Revert last change (never should have been checked in to begin with).
[binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
3
4 Contributed by the Center for Software Science at the
5 University of Utah (pa-gdb-bugs@cs.utah.edu).
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23 #include "bfd.h"
24 #include "sysdep.h"
25
26 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)
27
28 #include "libbfd.h"
29 #include "som.h"
30
31 #include <stdio.h>
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <signal.h>
35 #include <machine/reg.h>
36 #include <sys/file.h>
37 #include <errno.h>
38
39 /* Magic not defined in standard HP-UX header files until 8.0 */
40
41 #ifndef CPU_PA_RISC1_0
42 #define CPU_PA_RISC1_0 0x20B
43 #endif /* CPU_PA_RISC1_0 */
44
45 #ifndef CPU_PA_RISC1_1
46 #define CPU_PA_RISC1_1 0x210
47 #endif /* CPU_PA_RISC1_1 */
48
49 #ifndef _PA_RISC1_0_ID
50 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
51 #endif /* _PA_RISC1_0_ID */
52
53 #ifndef _PA_RISC1_1_ID
54 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
55 #endif /* _PA_RISC1_1_ID */
56
57 #ifndef _PA_RISC_MAXID
58 #define _PA_RISC_MAXID 0x2FF
59 #endif /* _PA_RISC_MAXID */
60
61 #ifndef _PA_RISC_ID
62 #define _PA_RISC_ID(__m_num) \
63 (((__m_num) == _PA_RISC1_0_ID) || \
64 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
65 #endif /* _PA_RISC_ID */
66
67
68 /* HIUX in it's infinite stupidity changed the names for several "well
69 known" constants. Work around such braindamage. Try the HPUX version
70 first, then the HIUX version, and finally provide a default. */
71 #ifdef HPUX_AUX_ID
72 #define EXEC_AUX_ID HPUX_AUX_ID
73 #endif
74
75 #if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID)
76 #define EXEC_AUX_ID HIUX_AUX_ID
77 #endif
78
79 #ifndef EXEC_AUX_ID
80 #define EXEC_AUX_ID 0
81 #endif
82
83 /* Size (in chars) of the temporary buffers used during fixup and string
84 table writes. */
85
86 #define SOM_TMP_BUFSIZE 8192
87
88 /* Size of the hash table in archives. */
89 #define SOM_LST_HASH_SIZE 31
90
91 /* Max number of SOMs to be found in an archive. */
92 #define SOM_LST_MODULE_LIMIT 1024
93
94 /* Generic alignment macro. */
95 #define SOM_ALIGN(val, alignment) \
96 (((val) + (alignment) - 1) & ~((alignment) - 1))
97
98 /* SOM allows any one of the four previous relocations to be reused
99 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
100 relocations are always a single byte, using a R_PREV_FIXUP instead
101 of some multi-byte relocation makes object files smaller.
102
103 Note one side effect of using a R_PREV_FIXUP is the relocation that
104 is being repeated moves to the front of the queue. */
105 struct reloc_queue
106 {
107 unsigned char *reloc;
108 unsigned int size;
109 } reloc_queue[4];
110
111 /* This fully describes the symbol types which may be attached to
112 an EXPORT or IMPORT directive. Only SOM uses this formation
113 (ELF has no need for it). */
114 typedef enum
115 {
116 SYMBOL_TYPE_UNKNOWN,
117 SYMBOL_TYPE_ABSOLUTE,
118 SYMBOL_TYPE_CODE,
119 SYMBOL_TYPE_DATA,
120 SYMBOL_TYPE_ENTRY,
121 SYMBOL_TYPE_MILLICODE,
122 SYMBOL_TYPE_PLABEL,
123 SYMBOL_TYPE_PRI_PROG,
124 SYMBOL_TYPE_SEC_PROG,
125 } pa_symbol_type;
126
127 struct section_to_type
128 {
129 char *section;
130 char type;
131 };
132
133 /* Assorted symbol information that needs to be derived from the BFD symbol
134 and/or the BFD backend private symbol data. */
135 struct som_misc_symbol_info
136 {
137 unsigned int symbol_type;
138 unsigned int symbol_scope;
139 unsigned int arg_reloc;
140 unsigned int symbol_info;
141 unsigned int symbol_value;
142 };
143
144 /* Forward declarations */
145
146 static boolean som_mkobject PARAMS ((bfd *));
147 static const bfd_target * som_object_setup PARAMS ((bfd *,
148 struct header *,
149 struct som_exec_auxhdr *));
150 static boolean setup_sections PARAMS ((bfd *, struct header *));
151 static const bfd_target * som_object_p PARAMS ((bfd *));
152 static boolean som_write_object_contents PARAMS ((bfd *));
153 static boolean som_slurp_string_table PARAMS ((bfd *));
154 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
155 static long som_get_symtab_upper_bound PARAMS ((bfd *));
156 static long som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
157 arelent **, asymbol **));
158 static long som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
159 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
160 arelent *, asection *,
161 asymbol **, boolean));
162 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
163 asymbol **, boolean));
164 static long som_get_symtab PARAMS ((bfd *, asymbol **));
165 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
166 static void som_print_symbol PARAMS ((bfd *, PTR,
167 asymbol *, bfd_print_symbol_type));
168 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
169 static boolean som_bfd_copy_private_section_data PARAMS ((bfd *, asection *,
170 bfd *, asection *));
171 static boolean som_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
172 static boolean som_bfd_is_local_label PARAMS ((bfd *, asymbol *));
173 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
174 file_ptr, bfd_size_type));
175 static boolean som_get_section_contents PARAMS ((bfd *, sec_ptr, PTR,
176 file_ptr, bfd_size_type));
177 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
178 unsigned long));
179 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
180 asymbol **, bfd_vma,
181 CONST char **,
182 CONST char **,
183 unsigned int *));
184 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
185 static asection * bfd_section_from_som_symbol PARAMS ((bfd *,
186 struct symbol_dictionary_record *));
187 static int log2 PARAMS ((unsigned int));
188 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
189 asymbol *, PTR,
190 asection *, bfd *,
191 char **));
192 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
193 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
194 struct reloc_queue *));
195 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
196 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
197 struct reloc_queue *));
198 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
199 unsigned int,
200 struct reloc_queue *));
201
202 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
203 unsigned char *, unsigned int *,
204 struct reloc_queue *));
205 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
206 unsigned int *,
207 struct reloc_queue *));
208 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
209 unsigned int *,
210 arelent *, int,
211 struct reloc_queue *));
212 static unsigned long som_count_spaces PARAMS ((bfd *));
213 static unsigned long som_count_subspaces PARAMS ((bfd *));
214 static int compare_syms PARAMS ((const void *, const void *));
215 static unsigned long som_compute_checksum PARAMS ((bfd *));
216 static boolean som_prep_headers PARAMS ((bfd *));
217 static int som_sizeof_headers PARAMS ((bfd *, boolean));
218 static boolean som_write_headers PARAMS ((bfd *));
219 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
220 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
221 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
222 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
223 unsigned int *));
224 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
225 asymbol **, unsigned int,
226 unsigned *));
227 static boolean som_begin_writing PARAMS ((bfd *));
228 static const reloc_howto_type * som_bfd_reloc_type_lookup
229 PARAMS ((bfd *, bfd_reloc_code_real_type));
230 static char som_section_type PARAMS ((const char *));
231 static int som_decode_symclass PARAMS ((asymbol *));
232 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
233 symindex *));
234
235 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
236 carsym **syms));
237 static boolean som_slurp_armap PARAMS ((bfd *));
238 static boolean som_write_armap PARAMS ((bfd *, unsigned int, struct orl *,
239 unsigned int, int));
240 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
241 struct som_misc_symbol_info *));
242 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
243 unsigned int *));
244 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
245 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
246 unsigned int,
247 struct lst_header));
248 static CONST char *normalize PARAMS ((CONST char *file));
249 static boolean som_is_space PARAMS ((asection *));
250 static boolean som_is_subspace PARAMS ((asection *));
251 static boolean som_is_container PARAMS ((asection *, asection *));
252 static boolean som_bfd_free_cached_info PARAMS ((bfd *));
253
254 /* Map SOM section names to POSIX/BSD single-character symbol types.
255
256 This table includes all the standard subspaces as defined in the
257 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
258 some reason was left out, and sections specific to embedded stabs. */
259
260 static const struct section_to_type stt[] = {
261 {"$TEXT$", 't'},
262 {"$SHLIB_INFO$", 't'},
263 {"$MILLICODE$", 't'},
264 {"$LIT$", 't'},
265 {"$CODE$", 't'},
266 {"$UNWIND_START$", 't'},
267 {"$UNWIND$", 't'},
268 {"$PRIVATE$", 'd'},
269 {"$PLT$", 'd'},
270 {"$SHLIB_DATA$", 'd'},
271 {"$DATA$", 'd'},
272 {"$SHORTDATA$", 'g'},
273 {"$DLT$", 'd'},
274 {"$GLOBAL$", 'g'},
275 {"$SHORTBSS$", 's'},
276 {"$BSS$", 'b'},
277 {"$GDB_STRINGS$", 'N'},
278 {"$GDB_SYMBOLS$", 'N'},
279 {0, 0}
280 };
281
282 /* About the relocation formatting table...
283
284 There are 256 entries in the table, one for each possible
285 relocation opcode available in SOM. We index the table by
286 the relocation opcode. The names and operations are those
287 defined by a.out_800 (4).
288
289 Right now this table is only used to count and perform minimal
290 processing on relocation streams so that they can be internalized
291 into BFD and symbolically printed by utilities. To make actual use
292 of them would be much more difficult, BFD's concept of relocations
293 is far too simple to handle SOM relocations. The basic assumption
294 that a relocation can be completely processed independent of other
295 relocations before an object file is written is invalid for SOM.
296
297 The SOM relocations are meant to be processed as a stream, they
298 specify copying of data from the input section to the output section
299 while possibly modifying the data in some manner. They also can
300 specify that a variable number of zeros or uninitialized data be
301 inserted on in the output segment at the current offset. Some
302 relocations specify that some previous relocation be re-applied at
303 the current location in the input/output sections. And finally a number
304 of relocations have effects on other sections (R_ENTRY, R_EXIT,
305 R_UNWIND_AUX and a variety of others). There isn't even enough room
306 in the BFD relocation data structure to store enough information to
307 perform all the relocations.
308
309 Each entry in the table has three fields.
310
311 The first entry is an index into this "class" of relocations. This
312 index can then be used as a variable within the relocation itself.
313
314 The second field is a format string which actually controls processing
315 of the relocation. It uses a simple postfix machine to do calculations
316 based on variables/constants found in the string and the relocation
317 stream.
318
319 The third field specifys whether or not this relocation may use
320 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
321 stored in the instruction.
322
323 Variables:
324
325 L = input space byte count
326 D = index into class of relocations
327 M = output space byte count
328 N = statement number (unused?)
329 O = stack operation
330 R = parameter relocation bits
331 S = symbol index
332 U = 64 bits of stack unwind and frame size info (we only keep 32 bits)
333 V = a literal constant (usually used in the next relocation)
334 P = a previous relocation
335
336 Lower case letters (starting with 'b') refer to following
337 bytes in the relocation stream. 'b' is the next 1 byte,
338 c is the next 2 bytes, d is the next 3 bytes, etc...
339 This is the variable part of the relocation entries that
340 makes our life a living hell.
341
342 numerical constants are also used in the format string. Note
343 the constants are represented in decimal.
344
345 '+', "*" and "=" represents the obvious postfix operators.
346 '<' represents a left shift.
347
348 Stack Operations:
349
350 Parameter Relocation Bits:
351
352 Unwind Entries:
353
354 Previous Relocations: The index field represents which in the queue
355 of 4 previous fixups should be re-applied.
356
357 Literal Constants: These are generally used to represent addend
358 parts of relocations when these constants are not stored in the
359 fields of the instructions themselves. For example the instruction
360 addil foo-$global$-0x1234 would use an override for "0x1234" rather
361 than storing it into the addil itself. */
362
363 struct fixup_format
364 {
365 int D;
366 char *format;
367 };
368
369 static const struct fixup_format som_fixup_formats[256] =
370 {
371 /* R_NO_RELOCATION */
372 0, "LD1+4*=", /* 0x00 */
373 1, "LD1+4*=", /* 0x01 */
374 2, "LD1+4*=", /* 0x02 */
375 3, "LD1+4*=", /* 0x03 */
376 4, "LD1+4*=", /* 0x04 */
377 5, "LD1+4*=", /* 0x05 */
378 6, "LD1+4*=", /* 0x06 */
379 7, "LD1+4*=", /* 0x07 */
380 8, "LD1+4*=", /* 0x08 */
381 9, "LD1+4*=", /* 0x09 */
382 10, "LD1+4*=", /* 0x0a */
383 11, "LD1+4*=", /* 0x0b */
384 12, "LD1+4*=", /* 0x0c */
385 13, "LD1+4*=", /* 0x0d */
386 14, "LD1+4*=", /* 0x0e */
387 15, "LD1+4*=", /* 0x0f */
388 16, "LD1+4*=", /* 0x10 */
389 17, "LD1+4*=", /* 0x11 */
390 18, "LD1+4*=", /* 0x12 */
391 19, "LD1+4*=", /* 0x13 */
392 20, "LD1+4*=", /* 0x14 */
393 21, "LD1+4*=", /* 0x15 */
394 22, "LD1+4*=", /* 0x16 */
395 23, "LD1+4*=", /* 0x17 */
396 0, "LD8<b+1+4*=", /* 0x18 */
397 1, "LD8<b+1+4*=", /* 0x19 */
398 2, "LD8<b+1+4*=", /* 0x1a */
399 3, "LD8<b+1+4*=", /* 0x1b */
400 0, "LD16<c+1+4*=", /* 0x1c */
401 1, "LD16<c+1+4*=", /* 0x1d */
402 2, "LD16<c+1+4*=", /* 0x1e */
403 0, "Ld1+=", /* 0x1f */
404 /* R_ZEROES */
405 0, "Lb1+4*=", /* 0x20 */
406 1, "Ld1+=", /* 0x21 */
407 /* R_UNINIT */
408 0, "Lb1+4*=", /* 0x22 */
409 1, "Ld1+=", /* 0x23 */
410 /* R_RELOCATION */
411 0, "L4=", /* 0x24 */
412 /* R_DATA_ONE_SYMBOL */
413 0, "L4=Sb=", /* 0x25 */
414 1, "L4=Sd=", /* 0x26 */
415 /* R_DATA_PLEBEL */
416 0, "L4=Sb=", /* 0x27 */
417 1, "L4=Sd=", /* 0x28 */
418 /* R_SPACE_REF */
419 0, "L4=", /* 0x29 */
420 /* R_REPEATED_INIT */
421 0, "L4=Mb1+4*=", /* 0x2a */
422 1, "Lb4*=Mb1+L*=", /* 0x2b */
423 2, "Lb4*=Md1+4*=", /* 0x2c */
424 3, "Ld1+=Me1+=", /* 0x2d */
425 /* R_RESERVED */
426 0, "", /* 0x2e */
427 0, "", /* 0x2f */
428 /* R_PCREL_CALL */
429 0, "L4=RD=Sb=", /* 0x30 */
430 1, "L4=RD=Sb=", /* 0x31 */
431 2, "L4=RD=Sb=", /* 0x32 */
432 3, "L4=RD=Sb=", /* 0x33 */
433 4, "L4=RD=Sb=", /* 0x34 */
434 5, "L4=RD=Sb=", /* 0x35 */
435 6, "L4=RD=Sb=", /* 0x36 */
436 7, "L4=RD=Sb=", /* 0x37 */
437 8, "L4=RD=Sb=", /* 0x38 */
438 9, "L4=RD=Sb=", /* 0x39 */
439 0, "L4=RD8<b+=Sb=",/* 0x3a */
440 1, "L4=RD8<b+=Sb=",/* 0x3b */
441 0, "L4=RD8<b+=Sd=",/* 0x3c */
442 1, "L4=RD8<b+=Sd=",/* 0x3d */
443 /* R_RESERVED */
444 0, "", /* 0x3e */
445 0, "", /* 0x3f */
446 /* R_ABS_CALL */
447 0, "L4=RD=Sb=", /* 0x40 */
448 1, "L4=RD=Sb=", /* 0x41 */
449 2, "L4=RD=Sb=", /* 0x42 */
450 3, "L4=RD=Sb=", /* 0x43 */
451 4, "L4=RD=Sb=", /* 0x44 */
452 5, "L4=RD=Sb=", /* 0x45 */
453 6, "L4=RD=Sb=", /* 0x46 */
454 7, "L4=RD=Sb=", /* 0x47 */
455 8, "L4=RD=Sb=", /* 0x48 */
456 9, "L4=RD=Sb=", /* 0x49 */
457 0, "L4=RD8<b+=Sb=",/* 0x4a */
458 1, "L4=RD8<b+=Sb=",/* 0x4b */
459 0, "L4=RD8<b+=Sd=",/* 0x4c */
460 1, "L4=RD8<b+=Sd=",/* 0x4d */
461 /* R_RESERVED */
462 0, "", /* 0x4e */
463 0, "", /* 0x4f */
464 /* R_DP_RELATIVE */
465 0, "L4=SD=", /* 0x50 */
466 1, "L4=SD=", /* 0x51 */
467 2, "L4=SD=", /* 0x52 */
468 3, "L4=SD=", /* 0x53 */
469 4, "L4=SD=", /* 0x54 */
470 5, "L4=SD=", /* 0x55 */
471 6, "L4=SD=", /* 0x56 */
472 7, "L4=SD=", /* 0x57 */
473 8, "L4=SD=", /* 0x58 */
474 9, "L4=SD=", /* 0x59 */
475 10, "L4=SD=", /* 0x5a */
476 11, "L4=SD=", /* 0x5b */
477 12, "L4=SD=", /* 0x5c */
478 13, "L4=SD=", /* 0x5d */
479 14, "L4=SD=", /* 0x5e */
480 15, "L4=SD=", /* 0x5f */
481 16, "L4=SD=", /* 0x60 */
482 17, "L4=SD=", /* 0x61 */
483 18, "L4=SD=", /* 0x62 */
484 19, "L4=SD=", /* 0x63 */
485 20, "L4=SD=", /* 0x64 */
486 21, "L4=SD=", /* 0x65 */
487 22, "L4=SD=", /* 0x66 */
488 23, "L4=SD=", /* 0x67 */
489 24, "L4=SD=", /* 0x68 */
490 25, "L4=SD=", /* 0x69 */
491 26, "L4=SD=", /* 0x6a */
492 27, "L4=SD=", /* 0x6b */
493 28, "L4=SD=", /* 0x6c */
494 29, "L4=SD=", /* 0x6d */
495 30, "L4=SD=", /* 0x6e */
496 31, "L4=SD=", /* 0x6f */
497 32, "L4=Sb=", /* 0x70 */
498 33, "L4=Sd=", /* 0x71 */
499 /* R_RESERVED */
500 0, "", /* 0x72 */
501 0, "", /* 0x73 */
502 0, "", /* 0x74 */
503 0, "", /* 0x75 */
504 0, "", /* 0x76 */
505 0, "", /* 0x77 */
506 /* R_DLT_REL */
507 0, "L4=Sb=", /* 0x78 */
508 1, "L4=Sd=", /* 0x79 */
509 /* R_RESERVED */
510 0, "", /* 0x7a */
511 0, "", /* 0x7b */
512 0, "", /* 0x7c */
513 0, "", /* 0x7d */
514 0, "", /* 0x7e */
515 0, "", /* 0x7f */
516 /* R_CODE_ONE_SYMBOL */
517 0, "L4=SD=", /* 0x80 */
518 1, "L4=SD=", /* 0x81 */
519 2, "L4=SD=", /* 0x82 */
520 3, "L4=SD=", /* 0x83 */
521 4, "L4=SD=", /* 0x84 */
522 5, "L4=SD=", /* 0x85 */
523 6, "L4=SD=", /* 0x86 */
524 7, "L4=SD=", /* 0x87 */
525 8, "L4=SD=", /* 0x88 */
526 9, "L4=SD=", /* 0x89 */
527 10, "L4=SD=", /* 0x8q */
528 11, "L4=SD=", /* 0x8b */
529 12, "L4=SD=", /* 0x8c */
530 13, "L4=SD=", /* 0x8d */
531 14, "L4=SD=", /* 0x8e */
532 15, "L4=SD=", /* 0x8f */
533 16, "L4=SD=", /* 0x90 */
534 17, "L4=SD=", /* 0x91 */
535 18, "L4=SD=", /* 0x92 */
536 19, "L4=SD=", /* 0x93 */
537 20, "L4=SD=", /* 0x94 */
538 21, "L4=SD=", /* 0x95 */
539 22, "L4=SD=", /* 0x96 */
540 23, "L4=SD=", /* 0x97 */
541 24, "L4=SD=", /* 0x98 */
542 25, "L4=SD=", /* 0x99 */
543 26, "L4=SD=", /* 0x9a */
544 27, "L4=SD=", /* 0x9b */
545 28, "L4=SD=", /* 0x9c */
546 29, "L4=SD=", /* 0x9d */
547 30, "L4=SD=", /* 0x9e */
548 31, "L4=SD=", /* 0x9f */
549 32, "L4=Sb=", /* 0xa0 */
550 33, "L4=Sd=", /* 0xa1 */
551 /* R_RESERVED */
552 0, "", /* 0xa2 */
553 0, "", /* 0xa3 */
554 0, "", /* 0xa4 */
555 0, "", /* 0xa5 */
556 0, "", /* 0xa6 */
557 0, "", /* 0xa7 */
558 0, "", /* 0xa8 */
559 0, "", /* 0xa9 */
560 0, "", /* 0xaa */
561 0, "", /* 0xab */
562 0, "", /* 0xac */
563 0, "", /* 0xad */
564 /* R_MILLI_REL */
565 0, "L4=Sb=", /* 0xae */
566 1, "L4=Sd=", /* 0xaf */
567 /* R_CODE_PLABEL */
568 0, "L4=Sb=", /* 0xb0 */
569 1, "L4=Sd=", /* 0xb1 */
570 /* R_BREAKPOINT */
571 0, "L4=", /* 0xb2 */
572 /* R_ENTRY */
573 0, "Ui=", /* 0xb3 */
574 1, "Uf=", /* 0xb4 */
575 /* R_ALT_ENTRY */
576 0, "", /* 0xb5 */
577 /* R_EXIT */
578 0, "", /* 0xb6 */
579 /* R_BEGIN_TRY */
580 0, "", /* 0xb7 */
581 /* R_END_TRY */
582 0, "R0=", /* 0xb8 */
583 1, "Rb4*=", /* 0xb9 */
584 2, "Rd4*=", /* 0xba */
585 /* R_BEGIN_BRTAB */
586 0, "", /* 0xbb */
587 /* R_END_BRTAB */
588 0, "", /* 0xbc */
589 /* R_STATEMENT */
590 0, "Nb=", /* 0xbd */
591 1, "Nc=", /* 0xbe */
592 2, "Nd=", /* 0xbf */
593 /* R_DATA_EXPR */
594 0, "L4=", /* 0xc0 */
595 /* R_CODE_EXPR */
596 0, "L4=", /* 0xc1 */
597 /* R_FSEL */
598 0, "", /* 0xc2 */
599 /* R_LSEL */
600 0, "", /* 0xc3 */
601 /* R_RSEL */
602 0, "", /* 0xc4 */
603 /* R_N_MODE */
604 0, "", /* 0xc5 */
605 /* R_S_MODE */
606 0, "", /* 0xc6 */
607 /* R_D_MODE */
608 0, "", /* 0xc7 */
609 /* R_R_MODE */
610 0, "", /* 0xc8 */
611 /* R_DATA_OVERRIDE */
612 0, "V0=", /* 0xc9 */
613 1, "Vb=", /* 0xca */
614 2, "Vc=", /* 0xcb */
615 3, "Vd=", /* 0xcc */
616 4, "Ve=", /* 0xcd */
617 /* R_TRANSLATED */
618 0, "", /* 0xce */
619 /* R_RESERVED */
620 0, "", /* 0xcf */
621 /* R_COMP1 */
622 0, "Ob=", /* 0xd0 */
623 /* R_COMP2 */
624 0, "Ob=Sd=", /* 0xd1 */
625 /* R_COMP3 */
626 0, "Ob=Ve=", /* 0xd2 */
627 /* R_PREV_FIXUP */
628 0, "P", /* 0xd3 */
629 1, "P", /* 0xd4 */
630 2, "P", /* 0xd5 */
631 3, "P", /* 0xd6 */
632 /* R_RESERVED */
633 0, "", /* 0xd7 */
634 0, "", /* 0xd8 */
635 0, "", /* 0xd9 */
636 0, "", /* 0xda */
637 0, "", /* 0xdb */
638 0, "", /* 0xdc */
639 0, "", /* 0xdd */
640 0, "", /* 0xde */
641 0, "", /* 0xdf */
642 0, "", /* 0xe0 */
643 0, "", /* 0xe1 */
644 0, "", /* 0xe2 */
645 0, "", /* 0xe3 */
646 0, "", /* 0xe4 */
647 0, "", /* 0xe5 */
648 0, "", /* 0xe6 */
649 0, "", /* 0xe7 */
650 0, "", /* 0xe8 */
651 0, "", /* 0xe9 */
652 0, "", /* 0xea */
653 0, "", /* 0xeb */
654 0, "", /* 0xec */
655 0, "", /* 0xed */
656 0, "", /* 0xee */
657 0, "", /* 0xef */
658 0, "", /* 0xf0 */
659 0, "", /* 0xf1 */
660 0, "", /* 0xf2 */
661 0, "", /* 0xf3 */
662 0, "", /* 0xf4 */
663 0, "", /* 0xf5 */
664 0, "", /* 0xf6 */
665 0, "", /* 0xf7 */
666 0, "", /* 0xf8 */
667 0, "", /* 0xf9 */
668 0, "", /* 0xfa */
669 0, "", /* 0xfb */
670 0, "", /* 0xfc */
671 0, "", /* 0xfd */
672 0, "", /* 0xfe */
673 0, "", /* 0xff */
674 };
675
676 static const int comp1_opcodes[] =
677 {
678 0x00,
679 0x40,
680 0x41,
681 0x42,
682 0x43,
683 0x44,
684 0x45,
685 0x46,
686 0x47,
687 0x48,
688 0x49,
689 0x4a,
690 0x4b,
691 0x60,
692 0x80,
693 0xa0,
694 0xc0,
695 -1
696 };
697
698 static const int comp2_opcodes[] =
699 {
700 0x00,
701 0x80,
702 0x82,
703 0xc0,
704 -1
705 };
706
707 static const int comp3_opcodes[] =
708 {
709 0x00,
710 0x02,
711 -1
712 };
713
714 /* These apparently are not in older versions of hpux reloc.h. */
715 #ifndef R_DLT_REL
716 #define R_DLT_REL 0x78
717 #endif
718
719 #ifndef R_AUX_UNWIND
720 #define R_AUX_UNWIND 0xcf
721 #endif
722
723 #ifndef R_SEC_STMT
724 #define R_SEC_STMT 0xd7
725 #endif
726
727 static reloc_howto_type som_hppa_howto_table[] =
728 {
729 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
730 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
731 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
732 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
733 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
734 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
735 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
736 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
737 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
738 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
739 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
740 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
741 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
742 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
743 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
744 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
745 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
746 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
747 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
748 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
749 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
750 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
751 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
752 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
753 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
754 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
755 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
756 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
757 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
758 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
759 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
760 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
761 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
762 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
763 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
764 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
765 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
766 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
767 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
768 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
769 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
770 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
771 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
772 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
773 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
774 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
775 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
776 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
777 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
778 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
779 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
780 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
781 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
782 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
783 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
784 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
785 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
786 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
787 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
788 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
789 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
790 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
791 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
792 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
793 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
794 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
795 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
796 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
797 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
798 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
799 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
800 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
801 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
802 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
803 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
804 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
805 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
806 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
807 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
808 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
809 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
810 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
811 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
812 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
813 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
814 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
815 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
816 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
817 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
818 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
819 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
820 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
821 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
822 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
823 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
824 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
825 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
826 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
827 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
828 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
829 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
830 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
831 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
832 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
833 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
834 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
835 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
836 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
837 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
838 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
839 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
840 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
841 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
842 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
843 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
844 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
845 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
846 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
847 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
848 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
849 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
850 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
851 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
852 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
853 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
854 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
855 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
856 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
857 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
858 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
859 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
860 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
861 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
862 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
863 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
864 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
865 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
866 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
867 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
868 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
869 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
870 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
871 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
872 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
873 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
874 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
875 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
876 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
877 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
878 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
879 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
880 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
881 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
882 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
883 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
884 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
885 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
886 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
887 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
888 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
889 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
890 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
891 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
892 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
893 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
894 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
895 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
896 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
897 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
898 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
899 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
900 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
901 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
902 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
903 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
904 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
905 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
906 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
907 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
908 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
909 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
910 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
911 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
912 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
913 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
914 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
915 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
916 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
917 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
918 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
919 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
920 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
921 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
922 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
923 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
924 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
925 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
926 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
927 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
928 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
929 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
930 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
931 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
932 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
933 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
934 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
935 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
936 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
937 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
938 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
939 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
940 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
941 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
942 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
943 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
944 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
945 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
946 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
947 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
948 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
949 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
950 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
951 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
952 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
953 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
954 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
955 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
956 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
957 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
958 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
959 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
960 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
961 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
962 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
963 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
964 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
965 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
966 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
967 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
968 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
969 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
970 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
971 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
972 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
973 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
974 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
975 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
976 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
977 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
978 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
979 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
980 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
981 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
982 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
983 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
984 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
985
986 /* Initialize the SOM relocation queue. By definition the queue holds
987 the last four multibyte fixups. */
988
989 static void
990 som_initialize_reloc_queue (queue)
991 struct reloc_queue *queue;
992 {
993 queue[0].reloc = NULL;
994 queue[0].size = 0;
995 queue[1].reloc = NULL;
996 queue[1].size = 0;
997 queue[2].reloc = NULL;
998 queue[2].size = 0;
999 queue[3].reloc = NULL;
1000 queue[3].size = 0;
1001 }
1002
1003 /* Insert a new relocation into the relocation queue. */
1004
1005 static void
1006 som_reloc_queue_insert (p, size, queue)
1007 unsigned char *p;
1008 unsigned int size;
1009 struct reloc_queue *queue;
1010 {
1011 queue[3].reloc = queue[2].reloc;
1012 queue[3].size = queue[2].size;
1013 queue[2].reloc = queue[1].reloc;
1014 queue[2].size = queue[1].size;
1015 queue[1].reloc = queue[0].reloc;
1016 queue[1].size = queue[0].size;
1017 queue[0].reloc = p;
1018 queue[0].size = size;
1019 }
1020
1021 /* When an entry in the relocation queue is reused, the entry moves
1022 to the front of the queue. */
1023
1024 static void
1025 som_reloc_queue_fix (queue, index)
1026 struct reloc_queue *queue;
1027 unsigned int index;
1028 {
1029 if (index == 0)
1030 return;
1031
1032 if (index == 1)
1033 {
1034 unsigned char *tmp1 = queue[0].reloc;
1035 unsigned int tmp2 = queue[0].size;
1036 queue[0].reloc = queue[1].reloc;
1037 queue[0].size = queue[1].size;
1038 queue[1].reloc = tmp1;
1039 queue[1].size = tmp2;
1040 return;
1041 }
1042
1043 if (index == 2)
1044 {
1045 unsigned char *tmp1 = queue[0].reloc;
1046 unsigned int tmp2 = queue[0].size;
1047 queue[0].reloc = queue[2].reloc;
1048 queue[0].size = queue[2].size;
1049 queue[2].reloc = queue[1].reloc;
1050 queue[2].size = queue[1].size;
1051 queue[1].reloc = tmp1;
1052 queue[1].size = tmp2;
1053 return;
1054 }
1055
1056 if (index == 3)
1057 {
1058 unsigned char *tmp1 = queue[0].reloc;
1059 unsigned int tmp2 = queue[0].size;
1060 queue[0].reloc = queue[3].reloc;
1061 queue[0].size = queue[3].size;
1062 queue[3].reloc = queue[2].reloc;
1063 queue[3].size = queue[2].size;
1064 queue[2].reloc = queue[1].reloc;
1065 queue[2].size = queue[1].size;
1066 queue[1].reloc = tmp1;
1067 queue[1].size = tmp2;
1068 return;
1069 }
1070 abort();
1071 }
1072
1073 /* Search for a particular relocation in the relocation queue. */
1074
1075 static int
1076 som_reloc_queue_find (p, size, queue)
1077 unsigned char *p;
1078 unsigned int size;
1079 struct reloc_queue *queue;
1080 {
1081 if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
1082 && size == queue[0].size)
1083 return 0;
1084 if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
1085 && size == queue[1].size)
1086 return 1;
1087 if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
1088 && size == queue[2].size)
1089 return 2;
1090 if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
1091 && size == queue[3].size)
1092 return 3;
1093 return -1;
1094 }
1095
1096 static unsigned char *
1097 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1098 bfd *abfd;
1099 int *subspace_reloc_sizep;
1100 unsigned char *p;
1101 unsigned int size;
1102 struct reloc_queue *queue;
1103 {
1104 int queue_index = som_reloc_queue_find (p, size, queue);
1105
1106 if (queue_index != -1)
1107 {
1108 /* Found this in a previous fixup. Undo the fixup we
1109 just built and use R_PREV_FIXUP instead. We saved
1110 a total of size - 1 bytes in the fixup stream. */
1111 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1112 p += 1;
1113 *subspace_reloc_sizep += 1;
1114 som_reloc_queue_fix (queue, queue_index);
1115 }
1116 else
1117 {
1118 som_reloc_queue_insert (p, size, queue);
1119 *subspace_reloc_sizep += size;
1120 p += size;
1121 }
1122 return p;
1123 }
1124
1125 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1126 bytes without any relocation. Update the size of the subspace
1127 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1128 current pointer into the relocation stream. */
1129
1130 static unsigned char *
1131 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1132 bfd *abfd;
1133 unsigned int skip;
1134 unsigned char *p;
1135 unsigned int *subspace_reloc_sizep;
1136 struct reloc_queue *queue;
1137 {
1138 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1139 then R_PREV_FIXUPs to get the difference down to a
1140 reasonable size. */
1141 if (skip >= 0x1000000)
1142 {
1143 skip -= 0x1000000;
1144 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1145 bfd_put_8 (abfd, 0xff, p + 1);
1146 bfd_put_16 (abfd, 0xffff, p + 2);
1147 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1148 while (skip >= 0x1000000)
1149 {
1150 skip -= 0x1000000;
1151 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1152 p++;
1153 *subspace_reloc_sizep += 1;
1154 /* No need to adjust queue here since we are repeating the
1155 most recent fixup. */
1156 }
1157 }
1158
1159 /* The difference must be less than 0x1000000. Use one
1160 more R_NO_RELOCATION entry to get to the right difference. */
1161 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1162 {
1163 /* Difference can be handled in a simple single-byte
1164 R_NO_RELOCATION entry. */
1165 if (skip <= 0x60)
1166 {
1167 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1168 *subspace_reloc_sizep += 1;
1169 p++;
1170 }
1171 /* Handle it with a two byte R_NO_RELOCATION entry. */
1172 else if (skip <= 0x1000)
1173 {
1174 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1175 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1176 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1177 }
1178 /* Handle it with a three byte R_NO_RELOCATION entry. */
1179 else
1180 {
1181 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1182 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1183 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1184 }
1185 }
1186 /* Ugh. Punt and use a 4 byte entry. */
1187 else if (skip > 0)
1188 {
1189 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1190 bfd_put_8 (abfd, skip >> 16, p + 1);
1191 bfd_put_16 (abfd, skip, p + 2);
1192 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1193 }
1194 return p;
1195 }
1196
1197 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1198 from a BFD relocation. Update the size of the subspace relocation
1199 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1200 into the relocation stream. */
1201
1202 static unsigned char *
1203 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1204 bfd *abfd;
1205 int addend;
1206 unsigned char *p;
1207 unsigned int *subspace_reloc_sizep;
1208 struct reloc_queue *queue;
1209 {
1210 if ((unsigned)(addend) + 0x80 < 0x100)
1211 {
1212 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1213 bfd_put_8 (abfd, addend, p + 1);
1214 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1215 }
1216 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1217 {
1218 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1219 bfd_put_16 (abfd, addend, p + 1);
1220 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1221 }
1222 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1223 {
1224 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1225 bfd_put_8 (abfd, addend >> 16, p + 1);
1226 bfd_put_16 (abfd, addend, p + 2);
1227 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1228 }
1229 else
1230 {
1231 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1232 bfd_put_32 (abfd, addend, p + 1);
1233 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1234 }
1235 return p;
1236 }
1237
1238 /* Handle a single function call relocation. */
1239
1240 static unsigned char *
1241 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1242 bfd *abfd;
1243 unsigned char *p;
1244 unsigned int *subspace_reloc_sizep;
1245 arelent *bfd_reloc;
1246 int sym_num;
1247 struct reloc_queue *queue;
1248 {
1249 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1250 int rtn_bits = arg_bits & 0x3;
1251 int type, done = 0;
1252
1253 /* You'll never believe all this is necessary to handle relocations
1254 for function calls. Having to compute and pack the argument
1255 relocation bits is the real nightmare.
1256
1257 If you're interested in how this works, just forget it. You really
1258 do not want to know about this braindamage. */
1259
1260 /* First see if this can be done with a "simple" relocation. Simple
1261 relocations have a symbol number < 0x100 and have simple encodings
1262 of argument relocations. */
1263
1264 if (sym_num < 0x100)
1265 {
1266 switch (arg_bits)
1267 {
1268 case 0:
1269 case 1:
1270 type = 0;
1271 break;
1272 case 1 << 8:
1273 case 1 << 8 | 1:
1274 type = 1;
1275 break;
1276 case 1 << 8 | 1 << 6:
1277 case 1 << 8 | 1 << 6 | 1:
1278 type = 2;
1279 break;
1280 case 1 << 8 | 1 << 6 | 1 << 4:
1281 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1282 type = 3;
1283 break;
1284 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1285 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1286 type = 4;
1287 break;
1288 default:
1289 /* Not one of the easy encodings. This will have to be
1290 handled by the more complex code below. */
1291 type = -1;
1292 break;
1293 }
1294 if (type != -1)
1295 {
1296 /* Account for the return value too. */
1297 if (rtn_bits)
1298 type += 5;
1299
1300 /* Emit a 2 byte relocation. Then see if it can be handled
1301 with a relocation which is already in the relocation queue. */
1302 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1303 bfd_put_8 (abfd, sym_num, p + 1);
1304 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1305 done = 1;
1306 }
1307 }
1308
1309 /* If this could not be handled with a simple relocation, then do a hard
1310 one. Hard relocations occur if the symbol number was too high or if
1311 the encoding of argument relocation bits is too complex. */
1312 if (! done)
1313 {
1314 /* Don't ask about these magic sequences. I took them straight
1315 from gas-1.36 which took them from the a.out man page. */
1316 type = rtn_bits;
1317 if ((arg_bits >> 6 & 0xf) == 0xe)
1318 type += 9 * 40;
1319 else
1320 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1321 if ((arg_bits >> 2 & 0xf) == 0xe)
1322 type += 9 * 4;
1323 else
1324 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1325
1326 /* Output the first two bytes of the relocation. These describe
1327 the length of the relocation and encoding style. */
1328 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1329 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1330 p);
1331 bfd_put_8 (abfd, type, p + 1);
1332
1333 /* Now output the symbol index and see if this bizarre relocation
1334 just happened to be in the relocation queue. */
1335 if (sym_num < 0x100)
1336 {
1337 bfd_put_8 (abfd, sym_num, p + 2);
1338 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1339 }
1340 else
1341 {
1342 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1343 bfd_put_16 (abfd, sym_num, p + 3);
1344 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1345 }
1346 }
1347 return p;
1348 }
1349
1350
1351 /* Return the logarithm of X, base 2, considering X unsigned.
1352 Abort -1 if X is not a power or two or is zero. */
1353
1354 static int
1355 log2 (x)
1356 unsigned int x;
1357 {
1358 int log = 0;
1359
1360 /* Test for 0 or a power of 2. */
1361 if (x == 0 || x != (x & -x))
1362 return -1;
1363
1364 while ((x >>= 1) != 0)
1365 log++;
1366 return log;
1367 }
1368
1369 static bfd_reloc_status_type
1370 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1371 input_section, output_bfd, error_message)
1372 bfd *abfd;
1373 arelent *reloc_entry;
1374 asymbol *symbol_in;
1375 PTR data;
1376 asection *input_section;
1377 bfd *output_bfd;
1378 char **error_message;
1379 {
1380 if (output_bfd)
1381 {
1382 reloc_entry->address += input_section->output_offset;
1383 return bfd_reloc_ok;
1384 }
1385 return bfd_reloc_ok;
1386 }
1387
1388 /* Given a generic HPPA relocation type, the instruction format,
1389 and a field selector, return one or more appropriate SOM relocations. */
1390
1391 int **
1392 hppa_som_gen_reloc_type (abfd, base_type, format, field)
1393 bfd *abfd;
1394 int base_type;
1395 int format;
1396 enum hppa_reloc_field_selector_type_alt field;
1397 {
1398 int *final_type, **final_types;
1399
1400 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 3);
1401 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1402 if (!final_types || !final_type)
1403 {
1404 bfd_set_error (bfd_error_no_memory);
1405 return NULL;
1406 }
1407
1408 /* The field selector may require additional relocations to be
1409 generated. It's impossible to know at this moment if additional
1410 relocations will be needed, so we make them. The code to actually
1411 write the relocation/fixup stream is responsible for removing
1412 any redundant relocations. */
1413 switch (field)
1414 {
1415 case e_fsel:
1416 case e_psel:
1417 case e_lpsel:
1418 case e_rpsel:
1419 final_types[0] = final_type;
1420 final_types[1] = NULL;
1421 final_types[2] = NULL;
1422 *final_type = base_type;
1423 break;
1424
1425 case e_tsel:
1426 case e_ltsel:
1427 case e_rtsel:
1428 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1429 if (!final_types[0])
1430 {
1431 bfd_set_error (bfd_error_no_memory);
1432 return NULL;
1433 }
1434 if (field == e_tsel)
1435 *final_types[0] = R_FSEL;
1436 else if (field == e_ltsel)
1437 *final_types[0] = R_LSEL;
1438 else
1439 *final_types[0] = R_RSEL;
1440 final_types[1] = final_type;
1441 final_types[2] = NULL;
1442 *final_type = base_type;
1443 break;
1444
1445 case e_lssel:
1446 case e_rssel:
1447 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1448 if (!final_types[0])
1449 {
1450 bfd_set_error (bfd_error_no_memory);
1451 return NULL;
1452 }
1453 *final_types[0] = R_S_MODE;
1454 final_types[1] = final_type;
1455 final_types[2] = NULL;
1456 *final_type = base_type;
1457 break;
1458
1459 case e_lsel:
1460 case e_rsel:
1461 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1462 if (!final_types[0])
1463 {
1464 bfd_set_error (bfd_error_no_memory);
1465 return NULL;
1466 }
1467 *final_types[0] = R_N_MODE;
1468 final_types[1] = final_type;
1469 final_types[2] = NULL;
1470 *final_type = base_type;
1471 break;
1472
1473 case e_ldsel:
1474 case e_rdsel:
1475 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1476 if (!final_types[0])
1477 {
1478 bfd_set_error (bfd_error_no_memory);
1479 return NULL;
1480 }
1481 *final_types[0] = R_D_MODE;
1482 final_types[1] = final_type;
1483 final_types[2] = NULL;
1484 *final_type = base_type;
1485 break;
1486
1487 case e_lrsel:
1488 case e_rrsel:
1489 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1490 if (!final_types[0])
1491 {
1492 bfd_set_error (bfd_error_no_memory);
1493 return NULL;
1494 }
1495 *final_types[0] = R_R_MODE;
1496 final_types[1] = final_type;
1497 final_types[2] = NULL;
1498 *final_type = base_type;
1499 break;
1500 }
1501
1502 switch (base_type)
1503 {
1504 case R_HPPA:
1505 /* PLABELs get their own relocation type. */
1506 if (field == e_psel
1507 || field == e_lpsel
1508 || field == e_rpsel)
1509 {
1510 /* A PLABEL relocation that has a size of 32 bits must
1511 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1512 if (format == 32)
1513 *final_type = R_DATA_PLABEL;
1514 else
1515 *final_type = R_CODE_PLABEL;
1516 }
1517 /* PIC stuff. */
1518 else if (field == e_tsel
1519 || field == e_ltsel
1520 || field == e_rtsel)
1521 *final_type = R_DLT_REL;
1522 /* A relocation in the data space is always a full 32bits. */
1523 else if (format == 32)
1524 *final_type = R_DATA_ONE_SYMBOL;
1525
1526 break;
1527
1528 case R_HPPA_GOTOFF:
1529 /* More PLABEL special cases. */
1530 if (field == e_psel
1531 || field == e_lpsel
1532 || field == e_rpsel)
1533 *final_type = R_DATA_PLABEL;
1534 break;
1535
1536 case R_HPPA_NONE:
1537 case R_HPPA_ABS_CALL:
1538 case R_HPPA_PCREL_CALL:
1539 /* Right now we can default all these. */
1540 break;
1541 }
1542 return final_types;
1543 }
1544
1545 /* Return the address of the correct entry in the PA SOM relocation
1546 howto table. */
1547
1548 /*ARGSUSED*/
1549 static const reloc_howto_type *
1550 som_bfd_reloc_type_lookup (abfd, code)
1551 bfd *abfd;
1552 bfd_reloc_code_real_type code;
1553 {
1554 if ((int) code < (int) R_NO_RELOCATION + 255)
1555 {
1556 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1557 return &som_hppa_howto_table[(int) code];
1558 }
1559
1560 return (reloc_howto_type *) 0;
1561 }
1562
1563 /* Perform some initialization for an object. Save results of this
1564 initialization in the BFD. */
1565
1566 static const bfd_target *
1567 som_object_setup (abfd, file_hdrp, aux_hdrp)
1568 bfd *abfd;
1569 struct header *file_hdrp;
1570 struct som_exec_auxhdr *aux_hdrp;
1571 {
1572 /* som_mkobject will set bfd_error if som_mkobject fails. */
1573 if (som_mkobject (abfd) != true)
1574 return 0;
1575
1576 /* Set BFD flags based on what information is available in the SOM. */
1577 abfd->flags = NO_FLAGS;
1578 if (file_hdrp->symbol_total)
1579 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1580
1581 switch (file_hdrp->a_magic)
1582 {
1583 case DEMAND_MAGIC:
1584 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1585 break;
1586 case SHARE_MAGIC:
1587 abfd->flags |= (WP_TEXT | EXEC_P);
1588 break;
1589 case EXEC_MAGIC:
1590 abfd->flags |= (EXEC_P);
1591 break;
1592 case RELOC_MAGIC:
1593 abfd->flags |= HAS_RELOC;
1594 break;
1595 #ifdef SHL_MAGIC
1596 case SHL_MAGIC:
1597 #endif
1598 #ifdef DL_MAGIC
1599 case DL_MAGIC:
1600 #endif
1601 abfd->flags |= DYNAMIC;
1602 break;
1603
1604 default:
1605 break;
1606 }
1607
1608 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1609 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 0);
1610 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1611
1612 /* Initialize the saved symbol table and string table to NULL.
1613 Save important offsets and sizes from the SOM header into
1614 the BFD. */
1615 obj_som_stringtab (abfd) = (char *) NULL;
1616 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1617 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1618 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1619 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1620 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
1621
1622 obj_som_exec_data (abfd) = (struct som_exec_data *)
1623 bfd_zalloc (abfd, sizeof (struct som_exec_data ));
1624 if (obj_som_exec_data (abfd) == NULL)
1625 {
1626 bfd_set_error (bfd_error_no_memory);
1627 return NULL;
1628 }
1629
1630 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1631 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1632 return abfd->xvec;
1633 }
1634
1635 /* Convert all of the space and subspace info into BFD sections. Each space
1636 contains a number of subspaces, which in turn describe the mapping between
1637 regions of the exec file, and the address space that the program runs in.
1638 BFD sections which correspond to spaces will overlap the sections for the
1639 associated subspaces. */
1640
1641 static boolean
1642 setup_sections (abfd, file_hdr)
1643 bfd *abfd;
1644 struct header *file_hdr;
1645 {
1646 char *space_strings;
1647 int space_index;
1648 unsigned int total_subspaces = 0;
1649
1650 /* First, read in space names */
1651
1652 space_strings = malloc (file_hdr->space_strings_size);
1653 if (!space_strings && file_hdr->space_strings_size != 0)
1654 {
1655 bfd_set_error (bfd_error_no_memory);
1656 goto error_return;
1657 }
1658
1659 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
1660 goto error_return;
1661 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1662 != file_hdr->space_strings_size)
1663 goto error_return;
1664
1665 /* Loop over all of the space dictionaries, building up sections */
1666 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1667 {
1668 struct space_dictionary_record space;
1669 struct subspace_dictionary_record subspace, save_subspace;
1670 int subspace_index;
1671 asection *space_asect;
1672 char *newname;
1673
1674 /* Read the space dictionary element */
1675 if (bfd_seek (abfd, file_hdr->space_location
1676 + space_index * sizeof space, SEEK_SET) < 0)
1677 goto error_return;
1678 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1679 goto error_return;
1680
1681 /* Setup the space name string */
1682 space.name.n_name = space.name.n_strx + space_strings;
1683
1684 /* Make a section out of it */
1685 newname = bfd_alloc (abfd, strlen (space.name.n_name) + 1);
1686 if (!newname)
1687 goto error_return;
1688 strcpy (newname, space.name.n_name);
1689
1690 space_asect = bfd_make_section_anyway (abfd, newname);
1691 if (!space_asect)
1692 goto error_return;
1693
1694 if (space.is_loadable == 0)
1695 space_asect->flags |= SEC_DEBUGGING;
1696
1697 /* Set up all the attributes for the space. */
1698 if (bfd_som_set_section_attributes (space_asect, space.is_defined,
1699 space.is_private, space.sort_key,
1700 space.space_number) == false)
1701 goto error_return;
1702
1703 /* Now, read in the first subspace for this space */
1704 if (bfd_seek (abfd, file_hdr->subspace_location
1705 + space.subspace_index * sizeof subspace,
1706 SEEK_SET) < 0)
1707 goto error_return;
1708 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1709 goto error_return;
1710 /* Seek back to the start of the subspaces for loop below */
1711 if (bfd_seek (abfd, file_hdr->subspace_location
1712 + space.subspace_index * sizeof subspace,
1713 SEEK_SET) < 0)
1714 goto error_return;
1715
1716 /* Setup the start address and file loc from the first subspace record */
1717 space_asect->vma = subspace.subspace_start;
1718 space_asect->filepos = subspace.file_loc_init_value;
1719 space_asect->alignment_power = log2 (subspace.alignment);
1720 if (space_asect->alignment_power == -1)
1721 goto error_return;
1722
1723 /* Initialize save_subspace so we can reliably determine if this
1724 loop placed any useful values into it. */
1725 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1726
1727 /* Loop over the rest of the subspaces, building up more sections */
1728 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1729 subspace_index++)
1730 {
1731 asection *subspace_asect;
1732
1733 /* Read in the next subspace */
1734 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1735 != sizeof subspace)
1736 goto error_return;
1737
1738 /* Setup the subspace name string */
1739 subspace.name.n_name = subspace.name.n_strx + space_strings;
1740
1741 newname = bfd_alloc (abfd, strlen (subspace.name.n_name) + 1);
1742 if (!newname)
1743 goto error_return;
1744 strcpy (newname, subspace.name.n_name);
1745
1746 /* Make a section out of this subspace */
1747 subspace_asect = bfd_make_section_anyway (abfd, newname);
1748 if (!subspace_asect)
1749 goto error_return;
1750
1751 /* Store private information about the section. */
1752 if (bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1753 subspace.access_control_bits,
1754 subspace.sort_key,
1755 subspace.quadrant) == false)
1756 goto error_return;
1757
1758 /* Keep an easy mapping between subspaces and sections. */
1759 subspace_asect->target_index = total_subspaces++;
1760
1761 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1762 by the access_control_bits in the subspace header. */
1763 switch (subspace.access_control_bits >> 4)
1764 {
1765 /* Readonly data. */
1766 case 0x0:
1767 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1768 break;
1769
1770 /* Normal data. */
1771 case 0x1:
1772 subspace_asect->flags |= SEC_DATA;
1773 break;
1774
1775 /* Readonly code and the gateways.
1776 Gateways have other attributes which do not map
1777 into anything BFD knows about. */
1778 case 0x2:
1779 case 0x4:
1780 case 0x5:
1781 case 0x6:
1782 case 0x7:
1783 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1784 break;
1785
1786 /* dynamic (writable) code. */
1787 case 0x3:
1788 subspace_asect->flags |= SEC_CODE;
1789 break;
1790 }
1791
1792 if (subspace.dup_common || subspace.is_common)
1793 subspace_asect->flags |= SEC_IS_COMMON;
1794 else if (subspace.subspace_length > 0)
1795 subspace_asect->flags |= SEC_HAS_CONTENTS;
1796
1797 if (subspace.is_loadable)
1798 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1799 else
1800 subspace_asect->flags |= SEC_DEBUGGING;
1801
1802 if (subspace.code_only)
1803 subspace_asect->flags |= SEC_CODE;
1804
1805 /* Both file_loc_init_value and initialization_length will
1806 be zero for a BSS like subspace. */
1807 if (subspace.file_loc_init_value == 0
1808 && subspace.initialization_length == 0)
1809 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD);
1810
1811 /* This subspace has relocations.
1812 The fixup_request_quantity is a byte count for the number of
1813 entries in the relocation stream; it is not the actual number
1814 of relocations in the subspace. */
1815 if (subspace.fixup_request_quantity != 0)
1816 {
1817 subspace_asect->flags |= SEC_RELOC;
1818 subspace_asect->rel_filepos = subspace.fixup_request_index;
1819 som_section_data (subspace_asect)->reloc_size
1820 = subspace.fixup_request_quantity;
1821 /* We can not determine this yet. When we read in the
1822 relocation table the correct value will be filled in. */
1823 subspace_asect->reloc_count = -1;
1824 }
1825
1826 /* Update save_subspace if appropriate. */
1827 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1828 save_subspace = subspace;
1829
1830 subspace_asect->vma = subspace.subspace_start;
1831 subspace_asect->_cooked_size = subspace.subspace_length;
1832 subspace_asect->_raw_size = subspace.subspace_length;
1833 subspace_asect->filepos = subspace.file_loc_init_value;
1834 subspace_asect->alignment_power = log2 (subspace.alignment);
1835 if (subspace_asect->alignment_power == -1)
1836 goto error_return;
1837 }
1838
1839 /* Yow! there is no subspace within the space which actually
1840 has initialized information in it; this should never happen
1841 as far as I know. */
1842 if (!save_subspace.file_loc_init_value)
1843 goto error_return;
1844
1845 /* Setup the sizes for the space section based upon the info in the
1846 last subspace of the space. */
1847 space_asect->_cooked_size = save_subspace.subspace_start
1848 - space_asect->vma + save_subspace.subspace_length;
1849 space_asect->_raw_size = save_subspace.file_loc_init_value
1850 - space_asect->filepos + save_subspace.initialization_length;
1851 }
1852 if (space_strings != NULL)
1853 free (space_strings);
1854 return true;
1855
1856 error_return:
1857 if (space_strings != NULL)
1858 free (space_strings);
1859 return false;
1860 }
1861
1862 /* Read in a SOM object and make it into a BFD. */
1863
1864 static const bfd_target *
1865 som_object_p (abfd)
1866 bfd *abfd;
1867 {
1868 struct header file_hdr;
1869 struct som_exec_auxhdr aux_hdr;
1870
1871 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
1872 {
1873 if (bfd_get_error () != bfd_error_system_call)
1874 bfd_set_error (bfd_error_wrong_format);
1875 return 0;
1876 }
1877
1878 if (!_PA_RISC_ID (file_hdr.system_id))
1879 {
1880 bfd_set_error (bfd_error_wrong_format);
1881 return 0;
1882 }
1883
1884 switch (file_hdr.a_magic)
1885 {
1886 case RELOC_MAGIC:
1887 case EXEC_MAGIC:
1888 case SHARE_MAGIC:
1889 case DEMAND_MAGIC:
1890 #ifdef DL_MAGIC
1891 case DL_MAGIC:
1892 #endif
1893 #ifdef SHL_MAGIC
1894 case SHL_MAGIC:
1895 #endif
1896 #ifdef EXECLIBMAGIC
1897 case EXECLIBMAGIC:
1898 #endif
1899 #ifdef SHARED_MAGIC_CNX
1900 case SHARED_MAGIC_CNX:
1901 #endif
1902 break;
1903 default:
1904 bfd_set_error (bfd_error_wrong_format);
1905 return 0;
1906 }
1907
1908 if (file_hdr.version_id != VERSION_ID
1909 && file_hdr.version_id != NEW_VERSION_ID)
1910 {
1911 bfd_set_error (bfd_error_wrong_format);
1912 return 0;
1913 }
1914
1915 /* If the aux_header_size field in the file header is zero, then this
1916 object is an incomplete executable (a .o file). Do not try to read
1917 a non-existant auxiliary header. */
1918 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
1919 if (file_hdr.aux_header_size != 0)
1920 {
1921 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
1922 {
1923 if (bfd_get_error () != bfd_error_system_call)
1924 bfd_set_error (bfd_error_wrong_format);
1925 return 0;
1926 }
1927 }
1928
1929 if (!setup_sections (abfd, &file_hdr))
1930 {
1931 /* setup_sections does not bubble up a bfd error code. */
1932 bfd_set_error (bfd_error_bad_value);
1933 return 0;
1934 }
1935
1936 /* This appears to be a valid SOM object. Do some initialization. */
1937 return som_object_setup (abfd, &file_hdr, &aux_hdr);
1938 }
1939
1940 /* Create a SOM object. */
1941
1942 static boolean
1943 som_mkobject (abfd)
1944 bfd *abfd;
1945 {
1946 /* Allocate memory to hold backend information. */
1947 abfd->tdata.som_data = (struct som_data_struct *)
1948 bfd_zalloc (abfd, sizeof (struct som_data_struct));
1949 if (abfd->tdata.som_data == NULL)
1950 {
1951 bfd_set_error (bfd_error_no_memory);
1952 return false;
1953 }
1954 return true;
1955 }
1956
1957 /* Initialize some information in the file header. This routine makes
1958 not attempt at doing the right thing for a full executable; it
1959 is only meant to handle relocatable objects. */
1960
1961 static boolean
1962 som_prep_headers (abfd)
1963 bfd *abfd;
1964 {
1965 struct header *file_hdr;
1966 asection *section;
1967
1968 /* Make and attach a file header to the BFD. */
1969 file_hdr = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
1970 if (file_hdr == NULL)
1971
1972 {
1973 bfd_set_error (bfd_error_no_memory);
1974 return false;
1975 }
1976 obj_som_file_hdr (abfd) = file_hdr;
1977
1978 if (abfd->flags & (EXEC_P | DYNAMIC))
1979 {
1980
1981 /* Make and attach an exec header to the BFD. */
1982 obj_som_exec_hdr (abfd) = (struct som_exec_auxhdr *)
1983 bfd_zalloc (abfd, sizeof (struct som_exec_auxhdr));
1984 if (obj_som_exec_hdr (abfd) == NULL)
1985 {
1986 bfd_set_error (bfd_error_no_memory);
1987 return false;
1988 }
1989
1990 if (abfd->flags & D_PAGED)
1991 file_hdr->a_magic = DEMAND_MAGIC;
1992 else if (abfd->flags & WP_TEXT)
1993 file_hdr->a_magic = SHARE_MAGIC;
1994 #ifdef SHL_MAGIC
1995 else if (abfd->flags & DYNAMIC)
1996 file_hdr->a_magic = SHL_MAGIC;
1997 #endif
1998 else
1999 file_hdr->a_magic = EXEC_MAGIC;
2000 }
2001 else
2002 file_hdr->a_magic = RELOC_MAGIC;
2003
2004 /* Only new format SOM is supported. */
2005 file_hdr->version_id = NEW_VERSION_ID;
2006
2007 /* These fields are optional, and embedding timestamps is not always
2008 a wise thing to do, it makes comparing objects during a multi-stage
2009 bootstrap difficult. */
2010 file_hdr->file_time.secs = 0;
2011 file_hdr->file_time.nanosecs = 0;
2012
2013 file_hdr->entry_space = 0;
2014 file_hdr->entry_subspace = 0;
2015 file_hdr->entry_offset = 0;
2016 file_hdr->presumed_dp = 0;
2017
2018 /* Now iterate over the sections translating information from
2019 BFD sections to SOM spaces/subspaces. */
2020
2021 for (section = abfd->sections; section != NULL; section = section->next)
2022 {
2023 /* Ignore anything which has not been marked as a space or
2024 subspace. */
2025 if (!som_is_space (section) && !som_is_subspace (section))
2026 continue;
2027
2028 if (som_is_space (section))
2029 {
2030 /* Allocate space for the space dictionary. */
2031 som_section_data (section)->space_dict
2032 = (struct space_dictionary_record *)
2033 bfd_zalloc (abfd, sizeof (struct space_dictionary_record));
2034 if (som_section_data (section)->space_dict == NULL)
2035 {
2036 bfd_set_error (bfd_error_no_memory);
2037 return false;
2038 }
2039 /* Set space attributes. Note most attributes of SOM spaces
2040 are set based on the subspaces it contains. */
2041 som_section_data (section)->space_dict->loader_fix_index = -1;
2042 som_section_data (section)->space_dict->init_pointer_index = -1;
2043
2044 /* Set more attributes that were stuffed away in private data. */
2045 som_section_data (section)->space_dict->sort_key =
2046 som_section_data (section)->copy_data->sort_key;
2047 som_section_data (section)->space_dict->is_defined =
2048 som_section_data (section)->copy_data->is_defined;
2049 som_section_data (section)->space_dict->is_private =
2050 som_section_data (section)->copy_data->is_private;
2051 som_section_data (section)->space_dict->space_number =
2052 som_section_data (section)->copy_data->space_number;
2053 }
2054 else
2055 {
2056 /* Allocate space for the subspace dictionary. */
2057 som_section_data (section)->subspace_dict
2058 = (struct subspace_dictionary_record *)
2059 bfd_zalloc (abfd, sizeof (struct subspace_dictionary_record));
2060 if (som_section_data (section)->subspace_dict == NULL)
2061 {
2062 bfd_set_error (bfd_error_no_memory);
2063 return false;
2064 }
2065
2066 /* Set subspace attributes. Basic stuff is done here, additional
2067 attributes are filled in later as more information becomes
2068 available. */
2069 if (section->flags & SEC_IS_COMMON)
2070 {
2071 som_section_data (section)->subspace_dict->dup_common = 1;
2072 som_section_data (section)->subspace_dict->is_common = 1;
2073 }
2074
2075 if (section->flags & SEC_ALLOC)
2076 som_section_data (section)->subspace_dict->is_loadable = 1;
2077
2078 if (section->flags & SEC_CODE)
2079 som_section_data (section)->subspace_dict->code_only = 1;
2080
2081 som_section_data (section)->subspace_dict->subspace_start =
2082 section->vma;
2083 som_section_data (section)->subspace_dict->subspace_length =
2084 bfd_section_size (abfd, section);
2085 som_section_data (section)->subspace_dict->initialization_length =
2086 bfd_section_size (abfd, section);
2087 som_section_data (section)->subspace_dict->alignment =
2088 1 << section->alignment_power;
2089
2090 /* Set more attributes that were stuffed away in private data. */
2091 som_section_data (section)->subspace_dict->sort_key =
2092 som_section_data (section)->copy_data->sort_key;
2093 som_section_data (section)->subspace_dict->access_control_bits =
2094 som_section_data (section)->copy_data->access_control_bits;
2095 som_section_data (section)->subspace_dict->quadrant =
2096 som_section_data (section)->copy_data->quadrant;
2097 }
2098 }
2099 return true;
2100 }
2101
2102 /* Return true if the given section is a SOM space, false otherwise. */
2103
2104 static boolean
2105 som_is_space (section)
2106 asection *section;
2107 {
2108 /* If no copy data is available, then it's neither a space nor a
2109 subspace. */
2110 if (som_section_data (section)->copy_data == NULL)
2111 return false;
2112
2113 /* If the containing space isn't the same as the given section,
2114 then this isn't a space. */
2115 if (som_section_data (section)->copy_data->container != section)
2116 return false;
2117
2118 /* OK. Must be a space. */
2119 return true;
2120 }
2121
2122 /* Return true if the given section is a SOM subspace, false otherwise. */
2123
2124 static boolean
2125 som_is_subspace (section)
2126 asection *section;
2127 {
2128 /* If no copy data is available, then it's neither a space nor a
2129 subspace. */
2130 if (som_section_data (section)->copy_data == NULL)
2131 return false;
2132
2133 /* If the containing space is the same as the given section,
2134 then this isn't a subspace. */
2135 if (som_section_data (section)->copy_data->container == section)
2136 return false;
2137
2138 /* OK. Must be a subspace. */
2139 return true;
2140 }
2141
2142 /* Return true if the given space containins the given subspace. It
2143 is safe to assume space really is a space, and subspace really
2144 is a subspace. */
2145
2146 static boolean
2147 som_is_container (space, subspace)
2148 asection *space, *subspace;
2149 {
2150 return som_section_data (subspace)->copy_data->container == space;
2151 }
2152
2153 /* Count and return the number of spaces attached to the given BFD. */
2154
2155 static unsigned long
2156 som_count_spaces (abfd)
2157 bfd *abfd;
2158 {
2159 int count = 0;
2160 asection *section;
2161
2162 for (section = abfd->sections; section != NULL; section = section->next)
2163 count += som_is_space (section);
2164
2165 return count;
2166 }
2167
2168 /* Count the number of subspaces attached to the given BFD. */
2169
2170 static unsigned long
2171 som_count_subspaces (abfd)
2172 bfd *abfd;
2173 {
2174 int count = 0;
2175 asection *section;
2176
2177 for (section = abfd->sections; section != NULL; section = section->next)
2178 count += som_is_subspace (section);
2179
2180 return count;
2181 }
2182
2183 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2184
2185 We desire symbols to be ordered starting with the symbol with the
2186 highest relocation count down to the symbol with the lowest relocation
2187 count. Doing so compacts the relocation stream. */
2188
2189 static int
2190 compare_syms (arg1, arg2)
2191 const PTR arg1;
2192 const PTR arg2;
2193
2194 {
2195 asymbol **sym1 = (asymbol **) arg1;
2196 asymbol **sym2 = (asymbol **) arg2;
2197 unsigned int count1, count2;
2198
2199 /* Get relocation count for each symbol. Note that the count
2200 is stored in the udata pointer for section symbols! */
2201 if ((*sym1)->flags & BSF_SECTION_SYM)
2202 count1 = (int)(*sym1)->udata;
2203 else
2204 count1 = som_symbol_data (*sym1)->reloc_count;
2205
2206 if ((*sym2)->flags & BSF_SECTION_SYM)
2207 count2 = (int)(*sym2)->udata;
2208 else
2209 count2 = som_symbol_data (*sym2)->reloc_count;
2210
2211 /* Return the appropriate value. */
2212 if (count1 < count2)
2213 return 1;
2214 else if (count1 > count2)
2215 return -1;
2216 return 0;
2217 }
2218
2219 /* Perform various work in preparation for emitting the fixup stream. */
2220
2221 static void
2222 som_prep_for_fixups (abfd, syms, num_syms)
2223 bfd *abfd;
2224 asymbol **syms;
2225 unsigned long num_syms;
2226 {
2227 int i;
2228 asection *section;
2229
2230 /* Most SOM relocations involving a symbol have a length which is
2231 dependent on the index of the symbol. So symbols which are
2232 used often in relocations should have a small index. */
2233
2234 /* First initialize the counters for each symbol. */
2235 for (i = 0; i < num_syms; i++)
2236 {
2237 /* Handle a section symbol; these have no pointers back to the
2238 SOM symbol info. So we just use the pointer field (udata)
2239 to hold the relocation count. */
2240 if (som_symbol_data (syms[i]) == NULL
2241 || syms[i]->flags & BSF_SECTION_SYM)
2242 {
2243 syms[i]->flags |= BSF_SECTION_SYM;
2244 syms[i]->udata = (PTR) 0;
2245 }
2246 else
2247 som_symbol_data (syms[i])->reloc_count = 0;
2248 }
2249
2250 /* Now that the counters are initialized, make a weighted count
2251 of how often a given symbol is used in a relocation. */
2252 for (section = abfd->sections; section != NULL; section = section->next)
2253 {
2254 int i;
2255
2256 /* Does this section have any relocations? */
2257 if (section->reloc_count <= 0)
2258 continue;
2259
2260 /* Walk through each relocation for this section. */
2261 for (i = 1; i < section->reloc_count; i++)
2262 {
2263 arelent *reloc = section->orelocation[i];
2264 int scale;
2265
2266 /* A relocation against a symbol in the *ABS* section really
2267 does not have a symbol. Likewise if the symbol isn't associated
2268 with any section. */
2269 if (reloc->sym_ptr_ptr == NULL
2270 || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section))
2271 continue;
2272
2273 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2274 and R_CODE_ONE_SYMBOL relocations to come first. These
2275 two relocations have single byte versions if the symbol
2276 index is very small. */
2277 if (reloc->howto->type == R_DP_RELATIVE
2278 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2279 scale = 2;
2280 else
2281 scale = 1;
2282
2283 /* Handle section symbols by ramming the count in the udata
2284 field. It will not be used and the count is very important
2285 for these symbols. */
2286 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2287 {
2288 (*reloc->sym_ptr_ptr)->udata =
2289 (PTR) ((int) (*reloc->sym_ptr_ptr)->udata + scale);
2290 continue;
2291 }
2292
2293 /* A normal symbol. Increment the count. */
2294 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2295 }
2296 }
2297
2298 /* Now sort the symbols. */
2299 qsort (syms, num_syms, sizeof (asymbol *), compare_syms);
2300
2301 /* Compute the symbol indexes, they will be needed by the relocation
2302 code. */
2303 for (i = 0; i < num_syms; i++)
2304 {
2305 /* A section symbol. Again, there is no pointer to backend symbol
2306 information, so we reuse (abuse) the udata field again. */
2307 if (syms[i]->flags & BSF_SECTION_SYM)
2308 syms[i]->udata = (PTR) i;
2309 else
2310 som_symbol_data (syms[i])->index = i;
2311 }
2312 }
2313
2314 static boolean
2315 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2316 bfd *abfd;
2317 unsigned long current_offset;
2318 unsigned int *total_reloc_sizep;
2319 {
2320 unsigned int i, j;
2321 /* Chunk of memory that we can use as buffer space, then throw
2322 away. */
2323 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2324 unsigned char *p;
2325 unsigned int total_reloc_size = 0;
2326 unsigned int subspace_reloc_size = 0;
2327 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2328 asection *section = abfd->sections;
2329
2330 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2331 p = tmp_space;
2332
2333 /* All the fixups for a particular subspace are emitted in a single
2334 stream. All the subspaces for a particular space are emitted
2335 as a single stream.
2336
2337 So, to get all the locations correct one must iterate through all the
2338 spaces, for each space iterate through its subspaces and output a
2339 fixups stream. */
2340 for (i = 0; i < num_spaces; i++)
2341 {
2342 asection *subsection;
2343
2344 /* Find a space. */
2345 while (!som_is_space (section))
2346 section = section->next;
2347
2348 /* Now iterate through each of its subspaces. */
2349 for (subsection = abfd->sections;
2350 subsection != NULL;
2351 subsection = subsection->next)
2352 {
2353 int reloc_offset, current_rounding_mode;
2354
2355 /* Find a subspace of this space. */
2356 if (!som_is_subspace (subsection)
2357 || !som_is_container (section, subsection))
2358 continue;
2359
2360 /* If this subspace does not have real data, then we are
2361 finised with it. */
2362 if ((subsection->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0)
2363 {
2364 som_section_data (subsection)->subspace_dict->fixup_request_index
2365 = -1;
2366 continue;
2367 }
2368
2369 /* This subspace has some relocations. Put the relocation stream
2370 index into the subspace record. */
2371 som_section_data (subsection)->subspace_dict->fixup_request_index
2372 = total_reloc_size;
2373
2374 /* To make life easier start over with a clean slate for
2375 each subspace. Seek to the start of the relocation stream
2376 for this subspace in preparation for writing out its fixup
2377 stream. */
2378 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) < 0)
2379 return false;
2380
2381 /* Buffer space has already been allocated. Just perform some
2382 initialization here. */
2383 p = tmp_space;
2384 subspace_reloc_size = 0;
2385 reloc_offset = 0;
2386 som_initialize_reloc_queue (reloc_queue);
2387 current_rounding_mode = R_N_MODE;
2388
2389 /* Translate each BFD relocation into one or more SOM
2390 relocations. */
2391 for (j = 0; j < subsection->reloc_count; j++)
2392 {
2393 arelent *bfd_reloc = subsection->orelocation[j];
2394 unsigned int skip;
2395 int sym_num;
2396
2397 /* Get the symbol number. Remember it's stored in a
2398 special place for section symbols. */
2399 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2400 sym_num = (int) (*bfd_reloc->sym_ptr_ptr)->udata;
2401 else
2402 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2403
2404 /* If there is not enough room for the next couple relocations,
2405 then dump the current buffer contents now. Also reinitialize
2406 the relocation queue.
2407
2408 No single BFD relocation could ever translate into more
2409 than 100 bytes of SOM relocations (20bytes is probably the
2410 upper limit, but leave lots of space for growth). */
2411 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2412 {
2413 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2414 != p - tmp_space)
2415 return false;
2416
2417 p = tmp_space;
2418 som_initialize_reloc_queue (reloc_queue);
2419 }
2420
2421 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2422 skipped. */
2423 skip = bfd_reloc->address - reloc_offset;
2424 p = som_reloc_skip (abfd, skip, p,
2425 &subspace_reloc_size, reloc_queue);
2426
2427 /* Update reloc_offset for the next iteration.
2428
2429 Many relocations do not consume input bytes. They
2430 are markers, or set state necessary to perform some
2431 later relocation. */
2432 switch (bfd_reloc->howto->type)
2433 {
2434 /* This only needs to handle relocations that may be
2435 made by hppa_som_gen_reloc. */
2436 case R_ENTRY:
2437 case R_EXIT:
2438 case R_N_MODE:
2439 case R_S_MODE:
2440 case R_D_MODE:
2441 case R_R_MODE:
2442 case R_FSEL:
2443 case R_LSEL:
2444 case R_RSEL:
2445 reloc_offset = bfd_reloc->address;
2446 break;
2447
2448 default:
2449 reloc_offset = bfd_reloc->address + 4;
2450 break;
2451 }
2452
2453 /* Now the actual relocation we care about. */
2454 switch (bfd_reloc->howto->type)
2455 {
2456 case R_PCREL_CALL:
2457 case R_ABS_CALL:
2458 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2459 bfd_reloc, sym_num, reloc_queue);
2460 break;
2461
2462 case R_CODE_ONE_SYMBOL:
2463 case R_DP_RELATIVE:
2464 /* Account for any addend. */
2465 if (bfd_reloc->addend)
2466 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2467 &subspace_reloc_size, reloc_queue);
2468
2469 if (sym_num < 0x20)
2470 {
2471 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2472 subspace_reloc_size += 1;
2473 p += 1;
2474 }
2475 else if (sym_num < 0x100)
2476 {
2477 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2478 bfd_put_8 (abfd, sym_num, p + 1);
2479 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2480 2, reloc_queue);
2481 }
2482 else if (sym_num < 0x10000000)
2483 {
2484 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2485 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2486 bfd_put_16 (abfd, sym_num, p + 2);
2487 p = try_prev_fixup (abfd, &subspace_reloc_size,
2488 p, 4, reloc_queue);
2489 }
2490 else
2491 abort ();
2492 break;
2493
2494 case R_DATA_ONE_SYMBOL:
2495 case R_DATA_PLABEL:
2496 case R_CODE_PLABEL:
2497 case R_DLT_REL:
2498 /* Account for any addend. */
2499 if (bfd_reloc->addend)
2500 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2501 &subspace_reloc_size, reloc_queue);
2502
2503 if (sym_num < 0x100)
2504 {
2505 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2506 bfd_put_8 (abfd, sym_num, p + 1);
2507 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2508 2, reloc_queue);
2509 }
2510 else if (sym_num < 0x10000000)
2511 {
2512 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2513 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2514 bfd_put_16 (abfd, sym_num, p + 2);
2515 p = try_prev_fixup (abfd, &subspace_reloc_size,
2516 p, 4, reloc_queue);
2517 }
2518 else
2519 abort ();
2520 break;
2521
2522 case R_ENTRY:
2523 {
2524 int *descp = (int *)
2525 som_symbol_data (*bfd_reloc->sym_ptr_ptr)->unwind;
2526 bfd_put_8 (abfd, R_ENTRY, p);
2527
2528 /* FIXME: We should set the sym_ptr for the R_ENTRY
2529 reloc to point to the appropriate function symbol,
2530 and attach unwind bits to the function symbol as
2531 we canonicalize the relocs. Doing so would ensure
2532 descp would always point to something useful. */
2533 if (descp)
2534 {
2535 bfd_put_32 (abfd, descp[0], p + 1);
2536 bfd_put_32 (abfd, descp[1], p + 5);
2537 }
2538 else
2539 {
2540 bfd_put_32 (abfd, 0, p + 1);
2541 bfd_put_32 (abfd, 0, p + 5);
2542 }
2543 p = try_prev_fixup (abfd, &subspace_reloc_size,
2544 p, 9, reloc_queue);
2545 break;
2546 }
2547
2548 case R_EXIT:
2549 bfd_put_8 (abfd, R_EXIT, p);
2550 subspace_reloc_size += 1;
2551 p += 1;
2552 break;
2553
2554 case R_N_MODE:
2555 case R_S_MODE:
2556 case R_D_MODE:
2557 case R_R_MODE:
2558 /* If this relocation requests the current rounding
2559 mode, then it is redundant. */
2560 if (bfd_reloc->howto->type != current_rounding_mode)
2561 {
2562 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2563 subspace_reloc_size += 1;
2564 p += 1;
2565 current_rounding_mode = bfd_reloc->howto->type;
2566 }
2567 break;
2568
2569 case R_FSEL:
2570 case R_LSEL:
2571 case R_RSEL:
2572 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2573 subspace_reloc_size += 1;
2574 p += 1;
2575 break;
2576
2577 /* Put a "R_RESERVED" relocation in the stream if
2578 we hit something we do not understand. The linker
2579 will complain loudly if this ever happens. */
2580 default:
2581 bfd_put_8 (abfd, 0xff, p);
2582 subspace_reloc_size += 1;
2583 p += 1;
2584 break;
2585 }
2586 }
2587
2588 /* Last BFD relocation for a subspace has been processed.
2589 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2590 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2591 - reloc_offset,
2592 p, &subspace_reloc_size, reloc_queue);
2593
2594 /* Scribble out the relocations. */
2595 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2596 != p - tmp_space)
2597 return false;
2598 p = tmp_space;
2599
2600 total_reloc_size += subspace_reloc_size;
2601 som_section_data (subsection)->subspace_dict->fixup_request_quantity
2602 = subspace_reloc_size;
2603 }
2604 section = section->next;
2605 }
2606 *total_reloc_sizep = total_reloc_size;
2607 return true;
2608 }
2609
2610 /* Write out the space/subspace string table. */
2611
2612 static boolean
2613 som_write_space_strings (abfd, current_offset, string_sizep)
2614 bfd *abfd;
2615 unsigned long current_offset;
2616 unsigned int *string_sizep;
2617 {
2618 /* Chunk of memory that we can use as buffer space, then throw
2619 away. */
2620 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2621 unsigned char *p;
2622 unsigned int strings_size = 0;
2623 asection *section;
2624
2625 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2626 p = tmp_space;
2627
2628 /* Seek to the start of the space strings in preparation for writing
2629 them out. */
2630 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2631 return false;
2632
2633 /* Walk through all the spaces and subspaces (order is not important)
2634 building up and writing string table entries for their names. */
2635 for (section = abfd->sections; section != NULL; section = section->next)
2636 {
2637 int length;
2638
2639 /* Only work with space/subspaces; avoid any other sections
2640 which might have been made (.text for example). */
2641 if (!som_is_space (section) && !som_is_subspace (section))
2642 continue;
2643
2644 /* Get the length of the space/subspace name. */
2645 length = strlen (section->name);
2646
2647 /* If there is not enough room for the next entry, then dump the
2648 current buffer contents now. Each entry will take 4 bytes to
2649 hold the string length + the string itself + null terminator. */
2650 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2651 {
2652 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2653 != p - tmp_space)
2654 return false;
2655 /* Reset to beginning of the buffer space. */
2656 p = tmp_space;
2657 }
2658
2659 /* First element in a string table entry is the length of the
2660 string. Alignment issues are already handled. */
2661 bfd_put_32 (abfd, length, p);
2662 p += 4;
2663 strings_size += 4;
2664
2665 /* Record the index in the space/subspace records. */
2666 if (som_is_space (section))
2667 som_section_data (section)->space_dict->name.n_strx = strings_size;
2668 else
2669 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
2670
2671 /* Next comes the string itself + a null terminator. */
2672 strcpy (p, section->name);
2673 p += length + 1;
2674 strings_size += length + 1;
2675
2676 /* Always align up to the next word boundary. */
2677 while (strings_size % 4)
2678 {
2679 bfd_put_8 (abfd, 0, p);
2680 p++;
2681 strings_size++;
2682 }
2683 }
2684
2685 /* Done with the space/subspace strings. Write out any information
2686 contained in a partial block. */
2687 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2688 return false;
2689 *string_sizep = strings_size;
2690 return true;
2691 }
2692
2693 /* Write out the symbol string table. */
2694
2695 static boolean
2696 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
2697 bfd *abfd;
2698 unsigned long current_offset;
2699 asymbol **syms;
2700 unsigned int num_syms;
2701 unsigned int *string_sizep;
2702 {
2703 unsigned int i;
2704
2705 /* Chunk of memory that we can use as buffer space, then throw
2706 away. */
2707 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2708 unsigned char *p;
2709 unsigned int strings_size = 0;
2710
2711 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2712 p = tmp_space;
2713
2714 /* Seek to the start of the space strings in preparation for writing
2715 them out. */
2716 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2717 return false;
2718
2719 for (i = 0; i < num_syms; i++)
2720 {
2721 int length = strlen (syms[i]->name);
2722
2723 /* If there is not enough room for the next entry, then dump the
2724 current buffer contents now. */
2725 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2726 {
2727 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2728 != p - tmp_space)
2729 return false;
2730 /* Reset to beginning of the buffer space. */
2731 p = tmp_space;
2732 }
2733
2734 /* First element in a string table entry is the length of the
2735 string. This must always be 4 byte aligned. This is also
2736 an appropriate time to fill in the string index field in the
2737 symbol table entry. */
2738 bfd_put_32 (abfd, length, p);
2739 strings_size += 4;
2740 p += 4;
2741
2742 /* Next comes the string itself + a null terminator. */
2743 strcpy (p, syms[i]->name);
2744
2745 /* ACK. FIXME. */
2746 syms[i]->name = (char *)strings_size;
2747 p += length + 1;
2748 strings_size += length + 1;
2749
2750 /* Always align up to the next word boundary. */
2751 while (strings_size % 4)
2752 {
2753 bfd_put_8 (abfd, 0, p);
2754 strings_size++;
2755 p++;
2756 }
2757 }
2758
2759 /* Scribble out any partial block. */
2760 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2761 return false;
2762
2763 *string_sizep = strings_size;
2764 return true;
2765 }
2766
2767 /* Compute variable information to be placed in the SOM headers,
2768 space/subspace dictionaries, relocation streams, etc. Begin
2769 writing parts of the object file. */
2770
2771 static boolean
2772 som_begin_writing (abfd)
2773 bfd *abfd;
2774 {
2775 unsigned long current_offset = 0;
2776 int strings_size = 0;
2777 unsigned int total_reloc_size = 0;
2778 unsigned long num_spaces, num_subspaces, num_syms, i;
2779 asection *section;
2780 asymbol **syms = bfd_get_outsymbols (abfd);
2781 unsigned int total_subspaces = 0;
2782 struct som_exec_auxhdr *exec_header;
2783
2784 /* The file header will always be first in an object file,
2785 everything else can be in random locations. To keep things
2786 "simple" BFD will lay out the object file in the manner suggested
2787 by the PRO ABI for PA-RISC Systems. */
2788
2789 /* Before any output can really begin offsets for all the major
2790 portions of the object file must be computed. So, starting
2791 with the initial file header compute (and sometimes write)
2792 each portion of the object file. */
2793
2794 /* Make room for the file header, it's contents are not complete
2795 yet, so it can not be written at this time. */
2796 current_offset += sizeof (struct header);
2797
2798 /* Any auxiliary headers will follow the file header. Right now
2799 we support only the copyright and version headers. */
2800 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
2801 obj_som_file_hdr (abfd)->aux_header_size = 0;
2802 if (abfd->flags & (EXEC_P | DYNAMIC))
2803 {
2804 /* Parts of the exec header will be filled in later, so
2805 delay writing the header itself. Fill in the defaults,
2806 and write it later. */
2807 current_offset += sizeof (struct som_exec_auxhdr);
2808 obj_som_file_hdr (abfd)->aux_header_size
2809 += sizeof (struct som_exec_auxhdr);
2810 exec_header = obj_som_exec_hdr (abfd);
2811 exec_header->som_auxhdr.type = EXEC_AUX_ID;
2812 exec_header->som_auxhdr.length = 40;
2813 }
2814 if (obj_som_version_hdr (abfd) != NULL)
2815 {
2816 unsigned int len;
2817
2818 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2819 return false;
2820
2821 /* Write the aux_id structure and the string length. */
2822 len = sizeof (struct aux_id) + sizeof (unsigned int);
2823 obj_som_file_hdr (abfd)->aux_header_size += len;
2824 current_offset += len;
2825 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
2826 return false;
2827
2828 /* Write the version string. */
2829 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
2830 obj_som_file_hdr (abfd)->aux_header_size += len;
2831 current_offset += len;
2832 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
2833 len, 1, abfd) != len)
2834 return false;
2835 }
2836
2837 if (obj_som_copyright_hdr (abfd) != NULL)
2838 {
2839 unsigned int len;
2840
2841 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2842 return false;
2843
2844 /* Write the aux_id structure and the string length. */
2845 len = sizeof (struct aux_id) + sizeof (unsigned int);
2846 obj_som_file_hdr (abfd)->aux_header_size += len;
2847 current_offset += len;
2848 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
2849 return false;
2850
2851 /* Write the copyright string. */
2852 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
2853 obj_som_file_hdr (abfd)->aux_header_size += len;
2854 current_offset += len;
2855 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
2856 len, 1, abfd) != len)
2857 return false;
2858 }
2859
2860 /* Next comes the initialization pointers; we have no initialization
2861 pointers, so current offset does not change. */
2862 obj_som_file_hdr (abfd)->init_array_location = current_offset;
2863 obj_som_file_hdr (abfd)->init_array_total = 0;
2864
2865 /* Next are the space records. These are fixed length records.
2866
2867 Count the number of spaces to determine how much room is needed
2868 in the object file for the space records.
2869
2870 The names of the spaces are stored in a separate string table,
2871 and the index for each space into the string table is computed
2872 below. Therefore, it is not possible to write the space headers
2873 at this time. */
2874 num_spaces = som_count_spaces (abfd);
2875 obj_som_file_hdr (abfd)->space_location = current_offset;
2876 obj_som_file_hdr (abfd)->space_total = num_spaces;
2877 current_offset += num_spaces * sizeof (struct space_dictionary_record);
2878
2879 /* Next are the subspace records. These are fixed length records.
2880
2881 Count the number of subspaes to determine how much room is needed
2882 in the object file for the subspace records.
2883
2884 A variety if fields in the subspace record are still unknown at
2885 this time (index into string table, fixup stream location/size, etc). */
2886 num_subspaces = som_count_subspaces (abfd);
2887 obj_som_file_hdr (abfd)->subspace_location = current_offset;
2888 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
2889 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
2890
2891 /* Next is the string table for the space/subspace names. We will
2892 build and write the string table on the fly. At the same time
2893 we will fill in the space/subspace name index fields. */
2894
2895 /* The string table needs to be aligned on a word boundary. */
2896 if (current_offset % 4)
2897 current_offset += (4 - (current_offset % 4));
2898
2899 /* Mark the offset of the space/subspace string table in the
2900 file header. */
2901 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
2902
2903 /* Scribble out the space strings. */
2904 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
2905 return false;
2906
2907 /* Record total string table size in the header and update the
2908 current offset. */
2909 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
2910 current_offset += strings_size;
2911
2912 /* Next is the symbol table. These are fixed length records.
2913
2914 Count the number of symbols to determine how much room is needed
2915 in the object file for the symbol table.
2916
2917 The names of the symbols are stored in a separate string table,
2918 and the index for each symbol name into the string table is computed
2919 below. Therefore, it is not possible to write the symobl table
2920 at this time. */
2921 num_syms = bfd_get_symcount (abfd);
2922 obj_som_file_hdr (abfd)->symbol_location = current_offset;
2923 obj_som_file_hdr (abfd)->symbol_total = num_syms;
2924 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
2925
2926 /* Do prep work before handling fixups. */
2927 som_prep_for_fixups (abfd, syms, num_syms);
2928
2929 /* Next comes the fixup stream which starts on a word boundary. */
2930 if (current_offset % 4)
2931 current_offset += (4 - (current_offset % 4));
2932 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
2933
2934 /* Write the fixups and update fields in subspace headers which
2935 relate to the fixup stream. */
2936 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
2937 return false;
2938
2939 /* Record the total size of the fixup stream in the file header. */
2940 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
2941 current_offset += total_reloc_size;
2942
2943 /* Next are the symbol strings.
2944 Align them to a word boundary. */
2945 if (current_offset % 4)
2946 current_offset += (4 - (current_offset % 4));
2947 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
2948
2949 /* Scribble out the symbol strings. */
2950 if (som_write_symbol_strings (abfd, current_offset, syms,
2951 num_syms, &strings_size)
2952 == false)
2953 return false;
2954
2955 /* Record total string table size in header and update the
2956 current offset. */
2957 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
2958 current_offset += strings_size;
2959
2960 /* Next is the compiler records. We do not use these. */
2961 obj_som_file_hdr (abfd)->compiler_location = current_offset;
2962 obj_som_file_hdr (abfd)->compiler_total = 0;
2963
2964 /* Now compute the file positions for the loadable subspaces, taking
2965 care to make sure everything stays properly aligned. */
2966
2967 section = abfd->sections;
2968 for (i = 0; i < num_spaces; i++)
2969 {
2970 asection *subsection;
2971 int first_subspace;
2972 unsigned int subspace_offset = 0;
2973
2974 /* Find a space. */
2975 while (!som_is_space (section))
2976 section = section->next;
2977
2978 first_subspace = 1;
2979 /* Now look for all its subspaces. */
2980 for (subsection = abfd->sections;
2981 subsection != NULL;
2982 subsection = subsection->next)
2983 {
2984
2985 if (!som_is_subspace (subsection)
2986 || !som_is_container (section, subsection)
2987 || (subsection->flags & SEC_ALLOC) == 0)
2988 continue;
2989
2990 /* If this is the first subspace in the space, and we are
2991 building an executable, then take care to make sure all
2992 the alignments are correct and update the exec header. */
2993 if (first_subspace
2994 && (abfd->flags & (EXEC_P | DYNAMIC)))
2995 {
2996 /* Demand paged executables have each space aligned to a
2997 page boundary. Sharable executables (write-protected
2998 text) have just the private (aka data & bss) space aligned
2999 to a page boundary. Ugh. Not true for HPUX.
3000
3001 The HPUX kernel requires the text to always be page aligned
3002 within the file regardless of the executable's type. */
3003 if (abfd->flags & (D_PAGED | DYNAMIC)
3004 || (subsection->flags & SEC_CODE)
3005 || ((abfd->flags & WP_TEXT)
3006 && (subsection->flags & SEC_DATA)))
3007 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3008
3009 /* Update the exec header. */
3010 if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0)
3011 {
3012 exec_header->exec_tmem = section->vma;
3013 exec_header->exec_tfile = current_offset;
3014 }
3015 if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0)
3016 {
3017 exec_header->exec_dmem = section->vma;
3018 exec_header->exec_dfile = current_offset;
3019 }
3020
3021 /* Keep track of exactly where we are within a particular
3022 space. This is necessary as the braindamaged HPUX
3023 loader will create holes between subspaces *and*
3024 subspace alignments are *NOT* preserved. What a crock. */
3025 subspace_offset = subsection->vma;
3026
3027 /* Only do this for the first subspace within each space. */
3028 first_subspace = 0;
3029 }
3030 else if (abfd->flags & (EXEC_P | DYNAMIC))
3031 {
3032 /* The braindamaged HPUX loader may have created a hole
3033 between two subspaces. It is *not* sufficient to use
3034 the alignment specifications within the subspaces to
3035 account for these holes -- I've run into at least one
3036 case where the loader left one code subspace unaligned
3037 in a final executable.
3038
3039 To combat this we keep a current offset within each space,
3040 and use the subspace vma fields to detect and preserve
3041 holes. What a crock!
3042
3043 ps. This is not necessary for unloadable space/subspaces. */
3044 current_offset += subsection->vma - subspace_offset;
3045 if (subsection->flags & SEC_CODE)
3046 exec_header->exec_tsize += subsection->vma - subspace_offset;
3047 else
3048 exec_header->exec_dsize += subsection->vma - subspace_offset;
3049 subspace_offset += subsection->vma - subspace_offset;
3050 }
3051
3052
3053 subsection->target_index = total_subspaces++;
3054 /* This is real data to be loaded from the file. */
3055 if (subsection->flags & SEC_LOAD)
3056 {
3057 /* Update the size of the code & data. */
3058 if (abfd->flags & (EXEC_P | DYNAMIC)
3059 && subsection->flags & SEC_CODE)
3060 exec_header->exec_tsize += subsection->_cooked_size;
3061 else if (abfd->flags & (EXEC_P | DYNAMIC)
3062 && subsection->flags & SEC_DATA)
3063 exec_header->exec_dsize += subsection->_cooked_size;
3064 som_section_data (subsection)->subspace_dict->file_loc_init_value
3065 = current_offset;
3066 subsection->filepos = current_offset;
3067 current_offset += bfd_section_size (abfd, subsection);
3068 subspace_offset += bfd_section_size (abfd, subsection);
3069 }
3070 /* Looks like uninitialized data. */
3071 else
3072 {
3073 /* Update the size of the bss section. */
3074 if (abfd->flags & (EXEC_P | DYNAMIC))
3075 exec_header->exec_bsize += subsection->_cooked_size;
3076
3077 som_section_data (subsection)->subspace_dict->file_loc_init_value
3078 = 0;
3079 som_section_data (subsection)->subspace_dict->
3080 initialization_length = 0;
3081 }
3082 }
3083 /* Goto the next section. */
3084 section = section->next;
3085 }
3086
3087 /* Finally compute the file positions for unloadable subspaces.
3088 If building an executable, start the unloadable stuff on its
3089 own page. */
3090
3091 if (abfd->flags & (EXEC_P | DYNAMIC))
3092 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3093
3094 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3095 section = abfd->sections;
3096 for (i = 0; i < num_spaces; i++)
3097 {
3098 asection *subsection;
3099
3100 /* Find a space. */
3101 while (!som_is_space (section))
3102 section = section->next;
3103
3104 if (abfd->flags & (EXEC_P | DYNAMIC))
3105 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3106
3107 /* Now look for all its subspaces. */
3108 for (subsection = abfd->sections;
3109 subsection != NULL;
3110 subsection = subsection->next)
3111 {
3112
3113 if (!som_is_subspace (subsection)
3114 || !som_is_container (section, subsection)
3115 || (subsection->flags & SEC_ALLOC) != 0)
3116 continue;
3117
3118 subsection->target_index = total_subspaces;
3119 /* This is real data to be loaded from the file. */
3120 if ((subsection->flags & SEC_LOAD) == 0)
3121 {
3122 som_section_data (subsection)->subspace_dict->file_loc_init_value
3123 = current_offset;
3124 subsection->filepos = current_offset;
3125 current_offset += bfd_section_size (abfd, subsection);
3126 }
3127 /* Looks like uninitialized data. */
3128 else
3129 {
3130 som_section_data (subsection)->subspace_dict->file_loc_init_value
3131 = 0;
3132 som_section_data (subsection)->subspace_dict->
3133 initialization_length = bfd_section_size (abfd, subsection);
3134 }
3135 }
3136 /* Goto the next section. */
3137 section = section->next;
3138 }
3139
3140 /* If building an executable, then make sure to seek to and write
3141 one byte at the end of the file to make sure any necessary
3142 zeros are filled in. Ugh. */
3143 if (abfd->flags & (EXEC_P | DYNAMIC))
3144 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3145 if (bfd_seek (abfd, current_offset - 1, SEEK_SET) < 0)
3146 return false;
3147 if (bfd_write ((PTR) "", 1, 1, abfd) != 1)
3148 return false;
3149
3150 obj_som_file_hdr (abfd)->unloadable_sp_size
3151 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3152
3153 /* Loader fixups are not supported in any way shape or form. */
3154 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3155 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3156
3157 /* Done. Store the total size of the SOM. */
3158 obj_som_file_hdr (abfd)->som_length = current_offset;
3159
3160 return true;
3161 }
3162
3163 /* Finally, scribble out the various headers to the disk. */
3164
3165 static boolean
3166 som_write_headers (abfd)
3167 bfd *abfd;
3168 {
3169 int num_spaces = som_count_spaces (abfd);
3170 int i;
3171 int subspace_index = 0;
3172 file_ptr location;
3173 asection *section;
3174
3175 /* Subspaces are written first so that we can set up information
3176 about them in their containing spaces as the subspace is written. */
3177
3178 /* Seek to the start of the subspace dictionary records. */
3179 location = obj_som_file_hdr (abfd)->subspace_location;
3180 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3181 return false;
3182
3183 section = abfd->sections;
3184 /* Now for each loadable space write out records for its subspaces. */
3185 for (i = 0; i < num_spaces; i++)
3186 {
3187 asection *subsection;
3188
3189 /* Find a space. */
3190 while (!som_is_space (section))
3191 section = section->next;
3192
3193 /* Now look for all its subspaces. */
3194 for (subsection = abfd->sections;
3195 subsection != NULL;
3196 subsection = subsection->next)
3197 {
3198
3199 /* Skip any section which does not correspond to a space
3200 or subspace. Or does not have SEC_ALLOC set (and therefore
3201 has no real bits on the disk). */
3202 if (!som_is_subspace (subsection)
3203 || !som_is_container (section, subsection)
3204 || (subsection->flags & SEC_ALLOC) == 0)
3205 continue;
3206
3207 /* If this is the first subspace for this space, then save
3208 the index of the subspace in its containing space. Also
3209 set "is_loadable" in the containing space. */
3210
3211 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3212 {
3213 som_section_data (section)->space_dict->is_loadable = 1;
3214 som_section_data (section)->space_dict->subspace_index
3215 = subspace_index;
3216 }
3217
3218 /* Increment the number of subspaces seen and the number of
3219 subspaces contained within the current space. */
3220 subspace_index++;
3221 som_section_data (section)->space_dict->subspace_quantity++;
3222
3223 /* Mark the index of the current space within the subspace's
3224 dictionary record. */
3225 som_section_data (subsection)->subspace_dict->space_index = i;
3226
3227 /* Dump the current subspace header. */
3228 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3229 sizeof (struct subspace_dictionary_record), 1, abfd)
3230 != sizeof (struct subspace_dictionary_record))
3231 return false;
3232 }
3233 /* Goto the next section. */
3234 section = section->next;
3235 }
3236
3237 /* Now repeat the process for unloadable subspaces. */
3238 section = abfd->sections;
3239 /* Now for each space write out records for its subspaces. */
3240 for (i = 0; i < num_spaces; i++)
3241 {
3242 asection *subsection;
3243
3244 /* Find a space. */
3245 while (!som_is_space (section))
3246 section = section->next;
3247
3248 /* Now look for all its subspaces. */
3249 for (subsection = abfd->sections;
3250 subsection != NULL;
3251 subsection = subsection->next)
3252 {
3253
3254 /* Skip any section which does not correspond to a space or
3255 subspace, or which SEC_ALLOC set (and therefore handled
3256 in the loadable spaces/subspaces code above). */
3257
3258 if (!som_is_subspace (subsection)
3259 || !som_is_container (section, subsection)
3260 || (subsection->flags & SEC_ALLOC) != 0)
3261 continue;
3262
3263 /* If this is the first subspace for this space, then save
3264 the index of the subspace in its containing space. Clear
3265 "is_loadable". */
3266
3267 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3268 {
3269 som_section_data (section)->space_dict->is_loadable = 0;
3270 som_section_data (section)->space_dict->subspace_index
3271 = subspace_index;
3272 }
3273
3274 /* Increment the number of subspaces seen and the number of
3275 subspaces contained within the current space. */
3276 som_section_data (section)->space_dict->subspace_quantity++;
3277 subspace_index++;
3278
3279 /* Mark the index of the current space within the subspace's
3280 dictionary record. */
3281 som_section_data (subsection)->subspace_dict->space_index = i;
3282
3283 /* Dump this subspace header. */
3284 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3285 sizeof (struct subspace_dictionary_record), 1, abfd)
3286 != sizeof (struct subspace_dictionary_record))
3287 return false;
3288 }
3289 /* Goto the next section. */
3290 section = section->next;
3291 }
3292
3293 /* All the subspace dictiondary records are written, and all the
3294 fields are set up in the space dictionary records.
3295
3296 Seek to the right location and start writing the space
3297 dictionary records. */
3298 location = obj_som_file_hdr (abfd)->space_location;
3299 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3300 return false;
3301
3302 section = abfd->sections;
3303 for (i = 0; i < num_spaces; i++)
3304 {
3305
3306 /* Find a space. */
3307 while (!som_is_space (section))
3308 section = section->next;
3309
3310 /* Dump its header */
3311 if (bfd_write ((PTR) som_section_data (section)->space_dict,
3312 sizeof (struct space_dictionary_record), 1, abfd)
3313 != sizeof (struct space_dictionary_record))
3314 return false;
3315
3316 /* Goto the next section. */
3317 section = section->next;
3318 }
3319
3320 /* FIXME. This should really be conditional based on whether or not
3321 PA1.1 instructions/registers have been used.
3322
3323 Setting of the system_id has to happen very late now that copying of
3324 BFD private data happens *after* section contents are set. */
3325 if (abfd->flags & (EXEC_P | DYNAMIC))
3326 obj_som_file_hdr(abfd)->system_id = obj_som_exec_data (abfd)->system_id;
3327 else
3328 obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC1_0;
3329
3330 /* Compute the checksum for the file header just before writing
3331 the header to disk. */
3332 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3333
3334 /* Only thing left to do is write out the file header. It is always
3335 at location zero. Seek there and write it. */
3336 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0)
3337 return false;
3338 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3339 sizeof (struct header), 1, abfd)
3340 != sizeof (struct header))
3341 return false;
3342
3343 /* Now write the exec header. */
3344 if (abfd->flags & (EXEC_P | DYNAMIC))
3345 {
3346 long tmp;
3347 struct som_exec_auxhdr *exec_header;
3348
3349 exec_header = obj_som_exec_hdr (abfd);
3350 exec_header->exec_entry = bfd_get_start_address (abfd);
3351 exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags;
3352
3353 /* Oh joys. Ram some of the BSS data into the DATA section
3354 to be compatable with how the hp linker makes objects
3355 (saves memory space). */
3356 tmp = exec_header->exec_dsize;
3357 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3358 exec_header->exec_bsize -= (tmp - exec_header->exec_dsize);
3359 if (exec_header->exec_bsize < 0)
3360 exec_header->exec_bsize = 0;
3361 exec_header->exec_dsize = tmp;
3362
3363 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
3364 SEEK_SET) < 0)
3365 return false;
3366
3367 if (bfd_write ((PTR) exec_header, AUX_HDR_SIZE, 1, abfd)
3368 != AUX_HDR_SIZE)
3369 return false;
3370 }
3371 return true;
3372 }
3373
3374 /* Compute and return the checksum for a SOM file header. */
3375
3376 static unsigned long
3377 som_compute_checksum (abfd)
3378 bfd *abfd;
3379 {
3380 unsigned long checksum, count, i;
3381 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3382
3383 checksum = 0;
3384 count = sizeof (struct header) / sizeof (unsigned long);
3385 for (i = 0; i < count; i++)
3386 checksum ^= *(buffer + i);
3387
3388 return checksum;
3389 }
3390
3391 static void
3392 som_bfd_derive_misc_symbol_info (abfd, sym, info)
3393 bfd *abfd;
3394 asymbol *sym;
3395 struct som_misc_symbol_info *info;
3396 {
3397 /* Initialize. */
3398 memset (info, 0, sizeof (struct som_misc_symbol_info));
3399
3400 /* The HP SOM linker requires detailed type information about
3401 all symbols (including undefined symbols!). Unfortunately,
3402 the type specified in an import/export statement does not
3403 always match what the linker wants. Severe braindamage. */
3404
3405 /* Section symbols will not have a SOM symbol type assigned to
3406 them yet. Assign all section symbols type ST_DATA. */
3407 if (sym->flags & BSF_SECTION_SYM)
3408 info->symbol_type = ST_DATA;
3409 else
3410 {
3411 /* Common symbols must have scope SS_UNSAT and type
3412 ST_STORAGE or the linker will choke. */
3413 if (bfd_is_com_section (sym->section))
3414 {
3415 info->symbol_scope = SS_UNSAT;
3416 info->symbol_type = ST_STORAGE;
3417 }
3418
3419 /* It is possible to have a symbol without an associated
3420 type. This happens if the user imported the symbol
3421 without a type and the symbol was never defined
3422 locally. If BSF_FUNCTION is set for this symbol, then
3423 assign it type ST_CODE (the HP linker requires undefined
3424 external functions to have type ST_CODE rather than ST_ENTRY). */
3425 else if ((som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3426 || som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3427 && bfd_is_und_section (sym->section)
3428 && sym->flags & BSF_FUNCTION)
3429 info->symbol_type = ST_CODE;
3430
3431 /* Handle function symbols which were defined in this file.
3432 They should have type ST_ENTRY. Also retrieve the argument
3433 relocation bits from the SOM backend information. */
3434 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3435 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3436 && (sym->flags & BSF_FUNCTION))
3437 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3438 && (sym->flags & BSF_FUNCTION)))
3439 {
3440 info->symbol_type = ST_ENTRY;
3441 info->arg_reloc = som_symbol_data (sym)->tc_data.hppa_arg_reloc;
3442 }
3443
3444 /* If the type is unknown at this point, it should be ST_DATA or
3445 ST_CODE (function/ST_ENTRY symbols were handled as special
3446 cases above). */
3447 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3448 {
3449 if (sym->section->flags & SEC_CODE)
3450 info->symbol_type = ST_CODE;
3451 else
3452 info->symbol_type = ST_DATA;
3453 }
3454
3455 /* From now on it's a very simple mapping. */
3456 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3457 info->symbol_type = ST_ABSOLUTE;
3458 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3459 info->symbol_type = ST_CODE;
3460 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3461 info->symbol_type = ST_DATA;
3462 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3463 info->symbol_type = ST_MILLICODE;
3464 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3465 info->symbol_type = ST_PLABEL;
3466 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3467 info->symbol_type = ST_PRI_PROG;
3468 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3469 info->symbol_type = ST_SEC_PROG;
3470 }
3471
3472 /* Now handle the symbol's scope. Exported data which is not
3473 in the common section has scope SS_UNIVERSAL. Note scope
3474 of common symbols was handled earlier! */
3475 if (sym->flags & BSF_EXPORT && ! bfd_is_com_section (sym->section))
3476 info->symbol_scope = SS_UNIVERSAL;
3477 /* Any undefined symbol at this point has a scope SS_UNSAT. */
3478 else if (bfd_is_und_section (sym->section))
3479 info->symbol_scope = SS_UNSAT;
3480 /* Anything else which is not in the common section has scope
3481 SS_LOCAL. */
3482 else if (! bfd_is_com_section (sym->section))
3483 info->symbol_scope = SS_LOCAL;
3484
3485 /* Now set the symbol_info field. It has no real meaning
3486 for undefined or common symbols, but the HP linker will
3487 choke if it's not set to some "reasonable" value. We
3488 use zero as a reasonable value. */
3489 if (bfd_is_com_section (sym->section)
3490 || bfd_is_und_section (sym->section)
3491 || bfd_is_abs_section (sym->section))
3492 info->symbol_info = 0;
3493 /* For all other symbols, the symbol_info field contains the
3494 subspace index of the space this symbol is contained in. */
3495 else
3496 info->symbol_info = sym->section->target_index;
3497
3498 /* Set the symbol's value. */
3499 info->symbol_value = sym->value + sym->section->vma;
3500 }
3501
3502 /* Build and write, in one big chunk, the entire symbol table for
3503 this BFD. */
3504
3505 static boolean
3506 som_build_and_write_symbol_table (abfd)
3507 bfd *abfd;
3508 {
3509 unsigned int num_syms = bfd_get_symcount (abfd);
3510 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3511 asymbol **bfd_syms = bfd_get_outsymbols (abfd);
3512 struct symbol_dictionary_record *som_symtab = NULL;
3513 int i, symtab_size;
3514
3515 /* Compute total symbol table size and allocate a chunk of memory
3516 to hold the symbol table as we build it. */
3517 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3518 som_symtab = (struct symbol_dictionary_record *) malloc (symtab_size);
3519 if (som_symtab == NULL && symtab_size != 0)
3520 {
3521 bfd_set_error (bfd_error_no_memory);
3522 goto error_return;
3523 }
3524 memset (som_symtab, 0, symtab_size);
3525
3526 /* Walk over each symbol. */
3527 for (i = 0; i < num_syms; i++)
3528 {
3529 struct som_misc_symbol_info info;
3530
3531 /* This is really an index into the symbol strings table.
3532 By the time we get here, the index has already been
3533 computed and stored into the name field in the BFD symbol. */
3534 som_symtab[i].name.n_strx = (int) bfd_syms[i]->name;
3535
3536 /* Derive SOM information from the BFD symbol. */
3537 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
3538
3539 /* Now use it. */
3540 som_symtab[i].symbol_type = info.symbol_type;
3541 som_symtab[i].symbol_scope = info.symbol_scope;
3542 som_symtab[i].arg_reloc = info.arg_reloc;
3543 som_symtab[i].symbol_info = info.symbol_info;
3544 som_symtab[i].symbol_value = info.symbol_value;
3545 }
3546
3547 /* Everything is ready, seek to the right location and
3548 scribble out the symbol table. */
3549 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3550 return false;
3551
3552 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3553 goto error_return;
3554
3555 if (som_symtab != NULL)
3556 free (som_symtab);
3557 return true;
3558 error_return:
3559 if (som_symtab != NULL)
3560 free (som_symtab);
3561 return false;
3562 }
3563
3564 /* Write an object in SOM format. */
3565
3566 static boolean
3567 som_write_object_contents (abfd)
3568 bfd *abfd;
3569 {
3570 if (abfd->output_has_begun == false)
3571 {
3572 /* Set up fixed parts of the file, space, and subspace headers.
3573 Notify the world that output has begun. */
3574 som_prep_headers (abfd);
3575 abfd->output_has_begun = true;
3576 /* Start writing the object file. This include all the string
3577 tables, fixup streams, and other portions of the object file. */
3578 som_begin_writing (abfd);
3579 }
3580
3581 /* Now that the symbol table information is complete, build and
3582 write the symbol table. */
3583 if (som_build_and_write_symbol_table (abfd) == false)
3584 return false;
3585
3586 return (som_write_headers (abfd));
3587 }
3588
3589 \f
3590 /* Read and save the string table associated with the given BFD. */
3591
3592 static boolean
3593 som_slurp_string_table (abfd)
3594 bfd *abfd;
3595 {
3596 char *stringtab;
3597
3598 /* Use the saved version if its available. */
3599 if (obj_som_stringtab (abfd) != NULL)
3600 return true;
3601
3602 /* I don't think this can currently happen, and I'm not sure it should
3603 really be an error, but it's better than getting unpredictable results
3604 from the host's malloc when passed a size of zero. */
3605 if (obj_som_stringtab_size (abfd) == 0)
3606 {
3607 bfd_set_error (bfd_error_no_symbols);
3608 return false;
3609 }
3610
3611 /* Allocate and read in the string table. */
3612 stringtab = malloc (obj_som_stringtab_size (abfd));
3613 if (stringtab == NULL)
3614 {
3615 bfd_set_error (bfd_error_no_memory);
3616 return false;
3617 }
3618
3619 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3620 return false;
3621
3622 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3623 != obj_som_stringtab_size (abfd))
3624 return false;
3625
3626 /* Save our results and return success. */
3627 obj_som_stringtab (abfd) = stringtab;
3628 return true;
3629 }
3630
3631 /* Return the amount of data (in bytes) required to hold the symbol
3632 table for this object. */
3633
3634 static long
3635 som_get_symtab_upper_bound (abfd)
3636 bfd *abfd;
3637 {
3638 if (!som_slurp_symbol_table (abfd))
3639 return -1;
3640
3641 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
3642 }
3643
3644 /* Convert from a SOM subspace index to a BFD section. */
3645
3646 static asection *
3647 bfd_section_from_som_symbol (abfd, symbol)
3648 bfd *abfd;
3649 struct symbol_dictionary_record *symbol;
3650 {
3651 asection *section;
3652
3653 /* The meaning of the symbol_info field changes for functions
3654 within executables. So only use the quick symbol_info mapping for
3655 incomplete objects and non-function symbols in executables. */
3656 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
3657 || (symbol->symbol_type != ST_ENTRY
3658 && symbol->symbol_type != ST_PRI_PROG
3659 && symbol->symbol_type != ST_SEC_PROG
3660 && symbol->symbol_type != ST_MILLICODE))
3661 {
3662 unsigned int index = symbol->symbol_info;
3663 for (section = abfd->sections; section != NULL; section = section->next)
3664 if (section->target_index == index)
3665 return section;
3666
3667 /* Should never happen. */
3668 abort();
3669 }
3670 else
3671 {
3672 unsigned int value = symbol->symbol_value;
3673
3674 /* For executables we will have to use the symbol's address and
3675 find out what section would contain that address. Yuk. */
3676 for (section = abfd->sections; section; section = section->next)
3677 {
3678 if (value >= section->vma
3679 && value <= section->vma + section->_cooked_size)
3680 return section;
3681 }
3682
3683 /* Should never happen. */
3684 abort ();
3685 }
3686 }
3687
3688 /* Read and save the symbol table associated with the given BFD. */
3689
3690 static unsigned int
3691 som_slurp_symbol_table (abfd)
3692 bfd *abfd;
3693 {
3694 int symbol_count = bfd_get_symcount (abfd);
3695 int symsize = sizeof (struct symbol_dictionary_record);
3696 char *stringtab;
3697 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
3698 som_symbol_type *sym, *symbase;
3699
3700 /* Return saved value if it exists. */
3701 if (obj_som_symtab (abfd) != NULL)
3702 goto successful_return;
3703
3704 /* Special case. This is *not* an error. */
3705 if (symbol_count == 0)
3706 goto successful_return;
3707
3708 if (!som_slurp_string_table (abfd))
3709 goto error_return;
3710
3711 stringtab = obj_som_stringtab (abfd);
3712
3713 symbase = (som_symbol_type *)
3714 malloc (symbol_count * sizeof (som_symbol_type));
3715 if (symbase == NULL)
3716 {
3717 bfd_set_error (bfd_error_no_memory);
3718 goto error_return;
3719 }
3720
3721 /* Read in the external SOM representation. */
3722 buf = malloc (symbol_count * symsize);
3723 if (buf == NULL && symbol_count * symsize != 0)
3724 {
3725 bfd_set_error (bfd_error_no_memory);
3726 goto error_return;
3727 }
3728 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
3729 goto error_return;
3730 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
3731 != symbol_count * symsize)
3732 goto error_return;
3733
3734 /* Iterate over all the symbols and internalize them. */
3735 endbufp = buf + symbol_count;
3736 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
3737 {
3738
3739 /* I don't think we care about these. */
3740 if (bufp->symbol_type == ST_SYM_EXT
3741 || bufp->symbol_type == ST_ARG_EXT)
3742 continue;
3743
3744 /* Set some private data we care about. */
3745 if (bufp->symbol_type == ST_NULL)
3746 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3747 else if (bufp->symbol_type == ST_ABSOLUTE)
3748 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
3749 else if (bufp->symbol_type == ST_DATA)
3750 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
3751 else if (bufp->symbol_type == ST_CODE)
3752 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
3753 else if (bufp->symbol_type == ST_PRI_PROG)
3754 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
3755 else if (bufp->symbol_type == ST_SEC_PROG)
3756 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
3757 else if (bufp->symbol_type == ST_ENTRY)
3758 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
3759 else if (bufp->symbol_type == ST_MILLICODE)
3760 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
3761 else if (bufp->symbol_type == ST_PLABEL)
3762 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
3763 else
3764 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3765 som_symbol_data (sym)->tc_data.hppa_arg_reloc = bufp->arg_reloc;
3766
3767 /* Some reasonable defaults. */
3768 sym->symbol.the_bfd = abfd;
3769 sym->symbol.name = bufp->name.n_strx + stringtab;
3770 sym->symbol.value = bufp->symbol_value;
3771 sym->symbol.section = 0;
3772 sym->symbol.flags = 0;
3773
3774 switch (bufp->symbol_type)
3775 {
3776 case ST_ENTRY:
3777 case ST_PRI_PROG:
3778 case ST_SEC_PROG:
3779 case ST_MILLICODE:
3780 sym->symbol.flags |= BSF_FUNCTION;
3781 sym->symbol.value &= ~0x3;
3782 break;
3783
3784 case ST_STUB:
3785 case ST_CODE:
3786 sym->symbol.value &= ~0x3;
3787 /* If the symbol's scope is ST_UNSAT, then these are
3788 undefined function symbols. */
3789 if (bufp->symbol_scope == SS_UNSAT)
3790 sym->symbol.flags |= BSF_FUNCTION;
3791
3792
3793 default:
3794 break;
3795 }
3796
3797 /* Handle scoping and section information. */
3798 switch (bufp->symbol_scope)
3799 {
3800 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
3801 so the section associated with this symbol can't be known. */
3802 case SS_EXTERNAL:
3803 if (bufp->symbol_type != ST_STORAGE)
3804 sym->symbol.section = bfd_und_section_ptr;
3805 else
3806 sym->symbol.section = bfd_com_section_ptr;
3807 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3808 break;
3809
3810 case SS_UNSAT:
3811 if (bufp->symbol_type != ST_STORAGE)
3812 sym->symbol.section = bfd_und_section_ptr;
3813 else
3814 sym->symbol.section = bfd_com_section_ptr;
3815 break;
3816
3817 case SS_UNIVERSAL:
3818 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3819 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3820 sym->symbol.value -= sym->symbol.section->vma;
3821 break;
3822
3823 #if 0
3824 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
3825 Sound dumb? It is. */
3826 case SS_GLOBAL:
3827 #endif
3828 case SS_LOCAL:
3829 sym->symbol.flags |= BSF_LOCAL;
3830 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3831 sym->symbol.value -= sym->symbol.section->vma;
3832 break;
3833 }
3834
3835 /* Mark section symbols and symbols used by the debugger. */
3836 if (sym->symbol.name[0] == '$'
3837 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$')
3838 sym->symbol.flags |= BSF_SECTION_SYM;
3839 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
3840 {
3841 sym->symbol.flags |= BSF_SECTION_SYM;
3842 sym->symbol.name = sym->symbol.section->name;
3843 }
3844 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
3845 sym->symbol.flags |= BSF_DEBUGGING;
3846
3847 /* Note increment at bottom of loop, since we skip some symbols
3848 we can not include it as part of the for statement. */
3849 sym++;
3850 }
3851
3852 /* Save our results and return success. */
3853 obj_som_symtab (abfd) = symbase;
3854 successful_return:
3855 if (buf != NULL)
3856 free (buf);
3857 return (true);
3858
3859 error_return:
3860 if (buf != NULL)
3861 free (buf);
3862 return false;
3863 }
3864
3865 /* Canonicalize a SOM symbol table. Return the number of entries
3866 in the symbol table. */
3867
3868 static long
3869 som_get_symtab (abfd, location)
3870 bfd *abfd;
3871 asymbol **location;
3872 {
3873 int i;
3874 som_symbol_type *symbase;
3875
3876 if (!som_slurp_symbol_table (abfd))
3877 return -1;
3878
3879 i = bfd_get_symcount (abfd);
3880 symbase = obj_som_symtab (abfd);
3881
3882 for (; i > 0; i--, location++, symbase++)
3883 *location = &symbase->symbol;
3884
3885 /* Final null pointer. */
3886 *location = 0;
3887 return (bfd_get_symcount (abfd));
3888 }
3889
3890 /* Make a SOM symbol. There is nothing special to do here. */
3891
3892 static asymbol *
3893 som_make_empty_symbol (abfd)
3894 bfd *abfd;
3895 {
3896 som_symbol_type *new =
3897 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
3898 if (new == NULL)
3899 {
3900 bfd_set_error (bfd_error_no_memory);
3901 return 0;
3902 }
3903 new->symbol.the_bfd = abfd;
3904
3905 return &new->symbol;
3906 }
3907
3908 /* Print symbol information. */
3909
3910 static void
3911 som_print_symbol (ignore_abfd, afile, symbol, how)
3912 bfd *ignore_abfd;
3913 PTR afile;
3914 asymbol *symbol;
3915 bfd_print_symbol_type how;
3916 {
3917 FILE *file = (FILE *) afile;
3918 switch (how)
3919 {
3920 case bfd_print_symbol_name:
3921 fprintf (file, "%s", symbol->name);
3922 break;
3923 case bfd_print_symbol_more:
3924 fprintf (file, "som ");
3925 fprintf_vma (file, symbol->value);
3926 fprintf (file, " %lx", (long) symbol->flags);
3927 break;
3928 case bfd_print_symbol_all:
3929 {
3930 CONST char *section_name;
3931 section_name = symbol->section ? symbol->section->name : "(*none*)";
3932 bfd_print_symbol_vandf ((PTR) file, symbol);
3933 fprintf (file, " %s\t%s", section_name, symbol->name);
3934 break;
3935 }
3936 }
3937 }
3938
3939 static boolean
3940 som_bfd_is_local_label (abfd, sym)
3941 bfd *abfd;
3942 asymbol *sym;
3943 {
3944 return (sym->name[0] == 'L' && sym->name[1] == '$');
3945 }
3946
3947 /* Count or process variable-length SOM fixup records.
3948
3949 To avoid code duplication we use this code both to compute the number
3950 of relocations requested by a stream, and to internalize the stream.
3951
3952 When computing the number of relocations requested by a stream the
3953 variables rptr, section, and symbols have no meaning.
3954
3955 Return the number of relocations requested by the fixup stream. When
3956 not just counting
3957
3958 This needs at least two or three more passes to get it cleaned up. */
3959
3960 static unsigned int
3961 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
3962 unsigned char *fixup;
3963 unsigned int end;
3964 arelent *internal_relocs;
3965 asection *section;
3966 asymbol **symbols;
3967 boolean just_count;
3968 {
3969 unsigned int op, varname;
3970 unsigned char *end_fixups = &fixup[end];
3971 const struct fixup_format *fp;
3972 char *cp;
3973 unsigned char *save_fixup;
3974 int variables[26], stack[20], c, v, count, prev_fixup, *sp;
3975 const int *subop;
3976 arelent *rptr= internal_relocs;
3977 unsigned int offset = 0;
3978
3979 #define var(c) variables[(c) - 'A']
3980 #define push(v) (*sp++ = (v))
3981 #define pop() (*--sp)
3982 #define emptystack() (sp == stack)
3983
3984 som_initialize_reloc_queue (reloc_queue);
3985 memset (variables, 0, sizeof (variables));
3986 memset (stack, 0, sizeof (stack));
3987 count = 0;
3988 prev_fixup = 0;
3989 sp = stack;
3990
3991 while (fixup < end_fixups)
3992 {
3993
3994 /* Save pointer to the start of this fixup. We'll use
3995 it later to determine if it is necessary to put this fixup
3996 on the queue. */
3997 save_fixup = fixup;
3998
3999 /* Get the fixup code and its associated format. */
4000 op = *fixup++;
4001 fp = &som_fixup_formats[op];
4002
4003 /* Handle a request for a previous fixup. */
4004 if (*fp->format == 'P')
4005 {
4006 /* Get pointer to the beginning of the prev fixup, move
4007 the repeated fixup to the head of the queue. */
4008 fixup = reloc_queue[fp->D].reloc;
4009 som_reloc_queue_fix (reloc_queue, fp->D);
4010 prev_fixup = 1;
4011
4012 /* Get the fixup code and its associated format. */
4013 op = *fixup++;
4014 fp = &som_fixup_formats[op];
4015 }
4016
4017 /* If this fixup will be passed to BFD, set some reasonable defaults. */
4018 if (! just_count
4019 && som_hppa_howto_table[op].type != R_NO_RELOCATION
4020 && som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
4021 {
4022 rptr->address = offset;
4023 rptr->howto = &som_hppa_howto_table[op];
4024 rptr->addend = 0;
4025 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
4026 }
4027
4028 /* Set default input length to 0. Get the opcode class index
4029 into D. */
4030 var ('L') = 0;
4031 var ('D') = fp->D;
4032
4033 /* Get the opcode format. */
4034 cp = fp->format;
4035
4036 /* Process the format string. Parsing happens in two phases,
4037 parse RHS, then assign to LHS. Repeat until no more
4038 characters in the format string. */
4039 while (*cp)
4040 {
4041 /* The variable this pass is going to compute a value for. */
4042 varname = *cp++;
4043
4044 /* Start processing RHS. Continue until a NULL or '=' is found. */
4045 do
4046 {
4047 c = *cp++;
4048
4049 /* If this is a variable, push it on the stack. */
4050 if (isupper (c))
4051 push (var (c));
4052
4053 /* If this is a lower case letter, then it represents
4054 additional data from the fixup stream to be pushed onto
4055 the stack. */
4056 else if (islower (c))
4057 {
4058 for (v = 0; c > 'a'; --c)
4059 v = (v << 8) | *fixup++;
4060 push (v);
4061 }
4062
4063 /* A decimal constant. Push it on the stack. */
4064 else if (isdigit (c))
4065 {
4066 v = c - '0';
4067 while (isdigit (*cp))
4068 v = (v * 10) + (*cp++ - '0');
4069 push (v);
4070 }
4071 else
4072
4073 /* An operator. Pop two two values from the stack and
4074 use them as operands to the given operation. Push
4075 the result of the operation back on the stack. */
4076 switch (c)
4077 {
4078 case '+':
4079 v = pop ();
4080 v += pop ();
4081 push (v);
4082 break;
4083 case '*':
4084 v = pop ();
4085 v *= pop ();
4086 push (v);
4087 break;
4088 case '<':
4089 v = pop ();
4090 v = pop () << v;
4091 push (v);
4092 break;
4093 default:
4094 abort ();
4095 }
4096 }
4097 while (*cp && *cp != '=');
4098
4099 /* Move over the equal operator. */
4100 cp++;
4101
4102 /* Pop the RHS off the stack. */
4103 c = pop ();
4104
4105 /* Perform the assignment. */
4106 var (varname) = c;
4107
4108 /* Handle side effects. and special 'O' stack cases. */
4109 switch (varname)
4110 {
4111 /* Consume some bytes from the input space. */
4112 case 'L':
4113 offset += c;
4114 break;
4115 /* A symbol to use in the relocation. Make a note
4116 of this if we are not just counting. */
4117 case 'S':
4118 if (! just_count)
4119 rptr->sym_ptr_ptr = &symbols[c];
4120 break;
4121 /* Handle the linker expression stack. */
4122 case 'O':
4123 switch (op)
4124 {
4125 case R_COMP1:
4126 subop = comp1_opcodes;
4127 break;
4128 case R_COMP2:
4129 subop = comp2_opcodes;
4130 break;
4131 case R_COMP3:
4132 subop = comp3_opcodes;
4133 break;
4134 default:
4135 abort ();
4136 }
4137 while (*subop <= (unsigned char) c)
4138 ++subop;
4139 --subop;
4140 break;
4141 default:
4142 break;
4143 }
4144 }
4145
4146 /* If we used a previous fixup, clean up after it. */
4147 if (prev_fixup)
4148 {
4149 fixup = save_fixup + 1;
4150 prev_fixup = 0;
4151 }
4152 /* Queue it. */
4153 else if (fixup > save_fixup + 1)
4154 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4155
4156 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4157 fixups to BFD. */
4158 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4159 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4160 {
4161 /* Done with a single reloction. Loop back to the top. */
4162 if (! just_count)
4163 {
4164 rptr->addend = var ('V');
4165 rptr++;
4166 }
4167 count++;
4168 /* Now that we've handled a "full" relocation, reset
4169 some state. */
4170 memset (variables, 0, sizeof (variables));
4171 memset (stack, 0, sizeof (stack));
4172 }
4173 }
4174 return count;
4175
4176 #undef var
4177 #undef push
4178 #undef pop
4179 #undef emptystack
4180 }
4181
4182 /* Read in the relocs (aka fixups in SOM terms) for a section.
4183
4184 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4185 set to true to indicate it only needs a count of the number
4186 of actual relocations. */
4187
4188 static boolean
4189 som_slurp_reloc_table (abfd, section, symbols, just_count)
4190 bfd *abfd;
4191 asection *section;
4192 asymbol **symbols;
4193 boolean just_count;
4194 {
4195 char *external_relocs;
4196 unsigned int fixup_stream_size;
4197 arelent *internal_relocs;
4198 unsigned int num_relocs;
4199
4200 fixup_stream_size = som_section_data (section)->reloc_size;
4201 /* If there were no relocations, then there is nothing to do. */
4202 if (section->reloc_count == 0)
4203 return true;
4204
4205 /* If reloc_count is -1, then the relocation stream has not been
4206 parsed. We must do so now to know how many relocations exist. */
4207 if (section->reloc_count == -1)
4208 {
4209 external_relocs = (char *) malloc (fixup_stream_size);
4210 if (external_relocs == (char *) NULL)
4211 {
4212 bfd_set_error (bfd_error_no_memory);
4213 return false;
4214 }
4215 /* Read in the external forms. */
4216 if (bfd_seek (abfd,
4217 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4218 SEEK_SET)
4219 != 0)
4220 return false;
4221 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
4222 != fixup_stream_size)
4223 return false;
4224
4225 /* Let callers know how many relocations found.
4226 also save the relocation stream as we will
4227 need it again. */
4228 section->reloc_count = som_set_reloc_info (external_relocs,
4229 fixup_stream_size,
4230 NULL, NULL, NULL, true);
4231
4232 som_section_data (section)->reloc_stream = external_relocs;
4233 }
4234
4235 /* If the caller only wanted a count, then return now. */
4236 if (just_count)
4237 return true;
4238
4239 num_relocs = section->reloc_count;
4240 external_relocs = som_section_data (section)->reloc_stream;
4241 /* Return saved information about the relocations if it is available. */
4242 if (section->relocation != (arelent *) NULL)
4243 return true;
4244
4245 internal_relocs = (arelent *) malloc (num_relocs * sizeof (arelent));
4246 if (internal_relocs == (arelent *) NULL)
4247 {
4248 bfd_set_error (bfd_error_no_memory);
4249 return false;
4250 }
4251
4252 /* Process and internalize the relocations. */
4253 som_set_reloc_info (external_relocs, fixup_stream_size,
4254 internal_relocs, section, symbols, false);
4255
4256 /* Save our results and return success. */
4257 section->relocation = internal_relocs;
4258 return (true);
4259 }
4260
4261 /* Return the number of bytes required to store the relocation
4262 information associated with the given section. */
4263
4264 static long
4265 som_get_reloc_upper_bound (abfd, asect)
4266 bfd *abfd;
4267 sec_ptr asect;
4268 {
4269 /* If section has relocations, then read in the relocation stream
4270 and parse it to determine how many relocations exist. */
4271 if (asect->flags & SEC_RELOC)
4272 {
4273 if (! som_slurp_reloc_table (abfd, asect, NULL, true))
4274 return false;
4275 return (asect->reloc_count + 1) * sizeof (arelent);
4276 }
4277 /* There are no relocations. */
4278 return 0;
4279 }
4280
4281 /* Convert relocations from SOM (external) form into BFD internal
4282 form. Return the number of relocations. */
4283
4284 static long
4285 som_canonicalize_reloc (abfd, section, relptr, symbols)
4286 bfd *abfd;
4287 sec_ptr section;
4288 arelent **relptr;
4289 asymbol **symbols;
4290 {
4291 arelent *tblptr;
4292 int count;
4293
4294 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
4295 return -1;
4296
4297 count = section->reloc_count;
4298 tblptr = section->relocation;
4299
4300 while (count--)
4301 *relptr++ = tblptr++;
4302
4303 *relptr = (arelent *) NULL;
4304 return section->reloc_count;
4305 }
4306
4307 extern const bfd_target som_vec;
4308
4309 /* A hook to set up object file dependent section information. */
4310
4311 static boolean
4312 som_new_section_hook (abfd, newsect)
4313 bfd *abfd;
4314 asection *newsect;
4315 {
4316 newsect->used_by_bfd =
4317 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
4318 if (!newsect->used_by_bfd)
4319 {
4320 bfd_set_error (bfd_error_no_memory);
4321 return false;
4322 }
4323 newsect->alignment_power = 3;
4324
4325 /* We allow more than three sections internally */
4326 return true;
4327 }
4328
4329 /* Copy any private info we understand from the input section
4330 to the output section. */
4331 static boolean
4332 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
4333 bfd *ibfd;
4334 asection *isection;
4335 bfd *obfd;
4336 asection *osection;
4337 {
4338 /* One day we may try to grok other private data. */
4339 if (ibfd->xvec->flavour != bfd_target_som_flavour
4340 || obfd->xvec->flavour != bfd_target_som_flavour
4341 || (!som_is_space (isection) && !som_is_subspace (isection)))
4342 return false;
4343
4344 som_section_data (osection)->copy_data
4345 = (struct som_copyable_section_data_struct *)
4346 bfd_zalloc (obfd, sizeof (struct som_copyable_section_data_struct));
4347 if (som_section_data (osection)->copy_data == NULL)
4348 {
4349 bfd_set_error (bfd_error_no_memory);
4350 return false;
4351 }
4352
4353 memcpy (som_section_data (osection)->copy_data,
4354 som_section_data (isection)->copy_data,
4355 sizeof (struct som_copyable_section_data_struct));
4356
4357 /* Reparent if necessary. */
4358 if (som_section_data (osection)->copy_data->container)
4359 som_section_data (osection)->copy_data->container =
4360 som_section_data (osection)->copy_data->container->output_section;
4361
4362 return true;
4363 }
4364
4365 /* Copy any private info we understand from the input bfd
4366 to the output bfd. */
4367
4368 static boolean
4369 som_bfd_copy_private_bfd_data (ibfd, obfd)
4370 bfd *ibfd, *obfd;
4371 {
4372 /* One day we may try to grok other private data. */
4373 if (ibfd->xvec->flavour != bfd_target_som_flavour
4374 || obfd->xvec->flavour != bfd_target_som_flavour)
4375 return false;
4376
4377 /* Allocate some memory to hold the data we need. */
4378 obj_som_exec_data (obfd) = (struct som_exec_data *)
4379 bfd_zalloc (obfd, sizeof (struct som_exec_data));
4380 if (obj_som_exec_data (obfd) == NULL)
4381 {
4382 bfd_set_error (bfd_error_no_memory);
4383 return false;
4384 }
4385
4386 /* Now copy the data. */
4387 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
4388 sizeof (struct som_exec_data));
4389
4390 return true;
4391 }
4392
4393 /* Set backend info for sections which can not be described
4394 in the BFD data structures. */
4395
4396 boolean
4397 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
4398 asection *section;
4399 int defined;
4400 int private;
4401 unsigned int sort_key;
4402 int spnum;
4403 {
4404 /* Allocate memory to hold the magic information. */
4405 if (som_section_data (section)->copy_data == NULL)
4406 {
4407 som_section_data (section)->copy_data
4408 = (struct som_copyable_section_data_struct *)
4409 bfd_zalloc (section->owner,
4410 sizeof (struct som_copyable_section_data_struct));
4411 if (som_section_data (section)->copy_data == NULL)
4412 {
4413 bfd_set_error (bfd_error_no_memory);
4414 return false;
4415 }
4416 }
4417 som_section_data (section)->copy_data->sort_key = sort_key;
4418 som_section_data (section)->copy_data->is_defined = defined;
4419 som_section_data (section)->copy_data->is_private = private;
4420 som_section_data (section)->copy_data->container = section;
4421 som_section_data (section)->copy_data->space_number = spnum;
4422 return true;
4423 }
4424
4425 /* Set backend info for subsections which can not be described
4426 in the BFD data structures. */
4427
4428 boolean
4429 bfd_som_set_subsection_attributes (section, container, access,
4430 sort_key, quadrant)
4431 asection *section;
4432 asection *container;
4433 int access;
4434 unsigned int sort_key;
4435 int quadrant;
4436 {
4437 /* Allocate memory to hold the magic information. */
4438 if (som_section_data (section)->copy_data == NULL)
4439 {
4440 som_section_data (section)->copy_data
4441 = (struct som_copyable_section_data_struct *)
4442 bfd_zalloc (section->owner,
4443 sizeof (struct som_copyable_section_data_struct));
4444 if (som_section_data (section)->copy_data == NULL)
4445 {
4446 bfd_set_error (bfd_error_no_memory);
4447 return false;
4448 }
4449 }
4450 som_section_data (section)->copy_data->sort_key = sort_key;
4451 som_section_data (section)->copy_data->access_control_bits = access;
4452 som_section_data (section)->copy_data->quadrant = quadrant;
4453 som_section_data (section)->copy_data->container = container;
4454 return true;
4455 }
4456
4457 /* Set the full SOM symbol type. SOM needs far more symbol information
4458 than any other object file format I'm aware of. It is mandatory
4459 to be able to know if a symbol is an entry point, millicode, data,
4460 code, absolute, storage request, or procedure label. If you get
4461 the symbol type wrong your program will not link. */
4462
4463 void
4464 bfd_som_set_symbol_type (symbol, type)
4465 asymbol *symbol;
4466 unsigned int type;
4467 {
4468 som_symbol_data (symbol)->som_type = type;
4469 }
4470
4471 /* Attach 64bits of unwind information to a symbol (which hopefully
4472 is a function of some kind!). It would be better to keep this
4473 in the R_ENTRY relocation, but there is not enough space. */
4474
4475 void
4476 bfd_som_attach_unwind_info (symbol, unwind_desc)
4477 asymbol *symbol;
4478 char *unwind_desc;
4479 {
4480 som_symbol_data (symbol)->unwind = unwind_desc;
4481 }
4482
4483 /* Attach an auxiliary header to the BFD backend so that it may be
4484 written into the object file. */
4485 boolean
4486 bfd_som_attach_aux_hdr (abfd, type, string)
4487 bfd *abfd;
4488 int type;
4489 char *string;
4490 {
4491 if (type == VERSION_AUX_ID)
4492 {
4493 int len = strlen (string);
4494 int pad = 0;
4495
4496 if (len % 4)
4497 pad = (4 - (len % 4));
4498 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
4499 bfd_zalloc (abfd, sizeof (struct aux_id)
4500 + sizeof (unsigned int) + len + pad);
4501 if (!obj_som_version_hdr (abfd))
4502 {
4503 bfd_set_error (bfd_error_no_memory);
4504 return false;
4505 }
4506 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
4507 obj_som_version_hdr (abfd)->header_id.length = len + pad;
4508 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
4509 obj_som_version_hdr (abfd)->string_length = len;
4510 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
4511 }
4512 else if (type == COPYRIGHT_AUX_ID)
4513 {
4514 int len = strlen (string);
4515 int pad = 0;
4516
4517 if (len % 4)
4518 pad = (4 - (len % 4));
4519 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
4520 bfd_zalloc (abfd, sizeof (struct aux_id)
4521 + sizeof (unsigned int) + len + pad);
4522 if (!obj_som_copyright_hdr (abfd))
4523 {
4524 bfd_set_error (bfd_error_no_memory);
4525 return false;
4526 }
4527 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
4528 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
4529 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
4530 obj_som_copyright_hdr (abfd)->string_length = len;
4531 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
4532 }
4533 return true;
4534 }
4535
4536 static boolean
4537 som_get_section_contents (abfd, section, location, offset, count)
4538 bfd *abfd;
4539 sec_ptr section;
4540 PTR location;
4541 file_ptr offset;
4542 bfd_size_type count;
4543 {
4544 if (count == 0 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4545 return true;
4546 if ((bfd_size_type)(offset+count) > section->_raw_size
4547 || bfd_seek (abfd, (file_ptr)(section->filepos + offset), SEEK_SET) == -1
4548 || bfd_read (location, (bfd_size_type)1, count, abfd) != count)
4549 return (false); /* on error */
4550 return (true);
4551 }
4552
4553 static boolean
4554 som_set_section_contents (abfd, section, location, offset, count)
4555 bfd *abfd;
4556 sec_ptr section;
4557 PTR location;
4558 file_ptr offset;
4559 bfd_size_type count;
4560 {
4561 if (abfd->output_has_begun == false)
4562 {
4563 /* Set up fixed parts of the file, space, and subspace headers.
4564 Notify the world that output has begun. */
4565 som_prep_headers (abfd);
4566 abfd->output_has_begun = true;
4567 /* Start writing the object file. This include all the string
4568 tables, fixup streams, and other portions of the object file. */
4569 som_begin_writing (abfd);
4570 }
4571
4572 /* Only write subspaces which have "real" contents (eg. the contents
4573 are not generated at run time by the OS). */
4574 if (!som_is_subspace (section)
4575 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4576 return true;
4577
4578 /* Seek to the proper offset within the object file and write the
4579 data. */
4580 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
4581 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
4582 return false;
4583
4584 if (bfd_write ((PTR) location, 1, count, abfd) != count)
4585 return false;
4586 return true;
4587 }
4588
4589 static boolean
4590 som_set_arch_mach (abfd, arch, machine)
4591 bfd *abfd;
4592 enum bfd_architecture arch;
4593 unsigned long machine;
4594 {
4595 /* Allow any architecture to be supported by the SOM backend */
4596 return bfd_default_set_arch_mach (abfd, arch, machine);
4597 }
4598
4599 static boolean
4600 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4601 functionname_ptr, line_ptr)
4602 bfd *abfd;
4603 asection *section;
4604 asymbol **symbols;
4605 bfd_vma offset;
4606 CONST char **filename_ptr;
4607 CONST char **functionname_ptr;
4608 unsigned int *line_ptr;
4609 {
4610 fprintf (stderr, "som_find_nearest_line unimplemented\n");
4611 fflush (stderr);
4612 abort ();
4613 return (false);
4614 }
4615
4616 static int
4617 som_sizeof_headers (abfd, reloc)
4618 bfd *abfd;
4619 boolean reloc;
4620 {
4621 fprintf (stderr, "som_sizeof_headers unimplemented\n");
4622 fflush (stderr);
4623 abort ();
4624 return (0);
4625 }
4626
4627 /* Return the single-character symbol type corresponding to
4628 SOM section S, or '?' for an unknown SOM section. */
4629
4630 static char
4631 som_section_type (s)
4632 const char *s;
4633 {
4634 const struct section_to_type *t;
4635
4636 for (t = &stt[0]; t->section; t++)
4637 if (!strcmp (s, t->section))
4638 return t->type;
4639 return '?';
4640 }
4641
4642 static int
4643 som_decode_symclass (symbol)
4644 asymbol *symbol;
4645 {
4646 char c;
4647
4648 if (bfd_is_com_section (symbol->section))
4649 return 'C';
4650 if (bfd_is_und_section (symbol->section))
4651 return 'U';
4652 if (bfd_is_ind_section (symbol->section))
4653 return 'I';
4654 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
4655 return '?';
4656
4657 if (bfd_is_abs_section (symbol->section))
4658 c = 'a';
4659 else if (symbol->section)
4660 c = som_section_type (symbol->section->name);
4661 else
4662 return '?';
4663 if (symbol->flags & BSF_GLOBAL)
4664 c = toupper (c);
4665 return c;
4666 }
4667
4668 /* Return information about SOM symbol SYMBOL in RET. */
4669
4670 static void
4671 som_get_symbol_info (ignore_abfd, symbol, ret)
4672 bfd *ignore_abfd;
4673 asymbol *symbol;
4674 symbol_info *ret;
4675 {
4676 ret->type = som_decode_symclass (symbol);
4677 if (ret->type != 'U')
4678 ret->value = symbol->value+symbol->section->vma;
4679 else
4680 ret->value = 0;
4681 ret->name = symbol->name;
4682 }
4683
4684 /* Count the number of symbols in the archive symbol table. Necessary
4685 so that we can allocate space for all the carsyms at once. */
4686
4687 static boolean
4688 som_bfd_count_ar_symbols (abfd, lst_header, count)
4689 bfd *abfd;
4690 struct lst_header *lst_header;
4691 symindex *count;
4692 {
4693 unsigned int i;
4694 unsigned int *hash_table = NULL;
4695 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4696
4697 hash_table =
4698 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4699 if (hash_table == NULL && lst_header->hash_size != 0)
4700 {
4701 bfd_set_error (bfd_error_no_memory);
4702 goto error_return;
4703 }
4704
4705 /* Don't forget to initialize the counter! */
4706 *count = 0;
4707
4708 /* Read in the hash table. The has table is an array of 32bit file offsets
4709 which point to the hash chains. */
4710 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4711 != lst_header->hash_size * 4)
4712 goto error_return;
4713
4714 /* Walk each chain counting the number of symbols found on that particular
4715 chain. */
4716 for (i = 0; i < lst_header->hash_size; i++)
4717 {
4718 struct lst_symbol_record lst_symbol;
4719
4720 /* An empty chain has zero as it's file offset. */
4721 if (hash_table[i] == 0)
4722 continue;
4723
4724 /* Seek to the first symbol in this hash chain. */
4725 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4726 goto error_return;
4727
4728 /* Read in this symbol and update the counter. */
4729 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4730 != sizeof (lst_symbol))
4731 goto error_return;
4732
4733 (*count)++;
4734
4735 /* Now iterate through the rest of the symbols on this chain. */
4736 while (lst_symbol.next_entry)
4737 {
4738
4739 /* Seek to the next symbol. */
4740 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4741 < 0)
4742 goto error_return;
4743
4744 /* Read the symbol in and update the counter. */
4745 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4746 != sizeof (lst_symbol))
4747 goto error_return;
4748
4749 (*count)++;
4750 }
4751 }
4752 if (hash_table != NULL)
4753 free (hash_table);
4754 return true;
4755
4756 error_return:
4757 if (hash_table != NULL)
4758 free (hash_table);
4759 return false;
4760 }
4761
4762 /* Fill in the canonical archive symbols (SYMS) from the archive described
4763 by ABFD and LST_HEADER. */
4764
4765 static boolean
4766 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
4767 bfd *abfd;
4768 struct lst_header *lst_header;
4769 carsym **syms;
4770 {
4771 unsigned int i, len;
4772 carsym *set = syms[0];
4773 unsigned int *hash_table = NULL;
4774 struct som_entry *som_dict = NULL;
4775 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4776
4777 hash_table =
4778 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4779 if (hash_table == NULL && lst_header->hash_size != 0)
4780 {
4781 bfd_set_error (bfd_error_no_memory);
4782 goto error_return;
4783 }
4784
4785 som_dict =
4786 (struct som_entry *) malloc (lst_header->module_count
4787 * sizeof (struct som_entry));
4788 if (som_dict == NULL && lst_header->module_count != 0)
4789 {
4790 bfd_set_error (bfd_error_no_memory);
4791 goto error_return;
4792 }
4793
4794 /* Read in the hash table. The has table is an array of 32bit file offsets
4795 which point to the hash chains. */
4796 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4797 != lst_header->hash_size * 4)
4798 goto error_return;
4799
4800 /* Seek to and read in the SOM dictionary. We will need this to fill
4801 in the carsym's filepos field. */
4802 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
4803 goto error_return;
4804
4805 if (bfd_read ((PTR) som_dict, lst_header->module_count,
4806 sizeof (struct som_entry), abfd)
4807 != lst_header->module_count * sizeof (struct som_entry))
4808 goto error_return;
4809
4810 /* Walk each chain filling in the carsyms as we go along. */
4811 for (i = 0; i < lst_header->hash_size; i++)
4812 {
4813 struct lst_symbol_record lst_symbol;
4814
4815 /* An empty chain has zero as it's file offset. */
4816 if (hash_table[i] == 0)
4817 continue;
4818
4819 /* Seek to and read the first symbol on the chain. */
4820 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4821 goto error_return;
4822
4823 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4824 != sizeof (lst_symbol))
4825 goto error_return;
4826
4827 /* Get the name of the symbol, first get the length which is stored
4828 as a 32bit integer just before the symbol.
4829
4830 One might ask why we don't just read in the entire string table
4831 and index into it. Well, according to the SOM ABI the string
4832 index can point *anywhere* in the archive to save space, so just
4833 using the string table would not be safe. */
4834 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4835 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4836 goto error_return;
4837
4838 if (bfd_read (&len, 1, 4, abfd) != 4)
4839 goto error_return;
4840
4841 /* Allocate space for the name and null terminate it too. */
4842 set->name = bfd_zalloc (abfd, len + 1);
4843 if (!set->name)
4844 {
4845 bfd_set_error (bfd_error_no_memory);
4846 goto error_return;
4847 }
4848 if (bfd_read (set->name, 1, len, abfd) != len)
4849 goto error_return;
4850
4851 set->name[len] = 0;
4852
4853 /* Fill in the file offset. Note that the "location" field points
4854 to the SOM itself, not the ar_hdr in front of it. */
4855 set->file_offset = som_dict[lst_symbol.som_index].location
4856 - sizeof (struct ar_hdr);
4857
4858 /* Go to the next symbol. */
4859 set++;
4860
4861 /* Iterate through the rest of the chain. */
4862 while (lst_symbol.next_entry)
4863 {
4864 /* Seek to the next symbol and read it in. */
4865 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET) <0)
4866 goto error_return;
4867
4868 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4869 != sizeof (lst_symbol))
4870 goto error_return;
4871
4872 /* Seek to the name length & string and read them in. */
4873 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4874 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4875 goto error_return;
4876
4877 if (bfd_read (&len, 1, 4, abfd) != 4)
4878 goto error_return;
4879
4880 /* Allocate space for the name and null terminate it too. */
4881 set->name = bfd_zalloc (abfd, len + 1);
4882 if (!set->name)
4883 {
4884 bfd_set_error (bfd_error_no_memory);
4885 goto error_return;
4886 }
4887
4888 if (bfd_read (set->name, 1, len, abfd) != len)
4889 goto error_return;
4890 set->name[len] = 0;
4891
4892 /* Fill in the file offset. Note that the "location" field points
4893 to the SOM itself, not the ar_hdr in front of it. */
4894 set->file_offset = som_dict[lst_symbol.som_index].location
4895 - sizeof (struct ar_hdr);
4896
4897 /* Go on to the next symbol. */
4898 set++;
4899 }
4900 }
4901 /* If we haven't died by now, then we successfully read the entire
4902 archive symbol table. */
4903 if (hash_table != NULL)
4904 free (hash_table);
4905 if (som_dict != NULL)
4906 free (som_dict);
4907 return true;
4908
4909 error_return:
4910 if (hash_table != NULL)
4911 free (hash_table);
4912 if (som_dict != NULL)
4913 free (som_dict);
4914 return false;
4915 }
4916
4917 /* Read in the LST from the archive. */
4918 static boolean
4919 som_slurp_armap (abfd)
4920 bfd *abfd;
4921 {
4922 struct lst_header lst_header;
4923 struct ar_hdr ar_header;
4924 unsigned int parsed_size;
4925 struct artdata *ardata = bfd_ardata (abfd);
4926 char nextname[17];
4927 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
4928
4929 /* Special cases. */
4930 if (i == 0)
4931 return true;
4932 if (i != 16)
4933 return false;
4934
4935 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
4936 return false;
4937
4938 /* For archives without .o files there is no symbol table. */
4939 if (strncmp (nextname, "/ ", 16))
4940 {
4941 bfd_has_map (abfd) = false;
4942 return true;
4943 }
4944
4945 /* Read in and sanity check the archive header. */
4946 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
4947 != sizeof (struct ar_hdr))
4948 return false;
4949
4950 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
4951 {
4952 bfd_set_error (bfd_error_malformed_archive);
4953 return false;
4954 }
4955
4956 /* How big is the archive symbol table entry? */
4957 errno = 0;
4958 parsed_size = strtol (ar_header.ar_size, NULL, 10);
4959 if (errno != 0)
4960 {
4961 bfd_set_error (bfd_error_malformed_archive);
4962 return false;
4963 }
4964
4965 /* Save off the file offset of the first real user data. */
4966 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
4967
4968 /* Read in the library symbol table. We'll make heavy use of this
4969 in just a minute. */
4970 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
4971 != sizeof (struct lst_header))
4972 return false;
4973
4974 /* Sanity check. */
4975 if (lst_header.a_magic != LIBMAGIC)
4976 {
4977 bfd_set_error (bfd_error_malformed_archive);
4978 return false;
4979 }
4980
4981 /* Count the number of symbols in the library symbol table. */
4982 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
4983 == false)
4984 return false;
4985
4986 /* Get back to the start of the library symbol table. */
4987 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
4988 + sizeof (struct lst_header), SEEK_SET) < 0)
4989 return false;
4990
4991 /* Initializae the cache and allocate space for the library symbols. */
4992 ardata->cache = 0;
4993 ardata->symdefs = (carsym *) bfd_alloc (abfd,
4994 (ardata->symdef_count
4995 * sizeof (carsym)));
4996 if (!ardata->symdefs)
4997 {
4998 bfd_set_error (bfd_error_no_memory);
4999 return false;
5000 }
5001
5002 /* Now fill in the canonical archive symbols. */
5003 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
5004 == false)
5005 return false;
5006
5007 /* Seek back to the "first" file in the archive. Note the "first"
5008 file may be the extended name table. */
5009 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) < 0)
5010 return false;
5011
5012 /* Notify the generic archive code that we have a symbol map. */
5013 bfd_has_map (abfd) = true;
5014 return true;
5015 }
5016
5017 /* Begin preparing to write a SOM library symbol table.
5018
5019 As part of the prep work we need to determine the number of symbols
5020 and the size of the associated string section. */
5021
5022 static boolean
5023 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
5024 bfd *abfd;
5025 unsigned int *num_syms, *stringsize;
5026 {
5027 bfd *curr_bfd = abfd->archive_head;
5028
5029 /* Some initialization. */
5030 *num_syms = 0;
5031 *stringsize = 0;
5032
5033 /* Iterate over each BFD within this archive. */
5034 while (curr_bfd != NULL)
5035 {
5036 unsigned int curr_count, i;
5037 som_symbol_type *sym;
5038
5039 /* Don't bother for non-SOM objects. */
5040 if (curr_bfd->format != bfd_object
5041 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5042 {
5043 curr_bfd = curr_bfd->next;
5044 continue;
5045 }
5046
5047 /* Make sure the symbol table has been read, then snag a pointer
5048 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5049 but doing so avoids allocating lots of extra memory. */
5050 if (som_slurp_symbol_table (curr_bfd) == false)
5051 return false;
5052
5053 sym = obj_som_symtab (curr_bfd);
5054 curr_count = bfd_get_symcount (curr_bfd);
5055
5056 /* Examine each symbol to determine if it belongs in the
5057 library symbol table. */
5058 for (i = 0; i < curr_count; i++, sym++)
5059 {
5060 struct som_misc_symbol_info info;
5061
5062 /* Derive SOM information from the BFD symbol. */
5063 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5064
5065 /* Should we include this symbol? */
5066 if (info.symbol_type == ST_NULL
5067 || info.symbol_type == ST_SYM_EXT
5068 || info.symbol_type == ST_ARG_EXT)
5069 continue;
5070
5071 /* Only global symbols and unsatisfied commons. */
5072 if (info.symbol_scope != SS_UNIVERSAL
5073 && info.symbol_type != ST_STORAGE)
5074 continue;
5075
5076 /* Do no include undefined symbols. */
5077 if (bfd_is_und_section (sym->symbol.section))
5078 continue;
5079
5080 /* Bump the various counters, being careful to honor
5081 alignment considerations in the string table. */
5082 (*num_syms)++;
5083 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5084 while (*stringsize % 4)
5085 (*stringsize)++;
5086 }
5087
5088 curr_bfd = curr_bfd->next;
5089 }
5090 return true;
5091 }
5092
5093 /* Hash a symbol name based on the hashing algorithm presented in the
5094 SOM ABI. */
5095 static unsigned int
5096 som_bfd_ar_symbol_hash (symbol)
5097 asymbol *symbol;
5098 {
5099 unsigned int len = strlen (symbol->name);
5100
5101 /* Names with length 1 are special. */
5102 if (len == 1)
5103 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5104
5105 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5106 | (symbol->name[len-2] << 8) | symbol->name[len-1];
5107 }
5108
5109 static CONST char *
5110 normalize (file)
5111 CONST char *file;
5112 {
5113 CONST char *filename = strrchr (file, '/');
5114
5115 if (filename != NULL)
5116 filename++;
5117 else
5118 filename = file;
5119 return filename;
5120 }
5121
5122 /* Do the bulk of the work required to write the SOM library
5123 symbol table. */
5124
5125 static boolean
5126 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst)
5127 bfd *abfd;
5128 unsigned int nsyms, string_size;
5129 struct lst_header lst;
5130 {
5131 file_ptr lst_filepos;
5132 char *strings = NULL, *p;
5133 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5134 bfd *curr_bfd;
5135 unsigned int *hash_table = NULL;
5136 struct som_entry *som_dict = NULL;
5137 struct lst_symbol_record **last_hash_entry = NULL;
5138 unsigned int curr_som_offset, som_index, extended_name_length = 0;
5139 unsigned int maxname = abfd->xvec->ar_max_namelen;
5140
5141 hash_table =
5142 (unsigned int *) malloc (lst.hash_size * sizeof (unsigned int));
5143 if (hash_table == NULL && lst.hash_size != 0)
5144 {
5145 bfd_set_error (bfd_error_no_memory);
5146 goto error_return;
5147 }
5148 som_dict =
5149 (struct som_entry *) malloc (lst.module_count
5150 * sizeof (struct som_entry));
5151 if (som_dict == NULL && lst.module_count != 0)
5152 {
5153 bfd_set_error (bfd_error_no_memory);
5154 goto error_return;
5155 }
5156
5157 last_hash_entry =
5158 ((struct lst_symbol_record **)
5159 malloc (lst.hash_size * sizeof (struct lst_symbol_record *)));
5160 if (last_hash_entry == NULL && lst.hash_size != 0)
5161 {
5162 bfd_set_error (bfd_error_no_memory);
5163 goto error_return;
5164 }
5165
5166 /* Lots of fields are file positions relative to the start
5167 of the lst record. So save its location. */
5168 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5169
5170 /* Some initialization. */
5171 memset (hash_table, 0, 4 * lst.hash_size);
5172 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
5173 memset (last_hash_entry, 0,
5174 lst.hash_size * sizeof (struct lst_symbol_record *));
5175
5176 /* Symbols have som_index fields, so we have to keep track of the
5177 index of each SOM in the archive.
5178
5179 The SOM dictionary has (among other things) the absolute file
5180 position for the SOM which a particular dictionary entry
5181 describes. We have to compute that information as we iterate
5182 through the SOMs/symbols. */
5183 som_index = 0;
5184 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5185
5186 /* Yow! We have to know the size of the extended name table
5187 too. */
5188 for (curr_bfd = abfd->archive_head;
5189 curr_bfd != NULL;
5190 curr_bfd = curr_bfd->next)
5191 {
5192 CONST char *normal = normalize (curr_bfd->filename);
5193 unsigned int thislen;
5194
5195 if (!normal)
5196 {
5197 bfd_set_error (bfd_error_no_memory);
5198 return false;
5199 }
5200 thislen = strlen (normal);
5201 if (thislen > maxname)
5202 extended_name_length += thislen + 1;
5203 }
5204
5205 /* Make room for the archive header and the contents of the
5206 extended string table. */
5207 if (extended_name_length)
5208 curr_som_offset += extended_name_length + sizeof (struct ar_hdr);
5209
5210 /* Make sure we're properly aligned. */
5211 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5212
5213 /* FIXME should be done with buffers just like everything else... */
5214 lst_syms = malloc (nsyms * sizeof (struct lst_symbol_record));
5215 if (lst_syms == NULL && nsyms != 0)
5216 {
5217 bfd_set_error (bfd_error_no_memory);
5218 goto error_return;
5219 }
5220 strings = malloc (string_size);
5221 if (strings == NULL && string_size != 0)
5222 {
5223 bfd_set_error (bfd_error_no_memory);
5224 goto error_return;
5225 }
5226
5227 p = strings;
5228 curr_lst_sym = lst_syms;
5229
5230 curr_bfd = abfd->archive_head;
5231 while (curr_bfd != NULL)
5232 {
5233 unsigned int curr_count, i;
5234 som_symbol_type *sym;
5235
5236 /* Don't bother for non-SOM objects. */
5237 if (curr_bfd->format != bfd_object
5238 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5239 {
5240 curr_bfd = curr_bfd->next;
5241 continue;
5242 }
5243
5244 /* Make sure the symbol table has been read, then snag a pointer
5245 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5246 but doing so avoids allocating lots of extra memory. */
5247 if (som_slurp_symbol_table (curr_bfd) == false)
5248 goto error_return;
5249
5250 sym = obj_som_symtab (curr_bfd);
5251 curr_count = bfd_get_symcount (curr_bfd);
5252
5253 for (i = 0; i < curr_count; i++, sym++)
5254 {
5255 struct som_misc_symbol_info info;
5256
5257 /* Derive SOM information from the BFD symbol. */
5258 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5259
5260 /* Should we include this symbol? */
5261 if (info.symbol_type == ST_NULL
5262 || info.symbol_type == ST_SYM_EXT
5263 || info.symbol_type == ST_ARG_EXT)
5264 continue;
5265
5266 /* Only global symbols and unsatisfied commons. */
5267 if (info.symbol_scope != SS_UNIVERSAL
5268 && info.symbol_type != ST_STORAGE)
5269 continue;
5270
5271 /* Do no include undefined symbols. */
5272 if (bfd_is_und_section (sym->symbol.section))
5273 continue;
5274
5275 /* If this is the first symbol from this SOM, then update
5276 the SOM dictionary too. */
5277 if (som_dict[som_index].location == 0)
5278 {
5279 som_dict[som_index].location = curr_som_offset;
5280 som_dict[som_index].length = arelt_size (curr_bfd);
5281 }
5282
5283 /* Fill in the lst symbol record. */
5284 curr_lst_sym->hidden = 0;
5285 curr_lst_sym->secondary_def = 0;
5286 curr_lst_sym->symbol_type = info.symbol_type;
5287 curr_lst_sym->symbol_scope = info.symbol_scope;
5288 curr_lst_sym->check_level = 0;
5289 curr_lst_sym->must_qualify = 0;
5290 curr_lst_sym->initially_frozen = 0;
5291 curr_lst_sym->memory_resident = 0;
5292 curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section);
5293 curr_lst_sym->dup_common = 0;
5294 curr_lst_sym->xleast = 0;
5295 curr_lst_sym->arg_reloc = info.arg_reloc;
5296 curr_lst_sym->name.n_strx = p - strings + 4;
5297 curr_lst_sym->qualifier_name.n_strx = 0;
5298 curr_lst_sym->symbol_info = info.symbol_info;
5299 curr_lst_sym->symbol_value = info.symbol_value;
5300 curr_lst_sym->symbol_descriptor = 0;
5301 curr_lst_sym->reserved = 0;
5302 curr_lst_sym->som_index = som_index;
5303 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
5304 curr_lst_sym->next_entry = 0;
5305
5306 /* Insert into the hash table. */
5307 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
5308 {
5309 struct lst_symbol_record *tmp;
5310
5311 /* There is already something at the head of this hash chain,
5312 so tack this symbol onto the end of the chain. */
5313 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
5314 tmp->next_entry
5315 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5316 + lst.hash_size * 4
5317 + lst.module_count * sizeof (struct som_entry)
5318 + sizeof (struct lst_header);
5319 }
5320 else
5321 {
5322 /* First entry in this hash chain. */
5323 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
5324 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5325 + lst.hash_size * 4
5326 + lst.module_count * sizeof (struct som_entry)
5327 + sizeof (struct lst_header);
5328 }
5329
5330 /* Keep track of the last symbol we added to this chain so we can
5331 easily update its next_entry pointer. */
5332 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
5333 = curr_lst_sym;
5334
5335
5336 /* Update the string table. */
5337 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
5338 p += 4;
5339 strcpy (p, sym->symbol.name);
5340 p += strlen (sym->symbol.name) + 1;
5341 while ((int)p % 4)
5342 {
5343 bfd_put_8 (abfd, 0, p);
5344 p++;
5345 }
5346
5347 /* Head to the next symbol. */
5348 curr_lst_sym++;
5349 }
5350
5351 /* Keep track of where each SOM will finally reside; then look
5352 at the next BFD. */
5353 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
5354 curr_bfd = curr_bfd->next;
5355 som_index++;
5356 }
5357
5358 /* Now scribble out the hash table. */
5359 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
5360 != lst.hash_size * 4)
5361 goto error_return;
5362
5363 /* Then the SOM dictionary. */
5364 if (bfd_write ((PTR) som_dict, lst.module_count,
5365 sizeof (struct som_entry), abfd)
5366 != lst.module_count * sizeof (struct som_entry))
5367 goto error_return;
5368
5369 /* The library symbols. */
5370 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
5371 != nsyms * sizeof (struct lst_symbol_record))
5372 goto error_return;
5373
5374 /* And finally the strings. */
5375 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
5376 goto error_return;
5377
5378 if (hash_table != NULL)
5379 free (hash_table);
5380 if (som_dict != NULL)
5381 free (som_dict);
5382 if (last_hash_entry != NULL)
5383 free (last_hash_entry);
5384 if (lst_syms != NULL)
5385 free (lst_syms);
5386 if (strings != NULL)
5387 free (strings);
5388 return true;
5389
5390 error_return:
5391 if (hash_table != NULL)
5392 free (hash_table);
5393 if (som_dict != NULL)
5394 free (som_dict);
5395 if (last_hash_entry != NULL)
5396 free (last_hash_entry);
5397 if (lst_syms != NULL)
5398 free (lst_syms);
5399 if (strings != NULL)
5400 free (strings);
5401
5402 return false;
5403 }
5404
5405 /* Write out the LST for the archive.
5406
5407 You'll never believe this is really how armaps are handled in SOM... */
5408
5409 /*ARGSUSED*/
5410 static boolean
5411 som_write_armap (abfd, elength, map, orl_count, stridx)
5412 bfd *abfd;
5413 unsigned int elength;
5414 struct orl *map;
5415 unsigned int orl_count;
5416 int stridx;
5417 {
5418 bfd *curr_bfd;
5419 struct stat statbuf;
5420 unsigned int i, lst_size, nsyms, stringsize;
5421 struct ar_hdr hdr;
5422 struct lst_header lst;
5423 int *p;
5424
5425 /* We'll use this for the archive's date and mode later. */
5426 if (stat (abfd->filename, &statbuf) != 0)
5427 {
5428 bfd_set_error (bfd_error_system_call);
5429 return false;
5430 }
5431 /* Fudge factor. */
5432 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
5433
5434 /* Account for the lst header first. */
5435 lst_size = sizeof (struct lst_header);
5436
5437 /* Start building the LST header. */
5438 lst.system_id = CPU_PA_RISC1_0;
5439 lst.a_magic = LIBMAGIC;
5440 lst.version_id = VERSION_ID;
5441 lst.file_time.secs = 0;
5442 lst.file_time.nanosecs = 0;
5443
5444 lst.hash_loc = lst_size;
5445 lst.hash_size = SOM_LST_HASH_SIZE;
5446
5447 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
5448 lst_size += 4 * SOM_LST_HASH_SIZE;
5449
5450 /* We need to count the number of SOMs in this archive. */
5451 curr_bfd = abfd->archive_head;
5452 lst.module_count = 0;
5453 while (curr_bfd != NULL)
5454 {
5455 /* Only true SOM objects count. */
5456 if (curr_bfd->format == bfd_object
5457 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
5458 lst.module_count++;
5459 curr_bfd = curr_bfd->next;
5460 }
5461 lst.module_limit = lst.module_count;
5462 lst.dir_loc = lst_size;
5463 lst_size += sizeof (struct som_entry) * lst.module_count;
5464
5465 /* We don't support import/export tables, auxiliary headers,
5466 or free lists yet. Make the linker work a little harder
5467 to make our life easier. */
5468
5469 lst.export_loc = 0;
5470 lst.export_count = 0;
5471 lst.import_loc = 0;
5472 lst.aux_loc = 0;
5473 lst.aux_size = 0;
5474
5475 /* Count how many symbols we will have on the hash chains and the
5476 size of the associated string table. */
5477 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
5478 return false;
5479
5480 lst_size += sizeof (struct lst_symbol_record) * nsyms;
5481
5482 /* For the string table. One day we might actually use this info
5483 to avoid small seeks/reads when reading archives. */
5484 lst.string_loc = lst_size;
5485 lst.string_size = stringsize;
5486 lst_size += stringsize;
5487
5488 /* SOM ABI says this must be zero. */
5489 lst.free_list = 0;
5490 lst.file_end = lst_size;
5491
5492 /* Compute the checksum. Must happen after the entire lst header
5493 has filled in. */
5494 p = (int *)&lst;
5495 lst.checksum = 0;
5496 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
5497 lst.checksum ^= *p++;
5498
5499 sprintf (hdr.ar_name, "/ ");
5500 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
5501 sprintf (hdr.ar_uid, "%ld", (long) getuid ());
5502 sprintf (hdr.ar_gid, "%ld", (long) getgid ());
5503 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
5504 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
5505 hdr.ar_fmag[0] = '`';
5506 hdr.ar_fmag[1] = '\012';
5507
5508 /* Turn any nulls into spaces. */
5509 for (i = 0; i < sizeof (struct ar_hdr); i++)
5510 if (((char *) (&hdr))[i] == '\0')
5511 (((char *) (&hdr))[i]) = ' ';
5512
5513 /* Scribble out the ar header. */
5514 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
5515 != sizeof (struct ar_hdr))
5516 return false;
5517
5518 /* Now scribble out the lst header. */
5519 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
5520 != sizeof (struct lst_header))
5521 return false;
5522
5523 /* Build and write the armap. */
5524 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst) == false)
5525 return false;
5526
5527 /* Done. */
5528 return true;
5529 }
5530
5531 /* Free all information we have cached for this BFD. We can always
5532 read it again later if we need it. */
5533
5534 static boolean
5535 som_bfd_free_cached_info (abfd)
5536 bfd *abfd;
5537 {
5538 asection *o;
5539
5540 if (bfd_get_format (abfd) != bfd_object)
5541 return true;
5542
5543 #define FREE(x) if (x != NULL) { free (x); x = NULL; }
5544 /* Free the native string and symbol tables. */
5545 FREE (obj_som_symtab (abfd));
5546 FREE (obj_som_stringtab (abfd));
5547 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5548 {
5549 /* Free the native relocations. */
5550 o->reloc_count = -1;
5551 FREE (som_section_data (o)->reloc_stream);
5552 /* Free the generic relocations. */
5553 FREE (o->relocation);
5554 }
5555 #undef FREE
5556
5557 return true;
5558 }
5559
5560 /* End of miscellaneous support functions. */
5561
5562 #define som_close_and_cleanup som_bfd_free_cached_info
5563
5564 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
5565 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
5566 #define som_truncate_arname bfd_bsd_truncate_arname
5567 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
5568 #define som_update_armap_timestamp bfd_true
5569
5570 #define som_get_lineno _bfd_nosymbols_get_lineno
5571 #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
5572
5573 #define som_bfd_get_relocated_section_contents \
5574 bfd_generic_get_relocated_section_contents
5575 #define som_bfd_relax_section bfd_generic_relax_section
5576 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
5577 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
5578 #define som_bfd_final_link _bfd_generic_final_link
5579
5580 const bfd_target som_vec =
5581 {
5582 "som", /* name */
5583 bfd_target_som_flavour,
5584 true, /* target byte order */
5585 true, /* target headers byte order */
5586 (HAS_RELOC | EXEC_P | /* object flags */
5587 HAS_LINENO | HAS_DEBUG |
5588 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
5589 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
5590 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
5591
5592 /* leading_symbol_char: is the first char of a user symbol
5593 predictable, and if so what is it */
5594 0,
5595 '/', /* ar_pad_char */
5596 14, /* ar_max_namelen */
5597 3, /* minimum alignment */
5598 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5599 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5600 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
5601 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5602 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5603 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
5604 {_bfd_dummy_target,
5605 som_object_p, /* bfd_check_format */
5606 bfd_generic_archive_p,
5607 _bfd_dummy_target
5608 },
5609 {
5610 bfd_false,
5611 som_mkobject,
5612 _bfd_generic_mkarchive,
5613 bfd_false
5614 },
5615 {
5616 bfd_false,
5617 som_write_object_contents,
5618 _bfd_write_archive_contents,
5619 bfd_false,
5620 },
5621 #undef som
5622
5623 BFD_JUMP_TABLE_GENERIC (som),
5624 BFD_JUMP_TABLE_COPY (som),
5625 BFD_JUMP_TABLE_CORE (_bfd_nocore),
5626 BFD_JUMP_TABLE_ARCHIVE (som),
5627 BFD_JUMP_TABLE_SYMBOLS (som),
5628 BFD_JUMP_TABLE_RELOCS (som),
5629 BFD_JUMP_TABLE_WRITE (som),
5630 BFD_JUMP_TABLE_LINK (som),
5631 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
5632
5633 (PTR) 0
5634 };
5635
5636 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */