* som.[ch]: Do not include libhppa.h in som.c, instead include
[binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
3
4 Contributed by the Center for Software Science at the
5 University of Utah (pa-gdb-bugs@cs.utah.edu).
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23 #include "bfd.h"
24 #include "sysdep.h"
25
26 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)
27
28 #include "libbfd.h"
29 #include "som.h"
30
31 #include <stdio.h>
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/dir.h>
35 #include <signal.h>
36 #include <machine/reg.h>
37 #include <sys/user.h> /* After a.out.h */
38 #include <sys/file.h>
39 #include <errno.h>
40
41 /* Magic not defined in standard HP-UX header files until 8.0 */
42
43 #ifndef CPU_PA_RISC1_0
44 #define CPU_PA_RISC1_0 0x20B
45 #endif /* CPU_PA_RISC1_0 */
46
47 #ifndef CPU_PA_RISC1_1
48 #define CPU_PA_RISC1_1 0x210
49 #endif /* CPU_PA_RISC1_1 */
50
51 #ifndef _PA_RISC1_0_ID
52 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
53 #endif /* _PA_RISC1_0_ID */
54
55 #ifndef _PA_RISC1_1_ID
56 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
57 #endif /* _PA_RISC1_1_ID */
58
59 #ifndef _PA_RISC_MAXID
60 #define _PA_RISC_MAXID 0x2FF
61 #endif /* _PA_RISC_MAXID */
62
63 #ifndef _PA_RISC_ID
64 #define _PA_RISC_ID(__m_num) \
65 (((__m_num) == _PA_RISC1_0_ID) || \
66 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
67 #endif /* _PA_RISC_ID */
68
69 /* Size (in chars) of the temporary buffers used during fixup and string
70 table writes. */
71
72 #define SOM_TMP_BUFSIZE 8192
73
74 /* Size of the hash table in archives. */
75 #define SOM_LST_HASH_SIZE 31
76
77 /* Max number of SOMs to be found in an archive. */
78 #define SOM_LST_MODULE_LIMIT 1024
79
80 /* SOM allows any one of the four previous relocations to be reused
81 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
82 relocations are always a single byte, using a R_PREV_FIXUP instead
83 of some multi-byte relocation makes object files smaller.
84
85 Note one side effect of using a R_PREV_FIXUP is the relocation that
86 is being repeated moves to the front of the queue. */
87 struct reloc_queue
88 {
89 unsigned char *reloc;
90 unsigned int size;
91 } reloc_queue[4];
92
93 /* This fully describes the symbol types which may be attached to
94 an EXPORT or IMPORT directive. Only SOM uses this formation
95 (ELF has no need for it). */
96 typedef enum
97 {
98 SYMBOL_TYPE_UNKNOWN,
99 SYMBOL_TYPE_ABSOLUTE,
100 SYMBOL_TYPE_CODE,
101 SYMBOL_TYPE_DATA,
102 SYMBOL_TYPE_ENTRY,
103 SYMBOL_TYPE_MILLICODE,
104 SYMBOL_TYPE_PLABEL,
105 SYMBOL_TYPE_PRI_PROG,
106 SYMBOL_TYPE_SEC_PROG,
107 } pa_symbol_type;
108
109 struct section_to_type
110 {
111 char *section;
112 char type;
113 };
114
115 /* Assorted symbol information that needs to be derived from the BFD symbol
116 and/or the BFD backend private symbol data. */
117 struct som_misc_symbol_info
118 {
119 unsigned int symbol_type;
120 unsigned int symbol_scope;
121 unsigned int arg_reloc;
122 unsigned int symbol_info;
123 unsigned int symbol_value;
124 };
125
126 /* Forward declarations */
127
128 static boolean som_mkobject PARAMS ((bfd *));
129 static bfd_target * som_object_setup PARAMS ((bfd *,
130 struct header *,
131 struct som_exec_auxhdr *));
132 static asection * make_unique_section PARAMS ((bfd *, CONST char *, int));
133 static boolean setup_sections PARAMS ((bfd *, struct header *));
134 static bfd_target * som_object_p PARAMS ((bfd *));
135 static boolean som_write_object_contents PARAMS ((bfd *));
136 static boolean som_slurp_string_table PARAMS ((bfd *));
137 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
138 static unsigned int som_get_symtab_upper_bound PARAMS ((bfd *));
139 static unsigned int som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
140 arelent **, asymbol **));
141 static unsigned int som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
142 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
143 arelent *, asection *,
144 asymbol **, boolean));
145 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
146 asymbol **, boolean));
147 static unsigned int som_get_symtab PARAMS ((bfd *, asymbol **));
148 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
149 static void som_print_symbol PARAMS ((bfd *, PTR,
150 asymbol *, bfd_print_symbol_type));
151 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
152 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
153 file_ptr, bfd_size_type));
154 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
155 unsigned long));
156 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
157 asymbol **, bfd_vma,
158 CONST char **,
159 CONST char **,
160 unsigned int *));
161 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
162 static asection * som_section_from_subspace_index PARAMS ((bfd *,
163 unsigned int));
164 static int log2 PARAMS ((unsigned int));
165 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
166 asymbol *, PTR,
167 asection *, bfd *,
168 char **));
169 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
170 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
171 struct reloc_queue *));
172 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
173 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
174 struct reloc_queue *));
175 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
176 unsigned int,
177 struct reloc_queue *));
178
179 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
180 unsigned char *, unsigned int *,
181 struct reloc_queue *));
182 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
183 unsigned int *,
184 struct reloc_queue *));
185 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
186 unsigned int *,
187 arelent *, int,
188 struct reloc_queue *));
189 static unsigned long som_count_spaces PARAMS ((bfd *));
190 static unsigned long som_count_subspaces PARAMS ((bfd *));
191 static int compare_syms PARAMS ((asymbol **, asymbol **));
192 static unsigned long som_compute_checksum PARAMS ((bfd *));
193 static boolean som_prep_headers PARAMS ((bfd *));
194 static int som_sizeof_headers PARAMS ((bfd *, boolean));
195 static boolean som_write_headers PARAMS ((bfd *));
196 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
197 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
198 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
199 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
200 unsigned int *));
201 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
202 asymbol **, unsigned int,
203 unsigned *));
204 static boolean som_begin_writing PARAMS ((bfd *));
205 static const reloc_howto_type * som_bfd_reloc_type_lookup
206 PARAMS ((bfd_arch_info_type *, bfd_reloc_code_real_type));
207 static char som_section_type PARAMS ((const char *));
208 static int som_decode_symclass PARAMS ((asymbol *));
209 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
210 symindex *));
211
212 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
213 carsym **syms));
214 static boolean som_slurp_armap PARAMS ((bfd *));
215 static boolean som_write_armap PARAMS ((bfd *));
216 static boolean som_slurp_extended_name_table PARAMS ((bfd *));
217 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
218 struct som_misc_symbol_info *));
219 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
220 unsigned int *));
221 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
222 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
223 unsigned int,
224 struct lst_header));
225
226 /* Map SOM section names to POSIX/BSD single-character symbol types.
227
228 This table includes all the standard subspaces as defined in the
229 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
230 some reason was left out, and sections specific to embedded stabs. */
231
232 static const struct section_to_type stt[] = {
233 {"$TEXT$", 't'},
234 {"$SHLIB_INFO$", 't'},
235 {"$MILLICODE$", 't'},
236 {"$LIT$", 't'},
237 {"$CODE$", 't'},
238 {"$UNWIND_START$", 't'},
239 {"$UNWIND$", 't'},
240 {"$PRIVATE$", 'd'},
241 {"$PLT$", 'd'},
242 {"$SHLIB_DATA$", 'd'},
243 {"$DATA$", 'd'},
244 {"$SHORTDATA$", 'g'},
245 {"$DLT$", 'd'},
246 {"$GLOBAL$", 'g'},
247 {"$SHORTBSS$", 's'},
248 {"$BSS$", 'b'},
249 {"$GDB_STRINGS$", 'N'},
250 {"$GDB_SYMBOLS$", 'N'},
251 {0, 0}
252 };
253
254 /* About the relocation formatting table...
255
256 There are 256 entries in the table, one for each possible
257 relocation opcode available in SOM. We index the table by
258 the relocation opcode. The names and operations are those
259 defined by a.out_800 (4).
260
261 Right now this table is only used to count and perform minimal
262 processing on relocation streams so that they can be internalized
263 into BFD and symbolically printed by utilities. To make actual use
264 of them would be much more difficult, BFD's concept of relocations
265 is far too simple to handle SOM relocations. The basic assumption
266 that a relocation can be completely processed independent of other
267 relocations before an object file is written is invalid for SOM.
268
269 The SOM relocations are meant to be processed as a stream, they
270 specify copying of data from the input section to the output section
271 while possibly modifying the data in some manner. They also can
272 specify that a variable number of zeros or uninitialized data be
273 inserted on in the output segment at the current offset. Some
274 relocations specify that some previous relocation be re-applied at
275 the current location in the input/output sections. And finally a number
276 of relocations have effects on other sections (R_ENTRY, R_EXIT,
277 R_UNWIND_AUX and a variety of others). There isn't even enough room
278 in the BFD relocation data structure to store enough information to
279 perform all the relocations.
280
281 Each entry in the table has three fields.
282
283 The first entry is an index into this "class" of relocations. This
284 index can then be used as a variable within the relocation itself.
285
286 The second field is a format string which actually controls processing
287 of the relocation. It uses a simple postfix machine to do calculations
288 based on variables/constants found in the string and the relocation
289 stream.
290
291 The third field specifys whether or not this relocation may use
292 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
293 stored in the instruction.
294
295 Variables:
296
297 L = input space byte count
298 D = index into class of relocations
299 M = output space byte count
300 N = statement number (unused?)
301 O = stack operation
302 R = parameter relocation bits
303 S = symbol index
304 U = 64 bits of stack unwind and frame size info (we only keep 32 bits)
305 V = a literal constant (usually used in the next relocation)
306 P = a previous relocation
307
308 Lower case letters (starting with 'b') refer to following
309 bytes in the relocation stream. 'b' is the next 1 byte,
310 c is the next 2 bytes, d is the next 3 bytes, etc...
311 This is the variable part of the relocation entries that
312 makes our life a living hell.
313
314 numerical constants are also used in the format string. Note
315 the constants are represented in decimal.
316
317 '+', "*" and "=" represents the obvious postfix operators.
318 '<' represents a left shift.
319
320 Stack Operations:
321
322 Parameter Relocation Bits:
323
324 Unwind Entries:
325
326 Previous Relocations: The index field represents which in the queue
327 of 4 previous fixups should be re-applied.
328
329 Literal Constants: These are generally used to represent addend
330 parts of relocations when these constants are not stored in the
331 fields of the instructions themselves. For example the instruction
332 addil foo-$global$-0x1234 would use an override for "0x1234" rather
333 than storing it into the addil itself. */
334
335 struct fixup_format
336 {
337 int D;
338 char *format;
339 };
340
341 static const struct fixup_format som_fixup_formats[256] =
342 {
343 /* R_NO_RELOCATION */
344 0, "LD1+4*=", /* 0x00 */
345 1, "LD1+4*=", /* 0x01 */
346 2, "LD1+4*=", /* 0x02 */
347 3, "LD1+4*=", /* 0x03 */
348 4, "LD1+4*=", /* 0x04 */
349 5, "LD1+4*=", /* 0x05 */
350 6, "LD1+4*=", /* 0x06 */
351 7, "LD1+4*=", /* 0x07 */
352 8, "LD1+4*=", /* 0x08 */
353 9, "LD1+4*=", /* 0x09 */
354 10, "LD1+4*=", /* 0x0a */
355 11, "LD1+4*=", /* 0x0b */
356 12, "LD1+4*=", /* 0x0c */
357 13, "LD1+4*=", /* 0x0d */
358 14, "LD1+4*=", /* 0x0e */
359 15, "LD1+4*=", /* 0x0f */
360 16, "LD1+4*=", /* 0x10 */
361 17, "LD1+4*=", /* 0x11 */
362 18, "LD1+4*=", /* 0x12 */
363 19, "LD1+4*=", /* 0x13 */
364 20, "LD1+4*=", /* 0x14 */
365 21, "LD1+4*=", /* 0x15 */
366 22, "LD1+4*=", /* 0x16 */
367 23, "LD1+4*=", /* 0x17 */
368 0, "LD8<b+1+4*=", /* 0x18 */
369 1, "LD8<b+1+4*=", /* 0x19 */
370 2, "LD8<b+1+4*=", /* 0x1a */
371 3, "LD8<b+1+4*=", /* 0x1b */
372 0, "LD16<c+1+4*=", /* 0x1c */
373 1, "LD16<c+1+4*=", /* 0x1d */
374 2, "LD16<c+1+4*=", /* 0x1e */
375 0, "Ld1+=", /* 0x1f */
376 /* R_ZEROES */
377 0, "Lb1+4*=", /* 0x20 */
378 1, "Ld1+=", /* 0x21 */
379 /* R_UNINIT */
380 0, "Lb1+4*=", /* 0x22 */
381 1, "Ld1+=", /* 0x23 */
382 /* R_RELOCATION */
383 0, "L4=", /* 0x24 */
384 /* R_DATA_ONE_SYMBOL */
385 0, "L4=Sb=", /* 0x25 */
386 1, "L4=Sd=", /* 0x26 */
387 /* R_DATA_PLEBEL */
388 0, "L4=Sb=", /* 0x27 */
389 1, "L4=Sd=", /* 0x28 */
390 /* R_SPACE_REF */
391 0, "L4=", /* 0x29 */
392 /* R_REPEATED_INIT */
393 0, "L4=Mb1+4*=", /* 0x2a */
394 1, "Lb4*=Mb1+L*=", /* 0x2b */
395 2, "Lb4*=Md1+4*=", /* 0x2c */
396 3, "Ld1+=Me1+=", /* 0x2d */
397 /* R_RESERVED */
398 0, "", /* 0x2e */
399 0, "", /* 0x2f */
400 /* R_PCREL_CALL */
401 0, "L4=RD=Sb=", /* 0x30 */
402 1, "L4=RD=Sb=", /* 0x31 */
403 2, "L4=RD=Sb=", /* 0x32 */
404 3, "L4=RD=Sb=", /* 0x33 */
405 4, "L4=RD=Sb=", /* 0x34 */
406 5, "L4=RD=Sb=", /* 0x35 */
407 6, "L4=RD=Sb=", /* 0x36 */
408 7, "L4=RD=Sb=", /* 0x37 */
409 8, "L4=RD=Sb=", /* 0x38 */
410 9, "L4=RD=Sb=", /* 0x39 */
411 0, "L4=RD8<b+=Sb=",/* 0x3a */
412 1, "L4=RD8<b+=Sb=",/* 0x3b */
413 0, "L4=RD8<b+=Sd=",/* 0x3c */
414 1, "L4=RD8<b+=Sd=",/* 0x3d */
415 /* R_RESERVED */
416 0, "", /* 0x3e */
417 0, "", /* 0x3f */
418 /* R_ABS_CALL */
419 0, "L4=RD=Sb=", /* 0x40 */
420 1, "L4=RD=Sb=", /* 0x41 */
421 2, "L4=RD=Sb=", /* 0x42 */
422 3, "L4=RD=Sb=", /* 0x43 */
423 4, "L4=RD=Sb=", /* 0x44 */
424 5, "L4=RD=Sb=", /* 0x45 */
425 6, "L4=RD=Sb=", /* 0x46 */
426 7, "L4=RD=Sb=", /* 0x47 */
427 8, "L4=RD=Sb=", /* 0x48 */
428 9, "L4=RD=Sb=", /* 0x49 */
429 0, "L4=RD8<b+=Sb=",/* 0x4a */
430 1, "L4=RD8<b+=Sb=",/* 0x4b */
431 0, "L4=RD8<b+=Sd=",/* 0x4c */
432 1, "L4=RD8<b+=Sd=",/* 0x4d */
433 /* R_RESERVED */
434 0, "", /* 0x4e */
435 0, "", /* 0x4f */
436 /* R_DP_RELATIVE */
437 0, "L4=SD=", /* 0x50 */
438 1, "L4=SD=", /* 0x51 */
439 2, "L4=SD=", /* 0x52 */
440 3, "L4=SD=", /* 0x53 */
441 4, "L4=SD=", /* 0x54 */
442 5, "L4=SD=", /* 0x55 */
443 6, "L4=SD=", /* 0x56 */
444 7, "L4=SD=", /* 0x57 */
445 8, "L4=SD=", /* 0x58 */
446 9, "L4=SD=", /* 0x59 */
447 10, "L4=SD=", /* 0x5a */
448 11, "L4=SD=", /* 0x5b */
449 12, "L4=SD=", /* 0x5c */
450 13, "L4=SD=", /* 0x5d */
451 14, "L4=SD=", /* 0x5e */
452 15, "L4=SD=", /* 0x5f */
453 16, "L4=SD=", /* 0x60 */
454 17, "L4=SD=", /* 0x61 */
455 18, "L4=SD=", /* 0x62 */
456 19, "L4=SD=", /* 0x63 */
457 20, "L4=SD=", /* 0x64 */
458 21, "L4=SD=", /* 0x65 */
459 22, "L4=SD=", /* 0x66 */
460 23, "L4=SD=", /* 0x67 */
461 24, "L4=SD=", /* 0x68 */
462 25, "L4=SD=", /* 0x69 */
463 26, "L4=SD=", /* 0x6a */
464 27, "L4=SD=", /* 0x6b */
465 28, "L4=SD=", /* 0x6c */
466 29, "L4=SD=", /* 0x6d */
467 30, "L4=SD=", /* 0x6e */
468 31, "L4=SD=", /* 0x6f */
469 32, "L4=Sb=", /* 0x70 */
470 33, "L4=Sd=", /* 0x71 */
471 /* R_RESERVED */
472 0, "", /* 0x72 */
473 0, "", /* 0x73 */
474 0, "", /* 0x74 */
475 0, "", /* 0x75 */
476 0, "", /* 0x76 */
477 0, "", /* 0x77 */
478 /* R_DLT_REL */
479 0, "L4=Sb=", /* 0x78 */
480 1, "L4=Sd=", /* 0x79 */
481 /* R_RESERVED */
482 0, "", /* 0x7a */
483 0, "", /* 0x7b */
484 0, "", /* 0x7c */
485 0, "", /* 0x7d */
486 0, "", /* 0x7e */
487 0, "", /* 0x7f */
488 /* R_CODE_ONE_SYMBOL */
489 0, "L4=SD=", /* 0x80 */
490 1, "L4=SD=", /* 0x81 */
491 2, "L4=SD=", /* 0x82 */
492 3, "L4=SD=", /* 0x83 */
493 4, "L4=SD=", /* 0x84 */
494 5, "L4=SD=", /* 0x85 */
495 6, "L4=SD=", /* 0x86 */
496 7, "L4=SD=", /* 0x87 */
497 8, "L4=SD=", /* 0x88 */
498 9, "L4=SD=", /* 0x89 */
499 10, "L4=SD=", /* 0x8q */
500 11, "L4=SD=", /* 0x8b */
501 12, "L4=SD=", /* 0x8c */
502 13, "L4=SD=", /* 0x8d */
503 14, "L4=SD=", /* 0x8e */
504 15, "L4=SD=", /* 0x8f */
505 16, "L4=SD=", /* 0x90 */
506 17, "L4=SD=", /* 0x91 */
507 18, "L4=SD=", /* 0x92 */
508 19, "L4=SD=", /* 0x93 */
509 20, "L4=SD=", /* 0x94 */
510 21, "L4=SD=", /* 0x95 */
511 22, "L4=SD=", /* 0x96 */
512 23, "L4=SD=", /* 0x97 */
513 24, "L4=SD=", /* 0x98 */
514 25, "L4=SD=", /* 0x99 */
515 26, "L4=SD=", /* 0x9a */
516 27, "L4=SD=", /* 0x9b */
517 28, "L4=SD=", /* 0x9c */
518 29, "L4=SD=", /* 0x9d */
519 30, "L4=SD=", /* 0x9e */
520 31, "L4=SD=", /* 0x9f */
521 32, "L4=Sb=", /* 0xa0 */
522 33, "L4=Sd=", /* 0xa1 */
523 /* R_RESERVED */
524 0, "", /* 0xa2 */
525 0, "", /* 0xa3 */
526 0, "", /* 0xa4 */
527 0, "", /* 0xa5 */
528 0, "", /* 0xa6 */
529 0, "", /* 0xa7 */
530 0, "", /* 0xa8 */
531 0, "", /* 0xa9 */
532 0, "", /* 0xaa */
533 0, "", /* 0xab */
534 0, "", /* 0xac */
535 0, "", /* 0xad */
536 /* R_MILLI_REL */
537 0, "L4=Sb=", /* 0xae */
538 1, "L4=Sd=", /* 0xaf */
539 /* R_CODE_PLABEL */
540 0, "L4=Sb=", /* 0xb0 */
541 1, "L4=Sd=", /* 0xb1 */
542 /* R_BREAKPOINT */
543 0, "L4=", /* 0xb2 */
544 /* R_ENTRY */
545 0, "Ui=", /* 0xb3 */
546 1, "Uf=", /* 0xb4 */
547 /* R_ALT_ENTRY */
548 0, "", /* 0xb5 */
549 /* R_EXIT */
550 0, "", /* 0xb6 */
551 /* R_BEGIN_TRY */
552 0, "", /* 0xb7 */
553 /* R_END_TRY */
554 0, "R0=", /* 0xb8 */
555 1, "Rb4*=", /* 0xb9 */
556 2, "Rd4*=", /* 0xba */
557 /* R_BEGIN_BRTAB */
558 0, "", /* 0xbb */
559 /* R_END_BRTAB */
560 0, "", /* 0xbc */
561 /* R_STATEMENT */
562 0, "Nb=", /* 0xbd */
563 1, "Nc=", /* 0xbe */
564 2, "Nd=", /* 0xbf */
565 /* R_DATA_EXPR */
566 0, "L4=", /* 0xc0 */
567 /* R_CODE_EXPR */
568 0, "L4=", /* 0xc1 */
569 /* R_FSEL */
570 0, "", /* 0xc2 */
571 /* R_LSEL */
572 0, "", /* 0xc3 */
573 /* R_RSEL */
574 0, "", /* 0xc4 */
575 /* R_N_MODE */
576 0, "", /* 0xc5 */
577 /* R_S_MODE */
578 0, "", /* 0xc6 */
579 /* R_D_MODE */
580 0, "", /* 0xc7 */
581 /* R_R_MODE */
582 0, "", /* 0xc8 */
583 /* R_DATA_OVERRIDE */
584 0, "V0=", /* 0xc9 */
585 1, "Vb=", /* 0xca */
586 2, "Vc=", /* 0xcb */
587 3, "Vd=", /* 0xcc */
588 4, "Ve=", /* 0xcd */
589 /* R_TRANSLATED */
590 0, "", /* 0xce */
591 /* R_RESERVED */
592 0, "", /* 0xcf */
593 /* R_COMP1 */
594 0, "Ob=", /* 0xd0 */
595 /* R_COMP2 */
596 0, "Ob=Sd=", /* 0xd1 */
597 /* R_COMP3 */
598 0, "Ob=Ve=", /* 0xd2 */
599 /* R_PREV_FIXUP */
600 0, "P", /* 0xd3 */
601 1, "P", /* 0xd4 */
602 2, "P", /* 0xd5 */
603 3, "P", /* 0xd6 */
604 /* R_RESERVED */
605 0, "", /* 0xd7 */
606 0, "", /* 0xd8 */
607 0, "", /* 0xd9 */
608 0, "", /* 0xda */
609 0, "", /* 0xdb */
610 0, "", /* 0xdc */
611 0, "", /* 0xdd */
612 0, "", /* 0xde */
613 0, "", /* 0xdf */
614 0, "", /* 0xe0 */
615 0, "", /* 0xe1 */
616 0, "", /* 0xe2 */
617 0, "", /* 0xe3 */
618 0, "", /* 0xe4 */
619 0, "", /* 0xe5 */
620 0, "", /* 0xe6 */
621 0, "", /* 0xe7 */
622 0, "", /* 0xe8 */
623 0, "", /* 0xe9 */
624 0, "", /* 0xea */
625 0, "", /* 0xeb */
626 0, "", /* 0xec */
627 0, "", /* 0xed */
628 0, "", /* 0xee */
629 0, "", /* 0xef */
630 0, "", /* 0xf0 */
631 0, "", /* 0xf1 */
632 0, "", /* 0xf2 */
633 0, "", /* 0xf3 */
634 0, "", /* 0xf4 */
635 0, "", /* 0xf5 */
636 0, "", /* 0xf6 */
637 0, "", /* 0xf7 */
638 0, "", /* 0xf8 */
639 0, "", /* 0xf9 */
640 0, "", /* 0xfa */
641 0, "", /* 0xfb */
642 0, "", /* 0xfc */
643 0, "", /* 0xfd */
644 0, "", /* 0xfe */
645 0, "", /* 0xff */
646 };
647
648 static const int comp1_opcodes[] =
649 {
650 0x00,
651 0x40,
652 0x41,
653 0x42,
654 0x43,
655 0x44,
656 0x45,
657 0x46,
658 0x47,
659 0x48,
660 0x49,
661 0x4a,
662 0x4b,
663 0x60,
664 0x80,
665 0xa0,
666 0xc0,
667 -1
668 };
669
670 static const int comp2_opcodes[] =
671 {
672 0x00,
673 0x80,
674 0x82,
675 0xc0,
676 -1
677 };
678
679 static const int comp3_opcodes[] =
680 {
681 0x00,
682 0x02,
683 -1
684 };
685
686 /* These apparently are not in older versions of hpux reloc.h. */
687 #ifndef R_DLT_REL
688 #define R_DLT_REL 0x78
689 #endif
690
691 #ifndef R_AUX_UNWIND
692 #define R_AUX_UNWIND 0xcf
693 #endif
694
695 #ifndef R_SEC_STMT
696 #define R_SEC_STMT 0xd7
697 #endif
698
699 static reloc_howto_type som_hppa_howto_table[] =
700 {
701 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
702 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
703 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
704 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
705 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
706 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
707 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
708 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
709 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
710 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
711 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
712 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
713 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
714 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
715 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
716 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
717 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
718 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
719 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
720 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
721 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
722 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
723 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
724 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
725 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
726 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
727 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
728 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
729 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
730 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
731 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
732 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
733 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
734 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
735 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
736 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
737 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
738 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
739 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
740 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
741 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
742 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
743 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
744 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
745 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
746 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
747 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
748 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
749 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
750 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
751 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
752 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
753 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
754 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
755 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
756 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
757 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
758 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
759 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
760 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
761 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
762 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
763 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
764 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
765 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
766 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
767 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
768 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
769 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
770 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
771 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
772 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
773 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
774 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
775 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
776 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
777 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
778 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
779 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
780 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
781 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
782 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
783 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
784 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
785 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
786 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
787 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
788 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
789 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
790 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
791 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
792 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
793 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
794 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
795 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
796 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
797 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
798 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
799 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
800 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
801 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
802 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
803 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
804 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
805 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
806 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
807 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
808 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
809 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
810 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
811 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
812 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
813 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
814 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
815 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
816 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
817 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
818 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
819 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
820 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
821 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
822 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
823 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
824 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
825 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
826 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
827 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
828 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
829 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
830 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
831 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
832 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
833 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
834 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
835 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
836 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
837 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
838 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
839 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
840 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
841 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
842 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
843 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
844 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
845 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
846 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
847 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
848 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
849 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
850 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
851 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
852 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
853 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
854 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
855 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
856 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
857 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
858 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
859 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
860 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
861 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
862 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
863 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
864 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
865 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
866 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
867 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
868 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
869 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
870 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
871 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
872 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
873 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
874 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
875 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
876 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
877 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
878 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
879 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
880 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
881 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
882 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
883 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
884 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
885 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
886 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
887 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
888 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
889 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
890 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
891 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
892 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
893 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
894 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
895 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
896 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
897 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
898 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
899 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
900 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
901 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
902 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
903 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
904 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
905 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
906 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
907 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
908 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
909 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
910 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
911 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
912 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
913 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
914 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
915 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
916 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
917 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
918 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
919 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
920 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
921 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
922 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
923 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
924 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
925 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
926 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
927 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
928 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
929 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
930 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
931 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
932 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
933 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
934 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
935 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
936 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
937 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
938 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
939 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
940 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
941 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
942 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
943 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
944 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
945 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
946 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
947 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
948 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
949 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
950 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
951 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
952 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
953 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
954 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
955 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
956 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
957
958
959 /* Initialize the SOM relocation queue. By definition the queue holds
960 the last four multibyte fixups. */
961
962 static void
963 som_initialize_reloc_queue (queue)
964 struct reloc_queue *queue;
965 {
966 queue[0].reloc = NULL;
967 queue[0].size = 0;
968 queue[1].reloc = NULL;
969 queue[1].size = 0;
970 queue[2].reloc = NULL;
971 queue[2].size = 0;
972 queue[3].reloc = NULL;
973 queue[3].size = 0;
974 }
975
976 /* Insert a new relocation into the relocation queue. */
977
978 static void
979 som_reloc_queue_insert (p, size, queue)
980 unsigned char *p;
981 unsigned int size;
982 struct reloc_queue *queue;
983 {
984 queue[3].reloc = queue[2].reloc;
985 queue[3].size = queue[2].size;
986 queue[2].reloc = queue[1].reloc;
987 queue[2].size = queue[1].size;
988 queue[1].reloc = queue[0].reloc;
989 queue[1].size = queue[0].size;
990 queue[0].reloc = p;
991 queue[0].size = size;
992 }
993
994 /* When an entry in the relocation queue is reused, the entry moves
995 to the front of the queue. */
996
997 static void
998 som_reloc_queue_fix (queue, index)
999 struct reloc_queue *queue;
1000 unsigned int index;
1001 {
1002 if (index == 0)
1003 return;
1004
1005 if (index == 1)
1006 {
1007 unsigned char *tmp1 = queue[0].reloc;
1008 unsigned int tmp2 = queue[0].size;
1009 queue[0].reloc = queue[1].reloc;
1010 queue[0].size = queue[1].size;
1011 queue[1].reloc = tmp1;
1012 queue[1].size = tmp2;
1013 return;
1014 }
1015
1016 if (index == 2)
1017 {
1018 unsigned char *tmp1 = queue[0].reloc;
1019 unsigned int tmp2 = queue[0].size;
1020 queue[0].reloc = queue[2].reloc;
1021 queue[0].size = queue[2].size;
1022 queue[2].reloc = queue[1].reloc;
1023 queue[2].size = queue[1].size;
1024 queue[1].reloc = tmp1;
1025 queue[1].size = tmp2;
1026 return;
1027 }
1028
1029 if (index == 3)
1030 {
1031 unsigned char *tmp1 = queue[0].reloc;
1032 unsigned int tmp2 = queue[0].size;
1033 queue[0].reloc = queue[3].reloc;
1034 queue[0].size = queue[3].size;
1035 queue[3].reloc = queue[2].reloc;
1036 queue[3].size = queue[2].size;
1037 queue[2].reloc = queue[1].reloc;
1038 queue[2].size = queue[1].size;
1039 queue[1].reloc = tmp1;
1040 queue[1].size = tmp2;
1041 return;
1042 }
1043 abort();
1044 }
1045
1046 /* Search for a particular relocation in the relocation queue. */
1047
1048 static int
1049 som_reloc_queue_find (p, size, queue)
1050 unsigned char *p;
1051 unsigned int size;
1052 struct reloc_queue *queue;
1053 {
1054 if (queue[0].reloc && !bcmp (p, queue[0].reloc, size)
1055 && size == queue[0].size)
1056 return 0;
1057 if (queue[1].reloc && !bcmp (p, queue[1].reloc, size)
1058 && size == queue[1].size)
1059 return 1;
1060 if (queue[2].reloc && !bcmp (p, queue[2].reloc, size)
1061 && size == queue[2].size)
1062 return 2;
1063 if (queue[3].reloc && !bcmp (p, queue[3].reloc, size)
1064 && size == queue[3].size)
1065 return 3;
1066 return -1;
1067 }
1068
1069 static unsigned char *
1070 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1071 bfd *abfd;
1072 int *subspace_reloc_sizep;
1073 unsigned char *p;
1074 unsigned int size;
1075 struct reloc_queue *queue;
1076 {
1077 int queue_index = som_reloc_queue_find (p, size, queue);
1078
1079 if (queue_index != -1)
1080 {
1081 /* Found this in a previous fixup. Undo the fixup we
1082 just built and use R_PREV_FIXUP instead. We saved
1083 a total of size - 1 bytes in the fixup stream. */
1084 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1085 p += 1;
1086 *subspace_reloc_sizep += 1;
1087 som_reloc_queue_fix (queue, queue_index);
1088 }
1089 else
1090 {
1091 som_reloc_queue_insert (p, size, queue);
1092 *subspace_reloc_sizep += size;
1093 p += size;
1094 }
1095 return p;
1096 }
1097
1098 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1099 bytes without any relocation. Update the size of the subspace
1100 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1101 current pointer into the relocation stream. */
1102
1103 static unsigned char *
1104 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1105 bfd *abfd;
1106 unsigned int skip;
1107 unsigned char *p;
1108 unsigned int *subspace_reloc_sizep;
1109 struct reloc_queue *queue;
1110 {
1111 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1112 then R_PREV_FIXUPs to get the difference down to a
1113 reasonable size. */
1114 if (skip >= 0x1000000)
1115 {
1116 skip -= 0x1000000;
1117 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1118 bfd_put_8 (abfd, 0xff, p + 1);
1119 bfd_put_16 (abfd, 0xffff, p + 2);
1120 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1121 while (skip >= 0x1000000)
1122 {
1123 skip -= 0x1000000;
1124 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1125 p++;
1126 *subspace_reloc_sizep += 1;
1127 /* No need to adjust queue here since we are repeating the
1128 most recent fixup. */
1129 }
1130 }
1131
1132 /* The difference must be less than 0x1000000. Use one
1133 more R_NO_RELOCATION entry to get to the right difference. */
1134 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1135 {
1136 /* Difference can be handled in a simple single-byte
1137 R_NO_RELOCATION entry. */
1138 if (skip <= 0x60)
1139 {
1140 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1141 *subspace_reloc_sizep += 1;
1142 p++;
1143 }
1144 /* Handle it with a two byte R_NO_RELOCATION entry. */
1145 else if (skip <= 0x1000)
1146 {
1147 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1148 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1149 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1150 }
1151 /* Handle it with a three byte R_NO_RELOCATION entry. */
1152 else
1153 {
1154 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1155 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1156 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1157 }
1158 }
1159 /* Ugh. Punt and use a 4 byte entry. */
1160 else if (skip > 0)
1161 {
1162 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1163 bfd_put_8 (abfd, skip >> 16, p + 1);
1164 bfd_put_16 (abfd, skip, p + 2);
1165 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1166 }
1167 return p;
1168 }
1169
1170 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1171 from a BFD relocation. Update the size of the subspace relocation
1172 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1173 into the relocation stream. */
1174
1175 static unsigned char *
1176 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1177 bfd *abfd;
1178 int addend;
1179 unsigned char *p;
1180 unsigned int *subspace_reloc_sizep;
1181 struct reloc_queue *queue;
1182 {
1183 if ((unsigned)(addend) + 0x80 < 0x100)
1184 {
1185 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1186 bfd_put_8 (abfd, addend, p + 1);
1187 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1188 }
1189 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1190 {
1191 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1192 bfd_put_16 (abfd, addend, p + 1);
1193 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1194 }
1195 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1196 {
1197 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1198 bfd_put_8 (abfd, addend >> 16, p + 1);
1199 bfd_put_16 (abfd, addend, p + 2);
1200 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1201 }
1202 else
1203 {
1204 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1205 bfd_put_32 (abfd, addend, p + 1);
1206 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1207 }
1208 return p;
1209 }
1210
1211 /* Handle a single function call relocation. */
1212
1213 static unsigned char *
1214 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1215 bfd *abfd;
1216 unsigned char *p;
1217 unsigned int *subspace_reloc_sizep;
1218 arelent *bfd_reloc;
1219 int sym_num;
1220 struct reloc_queue *queue;
1221 {
1222 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1223 int rtn_bits = arg_bits & 0x3;
1224 int type, done = 0;
1225
1226 /* You'll never believe all this is necessary to handle relocations
1227 for function calls. Having to compute and pack the argument
1228 relocation bits is the real nightmare.
1229
1230 If you're interested in how this works, just forget it. You really
1231 do not want to know about this braindamage. */
1232
1233 /* First see if this can be done with a "simple" relocation. Simple
1234 relocations have a symbol number < 0x100 and have simple encodings
1235 of argument relocations. */
1236
1237 if (sym_num < 0x100)
1238 {
1239 switch (arg_bits)
1240 {
1241 case 0:
1242 case 1:
1243 type = 0;
1244 break;
1245 case 1 << 8:
1246 case 1 << 8 | 1:
1247 type = 1;
1248 break;
1249 case 1 << 8 | 1 << 6:
1250 case 1 << 8 | 1 << 6 | 1:
1251 type = 2;
1252 break;
1253 case 1 << 8 | 1 << 6 | 1 << 4:
1254 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1255 type = 3;
1256 break;
1257 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1258 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1259 type = 4;
1260 break;
1261 default:
1262 /* Not one of the easy encodings. This will have to be
1263 handled by the more complex code below. */
1264 type = -1;
1265 break;
1266 }
1267 if (type != -1)
1268 {
1269 /* Account for the return value too. */
1270 if (rtn_bits)
1271 type += 5;
1272
1273 /* Emit a 2 byte relocation. Then see if it can be handled
1274 with a relocation which is already in the relocation queue. */
1275 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1276 bfd_put_8 (abfd, sym_num, p + 1);
1277 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1278 done = 1;
1279 }
1280 }
1281
1282 /* If this could not be handled with a simple relocation, then do a hard
1283 one. Hard relocations occur if the symbol number was too high or if
1284 the encoding of argument relocation bits is too complex. */
1285 if (! done)
1286 {
1287 /* Don't ask about these magic sequences. I took them straight
1288 from gas-1.36 which took them from the a.out man page. */
1289 type = rtn_bits;
1290 if ((arg_bits >> 6 & 0xf) == 0xe)
1291 type += 9 * 40;
1292 else
1293 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1294 if ((arg_bits >> 2 & 0xf) == 0xe)
1295 type += 9 * 4;
1296 else
1297 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1298
1299 /* Output the first two bytes of the relocation. These describe
1300 the length of the relocation and encoding style. */
1301 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1302 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1303 p);
1304 bfd_put_8 (abfd, type, p + 1);
1305
1306 /* Now output the symbol index and see if this bizarre relocation
1307 just happened to be in the relocation queue. */
1308 if (sym_num < 0x100)
1309 {
1310 bfd_put_8 (abfd, sym_num, p + 2);
1311 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1312 }
1313 else
1314 {
1315 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1316 bfd_put_16 (abfd, sym_num, p + 3);
1317 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1318 }
1319 }
1320 return p;
1321 }
1322
1323
1324 /* Return the logarithm of X, base 2, considering X unsigned.
1325 Abort -1 if X is not a power or two or is zero. */
1326
1327 static int
1328 log2 (x)
1329 unsigned int x;
1330 {
1331 int log = 0;
1332
1333 /* Test for 0 or a power of 2. */
1334 if (x == 0 || x != (x & -x))
1335 return -1;
1336
1337 while ((x >>= 1) != 0)
1338 log++;
1339 return log;
1340 }
1341
1342 static bfd_reloc_status_type
1343 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1344 input_section, output_bfd, error_message)
1345 bfd *abfd;
1346 arelent *reloc_entry;
1347 asymbol *symbol_in;
1348 PTR data;
1349 asection *input_section;
1350 bfd *output_bfd;
1351 char **error_message;
1352 {
1353 if (output_bfd)
1354 {
1355 reloc_entry->address += input_section->output_offset;
1356 return bfd_reloc_ok;
1357 }
1358 return bfd_reloc_ok;
1359 }
1360
1361 /* Given a generic HPPA relocation type, the instruction format,
1362 and a field selector, return one or more appropriate SOM relocations. */
1363
1364 int **
1365 hppa_som_gen_reloc_type (abfd, base_type, format, field)
1366 bfd *abfd;
1367 int base_type;
1368 int format;
1369 enum hppa_reloc_field_selector_type_alt field;
1370 {
1371 int *final_type, **final_types;
1372
1373 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 3);
1374 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1375 if (!final_types || !final_type)
1376 {
1377 bfd_set_error (bfd_error_no_memory);
1378 return NULL;
1379 }
1380
1381 /* The field selector may require additional relocations to be
1382 generated. It's impossible to know at this moment if additional
1383 relocations will be needed, so we make them. The code to actually
1384 write the relocation/fixup stream is responsible for removing
1385 any redundant relocations. */
1386 switch (field)
1387 {
1388 case e_fsel:
1389 case e_psel:
1390 case e_lpsel:
1391 case e_rpsel:
1392 final_types[0] = final_type;
1393 final_types[1] = NULL;
1394 final_types[2] = NULL;
1395 *final_type = base_type;
1396 break;
1397
1398 case e_tsel:
1399 case e_ltsel:
1400 case e_rtsel:
1401 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1402 if (!final_types[0])
1403 {
1404 bfd_set_error (bfd_error_no_memory);
1405 return NULL;
1406 }
1407 if (field == e_tsel)
1408 *final_types[0] = R_FSEL;
1409 else if (field == e_ltsel)
1410 *final_types[0] = R_LSEL;
1411 else
1412 *final_types[0] = R_RSEL;
1413 final_types[1] = final_type;
1414 final_types[2] = NULL;
1415 *final_type = base_type;
1416 break;
1417
1418 case e_lssel:
1419 case e_rssel:
1420 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1421 if (!final_types[0])
1422 {
1423 bfd_set_error (bfd_error_no_memory);
1424 return NULL;
1425 }
1426 *final_types[0] = R_S_MODE;
1427 final_types[1] = final_type;
1428 final_types[2] = NULL;
1429 *final_type = base_type;
1430 break;
1431
1432 case e_lsel:
1433 case e_rsel:
1434 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1435 if (!final_types[0])
1436 {
1437 bfd_set_error (bfd_error_no_memory);
1438 return NULL;
1439 }
1440 *final_types[0] = R_N_MODE;
1441 final_types[1] = final_type;
1442 final_types[2] = NULL;
1443 *final_type = base_type;
1444 break;
1445
1446 case e_ldsel:
1447 case e_rdsel:
1448 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1449 if (!final_types[0])
1450 {
1451 bfd_set_error (bfd_error_no_memory);
1452 return NULL;
1453 }
1454 *final_types[0] = R_D_MODE;
1455 final_types[1] = final_type;
1456 final_types[2] = NULL;
1457 *final_type = base_type;
1458 break;
1459
1460 case e_lrsel:
1461 case e_rrsel:
1462 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1463 if (!final_types[0])
1464 {
1465 bfd_set_error (bfd_error_no_memory);
1466 return NULL;
1467 }
1468 *final_types[0] = R_R_MODE;
1469 final_types[1] = final_type;
1470 final_types[2] = NULL;
1471 *final_type = base_type;
1472 break;
1473 }
1474
1475 switch (base_type)
1476 {
1477 case R_HPPA:
1478 /* PLABELs get their own relocation type. */
1479 if (field == e_psel
1480 || field == e_lpsel
1481 || field == e_rpsel)
1482 {
1483 /* A PLABEL relocation that has a size of 32 bits must
1484 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1485 if (format == 32)
1486 *final_type = R_DATA_PLABEL;
1487 else
1488 *final_type = R_CODE_PLABEL;
1489 }
1490 /* PIC stuff. */
1491 else if (field == e_tsel
1492 || field == e_ltsel
1493 || field == e_rtsel)
1494 *final_type = R_DLT_REL;
1495 /* A relocation in the data space is always a full 32bits. */
1496 else if (format == 32)
1497 *final_type = R_DATA_ONE_SYMBOL;
1498
1499 break;
1500
1501 case R_HPPA_GOTOFF:
1502 /* More PLABEL special cases. */
1503 if (field == e_psel
1504 || field == e_lpsel
1505 || field == e_rpsel)
1506 *final_type = R_DATA_PLABEL;
1507 break;
1508
1509 case R_HPPA_NONE:
1510 case R_HPPA_ABS_CALL:
1511 case R_HPPA_PCREL_CALL:
1512 case R_HPPA_COMPLEX:
1513 case R_HPPA_COMPLEX_PCREL_CALL:
1514 case R_HPPA_COMPLEX_ABS_CALL:
1515 /* Right now we can default all these. */
1516 break;
1517 }
1518 return final_types;
1519 }
1520
1521 /* Return the address of the correct entry in the PA SOM relocation
1522 howto table. */
1523
1524 static const reloc_howto_type *
1525 som_bfd_reloc_type_lookup (arch, code)
1526 bfd_arch_info_type *arch;
1527 bfd_reloc_code_real_type code;
1528 {
1529 if ((int) code < (int) R_NO_RELOCATION + 255)
1530 {
1531 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1532 return &som_hppa_howto_table[(int) code];
1533 }
1534
1535 return (reloc_howto_type *) 0;
1536 }
1537
1538 /* Perform some initialization for an object. Save results of this
1539 initialization in the BFD. */
1540
1541 static bfd_target *
1542 som_object_setup (abfd, file_hdrp, aux_hdrp)
1543 bfd *abfd;
1544 struct header *file_hdrp;
1545 struct som_exec_auxhdr *aux_hdrp;
1546 {
1547 /* som_mkobject will set bfd_error if som_mkobject fails. */
1548 if (som_mkobject (abfd) != true)
1549 return 0;
1550
1551 /* Set BFD flags based on what information is available in the SOM. */
1552 abfd->flags = NO_FLAGS;
1553 if (! file_hdrp->entry_offset)
1554 abfd->flags |= HAS_RELOC;
1555 else
1556 abfd->flags |= EXEC_P;
1557 if (file_hdrp->symbol_total)
1558 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1559
1560 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1561 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 0);
1562 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1563
1564 /* Initialize the saved symbol table and string table to NULL.
1565 Save important offsets and sizes from the SOM header into
1566 the BFD. */
1567 obj_som_stringtab (abfd) = (char *) NULL;
1568 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1569 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1570 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1571 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1572 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
1573
1574 return abfd->xvec;
1575 }
1576
1577 /* Create a new BFD section for NAME. If NAME already exists, then create a
1578 new unique name, with NAME as the prefix. This exists because SOM .o files
1579 may have more than one $CODE$ subspace. */
1580
1581 static asection *
1582 make_unique_section (abfd, name, num)
1583 bfd *abfd;
1584 CONST char *name;
1585 int num;
1586 {
1587 asection *sect;
1588 char *newname;
1589 char altname[100];
1590
1591 sect = bfd_make_section (abfd, name);
1592 while (!sect)
1593 {
1594 sprintf (altname, "%s-%d", name, num++);
1595 sect = bfd_make_section (abfd, altname);
1596 }
1597
1598 newname = bfd_alloc (abfd, strlen (sect->name) + 1);
1599 if (!newname)
1600 {
1601 bfd_set_error (bfd_error_no_memory);
1602 return NULL;
1603 }
1604 strcpy (newname, sect->name);
1605
1606 sect->name = newname;
1607 return sect;
1608 }
1609
1610 /* Convert all of the space and subspace info into BFD sections. Each space
1611 contains a number of subspaces, which in turn describe the mapping between
1612 regions of the exec file, and the address space that the program runs in.
1613 BFD sections which correspond to spaces will overlap the sections for the
1614 associated subspaces. */
1615
1616 static boolean
1617 setup_sections (abfd, file_hdr)
1618 bfd *abfd;
1619 struct header *file_hdr;
1620 {
1621 char *space_strings;
1622 int space_index;
1623 unsigned int total_subspaces = 0;
1624
1625 /* First, read in space names */
1626
1627 space_strings = alloca (file_hdr->space_strings_size);
1628 if (!space_strings)
1629 return false;
1630
1631 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
1632 return false;
1633 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1634 != file_hdr->space_strings_size)
1635 return false;
1636
1637 /* Loop over all of the space dictionaries, building up sections */
1638 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1639 {
1640 struct space_dictionary_record space;
1641 struct subspace_dictionary_record subspace, save_subspace;
1642 int subspace_index;
1643 asection *space_asect;
1644
1645 /* Read the space dictionary element */
1646 if (bfd_seek (abfd, file_hdr->space_location
1647 + space_index * sizeof space, SEEK_SET) < 0)
1648 return false;
1649 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1650 return false;
1651
1652 /* Setup the space name string */
1653 space.name.n_name = space.name.n_strx + space_strings;
1654
1655 /* Make a section out of it */
1656 space_asect = make_unique_section (abfd, space.name.n_name, space_index);
1657 if (!space_asect)
1658 return false;
1659
1660 /* Now, read in the first subspace for this space */
1661 if (bfd_seek (abfd, file_hdr->subspace_location
1662 + space.subspace_index * sizeof subspace,
1663 SEEK_SET) < 0)
1664 return false;
1665 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1666 return false;
1667 /* Seek back to the start of the subspaces for loop below */
1668 if (bfd_seek (abfd, file_hdr->subspace_location
1669 + space.subspace_index * sizeof subspace,
1670 SEEK_SET) < 0)
1671 return false;
1672
1673 /* Setup the start address and file loc from the first subspace record */
1674 space_asect->vma = subspace.subspace_start;
1675 space_asect->filepos = subspace.file_loc_init_value;
1676 space_asect->alignment_power = log2 (subspace.alignment);
1677 if (space_asect->alignment_power == -1)
1678 return false;
1679
1680 /* Initialize save_subspace so we can reliably determine if this
1681 loop placed any useful values into it. */
1682 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1683
1684 /* Loop over the rest of the subspaces, building up more sections */
1685 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1686 subspace_index++)
1687 {
1688 asection *subspace_asect;
1689
1690 /* Read in the next subspace */
1691 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1692 != sizeof subspace)
1693 return false;
1694
1695 /* Setup the subspace name string */
1696 subspace.name.n_name = subspace.name.n_strx + space_strings;
1697
1698 /* Make a section out of this subspace */
1699 subspace_asect = make_unique_section (abfd, subspace.name.n_name,
1700 space.subspace_index + subspace_index);
1701
1702 if (!subspace_asect)
1703 return false;
1704
1705 /* Keep an easy mapping between subspaces and sections. */
1706 som_section_data (subspace_asect)->subspace_index
1707 = total_subspaces++;
1708
1709 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1710 by the access_control_bits in the subspace header. */
1711 switch (subspace.access_control_bits >> 4)
1712 {
1713 /* Readonly data. */
1714 case 0x0:
1715 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1716 break;
1717
1718 /* Normal data. */
1719 case 0x1:
1720 subspace_asect->flags |= SEC_DATA;
1721 break;
1722
1723 /* Readonly code and the gateways.
1724 Gateways have other attributes which do not map
1725 into anything BFD knows about. */
1726 case 0x2:
1727 case 0x4:
1728 case 0x5:
1729 case 0x6:
1730 case 0x7:
1731 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1732 break;
1733
1734 /* dynamic (writable) code. */
1735 case 0x3:
1736 subspace_asect->flags |= SEC_CODE;
1737 break;
1738 }
1739
1740 if (subspace.dup_common || subspace.is_common)
1741 subspace_asect->flags |= SEC_IS_COMMON;
1742 else if (subspace.subspace_length > 0)
1743 subspace_asect->flags |= SEC_HAS_CONTENTS;
1744 if (subspace.is_loadable)
1745 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1746 if (subspace.code_only)
1747 subspace_asect->flags |= SEC_CODE;
1748
1749 /* Both file_loc_init_value and initialization_length will
1750 be zero for a BSS like subspace. */
1751 if (subspace.file_loc_init_value == 0
1752 && subspace.initialization_length == 0)
1753 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD);
1754
1755 /* This subspace has relocations.
1756 The fixup_request_quantity is a byte count for the number of
1757 entries in the relocation stream; it is not the actual number
1758 of relocations in the subspace. */
1759 if (subspace.fixup_request_quantity != 0)
1760 {
1761 subspace_asect->flags |= SEC_RELOC;
1762 subspace_asect->rel_filepos = subspace.fixup_request_index;
1763 som_section_data (subspace_asect)->reloc_size
1764 = subspace.fixup_request_quantity;
1765 /* We can not determine this yet. When we read in the
1766 relocation table the correct value will be filled in. */
1767 subspace_asect->reloc_count = -1;
1768 }
1769
1770 /* Update save_subspace if appropriate. */
1771 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1772 save_subspace = subspace;
1773
1774 subspace_asect->vma = subspace.subspace_start;
1775 subspace_asect->_cooked_size = subspace.subspace_length;
1776 subspace_asect->_raw_size = subspace.subspace_length;
1777 subspace_asect->filepos = subspace.file_loc_init_value;
1778 subspace_asect->alignment_power = log2 (subspace.alignment);
1779 if (subspace_asect->alignment_power == -1)
1780 return false;
1781 }
1782
1783 /* Yow! there is no subspace within the space which actually
1784 has initialized information in it; this should never happen
1785 as far as I know. */
1786 if (!save_subspace.file_loc_init_value)
1787 return false;
1788
1789 /* Setup the sizes for the space section based upon the info in the
1790 last subspace of the space. */
1791 space_asect->_cooked_size = save_subspace.subspace_start
1792 - space_asect->vma + save_subspace.subspace_length;
1793 space_asect->_raw_size = save_subspace.file_loc_init_value
1794 - space_asect->filepos + save_subspace.initialization_length;
1795 }
1796 return true;
1797 }
1798
1799 /* Read in a SOM object and make it into a BFD. */
1800
1801 static bfd_target *
1802 som_object_p (abfd)
1803 bfd *abfd;
1804 {
1805 struct header file_hdr;
1806 struct som_exec_auxhdr aux_hdr;
1807
1808 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
1809 {
1810 bfd_set_error (bfd_error_system_call);
1811 return 0;
1812 }
1813
1814 if (!_PA_RISC_ID (file_hdr.system_id))
1815 {
1816 bfd_set_error (bfd_error_wrong_format);
1817 return 0;
1818 }
1819
1820 switch (file_hdr.a_magic)
1821 {
1822 case RELOC_MAGIC:
1823 case EXEC_MAGIC:
1824 case SHARE_MAGIC:
1825 case DEMAND_MAGIC:
1826 #ifdef DL_MAGIC
1827 case DL_MAGIC:
1828 #endif
1829 #ifdef SHL_MAGIC
1830 case SHL_MAGIC:
1831 #endif
1832 #ifdef EXECLIBMAGIC
1833 case EXECLIBMAGIC:
1834 #endif
1835 #ifdef SHARED_MAGIC_CNX
1836 case SHARED_MAGIC_CNX:
1837 #endif
1838 break;
1839 default:
1840 bfd_set_error (bfd_error_wrong_format);
1841 return 0;
1842 }
1843
1844 if (file_hdr.version_id != VERSION_ID
1845 && file_hdr.version_id != NEW_VERSION_ID)
1846 {
1847 bfd_set_error (bfd_error_wrong_format);
1848 return 0;
1849 }
1850
1851 /* If the aux_header_size field in the file header is zero, then this
1852 object is an incomplete executable (a .o file). Do not try to read
1853 a non-existant auxiliary header. */
1854 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
1855 if (file_hdr.aux_header_size != 0)
1856 {
1857 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
1858 {
1859 bfd_set_error (bfd_error_wrong_format);
1860 return 0;
1861 }
1862 }
1863
1864 if (!setup_sections (abfd, &file_hdr))
1865 {
1866 /* setup_sections does not bubble up a bfd error code. */
1867 bfd_set_error (bfd_error_bad_value);
1868 return 0;
1869 }
1870
1871 /* This appears to be a valid SOM object. Do some initialization. */
1872 return som_object_setup (abfd, &file_hdr, &aux_hdr);
1873 }
1874
1875 /* Create a SOM object. */
1876
1877 static boolean
1878 som_mkobject (abfd)
1879 bfd *abfd;
1880 {
1881 /* Allocate memory to hold backend information. */
1882 abfd->tdata.som_data = (struct som_data_struct *)
1883 bfd_zalloc (abfd, sizeof (struct som_data_struct));
1884 if (abfd->tdata.som_data == NULL)
1885 {
1886 bfd_set_error (bfd_error_no_memory);
1887 return false;
1888 }
1889 obj_som_file_hdr (abfd)
1890 = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
1891 if (obj_som_file_hdr (abfd) == NULL)
1892
1893 {
1894 bfd_set_error (bfd_error_no_memory);
1895 return false;
1896 }
1897 return true;
1898 }
1899
1900 /* Initialize some information in the file header. This routine makes
1901 not attempt at doing the right thing for a full executable; it
1902 is only meant to handle relocatable objects. */
1903
1904 static boolean
1905 som_prep_headers (abfd)
1906 bfd *abfd;
1907 {
1908 struct header *file_hdr = obj_som_file_hdr (abfd);
1909 asection *section;
1910
1911 /* FIXME. This should really be conditional based on whether or not
1912 PA1.1 instructions/registers have been used. */
1913 file_hdr->system_id = CPU_PA_RISC1_0;
1914
1915 /* FIXME. Only correct for building relocatable objects. */
1916 if (abfd->flags & EXEC_P)
1917 abort ();
1918 else
1919 file_hdr->a_magic = RELOC_MAGIC;
1920
1921 /* Only new format SOM is supported. */
1922 file_hdr->version_id = NEW_VERSION_ID;
1923
1924 /* These fields are optional, and embedding timestamps is not always
1925 a wise thing to do, it makes comparing objects during a multi-stage
1926 bootstrap difficult. */
1927 file_hdr->file_time.secs = 0;
1928 file_hdr->file_time.nanosecs = 0;
1929
1930 if (abfd->flags & EXEC_P)
1931 abort ();
1932 else
1933 {
1934 file_hdr->entry_space = 0;
1935 file_hdr->entry_subspace = 0;
1936 file_hdr->entry_offset = 0;
1937 }
1938
1939 file_hdr->presumed_dp = 0;
1940
1941 /* Now iterate over the sections translating information from
1942 BFD sections to SOM spaces/subspaces. */
1943
1944 for (section = abfd->sections; section != NULL; section = section->next)
1945 {
1946 /* Ignore anything which has not been marked as a space or
1947 subspace. */
1948 if (som_section_data (section)->is_space == 0
1949
1950 && som_section_data (section)->is_subspace == 0)
1951 continue;
1952
1953 if (som_section_data (section)->is_space)
1954 {
1955 /* Set space attributes. Note most attributes of SOM spaces
1956 are set based on the subspaces it contains. */
1957 som_section_data (section)->space_dict.loader_fix_index = -1;
1958 som_section_data (section)->space_dict.init_pointer_index = -1;
1959 }
1960 else
1961 {
1962 /* Set subspace attributes. Basic stuff is done here, additional
1963 attributes are filled in later as more information becomes
1964 available. */
1965 if (section->flags & SEC_IS_COMMON)
1966 {
1967 som_section_data (section)->subspace_dict.dup_common = 1;
1968 som_section_data (section)->subspace_dict.is_common = 1;
1969 }
1970
1971 if (section->flags & SEC_ALLOC)
1972 som_section_data (section)->subspace_dict.is_loadable = 1;
1973
1974 if (section->flags & SEC_CODE)
1975 som_section_data (section)->subspace_dict.code_only = 1;
1976
1977 som_section_data (section)->subspace_dict.subspace_start =
1978 section->vma;
1979 som_section_data (section)->subspace_dict.subspace_length =
1980 bfd_section_size (abfd, section);
1981 som_section_data (section)->subspace_dict.initialization_length =
1982 bfd_section_size (abfd, section);
1983 som_section_data (section)->subspace_dict.alignment =
1984 1 << section->alignment_power;
1985 }
1986 }
1987 return true;
1988 }
1989
1990 /* Count and return the number of spaces attached to the given BFD. */
1991
1992 static unsigned long
1993 som_count_spaces (abfd)
1994 bfd *abfd;
1995 {
1996 int count = 0;
1997 asection *section;
1998
1999 for (section = abfd->sections; section != NULL; section = section->next)
2000 count += som_section_data (section)->is_space;
2001
2002 return count;
2003 }
2004
2005 /* Count the number of subspaces attached to the given BFD. */
2006
2007 static unsigned long
2008 som_count_subspaces (abfd)
2009 bfd *abfd;
2010 {
2011 int count = 0;
2012 asection *section;
2013
2014 for (section = abfd->sections; section != NULL; section = section->next)
2015 count += som_section_data (section)->is_subspace;
2016
2017 return count;
2018 }
2019
2020 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2021
2022 We desire symbols to be ordered starting with the symbol with the
2023 highest relocation count down to the symbol with the lowest relocation
2024 count. Doing so compacts the relocation stream. */
2025
2026 static int
2027 compare_syms (sym1, sym2)
2028 asymbol **sym1;
2029 asymbol **sym2;
2030
2031 {
2032 unsigned int count1, count2;
2033
2034 /* Get relocation count for each symbol. Note that the count
2035 is stored in the udata pointer for section symbols! */
2036 if ((*sym1)->flags & BSF_SECTION_SYM)
2037 count1 = (int)(*sym1)->udata;
2038 else
2039 count1 = som_symbol_data (*sym1)->reloc_count;
2040
2041 if ((*sym2)->flags & BSF_SECTION_SYM)
2042 count2 = (int)(*sym2)->udata;
2043 else
2044 count2 = som_symbol_data (*sym2)->reloc_count;
2045
2046 /* Return the appropriate value. */
2047 if (count1 < count2)
2048 return 1;
2049 else if (count1 > count2)
2050 return -1;
2051 return 0;
2052 }
2053
2054 /* Perform various work in preparation for emitting the fixup stream. */
2055
2056 static void
2057 som_prep_for_fixups (abfd, syms, num_syms)
2058 bfd *abfd;
2059 asymbol **syms;
2060 unsigned long num_syms;
2061 {
2062 int i;
2063 asection *section;
2064
2065 /* Most SOM relocations involving a symbol have a length which is
2066 dependent on the index of the symbol. So symbols which are
2067 used often in relocations should have a small index. */
2068
2069 /* First initialize the counters for each symbol. */
2070 for (i = 0; i < num_syms; i++)
2071 {
2072 /* Handle a section symbol; these have no pointers back to the
2073 SOM symbol info. So we just use the pointer field (udata)
2074 to hold the relocation count.
2075
2076 FIXME. While we're here set the name of any section symbol
2077 to something which will not screw GDB. How do other formats
2078 deal with this?!? */
2079 if (som_symbol_data (syms[i]) == NULL)
2080 {
2081 syms[i]->flags |= BSF_SECTION_SYM;
2082 syms[i]->name = "L$0\002";
2083 syms[i]->udata = (PTR) 0;
2084 }
2085 else
2086 som_symbol_data (syms[i])->reloc_count = 0;
2087 }
2088
2089 /* Now that the counters are initialized, make a weighted count
2090 of how often a given symbol is used in a relocation. */
2091 for (section = abfd->sections; section != NULL; section = section->next)
2092 {
2093 int i;
2094
2095 /* Does this section have any relocations? */
2096 if (section->reloc_count <= 0)
2097 continue;
2098
2099 /* Walk through each relocation for this section. */
2100 for (i = 1; i < section->reloc_count; i++)
2101 {
2102 arelent *reloc = section->orelocation[i];
2103 int scale;
2104
2105 /* If no symbol, then there is no counter to increase. */
2106 if (reloc->sym_ptr_ptr == NULL)
2107 continue;
2108
2109 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2110 and R_CODE_ONE_SYMBOL relocations to come first. These
2111 two relocations have single byte versions if the symbol
2112 index is very small. */
2113 if (reloc->howto->type == R_DP_RELATIVE
2114 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2115 scale = 2;
2116 else
2117 scale = 1;
2118
2119 /* Handle section symbols by ramming the count in the udata
2120 field. It will not be used and the count is very important
2121 for these symbols. */
2122 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2123 {
2124 (*reloc->sym_ptr_ptr)->udata =
2125 (PTR) ((int) (*reloc->sym_ptr_ptr)->udata + scale);
2126 continue;
2127 }
2128
2129 /* A normal symbol. Increment the count. */
2130 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2131 }
2132 }
2133
2134 /* Now sort the symbols. */
2135 qsort (syms, num_syms, sizeof (asymbol *), compare_syms);
2136
2137 /* Compute the symbol indexes, they will be needed by the relocation
2138 code. */
2139 for (i = 0; i < num_syms; i++)
2140 {
2141 /* A section symbol. Again, there is no pointer to backend symbol
2142 information, so we reuse (abuse) the udata field again. */
2143 if (syms[i]->flags & BSF_SECTION_SYM)
2144 syms[i]->udata = (PTR) i;
2145 else
2146 som_symbol_data (syms[i])->index = i;
2147 }
2148 }
2149
2150 static boolean
2151 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2152 bfd *abfd;
2153 unsigned long current_offset;
2154 unsigned int *total_reloc_sizep;
2155 {
2156 unsigned int i, j;
2157 unsigned char *tmp_space, *p;
2158 unsigned int total_reloc_size = 0;
2159 unsigned int subspace_reloc_size = 0;
2160 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2161 asection *section = abfd->sections;
2162
2163 /* Get a chunk of memory that we can use as buffer space, then throw
2164 away. */
2165 tmp_space = alloca (SOM_TMP_BUFSIZE);
2166 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2167 p = tmp_space;
2168
2169 /* All the fixups for a particular subspace are emitted in a single
2170 stream. All the subspaces for a particular space are emitted
2171 as a single stream.
2172
2173 So, to get all the locations correct one must iterate through all the
2174 spaces, for each space iterate through its subspaces and output a
2175 fixups stream. */
2176 for (i = 0; i < num_spaces; i++)
2177 {
2178 asection *subsection;
2179
2180 /* Find a space. */
2181 while (som_section_data (section)->is_space == 0)
2182 section = section->next;
2183
2184 /* Now iterate through each of its subspaces. */
2185 for (subsection = abfd->sections;
2186 subsection != NULL;
2187 subsection = subsection->next)
2188 {
2189 int reloc_offset, current_rounding_mode;
2190
2191 /* Find a subspace of this space. */
2192 if (som_section_data (subsection)->is_subspace == 0
2193 || som_section_data (subsection)->containing_space != section)
2194 continue;
2195
2196 /* If this subspace had no relocations, then we're finished
2197 with it. */
2198 if (subsection->reloc_count <= 0)
2199 {
2200 som_section_data (subsection)->subspace_dict.fixup_request_index
2201 = -1;
2202 continue;
2203 }
2204
2205 /* This subspace has some relocations. Put the relocation stream
2206 index into the subspace record. */
2207 som_section_data (subsection)->subspace_dict.fixup_request_index
2208 = total_reloc_size;
2209
2210 /* To make life easier start over with a clean slate for
2211 each subspace. Seek to the start of the relocation stream
2212 for this subspace in preparation for writing out its fixup
2213 stream. */
2214 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) != 0)
2215 {
2216 bfd_set_error (bfd_error_system_call);
2217 return false;
2218 }
2219
2220 /* Buffer space has already been allocated. Just perform some
2221 initialization here. */
2222 p = tmp_space;
2223 subspace_reloc_size = 0;
2224 reloc_offset = 0;
2225 som_initialize_reloc_queue (reloc_queue);
2226 current_rounding_mode = R_N_MODE;
2227
2228 /* Translate each BFD relocation into one or more SOM
2229 relocations. */
2230 for (j = 0; j < subsection->reloc_count; j++)
2231 {
2232 arelent *bfd_reloc = subsection->orelocation[j];
2233 unsigned int skip;
2234 int sym_num;
2235
2236 /* Get the symbol number. Remember it's stored in a
2237 special place for section symbols. */
2238 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2239 sym_num = (int) (*bfd_reloc->sym_ptr_ptr)->udata;
2240 else
2241 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2242
2243 /* If there is not enough room for the next couple relocations,
2244 then dump the current buffer contents now. Also reinitialize
2245 the relocation queue.
2246
2247 No single BFD relocation could ever translate into more
2248 than 100 bytes of SOM relocations (20bytes is probably the
2249 upper limit, but leave lots of space for growth). */
2250 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2251 {
2252 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2253 != p - tmp_space)
2254 {
2255 bfd_set_error (bfd_error_system_call);
2256 return false;
2257 }
2258 p = tmp_space;
2259 som_initialize_reloc_queue (reloc_queue);
2260 }
2261
2262 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2263 skipped. */
2264 skip = bfd_reloc->address - reloc_offset;
2265 p = som_reloc_skip (abfd, skip, p,
2266 &subspace_reloc_size, reloc_queue);
2267
2268 /* Update reloc_offset for the next iteration.
2269
2270 Many relocations do not consume input bytes. They
2271 are markers, or set state necessary to perform some
2272 later relocation. */
2273 switch (bfd_reloc->howto->type)
2274 {
2275 /* This only needs to handle relocations that may be
2276 made by hppa_som_gen_reloc. */
2277 case R_ENTRY:
2278 case R_EXIT:
2279 case R_N_MODE:
2280 case R_S_MODE:
2281 case R_D_MODE:
2282 case R_R_MODE:
2283 case R_FSEL:
2284 case R_LSEL:
2285 case R_RSEL:
2286 reloc_offset = bfd_reloc->address;
2287 break;
2288
2289 default:
2290 reloc_offset = bfd_reloc->address + 4;
2291 break;
2292 }
2293
2294 /* Now the actual relocation we care about. */
2295 switch (bfd_reloc->howto->type)
2296 {
2297 case R_PCREL_CALL:
2298 case R_ABS_CALL:
2299 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2300 bfd_reloc, sym_num, reloc_queue);
2301 break;
2302
2303 case R_CODE_ONE_SYMBOL:
2304 case R_DP_RELATIVE:
2305 /* Account for any addend. */
2306 if (bfd_reloc->addend)
2307 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2308 &subspace_reloc_size, reloc_queue);
2309
2310 if (sym_num < 0x20)
2311 {
2312 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2313 subspace_reloc_size += 1;
2314 p += 1;
2315 }
2316 else if (sym_num < 0x100)
2317 {
2318 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2319 bfd_put_8 (abfd, sym_num, p + 1);
2320 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2321 2, reloc_queue);
2322 }
2323 else if (sym_num < 0x10000000)
2324 {
2325 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2326 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2327 bfd_put_16 (abfd, sym_num, p + 2);
2328 p = try_prev_fixup (abfd, &subspace_reloc_size,
2329 p, 4, reloc_queue);
2330 }
2331 else
2332 abort ();
2333 break;
2334
2335 case R_DATA_ONE_SYMBOL:
2336 case R_DATA_PLABEL:
2337 case R_CODE_PLABEL:
2338 case R_DLT_REL:
2339 /* Account for any addend. */
2340 if (bfd_reloc->addend)
2341 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2342 &subspace_reloc_size, reloc_queue);
2343
2344 if (sym_num < 0x100)
2345 {
2346 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2347 bfd_put_8 (abfd, sym_num, p + 1);
2348 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2349 2, reloc_queue);
2350 }
2351 else if (sym_num < 0x10000000)
2352 {
2353 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2354 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2355 bfd_put_16 (abfd, sym_num, p + 2);
2356 p = try_prev_fixup (abfd, &subspace_reloc_size,
2357 p, 4, reloc_queue);
2358 }
2359 else
2360 abort ();
2361 break;
2362
2363 case R_ENTRY:
2364 {
2365 int *descp
2366 = (int *) som_symbol_data (*bfd_reloc->sym_ptr_ptr)->unwind;
2367 bfd_put_8 (abfd, R_ENTRY, p);
2368 bfd_put_32 (abfd, descp[0], p + 1);
2369 bfd_put_32 (abfd, descp[1], p + 5);
2370 p = try_prev_fixup (abfd, &subspace_reloc_size,
2371 p, 9, reloc_queue);
2372 break;
2373 }
2374
2375 case R_EXIT:
2376 bfd_put_8 (abfd, R_EXIT, p);
2377 subspace_reloc_size += 1;
2378 p += 1;
2379 break;
2380
2381 case R_N_MODE:
2382 case R_S_MODE:
2383 case R_D_MODE:
2384 case R_R_MODE:
2385 /* If this relocation requests the current rounding
2386 mode, then it is redundant. */
2387 if (bfd_reloc->howto->type != current_rounding_mode)
2388 {
2389 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2390 subspace_reloc_size += 1;
2391 p += 1;
2392 current_rounding_mode = bfd_reloc->howto->type;
2393 }
2394 break;
2395
2396 case R_FSEL:
2397 case R_LSEL:
2398 case R_RSEL:
2399 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2400 subspace_reloc_size += 1;
2401 p += 1;
2402 break;
2403
2404 /* Put a "R_RESERVED" relocation in the stream if
2405 we hit something we do not understand. The linker
2406 will complain loudly if this ever happens. */
2407 default:
2408 bfd_put_8 (abfd, 0xff, p);
2409 subspace_reloc_size += 1;
2410 p += 1;
2411 break;
2412 }
2413 }
2414
2415 /* Last BFD relocation for a subspace has been processed.
2416 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2417 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2418 - reloc_offset,
2419 p, &subspace_reloc_size, reloc_queue);
2420
2421 /* Scribble out the relocations. */
2422 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2423 != p - tmp_space)
2424 {
2425 bfd_set_error (bfd_error_system_call);
2426 return false;
2427 }
2428 p = tmp_space;
2429
2430 total_reloc_size += subspace_reloc_size;
2431 som_section_data (subsection)->subspace_dict.fixup_request_quantity
2432 = subspace_reloc_size;
2433 }
2434 section = section->next;
2435 }
2436 *total_reloc_sizep = total_reloc_size;
2437 return true;
2438 }
2439
2440 /* Write out the space/subspace string table. */
2441
2442 static boolean
2443 som_write_space_strings (abfd, current_offset, string_sizep)
2444 bfd *abfd;
2445 unsigned long current_offset;
2446 unsigned int *string_sizep;
2447 {
2448 unsigned char *tmp_space, *p;
2449 unsigned int strings_size = 0;
2450 asection *section;
2451
2452 /* Get a chunk of memory that we can use as buffer space, then throw
2453 away. */
2454 tmp_space = alloca (SOM_TMP_BUFSIZE);
2455 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2456 p = tmp_space;
2457
2458 /* Seek to the start of the space strings in preparation for writing
2459 them out. */
2460 if (bfd_seek (abfd, current_offset, SEEK_SET) != 0)
2461 {
2462 bfd_set_error (bfd_error_system_call);
2463 return false;
2464 }
2465
2466 /* Walk through all the spaces and subspaces (order is not important)
2467 building up and writing string table entries for their names. */
2468 for (section = abfd->sections; section != NULL; section = section->next)
2469 {
2470 int length;
2471
2472 /* Only work with space/subspaces; avoid any other sections
2473 which might have been made (.text for example). */
2474 if (som_section_data (section)->is_space == 0
2475 && som_section_data (section)->is_subspace == 0)
2476 continue;
2477
2478 /* Get the length of the space/subspace name. */
2479 length = strlen (section->name);
2480
2481 /* If there is not enough room for the next entry, then dump the
2482 current buffer contents now. Each entry will take 4 bytes to
2483 hold the string length + the string itself + null terminator. */
2484 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2485 {
2486 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2487 != p - tmp_space)
2488 {
2489 bfd_set_error (bfd_error_system_call);
2490 return false;
2491 }
2492 /* Reset to beginning of the buffer space. */
2493 p = tmp_space;
2494 }
2495
2496 /* First element in a string table entry is the length of the
2497 string. Alignment issues are already handled. */
2498 bfd_put_32 (abfd, length, p);
2499 p += 4;
2500 strings_size += 4;
2501
2502 /* Record the index in the space/subspace records. */
2503 if (som_section_data (section)->is_space)
2504 som_section_data (section)->space_dict.name.n_strx = strings_size;
2505 else
2506 som_section_data (section)->subspace_dict.name.n_strx = strings_size;
2507
2508 /* Next comes the string itself + a null terminator. */
2509 strcpy (p, section->name);
2510 p += length + 1;
2511 strings_size += length + 1;
2512
2513 /* Always align up to the next word boundary. */
2514 while (strings_size % 4)
2515 {
2516 bfd_put_8 (abfd, 0, p);
2517 p++;
2518 strings_size++;
2519 }
2520 }
2521
2522 /* Done with the space/subspace strings. Write out any information
2523 contained in a partial block. */
2524 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd) != p - tmp_space)
2525 {
2526 bfd_set_error (bfd_error_system_call);
2527 return false;
2528 }
2529 *string_sizep = strings_size;
2530 return true;
2531 }
2532
2533 /* Write out the symbol string table. */
2534
2535 static boolean
2536 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
2537 bfd *abfd;
2538 unsigned long current_offset;
2539 asymbol **syms;
2540 unsigned int num_syms;
2541 unsigned int *string_sizep;
2542 {
2543 unsigned int i;
2544 unsigned char *tmp_space, *p;
2545 unsigned int strings_size = 0;
2546
2547 /* Get a chunk of memory that we can use as buffer space, then throw
2548 away. */
2549 tmp_space = alloca (SOM_TMP_BUFSIZE);
2550 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2551 p = tmp_space;
2552
2553 /* Seek to the start of the space strings in preparation for writing
2554 them out. */
2555 if (bfd_seek (abfd, current_offset, SEEK_SET) != 0)
2556 {
2557 bfd_set_error (bfd_error_system_call);
2558 return false;
2559 }
2560
2561 for (i = 0; i < num_syms; i++)
2562 {
2563 int length = strlen (syms[i]->name);
2564
2565 /* If there is not enough room for the next entry, then dump the
2566 current buffer contents now. */
2567 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2568 {
2569 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2570 != p - tmp_space)
2571 {
2572 bfd_set_error (bfd_error_system_call);
2573 return false;
2574 }
2575 /* Reset to beginning of the buffer space. */
2576 p = tmp_space;
2577 }
2578
2579 /* First element in a string table entry is the length of the
2580 string. This must always be 4 byte aligned. This is also
2581 an appropriate time to fill in the string index field in the
2582 symbol table entry. */
2583 bfd_put_32 (abfd, length, p);
2584 strings_size += 4;
2585 p += 4;
2586
2587 /* Next comes the string itself + a null terminator. */
2588 strcpy (p, syms[i]->name);
2589
2590 /* ACK. FIXME. */
2591 syms[i]->name = (char *)strings_size;
2592 p += length + 1;
2593 strings_size += length + 1;
2594
2595 /* Always align up to the next word boundary. */
2596 while (strings_size % 4)
2597 {
2598 bfd_put_8 (abfd, 0, p);
2599 strings_size++;
2600 p++;
2601 }
2602 }
2603
2604 /* Scribble out any partial block. */
2605 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd) != p - tmp_space)
2606 {
2607 bfd_set_error (bfd_error_system_call);
2608 return false;
2609 }
2610
2611 *string_sizep = strings_size;
2612 return true;
2613 }
2614
2615 /* Compute variable information to be placed in the SOM headers,
2616 space/subspace dictionaries, relocation streams, etc. Begin
2617 writing parts of the object file. */
2618
2619 static boolean
2620 som_begin_writing (abfd)
2621 bfd *abfd;
2622 {
2623 unsigned long current_offset = 0;
2624 int strings_size = 0;
2625 unsigned int total_reloc_size = 0;
2626 unsigned long num_spaces, num_subspaces, num_syms, i;
2627 asection *section;
2628 asymbol **syms = bfd_get_outsymbols (abfd);
2629 unsigned int total_subspaces = 0;
2630
2631 /* The file header will always be first in an object file,
2632 everything else can be in random locations. To keep things
2633 "simple" BFD will lay out the object file in the manner suggested
2634 by the PRO ABI for PA-RISC Systems. */
2635
2636 /* Before any output can really begin offsets for all the major
2637 portions of the object file must be computed. So, starting
2638 with the initial file header compute (and sometimes write)
2639 each portion of the object file. */
2640
2641 /* Make room for the file header, it's contents are not complete
2642 yet, so it can not be written at this time. */
2643 current_offset += sizeof (struct header);
2644
2645 /* Any auxiliary headers will follow the file header. Right now
2646 we support only the copyright and version headers. */
2647 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
2648 obj_som_file_hdr (abfd)->aux_header_size = 0;
2649 if (obj_som_version_hdr (abfd) != NULL)
2650 {
2651 unsigned int len;
2652
2653 bfd_seek (abfd, current_offset, SEEK_SET);
2654
2655 /* Write the aux_id structure and the string length. */
2656 len = sizeof (struct aux_id) + sizeof (unsigned int);
2657 obj_som_file_hdr (abfd)->aux_header_size += len;
2658 current_offset += len;
2659 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
2660 {
2661 bfd_set_error (bfd_error_system_call);
2662 return false;
2663 }
2664
2665 /* Write the version string. */
2666 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
2667 obj_som_file_hdr (abfd)->aux_header_size += len;
2668 current_offset += len;
2669 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
2670 len, 1, abfd) != len)
2671 {
2672 bfd_set_error (bfd_error_system_call);
2673 return false;
2674 }
2675 }
2676
2677 if (obj_som_copyright_hdr (abfd) != NULL)
2678 {
2679 unsigned int len;
2680
2681 bfd_seek (abfd, current_offset, SEEK_SET);
2682
2683 /* Write the aux_id structure and the string length. */
2684 len = sizeof (struct aux_id) + sizeof (unsigned int);
2685 obj_som_file_hdr (abfd)->aux_header_size += len;
2686 current_offset += len;
2687 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
2688 {
2689 bfd_set_error (bfd_error_system_call);
2690 return false;
2691 }
2692
2693 /* Write the copyright string. */
2694 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
2695 obj_som_file_hdr (abfd)->aux_header_size += len;
2696 current_offset += len;
2697 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
2698 len, 1, abfd) != len)
2699 {
2700 bfd_set_error (bfd_error_system_call);
2701 return false;
2702 }
2703 }
2704
2705 /* Next comes the initialization pointers; we have no initialization
2706 pointers, so current offset does not change. */
2707 obj_som_file_hdr (abfd)->init_array_location = current_offset;
2708 obj_som_file_hdr (abfd)->init_array_total = 0;
2709
2710 /* Next are the space records. These are fixed length records.
2711
2712 Count the number of spaces to determine how much room is needed
2713 in the object file for the space records.
2714
2715 The names of the spaces are stored in a separate string table,
2716 and the index for each space into the string table is computed
2717 below. Therefore, it is not possible to write the space headers
2718 at this time. */
2719 num_spaces = som_count_spaces (abfd);
2720 obj_som_file_hdr (abfd)->space_location = current_offset;
2721 obj_som_file_hdr (abfd)->space_total = num_spaces;
2722 current_offset += num_spaces * sizeof (struct space_dictionary_record);
2723
2724 /* Next are the subspace records. These are fixed length records.
2725
2726 Count the number of subspaes to determine how much room is needed
2727 in the object file for the subspace records.
2728
2729 A variety if fields in the subspace record are still unknown at
2730 this time (index into string table, fixup stream location/size, etc). */
2731 num_subspaces = som_count_subspaces (abfd);
2732 obj_som_file_hdr (abfd)->subspace_location = current_offset;
2733 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
2734 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
2735
2736 /* Next is the string table for the space/subspace names. We will
2737 build and write the string table on the fly. At the same time
2738 we will fill in the space/subspace name index fields. */
2739
2740 /* The string table needs to be aligned on a word boundary. */
2741 if (current_offset % 4)
2742 current_offset += (4 - (current_offset % 4));
2743
2744 /* Mark the offset of the space/subspace string table in the
2745 file header. */
2746 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
2747
2748 /* Scribble out the space strings. */
2749 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
2750 return false;
2751
2752 /* Record total string table size in the header and update the
2753 current offset. */
2754 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
2755 current_offset += strings_size;
2756
2757 /* Next is the symbol table. These are fixed length records.
2758
2759 Count the number of symbols to determine how much room is needed
2760 in the object file for the symbol table.
2761
2762 The names of the symbols are stored in a separate string table,
2763 and the index for each symbol name into the string table is computed
2764 below. Therefore, it is not possible to write the symobl table
2765 at this time. */
2766 num_syms = bfd_get_symcount (abfd);
2767 obj_som_file_hdr (abfd)->symbol_location = current_offset;
2768 obj_som_file_hdr (abfd)->symbol_total = num_syms;
2769 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
2770
2771 /* Do prep work before handling fixups. */
2772 som_prep_for_fixups (abfd, syms, num_syms);
2773
2774 /* Next comes the fixup stream which starts on a word boundary. */
2775 if (current_offset % 4)
2776 current_offset += (4 - (current_offset % 4));
2777 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
2778
2779 /* Write the fixups and update fields in subspace headers which
2780 relate to the fixup stream. */
2781 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
2782 return false;
2783
2784 /* Record the total size of the fixup stream in the file header. */
2785 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
2786 current_offset += total_reloc_size;
2787
2788 /* Next are the symbol strings.
2789 Align them to a word boundary. */
2790 if (current_offset % 4)
2791 current_offset += (4 - (current_offset % 4));
2792 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
2793
2794 /* Scribble out the symbol strings. */
2795 if (som_write_symbol_strings (abfd, current_offset, syms,
2796 num_syms, &strings_size)
2797 == false)
2798 return false;
2799
2800 /* Record total string table size in header and update the
2801 current offset. */
2802 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
2803 current_offset += strings_size;
2804
2805 /* Next is the compiler records. We do not use these. */
2806 obj_som_file_hdr (abfd)->compiler_location = current_offset;
2807 obj_som_file_hdr (abfd)->compiler_total = 0;
2808
2809 /* Now compute the file positions for the loadable subspaces. */
2810
2811 section = abfd->sections;
2812 for (i = 0; i < num_spaces; i++)
2813 {
2814 asection *subsection;
2815
2816 /* Find a space. */
2817 while (som_section_data (section)->is_space == 0)
2818 section = section->next;
2819
2820 /* Now look for all its subspaces. */
2821 for (subsection = abfd->sections;
2822 subsection != NULL;
2823 subsection = subsection->next)
2824 {
2825
2826 if (som_section_data (subsection)->is_subspace == 0
2827 || som_section_data (subsection)->containing_space != section
2828 || (subsection->flags & SEC_ALLOC) == 0)
2829 continue;
2830
2831 som_section_data (subsection)->subspace_index = total_subspaces++;
2832 /* This is real data to be loaded from the file. */
2833 if (subsection->flags & SEC_LOAD)
2834 {
2835 som_section_data (subsection)->subspace_dict.file_loc_init_value
2836 = current_offset;
2837 section->filepos = current_offset;
2838 current_offset += bfd_section_size (abfd, subsection);
2839 }
2840 /* Looks like uninitialized data. */
2841 else
2842 {
2843 som_section_data (subsection)->subspace_dict.file_loc_init_value
2844 = 0;
2845 som_section_data (subsection)->subspace_dict.
2846 initialization_length = 0;
2847 }
2848 }
2849 /* Goto the next section. */
2850 section = section->next;
2851 }
2852
2853 /* Finally compute the file positions for unloadable subspaces. */
2854
2855 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
2856 section = abfd->sections;
2857 for (i = 0; i < num_spaces; i++)
2858 {
2859 asection *subsection;
2860
2861 /* Find a space. */
2862 while (som_section_data (section)->is_space == 0)
2863 section = section->next;
2864
2865 /* Now look for all its subspaces. */
2866 for (subsection = abfd->sections;
2867 subsection != NULL;
2868 subsection = subsection->next)
2869 {
2870
2871 if (som_section_data (subsection)->is_subspace == 0
2872 || som_section_data (subsection)->containing_space != section
2873 || (subsection->flags & SEC_ALLOC) != 0)
2874 continue;
2875
2876 som_section_data (subsection)->subspace_index = total_subspaces++;
2877 /* This is real data to be loaded from the file. */
2878 if ((subsection->flags & SEC_LOAD) == 0)
2879 {
2880 som_section_data (subsection)->subspace_dict.file_loc_init_value
2881 = current_offset;
2882 section->filepos = current_offset;
2883 current_offset += bfd_section_size (abfd, subsection);
2884 }
2885 /* Looks like uninitialized data. */
2886 else
2887 {
2888 som_section_data (subsection)->subspace_dict.file_loc_init_value
2889 = 0;
2890 som_section_data (subsection)->subspace_dict.
2891 initialization_length = bfd_section_size (abfd, subsection);
2892 }
2893 }
2894 /* Goto the next section. */
2895 section = section->next;
2896 }
2897
2898 obj_som_file_hdr (abfd)->unloadable_sp_size
2899 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
2900
2901 /* Loader fixups are not supported in any way shape or form. */
2902 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
2903 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
2904
2905 /* Done. Store the total size of the SOM. */
2906 obj_som_file_hdr (abfd)->som_length = current_offset;
2907 return true;
2908 }
2909
2910 /* Finally, scribble out the various headers to the disk. */
2911
2912 static boolean
2913 som_write_headers (abfd)
2914 bfd *abfd;
2915 {
2916 int num_spaces = som_count_spaces (abfd);
2917 int i;
2918 int subspace_index = 0;
2919 file_ptr location;
2920 asection *section;
2921
2922 /* Subspaces are written first so that we can set up information
2923 about them in their containing spaces as the subspace is written. */
2924
2925 /* Seek to the start of the subspace dictionary records. */
2926 location = obj_som_file_hdr (abfd)->subspace_location;
2927 bfd_seek (abfd, location, SEEK_SET);
2928 section = abfd->sections;
2929 /* Now for each loadable space write out records for its subspaces. */
2930 for (i = 0; i < num_spaces; i++)
2931 {
2932 asection *subsection;
2933
2934 /* Find a space. */
2935 while (som_section_data (section)->is_space == 0)
2936 section = section->next;
2937
2938 /* Now look for all its subspaces. */
2939 for (subsection = abfd->sections;
2940 subsection != NULL;
2941 subsection = subsection->next)
2942 {
2943
2944 /* Skip any section which does not correspond to a space
2945 or subspace. Or does not have SEC_ALLOC set (and therefore
2946 has no real bits on the disk). */
2947 if (som_section_data (subsection)->is_subspace == 0
2948 || som_section_data (subsection)->containing_space != section
2949 || (subsection->flags & SEC_ALLOC) == 0)
2950 continue;
2951
2952 /* If this is the first subspace for this space, then save
2953 the index of the subspace in its containing space. Also
2954 set "is_loadable" in the containing space. */
2955
2956 if (som_section_data (section)->space_dict.subspace_quantity == 0)
2957 {
2958 som_section_data (section)->space_dict.is_loadable = 1;
2959 som_section_data (section)->space_dict.subspace_index
2960 = subspace_index;
2961 }
2962
2963 /* Increment the number of subspaces seen and the number of
2964 subspaces contained within the current space. */
2965 subspace_index++;
2966 som_section_data (section)->space_dict.subspace_quantity++;
2967
2968 /* Mark the index of the current space within the subspace's
2969 dictionary record. */
2970 som_section_data (subsection)->subspace_dict.space_index = i;
2971
2972 /* Dump the current subspace header. */
2973 if (bfd_write ((PTR) &som_section_data (subsection)->subspace_dict,
2974 sizeof (struct subspace_dictionary_record), 1, abfd)
2975 != sizeof (struct subspace_dictionary_record))
2976 {
2977 bfd_set_error (bfd_error_system_call);
2978 return false;
2979 }
2980 }
2981 /* Goto the next section. */
2982 section = section->next;
2983 }
2984
2985 /* Now repeat the process for unloadable subspaces. */
2986 section = abfd->sections;
2987 /* Now for each space write out records for its subspaces. */
2988 for (i = 0; i < num_spaces; i++)
2989 {
2990 asection *subsection;
2991
2992 /* Find a space. */
2993 while (som_section_data (section)->is_space == 0)
2994 section = section->next;
2995
2996 /* Now look for all its subspaces. */
2997 for (subsection = abfd->sections;
2998 subsection != NULL;
2999 subsection = subsection->next)
3000 {
3001
3002 /* Skip any section which does not correspond to a space or
3003 subspace, or which SEC_ALLOC set (and therefore handled
3004 in the loadable spaces/subspaces code above. */
3005
3006 if (som_section_data (subsection)->is_subspace == 0
3007 || som_section_data (subsection)->containing_space != section
3008 || (subsection->flags & SEC_ALLOC) != 0)
3009 continue;
3010
3011 /* If this is the first subspace for this space, then save
3012 the index of the subspace in its containing space. Clear
3013 "is_loadable". */
3014
3015 if (som_section_data (section)->space_dict.subspace_quantity == 0)
3016 {
3017 som_section_data (section)->space_dict.is_loadable = 0;
3018 som_section_data (section)->space_dict.subspace_index
3019 = subspace_index;
3020 }
3021
3022 /* Increment the number of subspaces seen and the number of
3023 subspaces contained within the current space. */
3024 som_section_data (section)->space_dict.subspace_quantity++;
3025 subspace_index++;
3026
3027 /* Mark the index of the current space within the subspace's
3028 dictionary record. */
3029 som_section_data (subsection)->subspace_dict.space_index = i;
3030
3031 /* Dump this subspace header. */
3032 if (bfd_write ((PTR) &som_section_data (subsection)->subspace_dict,
3033 sizeof (struct subspace_dictionary_record), 1, abfd)
3034 != sizeof (struct subspace_dictionary_record))
3035 {
3036 bfd_set_error (bfd_error_system_call);
3037 return false;
3038 }
3039 }
3040 /* Goto the next section. */
3041 section = section->next;
3042 }
3043
3044 /* All the subspace dictiondary records are written, and all the
3045 fields are set up in the space dictionary records.
3046
3047 Seek to the right location and start writing the space
3048 dictionary records. */
3049 location = obj_som_file_hdr (abfd)->space_location;
3050 bfd_seek (abfd, location, SEEK_SET);
3051
3052 section = abfd->sections;
3053 for (i = 0; i < num_spaces; i++)
3054 {
3055
3056 /* Find a space. */
3057 while (som_section_data (section)->is_space == 0)
3058 section = section->next;
3059
3060 /* Dump its header */
3061 if (bfd_write ((PTR) &som_section_data (section)->space_dict,
3062 sizeof (struct space_dictionary_record), 1, abfd)
3063 != sizeof (struct space_dictionary_record))
3064 {
3065 bfd_set_error (bfd_error_system_call);
3066 return false;
3067 }
3068
3069 /* Goto the next section. */
3070 section = section->next;
3071 }
3072
3073 /* Only thing left to do is write out the file header. It is always
3074 at location zero. Seek there and write it. */
3075 bfd_seek (abfd, (file_ptr) 0, SEEK_SET);
3076 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3077 sizeof (struct header), 1, abfd)
3078 != sizeof (struct header))
3079 {
3080 bfd_set_error (bfd_error_system_call);
3081 return false;
3082 }
3083 return true;
3084 }
3085
3086 /* Compute and return the checksum for a SOM file header. */
3087
3088 static unsigned long
3089 som_compute_checksum (abfd)
3090 bfd *abfd;
3091 {
3092 unsigned long checksum, count, i;
3093 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3094
3095 checksum = 0;
3096 count = sizeof (struct header) / sizeof (unsigned long);
3097 for (i = 0; i < count; i++)
3098 checksum ^= *(buffer + i);
3099
3100 return checksum;
3101 }
3102
3103 static void
3104 som_bfd_derive_misc_symbol_info (abfd, sym, info)
3105 bfd *abfd;
3106 asymbol *sym;
3107 struct som_misc_symbol_info *info;
3108 {
3109 /* Initialize. */
3110 memset (info, 0, sizeof (struct som_misc_symbol_info));
3111
3112 /* The HP SOM linker requires detailed type information about
3113 all symbols (including undefined symbols!). Unfortunately,
3114 the type specified in an import/export statement does not
3115 always match what the linker wants. Severe braindamage. */
3116
3117 /* Section symbols will not have a SOM symbol type assigned to
3118 them yet. Assign all section symbols type ST_DATA. */
3119 if (sym->flags & BSF_SECTION_SYM)
3120 info->symbol_type = ST_DATA;
3121 else
3122 {
3123 /* Common symbols must have scope SS_UNSAT and type
3124 ST_STORAGE or the linker will choke. */
3125 if (sym->section == &bfd_com_section)
3126 {
3127 info->symbol_scope = SS_UNSAT;
3128 info->symbol_type = ST_STORAGE;
3129 }
3130
3131 /* It is possible to have a symbol without an associated
3132 type. This happens if the user imported the symbol
3133 without a type and the symbol was never defined
3134 locally. If BSF_FUNCTION is set for this symbol, then
3135 assign it type ST_CODE (the HP linker requires undefined
3136 external functions to have type ST_CODE rather than ST_ENTRY). */
3137 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3138 && sym->section == &bfd_und_section
3139 && sym->flags & BSF_FUNCTION)
3140 info->symbol_type = ST_CODE;
3141
3142 /* Handle function symbols which were defined in this file.
3143 They should have type ST_ENTRY. Also retrieve the argument
3144 relocation bits from the SOM backend information. */
3145 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3146 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3147 && (sym->flags & BSF_FUNCTION))
3148 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3149 && (sym->flags & BSF_FUNCTION)))
3150 {
3151 info->symbol_type = ST_ENTRY;
3152 info->arg_reloc = som_symbol_data (sym)->tc_data.hppa_arg_reloc;
3153 }
3154
3155 /* If the type is unknown at this point, it should be
3156 ST_DATA (functions were handled as special cases above). */
3157 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3158 info->symbol_type = ST_DATA;
3159
3160 /* From now on it's a very simple mapping. */
3161 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3162 info->symbol_type = ST_ABSOLUTE;
3163 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3164 info->symbol_type = ST_CODE;
3165 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3166 info->symbol_type = ST_DATA;
3167 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3168 info->symbol_type = ST_MILLICODE;
3169 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3170 info->symbol_type = ST_PLABEL;
3171 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3172 info->symbol_type = ST_PRI_PROG;
3173 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3174 info->symbol_type = ST_SEC_PROG;
3175 }
3176
3177 /* Now handle the symbol's scope. Exported data which is not
3178 in the common section has scope SS_UNIVERSAL. Note scope
3179 of common symbols was handled earlier! */
3180 if (sym->flags & BSF_EXPORT && sym->section != &bfd_com_section)
3181 info->symbol_scope = SS_UNIVERSAL;
3182 /* Any undefined symbol at this point has a scope SS_UNSAT. */
3183 else if (sym->section == &bfd_und_section)
3184 info->symbol_scope = SS_UNSAT;
3185 /* Anything else which is not in the common section has scope
3186 SS_LOCAL. */
3187 else if (sym->section != &bfd_com_section)
3188 info->symbol_scope = SS_LOCAL;
3189
3190 /* Now set the symbol_info field. It has no real meaning
3191 for undefined or common symbols, but the HP linker will
3192 choke if it's not set to some "reasonable" value. We
3193 use zero as a reasonable value. */
3194 if (sym->section == &bfd_com_section || sym->section == &bfd_und_section
3195 || sym->section == &bfd_abs_section)
3196 info->symbol_info = 0;
3197 /* For all other symbols, the symbol_info field contains the
3198 subspace index of the space this symbol is contained in. */
3199 else
3200 info->symbol_info = som_section_data (sym->section)->subspace_index;
3201
3202 /* Set the symbol's value. */
3203 info->symbol_value = sym->value + sym->section->vma;
3204 }
3205
3206 /* Build and write, in one big chunk, the entire symbol table for
3207 this BFD. */
3208
3209 static boolean
3210 som_build_and_write_symbol_table (abfd)
3211 bfd *abfd;
3212 {
3213 unsigned int num_syms = bfd_get_symcount (abfd);
3214 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3215 asymbol **bfd_syms = bfd_get_outsymbols (abfd);
3216 struct symbol_dictionary_record *som_symtab;
3217 int i, symtab_size;
3218
3219 /* Compute total symbol table size and allocate a chunk of memory
3220 to hold the symbol table as we build it. */
3221 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3222 som_symtab = (struct symbol_dictionary_record *) alloca (symtab_size);
3223 memset (som_symtab, 0, symtab_size);
3224
3225 /* Walk over each symbol. */
3226 for (i = 0; i < num_syms; i++)
3227 {
3228 struct som_misc_symbol_info info;
3229
3230 /* This is really an index into the symbol strings table.
3231 By the time we get here, the index has already been
3232 computed and stored into the name field in the BFD symbol. */
3233 som_symtab[i].name.n_strx = (int) bfd_syms[i]->name;
3234
3235 /* Derive SOM information from the BFD symbol. */
3236 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
3237
3238 /* Now use it. */
3239 som_symtab[i].symbol_type = info.symbol_type;
3240 som_symtab[i].symbol_scope = info.symbol_scope;
3241 som_symtab[i].arg_reloc = info.arg_reloc;
3242 som_symtab[i].symbol_info = info.symbol_info;
3243 som_symtab[i].symbol_value = info.symbol_value;
3244 }
3245
3246 /* Everything is ready, seek to the right location and
3247 scribble out the symbol table. */
3248 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3249 {
3250 bfd_set_error (bfd_error_system_call);
3251 return false;
3252 }
3253
3254 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3255 {
3256 bfd_set_error (bfd_error_system_call);
3257 return false;
3258 }
3259 return true;
3260 }
3261
3262 /* Write an object in SOM format. */
3263
3264 static boolean
3265 som_write_object_contents (abfd)
3266 bfd *abfd;
3267 {
3268 if (abfd->output_has_begun == false)
3269 {
3270 /* Set up fixed parts of the file, space, and subspace headers.
3271 Notify the world that output has begun. */
3272 som_prep_headers (abfd);
3273 abfd->output_has_begun = true;
3274 /* Start writing the object file. This include all the string
3275 tables, fixup streams, and other portions of the object file. */
3276 som_begin_writing (abfd);
3277 }
3278
3279 /* Now that the symbol table information is complete, build and
3280 write the symbol table. */
3281 if (som_build_and_write_symbol_table (abfd) == false)
3282 return false;
3283
3284 /* Compute the checksum for the file header just before writing
3285 the header to disk. */
3286 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3287 return (som_write_headers (abfd));
3288 }
3289
3290 \f
3291 /* Read and save the string table associated with the given BFD. */
3292
3293 static boolean
3294 som_slurp_string_table (abfd)
3295 bfd *abfd;
3296 {
3297 char *stringtab;
3298
3299 /* Use the saved version if its available. */
3300 if (obj_som_stringtab (abfd) != NULL)
3301 return true;
3302
3303 /* Allocate and read in the string table. */
3304 stringtab = bfd_zalloc (abfd, obj_som_stringtab_size (abfd));
3305 if (stringtab == NULL)
3306 {
3307 bfd_set_error (bfd_error_no_memory);
3308 return false;
3309 }
3310
3311 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3312 {
3313 bfd_set_error (bfd_error_system_call);
3314 return false;
3315 }
3316
3317 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3318 != obj_som_stringtab_size (abfd))
3319 {
3320 bfd_set_error (bfd_error_system_call);
3321 return false;
3322 }
3323
3324 /* Save our results and return success. */
3325 obj_som_stringtab (abfd) = stringtab;
3326 return true;
3327 }
3328
3329 /* Return the amount of data (in bytes) required to hold the symbol
3330 table for this object. */
3331
3332 static unsigned int
3333 som_get_symtab_upper_bound (abfd)
3334 bfd *abfd;
3335 {
3336 if (!som_slurp_symbol_table (abfd))
3337 return 0;
3338
3339 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
3340 }
3341
3342 /* Convert from a SOM subspace index to a BFD section. */
3343
3344 static asection *
3345 som_section_from_subspace_index (abfd, index)
3346 bfd *abfd;
3347 unsigned int index;
3348 {
3349 asection *section;
3350
3351 for (section = abfd->sections; section != NULL; section = section->next)
3352 if (som_section_data (section)->subspace_index == index)
3353 return section;
3354
3355 /* Should never happen. */
3356 abort();
3357 }
3358
3359 /* Read and save the symbol table associated with the given BFD. */
3360
3361 static unsigned int
3362 som_slurp_symbol_table (abfd)
3363 bfd *abfd;
3364 {
3365 int symbol_count = bfd_get_symcount (abfd);
3366 int symsize = sizeof (struct symbol_dictionary_record);
3367 char *stringtab;
3368 struct symbol_dictionary_record *buf, *bufp, *endbufp;
3369 som_symbol_type *sym, *symbase;
3370
3371 /* Return saved value if it exists. */
3372 if (obj_som_symtab (abfd) != NULL)
3373 return true;
3374
3375 /* Special case. This is *not* an error. */
3376 if (symbol_count == 0)
3377 return true;
3378
3379 if (!som_slurp_string_table (abfd))
3380 return false;
3381
3382 stringtab = obj_som_stringtab (abfd);
3383
3384 symbase = (som_symbol_type *)
3385 bfd_zalloc (abfd, symbol_count * sizeof (som_symbol_type));
3386 if (symbase == NULL)
3387 {
3388 bfd_set_error (bfd_error_no_memory);
3389 return false;
3390 }
3391
3392 /* Read in the external SOM representation. */
3393 buf = alloca (symbol_count * symsize);
3394 if (buf == NULL)
3395 {
3396 bfd_set_error (bfd_error_no_memory);
3397 return false;
3398 }
3399 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
3400 {
3401 bfd_set_error (bfd_error_system_call);
3402 return false;
3403 }
3404 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
3405 != symbol_count * symsize)
3406 {
3407 bfd_set_error (bfd_error_no_symbols);
3408 return (false);
3409 }
3410
3411 /* Iterate over all the symbols and internalize them. */
3412 endbufp = buf + symbol_count;
3413 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
3414 {
3415
3416 /* I don't think we care about these. */
3417 if (bufp->symbol_type == ST_SYM_EXT
3418 || bufp->symbol_type == ST_ARG_EXT)
3419 continue;
3420
3421 /* Set some private data we care about. */
3422 if (bufp->symbol_type == ST_NULL)
3423 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3424 else if (bufp->symbol_type == ST_ABSOLUTE)
3425 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
3426 else if (bufp->symbol_type == ST_DATA)
3427 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
3428 else if (bufp->symbol_type == ST_CODE)
3429 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
3430 else if (bufp->symbol_type == ST_PRI_PROG)
3431 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
3432 else if (bufp->symbol_type == ST_SEC_PROG)
3433 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
3434 else if (bufp->symbol_type == ST_ENTRY)
3435 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
3436 else if (bufp->symbol_type == ST_MILLICODE)
3437 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
3438 else if (bufp->symbol_type == ST_PLABEL)
3439 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
3440 else
3441 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3442 som_symbol_data (sym)->tc_data.hppa_arg_reloc = bufp->arg_reloc;
3443
3444 /* Some reasonable defaults. */
3445 sym->symbol.the_bfd = abfd;
3446 sym->symbol.name = bufp->name.n_strx + stringtab;
3447 sym->symbol.value = bufp->symbol_value;
3448 sym->symbol.section = 0;
3449 sym->symbol.flags = 0;
3450
3451 switch (bufp->symbol_type)
3452 {
3453 case ST_ENTRY:
3454 case ST_PRI_PROG:
3455 case ST_SEC_PROG:
3456 case ST_MILLICODE:
3457 sym->symbol.flags |= BSF_FUNCTION;
3458 sym->symbol.value &= ~0x3;
3459 break;
3460
3461 case ST_STUB:
3462 case ST_CODE:
3463 sym->symbol.value &= ~0x3;
3464
3465 default:
3466 break;
3467 }
3468
3469 /* Handle scoping and section information. */
3470 switch (bufp->symbol_scope)
3471 {
3472 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
3473 so the section associated with this symbol can't be known. */
3474 case SS_EXTERNAL:
3475 case SS_UNSAT:
3476 if (bufp->symbol_type != ST_STORAGE)
3477 sym->symbol.section = &bfd_und_section;
3478 else
3479 sym->symbol.section = &bfd_com_section;
3480 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3481 break;
3482
3483 case SS_UNIVERSAL:
3484 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3485 sym->symbol.section
3486 = som_section_from_subspace_index (abfd, bufp->symbol_info);
3487 sym->symbol.value -= sym->symbol.section->vma;
3488 break;
3489
3490 #if 0
3491 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
3492 Sound dumb? It is. */
3493 case SS_GLOBAL:
3494 #endif
3495 case SS_LOCAL:
3496 sym->symbol.flags |= BSF_LOCAL;
3497 sym->symbol.section
3498 = som_section_from_subspace_index (abfd, bufp->symbol_info);
3499 sym->symbol.value -= sym->symbol.section->vma;
3500 break;
3501 }
3502
3503 /* Mark symbols left around by the debugger. */
3504 if (strlen (sym->symbol.name) >= 2
3505 && sym->symbol.name[0] == 'L'
3506 && (sym->symbol.name[1] == '$' || sym->symbol.name[2] == '$'
3507 || sym->symbol.name[3] == '$'))
3508 sym->symbol.flags |= BSF_DEBUGGING;
3509
3510 /* Note increment at bottom of loop, since we skip some symbols
3511 we can not include it as part of the for statement. */
3512 sym++;
3513 }
3514
3515 /* Save our results and return success. */
3516 obj_som_symtab (abfd) = symbase;
3517 return (true);
3518 }
3519
3520 /* Canonicalize a SOM symbol table. Return the number of entries
3521 in the symbol table. */
3522
3523 static unsigned int
3524 som_get_symtab (abfd, location)
3525 bfd *abfd;
3526 asymbol **location;
3527 {
3528 int i;
3529 som_symbol_type *symbase;
3530
3531 if (!som_slurp_symbol_table (abfd))
3532 return 0;
3533
3534 i = bfd_get_symcount (abfd);
3535 symbase = obj_som_symtab (abfd);
3536
3537 for (; i > 0; i--, location++, symbase++)
3538 *location = &symbase->symbol;
3539
3540 /* Final null pointer. */
3541 *location = 0;
3542 return (bfd_get_symcount (abfd));
3543 }
3544
3545 /* Make a SOM symbol. There is nothing special to do here. */
3546
3547 static asymbol *
3548 som_make_empty_symbol (abfd)
3549 bfd *abfd;
3550 {
3551 som_symbol_type *new =
3552 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
3553 if (new == NULL)
3554 {
3555 bfd_set_error (bfd_error_no_memory);
3556 return 0;
3557 }
3558 new->symbol.the_bfd = abfd;
3559
3560 return &new->symbol;
3561 }
3562
3563 /* Print symbol information. */
3564
3565 static void
3566 som_print_symbol (ignore_abfd, afile, symbol, how)
3567 bfd *ignore_abfd;
3568 PTR afile;
3569 asymbol *symbol;
3570 bfd_print_symbol_type how;
3571 {
3572 FILE *file = (FILE *) afile;
3573 switch (how)
3574 {
3575 case bfd_print_symbol_name:
3576 fprintf (file, "%s", symbol->name);
3577 break;
3578 case bfd_print_symbol_more:
3579 fprintf (file, "som ");
3580 fprintf_vma (file, symbol->value);
3581 fprintf (file, " %lx", (long) symbol->flags);
3582 break;
3583 case bfd_print_symbol_all:
3584 {
3585 CONST char *section_name;
3586 section_name = symbol->section ? symbol->section->name : "(*none*)";
3587 bfd_print_symbol_vandf ((PTR) file, symbol);
3588 fprintf (file, " %s\t%s", section_name, symbol->name);
3589 break;
3590 }
3591 }
3592 }
3593
3594 /* Count or process variable-length SOM fixup records.
3595
3596 To avoid code duplication we use this code both to compute the number
3597 of relocations requested by a stream, and to internalize the stream.
3598
3599 When computing the number of relocations requested by a stream the
3600 variables rptr, section, and symbols have no meaning.
3601
3602 Return the number of relocations requested by the fixup stream. When
3603 not just counting
3604
3605 This needs at least two or three more passes to get it cleaned up. */
3606
3607 static unsigned int
3608 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
3609 unsigned char *fixup;
3610 unsigned int end;
3611 arelent *internal_relocs;
3612 asection *section;
3613 asymbol **symbols;
3614 boolean just_count;
3615 {
3616 unsigned int op, varname;
3617 unsigned char *end_fixups = &fixup[end];
3618 const struct fixup_format *fp;
3619 char *cp;
3620 unsigned char *save_fixup;
3621 int variables[26], stack[20], c, v, count, prev_fixup, *sp;
3622 const int *subop;
3623 arelent *rptr= internal_relocs;
3624 unsigned int offset = just_count ? 0 : section->vma;
3625
3626 #define var(c) variables[(c) - 'A']
3627 #define push(v) (*sp++ = (v))
3628 #define pop() (*--sp)
3629 #define emptystack() (sp == stack)
3630
3631 som_initialize_reloc_queue (reloc_queue);
3632 memset (variables, 0, sizeof (variables));
3633 memset (stack, 0, sizeof (stack));
3634 count = 0;
3635 prev_fixup = 0;
3636 sp = stack;
3637
3638 while (fixup < end_fixups)
3639 {
3640
3641 /* Save pointer to the start of this fixup. We'll use
3642 it later to determine if it is necessary to put this fixup
3643 on the queue. */
3644 save_fixup = fixup;
3645
3646 /* Get the fixup code and its associated format. */
3647 op = *fixup++;
3648 fp = &som_fixup_formats[op];
3649
3650 /* Handle a request for a previous fixup. */
3651 if (*fp->format == 'P')
3652 {
3653 /* Get pointer to the beginning of the prev fixup, move
3654 the repeated fixup to the head of the queue. */
3655 fixup = reloc_queue[fp->D].reloc;
3656 som_reloc_queue_fix (reloc_queue, fp->D);
3657 prev_fixup = 1;
3658
3659 /* Get the fixup code and its associated format. */
3660 op = *fixup++;
3661 fp = &som_fixup_formats[op];
3662 }
3663
3664 /* If we are not just counting, set some reasonable defaults. */
3665 if (! just_count)
3666 {
3667 rptr->address = offset;
3668 rptr->howto = &som_hppa_howto_table[op];
3669 rptr->addend = 0;
3670 rptr->sym_ptr_ptr = bfd_abs_section.symbol_ptr_ptr;
3671 }
3672
3673 /* Set default input length to 0. Get the opcode class index
3674 into D. */
3675 var ('L') = 0;
3676 var ('D') = fp->D;
3677
3678 /* Get the opcode format. */
3679 cp = fp->format;
3680
3681 /* Process the format string. Parsing happens in two phases,
3682 parse RHS, then assign to LHS. Repeat until no more
3683 characters in the format string. */
3684 while (*cp)
3685 {
3686 /* The variable this pass is going to compute a value for. */
3687 varname = *cp++;
3688
3689 /* Start processing RHS. Continue until a NULL or '=' is found. */
3690 do
3691 {
3692 c = *cp++;
3693
3694 /* If this is a variable, push it on the stack. */
3695 if (isupper (c))
3696 push (var (c));
3697
3698 /* If this is a lower case letter, then it represents
3699 additional data from the fixup stream to be pushed onto
3700 the stack. */
3701 else if (islower (c))
3702 {
3703 for (v = 0; c > 'a'; --c)
3704 v = (v << 8) | *fixup++;
3705 push (v);
3706 }
3707
3708 /* A decimal constant. Push it on the stack. */
3709 else if (isdigit (c))
3710 {
3711 v = c - '0';
3712 while (isdigit (*cp))
3713 v = (v * 10) + (*cp++ - '0');
3714 push (v);
3715 }
3716 else
3717
3718 /* An operator. Pop two two values from the stack and
3719 use them as operands to the given operation. Push
3720 the result of the operation back on the stack. */
3721 switch (c)
3722 {
3723 case '+':
3724 v = pop ();
3725 v += pop ();
3726 push (v);
3727 break;
3728 case '*':
3729 v = pop ();
3730 v *= pop ();
3731 push (v);
3732 break;
3733 case '<':
3734 v = pop ();
3735 v = pop () << v;
3736 push (v);
3737 break;
3738 default:
3739 abort ();
3740 }
3741 }
3742 while (*cp && *cp != '=');
3743
3744 /* Move over the equal operator. */
3745 cp++;
3746
3747 /* Pop the RHS off the stack. */
3748 c = pop ();
3749
3750 /* Perform the assignment. */
3751 var (varname) = c;
3752
3753 /* Handle side effects. and special 'O' stack cases. */
3754 switch (varname)
3755 {
3756 /* Consume some bytes from the input space. */
3757 case 'L':
3758 offset += c;
3759 break;
3760 /* A symbol to use in the relocation. Make a note
3761 of this if we are not just counting. */
3762 case 'S':
3763 if (! just_count)
3764 rptr->sym_ptr_ptr = &symbols[c];
3765 break;
3766 /* Handle the linker expression stack. */
3767 case 'O':
3768 switch (op)
3769 {
3770 case R_COMP1:
3771 subop = comp1_opcodes;
3772 break;
3773 case R_COMP2:
3774 subop = comp2_opcodes;
3775 break;
3776 case R_COMP3:
3777 subop = comp3_opcodes;
3778 break;
3779 default:
3780 abort ();
3781 }
3782 while (*subop <= (unsigned char) c)
3783 ++subop;
3784 --subop;
3785 break;
3786 default:
3787 break;
3788 }
3789 }
3790
3791 /* If we used a previous fixup, clean up after it. */
3792 if (prev_fixup)
3793 {
3794 fixup = save_fixup + 1;
3795 prev_fixup = 0;
3796 }
3797 /* Queue it. */
3798 else if (fixup > save_fixup + 1)
3799 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
3800
3801 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
3802 fixups to BFD. */
3803 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
3804 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
3805 {
3806 /* Done with a single reloction. Loop back to the top. */
3807 if (! just_count)
3808 {
3809 rptr->addend = var ('V');
3810 rptr++;
3811 }
3812 count++;
3813 /* Now that we've handled a "full" relocation, reset
3814 some state. */
3815 memset (variables, 0, sizeof (variables));
3816 memset (stack, 0, sizeof (stack));
3817 }
3818 }
3819 return count;
3820
3821 #undef var
3822 #undef push
3823 #undef pop
3824 #undef emptystack
3825 }
3826
3827 /* Read in the relocs (aka fixups in SOM terms) for a section.
3828
3829 som_get_reloc_upper_bound calls this routine with JUST_COUNT
3830 set to true to indicate it only needs a count of the number
3831 of actual relocations. */
3832
3833 static boolean
3834 som_slurp_reloc_table (abfd, section, symbols, just_count)
3835 bfd *abfd;
3836 asection *section;
3837 asymbol **symbols;
3838 boolean just_count;
3839 {
3840 char *external_relocs;
3841 unsigned int fixup_stream_size;
3842 arelent *internal_relocs;
3843 unsigned int num_relocs;
3844
3845 fixup_stream_size = som_section_data (section)->reloc_size;
3846 /* If there were no relocations, then there is nothing to do. */
3847 if (section->reloc_count == 0)
3848 return true;
3849
3850 /* If reloc_count is -1, then the relocation stream has not been
3851 parsed. We must do so now to know how many relocations exist. */
3852 if (section->reloc_count == -1)
3853 {
3854 external_relocs = (char *) bfd_zalloc (abfd, fixup_stream_size);
3855 if (external_relocs == (char *) NULL)
3856 {
3857 bfd_set_error (bfd_error_no_memory);
3858 return false;
3859 }
3860 /* Read in the external forms. */
3861 if (bfd_seek (abfd,
3862 obj_som_reloc_filepos (abfd) + section->rel_filepos,
3863 SEEK_SET)
3864 != 0)
3865 {
3866 bfd_set_error (bfd_error_system_call);
3867 return false;
3868 }
3869 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
3870 != fixup_stream_size)
3871 {
3872 bfd_set_error (bfd_error_system_call);
3873 return false;
3874 }
3875 /* Let callers know how many relocations found.
3876 also save the relocation stream as we will
3877 need it again. */
3878 section->reloc_count = som_set_reloc_info (external_relocs,
3879 fixup_stream_size,
3880 NULL, NULL, NULL, true);
3881
3882 som_section_data (section)->reloc_stream = external_relocs;
3883 }
3884
3885 /* If the caller only wanted a count, then return now. */
3886 if (just_count)
3887 return true;
3888
3889 num_relocs = section->reloc_count;
3890 external_relocs = som_section_data (section)->reloc_stream;
3891 /* Return saved information about the relocations if it is available. */
3892 if (section->relocation != (arelent *) NULL)
3893 return true;
3894
3895 internal_relocs = (arelent *) bfd_zalloc (abfd,
3896 num_relocs * sizeof (arelent));
3897 if (internal_relocs == (arelent *) NULL)
3898 {
3899 bfd_set_error (bfd_error_no_memory);
3900 return false;
3901 }
3902
3903 /* Process and internalize the relocations. */
3904 som_set_reloc_info (external_relocs, fixup_stream_size,
3905 internal_relocs, section, symbols, false);
3906
3907 /* Save our results and return success. */
3908 section->relocation = internal_relocs;
3909 return (true);
3910 }
3911
3912 /* Return the number of bytes required to store the relocation
3913 information associated with the given section. */
3914
3915 static unsigned int
3916 som_get_reloc_upper_bound (abfd, asect)
3917 bfd *abfd;
3918 sec_ptr asect;
3919 {
3920 /* If section has relocations, then read in the relocation stream
3921 and parse it to determine how many relocations exist. */
3922 if (asect->flags & SEC_RELOC)
3923 {
3924 if (som_slurp_reloc_table (abfd, asect, NULL, true))
3925 return (asect->reloc_count + 1) * sizeof (arelent);
3926 }
3927 /* Either there are no relocations or an error occurred while
3928 reading and parsing the relocation stream. */
3929 return 0;
3930 }
3931
3932 /* Convert relocations from SOM (external) form into BFD internal
3933 form. Return the number of relocations. */
3934
3935 static unsigned int
3936 som_canonicalize_reloc (abfd, section, relptr, symbols)
3937 bfd *abfd;
3938 sec_ptr section;
3939 arelent **relptr;
3940 asymbol **symbols;
3941 {
3942 arelent *tblptr;
3943 int count;
3944
3945 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
3946 return 0;
3947
3948 count = section->reloc_count;
3949 tblptr = section->relocation;
3950 if (tblptr == (arelent *) NULL)
3951 return 0;
3952
3953 while (count--)
3954 *relptr++ = tblptr++;
3955
3956 *relptr = (arelent *) NULL;
3957 return section->reloc_count;
3958 }
3959
3960 extern bfd_target som_vec;
3961
3962 /* A hook to set up object file dependent section information. */
3963
3964 static boolean
3965 som_new_section_hook (abfd, newsect)
3966 bfd *abfd;
3967 asection *newsect;
3968 {
3969 newsect->used_by_bfd =
3970 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
3971 if (!newsect->used_by_bfd)
3972 {
3973 bfd_set_error (bfd_error_no_memory);
3974 return false;
3975 }
3976 newsect->alignment_power = 3;
3977
3978 /* Initialize the subspace_index field to -1 so that it does
3979 not match a subspace with an index of 0. */
3980 som_section_data (newsect)->subspace_index = -1;
3981
3982 /* We allow more than three sections internally */
3983 return true;
3984 }
3985
3986 /* Set backend info for sections which can not be described
3987 in the BFD data structures. */
3988
3989 void
3990 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
3991 asection *section;
3992 int defined;
3993 int private;
3994 unsigned int sort_key;
3995 int spnum;
3996 {
3997 struct space_dictionary_record *space_dict;
3998
3999 som_section_data (section)->is_space = 1;
4000 space_dict = &som_section_data (section)->space_dict;
4001 space_dict->is_defined = defined;
4002 space_dict->is_private = private;
4003 space_dict->sort_key = sort_key;
4004 space_dict->space_number = spnum;
4005 }
4006
4007 /* Set backend info for subsections which can not be described
4008 in the BFD data structures. */
4009
4010 void
4011 bfd_som_set_subsection_attributes (section, container, access,
4012 sort_key, quadrant)
4013 asection *section;
4014 asection *container;
4015 int access;
4016 unsigned int sort_key;
4017 int quadrant;
4018 {
4019 struct subspace_dictionary_record *subspace_dict;
4020 som_section_data (section)->is_subspace = 1;
4021 subspace_dict = &som_section_data (section)->subspace_dict;
4022 subspace_dict->access_control_bits = access;
4023 subspace_dict->sort_key = sort_key;
4024 subspace_dict->quadrant = quadrant;
4025 som_section_data (section)->containing_space = container;
4026 }
4027
4028 /* Set the full SOM symbol type. SOM needs far more symbol information
4029 than any other object file format I'm aware of. It is mandatory
4030 to be able to know if a symbol is an entry point, millicode, data,
4031 code, absolute, storage request, or procedure label. If you get
4032 the symbol type wrong your program will not link. */
4033
4034 void
4035 bfd_som_set_symbol_type (symbol, type)
4036 asymbol *symbol;
4037 unsigned int type;
4038 {
4039 som_symbol_data (symbol)->som_type = type;
4040 }
4041
4042 /* Attach 64bits of unwind information to a symbol (which hopefully
4043 is a function of some kind!). It would be better to keep this
4044 in the R_ENTRY relocation, but there is not enough space. */
4045
4046 void
4047 bfd_som_attach_unwind_info (symbol, unwind_desc)
4048 asymbol *symbol;
4049 char *unwind_desc;
4050 {
4051 som_symbol_data (symbol)->unwind = unwind_desc;
4052 }
4053
4054 /* Attach an auxiliary header to the BFD backend so that it may be
4055 written into the object file. */
4056 boolean
4057 bfd_som_attach_aux_hdr (abfd, type, string)
4058 bfd *abfd;
4059 int type;
4060 char *string;
4061 {
4062 if (type == VERSION_AUX_ID)
4063 {
4064 int len = strlen (string);
4065 int pad = 0;
4066
4067 if (len % 4)
4068 pad = (4 - (len % 4));
4069 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
4070 bfd_zalloc (abfd, sizeof (struct aux_id)
4071 + sizeof (unsigned int) + len + pad);
4072 if (!obj_som_version_hdr (abfd))
4073 {
4074 bfd_set_error (bfd_error_no_memory);
4075 return false;
4076 }
4077 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
4078 obj_som_version_hdr (abfd)->header_id.length = len + pad;
4079 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
4080 obj_som_version_hdr (abfd)->string_length = len;
4081 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
4082 }
4083 else if (type == COPYRIGHT_AUX_ID)
4084 {
4085 int len = strlen (string);
4086 int pad = 0;
4087
4088 if (len % 4)
4089 pad = (4 - (len % 4));
4090 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
4091 bfd_zalloc (abfd, sizeof (struct aux_id)
4092 + sizeof (unsigned int) + len + pad);
4093 if (!obj_som_copyright_hdr (abfd))
4094 {
4095 bfd_set_error (bfd_error_no_error);
4096 return false;
4097 }
4098 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
4099 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
4100 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
4101 obj_som_copyright_hdr (abfd)->string_length = len;
4102 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
4103 }
4104 return true;
4105 }
4106
4107 static boolean
4108 som_set_section_contents (abfd, section, location, offset, count)
4109 bfd *abfd;
4110 sec_ptr section;
4111 PTR location;
4112 file_ptr offset;
4113 bfd_size_type count;
4114 {
4115 if (abfd->output_has_begun == false)
4116 {
4117 /* Set up fixed parts of the file, space, and subspace headers.
4118 Notify the world that output has begun. */
4119 som_prep_headers (abfd);
4120 abfd->output_has_begun = true;
4121 /* Start writing the object file. This include all the string
4122 tables, fixup streams, and other portions of the object file. */
4123 som_begin_writing (abfd);
4124 }
4125
4126 /* Only write subspaces which have "real" contents (eg. the contents
4127 are not generated at run time by the OS). */
4128 if (som_section_data (section)->is_subspace != 1
4129 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4130 return true;
4131
4132 /* Seek to the proper offset within the object file and write the
4133 data. */
4134 offset += som_section_data (section)->subspace_dict.file_loc_init_value;
4135 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
4136 {
4137 bfd_set_error (bfd_error_system_call);
4138 return false;
4139 }
4140
4141 if (bfd_write ((PTR) location, 1, count, abfd) != count)
4142 {
4143 bfd_set_error (bfd_error_system_call);
4144 return false;
4145 }
4146 return true;
4147 }
4148
4149 static boolean
4150 som_set_arch_mach (abfd, arch, machine)
4151 bfd *abfd;
4152 enum bfd_architecture arch;
4153 unsigned long machine;
4154 {
4155 /* Allow any architecture to be supported by the SOM backend */
4156 return bfd_default_set_arch_mach (abfd, arch, machine);
4157 }
4158
4159 static boolean
4160 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4161 functionname_ptr, line_ptr)
4162 bfd *abfd;
4163 asection *section;
4164 asymbol **symbols;
4165 bfd_vma offset;
4166 CONST char **filename_ptr;
4167 CONST char **functionname_ptr;
4168 unsigned int *line_ptr;
4169 {
4170 fprintf (stderr, "som_find_nearest_line unimplemented\n");
4171 fflush (stderr);
4172 abort ();
4173 return (false);
4174 }
4175
4176 static int
4177 som_sizeof_headers (abfd, reloc)
4178 bfd *abfd;
4179 boolean reloc;
4180 {
4181 fprintf (stderr, "som_sizeof_headers unimplemented\n");
4182 fflush (stderr);
4183 abort ();
4184 return (0);
4185 }
4186
4187 /* Return the single-character symbol type corresponding to
4188 SOM section S, or '?' for an unknown SOM section. */
4189
4190 static char
4191 som_section_type (s)
4192 const char *s;
4193 {
4194 const struct section_to_type *t;
4195
4196 for (t = &stt[0]; t->section; t++)
4197 if (!strcmp (s, t->section))
4198 return t->type;
4199 return '?';
4200 }
4201
4202 static int
4203 som_decode_symclass (symbol)
4204 asymbol *symbol;
4205 {
4206 char c;
4207
4208 if (bfd_is_com_section (symbol->section))
4209 return 'C';
4210 if (symbol->section == &bfd_und_section)
4211 return 'U';
4212 if (symbol->section == &bfd_ind_section)
4213 return 'I';
4214 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
4215 return '?';
4216
4217 if (symbol->section == &bfd_abs_section)
4218 c = 'a';
4219 else if (symbol->section)
4220 c = som_section_type (symbol->section->name);
4221 else
4222 return '?';
4223 if (symbol->flags & BSF_GLOBAL)
4224 c = toupper (c);
4225 return c;
4226 }
4227
4228 /* Return information about SOM symbol SYMBOL in RET. */
4229
4230 static void
4231 som_get_symbol_info (ignore_abfd, symbol, ret)
4232 bfd *ignore_abfd;
4233 asymbol *symbol;
4234 symbol_info *ret;
4235 {
4236 ret->type = som_decode_symclass (symbol);
4237 if (ret->type != 'U')
4238 ret->value = symbol->value+symbol->section->vma;
4239 else
4240 ret->value = 0;
4241 ret->name = symbol->name;
4242 }
4243
4244 /* Count the number of symbols in the archive symbol table. Necessary
4245 so that we can allocate space for all the carsyms at once. */
4246
4247 static boolean
4248 som_bfd_count_ar_symbols (abfd, lst_header, count)
4249 bfd *abfd;
4250 struct lst_header *lst_header;
4251 symindex *count;
4252 {
4253 unsigned int i;
4254 unsigned int *hash_table =
4255 (unsigned int *) alloca (lst_header->hash_size * sizeof (unsigned int));
4256 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4257
4258 /* Don't forget to initialize the counter! */
4259 *count = 0;
4260
4261 /* Read in the hash table. The has table is an array of 32bit file offsets
4262 which point to the hash chains. */
4263 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4264 != lst_header->hash_size * 4)
4265 {
4266 bfd_set_error (bfd_error_system_call);
4267 return false;
4268 }
4269
4270 /* Walk each chain counting the number of symbols found on that particular
4271 chain. */
4272 for (i = 0; i < lst_header->hash_size; i++)
4273 {
4274 struct lst_symbol_record lst_symbol;
4275
4276 /* An empty chain has zero as it's file offset. */
4277 if (hash_table[i] == 0)
4278 continue;
4279
4280 /* Seek to the first symbol in this hash chain. */
4281 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4282 {
4283 bfd_set_error (bfd_error_system_call);
4284 return false;
4285 }
4286
4287 /* Read in this symbol and update the counter. */
4288 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4289 != sizeof (lst_symbol))
4290 {
4291 bfd_set_error (bfd_error_system_call);
4292 return false;
4293 }
4294 (*count)++;
4295
4296 /* Now iterate through the rest of the symbols on this chain. */
4297 while (lst_symbol.next_entry)
4298 {
4299
4300 /* Seek to the next symbol. */
4301 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4302 < 0)
4303 {
4304 bfd_set_error (bfd_error_system_call);
4305 return false;
4306 }
4307
4308 /* Read the symbol in and update the counter. */
4309 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4310 != sizeof (lst_symbol))
4311 {
4312 bfd_set_error (bfd_error_system_call);
4313 return false;
4314 }
4315 (*count)++;
4316 }
4317 }
4318 return true;
4319 }
4320
4321 /* Fill in the canonical archive symbols (SYMS) from the archive described
4322 by ABFD and LST_HEADER. */
4323
4324 static boolean
4325 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
4326 bfd *abfd;
4327 struct lst_header *lst_header;
4328 carsym **syms;
4329 {
4330 unsigned int i, len;
4331 carsym *set = syms[0];
4332 unsigned int *hash_table =
4333 (unsigned int *) alloca (lst_header->hash_size * sizeof (unsigned int));
4334 struct som_entry *som_dict =
4335 (struct som_entry *) alloca (lst_header->module_count
4336 * sizeof (struct som_entry));
4337 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4338
4339 /* Read in the hash table. The has table is an array of 32bit file offsets
4340 which point to the hash chains. */
4341 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4342 != lst_header->hash_size * 4)
4343 {
4344 bfd_set_error (bfd_error_system_call);
4345 return false;
4346 }
4347
4348 /* Seek to and read in the SOM dictionary. We will need this to fill
4349 in the carsym's filepos field. */
4350 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
4351 {
4352 bfd_set_error (bfd_error_system_call);
4353 return false;
4354 }
4355
4356 if (bfd_read ((PTR) som_dict, lst_header->module_count,
4357 sizeof (struct som_entry), abfd)
4358 != lst_header->module_count * sizeof (struct som_entry))
4359 {
4360 bfd_set_error (bfd_error_system_call);
4361 return false;
4362 }
4363
4364 /* Walk each chain filling in the carsyms as we go along. */
4365 for (i = 0; i < lst_header->hash_size; i++)
4366 {
4367 struct lst_symbol_record lst_symbol;
4368
4369 /* An empty chain has zero as it's file offset. */
4370 if (hash_table[i] == 0)
4371 continue;
4372
4373 /* Seek to and read the first symbol on the chain. */
4374 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4375 {
4376 bfd_set_error (bfd_error_system_call);
4377 return false;
4378 }
4379
4380 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4381 != sizeof (lst_symbol))
4382 {
4383 bfd_set_error (bfd_error_system_call);
4384 return false;
4385 }
4386
4387 /* Get the name of the symbol, first get the length which is stored
4388 as a 32bit integer just before the symbol.
4389
4390 One might ask why we don't just read in the entire string table
4391 and index into it. Well, according to the SOM ABI the string
4392 index can point *anywhere* in the archive to save space, so just
4393 using the string table would not be safe. */
4394 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4395 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4396 {
4397 bfd_set_error (bfd_error_system_call);
4398 return false;
4399 }
4400
4401 if (bfd_read (&len, 1, 4, abfd) != 4)
4402 {
4403 bfd_set_error (bfd_error_system_call);
4404 return false;
4405 }
4406
4407 /* Allocate space for the name and null terminate it too. */
4408 set->name = bfd_zalloc (abfd, len + 1);
4409 if (!set->name)
4410 {
4411 bfd_set_error (bfd_error_no_memory);
4412 return false;
4413 }
4414 if (bfd_read (set->name, 1, len, abfd) != len)
4415 {
4416 bfd_set_error (bfd_error_system_call);
4417 return false;
4418 }
4419 set->name[len] = 0;
4420
4421 /* Fill in the file offset. Note that the "location" field points
4422 to the SOM itself, not the ar_hdr in front of it. */
4423 set->file_offset = som_dict[lst_symbol.som_index].location
4424 - sizeof (struct ar_hdr);
4425
4426 /* Go to the next symbol. */
4427 set++;
4428
4429 /* Iterate through the rest of the chain. */
4430 while (lst_symbol.next_entry)
4431 {
4432 /* Seek to the next symbol and read it in. */
4433 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4434 < 0)
4435 {
4436 bfd_set_error (bfd_error_system_call);
4437 return false;
4438 }
4439
4440 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4441 != sizeof (lst_symbol))
4442 {
4443 bfd_set_error (bfd_error_system_call);
4444 return false;
4445 }
4446
4447 /* Seek to the name length & string and read them in. */
4448 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4449 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4450 {
4451 bfd_set_error (bfd_error_system_call);
4452 return false;
4453 }
4454
4455 if (bfd_read (&len, 1, 4, abfd) != 4)
4456 {
4457 bfd_set_error (bfd_error_system_call);
4458 return false;
4459 }
4460
4461 /* Allocate space for the name and null terminate it too. */
4462 set->name = bfd_zalloc (abfd, len + 1);
4463 if (!set->name)
4464 {
4465 bfd_set_error (bfd_error_no_memory);
4466 return false;
4467 }
4468 if (bfd_read (set->name, 1, len, abfd) != len)
4469 {
4470 bfd_set_error (bfd_error_system_call);
4471 return false;
4472 }
4473 set->name[len] = 0;
4474
4475 /* Fill in the file offset. Note that the "location" field points
4476 to the SOM itself, not the ar_hdr in front of it. */
4477 set->file_offset = som_dict[lst_symbol.som_index].location
4478 - sizeof (struct ar_hdr);
4479
4480 /* Go on to the next symbol. */
4481 set++;
4482 }
4483 }
4484 /* If we haven't died by now, then we successfully read the entire
4485 archive symbol table. */
4486 return true;
4487 }
4488
4489 /* Read in the LST from the archive. */
4490 static boolean
4491 som_slurp_armap (abfd)
4492 bfd *abfd;
4493 {
4494 struct lst_header lst_header;
4495 struct ar_hdr ar_header;
4496 unsigned int parsed_size;
4497 struct artdata *ardata = bfd_ardata (abfd);
4498 char nextname[17];
4499 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
4500
4501 /* Special cases. */
4502 if (i == 0)
4503 return true;
4504 if (i != 16)
4505 return false;
4506
4507 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
4508 {
4509 bfd_set_error (bfd_error_system_call);
4510 return false;
4511 }
4512
4513 /* For archives without .o files there is no symbol table. */
4514 if (strncmp (nextname, "/ ", 16))
4515 {
4516 bfd_has_map (abfd) = false;
4517 return true;
4518 }
4519
4520 /* Read in and sanity check the archive header. */
4521 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
4522 != sizeof (struct ar_hdr))
4523 {
4524 bfd_set_error (bfd_error_system_call);
4525 return false;
4526 }
4527
4528 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
4529 {
4530 bfd_set_error (bfd_error_malformed_archive);
4531 return NULL;
4532 }
4533
4534 /* How big is the archive symbol table entry? */
4535 errno = 0;
4536 parsed_size = strtol (ar_header.ar_size, NULL, 10);
4537 if (errno != 0)
4538 {
4539 bfd_set_error (bfd_error_malformed_archive);
4540 return NULL;
4541 }
4542
4543 /* Save off the file offset of the first real user data. */
4544 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
4545
4546 /* Read in the library symbol table. We'll make heavy use of this
4547 in just a minute. */
4548 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
4549 != sizeof (struct lst_header))
4550 {
4551 bfd_set_error (bfd_error_system_call);
4552 return false;
4553 }
4554
4555 /* Sanity check. */
4556 if (lst_header.a_magic != LIBMAGIC)
4557 {
4558 bfd_set_error (bfd_error_malformed_archive);
4559 return NULL;
4560 }
4561
4562 /* Count the number of symbols in the library symbol table. */
4563 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
4564 == false)
4565 return false;
4566
4567 /* Get back to the start of the library symbol table. */
4568 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
4569 + sizeof (struct lst_header), SEEK_SET) < 0)
4570 {
4571 bfd_set_error (bfd_error_system_call);
4572 return false;
4573 }
4574
4575 /* Initializae the cache and allocate space for the library symbols. */
4576 ardata->cache = 0;
4577 ardata->symdefs = (carsym *) bfd_alloc (abfd,
4578 (ardata->symdef_count
4579 * sizeof (carsym)));
4580 if (!ardata->symdefs)
4581 {
4582 bfd_set_error (bfd_error_no_memory);
4583 return false;
4584 }
4585
4586 /* Now fill in the canonical archive symbols. */
4587 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
4588 == false)
4589 return false;
4590
4591 /* Notify the generic archive code that we have a symbol map. */
4592 bfd_has_map (abfd) = true;
4593 return true;
4594 }
4595
4596 /* Begin preparing to write a SOM library symbol table.
4597
4598 As part of the prep work we need to determine the number of symbols
4599 and the size of the associated string section. */
4600
4601 static boolean
4602 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
4603 bfd *abfd;
4604 unsigned int *num_syms, *stringsize;
4605 {
4606 bfd *curr_bfd = abfd->archive_head;
4607
4608 /* Some initialization. */
4609 *num_syms = 0;
4610 *stringsize = 0;
4611
4612 /* Iterate over each BFD within this archive. */
4613 while (curr_bfd != NULL)
4614 {
4615 unsigned int curr_count, i;
4616 som_symbol_type *sym;
4617
4618 /* Make sure the symbol table has been read, then snag a pointer
4619 to it. It's a little slimey to grab the symbols via obj_som_symtab,
4620 but doing so avoids allocating lots of extra memory. */
4621 if (som_slurp_symbol_table (curr_bfd) == false)
4622 return false;
4623
4624 sym = obj_som_symtab (curr_bfd);
4625 curr_count = bfd_get_symcount (curr_bfd);
4626
4627 /* Examine each symbol to determine if it belongs in the
4628 library symbol table. */
4629 for (i = 0; i < curr_count; i++, sym++)
4630 {
4631 struct som_misc_symbol_info info;
4632
4633 /* Derive SOM information from the BFD symbol. */
4634 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
4635
4636 /* Should we include this symbol? */
4637 if (info.symbol_type == ST_NULL
4638 || info.symbol_type == ST_SYM_EXT
4639 || info.symbol_type == ST_ARG_EXT)
4640 continue;
4641
4642 /* Only global symbols and unsatisfied commons. */
4643 if (info.symbol_scope != SS_UNIVERSAL
4644 && info.symbol_type != ST_STORAGE)
4645 continue;
4646
4647 /* Do no include undefined symbols. */
4648 if (sym->symbol.section == &bfd_und_section)
4649 continue;
4650
4651 /* Bump the various counters, being careful to honor
4652 alignment considerations in the string table. */
4653 (*num_syms)++;
4654 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
4655 while (*stringsize % 4)
4656 (*stringsize)++;
4657 }
4658
4659 curr_bfd = curr_bfd->next;
4660 }
4661 return true;
4662 }
4663
4664 /* Hash a symbol name based on the hashing algorithm presented in the
4665 SOM ABI. */
4666 static unsigned int
4667 som_bfd_ar_symbol_hash (symbol)
4668 asymbol *symbol;
4669 {
4670 unsigned int len = strlen (symbol->name);
4671
4672 /* Names with length 1 are special. */
4673 if (len == 1)
4674 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
4675
4676 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
4677 | (symbol->name[len-2] << 8) | symbol->name[len-1];
4678 }
4679
4680 /* Do the bulk of the work required to write the SOM library
4681 symbol table. */
4682
4683 static boolean
4684 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst)
4685 bfd *abfd;
4686 unsigned int nsyms, string_size;
4687 struct lst_header lst;
4688 {
4689 file_ptr lst_filepos;
4690 char *strings, *p;
4691 struct lst_symbol_record *lst_syms, *curr_lst_sym;
4692 bfd *curr_bfd = abfd->archive_head;
4693 unsigned int *hash_table =
4694 (unsigned int *) alloca (lst.hash_size * sizeof (unsigned int));
4695 struct som_entry *som_dict =
4696 (struct som_entry *) alloca (lst.module_count
4697 * sizeof (struct som_entry));
4698 struct lst_symbol_record **last_hash_entry =
4699 ((struct lst_symbol_record **)
4700 alloca (lst.hash_size * sizeof (struct lst_symbol_record *)));
4701 unsigned int curr_som_offset, som_index;
4702
4703 /* Lots of fields are file positions relative to the start
4704 of the lst record. So save its location. */
4705 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4706
4707 /* Some initialization. */
4708 memset (hash_table, 0, 4 * lst.hash_size);
4709 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
4710 memset (last_hash_entry, 0,
4711 lst.hash_size * sizeof (struct lst_symbol_record *));
4712
4713 /* Symbols have som_index fields, so we have to keep track of the
4714 index of each SOM in the archive.
4715
4716 The SOM dictionary has (among other things) the absolute file
4717 position for the SOM which a particular dictionary entry
4718 describes. We have to compute that information as we iterate
4719 through the SOMs/symbols. */
4720 som_index = 0;
4721 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
4722
4723 /* FIXME should be done with buffers just like everything else... */
4724 lst_syms = alloca (nsyms * sizeof (struct lst_symbol_record));
4725 strings = alloca (string_size);
4726 p = strings;
4727 curr_lst_sym = lst_syms;
4728
4729
4730 while (curr_bfd != NULL)
4731 {
4732 unsigned int curr_count, i;
4733 som_symbol_type *sym;
4734
4735 /* Make sure the symbol table has been read, then snag a pointer
4736 to it. It's a little slimey to grab the symbols via obj_som_symtab,
4737 but doing so avoids allocating lots of extra memory. */
4738 if (som_slurp_symbol_table (curr_bfd) == false)
4739 return false;
4740
4741 sym = obj_som_symtab (curr_bfd);
4742 curr_count = bfd_get_symcount (curr_bfd);
4743
4744 for (i = 0; i < curr_count; i++, sym++)
4745 {
4746 struct som_misc_symbol_info info;
4747
4748 /* Derive SOM information from the BFD symbol. */
4749 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
4750
4751 /* Should we include this symbol? */
4752 if (info.symbol_type == ST_NULL
4753 || info.symbol_type == ST_SYM_EXT
4754 || info.symbol_type == ST_ARG_EXT)
4755 continue;
4756
4757 /* Only global symbols and unsatisfied commons. */
4758 if (info.symbol_scope != SS_UNIVERSAL
4759 && info.symbol_type != ST_STORAGE)
4760 continue;
4761
4762 /* Do no include undefined symbols. */
4763 if (sym->symbol.section == &bfd_und_section)
4764 continue;
4765
4766 /* If this is the first symbol from this SOM, then update
4767 the SOM dictionary too. */
4768 if (som_dict[som_index].location == 0)
4769 {
4770 som_dict[som_index].location = curr_som_offset;
4771 som_dict[som_index].length = arelt_size (curr_bfd);
4772 }
4773
4774 /* Fill in the lst symbol record. */
4775 curr_lst_sym->hidden = 0;
4776 curr_lst_sym->secondary_def = 0;
4777 curr_lst_sym->symbol_type = info.symbol_type;
4778 curr_lst_sym->symbol_scope = info.symbol_scope;
4779 curr_lst_sym->check_level = 0;
4780 curr_lst_sym->must_qualify = 0;
4781 curr_lst_sym->initially_frozen = 0;
4782 curr_lst_sym->memory_resident = 0;
4783 curr_lst_sym->is_common = (sym->symbol.section == &bfd_com_section);
4784 curr_lst_sym->dup_common = 0;
4785 curr_lst_sym->xleast = 0;
4786 curr_lst_sym->arg_reloc = info.arg_reloc;
4787 curr_lst_sym->name.n_strx = p - strings + 4;
4788 curr_lst_sym->qualifier_name.n_strx = 0;
4789 curr_lst_sym->symbol_info = info.symbol_info;
4790 curr_lst_sym->symbol_value = info.symbol_value;
4791 curr_lst_sym->symbol_descriptor = 0;
4792 curr_lst_sym->reserved = 0;
4793 curr_lst_sym->som_index = som_index;
4794 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
4795 curr_lst_sym->next_entry = 0;
4796
4797 /* Insert into the hash table. */
4798 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
4799 {
4800 struct lst_symbol_record *tmp;
4801
4802 /* There is already something at the head of this hash chain,
4803 so tack this symbol onto the end of the chain. */
4804 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
4805 tmp->next_entry
4806 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
4807 + lst.hash_size * 4
4808 + lst.module_count * sizeof (struct som_entry)
4809 + sizeof (struct lst_header);
4810 }
4811 else
4812 {
4813 /* First entry in this hash chain. */
4814 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
4815 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
4816 + lst.hash_size * 4
4817 + lst.module_count * sizeof (struct som_entry)
4818 + sizeof (struct lst_header);
4819 }
4820
4821 /* Keep track of the last symbol we added to this chain so we can
4822 easily update its next_entry pointer. */
4823 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
4824 = curr_lst_sym;
4825
4826
4827 /* Update the string table. */
4828 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
4829 p += 4;
4830 strcpy (p, sym->symbol.name);
4831 p += strlen (sym->symbol.name) + 1;
4832 while ((int)p % 4)
4833 {
4834 bfd_put_8 (abfd, 0, p);
4835 p++;
4836 }
4837
4838 /* Head to the next symbol. */
4839 curr_lst_sym++;
4840 }
4841
4842 /* Keep track of where each SOM will finally reside; then look
4843 at the next BFD. */
4844 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
4845 curr_bfd = curr_bfd->next;
4846 som_index++;
4847 }
4848
4849 /* Now scribble out the hash table. */
4850 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
4851 != lst.hash_size * 4)
4852 {
4853 bfd_set_error (bfd_error_system_call);
4854 return false;
4855 }
4856
4857 /* Then the SOM dictionary. */
4858 if (bfd_write ((PTR) som_dict, lst.module_count,
4859 sizeof (struct som_entry), abfd)
4860 != lst.module_count * sizeof (struct som_entry))
4861 {
4862 bfd_set_error (bfd_error_system_call);
4863 return false;
4864 }
4865
4866 /* The library symbols. */
4867 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
4868 != nsyms * sizeof (struct lst_symbol_record))
4869 {
4870 bfd_set_error (bfd_error_system_call);
4871 return false;
4872 }
4873
4874 /* And finally the strings. */
4875 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
4876 {
4877 bfd_set_error (bfd_error_system_call);
4878 return false;
4879 }
4880
4881 return true;
4882 }
4883
4884 /* Write out the LST for the archive.
4885
4886 You'll never believe this is really how armaps are handled in SOM... */
4887
4888 static boolean
4889 som_write_armap (abfd)
4890 bfd *abfd;
4891 {
4892 bfd *curr_bfd;
4893 struct stat statbuf;
4894 unsigned int i, lst_size, nsyms, stringsize;
4895 struct ar_hdr hdr;
4896 struct lst_header lst;
4897 int *p;
4898
4899 /* We'll use this for the archive's date and mode later. */
4900 if (stat (abfd->filename, &statbuf) != 0)
4901 {
4902 bfd_set_error (bfd_error_system_call);
4903 return false;
4904 }
4905 /* Fudge factor. */
4906 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
4907
4908 /* Account for the lst header first. */
4909 lst_size = sizeof (struct lst_header);
4910
4911 /* Start building the LST header. */
4912 lst.system_id = HP9000S800_ID;
4913 lst.a_magic = LIBMAGIC;
4914 lst.version_id = VERSION_ID;
4915 lst.file_time.secs = 0;
4916 lst.file_time.nanosecs = 0;
4917
4918 lst.hash_loc = lst_size;
4919 lst.hash_size = SOM_LST_HASH_SIZE;
4920
4921 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
4922 lst_size += 4 * SOM_LST_HASH_SIZE;
4923
4924 /* We need to count the number of SOMs in this archive. */
4925 curr_bfd = abfd->archive_head;
4926 lst.module_count = 0;
4927 while (curr_bfd != NULL)
4928 {
4929 lst.module_count++;
4930 curr_bfd = curr_bfd->next;
4931 }
4932 lst.module_limit = lst.module_count;
4933 lst.dir_loc = lst_size;
4934 lst_size += sizeof (struct som_entry) * lst.module_count;
4935
4936 /* We don't support import/export tables, auxiliary headers,
4937 or free lists yet. Make the linker work a little harder
4938 to make our life easier. */
4939
4940 lst.export_loc = 0;
4941 lst.export_count = 0;
4942 lst.import_loc = 0;
4943 lst.aux_loc = 0;
4944 lst.aux_size = 0;
4945
4946 /* Count how many symbols we will have on the hash chains and the
4947 size of the associated string table. */
4948 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
4949 return false;
4950
4951 lst_size += sizeof (struct lst_symbol_record) * nsyms;
4952
4953 /* For the string table. One day we might actually use this info
4954 to avoid small seeks/reads when reading archives. */
4955 lst.string_loc = lst_size;
4956 lst.string_size = stringsize;
4957 lst_size += stringsize;
4958
4959 /* SOM ABI says this must be zero. */
4960 lst.free_list = 0;
4961
4962 lst.file_end = lst_size;
4963
4964 /* Compute the checksum. Must happen after the entire lst header
4965 has filled in. */
4966 p = (int *)&lst;
4967 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
4968 lst.checksum ^= *p++;
4969
4970 sprintf (hdr.ar_name, "/ ");
4971 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
4972 sprintf (hdr.ar_uid, "%d", getuid ());
4973 sprintf (hdr.ar_gid, "%d", getgid ());
4974 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
4975 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
4976 hdr.ar_fmag[0] = '`';
4977 hdr.ar_fmag[1] = '\012';
4978
4979 /* Turn any nulls into spaces. */
4980 for (i = 0; i < sizeof (struct ar_hdr); i++)
4981 if (((char *) (&hdr))[i] == '\0')
4982 (((char *) (&hdr))[i]) = ' ';
4983
4984 /* Scribble out the ar header. */
4985 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
4986 != sizeof (struct ar_hdr))
4987 {
4988 bfd_set_error (bfd_error_system_call);
4989 return false;
4990 }
4991
4992 /* Now scribble out the lst header. */
4993 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
4994 != sizeof (struct lst_header))
4995 {
4996 bfd_set_error (bfd_error_system_call);
4997 return false;
4998 }
4999
5000 /* Build and write the armap. */
5001 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst) == false)
5002 return false;
5003
5004 /* Done. */
5005 return true;
5006 }
5007
5008 /* Apparently the extened names are never used, even though they appear
5009 in the SOM ABI. Hmmm. */
5010 static boolean
5011 som_slurp_extended_name_table (abfd)
5012 bfd *abfd;
5013 {
5014 bfd_ardata (abfd)->extended_names = NULL;
5015 return true;
5016 }
5017
5018 /* End of miscellaneous support functions. */
5019
5020 #define som_bfd_debug_info_start bfd_void
5021 #define som_bfd_debug_info_end bfd_void
5022 #define som_bfd_debug_info_accumulate (PROTO(void,(*),(bfd*, struct sec *))) bfd_void
5023
5024 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
5025 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
5026 #define som_truncate_arname bfd_bsd_truncate_arname
5027
5028 #define som_get_lineno (struct lineno_cache_entry *(*)())bfd_nullvoidptr
5029 #define som_close_and_cleanup bfd_generic_close_and_cleanup
5030 #define som_get_section_contents bfd_generic_get_section_contents
5031
5032 #define som_bfd_get_relocated_section_contents \
5033 bfd_generic_get_relocated_section_contents
5034 #define som_bfd_relax_section bfd_generic_relax_section
5035 #define som_bfd_make_debug_symbol \
5036 ((asymbol *(*) PARAMS ((bfd *, void *, unsigned long))) bfd_nullvoidptr)
5037 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
5038 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
5039 #define som_bfd_final_link _bfd_generic_final_link
5040
5041 /* Core file support is in the hpux-core backend. */
5042 #define som_core_file_failing_command _bfd_dummy_core_file_failing_command
5043 #define som_core_file_failing_signal _bfd_dummy_core_file_failing_signal
5044 #define som_core_file_matches_executable_p _bfd_dummy_core_file_matches_executable_p
5045
5046 bfd_target som_vec =
5047 {
5048 "som", /* name */
5049 bfd_target_som_flavour,
5050 true, /* target byte order */
5051 true, /* target headers byte order */
5052 (HAS_RELOC | EXEC_P | /* object flags */
5053 HAS_LINENO | HAS_DEBUG |
5054 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
5055 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
5056 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
5057
5058 /* leading_symbol_char: is the first char of a user symbol
5059 predictable, and if so what is it */
5060 0,
5061 '/', /* ar_pad_char */
5062 16, /* ar_max_namelen */
5063 3, /* minimum alignment */
5064 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5065 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5066 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
5067 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5068 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5069 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
5070 {_bfd_dummy_target,
5071 som_object_p, /* bfd_check_format */
5072 bfd_generic_archive_p,
5073 _bfd_dummy_target
5074 },
5075 {
5076 bfd_false,
5077 som_mkobject,
5078 _bfd_generic_mkarchive,
5079 bfd_false
5080 },
5081 {
5082 bfd_false,
5083 som_write_object_contents,
5084 _bfd_write_archive_contents,
5085 bfd_false,
5086 },
5087 #undef som
5088 JUMP_TABLE (som),
5089 (PTR) 0
5090 };
5091
5092 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */