* som.h (som_copyable_section_data_struct): New structure
[binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
3
4 Contributed by the Center for Software Science at the
5 University of Utah (pa-gdb-bugs@cs.utah.edu).
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23 #include "bfd.h"
24 #include "sysdep.h"
25
26 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)
27
28 #include "libbfd.h"
29 #include "som.h"
30
31 #include <stdio.h>
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/dir.h>
35 #include <signal.h>
36 #include <machine/reg.h>
37 #include <sys/user.h> /* After a.out.h */
38 #include <sys/file.h>
39 #include <errno.h>
40
41 /* Magic not defined in standard HP-UX header files until 8.0 */
42
43 #ifndef CPU_PA_RISC1_0
44 #define CPU_PA_RISC1_0 0x20B
45 #endif /* CPU_PA_RISC1_0 */
46
47 #ifndef CPU_PA_RISC1_1
48 #define CPU_PA_RISC1_1 0x210
49 #endif /* CPU_PA_RISC1_1 */
50
51 #ifndef _PA_RISC1_0_ID
52 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
53 #endif /* _PA_RISC1_0_ID */
54
55 #ifndef _PA_RISC1_1_ID
56 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
57 #endif /* _PA_RISC1_1_ID */
58
59 #ifndef _PA_RISC_MAXID
60 #define _PA_RISC_MAXID 0x2FF
61 #endif /* _PA_RISC_MAXID */
62
63 #ifndef _PA_RISC_ID
64 #define _PA_RISC_ID(__m_num) \
65 (((__m_num) == _PA_RISC1_0_ID) || \
66 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
67 #endif /* _PA_RISC_ID */
68
69 /* Size (in chars) of the temporary buffers used during fixup and string
70 table writes. */
71
72 #define SOM_TMP_BUFSIZE 8192
73
74 /* Size of the hash table in archives. */
75 #define SOM_LST_HASH_SIZE 31
76
77 /* Max number of SOMs to be found in an archive. */
78 #define SOM_LST_MODULE_LIMIT 1024
79
80 /* Generic alignment macro. */
81 #define SOM_ALIGN(val, alignment) \
82 (((val) + (alignment) - 1) & ~((alignment) - 1))
83
84 /* SOM allows any one of the four previous relocations to be reused
85 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
86 relocations are always a single byte, using a R_PREV_FIXUP instead
87 of some multi-byte relocation makes object files smaller.
88
89 Note one side effect of using a R_PREV_FIXUP is the relocation that
90 is being repeated moves to the front of the queue. */
91 struct reloc_queue
92 {
93 unsigned char *reloc;
94 unsigned int size;
95 } reloc_queue[4];
96
97 /* This fully describes the symbol types which may be attached to
98 an EXPORT or IMPORT directive. Only SOM uses this formation
99 (ELF has no need for it). */
100 typedef enum
101 {
102 SYMBOL_TYPE_UNKNOWN,
103 SYMBOL_TYPE_ABSOLUTE,
104 SYMBOL_TYPE_CODE,
105 SYMBOL_TYPE_DATA,
106 SYMBOL_TYPE_ENTRY,
107 SYMBOL_TYPE_MILLICODE,
108 SYMBOL_TYPE_PLABEL,
109 SYMBOL_TYPE_PRI_PROG,
110 SYMBOL_TYPE_SEC_PROG,
111 } pa_symbol_type;
112
113 struct section_to_type
114 {
115 char *section;
116 char type;
117 };
118
119 /* Assorted symbol information that needs to be derived from the BFD symbol
120 and/or the BFD backend private symbol data. */
121 struct som_misc_symbol_info
122 {
123 unsigned int symbol_type;
124 unsigned int symbol_scope;
125 unsigned int arg_reloc;
126 unsigned int symbol_info;
127 unsigned int symbol_value;
128 };
129
130 /* Forward declarations */
131
132 static boolean som_mkobject PARAMS ((bfd *));
133 static bfd_target * som_object_setup PARAMS ((bfd *,
134 struct header *,
135 struct som_exec_auxhdr *));
136 static boolean setup_sections PARAMS ((bfd *, struct header *));
137 static bfd_target * som_object_p PARAMS ((bfd *));
138 static boolean som_write_object_contents PARAMS ((bfd *));
139 static boolean som_slurp_string_table PARAMS ((bfd *));
140 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
141 static unsigned int som_get_symtab_upper_bound PARAMS ((bfd *));
142 static unsigned int som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
143 arelent **, asymbol **));
144 static unsigned int som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
145 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
146 arelent *, asection *,
147 asymbol **, boolean));
148 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
149 asymbol **, boolean));
150 static unsigned int som_get_symtab PARAMS ((bfd *, asymbol **));
151 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
152 static void som_print_symbol PARAMS ((bfd *, PTR,
153 asymbol *, bfd_print_symbol_type));
154 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
155 static boolean som_bfd_copy_private_section_data PARAMS ((bfd *, asection *,
156 bfd *, asection *));
157 static boolean som_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
158 static boolean som_bfd_is_local_label PARAMS ((bfd *, asymbol *));
159 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
160 file_ptr, bfd_size_type));
161 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
162 unsigned long));
163 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
164 asymbol **, bfd_vma,
165 CONST char **,
166 CONST char **,
167 unsigned int *));
168 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
169 static asection * som_section_from_subspace_index PARAMS ((bfd *,
170 unsigned int));
171 static int log2 PARAMS ((unsigned int));
172 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
173 asymbol *, PTR,
174 asection *, bfd *,
175 char **));
176 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
177 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
178 struct reloc_queue *));
179 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
180 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
181 struct reloc_queue *));
182 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
183 unsigned int,
184 struct reloc_queue *));
185
186 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
187 unsigned char *, unsigned int *,
188 struct reloc_queue *));
189 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
190 unsigned int *,
191 struct reloc_queue *));
192 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
193 unsigned int *,
194 arelent *, int,
195 struct reloc_queue *));
196 static unsigned long som_count_spaces PARAMS ((bfd *));
197 static unsigned long som_count_subspaces PARAMS ((bfd *));
198 static int compare_syms PARAMS ((asymbol **, asymbol **));
199 static unsigned long som_compute_checksum PARAMS ((bfd *));
200 static boolean som_prep_headers PARAMS ((bfd *));
201 static int som_sizeof_headers PARAMS ((bfd *, boolean));
202 static boolean som_write_headers PARAMS ((bfd *));
203 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
204 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
205 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
206 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
207 unsigned int *));
208 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
209 asymbol **, unsigned int,
210 unsigned *));
211 static boolean som_begin_writing PARAMS ((bfd *));
212 static const reloc_howto_type * som_bfd_reloc_type_lookup
213 PARAMS ((bfd_arch_info_type *, bfd_reloc_code_real_type));
214 static char som_section_type PARAMS ((const char *));
215 static int som_decode_symclass PARAMS ((asymbol *));
216 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
217 symindex *));
218
219 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
220 carsym **syms));
221 static boolean som_slurp_armap PARAMS ((bfd *));
222 static boolean som_write_armap PARAMS ((bfd *));
223 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
224 struct som_misc_symbol_info *));
225 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
226 unsigned int *));
227 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
228 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
229 unsigned int,
230 struct lst_header));
231 static CONST char *normalize PARAMS ((CONST char *file));
232 static boolean som_is_space PARAMS ((asection *));
233 static boolean som_is_subspace PARAMS ((asection *));
234 static boolean som_is_container PARAMS ((asection *, asection *));
235
236 /* Map SOM section names to POSIX/BSD single-character symbol types.
237
238 This table includes all the standard subspaces as defined in the
239 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
240 some reason was left out, and sections specific to embedded stabs. */
241
242 static const struct section_to_type stt[] = {
243 {"$TEXT$", 't'},
244 {"$SHLIB_INFO$", 't'},
245 {"$MILLICODE$", 't'},
246 {"$LIT$", 't'},
247 {"$CODE$", 't'},
248 {"$UNWIND_START$", 't'},
249 {"$UNWIND$", 't'},
250 {"$PRIVATE$", 'd'},
251 {"$PLT$", 'd'},
252 {"$SHLIB_DATA$", 'd'},
253 {"$DATA$", 'd'},
254 {"$SHORTDATA$", 'g'},
255 {"$DLT$", 'd'},
256 {"$GLOBAL$", 'g'},
257 {"$SHORTBSS$", 's'},
258 {"$BSS$", 'b'},
259 {"$GDB_STRINGS$", 'N'},
260 {"$GDB_SYMBOLS$", 'N'},
261 {0, 0}
262 };
263
264 /* About the relocation formatting table...
265
266 There are 256 entries in the table, one for each possible
267 relocation opcode available in SOM. We index the table by
268 the relocation opcode. The names and operations are those
269 defined by a.out_800 (4).
270
271 Right now this table is only used to count and perform minimal
272 processing on relocation streams so that they can be internalized
273 into BFD and symbolically printed by utilities. To make actual use
274 of them would be much more difficult, BFD's concept of relocations
275 is far too simple to handle SOM relocations. The basic assumption
276 that a relocation can be completely processed independent of other
277 relocations before an object file is written is invalid for SOM.
278
279 The SOM relocations are meant to be processed as a stream, they
280 specify copying of data from the input section to the output section
281 while possibly modifying the data in some manner. They also can
282 specify that a variable number of zeros or uninitialized data be
283 inserted on in the output segment at the current offset. Some
284 relocations specify that some previous relocation be re-applied at
285 the current location in the input/output sections. And finally a number
286 of relocations have effects on other sections (R_ENTRY, R_EXIT,
287 R_UNWIND_AUX and a variety of others). There isn't even enough room
288 in the BFD relocation data structure to store enough information to
289 perform all the relocations.
290
291 Each entry in the table has three fields.
292
293 The first entry is an index into this "class" of relocations. This
294 index can then be used as a variable within the relocation itself.
295
296 The second field is a format string which actually controls processing
297 of the relocation. It uses a simple postfix machine to do calculations
298 based on variables/constants found in the string and the relocation
299 stream.
300
301 The third field specifys whether or not this relocation may use
302 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
303 stored in the instruction.
304
305 Variables:
306
307 L = input space byte count
308 D = index into class of relocations
309 M = output space byte count
310 N = statement number (unused?)
311 O = stack operation
312 R = parameter relocation bits
313 S = symbol index
314 U = 64 bits of stack unwind and frame size info (we only keep 32 bits)
315 V = a literal constant (usually used in the next relocation)
316 P = a previous relocation
317
318 Lower case letters (starting with 'b') refer to following
319 bytes in the relocation stream. 'b' is the next 1 byte,
320 c is the next 2 bytes, d is the next 3 bytes, etc...
321 This is the variable part of the relocation entries that
322 makes our life a living hell.
323
324 numerical constants are also used in the format string. Note
325 the constants are represented in decimal.
326
327 '+', "*" and "=" represents the obvious postfix operators.
328 '<' represents a left shift.
329
330 Stack Operations:
331
332 Parameter Relocation Bits:
333
334 Unwind Entries:
335
336 Previous Relocations: The index field represents which in the queue
337 of 4 previous fixups should be re-applied.
338
339 Literal Constants: These are generally used to represent addend
340 parts of relocations when these constants are not stored in the
341 fields of the instructions themselves. For example the instruction
342 addil foo-$global$-0x1234 would use an override for "0x1234" rather
343 than storing it into the addil itself. */
344
345 struct fixup_format
346 {
347 int D;
348 char *format;
349 };
350
351 static const struct fixup_format som_fixup_formats[256] =
352 {
353 /* R_NO_RELOCATION */
354 0, "LD1+4*=", /* 0x00 */
355 1, "LD1+4*=", /* 0x01 */
356 2, "LD1+4*=", /* 0x02 */
357 3, "LD1+4*=", /* 0x03 */
358 4, "LD1+4*=", /* 0x04 */
359 5, "LD1+4*=", /* 0x05 */
360 6, "LD1+4*=", /* 0x06 */
361 7, "LD1+4*=", /* 0x07 */
362 8, "LD1+4*=", /* 0x08 */
363 9, "LD1+4*=", /* 0x09 */
364 10, "LD1+4*=", /* 0x0a */
365 11, "LD1+4*=", /* 0x0b */
366 12, "LD1+4*=", /* 0x0c */
367 13, "LD1+4*=", /* 0x0d */
368 14, "LD1+4*=", /* 0x0e */
369 15, "LD1+4*=", /* 0x0f */
370 16, "LD1+4*=", /* 0x10 */
371 17, "LD1+4*=", /* 0x11 */
372 18, "LD1+4*=", /* 0x12 */
373 19, "LD1+4*=", /* 0x13 */
374 20, "LD1+4*=", /* 0x14 */
375 21, "LD1+4*=", /* 0x15 */
376 22, "LD1+4*=", /* 0x16 */
377 23, "LD1+4*=", /* 0x17 */
378 0, "LD8<b+1+4*=", /* 0x18 */
379 1, "LD8<b+1+4*=", /* 0x19 */
380 2, "LD8<b+1+4*=", /* 0x1a */
381 3, "LD8<b+1+4*=", /* 0x1b */
382 0, "LD16<c+1+4*=", /* 0x1c */
383 1, "LD16<c+1+4*=", /* 0x1d */
384 2, "LD16<c+1+4*=", /* 0x1e */
385 0, "Ld1+=", /* 0x1f */
386 /* R_ZEROES */
387 0, "Lb1+4*=", /* 0x20 */
388 1, "Ld1+=", /* 0x21 */
389 /* R_UNINIT */
390 0, "Lb1+4*=", /* 0x22 */
391 1, "Ld1+=", /* 0x23 */
392 /* R_RELOCATION */
393 0, "L4=", /* 0x24 */
394 /* R_DATA_ONE_SYMBOL */
395 0, "L4=Sb=", /* 0x25 */
396 1, "L4=Sd=", /* 0x26 */
397 /* R_DATA_PLEBEL */
398 0, "L4=Sb=", /* 0x27 */
399 1, "L4=Sd=", /* 0x28 */
400 /* R_SPACE_REF */
401 0, "L4=", /* 0x29 */
402 /* R_REPEATED_INIT */
403 0, "L4=Mb1+4*=", /* 0x2a */
404 1, "Lb4*=Mb1+L*=", /* 0x2b */
405 2, "Lb4*=Md1+4*=", /* 0x2c */
406 3, "Ld1+=Me1+=", /* 0x2d */
407 /* R_RESERVED */
408 0, "", /* 0x2e */
409 0, "", /* 0x2f */
410 /* R_PCREL_CALL */
411 0, "L4=RD=Sb=", /* 0x30 */
412 1, "L4=RD=Sb=", /* 0x31 */
413 2, "L4=RD=Sb=", /* 0x32 */
414 3, "L4=RD=Sb=", /* 0x33 */
415 4, "L4=RD=Sb=", /* 0x34 */
416 5, "L4=RD=Sb=", /* 0x35 */
417 6, "L4=RD=Sb=", /* 0x36 */
418 7, "L4=RD=Sb=", /* 0x37 */
419 8, "L4=RD=Sb=", /* 0x38 */
420 9, "L4=RD=Sb=", /* 0x39 */
421 0, "L4=RD8<b+=Sb=",/* 0x3a */
422 1, "L4=RD8<b+=Sb=",/* 0x3b */
423 0, "L4=RD8<b+=Sd=",/* 0x3c */
424 1, "L4=RD8<b+=Sd=",/* 0x3d */
425 /* R_RESERVED */
426 0, "", /* 0x3e */
427 0, "", /* 0x3f */
428 /* R_ABS_CALL */
429 0, "L4=RD=Sb=", /* 0x40 */
430 1, "L4=RD=Sb=", /* 0x41 */
431 2, "L4=RD=Sb=", /* 0x42 */
432 3, "L4=RD=Sb=", /* 0x43 */
433 4, "L4=RD=Sb=", /* 0x44 */
434 5, "L4=RD=Sb=", /* 0x45 */
435 6, "L4=RD=Sb=", /* 0x46 */
436 7, "L4=RD=Sb=", /* 0x47 */
437 8, "L4=RD=Sb=", /* 0x48 */
438 9, "L4=RD=Sb=", /* 0x49 */
439 0, "L4=RD8<b+=Sb=",/* 0x4a */
440 1, "L4=RD8<b+=Sb=",/* 0x4b */
441 0, "L4=RD8<b+=Sd=",/* 0x4c */
442 1, "L4=RD8<b+=Sd=",/* 0x4d */
443 /* R_RESERVED */
444 0, "", /* 0x4e */
445 0, "", /* 0x4f */
446 /* R_DP_RELATIVE */
447 0, "L4=SD=", /* 0x50 */
448 1, "L4=SD=", /* 0x51 */
449 2, "L4=SD=", /* 0x52 */
450 3, "L4=SD=", /* 0x53 */
451 4, "L4=SD=", /* 0x54 */
452 5, "L4=SD=", /* 0x55 */
453 6, "L4=SD=", /* 0x56 */
454 7, "L4=SD=", /* 0x57 */
455 8, "L4=SD=", /* 0x58 */
456 9, "L4=SD=", /* 0x59 */
457 10, "L4=SD=", /* 0x5a */
458 11, "L4=SD=", /* 0x5b */
459 12, "L4=SD=", /* 0x5c */
460 13, "L4=SD=", /* 0x5d */
461 14, "L4=SD=", /* 0x5e */
462 15, "L4=SD=", /* 0x5f */
463 16, "L4=SD=", /* 0x60 */
464 17, "L4=SD=", /* 0x61 */
465 18, "L4=SD=", /* 0x62 */
466 19, "L4=SD=", /* 0x63 */
467 20, "L4=SD=", /* 0x64 */
468 21, "L4=SD=", /* 0x65 */
469 22, "L4=SD=", /* 0x66 */
470 23, "L4=SD=", /* 0x67 */
471 24, "L4=SD=", /* 0x68 */
472 25, "L4=SD=", /* 0x69 */
473 26, "L4=SD=", /* 0x6a */
474 27, "L4=SD=", /* 0x6b */
475 28, "L4=SD=", /* 0x6c */
476 29, "L4=SD=", /* 0x6d */
477 30, "L4=SD=", /* 0x6e */
478 31, "L4=SD=", /* 0x6f */
479 32, "L4=Sb=", /* 0x70 */
480 33, "L4=Sd=", /* 0x71 */
481 /* R_RESERVED */
482 0, "", /* 0x72 */
483 0, "", /* 0x73 */
484 0, "", /* 0x74 */
485 0, "", /* 0x75 */
486 0, "", /* 0x76 */
487 0, "", /* 0x77 */
488 /* R_DLT_REL */
489 0, "L4=Sb=", /* 0x78 */
490 1, "L4=Sd=", /* 0x79 */
491 /* R_RESERVED */
492 0, "", /* 0x7a */
493 0, "", /* 0x7b */
494 0, "", /* 0x7c */
495 0, "", /* 0x7d */
496 0, "", /* 0x7e */
497 0, "", /* 0x7f */
498 /* R_CODE_ONE_SYMBOL */
499 0, "L4=SD=", /* 0x80 */
500 1, "L4=SD=", /* 0x81 */
501 2, "L4=SD=", /* 0x82 */
502 3, "L4=SD=", /* 0x83 */
503 4, "L4=SD=", /* 0x84 */
504 5, "L4=SD=", /* 0x85 */
505 6, "L4=SD=", /* 0x86 */
506 7, "L4=SD=", /* 0x87 */
507 8, "L4=SD=", /* 0x88 */
508 9, "L4=SD=", /* 0x89 */
509 10, "L4=SD=", /* 0x8q */
510 11, "L4=SD=", /* 0x8b */
511 12, "L4=SD=", /* 0x8c */
512 13, "L4=SD=", /* 0x8d */
513 14, "L4=SD=", /* 0x8e */
514 15, "L4=SD=", /* 0x8f */
515 16, "L4=SD=", /* 0x90 */
516 17, "L4=SD=", /* 0x91 */
517 18, "L4=SD=", /* 0x92 */
518 19, "L4=SD=", /* 0x93 */
519 20, "L4=SD=", /* 0x94 */
520 21, "L4=SD=", /* 0x95 */
521 22, "L4=SD=", /* 0x96 */
522 23, "L4=SD=", /* 0x97 */
523 24, "L4=SD=", /* 0x98 */
524 25, "L4=SD=", /* 0x99 */
525 26, "L4=SD=", /* 0x9a */
526 27, "L4=SD=", /* 0x9b */
527 28, "L4=SD=", /* 0x9c */
528 29, "L4=SD=", /* 0x9d */
529 30, "L4=SD=", /* 0x9e */
530 31, "L4=SD=", /* 0x9f */
531 32, "L4=Sb=", /* 0xa0 */
532 33, "L4=Sd=", /* 0xa1 */
533 /* R_RESERVED */
534 0, "", /* 0xa2 */
535 0, "", /* 0xa3 */
536 0, "", /* 0xa4 */
537 0, "", /* 0xa5 */
538 0, "", /* 0xa6 */
539 0, "", /* 0xa7 */
540 0, "", /* 0xa8 */
541 0, "", /* 0xa9 */
542 0, "", /* 0xaa */
543 0, "", /* 0xab */
544 0, "", /* 0xac */
545 0, "", /* 0xad */
546 /* R_MILLI_REL */
547 0, "L4=Sb=", /* 0xae */
548 1, "L4=Sd=", /* 0xaf */
549 /* R_CODE_PLABEL */
550 0, "L4=Sb=", /* 0xb0 */
551 1, "L4=Sd=", /* 0xb1 */
552 /* R_BREAKPOINT */
553 0, "L4=", /* 0xb2 */
554 /* R_ENTRY */
555 0, "Ui=", /* 0xb3 */
556 1, "Uf=", /* 0xb4 */
557 /* R_ALT_ENTRY */
558 0, "", /* 0xb5 */
559 /* R_EXIT */
560 0, "", /* 0xb6 */
561 /* R_BEGIN_TRY */
562 0, "", /* 0xb7 */
563 /* R_END_TRY */
564 0, "R0=", /* 0xb8 */
565 1, "Rb4*=", /* 0xb9 */
566 2, "Rd4*=", /* 0xba */
567 /* R_BEGIN_BRTAB */
568 0, "", /* 0xbb */
569 /* R_END_BRTAB */
570 0, "", /* 0xbc */
571 /* R_STATEMENT */
572 0, "Nb=", /* 0xbd */
573 1, "Nc=", /* 0xbe */
574 2, "Nd=", /* 0xbf */
575 /* R_DATA_EXPR */
576 0, "L4=", /* 0xc0 */
577 /* R_CODE_EXPR */
578 0, "L4=", /* 0xc1 */
579 /* R_FSEL */
580 0, "", /* 0xc2 */
581 /* R_LSEL */
582 0, "", /* 0xc3 */
583 /* R_RSEL */
584 0, "", /* 0xc4 */
585 /* R_N_MODE */
586 0, "", /* 0xc5 */
587 /* R_S_MODE */
588 0, "", /* 0xc6 */
589 /* R_D_MODE */
590 0, "", /* 0xc7 */
591 /* R_R_MODE */
592 0, "", /* 0xc8 */
593 /* R_DATA_OVERRIDE */
594 0, "V0=", /* 0xc9 */
595 1, "Vb=", /* 0xca */
596 2, "Vc=", /* 0xcb */
597 3, "Vd=", /* 0xcc */
598 4, "Ve=", /* 0xcd */
599 /* R_TRANSLATED */
600 0, "", /* 0xce */
601 /* R_RESERVED */
602 0, "", /* 0xcf */
603 /* R_COMP1 */
604 0, "Ob=", /* 0xd0 */
605 /* R_COMP2 */
606 0, "Ob=Sd=", /* 0xd1 */
607 /* R_COMP3 */
608 0, "Ob=Ve=", /* 0xd2 */
609 /* R_PREV_FIXUP */
610 0, "P", /* 0xd3 */
611 1, "P", /* 0xd4 */
612 2, "P", /* 0xd5 */
613 3, "P", /* 0xd6 */
614 /* R_RESERVED */
615 0, "", /* 0xd7 */
616 0, "", /* 0xd8 */
617 0, "", /* 0xd9 */
618 0, "", /* 0xda */
619 0, "", /* 0xdb */
620 0, "", /* 0xdc */
621 0, "", /* 0xdd */
622 0, "", /* 0xde */
623 0, "", /* 0xdf */
624 0, "", /* 0xe0 */
625 0, "", /* 0xe1 */
626 0, "", /* 0xe2 */
627 0, "", /* 0xe3 */
628 0, "", /* 0xe4 */
629 0, "", /* 0xe5 */
630 0, "", /* 0xe6 */
631 0, "", /* 0xe7 */
632 0, "", /* 0xe8 */
633 0, "", /* 0xe9 */
634 0, "", /* 0xea */
635 0, "", /* 0xeb */
636 0, "", /* 0xec */
637 0, "", /* 0xed */
638 0, "", /* 0xee */
639 0, "", /* 0xef */
640 0, "", /* 0xf0 */
641 0, "", /* 0xf1 */
642 0, "", /* 0xf2 */
643 0, "", /* 0xf3 */
644 0, "", /* 0xf4 */
645 0, "", /* 0xf5 */
646 0, "", /* 0xf6 */
647 0, "", /* 0xf7 */
648 0, "", /* 0xf8 */
649 0, "", /* 0xf9 */
650 0, "", /* 0xfa */
651 0, "", /* 0xfb */
652 0, "", /* 0xfc */
653 0, "", /* 0xfd */
654 0, "", /* 0xfe */
655 0, "", /* 0xff */
656 };
657
658 static const int comp1_opcodes[] =
659 {
660 0x00,
661 0x40,
662 0x41,
663 0x42,
664 0x43,
665 0x44,
666 0x45,
667 0x46,
668 0x47,
669 0x48,
670 0x49,
671 0x4a,
672 0x4b,
673 0x60,
674 0x80,
675 0xa0,
676 0xc0,
677 -1
678 };
679
680 static const int comp2_opcodes[] =
681 {
682 0x00,
683 0x80,
684 0x82,
685 0xc0,
686 -1
687 };
688
689 static const int comp3_opcodes[] =
690 {
691 0x00,
692 0x02,
693 -1
694 };
695
696 /* These apparently are not in older versions of hpux reloc.h. */
697 #ifndef R_DLT_REL
698 #define R_DLT_REL 0x78
699 #endif
700
701 #ifndef R_AUX_UNWIND
702 #define R_AUX_UNWIND 0xcf
703 #endif
704
705 #ifndef R_SEC_STMT
706 #define R_SEC_STMT 0xd7
707 #endif
708
709 static reloc_howto_type som_hppa_howto_table[] =
710 {
711 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
712 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
713 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
714 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
715 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
716 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
717 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
718 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
719 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
720 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
721 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
722 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
723 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
724 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
725 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
726 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
727 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
728 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
729 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
730 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
731 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
732 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
733 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
734 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
735 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
736 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
737 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
738 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
739 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
740 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
741 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
742 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
743 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
744 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
745 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
746 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
747 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
748 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
749 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
750 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
751 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
752 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
753 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
754 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
755 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
756 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
757 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
758 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
759 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
760 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
761 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
762 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
763 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
764 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
765 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
766 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
767 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
768 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
769 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
770 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
771 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
772 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
773 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
774 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
775 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
776 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
777 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
778 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
779 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
780 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
781 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
782 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
783 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
784 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
785 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
786 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
787 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
788 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
789 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
790 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
791 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
792 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
793 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
794 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
795 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
796 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
797 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
798 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
799 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
800 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
801 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
802 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
803 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
804 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
805 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
806 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
807 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
808 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
809 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
810 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
811 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
812 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
813 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
814 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
815 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
816 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
817 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
818 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
819 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
820 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
821 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
822 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
823 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
824 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
825 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
826 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
827 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
828 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
829 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
830 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
831 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
832 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
833 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
834 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
835 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
836 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
837 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
838 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
839 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
840 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
841 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
842 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
843 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
844 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
845 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
846 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
847 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
848 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
849 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
850 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
851 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
852 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
853 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
854 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
855 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
856 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
857 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
858 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
859 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
860 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
861 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
862 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
863 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
864 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
865 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
866 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
867 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
868 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
869 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
870 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
871 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
872 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
873 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
874 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
875 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
876 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
877 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
878 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
879 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
880 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
881 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
882 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
883 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
884 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
885 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
886 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
887 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
888 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
889 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
890 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
891 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
892 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
893 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
894 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
895 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
896 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
897 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
898 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
899 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
900 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
901 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
902 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
903 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
904 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
905 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
906 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
907 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
908 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
909 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
910 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
911 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
912 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
913 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
914 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
915 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
916 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
917 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
918 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
919 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
920 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
921 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
922 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
923 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
924 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
925 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
926 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
927 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
928 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
929 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
930 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
931 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
932 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
933 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
934 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
935 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
936 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
937 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
938 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
939 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
940 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
941 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
942 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
943 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
944 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
945 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
946 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
947 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
948 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
949 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
950 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
951 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
952 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
953 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
954 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
955 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
956 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
957 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
958 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
959 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
960 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
961 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
962 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
963 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
964 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
965 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
966 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
967
968 /* Initialize the SOM relocation queue. By definition the queue holds
969 the last four multibyte fixups. */
970
971 static void
972 som_initialize_reloc_queue (queue)
973 struct reloc_queue *queue;
974 {
975 queue[0].reloc = NULL;
976 queue[0].size = 0;
977 queue[1].reloc = NULL;
978 queue[1].size = 0;
979 queue[2].reloc = NULL;
980 queue[2].size = 0;
981 queue[3].reloc = NULL;
982 queue[3].size = 0;
983 }
984
985 /* Insert a new relocation into the relocation queue. */
986
987 static void
988 som_reloc_queue_insert (p, size, queue)
989 unsigned char *p;
990 unsigned int size;
991 struct reloc_queue *queue;
992 {
993 queue[3].reloc = queue[2].reloc;
994 queue[3].size = queue[2].size;
995 queue[2].reloc = queue[1].reloc;
996 queue[2].size = queue[1].size;
997 queue[1].reloc = queue[0].reloc;
998 queue[1].size = queue[0].size;
999 queue[0].reloc = p;
1000 queue[0].size = size;
1001 }
1002
1003 /* When an entry in the relocation queue is reused, the entry moves
1004 to the front of the queue. */
1005
1006 static void
1007 som_reloc_queue_fix (queue, index)
1008 struct reloc_queue *queue;
1009 unsigned int index;
1010 {
1011 if (index == 0)
1012 return;
1013
1014 if (index == 1)
1015 {
1016 unsigned char *tmp1 = queue[0].reloc;
1017 unsigned int tmp2 = queue[0].size;
1018 queue[0].reloc = queue[1].reloc;
1019 queue[0].size = queue[1].size;
1020 queue[1].reloc = tmp1;
1021 queue[1].size = tmp2;
1022 return;
1023 }
1024
1025 if (index == 2)
1026 {
1027 unsigned char *tmp1 = queue[0].reloc;
1028 unsigned int tmp2 = queue[0].size;
1029 queue[0].reloc = queue[2].reloc;
1030 queue[0].size = queue[2].size;
1031 queue[2].reloc = queue[1].reloc;
1032 queue[2].size = queue[1].size;
1033 queue[1].reloc = tmp1;
1034 queue[1].size = tmp2;
1035 return;
1036 }
1037
1038 if (index == 3)
1039 {
1040 unsigned char *tmp1 = queue[0].reloc;
1041 unsigned int tmp2 = queue[0].size;
1042 queue[0].reloc = queue[3].reloc;
1043 queue[0].size = queue[3].size;
1044 queue[3].reloc = queue[2].reloc;
1045 queue[3].size = queue[2].size;
1046 queue[2].reloc = queue[1].reloc;
1047 queue[2].size = queue[1].size;
1048 queue[1].reloc = tmp1;
1049 queue[1].size = tmp2;
1050 return;
1051 }
1052 abort();
1053 }
1054
1055 /* Search for a particular relocation in the relocation queue. */
1056
1057 static int
1058 som_reloc_queue_find (p, size, queue)
1059 unsigned char *p;
1060 unsigned int size;
1061 struct reloc_queue *queue;
1062 {
1063 if (queue[0].reloc && !bcmp (p, queue[0].reloc, size)
1064 && size == queue[0].size)
1065 return 0;
1066 if (queue[1].reloc && !bcmp (p, queue[1].reloc, size)
1067 && size == queue[1].size)
1068 return 1;
1069 if (queue[2].reloc && !bcmp (p, queue[2].reloc, size)
1070 && size == queue[2].size)
1071 return 2;
1072 if (queue[3].reloc && !bcmp (p, queue[3].reloc, size)
1073 && size == queue[3].size)
1074 return 3;
1075 return -1;
1076 }
1077
1078 static unsigned char *
1079 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1080 bfd *abfd;
1081 int *subspace_reloc_sizep;
1082 unsigned char *p;
1083 unsigned int size;
1084 struct reloc_queue *queue;
1085 {
1086 int queue_index = som_reloc_queue_find (p, size, queue);
1087
1088 if (queue_index != -1)
1089 {
1090 /* Found this in a previous fixup. Undo the fixup we
1091 just built and use R_PREV_FIXUP instead. We saved
1092 a total of size - 1 bytes in the fixup stream. */
1093 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1094 p += 1;
1095 *subspace_reloc_sizep += 1;
1096 som_reloc_queue_fix (queue, queue_index);
1097 }
1098 else
1099 {
1100 som_reloc_queue_insert (p, size, queue);
1101 *subspace_reloc_sizep += size;
1102 p += size;
1103 }
1104 return p;
1105 }
1106
1107 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1108 bytes without any relocation. Update the size of the subspace
1109 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1110 current pointer into the relocation stream. */
1111
1112 static unsigned char *
1113 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1114 bfd *abfd;
1115 unsigned int skip;
1116 unsigned char *p;
1117 unsigned int *subspace_reloc_sizep;
1118 struct reloc_queue *queue;
1119 {
1120 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1121 then R_PREV_FIXUPs to get the difference down to a
1122 reasonable size. */
1123 if (skip >= 0x1000000)
1124 {
1125 skip -= 0x1000000;
1126 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1127 bfd_put_8 (abfd, 0xff, p + 1);
1128 bfd_put_16 (abfd, 0xffff, p + 2);
1129 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1130 while (skip >= 0x1000000)
1131 {
1132 skip -= 0x1000000;
1133 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1134 p++;
1135 *subspace_reloc_sizep += 1;
1136 /* No need to adjust queue here since we are repeating the
1137 most recent fixup. */
1138 }
1139 }
1140
1141 /* The difference must be less than 0x1000000. Use one
1142 more R_NO_RELOCATION entry to get to the right difference. */
1143 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1144 {
1145 /* Difference can be handled in a simple single-byte
1146 R_NO_RELOCATION entry. */
1147 if (skip <= 0x60)
1148 {
1149 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1150 *subspace_reloc_sizep += 1;
1151 p++;
1152 }
1153 /* Handle it with a two byte R_NO_RELOCATION entry. */
1154 else if (skip <= 0x1000)
1155 {
1156 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1157 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1158 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1159 }
1160 /* Handle it with a three byte R_NO_RELOCATION entry. */
1161 else
1162 {
1163 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1164 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1165 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1166 }
1167 }
1168 /* Ugh. Punt and use a 4 byte entry. */
1169 else if (skip > 0)
1170 {
1171 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1172 bfd_put_8 (abfd, skip >> 16, p + 1);
1173 bfd_put_16 (abfd, skip, p + 2);
1174 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1175 }
1176 return p;
1177 }
1178
1179 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1180 from a BFD relocation. Update the size of the subspace relocation
1181 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1182 into the relocation stream. */
1183
1184 static unsigned char *
1185 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1186 bfd *abfd;
1187 int addend;
1188 unsigned char *p;
1189 unsigned int *subspace_reloc_sizep;
1190 struct reloc_queue *queue;
1191 {
1192 if ((unsigned)(addend) + 0x80 < 0x100)
1193 {
1194 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1195 bfd_put_8 (abfd, addend, p + 1);
1196 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1197 }
1198 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1199 {
1200 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1201 bfd_put_16 (abfd, addend, p + 1);
1202 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1203 }
1204 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1205 {
1206 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1207 bfd_put_8 (abfd, addend >> 16, p + 1);
1208 bfd_put_16 (abfd, addend, p + 2);
1209 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1210 }
1211 else
1212 {
1213 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1214 bfd_put_32 (abfd, addend, p + 1);
1215 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1216 }
1217 return p;
1218 }
1219
1220 /* Handle a single function call relocation. */
1221
1222 static unsigned char *
1223 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1224 bfd *abfd;
1225 unsigned char *p;
1226 unsigned int *subspace_reloc_sizep;
1227 arelent *bfd_reloc;
1228 int sym_num;
1229 struct reloc_queue *queue;
1230 {
1231 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1232 int rtn_bits = arg_bits & 0x3;
1233 int type, done = 0;
1234
1235 /* You'll never believe all this is necessary to handle relocations
1236 for function calls. Having to compute and pack the argument
1237 relocation bits is the real nightmare.
1238
1239 If you're interested in how this works, just forget it. You really
1240 do not want to know about this braindamage. */
1241
1242 /* First see if this can be done with a "simple" relocation. Simple
1243 relocations have a symbol number < 0x100 and have simple encodings
1244 of argument relocations. */
1245
1246 if (sym_num < 0x100)
1247 {
1248 switch (arg_bits)
1249 {
1250 case 0:
1251 case 1:
1252 type = 0;
1253 break;
1254 case 1 << 8:
1255 case 1 << 8 | 1:
1256 type = 1;
1257 break;
1258 case 1 << 8 | 1 << 6:
1259 case 1 << 8 | 1 << 6 | 1:
1260 type = 2;
1261 break;
1262 case 1 << 8 | 1 << 6 | 1 << 4:
1263 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1264 type = 3;
1265 break;
1266 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1267 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1268 type = 4;
1269 break;
1270 default:
1271 /* Not one of the easy encodings. This will have to be
1272 handled by the more complex code below. */
1273 type = -1;
1274 break;
1275 }
1276 if (type != -1)
1277 {
1278 /* Account for the return value too. */
1279 if (rtn_bits)
1280 type += 5;
1281
1282 /* Emit a 2 byte relocation. Then see if it can be handled
1283 with a relocation which is already in the relocation queue. */
1284 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1285 bfd_put_8 (abfd, sym_num, p + 1);
1286 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1287 done = 1;
1288 }
1289 }
1290
1291 /* If this could not be handled with a simple relocation, then do a hard
1292 one. Hard relocations occur if the symbol number was too high or if
1293 the encoding of argument relocation bits is too complex. */
1294 if (! done)
1295 {
1296 /* Don't ask about these magic sequences. I took them straight
1297 from gas-1.36 which took them from the a.out man page. */
1298 type = rtn_bits;
1299 if ((arg_bits >> 6 & 0xf) == 0xe)
1300 type += 9 * 40;
1301 else
1302 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1303 if ((arg_bits >> 2 & 0xf) == 0xe)
1304 type += 9 * 4;
1305 else
1306 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1307
1308 /* Output the first two bytes of the relocation. These describe
1309 the length of the relocation and encoding style. */
1310 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1311 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1312 p);
1313 bfd_put_8 (abfd, type, p + 1);
1314
1315 /* Now output the symbol index and see if this bizarre relocation
1316 just happened to be in the relocation queue. */
1317 if (sym_num < 0x100)
1318 {
1319 bfd_put_8 (abfd, sym_num, p + 2);
1320 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1321 }
1322 else
1323 {
1324 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1325 bfd_put_16 (abfd, sym_num, p + 3);
1326 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1327 }
1328 }
1329 return p;
1330 }
1331
1332
1333 /* Return the logarithm of X, base 2, considering X unsigned.
1334 Abort -1 if X is not a power or two or is zero. */
1335
1336 static int
1337 log2 (x)
1338 unsigned int x;
1339 {
1340 int log = 0;
1341
1342 /* Test for 0 or a power of 2. */
1343 if (x == 0 || x != (x & -x))
1344 return -1;
1345
1346 while ((x >>= 1) != 0)
1347 log++;
1348 return log;
1349 }
1350
1351 static bfd_reloc_status_type
1352 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1353 input_section, output_bfd, error_message)
1354 bfd *abfd;
1355 arelent *reloc_entry;
1356 asymbol *symbol_in;
1357 PTR data;
1358 asection *input_section;
1359 bfd *output_bfd;
1360 char **error_message;
1361 {
1362 if (output_bfd)
1363 {
1364 reloc_entry->address += input_section->output_offset;
1365 return bfd_reloc_ok;
1366 }
1367 return bfd_reloc_ok;
1368 }
1369
1370 /* Given a generic HPPA relocation type, the instruction format,
1371 and a field selector, return one or more appropriate SOM relocations. */
1372
1373 int **
1374 hppa_som_gen_reloc_type (abfd, base_type, format, field)
1375 bfd *abfd;
1376 int base_type;
1377 int format;
1378 enum hppa_reloc_field_selector_type_alt field;
1379 {
1380 int *final_type, **final_types;
1381
1382 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 3);
1383 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1384 if (!final_types || !final_type)
1385 {
1386 bfd_set_error (bfd_error_no_memory);
1387 return NULL;
1388 }
1389
1390 /* The field selector may require additional relocations to be
1391 generated. It's impossible to know at this moment if additional
1392 relocations will be needed, so we make them. The code to actually
1393 write the relocation/fixup stream is responsible for removing
1394 any redundant relocations. */
1395 switch (field)
1396 {
1397 case e_fsel:
1398 case e_psel:
1399 case e_lpsel:
1400 case e_rpsel:
1401 final_types[0] = final_type;
1402 final_types[1] = NULL;
1403 final_types[2] = NULL;
1404 *final_type = base_type;
1405 break;
1406
1407 case e_tsel:
1408 case e_ltsel:
1409 case e_rtsel:
1410 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1411 if (!final_types[0])
1412 {
1413 bfd_set_error (bfd_error_no_memory);
1414 return NULL;
1415 }
1416 if (field == e_tsel)
1417 *final_types[0] = R_FSEL;
1418 else if (field == e_ltsel)
1419 *final_types[0] = R_LSEL;
1420 else
1421 *final_types[0] = R_RSEL;
1422 final_types[1] = final_type;
1423 final_types[2] = NULL;
1424 *final_type = base_type;
1425 break;
1426
1427 case e_lssel:
1428 case e_rssel:
1429 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1430 if (!final_types[0])
1431 {
1432 bfd_set_error (bfd_error_no_memory);
1433 return NULL;
1434 }
1435 *final_types[0] = R_S_MODE;
1436 final_types[1] = final_type;
1437 final_types[2] = NULL;
1438 *final_type = base_type;
1439 break;
1440
1441 case e_lsel:
1442 case e_rsel:
1443 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1444 if (!final_types[0])
1445 {
1446 bfd_set_error (bfd_error_no_memory);
1447 return NULL;
1448 }
1449 *final_types[0] = R_N_MODE;
1450 final_types[1] = final_type;
1451 final_types[2] = NULL;
1452 *final_type = base_type;
1453 break;
1454
1455 case e_ldsel:
1456 case e_rdsel:
1457 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1458 if (!final_types[0])
1459 {
1460 bfd_set_error (bfd_error_no_memory);
1461 return NULL;
1462 }
1463 *final_types[0] = R_D_MODE;
1464 final_types[1] = final_type;
1465 final_types[2] = NULL;
1466 *final_type = base_type;
1467 break;
1468
1469 case e_lrsel:
1470 case e_rrsel:
1471 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1472 if (!final_types[0])
1473 {
1474 bfd_set_error (bfd_error_no_memory);
1475 return NULL;
1476 }
1477 *final_types[0] = R_R_MODE;
1478 final_types[1] = final_type;
1479 final_types[2] = NULL;
1480 *final_type = base_type;
1481 break;
1482 }
1483
1484 switch (base_type)
1485 {
1486 case R_HPPA:
1487 /* PLABELs get their own relocation type. */
1488 if (field == e_psel
1489 || field == e_lpsel
1490 || field == e_rpsel)
1491 {
1492 /* A PLABEL relocation that has a size of 32 bits must
1493 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1494 if (format == 32)
1495 *final_type = R_DATA_PLABEL;
1496 else
1497 *final_type = R_CODE_PLABEL;
1498 }
1499 /* PIC stuff. */
1500 else if (field == e_tsel
1501 || field == e_ltsel
1502 || field == e_rtsel)
1503 *final_type = R_DLT_REL;
1504 /* A relocation in the data space is always a full 32bits. */
1505 else if (format == 32)
1506 *final_type = R_DATA_ONE_SYMBOL;
1507
1508 break;
1509
1510 case R_HPPA_GOTOFF:
1511 /* More PLABEL special cases. */
1512 if (field == e_psel
1513 || field == e_lpsel
1514 || field == e_rpsel)
1515 *final_type = R_DATA_PLABEL;
1516 break;
1517
1518 case R_HPPA_NONE:
1519 case R_HPPA_ABS_CALL:
1520 case R_HPPA_PCREL_CALL:
1521 case R_HPPA_COMPLEX:
1522 case R_HPPA_COMPLEX_PCREL_CALL:
1523 case R_HPPA_COMPLEX_ABS_CALL:
1524 /* Right now we can default all these. */
1525 break;
1526 }
1527 return final_types;
1528 }
1529
1530 /* Return the address of the correct entry in the PA SOM relocation
1531 howto table. */
1532
1533 static const reloc_howto_type *
1534 som_bfd_reloc_type_lookup (arch, code)
1535 bfd_arch_info_type *arch;
1536 bfd_reloc_code_real_type code;
1537 {
1538 if ((int) code < (int) R_NO_RELOCATION + 255)
1539 {
1540 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1541 return &som_hppa_howto_table[(int) code];
1542 }
1543
1544 return (reloc_howto_type *) 0;
1545 }
1546
1547 /* Perform some initialization for an object. Save results of this
1548 initialization in the BFD. */
1549
1550 static bfd_target *
1551 som_object_setup (abfd, file_hdrp, aux_hdrp)
1552 bfd *abfd;
1553 struct header *file_hdrp;
1554 struct som_exec_auxhdr *aux_hdrp;
1555 {
1556 /* som_mkobject will set bfd_error if som_mkobject fails. */
1557 if (som_mkobject (abfd) != true)
1558 return 0;
1559
1560 /* Set BFD flags based on what information is available in the SOM. */
1561 abfd->flags = NO_FLAGS;
1562 if (file_hdrp->symbol_total)
1563 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1564
1565 switch (file_hdrp->a_magic)
1566 {
1567 case DEMAND_MAGIC:
1568 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1569 break;
1570 case SHARE_MAGIC:
1571 abfd->flags |= (WP_TEXT | EXEC_P);
1572 break;
1573 case EXEC_MAGIC:
1574 abfd->flags |= (EXEC_P);
1575 break;
1576 case RELOC_MAGIC:
1577 abfd->flags |= HAS_RELOC;
1578 break;
1579 default:
1580 break;
1581 }
1582
1583 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1584 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 0);
1585 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1586
1587 /* Initialize the saved symbol table and string table to NULL.
1588 Save important offsets and sizes from the SOM header into
1589 the BFD. */
1590 obj_som_stringtab (abfd) = (char *) NULL;
1591 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1592 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1593 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1594 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1595 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
1596
1597 obj_som_exec_data (abfd) = (struct som_exec_data *)
1598 bfd_zalloc (abfd, sizeof (struct som_exec_data ));
1599 if (obj_som_exec_data (abfd) == NULL)
1600 {
1601 bfd_set_error (bfd_error_no_memory);
1602 return NULL;
1603 }
1604
1605 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1606 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1607 return abfd->xvec;
1608 }
1609
1610 /* Convert all of the space and subspace info into BFD sections. Each space
1611 contains a number of subspaces, which in turn describe the mapping between
1612 regions of the exec file, and the address space that the program runs in.
1613 BFD sections which correspond to spaces will overlap the sections for the
1614 associated subspaces. */
1615
1616 static boolean
1617 setup_sections (abfd, file_hdr)
1618 bfd *abfd;
1619 struct header *file_hdr;
1620 {
1621 char *space_strings;
1622 int space_index;
1623 unsigned int total_subspaces = 0;
1624
1625 /* First, read in space names */
1626
1627 space_strings = malloc (file_hdr->space_strings_size);
1628 if (!space_strings && file_hdr->space_strings_size != 0)
1629 {
1630 bfd_set_error (bfd_error_no_memory);
1631 goto error_return;
1632 }
1633
1634 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
1635 goto error_return;
1636 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1637 != file_hdr->space_strings_size)
1638 goto error_return;
1639
1640 /* Loop over all of the space dictionaries, building up sections */
1641 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1642 {
1643 struct space_dictionary_record space;
1644 struct subspace_dictionary_record subspace, save_subspace;
1645 int subspace_index;
1646 asection *space_asect;
1647 char *newname;
1648
1649 /* Read the space dictionary element */
1650 if (bfd_seek (abfd, file_hdr->space_location
1651 + space_index * sizeof space, SEEK_SET) < 0)
1652 goto error_return;
1653 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1654 goto error_return;
1655
1656 /* Setup the space name string */
1657 space.name.n_name = space.name.n_strx + space_strings;
1658
1659 /* Make a section out of it */
1660 newname = bfd_alloc (abfd, strlen (space.name.n_name) + 1);
1661 if (!newname)
1662 goto error_return;
1663 strcpy (newname, space.name.n_name);
1664
1665 space_asect = bfd_make_section_anyway (abfd, newname);
1666 if (!space_asect)
1667 goto error_return;
1668
1669 if (space.is_loadable == 0)
1670 space_asect->flags |= SEC_DEBUGGING;
1671
1672 /* Set up all the attributes for the space. */
1673 if (bfd_som_set_section_attributes (space_asect, space.is_defined,
1674 space.is_private, space.sort_key,
1675 space.space_number) == false)
1676 goto error_return;
1677
1678 /* Now, read in the first subspace for this space */
1679 if (bfd_seek (abfd, file_hdr->subspace_location
1680 + space.subspace_index * sizeof subspace,
1681 SEEK_SET) < 0)
1682 goto error_return;
1683 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1684 goto error_return;
1685 /* Seek back to the start of the subspaces for loop below */
1686 if (bfd_seek (abfd, file_hdr->subspace_location
1687 + space.subspace_index * sizeof subspace,
1688 SEEK_SET) < 0)
1689 goto error_return;
1690
1691 /* Setup the start address and file loc from the first subspace record */
1692 space_asect->vma = subspace.subspace_start;
1693 space_asect->filepos = subspace.file_loc_init_value;
1694 space_asect->alignment_power = log2 (subspace.alignment);
1695 if (space_asect->alignment_power == -1)
1696 goto error_return;
1697
1698 /* Initialize save_subspace so we can reliably determine if this
1699 loop placed any useful values into it. */
1700 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1701
1702 /* Loop over the rest of the subspaces, building up more sections */
1703 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1704 subspace_index++)
1705 {
1706 asection *subspace_asect;
1707
1708 /* Read in the next subspace */
1709 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1710 != sizeof subspace)
1711 goto error_return;
1712
1713 /* Setup the subspace name string */
1714 subspace.name.n_name = subspace.name.n_strx + space_strings;
1715
1716 newname = bfd_alloc (abfd, strlen (subspace.name.n_name) + 1);
1717 if (!newname)
1718 goto error_return;
1719 strcpy (newname, subspace.name.n_name);
1720
1721 /* Make a section out of this subspace */
1722 subspace_asect = bfd_make_section_anyway (abfd, newname);
1723 if (!subspace_asect)
1724 goto error_return;
1725
1726 /* Store private information about the section. */
1727 if (bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1728 subspace.access_control_bits,
1729 subspace.sort_key,
1730 subspace.quadrant) == false)
1731 goto error_return;
1732
1733 /* Keep an easy mapping between subspaces and sections. */
1734 subspace_asect->target_index = total_subspaces++;
1735
1736 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1737 by the access_control_bits in the subspace header. */
1738 switch (subspace.access_control_bits >> 4)
1739 {
1740 /* Readonly data. */
1741 case 0x0:
1742 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1743 break;
1744
1745 /* Normal data. */
1746 case 0x1:
1747 subspace_asect->flags |= SEC_DATA;
1748 break;
1749
1750 /* Readonly code and the gateways.
1751 Gateways have other attributes which do not map
1752 into anything BFD knows about. */
1753 case 0x2:
1754 case 0x4:
1755 case 0x5:
1756 case 0x6:
1757 case 0x7:
1758 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1759 break;
1760
1761 /* dynamic (writable) code. */
1762 case 0x3:
1763 subspace_asect->flags |= SEC_CODE;
1764 break;
1765 }
1766
1767 if (subspace.dup_common || subspace.is_common)
1768 subspace_asect->flags |= SEC_IS_COMMON;
1769 else if (subspace.subspace_length > 0)
1770 subspace_asect->flags |= SEC_HAS_CONTENTS;
1771
1772 if (subspace.is_loadable)
1773 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1774 else
1775 subspace_asect->flags |= SEC_DEBUGGING;
1776
1777 if (subspace.code_only)
1778 subspace_asect->flags |= SEC_CODE;
1779
1780 /* Both file_loc_init_value and initialization_length will
1781 be zero for a BSS like subspace. */
1782 if (subspace.file_loc_init_value == 0
1783 && subspace.initialization_length == 0)
1784 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD);
1785
1786 /* This subspace has relocations.
1787 The fixup_request_quantity is a byte count for the number of
1788 entries in the relocation stream; it is not the actual number
1789 of relocations in the subspace. */
1790 if (subspace.fixup_request_quantity != 0)
1791 {
1792 subspace_asect->flags |= SEC_RELOC;
1793 subspace_asect->rel_filepos = subspace.fixup_request_index;
1794 som_section_data (subspace_asect)->reloc_size
1795 = subspace.fixup_request_quantity;
1796 /* We can not determine this yet. When we read in the
1797 relocation table the correct value will be filled in. */
1798 subspace_asect->reloc_count = -1;
1799 }
1800
1801 /* Update save_subspace if appropriate. */
1802 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1803 save_subspace = subspace;
1804
1805 subspace_asect->vma = subspace.subspace_start;
1806 subspace_asect->_cooked_size = subspace.subspace_length;
1807 subspace_asect->_raw_size = subspace.subspace_length;
1808 subspace_asect->filepos = subspace.file_loc_init_value;
1809 subspace_asect->alignment_power = log2 (subspace.alignment);
1810 if (subspace_asect->alignment_power == -1)
1811 goto error_return;
1812 }
1813
1814 /* Yow! there is no subspace within the space which actually
1815 has initialized information in it; this should never happen
1816 as far as I know. */
1817 if (!save_subspace.file_loc_init_value)
1818 goto error_return;
1819
1820 /* Setup the sizes for the space section based upon the info in the
1821 last subspace of the space. */
1822 space_asect->_cooked_size = save_subspace.subspace_start
1823 - space_asect->vma + save_subspace.subspace_length;
1824 space_asect->_raw_size = save_subspace.file_loc_init_value
1825 - space_asect->filepos + save_subspace.initialization_length;
1826 }
1827 if (space_strings != NULL)
1828 free (space_strings);
1829 return true;
1830
1831 error_return:
1832 if (space_strings != NULL)
1833 free (space_strings);
1834 return false;
1835 }
1836
1837 /* Read in a SOM object and make it into a BFD. */
1838
1839 static bfd_target *
1840 som_object_p (abfd)
1841 bfd *abfd;
1842 {
1843 struct header file_hdr;
1844 struct som_exec_auxhdr aux_hdr;
1845
1846 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
1847 {
1848 bfd_set_error (bfd_error_system_call);
1849 return 0;
1850 }
1851
1852 if (!_PA_RISC_ID (file_hdr.system_id))
1853 {
1854 bfd_set_error (bfd_error_wrong_format);
1855 return 0;
1856 }
1857
1858 switch (file_hdr.a_magic)
1859 {
1860 case RELOC_MAGIC:
1861 case EXEC_MAGIC:
1862 case SHARE_MAGIC:
1863 case DEMAND_MAGIC:
1864 #ifdef DL_MAGIC
1865 case DL_MAGIC:
1866 #endif
1867 #ifdef SHL_MAGIC
1868 case SHL_MAGIC:
1869 #endif
1870 #ifdef EXECLIBMAGIC
1871 case EXECLIBMAGIC:
1872 #endif
1873 #ifdef SHARED_MAGIC_CNX
1874 case SHARED_MAGIC_CNX:
1875 #endif
1876 break;
1877 default:
1878 bfd_set_error (bfd_error_wrong_format);
1879 return 0;
1880 }
1881
1882 if (file_hdr.version_id != VERSION_ID
1883 && file_hdr.version_id != NEW_VERSION_ID)
1884 {
1885 bfd_set_error (bfd_error_wrong_format);
1886 return 0;
1887 }
1888
1889 /* If the aux_header_size field in the file header is zero, then this
1890 object is an incomplete executable (a .o file). Do not try to read
1891 a non-existant auxiliary header. */
1892 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
1893 if (file_hdr.aux_header_size != 0)
1894 {
1895 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
1896 {
1897 bfd_set_error (bfd_error_wrong_format);
1898 return 0;
1899 }
1900 }
1901
1902 if (!setup_sections (abfd, &file_hdr))
1903 {
1904 /* setup_sections does not bubble up a bfd error code. */
1905 bfd_set_error (bfd_error_bad_value);
1906 return 0;
1907 }
1908
1909 /* This appears to be a valid SOM object. Do some initialization. */
1910 return som_object_setup (abfd, &file_hdr, &aux_hdr);
1911 }
1912
1913 /* Create a SOM object. */
1914
1915 static boolean
1916 som_mkobject (abfd)
1917 bfd *abfd;
1918 {
1919 /* Allocate memory to hold backend information. */
1920 abfd->tdata.som_data = (struct som_data_struct *)
1921 bfd_zalloc (abfd, sizeof (struct som_data_struct));
1922 if (abfd->tdata.som_data == NULL)
1923 {
1924 bfd_set_error (bfd_error_no_memory);
1925 return false;
1926 }
1927 return true;
1928 }
1929
1930 /* Initialize some information in the file header. This routine makes
1931 not attempt at doing the right thing for a full executable; it
1932 is only meant to handle relocatable objects. */
1933
1934 static boolean
1935 som_prep_headers (abfd)
1936 bfd *abfd;
1937 {
1938 struct header *file_hdr;
1939 asection *section;
1940
1941 /* Make and attach a file header to the BFD. */
1942 file_hdr = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
1943 if (file_hdr == NULL)
1944
1945 {
1946 bfd_set_error (bfd_error_no_memory);
1947 return false;
1948 }
1949 obj_som_file_hdr (abfd) = file_hdr;
1950
1951 /* FIXME. This should really be conditional based on whether or not
1952 PA1.1 instructions/registers have been used. */
1953 if (abfd->flags & EXEC_P)
1954 file_hdr->system_id = obj_som_exec_data (abfd)->system_id;
1955 else
1956 file_hdr->system_id = CPU_PA_RISC1_0;
1957
1958 if (abfd->flags & EXEC_P)
1959 {
1960 if (abfd->flags & D_PAGED)
1961 file_hdr->a_magic = DEMAND_MAGIC;
1962 else if (abfd->flags & WP_TEXT)
1963 file_hdr->a_magic = SHARE_MAGIC;
1964 else
1965 file_hdr->a_magic = EXEC_MAGIC;
1966 }
1967 else
1968 file_hdr->a_magic = RELOC_MAGIC;
1969
1970 /* Only new format SOM is supported. */
1971 file_hdr->version_id = NEW_VERSION_ID;
1972
1973 /* These fields are optional, and embedding timestamps is not always
1974 a wise thing to do, it makes comparing objects during a multi-stage
1975 bootstrap difficult. */
1976 file_hdr->file_time.secs = 0;
1977 file_hdr->file_time.nanosecs = 0;
1978
1979 file_hdr->entry_space = 0;
1980 file_hdr->entry_subspace = 0;
1981 file_hdr->entry_offset = 0;
1982 file_hdr->presumed_dp = 0;
1983
1984 /* Now iterate over the sections translating information from
1985 BFD sections to SOM spaces/subspaces. */
1986
1987 for (section = abfd->sections; section != NULL; section = section->next)
1988 {
1989 /* Ignore anything which has not been marked as a space or
1990 subspace. */
1991 if (!som_is_space (section) && !som_is_subspace (section))
1992 continue;
1993
1994 if (som_is_space (section))
1995 {
1996 /* Allocate space for the space dictionary. */
1997 som_section_data (section)->space_dict
1998 = (struct space_dictionary_record *)
1999 bfd_zalloc (abfd, sizeof (struct space_dictionary_record));
2000 if (som_section_data (section)->space_dict == NULL)
2001 {
2002 bfd_set_error (bfd_error_no_memory);
2003 return false;
2004 }
2005 /* Set space attributes. Note most attributes of SOM spaces
2006 are set based on the subspaces it contains. */
2007 som_section_data (section)->space_dict->loader_fix_index = -1;
2008 som_section_data (section)->space_dict->init_pointer_index = -1;
2009
2010 /* Set more attributes that were stuffed away in private data. */
2011 som_section_data (section)->space_dict->sort_key =
2012 som_section_data (section)->copy_data->sort_key;
2013 som_section_data (section)->space_dict->is_defined =
2014 som_section_data (section)->copy_data->is_defined;
2015 som_section_data (section)->space_dict->is_private =
2016 som_section_data (section)->copy_data->is_private;
2017 som_section_data (section)->space_dict->space_number =
2018 section->target_index;
2019 }
2020 else
2021 {
2022 /* Allocate space for the subspace dictionary. */
2023 som_section_data (section)->subspace_dict
2024 = (struct subspace_dictionary_record *)
2025 bfd_zalloc (abfd, sizeof (struct subspace_dictionary_record));
2026 if (som_section_data (section)->subspace_dict == NULL)
2027 {
2028 bfd_set_error (bfd_error_no_memory);
2029 return false;
2030 }
2031
2032 /* Set subspace attributes. Basic stuff is done here, additional
2033 attributes are filled in later as more information becomes
2034 available. */
2035 if (section->flags & SEC_IS_COMMON)
2036 {
2037 som_section_data (section)->subspace_dict->dup_common = 1;
2038 som_section_data (section)->subspace_dict->is_common = 1;
2039 }
2040
2041 if (section->flags & SEC_ALLOC)
2042 som_section_data (section)->subspace_dict->is_loadable = 1;
2043
2044 if (section->flags & SEC_CODE)
2045 som_section_data (section)->subspace_dict->code_only = 1;
2046
2047 som_section_data (section)->subspace_dict->subspace_start =
2048 section->vma;
2049 som_section_data (section)->subspace_dict->subspace_length =
2050 bfd_section_size (abfd, section);
2051 som_section_data (section)->subspace_dict->initialization_length =
2052 bfd_section_size (abfd, section);
2053 som_section_data (section)->subspace_dict->alignment =
2054 1 << section->alignment_power;
2055
2056 /* Set more attributes that were stuffed away in private data. */
2057 som_section_data (section)->subspace_dict->sort_key =
2058 som_section_data (section)->copy_data->sort_key;
2059 som_section_data (section)->subspace_dict->access_control_bits =
2060 som_section_data (section)->copy_data->access_control_bits;
2061 som_section_data (section)->subspace_dict->quadrant =
2062 som_section_data (section)->copy_data->quadrant;
2063 }
2064 }
2065 return true;
2066 }
2067
2068 /* Return true if the given section is a SOM space, false otherwise. */
2069
2070 static boolean
2071 som_is_space (section)
2072 asection *section;
2073 {
2074 /* If no copy data is available, then it's neither a space nor a
2075 subspace. */
2076 if (som_section_data (section)->copy_data == NULL)
2077 return false;
2078
2079 /* If the containing space isn't the same as the given section,
2080 then this isn't a space. */
2081 if (som_section_data (section)->copy_data->container != section)
2082 return false;
2083
2084 /* OK. Must be a space. */
2085 return true;
2086 }
2087
2088 /* Return true if the given section is a SOM subspace, false otherwise. */
2089
2090 static boolean
2091 som_is_subspace (section)
2092 asection *section;
2093 {
2094 /* If no copy data is available, then it's neither a space nor a
2095 subspace. */
2096 if (som_section_data (section)->copy_data == NULL)
2097 return false;
2098
2099 /* If the containing space is the same as the given section,
2100 then this isn't a subspace. */
2101 if (som_section_data (section)->copy_data->container == section)
2102 return false;
2103
2104 /* OK. Must be a subspace. */
2105 return true;
2106 }
2107
2108 /* Return true if the given space containins the given subspace. It
2109 is safe to assume space really is a space, and subspace really
2110 is a subspace. */
2111
2112 static boolean
2113 som_is_container (space, subspace)
2114 asection *space, *subspace;
2115 {
2116 return som_section_data (subspace)->copy_data->container == space;
2117 }
2118
2119 /* Count and return the number of spaces attached to the given BFD. */
2120
2121 static unsigned long
2122 som_count_spaces (abfd)
2123 bfd *abfd;
2124 {
2125 int count = 0;
2126 asection *section;
2127
2128 for (section = abfd->sections; section != NULL; section = section->next)
2129 count += som_is_space (section);
2130
2131 return count;
2132 }
2133
2134 /* Count the number of subspaces attached to the given BFD. */
2135
2136 static unsigned long
2137 som_count_subspaces (abfd)
2138 bfd *abfd;
2139 {
2140 int count = 0;
2141 asection *section;
2142
2143 for (section = abfd->sections; section != NULL; section = section->next)
2144 count += som_is_subspace (section);
2145
2146 return count;
2147 }
2148
2149 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2150
2151 We desire symbols to be ordered starting with the symbol with the
2152 highest relocation count down to the symbol with the lowest relocation
2153 count. Doing so compacts the relocation stream. */
2154
2155 static int
2156 compare_syms (sym1, sym2)
2157 asymbol **sym1;
2158 asymbol **sym2;
2159
2160 {
2161 unsigned int count1, count2;
2162
2163 /* Get relocation count for each symbol. Note that the count
2164 is stored in the udata pointer for section symbols! */
2165 if ((*sym1)->flags & BSF_SECTION_SYM)
2166 count1 = (int)(*sym1)->udata;
2167 else
2168 count1 = som_symbol_data (*sym1)->reloc_count;
2169
2170 if ((*sym2)->flags & BSF_SECTION_SYM)
2171 count2 = (int)(*sym2)->udata;
2172 else
2173 count2 = som_symbol_data (*sym2)->reloc_count;
2174
2175 /* Return the appropriate value. */
2176 if (count1 < count2)
2177 return 1;
2178 else if (count1 > count2)
2179 return -1;
2180 return 0;
2181 }
2182
2183 /* Perform various work in preparation for emitting the fixup stream. */
2184
2185 static void
2186 som_prep_for_fixups (abfd, syms, num_syms)
2187 bfd *abfd;
2188 asymbol **syms;
2189 unsigned long num_syms;
2190 {
2191 int i;
2192 asection *section;
2193
2194 /* Most SOM relocations involving a symbol have a length which is
2195 dependent on the index of the symbol. So symbols which are
2196 used often in relocations should have a small index. */
2197
2198 /* First initialize the counters for each symbol. */
2199 for (i = 0; i < num_syms; i++)
2200 {
2201 /* Handle a section symbol; these have no pointers back to the
2202 SOM symbol info. So we just use the pointer field (udata)
2203 to hold the relocation count. */
2204 if (som_symbol_data (syms[i]) == NULL
2205 || syms[i]->flags & BSF_SECTION_SYM)
2206 {
2207 syms[i]->flags |= BSF_SECTION_SYM;
2208 syms[i]->udata = (PTR) 0;
2209 }
2210 else
2211 som_symbol_data (syms[i])->reloc_count = 0;
2212 }
2213
2214 /* Now that the counters are initialized, make a weighted count
2215 of how often a given symbol is used in a relocation. */
2216 for (section = abfd->sections; section != NULL; section = section->next)
2217 {
2218 int i;
2219
2220 /* Does this section have any relocations? */
2221 if (section->reloc_count <= 0)
2222 continue;
2223
2224 /* Walk through each relocation for this section. */
2225 for (i = 1; i < section->reloc_count; i++)
2226 {
2227 arelent *reloc = section->orelocation[i];
2228 int scale;
2229
2230 /* A relocation against a symbol in the *ABS* section really
2231 does not have a symbol. Likewise if the symbol isn't associated
2232 with any section. */
2233 if (reloc->sym_ptr_ptr == NULL
2234 || (*reloc->sym_ptr_ptr)->section == &bfd_abs_section)
2235 continue;
2236
2237 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2238 and R_CODE_ONE_SYMBOL relocations to come first. These
2239 two relocations have single byte versions if the symbol
2240 index is very small. */
2241 if (reloc->howto->type == R_DP_RELATIVE
2242 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2243 scale = 2;
2244 else
2245 scale = 1;
2246
2247 /* Handle section symbols by ramming the count in the udata
2248 field. It will not be used and the count is very important
2249 for these symbols. */
2250 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2251 {
2252 (*reloc->sym_ptr_ptr)->udata =
2253 (PTR) ((int) (*reloc->sym_ptr_ptr)->udata + scale);
2254 continue;
2255 }
2256
2257 /* A normal symbol. Increment the count. */
2258 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2259 }
2260 }
2261
2262 /* Now sort the symbols. */
2263 qsort (syms, num_syms, sizeof (asymbol *), compare_syms);
2264
2265 /* Compute the symbol indexes, they will be needed by the relocation
2266 code. */
2267 for (i = 0; i < num_syms; i++)
2268 {
2269 /* A section symbol. Again, there is no pointer to backend symbol
2270 information, so we reuse (abuse) the udata field again. */
2271 if (syms[i]->flags & BSF_SECTION_SYM)
2272 syms[i]->udata = (PTR) i;
2273 else
2274 som_symbol_data (syms[i])->index = i;
2275 }
2276 }
2277
2278 static boolean
2279 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2280 bfd *abfd;
2281 unsigned long current_offset;
2282 unsigned int *total_reloc_sizep;
2283 {
2284 unsigned int i, j;
2285 /* Chunk of memory that we can use as buffer space, then throw
2286 away. */
2287 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2288 unsigned char *p;
2289 unsigned int total_reloc_size = 0;
2290 unsigned int subspace_reloc_size = 0;
2291 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2292 asection *section = abfd->sections;
2293
2294 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2295 p = tmp_space;
2296
2297 /* All the fixups for a particular subspace are emitted in a single
2298 stream. All the subspaces for a particular space are emitted
2299 as a single stream.
2300
2301 So, to get all the locations correct one must iterate through all the
2302 spaces, for each space iterate through its subspaces and output a
2303 fixups stream. */
2304 for (i = 0; i < num_spaces; i++)
2305 {
2306 asection *subsection;
2307
2308 /* Find a space. */
2309 while (!som_is_space (section))
2310 section = section->next;
2311
2312 /* Now iterate through each of its subspaces. */
2313 for (subsection = abfd->sections;
2314 subsection != NULL;
2315 subsection = subsection->next)
2316 {
2317 int reloc_offset, current_rounding_mode;
2318
2319 /* Find a subspace of this space. */
2320 if (!som_is_subspace (subsection)
2321 || !som_is_container (section, subsection))
2322 continue;
2323
2324 /* If this subspace had no relocations, then we're finished
2325 with it. */
2326 if (subsection->reloc_count <= 0)
2327 {
2328 som_section_data (subsection)->subspace_dict->fixup_request_index
2329 = -1;
2330 continue;
2331 }
2332
2333 /* This subspace has some relocations. Put the relocation stream
2334 index into the subspace record. */
2335 som_section_data (subsection)->subspace_dict->fixup_request_index
2336 = total_reloc_size;
2337
2338 /* To make life easier start over with a clean slate for
2339 each subspace. Seek to the start of the relocation stream
2340 for this subspace in preparation for writing out its fixup
2341 stream. */
2342 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) != 0)
2343 {
2344 bfd_set_error (bfd_error_system_call);
2345 return false;
2346 }
2347
2348 /* Buffer space has already been allocated. Just perform some
2349 initialization here. */
2350 p = tmp_space;
2351 subspace_reloc_size = 0;
2352 reloc_offset = 0;
2353 som_initialize_reloc_queue (reloc_queue);
2354 current_rounding_mode = R_N_MODE;
2355
2356 /* Translate each BFD relocation into one or more SOM
2357 relocations. */
2358 for (j = 0; j < subsection->reloc_count; j++)
2359 {
2360 arelent *bfd_reloc = subsection->orelocation[j];
2361 unsigned int skip;
2362 int sym_num;
2363
2364 /* Get the symbol number. Remember it's stored in a
2365 special place for section symbols. */
2366 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2367 sym_num = (int) (*bfd_reloc->sym_ptr_ptr)->udata;
2368 else
2369 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2370
2371 /* If there is not enough room for the next couple relocations,
2372 then dump the current buffer contents now. Also reinitialize
2373 the relocation queue.
2374
2375 No single BFD relocation could ever translate into more
2376 than 100 bytes of SOM relocations (20bytes is probably the
2377 upper limit, but leave lots of space for growth). */
2378 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2379 {
2380 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2381 != p - tmp_space)
2382 {
2383 bfd_set_error (bfd_error_system_call);
2384 return false;
2385 }
2386 p = tmp_space;
2387 som_initialize_reloc_queue (reloc_queue);
2388 }
2389
2390 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2391 skipped. */
2392 skip = bfd_reloc->address - reloc_offset;
2393 p = som_reloc_skip (abfd, skip, p,
2394 &subspace_reloc_size, reloc_queue);
2395
2396 /* Update reloc_offset for the next iteration.
2397
2398 Many relocations do not consume input bytes. They
2399 are markers, or set state necessary to perform some
2400 later relocation. */
2401 switch (bfd_reloc->howto->type)
2402 {
2403 /* This only needs to handle relocations that may be
2404 made by hppa_som_gen_reloc. */
2405 case R_ENTRY:
2406 case R_EXIT:
2407 case R_N_MODE:
2408 case R_S_MODE:
2409 case R_D_MODE:
2410 case R_R_MODE:
2411 case R_FSEL:
2412 case R_LSEL:
2413 case R_RSEL:
2414 reloc_offset = bfd_reloc->address;
2415 break;
2416
2417 default:
2418 reloc_offset = bfd_reloc->address + 4;
2419 break;
2420 }
2421
2422 /* Now the actual relocation we care about. */
2423 switch (bfd_reloc->howto->type)
2424 {
2425 case R_PCREL_CALL:
2426 case R_ABS_CALL:
2427 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2428 bfd_reloc, sym_num, reloc_queue);
2429 break;
2430
2431 case R_CODE_ONE_SYMBOL:
2432 case R_DP_RELATIVE:
2433 /* Account for any addend. */
2434 if (bfd_reloc->addend)
2435 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2436 &subspace_reloc_size, reloc_queue);
2437
2438 if (sym_num < 0x20)
2439 {
2440 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2441 subspace_reloc_size += 1;
2442 p += 1;
2443 }
2444 else if (sym_num < 0x100)
2445 {
2446 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2447 bfd_put_8 (abfd, sym_num, p + 1);
2448 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2449 2, reloc_queue);
2450 }
2451 else if (sym_num < 0x10000000)
2452 {
2453 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2454 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2455 bfd_put_16 (abfd, sym_num, p + 2);
2456 p = try_prev_fixup (abfd, &subspace_reloc_size,
2457 p, 4, reloc_queue);
2458 }
2459 else
2460 abort ();
2461 break;
2462
2463 case R_DATA_ONE_SYMBOL:
2464 case R_DATA_PLABEL:
2465 case R_CODE_PLABEL:
2466 case R_DLT_REL:
2467 /* Account for any addend. */
2468 if (bfd_reloc->addend)
2469 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2470 &subspace_reloc_size, reloc_queue);
2471
2472 if (sym_num < 0x100)
2473 {
2474 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2475 bfd_put_8 (abfd, sym_num, p + 1);
2476 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2477 2, reloc_queue);
2478 }
2479 else if (sym_num < 0x10000000)
2480 {
2481 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2482 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2483 bfd_put_16 (abfd, sym_num, p + 2);
2484 p = try_prev_fixup (abfd, &subspace_reloc_size,
2485 p, 4, reloc_queue);
2486 }
2487 else
2488 abort ();
2489 break;
2490
2491 case R_ENTRY:
2492 {
2493 int *descp
2494 = (int *) som_symbol_data (*bfd_reloc->sym_ptr_ptr)->unwind;
2495 bfd_put_8 (abfd, R_ENTRY, p);
2496 bfd_put_32 (abfd, descp[0], p + 1);
2497 bfd_put_32 (abfd, descp[1], p + 5);
2498 p = try_prev_fixup (abfd, &subspace_reloc_size,
2499 p, 9, reloc_queue);
2500 break;
2501 }
2502
2503 case R_EXIT:
2504 bfd_put_8 (abfd, R_EXIT, p);
2505 subspace_reloc_size += 1;
2506 p += 1;
2507 break;
2508
2509 case R_N_MODE:
2510 case R_S_MODE:
2511 case R_D_MODE:
2512 case R_R_MODE:
2513 /* If this relocation requests the current rounding
2514 mode, then it is redundant. */
2515 if (bfd_reloc->howto->type != current_rounding_mode)
2516 {
2517 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2518 subspace_reloc_size += 1;
2519 p += 1;
2520 current_rounding_mode = bfd_reloc->howto->type;
2521 }
2522 break;
2523
2524 case R_FSEL:
2525 case R_LSEL:
2526 case R_RSEL:
2527 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2528 subspace_reloc_size += 1;
2529 p += 1;
2530 break;
2531
2532 /* Put a "R_RESERVED" relocation in the stream if
2533 we hit something we do not understand. The linker
2534 will complain loudly if this ever happens. */
2535 default:
2536 bfd_put_8 (abfd, 0xff, p);
2537 subspace_reloc_size += 1;
2538 p += 1;
2539 break;
2540 }
2541 }
2542
2543 /* Last BFD relocation for a subspace has been processed.
2544 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2545 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2546 - reloc_offset,
2547 p, &subspace_reloc_size, reloc_queue);
2548
2549 /* Scribble out the relocations. */
2550 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2551 != p - tmp_space)
2552 {
2553 bfd_set_error (bfd_error_system_call);
2554 return false;
2555 }
2556 p = tmp_space;
2557
2558 total_reloc_size += subspace_reloc_size;
2559 som_section_data (subsection)->subspace_dict->fixup_request_quantity
2560 = subspace_reloc_size;
2561 }
2562 section = section->next;
2563 }
2564 *total_reloc_sizep = total_reloc_size;
2565 return true;
2566 }
2567
2568 /* Write out the space/subspace string table. */
2569
2570 static boolean
2571 som_write_space_strings (abfd, current_offset, string_sizep)
2572 bfd *abfd;
2573 unsigned long current_offset;
2574 unsigned int *string_sizep;
2575 {
2576 /* Chunk of memory that we can use as buffer space, then throw
2577 away. */
2578 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2579 unsigned char *p;
2580 unsigned int strings_size = 0;
2581 asection *section;
2582
2583 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2584 p = tmp_space;
2585
2586 /* Seek to the start of the space strings in preparation for writing
2587 them out. */
2588 if (bfd_seek (abfd, current_offset, SEEK_SET) != 0)
2589 {
2590 bfd_set_error (bfd_error_system_call);
2591 return false;
2592 }
2593
2594 /* Walk through all the spaces and subspaces (order is not important)
2595 building up and writing string table entries for their names. */
2596 for (section = abfd->sections; section != NULL; section = section->next)
2597 {
2598 int length;
2599
2600 /* Only work with space/subspaces; avoid any other sections
2601 which might have been made (.text for example). */
2602 if (!som_is_space (section) && !som_is_subspace (section))
2603 continue;
2604
2605 /* Get the length of the space/subspace name. */
2606 length = strlen (section->name);
2607
2608 /* If there is not enough room for the next entry, then dump the
2609 current buffer contents now. Each entry will take 4 bytes to
2610 hold the string length + the string itself + null terminator. */
2611 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2612 {
2613 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2614 != p - tmp_space)
2615 {
2616 bfd_set_error (bfd_error_system_call);
2617 return false;
2618 }
2619 /* Reset to beginning of the buffer space. */
2620 p = tmp_space;
2621 }
2622
2623 /* First element in a string table entry is the length of the
2624 string. Alignment issues are already handled. */
2625 bfd_put_32 (abfd, length, p);
2626 p += 4;
2627 strings_size += 4;
2628
2629 /* Record the index in the space/subspace records. */
2630 if (som_is_space (section))
2631 som_section_data (section)->space_dict->name.n_strx = strings_size;
2632 else
2633 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
2634
2635 /* Next comes the string itself + a null terminator. */
2636 strcpy (p, section->name);
2637 p += length + 1;
2638 strings_size += length + 1;
2639
2640 /* Always align up to the next word boundary. */
2641 while (strings_size % 4)
2642 {
2643 bfd_put_8 (abfd, 0, p);
2644 p++;
2645 strings_size++;
2646 }
2647 }
2648
2649 /* Done with the space/subspace strings. Write out any information
2650 contained in a partial block. */
2651 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2652 {
2653 bfd_set_error (bfd_error_system_call);
2654 return false;
2655 }
2656 *string_sizep = strings_size;
2657 return true;
2658 }
2659
2660 /* Write out the symbol string table. */
2661
2662 static boolean
2663 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
2664 bfd *abfd;
2665 unsigned long current_offset;
2666 asymbol **syms;
2667 unsigned int num_syms;
2668 unsigned int *string_sizep;
2669 {
2670 unsigned int i;
2671
2672 /* Chunk of memory that we can use as buffer space, then throw
2673 away. */
2674 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2675 unsigned char *p;
2676 unsigned int strings_size = 0;
2677
2678 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2679 p = tmp_space;
2680
2681 /* Seek to the start of the space strings in preparation for writing
2682 them out. */
2683 if (bfd_seek (abfd, current_offset, SEEK_SET) != 0)
2684 {
2685 bfd_set_error (bfd_error_system_call);
2686 return false;
2687 }
2688
2689 for (i = 0; i < num_syms; i++)
2690 {
2691 int length = strlen (syms[i]->name);
2692
2693 /* If there is not enough room for the next entry, then dump the
2694 current buffer contents now. */
2695 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2696 {
2697 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2698 != p - tmp_space)
2699 {
2700 bfd_set_error (bfd_error_system_call);
2701 return false;
2702 }
2703 /* Reset to beginning of the buffer space. */
2704 p = tmp_space;
2705 }
2706
2707 /* First element in a string table entry is the length of the
2708 string. This must always be 4 byte aligned. This is also
2709 an appropriate time to fill in the string index field in the
2710 symbol table entry. */
2711 bfd_put_32 (abfd, length, p);
2712 strings_size += 4;
2713 p += 4;
2714
2715 /* Next comes the string itself + a null terminator. */
2716 strcpy (p, syms[i]->name);
2717
2718 /* ACK. FIXME. */
2719 syms[i]->name = (char *)strings_size;
2720 p += length + 1;
2721 strings_size += length + 1;
2722
2723 /* Always align up to the next word boundary. */
2724 while (strings_size % 4)
2725 {
2726 bfd_put_8 (abfd, 0, p);
2727 strings_size++;
2728 p++;
2729 }
2730 }
2731
2732 /* Scribble out any partial block. */
2733 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2734 {
2735 bfd_set_error (bfd_error_system_call);
2736 return false;
2737 }
2738
2739 *string_sizep = strings_size;
2740 return true;
2741 }
2742
2743 /* Compute variable information to be placed in the SOM headers,
2744 space/subspace dictionaries, relocation streams, etc. Begin
2745 writing parts of the object file. */
2746
2747 static boolean
2748 som_begin_writing (abfd)
2749 bfd *abfd;
2750 {
2751 unsigned long current_offset = 0;
2752 int strings_size = 0;
2753 unsigned int total_reloc_size = 0;
2754 unsigned long num_spaces, num_subspaces, num_syms, i;
2755 asection *section;
2756 asymbol **syms = bfd_get_outsymbols (abfd);
2757 unsigned int total_subspaces = 0;
2758 struct som_exec_auxhdr exec_header;
2759
2760 /* The file header will always be first in an object file,
2761 everything else can be in random locations. To keep things
2762 "simple" BFD will lay out the object file in the manner suggested
2763 by the PRO ABI for PA-RISC Systems. */
2764
2765 /* Before any output can really begin offsets for all the major
2766 portions of the object file must be computed. So, starting
2767 with the initial file header compute (and sometimes write)
2768 each portion of the object file. */
2769
2770 /* Make room for the file header, it's contents are not complete
2771 yet, so it can not be written at this time. */
2772 current_offset += sizeof (struct header);
2773
2774 /* Any auxiliary headers will follow the file header. Right now
2775 we support only the copyright and version headers. */
2776 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
2777 obj_som_file_hdr (abfd)->aux_header_size = 0;
2778 if (abfd->flags & EXEC_P)
2779 {
2780 /* Parts of the exec header will be filled in later, so
2781 delay writing the header itself. Fill in the defaults,
2782 and write it later. */
2783 current_offset += sizeof (exec_header);
2784 obj_som_file_hdr (abfd)->aux_header_size += sizeof (exec_header);
2785 memset (&exec_header, 0, sizeof (exec_header));
2786 exec_header.som_auxhdr.type = HPUX_AUX_ID;
2787 exec_header.som_auxhdr.length = 40;
2788 }
2789 if (obj_som_version_hdr (abfd) != NULL)
2790 {
2791 unsigned int len;
2792
2793 bfd_seek (abfd, current_offset, SEEK_SET);
2794
2795 /* Write the aux_id structure and the string length. */
2796 len = sizeof (struct aux_id) + sizeof (unsigned int);
2797 obj_som_file_hdr (abfd)->aux_header_size += len;
2798 current_offset += len;
2799 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
2800 {
2801 bfd_set_error (bfd_error_system_call);
2802 return false;
2803 }
2804
2805 /* Write the version string. */
2806 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
2807 obj_som_file_hdr (abfd)->aux_header_size += len;
2808 current_offset += len;
2809 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
2810 len, 1, abfd) != len)
2811 {
2812 bfd_set_error (bfd_error_system_call);
2813 return false;
2814 }
2815 }
2816
2817 if (obj_som_copyright_hdr (abfd) != NULL)
2818 {
2819 unsigned int len;
2820
2821 bfd_seek (abfd, current_offset, SEEK_SET);
2822
2823 /* Write the aux_id structure and the string length. */
2824 len = sizeof (struct aux_id) + sizeof (unsigned int);
2825 obj_som_file_hdr (abfd)->aux_header_size += len;
2826 current_offset += len;
2827 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
2828 {
2829 bfd_set_error (bfd_error_system_call);
2830 return false;
2831 }
2832
2833 /* Write the copyright string. */
2834 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
2835 obj_som_file_hdr (abfd)->aux_header_size += len;
2836 current_offset += len;
2837 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
2838 len, 1, abfd) != len)
2839 {
2840 bfd_set_error (bfd_error_system_call);
2841 return false;
2842 }
2843 }
2844
2845 /* Next comes the initialization pointers; we have no initialization
2846 pointers, so current offset does not change. */
2847 obj_som_file_hdr (abfd)->init_array_location = current_offset;
2848 obj_som_file_hdr (abfd)->init_array_total = 0;
2849
2850 /* Next are the space records. These are fixed length records.
2851
2852 Count the number of spaces to determine how much room is needed
2853 in the object file for the space records.
2854
2855 The names of the spaces are stored in a separate string table,
2856 and the index for each space into the string table is computed
2857 below. Therefore, it is not possible to write the space headers
2858 at this time. */
2859 num_spaces = som_count_spaces (abfd);
2860 obj_som_file_hdr (abfd)->space_location = current_offset;
2861 obj_som_file_hdr (abfd)->space_total = num_spaces;
2862 current_offset += num_spaces * sizeof (struct space_dictionary_record);
2863
2864 /* Next are the subspace records. These are fixed length records.
2865
2866 Count the number of subspaes to determine how much room is needed
2867 in the object file for the subspace records.
2868
2869 A variety if fields in the subspace record are still unknown at
2870 this time (index into string table, fixup stream location/size, etc). */
2871 num_subspaces = som_count_subspaces (abfd);
2872 obj_som_file_hdr (abfd)->subspace_location = current_offset;
2873 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
2874 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
2875
2876 /* Next is the string table for the space/subspace names. We will
2877 build and write the string table on the fly. At the same time
2878 we will fill in the space/subspace name index fields. */
2879
2880 /* The string table needs to be aligned on a word boundary. */
2881 if (current_offset % 4)
2882 current_offset += (4 - (current_offset % 4));
2883
2884 /* Mark the offset of the space/subspace string table in the
2885 file header. */
2886 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
2887
2888 /* Scribble out the space strings. */
2889 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
2890 return false;
2891
2892 /* Record total string table size in the header and update the
2893 current offset. */
2894 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
2895 current_offset += strings_size;
2896
2897 /* Next is the symbol table. These are fixed length records.
2898
2899 Count the number of symbols to determine how much room is needed
2900 in the object file for the symbol table.
2901
2902 The names of the symbols are stored in a separate string table,
2903 and the index for each symbol name into the string table is computed
2904 below. Therefore, it is not possible to write the symobl table
2905 at this time. */
2906 num_syms = bfd_get_symcount (abfd);
2907 obj_som_file_hdr (abfd)->symbol_location = current_offset;
2908 obj_som_file_hdr (abfd)->symbol_total = num_syms;
2909 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
2910
2911 /* Do prep work before handling fixups. */
2912 som_prep_for_fixups (abfd, syms, num_syms);
2913
2914 /* Next comes the fixup stream which starts on a word boundary. */
2915 if (current_offset % 4)
2916 current_offset += (4 - (current_offset % 4));
2917 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
2918
2919 /* Write the fixups and update fields in subspace headers which
2920 relate to the fixup stream. */
2921 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
2922 return false;
2923
2924 /* Record the total size of the fixup stream in the file header. */
2925 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
2926 current_offset += total_reloc_size;
2927
2928 /* Next are the symbol strings.
2929 Align them to a word boundary. */
2930 if (current_offset % 4)
2931 current_offset += (4 - (current_offset % 4));
2932 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
2933
2934 /* Scribble out the symbol strings. */
2935 if (som_write_symbol_strings (abfd, current_offset, syms,
2936 num_syms, &strings_size)
2937 == false)
2938 return false;
2939
2940 /* Record total string table size in header and update the
2941 current offset. */
2942 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
2943 current_offset += strings_size;
2944
2945 /* Next is the compiler records. We do not use these. */
2946 obj_som_file_hdr (abfd)->compiler_location = current_offset;
2947 obj_som_file_hdr (abfd)->compiler_total = 0;
2948
2949 /* Now compute the file positions for the loadable subspaces, taking
2950 care to make sure everything stays properly aligned. */
2951
2952 section = abfd->sections;
2953 for (i = 0; i < num_spaces; i++)
2954 {
2955 asection *subsection;
2956 int first_subspace;
2957
2958 /* Find a space. */
2959 while (!som_is_space (section))
2960 section = section->next;
2961
2962 first_subspace = 1;
2963 /* Now look for all its subspaces. */
2964 for (subsection = abfd->sections;
2965 subsection != NULL;
2966 subsection = subsection->next)
2967 {
2968
2969 if (!som_is_subspace (subsection)
2970 || !som_is_container (section, subsection)
2971 || (subsection->flags & SEC_ALLOC) == 0)
2972 continue;
2973
2974 /* If this is the first subspace in the space, and we are
2975 building an executable, then take care to make sure all
2976 the alignments are correct and update the exec header. */
2977 if (first_subspace
2978 && (abfd->flags & EXEC_P))
2979 {
2980 /* Demand paged executables have each space aligned to a
2981 page boundary. Sharable executables (write-protected
2982 text) have just the private (aka data & bss) space aligned
2983 to a page boundary. */
2984 if (abfd->flags & D_PAGED
2985 || ((abfd->flags & WP_TEXT)
2986 && (subsection->flags & SEC_DATA)))
2987 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
2988
2989 /* Update the exec header. */
2990 if (subsection->flags & SEC_CODE && exec_header.exec_tfile == 0)
2991 {
2992 exec_header.exec_tmem = section->vma;
2993 exec_header.exec_tfile = current_offset;
2994 }
2995 if (subsection->flags & SEC_DATA && exec_header.exec_dfile == 0)
2996 {
2997 exec_header.exec_dmem = section->vma;
2998 exec_header.exec_dfile = current_offset;
2999 }
3000
3001 /* Only do this for the first subspace within each space. */
3002 first_subspace = 0;
3003 }
3004
3005 subsection->target_index = total_subspaces++;
3006 /* This is real data to be loaded from the file. */
3007 if (subsection->flags & SEC_LOAD)
3008 {
3009 /* Update the size of the code & data. */
3010 if (abfd->flags & EXEC_P
3011 && subsection->flags & SEC_CODE)
3012 exec_header.exec_tsize += subsection->_cooked_size;
3013 else if (abfd->flags & EXEC_P
3014 && subsection->flags & SEC_DATA)
3015 exec_header.exec_dsize += subsection->_cooked_size;
3016 som_section_data (subsection)->subspace_dict->file_loc_init_value
3017 = current_offset;
3018 section->filepos = current_offset;
3019 current_offset += bfd_section_size (abfd, subsection);
3020 }
3021 /* Looks like uninitialized data. */
3022 else
3023 {
3024 /* Update the size of the bss section. */
3025 if (abfd->flags & EXEC_P)
3026 exec_header.exec_bsize += subsection->_cooked_size;
3027
3028 som_section_data (subsection)->subspace_dict->file_loc_init_value
3029 = 0;
3030 som_section_data (subsection)->subspace_dict->
3031 initialization_length = 0;
3032 }
3033 }
3034 /* Goto the next section. */
3035 section = section->next;
3036 }
3037
3038 /* Finally compute the file positions for unloadable subspaces.
3039 If building an executable, start the unloadable stuff on its
3040 own page. */
3041
3042 if (abfd->flags & EXEC_P)
3043 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3044
3045 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3046 section = abfd->sections;
3047 for (i = 0; i < num_spaces; i++)
3048 {
3049 asection *subsection;
3050
3051 /* Find a space. */
3052 while (!som_is_space (section))
3053 section = section->next;
3054
3055 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3056
3057 /* Now look for all its subspaces. */
3058 for (subsection = abfd->sections;
3059 subsection != NULL;
3060 subsection = subsection->next)
3061 {
3062
3063 if (!som_is_subspace (subsection)
3064 || !som_is_container (section, subsection)
3065 || (subsection->flags & SEC_ALLOC) != 0)
3066 continue;
3067
3068 subsection->target_index = total_subspaces;
3069 /* This is real data to be loaded from the file. */
3070 if ((subsection->flags & SEC_LOAD) == 0)
3071 {
3072 som_section_data (subsection)->subspace_dict->file_loc_init_value
3073 = current_offset;
3074 section->filepos = current_offset;
3075 current_offset += bfd_section_size (abfd, subsection);
3076 }
3077 /* Looks like uninitialized data. */
3078 else
3079 {
3080 som_section_data (subsection)->subspace_dict->file_loc_init_value
3081 = 0;
3082 som_section_data (subsection)->subspace_dict->
3083 initialization_length = bfd_section_size (abfd, subsection);
3084 }
3085 }
3086 /* Goto the next section. */
3087 section = section->next;
3088 }
3089
3090 /* If building an executable, then make sure to seek to and write
3091 one byte at the end of the file to make sure any necessary
3092 zeros are filled in. Ugh. */
3093 if (abfd->flags & EXEC_P)
3094 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3095 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
3096 {
3097 bfd_set_error (bfd_error_system_call);
3098 return false;
3099 }
3100 if (bfd_write ((PTR) "", 1, 1, abfd) != 1)
3101 {
3102 bfd_set_error (bfd_error_system_call);
3103 return false;
3104 }
3105
3106 obj_som_file_hdr (abfd)->unloadable_sp_size
3107 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3108
3109 /* Loader fixups are not supported in any way shape or form. */
3110 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3111 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3112
3113 /* Done. Store the total size of the SOM. */
3114 obj_som_file_hdr (abfd)->som_length = current_offset;
3115
3116 /* Now write the exec header. */
3117 if (abfd->flags & EXEC_P)
3118 {
3119 long tmp;
3120
3121 exec_header.exec_entry = bfd_get_start_address (abfd);
3122 exec_header.exec_flags = obj_som_exec_data (abfd)->exec_flags;
3123
3124 /* Oh joys. Ram some of the BSS data into the DATA section
3125 to be compatable with how the hp linker makes objects
3126 (saves memory space). */
3127 tmp = exec_header.exec_dsize;
3128 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3129 exec_header.exec_bsize -= (tmp - exec_header.exec_dsize);
3130 exec_header.exec_dsize = tmp;
3131
3132 bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location, SEEK_SET);
3133
3134 if (bfd_write ((PTR) &exec_header, AUX_HDR_SIZE, 1, abfd)
3135 != AUX_HDR_SIZE)
3136 {
3137 bfd_set_error (bfd_error_system_call);
3138 return false;
3139 }
3140 }
3141 return true;
3142 }
3143
3144 /* Finally, scribble out the various headers to the disk. */
3145
3146 static boolean
3147 som_write_headers (abfd)
3148 bfd *abfd;
3149 {
3150 int num_spaces = som_count_spaces (abfd);
3151 int i;
3152 int subspace_index = 0;
3153 file_ptr location;
3154 asection *section;
3155
3156 /* Subspaces are written first so that we can set up information
3157 about them in their containing spaces as the subspace is written. */
3158
3159 /* Seek to the start of the subspace dictionary records. */
3160 location = obj_som_file_hdr (abfd)->subspace_location;
3161 bfd_seek (abfd, location, SEEK_SET);
3162 section = abfd->sections;
3163 /* Now for each loadable space write out records for its subspaces. */
3164 for (i = 0; i < num_spaces; i++)
3165 {
3166 asection *subsection;
3167
3168 /* Find a space. */
3169 while (!som_is_space (section))
3170 section = section->next;
3171
3172 /* Now look for all its subspaces. */
3173 for (subsection = abfd->sections;
3174 subsection != NULL;
3175 subsection = subsection->next)
3176 {
3177
3178 /* Skip any section which does not correspond to a space
3179 or subspace. Or does not have SEC_ALLOC set (and therefore
3180 has no real bits on the disk). */
3181 if (!som_is_subspace (subsection)
3182 || !som_is_container (section, subsection)
3183 || (subsection->flags & SEC_ALLOC) == 0)
3184 continue;
3185
3186 /* If this is the first subspace for this space, then save
3187 the index of the subspace in its containing space. Also
3188 set "is_loadable" in the containing space. */
3189
3190 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3191 {
3192 som_section_data (section)->space_dict->is_loadable = 1;
3193 som_section_data (section)->space_dict->subspace_index
3194 = subspace_index;
3195 }
3196
3197 /* Increment the number of subspaces seen and the number of
3198 subspaces contained within the current space. */
3199 subspace_index++;
3200 som_section_data (section)->space_dict->subspace_quantity++;
3201
3202 /* Mark the index of the current space within the subspace's
3203 dictionary record. */
3204 som_section_data (subsection)->subspace_dict->space_index = i;
3205
3206 /* Dump the current subspace header. */
3207 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3208 sizeof (struct subspace_dictionary_record), 1, abfd)
3209 != sizeof (struct subspace_dictionary_record))
3210 {
3211 bfd_set_error (bfd_error_system_call);
3212 return false;
3213 }
3214 }
3215 /* Goto the next section. */
3216 section = section->next;
3217 }
3218
3219 /* Now repeat the process for unloadable subspaces. */
3220 section = abfd->sections;
3221 /* Now for each space write out records for its subspaces. */
3222 for (i = 0; i < num_spaces; i++)
3223 {
3224 asection *subsection;
3225
3226 /* Find a space. */
3227 while (!som_is_space (section))
3228 section = section->next;
3229
3230 /* Now look for all its subspaces. */
3231 for (subsection = abfd->sections;
3232 subsection != NULL;
3233 subsection = subsection->next)
3234 {
3235
3236 /* Skip any section which does not correspond to a space or
3237 subspace, or which SEC_ALLOC set (and therefore handled
3238 in the loadable spaces/subspaces code above. */
3239
3240 if (!som_is_subspace (subsection)
3241 || !som_is_container (section, subsection)
3242 || (subsection->flags & SEC_ALLOC) != 0)
3243 continue;
3244
3245 /* If this is the first subspace for this space, then save
3246 the index of the subspace in its containing space. Clear
3247 "is_loadable". */
3248
3249 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3250 {
3251 som_section_data (section)->space_dict->is_loadable = 0;
3252 som_section_data (section)->space_dict->subspace_index
3253 = subspace_index;
3254 }
3255
3256 /* Increment the number of subspaces seen and the number of
3257 subspaces contained within the current space. */
3258 som_section_data (section)->space_dict->subspace_quantity++;
3259 subspace_index++;
3260
3261 /* Mark the index of the current space within the subspace's
3262 dictionary record. */
3263 som_section_data (subsection)->subspace_dict->space_index = i;
3264
3265 /* Dump this subspace header. */
3266 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3267 sizeof (struct subspace_dictionary_record), 1, abfd)
3268 != sizeof (struct subspace_dictionary_record))
3269 {
3270 bfd_set_error (bfd_error_system_call);
3271 return false;
3272 }
3273 }
3274 /* Goto the next section. */
3275 section = section->next;
3276 }
3277
3278 /* All the subspace dictiondary records are written, and all the
3279 fields are set up in the space dictionary records.
3280
3281 Seek to the right location and start writing the space
3282 dictionary records. */
3283 location = obj_som_file_hdr (abfd)->space_location;
3284 bfd_seek (abfd, location, SEEK_SET);
3285
3286 section = abfd->sections;
3287 for (i = 0; i < num_spaces; i++)
3288 {
3289
3290 /* Find a space. */
3291 while (!som_is_space (section))
3292 section = section->next;
3293
3294 /* Dump its header */
3295 if (bfd_write ((PTR) som_section_data (section)->space_dict,
3296 sizeof (struct space_dictionary_record), 1, abfd)
3297 != sizeof (struct space_dictionary_record))
3298 {
3299 bfd_set_error (bfd_error_system_call);
3300 return false;
3301 }
3302
3303 /* Goto the next section. */
3304 section = section->next;
3305 }
3306
3307 /* Only thing left to do is write out the file header. It is always
3308 at location zero. Seek there and write it. */
3309 bfd_seek (abfd, (file_ptr) 0, SEEK_SET);
3310 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3311 sizeof (struct header), 1, abfd)
3312 != sizeof (struct header))
3313 {
3314 bfd_set_error (bfd_error_system_call);
3315 return false;
3316 }
3317 return true;
3318 }
3319
3320 /* Compute and return the checksum for a SOM file header. */
3321
3322 static unsigned long
3323 som_compute_checksum (abfd)
3324 bfd *abfd;
3325 {
3326 unsigned long checksum, count, i;
3327 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3328
3329 checksum = 0;
3330 count = sizeof (struct header) / sizeof (unsigned long);
3331 for (i = 0; i < count; i++)
3332 checksum ^= *(buffer + i);
3333
3334 return checksum;
3335 }
3336
3337 static void
3338 som_bfd_derive_misc_symbol_info (abfd, sym, info)
3339 bfd *abfd;
3340 asymbol *sym;
3341 struct som_misc_symbol_info *info;
3342 {
3343 /* Initialize. */
3344 memset (info, 0, sizeof (struct som_misc_symbol_info));
3345
3346 /* The HP SOM linker requires detailed type information about
3347 all symbols (including undefined symbols!). Unfortunately,
3348 the type specified in an import/export statement does not
3349 always match what the linker wants. Severe braindamage. */
3350
3351 /* Section symbols will not have a SOM symbol type assigned to
3352 them yet. Assign all section symbols type ST_DATA. */
3353 if (sym->flags & BSF_SECTION_SYM)
3354 info->symbol_type = ST_DATA;
3355 else
3356 {
3357 /* Common symbols must have scope SS_UNSAT and type
3358 ST_STORAGE or the linker will choke. */
3359 if (sym->section == &bfd_com_section)
3360 {
3361 info->symbol_scope = SS_UNSAT;
3362 info->symbol_type = ST_STORAGE;
3363 }
3364
3365 /* It is possible to have a symbol without an associated
3366 type. This happens if the user imported the symbol
3367 without a type and the symbol was never defined
3368 locally. If BSF_FUNCTION is set for this symbol, then
3369 assign it type ST_CODE (the HP linker requires undefined
3370 external functions to have type ST_CODE rather than ST_ENTRY). */
3371 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3372 && sym->section == &bfd_und_section
3373 && sym->flags & BSF_FUNCTION)
3374 info->symbol_type = ST_CODE;
3375
3376 /* Handle function symbols which were defined in this file.
3377 They should have type ST_ENTRY. Also retrieve the argument
3378 relocation bits from the SOM backend information. */
3379 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3380 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3381 && (sym->flags & BSF_FUNCTION))
3382 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3383 && (sym->flags & BSF_FUNCTION)))
3384 {
3385 info->symbol_type = ST_ENTRY;
3386 info->arg_reloc = som_symbol_data (sym)->tc_data.hppa_arg_reloc;
3387 }
3388
3389 /* If the type is unknown at this point, it should be
3390 ST_DATA (functions were handled as special cases above). */
3391 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3392 info->symbol_type = ST_DATA;
3393
3394 /* From now on it's a very simple mapping. */
3395 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3396 info->symbol_type = ST_ABSOLUTE;
3397 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3398 info->symbol_type = ST_CODE;
3399 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3400 info->symbol_type = ST_DATA;
3401 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3402 info->symbol_type = ST_MILLICODE;
3403 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3404 info->symbol_type = ST_PLABEL;
3405 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3406 info->symbol_type = ST_PRI_PROG;
3407 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3408 info->symbol_type = ST_SEC_PROG;
3409 }
3410
3411 /* Now handle the symbol's scope. Exported data which is not
3412 in the common section has scope SS_UNIVERSAL. Note scope
3413 of common symbols was handled earlier! */
3414 if (sym->flags & BSF_EXPORT && sym->section != &bfd_com_section)
3415 info->symbol_scope = SS_UNIVERSAL;
3416 /* Any undefined symbol at this point has a scope SS_UNSAT. */
3417 else if (sym->section == &bfd_und_section)
3418 info->symbol_scope = SS_UNSAT;
3419 /* Anything else which is not in the common section has scope
3420 SS_LOCAL. */
3421 else if (sym->section != &bfd_com_section)
3422 info->symbol_scope = SS_LOCAL;
3423
3424 /* Now set the symbol_info field. It has no real meaning
3425 for undefined or common symbols, but the HP linker will
3426 choke if it's not set to some "reasonable" value. We
3427 use zero as a reasonable value. */
3428 if (sym->section == &bfd_com_section || sym->section == &bfd_und_section
3429 || sym->section == &bfd_abs_section)
3430 info->symbol_info = 0;
3431 /* For all other symbols, the symbol_info field contains the
3432 subspace index of the space this symbol is contained in. */
3433 else
3434 info->symbol_info = sym->section->target_index;
3435
3436 /* Set the symbol's value. */
3437 info->symbol_value = sym->value + sym->section->vma;
3438 }
3439
3440 /* Build and write, in one big chunk, the entire symbol table for
3441 this BFD. */
3442
3443 static boolean
3444 som_build_and_write_symbol_table (abfd)
3445 bfd *abfd;
3446 {
3447 unsigned int num_syms = bfd_get_symcount (abfd);
3448 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3449 asymbol **bfd_syms = bfd_get_outsymbols (abfd);
3450 struct symbol_dictionary_record *som_symtab = NULL;
3451 int i, symtab_size;
3452
3453 /* Compute total symbol table size and allocate a chunk of memory
3454 to hold the symbol table as we build it. */
3455 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3456 som_symtab = (struct symbol_dictionary_record *) malloc (symtab_size);
3457 if (som_symtab == NULL && symtab_size != 0)
3458 {
3459 bfd_set_error (bfd_error_no_memory);
3460 goto error_return;
3461 }
3462 memset (som_symtab, 0, symtab_size);
3463
3464 /* Walk over each symbol. */
3465 for (i = 0; i < num_syms; i++)
3466 {
3467 struct som_misc_symbol_info info;
3468
3469 /* This is really an index into the symbol strings table.
3470 By the time we get here, the index has already been
3471 computed and stored into the name field in the BFD symbol. */
3472 som_symtab[i].name.n_strx = (int) bfd_syms[i]->name;
3473
3474 /* Derive SOM information from the BFD symbol. */
3475 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
3476
3477 /* Now use it. */
3478 som_symtab[i].symbol_type = info.symbol_type;
3479 som_symtab[i].symbol_scope = info.symbol_scope;
3480 som_symtab[i].arg_reloc = info.arg_reloc;
3481 som_symtab[i].symbol_info = info.symbol_info;
3482 som_symtab[i].symbol_value = info.symbol_value;
3483 }
3484
3485 /* Everything is ready, seek to the right location and
3486 scribble out the symbol table. */
3487 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3488 {
3489 bfd_set_error (bfd_error_system_call);
3490 goto error_return;
3491 }
3492
3493 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3494 {
3495 bfd_set_error (bfd_error_system_call);
3496 goto error_return;
3497 }
3498
3499 if (som_symtab != NULL)
3500 free (som_symtab);
3501 return true;
3502 error_return:
3503 if (som_symtab != NULL)
3504 free (som_symtab);
3505 return false;
3506 }
3507
3508 /* Write an object in SOM format. */
3509
3510 static boolean
3511 som_write_object_contents (abfd)
3512 bfd *abfd;
3513 {
3514 if (abfd->output_has_begun == false)
3515 {
3516 /* Set up fixed parts of the file, space, and subspace headers.
3517 Notify the world that output has begun. */
3518 som_prep_headers (abfd);
3519 abfd->output_has_begun = true;
3520 /* Start writing the object file. This include all the string
3521 tables, fixup streams, and other portions of the object file. */
3522 som_begin_writing (abfd);
3523 }
3524
3525 /* Now that the symbol table information is complete, build and
3526 write the symbol table. */
3527 if (som_build_and_write_symbol_table (abfd) == false)
3528 return false;
3529
3530 /* Compute the checksum for the file header just before writing
3531 the header to disk. */
3532 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3533 return (som_write_headers (abfd));
3534 }
3535
3536 \f
3537 /* Read and save the string table associated with the given BFD. */
3538
3539 static boolean
3540 som_slurp_string_table (abfd)
3541 bfd *abfd;
3542 {
3543 char *stringtab;
3544
3545 /* Use the saved version if its available. */
3546 if (obj_som_stringtab (abfd) != NULL)
3547 return true;
3548
3549 /* Allocate and read in the string table. */
3550 stringtab = bfd_zalloc (abfd, obj_som_stringtab_size (abfd));
3551 if (stringtab == NULL)
3552 {
3553 bfd_set_error (bfd_error_no_memory);
3554 return false;
3555 }
3556
3557 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3558 {
3559 bfd_set_error (bfd_error_system_call);
3560 return false;
3561 }
3562
3563 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3564 != obj_som_stringtab_size (abfd))
3565 {
3566 bfd_set_error (bfd_error_system_call);
3567 return false;
3568 }
3569
3570 /* Save our results and return success. */
3571 obj_som_stringtab (abfd) = stringtab;
3572 return true;
3573 }
3574
3575 /* Return the amount of data (in bytes) required to hold the symbol
3576 table for this object. */
3577
3578 static unsigned int
3579 som_get_symtab_upper_bound (abfd)
3580 bfd *abfd;
3581 {
3582 if (!som_slurp_symbol_table (abfd))
3583 return 0;
3584
3585 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
3586 }
3587
3588 /* Convert from a SOM subspace index to a BFD section. */
3589
3590 static asection *
3591 som_section_from_subspace_index (abfd, index)
3592 bfd *abfd;
3593 unsigned int index;
3594 {
3595 asection *section;
3596
3597 for (section = abfd->sections; section != NULL; section = section->next)
3598 if (section->target_index == index)
3599 return section;
3600
3601 /* Should never happen. */
3602 abort();
3603 }
3604
3605 /* Read and save the symbol table associated with the given BFD. */
3606
3607 static unsigned int
3608 som_slurp_symbol_table (abfd)
3609 bfd *abfd;
3610 {
3611 int symbol_count = bfd_get_symcount (abfd);
3612 int symsize = sizeof (struct symbol_dictionary_record);
3613 char *stringtab;
3614 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
3615 som_symbol_type *sym, *symbase;
3616
3617 /* Return saved value if it exists. */
3618 if (obj_som_symtab (abfd) != NULL)
3619 goto successful_return;
3620
3621 /* Special case. This is *not* an error. */
3622 if (symbol_count == 0)
3623 goto successful_return;
3624
3625 if (!som_slurp_string_table (abfd))
3626 goto error_return;
3627
3628 stringtab = obj_som_stringtab (abfd);
3629
3630 symbase = (som_symbol_type *)
3631 bfd_zalloc (abfd, symbol_count * sizeof (som_symbol_type));
3632 if (symbase == NULL)
3633 {
3634 bfd_set_error (bfd_error_no_memory);
3635 goto error_return;
3636 }
3637
3638 /* Read in the external SOM representation. */
3639 buf = malloc (symbol_count * symsize);
3640 if (buf == NULL && symbol_count * symsize != 0)
3641 {
3642 bfd_set_error (bfd_error_no_memory);
3643 goto error_return;
3644 }
3645 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
3646 {
3647 bfd_set_error (bfd_error_system_call);
3648 goto error_return;
3649 }
3650 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
3651 != symbol_count * symsize)
3652 {
3653 bfd_set_error (bfd_error_no_symbols);
3654 goto error_return;
3655 }
3656
3657 /* Iterate over all the symbols and internalize them. */
3658 endbufp = buf + symbol_count;
3659 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
3660 {
3661
3662 /* I don't think we care about these. */
3663 if (bufp->symbol_type == ST_SYM_EXT
3664 || bufp->symbol_type == ST_ARG_EXT)
3665 continue;
3666
3667 /* Set some private data we care about. */
3668 if (bufp->symbol_type == ST_NULL)
3669 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3670 else if (bufp->symbol_type == ST_ABSOLUTE)
3671 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
3672 else if (bufp->symbol_type == ST_DATA)
3673 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
3674 else if (bufp->symbol_type == ST_CODE)
3675 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
3676 else if (bufp->symbol_type == ST_PRI_PROG)
3677 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
3678 else if (bufp->symbol_type == ST_SEC_PROG)
3679 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
3680 else if (bufp->symbol_type == ST_ENTRY)
3681 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
3682 else if (bufp->symbol_type == ST_MILLICODE)
3683 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
3684 else if (bufp->symbol_type == ST_PLABEL)
3685 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
3686 else
3687 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3688 som_symbol_data (sym)->tc_data.hppa_arg_reloc = bufp->arg_reloc;
3689
3690 /* Some reasonable defaults. */
3691 sym->symbol.the_bfd = abfd;
3692 sym->symbol.name = bufp->name.n_strx + stringtab;
3693 sym->symbol.value = bufp->symbol_value;
3694 sym->symbol.section = 0;
3695 sym->symbol.flags = 0;
3696
3697 switch (bufp->symbol_type)
3698 {
3699 case ST_ENTRY:
3700 case ST_PRI_PROG:
3701 case ST_SEC_PROG:
3702 case ST_MILLICODE:
3703 sym->symbol.flags |= BSF_FUNCTION;
3704 sym->symbol.value &= ~0x3;
3705 break;
3706
3707 case ST_STUB:
3708 case ST_CODE:
3709 sym->symbol.value &= ~0x3;
3710
3711 default:
3712 break;
3713 }
3714
3715 /* Handle scoping and section information. */
3716 switch (bufp->symbol_scope)
3717 {
3718 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
3719 so the section associated with this symbol can't be known. */
3720 case SS_EXTERNAL:
3721 if (bufp->symbol_type != ST_STORAGE)
3722 sym->symbol.section = &bfd_und_section;
3723 else
3724 sym->symbol.section = &bfd_com_section;
3725 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3726 break;
3727
3728 case SS_UNSAT:
3729 if (bufp->symbol_type != ST_STORAGE)
3730 sym->symbol.section = &bfd_und_section;
3731 else
3732 sym->symbol.section = &bfd_com_section;
3733 break;
3734
3735 case SS_UNIVERSAL:
3736 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3737 sym->symbol.section
3738 = som_section_from_subspace_index (abfd, bufp->symbol_info);
3739 sym->symbol.value -= sym->symbol.section->vma;
3740 break;
3741
3742 #if 0
3743 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
3744 Sound dumb? It is. */
3745 case SS_GLOBAL:
3746 #endif
3747 case SS_LOCAL:
3748 sym->symbol.flags |= BSF_LOCAL;
3749 sym->symbol.section
3750 = som_section_from_subspace_index (abfd, bufp->symbol_info);
3751 sym->symbol.value -= sym->symbol.section->vma;
3752 break;
3753 }
3754
3755 /* Mark section symbols and symbols used by the debugger. */
3756 if (sym->symbol.name[0] == '$'
3757 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$')
3758 sym->symbol.flags |= BSF_SECTION_SYM;
3759 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
3760 {
3761 sym->symbol.flags |= BSF_SECTION_SYM;
3762 sym->symbol.name = sym->symbol.section->name;
3763 }
3764 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
3765 sym->symbol.flags |= BSF_DEBUGGING;
3766
3767 /* Note increment at bottom of loop, since we skip some symbols
3768 we can not include it as part of the for statement. */
3769 sym++;
3770 }
3771
3772 /* Save our results and return success. */
3773 obj_som_symtab (abfd) = symbase;
3774 successful_return:
3775 if (buf != NULL)
3776 free (buf);
3777 return (true);
3778
3779 error_return:
3780 if (buf != NULL)
3781 free (buf);
3782 return false;
3783 }
3784
3785 /* Canonicalize a SOM symbol table. Return the number of entries
3786 in the symbol table. */
3787
3788 static unsigned int
3789 som_get_symtab (abfd, location)
3790 bfd *abfd;
3791 asymbol **location;
3792 {
3793 int i;
3794 som_symbol_type *symbase;
3795
3796 if (!som_slurp_symbol_table (abfd))
3797 return 0;
3798
3799 i = bfd_get_symcount (abfd);
3800 symbase = obj_som_symtab (abfd);
3801
3802 for (; i > 0; i--, location++, symbase++)
3803 *location = &symbase->symbol;
3804
3805 /* Final null pointer. */
3806 *location = 0;
3807 return (bfd_get_symcount (abfd));
3808 }
3809
3810 /* Make a SOM symbol. There is nothing special to do here. */
3811
3812 static asymbol *
3813 som_make_empty_symbol (abfd)
3814 bfd *abfd;
3815 {
3816 som_symbol_type *new =
3817 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
3818 if (new == NULL)
3819 {
3820 bfd_set_error (bfd_error_no_memory);
3821 return 0;
3822 }
3823 new->symbol.the_bfd = abfd;
3824
3825 return &new->symbol;
3826 }
3827
3828 /* Print symbol information. */
3829
3830 static void
3831 som_print_symbol (ignore_abfd, afile, symbol, how)
3832 bfd *ignore_abfd;
3833 PTR afile;
3834 asymbol *symbol;
3835 bfd_print_symbol_type how;
3836 {
3837 FILE *file = (FILE *) afile;
3838 switch (how)
3839 {
3840 case bfd_print_symbol_name:
3841 fprintf (file, "%s", symbol->name);
3842 break;
3843 case bfd_print_symbol_more:
3844 fprintf (file, "som ");
3845 fprintf_vma (file, symbol->value);
3846 fprintf (file, " %lx", (long) symbol->flags);
3847 break;
3848 case bfd_print_symbol_all:
3849 {
3850 CONST char *section_name;
3851 section_name = symbol->section ? symbol->section->name : "(*none*)";
3852 bfd_print_symbol_vandf ((PTR) file, symbol);
3853 fprintf (file, " %s\t%s", section_name, symbol->name);
3854 break;
3855 }
3856 }
3857 }
3858
3859 static boolean
3860 som_bfd_is_local_label (abfd, sym)
3861 bfd *abfd;
3862 asymbol *sym;
3863 {
3864 return (sym->name[0] == 'L' && sym->name[1] == '$');
3865 }
3866
3867 /* Count or process variable-length SOM fixup records.
3868
3869 To avoid code duplication we use this code both to compute the number
3870 of relocations requested by a stream, and to internalize the stream.
3871
3872 When computing the number of relocations requested by a stream the
3873 variables rptr, section, and symbols have no meaning.
3874
3875 Return the number of relocations requested by the fixup stream. When
3876 not just counting
3877
3878 This needs at least two or three more passes to get it cleaned up. */
3879
3880 static unsigned int
3881 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
3882 unsigned char *fixup;
3883 unsigned int end;
3884 arelent *internal_relocs;
3885 asection *section;
3886 asymbol **symbols;
3887 boolean just_count;
3888 {
3889 unsigned int op, varname;
3890 unsigned char *end_fixups = &fixup[end];
3891 const struct fixup_format *fp;
3892 char *cp;
3893 unsigned char *save_fixup;
3894 int variables[26], stack[20], c, v, count, prev_fixup, *sp;
3895 const int *subop;
3896 arelent *rptr= internal_relocs;
3897 unsigned int offset = just_count ? 0 : section->vma;
3898
3899 #define var(c) variables[(c) - 'A']
3900 #define push(v) (*sp++ = (v))
3901 #define pop() (*--sp)
3902 #define emptystack() (sp == stack)
3903
3904 som_initialize_reloc_queue (reloc_queue);
3905 memset (variables, 0, sizeof (variables));
3906 memset (stack, 0, sizeof (stack));
3907 count = 0;
3908 prev_fixup = 0;
3909 sp = stack;
3910
3911 while (fixup < end_fixups)
3912 {
3913
3914 /* Save pointer to the start of this fixup. We'll use
3915 it later to determine if it is necessary to put this fixup
3916 on the queue. */
3917 save_fixup = fixup;
3918
3919 /* Get the fixup code and its associated format. */
3920 op = *fixup++;
3921 fp = &som_fixup_formats[op];
3922
3923 /* Handle a request for a previous fixup. */
3924 if (*fp->format == 'P')
3925 {
3926 /* Get pointer to the beginning of the prev fixup, move
3927 the repeated fixup to the head of the queue. */
3928 fixup = reloc_queue[fp->D].reloc;
3929 som_reloc_queue_fix (reloc_queue, fp->D);
3930 prev_fixup = 1;
3931
3932 /* Get the fixup code and its associated format. */
3933 op = *fixup++;
3934 fp = &som_fixup_formats[op];
3935 }
3936
3937 /* If we are not just counting, set some reasonable defaults. */
3938 if (! just_count)
3939 {
3940 rptr->address = offset;
3941 rptr->howto = &som_hppa_howto_table[op];
3942 rptr->addend = 0;
3943 rptr->sym_ptr_ptr = bfd_abs_section.symbol_ptr_ptr;
3944 }
3945
3946 /* Set default input length to 0. Get the opcode class index
3947 into D. */
3948 var ('L') = 0;
3949 var ('D') = fp->D;
3950
3951 /* Get the opcode format. */
3952 cp = fp->format;
3953
3954 /* Process the format string. Parsing happens in two phases,
3955 parse RHS, then assign to LHS. Repeat until no more
3956 characters in the format string. */
3957 while (*cp)
3958 {
3959 /* The variable this pass is going to compute a value for. */
3960 varname = *cp++;
3961
3962 /* Start processing RHS. Continue until a NULL or '=' is found. */
3963 do
3964 {
3965 c = *cp++;
3966
3967 /* If this is a variable, push it on the stack. */
3968 if (isupper (c))
3969 push (var (c));
3970
3971 /* If this is a lower case letter, then it represents
3972 additional data from the fixup stream to be pushed onto
3973 the stack. */
3974 else if (islower (c))
3975 {
3976 for (v = 0; c > 'a'; --c)
3977 v = (v << 8) | *fixup++;
3978 push (v);
3979 }
3980
3981 /* A decimal constant. Push it on the stack. */
3982 else if (isdigit (c))
3983 {
3984 v = c - '0';
3985 while (isdigit (*cp))
3986 v = (v * 10) + (*cp++ - '0');
3987 push (v);
3988 }
3989 else
3990
3991 /* An operator. Pop two two values from the stack and
3992 use them as operands to the given operation. Push
3993 the result of the operation back on the stack. */
3994 switch (c)
3995 {
3996 case '+':
3997 v = pop ();
3998 v += pop ();
3999 push (v);
4000 break;
4001 case '*':
4002 v = pop ();
4003 v *= pop ();
4004 push (v);
4005 break;
4006 case '<':
4007 v = pop ();
4008 v = pop () << v;
4009 push (v);
4010 break;
4011 default:
4012 abort ();
4013 }
4014 }
4015 while (*cp && *cp != '=');
4016
4017 /* Move over the equal operator. */
4018 cp++;
4019
4020 /* Pop the RHS off the stack. */
4021 c = pop ();
4022
4023 /* Perform the assignment. */
4024 var (varname) = c;
4025
4026 /* Handle side effects. and special 'O' stack cases. */
4027 switch (varname)
4028 {
4029 /* Consume some bytes from the input space. */
4030 case 'L':
4031 offset += c;
4032 break;
4033 /* A symbol to use in the relocation. Make a note
4034 of this if we are not just counting. */
4035 case 'S':
4036 if (! just_count)
4037 rptr->sym_ptr_ptr = &symbols[c];
4038 break;
4039 /* Handle the linker expression stack. */
4040 case 'O':
4041 switch (op)
4042 {
4043 case R_COMP1:
4044 subop = comp1_opcodes;
4045 break;
4046 case R_COMP2:
4047 subop = comp2_opcodes;
4048 break;
4049 case R_COMP3:
4050 subop = comp3_opcodes;
4051 break;
4052 default:
4053 abort ();
4054 }
4055 while (*subop <= (unsigned char) c)
4056 ++subop;
4057 --subop;
4058 break;
4059 default:
4060 break;
4061 }
4062 }
4063
4064 /* If we used a previous fixup, clean up after it. */
4065 if (prev_fixup)
4066 {
4067 fixup = save_fixup + 1;
4068 prev_fixup = 0;
4069 }
4070 /* Queue it. */
4071 else if (fixup > save_fixup + 1)
4072 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4073
4074 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4075 fixups to BFD. */
4076 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4077 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4078 {
4079 /* Done with a single reloction. Loop back to the top. */
4080 if (! just_count)
4081 {
4082 rptr->addend = var ('V');
4083 rptr++;
4084 }
4085 count++;
4086 /* Now that we've handled a "full" relocation, reset
4087 some state. */
4088 memset (variables, 0, sizeof (variables));
4089 memset (stack, 0, sizeof (stack));
4090 }
4091 }
4092 return count;
4093
4094 #undef var
4095 #undef push
4096 #undef pop
4097 #undef emptystack
4098 }
4099
4100 /* Read in the relocs (aka fixups in SOM terms) for a section.
4101
4102 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4103 set to true to indicate it only needs a count of the number
4104 of actual relocations. */
4105
4106 static boolean
4107 som_slurp_reloc_table (abfd, section, symbols, just_count)
4108 bfd *abfd;
4109 asection *section;
4110 asymbol **symbols;
4111 boolean just_count;
4112 {
4113 char *external_relocs;
4114 unsigned int fixup_stream_size;
4115 arelent *internal_relocs;
4116 unsigned int num_relocs;
4117
4118 fixup_stream_size = som_section_data (section)->reloc_size;
4119 /* If there were no relocations, then there is nothing to do. */
4120 if (section->reloc_count == 0)
4121 return true;
4122
4123 /* If reloc_count is -1, then the relocation stream has not been
4124 parsed. We must do so now to know how many relocations exist. */
4125 if (section->reloc_count == -1)
4126 {
4127 external_relocs = (char *) bfd_zalloc (abfd, fixup_stream_size);
4128 if (external_relocs == (char *) NULL)
4129 {
4130 bfd_set_error (bfd_error_no_memory);
4131 return false;
4132 }
4133 /* Read in the external forms. */
4134 if (bfd_seek (abfd,
4135 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4136 SEEK_SET)
4137 != 0)
4138 {
4139 bfd_set_error (bfd_error_system_call);
4140 return false;
4141 }
4142 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
4143 != fixup_stream_size)
4144 {
4145 bfd_set_error (bfd_error_system_call);
4146 return false;
4147 }
4148 /* Let callers know how many relocations found.
4149 also save the relocation stream as we will
4150 need it again. */
4151 section->reloc_count = som_set_reloc_info (external_relocs,
4152 fixup_stream_size,
4153 NULL, NULL, NULL, true);
4154
4155 som_section_data (section)->reloc_stream = external_relocs;
4156 }
4157
4158 /* If the caller only wanted a count, then return now. */
4159 if (just_count)
4160 return true;
4161
4162 num_relocs = section->reloc_count;
4163 external_relocs = som_section_data (section)->reloc_stream;
4164 /* Return saved information about the relocations if it is available. */
4165 if (section->relocation != (arelent *) NULL)
4166 return true;
4167
4168 internal_relocs = (arelent *) bfd_zalloc (abfd,
4169 num_relocs * sizeof (arelent));
4170 if (internal_relocs == (arelent *) NULL)
4171 {
4172 bfd_set_error (bfd_error_no_memory);
4173 return false;
4174 }
4175
4176 /* Process and internalize the relocations. */
4177 som_set_reloc_info (external_relocs, fixup_stream_size,
4178 internal_relocs, section, symbols, false);
4179
4180 /* Save our results and return success. */
4181 section->relocation = internal_relocs;
4182 return (true);
4183 }
4184
4185 /* Return the number of bytes required to store the relocation
4186 information associated with the given section. */
4187
4188 static unsigned int
4189 som_get_reloc_upper_bound (abfd, asect)
4190 bfd *abfd;
4191 sec_ptr asect;
4192 {
4193 /* If section has relocations, then read in the relocation stream
4194 and parse it to determine how many relocations exist. */
4195 if (asect->flags & SEC_RELOC)
4196 {
4197 if (som_slurp_reloc_table (abfd, asect, NULL, true))
4198 return (asect->reloc_count + 1) * sizeof (arelent);
4199 }
4200 /* Either there are no relocations or an error occurred while
4201 reading and parsing the relocation stream. */
4202 return 0;
4203 }
4204
4205 /* Convert relocations from SOM (external) form into BFD internal
4206 form. Return the number of relocations. */
4207
4208 static unsigned int
4209 som_canonicalize_reloc (abfd, section, relptr, symbols)
4210 bfd *abfd;
4211 sec_ptr section;
4212 arelent **relptr;
4213 asymbol **symbols;
4214 {
4215 arelent *tblptr;
4216 int count;
4217
4218 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
4219 return 0;
4220
4221 count = section->reloc_count;
4222 tblptr = section->relocation;
4223 if (tblptr == (arelent *) NULL)
4224 return 0;
4225
4226 while (count--)
4227 *relptr++ = tblptr++;
4228
4229 *relptr = (arelent *) NULL;
4230 return section->reloc_count;
4231 }
4232
4233 extern bfd_target som_vec;
4234
4235 /* A hook to set up object file dependent section information. */
4236
4237 static boolean
4238 som_new_section_hook (abfd, newsect)
4239 bfd *abfd;
4240 asection *newsect;
4241 {
4242 newsect->used_by_bfd =
4243 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
4244 if (!newsect->used_by_bfd)
4245 {
4246 bfd_set_error (bfd_error_no_memory);
4247 return false;
4248 }
4249 newsect->alignment_power = 3;
4250
4251 /* We allow more than three sections internally */
4252 return true;
4253 }
4254
4255 /* Copy any private info we understand from the input section
4256 to the output section. */
4257 static boolean
4258 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
4259 bfd *ibfd;
4260 asection *isection;
4261 bfd *obfd;
4262 asection *osection;
4263 {
4264 /* One day we may try to grok other private data. */
4265 if (ibfd->xvec->flavour != bfd_target_som_flavour
4266 || obfd->xvec->flavour != bfd_target_som_flavour
4267 || (!som_is_space (isection) && !som_is_subspace (isection)))
4268 return false;
4269
4270 som_section_data (osection)->copy_data
4271 = (struct som_copyable_section_data_struct *)
4272 bfd_zalloc (obfd, sizeof (struct som_copyable_section_data_struct));
4273 if (som_section_data (osection)->copy_data == NULL)
4274 {
4275 bfd_set_error (bfd_error_no_memory);
4276 return false;
4277 }
4278
4279 memcpy (som_section_data (osection)->copy_data,
4280 som_section_data (isection)->copy_data,
4281 sizeof (struct som_copyable_section_data_struct));
4282
4283 /* Reparent if necessary. */
4284 if (som_section_data (osection)->copy_data->container)
4285 som_section_data (osection)->copy_data->container =
4286 som_section_data (osection)->copy_data->container->output_section;
4287
4288 return true;
4289 }
4290
4291 /* Copy any private info we understand from the input bfd
4292 to the output bfd. */
4293
4294 static boolean
4295 som_bfd_copy_private_bfd_data (ibfd, obfd)
4296 bfd *ibfd, *obfd;
4297 {
4298 /* One day we may try to grok other private data. */
4299 if (ibfd->xvec->flavour != bfd_target_som_flavour
4300 || obfd->xvec->flavour != bfd_target_som_flavour)
4301 return false;
4302
4303 /* Allocate some memory to hold the data we need. */
4304 obj_som_exec_data (obfd) = (struct som_exec_data *)
4305 bfd_zalloc (obfd, sizeof (struct som_exec_data));
4306 if (obj_som_exec_data (obfd) == NULL)
4307 {
4308 bfd_set_error (bfd_error_no_memory);
4309 return false;
4310 }
4311
4312 /* Now copy the data. */
4313 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
4314 sizeof (struct som_exec_data));
4315
4316 return true;
4317 }
4318
4319 /* Set backend info for sections which can not be described
4320 in the BFD data structures. */
4321
4322 boolean
4323 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
4324 asection *section;
4325 int defined;
4326 int private;
4327 unsigned int sort_key;
4328 int spnum;
4329 {
4330 /* Allocate memory to hold the magic information. */
4331 if (som_section_data (section)->copy_data == NULL)
4332 {
4333 som_section_data (section)->copy_data
4334 = (struct som_copyable_section_data_struct *)
4335 bfd_zalloc (section->owner,
4336 sizeof (struct som_copyable_section_data_struct));
4337 if (som_section_data (section)->copy_data == NULL)
4338 {
4339 bfd_set_error (bfd_error_no_memory);
4340 return false;
4341 }
4342 }
4343 som_section_data (section)->copy_data->sort_key = sort_key;
4344 som_section_data (section)->copy_data->is_defined = defined;
4345 som_section_data (section)->copy_data->is_private = private;
4346 som_section_data (section)->copy_data->container = section;
4347 section->target_index = spnum;
4348 return true;
4349 }
4350
4351 /* Set backend info for subsections which can not be described
4352 in the BFD data structures. */
4353
4354 boolean
4355 bfd_som_set_subsection_attributes (section, container, access,
4356 sort_key, quadrant)
4357 asection *section;
4358 asection *container;
4359 int access;
4360 unsigned int sort_key;
4361 int quadrant;
4362 {
4363 /* Allocate memory to hold the magic information. */
4364 if (som_section_data (section)->copy_data == NULL)
4365 {
4366 som_section_data (section)->copy_data
4367 = (struct som_copyable_section_data_struct *)
4368 bfd_zalloc (section->owner,
4369 sizeof (struct som_copyable_section_data_struct));
4370 if (som_section_data (section)->copy_data == NULL)
4371 {
4372 bfd_set_error (bfd_error_no_memory);
4373 return false;
4374 }
4375 }
4376 som_section_data (section)->copy_data->sort_key = sort_key;
4377 som_section_data (section)->copy_data->access_control_bits = access;
4378 som_section_data (section)->copy_data->quadrant = quadrant;
4379 som_section_data (section)->copy_data->container = container;
4380 return true;
4381 }
4382
4383 /* Set the full SOM symbol type. SOM needs far more symbol information
4384 than any other object file format I'm aware of. It is mandatory
4385 to be able to know if a symbol is an entry point, millicode, data,
4386 code, absolute, storage request, or procedure label. If you get
4387 the symbol type wrong your program will not link. */
4388
4389 void
4390 bfd_som_set_symbol_type (symbol, type)
4391 asymbol *symbol;
4392 unsigned int type;
4393 {
4394 som_symbol_data (symbol)->som_type = type;
4395 }
4396
4397 /* Attach 64bits of unwind information to a symbol (which hopefully
4398 is a function of some kind!). It would be better to keep this
4399 in the R_ENTRY relocation, but there is not enough space. */
4400
4401 void
4402 bfd_som_attach_unwind_info (symbol, unwind_desc)
4403 asymbol *symbol;
4404 char *unwind_desc;
4405 {
4406 som_symbol_data (symbol)->unwind = unwind_desc;
4407 }
4408
4409 /* Attach an auxiliary header to the BFD backend so that it may be
4410 written into the object file. */
4411 boolean
4412 bfd_som_attach_aux_hdr (abfd, type, string)
4413 bfd *abfd;
4414 int type;
4415 char *string;
4416 {
4417 if (type == VERSION_AUX_ID)
4418 {
4419 int len = strlen (string);
4420 int pad = 0;
4421
4422 if (len % 4)
4423 pad = (4 - (len % 4));
4424 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
4425 bfd_zalloc (abfd, sizeof (struct aux_id)
4426 + sizeof (unsigned int) + len + pad);
4427 if (!obj_som_version_hdr (abfd))
4428 {
4429 bfd_set_error (bfd_error_no_memory);
4430 return false;
4431 }
4432 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
4433 obj_som_version_hdr (abfd)->header_id.length = len + pad;
4434 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
4435 obj_som_version_hdr (abfd)->string_length = len;
4436 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
4437 }
4438 else if (type == COPYRIGHT_AUX_ID)
4439 {
4440 int len = strlen (string);
4441 int pad = 0;
4442
4443 if (len % 4)
4444 pad = (4 - (len % 4));
4445 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
4446 bfd_zalloc (abfd, sizeof (struct aux_id)
4447 + sizeof (unsigned int) + len + pad);
4448 if (!obj_som_copyright_hdr (abfd))
4449 {
4450 bfd_set_error (bfd_error_no_error);
4451 return false;
4452 }
4453 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
4454 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
4455 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
4456 obj_som_copyright_hdr (abfd)->string_length = len;
4457 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
4458 }
4459 return true;
4460 }
4461
4462 static boolean
4463 som_set_section_contents (abfd, section, location, offset, count)
4464 bfd *abfd;
4465 sec_ptr section;
4466 PTR location;
4467 file_ptr offset;
4468 bfd_size_type count;
4469 {
4470 if (abfd->output_has_begun == false)
4471 {
4472 /* Set up fixed parts of the file, space, and subspace headers.
4473 Notify the world that output has begun. */
4474 som_prep_headers (abfd);
4475 abfd->output_has_begun = true;
4476 /* Start writing the object file. This include all the string
4477 tables, fixup streams, and other portions of the object file. */
4478 som_begin_writing (abfd);
4479 }
4480
4481 /* Only write subspaces which have "real" contents (eg. the contents
4482 are not generated at run time by the OS). */
4483 if (!som_is_subspace (section)
4484 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4485 return true;
4486
4487 /* Seek to the proper offset within the object file and write the
4488 data. */
4489 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
4490 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
4491 {
4492 bfd_set_error (bfd_error_system_call);
4493 return false;
4494 }
4495
4496 if (bfd_write ((PTR) location, 1, count, abfd) != count)
4497 {
4498 bfd_set_error (bfd_error_system_call);
4499 return false;
4500 }
4501 return true;
4502 }
4503
4504 static boolean
4505 som_set_arch_mach (abfd, arch, machine)
4506 bfd *abfd;
4507 enum bfd_architecture arch;
4508 unsigned long machine;
4509 {
4510 /* Allow any architecture to be supported by the SOM backend */
4511 return bfd_default_set_arch_mach (abfd, arch, machine);
4512 }
4513
4514 static boolean
4515 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4516 functionname_ptr, line_ptr)
4517 bfd *abfd;
4518 asection *section;
4519 asymbol **symbols;
4520 bfd_vma offset;
4521 CONST char **filename_ptr;
4522 CONST char **functionname_ptr;
4523 unsigned int *line_ptr;
4524 {
4525 fprintf (stderr, "som_find_nearest_line unimplemented\n");
4526 fflush (stderr);
4527 abort ();
4528 return (false);
4529 }
4530
4531 static int
4532 som_sizeof_headers (abfd, reloc)
4533 bfd *abfd;
4534 boolean reloc;
4535 {
4536 fprintf (stderr, "som_sizeof_headers unimplemented\n");
4537 fflush (stderr);
4538 abort ();
4539 return (0);
4540 }
4541
4542 /* Return the single-character symbol type corresponding to
4543 SOM section S, or '?' for an unknown SOM section. */
4544
4545 static char
4546 som_section_type (s)
4547 const char *s;
4548 {
4549 const struct section_to_type *t;
4550
4551 for (t = &stt[0]; t->section; t++)
4552 if (!strcmp (s, t->section))
4553 return t->type;
4554 return '?';
4555 }
4556
4557 static int
4558 som_decode_symclass (symbol)
4559 asymbol *symbol;
4560 {
4561 char c;
4562
4563 if (bfd_is_com_section (symbol->section))
4564 return 'C';
4565 if (symbol->section == &bfd_und_section)
4566 return 'U';
4567 if (symbol->section == &bfd_ind_section)
4568 return 'I';
4569 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
4570 return '?';
4571
4572 if (symbol->section == &bfd_abs_section)
4573 c = 'a';
4574 else if (symbol->section)
4575 c = som_section_type (symbol->section->name);
4576 else
4577 return '?';
4578 if (symbol->flags & BSF_GLOBAL)
4579 c = toupper (c);
4580 return c;
4581 }
4582
4583 /* Return information about SOM symbol SYMBOL in RET. */
4584
4585 static void
4586 som_get_symbol_info (ignore_abfd, symbol, ret)
4587 bfd *ignore_abfd;
4588 asymbol *symbol;
4589 symbol_info *ret;
4590 {
4591 ret->type = som_decode_symclass (symbol);
4592 if (ret->type != 'U')
4593 ret->value = symbol->value+symbol->section->vma;
4594 else
4595 ret->value = 0;
4596 ret->name = symbol->name;
4597 }
4598
4599 /* Count the number of symbols in the archive symbol table. Necessary
4600 so that we can allocate space for all the carsyms at once. */
4601
4602 static boolean
4603 som_bfd_count_ar_symbols (abfd, lst_header, count)
4604 bfd *abfd;
4605 struct lst_header *lst_header;
4606 symindex *count;
4607 {
4608 unsigned int i;
4609 unsigned int *hash_table = NULL;
4610 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4611
4612 hash_table =
4613 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4614 if (hash_table == NULL && lst_header->hash_size != 0)
4615 {
4616 bfd_set_error (bfd_error_no_memory);
4617 goto error_return;
4618 }
4619
4620 /* Don't forget to initialize the counter! */
4621 *count = 0;
4622
4623 /* Read in the hash table. The has table is an array of 32bit file offsets
4624 which point to the hash chains. */
4625 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4626 != lst_header->hash_size * 4)
4627 {
4628 bfd_set_error (bfd_error_system_call);
4629 goto error_return;
4630 }
4631
4632 /* Walk each chain counting the number of symbols found on that particular
4633 chain. */
4634 for (i = 0; i < lst_header->hash_size; i++)
4635 {
4636 struct lst_symbol_record lst_symbol;
4637
4638 /* An empty chain has zero as it's file offset. */
4639 if (hash_table[i] == 0)
4640 continue;
4641
4642 /* Seek to the first symbol in this hash chain. */
4643 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4644 {
4645 bfd_set_error (bfd_error_system_call);
4646 goto error_return;
4647 }
4648
4649 /* Read in this symbol and update the counter. */
4650 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4651 != sizeof (lst_symbol))
4652 {
4653 bfd_set_error (bfd_error_system_call);
4654 goto error_return;
4655 }
4656 (*count)++;
4657
4658 /* Now iterate through the rest of the symbols on this chain. */
4659 while (lst_symbol.next_entry)
4660 {
4661
4662 /* Seek to the next symbol. */
4663 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4664 < 0)
4665 {
4666 bfd_set_error (bfd_error_system_call);
4667 goto error_return;
4668 }
4669
4670 /* Read the symbol in and update the counter. */
4671 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4672 != sizeof (lst_symbol))
4673 {
4674 bfd_set_error (bfd_error_system_call);
4675 goto error_return;
4676 }
4677 (*count)++;
4678 }
4679 }
4680 if (hash_table != NULL)
4681 free (hash_table);
4682 return true;
4683
4684 error_return:
4685 if (hash_table != NULL)
4686 free (hash_table);
4687 return false;
4688 }
4689
4690 /* Fill in the canonical archive symbols (SYMS) from the archive described
4691 by ABFD and LST_HEADER. */
4692
4693 static boolean
4694 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
4695 bfd *abfd;
4696 struct lst_header *lst_header;
4697 carsym **syms;
4698 {
4699 unsigned int i, len;
4700 carsym *set = syms[0];
4701 unsigned int *hash_table = NULL;
4702 struct som_entry *som_dict = NULL;
4703 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4704
4705 hash_table =
4706 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4707 if (hash_table == NULL && lst_header->hash_size != 0)
4708 {
4709 bfd_set_error (bfd_error_no_memory);
4710 goto error_return;
4711 }
4712
4713 som_dict =
4714 (struct som_entry *) malloc (lst_header->module_count
4715 * sizeof (struct som_entry));
4716 if (som_dict == NULL && lst_header->module_count != 0)
4717 {
4718 bfd_set_error (bfd_error_no_memory);
4719 goto error_return;
4720 }
4721
4722 /* Read in the hash table. The has table is an array of 32bit file offsets
4723 which point to the hash chains. */
4724 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4725 != lst_header->hash_size * 4)
4726 {
4727 bfd_set_error (bfd_error_system_call);
4728 goto error_return;
4729 }
4730
4731 /* Seek to and read in the SOM dictionary. We will need this to fill
4732 in the carsym's filepos field. */
4733 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
4734 {
4735 bfd_set_error (bfd_error_system_call);
4736 goto error_return;
4737 }
4738
4739 if (bfd_read ((PTR) som_dict, lst_header->module_count,
4740 sizeof (struct som_entry), abfd)
4741 != lst_header->module_count * sizeof (struct som_entry))
4742 {
4743 bfd_set_error (bfd_error_system_call);
4744 goto error_return;
4745 }
4746
4747 /* Walk each chain filling in the carsyms as we go along. */
4748 for (i = 0; i < lst_header->hash_size; i++)
4749 {
4750 struct lst_symbol_record lst_symbol;
4751
4752 /* An empty chain has zero as it's file offset. */
4753 if (hash_table[i] == 0)
4754 continue;
4755
4756 /* Seek to and read the first symbol on the chain. */
4757 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4758 {
4759 bfd_set_error (bfd_error_system_call);
4760 goto error_return;
4761 }
4762
4763 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4764 != sizeof (lst_symbol))
4765 {
4766 bfd_set_error (bfd_error_system_call);
4767 goto error_return;
4768 }
4769
4770 /* Get the name of the symbol, first get the length which is stored
4771 as a 32bit integer just before the symbol.
4772
4773 One might ask why we don't just read in the entire string table
4774 and index into it. Well, according to the SOM ABI the string
4775 index can point *anywhere* in the archive to save space, so just
4776 using the string table would not be safe. */
4777 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4778 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4779 {
4780 bfd_set_error (bfd_error_system_call);
4781 goto error_return;
4782 }
4783
4784 if (bfd_read (&len, 1, 4, abfd) != 4)
4785 {
4786 bfd_set_error (bfd_error_system_call);
4787 goto error_return;
4788 }
4789
4790 /* Allocate space for the name and null terminate it too. */
4791 set->name = bfd_zalloc (abfd, len + 1);
4792 if (!set->name)
4793 {
4794 bfd_set_error (bfd_error_no_memory);
4795 goto error_return;
4796 }
4797 if (bfd_read (set->name, 1, len, abfd) != len)
4798 {
4799 bfd_set_error (bfd_error_system_call);
4800 goto error_return;
4801 }
4802 set->name[len] = 0;
4803
4804 /* Fill in the file offset. Note that the "location" field points
4805 to the SOM itself, not the ar_hdr in front of it. */
4806 set->file_offset = som_dict[lst_symbol.som_index].location
4807 - sizeof (struct ar_hdr);
4808
4809 /* Go to the next symbol. */
4810 set++;
4811
4812 /* Iterate through the rest of the chain. */
4813 while (lst_symbol.next_entry)
4814 {
4815 /* Seek to the next symbol and read it in. */
4816 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4817 < 0)
4818 {
4819 bfd_set_error (bfd_error_system_call);
4820 goto error_return;
4821 }
4822
4823 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4824 != sizeof (lst_symbol))
4825 {
4826 bfd_set_error (bfd_error_system_call);
4827 goto error_return;
4828 }
4829
4830 /* Seek to the name length & string and read them in. */
4831 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4832 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4833 {
4834 bfd_set_error (bfd_error_system_call);
4835 goto error_return;
4836 }
4837
4838 if (bfd_read (&len, 1, 4, abfd) != 4)
4839 {
4840 bfd_set_error (bfd_error_system_call);
4841 goto error_return;
4842 }
4843
4844 /* Allocate space for the name and null terminate it too. */
4845 set->name = bfd_zalloc (abfd, len + 1);
4846 if (!set->name)
4847 {
4848 bfd_set_error (bfd_error_no_memory);
4849 goto error_return;
4850 }
4851 if (bfd_read (set->name, 1, len, abfd) != len)
4852 {
4853 bfd_set_error (bfd_error_system_call);
4854 goto error_return;
4855 }
4856 set->name[len] = 0;
4857
4858 /* Fill in the file offset. Note that the "location" field points
4859 to the SOM itself, not the ar_hdr in front of it. */
4860 set->file_offset = som_dict[lst_symbol.som_index].location
4861 - sizeof (struct ar_hdr);
4862
4863 /* Go on to the next symbol. */
4864 set++;
4865 }
4866 }
4867 /* If we haven't died by now, then we successfully read the entire
4868 archive symbol table. */
4869 if (hash_table != NULL)
4870 free (hash_table);
4871 if (som_dict != NULL)
4872 free (som_dict);
4873 return true;
4874
4875 error_return:
4876 if (hash_table != NULL)
4877 free (hash_table);
4878 if (som_dict != NULL)
4879 free (som_dict);
4880 return false;
4881 }
4882
4883 /* Read in the LST from the archive. */
4884 static boolean
4885 som_slurp_armap (abfd)
4886 bfd *abfd;
4887 {
4888 struct lst_header lst_header;
4889 struct ar_hdr ar_header;
4890 unsigned int parsed_size;
4891 struct artdata *ardata = bfd_ardata (abfd);
4892 char nextname[17];
4893 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
4894
4895 /* Special cases. */
4896 if (i == 0)
4897 return true;
4898 if (i != 16)
4899 return false;
4900
4901 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
4902 {
4903 bfd_set_error (bfd_error_system_call);
4904 return false;
4905 }
4906
4907 /* For archives without .o files there is no symbol table. */
4908 if (strncmp (nextname, "/ ", 16))
4909 {
4910 bfd_has_map (abfd) = false;
4911 return true;
4912 }
4913
4914 /* Read in and sanity check the archive header. */
4915 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
4916 != sizeof (struct ar_hdr))
4917 {
4918 bfd_set_error (bfd_error_system_call);
4919 return false;
4920 }
4921
4922 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
4923 {
4924 bfd_set_error (bfd_error_malformed_archive);
4925 return false;
4926 }
4927
4928 /* How big is the archive symbol table entry? */
4929 errno = 0;
4930 parsed_size = strtol (ar_header.ar_size, NULL, 10);
4931 if (errno != 0)
4932 {
4933 bfd_set_error (bfd_error_malformed_archive);
4934 return false;
4935 }
4936
4937 /* Save off the file offset of the first real user data. */
4938 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
4939
4940 /* Read in the library symbol table. We'll make heavy use of this
4941 in just a minute. */
4942 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
4943 != sizeof (struct lst_header))
4944 {
4945 bfd_set_error (bfd_error_system_call);
4946 return false;
4947 }
4948
4949 /* Sanity check. */
4950 if (lst_header.a_magic != LIBMAGIC)
4951 {
4952 bfd_set_error (bfd_error_malformed_archive);
4953 return false;
4954 }
4955
4956 /* Count the number of symbols in the library symbol table. */
4957 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
4958 == false)
4959 return false;
4960
4961 /* Get back to the start of the library symbol table. */
4962 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
4963 + sizeof (struct lst_header), SEEK_SET) < 0)
4964 {
4965 bfd_set_error (bfd_error_system_call);
4966 return false;
4967 }
4968
4969 /* Initializae the cache and allocate space for the library symbols. */
4970 ardata->cache = 0;
4971 ardata->symdefs = (carsym *) bfd_alloc (abfd,
4972 (ardata->symdef_count
4973 * sizeof (carsym)));
4974 if (!ardata->symdefs)
4975 {
4976 bfd_set_error (bfd_error_no_memory);
4977 return false;
4978 }
4979
4980 /* Now fill in the canonical archive symbols. */
4981 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
4982 == false)
4983 return false;
4984
4985 /* Seek back to the "first" file in the archive. Note the "first"
4986 file may be the extended name table. */
4987 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) < 0)
4988 {
4989 bfd_set_error (bfd_error_system_call);
4990 return false;
4991 }
4992
4993 /* Notify the generic archive code that we have a symbol map. */
4994 bfd_has_map (abfd) = true;
4995 return true;
4996 }
4997
4998 /* Begin preparing to write a SOM library symbol table.
4999
5000 As part of the prep work we need to determine the number of symbols
5001 and the size of the associated string section. */
5002
5003 static boolean
5004 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
5005 bfd *abfd;
5006 unsigned int *num_syms, *stringsize;
5007 {
5008 bfd *curr_bfd = abfd->archive_head;
5009
5010 /* Some initialization. */
5011 *num_syms = 0;
5012 *stringsize = 0;
5013
5014 /* Iterate over each BFD within this archive. */
5015 while (curr_bfd != NULL)
5016 {
5017 unsigned int curr_count, i;
5018 som_symbol_type *sym;
5019
5020 /* Make sure the symbol table has been read, then snag a pointer
5021 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5022 but doing so avoids allocating lots of extra memory. */
5023 if (som_slurp_symbol_table (curr_bfd) == false)
5024 return false;
5025
5026 sym = obj_som_symtab (curr_bfd);
5027 curr_count = bfd_get_symcount (curr_bfd);
5028
5029 /* Examine each symbol to determine if it belongs in the
5030 library symbol table. */
5031 for (i = 0; i < curr_count; i++, sym++)
5032 {
5033 struct som_misc_symbol_info info;
5034
5035 /* Derive SOM information from the BFD symbol. */
5036 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5037
5038 /* Should we include this symbol? */
5039 if (info.symbol_type == ST_NULL
5040 || info.symbol_type == ST_SYM_EXT
5041 || info.symbol_type == ST_ARG_EXT)
5042 continue;
5043
5044 /* Only global symbols and unsatisfied commons. */
5045 if (info.symbol_scope != SS_UNIVERSAL
5046 && info.symbol_type != ST_STORAGE)
5047 continue;
5048
5049 /* Do no include undefined symbols. */
5050 if (sym->symbol.section == &bfd_und_section)
5051 continue;
5052
5053 /* Bump the various counters, being careful to honor
5054 alignment considerations in the string table. */
5055 (*num_syms)++;
5056 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5057 while (*stringsize % 4)
5058 (*stringsize)++;
5059 }
5060
5061 curr_bfd = curr_bfd->next;
5062 }
5063 return true;
5064 }
5065
5066 /* Hash a symbol name based on the hashing algorithm presented in the
5067 SOM ABI. */
5068 static unsigned int
5069 som_bfd_ar_symbol_hash (symbol)
5070 asymbol *symbol;
5071 {
5072 unsigned int len = strlen (symbol->name);
5073
5074 /* Names with length 1 are special. */
5075 if (len == 1)
5076 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5077
5078 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5079 | (symbol->name[len-2] << 8) | symbol->name[len-1];
5080 }
5081
5082 static CONST char *
5083 normalize (file)
5084 CONST char *file;
5085 {
5086 CONST char *filename = strrchr (file, '/');
5087
5088 if (filename != NULL)
5089 filename++;
5090 else
5091 filename = file;
5092 return filename;
5093 }
5094
5095 /* Do the bulk of the work required to write the SOM library
5096 symbol table. */
5097
5098 static boolean
5099 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst)
5100 bfd *abfd;
5101 unsigned int nsyms, string_size;
5102 struct lst_header lst;
5103 {
5104 file_ptr lst_filepos;
5105 char *strings = NULL, *p;
5106 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5107 bfd *curr_bfd;
5108 unsigned int *hash_table = NULL;
5109 struct som_entry *som_dict = NULL;
5110 struct lst_symbol_record **last_hash_entry = NULL;
5111 unsigned int curr_som_offset, som_index, extended_name_length = 0;
5112 unsigned int maxname = abfd->xvec->ar_max_namelen;
5113
5114 hash_table =
5115 (unsigned int *) malloc (lst.hash_size * sizeof (unsigned int));
5116 if (hash_table == NULL && lst.hash_size != 0)
5117 {
5118 bfd_set_error (bfd_error_no_memory);
5119 goto error_return;
5120 }
5121 som_dict =
5122 (struct som_entry *) malloc (lst.module_count
5123 * sizeof (struct som_entry));
5124 if (som_dict == NULL && lst.module_count != 0)
5125 {
5126 bfd_set_error (bfd_error_no_memory);
5127 goto error_return;
5128 }
5129
5130 last_hash_entry =
5131 ((struct lst_symbol_record **)
5132 malloc (lst.hash_size * sizeof (struct lst_symbol_record *)));
5133 if (last_hash_entry == NULL && lst.hash_size != 0)
5134 {
5135 bfd_set_error (bfd_error_no_memory);
5136 goto error_return;
5137 }
5138
5139 /* Lots of fields are file positions relative to the start
5140 of the lst record. So save its location. */
5141 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5142
5143 /* Some initialization. */
5144 memset (hash_table, 0, 4 * lst.hash_size);
5145 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
5146 memset (last_hash_entry, 0,
5147 lst.hash_size * sizeof (struct lst_symbol_record *));
5148
5149 /* Symbols have som_index fields, so we have to keep track of the
5150 index of each SOM in the archive.
5151
5152 The SOM dictionary has (among other things) the absolute file
5153 position for the SOM which a particular dictionary entry
5154 describes. We have to compute that information as we iterate
5155 through the SOMs/symbols. */
5156 som_index = 0;
5157 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5158
5159 /* Yow! We have to know the size of the extended name table
5160 too. */
5161 for (curr_bfd = abfd->archive_head;
5162 curr_bfd != NULL;
5163 curr_bfd = curr_bfd->next)
5164 {
5165 CONST char *normal = normalize (curr_bfd->filename);
5166 unsigned int thislen;
5167
5168 if (!normal)
5169 {
5170 bfd_set_error (bfd_error_no_memory);
5171 return false;
5172 }
5173 thislen = strlen (normal);
5174 if (thislen > maxname)
5175 extended_name_length += thislen + 1;
5176 }
5177
5178 /* Make room for the archive header and the contents of the
5179 extended string table. */
5180 if (extended_name_length)
5181 curr_som_offset += extended_name_length + sizeof (struct ar_hdr);
5182
5183 /* Make sure we're properly aligned. */
5184 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5185
5186 /* FIXME should be done with buffers just like everything else... */
5187 lst_syms = malloc (nsyms * sizeof (struct lst_symbol_record));
5188 if (lst_syms == NULL && nsyms != 0)
5189 {
5190 bfd_set_error (bfd_error_no_memory);
5191 goto error_return;
5192 }
5193 strings = malloc (string_size);
5194 if (strings == NULL && string_size != 0)
5195 {
5196 bfd_set_error (bfd_error_no_memory);
5197 goto error_return;
5198 }
5199
5200 p = strings;
5201 curr_lst_sym = lst_syms;
5202
5203 curr_bfd = abfd->archive_head;
5204 while (curr_bfd != NULL)
5205 {
5206 unsigned int curr_count, i;
5207 som_symbol_type *sym;
5208
5209 /* Make sure the symbol table has been read, then snag a pointer
5210 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5211 but doing so avoids allocating lots of extra memory. */
5212 if (som_slurp_symbol_table (curr_bfd) == false)
5213 goto error_return;
5214
5215 sym = obj_som_symtab (curr_bfd);
5216 curr_count = bfd_get_symcount (curr_bfd);
5217
5218 for (i = 0; i < curr_count; i++, sym++)
5219 {
5220 struct som_misc_symbol_info info;
5221
5222 /* Derive SOM information from the BFD symbol. */
5223 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5224
5225 /* Should we include this symbol? */
5226 if (info.symbol_type == ST_NULL
5227 || info.symbol_type == ST_SYM_EXT
5228 || info.symbol_type == ST_ARG_EXT)
5229 continue;
5230
5231 /* Only global symbols and unsatisfied commons. */
5232 if (info.symbol_scope != SS_UNIVERSAL
5233 && info.symbol_type != ST_STORAGE)
5234 continue;
5235
5236 /* Do no include undefined symbols. */
5237 if (sym->symbol.section == &bfd_und_section)
5238 continue;
5239
5240 /* If this is the first symbol from this SOM, then update
5241 the SOM dictionary too. */
5242 if (som_dict[som_index].location == 0)
5243 {
5244 som_dict[som_index].location = curr_som_offset;
5245 som_dict[som_index].length = arelt_size (curr_bfd);
5246 }
5247
5248 /* Fill in the lst symbol record. */
5249 curr_lst_sym->hidden = 0;
5250 curr_lst_sym->secondary_def = 0;
5251 curr_lst_sym->symbol_type = info.symbol_type;
5252 curr_lst_sym->symbol_scope = info.symbol_scope;
5253 curr_lst_sym->check_level = 0;
5254 curr_lst_sym->must_qualify = 0;
5255 curr_lst_sym->initially_frozen = 0;
5256 curr_lst_sym->memory_resident = 0;
5257 curr_lst_sym->is_common = (sym->symbol.section == &bfd_com_section);
5258 curr_lst_sym->dup_common = 0;
5259 curr_lst_sym->xleast = 0;
5260 curr_lst_sym->arg_reloc = info.arg_reloc;
5261 curr_lst_sym->name.n_strx = p - strings + 4;
5262 curr_lst_sym->qualifier_name.n_strx = 0;
5263 curr_lst_sym->symbol_info = info.symbol_info;
5264 curr_lst_sym->symbol_value = info.symbol_value;
5265 curr_lst_sym->symbol_descriptor = 0;
5266 curr_lst_sym->reserved = 0;
5267 curr_lst_sym->som_index = som_index;
5268 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
5269 curr_lst_sym->next_entry = 0;
5270
5271 /* Insert into the hash table. */
5272 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
5273 {
5274 struct lst_symbol_record *tmp;
5275
5276 /* There is already something at the head of this hash chain,
5277 so tack this symbol onto the end of the chain. */
5278 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
5279 tmp->next_entry
5280 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5281 + lst.hash_size * 4
5282 + lst.module_count * sizeof (struct som_entry)
5283 + sizeof (struct lst_header);
5284 }
5285 else
5286 {
5287 /* First entry in this hash chain. */
5288 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
5289 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5290 + lst.hash_size * 4
5291 + lst.module_count * sizeof (struct som_entry)
5292 + sizeof (struct lst_header);
5293 }
5294
5295 /* Keep track of the last symbol we added to this chain so we can
5296 easily update its next_entry pointer. */
5297 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
5298 = curr_lst_sym;
5299
5300
5301 /* Update the string table. */
5302 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
5303 p += 4;
5304 strcpy (p, sym->symbol.name);
5305 p += strlen (sym->symbol.name) + 1;
5306 while ((int)p % 4)
5307 {
5308 bfd_put_8 (abfd, 0, p);
5309 p++;
5310 }
5311
5312 /* Head to the next symbol. */
5313 curr_lst_sym++;
5314 }
5315
5316 /* Keep track of where each SOM will finally reside; then look
5317 at the next BFD. */
5318 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
5319 curr_bfd = curr_bfd->next;
5320 som_index++;
5321 }
5322
5323 /* Now scribble out the hash table. */
5324 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
5325 != lst.hash_size * 4)
5326 {
5327 bfd_set_error (bfd_error_system_call);
5328 goto error_return;
5329 }
5330
5331 /* Then the SOM dictionary. */
5332 if (bfd_write ((PTR) som_dict, lst.module_count,
5333 sizeof (struct som_entry), abfd)
5334 != lst.module_count * sizeof (struct som_entry))
5335 {
5336 bfd_set_error (bfd_error_system_call);
5337 goto error_return;
5338 }
5339
5340 /* The library symbols. */
5341 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
5342 != nsyms * sizeof (struct lst_symbol_record))
5343 {
5344 bfd_set_error (bfd_error_system_call);
5345 goto error_return;
5346 }
5347
5348 /* And finally the strings. */
5349 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
5350 {
5351 bfd_set_error (bfd_error_system_call);
5352 goto error_return;
5353 }
5354
5355 if (hash_table != NULL)
5356 free (hash_table);
5357 if (som_dict != NULL)
5358 free (som_dict);
5359 if (last_hash_entry != NULL)
5360 free (last_hash_entry);
5361 if (lst_syms != NULL)
5362 free (lst_syms);
5363 if (strings != NULL)
5364 free (strings);
5365 return true;
5366
5367 error_return:
5368 if (hash_table != NULL)
5369 free (hash_table);
5370 if (som_dict != NULL)
5371 free (som_dict);
5372 if (last_hash_entry != NULL)
5373 free (last_hash_entry);
5374 if (lst_syms != NULL)
5375 free (lst_syms);
5376 if (strings != NULL)
5377 free (strings);
5378
5379 return false;
5380 }
5381
5382 /* Write out the LST for the archive.
5383
5384 You'll never believe this is really how armaps are handled in SOM... */
5385
5386 static boolean
5387 som_write_armap (abfd)
5388 bfd *abfd;
5389 {
5390 bfd *curr_bfd;
5391 struct stat statbuf;
5392 unsigned int i, lst_size, nsyms, stringsize;
5393 struct ar_hdr hdr;
5394 struct lst_header lst;
5395 int *p;
5396
5397 /* We'll use this for the archive's date and mode later. */
5398 if (stat (abfd->filename, &statbuf) != 0)
5399 {
5400 bfd_set_error (bfd_error_system_call);
5401 return false;
5402 }
5403 /* Fudge factor. */
5404 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
5405
5406 /* Account for the lst header first. */
5407 lst_size = sizeof (struct lst_header);
5408
5409 /* Start building the LST header. */
5410 lst.system_id = HP9000S800_ID;
5411 lst.a_magic = LIBMAGIC;
5412 lst.version_id = VERSION_ID;
5413 lst.file_time.secs = 0;
5414 lst.file_time.nanosecs = 0;
5415
5416 lst.hash_loc = lst_size;
5417 lst.hash_size = SOM_LST_HASH_SIZE;
5418
5419 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
5420 lst_size += 4 * SOM_LST_HASH_SIZE;
5421
5422 /* We need to count the number of SOMs in this archive. */
5423 curr_bfd = abfd->archive_head;
5424 lst.module_count = 0;
5425 while (curr_bfd != NULL)
5426 {
5427 lst.module_count++;
5428 curr_bfd = curr_bfd->next;
5429 }
5430 lst.module_limit = lst.module_count;
5431 lst.dir_loc = lst_size;
5432 lst_size += sizeof (struct som_entry) * lst.module_count;
5433
5434 /* We don't support import/export tables, auxiliary headers,
5435 or free lists yet. Make the linker work a little harder
5436 to make our life easier. */
5437
5438 lst.export_loc = 0;
5439 lst.export_count = 0;
5440 lst.import_loc = 0;
5441 lst.aux_loc = 0;
5442 lst.aux_size = 0;
5443
5444 /* Count how many symbols we will have on the hash chains and the
5445 size of the associated string table. */
5446 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
5447 return false;
5448
5449 lst_size += sizeof (struct lst_symbol_record) * nsyms;
5450
5451 /* For the string table. One day we might actually use this info
5452 to avoid small seeks/reads when reading archives. */
5453 lst.string_loc = lst_size;
5454 lst.string_size = stringsize;
5455 lst_size += stringsize;
5456
5457 /* SOM ABI says this must be zero. */
5458 lst.free_list = 0;
5459 lst.file_end = lst_size;
5460
5461 /* Compute the checksum. Must happen after the entire lst header
5462 has filled in. */
5463 p = (int *)&lst;
5464 lst.checksum = 0;
5465 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
5466 lst.checksum ^= *p++;
5467
5468 sprintf (hdr.ar_name, "/ ");
5469 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
5470 sprintf (hdr.ar_uid, "%d", getuid ());
5471 sprintf (hdr.ar_gid, "%d", getgid ());
5472 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
5473 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
5474 hdr.ar_fmag[0] = '`';
5475 hdr.ar_fmag[1] = '\012';
5476
5477 /* Turn any nulls into spaces. */
5478 for (i = 0; i < sizeof (struct ar_hdr); i++)
5479 if (((char *) (&hdr))[i] == '\0')
5480 (((char *) (&hdr))[i]) = ' ';
5481
5482 /* Scribble out the ar header. */
5483 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
5484 != sizeof (struct ar_hdr))
5485 {
5486 bfd_set_error (bfd_error_system_call);
5487 return false;
5488 }
5489
5490 /* Now scribble out the lst header. */
5491 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
5492 != sizeof (struct lst_header))
5493 {
5494 bfd_set_error (bfd_error_system_call);
5495 return false;
5496 }
5497
5498 /* Build and write the armap. */
5499 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst) == false)
5500 return false;
5501
5502 /* Done. */
5503 return true;
5504 }
5505
5506 /* End of miscellaneous support functions. */
5507
5508 #define som_bfd_debug_info_start bfd_void
5509 #define som_bfd_debug_info_end bfd_void
5510 #define som_bfd_debug_info_accumulate (PROTO(void,(*),(bfd*, struct sec *))) bfd_void
5511
5512 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
5513 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
5514 #define som_truncate_arname bfd_bsd_truncate_arname
5515 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
5516
5517 #define som_get_lineno (struct lineno_cache_entry *(*)())bfd_nullvoidptr
5518 #define som_close_and_cleanup bfd_generic_close_and_cleanup
5519 #define som_get_section_contents bfd_generic_get_section_contents
5520
5521 #define som_bfd_get_relocated_section_contents \
5522 bfd_generic_get_relocated_section_contents
5523 #define som_bfd_relax_section bfd_generic_relax_section
5524 #define som_bfd_make_debug_symbol \
5525 ((asymbol *(*) PARAMS ((bfd *, void *, unsigned long))) bfd_nullvoidptr)
5526 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
5527 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
5528 #define som_bfd_final_link _bfd_generic_final_link
5529
5530 /* Core file support is in the hpux-core backend. */
5531 #define som_core_file_failing_command _bfd_dummy_core_file_failing_command
5532 #define som_core_file_failing_signal _bfd_dummy_core_file_failing_signal
5533 #define som_core_file_matches_executable_p _bfd_dummy_core_file_matches_executable_p
5534
5535 bfd_target som_vec =
5536 {
5537 "som", /* name */
5538 bfd_target_som_flavour,
5539 true, /* target byte order */
5540 true, /* target headers byte order */
5541 (HAS_RELOC | EXEC_P | /* object flags */
5542 HAS_LINENO | HAS_DEBUG |
5543 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
5544 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
5545 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
5546
5547 /* leading_symbol_char: is the first char of a user symbol
5548 predictable, and if so what is it */
5549 0,
5550 '/', /* ar_pad_char */
5551 14, /* ar_max_namelen */
5552 3, /* minimum alignment */
5553 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5554 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5555 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
5556 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5557 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5558 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
5559 {_bfd_dummy_target,
5560 som_object_p, /* bfd_check_format */
5561 bfd_generic_archive_p,
5562 _bfd_dummy_target
5563 },
5564 {
5565 bfd_false,
5566 som_mkobject,
5567 _bfd_generic_mkarchive,
5568 bfd_false
5569 },
5570 {
5571 bfd_false,
5572 som_write_object_contents,
5573 _bfd_write_archive_contents,
5574 bfd_false,
5575 },
5576 #undef som
5577 JUMP_TABLE (som),
5578 (PTR) 0
5579 };
5580
5581 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */