* cpu-hppa.c (arch_info_struct): Support both PA1.0 and PA1.1
[binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
23
24 #include "bfd.h"
25 #include "sysdep.h"
26
27 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)
28
29 #include "libbfd.h"
30 #include "som.h"
31
32 #include <stdio.h>
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <signal.h>
36 #include <machine/reg.h>
37 #include <sys/file.h>
38 #include <errno.h>
39
40 /* Magic not defined in standard HP-UX header files until 8.0 */
41
42 #ifndef CPU_PA_RISC1_0
43 #define CPU_PA_RISC1_0 0x20B
44 #endif /* CPU_PA_RISC1_0 */
45
46 #ifndef CPU_PA_RISC1_1
47 #define CPU_PA_RISC1_1 0x210
48 #endif /* CPU_PA_RISC1_1 */
49
50 #ifndef _PA_RISC1_0_ID
51 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
52 #endif /* _PA_RISC1_0_ID */
53
54 #ifndef _PA_RISC1_1_ID
55 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
56 #endif /* _PA_RISC1_1_ID */
57
58 #ifndef _PA_RISC_MAXID
59 #define _PA_RISC_MAXID 0x2FF
60 #endif /* _PA_RISC_MAXID */
61
62 #ifndef _PA_RISC_ID
63 #define _PA_RISC_ID(__m_num) \
64 (((__m_num) == _PA_RISC1_0_ID) || \
65 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
66 #endif /* _PA_RISC_ID */
67
68
69 /* HIUX in it's infinite stupidity changed the names for several "well
70 known" constants. Work around such braindamage. Try the HPUX version
71 first, then the HIUX version, and finally provide a default. */
72 #ifdef HPUX_AUX_ID
73 #define EXEC_AUX_ID HPUX_AUX_ID
74 #endif
75
76 #if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID)
77 #define EXEC_AUX_ID HIUX_AUX_ID
78 #endif
79
80 #ifndef EXEC_AUX_ID
81 #define EXEC_AUX_ID 0
82 #endif
83
84 /* Size (in chars) of the temporary buffers used during fixup and string
85 table writes. */
86
87 #define SOM_TMP_BUFSIZE 8192
88
89 /* Size of the hash table in archives. */
90 #define SOM_LST_HASH_SIZE 31
91
92 /* Max number of SOMs to be found in an archive. */
93 #define SOM_LST_MODULE_LIMIT 1024
94
95 /* Generic alignment macro. */
96 #define SOM_ALIGN(val, alignment) \
97 (((val) + (alignment) - 1) & ~((alignment) - 1))
98
99 /* SOM allows any one of the four previous relocations to be reused
100 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
101 relocations are always a single byte, using a R_PREV_FIXUP instead
102 of some multi-byte relocation makes object files smaller.
103
104 Note one side effect of using a R_PREV_FIXUP is the relocation that
105 is being repeated moves to the front of the queue. */
106 struct reloc_queue
107 {
108 unsigned char *reloc;
109 unsigned int size;
110 } reloc_queue[4];
111
112 /* This fully describes the symbol types which may be attached to
113 an EXPORT or IMPORT directive. Only SOM uses this formation
114 (ELF has no need for it). */
115 typedef enum
116 {
117 SYMBOL_TYPE_UNKNOWN,
118 SYMBOL_TYPE_ABSOLUTE,
119 SYMBOL_TYPE_CODE,
120 SYMBOL_TYPE_DATA,
121 SYMBOL_TYPE_ENTRY,
122 SYMBOL_TYPE_MILLICODE,
123 SYMBOL_TYPE_PLABEL,
124 SYMBOL_TYPE_PRI_PROG,
125 SYMBOL_TYPE_SEC_PROG,
126 } pa_symbol_type;
127
128 struct section_to_type
129 {
130 char *section;
131 char type;
132 };
133
134 /* Assorted symbol information that needs to be derived from the BFD symbol
135 and/or the BFD backend private symbol data. */
136 struct som_misc_symbol_info
137 {
138 unsigned int symbol_type;
139 unsigned int symbol_scope;
140 unsigned int arg_reloc;
141 unsigned int symbol_info;
142 unsigned int symbol_value;
143 };
144
145 /* Forward declarations */
146
147 static boolean som_mkobject PARAMS ((bfd *));
148 static const bfd_target * som_object_setup PARAMS ((bfd *,
149 struct header *,
150 struct som_exec_auxhdr *));
151 static boolean setup_sections PARAMS ((bfd *, struct header *));
152 static const bfd_target * som_object_p PARAMS ((bfd *));
153 static boolean som_write_object_contents PARAMS ((bfd *));
154 static boolean som_slurp_string_table PARAMS ((bfd *));
155 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
156 static long som_get_symtab_upper_bound PARAMS ((bfd *));
157 static long som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
158 arelent **, asymbol **));
159 static long som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
160 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
161 arelent *, asection *,
162 asymbol **, boolean));
163 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
164 asymbol **, boolean));
165 static long som_get_symtab PARAMS ((bfd *, asymbol **));
166 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
167 static void som_print_symbol PARAMS ((bfd *, PTR,
168 asymbol *, bfd_print_symbol_type));
169 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
170 static boolean som_bfd_copy_private_section_data PARAMS ((bfd *, asection *,
171 bfd *, asection *));
172 static boolean som_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
173 static boolean som_bfd_is_local_label PARAMS ((bfd *, asymbol *));
174 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
175 file_ptr, bfd_size_type));
176 static boolean som_get_section_contents PARAMS ((bfd *, sec_ptr, PTR,
177 file_ptr, bfd_size_type));
178 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
179 unsigned long));
180 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
181 asymbol **, bfd_vma,
182 CONST char **,
183 CONST char **,
184 unsigned int *));
185 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
186 static asection * bfd_section_from_som_symbol PARAMS ((bfd *,
187 struct symbol_dictionary_record *));
188 static int log2 PARAMS ((unsigned int));
189 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
190 asymbol *, PTR,
191 asection *, bfd *,
192 char **));
193 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
194 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
195 struct reloc_queue *));
196 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
197 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
198 struct reloc_queue *));
199 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
200 unsigned int,
201 struct reloc_queue *));
202
203 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
204 unsigned char *, unsigned int *,
205 struct reloc_queue *));
206 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
207 unsigned int *,
208 struct reloc_queue *));
209 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
210 unsigned int *,
211 arelent *, int,
212 struct reloc_queue *));
213 static unsigned long som_count_spaces PARAMS ((bfd *));
214 static unsigned long som_count_subspaces PARAMS ((bfd *));
215 static int compare_syms PARAMS ((const void *, const void *));
216 static int compare_subspaces PARAMS ((const void *, const void *));
217 static unsigned long som_compute_checksum PARAMS ((bfd *));
218 static boolean som_prep_headers PARAMS ((bfd *));
219 static int som_sizeof_headers PARAMS ((bfd *, boolean));
220 static boolean som_finish_writing PARAMS ((bfd *));
221 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
222 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
223 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
224 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
225 unsigned int *));
226 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
227 asymbol **, unsigned int,
228 unsigned *));
229 static boolean som_begin_writing PARAMS ((bfd *));
230 static reloc_howto_type * som_bfd_reloc_type_lookup
231 PARAMS ((bfd *, bfd_reloc_code_real_type));
232 static char som_section_type PARAMS ((const char *));
233 static int som_decode_symclass PARAMS ((asymbol *));
234 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
235 symindex *));
236
237 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
238 carsym **syms));
239 static boolean som_slurp_armap PARAMS ((bfd *));
240 static boolean som_write_armap PARAMS ((bfd *, unsigned int, struct orl *,
241 unsigned int, int));
242 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
243 struct som_misc_symbol_info *));
244 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
245 unsigned int *));
246 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
247 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
248 unsigned int,
249 struct lst_header));
250 static CONST char *normalize PARAMS ((CONST char *file));
251 static boolean som_is_space PARAMS ((asection *));
252 static boolean som_is_subspace PARAMS ((asection *));
253 static boolean som_is_container PARAMS ((asection *, asection *));
254 static boolean som_bfd_free_cached_info PARAMS ((bfd *));
255
256 /* Map SOM section names to POSIX/BSD single-character symbol types.
257
258 This table includes all the standard subspaces as defined in the
259 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
260 some reason was left out, and sections specific to embedded stabs. */
261
262 static const struct section_to_type stt[] = {
263 {"$TEXT$", 't'},
264 {"$SHLIB_INFO$", 't'},
265 {"$MILLICODE$", 't'},
266 {"$LIT$", 't'},
267 {"$CODE$", 't'},
268 {"$UNWIND_START$", 't'},
269 {"$UNWIND$", 't'},
270 {"$PRIVATE$", 'd'},
271 {"$PLT$", 'd'},
272 {"$SHLIB_DATA$", 'd'},
273 {"$DATA$", 'd'},
274 {"$SHORTDATA$", 'g'},
275 {"$DLT$", 'd'},
276 {"$GLOBAL$", 'g'},
277 {"$SHORTBSS$", 's'},
278 {"$BSS$", 'b'},
279 {"$GDB_STRINGS$", 'N'},
280 {"$GDB_SYMBOLS$", 'N'},
281 {0, 0}
282 };
283
284 /* About the relocation formatting table...
285
286 There are 256 entries in the table, one for each possible
287 relocation opcode available in SOM. We index the table by
288 the relocation opcode. The names and operations are those
289 defined by a.out_800 (4).
290
291 Right now this table is only used to count and perform minimal
292 processing on relocation streams so that they can be internalized
293 into BFD and symbolically printed by utilities. To make actual use
294 of them would be much more difficult, BFD's concept of relocations
295 is far too simple to handle SOM relocations. The basic assumption
296 that a relocation can be completely processed independent of other
297 relocations before an object file is written is invalid for SOM.
298
299 The SOM relocations are meant to be processed as a stream, they
300 specify copying of data from the input section to the output section
301 while possibly modifying the data in some manner. They also can
302 specify that a variable number of zeros or uninitialized data be
303 inserted on in the output segment at the current offset. Some
304 relocations specify that some previous relocation be re-applied at
305 the current location in the input/output sections. And finally a number
306 of relocations have effects on other sections (R_ENTRY, R_EXIT,
307 R_UNWIND_AUX and a variety of others). There isn't even enough room
308 in the BFD relocation data structure to store enough information to
309 perform all the relocations.
310
311 Each entry in the table has three fields.
312
313 The first entry is an index into this "class" of relocations. This
314 index can then be used as a variable within the relocation itself.
315
316 The second field is a format string which actually controls processing
317 of the relocation. It uses a simple postfix machine to do calculations
318 based on variables/constants found in the string and the relocation
319 stream.
320
321 The third field specifys whether or not this relocation may use
322 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
323 stored in the instruction.
324
325 Variables:
326
327 L = input space byte count
328 D = index into class of relocations
329 M = output space byte count
330 N = statement number (unused?)
331 O = stack operation
332 R = parameter relocation bits
333 S = symbol index
334 T = first 32 bits of stack unwind information
335 U = second 32 bits of stack unwind information
336 V = a literal constant (usually used in the next relocation)
337 P = a previous relocation
338
339 Lower case letters (starting with 'b') refer to following
340 bytes in the relocation stream. 'b' is the next 1 byte,
341 c is the next 2 bytes, d is the next 3 bytes, etc...
342 This is the variable part of the relocation entries that
343 makes our life a living hell.
344
345 numerical constants are also used in the format string. Note
346 the constants are represented in decimal.
347
348 '+', "*" and "=" represents the obvious postfix operators.
349 '<' represents a left shift.
350
351 Stack Operations:
352
353 Parameter Relocation Bits:
354
355 Unwind Entries:
356
357 Previous Relocations: The index field represents which in the queue
358 of 4 previous fixups should be re-applied.
359
360 Literal Constants: These are generally used to represent addend
361 parts of relocations when these constants are not stored in the
362 fields of the instructions themselves. For example the instruction
363 addil foo-$global$-0x1234 would use an override for "0x1234" rather
364 than storing it into the addil itself. */
365
366 struct fixup_format
367 {
368 int D;
369 char *format;
370 };
371
372 static const struct fixup_format som_fixup_formats[256] =
373 {
374 /* R_NO_RELOCATION */
375 0, "LD1+4*=", /* 0x00 */
376 1, "LD1+4*=", /* 0x01 */
377 2, "LD1+4*=", /* 0x02 */
378 3, "LD1+4*=", /* 0x03 */
379 4, "LD1+4*=", /* 0x04 */
380 5, "LD1+4*=", /* 0x05 */
381 6, "LD1+4*=", /* 0x06 */
382 7, "LD1+4*=", /* 0x07 */
383 8, "LD1+4*=", /* 0x08 */
384 9, "LD1+4*=", /* 0x09 */
385 10, "LD1+4*=", /* 0x0a */
386 11, "LD1+4*=", /* 0x0b */
387 12, "LD1+4*=", /* 0x0c */
388 13, "LD1+4*=", /* 0x0d */
389 14, "LD1+4*=", /* 0x0e */
390 15, "LD1+4*=", /* 0x0f */
391 16, "LD1+4*=", /* 0x10 */
392 17, "LD1+4*=", /* 0x11 */
393 18, "LD1+4*=", /* 0x12 */
394 19, "LD1+4*=", /* 0x13 */
395 20, "LD1+4*=", /* 0x14 */
396 21, "LD1+4*=", /* 0x15 */
397 22, "LD1+4*=", /* 0x16 */
398 23, "LD1+4*=", /* 0x17 */
399 0, "LD8<b+1+4*=", /* 0x18 */
400 1, "LD8<b+1+4*=", /* 0x19 */
401 2, "LD8<b+1+4*=", /* 0x1a */
402 3, "LD8<b+1+4*=", /* 0x1b */
403 0, "LD16<c+1+4*=", /* 0x1c */
404 1, "LD16<c+1+4*=", /* 0x1d */
405 2, "LD16<c+1+4*=", /* 0x1e */
406 0, "Ld1+=", /* 0x1f */
407 /* R_ZEROES */
408 0, "Lb1+4*=", /* 0x20 */
409 1, "Ld1+=", /* 0x21 */
410 /* R_UNINIT */
411 0, "Lb1+4*=", /* 0x22 */
412 1, "Ld1+=", /* 0x23 */
413 /* R_RELOCATION */
414 0, "L4=", /* 0x24 */
415 /* R_DATA_ONE_SYMBOL */
416 0, "L4=Sb=", /* 0x25 */
417 1, "L4=Sd=", /* 0x26 */
418 /* R_DATA_PLEBEL */
419 0, "L4=Sb=", /* 0x27 */
420 1, "L4=Sd=", /* 0x28 */
421 /* R_SPACE_REF */
422 0, "L4=", /* 0x29 */
423 /* R_REPEATED_INIT */
424 0, "L4=Mb1+4*=", /* 0x2a */
425 1, "Lb4*=Mb1+L*=", /* 0x2b */
426 2, "Lb4*=Md1+4*=", /* 0x2c */
427 3, "Ld1+=Me1+=", /* 0x2d */
428 /* R_RESERVED */
429 0, "", /* 0x2e */
430 0, "", /* 0x2f */
431 /* R_PCREL_CALL */
432 0, "L4=RD=Sb=", /* 0x30 */
433 1, "L4=RD=Sb=", /* 0x31 */
434 2, "L4=RD=Sb=", /* 0x32 */
435 3, "L4=RD=Sb=", /* 0x33 */
436 4, "L4=RD=Sb=", /* 0x34 */
437 5, "L4=RD=Sb=", /* 0x35 */
438 6, "L4=RD=Sb=", /* 0x36 */
439 7, "L4=RD=Sb=", /* 0x37 */
440 8, "L4=RD=Sb=", /* 0x38 */
441 9, "L4=RD=Sb=", /* 0x39 */
442 0, "L4=RD8<b+=Sb=",/* 0x3a */
443 1, "L4=RD8<b+=Sb=",/* 0x3b */
444 0, "L4=RD8<b+=Sd=",/* 0x3c */
445 1, "L4=RD8<b+=Sd=",/* 0x3d */
446 /* R_RESERVED */
447 0, "", /* 0x3e */
448 0, "", /* 0x3f */
449 /* R_ABS_CALL */
450 0, "L4=RD=Sb=", /* 0x40 */
451 1, "L4=RD=Sb=", /* 0x41 */
452 2, "L4=RD=Sb=", /* 0x42 */
453 3, "L4=RD=Sb=", /* 0x43 */
454 4, "L4=RD=Sb=", /* 0x44 */
455 5, "L4=RD=Sb=", /* 0x45 */
456 6, "L4=RD=Sb=", /* 0x46 */
457 7, "L4=RD=Sb=", /* 0x47 */
458 8, "L4=RD=Sb=", /* 0x48 */
459 9, "L4=RD=Sb=", /* 0x49 */
460 0, "L4=RD8<b+=Sb=",/* 0x4a */
461 1, "L4=RD8<b+=Sb=",/* 0x4b */
462 0, "L4=RD8<b+=Sd=",/* 0x4c */
463 1, "L4=RD8<b+=Sd=",/* 0x4d */
464 /* R_RESERVED */
465 0, "", /* 0x4e */
466 0, "", /* 0x4f */
467 /* R_DP_RELATIVE */
468 0, "L4=SD=", /* 0x50 */
469 1, "L4=SD=", /* 0x51 */
470 2, "L4=SD=", /* 0x52 */
471 3, "L4=SD=", /* 0x53 */
472 4, "L4=SD=", /* 0x54 */
473 5, "L4=SD=", /* 0x55 */
474 6, "L4=SD=", /* 0x56 */
475 7, "L4=SD=", /* 0x57 */
476 8, "L4=SD=", /* 0x58 */
477 9, "L4=SD=", /* 0x59 */
478 10, "L4=SD=", /* 0x5a */
479 11, "L4=SD=", /* 0x5b */
480 12, "L4=SD=", /* 0x5c */
481 13, "L4=SD=", /* 0x5d */
482 14, "L4=SD=", /* 0x5e */
483 15, "L4=SD=", /* 0x5f */
484 16, "L4=SD=", /* 0x60 */
485 17, "L4=SD=", /* 0x61 */
486 18, "L4=SD=", /* 0x62 */
487 19, "L4=SD=", /* 0x63 */
488 20, "L4=SD=", /* 0x64 */
489 21, "L4=SD=", /* 0x65 */
490 22, "L4=SD=", /* 0x66 */
491 23, "L4=SD=", /* 0x67 */
492 24, "L4=SD=", /* 0x68 */
493 25, "L4=SD=", /* 0x69 */
494 26, "L4=SD=", /* 0x6a */
495 27, "L4=SD=", /* 0x6b */
496 28, "L4=SD=", /* 0x6c */
497 29, "L4=SD=", /* 0x6d */
498 30, "L4=SD=", /* 0x6e */
499 31, "L4=SD=", /* 0x6f */
500 32, "L4=Sb=", /* 0x70 */
501 33, "L4=Sd=", /* 0x71 */
502 /* R_RESERVED */
503 0, "", /* 0x72 */
504 0, "", /* 0x73 */
505 0, "", /* 0x74 */
506 0, "", /* 0x75 */
507 0, "", /* 0x76 */
508 0, "", /* 0x77 */
509 /* R_DLT_REL */
510 0, "L4=Sb=", /* 0x78 */
511 1, "L4=Sd=", /* 0x79 */
512 /* R_RESERVED */
513 0, "", /* 0x7a */
514 0, "", /* 0x7b */
515 0, "", /* 0x7c */
516 0, "", /* 0x7d */
517 0, "", /* 0x7e */
518 0, "", /* 0x7f */
519 /* R_CODE_ONE_SYMBOL */
520 0, "L4=SD=", /* 0x80 */
521 1, "L4=SD=", /* 0x81 */
522 2, "L4=SD=", /* 0x82 */
523 3, "L4=SD=", /* 0x83 */
524 4, "L4=SD=", /* 0x84 */
525 5, "L4=SD=", /* 0x85 */
526 6, "L4=SD=", /* 0x86 */
527 7, "L4=SD=", /* 0x87 */
528 8, "L4=SD=", /* 0x88 */
529 9, "L4=SD=", /* 0x89 */
530 10, "L4=SD=", /* 0x8q */
531 11, "L4=SD=", /* 0x8b */
532 12, "L4=SD=", /* 0x8c */
533 13, "L4=SD=", /* 0x8d */
534 14, "L4=SD=", /* 0x8e */
535 15, "L4=SD=", /* 0x8f */
536 16, "L4=SD=", /* 0x90 */
537 17, "L4=SD=", /* 0x91 */
538 18, "L4=SD=", /* 0x92 */
539 19, "L4=SD=", /* 0x93 */
540 20, "L4=SD=", /* 0x94 */
541 21, "L4=SD=", /* 0x95 */
542 22, "L4=SD=", /* 0x96 */
543 23, "L4=SD=", /* 0x97 */
544 24, "L4=SD=", /* 0x98 */
545 25, "L4=SD=", /* 0x99 */
546 26, "L4=SD=", /* 0x9a */
547 27, "L4=SD=", /* 0x9b */
548 28, "L4=SD=", /* 0x9c */
549 29, "L4=SD=", /* 0x9d */
550 30, "L4=SD=", /* 0x9e */
551 31, "L4=SD=", /* 0x9f */
552 32, "L4=Sb=", /* 0xa0 */
553 33, "L4=Sd=", /* 0xa1 */
554 /* R_RESERVED */
555 0, "", /* 0xa2 */
556 0, "", /* 0xa3 */
557 0, "", /* 0xa4 */
558 0, "", /* 0xa5 */
559 0, "", /* 0xa6 */
560 0, "", /* 0xa7 */
561 0, "", /* 0xa8 */
562 0, "", /* 0xa9 */
563 0, "", /* 0xaa */
564 0, "", /* 0xab */
565 0, "", /* 0xac */
566 0, "", /* 0xad */
567 /* R_MILLI_REL */
568 0, "L4=Sb=", /* 0xae */
569 1, "L4=Sd=", /* 0xaf */
570 /* R_CODE_PLABEL */
571 0, "L4=Sb=", /* 0xb0 */
572 1, "L4=Sd=", /* 0xb1 */
573 /* R_BREAKPOINT */
574 0, "L4=", /* 0xb2 */
575 /* R_ENTRY */
576 0, "Te=Ue=", /* 0xb3 */
577 1, "Uf=", /* 0xb4 */
578 /* R_ALT_ENTRY */
579 0, "", /* 0xb5 */
580 /* R_EXIT */
581 0, "", /* 0xb6 */
582 /* R_BEGIN_TRY */
583 0, "", /* 0xb7 */
584 /* R_END_TRY */
585 0, "R0=", /* 0xb8 */
586 1, "Rb4*=", /* 0xb9 */
587 2, "Rd4*=", /* 0xba */
588 /* R_BEGIN_BRTAB */
589 0, "", /* 0xbb */
590 /* R_END_BRTAB */
591 0, "", /* 0xbc */
592 /* R_STATEMENT */
593 0, "Nb=", /* 0xbd */
594 1, "Nc=", /* 0xbe */
595 2, "Nd=", /* 0xbf */
596 /* R_DATA_EXPR */
597 0, "L4=", /* 0xc0 */
598 /* R_CODE_EXPR */
599 0, "L4=", /* 0xc1 */
600 /* R_FSEL */
601 0, "", /* 0xc2 */
602 /* R_LSEL */
603 0, "", /* 0xc3 */
604 /* R_RSEL */
605 0, "", /* 0xc4 */
606 /* R_N_MODE */
607 0, "", /* 0xc5 */
608 /* R_S_MODE */
609 0, "", /* 0xc6 */
610 /* R_D_MODE */
611 0, "", /* 0xc7 */
612 /* R_R_MODE */
613 0, "", /* 0xc8 */
614 /* R_DATA_OVERRIDE */
615 0, "V0=", /* 0xc9 */
616 1, "Vb=", /* 0xca */
617 2, "Vc=", /* 0xcb */
618 3, "Vd=", /* 0xcc */
619 4, "Ve=", /* 0xcd */
620 /* R_TRANSLATED */
621 0, "", /* 0xce */
622 /* R_RESERVED */
623 0, "", /* 0xcf */
624 /* R_COMP1 */
625 0, "Ob=", /* 0xd0 */
626 /* R_COMP2 */
627 0, "Ob=Sd=", /* 0xd1 */
628 /* R_COMP3 */
629 0, "Ob=Ve=", /* 0xd2 */
630 /* R_PREV_FIXUP */
631 0, "P", /* 0xd3 */
632 1, "P", /* 0xd4 */
633 2, "P", /* 0xd5 */
634 3, "P", /* 0xd6 */
635 /* R_RESERVED */
636 0, "", /* 0xd7 */
637 0, "", /* 0xd8 */
638 0, "", /* 0xd9 */
639 0, "", /* 0xda */
640 0, "", /* 0xdb */
641 0, "", /* 0xdc */
642 0, "", /* 0xdd */
643 0, "", /* 0xde */
644 0, "", /* 0xdf */
645 0, "", /* 0xe0 */
646 0, "", /* 0xe1 */
647 0, "", /* 0xe2 */
648 0, "", /* 0xe3 */
649 0, "", /* 0xe4 */
650 0, "", /* 0xe5 */
651 0, "", /* 0xe6 */
652 0, "", /* 0xe7 */
653 0, "", /* 0xe8 */
654 0, "", /* 0xe9 */
655 0, "", /* 0xea */
656 0, "", /* 0xeb */
657 0, "", /* 0xec */
658 0, "", /* 0xed */
659 0, "", /* 0xee */
660 0, "", /* 0xef */
661 0, "", /* 0xf0 */
662 0, "", /* 0xf1 */
663 0, "", /* 0xf2 */
664 0, "", /* 0xf3 */
665 0, "", /* 0xf4 */
666 0, "", /* 0xf5 */
667 0, "", /* 0xf6 */
668 0, "", /* 0xf7 */
669 0, "", /* 0xf8 */
670 0, "", /* 0xf9 */
671 0, "", /* 0xfa */
672 0, "", /* 0xfb */
673 0, "", /* 0xfc */
674 0, "", /* 0xfd */
675 0, "", /* 0xfe */
676 0, "", /* 0xff */
677 };
678
679 static const int comp1_opcodes[] =
680 {
681 0x00,
682 0x40,
683 0x41,
684 0x42,
685 0x43,
686 0x44,
687 0x45,
688 0x46,
689 0x47,
690 0x48,
691 0x49,
692 0x4a,
693 0x4b,
694 0x60,
695 0x80,
696 0xa0,
697 0xc0,
698 -1
699 };
700
701 static const int comp2_opcodes[] =
702 {
703 0x00,
704 0x80,
705 0x82,
706 0xc0,
707 -1
708 };
709
710 static const int comp3_opcodes[] =
711 {
712 0x00,
713 0x02,
714 -1
715 };
716
717 /* These apparently are not in older versions of hpux reloc.h. */
718 #ifndef R_DLT_REL
719 #define R_DLT_REL 0x78
720 #endif
721
722 #ifndef R_AUX_UNWIND
723 #define R_AUX_UNWIND 0xcf
724 #endif
725
726 #ifndef R_SEC_STMT
727 #define R_SEC_STMT 0xd7
728 #endif
729
730 static reloc_howto_type som_hppa_howto_table[] =
731 {
732 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
733 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
734 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
735 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
736 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
737 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
738 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
739 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
740 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
741 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
742 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
743 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
744 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
745 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
746 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
747 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
748 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
749 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
750 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
751 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
752 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
753 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
754 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
755 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
756 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
757 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
758 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
759 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
760 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
761 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
762 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
763 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
764 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
765 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
766 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
767 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
768 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
769 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
770 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
771 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
772 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
773 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
774 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
775 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
776 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
777 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
778 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
779 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
780 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
781 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
782 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
783 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
784 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
785 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
786 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
787 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
788 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
789 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
790 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
791 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
792 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
793 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
794 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
795 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
796 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
797 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
798 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
799 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
800 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
801 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
802 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
803 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
804 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
805 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
806 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
807 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
808 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
809 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
810 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
811 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
812 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
813 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
814 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
815 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
816 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
817 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
818 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
819 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
820 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
821 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
822 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
823 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
824 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
825 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
826 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
827 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
828 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
829 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
830 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
831 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
832 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
833 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
834 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
835 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
836 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
837 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
838 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
839 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
840 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
841 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
842 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
843 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
844 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
845 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
846 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
847 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
848 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
849 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
850 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
851 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
852 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
853 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
854 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
855 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
856 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
857 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
858 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
859 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
860 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
861 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
862 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
863 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
864 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
865 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
866 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
867 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
868 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
869 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
870 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
871 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
872 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
873 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
874 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
875 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
876 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
877 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
878 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
879 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
880 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
881 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
882 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
883 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
884 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
885 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
886 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
887 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
888 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
889 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
890 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
891 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
892 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
893 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
894 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
895 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
896 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
897 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
898 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
899 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
900 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
901 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
902 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
903 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
904 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
905 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
906 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
907 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
908 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
909 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
910 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
911 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
912 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
913 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
914 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
915 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
916 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
917 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
918 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
919 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
920 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
921 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
922 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
923 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
924 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
925 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
926 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
927 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
928 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
929 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
930 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
931 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
932 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
933 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
934 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
935 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
936 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
937 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
938 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
939 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
940 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
941 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
942 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
943 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
944 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
945 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
946 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
947 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
948 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
949 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
950 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
951 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
952 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
953 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
954 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
955 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
956 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
957 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
958 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
959 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
960 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
961 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
962 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
963 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
964 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
965 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
966 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
967 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
968 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
969 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
970 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
971 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
972 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
973 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
974 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
975 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
976 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
977 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
978 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
979 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
980 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
981 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
982 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
983 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
984 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
985 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
986 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
987 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
988
989 /* Initialize the SOM relocation queue. By definition the queue holds
990 the last four multibyte fixups. */
991
992 static void
993 som_initialize_reloc_queue (queue)
994 struct reloc_queue *queue;
995 {
996 queue[0].reloc = NULL;
997 queue[0].size = 0;
998 queue[1].reloc = NULL;
999 queue[1].size = 0;
1000 queue[2].reloc = NULL;
1001 queue[2].size = 0;
1002 queue[3].reloc = NULL;
1003 queue[3].size = 0;
1004 }
1005
1006 /* Insert a new relocation into the relocation queue. */
1007
1008 static void
1009 som_reloc_queue_insert (p, size, queue)
1010 unsigned char *p;
1011 unsigned int size;
1012 struct reloc_queue *queue;
1013 {
1014 queue[3].reloc = queue[2].reloc;
1015 queue[3].size = queue[2].size;
1016 queue[2].reloc = queue[1].reloc;
1017 queue[2].size = queue[1].size;
1018 queue[1].reloc = queue[0].reloc;
1019 queue[1].size = queue[0].size;
1020 queue[0].reloc = p;
1021 queue[0].size = size;
1022 }
1023
1024 /* When an entry in the relocation queue is reused, the entry moves
1025 to the front of the queue. */
1026
1027 static void
1028 som_reloc_queue_fix (queue, index)
1029 struct reloc_queue *queue;
1030 unsigned int index;
1031 {
1032 if (index == 0)
1033 return;
1034
1035 if (index == 1)
1036 {
1037 unsigned char *tmp1 = queue[0].reloc;
1038 unsigned int tmp2 = queue[0].size;
1039 queue[0].reloc = queue[1].reloc;
1040 queue[0].size = queue[1].size;
1041 queue[1].reloc = tmp1;
1042 queue[1].size = tmp2;
1043 return;
1044 }
1045
1046 if (index == 2)
1047 {
1048 unsigned char *tmp1 = queue[0].reloc;
1049 unsigned int tmp2 = queue[0].size;
1050 queue[0].reloc = queue[2].reloc;
1051 queue[0].size = queue[2].size;
1052 queue[2].reloc = queue[1].reloc;
1053 queue[2].size = queue[1].size;
1054 queue[1].reloc = tmp1;
1055 queue[1].size = tmp2;
1056 return;
1057 }
1058
1059 if (index == 3)
1060 {
1061 unsigned char *tmp1 = queue[0].reloc;
1062 unsigned int tmp2 = queue[0].size;
1063 queue[0].reloc = queue[3].reloc;
1064 queue[0].size = queue[3].size;
1065 queue[3].reloc = queue[2].reloc;
1066 queue[3].size = queue[2].size;
1067 queue[2].reloc = queue[1].reloc;
1068 queue[2].size = queue[1].size;
1069 queue[1].reloc = tmp1;
1070 queue[1].size = tmp2;
1071 return;
1072 }
1073 abort();
1074 }
1075
1076 /* Search for a particular relocation in the relocation queue. */
1077
1078 static int
1079 som_reloc_queue_find (p, size, queue)
1080 unsigned char *p;
1081 unsigned int size;
1082 struct reloc_queue *queue;
1083 {
1084 if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
1085 && size == queue[0].size)
1086 return 0;
1087 if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
1088 && size == queue[1].size)
1089 return 1;
1090 if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
1091 && size == queue[2].size)
1092 return 2;
1093 if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
1094 && size == queue[3].size)
1095 return 3;
1096 return -1;
1097 }
1098
1099 static unsigned char *
1100 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1101 bfd *abfd;
1102 int *subspace_reloc_sizep;
1103 unsigned char *p;
1104 unsigned int size;
1105 struct reloc_queue *queue;
1106 {
1107 int queue_index = som_reloc_queue_find (p, size, queue);
1108
1109 if (queue_index != -1)
1110 {
1111 /* Found this in a previous fixup. Undo the fixup we
1112 just built and use R_PREV_FIXUP instead. We saved
1113 a total of size - 1 bytes in the fixup stream. */
1114 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1115 p += 1;
1116 *subspace_reloc_sizep += 1;
1117 som_reloc_queue_fix (queue, queue_index);
1118 }
1119 else
1120 {
1121 som_reloc_queue_insert (p, size, queue);
1122 *subspace_reloc_sizep += size;
1123 p += size;
1124 }
1125 return p;
1126 }
1127
1128 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1129 bytes without any relocation. Update the size of the subspace
1130 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1131 current pointer into the relocation stream. */
1132
1133 static unsigned char *
1134 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1135 bfd *abfd;
1136 unsigned int skip;
1137 unsigned char *p;
1138 unsigned int *subspace_reloc_sizep;
1139 struct reloc_queue *queue;
1140 {
1141 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1142 then R_PREV_FIXUPs to get the difference down to a
1143 reasonable size. */
1144 if (skip >= 0x1000000)
1145 {
1146 skip -= 0x1000000;
1147 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1148 bfd_put_8 (abfd, 0xff, p + 1);
1149 bfd_put_16 (abfd, 0xffff, p + 2);
1150 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1151 while (skip >= 0x1000000)
1152 {
1153 skip -= 0x1000000;
1154 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1155 p++;
1156 *subspace_reloc_sizep += 1;
1157 /* No need to adjust queue here since we are repeating the
1158 most recent fixup. */
1159 }
1160 }
1161
1162 /* The difference must be less than 0x1000000. Use one
1163 more R_NO_RELOCATION entry to get to the right difference. */
1164 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1165 {
1166 /* Difference can be handled in a simple single-byte
1167 R_NO_RELOCATION entry. */
1168 if (skip <= 0x60)
1169 {
1170 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1171 *subspace_reloc_sizep += 1;
1172 p++;
1173 }
1174 /* Handle it with a two byte R_NO_RELOCATION entry. */
1175 else if (skip <= 0x1000)
1176 {
1177 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1178 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1179 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1180 }
1181 /* Handle it with a three byte R_NO_RELOCATION entry. */
1182 else
1183 {
1184 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1185 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1186 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1187 }
1188 }
1189 /* Ugh. Punt and use a 4 byte entry. */
1190 else if (skip > 0)
1191 {
1192 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1193 bfd_put_8 (abfd, (skip - 1) >> 16, p + 1);
1194 bfd_put_16 (abfd, skip - 1, p + 2);
1195 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1196 }
1197 return p;
1198 }
1199
1200 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1201 from a BFD relocation. Update the size of the subspace relocation
1202 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1203 into the relocation stream. */
1204
1205 static unsigned char *
1206 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1207 bfd *abfd;
1208 int addend;
1209 unsigned char *p;
1210 unsigned int *subspace_reloc_sizep;
1211 struct reloc_queue *queue;
1212 {
1213 if ((unsigned)(addend) + 0x80 < 0x100)
1214 {
1215 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1216 bfd_put_8 (abfd, addend, p + 1);
1217 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1218 }
1219 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1220 {
1221 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1222 bfd_put_16 (abfd, addend, p + 1);
1223 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1224 }
1225 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1226 {
1227 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1228 bfd_put_8 (abfd, addend >> 16, p + 1);
1229 bfd_put_16 (abfd, addend, p + 2);
1230 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1231 }
1232 else
1233 {
1234 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1235 bfd_put_32 (abfd, addend, p + 1);
1236 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1237 }
1238 return p;
1239 }
1240
1241 /* Handle a single function call relocation. */
1242
1243 static unsigned char *
1244 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1245 bfd *abfd;
1246 unsigned char *p;
1247 unsigned int *subspace_reloc_sizep;
1248 arelent *bfd_reloc;
1249 int sym_num;
1250 struct reloc_queue *queue;
1251 {
1252 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1253 int rtn_bits = arg_bits & 0x3;
1254 int type, done = 0;
1255
1256 /* You'll never believe all this is necessary to handle relocations
1257 for function calls. Having to compute and pack the argument
1258 relocation bits is the real nightmare.
1259
1260 If you're interested in how this works, just forget it. You really
1261 do not want to know about this braindamage. */
1262
1263 /* First see if this can be done with a "simple" relocation. Simple
1264 relocations have a symbol number < 0x100 and have simple encodings
1265 of argument relocations. */
1266
1267 if (sym_num < 0x100)
1268 {
1269 switch (arg_bits)
1270 {
1271 case 0:
1272 case 1:
1273 type = 0;
1274 break;
1275 case 1 << 8:
1276 case 1 << 8 | 1:
1277 type = 1;
1278 break;
1279 case 1 << 8 | 1 << 6:
1280 case 1 << 8 | 1 << 6 | 1:
1281 type = 2;
1282 break;
1283 case 1 << 8 | 1 << 6 | 1 << 4:
1284 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1285 type = 3;
1286 break;
1287 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1288 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1289 type = 4;
1290 break;
1291 default:
1292 /* Not one of the easy encodings. This will have to be
1293 handled by the more complex code below. */
1294 type = -1;
1295 break;
1296 }
1297 if (type != -1)
1298 {
1299 /* Account for the return value too. */
1300 if (rtn_bits)
1301 type += 5;
1302
1303 /* Emit a 2 byte relocation. Then see if it can be handled
1304 with a relocation which is already in the relocation queue. */
1305 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1306 bfd_put_8 (abfd, sym_num, p + 1);
1307 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1308 done = 1;
1309 }
1310 }
1311
1312 /* If this could not be handled with a simple relocation, then do a hard
1313 one. Hard relocations occur if the symbol number was too high or if
1314 the encoding of argument relocation bits is too complex. */
1315 if (! done)
1316 {
1317 /* Don't ask about these magic sequences. I took them straight
1318 from gas-1.36 which took them from the a.out man page. */
1319 type = rtn_bits;
1320 if ((arg_bits >> 6 & 0xf) == 0xe)
1321 type += 9 * 40;
1322 else
1323 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1324 if ((arg_bits >> 2 & 0xf) == 0xe)
1325 type += 9 * 4;
1326 else
1327 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1328
1329 /* Output the first two bytes of the relocation. These describe
1330 the length of the relocation and encoding style. */
1331 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1332 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1333 p);
1334 bfd_put_8 (abfd, type, p + 1);
1335
1336 /* Now output the symbol index and see if this bizarre relocation
1337 just happened to be in the relocation queue. */
1338 if (sym_num < 0x100)
1339 {
1340 bfd_put_8 (abfd, sym_num, p + 2);
1341 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1342 }
1343 else
1344 {
1345 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1346 bfd_put_16 (abfd, sym_num, p + 3);
1347 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1348 }
1349 }
1350 return p;
1351 }
1352
1353
1354 /* Return the logarithm of X, base 2, considering X unsigned.
1355 Abort -1 if X is not a power or two or is zero. */
1356
1357 static int
1358 log2 (x)
1359 unsigned int x;
1360 {
1361 int log = 0;
1362
1363 /* Test for 0 or a power of 2. */
1364 if (x == 0 || x != (x & -x))
1365 return -1;
1366
1367 while ((x >>= 1) != 0)
1368 log++;
1369 return log;
1370 }
1371
1372 static bfd_reloc_status_type
1373 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1374 input_section, output_bfd, error_message)
1375 bfd *abfd;
1376 arelent *reloc_entry;
1377 asymbol *symbol_in;
1378 PTR data;
1379 asection *input_section;
1380 bfd *output_bfd;
1381 char **error_message;
1382 {
1383 if (output_bfd)
1384 {
1385 reloc_entry->address += input_section->output_offset;
1386 return bfd_reloc_ok;
1387 }
1388 return bfd_reloc_ok;
1389 }
1390
1391 /* Given a generic HPPA relocation type, the instruction format,
1392 and a field selector, return one or more appropriate SOM relocations. */
1393
1394 int **
1395 hppa_som_gen_reloc_type (abfd, base_type, format, field)
1396 bfd *abfd;
1397 int base_type;
1398 int format;
1399 enum hppa_reloc_field_selector_type_alt field;
1400 {
1401 int *final_type, **final_types;
1402
1403 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 3);
1404 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1405 if (!final_types || !final_type)
1406 {
1407 bfd_set_error (bfd_error_no_memory);
1408 return NULL;
1409 }
1410
1411 /* The field selector may require additional relocations to be
1412 generated. It's impossible to know at this moment if additional
1413 relocations will be needed, so we make them. The code to actually
1414 write the relocation/fixup stream is responsible for removing
1415 any redundant relocations. */
1416 switch (field)
1417 {
1418 case e_fsel:
1419 case e_psel:
1420 case e_lpsel:
1421 case e_rpsel:
1422 final_types[0] = final_type;
1423 final_types[1] = NULL;
1424 final_types[2] = NULL;
1425 *final_type = base_type;
1426 break;
1427
1428 case e_tsel:
1429 case e_ltsel:
1430 case e_rtsel:
1431 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1432 if (!final_types[0])
1433 {
1434 bfd_set_error (bfd_error_no_memory);
1435 return NULL;
1436 }
1437 if (field == e_tsel)
1438 *final_types[0] = R_FSEL;
1439 else if (field == e_ltsel)
1440 *final_types[0] = R_LSEL;
1441 else
1442 *final_types[0] = R_RSEL;
1443 final_types[1] = final_type;
1444 final_types[2] = NULL;
1445 *final_type = base_type;
1446 break;
1447
1448 case e_lssel:
1449 case e_rssel:
1450 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1451 if (!final_types[0])
1452 {
1453 bfd_set_error (bfd_error_no_memory);
1454 return NULL;
1455 }
1456 *final_types[0] = R_S_MODE;
1457 final_types[1] = final_type;
1458 final_types[2] = NULL;
1459 *final_type = base_type;
1460 break;
1461
1462 case e_lsel:
1463 case e_rsel:
1464 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1465 if (!final_types[0])
1466 {
1467 bfd_set_error (bfd_error_no_memory);
1468 return NULL;
1469 }
1470 *final_types[0] = R_N_MODE;
1471 final_types[1] = final_type;
1472 final_types[2] = NULL;
1473 *final_type = base_type;
1474 break;
1475
1476 case e_ldsel:
1477 case e_rdsel:
1478 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1479 if (!final_types[0])
1480 {
1481 bfd_set_error (bfd_error_no_memory);
1482 return NULL;
1483 }
1484 *final_types[0] = R_D_MODE;
1485 final_types[1] = final_type;
1486 final_types[2] = NULL;
1487 *final_type = base_type;
1488 break;
1489
1490 case e_lrsel:
1491 case e_rrsel:
1492 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1493 if (!final_types[0])
1494 {
1495 bfd_set_error (bfd_error_no_memory);
1496 return NULL;
1497 }
1498 *final_types[0] = R_R_MODE;
1499 final_types[1] = final_type;
1500 final_types[2] = NULL;
1501 *final_type = base_type;
1502 break;
1503 }
1504
1505 switch (base_type)
1506 {
1507 case R_HPPA:
1508 /* PLABELs get their own relocation type. */
1509 if (field == e_psel
1510 || field == e_lpsel
1511 || field == e_rpsel)
1512 {
1513 /* A PLABEL relocation that has a size of 32 bits must
1514 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1515 if (format == 32)
1516 *final_type = R_DATA_PLABEL;
1517 else
1518 *final_type = R_CODE_PLABEL;
1519 }
1520 /* PIC stuff. */
1521 else if (field == e_tsel
1522 || field == e_ltsel
1523 || field == e_rtsel)
1524 *final_type = R_DLT_REL;
1525 /* A relocation in the data space is always a full 32bits. */
1526 else if (format == 32)
1527 *final_type = R_DATA_ONE_SYMBOL;
1528
1529 break;
1530
1531 case R_HPPA_GOTOFF:
1532 /* More PLABEL special cases. */
1533 if (field == e_psel
1534 || field == e_lpsel
1535 || field == e_rpsel)
1536 *final_type = R_DATA_PLABEL;
1537 break;
1538
1539 case R_HPPA_NONE:
1540 case R_HPPA_ABS_CALL:
1541 case R_HPPA_PCREL_CALL:
1542 /* Right now we can default all these. */
1543 break;
1544 }
1545 return final_types;
1546 }
1547
1548 /* Return the address of the correct entry in the PA SOM relocation
1549 howto table. */
1550
1551 /*ARGSUSED*/
1552 static reloc_howto_type *
1553 som_bfd_reloc_type_lookup (abfd, code)
1554 bfd *abfd;
1555 bfd_reloc_code_real_type code;
1556 {
1557 if ((int) code < (int) R_NO_RELOCATION + 255)
1558 {
1559 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1560 return &som_hppa_howto_table[(int) code];
1561 }
1562
1563 return (reloc_howto_type *) 0;
1564 }
1565
1566 /* Perform some initialization for an object. Save results of this
1567 initialization in the BFD. */
1568
1569 static const bfd_target *
1570 som_object_setup (abfd, file_hdrp, aux_hdrp)
1571 bfd *abfd;
1572 struct header *file_hdrp;
1573 struct som_exec_auxhdr *aux_hdrp;
1574 {
1575 asection *section;
1576 int found;
1577
1578 /* som_mkobject will set bfd_error if som_mkobject fails. */
1579 if (som_mkobject (abfd) != true)
1580 return 0;
1581
1582 /* Set BFD flags based on what information is available in the SOM. */
1583 abfd->flags = NO_FLAGS;
1584 if (file_hdrp->symbol_total)
1585 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1586
1587 switch (file_hdrp->a_magic)
1588 {
1589 case DEMAND_MAGIC:
1590 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1591 break;
1592 case SHARE_MAGIC:
1593 abfd->flags |= (WP_TEXT | EXEC_P);
1594 break;
1595 case EXEC_MAGIC:
1596 abfd->flags |= (EXEC_P);
1597 break;
1598 case RELOC_MAGIC:
1599 abfd->flags |= HAS_RELOC;
1600 break;
1601 #ifdef SHL_MAGIC
1602 case SHL_MAGIC:
1603 #endif
1604 #ifdef DL_MAGIC
1605 case DL_MAGIC:
1606 #endif
1607 abfd->flags |= DYNAMIC;
1608 break;
1609
1610 default:
1611 break;
1612 }
1613
1614 /* Allocate space to hold the saved exec header information. */
1615 obj_som_exec_data (abfd) = (struct som_exec_data *)
1616 bfd_zalloc (abfd, sizeof (struct som_exec_data ));
1617 if (obj_som_exec_data (abfd) == NULL)
1618 {
1619 bfd_set_error (bfd_error_no_memory);
1620 return NULL;
1621 }
1622
1623 /* The braindamaged OSF1 linker switched exec_flags and exec_entry!
1624
1625 We used to identify OSF1 binaries based on NEW_VERSION_ID, but
1626 apparently the latest HPUX linker is using NEW_VERSION_ID now.
1627
1628 It's about time, OSF has used the new id since at least 1992;
1629 HPUX didn't start till nearly 1995!.
1630
1631 The new approach examines the entry field. If it's zero or not 4
1632 byte aligned then it's not a proper code address and we guess it's
1633 really the executable flags. */
1634 found = 0;
1635 for (section = abfd->sections; section; section = section->next)
1636 {
1637 if ((section->flags & SEC_CODE) == 0)
1638 continue;
1639 if (aux_hdrp->exec_entry >= section->vma
1640 && aux_hdrp->exec_entry < section->vma + section->_cooked_size)
1641 found = 1;
1642 }
1643 if (aux_hdrp->exec_entry == 0
1644 || (aux_hdrp->exec_entry & 0x3) != 0
1645 || ! found)
1646 {
1647 bfd_get_start_address (abfd) = aux_hdrp->exec_flags;
1648 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_entry;
1649 }
1650 else
1651 {
1652 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1653 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1654 }
1655
1656 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, pa10);
1657 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1658
1659 /* Initialize the saved symbol table and string table to NULL.
1660 Save important offsets and sizes from the SOM header into
1661 the BFD. */
1662 obj_som_stringtab (abfd) = (char *) NULL;
1663 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1664 obj_som_sorted_syms (abfd) = NULL;
1665 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1666 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1667 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1668 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
1669 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1670
1671 return abfd->xvec;
1672 }
1673
1674 /* Convert all of the space and subspace info into BFD sections. Each space
1675 contains a number of subspaces, which in turn describe the mapping between
1676 regions of the exec file, and the address space that the program runs in.
1677 BFD sections which correspond to spaces will overlap the sections for the
1678 associated subspaces. */
1679
1680 static boolean
1681 setup_sections (abfd, file_hdr)
1682 bfd *abfd;
1683 struct header *file_hdr;
1684 {
1685 char *space_strings;
1686 unsigned int space_index, i;
1687 unsigned int total_subspaces = 0;
1688 asection **subspace_sections, *section;
1689
1690 /* First, read in space names */
1691
1692 space_strings = malloc (file_hdr->space_strings_size);
1693 if (!space_strings && file_hdr->space_strings_size != 0)
1694 {
1695 bfd_set_error (bfd_error_no_memory);
1696 goto error_return;
1697 }
1698
1699 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
1700 goto error_return;
1701 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1702 != file_hdr->space_strings_size)
1703 goto error_return;
1704
1705 /* Loop over all of the space dictionaries, building up sections */
1706 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1707 {
1708 struct space_dictionary_record space;
1709 struct subspace_dictionary_record subspace, save_subspace;
1710 int subspace_index;
1711 asection *space_asect;
1712 char *newname;
1713
1714 /* Read the space dictionary element */
1715 if (bfd_seek (abfd, file_hdr->space_location
1716 + space_index * sizeof space, SEEK_SET) < 0)
1717 goto error_return;
1718 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1719 goto error_return;
1720
1721 /* Setup the space name string */
1722 space.name.n_name = space.name.n_strx + space_strings;
1723
1724 /* Make a section out of it */
1725 newname = bfd_alloc (abfd, strlen (space.name.n_name) + 1);
1726 if (!newname)
1727 goto error_return;
1728 strcpy (newname, space.name.n_name);
1729
1730 space_asect = bfd_make_section_anyway (abfd, newname);
1731 if (!space_asect)
1732 goto error_return;
1733
1734 if (space.is_loadable == 0)
1735 space_asect->flags |= SEC_DEBUGGING;
1736
1737 /* Set up all the attributes for the space. */
1738 if (bfd_som_set_section_attributes (space_asect, space.is_defined,
1739 space.is_private, space.sort_key,
1740 space.space_number) == false)
1741 goto error_return;
1742
1743 /* Now, read in the first subspace for this space */
1744 if (bfd_seek (abfd, file_hdr->subspace_location
1745 + space.subspace_index * sizeof subspace,
1746 SEEK_SET) < 0)
1747 goto error_return;
1748 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1749 goto error_return;
1750 /* Seek back to the start of the subspaces for loop below */
1751 if (bfd_seek (abfd, file_hdr->subspace_location
1752 + space.subspace_index * sizeof subspace,
1753 SEEK_SET) < 0)
1754 goto error_return;
1755
1756 /* Setup the start address and file loc from the first subspace record */
1757 space_asect->vma = subspace.subspace_start;
1758 space_asect->filepos = subspace.file_loc_init_value;
1759 space_asect->alignment_power = log2 (subspace.alignment);
1760 if (space_asect->alignment_power == -1)
1761 goto error_return;
1762
1763 /* Initialize save_subspace so we can reliably determine if this
1764 loop placed any useful values into it. */
1765 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1766
1767 /* Loop over the rest of the subspaces, building up more sections */
1768 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1769 subspace_index++)
1770 {
1771 asection *subspace_asect;
1772
1773 /* Read in the next subspace */
1774 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1775 != sizeof subspace)
1776 goto error_return;
1777
1778 /* Setup the subspace name string */
1779 subspace.name.n_name = subspace.name.n_strx + space_strings;
1780
1781 newname = bfd_alloc (abfd, strlen (subspace.name.n_name) + 1);
1782 if (!newname)
1783 goto error_return;
1784 strcpy (newname, subspace.name.n_name);
1785
1786 /* Make a section out of this subspace */
1787 subspace_asect = bfd_make_section_anyway (abfd, newname);
1788 if (!subspace_asect)
1789 goto error_return;
1790
1791 /* Store private information about the section. */
1792 if (bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1793 subspace.access_control_bits,
1794 subspace.sort_key,
1795 subspace.quadrant) == false)
1796 goto error_return;
1797
1798 /* Keep an easy mapping between subspaces and sections.
1799 Note we do not necessarily read the subspaces in the
1800 same order in which they appear in the object file.
1801
1802 So to make the target index come out correctly, we
1803 store the location of the subspace header in target
1804 index, then sort using the location of the subspace
1805 header as the key. Then we can assign correct
1806 subspace indices. */
1807 total_subspaces++;
1808 subspace_asect->target_index = bfd_tell (abfd) - sizeof (subspace);
1809
1810 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1811 by the access_control_bits in the subspace header. */
1812 switch (subspace.access_control_bits >> 4)
1813 {
1814 /* Readonly data. */
1815 case 0x0:
1816 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1817 break;
1818
1819 /* Normal data. */
1820 case 0x1:
1821 subspace_asect->flags |= SEC_DATA;
1822 break;
1823
1824 /* Readonly code and the gateways.
1825 Gateways have other attributes which do not map
1826 into anything BFD knows about. */
1827 case 0x2:
1828 case 0x4:
1829 case 0x5:
1830 case 0x6:
1831 case 0x7:
1832 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1833 break;
1834
1835 /* dynamic (writable) code. */
1836 case 0x3:
1837 subspace_asect->flags |= SEC_CODE;
1838 break;
1839 }
1840
1841 if (subspace.dup_common || subspace.is_common)
1842 subspace_asect->flags |= SEC_IS_COMMON;
1843 else if (subspace.subspace_length > 0)
1844 subspace_asect->flags |= SEC_HAS_CONTENTS;
1845
1846 if (subspace.is_loadable)
1847 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1848 else
1849 subspace_asect->flags |= SEC_DEBUGGING;
1850
1851 if (subspace.code_only)
1852 subspace_asect->flags |= SEC_CODE;
1853
1854 /* Both file_loc_init_value and initialization_length will
1855 be zero for a BSS like subspace. */
1856 if (subspace.file_loc_init_value == 0
1857 && subspace.initialization_length == 0)
1858 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD | SEC_HAS_CONTENTS);
1859
1860 /* This subspace has relocations.
1861 The fixup_request_quantity is a byte count for the number of
1862 entries in the relocation stream; it is not the actual number
1863 of relocations in the subspace. */
1864 if (subspace.fixup_request_quantity != 0)
1865 {
1866 subspace_asect->flags |= SEC_RELOC;
1867 subspace_asect->rel_filepos = subspace.fixup_request_index;
1868 som_section_data (subspace_asect)->reloc_size
1869 = subspace.fixup_request_quantity;
1870 /* We can not determine this yet. When we read in the
1871 relocation table the correct value will be filled in. */
1872 subspace_asect->reloc_count = -1;
1873 }
1874
1875 /* Update save_subspace if appropriate. */
1876 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1877 save_subspace = subspace;
1878
1879 subspace_asect->vma = subspace.subspace_start;
1880 subspace_asect->_cooked_size = subspace.subspace_length;
1881 subspace_asect->_raw_size = subspace.subspace_length;
1882 subspace_asect->filepos = subspace.file_loc_init_value;
1883 subspace_asect->alignment_power = log2 (subspace.alignment);
1884 if (subspace_asect->alignment_power == -1)
1885 goto error_return;
1886 }
1887
1888 /* Yow! there is no subspace within the space which actually
1889 has initialized information in it; this should never happen
1890 as far as I know. */
1891 if (!save_subspace.file_loc_init_value)
1892 goto error_return;
1893
1894 /* Setup the sizes for the space section based upon the info in the
1895 last subspace of the space. */
1896 space_asect->_cooked_size = save_subspace.subspace_start
1897 - space_asect->vma + save_subspace.subspace_length;
1898 space_asect->_raw_size = save_subspace.file_loc_init_value
1899 - space_asect->filepos + save_subspace.initialization_length;
1900 }
1901 /* Now that we've read in all the subspace records, we need to assign
1902 a target index to each subspace. */
1903 subspace_sections = (asection **) malloc (total_subspaces
1904 * sizeof (asection *));
1905 if (subspace_sections == NULL)
1906 goto error_return;
1907
1908 for (i = 0, section = abfd->sections; section; section = section->next)
1909 {
1910 if (!som_is_subspace (section))
1911 continue;
1912
1913 subspace_sections[i] = section;
1914 i++;
1915 }
1916 qsort (subspace_sections, total_subspaces,
1917 sizeof (asection *), compare_subspaces);
1918
1919 /* subspace_sections is now sorted in the order in which the subspaces
1920 appear in the object file. Assign an index to each one now. */
1921 for (i = 0; i < total_subspaces; i++)
1922 subspace_sections[i]->target_index = i;
1923
1924 if (space_strings != NULL)
1925 free (space_strings);
1926
1927 if (subspace_sections != NULL)
1928 free (subspace_sections);
1929
1930 return true;
1931
1932 error_return:
1933 if (space_strings != NULL)
1934 free (space_strings);
1935
1936 if (subspace_sections != NULL)
1937 free (subspace_sections);
1938 return false;
1939 }
1940
1941 /* Read in a SOM object and make it into a BFD. */
1942
1943 static const bfd_target *
1944 som_object_p (abfd)
1945 bfd *abfd;
1946 {
1947 struct header file_hdr;
1948 struct som_exec_auxhdr aux_hdr;
1949
1950 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
1951 {
1952 if (bfd_get_error () != bfd_error_system_call)
1953 bfd_set_error (bfd_error_wrong_format);
1954 return 0;
1955 }
1956
1957 if (!_PA_RISC_ID (file_hdr.system_id))
1958 {
1959 bfd_set_error (bfd_error_wrong_format);
1960 return 0;
1961 }
1962
1963 switch (file_hdr.a_magic)
1964 {
1965 case RELOC_MAGIC:
1966 case EXEC_MAGIC:
1967 case SHARE_MAGIC:
1968 case DEMAND_MAGIC:
1969 #ifdef DL_MAGIC
1970 case DL_MAGIC:
1971 #endif
1972 #ifdef SHL_MAGIC
1973 case SHL_MAGIC:
1974 #endif
1975 #ifdef EXECLIBMAGIC
1976 case EXECLIBMAGIC:
1977 #endif
1978 #ifdef SHARED_MAGIC_CNX
1979 case SHARED_MAGIC_CNX:
1980 #endif
1981 break;
1982 default:
1983 bfd_set_error (bfd_error_wrong_format);
1984 return 0;
1985 }
1986
1987 if (file_hdr.version_id != VERSION_ID
1988 && file_hdr.version_id != NEW_VERSION_ID)
1989 {
1990 bfd_set_error (bfd_error_wrong_format);
1991 return 0;
1992 }
1993
1994 /* If the aux_header_size field in the file header is zero, then this
1995 object is an incomplete executable (a .o file). Do not try to read
1996 a non-existant auxiliary header. */
1997 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
1998 if (file_hdr.aux_header_size != 0)
1999 {
2000 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
2001 {
2002 if (bfd_get_error () != bfd_error_system_call)
2003 bfd_set_error (bfd_error_wrong_format);
2004 return 0;
2005 }
2006 }
2007
2008 if (!setup_sections (abfd, &file_hdr))
2009 {
2010 /* setup_sections does not bubble up a bfd error code. */
2011 bfd_set_error (bfd_error_bad_value);
2012 return 0;
2013 }
2014
2015 /* This appears to be a valid SOM object. Do some initialization. */
2016 return som_object_setup (abfd, &file_hdr, &aux_hdr);
2017 }
2018
2019 /* Create a SOM object. */
2020
2021 static boolean
2022 som_mkobject (abfd)
2023 bfd *abfd;
2024 {
2025 /* Allocate memory to hold backend information. */
2026 abfd->tdata.som_data = (struct som_data_struct *)
2027 bfd_zalloc (abfd, sizeof (struct som_data_struct));
2028 if (abfd->tdata.som_data == NULL)
2029 {
2030 bfd_set_error (bfd_error_no_memory);
2031 return false;
2032 }
2033 return true;
2034 }
2035
2036 /* Initialize some information in the file header. This routine makes
2037 not attempt at doing the right thing for a full executable; it
2038 is only meant to handle relocatable objects. */
2039
2040 static boolean
2041 som_prep_headers (abfd)
2042 bfd *abfd;
2043 {
2044 struct header *file_hdr;
2045 asection *section;
2046
2047 /* Make and attach a file header to the BFD. */
2048 file_hdr = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
2049 if (file_hdr == NULL)
2050
2051 {
2052 bfd_set_error (bfd_error_no_memory);
2053 return false;
2054 }
2055 obj_som_file_hdr (abfd) = file_hdr;
2056
2057 if (abfd->flags & (EXEC_P | DYNAMIC))
2058 {
2059
2060 /* Make and attach an exec header to the BFD. */
2061 obj_som_exec_hdr (abfd) = (struct som_exec_auxhdr *)
2062 bfd_zalloc (abfd, sizeof (struct som_exec_auxhdr));
2063 if (obj_som_exec_hdr (abfd) == NULL)
2064 {
2065 bfd_set_error (bfd_error_no_memory);
2066 return false;
2067 }
2068
2069 if (abfd->flags & D_PAGED)
2070 file_hdr->a_magic = DEMAND_MAGIC;
2071 else if (abfd->flags & WP_TEXT)
2072 file_hdr->a_magic = SHARE_MAGIC;
2073 #ifdef SHL_MAGIC
2074 else if (abfd->flags & DYNAMIC)
2075 file_hdr->a_magic = SHL_MAGIC;
2076 #endif
2077 else
2078 file_hdr->a_magic = EXEC_MAGIC;
2079 }
2080 else
2081 file_hdr->a_magic = RELOC_MAGIC;
2082
2083 /* Only new format SOM is supported. */
2084 file_hdr->version_id = NEW_VERSION_ID;
2085
2086 /* These fields are optional, and embedding timestamps is not always
2087 a wise thing to do, it makes comparing objects during a multi-stage
2088 bootstrap difficult. */
2089 file_hdr->file_time.secs = 0;
2090 file_hdr->file_time.nanosecs = 0;
2091
2092 file_hdr->entry_space = 0;
2093 file_hdr->entry_subspace = 0;
2094 file_hdr->entry_offset = 0;
2095 file_hdr->presumed_dp = 0;
2096
2097 /* Now iterate over the sections translating information from
2098 BFD sections to SOM spaces/subspaces. */
2099
2100 for (section = abfd->sections; section != NULL; section = section->next)
2101 {
2102 /* Ignore anything which has not been marked as a space or
2103 subspace. */
2104 if (!som_is_space (section) && !som_is_subspace (section))
2105 continue;
2106
2107 if (som_is_space (section))
2108 {
2109 /* Allocate space for the space dictionary. */
2110 som_section_data (section)->space_dict
2111 = (struct space_dictionary_record *)
2112 bfd_zalloc (abfd, sizeof (struct space_dictionary_record));
2113 if (som_section_data (section)->space_dict == NULL)
2114 {
2115 bfd_set_error (bfd_error_no_memory);
2116 return false;
2117 }
2118 /* Set space attributes. Note most attributes of SOM spaces
2119 are set based on the subspaces it contains. */
2120 som_section_data (section)->space_dict->loader_fix_index = -1;
2121 som_section_data (section)->space_dict->init_pointer_index = -1;
2122
2123 /* Set more attributes that were stuffed away in private data. */
2124 som_section_data (section)->space_dict->sort_key =
2125 som_section_data (section)->copy_data->sort_key;
2126 som_section_data (section)->space_dict->is_defined =
2127 som_section_data (section)->copy_data->is_defined;
2128 som_section_data (section)->space_dict->is_private =
2129 som_section_data (section)->copy_data->is_private;
2130 som_section_data (section)->space_dict->space_number =
2131 som_section_data (section)->copy_data->space_number;
2132 }
2133 else
2134 {
2135 /* Allocate space for the subspace dictionary. */
2136 som_section_data (section)->subspace_dict
2137 = (struct subspace_dictionary_record *)
2138 bfd_zalloc (abfd, sizeof (struct subspace_dictionary_record));
2139 if (som_section_data (section)->subspace_dict == NULL)
2140 {
2141 bfd_set_error (bfd_error_no_memory);
2142 return false;
2143 }
2144
2145 /* Set subspace attributes. Basic stuff is done here, additional
2146 attributes are filled in later as more information becomes
2147 available. */
2148 if (section->flags & SEC_IS_COMMON)
2149 {
2150 som_section_data (section)->subspace_dict->dup_common = 1;
2151 som_section_data (section)->subspace_dict->is_common = 1;
2152 }
2153
2154 if (section->flags & SEC_ALLOC)
2155 som_section_data (section)->subspace_dict->is_loadable = 1;
2156
2157 if (section->flags & SEC_CODE)
2158 som_section_data (section)->subspace_dict->code_only = 1;
2159
2160 som_section_data (section)->subspace_dict->subspace_start =
2161 section->vma;
2162 som_section_data (section)->subspace_dict->subspace_length =
2163 bfd_section_size (abfd, section);
2164 som_section_data (section)->subspace_dict->initialization_length =
2165 bfd_section_size (abfd, section);
2166 som_section_data (section)->subspace_dict->alignment =
2167 1 << section->alignment_power;
2168
2169 /* Set more attributes that were stuffed away in private data. */
2170 som_section_data (section)->subspace_dict->sort_key =
2171 som_section_data (section)->copy_data->sort_key;
2172 som_section_data (section)->subspace_dict->access_control_bits =
2173 som_section_data (section)->copy_data->access_control_bits;
2174 som_section_data (section)->subspace_dict->quadrant =
2175 som_section_data (section)->copy_data->quadrant;
2176 }
2177 }
2178 return true;
2179 }
2180
2181 /* Return true if the given section is a SOM space, false otherwise. */
2182
2183 static boolean
2184 som_is_space (section)
2185 asection *section;
2186 {
2187 /* If no copy data is available, then it's neither a space nor a
2188 subspace. */
2189 if (som_section_data (section)->copy_data == NULL)
2190 return false;
2191
2192 /* If the containing space isn't the same as the given section,
2193 then this isn't a space. */
2194 if (som_section_data (section)->copy_data->container != section
2195 && (som_section_data (section)->copy_data->container->output_section
2196 != section))
2197 return false;
2198
2199 /* OK. Must be a space. */
2200 return true;
2201 }
2202
2203 /* Return true if the given section is a SOM subspace, false otherwise. */
2204
2205 static boolean
2206 som_is_subspace (section)
2207 asection *section;
2208 {
2209 /* If no copy data is available, then it's neither a space nor a
2210 subspace. */
2211 if (som_section_data (section)->copy_data == NULL)
2212 return false;
2213
2214 /* If the containing space is the same as the given section,
2215 then this isn't a subspace. */
2216 if (som_section_data (section)->copy_data->container == section
2217 || (som_section_data (section)->copy_data->container->output_section
2218 == section))
2219 return false;
2220
2221 /* OK. Must be a subspace. */
2222 return true;
2223 }
2224
2225 /* Return true if the given space containins the given subspace. It
2226 is safe to assume space really is a space, and subspace really
2227 is a subspace. */
2228
2229 static boolean
2230 som_is_container (space, subspace)
2231 asection *space, *subspace;
2232 {
2233 return (som_section_data (subspace)->copy_data->container == space
2234 || (som_section_data (subspace)->copy_data->container->output_section
2235 == space));
2236 }
2237
2238 /* Count and return the number of spaces attached to the given BFD. */
2239
2240 static unsigned long
2241 som_count_spaces (abfd)
2242 bfd *abfd;
2243 {
2244 int count = 0;
2245 asection *section;
2246
2247 for (section = abfd->sections; section != NULL; section = section->next)
2248 count += som_is_space (section);
2249
2250 return count;
2251 }
2252
2253 /* Count the number of subspaces attached to the given BFD. */
2254
2255 static unsigned long
2256 som_count_subspaces (abfd)
2257 bfd *abfd;
2258 {
2259 int count = 0;
2260 asection *section;
2261
2262 for (section = abfd->sections; section != NULL; section = section->next)
2263 count += som_is_subspace (section);
2264
2265 return count;
2266 }
2267
2268 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2269
2270 We desire symbols to be ordered starting with the symbol with the
2271 highest relocation count down to the symbol with the lowest relocation
2272 count. Doing so compacts the relocation stream. */
2273
2274 static int
2275 compare_syms (arg1, arg2)
2276 const PTR arg1;
2277 const PTR arg2;
2278
2279 {
2280 asymbol **sym1 = (asymbol **) arg1;
2281 asymbol **sym2 = (asymbol **) arg2;
2282 unsigned int count1, count2;
2283
2284 /* Get relocation count for each symbol. Note that the count
2285 is stored in the udata pointer for section symbols! */
2286 if ((*sym1)->flags & BSF_SECTION_SYM)
2287 count1 = (*sym1)->udata.i;
2288 else
2289 count1 = som_symbol_data (*sym1)->reloc_count;
2290
2291 if ((*sym2)->flags & BSF_SECTION_SYM)
2292 count2 = (*sym2)->udata.i;
2293 else
2294 count2 = som_symbol_data (*sym2)->reloc_count;
2295
2296 /* Return the appropriate value. */
2297 if (count1 < count2)
2298 return 1;
2299 else if (count1 > count2)
2300 return -1;
2301 return 0;
2302 }
2303
2304 /* Return -1, 0, 1 indicating the relative ordering of subspace1
2305 and subspace. */
2306
2307 static int
2308 compare_subspaces (arg1, arg2)
2309 const PTR arg1;
2310 const PTR arg2;
2311
2312 {
2313 asection **subspace1 = (asection **) arg1;
2314 asection **subspace2 = (asection **) arg2;
2315 unsigned int count1, count2;
2316
2317 if ((*subspace1)->target_index < (*subspace2)->target_index)
2318 return -1;
2319 else if ((*subspace2)->target_index < (*subspace1)->target_index)
2320 return 1;
2321 else
2322 return 0;
2323 }
2324
2325 /* Perform various work in preparation for emitting the fixup stream. */
2326
2327 static void
2328 som_prep_for_fixups (abfd, syms, num_syms)
2329 bfd *abfd;
2330 asymbol **syms;
2331 unsigned long num_syms;
2332 {
2333 int i;
2334 asection *section;
2335 asymbol **sorted_syms;
2336
2337 /* Most SOM relocations involving a symbol have a length which is
2338 dependent on the index of the symbol. So symbols which are
2339 used often in relocations should have a small index. */
2340
2341 /* First initialize the counters for each symbol. */
2342 for (i = 0; i < num_syms; i++)
2343 {
2344 /* Handle a section symbol; these have no pointers back to the
2345 SOM symbol info. So we just use the udata field to hold the
2346 relocation count. */
2347 if (som_symbol_data (syms[i]) == NULL
2348 || syms[i]->flags & BSF_SECTION_SYM)
2349 {
2350 syms[i]->flags |= BSF_SECTION_SYM;
2351 syms[i]->udata.i = 0;
2352 }
2353 else
2354 som_symbol_data (syms[i])->reloc_count = 0;
2355 }
2356
2357 /* Now that the counters are initialized, make a weighted count
2358 of how often a given symbol is used in a relocation. */
2359 for (section = abfd->sections; section != NULL; section = section->next)
2360 {
2361 int i;
2362
2363 /* Does this section have any relocations? */
2364 if (section->reloc_count <= 0)
2365 continue;
2366
2367 /* Walk through each relocation for this section. */
2368 for (i = 1; i < section->reloc_count; i++)
2369 {
2370 arelent *reloc = section->orelocation[i];
2371 int scale;
2372
2373 /* A relocation against a symbol in the *ABS* section really
2374 does not have a symbol. Likewise if the symbol isn't associated
2375 with any section. */
2376 if (reloc->sym_ptr_ptr == NULL
2377 || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section))
2378 continue;
2379
2380 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2381 and R_CODE_ONE_SYMBOL relocations to come first. These
2382 two relocations have single byte versions if the symbol
2383 index is very small. */
2384 if (reloc->howto->type == R_DP_RELATIVE
2385 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2386 scale = 2;
2387 else
2388 scale = 1;
2389
2390 /* Handle section symbols by storing the count in the udata
2391 field. It will not be used and the count is very important
2392 for these symbols. */
2393 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2394 {
2395 (*reloc->sym_ptr_ptr)->udata.i =
2396 (*reloc->sym_ptr_ptr)->udata.i + scale;
2397 continue;
2398 }
2399
2400 /* A normal symbol. Increment the count. */
2401 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2402 }
2403 }
2404
2405 /* Sort a copy of the symbol table, rather than the canonical
2406 output symbol table. */
2407 sorted_syms = (asymbol **) bfd_zalloc (abfd, num_syms * sizeof (asymbol *));
2408 memcpy (sorted_syms, syms, num_syms * sizeof (asymbol *));
2409 qsort (sorted_syms, num_syms, sizeof (asymbol *), compare_syms);
2410 obj_som_sorted_syms (abfd) = sorted_syms;
2411
2412 /* Compute the symbol indexes, they will be needed by the relocation
2413 code. */
2414 for (i = 0; i < num_syms; i++)
2415 {
2416 /* A section symbol. Again, there is no pointer to backend symbol
2417 information, so we reuse the udata field again. */
2418 if (sorted_syms[i]->flags & BSF_SECTION_SYM)
2419 sorted_syms[i]->udata.i = i;
2420 else
2421 som_symbol_data (sorted_syms[i])->index = i;
2422 }
2423 }
2424
2425 static boolean
2426 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2427 bfd *abfd;
2428 unsigned long current_offset;
2429 unsigned int *total_reloc_sizep;
2430 {
2431 unsigned int i, j;
2432 /* Chunk of memory that we can use as buffer space, then throw
2433 away. */
2434 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2435 unsigned char *p;
2436 unsigned int total_reloc_size = 0;
2437 unsigned int subspace_reloc_size = 0;
2438 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2439 asection *section = abfd->sections;
2440
2441 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2442 p = tmp_space;
2443
2444 /* All the fixups for a particular subspace are emitted in a single
2445 stream. All the subspaces for a particular space are emitted
2446 as a single stream.
2447
2448 So, to get all the locations correct one must iterate through all the
2449 spaces, for each space iterate through its subspaces and output a
2450 fixups stream. */
2451 for (i = 0; i < num_spaces; i++)
2452 {
2453 asection *subsection;
2454
2455 /* Find a space. */
2456 while (!som_is_space (section))
2457 section = section->next;
2458
2459 /* Now iterate through each of its subspaces. */
2460 for (subsection = abfd->sections;
2461 subsection != NULL;
2462 subsection = subsection->next)
2463 {
2464 int reloc_offset, current_rounding_mode;
2465
2466 /* Find a subspace of this space. */
2467 if (!som_is_subspace (subsection)
2468 || !som_is_container (section, subsection))
2469 continue;
2470
2471 /* If this subspace does not have real data, then we are
2472 finised with it. */
2473 if ((subsection->flags & SEC_HAS_CONTENTS) == 0)
2474 {
2475 som_section_data (subsection)->subspace_dict->fixup_request_index
2476 = -1;
2477 continue;
2478 }
2479
2480 /* This subspace has some relocations. Put the relocation stream
2481 index into the subspace record. */
2482 som_section_data (subsection)->subspace_dict->fixup_request_index
2483 = total_reloc_size;
2484
2485 /* To make life easier start over with a clean slate for
2486 each subspace. Seek to the start of the relocation stream
2487 for this subspace in preparation for writing out its fixup
2488 stream. */
2489 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) < 0)
2490 return false;
2491
2492 /* Buffer space has already been allocated. Just perform some
2493 initialization here. */
2494 p = tmp_space;
2495 subspace_reloc_size = 0;
2496 reloc_offset = 0;
2497 som_initialize_reloc_queue (reloc_queue);
2498 current_rounding_mode = R_N_MODE;
2499
2500 /* Translate each BFD relocation into one or more SOM
2501 relocations. */
2502 for (j = 0; j < subsection->reloc_count; j++)
2503 {
2504 arelent *bfd_reloc = subsection->orelocation[j];
2505 unsigned int skip;
2506 int sym_num;
2507
2508 /* Get the symbol number. Remember it's stored in a
2509 special place for section symbols. */
2510 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2511 sym_num = (*bfd_reloc->sym_ptr_ptr)->udata.i;
2512 else
2513 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2514
2515 /* If there is not enough room for the next couple relocations,
2516 then dump the current buffer contents now. Also reinitialize
2517 the relocation queue.
2518
2519 No single BFD relocation could ever translate into more
2520 than 100 bytes of SOM relocations (20bytes is probably the
2521 upper limit, but leave lots of space for growth). */
2522 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2523 {
2524 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2525 != p - tmp_space)
2526 return false;
2527
2528 p = tmp_space;
2529 som_initialize_reloc_queue (reloc_queue);
2530 }
2531
2532 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2533 skipped. */
2534 skip = bfd_reloc->address - reloc_offset;
2535 p = som_reloc_skip (abfd, skip, p,
2536 &subspace_reloc_size, reloc_queue);
2537
2538 /* Update reloc_offset for the next iteration.
2539
2540 Many relocations do not consume input bytes. They
2541 are markers, or set state necessary to perform some
2542 later relocation. */
2543 switch (bfd_reloc->howto->type)
2544 {
2545 /* This only needs to handle relocations that may be
2546 made by hppa_som_gen_reloc. */
2547 case R_ENTRY:
2548 case R_ALT_ENTRY:
2549 case R_EXIT:
2550 case R_N_MODE:
2551 case R_S_MODE:
2552 case R_D_MODE:
2553 case R_R_MODE:
2554 case R_FSEL:
2555 case R_LSEL:
2556 case R_RSEL:
2557 reloc_offset = bfd_reloc->address;
2558 break;
2559
2560 default:
2561 reloc_offset = bfd_reloc->address + 4;
2562 break;
2563 }
2564
2565 /* Now the actual relocation we care about. */
2566 switch (bfd_reloc->howto->type)
2567 {
2568 case R_PCREL_CALL:
2569 case R_ABS_CALL:
2570 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2571 bfd_reloc, sym_num, reloc_queue);
2572 break;
2573
2574 case R_CODE_ONE_SYMBOL:
2575 case R_DP_RELATIVE:
2576 /* Account for any addend. */
2577 if (bfd_reloc->addend)
2578 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2579 &subspace_reloc_size, reloc_queue);
2580
2581 if (sym_num < 0x20)
2582 {
2583 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2584 subspace_reloc_size += 1;
2585 p += 1;
2586 }
2587 else if (sym_num < 0x100)
2588 {
2589 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2590 bfd_put_8 (abfd, sym_num, p + 1);
2591 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2592 2, reloc_queue);
2593 }
2594 else if (sym_num < 0x10000000)
2595 {
2596 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2597 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2598 bfd_put_16 (abfd, sym_num, p + 2);
2599 p = try_prev_fixup (abfd, &subspace_reloc_size,
2600 p, 4, reloc_queue);
2601 }
2602 else
2603 abort ();
2604 break;
2605
2606 case R_DATA_ONE_SYMBOL:
2607 case R_DATA_PLABEL:
2608 case R_CODE_PLABEL:
2609 case R_DLT_REL:
2610 /* Account for any addend using R_DATA_OVERRIDE. */
2611 if (bfd_reloc->howto->type != R_DATA_ONE_SYMBOL
2612 && bfd_reloc->addend)
2613 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2614 &subspace_reloc_size, reloc_queue);
2615
2616 if (sym_num < 0x100)
2617 {
2618 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2619 bfd_put_8 (abfd, sym_num, p + 1);
2620 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2621 2, reloc_queue);
2622 }
2623 else if (sym_num < 0x10000000)
2624 {
2625 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2626 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2627 bfd_put_16 (abfd, sym_num, p + 2);
2628 p = try_prev_fixup (abfd, &subspace_reloc_size,
2629 p, 4, reloc_queue);
2630 }
2631 else
2632 abort ();
2633 break;
2634
2635 case R_ENTRY:
2636 {
2637 int tmp;
2638 arelent *tmp_reloc = NULL;
2639 bfd_put_8 (abfd, R_ENTRY, p);
2640
2641 /* R_ENTRY relocations have 64 bits of associated
2642 data. Unfortunately the addend field of a bfd
2643 relocation is only 32 bits. So, we split up
2644 the 64bit unwind information and store part in
2645 the R_ENTRY relocation, and the rest in the R_EXIT
2646 relocation. */
2647 bfd_put_32 (abfd, bfd_reloc->addend, p + 1);
2648
2649 /* Find the next R_EXIT relocation. */
2650 for (tmp = j; tmp < subsection->reloc_count; tmp++)
2651 {
2652 tmp_reloc = subsection->orelocation[tmp];
2653 if (tmp_reloc->howto->type == R_EXIT)
2654 break;
2655 }
2656
2657 if (tmp == subsection->reloc_count)
2658 abort ();
2659
2660 bfd_put_32 (abfd, tmp_reloc->addend, p + 5);
2661 p = try_prev_fixup (abfd, &subspace_reloc_size,
2662 p, 9, reloc_queue);
2663 break;
2664 }
2665
2666 case R_N_MODE:
2667 case R_S_MODE:
2668 case R_D_MODE:
2669 case R_R_MODE:
2670 /* If this relocation requests the current rounding
2671 mode, then it is redundant. */
2672 if (bfd_reloc->howto->type != current_rounding_mode)
2673 {
2674 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2675 subspace_reloc_size += 1;
2676 p += 1;
2677 current_rounding_mode = bfd_reloc->howto->type;
2678 }
2679 break;
2680
2681 case R_EXIT:
2682 case R_ALT_ENTRY:
2683 case R_FSEL:
2684 case R_LSEL:
2685 case R_RSEL:
2686 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2687 subspace_reloc_size += 1;
2688 p += 1;
2689 break;
2690
2691 /* Put a "R_RESERVED" relocation in the stream if
2692 we hit something we do not understand. The linker
2693 will complain loudly if this ever happens. */
2694 default:
2695 bfd_put_8 (abfd, 0xff, p);
2696 subspace_reloc_size += 1;
2697 p += 1;
2698 break;
2699 }
2700 }
2701
2702 /* Last BFD relocation for a subspace has been processed.
2703 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2704 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2705 - reloc_offset,
2706 p, &subspace_reloc_size, reloc_queue);
2707
2708 /* Scribble out the relocations. */
2709 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2710 != p - tmp_space)
2711 return false;
2712 p = tmp_space;
2713
2714 total_reloc_size += subspace_reloc_size;
2715 som_section_data (subsection)->subspace_dict->fixup_request_quantity
2716 = subspace_reloc_size;
2717 }
2718 section = section->next;
2719 }
2720 *total_reloc_sizep = total_reloc_size;
2721 return true;
2722 }
2723
2724 /* Write out the space/subspace string table. */
2725
2726 static boolean
2727 som_write_space_strings (abfd, current_offset, string_sizep)
2728 bfd *abfd;
2729 unsigned long current_offset;
2730 unsigned int *string_sizep;
2731 {
2732 /* Chunk of memory that we can use as buffer space, then throw
2733 away. */
2734 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2735 unsigned char *p;
2736 unsigned int strings_size = 0;
2737 asection *section;
2738
2739 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2740 p = tmp_space;
2741
2742 /* Seek to the start of the space strings in preparation for writing
2743 them out. */
2744 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2745 return false;
2746
2747 /* Walk through all the spaces and subspaces (order is not important)
2748 building up and writing string table entries for their names. */
2749 for (section = abfd->sections; section != NULL; section = section->next)
2750 {
2751 int length;
2752
2753 /* Only work with space/subspaces; avoid any other sections
2754 which might have been made (.text for example). */
2755 if (!som_is_space (section) && !som_is_subspace (section))
2756 continue;
2757
2758 /* Get the length of the space/subspace name. */
2759 length = strlen (section->name);
2760
2761 /* If there is not enough room for the next entry, then dump the
2762 current buffer contents now. Each entry will take 4 bytes to
2763 hold the string length + the string itself + null terminator. */
2764 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2765 {
2766 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2767 != p - tmp_space)
2768 return false;
2769 /* Reset to beginning of the buffer space. */
2770 p = tmp_space;
2771 }
2772
2773 /* First element in a string table entry is the length of the
2774 string. Alignment issues are already handled. */
2775 bfd_put_32 (abfd, length, p);
2776 p += 4;
2777 strings_size += 4;
2778
2779 /* Record the index in the space/subspace records. */
2780 if (som_is_space (section))
2781 som_section_data (section)->space_dict->name.n_strx = strings_size;
2782 else
2783 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
2784
2785 /* Next comes the string itself + a null terminator. */
2786 strcpy (p, section->name);
2787 p += length + 1;
2788 strings_size += length + 1;
2789
2790 /* Always align up to the next word boundary. */
2791 while (strings_size % 4)
2792 {
2793 bfd_put_8 (abfd, 0, p);
2794 p++;
2795 strings_size++;
2796 }
2797 }
2798
2799 /* Done with the space/subspace strings. Write out any information
2800 contained in a partial block. */
2801 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2802 return false;
2803 *string_sizep = strings_size;
2804 return true;
2805 }
2806
2807 /* Write out the symbol string table. */
2808
2809 static boolean
2810 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
2811 bfd *abfd;
2812 unsigned long current_offset;
2813 asymbol **syms;
2814 unsigned int num_syms;
2815 unsigned int *string_sizep;
2816 {
2817 unsigned int i;
2818
2819 /* Chunk of memory that we can use as buffer space, then throw
2820 away. */
2821 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2822 unsigned char *p;
2823 unsigned int strings_size = 0;
2824
2825 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2826 p = tmp_space;
2827
2828 /* Seek to the start of the space strings in preparation for writing
2829 them out. */
2830 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2831 return false;
2832
2833 for (i = 0; i < num_syms; i++)
2834 {
2835 int length = strlen (syms[i]->name);
2836
2837 /* If there is not enough room for the next entry, then dump the
2838 current buffer contents now. */
2839 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2840 {
2841 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2842 != p - tmp_space)
2843 return false;
2844 /* Reset to beginning of the buffer space. */
2845 p = tmp_space;
2846 }
2847
2848 /* First element in a string table entry is the length of the
2849 string. This must always be 4 byte aligned. This is also
2850 an appropriate time to fill in the string index field in the
2851 symbol table entry. */
2852 bfd_put_32 (abfd, length, p);
2853 strings_size += 4;
2854 p += 4;
2855
2856 /* Next comes the string itself + a null terminator. */
2857 strcpy (p, syms[i]->name);
2858
2859 som_symbol_data(syms[i])->stringtab_offset = strings_size;
2860 p += length + 1;
2861 strings_size += length + 1;
2862
2863 /* Always align up to the next word boundary. */
2864 while (strings_size % 4)
2865 {
2866 bfd_put_8 (abfd, 0, p);
2867 strings_size++;
2868 p++;
2869 }
2870 }
2871
2872 /* Scribble out any partial block. */
2873 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2874 return false;
2875
2876 *string_sizep = strings_size;
2877 return true;
2878 }
2879
2880 /* Compute variable information to be placed in the SOM headers,
2881 space/subspace dictionaries, relocation streams, etc. Begin
2882 writing parts of the object file. */
2883
2884 static boolean
2885 som_begin_writing (abfd)
2886 bfd *abfd;
2887 {
2888 unsigned long current_offset = 0;
2889 int strings_size = 0;
2890 unsigned int total_reloc_size = 0;
2891 unsigned long num_spaces, num_subspaces, num_syms, i;
2892 asection *section;
2893 asymbol **syms = bfd_get_outsymbols (abfd);
2894 unsigned int total_subspaces = 0;
2895 struct som_exec_auxhdr *exec_header = NULL;
2896
2897 /* The file header will always be first in an object file,
2898 everything else can be in random locations. To keep things
2899 "simple" BFD will lay out the object file in the manner suggested
2900 by the PRO ABI for PA-RISC Systems. */
2901
2902 /* Before any output can really begin offsets for all the major
2903 portions of the object file must be computed. So, starting
2904 with the initial file header compute (and sometimes write)
2905 each portion of the object file. */
2906
2907 /* Make room for the file header, it's contents are not complete
2908 yet, so it can not be written at this time. */
2909 current_offset += sizeof (struct header);
2910
2911 /* Any auxiliary headers will follow the file header. Right now
2912 we support only the copyright and version headers. */
2913 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
2914 obj_som_file_hdr (abfd)->aux_header_size = 0;
2915 if (abfd->flags & (EXEC_P | DYNAMIC))
2916 {
2917 /* Parts of the exec header will be filled in later, so
2918 delay writing the header itself. Fill in the defaults,
2919 and write it later. */
2920 current_offset += sizeof (struct som_exec_auxhdr);
2921 obj_som_file_hdr (abfd)->aux_header_size
2922 += sizeof (struct som_exec_auxhdr);
2923 exec_header = obj_som_exec_hdr (abfd);
2924 exec_header->som_auxhdr.type = EXEC_AUX_ID;
2925 exec_header->som_auxhdr.length = 40;
2926 }
2927 if (obj_som_version_hdr (abfd) != NULL)
2928 {
2929 unsigned int len;
2930
2931 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2932 return false;
2933
2934 /* Write the aux_id structure and the string length. */
2935 len = sizeof (struct aux_id) + sizeof (unsigned int);
2936 obj_som_file_hdr (abfd)->aux_header_size += len;
2937 current_offset += len;
2938 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
2939 return false;
2940
2941 /* Write the version string. */
2942 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
2943 obj_som_file_hdr (abfd)->aux_header_size += len;
2944 current_offset += len;
2945 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
2946 len, 1, abfd) != len)
2947 return false;
2948 }
2949
2950 if (obj_som_copyright_hdr (abfd) != NULL)
2951 {
2952 unsigned int len;
2953
2954 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2955 return false;
2956
2957 /* Write the aux_id structure and the string length. */
2958 len = sizeof (struct aux_id) + sizeof (unsigned int);
2959 obj_som_file_hdr (abfd)->aux_header_size += len;
2960 current_offset += len;
2961 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
2962 return false;
2963
2964 /* Write the copyright string. */
2965 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
2966 obj_som_file_hdr (abfd)->aux_header_size += len;
2967 current_offset += len;
2968 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
2969 len, 1, abfd) != len)
2970 return false;
2971 }
2972
2973 /* Next comes the initialization pointers; we have no initialization
2974 pointers, so current offset does not change. */
2975 obj_som_file_hdr (abfd)->init_array_location = current_offset;
2976 obj_som_file_hdr (abfd)->init_array_total = 0;
2977
2978 /* Next are the space records. These are fixed length records.
2979
2980 Count the number of spaces to determine how much room is needed
2981 in the object file for the space records.
2982
2983 The names of the spaces are stored in a separate string table,
2984 and the index for each space into the string table is computed
2985 below. Therefore, it is not possible to write the space headers
2986 at this time. */
2987 num_spaces = som_count_spaces (abfd);
2988 obj_som_file_hdr (abfd)->space_location = current_offset;
2989 obj_som_file_hdr (abfd)->space_total = num_spaces;
2990 current_offset += num_spaces * sizeof (struct space_dictionary_record);
2991
2992 /* Next are the subspace records. These are fixed length records.
2993
2994 Count the number of subspaes to determine how much room is needed
2995 in the object file for the subspace records.
2996
2997 A variety if fields in the subspace record are still unknown at
2998 this time (index into string table, fixup stream location/size, etc). */
2999 num_subspaces = som_count_subspaces (abfd);
3000 obj_som_file_hdr (abfd)->subspace_location = current_offset;
3001 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
3002 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
3003
3004 /* Next is the string table for the space/subspace names. We will
3005 build and write the string table on the fly. At the same time
3006 we will fill in the space/subspace name index fields. */
3007
3008 /* The string table needs to be aligned on a word boundary. */
3009 if (current_offset % 4)
3010 current_offset += (4 - (current_offset % 4));
3011
3012 /* Mark the offset of the space/subspace string table in the
3013 file header. */
3014 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
3015
3016 /* Scribble out the space strings. */
3017 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
3018 return false;
3019
3020 /* Record total string table size in the header and update the
3021 current offset. */
3022 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
3023 current_offset += strings_size;
3024
3025 /* Next is the symbol table. These are fixed length records.
3026
3027 Count the number of symbols to determine how much room is needed
3028 in the object file for the symbol table.
3029
3030 The names of the symbols are stored in a separate string table,
3031 and the index for each symbol name into the string table is computed
3032 below. Therefore, it is not possible to write the symobl table
3033 at this time. */
3034 num_syms = bfd_get_symcount (abfd);
3035 obj_som_file_hdr (abfd)->symbol_location = current_offset;
3036 obj_som_file_hdr (abfd)->symbol_total = num_syms;
3037 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
3038
3039 /* Next are the symbol strings.
3040 Align them to a word boundary. */
3041 if (current_offset % 4)
3042 current_offset += (4 - (current_offset % 4));
3043 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
3044
3045 /* Scribble out the symbol strings. */
3046 if (som_write_symbol_strings (abfd, current_offset, syms,
3047 num_syms, &strings_size)
3048 == false)
3049 return false;
3050
3051 /* Record total string table size in header and update the
3052 current offset. */
3053 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
3054 current_offset += strings_size;
3055
3056 /* Next is the compiler records. We do not use these. */
3057 obj_som_file_hdr (abfd)->compiler_location = current_offset;
3058 obj_som_file_hdr (abfd)->compiler_total = 0;
3059
3060 /* Now compute the file positions for the loadable subspaces, taking
3061 care to make sure everything stays properly aligned. */
3062
3063 section = abfd->sections;
3064 for (i = 0; i < num_spaces; i++)
3065 {
3066 asection *subsection;
3067 int first_subspace;
3068 unsigned int subspace_offset = 0;
3069
3070 /* Find a space. */
3071 while (!som_is_space (section))
3072 section = section->next;
3073
3074 first_subspace = 1;
3075 /* Now look for all its subspaces. */
3076 for (subsection = abfd->sections;
3077 subsection != NULL;
3078 subsection = subsection->next)
3079 {
3080
3081 if (!som_is_subspace (subsection)
3082 || !som_is_container (section, subsection)
3083 || (subsection->flags & SEC_ALLOC) == 0)
3084 continue;
3085
3086 /* If this is the first subspace in the space, and we are
3087 building an executable, then take care to make sure all
3088 the alignments are correct and update the exec header. */
3089 if (first_subspace
3090 && (abfd->flags & (EXEC_P | DYNAMIC)))
3091 {
3092 /* Demand paged executables have each space aligned to a
3093 page boundary. Sharable executables (write-protected
3094 text) have just the private (aka data & bss) space aligned
3095 to a page boundary. Ugh. Not true for HPUX.
3096
3097 The HPUX kernel requires the text to always be page aligned
3098 within the file regardless of the executable's type. */
3099 if (abfd->flags & (D_PAGED | DYNAMIC)
3100 || (subsection->flags & SEC_CODE)
3101 || ((abfd->flags & WP_TEXT)
3102 && (subsection->flags & SEC_DATA)))
3103 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3104
3105 /* Update the exec header. */
3106 if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0)
3107 {
3108 exec_header->exec_tmem = section->vma;
3109 exec_header->exec_tfile = current_offset;
3110 }
3111 if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0)
3112 {
3113 exec_header->exec_dmem = section->vma;
3114 exec_header->exec_dfile = current_offset;
3115 }
3116
3117 /* Keep track of exactly where we are within a particular
3118 space. This is necessary as the braindamaged HPUX
3119 loader will create holes between subspaces *and*
3120 subspace alignments are *NOT* preserved. What a crock. */
3121 subspace_offset = subsection->vma;
3122
3123 /* Only do this for the first subspace within each space. */
3124 first_subspace = 0;
3125 }
3126 else if (abfd->flags & (EXEC_P | DYNAMIC))
3127 {
3128 /* The braindamaged HPUX loader may have created a hole
3129 between two subspaces. It is *not* sufficient to use
3130 the alignment specifications within the subspaces to
3131 account for these holes -- I've run into at least one
3132 case where the loader left one code subspace unaligned
3133 in a final executable.
3134
3135 To combat this we keep a current offset within each space,
3136 and use the subspace vma fields to detect and preserve
3137 holes. What a crock!
3138
3139 ps. This is not necessary for unloadable space/subspaces. */
3140 current_offset += subsection->vma - subspace_offset;
3141 if (subsection->flags & SEC_CODE)
3142 exec_header->exec_tsize += subsection->vma - subspace_offset;
3143 else
3144 exec_header->exec_dsize += subsection->vma - subspace_offset;
3145 subspace_offset += subsection->vma - subspace_offset;
3146 }
3147
3148
3149 subsection->target_index = total_subspaces++;
3150 /* This is real data to be loaded from the file. */
3151 if (subsection->flags & SEC_LOAD)
3152 {
3153 /* Update the size of the code & data. */
3154 if (abfd->flags & (EXEC_P | DYNAMIC)
3155 && subsection->flags & SEC_CODE)
3156 exec_header->exec_tsize += subsection->_cooked_size;
3157 else if (abfd->flags & (EXEC_P | DYNAMIC)
3158 && subsection->flags & SEC_DATA)
3159 exec_header->exec_dsize += subsection->_cooked_size;
3160 som_section_data (subsection)->subspace_dict->file_loc_init_value
3161 = current_offset;
3162 subsection->filepos = current_offset;
3163 current_offset += bfd_section_size (abfd, subsection);
3164 subspace_offset += bfd_section_size (abfd, subsection);
3165 }
3166 /* Looks like uninitialized data. */
3167 else
3168 {
3169 /* Update the size of the bss section. */
3170 if (abfd->flags & (EXEC_P | DYNAMIC))
3171 exec_header->exec_bsize += subsection->_cooked_size;
3172
3173 som_section_data (subsection)->subspace_dict->file_loc_init_value
3174 = 0;
3175 som_section_data (subsection)->subspace_dict->
3176 initialization_length = 0;
3177 }
3178 }
3179 /* Goto the next section. */
3180 section = section->next;
3181 }
3182
3183 /* Finally compute the file positions for unloadable subspaces.
3184 If building an executable, start the unloadable stuff on its
3185 own page. */
3186
3187 if (abfd->flags & (EXEC_P | DYNAMIC))
3188 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3189
3190 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3191 section = abfd->sections;
3192 for (i = 0; i < num_spaces; i++)
3193 {
3194 asection *subsection;
3195
3196 /* Find a space. */
3197 while (!som_is_space (section))
3198 section = section->next;
3199
3200 if (abfd->flags & (EXEC_P | DYNAMIC))
3201 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3202
3203 /* Now look for all its subspaces. */
3204 for (subsection = abfd->sections;
3205 subsection != NULL;
3206 subsection = subsection->next)
3207 {
3208
3209 if (!som_is_subspace (subsection)
3210 || !som_is_container (section, subsection)
3211 || (subsection->flags & SEC_ALLOC) != 0)
3212 continue;
3213
3214 subsection->target_index = total_subspaces++;
3215 /* This is real data to be loaded from the file. */
3216 if ((subsection->flags & SEC_LOAD) == 0)
3217 {
3218 som_section_data (subsection)->subspace_dict->file_loc_init_value
3219 = current_offset;
3220 subsection->filepos = current_offset;
3221 current_offset += bfd_section_size (abfd, subsection);
3222 }
3223 /* Looks like uninitialized data. */
3224 else
3225 {
3226 som_section_data (subsection)->subspace_dict->file_loc_init_value
3227 = 0;
3228 som_section_data (subsection)->subspace_dict->
3229 initialization_length = bfd_section_size (abfd, subsection);
3230 }
3231 }
3232 /* Goto the next section. */
3233 section = section->next;
3234 }
3235
3236 /* If building an executable, then make sure to seek to and write
3237 one byte at the end of the file to make sure any necessary
3238 zeros are filled in. Ugh. */
3239 if (abfd->flags & (EXEC_P | DYNAMIC))
3240 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3241 if (bfd_seek (abfd, current_offset - 1, SEEK_SET) < 0)
3242 return false;
3243 if (bfd_write ((PTR) "", 1, 1, abfd) != 1)
3244 return false;
3245
3246 obj_som_file_hdr (abfd)->unloadable_sp_size
3247 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3248
3249 /* Loader fixups are not supported in any way shape or form. */
3250 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3251 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3252
3253 /* Done. Store the total size of the SOM so far. */
3254 obj_som_file_hdr (abfd)->som_length = current_offset;
3255
3256 return true;
3257 }
3258
3259 /* Finally, scribble out the various headers to the disk. */
3260
3261 static boolean
3262 som_finish_writing (abfd)
3263 bfd *abfd;
3264 {
3265 int num_spaces = som_count_spaces (abfd);
3266 int i;
3267 int subspace_index = 0;
3268 file_ptr location;
3269 asection *section;
3270 unsigned long current_offset;
3271 unsigned int total_reloc_size;
3272
3273 /* Do prep work before handling fixups. */
3274 som_prep_for_fixups (abfd,
3275 bfd_get_outsymbols (abfd),
3276 bfd_get_symcount (abfd));
3277
3278 current_offset = obj_som_file_hdr (abfd)->som_length;
3279
3280 /* At the end of the file is the fixup stream which starts on a
3281 word boundary. */
3282 if (current_offset % 4)
3283 current_offset += (4 - (current_offset % 4));
3284 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
3285
3286 /* Write the fixups and update fields in subspace headers which
3287 relate to the fixup stream. */
3288 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
3289 return false;
3290
3291 /* Record the total size of the fixup stream in the file header. */
3292 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
3293
3294 obj_som_file_hdr (abfd)->som_length += total_reloc_size;
3295
3296 /* Now that the symbol table information is complete, build and
3297 write the symbol table. */
3298 if (som_build_and_write_symbol_table (abfd) == false)
3299 return false;
3300
3301 /* Subspaces are written first so that we can set up information
3302 about them in their containing spaces as the subspace is written. */
3303
3304 /* Seek to the start of the subspace dictionary records. */
3305 location = obj_som_file_hdr (abfd)->subspace_location;
3306 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3307 return false;
3308
3309 section = abfd->sections;
3310 /* Now for each loadable space write out records for its subspaces. */
3311 for (i = 0; i < num_spaces; i++)
3312 {
3313 asection *subsection;
3314
3315 /* Find a space. */
3316 while (!som_is_space (section))
3317 section = section->next;
3318
3319 /* Now look for all its subspaces. */
3320 for (subsection = abfd->sections;
3321 subsection != NULL;
3322 subsection = subsection->next)
3323 {
3324
3325 /* Skip any section which does not correspond to a space
3326 or subspace. Or does not have SEC_ALLOC set (and therefore
3327 has no real bits on the disk). */
3328 if (!som_is_subspace (subsection)
3329 || !som_is_container (section, subsection)
3330 || (subsection->flags & SEC_ALLOC) == 0)
3331 continue;
3332
3333 /* If this is the first subspace for this space, then save
3334 the index of the subspace in its containing space. Also
3335 set "is_loadable" in the containing space. */
3336
3337 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3338 {
3339 som_section_data (section)->space_dict->is_loadable = 1;
3340 som_section_data (section)->space_dict->subspace_index
3341 = subspace_index;
3342 }
3343
3344 /* Increment the number of subspaces seen and the number of
3345 subspaces contained within the current space. */
3346 subspace_index++;
3347 som_section_data (section)->space_dict->subspace_quantity++;
3348
3349 /* Mark the index of the current space within the subspace's
3350 dictionary record. */
3351 som_section_data (subsection)->subspace_dict->space_index = i;
3352
3353 /* Dump the current subspace header. */
3354 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3355 sizeof (struct subspace_dictionary_record), 1, abfd)
3356 != sizeof (struct subspace_dictionary_record))
3357 return false;
3358 }
3359 /* Goto the next section. */
3360 section = section->next;
3361 }
3362
3363 /* Now repeat the process for unloadable subspaces. */
3364 section = abfd->sections;
3365 /* Now for each space write out records for its subspaces. */
3366 for (i = 0; i < num_spaces; i++)
3367 {
3368 asection *subsection;
3369
3370 /* Find a space. */
3371 while (!som_is_space (section))
3372 section = section->next;
3373
3374 /* Now look for all its subspaces. */
3375 for (subsection = abfd->sections;
3376 subsection != NULL;
3377 subsection = subsection->next)
3378 {
3379
3380 /* Skip any section which does not correspond to a space or
3381 subspace, or which SEC_ALLOC set (and therefore handled
3382 in the loadable spaces/subspaces code above). */
3383
3384 if (!som_is_subspace (subsection)
3385 || !som_is_container (section, subsection)
3386 || (subsection->flags & SEC_ALLOC) != 0)
3387 continue;
3388
3389 /* If this is the first subspace for this space, then save
3390 the index of the subspace in its containing space. Clear
3391 "is_loadable". */
3392
3393 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3394 {
3395 som_section_data (section)->space_dict->is_loadable = 0;
3396 som_section_data (section)->space_dict->subspace_index
3397 = subspace_index;
3398 }
3399
3400 /* Increment the number of subspaces seen and the number of
3401 subspaces contained within the current space. */
3402 som_section_data (section)->space_dict->subspace_quantity++;
3403 subspace_index++;
3404
3405 /* Mark the index of the current space within the subspace's
3406 dictionary record. */
3407 som_section_data (subsection)->subspace_dict->space_index = i;
3408
3409 /* Dump this subspace header. */
3410 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3411 sizeof (struct subspace_dictionary_record), 1, abfd)
3412 != sizeof (struct subspace_dictionary_record))
3413 return false;
3414 }
3415 /* Goto the next section. */
3416 section = section->next;
3417 }
3418
3419 /* All the subspace dictiondary records are written, and all the
3420 fields are set up in the space dictionary records.
3421
3422 Seek to the right location and start writing the space
3423 dictionary records. */
3424 location = obj_som_file_hdr (abfd)->space_location;
3425 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3426 return false;
3427
3428 section = abfd->sections;
3429 for (i = 0; i < num_spaces; i++)
3430 {
3431
3432 /* Find a space. */
3433 while (!som_is_space (section))
3434 section = section->next;
3435
3436 /* Dump its header */
3437 if (bfd_write ((PTR) som_section_data (section)->space_dict,
3438 sizeof (struct space_dictionary_record), 1, abfd)
3439 != sizeof (struct space_dictionary_record))
3440 return false;
3441
3442 /* Goto the next section. */
3443 section = section->next;
3444 }
3445
3446 /* Setting of the system_id has to happen very late now that copying of
3447 BFD private data happens *after* section contents are set. */
3448 if (abfd->flags & (EXEC_P | DYNAMIC))
3449 obj_som_file_hdr(abfd)->system_id = obj_som_exec_data (abfd)->system_id;
3450 else if (bfd_get_mach (abfd) == pa11)
3451 obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC1_1;
3452 else
3453 obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC1_0;
3454
3455 /* Compute the checksum for the file header just before writing
3456 the header to disk. */
3457 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3458
3459 /* Only thing left to do is write out the file header. It is always
3460 at location zero. Seek there and write it. */
3461 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0)
3462 return false;
3463 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3464 sizeof (struct header), 1, abfd)
3465 != sizeof (struct header))
3466 return false;
3467
3468 /* Now write the exec header. */
3469 if (abfd->flags & (EXEC_P | DYNAMIC))
3470 {
3471 long tmp;
3472 struct som_exec_auxhdr *exec_header;
3473
3474 exec_header = obj_som_exec_hdr (abfd);
3475 exec_header->exec_entry = bfd_get_start_address (abfd);
3476 exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags;
3477
3478 /* Oh joys. Ram some of the BSS data into the DATA section
3479 to be compatable with how the hp linker makes objects
3480 (saves memory space). */
3481 tmp = exec_header->exec_dsize;
3482 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3483 exec_header->exec_bsize -= (tmp - exec_header->exec_dsize);
3484 if (exec_header->exec_bsize < 0)
3485 exec_header->exec_bsize = 0;
3486 exec_header->exec_dsize = tmp;
3487
3488 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
3489 SEEK_SET) < 0)
3490 return false;
3491
3492 if (bfd_write ((PTR) exec_header, AUX_HDR_SIZE, 1, abfd)
3493 != AUX_HDR_SIZE)
3494 return false;
3495 }
3496 return true;
3497 }
3498
3499 /* Compute and return the checksum for a SOM file header. */
3500
3501 static unsigned long
3502 som_compute_checksum (abfd)
3503 bfd *abfd;
3504 {
3505 unsigned long checksum, count, i;
3506 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3507
3508 checksum = 0;
3509 count = sizeof (struct header) / sizeof (unsigned long);
3510 for (i = 0; i < count; i++)
3511 checksum ^= *(buffer + i);
3512
3513 return checksum;
3514 }
3515
3516 static void
3517 som_bfd_derive_misc_symbol_info (abfd, sym, info)
3518 bfd *abfd;
3519 asymbol *sym;
3520 struct som_misc_symbol_info *info;
3521 {
3522 /* Initialize. */
3523 memset (info, 0, sizeof (struct som_misc_symbol_info));
3524
3525 /* The HP SOM linker requires detailed type information about
3526 all symbols (including undefined symbols!). Unfortunately,
3527 the type specified in an import/export statement does not
3528 always match what the linker wants. Severe braindamage. */
3529
3530 /* Section symbols will not have a SOM symbol type assigned to
3531 them yet. Assign all section symbols type ST_DATA. */
3532 if (sym->flags & BSF_SECTION_SYM)
3533 info->symbol_type = ST_DATA;
3534 else
3535 {
3536 /* Common symbols must have scope SS_UNSAT and type
3537 ST_STORAGE or the linker will choke. */
3538 if (bfd_is_com_section (sym->section))
3539 {
3540 info->symbol_scope = SS_UNSAT;
3541 info->symbol_type = ST_STORAGE;
3542 }
3543
3544 /* It is possible to have a symbol without an associated
3545 type. This happens if the user imported the symbol
3546 without a type and the symbol was never defined
3547 locally. If BSF_FUNCTION is set for this symbol, then
3548 assign it type ST_CODE (the HP linker requires undefined
3549 external functions to have type ST_CODE rather than ST_ENTRY). */
3550 else if ((som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3551 || som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3552 && bfd_is_und_section (sym->section)
3553 && sym->flags & BSF_FUNCTION)
3554 info->symbol_type = ST_CODE;
3555
3556 /* Handle function symbols which were defined in this file.
3557 They should have type ST_ENTRY. Also retrieve the argument
3558 relocation bits from the SOM backend information. */
3559 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3560 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3561 && (sym->flags & BSF_FUNCTION))
3562 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3563 && (sym->flags & BSF_FUNCTION)))
3564 {
3565 info->symbol_type = ST_ENTRY;
3566 info->arg_reloc = som_symbol_data (sym)->tc_data.hppa_arg_reloc;
3567 }
3568
3569 /* If the type is unknown at this point, it should be ST_DATA or
3570 ST_CODE (function/ST_ENTRY symbols were handled as special
3571 cases above). */
3572 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3573 {
3574 if (sym->section->flags & SEC_CODE)
3575 info->symbol_type = ST_CODE;
3576 else
3577 info->symbol_type = ST_DATA;
3578 }
3579
3580 /* From now on it's a very simple mapping. */
3581 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3582 info->symbol_type = ST_ABSOLUTE;
3583 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3584 info->symbol_type = ST_CODE;
3585 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3586 info->symbol_type = ST_DATA;
3587 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3588 info->symbol_type = ST_MILLICODE;
3589 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3590 info->symbol_type = ST_PLABEL;
3591 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3592 info->symbol_type = ST_PRI_PROG;
3593 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3594 info->symbol_type = ST_SEC_PROG;
3595 }
3596
3597 /* Now handle the symbol's scope. Exported data which is not
3598 in the common section has scope SS_UNIVERSAL. Note scope
3599 of common symbols was handled earlier! */
3600 if (bfd_is_und_section (sym->section))
3601 info->symbol_scope = SS_UNSAT;
3602 else if (sym->flags & BSF_EXPORT && ! bfd_is_com_section (sym->section))
3603 info->symbol_scope = SS_UNIVERSAL;
3604 /* Anything else which is not in the common section has scope
3605 SS_LOCAL. */
3606 else if (! bfd_is_com_section (sym->section))
3607 info->symbol_scope = SS_LOCAL;
3608
3609 /* Now set the symbol_info field. It has no real meaning
3610 for undefined or common symbols, but the HP linker will
3611 choke if it's not set to some "reasonable" value. We
3612 use zero as a reasonable value. */
3613 if (bfd_is_com_section (sym->section)
3614 || bfd_is_und_section (sym->section)
3615 || bfd_is_abs_section (sym->section))
3616 info->symbol_info = 0;
3617 /* For all other symbols, the symbol_info field contains the
3618 subspace index of the space this symbol is contained in. */
3619 else
3620 info->symbol_info = sym->section->target_index;
3621
3622 /* Set the symbol's value. */
3623 info->symbol_value = sym->value + sym->section->vma;
3624 }
3625
3626 /* Build and write, in one big chunk, the entire symbol table for
3627 this BFD. */
3628
3629 static boolean
3630 som_build_and_write_symbol_table (abfd)
3631 bfd *abfd;
3632 {
3633 unsigned int num_syms = bfd_get_symcount (abfd);
3634 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3635 asymbol **bfd_syms = obj_som_sorted_syms (abfd);
3636 struct symbol_dictionary_record *som_symtab = NULL;
3637 int i, symtab_size;
3638
3639 /* Compute total symbol table size and allocate a chunk of memory
3640 to hold the symbol table as we build it. */
3641 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3642 som_symtab = (struct symbol_dictionary_record *) malloc (symtab_size);
3643 if (som_symtab == NULL && symtab_size != 0)
3644 {
3645 bfd_set_error (bfd_error_no_memory);
3646 goto error_return;
3647 }
3648 memset (som_symtab, 0, symtab_size);
3649
3650 /* Walk over each symbol. */
3651 for (i = 0; i < num_syms; i++)
3652 {
3653 struct som_misc_symbol_info info;
3654
3655 /* This is really an index into the symbol strings table.
3656 By the time we get here, the index has already been
3657 computed and stored into the name field in the BFD symbol. */
3658 som_symtab[i].name.n_strx = som_symbol_data(bfd_syms[i])->stringtab_offset;
3659
3660 /* Derive SOM information from the BFD symbol. */
3661 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
3662
3663 /* Now use it. */
3664 som_symtab[i].symbol_type = info.symbol_type;
3665 som_symtab[i].symbol_scope = info.symbol_scope;
3666 som_symtab[i].arg_reloc = info.arg_reloc;
3667 som_symtab[i].symbol_info = info.symbol_info;
3668 som_symtab[i].symbol_value = info.symbol_value;
3669 }
3670
3671 /* Everything is ready, seek to the right location and
3672 scribble out the symbol table. */
3673 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3674 return false;
3675
3676 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3677 goto error_return;
3678
3679 if (som_symtab != NULL)
3680 free (som_symtab);
3681 return true;
3682 error_return:
3683 if (som_symtab != NULL)
3684 free (som_symtab);
3685 return false;
3686 }
3687
3688 /* Write an object in SOM format. */
3689
3690 static boolean
3691 som_write_object_contents (abfd)
3692 bfd *abfd;
3693 {
3694 if (abfd->output_has_begun == false)
3695 {
3696 /* Set up fixed parts of the file, space, and subspace headers.
3697 Notify the world that output has begun. */
3698 som_prep_headers (abfd);
3699 abfd->output_has_begun = true;
3700 /* Start writing the object file. This include all the string
3701 tables, fixup streams, and other portions of the object file. */
3702 som_begin_writing (abfd);
3703 }
3704
3705 return (som_finish_writing (abfd));
3706 }
3707
3708 \f
3709 /* Read and save the string table associated with the given BFD. */
3710
3711 static boolean
3712 som_slurp_string_table (abfd)
3713 bfd *abfd;
3714 {
3715 char *stringtab;
3716
3717 /* Use the saved version if its available. */
3718 if (obj_som_stringtab (abfd) != NULL)
3719 return true;
3720
3721 /* I don't think this can currently happen, and I'm not sure it should
3722 really be an error, but it's better than getting unpredictable results
3723 from the host's malloc when passed a size of zero. */
3724 if (obj_som_stringtab_size (abfd) == 0)
3725 {
3726 bfd_set_error (bfd_error_no_symbols);
3727 return false;
3728 }
3729
3730 /* Allocate and read in the string table. */
3731 stringtab = bfd_zalloc (abfd, obj_som_stringtab_size (abfd));
3732 if (stringtab == NULL)
3733 {
3734 bfd_set_error (bfd_error_no_memory);
3735 return false;
3736 }
3737
3738 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3739 return false;
3740
3741 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3742 != obj_som_stringtab_size (abfd))
3743 return false;
3744
3745 /* Save our results and return success. */
3746 obj_som_stringtab (abfd) = stringtab;
3747 return true;
3748 }
3749
3750 /* Return the amount of data (in bytes) required to hold the symbol
3751 table for this object. */
3752
3753 static long
3754 som_get_symtab_upper_bound (abfd)
3755 bfd *abfd;
3756 {
3757 if (!som_slurp_symbol_table (abfd))
3758 return -1;
3759
3760 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
3761 }
3762
3763 /* Convert from a SOM subspace index to a BFD section. */
3764
3765 static asection *
3766 bfd_section_from_som_symbol (abfd, symbol)
3767 bfd *abfd;
3768 struct symbol_dictionary_record *symbol;
3769 {
3770 asection *section;
3771
3772 /* The meaning of the symbol_info field changes for functions
3773 within executables. So only use the quick symbol_info mapping for
3774 incomplete objects and non-function symbols in executables. */
3775 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
3776 || (symbol->symbol_type != ST_ENTRY
3777 && symbol->symbol_type != ST_PRI_PROG
3778 && symbol->symbol_type != ST_SEC_PROG
3779 && symbol->symbol_type != ST_MILLICODE))
3780 {
3781 unsigned int index = symbol->symbol_info;
3782 for (section = abfd->sections; section != NULL; section = section->next)
3783 if (section->target_index == index && som_is_subspace (section))
3784 return section;
3785
3786 /* Could be a symbol from an external library (such as an OMOS
3787 shared library). Don't abort. */
3788 return bfd_abs_section_ptr;
3789
3790 }
3791 else
3792 {
3793 unsigned int value = symbol->symbol_value;
3794
3795 /* For executables we will have to use the symbol's address and
3796 find out what section would contain that address. Yuk. */
3797 for (section = abfd->sections; section; section = section->next)
3798 {
3799 if (value >= section->vma
3800 && value <= section->vma + section->_cooked_size
3801 && som_is_subspace (section))
3802 return section;
3803 }
3804
3805 /* Could be a symbol from an external library (such as an OMOS
3806 shared library). Don't abort. */
3807 return bfd_abs_section_ptr;
3808
3809 }
3810 }
3811
3812 /* Read and save the symbol table associated with the given BFD. */
3813
3814 static unsigned int
3815 som_slurp_symbol_table (abfd)
3816 bfd *abfd;
3817 {
3818 int symbol_count = bfd_get_symcount (abfd);
3819 int symsize = sizeof (struct symbol_dictionary_record);
3820 char *stringtab;
3821 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
3822 som_symbol_type *sym, *symbase;
3823
3824 /* Return saved value if it exists. */
3825 if (obj_som_symtab (abfd) != NULL)
3826 goto successful_return;
3827
3828 /* Special case. This is *not* an error. */
3829 if (symbol_count == 0)
3830 goto successful_return;
3831
3832 if (!som_slurp_string_table (abfd))
3833 goto error_return;
3834
3835 stringtab = obj_som_stringtab (abfd);
3836
3837 symbase = (som_symbol_type *)
3838 bfd_zalloc (abfd, symbol_count * sizeof (som_symbol_type));
3839 if (symbase == NULL)
3840 {
3841 bfd_set_error (bfd_error_no_memory);
3842 goto error_return;
3843 }
3844
3845 /* Read in the external SOM representation. */
3846 buf = malloc (symbol_count * symsize);
3847 if (buf == NULL && symbol_count * symsize != 0)
3848 {
3849 bfd_set_error (bfd_error_no_memory);
3850 goto error_return;
3851 }
3852 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
3853 goto error_return;
3854 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
3855 != symbol_count * symsize)
3856 goto error_return;
3857
3858 /* Iterate over all the symbols and internalize them. */
3859 endbufp = buf + symbol_count;
3860 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
3861 {
3862
3863 /* I don't think we care about these. */
3864 if (bufp->symbol_type == ST_SYM_EXT
3865 || bufp->symbol_type == ST_ARG_EXT)
3866 continue;
3867
3868 /* Set some private data we care about. */
3869 if (bufp->symbol_type == ST_NULL)
3870 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3871 else if (bufp->symbol_type == ST_ABSOLUTE)
3872 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
3873 else if (bufp->symbol_type == ST_DATA)
3874 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
3875 else if (bufp->symbol_type == ST_CODE)
3876 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
3877 else if (bufp->symbol_type == ST_PRI_PROG)
3878 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
3879 else if (bufp->symbol_type == ST_SEC_PROG)
3880 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
3881 else if (bufp->symbol_type == ST_ENTRY)
3882 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
3883 else if (bufp->symbol_type == ST_MILLICODE)
3884 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
3885 else if (bufp->symbol_type == ST_PLABEL)
3886 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
3887 else
3888 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3889 som_symbol_data (sym)->tc_data.hppa_arg_reloc = bufp->arg_reloc;
3890
3891 /* Some reasonable defaults. */
3892 sym->symbol.the_bfd = abfd;
3893 sym->symbol.name = bufp->name.n_strx + stringtab;
3894 sym->symbol.value = bufp->symbol_value;
3895 sym->symbol.section = 0;
3896 sym->symbol.flags = 0;
3897
3898 switch (bufp->symbol_type)
3899 {
3900 case ST_ENTRY:
3901 case ST_MILLICODE:
3902 sym->symbol.flags |= BSF_FUNCTION;
3903 sym->symbol.value &= ~0x3;
3904 break;
3905
3906 case ST_STUB:
3907 case ST_CODE:
3908 case ST_PRI_PROG:
3909 case ST_SEC_PROG:
3910 sym->symbol.value &= ~0x3;
3911 /* If the symbol's scope is ST_UNSAT, then these are
3912 undefined function symbols. */
3913 if (bufp->symbol_scope == SS_UNSAT)
3914 sym->symbol.flags |= BSF_FUNCTION;
3915
3916
3917 default:
3918 break;
3919 }
3920
3921 /* Handle scoping and section information. */
3922 switch (bufp->symbol_scope)
3923 {
3924 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
3925 so the section associated with this symbol can't be known. */
3926 case SS_EXTERNAL:
3927 if (bufp->symbol_type != ST_STORAGE)
3928 sym->symbol.section = bfd_und_section_ptr;
3929 else
3930 sym->symbol.section = bfd_com_section_ptr;
3931 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3932 break;
3933
3934 case SS_UNSAT:
3935 if (bufp->symbol_type != ST_STORAGE)
3936 sym->symbol.section = bfd_und_section_ptr;
3937 else
3938 sym->symbol.section = bfd_com_section_ptr;
3939 break;
3940
3941 case SS_UNIVERSAL:
3942 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3943 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3944 sym->symbol.value -= sym->symbol.section->vma;
3945 break;
3946
3947 #if 0
3948 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
3949 Sound dumb? It is. */
3950 case SS_GLOBAL:
3951 #endif
3952 case SS_LOCAL:
3953 sym->symbol.flags |= BSF_LOCAL;
3954 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3955 sym->symbol.value -= sym->symbol.section->vma;
3956 break;
3957 }
3958
3959 /* Mark section symbols and symbols used by the debugger.
3960 Note $START$ is a magic code symbol, NOT a section symbol. */
3961 if (sym->symbol.name[0] == '$'
3962 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$'
3963 && strcmp (sym->symbol.name, "$START$"))
3964 sym->symbol.flags |= BSF_SECTION_SYM;
3965 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
3966 {
3967 sym->symbol.flags |= BSF_SECTION_SYM;
3968 sym->symbol.name = sym->symbol.section->name;
3969 }
3970 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
3971 sym->symbol.flags |= BSF_DEBUGGING;
3972
3973 /* Note increment at bottom of loop, since we skip some symbols
3974 we can not include it as part of the for statement. */
3975 sym++;
3976 }
3977
3978 /* Save our results and return success. */
3979 obj_som_symtab (abfd) = symbase;
3980 successful_return:
3981 if (buf != NULL)
3982 free (buf);
3983 return (true);
3984
3985 error_return:
3986 if (buf != NULL)
3987 free (buf);
3988 return false;
3989 }
3990
3991 /* Canonicalize a SOM symbol table. Return the number of entries
3992 in the symbol table. */
3993
3994 static long
3995 som_get_symtab (abfd, location)
3996 bfd *abfd;
3997 asymbol **location;
3998 {
3999 int i;
4000 som_symbol_type *symbase;
4001
4002 if (!som_slurp_symbol_table (abfd))
4003 return -1;
4004
4005 i = bfd_get_symcount (abfd);
4006 symbase = obj_som_symtab (abfd);
4007
4008 for (; i > 0; i--, location++, symbase++)
4009 *location = &symbase->symbol;
4010
4011 /* Final null pointer. */
4012 *location = 0;
4013 return (bfd_get_symcount (abfd));
4014 }
4015
4016 /* Make a SOM symbol. There is nothing special to do here. */
4017
4018 static asymbol *
4019 som_make_empty_symbol (abfd)
4020 bfd *abfd;
4021 {
4022 som_symbol_type *new =
4023 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
4024 if (new == NULL)
4025 {
4026 bfd_set_error (bfd_error_no_memory);
4027 return 0;
4028 }
4029 new->symbol.the_bfd = abfd;
4030
4031 return &new->symbol;
4032 }
4033
4034 /* Print symbol information. */
4035
4036 static void
4037 som_print_symbol (ignore_abfd, afile, symbol, how)
4038 bfd *ignore_abfd;
4039 PTR afile;
4040 asymbol *symbol;
4041 bfd_print_symbol_type how;
4042 {
4043 FILE *file = (FILE *) afile;
4044 switch (how)
4045 {
4046 case bfd_print_symbol_name:
4047 fprintf (file, "%s", symbol->name);
4048 break;
4049 case bfd_print_symbol_more:
4050 fprintf (file, "som ");
4051 fprintf_vma (file, symbol->value);
4052 fprintf (file, " %lx", (long) symbol->flags);
4053 break;
4054 case bfd_print_symbol_all:
4055 {
4056 CONST char *section_name;
4057 section_name = symbol->section ? symbol->section->name : "(*none*)";
4058 bfd_print_symbol_vandf ((PTR) file, symbol);
4059 fprintf (file, " %s\t%s", section_name, symbol->name);
4060 break;
4061 }
4062 }
4063 }
4064
4065 static boolean
4066 som_bfd_is_local_label (abfd, sym)
4067 bfd *abfd;
4068 asymbol *sym;
4069 {
4070 return (sym->name[0] == 'L' && sym->name[1] == '$');
4071 }
4072
4073 /* Count or process variable-length SOM fixup records.
4074
4075 To avoid code duplication we use this code both to compute the number
4076 of relocations requested by a stream, and to internalize the stream.
4077
4078 When computing the number of relocations requested by a stream the
4079 variables rptr, section, and symbols have no meaning.
4080
4081 Return the number of relocations requested by the fixup stream. When
4082 not just counting
4083
4084 This needs at least two or three more passes to get it cleaned up. */
4085
4086 static unsigned int
4087 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
4088 unsigned char *fixup;
4089 unsigned int end;
4090 arelent *internal_relocs;
4091 asection *section;
4092 asymbol **symbols;
4093 boolean just_count;
4094 {
4095 unsigned int op, varname, deallocate_contents = 0;
4096 unsigned char *end_fixups = &fixup[end];
4097 const struct fixup_format *fp;
4098 char *cp;
4099 unsigned char *save_fixup;
4100 int variables[26], stack[20], c, v, count, prev_fixup, *sp, saved_unwind_bits;
4101 const int *subop;
4102 arelent *rptr= internal_relocs;
4103 unsigned int offset = 0;
4104
4105 #define var(c) variables[(c) - 'A']
4106 #define push(v) (*sp++ = (v))
4107 #define pop() (*--sp)
4108 #define emptystack() (sp == stack)
4109
4110 som_initialize_reloc_queue (reloc_queue);
4111 memset (variables, 0, sizeof (variables));
4112 memset (stack, 0, sizeof (stack));
4113 count = 0;
4114 prev_fixup = 0;
4115 saved_unwind_bits = 0;
4116 sp = stack;
4117
4118 while (fixup < end_fixups)
4119 {
4120
4121 /* Save pointer to the start of this fixup. We'll use
4122 it later to determine if it is necessary to put this fixup
4123 on the queue. */
4124 save_fixup = fixup;
4125
4126 /* Get the fixup code and its associated format. */
4127 op = *fixup++;
4128 fp = &som_fixup_formats[op];
4129
4130 /* Handle a request for a previous fixup. */
4131 if (*fp->format == 'P')
4132 {
4133 /* Get pointer to the beginning of the prev fixup, move
4134 the repeated fixup to the head of the queue. */
4135 fixup = reloc_queue[fp->D].reloc;
4136 som_reloc_queue_fix (reloc_queue, fp->D);
4137 prev_fixup = 1;
4138
4139 /* Get the fixup code and its associated format. */
4140 op = *fixup++;
4141 fp = &som_fixup_formats[op];
4142 }
4143
4144 /* If this fixup will be passed to BFD, set some reasonable defaults. */
4145 if (! just_count
4146 && som_hppa_howto_table[op].type != R_NO_RELOCATION
4147 && som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
4148 {
4149 rptr->address = offset;
4150 rptr->howto = &som_hppa_howto_table[op];
4151 rptr->addend = 0;
4152 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
4153 }
4154
4155 /* Set default input length to 0. Get the opcode class index
4156 into D. */
4157 var ('L') = 0;
4158 var ('D') = fp->D;
4159 var ('U') = saved_unwind_bits;
4160
4161 /* Get the opcode format. */
4162 cp = fp->format;
4163
4164 /* Process the format string. Parsing happens in two phases,
4165 parse RHS, then assign to LHS. Repeat until no more
4166 characters in the format string. */
4167 while (*cp)
4168 {
4169 /* The variable this pass is going to compute a value for. */
4170 varname = *cp++;
4171
4172 /* Start processing RHS. Continue until a NULL or '=' is found. */
4173 do
4174 {
4175 c = *cp++;
4176
4177 /* If this is a variable, push it on the stack. */
4178 if (isupper (c))
4179 push (var (c));
4180
4181 /* If this is a lower case letter, then it represents
4182 additional data from the fixup stream to be pushed onto
4183 the stack. */
4184 else if (islower (c))
4185 {
4186 for (v = 0; c > 'a'; --c)
4187 v = (v << 8) | *fixup++;
4188 push (v);
4189 }
4190
4191 /* A decimal constant. Push it on the stack. */
4192 else if (isdigit (c))
4193 {
4194 v = c - '0';
4195 while (isdigit (*cp))
4196 v = (v * 10) + (*cp++ - '0');
4197 push (v);
4198 }
4199 else
4200
4201 /* An operator. Pop two two values from the stack and
4202 use them as operands to the given operation. Push
4203 the result of the operation back on the stack. */
4204 switch (c)
4205 {
4206 case '+':
4207 v = pop ();
4208 v += pop ();
4209 push (v);
4210 break;
4211 case '*':
4212 v = pop ();
4213 v *= pop ();
4214 push (v);
4215 break;
4216 case '<':
4217 v = pop ();
4218 v = pop () << v;
4219 push (v);
4220 break;
4221 default:
4222 abort ();
4223 }
4224 }
4225 while (*cp && *cp != '=');
4226
4227 /* Move over the equal operator. */
4228 cp++;
4229
4230 /* Pop the RHS off the stack. */
4231 c = pop ();
4232
4233 /* Perform the assignment. */
4234 var (varname) = c;
4235
4236 /* Handle side effects. and special 'O' stack cases. */
4237 switch (varname)
4238 {
4239 /* Consume some bytes from the input space. */
4240 case 'L':
4241 offset += c;
4242 break;
4243 /* A symbol to use in the relocation. Make a note
4244 of this if we are not just counting. */
4245 case 'S':
4246 if (! just_count)
4247 rptr->sym_ptr_ptr = &symbols[c];
4248 break;
4249 /* Argument relocation bits for a function call. */
4250 case 'R':
4251 if (! just_count)
4252 {
4253 unsigned int tmp = var ('R');
4254 rptr->addend = 0;
4255
4256 if ((som_hppa_howto_table[op].type == R_PCREL_CALL
4257 && R_PCREL_CALL + 10 > op)
4258 || (som_hppa_howto_table[op].type == R_ABS_CALL
4259 && R_ABS_CALL + 10 > op))
4260 {
4261 /* Simple encoding. */
4262 if (tmp > 4)
4263 {
4264 tmp -= 5;
4265 rptr->addend |= 1;
4266 }
4267 if (tmp == 4)
4268 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2;
4269 else if (tmp == 3)
4270 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4;
4271 else if (tmp == 2)
4272 rptr->addend |= 1 << 8 | 1 << 6;
4273 else if (tmp == 1)
4274 rptr->addend |= 1 << 8;
4275 }
4276 else
4277 {
4278 unsigned int tmp1, tmp2;
4279
4280 /* First part is easy -- low order two bits are
4281 directly copied, then shifted away. */
4282 rptr->addend = tmp & 0x3;
4283 tmp >>= 2;
4284
4285 /* Diving the result by 10 gives us the second
4286 part. If it is 9, then the first two words
4287 are a double precision paramater, else it is
4288 3 * the first arg bits + the 2nd arg bits. */
4289 tmp1 = tmp / 10;
4290 tmp -= tmp1 * 10;
4291 if (tmp1 == 9)
4292 rptr->addend += (0xe << 6);
4293 else
4294 {
4295 /* Get the two pieces. */
4296 tmp2 = tmp1 / 3;
4297 tmp1 -= tmp2 * 3;
4298 /* Put them in the addend. */
4299 rptr->addend += (tmp2 << 8) + (tmp1 << 6);
4300 }
4301
4302 /* What's left is the third part. It's unpacked
4303 just like the second. */
4304 if (tmp == 9)
4305 rptr->addend += (0xe << 2);
4306 else
4307 {
4308 tmp2 = tmp / 3;
4309 tmp -= tmp2 * 3;
4310 rptr->addend += (tmp2 << 4) + (tmp << 2);
4311 }
4312 }
4313 rptr->addend = HPPA_R_ADDEND (rptr->addend, 0);
4314 }
4315 break;
4316 /* Handle the linker expression stack. */
4317 case 'O':
4318 switch (op)
4319 {
4320 case R_COMP1:
4321 subop = comp1_opcodes;
4322 break;
4323 case R_COMP2:
4324 subop = comp2_opcodes;
4325 break;
4326 case R_COMP3:
4327 subop = comp3_opcodes;
4328 break;
4329 default:
4330 abort ();
4331 }
4332 while (*subop <= (unsigned char) c)
4333 ++subop;
4334 --subop;
4335 break;
4336 /* The lower 32unwind bits must be persistent. */
4337 case 'U':
4338 saved_unwind_bits = var ('U');
4339 break;
4340
4341 default:
4342 break;
4343 }
4344 }
4345
4346 /* If we used a previous fixup, clean up after it. */
4347 if (prev_fixup)
4348 {
4349 fixup = save_fixup + 1;
4350 prev_fixup = 0;
4351 }
4352 /* Queue it. */
4353 else if (fixup > save_fixup + 1)
4354 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4355
4356 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4357 fixups to BFD. */
4358 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4359 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4360 {
4361 /* Done with a single reloction. Loop back to the top. */
4362 if (! just_count)
4363 {
4364 if (som_hppa_howto_table[op].type == R_ENTRY)
4365 rptr->addend = var ('T');
4366 else if (som_hppa_howto_table[op].type == R_EXIT)
4367 rptr->addend = var ('U');
4368 else if (som_hppa_howto_table[op].type == R_PCREL_CALL
4369 || som_hppa_howto_table[op].type == R_ABS_CALL)
4370 ;
4371 else if (som_hppa_howto_table[op].type == R_DATA_ONE_SYMBOL)
4372 {
4373 unsigned addend = var ('V');
4374
4375 /* Try what was specified in R_DATA_OVERRIDE first
4376 (if anything). Then the hard way using the
4377 section contents. */
4378 rptr->addend = var ('V');
4379
4380 if (rptr->addend == 0 && !section->contents)
4381 {
4382 /* Got to read the damn contents first. We don't
4383 bother saving the contents (yet). Add it one
4384 day if the need arises. */
4385 section->contents = malloc (section->_raw_size);
4386 if (section->contents == NULL)
4387 return -1;
4388
4389 deallocate_contents = 1;
4390 bfd_get_section_contents (section->owner,
4391 section,
4392 section->contents,
4393 0,
4394 section->_raw_size);
4395 }
4396 else if (rptr->addend == 0)
4397 rptr->addend = bfd_get_32 (section->owner,
4398 (section->contents
4399 + offset - var ('L')));
4400
4401 }
4402 else
4403 rptr->addend = var ('V');
4404 rptr++;
4405 }
4406 count++;
4407 /* Now that we've handled a "full" relocation, reset
4408 some state. */
4409 memset (variables, 0, sizeof (variables));
4410 memset (stack, 0, sizeof (stack));
4411 }
4412 }
4413 if (deallocate_contents)
4414 free (section->contents);
4415
4416 return count;
4417
4418 #undef var
4419 #undef push
4420 #undef pop
4421 #undef emptystack
4422 }
4423
4424 /* Read in the relocs (aka fixups in SOM terms) for a section.
4425
4426 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4427 set to true to indicate it only needs a count of the number
4428 of actual relocations. */
4429
4430 static boolean
4431 som_slurp_reloc_table (abfd, section, symbols, just_count)
4432 bfd *abfd;
4433 asection *section;
4434 asymbol **symbols;
4435 boolean just_count;
4436 {
4437 char *external_relocs;
4438 unsigned int fixup_stream_size;
4439 arelent *internal_relocs;
4440 unsigned int num_relocs;
4441
4442 fixup_stream_size = som_section_data (section)->reloc_size;
4443 /* If there were no relocations, then there is nothing to do. */
4444 if (section->reloc_count == 0)
4445 return true;
4446
4447 /* If reloc_count is -1, then the relocation stream has not been
4448 parsed. We must do so now to know how many relocations exist. */
4449 if (section->reloc_count == -1)
4450 {
4451 external_relocs = (char *) malloc (fixup_stream_size);
4452 if (external_relocs == (char *) NULL)
4453 {
4454 bfd_set_error (bfd_error_no_memory);
4455 return false;
4456 }
4457 /* Read in the external forms. */
4458 if (bfd_seek (abfd,
4459 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4460 SEEK_SET)
4461 != 0)
4462 return false;
4463 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
4464 != fixup_stream_size)
4465 return false;
4466
4467 /* Let callers know how many relocations found.
4468 also save the relocation stream as we will
4469 need it again. */
4470 section->reloc_count = som_set_reloc_info (external_relocs,
4471 fixup_stream_size,
4472 NULL, NULL, NULL, true);
4473
4474 som_section_data (section)->reloc_stream = external_relocs;
4475 }
4476
4477 /* If the caller only wanted a count, then return now. */
4478 if (just_count)
4479 return true;
4480
4481 num_relocs = section->reloc_count;
4482 external_relocs = som_section_data (section)->reloc_stream;
4483 /* Return saved information about the relocations if it is available. */
4484 if (section->relocation != (arelent *) NULL)
4485 return true;
4486
4487 internal_relocs = (arelent *)
4488 bfd_zalloc (abfd, (num_relocs * sizeof (arelent)));
4489 if (internal_relocs == (arelent *) NULL)
4490 {
4491 bfd_set_error (bfd_error_no_memory);
4492 return false;
4493 }
4494
4495 /* Process and internalize the relocations. */
4496 som_set_reloc_info (external_relocs, fixup_stream_size,
4497 internal_relocs, section, symbols, false);
4498
4499 /* We're done with the external relocations. Free them. */
4500 free (external_relocs);
4501
4502 /* Save our results and return success. */
4503 section->relocation = internal_relocs;
4504 return (true);
4505 }
4506
4507 /* Return the number of bytes required to store the relocation
4508 information associated with the given section. */
4509
4510 static long
4511 som_get_reloc_upper_bound (abfd, asect)
4512 bfd *abfd;
4513 sec_ptr asect;
4514 {
4515 /* If section has relocations, then read in the relocation stream
4516 and parse it to determine how many relocations exist. */
4517 if (asect->flags & SEC_RELOC)
4518 {
4519 if (! som_slurp_reloc_table (abfd, asect, NULL, true))
4520 return false;
4521 return (asect->reloc_count + 1) * sizeof (arelent);
4522 }
4523 /* There are no relocations. */
4524 return 0;
4525 }
4526
4527 /* Convert relocations from SOM (external) form into BFD internal
4528 form. Return the number of relocations. */
4529
4530 static long
4531 som_canonicalize_reloc (abfd, section, relptr, symbols)
4532 bfd *abfd;
4533 sec_ptr section;
4534 arelent **relptr;
4535 asymbol **symbols;
4536 {
4537 arelent *tblptr;
4538 int count;
4539
4540 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
4541 return -1;
4542
4543 count = section->reloc_count;
4544 tblptr = section->relocation;
4545
4546 while (count--)
4547 *relptr++ = tblptr++;
4548
4549 *relptr = (arelent *) NULL;
4550 return section->reloc_count;
4551 }
4552
4553 extern const bfd_target som_vec;
4554
4555 /* A hook to set up object file dependent section information. */
4556
4557 static boolean
4558 som_new_section_hook (abfd, newsect)
4559 bfd *abfd;
4560 asection *newsect;
4561 {
4562 newsect->used_by_bfd =
4563 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
4564 if (!newsect->used_by_bfd)
4565 {
4566 bfd_set_error (bfd_error_no_memory);
4567 return false;
4568 }
4569 newsect->alignment_power = 3;
4570
4571 /* We allow more than three sections internally */
4572 return true;
4573 }
4574
4575 /* Copy any private info we understand from the input section
4576 to the output section. */
4577 static boolean
4578 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
4579 bfd *ibfd;
4580 asection *isection;
4581 bfd *obfd;
4582 asection *osection;
4583 {
4584 /* One day we may try to grok other private data. */
4585 if (ibfd->xvec->flavour != bfd_target_som_flavour
4586 || obfd->xvec->flavour != bfd_target_som_flavour
4587 || (!som_is_space (isection) && !som_is_subspace (isection)))
4588 return false;
4589
4590 som_section_data (osection)->copy_data
4591 = (struct som_copyable_section_data_struct *)
4592 bfd_zalloc (obfd, sizeof (struct som_copyable_section_data_struct));
4593 if (som_section_data (osection)->copy_data == NULL)
4594 {
4595 bfd_set_error (bfd_error_no_memory);
4596 return false;
4597 }
4598
4599 memcpy (som_section_data (osection)->copy_data,
4600 som_section_data (isection)->copy_data,
4601 sizeof (struct som_copyable_section_data_struct));
4602
4603 /* Reparent if necessary. */
4604 if (som_section_data (osection)->copy_data->container)
4605 som_section_data (osection)->copy_data->container =
4606 som_section_data (osection)->copy_data->container->output_section;
4607
4608 return true;
4609 }
4610
4611 /* Copy any private info we understand from the input bfd
4612 to the output bfd. */
4613
4614 static boolean
4615 som_bfd_copy_private_bfd_data (ibfd, obfd)
4616 bfd *ibfd, *obfd;
4617 {
4618 /* One day we may try to grok other private data. */
4619 if (ibfd->xvec->flavour != bfd_target_som_flavour
4620 || obfd->xvec->flavour != bfd_target_som_flavour)
4621 return false;
4622
4623 /* Allocate some memory to hold the data we need. */
4624 obj_som_exec_data (obfd) = (struct som_exec_data *)
4625 bfd_zalloc (obfd, sizeof (struct som_exec_data));
4626 if (obj_som_exec_data (obfd) == NULL)
4627 {
4628 bfd_set_error (bfd_error_no_memory);
4629 return false;
4630 }
4631
4632 /* Now copy the data. */
4633 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
4634 sizeof (struct som_exec_data));
4635
4636 return true;
4637 }
4638
4639 /* Set backend info for sections which can not be described
4640 in the BFD data structures. */
4641
4642 boolean
4643 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
4644 asection *section;
4645 int defined;
4646 int private;
4647 unsigned int sort_key;
4648 int spnum;
4649 {
4650 /* Allocate memory to hold the magic information. */
4651 if (som_section_data (section)->copy_data == NULL)
4652 {
4653 som_section_data (section)->copy_data
4654 = (struct som_copyable_section_data_struct *)
4655 bfd_zalloc (section->owner,
4656 sizeof (struct som_copyable_section_data_struct));
4657 if (som_section_data (section)->copy_data == NULL)
4658 {
4659 bfd_set_error (bfd_error_no_memory);
4660 return false;
4661 }
4662 }
4663 som_section_data (section)->copy_data->sort_key = sort_key;
4664 som_section_data (section)->copy_data->is_defined = defined;
4665 som_section_data (section)->copy_data->is_private = private;
4666 som_section_data (section)->copy_data->container = section;
4667 som_section_data (section)->copy_data->space_number = spnum;
4668 return true;
4669 }
4670
4671 /* Set backend info for subsections which can not be described
4672 in the BFD data structures. */
4673
4674 boolean
4675 bfd_som_set_subsection_attributes (section, container, access,
4676 sort_key, quadrant)
4677 asection *section;
4678 asection *container;
4679 int access;
4680 unsigned int sort_key;
4681 int quadrant;
4682 {
4683 /* Allocate memory to hold the magic information. */
4684 if (som_section_data (section)->copy_data == NULL)
4685 {
4686 som_section_data (section)->copy_data
4687 = (struct som_copyable_section_data_struct *)
4688 bfd_zalloc (section->owner,
4689 sizeof (struct som_copyable_section_data_struct));
4690 if (som_section_data (section)->copy_data == NULL)
4691 {
4692 bfd_set_error (bfd_error_no_memory);
4693 return false;
4694 }
4695 }
4696 som_section_data (section)->copy_data->sort_key = sort_key;
4697 som_section_data (section)->copy_data->access_control_bits = access;
4698 som_section_data (section)->copy_data->quadrant = quadrant;
4699 som_section_data (section)->copy_data->container = container;
4700 return true;
4701 }
4702
4703 /* Set the full SOM symbol type. SOM needs far more symbol information
4704 than any other object file format I'm aware of. It is mandatory
4705 to be able to know if a symbol is an entry point, millicode, data,
4706 code, absolute, storage request, or procedure label. If you get
4707 the symbol type wrong your program will not link. */
4708
4709 void
4710 bfd_som_set_symbol_type (symbol, type)
4711 asymbol *symbol;
4712 unsigned int type;
4713 {
4714 som_symbol_data (symbol)->som_type = type;
4715 }
4716
4717 /* Attach an auxiliary header to the BFD backend so that it may be
4718 written into the object file. */
4719 boolean
4720 bfd_som_attach_aux_hdr (abfd, type, string)
4721 bfd *abfd;
4722 int type;
4723 char *string;
4724 {
4725 if (type == VERSION_AUX_ID)
4726 {
4727 int len = strlen (string);
4728 int pad = 0;
4729
4730 if (len % 4)
4731 pad = (4 - (len % 4));
4732 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
4733 bfd_zalloc (abfd, sizeof (struct aux_id)
4734 + sizeof (unsigned int) + len + pad);
4735 if (!obj_som_version_hdr (abfd))
4736 {
4737 bfd_set_error (bfd_error_no_memory);
4738 return false;
4739 }
4740 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
4741 obj_som_version_hdr (abfd)->header_id.length = len + pad;
4742 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
4743 obj_som_version_hdr (abfd)->string_length = len;
4744 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
4745 }
4746 else if (type == COPYRIGHT_AUX_ID)
4747 {
4748 int len = strlen (string);
4749 int pad = 0;
4750
4751 if (len % 4)
4752 pad = (4 - (len % 4));
4753 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
4754 bfd_zalloc (abfd, sizeof (struct aux_id)
4755 + sizeof (unsigned int) + len + pad);
4756 if (!obj_som_copyright_hdr (abfd))
4757 {
4758 bfd_set_error (bfd_error_no_memory);
4759 return false;
4760 }
4761 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
4762 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
4763 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
4764 obj_som_copyright_hdr (abfd)->string_length = len;
4765 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
4766 }
4767 return true;
4768 }
4769
4770 static boolean
4771 som_get_section_contents (abfd, section, location, offset, count)
4772 bfd *abfd;
4773 sec_ptr section;
4774 PTR location;
4775 file_ptr offset;
4776 bfd_size_type count;
4777 {
4778 if (count == 0 || ((section->flags & SEC_HAS_CONTENTS) == 0))
4779 return true;
4780 if ((bfd_size_type)(offset+count) > section->_raw_size
4781 || bfd_seek (abfd, (file_ptr)(section->filepos + offset), SEEK_SET) == -1
4782 || bfd_read (location, (bfd_size_type)1, count, abfd) != count)
4783 return (false); /* on error */
4784 return (true);
4785 }
4786
4787 static boolean
4788 som_set_section_contents (abfd, section, location, offset, count)
4789 bfd *abfd;
4790 sec_ptr section;
4791 PTR location;
4792 file_ptr offset;
4793 bfd_size_type count;
4794 {
4795 if (abfd->output_has_begun == false)
4796 {
4797 /* Set up fixed parts of the file, space, and subspace headers.
4798 Notify the world that output has begun. */
4799 som_prep_headers (abfd);
4800 abfd->output_has_begun = true;
4801 /* Start writing the object file. This include all the string
4802 tables, fixup streams, and other portions of the object file. */
4803 som_begin_writing (abfd);
4804 }
4805
4806 /* Only write subspaces which have "real" contents (eg. the contents
4807 are not generated at run time by the OS). */
4808 if (!som_is_subspace (section)
4809 || ((section->flags & SEC_HAS_CONTENTS) == 0))
4810 return true;
4811
4812 /* Seek to the proper offset within the object file and write the
4813 data. */
4814 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
4815 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
4816 return false;
4817
4818 if (bfd_write ((PTR) location, 1, count, abfd) != count)
4819 return false;
4820 return true;
4821 }
4822
4823 static boolean
4824 som_set_arch_mach (abfd, arch, machine)
4825 bfd *abfd;
4826 enum bfd_architecture arch;
4827 unsigned long machine;
4828 {
4829 /* Allow any architecture to be supported by the SOM backend */
4830 return bfd_default_set_arch_mach (abfd, arch, machine);
4831 }
4832
4833 static boolean
4834 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4835 functionname_ptr, line_ptr)
4836 bfd *abfd;
4837 asection *section;
4838 asymbol **symbols;
4839 bfd_vma offset;
4840 CONST char **filename_ptr;
4841 CONST char **functionname_ptr;
4842 unsigned int *line_ptr;
4843 {
4844 return (false);
4845 }
4846
4847 static int
4848 som_sizeof_headers (abfd, reloc)
4849 bfd *abfd;
4850 boolean reloc;
4851 {
4852 fprintf (stderr, "som_sizeof_headers unimplemented\n");
4853 fflush (stderr);
4854 abort ();
4855 return (0);
4856 }
4857
4858 /* Return the single-character symbol type corresponding to
4859 SOM section S, or '?' for an unknown SOM section. */
4860
4861 static char
4862 som_section_type (s)
4863 const char *s;
4864 {
4865 const struct section_to_type *t;
4866
4867 for (t = &stt[0]; t->section; t++)
4868 if (!strcmp (s, t->section))
4869 return t->type;
4870 return '?';
4871 }
4872
4873 static int
4874 som_decode_symclass (symbol)
4875 asymbol *symbol;
4876 {
4877 char c;
4878
4879 if (bfd_is_com_section (symbol->section))
4880 return 'C';
4881 if (bfd_is_und_section (symbol->section))
4882 return 'U';
4883 if (bfd_is_ind_section (symbol->section))
4884 return 'I';
4885 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
4886 return '?';
4887
4888 if (bfd_is_abs_section (symbol->section))
4889 c = 'a';
4890 else if (symbol->section)
4891 c = som_section_type (symbol->section->name);
4892 else
4893 return '?';
4894 if (symbol->flags & BSF_GLOBAL)
4895 c = toupper (c);
4896 return c;
4897 }
4898
4899 /* Return information about SOM symbol SYMBOL in RET. */
4900
4901 static void
4902 som_get_symbol_info (ignore_abfd, symbol, ret)
4903 bfd *ignore_abfd;
4904 asymbol *symbol;
4905 symbol_info *ret;
4906 {
4907 ret->type = som_decode_symclass (symbol);
4908 if (ret->type != 'U')
4909 ret->value = symbol->value+symbol->section->vma;
4910 else
4911 ret->value = 0;
4912 ret->name = symbol->name;
4913 }
4914
4915 /* Count the number of symbols in the archive symbol table. Necessary
4916 so that we can allocate space for all the carsyms at once. */
4917
4918 static boolean
4919 som_bfd_count_ar_symbols (abfd, lst_header, count)
4920 bfd *abfd;
4921 struct lst_header *lst_header;
4922 symindex *count;
4923 {
4924 unsigned int i;
4925 unsigned int *hash_table = NULL;
4926 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4927
4928 hash_table =
4929 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4930 if (hash_table == NULL && lst_header->hash_size != 0)
4931 {
4932 bfd_set_error (bfd_error_no_memory);
4933 goto error_return;
4934 }
4935
4936 /* Don't forget to initialize the counter! */
4937 *count = 0;
4938
4939 /* Read in the hash table. The has table is an array of 32bit file offsets
4940 which point to the hash chains. */
4941 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4942 != lst_header->hash_size * 4)
4943 goto error_return;
4944
4945 /* Walk each chain counting the number of symbols found on that particular
4946 chain. */
4947 for (i = 0; i < lst_header->hash_size; i++)
4948 {
4949 struct lst_symbol_record lst_symbol;
4950
4951 /* An empty chain has zero as it's file offset. */
4952 if (hash_table[i] == 0)
4953 continue;
4954
4955 /* Seek to the first symbol in this hash chain. */
4956 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4957 goto error_return;
4958
4959 /* Read in this symbol and update the counter. */
4960 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4961 != sizeof (lst_symbol))
4962 goto error_return;
4963
4964 (*count)++;
4965
4966 /* Now iterate through the rest of the symbols on this chain. */
4967 while (lst_symbol.next_entry)
4968 {
4969
4970 /* Seek to the next symbol. */
4971 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4972 < 0)
4973 goto error_return;
4974
4975 /* Read the symbol in and update the counter. */
4976 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4977 != sizeof (lst_symbol))
4978 goto error_return;
4979
4980 (*count)++;
4981 }
4982 }
4983 if (hash_table != NULL)
4984 free (hash_table);
4985 return true;
4986
4987 error_return:
4988 if (hash_table != NULL)
4989 free (hash_table);
4990 return false;
4991 }
4992
4993 /* Fill in the canonical archive symbols (SYMS) from the archive described
4994 by ABFD and LST_HEADER. */
4995
4996 static boolean
4997 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
4998 bfd *abfd;
4999 struct lst_header *lst_header;
5000 carsym **syms;
5001 {
5002 unsigned int i, len;
5003 carsym *set = syms[0];
5004 unsigned int *hash_table = NULL;
5005 struct som_entry *som_dict = NULL;
5006 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5007
5008 hash_table =
5009 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
5010 if (hash_table == NULL && lst_header->hash_size != 0)
5011 {
5012 bfd_set_error (bfd_error_no_memory);
5013 goto error_return;
5014 }
5015
5016 som_dict =
5017 (struct som_entry *) malloc (lst_header->module_count
5018 * sizeof (struct som_entry));
5019 if (som_dict == NULL && lst_header->module_count != 0)
5020 {
5021 bfd_set_error (bfd_error_no_memory);
5022 goto error_return;
5023 }
5024
5025 /* Read in the hash table. The has table is an array of 32bit file offsets
5026 which point to the hash chains. */
5027 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
5028 != lst_header->hash_size * 4)
5029 goto error_return;
5030
5031 /* Seek to and read in the SOM dictionary. We will need this to fill
5032 in the carsym's filepos field. */
5033 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
5034 goto error_return;
5035
5036 if (bfd_read ((PTR) som_dict, lst_header->module_count,
5037 sizeof (struct som_entry), abfd)
5038 != lst_header->module_count * sizeof (struct som_entry))
5039 goto error_return;
5040
5041 /* Walk each chain filling in the carsyms as we go along. */
5042 for (i = 0; i < lst_header->hash_size; i++)
5043 {
5044 struct lst_symbol_record lst_symbol;
5045
5046 /* An empty chain has zero as it's file offset. */
5047 if (hash_table[i] == 0)
5048 continue;
5049
5050 /* Seek to and read the first symbol on the chain. */
5051 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
5052 goto error_return;
5053
5054 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5055 != sizeof (lst_symbol))
5056 goto error_return;
5057
5058 /* Get the name of the symbol, first get the length which is stored
5059 as a 32bit integer just before the symbol.
5060
5061 One might ask why we don't just read in the entire string table
5062 and index into it. Well, according to the SOM ABI the string
5063 index can point *anywhere* in the archive to save space, so just
5064 using the string table would not be safe. */
5065 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5066 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
5067 goto error_return;
5068
5069 if (bfd_read (&len, 1, 4, abfd) != 4)
5070 goto error_return;
5071
5072 /* Allocate space for the name and null terminate it too. */
5073 set->name = bfd_zalloc (abfd, len + 1);
5074 if (!set->name)
5075 {
5076 bfd_set_error (bfd_error_no_memory);
5077 goto error_return;
5078 }
5079 if (bfd_read (set->name, 1, len, abfd) != len)
5080 goto error_return;
5081
5082 set->name[len] = 0;
5083
5084 /* Fill in the file offset. Note that the "location" field points
5085 to the SOM itself, not the ar_hdr in front of it. */
5086 set->file_offset = som_dict[lst_symbol.som_index].location
5087 - sizeof (struct ar_hdr);
5088
5089 /* Go to the next symbol. */
5090 set++;
5091
5092 /* Iterate through the rest of the chain. */
5093 while (lst_symbol.next_entry)
5094 {
5095 /* Seek to the next symbol and read it in. */
5096 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET) <0)
5097 goto error_return;
5098
5099 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5100 != sizeof (lst_symbol))
5101 goto error_return;
5102
5103 /* Seek to the name length & string and read them in. */
5104 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5105 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
5106 goto error_return;
5107
5108 if (bfd_read (&len, 1, 4, abfd) != 4)
5109 goto error_return;
5110
5111 /* Allocate space for the name and null terminate it too. */
5112 set->name = bfd_zalloc (abfd, len + 1);
5113 if (!set->name)
5114 {
5115 bfd_set_error (bfd_error_no_memory);
5116 goto error_return;
5117 }
5118
5119 if (bfd_read (set->name, 1, len, abfd) != len)
5120 goto error_return;
5121 set->name[len] = 0;
5122
5123 /* Fill in the file offset. Note that the "location" field points
5124 to the SOM itself, not the ar_hdr in front of it. */
5125 set->file_offset = som_dict[lst_symbol.som_index].location
5126 - sizeof (struct ar_hdr);
5127
5128 /* Go on to the next symbol. */
5129 set++;
5130 }
5131 }
5132 /* If we haven't died by now, then we successfully read the entire
5133 archive symbol table. */
5134 if (hash_table != NULL)
5135 free (hash_table);
5136 if (som_dict != NULL)
5137 free (som_dict);
5138 return true;
5139
5140 error_return:
5141 if (hash_table != NULL)
5142 free (hash_table);
5143 if (som_dict != NULL)
5144 free (som_dict);
5145 return false;
5146 }
5147
5148 /* Read in the LST from the archive. */
5149 static boolean
5150 som_slurp_armap (abfd)
5151 bfd *abfd;
5152 {
5153 struct lst_header lst_header;
5154 struct ar_hdr ar_header;
5155 unsigned int parsed_size;
5156 struct artdata *ardata = bfd_ardata (abfd);
5157 char nextname[17];
5158 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
5159
5160 /* Special cases. */
5161 if (i == 0)
5162 return true;
5163 if (i != 16)
5164 return false;
5165
5166 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
5167 return false;
5168
5169 /* For archives without .o files there is no symbol table. */
5170 if (strncmp (nextname, "/ ", 16))
5171 {
5172 bfd_has_map (abfd) = false;
5173 return true;
5174 }
5175
5176 /* Read in and sanity check the archive header. */
5177 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
5178 != sizeof (struct ar_hdr))
5179 return false;
5180
5181 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
5182 {
5183 bfd_set_error (bfd_error_malformed_archive);
5184 return false;
5185 }
5186
5187 /* How big is the archive symbol table entry? */
5188 errno = 0;
5189 parsed_size = strtol (ar_header.ar_size, NULL, 10);
5190 if (errno != 0)
5191 {
5192 bfd_set_error (bfd_error_malformed_archive);
5193 return false;
5194 }
5195
5196 /* Save off the file offset of the first real user data. */
5197 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
5198
5199 /* Read in the library symbol table. We'll make heavy use of this
5200 in just a minute. */
5201 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
5202 != sizeof (struct lst_header))
5203 return false;
5204
5205 /* Sanity check. */
5206 if (lst_header.a_magic != LIBMAGIC)
5207 {
5208 bfd_set_error (bfd_error_malformed_archive);
5209 return false;
5210 }
5211
5212 /* Count the number of symbols in the library symbol table. */
5213 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
5214 == false)
5215 return false;
5216
5217 /* Get back to the start of the library symbol table. */
5218 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
5219 + sizeof (struct lst_header), SEEK_SET) < 0)
5220 return false;
5221
5222 /* Initializae the cache and allocate space for the library symbols. */
5223 ardata->cache = 0;
5224 ardata->symdefs = (carsym *) bfd_alloc (abfd,
5225 (ardata->symdef_count
5226 * sizeof (carsym)));
5227 if (!ardata->symdefs)
5228 {
5229 bfd_set_error (bfd_error_no_memory);
5230 return false;
5231 }
5232
5233 /* Now fill in the canonical archive symbols. */
5234 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
5235 == false)
5236 return false;
5237
5238 /* Seek back to the "first" file in the archive. Note the "first"
5239 file may be the extended name table. */
5240 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) < 0)
5241 return false;
5242
5243 /* Notify the generic archive code that we have a symbol map. */
5244 bfd_has_map (abfd) = true;
5245 return true;
5246 }
5247
5248 /* Begin preparing to write a SOM library symbol table.
5249
5250 As part of the prep work we need to determine the number of symbols
5251 and the size of the associated string section. */
5252
5253 static boolean
5254 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
5255 bfd *abfd;
5256 unsigned int *num_syms, *stringsize;
5257 {
5258 bfd *curr_bfd = abfd->archive_head;
5259
5260 /* Some initialization. */
5261 *num_syms = 0;
5262 *stringsize = 0;
5263
5264 /* Iterate over each BFD within this archive. */
5265 while (curr_bfd != NULL)
5266 {
5267 unsigned int curr_count, i;
5268 som_symbol_type *sym;
5269
5270 /* Don't bother for non-SOM objects. */
5271 if (curr_bfd->format != bfd_object
5272 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5273 {
5274 curr_bfd = curr_bfd->next;
5275 continue;
5276 }
5277
5278 /* Make sure the symbol table has been read, then snag a pointer
5279 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5280 but doing so avoids allocating lots of extra memory. */
5281 if (som_slurp_symbol_table (curr_bfd) == false)
5282 return false;
5283
5284 sym = obj_som_symtab (curr_bfd);
5285 curr_count = bfd_get_symcount (curr_bfd);
5286
5287 /* Examine each symbol to determine if it belongs in the
5288 library symbol table. */
5289 for (i = 0; i < curr_count; i++, sym++)
5290 {
5291 struct som_misc_symbol_info info;
5292
5293 /* Derive SOM information from the BFD symbol. */
5294 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5295
5296 /* Should we include this symbol? */
5297 if (info.symbol_type == ST_NULL
5298 || info.symbol_type == ST_SYM_EXT
5299 || info.symbol_type == ST_ARG_EXT)
5300 continue;
5301
5302 /* Only global symbols and unsatisfied commons. */
5303 if (info.symbol_scope != SS_UNIVERSAL
5304 && info.symbol_type != ST_STORAGE)
5305 continue;
5306
5307 /* Do no include undefined symbols. */
5308 if (bfd_is_und_section (sym->symbol.section))
5309 continue;
5310
5311 /* Bump the various counters, being careful to honor
5312 alignment considerations in the string table. */
5313 (*num_syms)++;
5314 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5315 while (*stringsize % 4)
5316 (*stringsize)++;
5317 }
5318
5319 curr_bfd = curr_bfd->next;
5320 }
5321 return true;
5322 }
5323
5324 /* Hash a symbol name based on the hashing algorithm presented in the
5325 SOM ABI. */
5326 static unsigned int
5327 som_bfd_ar_symbol_hash (symbol)
5328 asymbol *symbol;
5329 {
5330 unsigned int len = strlen (symbol->name);
5331
5332 /* Names with length 1 are special. */
5333 if (len == 1)
5334 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5335
5336 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5337 | (symbol->name[len-2] << 8) | symbol->name[len-1];
5338 }
5339
5340 static CONST char *
5341 normalize (file)
5342 CONST char *file;
5343 {
5344 CONST char *filename = strrchr (file, '/');
5345
5346 if (filename != NULL)
5347 filename++;
5348 else
5349 filename = file;
5350 return filename;
5351 }
5352
5353 /* Do the bulk of the work required to write the SOM library
5354 symbol table. */
5355
5356 static boolean
5357 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst)
5358 bfd *abfd;
5359 unsigned int nsyms, string_size;
5360 struct lst_header lst;
5361 {
5362 file_ptr lst_filepos;
5363 char *strings = NULL, *p;
5364 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5365 bfd *curr_bfd;
5366 unsigned int *hash_table = NULL;
5367 struct som_entry *som_dict = NULL;
5368 struct lst_symbol_record **last_hash_entry = NULL;
5369 unsigned int curr_som_offset, som_index, extended_name_length = 0;
5370 unsigned int maxname = abfd->xvec->ar_max_namelen;
5371
5372 hash_table =
5373 (unsigned int *) malloc (lst.hash_size * sizeof (unsigned int));
5374 if (hash_table == NULL && lst.hash_size != 0)
5375 {
5376 bfd_set_error (bfd_error_no_memory);
5377 goto error_return;
5378 }
5379 som_dict =
5380 (struct som_entry *) malloc (lst.module_count
5381 * sizeof (struct som_entry));
5382 if (som_dict == NULL && lst.module_count != 0)
5383 {
5384 bfd_set_error (bfd_error_no_memory);
5385 goto error_return;
5386 }
5387
5388 last_hash_entry =
5389 ((struct lst_symbol_record **)
5390 malloc (lst.hash_size * sizeof (struct lst_symbol_record *)));
5391 if (last_hash_entry == NULL && lst.hash_size != 0)
5392 {
5393 bfd_set_error (bfd_error_no_memory);
5394 goto error_return;
5395 }
5396
5397 /* Lots of fields are file positions relative to the start
5398 of the lst record. So save its location. */
5399 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5400
5401 /* Some initialization. */
5402 memset (hash_table, 0, 4 * lst.hash_size);
5403 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
5404 memset (last_hash_entry, 0,
5405 lst.hash_size * sizeof (struct lst_symbol_record *));
5406
5407 /* Symbols have som_index fields, so we have to keep track of the
5408 index of each SOM in the archive.
5409
5410 The SOM dictionary has (among other things) the absolute file
5411 position for the SOM which a particular dictionary entry
5412 describes. We have to compute that information as we iterate
5413 through the SOMs/symbols. */
5414 som_index = 0;
5415 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5416
5417 /* Yow! We have to know the size of the extended name table
5418 too. */
5419 for (curr_bfd = abfd->archive_head;
5420 curr_bfd != NULL;
5421 curr_bfd = curr_bfd->next)
5422 {
5423 CONST char *normal = normalize (curr_bfd->filename);
5424 unsigned int thislen;
5425
5426 if (!normal)
5427 {
5428 bfd_set_error (bfd_error_no_memory);
5429 return false;
5430 }
5431 thislen = strlen (normal);
5432 if (thislen > maxname)
5433 extended_name_length += thislen + 1;
5434 }
5435
5436 /* Make room for the archive header and the contents of the
5437 extended string table. */
5438 if (extended_name_length)
5439 curr_som_offset += extended_name_length + sizeof (struct ar_hdr);
5440
5441 /* Make sure we're properly aligned. */
5442 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5443
5444 /* FIXME should be done with buffers just like everything else... */
5445 lst_syms = malloc (nsyms * sizeof (struct lst_symbol_record));
5446 if (lst_syms == NULL && nsyms != 0)
5447 {
5448 bfd_set_error (bfd_error_no_memory);
5449 goto error_return;
5450 }
5451 strings = malloc (string_size);
5452 if (strings == NULL && string_size != 0)
5453 {
5454 bfd_set_error (bfd_error_no_memory);
5455 goto error_return;
5456 }
5457
5458 p = strings;
5459 curr_lst_sym = lst_syms;
5460
5461 curr_bfd = abfd->archive_head;
5462 while (curr_bfd != NULL)
5463 {
5464 unsigned int curr_count, i;
5465 som_symbol_type *sym;
5466
5467 /* Don't bother for non-SOM objects. */
5468 if (curr_bfd->format != bfd_object
5469 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5470 {
5471 curr_bfd = curr_bfd->next;
5472 continue;
5473 }
5474
5475 /* Make sure the symbol table has been read, then snag a pointer
5476 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5477 but doing so avoids allocating lots of extra memory. */
5478 if (som_slurp_symbol_table (curr_bfd) == false)
5479 goto error_return;
5480
5481 sym = obj_som_symtab (curr_bfd);
5482 curr_count = bfd_get_symcount (curr_bfd);
5483
5484 for (i = 0; i < curr_count; i++, sym++)
5485 {
5486 struct som_misc_symbol_info info;
5487
5488 /* Derive SOM information from the BFD symbol. */
5489 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5490
5491 /* Should we include this symbol? */
5492 if (info.symbol_type == ST_NULL
5493 || info.symbol_type == ST_SYM_EXT
5494 || info.symbol_type == ST_ARG_EXT)
5495 continue;
5496
5497 /* Only global symbols and unsatisfied commons. */
5498 if (info.symbol_scope != SS_UNIVERSAL
5499 && info.symbol_type != ST_STORAGE)
5500 continue;
5501
5502 /* Do no include undefined symbols. */
5503 if (bfd_is_und_section (sym->symbol.section))
5504 continue;
5505
5506 /* If this is the first symbol from this SOM, then update
5507 the SOM dictionary too. */
5508 if (som_dict[som_index].location == 0)
5509 {
5510 som_dict[som_index].location = curr_som_offset;
5511 som_dict[som_index].length = arelt_size (curr_bfd);
5512 }
5513
5514 /* Fill in the lst symbol record. */
5515 curr_lst_sym->hidden = 0;
5516 curr_lst_sym->secondary_def = 0;
5517 curr_lst_sym->symbol_type = info.symbol_type;
5518 curr_lst_sym->symbol_scope = info.symbol_scope;
5519 curr_lst_sym->check_level = 0;
5520 curr_lst_sym->must_qualify = 0;
5521 curr_lst_sym->initially_frozen = 0;
5522 curr_lst_sym->memory_resident = 0;
5523 curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section);
5524 curr_lst_sym->dup_common = 0;
5525 curr_lst_sym->xleast = 0;
5526 curr_lst_sym->arg_reloc = info.arg_reloc;
5527 curr_lst_sym->name.n_strx = p - strings + 4;
5528 curr_lst_sym->qualifier_name.n_strx = 0;
5529 curr_lst_sym->symbol_info = info.symbol_info;
5530 curr_lst_sym->symbol_value = info.symbol_value;
5531 curr_lst_sym->symbol_descriptor = 0;
5532 curr_lst_sym->reserved = 0;
5533 curr_lst_sym->som_index = som_index;
5534 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
5535 curr_lst_sym->next_entry = 0;
5536
5537 /* Insert into the hash table. */
5538 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
5539 {
5540 struct lst_symbol_record *tmp;
5541
5542 /* There is already something at the head of this hash chain,
5543 so tack this symbol onto the end of the chain. */
5544 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
5545 tmp->next_entry
5546 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5547 + lst.hash_size * 4
5548 + lst.module_count * sizeof (struct som_entry)
5549 + sizeof (struct lst_header);
5550 }
5551 else
5552 {
5553 /* First entry in this hash chain. */
5554 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
5555 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5556 + lst.hash_size * 4
5557 + lst.module_count * sizeof (struct som_entry)
5558 + sizeof (struct lst_header);
5559 }
5560
5561 /* Keep track of the last symbol we added to this chain so we can
5562 easily update its next_entry pointer. */
5563 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
5564 = curr_lst_sym;
5565
5566
5567 /* Update the string table. */
5568 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
5569 p += 4;
5570 strcpy (p, sym->symbol.name);
5571 p += strlen (sym->symbol.name) + 1;
5572 while ((int)p % 4)
5573 {
5574 bfd_put_8 (abfd, 0, p);
5575 p++;
5576 }
5577
5578 /* Head to the next symbol. */
5579 curr_lst_sym++;
5580 }
5581
5582 /* Keep track of where each SOM will finally reside; then look
5583 at the next BFD. */
5584 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
5585
5586 /* A particular object in the archive may have an odd length; the
5587 linker requires objects begin on an even boundary. So round
5588 up the current offset as necessary. */
5589 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5590 curr_bfd = curr_bfd->next;
5591 som_index++;
5592 }
5593
5594 /* Now scribble out the hash table. */
5595 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
5596 != lst.hash_size * 4)
5597 goto error_return;
5598
5599 /* Then the SOM dictionary. */
5600 if (bfd_write ((PTR) som_dict, lst.module_count,
5601 sizeof (struct som_entry), abfd)
5602 != lst.module_count * sizeof (struct som_entry))
5603 goto error_return;
5604
5605 /* The library symbols. */
5606 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
5607 != nsyms * sizeof (struct lst_symbol_record))
5608 goto error_return;
5609
5610 /* And finally the strings. */
5611 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
5612 goto error_return;
5613
5614 if (hash_table != NULL)
5615 free (hash_table);
5616 if (som_dict != NULL)
5617 free (som_dict);
5618 if (last_hash_entry != NULL)
5619 free (last_hash_entry);
5620 if (lst_syms != NULL)
5621 free (lst_syms);
5622 if (strings != NULL)
5623 free (strings);
5624 return true;
5625
5626 error_return:
5627 if (hash_table != NULL)
5628 free (hash_table);
5629 if (som_dict != NULL)
5630 free (som_dict);
5631 if (last_hash_entry != NULL)
5632 free (last_hash_entry);
5633 if (lst_syms != NULL)
5634 free (lst_syms);
5635 if (strings != NULL)
5636 free (strings);
5637
5638 return false;
5639 }
5640
5641 /* SOM almost uses the SVR4 style extended name support, but not
5642 quite. */
5643
5644 static boolean
5645 som_construct_extended_name_table (abfd, tabloc, tablen, name)
5646 bfd *abfd;
5647 char **tabloc;
5648 bfd_size_type *tablen;
5649 const char **name;
5650 {
5651 *name = "//";
5652 return _bfd_construct_extended_name_table (abfd, false, tabloc, tablen);
5653 }
5654
5655 /* Write out the LST for the archive.
5656
5657 You'll never believe this is really how armaps are handled in SOM... */
5658
5659 /*ARGSUSED*/
5660 static boolean
5661 som_write_armap (abfd, elength, map, orl_count, stridx)
5662 bfd *abfd;
5663 unsigned int elength;
5664 struct orl *map;
5665 unsigned int orl_count;
5666 int stridx;
5667 {
5668 bfd *curr_bfd;
5669 struct stat statbuf;
5670 unsigned int i, lst_size, nsyms, stringsize;
5671 struct ar_hdr hdr;
5672 struct lst_header lst;
5673 int *p;
5674
5675 /* We'll use this for the archive's date and mode later. */
5676 if (stat (abfd->filename, &statbuf) != 0)
5677 {
5678 bfd_set_error (bfd_error_system_call);
5679 return false;
5680 }
5681 /* Fudge factor. */
5682 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
5683
5684 /* Account for the lst header first. */
5685 lst_size = sizeof (struct lst_header);
5686
5687 /* Start building the LST header. */
5688 /* FIXME: Do we need to examine each element to determine the
5689 largest id number? */
5690 lst.system_id = CPU_PA_RISC1_0;
5691 lst.a_magic = LIBMAGIC;
5692 lst.version_id = VERSION_ID;
5693 lst.file_time.secs = 0;
5694 lst.file_time.nanosecs = 0;
5695
5696 lst.hash_loc = lst_size;
5697 lst.hash_size = SOM_LST_HASH_SIZE;
5698
5699 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
5700 lst_size += 4 * SOM_LST_HASH_SIZE;
5701
5702 /* We need to count the number of SOMs in this archive. */
5703 curr_bfd = abfd->archive_head;
5704 lst.module_count = 0;
5705 while (curr_bfd != NULL)
5706 {
5707 /* Only true SOM objects count. */
5708 if (curr_bfd->format == bfd_object
5709 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
5710 lst.module_count++;
5711 curr_bfd = curr_bfd->next;
5712 }
5713 lst.module_limit = lst.module_count;
5714 lst.dir_loc = lst_size;
5715 lst_size += sizeof (struct som_entry) * lst.module_count;
5716
5717 /* We don't support import/export tables, auxiliary headers,
5718 or free lists yet. Make the linker work a little harder
5719 to make our life easier. */
5720
5721 lst.export_loc = 0;
5722 lst.export_count = 0;
5723 lst.import_loc = 0;
5724 lst.aux_loc = 0;
5725 lst.aux_size = 0;
5726
5727 /* Count how many symbols we will have on the hash chains and the
5728 size of the associated string table. */
5729 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
5730 return false;
5731
5732 lst_size += sizeof (struct lst_symbol_record) * nsyms;
5733
5734 /* For the string table. One day we might actually use this info
5735 to avoid small seeks/reads when reading archives. */
5736 lst.string_loc = lst_size;
5737 lst.string_size = stringsize;
5738 lst_size += stringsize;
5739
5740 /* SOM ABI says this must be zero. */
5741 lst.free_list = 0;
5742 lst.file_end = lst_size;
5743
5744 /* Compute the checksum. Must happen after the entire lst header
5745 has filled in. */
5746 p = (int *)&lst;
5747 lst.checksum = 0;
5748 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
5749 lst.checksum ^= *p++;
5750
5751 sprintf (hdr.ar_name, "/ ");
5752 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
5753 sprintf (hdr.ar_uid, "%ld", (long) getuid ());
5754 sprintf (hdr.ar_gid, "%ld", (long) getgid ());
5755 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
5756 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
5757 hdr.ar_fmag[0] = '`';
5758 hdr.ar_fmag[1] = '\012';
5759
5760 /* Turn any nulls into spaces. */
5761 for (i = 0; i < sizeof (struct ar_hdr); i++)
5762 if (((char *) (&hdr))[i] == '\0')
5763 (((char *) (&hdr))[i]) = ' ';
5764
5765 /* Scribble out the ar header. */
5766 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
5767 != sizeof (struct ar_hdr))
5768 return false;
5769
5770 /* Now scribble out the lst header. */
5771 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
5772 != sizeof (struct lst_header))
5773 return false;
5774
5775 /* Build and write the armap. */
5776 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst) == false)
5777 return false;
5778
5779 /* Done. */
5780 return true;
5781 }
5782
5783 /* Free all information we have cached for this BFD. We can always
5784 read it again later if we need it. */
5785
5786 static boolean
5787 som_bfd_free_cached_info (abfd)
5788 bfd *abfd;
5789 {
5790 asection *o;
5791
5792 if (bfd_get_format (abfd) != bfd_object)
5793 return true;
5794
5795 #define FREE(x) if (x != NULL) { free (x); x = NULL; }
5796 /* Free the native string and symbol tables. */
5797 FREE (obj_som_symtab (abfd));
5798 FREE (obj_som_stringtab (abfd));
5799 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5800 {
5801 /* Free the native relocations. */
5802 o->reloc_count = -1;
5803 FREE (som_section_data (o)->reloc_stream);
5804 /* Free the generic relocations. */
5805 FREE (o->relocation);
5806 }
5807 #undef FREE
5808
5809 return true;
5810 }
5811
5812 /* End of miscellaneous support functions. */
5813
5814 #define som_close_and_cleanup som_bfd_free_cached_info
5815
5816 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
5817 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
5818 #define som_truncate_arname bfd_bsd_truncate_arname
5819 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
5820 #define som_update_armap_timestamp bfd_true
5821
5822 #define som_get_lineno _bfd_nosymbols_get_lineno
5823 #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
5824
5825 #define som_bfd_get_relocated_section_contents \
5826 bfd_generic_get_relocated_section_contents
5827 #define som_bfd_relax_section bfd_generic_relax_section
5828 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
5829 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
5830 #define som_bfd_final_link _bfd_generic_final_link
5831
5832 const bfd_target som_vec =
5833 {
5834 "som", /* name */
5835 bfd_target_som_flavour,
5836 true, /* target byte order */
5837 true, /* target headers byte order */
5838 (HAS_RELOC | EXEC_P | /* object flags */
5839 HAS_LINENO | HAS_DEBUG |
5840 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
5841 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
5842 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
5843
5844 /* leading_symbol_char: is the first char of a user symbol
5845 predictable, and if so what is it */
5846 0,
5847 '/', /* ar_pad_char */
5848 14, /* ar_max_namelen */
5849 3, /* minimum alignment */
5850 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5851 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5852 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
5853 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5854 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5855 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
5856 {_bfd_dummy_target,
5857 som_object_p, /* bfd_check_format */
5858 bfd_generic_archive_p,
5859 _bfd_dummy_target
5860 },
5861 {
5862 bfd_false,
5863 som_mkobject,
5864 _bfd_generic_mkarchive,
5865 bfd_false
5866 },
5867 {
5868 bfd_false,
5869 som_write_object_contents,
5870 _bfd_write_archive_contents,
5871 bfd_false,
5872 },
5873 #undef som
5874
5875 BFD_JUMP_TABLE_GENERIC (som),
5876 BFD_JUMP_TABLE_COPY (som),
5877 BFD_JUMP_TABLE_CORE (_bfd_nocore),
5878 BFD_JUMP_TABLE_ARCHIVE (som),
5879 BFD_JUMP_TABLE_SYMBOLS (som),
5880 BFD_JUMP_TABLE_RELOCS (som),
5881 BFD_JUMP_TABLE_WRITE (som),
5882 BFD_JUMP_TABLE_LINK (som),
5883 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
5884
5885 (PTR) 0
5886 };
5887
5888 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */