* som.c (som_build_and_write_symbol_table): New function.
[binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
3
4 Contributed by the Center for Software Science at the
5 University of Utah (pa-gdb-bugs@cs.utah.edu).
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23 #include "bfd.h"
24 #include "sysdep.h"
25
26 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD)
27
28 #include "libbfd.h"
29 #include "som.h"
30 #include "libhppa.h"
31
32 #include <stdio.h>
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/dir.h>
36 #include <signal.h>
37 #include <machine/reg.h>
38 #include <sys/user.h> /* After a.out.h */
39 #include <sys/file.h>
40 #include <errno.h>
41
42 /* Magic not defined in standard HP-UX header files until 8.0 */
43
44 #ifndef CPU_PA_RISC1_0
45 #define CPU_PA_RISC1_0 0x20B
46 #endif /* CPU_PA_RISC1_0 */
47
48 #ifndef CPU_PA_RISC1_1
49 #define CPU_PA_RISC1_1 0x210
50 #endif /* CPU_PA_RISC1_1 */
51
52 #ifndef _PA_RISC1_0_ID
53 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
54 #endif /* _PA_RISC1_0_ID */
55
56 #ifndef _PA_RISC1_1_ID
57 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
58 #endif /* _PA_RISC1_1_ID */
59
60 #ifndef _PA_RISC_MAXID
61 #define _PA_RISC_MAXID 0x2FF
62 #endif /* _PA_RISC_MAXID */
63
64 #ifndef _PA_RISC_ID
65 #define _PA_RISC_ID(__m_num) \
66 (((__m_num) == _PA_RISC1_0_ID) || \
67 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
68 #endif /* _PA_RISC_ID */
69
70 /* SOM allows any one of the four previous relocations to be reused
71 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
72 relocations are always a single byte, using a R_PREV_FIXUP instead
73 of some multi-byte relocation makes object files smaller.
74
75 Note one side effect of using a R_PREV_FIXUP is the relocation that
76 is being repeated moves to the front of the queue. */
77 struct reloc_queue
78 {
79 unsigned char *reloc;
80 unsigned int size;
81 } reloc_queue[4];
82
83 /* This fully describes the symbol types which may be attached to
84 an EXPORT or IMPORT directive. Only SOM uses this formation
85 (ELF has no need for it). */
86 typedef enum
87 {
88 SYMBOL_TYPE_UNKNOWN,
89 SYMBOL_TYPE_ABSOLUTE,
90 SYMBOL_TYPE_CODE,
91 SYMBOL_TYPE_DATA,
92 SYMBOL_TYPE_ENTRY,
93 SYMBOL_TYPE_MILLICODE,
94 SYMBOL_TYPE_PLABEL,
95 SYMBOL_TYPE_PRI_PROG,
96 SYMBOL_TYPE_SEC_PROG,
97 } pa_symbol_type;
98
99 /* Forward declarations */
100
101 static boolean som_mkobject PARAMS ((bfd *));
102 static bfd_target * som_object_setup PARAMS ((bfd *,
103 struct header *,
104 struct som_exec_auxhdr *));
105 static asection * make_unique_section PARAMS ((bfd *, CONST char *, int));
106 static boolean setup_sections PARAMS ((bfd *, struct header *));
107 static bfd_target * som_object_p PARAMS ((bfd *));
108 static boolean som_write_object_contents PARAMS ((bfd *));
109 static boolean som_slurp_string_table PARAMS ((bfd *));
110 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
111 static unsigned int som_get_symtab_upper_bound PARAMS ((bfd *));
112 static unsigned int som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
113 arelent **, asymbol **));
114 static unsigned int som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
115 static unsigned int som_get_symtab PARAMS ((bfd *, asymbol **));
116 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
117 static void som_print_symbol PARAMS ((bfd *, PTR,
118 asymbol *, bfd_print_symbol_type));
119 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
120 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
121 file_ptr, bfd_size_type));
122 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
123 unsigned long));
124 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
125 asymbol **, bfd_vma,
126 CONST char **,
127 CONST char **,
128 unsigned int *));
129 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
130 static asection * som_section_from_subspace_index PARAMS ((bfd *,
131 unsigned int));
132 static int log2 PARAMS ((unsigned int));
133 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
134 asymbol *, PTR,
135 asection *, bfd *));
136 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
137 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
138 struct reloc_queue *));
139 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
140 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
141 struct reloc_queue *));
142 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
143 unsigned int,
144 struct reloc_queue *));
145
146 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
147 unsigned char *, unsigned int *,
148 struct reloc_queue *));
149 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
150 unsigned int *,
151 struct reloc_queue *));
152 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
153 unsigned int *,
154 arelent *, int,
155 struct reloc_queue *));
156 static unsigned long som_count_spaces PARAMS ((bfd *));
157 static unsigned long som_count_subspaces PARAMS ((bfd *));
158 static int compare_syms PARAMS ((asymbol **, asymbol **));
159 static unsigned long som_compute_checksum PARAMS ((bfd *));
160 static boolean som_prep_headers PARAMS ((bfd *));
161 static int som_sizeof_headers PARAMS ((bfd *, boolean));
162 static boolean som_write_headers PARAMS ((bfd *));
163 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
164
165
166 static reloc_howto_type som_hppa_howto_table[] =
167 {
168 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
169 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
170 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
171 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
172 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
173 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
174 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
175 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
176 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
177 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
178 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
179 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
180 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
181 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
182 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
183 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
184 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
185 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
186 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
187 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
188 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
189 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
190 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
191 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
192 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
193 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
194 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
195 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
196 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
197 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
198 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
199 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
200 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
201 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
202 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
203 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
204 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
205 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
206 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
207 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
208 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
209 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
210 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
211 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
212 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
213 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
214 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
215 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
216 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
217 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
218 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
219 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
220 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
221 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
222 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
223 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
224 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
225 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
226 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
227 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
228 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
229 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
230 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
231 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
232 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
233 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
234 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
235 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
236 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
237 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
238 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
239 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
240 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
241 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
242 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
243 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
244 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
245 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
246 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
247 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
248 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
249 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
250 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
251 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
252 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
253 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
254 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
255 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
256 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
257 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
258 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
259 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
260 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
261 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
262 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
263 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
264 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
265 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
266 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
267 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
268 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
269 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
270 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
271 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
272 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
273 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
274 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
275 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
276 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
277 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
278 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
279 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
280 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
281 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
282 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
283 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
284 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
285 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
286 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
287 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
288 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
289 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
290 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
291 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
292 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
293 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
294 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
295 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
296 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
297 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
298 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
299 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
300 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
301 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
302 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
303 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
304 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
305 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
306 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
307 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
308 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
309 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
310 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
311 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
312 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
313 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
314 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
315 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
316 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
317 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
318 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
319 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
320 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
321 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
322 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
323 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
324 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
325 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
326 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
327 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
328 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
329 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
330 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
331 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
332 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
333 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
334 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
335 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
336 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
337 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
338 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
339 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
340 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
341 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
342 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
343 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
344 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
345 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
346 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
347 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
348 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
349 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
350 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
351 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
352 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
353 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
354 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
355 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
356 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
357 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
358 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
359 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
360 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
361 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
362 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
363 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
364 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
365 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
366 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
367 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
368 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
369 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
370 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
371 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
372 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
373 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
374 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
375 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
376 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
377 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
378 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
379 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
380 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
381 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
382 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
383 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
384 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
385 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
386 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
387 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
388 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
389 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
390 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
391 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
392 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
393 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
394 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
395 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
396 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
397 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
398 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
399 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
400 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
401 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
402 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
403 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
404 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
405 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
406 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
407 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
408 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
409 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
410 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
411 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
412 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
413 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
414 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
415 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
416 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
417 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
418 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
419 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
420 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
421 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
422 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
423 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
424 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
425 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
426
427
428 /* Initialize the SOM relocation queue. By definition the queue holds
429 the last four multibyte fixups. */
430
431 static void
432 som_initialize_reloc_queue (queue)
433 struct reloc_queue *queue;
434 {
435 queue[0].reloc = NULL;
436 queue[0].size = 0;
437 queue[1].reloc = NULL;
438 queue[1].size = 0;
439 queue[2].reloc = NULL;
440 queue[2].size = 0;
441 queue[3].reloc = NULL;
442 queue[3].size = 0;
443 }
444
445 /* Insert a new relocation into the relocation queue. */
446
447 static void
448 som_reloc_queue_insert (p, size, queue)
449 unsigned char *p;
450 unsigned int size;
451 struct reloc_queue *queue;
452 {
453 queue[3].reloc = queue[2].reloc;
454 queue[3].size = queue[2].size;
455 queue[2].reloc = queue[1].reloc;
456 queue[2].size = queue[1].size;
457 queue[1].reloc = queue[0].reloc;
458 queue[1].size = queue[0].size;
459 queue[0].reloc = p;
460 queue[0].size = size;
461 }
462
463 /* When an entry in the relocation queue is reused, the entry moves
464 to the front of the queue. */
465
466 static void
467 som_reloc_queue_fix (queue, index)
468 struct reloc_queue *queue;
469 unsigned int index;
470 {
471 if (index == 0)
472 return;
473
474 if (index == 1)
475 {
476 unsigned char *tmp1 = queue[0].reloc;
477 unsigned int tmp2 = queue[0].size;
478 queue[0].reloc = queue[1].reloc;
479 queue[0].size = queue[1].size;
480 queue[1].reloc = tmp1;
481 queue[1].size = tmp2;
482 return;
483 }
484
485 if (index == 2)
486 {
487 unsigned char *tmp1 = queue[0].reloc;
488 unsigned int tmp2 = queue[0].size;
489 queue[0].reloc = queue[2].reloc;
490 queue[0].size = queue[2].size;
491 queue[2].reloc = queue[1].reloc;
492 queue[2].size = queue[1].size;
493 queue[1].reloc = tmp1;
494 queue[1].size = tmp2;
495 return;
496 }
497
498 if (index == 3)
499 {
500 unsigned char *tmp1 = queue[0].reloc;
501 unsigned int tmp2 = queue[0].size;
502 queue[0].reloc = queue[3].reloc;
503 queue[0].size = queue[3].size;
504 queue[3].reloc = queue[2].reloc;
505 queue[3].size = queue[2].size;
506 queue[2].reloc = queue[1].reloc;
507 queue[2].size = queue[1].size;
508 queue[1].reloc = tmp1;
509 queue[1].size = tmp2;
510 return;
511 }
512 abort();
513 }
514
515 /* Search for a particular relocation in the relocation queue. */
516
517 static int
518 som_reloc_queue_find (p, size, queue)
519 unsigned char *p;
520 unsigned int size;
521 struct reloc_queue *queue;
522 {
523 if (!bcmp (p, queue[0].reloc, size)
524 && size == queue[0].size)
525 return 0;
526 if (!bcmp (p, queue[1].reloc, size)
527 && size == queue[1].size)
528 return 1;
529 if (!bcmp (p, queue[2].reloc, size)
530 && size == queue[2].size)
531 return 2;
532 if (!bcmp (p, queue[3].reloc, size)
533 && size == queue[3].size)
534 return 3;
535 return -1;
536 }
537
538 static unsigned char *
539 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
540 bfd *abfd;
541 int *subspace_reloc_sizep;
542 unsigned char *p;
543 unsigned int size;
544 struct reloc_queue *queue;
545 {
546 int queue_index = som_reloc_queue_find (p, size, queue);
547
548 if (queue_index != -1)
549 {
550 /* Found this in a previous fixup. Undo the fixup we
551 just built and use R_PREV_FIXUP instead. We saved
552 a total of size - 1 bytes in the fixup stream. */
553 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
554 p += 1;
555 *subspace_reloc_sizep += 1;
556 som_reloc_queue_fix (queue, queue_index);
557 }
558 else
559 {
560 som_reloc_queue_insert (p, size, queue);
561 *subspace_reloc_sizep += size;
562 p += size;
563 }
564 return p;
565 }
566
567 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
568 bytes without any relocation. Update the size of the subspace
569 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
570 current pointer into the relocation stream. */
571
572 static unsigned char *
573 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
574 bfd *abfd;
575 unsigned int skip;
576 unsigned char *p;
577 unsigned int *subspace_reloc_sizep;
578 struct reloc_queue *queue;
579 {
580 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
581 then R_PREV_FIXUPs to get the difference down to a
582 reasonable size. */
583 if (skip >= 0x1000000)
584 {
585 skip -= 0x1000000;
586 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
587 bfd_put_8 (abfd, 0xff, p + 1);
588 bfd_put_16 (abfd, 0xffff, p + 2);
589 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
590 while (skip >= 0x1000000)
591 {
592 skip -= 0x1000000;
593 bfd_put_8 (abfd, R_PREV_FIXUP, p);
594 p++;
595 *subspace_reloc_sizep += 1;
596 /* No need to adjust queue here since we are repeating the
597 most recent fixup. */
598 }
599 }
600
601 /* The difference must be less than 0x1000000. Use one
602 more R_NO_RELOCATION entry to get to the right difference. */
603 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
604 {
605 /* Difference can be handled in a simple single-byte
606 R_NO_RELOCATION entry. */
607 if (skip <= 0x60)
608 {
609 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
610 *subspace_reloc_sizep += 1;
611 p++;
612 }
613 /* Handle it with a two byte R_NO_RELOCATION entry. */
614 else if (skip <= 0x1000)
615 {
616 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
617 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
618 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
619 }
620 /* Handle it with a three byte R_NO_RELOCATION entry. */
621 else
622 {
623 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
624 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
625 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
626 }
627 }
628 /* Ugh. Punt and use a 4 byte entry. */
629 else if (skip > 0)
630 {
631 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
632 bfd_put_8 (abfd, skip >> 16, p + 1);
633 bfd_put_16 (abfd, skip, p + 2);
634 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
635 }
636 return p;
637 }
638
639 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
640 from a BFD relocation. Update the size of the subspace relocation
641 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
642 into the relocation stream. */
643
644 static unsigned char *
645 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
646 bfd *abfd;
647 int addend;
648 unsigned char *p;
649 unsigned int *subspace_reloc_sizep;
650 struct reloc_queue *queue;
651 {
652 if ((unsigned)(addend) + 0x80 < 0x100)
653 {
654 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
655 bfd_put_8 (abfd, addend, p + 1);
656 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
657 }
658 else if ((unsigned) (addend) + 0x8000 < 0x10000)
659 {
660 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
661 bfd_put_16 (abfd, addend, p + 1);
662 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
663 }
664 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
665 {
666 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
667 bfd_put_8 (abfd, addend >> 16, p + 1);
668 bfd_put_16 (abfd, addend, p + 2);
669 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
670 }
671 else
672 {
673 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
674 bfd_put_32 (abfd, addend, p + 1);
675 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
676 }
677 return p;
678 }
679
680 /* Handle a single function call relocation. */
681
682 static unsigned char *
683 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
684 bfd *abfd;
685 unsigned char *p;
686 unsigned int *subspace_reloc_sizep;
687 arelent *bfd_reloc;
688 int sym_num;
689 struct reloc_queue *queue;
690 {
691 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
692 int rtn_bits = arg_bits & 0x3;
693 int type, done = 0;
694
695 /* You'll never believe all this is necessary to handle relocations
696 for function calls. Having to compute and pack the argument
697 relocation bits is the real nightmare.
698
699 If you're interested in how this works, just forget it. You really
700 do not want to know about this braindamage. */
701
702 /* First see if this can be done with a "simple" relocation. Simple
703 relocations have a symbol number < 0x100 and have simple encodings
704 of argument relocations. */
705
706 if (sym_num < 0x100)
707 {
708 switch (arg_bits)
709 {
710 case 0:
711 case 1:
712 type = 0;
713 break;
714 case 1 << 8:
715 case 1 << 8 | 1:
716 type = 1;
717 break;
718 case 1 << 8 | 1 << 6:
719 case 1 << 8 | 1 << 6 | 1:
720 type = 2;
721 break;
722 case 1 << 8 | 1 << 6 | 1 << 4:
723 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
724 type = 3;
725 break;
726 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
727 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
728 type = 4;
729 break;
730 default:
731 /* Not one of the easy encodings. This will have to be
732 handled by the more complex code below. */
733 type = -1;
734 break;
735 }
736 if (type != -1)
737 {
738 /* Account for the return value too. */
739 if (rtn_bits)
740 type += 5;
741
742 /* Emit a 2 byte relocation. Then see if it can be handled
743 with a relocation which is already in the relocation queue. */
744 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
745 bfd_put_8 (abfd, sym_num, p + 1);
746 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
747 done = 1;
748 }
749 }
750
751 /* If this could not be handled with a simple relocation, then do a hard
752 one. Hard relocations occur if the symbol number was too high or if
753 the encoding of argument relocation bits is too complex. */
754 if (! done)
755 {
756 /* Don't ask about these magic sequences. I took them straight
757 from gas-1.36 which took them from the a.out man page. */
758 type = rtn_bits;
759 if ((arg_bits >> 6 & 0xf) == 0xe)
760 type += 9 * 40;
761 else
762 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
763 if ((arg_bits >> 2 & 0xf) == 0xe)
764 type += 9 * 4;
765 else
766 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
767
768 /* Output the first two bytes of the relocation. These describe
769 the length of the relocation and encoding style. */
770 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
771 + 2 * (sym_num >= 0x100) + (type >= 0x100),
772 p);
773 bfd_put_8 (abfd, type, p + 1);
774
775 /* Now output the symbol index and see if this bizarre relocation
776 just happened to be in the relocation queue. */
777 if (sym_num < 0x100)
778 {
779 bfd_put_8 (abfd, sym_num, p + 2);
780 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
781 }
782 else
783 {
784 bfd_put_8 (abfd, sym_num >> 16, p + 2);
785 bfd_put_16 (abfd, sym_num, p + 3);
786 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
787 }
788 }
789 return p;
790 }
791
792
793 /* Return the logarithm of X, base 2, considering X unsigned.
794 Abort if X is not a power of two -- this should never happen (FIXME:
795 It will happen on corrupt executables. GDB should give an error, not
796 a coredump, in that case). */
797
798 static int
799 log2 (x)
800 unsigned int x;
801 {
802 int log = 0;
803
804 /* Test for 0 or a power of 2. */
805 if (x == 0 || x != (x & -x))
806 abort();
807
808 while ((x >>= 1) != 0)
809 log++;
810 return log;
811 }
812
813 static bfd_reloc_status_type
814 hppa_som_reloc (abfd, reloc_entry, symbol_in, data, input_section, output_bfd)
815 bfd *abfd;
816 arelent *reloc_entry;
817 asymbol *symbol_in;
818 PTR data;
819 asection *input_section;
820 bfd *output_bfd;
821 {
822 if (output_bfd)
823 {
824 reloc_entry->address += input_section->output_offset;
825 return bfd_reloc_ok;
826 }
827 return bfd_reloc_ok;
828 }
829
830 /* Given a generic HPPA relocation type, the instruction format,
831 and a field selector, return an appropriate SOM reloation.
832
833 FIXME. Need to handle %RR, %LR and the like as field selectors.
834 These will need to generate multiple SOM relocations. */
835
836 int **
837 hppa_som_gen_reloc_type (abfd, base_type, format, field)
838 bfd *abfd;
839 int base_type;
840 int format;
841 int field;
842 {
843 int *final_type, **final_types;
844
845 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 2);
846 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
847
848
849 final_types[0] = final_type;
850 final_types[1] = NULL;
851
852 /* Default to the basic relocation passed in. */
853 *final_type = base_type;
854
855 switch (base_type)
856 {
857 case R_HPPA:
858 /* PLABELs get their own relocation type. */
859 if (field == e_psel
860 || field == e_lpsel
861 || field == e_rpsel)
862 {
863 /* A PLABEL relocation that has a size of 32 bits must
864 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
865 if (format == 32)
866 *final_type = R_DATA_PLABEL;
867 else
868 *final_type = R_CODE_PLABEL;
869 }
870 /* A relocatoin in the data space is always a full 32bits. */
871 else if (format == 32)
872 *final_type = R_DATA_ONE_SYMBOL;
873
874 break;
875
876 case R_HPPA_GOTOFF:
877 /* More PLABEL special cases. */
878 if (field == e_psel
879 || field == e_lpsel
880 || field == e_rpsel)
881 *final_type = R_DATA_PLABEL;
882 break;
883
884 case R_HPPA_NONE:
885 case R_HPPA_ABS_CALL:
886 case R_HPPA_PCREL_CALL:
887 case R_HPPA_COMPLEX:
888 case R_HPPA_COMPLEX_PCREL_CALL:
889 case R_HPPA_COMPLEX_ABS_CALL:
890 /* Right now we can default all these. */
891 break;
892 }
893 return final_types;
894 }
895
896 /* Return the address of the correct entry in the PA SOM relocation
897 howto table. */
898
899 static reloc_howto_type *
900 som_bfd_reloc_type_lookup (arch, code)
901 bfd_arch_info_type *arch;
902 bfd_reloc_code_real_type code;
903 {
904 if ((int) code < (int) R_NO_RELOCATION + 255)
905 {
906 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
907 return &som_hppa_howto_table[(int) code];
908 }
909
910 return (reloc_howto_type *) 0;
911 }
912
913 /* Perform some initialization for an object. Save results of this
914 initialization in the BFD. */
915
916 static bfd_target *
917 som_object_setup (abfd, file_hdrp, aux_hdrp)
918 bfd *abfd;
919 struct header *file_hdrp;
920 struct som_exec_auxhdr *aux_hdrp;
921 {
922 asection *text, *data, *bss;
923
924 /* som_mkobject will set bfd_error if som_mkobject fails. */
925 if (som_mkobject (abfd) != true)
926 return 0;
927
928 /* Make the standard .text, .data, and .bss sections so that tools
929 which assume those names work (size for example). They will have
930 no contents, but the sizes and such will reflect those of the
931 $CODE$, $DATA$, and $BSS$ subspaces respectively.
932
933 FIXME: Should check return status from bfd_make_section calls below. */
934
935 text = bfd_make_section (abfd, ".text");
936 data = bfd_make_section (abfd, ".data");
937 bss = bfd_make_section (abfd, ".bss");
938
939 text->_raw_size = aux_hdrp->exec_tsize;
940 data->_raw_size = aux_hdrp->exec_dsize;
941 bss->_raw_size = aux_hdrp->exec_bsize;
942
943 text->flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_CODE);
944 data->flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS);
945 bss->flags = (SEC_ALLOC | SEC_IS_COMMON);
946
947 /* The virtual memory addresses of the sections */
948 text->vma = aux_hdrp->exec_tmem;
949 data->vma = aux_hdrp->exec_dmem;
950 bss->vma = aux_hdrp->exec_bfill;
951
952 /* The file offsets of the sections */
953 text->filepos = aux_hdrp->exec_tfile;
954 data->filepos = aux_hdrp->exec_dfile;
955
956 /* The file offsets of the relocation info */
957 text->rel_filepos = 0;
958 data->rel_filepos = 0;
959
960 /* Set BFD flags based on what information is available in the SOM. */
961 abfd->flags = NO_FLAGS;
962 if (! file_hdrp->entry_offset)
963 abfd->flags |= HAS_RELOC;
964 else
965 abfd->flags |= EXEC_P;
966 if (file_hdrp->symbol_total)
967 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
968
969 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
970 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 0);
971 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
972
973 /* Initialize the saved symbol table and string table to NULL.
974 Save important offsets and sizes from the SOM header into
975 the BFD. */
976 obj_som_stringtab (abfd) = (char *) NULL;
977 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
978 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
979 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
980 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
981 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
982
983 return abfd->xvec;
984 }
985
986 /* Create a new BFD section for NAME. If NAME already exists, then create a
987 new unique name, with NAME as the prefix. This exists because SOM .o files
988 may have more than one $CODE$ subspace. */
989
990 static asection *
991 make_unique_section (abfd, name, num)
992 bfd *abfd;
993 CONST char *name;
994 int num;
995 {
996 asection *sect;
997 char *newname;
998 char altname[100];
999
1000 sect = bfd_make_section (abfd, name);
1001 while (!sect)
1002 {
1003 sprintf (altname, "%s-%d", name, num++);
1004 sect = bfd_make_section (abfd, altname);
1005 }
1006
1007 newname = bfd_alloc (abfd, strlen (sect->name) + 1);
1008 strcpy (newname, sect->name);
1009
1010 sect->name = newname;
1011 return sect;
1012 }
1013
1014 /* Convert all of the space and subspace info into BFD sections. Each space
1015 contains a number of subspaces, which in turn describe the mapping between
1016 regions of the exec file, and the address space that the program runs in.
1017 BFD sections which correspond to spaces will overlap the sections for the
1018 associated subspaces. */
1019
1020 static boolean
1021 setup_sections (abfd, file_hdr)
1022 bfd *abfd;
1023 struct header *file_hdr;
1024 {
1025 char *space_strings;
1026 int space_index;
1027 unsigned int total_subspaces = 0;
1028
1029 /* First, read in space names */
1030
1031 space_strings = alloca (file_hdr->space_strings_size);
1032 if (!space_strings)
1033 return false;
1034
1035 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
1036 return false;
1037 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1038 != file_hdr->space_strings_size)
1039 return false;
1040
1041 /* Loop over all of the space dictionaries, building up sections */
1042 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1043 {
1044 struct space_dictionary_record space;
1045 struct subspace_dictionary_record subspace, save_subspace;
1046 int subspace_index;
1047 asection *space_asect;
1048
1049 /* Read the space dictionary element */
1050 if (bfd_seek (abfd, file_hdr->space_location
1051 + space_index * sizeof space, SEEK_SET) < 0)
1052 return false;
1053 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1054 return false;
1055
1056 /* Setup the space name string */
1057 space.name.n_name = space.name.n_strx + space_strings;
1058
1059 /* Make a section out of it */
1060 space_asect = make_unique_section (abfd, space.name.n_name, space_index);
1061 if (!space_asect)
1062 return false;
1063
1064 /* Now, read in the first subspace for this space */
1065 if (bfd_seek (abfd, file_hdr->subspace_location
1066 + space.subspace_index * sizeof subspace,
1067 SEEK_SET) < 0)
1068 return false;
1069 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1070 return false;
1071 /* Seek back to the start of the subspaces for loop below */
1072 if (bfd_seek (abfd, file_hdr->subspace_location
1073 + space.subspace_index * sizeof subspace,
1074 SEEK_SET) < 0)
1075 return false;
1076
1077 /* Setup the start address and file loc from the first subspace record */
1078 space_asect->vma = subspace.subspace_start;
1079 space_asect->filepos = subspace.file_loc_init_value;
1080 space_asect->alignment_power = log2 (subspace.alignment);
1081
1082 /* Initialize save_subspace so we can reliably determine if this
1083 loop placed any useful values into it. */
1084 bzero (&save_subspace, sizeof (struct subspace_dictionary_record));
1085
1086 /* Loop over the rest of the subspaces, building up more sections */
1087 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1088 subspace_index++)
1089 {
1090 asection *subspace_asect;
1091
1092 /* Read in the next subspace */
1093 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1094 != sizeof subspace)
1095 return false;
1096
1097 /* Setup the subspace name string */
1098 subspace.name.n_name = subspace.name.n_strx + space_strings;
1099
1100 /* Make a section out of this subspace */
1101 subspace_asect = make_unique_section (abfd, subspace.name.n_name,
1102 space.subspace_index + subspace_index);
1103
1104 if (!subspace_asect)
1105 return false;
1106
1107 /* Keep an easy mapping between subspaces and sections. */
1108 som_section_data (subspace_asect)->subspace_index
1109 = total_subspaces++;
1110
1111 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1112 by the access_control_bits in the subspace header. */
1113 switch (subspace.access_control_bits >> 4)
1114 {
1115 /* Readonly data. */
1116 case 0x0:
1117 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1118 break;
1119
1120 /* Normal data. */
1121 case 0x1:
1122 subspace_asect->flags |= SEC_DATA;
1123 break;
1124
1125 /* Readonly code and the gateways.
1126 Gateways have other attributes which do not map
1127 into anything BFD knows about. */
1128 case 0x2:
1129 case 0x4:
1130 case 0x5:
1131 case 0x6:
1132 case 0x7:
1133 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1134 break;
1135
1136 /* dynamic (writable) code. */
1137 case 0x3:
1138 subspace_asect->flags |= SEC_CODE;
1139 break;
1140 }
1141
1142 if (subspace.dup_common || subspace.is_common)
1143 subspace_asect->flags |= SEC_IS_COMMON;
1144 else
1145 subspace_asect->flags |= SEC_HAS_CONTENTS;
1146 if (subspace.is_loadable)
1147 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1148 if (subspace.code_only)
1149 subspace_asect->flags |= SEC_CODE;
1150
1151 /* This subspace has relocations.
1152 The fixup_request_quantity is a byte count for the number of
1153 entries in the relocation stream; it is not the actual number
1154 of relocations in the subspace. */
1155 if (subspace.fixup_request_quantity != 0)
1156 {
1157 subspace_asect->flags |= SEC_RELOC;
1158 subspace_asect->rel_filepos = subspace.fixup_request_index;
1159 som_section_data (subspace_asect)->reloc_size
1160 = subspace.fixup_request_quantity;
1161 /* We can not determine this yet. When we read in the
1162 relocation table the correct value will be filled in. */
1163 subspace_asect->reloc_count = -1;
1164 }
1165
1166 /* Update save_subspace if appropriate. */
1167 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1168 save_subspace = subspace;
1169
1170 subspace_asect->vma = subspace.subspace_start;
1171 subspace_asect->_cooked_size = subspace.subspace_length;
1172 subspace_asect->_raw_size = subspace.initialization_length;
1173 subspace_asect->alignment_power = log2 (subspace.alignment);
1174 subspace_asect->filepos = subspace.file_loc_init_value;
1175 }
1176
1177 /* Yow! there is no subspace within the space which actually
1178 has initialized information in it; this should never happen
1179 as far as I know. */
1180 if (!save_subspace.file_loc_init_value)
1181 abort ();
1182
1183 /* Setup the sizes for the space section based upon the info in the
1184 last subspace of the space. */
1185 space_asect->_cooked_size = save_subspace.subspace_start
1186 - space_asect->vma + save_subspace.subspace_length;
1187 space_asect->_raw_size = save_subspace.file_loc_init_value
1188 - space_asect->filepos + save_subspace.initialization_length;
1189 }
1190 return true;
1191 }
1192
1193 /* Read in a SOM object and make it into a BFD. */
1194
1195 static bfd_target *
1196 som_object_p (abfd)
1197 bfd *abfd;
1198 {
1199 struct header file_hdr;
1200 struct som_exec_auxhdr aux_hdr;
1201
1202 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
1203 {
1204 bfd_error = system_call_error;
1205 return 0;
1206 }
1207
1208 if (!_PA_RISC_ID (file_hdr.system_id))
1209 {
1210 bfd_error = wrong_format;
1211 return 0;
1212 }
1213
1214 switch (file_hdr.a_magic)
1215 {
1216 case RELOC_MAGIC:
1217 case EXEC_MAGIC:
1218 case SHARE_MAGIC:
1219 case DEMAND_MAGIC:
1220 #ifdef DL_MAGIC
1221 case DL_MAGIC:
1222 #endif
1223 #ifdef SHL_MAGIC
1224 case SHL_MAGIC:
1225 #endif
1226 #ifdef EXECLIBMAGIC
1227 case EXECLIBMAGIC:
1228 #endif
1229 break;
1230 default:
1231 bfd_error = wrong_format;
1232 return 0;
1233 }
1234
1235 if (file_hdr.version_id != VERSION_ID
1236 && file_hdr.version_id != NEW_VERSION_ID)
1237 {
1238 bfd_error = wrong_format;
1239 return 0;
1240 }
1241
1242 /* If the aux_header_size field in the file header is zero, then this
1243 object is an incomplete executable (a .o file). Do not try to read
1244 a non-existant auxiliary header. */
1245 bzero (&aux_hdr, sizeof (struct som_exec_auxhdr));
1246 if (file_hdr.aux_header_size != 0)
1247 {
1248 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
1249 {
1250 bfd_error = wrong_format;
1251 return 0;
1252 }
1253 }
1254
1255 if (!setup_sections (abfd, &file_hdr))
1256 {
1257 /* setup_sections does not bubble up a bfd error code. */
1258 bfd_error = bad_value;
1259 return 0;
1260 }
1261
1262 /* This appears to be a valid SOM object. Do some initialization. */
1263 return som_object_setup (abfd, &file_hdr, &aux_hdr);
1264 }
1265
1266 /* Create a SOM object. */
1267
1268 static boolean
1269 som_mkobject (abfd)
1270 bfd *abfd;
1271 {
1272 /* Allocate memory to hold backend information. */
1273 abfd->tdata.som_data = (struct som_data_struct *)
1274 bfd_zalloc (abfd, sizeof (struct som_data_struct));
1275 if (abfd->tdata.som_data == NULL)
1276 {
1277 bfd_error = no_memory;
1278 return false;
1279 }
1280 obj_som_file_hdr (abfd) = bfd_zalloc (abfd, sizeof (struct header));
1281 if (obj_som_file_hdr (abfd) == NULL)
1282
1283 {
1284 bfd_error = no_memory;
1285 return false;
1286 }
1287 return true;
1288 }
1289
1290 /* Initialize some information in the file header. This routine makes
1291 not attempt at doing the right thing for a full executable; it
1292 is only meant to handle relocatable objects. */
1293
1294 static boolean
1295 som_prep_headers (abfd)
1296 bfd *abfd;
1297 {
1298 struct header *file_hdr = obj_som_file_hdr (abfd);
1299 asection *section;
1300
1301 /* FIXME. This should really be conditional based on whether or not
1302 PA1.1 instructions/registers have been used. */
1303 file_hdr->system_id = HP9000S800_ID;
1304
1305 /* FIXME. Only correct for building relocatable objects. */
1306 if (abfd->flags & EXEC_P)
1307 abort ();
1308 else
1309 file_hdr->a_magic = RELOC_MAGIC;
1310
1311 /* Only new format SOM is supported. */
1312 file_hdr->version_id = NEW_VERSION_ID;
1313
1314 /* These fields are optional, and embedding timestamps is not always
1315 a wise thing to do, it makes comparing objects during a multi-stage
1316 bootstrap difficult. */
1317 file_hdr->file_time.secs = 0;
1318 file_hdr->file_time.nanosecs = 0;
1319
1320 if (abfd->flags & EXEC_P)
1321 abort ();
1322 else
1323 {
1324 file_hdr->entry_space = 0;
1325 file_hdr->entry_subspace = 0;
1326 file_hdr->entry_offset = 0;
1327 }
1328
1329 /* FIXME. I do not know if we ever need to put anything other
1330 than zero in this field. */
1331 file_hdr->presumed_dp = 0;
1332
1333 /* Now iterate over the sections translating information from
1334 BFD sections to SOM spaces/subspaces. */
1335
1336 for (section = abfd->sections; section != NULL; section = section->next)
1337 {
1338 /* Ignore anything which has not been marked as a space or
1339 subspace. */
1340 if (som_section_data (section)->is_space == 0
1341
1342 && som_section_data (section)->is_subspace == 0)
1343 continue;
1344
1345 if (som_section_data (section)->is_space)
1346 {
1347 /* Set space attributes. Note most attributes of SOM spaces
1348 are set based on the subspaces it contains. */
1349 som_section_data (section)->space_dict.loader_fix_index = -1;
1350 som_section_data (section)->space_dict.init_pointer_index = -1;
1351 }
1352 else
1353 {
1354 /* Set subspace attributes. Basic stuff is done here, additional
1355 attributes are filled in later as more information becomes
1356 available. */
1357 if (section->flags & SEC_IS_COMMON)
1358 {
1359 som_section_data (section)->subspace_dict.dup_common = 1;
1360 som_section_data (section)->subspace_dict.is_common = 1;
1361 }
1362
1363 if (section->flags & SEC_ALLOC)
1364 som_section_data (section)->subspace_dict.is_loadable = 1;
1365
1366 if (section->flags & SEC_CODE)
1367 som_section_data (section)->subspace_dict.code_only = 1;
1368
1369 som_section_data (section)->subspace_dict.subspace_start =
1370 section->vma;
1371 som_section_data (section)->subspace_dict.subspace_length =
1372 bfd_section_size (abfd, section);
1373 som_section_data (section)->subspace_dict.initialization_length =
1374 bfd_section_size (abfd, section);
1375 som_section_data (section)->subspace_dict.alignment =
1376 1 << section->alignment_power;
1377 }
1378 }
1379 return true;
1380 }
1381
1382 /* Count and return the number of spaces attached to the given BFD. */
1383
1384 static unsigned long
1385 som_count_spaces (abfd)
1386 bfd *abfd;
1387 {
1388 int count = 0;
1389 asection *section;
1390
1391 for (section = abfd->sections; section != NULL; section = section->next)
1392 count += som_section_data (section)->is_space;
1393
1394 return count;
1395 }
1396
1397 /* Count the number of subspaces attached to the given BFD. */
1398
1399 static unsigned long
1400 som_count_subspaces (abfd)
1401 bfd *abfd;
1402 {
1403 int count = 0;
1404 asection *section;
1405
1406 for (section = abfd->sections; section != NULL; section = section->next)
1407 count += som_section_data (section)->is_subspace;
1408
1409 return count;
1410 }
1411
1412 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
1413
1414 We desire symbols to be ordered starting with the symbol with the
1415 highest relocation count down to the symbol with the lowest relocation
1416 count. Doing so compacts the relocation stream. */
1417
1418 static int
1419 compare_syms (sym1, sym2)
1420 asymbol **sym1;
1421 asymbol **sym2;
1422
1423 {
1424 unsigned int count1, count2;
1425
1426 /* Get relocation count for each symbol. Note that the count
1427 is stored in the udata pointer for section symbols! */
1428 if ((*sym1)->flags & BSF_SECTION_SYM)
1429 count1 = (int)(*sym1)->udata;
1430 else
1431 count1 = (*som_symbol_data ((*sym1)))->reloc_count;
1432
1433 if ((*sym2)->flags & BSF_SECTION_SYM)
1434 count2 = (int)(*sym2)->udata;
1435 else
1436 count2 = (*som_symbol_data ((*sym2)))->reloc_count;
1437
1438 /* Return the appropriate value. */
1439 if (count1 < count2)
1440 return 1;
1441 else if (count1 > count2)
1442 return -1;
1443 return 0;
1444 }
1445
1446 /* Finally, scribble out the various headers to the disk. */
1447
1448 static boolean
1449 som_write_headers (abfd)
1450 bfd *abfd;
1451 {
1452 int num_spaces = som_count_spaces (abfd);
1453 int i;
1454 int subspace_index = 0;
1455 file_ptr location;
1456 asection *section;
1457
1458 /* Subspaces are written first so that we can set up information
1459 about them in their containing spaces as the subspace is written. */
1460
1461 /* Seek to the start of the subspace dictionary records. */
1462 location = obj_som_file_hdr (abfd)->subspace_location;
1463 bfd_seek (abfd, location, SEEK_SET);
1464 section = abfd->sections;
1465 /* Now for each loadable space write out records for its subspaces. */
1466 for (i = 0; i < num_spaces; i++)
1467 {
1468 asection *subsection;
1469
1470 /* Find a space. */
1471 while (som_section_data (section)->is_space == 0)
1472 section = section->next;
1473
1474 /* Now look for all its subspaces. */
1475 for (subsection = abfd->sections;
1476 subsection != NULL;
1477 subsection = subsection->next)
1478 {
1479
1480 /* Skip any section which does not correspond to a space
1481 or subspace. Or does not have SEC_ALLOC set (and therefore
1482 has no real bits on the disk). */
1483 if (som_section_data (subsection)->is_subspace == 0
1484 || som_section_data (subsection)->containing_space != section
1485 || (subsection->flags & SEC_ALLOC) == 0)
1486 continue;
1487
1488 /* If this is the first subspace for this space, then save
1489 the index of the subspace in its containing space. Also
1490 set "is_loadable" in the containing space. */
1491
1492 if (som_section_data (section)->space_dict.subspace_quantity == 0)
1493 {
1494 som_section_data (section)->space_dict.is_loadable = 1;
1495 som_section_data (section)->space_dict.subspace_index
1496 = subspace_index;
1497 }
1498
1499 /* Increment the number of subspaces seen and the number of
1500 subspaces contained within the current space. */
1501 subspace_index++;
1502 som_section_data (section)->space_dict.subspace_quantity++;
1503
1504 /* Mark the index of the current space within the subspace's
1505 dictionary record. */
1506 som_section_data (subsection)->subspace_dict.space_index = i;
1507
1508 /* Dump the current subspace header. */
1509 if (bfd_write ((PTR) &som_section_data (subsection)->subspace_dict,
1510 sizeof (struct subspace_dictionary_record), 1, abfd)
1511 != sizeof (struct subspace_dictionary_record))
1512 {
1513 bfd_error = system_call_error;
1514 return false;
1515 }
1516 }
1517 /* Goto the next section. */
1518 section = section->next;
1519 }
1520
1521 /* Now repeat the process for unloadable subspaces. */
1522 section = abfd->sections;
1523 /* Now for each space write out records for its subspaces. */
1524 for (i = 0; i < num_spaces; i++)
1525 {
1526 asection *subsection;
1527
1528 /* Find a space. */
1529 while (som_section_data (section)->is_space == 0)
1530 section = section->next;
1531
1532 /* Now look for all its subspaces. */
1533 for (subsection = abfd->sections;
1534 subsection != NULL;
1535 subsection = subsection->next)
1536 {
1537
1538 /* Skip any section which does not correspond to a space or
1539 subspace, or which SEC_ALLOC set (and therefore handled
1540 in the loadable spaces/subspaces code above. */
1541
1542 if (som_section_data (subsection)->is_subspace == 0
1543 || som_section_data (subsection)->containing_space != section
1544 || (subsection->flags & SEC_ALLOC) != 0)
1545 continue;
1546
1547 /* If this is the first subspace for this space, then save
1548 the index of the subspace in its containing space. Clear
1549 "is_loadable". */
1550
1551 if (som_section_data (section)->space_dict.subspace_quantity == 0)
1552 {
1553 som_section_data (section)->space_dict.is_loadable = 0;
1554 som_section_data (section)->space_dict.subspace_index
1555 = subspace_index;
1556 }
1557
1558 /* Increment the number of subspaces seen and the number of
1559 subspaces contained within the current space. */
1560 som_section_data (section)->space_dict.subspace_quantity++;
1561 subspace_index++;
1562
1563 /* Mark the index of the current space within the subspace's
1564 dictionary record. */
1565 som_section_data (subsection)->subspace_dict.space_index = i;
1566
1567 /* Dump this subspace header. */
1568 if (bfd_write ((PTR) &som_section_data (subsection)->subspace_dict,
1569 sizeof (struct subspace_dictionary_record), 1, abfd)
1570 != sizeof (struct subspace_dictionary_record))
1571 {
1572 bfd_error = system_call_error;
1573 return false;
1574 }
1575 }
1576 /* Goto the next section. */
1577 section = section->next;
1578 }
1579
1580 /* All the subspace dictiondary records are written, and all the
1581 fields are set up in the space dictionary records.
1582
1583 Seek to the right location and start writing the space
1584 dictionary records. */
1585 location = obj_som_file_hdr (abfd)->space_location;
1586 bfd_seek (abfd, location, SEEK_SET);
1587
1588 section = abfd->sections;
1589 for (i = 0; i < num_spaces; i++)
1590 {
1591
1592 /* Find a space. */
1593 while (som_section_data (section)->is_space == 0)
1594 section = section->next;
1595
1596 /* Dump its header */
1597 if (bfd_write ((PTR) &som_section_data (section)->space_dict,
1598 sizeof (struct space_dictionary_record), 1, abfd)
1599 != sizeof (struct space_dictionary_record))
1600 {
1601 bfd_error = system_call_error;
1602 return false;
1603 }
1604
1605 /* Goto the next section. */
1606 section = section->next;
1607 }
1608
1609 /* Only thing left to do is write out the file header. It is always
1610 at location zero. Seek there and write it. */
1611 bfd_seek (abfd, (file_ptr) 0, SEEK_SET);
1612 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
1613 sizeof (struct header), 1, abfd)
1614 != sizeof (struct header))
1615 {
1616 bfd_error = system_call_error;
1617 return false;
1618 }
1619 return true;
1620 }
1621
1622 static unsigned long
1623 som_compute_checksum (abfd)
1624 bfd *abfd;
1625 {
1626 unsigned long checksum, count, i;
1627 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
1628
1629 checksum = 0;
1630 count = sizeof (struct header) / sizeof (unsigned long);
1631 for (i = 0; i < count; i++)
1632 checksum ^= *(buffer + i);
1633
1634 return checksum;
1635 }
1636
1637 /* Build and write, in one big chunk, the entire symbol table for
1638 this BFD. */
1639
1640 static boolean
1641 som_build_and_write_symbol_table (abfd)
1642 bfd *abfd;
1643 {
1644 unsigned int num_syms = bfd_get_symcount (abfd);
1645 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
1646 asymbol **bfd_syms = bfd_get_outsymbols (abfd);
1647 struct symbol_dictionary_record *som_symtab;
1648 int i, symtab_size;
1649
1650 /* Compute total symbol table size and allocate a chunk of memory
1651 to hold the symbol table as we build it. */
1652 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
1653 som_symtab = (struct symbol_dictionary_record *) alloca (symtab_size);
1654 bzero (som_symtab, symtab_size);
1655
1656 /* Walk over each symbol. */
1657 for (i = 0; i < num_syms; i++)
1658 {
1659 /* This is really an index into the symbol strings table.
1660 By the time we get here, the index has already been
1661 computed and stored into the name field in the BFD symbol. */
1662 som_symtab[i].name.n_strx = (int) bfd_syms[i]->name;
1663
1664 /* The HP SOM linker requires detailed type information about
1665 all symbols (including undefined symbols!). Unfortunately,
1666 the type specified in an import/export statement does not
1667 always match what the linker wants. Severe braindamage. */
1668
1669 /* Section symbols will not have a SOM symbol type assigned to
1670 them yet. Assign all section symbols type ST_DATA. */
1671 if (bfd_syms[i]->flags & BSF_SECTION_SYM)
1672 som_symtab[i].symbol_type = ST_DATA;
1673 else
1674 {
1675 /* Common symbols must have scope SS_UNSAT and type
1676 ST_STORAGE or the linker will choke. */
1677 if (bfd_syms[i]->section == &bfd_com_section)
1678 {
1679 som_symtab[i].symbol_scope = SS_UNSAT;
1680 som_symtab[i].symbol_type = ST_STORAGE;
1681 }
1682
1683 /* It is possible to have a symbol without an associated
1684 type. This happens if the user imported the symbol
1685 without a type and the symbol was never defined
1686 locally. If BSF_FUNCTION is set for this symbol, then
1687 assign it type ST_CODE (the HP linker requires undefined
1688 external functions to have type ST_CODE rather than ST_ENTRY. */
1689 else if (((*som_symbol_data (bfd_syms[i]))->som_type
1690 == SYMBOL_TYPE_UNKNOWN)
1691 && (bfd_syms[i]->section == &bfd_und_section)
1692 && (bfd_syms[i]->flags & BSF_FUNCTION))
1693 som_symtab[i].symbol_type = ST_CODE;
1694
1695 /* Handle function symbols which were defined in this file.
1696 They should have type ST_ENTRY. Also retrieve the argument
1697 relocation bits from the SOM backend information. */
1698 else if (((*som_symbol_data (bfd_syms[i]))->som_type
1699 == SYMBOL_TYPE_ENTRY)
1700 || (((*som_symbol_data (bfd_syms[i]))->som_type
1701 == SYMBOL_TYPE_CODE)
1702 && (bfd_syms[i]->flags & BSF_FUNCTION))
1703 || (((*som_symbol_data (bfd_syms[i]))->som_type
1704 == SYMBOL_TYPE_UNKNOWN)
1705 && (bfd_syms[i]->flags & BSF_FUNCTION)))
1706 {
1707 som_symtab[i].symbol_type = ST_ENTRY;
1708 som_symtab[i].arg_reloc
1709 = (*som_symbol_data (bfd_syms[i]))->tc_data.hppa_arg_reloc;
1710 }
1711
1712 /* If the type is unknown at this point, it should be
1713 ST_DATA (functions were handled as special cases above). */
1714 else if ((*som_symbol_data (bfd_syms[i]))->som_type
1715 == SYMBOL_TYPE_UNKNOWN)
1716 som_symtab[i].symbol_type = ST_DATA;
1717
1718 /* From now on it's a very simple mapping. */
1719 else if ((*som_symbol_data (bfd_syms[i]))->som_type
1720 == SYMBOL_TYPE_ABSOLUTE)
1721 som_symtab[i].symbol_type = ST_ABSOLUTE;
1722 else if ((*som_symbol_data (bfd_syms[i]))->som_type
1723 == SYMBOL_TYPE_CODE)
1724 som_symtab[i].symbol_type = ST_CODE;
1725 else if ((*som_symbol_data (bfd_syms[i]))->som_type
1726 == SYMBOL_TYPE_DATA)
1727 som_symtab[i].symbol_type = ST_DATA;
1728 else if ((*som_symbol_data (bfd_syms[i]))->som_type
1729 == SYMBOL_TYPE_MILLICODE)
1730 som_symtab[i].symbol_type = ST_MILLICODE;
1731 else if ((*som_symbol_data (bfd_syms[i]))->som_type
1732 == SYMBOL_TYPE_PLABEL)
1733 som_symtab[i].symbol_type = ST_PLABEL;
1734 else if ((*som_symbol_data (bfd_syms[i]))->som_type
1735 == SYMBOL_TYPE_PRI_PROG)
1736 som_symtab[i].symbol_type = ST_PRI_PROG;
1737 else if ((*som_symbol_data (bfd_syms[i]))->som_type
1738 == SYMBOL_TYPE_SEC_PROG)
1739 som_symtab[i].symbol_type = ST_SEC_PROG;
1740 }
1741
1742 /* Now handle the symbol's scope. Exported data which is not
1743 in the common section has scope SS_UNIVERSAL. Note scope
1744 of common symbols was handled earlier */
1745 if (bfd_syms[i]->flags & BSF_EXPORT
1746 && bfd_syms[i]->section != &bfd_com_section)
1747 som_symtab[i].symbol_scope = SS_UNIVERSAL;
1748 /* Any undefined symbol at this point has a scope SS_UNSAT. */
1749 else if (bfd_syms[i]->section == &bfd_und_section)
1750 som_symtab[i].symbol_scope = SS_UNSAT;
1751 /* Anything else which is not in the common section has scope
1752 SS_LOCAL. */
1753 else if (bfd_syms[i]->section != &bfd_com_section)
1754 som_symtab[i].symbol_scope = SS_LOCAL;
1755
1756 /* Now set the symbol_info field. It has no real meaning
1757 for undefined or common symbols, but the HP linker will
1758 choke if it's not set to some "reasonable" value. We
1759 use zero as a reasonable value. */
1760 if (bfd_syms[i]->section == &bfd_com_section
1761 || bfd_syms[i]->section == &bfd_und_section)
1762 som_symtab[i].symbol_info = 0;
1763 /* For all other symbols, the symbol_info field contains the
1764 subspace index of the space this symbol is contained in. */
1765 else
1766 som_symtab[i].symbol_info
1767 = som_section_data (bfd_syms[i]->section)->subspace_index;
1768
1769 /* Set the symbol's value. */
1770 som_symtab[i].symbol_value
1771 = bfd_syms[i]->value + bfd_syms[i]->section->vma;
1772 }
1773
1774 /* Egad. Everything is ready, seek to the right location and
1775 scribble out the symbol table. */
1776 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
1777 {
1778 bfd_error = system_call_error;
1779 return false;
1780 }
1781
1782 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
1783 {
1784 bfd_error = system_call_error;
1785 return false;
1786 }
1787 return true;
1788 }
1789
1790 boolean
1791 som_write_object_contents (abfd)
1792 bfd *abfd;
1793 {
1794 fprintf (stderr, "som_write_object_contents unimplemented\n");
1795 fflush (stderr);
1796 abort ();
1797 return (false);
1798 }
1799 /* Read and save the string table associated with the given BFD. */
1800
1801 static boolean
1802 som_slurp_string_table (abfd)
1803 bfd *abfd;
1804 {
1805 char *stringtab;
1806
1807 /* Use the saved version if its available. */
1808 if (obj_som_stringtab (abfd) != NULL)
1809 return true;
1810
1811 /* Allocate and read in the string table. */
1812 stringtab = bfd_zalloc (abfd, obj_som_stringtab_size (abfd));
1813 if (stringtab == NULL)
1814 {
1815 bfd_error = no_memory;
1816 return false;
1817 }
1818
1819 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
1820 {
1821 bfd_error = system_call_error;
1822 return false;
1823 }
1824
1825 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
1826 != obj_som_stringtab_size (abfd))
1827 {
1828 bfd_error = system_call_error;
1829 return false;
1830 }
1831
1832 /* Save our results and return success. */
1833 obj_som_stringtab (abfd) = stringtab;
1834 return true;
1835 }
1836
1837 /* Return the amount of data (in bytes) required to hold the symbol
1838 table for this object. */
1839
1840 static unsigned int
1841 som_get_symtab_upper_bound (abfd)
1842 bfd *abfd;
1843 {
1844 if (!som_slurp_symbol_table (abfd))
1845 return 0;
1846
1847 return (bfd_get_symcount (abfd) + 1) * (sizeof (som_symbol_type *));
1848 }
1849
1850 /* Convert from a SOM subspace index to a BFD section. */
1851
1852 static asection *
1853 som_section_from_subspace_index (abfd, index)
1854 bfd *abfd;
1855 unsigned int index;
1856 {
1857 asection *section;
1858
1859 for (section = abfd->sections; section != NULL; section = section->next)
1860 if (som_section_data (section)->subspace_index == index)
1861 return section;
1862
1863 /* Should never happen. */
1864 abort();
1865 }
1866
1867 /* Read and save the symbol table associated with the given BFD. */
1868
1869 static unsigned int
1870 som_slurp_symbol_table (abfd)
1871 bfd *abfd;
1872 {
1873 int symbol_count = bfd_get_symcount (abfd);
1874 int symsize = sizeof (struct symbol_dictionary_record);
1875 char *stringtab;
1876 struct symbol_dictionary_record *buf, *bufp, *endbufp;
1877 som_symbol_type *sym, *symbase;
1878
1879 /* Return saved value if it exists. */
1880 if (obj_som_symtab (abfd) != NULL)
1881 return true;
1882
1883 /* Sanity checking. Make sure there are some symbols and that
1884 we can read the string table too. */
1885 if (symbol_count == 0)
1886 {
1887 bfd_error = no_symbols;
1888 return false;
1889 }
1890
1891 if (!som_slurp_string_table (abfd))
1892 return false;
1893
1894 stringtab = obj_som_stringtab (abfd);
1895
1896 symbase = (som_symbol_type *)
1897 bfd_zalloc (abfd, symbol_count * sizeof (som_symbol_type));
1898 if (symbase == NULL)
1899 {
1900 bfd_error = no_memory;
1901 return false;
1902 }
1903
1904 /* Read in the external SOM representation. */
1905 buf = alloca (symbol_count * symsize);
1906 if (buf == NULL)
1907 {
1908 bfd_error = no_memory;
1909 return false;
1910 }
1911 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
1912 {
1913 bfd_error = system_call_error;
1914 return false;
1915 }
1916 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
1917 != symbol_count * symsize)
1918 {
1919 bfd_error = no_symbols;
1920 return (false);
1921 }
1922
1923 /* Iterate over all the symbols and internalize them. */
1924 endbufp = buf + symbol_count;
1925 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
1926 {
1927
1928 /* I don't think we care about these. */
1929 if (bufp->symbol_type == ST_SYM_EXT
1930 || bufp->symbol_type == ST_ARG_EXT)
1931 continue;
1932
1933 /* Some reasonable defaults. */
1934 sym->symbol.the_bfd = abfd;
1935 sym->symbol.name = bufp->name.n_strx + stringtab;
1936 sym->symbol.value = bufp->symbol_value;
1937 sym->symbol.section = 0;
1938 sym->symbol.flags = 0;
1939
1940 switch (bufp->symbol_type)
1941 {
1942 case ST_ENTRY:
1943 sym->symbol.flags |= BSF_FUNCTION;
1944 sym->symbol.value &= ~0x3;
1945 break;
1946
1947 case ST_PRI_PROG:
1948 case ST_SEC_PROG:
1949 case ST_STUB:
1950 case ST_MILLICODE:
1951 case ST_CODE:
1952 sym->symbol.value &= ~0x3;
1953
1954 default:
1955 break;
1956 }
1957
1958 /* Handle scoping and section information. */
1959 switch (bufp->symbol_scope)
1960 {
1961 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
1962 so the section associated with this symbol can't be known. */
1963 case SS_EXTERNAL:
1964 case SS_UNSAT:
1965 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
1966 break;
1967
1968 case SS_UNIVERSAL:
1969 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
1970 sym->symbol.section
1971 = som_section_from_subspace_index (abfd, bufp->symbol_info);
1972 sym->symbol.value -= sym->symbol.section->vma;
1973 break;
1974
1975 #if 0
1976 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
1977 Sound dumb? It is. */
1978 case SS_GLOBAL:
1979 #endif
1980 case SS_LOCAL:
1981 sym->symbol.flags |= BSF_LOCAL;
1982 sym->symbol.section
1983 = som_section_from_subspace_index (abfd, bufp->symbol_info);
1984 sym->symbol.value -= sym->symbol.section->vma;
1985 break;
1986 }
1987
1988 /* Mark symbols left around by the debugger. */
1989 if (strlen (sym->symbol.name) >= 3
1990 && sym->symbol.name[0] == 'L'
1991 && (sym->symbol.name[2] == '$' || sym->symbol.name[3] == '$'))
1992 sym->symbol.flags |= BSF_DEBUGGING;
1993
1994 /* Note increment at bottom of loop, since we skip some symbols
1995 we can not include it as part of the for statement. */
1996 sym++;
1997 }
1998
1999 /* Save our results and return success. */
2000 obj_som_symtab (abfd) = symbase;
2001 return (true);
2002 }
2003
2004 /* Canonicalize a SOM symbol table. Return the number of entries
2005 in the symbol table. */
2006
2007 static unsigned int
2008 som_get_symtab (abfd, location)
2009 bfd *abfd;
2010 asymbol **location;
2011 {
2012 int i;
2013 som_symbol_type *symbase;
2014
2015 if (!som_slurp_symbol_table (abfd))
2016 return 0;
2017
2018 i = bfd_get_symcount (abfd);
2019 symbase = obj_som_symtab (abfd);
2020
2021 for (; i > 0; i--, location++, symbase++)
2022 *location = &symbase->symbol;
2023
2024 /* Final null pointer. */
2025 *location = 0;
2026 return (bfd_get_symcount (abfd));
2027 }
2028
2029 /* Make a SOM symbol. There is nothing special to do here. */
2030
2031 static asymbol *
2032 som_make_empty_symbol (abfd)
2033 bfd *abfd;
2034 {
2035 som_symbol_type *new =
2036 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
2037 if (new == NULL)
2038 {
2039 bfd_error = no_memory;
2040 return 0;
2041 }
2042 new->symbol.the_bfd = abfd;
2043
2044 return &new->symbol;
2045 }
2046
2047 /* Print symbol information. */
2048
2049 static void
2050 som_print_symbol (ignore_abfd, afile, symbol, how)
2051 bfd *ignore_abfd;
2052 PTR afile;
2053 asymbol *symbol;
2054 bfd_print_symbol_type how;
2055 {
2056 FILE *file = (FILE *) afile;
2057 switch (how)
2058 {
2059 case bfd_print_symbol_name:
2060 fprintf (file, "%s", symbol->name);
2061 break;
2062 case bfd_print_symbol_more:
2063 fprintf (file, "som ");
2064 fprintf_vma (file, symbol->value);
2065 fprintf (file, " %lx", (long) symbol->flags);
2066 break;
2067 case bfd_print_symbol_all:
2068 {
2069 CONST char *section_name;
2070 section_name = symbol->section ? symbol->section->name : "(*none*)";
2071 bfd_print_symbol_vandf ((PTR) file, symbol);
2072 fprintf (file, " %s\t%s", section_name, symbol->name);
2073 break;
2074 }
2075 }
2076 }
2077
2078 static unsigned int
2079 som_get_reloc_upper_bound (abfd, asect)
2080 bfd *abfd;
2081 sec_ptr asect;
2082 {
2083 fprintf (stderr, "som_get_reloc_upper_bound unimplemented\n");
2084 fflush (stderr);
2085 abort ();
2086 return (0);
2087 }
2088
2089 static unsigned int
2090 som_canonicalize_reloc (abfd, section, relptr, symbols)
2091 bfd *abfd;
2092 sec_ptr section;
2093 arelent **relptr;
2094 asymbol **symbols;
2095 {
2096 fprintf (stderr, "som_canonicalize_reloc unimplemented\n");
2097 fflush (stderr);
2098 abort ();
2099 }
2100
2101 extern bfd_target som_vec;
2102
2103 /* A hook to set up object file dependent section information. */
2104
2105 static boolean
2106 som_new_section_hook (abfd, newsect)
2107 bfd *abfd;
2108 asection *newsect;
2109 {
2110 newsect->used_by_bfd = (struct som_section_data_struct *)
2111 bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
2112 newsect->alignment_power = 3;
2113
2114 /* Initialize the subspace_index field to -1 so that it does
2115 not match a subspace with an index of 0. */
2116 som_section_data (newsect)->subspace_index = -1;
2117
2118 /* We allow more than three sections internally */
2119 return true;
2120 }
2121
2122 /* Set backend info for sections which can not be described
2123 in the BFD data structures. */
2124
2125 void
2126 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
2127 asection *section;
2128 char defined;
2129 char private;
2130 unsigned char sort_key;
2131 int spnum;
2132 {
2133 struct space_dictionary_record *space_dict;
2134
2135 som_section_data (section)->is_space = 1;
2136 space_dict = &som_section_data (section)->space_dict;
2137 space_dict->is_defined = defined;
2138 space_dict->is_private = private;
2139 space_dict->sort_key = sort_key;
2140 space_dict->space_number = spnum;
2141 }
2142
2143 /* Set backend info for subsections which can not be described
2144 in the BFD data structures. */
2145
2146 void
2147 bfd_som_set_subsection_attributes (section, container, access,
2148 sort_key, quadrant)
2149 asection *section;
2150 asection *container;
2151 int access;
2152 unsigned char sort_key;
2153 int quadrant;
2154 {
2155 struct subspace_dictionary_record *subspace_dict;
2156 som_section_data (section)->is_subspace = 1;
2157 subspace_dict = &som_section_data (section)->subspace_dict;
2158 subspace_dict->access_control_bits = access;
2159 subspace_dict->sort_key = sort_key;
2160 subspace_dict->quadrant = quadrant;
2161 som_section_data (section)->containing_space = container;
2162 }
2163
2164 /* Set the full SOM symbol type. SOM needs far more symbol information
2165 than any other object file format I'm aware of. It is mandatory
2166 to be able to know if a symbol is an entry point, millicode, data,
2167 code, absolute, storage request, or procedure label. If you get
2168 the symbol type wrong your program will not link. */
2169
2170 void
2171 bfd_som_set_symbol_type (symbol, type)
2172 asymbol *symbol;
2173 unsigned int type;
2174 {
2175 (*som_symbol_data (symbol))->som_type = type;
2176 }
2177
2178 /* Attach 64bits of unwind information to a symbol (which hopefully
2179 is a function of some kind!). It would be better to keep this
2180 in the R_ENTRY relocation, but there is not enough space. */
2181
2182 void
2183 bfd_som_attach_unwind_info (symbol, unwind_desc)
2184 asymbol *symbol;
2185 char *unwind_desc;
2186 {
2187 (*som_symbol_data (symbol))->unwind = unwind_desc;
2188 }
2189
2190 static boolean
2191 som_set_section_contents (abfd, section, location, offset, count)
2192 bfd *abfd;
2193 sec_ptr section;
2194 PTR location;
2195 file_ptr offset;
2196 bfd_size_type count;
2197 {
2198 fprintf (stderr, "som_set_section_contents unimplimented\n");
2199 fflush (stderr);
2200 abort ();
2201 return false;
2202 }
2203
2204 static boolean
2205 som_set_arch_mach (abfd, arch, machine)
2206 bfd *abfd;
2207 enum bfd_architecture arch;
2208 unsigned long machine;
2209 {
2210 /* Allow any architecture to be supported by the SOM backend */
2211 return bfd_default_set_arch_mach (abfd, arch, machine);
2212 }
2213
2214 static boolean
2215 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
2216 functionname_ptr, line_ptr)
2217 bfd *abfd;
2218 asection *section;
2219 asymbol **symbols;
2220 bfd_vma offset;
2221 CONST char **filename_ptr;
2222 CONST char **functionname_ptr;
2223 unsigned int *line_ptr;
2224 {
2225 fprintf (stderr, "som_find_nearest_line unimplemented\n");
2226 fflush (stderr);
2227 abort ();
2228 return (false);
2229 }
2230
2231 static int
2232 som_sizeof_headers (abfd, reloc)
2233 bfd *abfd;
2234 boolean reloc;
2235 {
2236 fprintf (stderr, "som_sizeof_headers unimplemented\n");
2237 fflush (stderr);
2238 abort ();
2239 return (0);
2240 }
2241
2242 /* Return information about SOM symbol SYMBOL in RET. */
2243
2244 static void
2245 som_get_symbol_info (ignore_abfd, symbol, ret)
2246 bfd *ignore_abfd; /* Ignored. */
2247 asymbol *symbol;
2248 symbol_info *ret;
2249 {
2250 bfd_symbol_info (symbol, ret);
2251 }
2252
2253 /* End of miscellaneous support functions. */
2254
2255 #define som_bfd_debug_info_start bfd_void
2256 #define som_bfd_debug_info_end bfd_void
2257 #define som_bfd_debug_info_accumulate (PROTO(void,(*),(bfd*, struct sec *))) bfd_void
2258
2259 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
2260 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
2261 #define som_slurp_armap bfd_false
2262 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
2263 #define som_truncate_arname (void (*)())bfd_nullvoidptr
2264 #define som_write_armap 0
2265
2266 #define som_get_lineno (struct lineno_cache_entry *(*)())bfd_nullvoidptr
2267 #define som_close_and_cleanup bfd_generic_close_and_cleanup
2268 #define som_get_section_contents bfd_generic_get_section_contents
2269
2270 #define som_bfd_get_relocated_section_contents \
2271 bfd_generic_get_relocated_section_contents
2272 #define som_bfd_relax_section bfd_generic_relax_section
2273 #define som_bfd_seclet_link bfd_generic_seclet_link
2274 #define som_bfd_reloc_type_lookup \
2275 ((CONST struct reloc_howto_struct *(*) PARAMS ((bfd *, bfd_reloc_code_real_type))) bfd_nullvoidptr)
2276 #define som_bfd_make_debug_symbol \
2277 ((asymbol *(*) PARAMS ((bfd *, void *, unsigned long))) bfd_nullvoidptr)
2278
2279 /* Core file support is in the hpux-core backend. */
2280 #define som_core_file_failing_command _bfd_dummy_core_file_failing_command
2281 #define som_core_file_failing_signal _bfd_dummy_core_file_failing_signal
2282 #define som_core_file_matches_executable_p _bfd_dummy_core_file_matches_executable_p
2283
2284 bfd_target som_vec =
2285 {
2286 "som", /* name */
2287 bfd_target_som_flavour,
2288 true, /* target byte order */
2289 true, /* target headers byte order */
2290 (HAS_RELOC | EXEC_P | /* object flags */
2291 HAS_LINENO | HAS_DEBUG |
2292 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
2293 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
2294 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
2295
2296 /* leading_symbol_char: is the first char of a user symbol
2297 predictable, and if so what is it */
2298 0,
2299 ' ', /* ar_pad_char */
2300 16, /* ar_max_namelen */
2301 3, /* minimum alignment */
2302 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
2303 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
2304 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
2305 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
2306 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
2307 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
2308 {_bfd_dummy_target,
2309 som_object_p, /* bfd_check_format */
2310 bfd_generic_archive_p,
2311 _bfd_dummy_target
2312 },
2313 {
2314 bfd_false,
2315 som_mkobject,
2316 _bfd_generic_mkarchive,
2317 bfd_false
2318 },
2319 {
2320 bfd_false,
2321 som_write_object_contents,
2322 _bfd_write_archive_contents,
2323 bfd_false,
2324 },
2325 #undef som
2326 JUMP_TABLE (som),
2327 (PTR) 0
2328 };
2329
2330 #endif /* HOST_HPPAHPUX || HOST_HPPABSD */