
3522 if (som_symtab != NULL)
3523 free (som_symtab);
3524 return true;
3525 error_return:
3526 if (som_symtab != NULL)
3527 free (som_symtab);
3528 return false;
3529 }
3530
3531 /* Write an object in SOM format. */
3532
3533 static boolean
3534 som_write_object_contents (abfd)
3535 bfd *abfd;
3536 {
3537 if (abfd->output_has_begun == false)
3538 {
3539 /* Set up fixed parts of the file, space, and subspace headers.
3540 Notify the world that output has begun. */
3541 som_prep_headers (abfd);
3542 abfd->output_has_begun = true;
3543 /* Start writing the object file. This include all the string
3544 tables, fixup streams, and other portions of the object file. */
3545 som_begin_writing (abfd);
3546 }
3547
3548 /* Now that the symbol table information is complete, build and
3549 write the symbol table. */
3550 if (som_build_and_write_symbol_table (abfd) == false)
3551 return false;
3552
3553 /* Compute the checksum for the file header just before writing
3554 the header to disk. */
3555 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3556 return (som_write_headers (abfd));
3557 }
3558
3559 \f
3560 /* Read and save the string table associated with the given BFD. */
3561
3562 static boolean
3563 som_slurp_string_table (abfd)
3564 bfd *abfd;
3565 {
3566 char *stringtab;
3567
3568 /* Use the saved version if its available. */
3569 if (obj_som_stringtab (abfd) != NULL)
3570 return true;
3571
3572 /* Allocate and read in the string table. */
3573 stringtab = bfd_zalloc (abfd, obj_som_stringtab_size (abfd));
3574 if (stringtab == NULL)
3575 {
3576 bfd_set_error (bfd_error_no_memory);
3577 return false;
3578 }
3579
3580 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3581 {
3582 bfd_set_error (bfd_error_system_call);
3583 return false;
3584 }
3585
3586 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3587 != obj_som_stringtab_size (abfd))
3588 {
3589 bfd_set_error (bfd_error_system_call);
3590 return false;
3591 }
3592
3593 /* Save our results and return success. */
3594 obj_som_stringtab (abfd) = stringtab;
3595 return true;
3596 }
3597
3598 /* Return the amount of data (in bytes) required to hold the symbol
3599 table for this object. */
3600
3601 static unsigned int
3602 som_get_symtab_upper_bound (abfd)
3603 bfd *abfd;
3604 {
3605 if (!som_slurp_symbol_table (abfd))
3606 return 0;
3607
3608 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
3609 }
3610
3611 /* Convert from a SOM subspace index to a BFD section. */
3612
3613 static asection *
3614 som_section_from_subspace_index (abfd, index)
3615 bfd *abfd;
3616 unsigned int index;
3617 {
3618 asection *section;
3619
3620 for (section = abfd->sections; section != NULL; section = section->next)
3621 if (section->target_index == index)
3622 return section;
3623
3624 /* Should never happen. */
3625 abort();
3626 }
3627
3628 /* Read and save the symbol table associated with the given BFD. */
3629
3630 static unsigned int
3631 som_slurp_symbol_table (abfd)
3632 bfd *abfd;
3633 {
3634 int symbol_count = bfd_get_symcount (abfd);
3635 int symsize = sizeof (struct symbol_dictionary_record);
3636 char *stringtab;
3637 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
3638 som_symbol_type *sym, *symbase;
3639
3640 /* Return saved value if it exists. */
3641 if (obj_som_symtab (abfd) != NULL)
3642 goto successful_return;
3643
3644 /* Special case. This is *not* an error. */
3645 if (symbol_count == 0)
3646 goto successful_return;
3647
3648 if (!som_slurp_string_table (abfd))
3649 goto error_return;
3650
3651 stringtab = obj_som_stringtab (abfd);
3652
3653 symbase = (som_symbol_type *)
3654 bfd_zalloc (abfd, symbol_count * sizeof (som_symbol_type));
3655 if (symbase == NULL)
3656 {
3657 bfd_set_error (bfd_error_no_memory);
3658 goto error_return;
3659 }
3660
3661 /* Read in the external SOM representation. */
3662 buf = malloc (symbol_count * symsize);
3663 if (buf == NULL && symbol_count * symsize != 0)
3664 {
3665 bfd_set_error (bfd_error_no_memory);
3666 goto error_return;
3667 }
3668 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
3669 {
3670 bfd_set_error (bfd_error_system_call);
3671 goto error_return;
3672 }
3673 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
3674 != symbol_count * symsize)
3675 {
3676 bfd_set_error (bfd_error_no_symbols);
3677 goto error_return;
3678 }
3679
3680 /* Iterate over all the symbols and internalize them. */
3681 endbufp = buf + symbol_count;
3682 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
3683 {
3684
3685 /* I don't think we care about these. */
3686 if (bufp->symbol_type == ST_SYM_EXT
3687 || bufp->symbol_type == ST_ARG_EXT)
3688 continue;
3689
3690 /* Set some private data we care about. */
3691 if (bufp->symbol_type == ST_NULL)
3692 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3693 else if (bufp->symbol_type == ST_ABSOLUTE)
3694 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
3695 else if (bufp->symbol_type == ST_DATA)
3696 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
3697 else if (bufp->symbol_type == ST_CODE)
3698 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
3699 else if (bufp->symbol_type == ST_PRI_PROG)
3700 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
3701 else if (bufp->symbol_type == ST_SEC_PROG)
3702 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
3703 else if (bufp->symbol_type == ST_ENTRY)
3704 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
3705 else if (bufp->symbol_type == ST_MILLICODE)
3706 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
3707 else if (bufp->symbol_type == ST_PLABEL)
3708 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
3709 else
3710 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3711 som_symbol_data (sym)->tc_data.hppa_arg_reloc = bufp->arg_reloc;
3712
3713 /* Some reasonable defaults. */
3714 sym->symbol.the_bfd = abfd;
3715 sym->symbol.name = bufp->name.n_strx + stringtab;
3716 sym->symbol.value = bufp->symbol_value;
3717 sym->symbol.section = 0;
3718 sym->symbol.flags = 0;
3719
3720 switch (bufp->symbol_type)
3721 {
3722 case ST_ENTRY:
3723 case ST_PRI_PROG:
3724 case ST_SEC_PROG:
3725 case ST_MILLICODE:
3726 sym->symbol.flags |= BSF_FUNCTION;
3727 sym->symbol.value &= ~0x3;
3728 break;
3729
3730 case ST_STUB:
3731 case ST_CODE:
3732 sym->symbol.value &= ~0x3;
3733
3734 default:
3735 break;
3736 }
3737
3738 /* Handle scoping and section information. */
3739 switch (bufp->symbol_scope)
3740 {
3741 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
3742 so the section associated with this symbol can't be known. */
3743 case SS_EXTERNAL:
3744 if (bufp->symbol_type != ST_STORAGE)
3745 sym->symbol.section = &bfd_und_section;
3746 else
3747 sym->symbol.section = &bfd_com_section;
3748 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3749 break;
3750
3751 case SS_UNSAT:
3752 if (bufp->symbol_type != ST_STORAGE)
3753 sym->symbol.section = &bfd_und_section;
3754 else
3755 sym->symbol.section = &bfd_com_section;
3756 break;
3757
3758 case SS_UNIVERSAL:
3759 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3760 sym->symbol.section
3761 = som_section_from_subspace_index (abfd, bufp->symbol_info);
3762 sym->symbol.value -= sym->symbol.section->vma;
3763 break;
3764
3765 #if 0
3766 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
3767 Sound dumb? It is. */
3768 case SS_GLOBAL:
3769 #endif
3770 case SS_LOCAL:
3771 sym->symbol.flags |= BSF_LOCAL;
3772 sym->symbol.section
3773 = som_section_from_subspace_index (abfd, bufp->symbol_info);
3774 sym->symbol.value -= sym->symbol.section->vma;
3775 break;
3776 }
3777
3778 /* Mark section symbols and symbols used by the debugger. */
3779 if (sym->symbol.name[0] == '$'
3780 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$')
3781 sym->symbol.flags |= BSF_SECTION_SYM;
3782 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
3783 {
3784 sym->symbol.flags |= BSF_SECTION_SYM;
3785 sym->symbol.name = sym->symbol.section->name;
3786 }
3787 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
3788 sym->symbol.flags |= BSF_DEBUGGING;
3789
3790 /* Note increment at bottom of loop, since we skip some symbols
3791 we can not include it as part of the for statement. */
3792 sym++;
3793 }
3794
3795 /* Save our results and return success. */
3796 obj_som_symtab (abfd) = symbase;
3797 successful_return:
3798 if (buf != NULL)
3799 free (buf);
3800 return (true);
3801
3802 error_return:
3803 if (buf != NULL)
3804 free (buf);
3805 return false;
3806 }
3807
3808 /* Canonicalize a SOM symbol table. Return the number of entries
3809 in the symbol table. */
3810
3811 static unsigned int
3812 som_get_symtab (abfd, location)
3813 bfd *abfd;
3814 asymbol **location;
3815 {
3816 int i;
3817 som_symbol_type *symbase;
3818
3819 if (!som_slurp_symbol_table (abfd))
3820 return 0;
3821
3822 i = bfd_get_symcount (abfd);
3823 symbase = obj_som_symtab (abfd);
3824
3825 for (; i > 0; i--, location++, symbase++)
3826 *location = &symbase->symbol;
3827
3828 /* Final null pointer. */
3829 *location = 0;
3830 return (bfd_get_symcount (abfd));
3831 }
3832
3833 /* Make a SOM symbol. There is nothing special to do here. */
3834
3835 static asymbol *
3836 som_make_empty_symbol (abfd)
3837 bfd *abfd;
3838 {
3839 som_symbol_type *new =
3840 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
3841 if (new == NULL)
3842 {
3843 bfd_set_error (bfd_error_no_memory);
3844 return 0;
3845 }
3846 new->symbol.the_bfd = abfd;
3847
3848 return &new->symbol;
3849 }
3850
3851 /* Print symbol information. */
3852
3853 static void
3854 som_print_symbol (ignore_abfd, afile, symbol, how)
3855 bfd *ignore_abfd;
3856 PTR afile;
3857 asymbol *symbol;
3858 bfd_print_symbol_type how;
3859 {
3860 FILE *file = (FILE *) afile;
3861 switch (how)
3862 {
3863 case bfd_print_symbol_name:
3864 fprintf (file, "%s", symbol->name);
3865 break;
3866 case bfd_print_symbol_more:
3867 fprintf (file, "som ");
3868 fprintf_vma (file, symbol->value);
3869 fprintf (file, " %lx", (long) symbol->flags);
3870 break;
3871 case bfd_print_symbol_all:
3872 {
3873 CONST char *section_name;
3874 section_name = symbol->section ? symbol->section->name : "(*none*)";
3875 bfd_print_symbol_vandf ((PTR) file, symbol);
3876 fprintf (file, " %s\t%s", section_name, symbol->name);
3877 break;
3878 }
3879 }
3880 }
3881
3882 static boolean
3883 som_bfd_is_local_label (abfd, sym)
3884 bfd *abfd;
3885 asymbol *sym;
3886 {
3887 return (sym->name[0] == 'L' && sym->name[1] == '$');
3888 }
3889
3890 /* Count or process variable-length SOM fixup records.
3891
3892 To avoid code duplication we use this code both to compute the number
3893 of relocations requested by a stream, and to internalize the stream.
3894
3895 When computing the number of relocations requested by a stream the
3896 variables rptr, section, and symbols have no meaning.
3897
3898 Return the number of relocations requested by the fixup stream. When
3899 not just counting
3900
3901 This needs at least two or three more passes to get it cleaned up. */
3902
3903 static unsigned int
3904 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
3905 unsigned char *fixup;
3906 unsigned int end;
3907 arelent *internal_relocs;
3908 asection *section;
3909 asymbol **symbols;
3910 boolean just_count;
3911 {
3912 unsigned int op, varname;
3913 unsigned char *end_fixups = &fixup[end];
3914 const struct fixup_format *fp;
3915 char *cp;
3916 unsigned char *save_fixup;
3917 int variables[26], stack[20], c, v, count, prev_fixup, *sp;
3918 const int *subop;
3919 arelent *rptr= internal_relocs;
3920 unsigned int offset = just_count ? 0 : section->vma;
3921
3922 #define var(c) variables[(c) - 'A']
3923 #define push(v) (*sp++ = (v))
3924 #define pop() (*--sp)
3925 #define emptystack() (sp == stack)
3926
3927 som_initialize_reloc_queue (reloc_queue);
3928 memset (variables, 0, sizeof (variables));
3929 memset (stack, 0, sizeof (stack));
3930 count = 0;
3931 prev_fixup = 0;
3932 sp = stack;
3933
3934 while (fixup < end_fixups)
3935 {
3936
3937 /* Save pointer to the start of this fixup. We'll use
3938 it later to determine if it is necessary to put this fixup
3939 on the queue. */
3940 save_fixup = fixup;
3941
3942 /* Get the fixup code and its associated format. */
3943 op = *fixup++;
3944 fp = &som_fixup_formats[op];
3945
3946 /* Handle a request for a previous fixup. */
3947 if (*fp->format == 'P')
3948 {
3949 /* Get pointer to the beginning of the prev fixup, move
3950 the repeated fixup to the head of the queue. */
3951 fixup = reloc_queue[fp->D].reloc;
3952 som_reloc_queue_fix (reloc_queue, fp->D);
3953 prev_fixup = 1;
3954
3955 /* Get the fixup code and its associated format. */
3956 op = *fixup++;
3957 fp = &som_fixup_formats[op];
3958 }
3959
3960 /* If we are not just counting, set some reasonable defaults. */
3961 if (! just_count)
3962 {
3963 rptr->address = offset;
3964 rptr->howto = &som_hppa_howto_table[op];
3965 rptr->addend = 0;
3966 rptr->sym_ptr_ptr = bfd_abs_section.symbol_ptr_ptr;
3967 }
3968
3969 /* Set default input length to 0. Get the opcode class index
3970 into D. */
3971 var ('L') = 0;
3972 var ('D') = fp->D;
3973
3974 /* Get the opcode format. */
3975 cp = fp->format;
3976
3977 /* Process the format string. Parsing happens in two phases,
3978 parse RHS, then assign to LHS. Repeat until no more
3979 characters in the format string. */
3980 while (*cp)
3981 {
3982 /* The variable this pass is going to compute a value for. */
3983 varname = *cp++;
3984
3985 /* Start processing RHS. Continue until a NULL or '=' is found. */
3986 do
3987 {
3988 c = *cp++;
3989
3990 /* If this is a variable, push it on the stack. */
3991 if (isupper (c))
3992 push (var (c));
3993
3994 /* If this is a lower case letter, then it represents
3995 additional data from the fixup stream to be pushed onto
3996 the stack. */
3997 else if (islower (c))
3998 {
3999 for (v = 0; c > 'a'; --c)
4000 v = (v << 8) | *fixup++;
4001 push (v);
4002 }
4003
4004 /* A decimal constant. Push it on the stack. */
4005 else if (isdigit (c))
4006 {
4007 v = c - '0';
4008 while (isdigit (*cp))
4009 v = (v * 10) + (*cp++ - '0');
4010 push (v);
4011 }
4012 else
4013
4014 /* An operator. Pop two two values from the stack and
4015 use them as operands to the given operation. Push
4016 the result of the operation back on the stack. */
4017 switch (c)
4018 {
4019 case '+':
4020 v = pop ();
4021 v += pop ();
4022 push (v);
4023 break;
4024 case '*':
4025 v = pop ();
4026 v *= pop ();
4027 push (v);
4028 break;
4029 case '<':
4030 v = pop ();
4031 v = pop () << v;
4032 push (v);
4033 break;
4034 default:
4035 abort ();
4036 }
4037 }
4038 while (*cp && *cp != '=');
4039
4040 /* Move over the equal operator. */
4041 cp++;
4042
4043 /* Pop the RHS off the stack. */
4044 c = pop ();
4045
4046 /* Perform the assignment. */
4047 var (varname) = c;
4048
4049 /* Handle side effects. and special 'O' stack cases. */
4050 switch (varname)
4051 {
4052 /* Consume some bytes from the input space. */
4053 case 'L':
4054 offset += c;
4055 break;
4056 /* A symbol to use in the relocation. Make a note
4057 of this if we are not just counting. */
4058 case 'S':
4059 if (! just_count)
4060 rptr->sym_ptr_ptr = &symbols[c];
4061 break;
4062 /* Handle the linker expression stack. */
4063 case 'O':
4064 switch (op)
4065 {
4066 case R_COMP1:
4067 subop = comp1_opcodes;
4068 break;
4069 case R_COMP2:
4070 subop = comp2_opcodes;
4071 break;
4072 case R_COMP3:
4073 subop = comp3_opcodes;
4074 break;
4075 default:
4076 abort ();
4077 }
4078 while (*subop <= (unsigned char) c)
4079 ++subop;
4080 --subop;
4081 break;
4082 default:
4083 break;
4084 }
4085 }
4086
4087 /* If we used a previous fixup, clean up after it. */
4088 if (prev_fixup)
4089 {
4090 fixup = save_fixup + 1;
4091 prev_fixup = 0;
4092 }
4093 /* Queue it. */
4094 else if (fixup > save_fixup + 1)
4095 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4096
4097 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4098 fixups to BFD. */
4099 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4100 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4101 {
4102 /* Done with a single reloction. Loop back to the top. */
4103 if (! just_count)
4104 {
4105 rptr->addend = var ('V');
4106 rptr++;
4107 }
4108 count++;
4109 /* Now that we've handled a "full" relocation, reset
4110 some state. */
4111 memset (variables, 0, sizeof (variables));
4112 memset (stack, 0, sizeof (stack));
4113 }
4114 }
4115 return count;
4116
4117 #undef var
4118 #undef push
4119 #undef pop
4120 #undef emptystack
4121 }
4122
4123 /* Read in the relocs (aka fixups in SOM terms) for a section.
4124
4125 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4126 set to true to indicate it only needs a count of the number
4127 of actual relocations. */
4128
4129 static boolean
4130 som_slurp_reloc_table (abfd, section, symbols, just_count)
4131 bfd *abfd;
4132 asection *section;
4133 asymbol **symbols;
4134 boolean just_count;
4135 {
4136 char *external_relocs;
4137 unsigned int fixup_stream_size;
4138 arelent *internal_relocs;
4139 unsigned int num_relocs;
4140
4141 fixup_stream_size = som_section_data (section)->reloc_size;
4142 /* If there were no relocations, then there is nothing to do. */
4143 if (section->reloc_count == 0)
4144 return true;
4145
4146 /* If reloc_count is -1, then the relocation stream has not been
4147 parsed. We must do so now to know how many relocations exist. */
4148 if (section->reloc_count == -1)
4149 {
4150 external_relocs = (char *) bfd_zalloc (abfd, fixup_stream_size);
4151 if (external_relocs == (char *) NULL)
4152 {
4153 bfd_set_error (bfd_error_no_memory);
4154 return false;
4155 }
4156 /* Read in the external forms. */
4157 if (bfd_seek (abfd,
4158 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4159 SEEK_SET)
4160 != 0)
4161 {
4162 bfd_set_error (bfd_error_system_call);
4163 return false;
4164 }
4165 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
4166 != fixup_stream_size)
4167 {
4168 bfd_set_error (bfd_error_system_call);
4169 return false;
4170 }
4171 /* Let callers know how many relocations found.
4172 also save the relocation stream as we will
4173 need it again. */
4174 section->reloc_count = som_set_reloc_info (external_relocs,
4175 fixup_stream_size,
4176 NULL, NULL, NULL, true);
4177
4178 som_section_data (section)->reloc_stream = external_relocs;
4179 }
4180
4181 /* If the caller only wanted a count, then return now. */
4182 if (just_count)
4183 return true;
4184
4185 num_relocs = section->reloc_count;
4186 external_relocs = som_section_data (section)->reloc_stream;
4187 /* Return saved information about the relocations if it is available. */
4188 if (section->relocation != (arelent *) NULL)
4189 return true;
4190
4191 internal_relocs = (arelent *) bfd_zalloc (abfd,
4192 num_relocs * sizeof (arelent));
4193 if (internal_relocs == (arelent *) NULL)
4194 {
4195 bfd_set_error (bfd_error_no_memory);
4196 return false;
4197 }
4198
4199 /* Process and internalize the relocations. */
4200 som_set_reloc_info (external_relocs, fixup_stream_size,
4201 internal_relocs, section, symbols, false);
4202
4203 /* Save our results and return success. */
4204 section->relocation = internal_relocs;
4205 return (true);
4206 }
4207
4208 /* Return the number of bytes required to store the relocation
4209 information associated with the given section. */
4210
4211 static unsigned int
4212 som_get_reloc_upper_bound (abfd, asect)
4213 bfd *abfd;
4214 sec_ptr asect;
4215 {
4216 /* If section has relocations, then read in the relocation stream
4217 and parse it to determine how many relocations exist. */
4218 if (asect->flags & SEC_RELOC)
4219 {
4220 if (som_slurp_reloc_table (abfd, asect, NULL, true))
4221 return (asect->reloc_count + 1) * sizeof (arelent);
4222 }
4223 /* Either there are no relocations or an error occurred while
4224 reading and parsing the relocation stream. */
4225 return 0;
4226 }
4227
4228 /* Convert relocations from SOM (external) form into BFD internal
4229 form. Return the number of relocations. */
4230
4231 static unsigned int
4232 som_canonicalize_reloc (abfd, section, relptr, symbols)
4233 bfd *abfd;
4234 sec_ptr section;
4235 arelent **relptr;
4236 asymbol **symbols;
4237 {
4238 arelent *tblptr;
4239 int count;
4240
4241 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
4242 return 0;
4243
4244 count = section->reloc_count;
4245 tblptr = section->relocation;
4246 if (tblptr == (arelent *) NULL)
4247 return 0;
4248
4249 while (count--)
4250 *relptr++ = tblptr++;
4251
4252 *relptr = (arelent *) NULL;
4253 return section->reloc_count;
4254 }
4255
4256 extern bfd_target som_vec;
4257
4258 /* A hook to set up object file dependent section information. */
4259
4260 static boolean
4261 som_new_section_hook (abfd, newsect)
4262 bfd *abfd;
4263 asection *newsect;
4264 {
4265 newsect->used_by_bfd =
4266 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
4267 if (!newsect->used_by_bfd)
4268 {
4269 bfd_set_error (bfd_error_no_memory);
4270 return false;
4271 }
4272 newsect->alignment_power = 3;
4273
4274 /* We allow more than three sections internally */
4275 return true;
4276 }
4277
4278 /* Copy any private info we understand from the input section
4279 to the output section. */
4280 static boolean
4281 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
4282 bfd *ibfd;
4283 asection *isection;
4284 bfd *obfd;
4285 asection *osection;
4286 {
4287 /* One day we may try to grok other private data. */
4288 if (ibfd->xvec->flavour != bfd_target_som_flavour
4289 || obfd->xvec->flavour != bfd_target_som_flavour
4290 || (!som_is_space (isection) && !som_is_subspace (isection)))
4291 return false;
4292
4293 som_section_data (osection)->copy_data
4294 = (struct som_copyable_section_data_struct *)
4295 bfd_zalloc (obfd, sizeof (struct som_copyable_section_data_struct));
4296 if (som_section_data (osection)->copy_data == NULL)
4297 {
4298 bfd_set_error (bfd_error_no_memory);
4299 return false;
4300 }
4301
4302 memcpy (som_section_data (osection)->copy_data,
4303 som_section_data (isection)->copy_data,
4304 sizeof (struct som_copyable_section_data_struct));
4305
4306 /* Reparent if necessary. */
4307 if (som_section_data (osection)->copy_data->container)
4308 som_section_data (osection)->copy_data->container =
4309 som_section_data (osection)->copy_data->container->output_section;
4310
4311 return true;
4312 }
4313
4314 /* Copy any private info we understand from the input bfd
4315 to the output bfd. */
4316
4317 static boolean
4318 som_bfd_copy_private_bfd_data (ibfd, obfd)
4319 bfd *ibfd, *obfd;
4320 {
4321 /* One day we may try to grok other private data. */
4322 if (ibfd->xvec->flavour != bfd_target_som_flavour
4323 || obfd->xvec->flavour != bfd_target_som_flavour)
4324 return false;
4325
4326 /* Allocate some memory to hold the data we need. */
4327 obj_som_exec_data (obfd) = (struct som_exec_data *)
4328 bfd_zalloc (obfd, sizeof (struct som_exec_data));
4329 if (obj_som_exec_data (obfd) == NULL)
4330 {
4331 bfd_set_error (bfd_error_no_memory);
4332 return false;
4333 }
4334
4335 /* Now copy the data. */
4336 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
4337 sizeof (struct som_exec_data));
4338
4339 return true;
4340 }
4341
4342 /* Set backend info for sections which can not be described
4343 in the BFD data structures. */
4344
4345 boolean
4346 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
4347 asection *section;
4348 int defined;
4349 int private;
4350 unsigned int sort_key;
4351 int spnum;
4352 {
4353 /* Allocate memory to hold the magic information. */
4354 if (som_section_data (section)->copy_data == NULL)
4355 {
4356 som_section_data (section)->copy_data
4357 = (struct som_copyable_section_data_struct *)
4358 bfd_zalloc (section->owner,
4359 sizeof (struct som_copyable_section_data_struct));
4360 if (som_section_data (section)->copy_data == NULL)
4361 {
4362 bfd_set_error (bfd_error_no_memory);
4363 return false;
4364 }
4365 }
4366 som_section_data (section)->copy_data->sort_key = sort_key;
4367 som_section_data (section)->copy_data->is_defined = defined;
4368 som_section_data (section)->copy_data->is_private = private;
4369 som_section_data (section)->copy_data->container = section;
4370 section->target_index = spnum;
4371 return true;
4372 }
4373
4374 /* Set backend info for subsections which can not be described
4375 in the BFD data structures. */
4376
4377 boolean
4378 bfd_som_set_subsection_attributes (section, container, access,
4379 sort_key, quadrant)
4380 asection *section;
4381 asection *container;
4382 int access;
4383 unsigned int sort_key;
4384 int quadrant;
4385 {
4386 /* Allocate memory to hold the magic information. */
4387 if (som_section_data (section)->copy_data == NULL)
4388 {
4389 som_section_data (section)->copy_data
4390 = (struct som_copyable_section_data_struct *)
4391 bfd_zalloc (section->owner,
4392 sizeof (struct som_copyable_section_data_struct));
4393 if (som_section_data (section)->copy_data == NULL)
4394 {
4395 bfd_set_error (bfd_error_no_memory);
4396 return false;
4397 }
4398 }
4399 som_section_data (section)->copy_data->sort_key = sort_key;
4400 som_section_data (section)->copy_data->access_control_bits = access;
4401 som_section_data (section)->copy_data->quadrant = quadrant;
4402 som_section_data (section)->copy_data->container = container;
4403 return true;
4404 }
4405
4406 /* Set the full SOM symbol type. SOM needs far more symbol information
4407 than any other object file format I'm aware of. It is mandatory
4408 to be able to know if a symbol is an entry point, millicode, data,
4409 code, absolute, storage request, or procedure label. If you get
4410 the symbol type wrong your program will not link. */
4411
4412 void
4413 bfd_som_set_symbol_type (symbol, type)
4414 asymbol *symbol;
4415 unsigned int type;
4416 {
4417 som_symbol_data (symbol)->som_type = type;
4418 }
4419
4420 /* Attach 64bits of unwind information to a symbol (which hopefully
4421 is a function of some kind!). It would be better to keep this
4422 in the R_ENTRY relocation, but there is not enough space. */
4423
4424 void
4425 bfd_som_attach_unwind_info (symbol, unwind_desc)
4426 asymbol *symbol;
4427 char *unwind_desc;
4428 {
4429 som_symbol_data (symbol)->unwind = unwind_desc;
4430 }
4431
4432 /* Attach an auxiliary header to the BFD backend so that it may be
4433 written into the object file. */
4434 boolean
4435 bfd_som_attach_aux_hdr (abfd, type, string)
4436 bfd *abfd;
4437 int type;
4438 char *string;
4439 {
4440 if (type == VERSION_AUX_ID)
4441 {
4442 int len = strlen (string);
4443 int pad = 0;
4444
4445 if (len % 4)
4446 pad = (4 - (len % 4));
4447 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
4448 bfd_zalloc (abfd, sizeof (struct aux_id)
4449 + sizeof (unsigned int) + len + pad);
4450 if (!obj_som_version_hdr (abfd))
4451 {
4452 bfd_set_error (bfd_error_no_memory);
4453 return false;
4454 }
4455 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
4456 obj_som_version_hdr (abfd)->header_id.length = len + pad;
4457 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
4458 obj_som_version_hdr (abfd)->string_length = len;
4459 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
4460 }
4461 else if (type == COPYRIGHT_AUX_ID)
4462 {
4463 int len = strlen (string);
4464 int pad = 0;
4465
4466 if (len % 4)
4467 pad = (4 - (len % 4));
4468 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
4469 bfd_zalloc (abfd, sizeof (struct aux_id)
4470 + sizeof (unsigned int) + len + pad);
4471 if (!obj_som_copyright_hdr (abfd))
4472 {
4473 bfd_set_error (bfd_error_no_error);
4474 return false;
4475 }
4476 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
4477 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
4478 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
4479 obj_som_copyright_hdr (abfd)->string_length = len;
4480 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
4481 }
4482 return true;
4483 }
4484
4485 static boolean
4486 som_set_section_contents (abfd, section, location, offset, count)
4487 bfd *abfd;
4488 sec_ptr section;
4489 PTR location;
4490 file_ptr offset;
4491 bfd_size_type count;
4492 {
4493 if (abfd->output_has_begun == false)
4494 {
4495 /* Set up fixed parts of the file, space, and subspace headers.
4496 Notify the world that output has begun. */
4497 som_prep_headers (abfd);
4498 abfd->output_has_begun = true;
4499 /* Start writing the object file. This include all the string
4500 tables, fixup streams, and other portions of the object file. */
4501 som_begin_writing (abfd);
4502 }
4503
4504 /* Only write subspaces which have "real" contents (eg. the contents
4505 are not generated at run time by the OS). */
4506 if (!som_is_subspace (section)
4507 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4508 return true;
4509
4510 /* Seek to the proper offset within the object file and write the
4511 data. */
4512 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
4513 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
4514 {
4515 bfd_set_error (bfd_error_system_call);
4516 return false;
4517 }
4518
4519 if (bfd_write ((PTR) location, 1, count, abfd) != count)
4520 {
4521 bfd_set_error (bfd_error_system_call);
4522 return false;
4523 }
4524 return true;
4525 }
4526
4527 static boolean
4528 som_set_arch_mach (abfd, arch, machine)
4529 bfd *abfd;
4530 enum bfd_architecture arch;
4531 unsigned long machine;
4532 {
4533 /* Allow any architecture to be supported by the SOM backend */
4534 return bfd_default_set_arch_mach (abfd, arch, machine);
4535 }
4536
4537 static boolean
4538 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4539 functionname_ptr, line_ptr)
4540 bfd *abfd;
4541 asection *section;
4542 asymbol **symbols;
4543 bfd_vma offset;
4544 CONST char **filename_ptr;
4545 CONST char **functionname_ptr;
4546 unsigned int *line_ptr;
4547 {
4548 fprintf (stderr, "som_find_nearest_line unimplemented\n");
4549 fflush (stderr);
4550 abort ();
4551 return (false);
4552 }
4553
4554 static int
4555 som_sizeof_headers (abfd, reloc)
4556 bfd *abfd;
4557 boolean reloc;
4558 {
4559 fprintf (stderr, "som_sizeof_headers unimplemented\n");
4560 fflush (stderr);
4561 abort ();
4562 return (0);
4563 }
4564
4565 /* Return the single-character symbol type corresponding to
4566 SOM section S, or '?' for an unknown SOM section. */
4567
4568 static char
4569 som_section_type (s)
4570 const char *s;
4571 {
4572 const struct section_to_type *t;
4573
4574 for (t = &stt[0]; t->section; t++)
4575 if (!strcmp (s, t->section))
4576 return t->type;
4577 return '?';
4578 }
4579
4580 static int
4581 som_decode_symclass (symbol)
4582 asymbol *symbol;
4583 {
4584 char c;
4585
4586 if (bfd_is_com_section (symbol->section))
4587 return 'C';
4588 if (symbol->section == &bfd_und_section)
4589 return 'U';
4590 if (symbol->section == &bfd_ind_section)
4591 return 'I';
4592 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
4593 return '?';
4594
4595 if (symbol->section == &bfd_abs_section)
4596 c = 'a';
4597 else if (symbol->section)
4598 c = som_section_type (symbol->section->name);
4599 else
4600 return '?';
4601 if (symbol->flags & BSF_GLOBAL)
4602 c = toupper (c);
4603 return c;
4604 }
4605
4606 /* Return information about SOM symbol SYMBOL in RET. */
4607
4608 static void
4609 som_get_symbol_info (ignore_abfd, symbol, ret)
4610 bfd *ignore_abfd;
4611 asymbol *symbol;
4612 symbol_info *ret;
4613 {
4614 ret->type = som_decode_symclass (symbol);
4615 if (ret->type != 'U')
4616 ret->value = symbol->value+symbol->section->vma;
4617 else
4618 ret->value = 0;
4619 ret->name = symbol->name;
4620 }
4621
4622 /* Count the number of symbols in the archive symbol table. Necessary
4623 so that we can allocate space for all the carsyms at once. */
4624
4625 static boolean
4626 som_bfd_count_ar_symbols (abfd, lst_header, count)
4627 bfd *abfd;
4628 struct lst_header *lst_header;
4629 symindex *count;
4630 {
4631 unsigned int i;
4632 unsigned int *hash_table = NULL;
4633 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4634
4635 hash_table =
4636 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4637 if (hash_table == NULL && lst_header->hash_size != 0)
4638 {
4639 bfd_set_error (bfd_error_no_memory);
4640 goto error_return;
4641 }
4642
4643 /* Don't forget to initialize the counter! */
4644 *count = 0;
4645
4646 /* Read in the hash table. The has table is an array of 32bit file offsets
4647 which point to the hash chains. */
4648 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4649 != lst_header->hash_size * 4)
4650 {
4651 bfd_set_error (bfd_error_system_call);
4652 goto error_return;
4653 }
4654
4655 /* Walk each chain counting the number of symbols found on that particular
4656 chain. */
4657 for (i = 0; i < lst_header->hash_size; i++)
4658 {
4659 struct lst_symbol_record lst_symbol;
4660
4661 /* An empty chain has zero as it's file offset. */
4662 if (hash_table[i] == 0)
4663 continue;
4664
4665 /* Seek to the first symbol in this hash chain. */
4666 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4667 {
4668 bfd_set_error (bfd_error_system_call);
4669 goto error_return;
4670 }
4671
4672 /* Read in this symbol and update the counter. */
4673 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4674 != sizeof (lst_symbol))
4675 {
4676 bfd_set_error (bfd_error_system_call);
4677 goto error_return;
4678 }
4679 (*count)++;
4680
4681 /* Now iterate through the rest of the symbols on this chain. */
4682 while (lst_symbol.next_entry)
4683 {
4684
4685 /* Seek to the next symbol. */
4686 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4687 < 0)
4688 {
4689 bfd_set_error (bfd_error_system_call);
4690 goto error_return;
4691 }
4692
4693 /* Read the symbol in and update the counter. */
4694 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4695 != sizeof (lst_symbol))
4696 {
4697 bfd_set_error (bfd_error_system_call);
4698 goto error_return;
4699 }
4700 (*count)++;
4701 }
4702 }
4703 if (hash_table != NULL)
4704 free (hash_table);
4705 return true;
4706
4707 error_return:
4708 if (hash_table != NULL)
4709 free (hash_table);
4710 return false;
4711 }
4712
4713 /* Fill in the canonical archive symbols (SYMS) from the archive described
4714 by ABFD and LST_HEADER. */
4715
4716 static boolean
4717 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
4718 bfd *abfd;
4719 struct lst_header *lst_header;
4720 carsym **syms;
4721 {
4722 unsigned int i, len;
4723 carsym *set = syms[0];
4724 unsigned int *hash_table = NULL;
4725 struct som_entry *som_dict = NULL;
4726 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4727
4728 hash_table =
4729 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4730 if (hash_table == NULL && lst_header->hash_size != 0)
4731 {
4732 bfd_set_error (bfd_error_no_memory);
4733 goto error_return;
4734 }
4735
4736 som_dict =
4737 (struct som_entry *) malloc (lst_header->module_count
4738 * sizeof (struct som_entry));
4739 if (som_dict == NULL && lst_header->module_count != 0)
4740 {
4741 bfd_set_error (bfd_error_no_memory);
4742 goto error_return;
4743 }
4744
4745 /* Read in the hash table. The has table is an array of 32bit file offsets
4746 which point to the hash chains. */
4747 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4748 != lst_header->hash_size * 4)
4749 {
4750 bfd_set_error (bfd_error_system_call);
4751 goto error_return;
4752 }
4753
4754 /* Seek to and read in the SOM dictionary. We will need this to fill
4755 in the carsym's filepos field. */
4756 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
4757 {
4758 bfd_set_error (bfd_error_system_call);
4759 goto error_return;
4760 }
4761
4762 if (bfd_read ((PTR) som_dict, lst_header->module_count,
4763 sizeof (struct som_entry), abfd)
4764 != lst_header->module_count * sizeof (struct som_entry))
4765 {
4766 bfd_set_error (bfd_error_system_call);
4767 goto error_return;
4768 }
4769
4770 /* Walk each chain filling in the carsyms as we go along. */
4771 for (i = 0; i < lst_header->hash_size; i++)
4772 {
4773 struct lst_symbol_record lst_symbol;
4774
4775 /* An empty chain has zero as it's file offset. */
4776 if (hash_table[i] == 0)
4777 continue;
4778
4779 /* Seek to and read the first symbol on the chain. */
4780 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4781 {
4782 bfd_set_error (bfd_error_system_call);
4783 goto error_return;
4784 }
4785
4786 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4787 != sizeof (lst_symbol))
4788 {
4789 bfd_set_error (bfd_error_system_call);
4790 goto error_return;
4791 }
4792
4793 /* Get the name of the symbol, first get the length which is stored
4794 as a 32bit integer just before the symbol.
4795
4796 One might ask why we don't just read in the entire string table
4797 and index into it. Well, according to the SOM ABI the string
4798 index can point *anywhere* in the archive to save space, so just
4799 using the string table would not be safe. */
4800 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4801 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4802 {
4803 bfd_set_error (bfd_error_system_call);
4804 goto error_return;
4805 }
4806
4807 if (bfd_read (&len, 1, 4, abfd) != 4)
4808 {
4809 bfd_set_error (bfd_error_system_call);
4810 goto error_return;
4811 }
4812
4813 /* Allocate space for the name and null terminate it too. */
4814 set->name = bfd_zalloc (abfd, len + 1);
4815 if (!set->name)
4816 {
4817 bfd_set_error (bfd_error_no_memory);
4818 goto error_return;
4819 }
4820 if (bfd_read (set->name, 1, len, abfd) != len)
4821 {
4822 bfd_set_error (bfd_error_system_call);
4823 goto error_return;
4824 }
4825 set->name[len] = 0;
4826
4827 /* Fill in the file offset. Note that the "location" field points
4828 to the SOM itself, not the ar_hdr in front of it. */
4829 set->file_offset = som_dict[lst_symbol.som_index].location
4830 - sizeof (struct ar_hdr);
4831
4832 /* Go to the next symbol. */
4833 set++;
4834
4835 /* Iterate through the rest of the chain. */
4836 while (lst_symbol.next_entry)
4837 {
4838 /* Seek to the next symbol and read it in. */
4839 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4840 < 0)
4841 {
4842 bfd_set_error (bfd_error_system_call);
4843 goto error_return;
4844 }
4845
4846 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4847 != sizeof (lst_symbol))
4848 {
4849 bfd_set_error (bfd_error_system_call);
4850 goto error_return;
4851 }
4852
4853 /* Seek to the name length & string and read them in. */
4854 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4855 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4856 {
4857 bfd_set_error (bfd_error_system_call);
4858 goto error_return;
4859 }
4860
4861 if (bfd_read (&len, 1, 4, abfd) != 4)
4862 {
4863 bfd_set_error (bfd_error_system_call);
4864 goto error_return;
4865 }
4866
4867 /* Allocate space for the name and null terminate it too. */
4868 set->name = bfd_zalloc (abfd, len + 1);
4869 if (!set->name)
4870 {
4871 bfd_set_error (bfd_error_no_memory);
4872 goto error_return;
4873 }
4874 if (bfd_read (set->name, 1, len, abfd) != len)
4875 {
4876 bfd_set_error (bfd_error_system_call);
4877 goto error_return;
4878 }
4879 set->name[len] = 0;
4880
4881 /* Fill in the file offset. Note that the "location" field points
4882 to the SOM itself, not the ar_hdr in front of it. */
4883 set->file_offset = som_dict[lst_symbol.som_index].location
4884 - sizeof (struct ar_hdr);
4885
4886 /* Go on to the next symbol. */
4887 set++;
4888 }
4889 }
4890 /* If we haven't died by now, then we successfully read the entire
4891 archive symbol table. */
4892 if (hash_table != NULL)
4893 free (hash_table);
4894 if (som_dict != NULL)
4895 free (som_dict);
4896 return true;
4897
4898 error_return:
4899 if (hash_table != NULL)
4900 free (hash_table);
4901 if (som_dict != NULL)
4902 free (som_dict);
4903 return false;
4904 }
4905
4906 /* Read in the LST from the archive. */
4907 static boolean
4908 som_slurp_armap (abfd)
4909 bfd *abfd;
4910 {
4911 struct lst_header lst_header;
4912 struct ar_hdr ar_header;
4913 unsigned int parsed_size;
4914 struct artdata *ardata = bfd_ardata (abfd);
4915 char nextname[17];
4916 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
4917
4918 /* Special cases. */
4919 if (i == 0)
4920 return true;
4921 if (i != 16)
4922 return false;
4923
4924 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
4925 {
4926 bfd_set_error (bfd_error_system_call);
4927 return false;
4928 }
4929
4930 /* For archives without .o files there is no symbol table. */
4931 if (strncmp (nextname, "/ ", 16))
4932 {
4933 bfd_has_map (abfd) = false;
4934 return true;
4935 }
4936
4937 /* Read in and sanity check the archive header. */
4938 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
4939 != sizeof (struct ar_hdr))
4940 {
4941 bfd_set_error (bfd_error_system_call);
4942 return false;
4943 }
4944
4945 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
4946 {
4947 bfd_set_error (bfd_error_malformed_archive);
4948 return false;
4949 }
4950
4951 /* How big is the archive symbol table entry? */
4952 errno = 0;
4953 parsed_size = strtol (ar_header.ar_size, NULL, 10);
4954 if (errno != 0)
4955 {
4956 bfd_set_error (bfd_error_malformed_archive);
4957 return false;
4958 }
4959
4960 /* Save off the file offset of the first real user data. */
4961 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
4962
4963 /* Read in the library symbol table. We'll make heavy use of this
4964 in just a minute. */
4965 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
4966 != sizeof (struct lst_header))
4967 {
4968 bfd_set_error (bfd_error_system_call);
4969 return false;
4970 }
4971
4972 /* Sanity check. */
4973 if (lst_header.a_magic != LIBMAGIC)
4974 {
4975 bfd_set_error (bfd_error_malformed_archive);
4976 return false;
4977 }
4978
4979 /* Count the number of symbols in the library symbol table. */
4980 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
4981 == false)
4982 return false;
4983
4984 /* Get back to the start of the library symbol table. */
4985 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
4986 + sizeof (struct lst_header), SEEK_SET) < 0)
4987 {
4988 bfd_set_error (bfd_error_system_call);
4989 return false;
4990 }
4991
4992 /* Initializae the cache and allocate space for the library symbols. */
4993 ardata->cache = 0;
4994 ardata->symdefs = (carsym *) bfd_alloc (abfd,
4995 (ardata->symdef_count
4996 * sizeof (carsym)));
4997 if (!ardata->symdefs)
4998 {
4999 bfd_set_error (bfd_error_no_memory);
5000 return false;
5001 }
5002
5003 /* Now fill in the canonical archive symbols. */
5004 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
5005 == false)
5006 return false;
5007
5008 /* Seek back to the "first" file in the archive. Note the "first"
5009 file may be the extended name table. */
5010 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) < 0)
5011 {
5012 bfd_set_error (bfd_error_system_call);
5013 return false;
5014 }
5015
5016 /* Notify the generic archive code that we have a symbol map. */
5017 bfd_has_map (abfd) = true;
5018 return true;
5019 }
5020
5021 /* Begin preparing to write a SOM library symbol table.
5022
5023 As part of the prep work we need to determine the number of symbols
5024 and the size of the associated string section. */
5025
5026 static boolean
5027 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
5028 bfd *abfd;
5029 unsigned int *num_syms, *stringsize;
5030 {
5031 bfd *curr_bfd = abfd->archive_head;
5032
5033 /* Some initialization. */
5034 *num_syms = 0;
5035 *stringsize = 0;
5036
5037 /* Iterate over each BFD within this archive. */
5038 while (curr_bfd != NULL)
5039 {
5040 unsigned int curr_count, i;
5041 som_symbol_type *sym;
5042
5043 /* Make sure the symbol table has been read, then snag a pointer
5044 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5045 but doing so avoids allocating lots of extra memory. */
5046 if (som_slurp_symbol_table (curr_bfd) == false)
5047 return false;
5048
5049 sym = obj_som_symtab (curr_bfd);
5050 curr_count = bfd_get_symcount (curr_bfd);
5051
5052 /* Examine each symbol to determine if it belongs in the
5053 library symbol table. */
5054 for (i = 0; i < curr_count; i++, sym++)
5055 {
5056 struct som_misc_symbol_info info;
5057
5058 /* Derive SOM information from the BFD symbol. */
5059 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5060
5061 /* Should we include this symbol? */
5062 if (info.symbol_type == ST_NULL
5063 || info.symbol_type == ST_SYM_EXT
5064 || info.symbol_type == ST_ARG_EXT)
5065 continue;
5066
5067 /* Only global symbols and unsatisfied commons. */
5068 if (info.symbol_scope != SS_UNIVERSAL
5069 && info.symbol_type != ST_STORAGE)
5070 continue;
5071
5072 /* Do no include undefined symbols. */
5073 if (sym->symbol.section == &bfd_und_section)
5074 continue;
5075
5076 /* Bump the various counters, being careful to honor
5077 alignment considerations in the string table. */
5078 (*num_syms)++;
5079 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5080 while (*stringsize % 4)
5081 (*stringsize)++;
5082 }
5083
5084 curr_bfd = curr_bfd->next;
5085 }
5086 return true;
5087 }
5088
5089 /* Hash a symbol name based on the hashing algorithm presented in the
5090 SOM ABI. */
5091 static unsigned int
5092 som_bfd_ar_symbol_hash (symbol)
5093 asymbol *symbol;
5094 {
5095 unsigned int len = strlen (symbol->name);
5096
5097 /* Names with length 1 are special. */
5098 if (len == 1)
5099 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5100
5101 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5102 | (symbol->name[len-2] << 8) | symbol->name[len-1];
5103 }
5104
5105 static CONST char *
5106 normalize (file)
5107 CONST char *file;
5108 {
5109 CONST char *filename = strrchr (file, '/');
5110
5111 if (filename != NULL)
5112 filename++;
5113 else
5114 filename = file;
5115 return filename;
5116 }
5117
5118 /* Do the bulk of the work required to write the SOM library
5119 symbol table. */
5120
5121 static boolean
5122 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst)
5123 bfd *abfd;
5124 unsigned int nsyms, string_size;
5125 struct lst_header lst;
5126 {
5127 file_ptr lst_filepos;
5128 char *strings = NULL, *p;
5129 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5130 bfd *curr_bfd;
5131 unsigned int *hash_table = NULL;
5132 struct som_entry *som_dict = NULL;
5133 struct lst_symbol_record **last_hash_entry = NULL;
5134 unsigned int curr_som_offset, som_index, extended_name_length = 0;
5135 unsigned int maxname = abfd->xvec->ar_max_namelen;
5136
5137 hash_table =
5138 (unsigned int *) malloc (lst.hash_size * sizeof (unsigned int));
5139 if (hash_table == NULL && lst.hash_size != 0)
5140 {
5141 bfd_set_error (bfd_error_no_memory);
5142 goto error_return;
5143 }
5144 som_dict =
5145 (struct som_entry *) malloc (lst.module_count
5146 * sizeof (struct som_entry));
5147 if (som_dict == NULL && lst.module_count != 0)
5148 {
5149 bfd_set_error (bfd_error_no_memory);
5150 goto error_return;
5151 }
5152
5153 last_hash_entry =
5154 ((struct lst_symbol_record **)
5155 malloc (lst.hash_size * sizeof (struct lst_symbol_record *)));
5156 if (last_hash_entry == NULL && lst.hash_size != 0)
5157 {
5158 bfd_set_error (bfd_error_no_memory);
5159 goto error_return;
5160 }
5161
5162 /* Lots of fields are file positions relative to the start
5163 of the lst record. So save its location. */
5164 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5165
5166 /* Some initialization. */
5167 memset (hash_table, 0, 4 * lst.hash_size);
5168 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
5169 memset (last_hash_entry, 0,
5170 lst.hash_size * sizeof (struct lst_symbol_record *));
5171
5172 /* Symbols have som_index fields, so we have to keep track of the
5173 index of each SOM in the archive.
5174
5175 The SOM dictionary has (among other things) the absolute file
5176 position for the SOM which a particular dictionary entry
5177 describes. We have to compute that information as we iterate
5178 through the SOMs/symbols. */
5179 som_index = 0;
5180 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5181
5182 /* Yow! We have to know the size of the extended name table
5183 too. */
5184 for (curr_bfd = abfd->archive_head;
5185 curr_bfd != NULL;
5186 curr_bfd = curr_bfd->next)
5187 {
5188 CONST char *normal = normalize (curr_bfd->filename);
5189 unsigned int thislen;
5190
5191 if (!normal)
5192 {
5193 bfd_set_error (bfd_error_no_memory);
5194 return false;
5195 }
5196 thislen = strlen (normal);
5197 if (thislen > maxname)
5198 extended_name_length += thislen + 1;
5199 }
5200
5201 /* Make room for the archive header and the contents of the
5202 extended string table. */
5203 if (extended_name_length)
5204 curr_som_offset += extended_name_length + sizeof (struct ar_hdr);
5205
5206 /* Make sure we're properly aligned. */
5207 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5208
5209 /* FIXME should be done with buffers just like everything else... */
5210 lst_syms = malloc (nsyms * sizeof (struct lst_symbol_record));
5211 if (lst_syms == NULL && nsyms != 0)
5212 {
5213 bfd_set_error (bfd_error_no_memory);
5214 goto error_return;
5215 }
5216 strings = malloc (string_size);
5217 if (strings == NULL && string_size != 0)
5218 {
5219 bfd_set_error (bfd_error_no_memory);
5220 goto error_return;
5221 }
5222
5223 p = strings;
5224 curr_lst_sym = lst_syms;
5225
5226 curr_bfd = abfd->archive_head;
5227 while (curr_bfd != NULL)
5228 {
5229 unsigned int curr_count, i;
5230 som_symbol_type *sym;
5231
5232 /* Make sure the symbol table has been read, then snag a pointer
5233 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5234 but doing so avoids allocating lots of extra memory. */
5235 if (som_slurp_symbol_table (curr_bfd) == false)
5236 goto error_return;
5237
5238 sym = obj_som_symtab (curr_bfd);
5239 curr_count = bfd_get_symcount (curr_bfd);
5240
5241 for (i = 0; i < curr_count; i++, sym++)
5242 {
5243 struct som_misc_symbol_info info;
5244
5245 /* Derive SOM information from the BFD symbol. */
5246 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5247
5248 /* Should we include this symbol? */
5249 if (info.symbol_type == ST_NULL
5250 || info.symbol_type == ST_SYM_EXT
5251 || info.symbol_type == ST_ARG_EXT)
5252 continue;
5253
5254 /* Only global symbols and unsatisfied commons. */
5255 if (info.symbol_scope != SS_UNIVERSAL
5256 && info.symbol_type != ST_STORAGE)
5257 continue;
5258
5259 /* Do no include undefined symbols. */
5260 if (sym->symbol.section == &bfd_und_section)
5261 continue;
5262
5263 /* If this is the first symbol from this SOM, then update
5264 the SOM dictionary too. */
5265 if (som_dict[som_index].location == 0)
5266 {
5267 som_dict[som_index].location = curr_som_offset;
5268 som_dict[som_index].length = arelt_size (curr_bfd);
5269 }
5270
5271 /* Fill in the lst symbol record. */
5272 curr_lst_sym->hidden = 0;
5273 curr_lst_sym->secondary_def = 0;
5274 curr_lst_sym->symbol_type = info.symbol_type;
5275 curr_lst_sym->symbol_scope = info.symbol_scope;
5276 curr_lst_sym->check_level = 0;
5277 curr_lst_sym->must_qualify = 0;
5278 curr_lst_sym->initially_frozen = 0;
5279 curr_lst_sym->memory_resident = 0;
5280 curr_lst_sym->is_common = (sym->symbol.section == &bfd_com_section);
5281 curr_lst_sym->dup_common = 0;
5282 curr_lst_sym->xleast = 0;
5283 curr_lst_sym->arg_reloc = info.arg_reloc;
5284 curr_lst_sym->name.n_strx = p - strings + 4;
5285 curr_lst_sym->qualifier_name.n_strx = 0;
5286 curr_lst_sym->symbol_info = info.symbol_info;
5287 curr_lst_sym->symbol_value = info.symbol_value;
5288 curr_lst_sym->symbol_descriptor = 0;
5289 curr_lst_sym->reserved = 0;
5290 curr_lst_sym->som_index = som_index;
5291 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
5292 curr_lst_sym->next_entry = 0;
5293
5294 /* Insert into the hash table. */
5295 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
5296 {
5297 struct lst_symbol_record *tmp;
5298
5299 /* There is already something at the head of this hash chain,
5300 so tack this symbol onto the end of the chain. */
5301 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
5302 tmp->next_entry
5303 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5304 + lst.hash_size * 4
5305 + lst.module_count * sizeof (struct som_entry)
5306 + sizeof (struct lst_header);
5307 }
5308 else
5309 {
5310 /* First entry in this hash chain. */
5311 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
5312 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5313 + lst.hash_size * 4
5314 + lst.module_count * sizeof (struct som_entry)
5315 + sizeof (struct lst_header);
5316 }
5317
5318 /* Keep track of the last symbol we added to this chain so we can
5319 easily update its next_entry pointer. */
5320 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
5321 = curr_lst_sym;
5322
5323
5324 /* Update the string table. */
5325 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
5326 p += 4;
5327 strcpy (p, sym->symbol.name);
5328 p += strlen (sym->symbol.name) + 1;
5329 while ((int)p % 4)
5330 {
5331 bfd_put_8 (abfd, 0, p);
5332 p++;
5333 }
5334
5335 /* Head to the next symbol. */
5336 curr_lst_sym++;
5337 }
5338
5339 /* Keep track of where each SOM will finally reside; then look
5340 at the next BFD. */
5341 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
5342 curr_bfd = curr_bfd->next;
5343 som_index++;
5344 }
5345
5346 /* Now scribble out the hash table. */
5347 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
5348 != lst.hash_size * 4)
5349 {
5350 bfd_set_error (bfd_error_system_call);
5351 goto error_return;
5352 }
5353
5354 /* Then the SOM dictionary. */
5355 if (bfd_write ((PTR) som_dict, lst.module_count,
5356 sizeof (struct som_entry), abfd)
5357 != lst.module_count * sizeof (struct som_entry))
5358 {
5359 bfd_set_error (bfd_error_system_call);
5360 goto error_return;
5361 }
5362
5363 /* The library symbols. */
5364 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
5365 != nsyms * sizeof (struct lst_symbol_record))
5366 {
5367 bfd_set_error (bfd_error_system_call);
5368 goto error_return;
5369 }
5370
5371 /* And finally the strings. */
5372 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
5373 {
5374 bfd_set_error (bfd_error_system_call);
5375 goto error_return;
5376 }
5377
5378 if (hash_table != NULL)
5379 free (hash_table);
5380 if (som_dict != NULL)
5381 free (som_dict);
5382 if (last_hash_entry != NULL)
5383 free (last_hash_entry);
5384 if (lst_syms != NULL)
5385 free (lst_syms);
5386 if (strings != NULL)
5387 free (strings);
5388 return true;
5389
5390 error_return:
5391 if (hash_table != NULL)
5392 free (hash_table);
5393 if (som_dict != NULL)
5394 free (som_dict);
5395 if (last_hash_entry != NULL)
5396 free (last_hash_entry);
5397 if (lst_syms != NULL)
5398 free (lst_syms);
5399 if (strings != NULL)
5400 free (strings);
5401
5402 return false;
5403 }
5404
5405 /* Write out the LST for the archive.
5406
5407 You'll never believe this is really how armaps are handled in SOM... */
5408
5409 static boolean
5410 som_write_armap (abfd)
5411 bfd *abfd;
5412 {
5413 bfd *curr_bfd;
5414 struct stat statbuf;
5415 unsigned int i, lst_size, nsyms, stringsize;
5416 struct ar_hdr hdr;
5417 struct lst_header lst;
5418 int *p;
5419
5420 /* We'll use this for the archive's date and mode later. */
5421 if (stat (abfd->filename, &statbuf) != 0)
5422 {
5423 bfd_set_error (bfd_error_system_call);
5424 return false;
5425 }
5426 /* Fudge factor. */
5427 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
5428
5429 /* Account for the lst header first. */
5430 lst_size = sizeof (struct lst_header);
5431
5432 /* Start building the LST header. */
5433 lst.system_id = HP9000S800_ID;
5434 lst.a_magic = LIBMAGIC;
5435 lst.version_id = VERSION_ID;
5436 lst.file_time.secs = 0;
5437 lst.file_time.nanosecs = 0;
5438
5439 lst.hash_loc = lst_size;
5440 lst.hash_size = SOM_LST_HASH_SIZE;
5441
5442 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
5443 lst_size += 4 * SOM_LST_HASH_SIZE;
5444
5445 /* We need to count the number of SOMs in this archive. */
5446 curr_bfd = abfd->archive_head;
5447 lst.module_count = 0;
5448 while (curr_bfd != NULL)
5449 {
5450 lst.module_count++;
5451 curr_bfd = curr_bfd->next;
5452 }
5453 lst.module_limit = lst.module_count;
5454 lst.dir_loc = lst_size;
5455 lst_size += sizeof (struct som_entry) * lst.module_count;
5456
5457 /* We don't support import/export tables, auxiliary headers,
5458 or free lists yet. Make the linker work a little harder
5459 to make our life easier. */
5460
5461 lst.export_loc = 0;
5462 lst.export_count = 0;
5463 lst.import_loc = 0;
5464 lst.aux_loc = 0;
5465 lst.aux_size = 0;
5466
5467 /* Count how many symbols we will have on the hash chains and the
5468 size of the associated string table. */
5469 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
5470 return false;
5471
5472 lst_size += sizeof (struct lst_symbol_record) * nsyms;
5473
5474 /* For the string table. One day we might actually use this info
5475 to avoid small seeks/reads when reading archives. */
5476 lst.string_loc = lst_size;
5477 lst.string_size = stringsize;
5478 lst_size += stringsize;
5479
5480 /* SOM ABI says this must be zero. */
5481 lst.free_list = 0;
5482 lst.file_end = lst_size;
5483
5484 /* Compute the checksum. Must happen after the entire lst header
5485 has filled in. */
5486 p = (int *)&lst;
5487 lst.checksum = 0;
5488 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
5489 lst.checksum ^= *p++;
5490
5491 sprintf (hdr.ar_name, "/ ");
5492 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
5493 sprintf (hdr.ar_uid, "%d", getuid ());
5494 sprintf (hdr.ar_gid, "%d", getgid ());
5495 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
5496 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
5497 hdr.ar_fmag[0] = '`';
5498 hdr.ar_fmag[1] = '\012';
5499
5500 /* Turn any nulls into spaces. */
5501 for (i = 0; i < sizeof (struct ar_hdr); i++)
5502 if (((char *) (&hdr))[i] == '\0')
5503 (((char *) (&hdr))[i]) = ' ';
5504
5505 /* Scribble out the ar header. */
5506 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
5507 != sizeof (struct ar_hdr))
5508 {
5509 bfd_set_error (bfd_error_system_call);
5510 return false;
5511 }
5512
5513 /* Now scribble out the lst header. */
5514 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
5515 != sizeof (struct lst_header))
5516 {
5517 bfd_set_error (bfd_error_system_call);
5518 return false;
5519 }
5520
5521 /* Build and write the armap. */
5522 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst) == false)
5523 return false;
5524
5525 /* Done. */
5526 return true;
5527 }
5528
5529 /* End of miscellaneous support functions. */
5530
5531 #define som_bfd_debug_info_start bfd_void
5532 #define som_bfd_debug_info_end bfd_void
5533 #define som_bfd_debug_info_accumulate (PROTO(void,(*),(bfd*, struct sec *))) bfd_void
5534
5535 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
5536 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
5537 #define som_truncate_arname bfd_bsd_truncate_arname
5538 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
5539
5540 #define som_get_lineno (struct lineno_cache_entry *(*)())bfd_nullvoidptr
5541 #define som_close_and_cleanup bfd_generic_close_and_cleanup
5542 #define som_get_section_contents bfd_generic_get_section_contents
5543
5544 #define som_bfd_get_relocated_section_contents \
5545 bfd_generic_get_relocated_section_contents
5546 #define som_bfd_relax_section bfd_generic_relax_section
5547 #define som_bfd_make_debug_symbol \
5548 ((asymbol *(*) PARAMS ((bfd *, void *, unsigned long))) bfd_nullvoidptr)
5549 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
5550 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
5551 #define som_bfd_final_link _bfd_generic_final_link
5552
5553 /* Core file support is in the hpux-core backend. */
5554 #define som_core_file_failing_command _bfd_dummy_core_file_failing_command
5555 #define som_core_file_failing_signal _bfd_dummy_core_file_failing_signal
5556 #define som_core_file_matches_executable_p _bfd_dummy_core_file_matches_executable_p
5557
5558 bfd_target som_vec =
5559 {
5560 "som", /* name */
5561 bfd_target_som_flavour,
5562 true, /* target byte order */
5563 true, /* target headers byte order */
5564 (HAS_RELOC | EXEC_P | /* object flags */
5565 HAS_LINENO | HAS_DEBUG |
5566 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
5567 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
5568 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
5569
5570 /* leading_symbol_char: is the first char of a user symbol
5571 predictable, and if so what is it */
5572 0,
5573 '/', /* ar_pad_char */
5574 14, /* ar_max_namelen */
5575 3, /* minimum alignment */
5576 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5577 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5578 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
5579 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5580 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5581 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
5582 {_bfd_dummy_target,
5583 som_object_p, /* bfd_check_format */
5584 bfd_generic_archive_p,
5585 _bfd_dummy_target
5586 },
5587 {
5588 bfd_false,
5589 som_mkobject,
5590 _bfd_generic_mkarchive,
5591 bfd_false
5592 },
5593 {
5594 bfd_false,
5595 som_write_object_contents,
5596 _bfd_write_archive_contents,
5597 bfd_false,
5598 },
5599 #undef som
5600 JUMP_TABLE (som),
5601 (PTR) 0
5602 };
5603
5604 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */