* libbfd-in.h: Remove alloca cruft. It was missing some necessary
[binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
3
4 Contributed by the Center for Software Science at the
5 University of Utah (pa-gdb-bugs@cs.utah.edu).
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23 #include "bfd.h"
24 #include "sysdep.h"
25
26 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)
27
28 #include "libbfd.h"
29 #include "som.h"
30
31 #include <stdio.h>
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/dir.h>
35 #include <signal.h>
36 #include <machine/reg.h>
37 #include <sys/user.h> /* After a.out.h */
38 #include <sys/file.h>
39 #include <errno.h>
40
41 /* Magic not defined in standard HP-UX header files until 8.0 */
42
43 #ifndef CPU_PA_RISC1_0
44 #define CPU_PA_RISC1_0 0x20B
45 #endif /* CPU_PA_RISC1_0 */
46
47 #ifndef CPU_PA_RISC1_1
48 #define CPU_PA_RISC1_1 0x210
49 #endif /* CPU_PA_RISC1_1 */
50
51 #ifndef _PA_RISC1_0_ID
52 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
53 #endif /* _PA_RISC1_0_ID */
54
55 #ifndef _PA_RISC1_1_ID
56 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
57 #endif /* _PA_RISC1_1_ID */
58
59 #ifndef _PA_RISC_MAXID
60 #define _PA_RISC_MAXID 0x2FF
61 #endif /* _PA_RISC_MAXID */
62
63 #ifndef _PA_RISC_ID
64 #define _PA_RISC_ID(__m_num) \
65 (((__m_num) == _PA_RISC1_0_ID) || \
66 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
67 #endif /* _PA_RISC_ID */
68
69 /* Size (in chars) of the temporary buffers used during fixup and string
70 table writes. */
71
72 #define SOM_TMP_BUFSIZE 8192
73
74 /* Size of the hash table in archives. */
75 #define SOM_LST_HASH_SIZE 31
76
77 /* Max number of SOMs to be found in an archive. */
78 #define SOM_LST_MODULE_LIMIT 1024
79
80 /* SOM allows any one of the four previous relocations to be reused
81 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
82 relocations are always a single byte, using a R_PREV_FIXUP instead
83 of some multi-byte relocation makes object files smaller.
84
85 Note one side effect of using a R_PREV_FIXUP is the relocation that
86 is being repeated moves to the front of the queue. */
87 struct reloc_queue
88 {
89 unsigned char *reloc;
90 unsigned int size;
91 } reloc_queue[4];
92
93 /* This fully describes the symbol types which may be attached to
94 an EXPORT or IMPORT directive. Only SOM uses this formation
95 (ELF has no need for it). */
96 typedef enum
97 {
98 SYMBOL_TYPE_UNKNOWN,
99 SYMBOL_TYPE_ABSOLUTE,
100 SYMBOL_TYPE_CODE,
101 SYMBOL_TYPE_DATA,
102 SYMBOL_TYPE_ENTRY,
103 SYMBOL_TYPE_MILLICODE,
104 SYMBOL_TYPE_PLABEL,
105 SYMBOL_TYPE_PRI_PROG,
106 SYMBOL_TYPE_SEC_PROG,
107 } pa_symbol_type;
108
109 struct section_to_type
110 {
111 char *section;
112 char type;
113 };
114
115 /* Assorted symbol information that needs to be derived from the BFD symbol
116 and/or the BFD backend private symbol data. */
117 struct som_misc_symbol_info
118 {
119 unsigned int symbol_type;
120 unsigned int symbol_scope;
121 unsigned int arg_reloc;
122 unsigned int symbol_info;
123 unsigned int symbol_value;
124 };
125
126 /* Forward declarations */
127
128 static boolean som_mkobject PARAMS ((bfd *));
129 static bfd_target * som_object_setup PARAMS ((bfd *,
130 struct header *,
131 struct som_exec_auxhdr *));
132 static asection * make_unique_section PARAMS ((bfd *, CONST char *, int));
133 static boolean setup_sections PARAMS ((bfd *, struct header *));
134 static bfd_target * som_object_p PARAMS ((bfd *));
135 static boolean som_write_object_contents PARAMS ((bfd *));
136 static boolean som_slurp_string_table PARAMS ((bfd *));
137 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
138 static unsigned int som_get_symtab_upper_bound PARAMS ((bfd *));
139 static unsigned int som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
140 arelent **, asymbol **));
141 static unsigned int som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
142 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
143 arelent *, asection *,
144 asymbol **, boolean));
145 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
146 asymbol **, boolean));
147 static unsigned int som_get_symtab PARAMS ((bfd *, asymbol **));
148 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
149 static void som_print_symbol PARAMS ((bfd *, PTR,
150 asymbol *, bfd_print_symbol_type));
151 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
152 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
153 file_ptr, bfd_size_type));
154 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
155 unsigned long));
156 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
157 asymbol **, bfd_vma,
158 CONST char **,
159 CONST char **,
160 unsigned int *));
161 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
162 static asection * som_section_from_subspace_index PARAMS ((bfd *,
163 unsigned int));
164 static int log2 PARAMS ((unsigned int));
165 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
166 asymbol *, PTR,
167 asection *, bfd *,
168 char **));
169 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
170 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
171 struct reloc_queue *));
172 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
173 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
174 struct reloc_queue *));
175 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
176 unsigned int,
177 struct reloc_queue *));
178
179 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
180 unsigned char *, unsigned int *,
181 struct reloc_queue *));
182 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
183 unsigned int *,
184 struct reloc_queue *));
185 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
186 unsigned int *,
187 arelent *, int,
188 struct reloc_queue *));
189 static unsigned long som_count_spaces PARAMS ((bfd *));
190 static unsigned long som_count_subspaces PARAMS ((bfd *));
191 static int compare_syms PARAMS ((asymbol **, asymbol **));
192 static unsigned long som_compute_checksum PARAMS ((bfd *));
193 static boolean som_prep_headers PARAMS ((bfd *));
194 static int som_sizeof_headers PARAMS ((bfd *, boolean));
195 static boolean som_write_headers PARAMS ((bfd *));
196 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
197 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
198 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
199 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
200 unsigned int *));
201 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
202 asymbol **, unsigned int,
203 unsigned *));
204 static boolean som_begin_writing PARAMS ((bfd *));
205 static const reloc_howto_type * som_bfd_reloc_type_lookup
206 PARAMS ((bfd_arch_info_type *, bfd_reloc_code_real_type));
207 static char som_section_type PARAMS ((const char *));
208 static int som_decode_symclass PARAMS ((asymbol *));
209 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
210 symindex *));
211
212 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
213 carsym **syms));
214 static boolean som_slurp_armap PARAMS ((bfd *));
215 static boolean som_write_armap PARAMS ((bfd *));
216 static boolean som_slurp_extended_name_table PARAMS ((bfd *));
217 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
218 struct som_misc_symbol_info *));
219 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
220 unsigned int *));
221 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
222 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
223 unsigned int,
224 struct lst_header));
225
226 /* Map SOM section names to POSIX/BSD single-character symbol types.
227
228 This table includes all the standard subspaces as defined in the
229 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
230 some reason was left out, and sections specific to embedded stabs. */
231
232 static const struct section_to_type stt[] = {
233 {"$TEXT$", 't'},
234 {"$SHLIB_INFO$", 't'},
235 {"$MILLICODE$", 't'},
236 {"$LIT$", 't'},
237 {"$CODE$", 't'},
238 {"$UNWIND_START$", 't'},
239 {"$UNWIND$", 't'},
240 {"$PRIVATE$", 'd'},
241 {"$PLT$", 'd'},
242 {"$SHLIB_DATA$", 'd'},
243 {"$DATA$", 'd'},
244 {"$SHORTDATA$", 'g'},
245 {"$DLT$", 'd'},
246 {"$GLOBAL$", 'g'},
247 {"$SHORTBSS$", 's'},
248 {"$BSS$", 'b'},
249 {"$GDB_STRINGS$", 'N'},
250 {"$GDB_SYMBOLS$", 'N'},
251 {0, 0}
252 };
253
254 /* About the relocation formatting table...
255
256 There are 256 entries in the table, one for each possible
257 relocation opcode available in SOM. We index the table by
258 the relocation opcode. The names and operations are those
259 defined by a.out_800 (4).
260
261 Right now this table is only used to count and perform minimal
262 processing on relocation streams so that they can be internalized
263 into BFD and symbolically printed by utilities. To make actual use
264 of them would be much more difficult, BFD's concept of relocations
265 is far too simple to handle SOM relocations. The basic assumption
266 that a relocation can be completely processed independent of other
267 relocations before an object file is written is invalid for SOM.
268
269 The SOM relocations are meant to be processed as a stream, they
270 specify copying of data from the input section to the output section
271 while possibly modifying the data in some manner. They also can
272 specify that a variable number of zeros or uninitialized data be
273 inserted on in the output segment at the current offset. Some
274 relocations specify that some previous relocation be re-applied at
275 the current location in the input/output sections. And finally a number
276 of relocations have effects on other sections (R_ENTRY, R_EXIT,
277 R_UNWIND_AUX and a variety of others). There isn't even enough room
278 in the BFD relocation data structure to store enough information to
279 perform all the relocations.
280
281 Each entry in the table has three fields.
282
283 The first entry is an index into this "class" of relocations. This
284 index can then be used as a variable within the relocation itself.
285
286 The second field is a format string which actually controls processing
287 of the relocation. It uses a simple postfix machine to do calculations
288 based on variables/constants found in the string and the relocation
289 stream.
290
291 The third field specifys whether or not this relocation may use
292 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
293 stored in the instruction.
294
295 Variables:
296
297 L = input space byte count
298 D = index into class of relocations
299 M = output space byte count
300 N = statement number (unused?)
301 O = stack operation
302 R = parameter relocation bits
303 S = symbol index
304 U = 64 bits of stack unwind and frame size info (we only keep 32 bits)
305 V = a literal constant (usually used in the next relocation)
306 P = a previous relocation
307
308 Lower case letters (starting with 'b') refer to following
309 bytes in the relocation stream. 'b' is the next 1 byte,
310 c is the next 2 bytes, d is the next 3 bytes, etc...
311 This is the variable part of the relocation entries that
312 makes our life a living hell.
313
314 numerical constants are also used in the format string. Note
315 the constants are represented in decimal.
316
317 '+', "*" and "=" represents the obvious postfix operators.
318 '<' represents a left shift.
319
320 Stack Operations:
321
322 Parameter Relocation Bits:
323
324 Unwind Entries:
325
326 Previous Relocations: The index field represents which in the queue
327 of 4 previous fixups should be re-applied.
328
329 Literal Constants: These are generally used to represent addend
330 parts of relocations when these constants are not stored in the
331 fields of the instructions themselves. For example the instruction
332 addil foo-$global$-0x1234 would use an override for "0x1234" rather
333 than storing it into the addil itself. */
334
335 struct fixup_format
336 {
337 int D;
338 char *format;
339 };
340
341 static const struct fixup_format som_fixup_formats[256] =
342 {
343 /* R_NO_RELOCATION */
344 0, "LD1+4*=", /* 0x00 */
345 1, "LD1+4*=", /* 0x01 */
346 2, "LD1+4*=", /* 0x02 */
347 3, "LD1+4*=", /* 0x03 */
348 4, "LD1+4*=", /* 0x04 */
349 5, "LD1+4*=", /* 0x05 */
350 6, "LD1+4*=", /* 0x06 */
351 7, "LD1+4*=", /* 0x07 */
352 8, "LD1+4*=", /* 0x08 */
353 9, "LD1+4*=", /* 0x09 */
354 10, "LD1+4*=", /* 0x0a */
355 11, "LD1+4*=", /* 0x0b */
356 12, "LD1+4*=", /* 0x0c */
357 13, "LD1+4*=", /* 0x0d */
358 14, "LD1+4*=", /* 0x0e */
359 15, "LD1+4*=", /* 0x0f */
360 16, "LD1+4*=", /* 0x10 */
361 17, "LD1+4*=", /* 0x11 */
362 18, "LD1+4*=", /* 0x12 */
363 19, "LD1+4*=", /* 0x13 */
364 20, "LD1+4*=", /* 0x14 */
365 21, "LD1+4*=", /* 0x15 */
366 22, "LD1+4*=", /* 0x16 */
367 23, "LD1+4*=", /* 0x17 */
368 0, "LD8<b+1+4*=", /* 0x18 */
369 1, "LD8<b+1+4*=", /* 0x19 */
370 2, "LD8<b+1+4*=", /* 0x1a */
371 3, "LD8<b+1+4*=", /* 0x1b */
372 0, "LD16<c+1+4*=", /* 0x1c */
373 1, "LD16<c+1+4*=", /* 0x1d */
374 2, "LD16<c+1+4*=", /* 0x1e */
375 0, "Ld1+=", /* 0x1f */
376 /* R_ZEROES */
377 0, "Lb1+4*=", /* 0x20 */
378 1, "Ld1+=", /* 0x21 */
379 /* R_UNINIT */
380 0, "Lb1+4*=", /* 0x22 */
381 1, "Ld1+=", /* 0x23 */
382 /* R_RELOCATION */
383 0, "L4=", /* 0x24 */
384 /* R_DATA_ONE_SYMBOL */
385 0, "L4=Sb=", /* 0x25 */
386 1, "L4=Sd=", /* 0x26 */
387 /* R_DATA_PLEBEL */
388 0, "L4=Sb=", /* 0x27 */
389 1, "L4=Sd=", /* 0x28 */
390 /* R_SPACE_REF */
391 0, "L4=", /* 0x29 */
392 /* R_REPEATED_INIT */
393 0, "L4=Mb1+4*=", /* 0x2a */
394 1, "Lb4*=Mb1+L*=", /* 0x2b */
395 2, "Lb4*=Md1+4*=", /* 0x2c */
396 3, "Ld1+=Me1+=", /* 0x2d */
397 /* R_RESERVED */
398 0, "", /* 0x2e */
399 0, "", /* 0x2f */
400 /* R_PCREL_CALL */
401 0, "L4=RD=Sb=", /* 0x30 */
402 1, "L4=RD=Sb=", /* 0x31 */
403 2, "L4=RD=Sb=", /* 0x32 */
404 3, "L4=RD=Sb=", /* 0x33 */
405 4, "L4=RD=Sb=", /* 0x34 */
406 5, "L4=RD=Sb=", /* 0x35 */
407 6, "L4=RD=Sb=", /* 0x36 */
408 7, "L4=RD=Sb=", /* 0x37 */
409 8, "L4=RD=Sb=", /* 0x38 */
410 9, "L4=RD=Sb=", /* 0x39 */
411 0, "L4=RD8<b+=Sb=",/* 0x3a */
412 1, "L4=RD8<b+=Sb=",/* 0x3b */
413 0, "L4=RD8<b+=Sd=",/* 0x3c */
414 1, "L4=RD8<b+=Sd=",/* 0x3d */
415 /* R_RESERVED */
416 0, "", /* 0x3e */
417 0, "", /* 0x3f */
418 /* R_ABS_CALL */
419 0, "L4=RD=Sb=", /* 0x40 */
420 1, "L4=RD=Sb=", /* 0x41 */
421 2, "L4=RD=Sb=", /* 0x42 */
422 3, "L4=RD=Sb=", /* 0x43 */
423 4, "L4=RD=Sb=", /* 0x44 */
424 5, "L4=RD=Sb=", /* 0x45 */
425 6, "L4=RD=Sb=", /* 0x46 */
426 7, "L4=RD=Sb=", /* 0x47 */
427 8, "L4=RD=Sb=", /* 0x48 */
428 9, "L4=RD=Sb=", /* 0x49 */
429 0, "L4=RD8<b+=Sb=",/* 0x4a */
430 1, "L4=RD8<b+=Sb=",/* 0x4b */
431 0, "L4=RD8<b+=Sd=",/* 0x4c */
432 1, "L4=RD8<b+=Sd=",/* 0x4d */
433 /* R_RESERVED */
434 0, "", /* 0x4e */
435 0, "", /* 0x4f */
436 /* R_DP_RELATIVE */
437 0, "L4=SD=", /* 0x50 */
438 1, "L4=SD=", /* 0x51 */
439 2, "L4=SD=", /* 0x52 */
440 3, "L4=SD=", /* 0x53 */
441 4, "L4=SD=", /* 0x54 */
442 5, "L4=SD=", /* 0x55 */
443 6, "L4=SD=", /* 0x56 */
444 7, "L4=SD=", /* 0x57 */
445 8, "L4=SD=", /* 0x58 */
446 9, "L4=SD=", /* 0x59 */
447 10, "L4=SD=", /* 0x5a */
448 11, "L4=SD=", /* 0x5b */
449 12, "L4=SD=", /* 0x5c */
450 13, "L4=SD=", /* 0x5d */
451 14, "L4=SD=", /* 0x5e */
452 15, "L4=SD=", /* 0x5f */
453 16, "L4=SD=", /* 0x60 */
454 17, "L4=SD=", /* 0x61 */
455 18, "L4=SD=", /* 0x62 */
456 19, "L4=SD=", /* 0x63 */
457 20, "L4=SD=", /* 0x64 */
458 21, "L4=SD=", /* 0x65 */
459 22, "L4=SD=", /* 0x66 */
460 23, "L4=SD=", /* 0x67 */
461 24, "L4=SD=", /* 0x68 */
462 25, "L4=SD=", /* 0x69 */
463 26, "L4=SD=", /* 0x6a */
464 27, "L4=SD=", /* 0x6b */
465 28, "L4=SD=", /* 0x6c */
466 29, "L4=SD=", /* 0x6d */
467 30, "L4=SD=", /* 0x6e */
468 31, "L4=SD=", /* 0x6f */
469 32, "L4=Sb=", /* 0x70 */
470 33, "L4=Sd=", /* 0x71 */
471 /* R_RESERVED */
472 0, "", /* 0x72 */
473 0, "", /* 0x73 */
474 0, "", /* 0x74 */
475 0, "", /* 0x75 */
476 0, "", /* 0x76 */
477 0, "", /* 0x77 */
478 /* R_DLT_REL */
479 0, "L4=Sb=", /* 0x78 */
480 1, "L4=Sd=", /* 0x79 */
481 /* R_RESERVED */
482 0, "", /* 0x7a */
483 0, "", /* 0x7b */
484 0, "", /* 0x7c */
485 0, "", /* 0x7d */
486 0, "", /* 0x7e */
487 0, "", /* 0x7f */
488 /* R_CODE_ONE_SYMBOL */
489 0, "L4=SD=", /* 0x80 */
490 1, "L4=SD=", /* 0x81 */
491 2, "L4=SD=", /* 0x82 */
492 3, "L4=SD=", /* 0x83 */
493 4, "L4=SD=", /* 0x84 */
494 5, "L4=SD=", /* 0x85 */
495 6, "L4=SD=", /* 0x86 */
496 7, "L4=SD=", /* 0x87 */
497 8, "L4=SD=", /* 0x88 */
498 9, "L4=SD=", /* 0x89 */
499 10, "L4=SD=", /* 0x8q */
500 11, "L4=SD=", /* 0x8b */
501 12, "L4=SD=", /* 0x8c */
502 13, "L4=SD=", /* 0x8d */
503 14, "L4=SD=", /* 0x8e */
504 15, "L4=SD=", /* 0x8f */
505 16, "L4=SD=", /* 0x90 */
506 17, "L4=SD=", /* 0x91 */
507 18, "L4=SD=", /* 0x92 */
508 19, "L4=SD=", /* 0x93 */
509 20, "L4=SD=", /* 0x94 */
510 21, "L4=SD=", /* 0x95 */
511 22, "L4=SD=", /* 0x96 */
512 23, "L4=SD=", /* 0x97 */
513 24, "L4=SD=", /* 0x98 */
514 25, "L4=SD=", /* 0x99 */
515 26, "L4=SD=", /* 0x9a */
516 27, "L4=SD=", /* 0x9b */
517 28, "L4=SD=", /* 0x9c */
518 29, "L4=SD=", /* 0x9d */
519 30, "L4=SD=", /* 0x9e */
520 31, "L4=SD=", /* 0x9f */
521 32, "L4=Sb=", /* 0xa0 */
522 33, "L4=Sd=", /* 0xa1 */
523 /* R_RESERVED */
524 0, "", /* 0xa2 */
525 0, "", /* 0xa3 */
526 0, "", /* 0xa4 */
527 0, "", /* 0xa5 */
528 0, "", /* 0xa6 */
529 0, "", /* 0xa7 */
530 0, "", /* 0xa8 */
531 0, "", /* 0xa9 */
532 0, "", /* 0xaa */
533 0, "", /* 0xab */
534 0, "", /* 0xac */
535 0, "", /* 0xad */
536 /* R_MILLI_REL */
537 0, "L4=Sb=", /* 0xae */
538 1, "L4=Sd=", /* 0xaf */
539 /* R_CODE_PLABEL */
540 0, "L4=Sb=", /* 0xb0 */
541 1, "L4=Sd=", /* 0xb1 */
542 /* R_BREAKPOINT */
543 0, "L4=", /* 0xb2 */
544 /* R_ENTRY */
545 0, "Ui=", /* 0xb3 */
546 1, "Uf=", /* 0xb4 */
547 /* R_ALT_ENTRY */
548 0, "", /* 0xb5 */
549 /* R_EXIT */
550 0, "", /* 0xb6 */
551 /* R_BEGIN_TRY */
552 0, "", /* 0xb7 */
553 /* R_END_TRY */
554 0, "R0=", /* 0xb8 */
555 1, "Rb4*=", /* 0xb9 */
556 2, "Rd4*=", /* 0xba */
557 /* R_BEGIN_BRTAB */
558 0, "", /* 0xbb */
559 /* R_END_BRTAB */
560 0, "", /* 0xbc */
561 /* R_STATEMENT */
562 0, "Nb=", /* 0xbd */
563 1, "Nc=", /* 0xbe */
564 2, "Nd=", /* 0xbf */
565 /* R_DATA_EXPR */
566 0, "L4=", /* 0xc0 */
567 /* R_CODE_EXPR */
568 0, "L4=", /* 0xc1 */
569 /* R_FSEL */
570 0, "", /* 0xc2 */
571 /* R_LSEL */
572 0, "", /* 0xc3 */
573 /* R_RSEL */
574 0, "", /* 0xc4 */
575 /* R_N_MODE */
576 0, "", /* 0xc5 */
577 /* R_S_MODE */
578 0, "", /* 0xc6 */
579 /* R_D_MODE */
580 0, "", /* 0xc7 */
581 /* R_R_MODE */
582 0, "", /* 0xc8 */
583 /* R_DATA_OVERRIDE */
584 0, "V0=", /* 0xc9 */
585 1, "Vb=", /* 0xca */
586 2, "Vc=", /* 0xcb */
587 3, "Vd=", /* 0xcc */
588 4, "Ve=", /* 0xcd */
589 /* R_TRANSLATED */
590 0, "", /* 0xce */
591 /* R_RESERVED */
592 0, "", /* 0xcf */
593 /* R_COMP1 */
594 0, "Ob=", /* 0xd0 */
595 /* R_COMP2 */
596 0, "Ob=Sd=", /* 0xd1 */
597 /* R_COMP3 */
598 0, "Ob=Ve=", /* 0xd2 */
599 /* R_PREV_FIXUP */
600 0, "P", /* 0xd3 */
601 1, "P", /* 0xd4 */
602 2, "P", /* 0xd5 */
603 3, "P", /* 0xd6 */
604 /* R_RESERVED */
605 0, "", /* 0xd7 */
606 0, "", /* 0xd8 */
607 0, "", /* 0xd9 */
608 0, "", /* 0xda */
609 0, "", /* 0xdb */
610 0, "", /* 0xdc */
611 0, "", /* 0xdd */
612 0, "", /* 0xde */
613 0, "", /* 0xdf */
614 0, "", /* 0xe0 */
615 0, "", /* 0xe1 */
616 0, "", /* 0xe2 */
617 0, "", /* 0xe3 */
618 0, "", /* 0xe4 */
619 0, "", /* 0xe5 */
620 0, "", /* 0xe6 */
621 0, "", /* 0xe7 */
622 0, "", /* 0xe8 */
623 0, "", /* 0xe9 */
624 0, "", /* 0xea */
625 0, "", /* 0xeb */
626 0, "", /* 0xec */
627 0, "", /* 0xed */
628 0, "", /* 0xee */
629 0, "", /* 0xef */
630 0, "", /* 0xf0 */
631 0, "", /* 0xf1 */
632 0, "", /* 0xf2 */
633 0, "", /* 0xf3 */
634 0, "", /* 0xf4 */
635 0, "", /* 0xf5 */
636 0, "", /* 0xf6 */
637 0, "", /* 0xf7 */
638 0, "", /* 0xf8 */
639 0, "", /* 0xf9 */
640 0, "", /* 0xfa */
641 0, "", /* 0xfb */
642 0, "", /* 0xfc */
643 0, "", /* 0xfd */
644 0, "", /* 0xfe */
645 0, "", /* 0xff */
646 };
647
648 static const int comp1_opcodes[] =
649 {
650 0x00,
651 0x40,
652 0x41,
653 0x42,
654 0x43,
655 0x44,
656 0x45,
657 0x46,
658 0x47,
659 0x48,
660 0x49,
661 0x4a,
662 0x4b,
663 0x60,
664 0x80,
665 0xa0,
666 0xc0,
667 -1
668 };
669
670 static const int comp2_opcodes[] =
671 {
672 0x00,
673 0x80,
674 0x82,
675 0xc0,
676 -1
677 };
678
679 static const int comp3_opcodes[] =
680 {
681 0x00,
682 0x02,
683 -1
684 };
685
686 /* These apparently are not in older versions of hpux reloc.h. */
687 #ifndef R_DLT_REL
688 #define R_DLT_REL 0x78
689 #endif
690
691 #ifndef R_AUX_UNWIND
692 #define R_AUX_UNWIND 0xcf
693 #endif
694
695 #ifndef R_SEC_STMT
696 #define R_SEC_STMT 0xd7
697 #endif
698
699 static reloc_howto_type som_hppa_howto_table[] =
700 {
701 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
702 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
703 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
704 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
705 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
706 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
707 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
708 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
709 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
710 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
711 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
712 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
713 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
714 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
715 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
716 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
717 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
718 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
719 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
720 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
721 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
722 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
723 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
724 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
725 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
726 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
727 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
728 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
729 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
730 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
731 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
732 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
733 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
734 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
735 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
736 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
737 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
738 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
739 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
740 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
741 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
742 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
743 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
744 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
745 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
746 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
747 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
748 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
749 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
750 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
751 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
752 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
753 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
754 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
755 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
756 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
757 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
758 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
759 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
760 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
761 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
762 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
763 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
764 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
765 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
766 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
767 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
768 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
769 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
770 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
771 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
772 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
773 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
774 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
775 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
776 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
777 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
778 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
779 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
780 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
781 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
782 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
783 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
784 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
785 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
786 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
787 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
788 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
789 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
790 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
791 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
792 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
793 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
794 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
795 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
796 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
797 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
798 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
799 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
800 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
801 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
802 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
803 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
804 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
805 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
806 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
807 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
808 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
809 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
810 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
811 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
812 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
813 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
814 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
815 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
816 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
817 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
818 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
819 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
820 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
821 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
822 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
823 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
824 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
825 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
826 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
827 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
828 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
829 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
830 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
831 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
832 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
833 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
834 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
835 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
836 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
837 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
838 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
839 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
840 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
841 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
842 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
843 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
844 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
845 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
846 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
847 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
848 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
849 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
850 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
851 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
852 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
853 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
854 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
855 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
856 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
857 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
858 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
859 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
860 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
861 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
862 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
863 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
864 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
865 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
866 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
867 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
868 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
869 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
870 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
871 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
872 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
873 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
874 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
875 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
876 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
877 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
878 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
879 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
880 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
881 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
882 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
883 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
884 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
885 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
886 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
887 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
888 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
889 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
890 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
891 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
892 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
893 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
894 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
895 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
896 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
897 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
898 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
899 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
900 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
901 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
902 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
903 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
904 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
905 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
906 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
907 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
908 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
909 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
910 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
911 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
912 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
913 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
914 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
915 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
916 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
917 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
918 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
919 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
920 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
921 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
922 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
923 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
924 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
925 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
926 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
927 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
928 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
929 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
930 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
931 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
932 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
933 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
934 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
935 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
936 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
937 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
938 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
939 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
940 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
941 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
942 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
943 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
944 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
945 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
946 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
947 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
948 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
949 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
950 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
951 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
952 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
953 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
954 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
955 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
956 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
957
958
959 /* Initialize the SOM relocation queue. By definition the queue holds
960 the last four multibyte fixups. */
961
962 static void
963 som_initialize_reloc_queue (queue)
964 struct reloc_queue *queue;
965 {
966 queue[0].reloc = NULL;
967 queue[0].size = 0;
968 queue[1].reloc = NULL;
969 queue[1].size = 0;
970 queue[2].reloc = NULL;
971 queue[2].size = 0;
972 queue[3].reloc = NULL;
973 queue[3].size = 0;
974 }
975
976 /* Insert a new relocation into the relocation queue. */
977
978 static void
979 som_reloc_queue_insert (p, size, queue)
980 unsigned char *p;
981 unsigned int size;
982 struct reloc_queue *queue;
983 {
984 queue[3].reloc = queue[2].reloc;
985 queue[3].size = queue[2].size;
986 queue[2].reloc = queue[1].reloc;
987 queue[2].size = queue[1].size;
988 queue[1].reloc = queue[0].reloc;
989 queue[1].size = queue[0].size;
990 queue[0].reloc = p;
991 queue[0].size = size;
992 }
993
994 /* When an entry in the relocation queue is reused, the entry moves
995 to the front of the queue. */
996
997 static void
998 som_reloc_queue_fix (queue, index)
999 struct reloc_queue *queue;
1000 unsigned int index;
1001 {
1002 if (index == 0)
1003 return;
1004
1005 if (index == 1)
1006 {
1007 unsigned char *tmp1 = queue[0].reloc;
1008 unsigned int tmp2 = queue[0].size;
1009 queue[0].reloc = queue[1].reloc;
1010 queue[0].size = queue[1].size;
1011 queue[1].reloc = tmp1;
1012 queue[1].size = tmp2;
1013 return;
1014 }
1015
1016 if (index == 2)
1017 {
1018 unsigned char *tmp1 = queue[0].reloc;
1019 unsigned int tmp2 = queue[0].size;
1020 queue[0].reloc = queue[2].reloc;
1021 queue[0].size = queue[2].size;
1022 queue[2].reloc = queue[1].reloc;
1023 queue[2].size = queue[1].size;
1024 queue[1].reloc = tmp1;
1025 queue[1].size = tmp2;
1026 return;
1027 }
1028
1029 if (index == 3)
1030 {
1031 unsigned char *tmp1 = queue[0].reloc;
1032 unsigned int tmp2 = queue[0].size;
1033 queue[0].reloc = queue[3].reloc;
1034 queue[0].size = queue[3].size;
1035 queue[3].reloc = queue[2].reloc;
1036 queue[3].size = queue[2].size;
1037 queue[2].reloc = queue[1].reloc;
1038 queue[2].size = queue[1].size;
1039 queue[1].reloc = tmp1;
1040 queue[1].size = tmp2;
1041 return;
1042 }
1043 abort();
1044 }
1045
1046 /* Search for a particular relocation in the relocation queue. */
1047
1048 static int
1049 som_reloc_queue_find (p, size, queue)
1050 unsigned char *p;
1051 unsigned int size;
1052 struct reloc_queue *queue;
1053 {
1054 if (queue[0].reloc && !bcmp (p, queue[0].reloc, size)
1055 && size == queue[0].size)
1056 return 0;
1057 if (queue[1].reloc && !bcmp (p, queue[1].reloc, size)
1058 && size == queue[1].size)
1059 return 1;
1060 if (queue[2].reloc && !bcmp (p, queue[2].reloc, size)
1061 && size == queue[2].size)
1062 return 2;
1063 if (queue[3].reloc && !bcmp (p, queue[3].reloc, size)
1064 && size == queue[3].size)
1065 return 3;
1066 return -1;
1067 }
1068
1069 static unsigned char *
1070 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1071 bfd *abfd;
1072 int *subspace_reloc_sizep;
1073 unsigned char *p;
1074 unsigned int size;
1075 struct reloc_queue *queue;
1076 {
1077 int queue_index = som_reloc_queue_find (p, size, queue);
1078
1079 if (queue_index != -1)
1080 {
1081 /* Found this in a previous fixup. Undo the fixup we
1082 just built and use R_PREV_FIXUP instead. We saved
1083 a total of size - 1 bytes in the fixup stream. */
1084 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1085 p += 1;
1086 *subspace_reloc_sizep += 1;
1087 som_reloc_queue_fix (queue, queue_index);
1088 }
1089 else
1090 {
1091 som_reloc_queue_insert (p, size, queue);
1092 *subspace_reloc_sizep += size;
1093 p += size;
1094 }
1095 return p;
1096 }
1097
1098 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1099 bytes without any relocation. Update the size of the subspace
1100 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1101 current pointer into the relocation stream. */
1102
1103 static unsigned char *
1104 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1105 bfd *abfd;
1106 unsigned int skip;
1107 unsigned char *p;
1108 unsigned int *subspace_reloc_sizep;
1109 struct reloc_queue *queue;
1110 {
1111 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1112 then R_PREV_FIXUPs to get the difference down to a
1113 reasonable size. */
1114 if (skip >= 0x1000000)
1115 {
1116 skip -= 0x1000000;
1117 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1118 bfd_put_8 (abfd, 0xff, p + 1);
1119 bfd_put_16 (abfd, 0xffff, p + 2);
1120 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1121 while (skip >= 0x1000000)
1122 {
1123 skip -= 0x1000000;
1124 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1125 p++;
1126 *subspace_reloc_sizep += 1;
1127 /* No need to adjust queue here since we are repeating the
1128 most recent fixup. */
1129 }
1130 }
1131
1132 /* The difference must be less than 0x1000000. Use one
1133 more R_NO_RELOCATION entry to get to the right difference. */
1134 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1135 {
1136 /* Difference can be handled in a simple single-byte
1137 R_NO_RELOCATION entry. */
1138 if (skip <= 0x60)
1139 {
1140 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1141 *subspace_reloc_sizep += 1;
1142 p++;
1143 }
1144 /* Handle it with a two byte R_NO_RELOCATION entry. */
1145 else if (skip <= 0x1000)
1146 {
1147 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1148 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1149 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1150 }
1151 /* Handle it with a three byte R_NO_RELOCATION entry. */
1152 else
1153 {
1154 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1155 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1156 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1157 }
1158 }
1159 /* Ugh. Punt and use a 4 byte entry. */
1160 else if (skip > 0)
1161 {
1162 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1163 bfd_put_8 (abfd, skip >> 16, p + 1);
1164 bfd_put_16 (abfd, skip, p + 2);
1165 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1166 }
1167 return p;
1168 }
1169
1170 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1171 from a BFD relocation. Update the size of the subspace relocation
1172 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1173 into the relocation stream. */
1174
1175 static unsigned char *
1176 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1177 bfd *abfd;
1178 int addend;
1179 unsigned char *p;
1180 unsigned int *subspace_reloc_sizep;
1181 struct reloc_queue *queue;
1182 {
1183 if ((unsigned)(addend) + 0x80 < 0x100)
1184 {
1185 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1186 bfd_put_8 (abfd, addend, p + 1);
1187 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1188 }
1189 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1190 {
1191 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1192 bfd_put_16 (abfd, addend, p + 1);
1193 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1194 }
1195 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1196 {
1197 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1198 bfd_put_8 (abfd, addend >> 16, p + 1);
1199 bfd_put_16 (abfd, addend, p + 2);
1200 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1201 }
1202 else
1203 {
1204 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1205 bfd_put_32 (abfd, addend, p + 1);
1206 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1207 }
1208 return p;
1209 }
1210
1211 /* Handle a single function call relocation. */
1212
1213 static unsigned char *
1214 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1215 bfd *abfd;
1216 unsigned char *p;
1217 unsigned int *subspace_reloc_sizep;
1218 arelent *bfd_reloc;
1219 int sym_num;
1220 struct reloc_queue *queue;
1221 {
1222 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1223 int rtn_bits = arg_bits & 0x3;
1224 int type, done = 0;
1225
1226 /* You'll never believe all this is necessary to handle relocations
1227 for function calls. Having to compute and pack the argument
1228 relocation bits is the real nightmare.
1229
1230 If you're interested in how this works, just forget it. You really
1231 do not want to know about this braindamage. */
1232
1233 /* First see if this can be done with a "simple" relocation. Simple
1234 relocations have a symbol number < 0x100 and have simple encodings
1235 of argument relocations. */
1236
1237 if (sym_num < 0x100)
1238 {
1239 switch (arg_bits)
1240 {
1241 case 0:
1242 case 1:
1243 type = 0;
1244 break;
1245 case 1 << 8:
1246 case 1 << 8 | 1:
1247 type = 1;
1248 break;
1249 case 1 << 8 | 1 << 6:
1250 case 1 << 8 | 1 << 6 | 1:
1251 type = 2;
1252 break;
1253 case 1 << 8 | 1 << 6 | 1 << 4:
1254 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1255 type = 3;
1256 break;
1257 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1258 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1259 type = 4;
1260 break;
1261 default:
1262 /* Not one of the easy encodings. This will have to be
1263 handled by the more complex code below. */
1264 type = -1;
1265 break;
1266 }
1267 if (type != -1)
1268 {
1269 /* Account for the return value too. */
1270 if (rtn_bits)
1271 type += 5;
1272
1273 /* Emit a 2 byte relocation. Then see if it can be handled
1274 with a relocation which is already in the relocation queue. */
1275 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1276 bfd_put_8 (abfd, sym_num, p + 1);
1277 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1278 done = 1;
1279 }
1280 }
1281
1282 /* If this could not be handled with a simple relocation, then do a hard
1283 one. Hard relocations occur if the symbol number was too high or if
1284 the encoding of argument relocation bits is too complex. */
1285 if (! done)
1286 {
1287 /* Don't ask about these magic sequences. I took them straight
1288 from gas-1.36 which took them from the a.out man page. */
1289 type = rtn_bits;
1290 if ((arg_bits >> 6 & 0xf) == 0xe)
1291 type += 9 * 40;
1292 else
1293 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1294 if ((arg_bits >> 2 & 0xf) == 0xe)
1295 type += 9 * 4;
1296 else
1297 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1298
1299 /* Output the first two bytes of the relocation. These describe
1300 the length of the relocation and encoding style. */
1301 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1302 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1303 p);
1304 bfd_put_8 (abfd, type, p + 1);
1305
1306 /* Now output the symbol index and see if this bizarre relocation
1307 just happened to be in the relocation queue. */
1308 if (sym_num < 0x100)
1309 {
1310 bfd_put_8 (abfd, sym_num, p + 2);
1311 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1312 }
1313 else
1314 {
1315 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1316 bfd_put_16 (abfd, sym_num, p + 3);
1317 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1318 }
1319 }
1320 return p;
1321 }
1322
1323
1324 /* Return the logarithm of X, base 2, considering X unsigned.
1325 Abort -1 if X is not a power or two or is zero. */
1326
1327 static int
1328 log2 (x)
1329 unsigned int x;
1330 {
1331 int log = 0;
1332
1333 /* Test for 0 or a power of 2. */
1334 if (x == 0 || x != (x & -x))
1335 return -1;
1336
1337 while ((x >>= 1) != 0)
1338 log++;
1339 return log;
1340 }
1341
1342 static bfd_reloc_status_type
1343 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1344 input_section, output_bfd, error_message)
1345 bfd *abfd;
1346 arelent *reloc_entry;
1347 asymbol *symbol_in;
1348 PTR data;
1349 asection *input_section;
1350 bfd *output_bfd;
1351 char **error_message;
1352 {
1353 if (output_bfd)
1354 {
1355 reloc_entry->address += input_section->output_offset;
1356 return bfd_reloc_ok;
1357 }
1358 return bfd_reloc_ok;
1359 }
1360
1361 /* Given a generic HPPA relocation type, the instruction format,
1362 and a field selector, return one or more appropriate SOM relocations. */
1363
1364 int **
1365 hppa_som_gen_reloc_type (abfd, base_type, format, field)
1366 bfd *abfd;
1367 int base_type;
1368 int format;
1369 enum hppa_reloc_field_selector_type_alt field;
1370 {
1371 int *final_type, **final_types;
1372
1373 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 3);
1374 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1375 if (!final_types || !final_type)
1376 {
1377 bfd_set_error (bfd_error_no_memory);
1378 return NULL;
1379 }
1380
1381 /* The field selector may require additional relocations to be
1382 generated. It's impossible to know at this moment if additional
1383 relocations will be needed, so we make them. The code to actually
1384 write the relocation/fixup stream is responsible for removing
1385 any redundant relocations. */
1386 switch (field)
1387 {
1388 case e_fsel:
1389 case e_psel:
1390 case e_lpsel:
1391 case e_rpsel:
1392 final_types[0] = final_type;
1393 final_types[1] = NULL;
1394 final_types[2] = NULL;
1395 *final_type = base_type;
1396 break;
1397
1398 case e_tsel:
1399 case e_ltsel:
1400 case e_rtsel:
1401 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1402 if (!final_types[0])
1403 {
1404 bfd_set_error (bfd_error_no_memory);
1405 return NULL;
1406 }
1407 if (field == e_tsel)
1408 *final_types[0] = R_FSEL;
1409 else if (field == e_ltsel)
1410 *final_types[0] = R_LSEL;
1411 else
1412 *final_types[0] = R_RSEL;
1413 final_types[1] = final_type;
1414 final_types[2] = NULL;
1415 *final_type = base_type;
1416 break;
1417
1418 case e_lssel:
1419 case e_rssel:
1420 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1421 if (!final_types[0])
1422 {
1423 bfd_set_error (bfd_error_no_memory);
1424 return NULL;
1425 }
1426 *final_types[0] = R_S_MODE;
1427 final_types[1] = final_type;
1428 final_types[2] = NULL;
1429 *final_type = base_type;
1430 break;
1431
1432 case e_lsel:
1433 case e_rsel:
1434 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1435 if (!final_types[0])
1436 {
1437 bfd_set_error (bfd_error_no_memory);
1438 return NULL;
1439 }
1440 *final_types[0] = R_N_MODE;
1441 final_types[1] = final_type;
1442 final_types[2] = NULL;
1443 *final_type = base_type;
1444 break;
1445
1446 case e_ldsel:
1447 case e_rdsel:
1448 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1449 if (!final_types[0])
1450 {
1451 bfd_set_error (bfd_error_no_memory);
1452 return NULL;
1453 }
1454 *final_types[0] = R_D_MODE;
1455 final_types[1] = final_type;
1456 final_types[2] = NULL;
1457 *final_type = base_type;
1458 break;
1459
1460 case e_lrsel:
1461 case e_rrsel:
1462 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1463 if (!final_types[0])
1464 {
1465 bfd_set_error (bfd_error_no_memory);
1466 return NULL;
1467 }
1468 *final_types[0] = R_R_MODE;
1469 final_types[1] = final_type;
1470 final_types[2] = NULL;
1471 *final_type = base_type;
1472 break;
1473 }
1474
1475 switch (base_type)
1476 {
1477 case R_HPPA:
1478 /* PLABELs get their own relocation type. */
1479 if (field == e_psel
1480 || field == e_lpsel
1481 || field == e_rpsel)
1482 {
1483 /* A PLABEL relocation that has a size of 32 bits must
1484 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1485 if (format == 32)
1486 *final_type = R_DATA_PLABEL;
1487 else
1488 *final_type = R_CODE_PLABEL;
1489 }
1490 /* PIC stuff. */
1491 else if (field == e_tsel
1492 || field == e_ltsel
1493 || field == e_rtsel)
1494 *final_type = R_DLT_REL;
1495 /* A relocation in the data space is always a full 32bits. */
1496 else if (format == 32)
1497 *final_type = R_DATA_ONE_SYMBOL;
1498
1499 break;
1500
1501 case R_HPPA_GOTOFF:
1502 /* More PLABEL special cases. */
1503 if (field == e_psel
1504 || field == e_lpsel
1505 || field == e_rpsel)
1506 *final_type = R_DATA_PLABEL;
1507 break;
1508
1509 case R_HPPA_NONE:
1510 case R_HPPA_ABS_CALL:
1511 case R_HPPA_PCREL_CALL:
1512 case R_HPPA_COMPLEX:
1513 case R_HPPA_COMPLEX_PCREL_CALL:
1514 case R_HPPA_COMPLEX_ABS_CALL:
1515 /* Right now we can default all these. */
1516 break;
1517 }
1518 return final_types;
1519 }
1520
1521 /* Return the address of the correct entry in the PA SOM relocation
1522 howto table. */
1523
1524 static const reloc_howto_type *
1525 som_bfd_reloc_type_lookup (arch, code)
1526 bfd_arch_info_type *arch;
1527 bfd_reloc_code_real_type code;
1528 {
1529 if ((int) code < (int) R_NO_RELOCATION + 255)
1530 {
1531 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1532 return &som_hppa_howto_table[(int) code];
1533 }
1534
1535 return (reloc_howto_type *) 0;
1536 }
1537
1538 /* Perform some initialization for an object. Save results of this
1539 initialization in the BFD. */
1540
1541 static bfd_target *
1542 som_object_setup (abfd, file_hdrp, aux_hdrp)
1543 bfd *abfd;
1544 struct header *file_hdrp;
1545 struct som_exec_auxhdr *aux_hdrp;
1546 {
1547 /* som_mkobject will set bfd_error if som_mkobject fails. */
1548 if (som_mkobject (abfd) != true)
1549 return 0;
1550
1551 /* Set BFD flags based on what information is available in the SOM. */
1552 abfd->flags = NO_FLAGS;
1553 if (! file_hdrp->entry_offset)
1554 abfd->flags |= HAS_RELOC;
1555 else
1556 abfd->flags |= EXEC_P;
1557 if (file_hdrp->symbol_total)
1558 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1559
1560 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1561 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 0);
1562 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1563
1564 /* Initialize the saved symbol table and string table to NULL.
1565 Save important offsets and sizes from the SOM header into
1566 the BFD. */
1567 obj_som_stringtab (abfd) = (char *) NULL;
1568 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1569 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1570 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1571 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1572 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
1573
1574 return abfd->xvec;
1575 }
1576
1577 /* Create a new BFD section for NAME. If NAME already exists, then create a
1578 new unique name, with NAME as the prefix. This exists because SOM .o files
1579 may have more than one $CODE$ subspace. */
1580
1581 static asection *
1582 make_unique_section (abfd, name, num)
1583 bfd *abfd;
1584 CONST char *name;
1585 int num;
1586 {
1587 asection *sect;
1588 char *newname;
1589 char altname[100];
1590
1591 sect = bfd_make_section (abfd, name);
1592 while (!sect)
1593 {
1594 sprintf (altname, "%s-%d", name, num++);
1595 sect = bfd_make_section (abfd, altname);
1596 }
1597
1598 newname = bfd_alloc (abfd, strlen (sect->name) + 1);
1599 if (!newname)
1600 {
1601 bfd_set_error (bfd_error_no_memory);
1602 return NULL;
1603 }
1604 strcpy (newname, sect->name);
1605
1606 sect->name = newname;
1607 return sect;
1608 }
1609
1610 /* Convert all of the space and subspace info into BFD sections. Each space
1611 contains a number of subspaces, which in turn describe the mapping between
1612 regions of the exec file, and the address space that the program runs in.
1613 BFD sections which correspond to spaces will overlap the sections for the
1614 associated subspaces. */
1615
1616 static boolean
1617 setup_sections (abfd, file_hdr)
1618 bfd *abfd;
1619 struct header *file_hdr;
1620 {
1621 char *space_strings;
1622 int space_index;
1623 unsigned int total_subspaces = 0;
1624
1625 /* First, read in space names */
1626
1627 space_strings = malloc (file_hdr->space_strings_size);
1628 if (!space_strings)
1629 {
1630 bfd_set_error (bfd_error_no_memory);
1631 goto error_return;
1632 }
1633
1634 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
1635 goto error_return;
1636 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1637 != file_hdr->space_strings_size)
1638 goto error_return;
1639
1640 /* Loop over all of the space dictionaries, building up sections */
1641 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1642 {
1643 struct space_dictionary_record space;
1644 struct subspace_dictionary_record subspace, save_subspace;
1645 int subspace_index;
1646 asection *space_asect;
1647
1648 /* Read the space dictionary element */
1649 if (bfd_seek (abfd, file_hdr->space_location
1650 + space_index * sizeof space, SEEK_SET) < 0)
1651 goto error_return;
1652 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1653 goto error_return;
1654
1655 /* Setup the space name string */
1656 space.name.n_name = space.name.n_strx + space_strings;
1657
1658 /* Make a section out of it */
1659 space_asect = make_unique_section (abfd, space.name.n_name, space_index);
1660 if (!space_asect)
1661 goto error_return;
1662
1663 /* Now, read in the first subspace for this space */
1664 if (bfd_seek (abfd, file_hdr->subspace_location
1665 + space.subspace_index * sizeof subspace,
1666 SEEK_SET) < 0)
1667 goto error_return;
1668 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1669 goto error_return;
1670 /* Seek back to the start of the subspaces for loop below */
1671 if (bfd_seek (abfd, file_hdr->subspace_location
1672 + space.subspace_index * sizeof subspace,
1673 SEEK_SET) < 0)
1674 goto error_return;
1675
1676 /* Setup the start address and file loc from the first subspace record */
1677 space_asect->vma = subspace.subspace_start;
1678 space_asect->filepos = subspace.file_loc_init_value;
1679 space_asect->alignment_power = log2 (subspace.alignment);
1680 if (space_asect->alignment_power == -1)
1681 goto error_return;
1682
1683 /* Initialize save_subspace so we can reliably determine if this
1684 loop placed any useful values into it. */
1685 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1686
1687 /* Loop over the rest of the subspaces, building up more sections */
1688 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1689 subspace_index++)
1690 {
1691 asection *subspace_asect;
1692
1693 /* Read in the next subspace */
1694 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1695 != sizeof subspace)
1696 goto error_return;
1697
1698 /* Setup the subspace name string */
1699 subspace.name.n_name = subspace.name.n_strx + space_strings;
1700
1701 /* Make a section out of this subspace */
1702 subspace_asect = make_unique_section (abfd, subspace.name.n_name,
1703 space.subspace_index + subspace_index);
1704
1705 if (!subspace_asect)
1706 goto error_return;
1707
1708 /* Keep an easy mapping between subspaces and sections. */
1709 som_section_data (subspace_asect)->subspace_index
1710 = total_subspaces++;
1711
1712 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1713 by the access_control_bits in the subspace header. */
1714 switch (subspace.access_control_bits >> 4)
1715 {
1716 /* Readonly data. */
1717 case 0x0:
1718 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1719 break;
1720
1721 /* Normal data. */
1722 case 0x1:
1723 subspace_asect->flags |= SEC_DATA;
1724 break;
1725
1726 /* Readonly code and the gateways.
1727 Gateways have other attributes which do not map
1728 into anything BFD knows about. */
1729 case 0x2:
1730 case 0x4:
1731 case 0x5:
1732 case 0x6:
1733 case 0x7:
1734 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1735 break;
1736
1737 /* dynamic (writable) code. */
1738 case 0x3:
1739 subspace_asect->flags |= SEC_CODE;
1740 break;
1741 }
1742
1743 if (subspace.dup_common || subspace.is_common)
1744 subspace_asect->flags |= SEC_IS_COMMON;
1745 else if (subspace.subspace_length > 0)
1746 subspace_asect->flags |= SEC_HAS_CONTENTS;
1747 if (subspace.is_loadable)
1748 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1749 if (subspace.code_only)
1750 subspace_asect->flags |= SEC_CODE;
1751
1752 /* Both file_loc_init_value and initialization_length will
1753 be zero for a BSS like subspace. */
1754 if (subspace.file_loc_init_value == 0
1755 && subspace.initialization_length == 0)
1756 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD);
1757
1758 /* This subspace has relocations.
1759 The fixup_request_quantity is a byte count for the number of
1760 entries in the relocation stream; it is not the actual number
1761 of relocations in the subspace. */
1762 if (subspace.fixup_request_quantity != 0)
1763 {
1764 subspace_asect->flags |= SEC_RELOC;
1765 subspace_asect->rel_filepos = subspace.fixup_request_index;
1766 som_section_data (subspace_asect)->reloc_size
1767 = subspace.fixup_request_quantity;
1768 /* We can not determine this yet. When we read in the
1769 relocation table the correct value will be filled in. */
1770 subspace_asect->reloc_count = -1;
1771 }
1772
1773 /* Update save_subspace if appropriate. */
1774 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1775 save_subspace = subspace;
1776
1777 subspace_asect->vma = subspace.subspace_start;
1778 subspace_asect->_cooked_size = subspace.subspace_length;
1779 subspace_asect->_raw_size = subspace.subspace_length;
1780 subspace_asect->filepos = subspace.file_loc_init_value;
1781 subspace_asect->alignment_power = log2 (subspace.alignment);
1782 if (subspace_asect->alignment_power == -1)
1783 goto error_return;
1784 }
1785
1786 /* Yow! there is no subspace within the space which actually
1787 has initialized information in it; this should never happen
1788 as far as I know. */
1789 if (!save_subspace.file_loc_init_value)
1790 goto error_return;
1791
1792 /* Setup the sizes for the space section based upon the info in the
1793 last subspace of the space. */
1794 space_asect->_cooked_size = save_subspace.subspace_start
1795 - space_asect->vma + save_subspace.subspace_length;
1796 space_asect->_raw_size = save_subspace.file_loc_init_value
1797 - space_asect->filepos + save_subspace.initialization_length;
1798 }
1799 if (space_strings != NULL)
1800 free (space_strings);
1801 return true;
1802
1803 error_return:
1804 if (space_strings != NULL)
1805 free (space_strings);
1806 return false;
1807 }
1808
1809 /* Read in a SOM object and make it into a BFD. */
1810
1811 static bfd_target *
1812 som_object_p (abfd)
1813 bfd *abfd;
1814 {
1815 struct header file_hdr;
1816 struct som_exec_auxhdr aux_hdr;
1817
1818 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
1819 {
1820 bfd_set_error (bfd_error_system_call);
1821 return 0;
1822 }
1823
1824 if (!_PA_RISC_ID (file_hdr.system_id))
1825 {
1826 bfd_set_error (bfd_error_wrong_format);
1827 return 0;
1828 }
1829
1830 switch (file_hdr.a_magic)
1831 {
1832 case RELOC_MAGIC:
1833 case EXEC_MAGIC:
1834 case SHARE_MAGIC:
1835 case DEMAND_MAGIC:
1836 #ifdef DL_MAGIC
1837 case DL_MAGIC:
1838 #endif
1839 #ifdef SHL_MAGIC
1840 case SHL_MAGIC:
1841 #endif
1842 #ifdef EXECLIBMAGIC
1843 case EXECLIBMAGIC:
1844 #endif
1845 #ifdef SHARED_MAGIC_CNX
1846 case SHARED_MAGIC_CNX:
1847 #endif
1848 break;
1849 default:
1850 bfd_set_error (bfd_error_wrong_format);
1851 return 0;
1852 }
1853
1854 if (file_hdr.version_id != VERSION_ID
1855 && file_hdr.version_id != NEW_VERSION_ID)
1856 {
1857 bfd_set_error (bfd_error_wrong_format);
1858 return 0;
1859 }
1860
1861 /* If the aux_header_size field in the file header is zero, then this
1862 object is an incomplete executable (a .o file). Do not try to read
1863 a non-existant auxiliary header. */
1864 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
1865 if (file_hdr.aux_header_size != 0)
1866 {
1867 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
1868 {
1869 bfd_set_error (bfd_error_wrong_format);
1870 return 0;
1871 }
1872 }
1873
1874 if (!setup_sections (abfd, &file_hdr))
1875 {
1876 /* setup_sections does not bubble up a bfd error code. */
1877 bfd_set_error (bfd_error_bad_value);
1878 return 0;
1879 }
1880
1881 /* This appears to be a valid SOM object. Do some initialization. */
1882 return som_object_setup (abfd, &file_hdr, &aux_hdr);
1883 }
1884
1885 /* Create a SOM object. */
1886
1887 static boolean
1888 som_mkobject (abfd)
1889 bfd *abfd;
1890 {
1891 /* Allocate memory to hold backend information. */
1892 abfd->tdata.som_data = (struct som_data_struct *)
1893 bfd_zalloc (abfd, sizeof (struct som_data_struct));
1894 if (abfd->tdata.som_data == NULL)
1895 {
1896 bfd_set_error (bfd_error_no_memory);
1897 return false;
1898 }
1899 obj_som_file_hdr (abfd)
1900 = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
1901 if (obj_som_file_hdr (abfd) == NULL)
1902
1903 {
1904 bfd_set_error (bfd_error_no_memory);
1905 return false;
1906 }
1907 return true;
1908 }
1909
1910 /* Initialize some information in the file header. This routine makes
1911 not attempt at doing the right thing for a full executable; it
1912 is only meant to handle relocatable objects. */
1913
1914 static boolean
1915 som_prep_headers (abfd)
1916 bfd *abfd;
1917 {
1918 struct header *file_hdr = obj_som_file_hdr (abfd);
1919 asection *section;
1920
1921 /* FIXME. This should really be conditional based on whether or not
1922 PA1.1 instructions/registers have been used. */
1923 file_hdr->system_id = CPU_PA_RISC1_0;
1924
1925 /* FIXME. Only correct for building relocatable objects. */
1926 if (abfd->flags & EXEC_P)
1927 abort ();
1928 else
1929 file_hdr->a_magic = RELOC_MAGIC;
1930
1931 /* Only new format SOM is supported. */
1932 file_hdr->version_id = NEW_VERSION_ID;
1933
1934 /* These fields are optional, and embedding timestamps is not always
1935 a wise thing to do, it makes comparing objects during a multi-stage
1936 bootstrap difficult. */
1937 file_hdr->file_time.secs = 0;
1938 file_hdr->file_time.nanosecs = 0;
1939
1940 if (abfd->flags & EXEC_P)
1941 abort ();
1942 else
1943 {
1944 file_hdr->entry_space = 0;
1945 file_hdr->entry_subspace = 0;
1946 file_hdr->entry_offset = 0;
1947 }
1948
1949 file_hdr->presumed_dp = 0;
1950
1951 /* Now iterate over the sections translating information from
1952 BFD sections to SOM spaces/subspaces. */
1953
1954 for (section = abfd->sections; section != NULL; section = section->next)
1955 {
1956 /* Ignore anything which has not been marked as a space or
1957 subspace. */
1958 if (som_section_data (section)->is_space == 0
1959
1960 && som_section_data (section)->is_subspace == 0)
1961 continue;
1962
1963 if (som_section_data (section)->is_space)
1964 {
1965 /* Set space attributes. Note most attributes of SOM spaces
1966 are set based on the subspaces it contains. */
1967 som_section_data (section)->space_dict.loader_fix_index = -1;
1968 som_section_data (section)->space_dict.init_pointer_index = -1;
1969 }
1970 else
1971 {
1972 /* Set subspace attributes. Basic stuff is done here, additional
1973 attributes are filled in later as more information becomes
1974 available. */
1975 if (section->flags & SEC_IS_COMMON)
1976 {
1977 som_section_data (section)->subspace_dict.dup_common = 1;
1978 som_section_data (section)->subspace_dict.is_common = 1;
1979 }
1980
1981 if (section->flags & SEC_ALLOC)
1982 som_section_data (section)->subspace_dict.is_loadable = 1;
1983
1984 if (section->flags & SEC_CODE)
1985 som_section_data (section)->subspace_dict.code_only = 1;
1986
1987 som_section_data (section)->subspace_dict.subspace_start =
1988 section->vma;
1989 som_section_data (section)->subspace_dict.subspace_length =
1990 bfd_section_size (abfd, section);
1991 som_section_data (section)->subspace_dict.initialization_length =
1992 bfd_section_size (abfd, section);
1993 som_section_data (section)->subspace_dict.alignment =
1994 1 << section->alignment_power;
1995 }
1996 }
1997 return true;
1998 }
1999
2000 /* Count and return the number of spaces attached to the given BFD. */
2001
2002 static unsigned long
2003 som_count_spaces (abfd)
2004 bfd *abfd;
2005 {
2006 int count = 0;
2007 asection *section;
2008
2009 for (section = abfd->sections; section != NULL; section = section->next)
2010 count += som_section_data (section)->is_space;
2011
2012 return count;
2013 }
2014
2015 /* Count the number of subspaces attached to the given BFD. */
2016
2017 static unsigned long
2018 som_count_subspaces (abfd)
2019 bfd *abfd;
2020 {
2021 int count = 0;
2022 asection *section;
2023
2024 for (section = abfd->sections; section != NULL; section = section->next)
2025 count += som_section_data (section)->is_subspace;
2026
2027 return count;
2028 }
2029
2030 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2031
2032 We desire symbols to be ordered starting with the symbol with the
2033 highest relocation count down to the symbol with the lowest relocation
2034 count. Doing so compacts the relocation stream. */
2035
2036 static int
2037 compare_syms (sym1, sym2)
2038 asymbol **sym1;
2039 asymbol **sym2;
2040
2041 {
2042 unsigned int count1, count2;
2043
2044 /* Get relocation count for each symbol. Note that the count
2045 is stored in the udata pointer for section symbols! */
2046 if ((*sym1)->flags & BSF_SECTION_SYM)
2047 count1 = (int)(*sym1)->udata;
2048 else
2049 count1 = som_symbol_data (*sym1)->reloc_count;
2050
2051 if ((*sym2)->flags & BSF_SECTION_SYM)
2052 count2 = (int)(*sym2)->udata;
2053 else
2054 count2 = som_symbol_data (*sym2)->reloc_count;
2055
2056 /* Return the appropriate value. */
2057 if (count1 < count2)
2058 return 1;
2059 else if (count1 > count2)
2060 return -1;
2061 return 0;
2062 }
2063
2064 /* Perform various work in preparation for emitting the fixup stream. */
2065
2066 static void
2067 som_prep_for_fixups (abfd, syms, num_syms)
2068 bfd *abfd;
2069 asymbol **syms;
2070 unsigned long num_syms;
2071 {
2072 int i;
2073 asection *section;
2074
2075 /* Most SOM relocations involving a symbol have a length which is
2076 dependent on the index of the symbol. So symbols which are
2077 used often in relocations should have a small index. */
2078
2079 /* First initialize the counters for each symbol. */
2080 for (i = 0; i < num_syms; i++)
2081 {
2082 /* Handle a section symbol; these have no pointers back to the
2083 SOM symbol info. So we just use the pointer field (udata)
2084 to hold the relocation count.
2085
2086 FIXME. While we're here set the name of any section symbol
2087 to something which will not screw GDB. How do other formats
2088 deal with this?!? */
2089 if (som_symbol_data (syms[i]) == NULL)
2090 {
2091 syms[i]->flags |= BSF_SECTION_SYM;
2092 syms[i]->name = "L$0\002";
2093 syms[i]->udata = (PTR) 0;
2094 }
2095 else
2096 som_symbol_data (syms[i])->reloc_count = 0;
2097 }
2098
2099 /* Now that the counters are initialized, make a weighted count
2100 of how often a given symbol is used in a relocation. */
2101 for (section = abfd->sections; section != NULL; section = section->next)
2102 {
2103 int i;
2104
2105 /* Does this section have any relocations? */
2106 if (section->reloc_count <= 0)
2107 continue;
2108
2109 /* Walk through each relocation for this section. */
2110 for (i = 1; i < section->reloc_count; i++)
2111 {
2112 arelent *reloc = section->orelocation[i];
2113 int scale;
2114
2115 /* If no symbol, then there is no counter to increase. */
2116 if (reloc->sym_ptr_ptr == NULL)
2117 continue;
2118
2119 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2120 and R_CODE_ONE_SYMBOL relocations to come first. These
2121 two relocations have single byte versions if the symbol
2122 index is very small. */
2123 if (reloc->howto->type == R_DP_RELATIVE
2124 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2125 scale = 2;
2126 else
2127 scale = 1;
2128
2129 /* Handle section symbols by ramming the count in the udata
2130 field. It will not be used and the count is very important
2131 for these symbols. */
2132 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2133 {
2134 (*reloc->sym_ptr_ptr)->udata =
2135 (PTR) ((int) (*reloc->sym_ptr_ptr)->udata + scale);
2136 continue;
2137 }
2138
2139 /* A normal symbol. Increment the count. */
2140 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2141 }
2142 }
2143
2144 /* Now sort the symbols. */
2145 qsort (syms, num_syms, sizeof (asymbol *), compare_syms);
2146
2147 /* Compute the symbol indexes, they will be needed by the relocation
2148 code. */
2149 for (i = 0; i < num_syms; i++)
2150 {
2151 /* A section symbol. Again, there is no pointer to backend symbol
2152 information, so we reuse (abuse) the udata field again. */
2153 if (syms[i]->flags & BSF_SECTION_SYM)
2154 syms[i]->udata = (PTR) i;
2155 else
2156 som_symbol_data (syms[i])->index = i;
2157 }
2158 }
2159
2160 static boolean
2161 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2162 bfd *abfd;
2163 unsigned long current_offset;
2164 unsigned int *total_reloc_sizep;
2165 {
2166 unsigned int i, j;
2167 /* Chunk of memory that we can use as buffer space, then throw
2168 away. */
2169 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2170 unsigned char *p;
2171 unsigned int total_reloc_size = 0;
2172 unsigned int subspace_reloc_size = 0;
2173 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2174 asection *section = abfd->sections;
2175
2176 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2177 p = tmp_space;
2178
2179 /* All the fixups for a particular subspace are emitted in a single
2180 stream. All the subspaces for a particular space are emitted
2181 as a single stream.
2182
2183 So, to get all the locations correct one must iterate through all the
2184 spaces, for each space iterate through its subspaces and output a
2185 fixups stream. */
2186 for (i = 0; i < num_spaces; i++)
2187 {
2188 asection *subsection;
2189
2190 /* Find a space. */
2191 while (som_section_data (section)->is_space == 0)
2192 section = section->next;
2193
2194 /* Now iterate through each of its subspaces. */
2195 for (subsection = abfd->sections;
2196 subsection != NULL;
2197 subsection = subsection->next)
2198 {
2199 int reloc_offset, current_rounding_mode;
2200
2201 /* Find a subspace of this space. */
2202 if (som_section_data (subsection)->is_subspace == 0
2203 || som_section_data (subsection)->containing_space != section)
2204 continue;
2205
2206 /* If this subspace had no relocations, then we're finished
2207 with it. */
2208 if (subsection->reloc_count <= 0)
2209 {
2210 som_section_data (subsection)->subspace_dict.fixup_request_index
2211 = -1;
2212 continue;
2213 }
2214
2215 /* This subspace has some relocations. Put the relocation stream
2216 index into the subspace record. */
2217 som_section_data (subsection)->subspace_dict.fixup_request_index
2218 = total_reloc_size;
2219
2220 /* To make life easier start over with a clean slate for
2221 each subspace. Seek to the start of the relocation stream
2222 for this subspace in preparation for writing out its fixup
2223 stream. */
2224 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) != 0)
2225 {
2226 bfd_set_error (bfd_error_system_call);
2227 return false;
2228 }
2229
2230 /* Buffer space has already been allocated. Just perform some
2231 initialization here. */
2232 p = tmp_space;
2233 subspace_reloc_size = 0;
2234 reloc_offset = 0;
2235 som_initialize_reloc_queue (reloc_queue);
2236 current_rounding_mode = R_N_MODE;
2237
2238 /* Translate each BFD relocation into one or more SOM
2239 relocations. */
2240 for (j = 0; j < subsection->reloc_count; j++)
2241 {
2242 arelent *bfd_reloc = subsection->orelocation[j];
2243 unsigned int skip;
2244 int sym_num;
2245
2246 /* Get the symbol number. Remember it's stored in a
2247 special place for section symbols. */
2248 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2249 sym_num = (int) (*bfd_reloc->sym_ptr_ptr)->udata;
2250 else
2251 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2252
2253 /* If there is not enough room for the next couple relocations,
2254 then dump the current buffer contents now. Also reinitialize
2255 the relocation queue.
2256
2257 No single BFD relocation could ever translate into more
2258 than 100 bytes of SOM relocations (20bytes is probably the
2259 upper limit, but leave lots of space for growth). */
2260 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2261 {
2262 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2263 != p - tmp_space)
2264 {
2265 bfd_set_error (bfd_error_system_call);
2266 return false;
2267 }
2268 p = tmp_space;
2269 som_initialize_reloc_queue (reloc_queue);
2270 }
2271
2272 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2273 skipped. */
2274 skip = bfd_reloc->address - reloc_offset;
2275 p = som_reloc_skip (abfd, skip, p,
2276 &subspace_reloc_size, reloc_queue);
2277
2278 /* Update reloc_offset for the next iteration.
2279
2280 Many relocations do not consume input bytes. They
2281 are markers, or set state necessary to perform some
2282 later relocation. */
2283 switch (bfd_reloc->howto->type)
2284 {
2285 /* This only needs to handle relocations that may be
2286 made by hppa_som_gen_reloc. */
2287 case R_ENTRY:
2288 case R_EXIT:
2289 case R_N_MODE:
2290 case R_S_MODE:
2291 case R_D_MODE:
2292 case R_R_MODE:
2293 case R_FSEL:
2294 case R_LSEL:
2295 case R_RSEL:
2296 reloc_offset = bfd_reloc->address;
2297 break;
2298
2299 default:
2300 reloc_offset = bfd_reloc->address + 4;
2301 break;
2302 }
2303
2304 /* Now the actual relocation we care about. */
2305 switch (bfd_reloc->howto->type)
2306 {
2307 case R_PCREL_CALL:
2308 case R_ABS_CALL:
2309 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2310 bfd_reloc, sym_num, reloc_queue);
2311 break;
2312
2313 case R_CODE_ONE_SYMBOL:
2314 case R_DP_RELATIVE:
2315 /* Account for any addend. */
2316 if (bfd_reloc->addend)
2317 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2318 &subspace_reloc_size, reloc_queue);
2319
2320 if (sym_num < 0x20)
2321 {
2322 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2323 subspace_reloc_size += 1;
2324 p += 1;
2325 }
2326 else if (sym_num < 0x100)
2327 {
2328 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2329 bfd_put_8 (abfd, sym_num, p + 1);
2330 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2331 2, reloc_queue);
2332 }
2333 else if (sym_num < 0x10000000)
2334 {
2335 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2336 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2337 bfd_put_16 (abfd, sym_num, p + 2);
2338 p = try_prev_fixup (abfd, &subspace_reloc_size,
2339 p, 4, reloc_queue);
2340 }
2341 else
2342 abort ();
2343 break;
2344
2345 case R_DATA_ONE_SYMBOL:
2346 case R_DATA_PLABEL:
2347 case R_CODE_PLABEL:
2348 case R_DLT_REL:
2349 /* Account for any addend. */
2350 if (bfd_reloc->addend)
2351 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2352 &subspace_reloc_size, reloc_queue);
2353
2354 if (sym_num < 0x100)
2355 {
2356 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2357 bfd_put_8 (abfd, sym_num, p + 1);
2358 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2359 2, reloc_queue);
2360 }
2361 else if (sym_num < 0x10000000)
2362 {
2363 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2364 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2365 bfd_put_16 (abfd, sym_num, p + 2);
2366 p = try_prev_fixup (abfd, &subspace_reloc_size,
2367 p, 4, reloc_queue);
2368 }
2369 else
2370 abort ();
2371 break;
2372
2373 case R_ENTRY:
2374 {
2375 int *descp
2376 = (int *) som_symbol_data (*bfd_reloc->sym_ptr_ptr)->unwind;
2377 bfd_put_8 (abfd, R_ENTRY, p);
2378 bfd_put_32 (abfd, descp[0], p + 1);
2379 bfd_put_32 (abfd, descp[1], p + 5);
2380 p = try_prev_fixup (abfd, &subspace_reloc_size,
2381 p, 9, reloc_queue);
2382 break;
2383 }
2384
2385 case R_EXIT:
2386 bfd_put_8 (abfd, R_EXIT, p);
2387 subspace_reloc_size += 1;
2388 p += 1;
2389 break;
2390
2391 case R_N_MODE:
2392 case R_S_MODE:
2393 case R_D_MODE:
2394 case R_R_MODE:
2395 /* If this relocation requests the current rounding
2396 mode, then it is redundant. */
2397 if (bfd_reloc->howto->type != current_rounding_mode)
2398 {
2399 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2400 subspace_reloc_size += 1;
2401 p += 1;
2402 current_rounding_mode = bfd_reloc->howto->type;
2403 }
2404 break;
2405
2406 case R_FSEL:
2407 case R_LSEL:
2408 case R_RSEL:
2409 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2410 subspace_reloc_size += 1;
2411 p += 1;
2412 break;
2413
2414 /* Put a "R_RESERVED" relocation in the stream if
2415 we hit something we do not understand. The linker
2416 will complain loudly if this ever happens. */
2417 default:
2418 bfd_put_8 (abfd, 0xff, p);
2419 subspace_reloc_size += 1;
2420 p += 1;
2421 break;
2422 }
2423 }
2424
2425 /* Last BFD relocation for a subspace has been processed.
2426 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2427 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2428 - reloc_offset,
2429 p, &subspace_reloc_size, reloc_queue);
2430
2431 /* Scribble out the relocations. */
2432 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2433 != p - tmp_space)
2434 {
2435 bfd_set_error (bfd_error_system_call);
2436 return false;
2437 }
2438 p = tmp_space;
2439
2440 total_reloc_size += subspace_reloc_size;
2441 som_section_data (subsection)->subspace_dict.fixup_request_quantity
2442 = subspace_reloc_size;
2443 }
2444 section = section->next;
2445 }
2446 *total_reloc_sizep = total_reloc_size;
2447 return true;
2448 }
2449
2450 /* Write out the space/subspace string table. */
2451
2452 static boolean
2453 som_write_space_strings (abfd, current_offset, string_sizep)
2454 bfd *abfd;
2455 unsigned long current_offset;
2456 unsigned int *string_sizep;
2457 {
2458 /* Chunk of memory that we can use as buffer space, then throw
2459 away. */
2460 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2461 unsigned char *p;
2462 unsigned int strings_size = 0;
2463 asection *section;
2464
2465 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2466 p = tmp_space;
2467
2468 /* Seek to the start of the space strings in preparation for writing
2469 them out. */
2470 if (bfd_seek (abfd, current_offset, SEEK_SET) != 0)
2471 {
2472 bfd_set_error (bfd_error_system_call);
2473 return false;
2474 }
2475
2476 /* Walk through all the spaces and subspaces (order is not important)
2477 building up and writing string table entries for their names. */
2478 for (section = abfd->sections; section != NULL; section = section->next)
2479 {
2480 int length;
2481
2482 /* Only work with space/subspaces; avoid any other sections
2483 which might have been made (.text for example). */
2484 if (som_section_data (section)->is_space == 0
2485 && som_section_data (section)->is_subspace == 0)
2486 continue;
2487
2488 /* Get the length of the space/subspace name. */
2489 length = strlen (section->name);
2490
2491 /* If there is not enough room for the next entry, then dump the
2492 current buffer contents now. Each entry will take 4 bytes to
2493 hold the string length + the string itself + null terminator. */
2494 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2495 {
2496 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2497 != p - tmp_space)
2498 {
2499 bfd_set_error (bfd_error_system_call);
2500 return false;
2501 }
2502 /* Reset to beginning of the buffer space. */
2503 p = tmp_space;
2504 }
2505
2506 /* First element in a string table entry is the length of the
2507 string. Alignment issues are already handled. */
2508 bfd_put_32 (abfd, length, p);
2509 p += 4;
2510 strings_size += 4;
2511
2512 /* Record the index in the space/subspace records. */
2513 if (som_section_data (section)->is_space)
2514 som_section_data (section)->space_dict.name.n_strx = strings_size;
2515 else
2516 som_section_data (section)->subspace_dict.name.n_strx = strings_size;
2517
2518 /* Next comes the string itself + a null terminator. */
2519 strcpy (p, section->name);
2520 p += length + 1;
2521 strings_size += length + 1;
2522
2523 /* Always align up to the next word boundary. */
2524 while (strings_size % 4)
2525 {
2526 bfd_put_8 (abfd, 0, p);
2527 p++;
2528 strings_size++;
2529 }
2530 }
2531
2532 /* Done with the space/subspace strings. Write out any information
2533 contained in a partial block. */
2534 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2535 {
2536 bfd_set_error (bfd_error_system_call);
2537 return false;
2538 }
2539 *string_sizep = strings_size;
2540 return true;
2541 }
2542
2543 /* Write out the symbol string table. */
2544
2545 static boolean
2546 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
2547 bfd *abfd;
2548 unsigned long current_offset;
2549 asymbol **syms;
2550 unsigned int num_syms;
2551 unsigned int *string_sizep;
2552 {
2553 unsigned int i;
2554
2555 /* Chunk of memory that we can use as buffer space, then throw
2556 away. */
2557 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2558 unsigned char *p;
2559 unsigned int strings_size = 0;
2560
2561 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2562 p = tmp_space;
2563
2564 /* Seek to the start of the space strings in preparation for writing
2565 them out. */
2566 if (bfd_seek (abfd, current_offset, SEEK_SET) != 0)
2567 {
2568 bfd_set_error (bfd_error_system_call);
2569 return false;
2570 }
2571
2572 for (i = 0; i < num_syms; i++)
2573 {
2574 int length = strlen (syms[i]->name);
2575
2576 /* If there is not enough room for the next entry, then dump the
2577 current buffer contents now. */
2578 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2579 {
2580 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2581 != p - tmp_space)
2582 {
2583 bfd_set_error (bfd_error_system_call);
2584 return false;
2585 }
2586 /* Reset to beginning of the buffer space. */
2587 p = tmp_space;
2588 }
2589
2590 /* First element in a string table entry is the length of the
2591 string. This must always be 4 byte aligned. This is also
2592 an appropriate time to fill in the string index field in the
2593 symbol table entry. */
2594 bfd_put_32 (abfd, length, p);
2595 strings_size += 4;
2596 p += 4;
2597
2598 /* Next comes the string itself + a null terminator. */
2599 strcpy (p, syms[i]->name);
2600
2601 /* ACK. FIXME. */
2602 syms[i]->name = (char *)strings_size;
2603 p += length + 1;
2604 strings_size += length + 1;
2605
2606 /* Always align up to the next word boundary. */
2607 while (strings_size % 4)
2608 {
2609 bfd_put_8 (abfd, 0, p);
2610 strings_size++;
2611 p++;
2612 }
2613 }
2614
2615 /* Scribble out any partial block. */
2616 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2617 {
2618 bfd_set_error (bfd_error_system_call);
2619 return false;
2620 }
2621
2622 *string_sizep = strings_size;
2623 return true;
2624 }
2625
2626 /* Compute variable information to be placed in the SOM headers,
2627 space/subspace dictionaries, relocation streams, etc. Begin
2628 writing parts of the object file. */
2629
2630 static boolean
2631 som_begin_writing (abfd)
2632 bfd *abfd;
2633 {
2634 unsigned long current_offset = 0;
2635 int strings_size = 0;
2636 unsigned int total_reloc_size = 0;
2637 unsigned long num_spaces, num_subspaces, num_syms, i;
2638 asection *section;
2639 asymbol **syms = bfd_get_outsymbols (abfd);
2640 unsigned int total_subspaces = 0;
2641
2642 /* The file header will always be first in an object file,
2643 everything else can be in random locations. To keep things
2644 "simple" BFD will lay out the object file in the manner suggested
2645 by the PRO ABI for PA-RISC Systems. */
2646
2647 /* Before any output can really begin offsets for all the major
2648 portions of the object file must be computed. So, starting
2649 with the initial file header compute (and sometimes write)
2650 each portion of the object file. */
2651
2652 /* Make room for the file header, it's contents are not complete
2653 yet, so it can not be written at this time. */
2654 current_offset += sizeof (struct header);
2655
2656 /* Any auxiliary headers will follow the file header. Right now
2657 we support only the copyright and version headers. */
2658 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
2659 obj_som_file_hdr (abfd)->aux_header_size = 0;
2660 if (obj_som_version_hdr (abfd) != NULL)
2661 {
2662 unsigned int len;
2663
2664 bfd_seek (abfd, current_offset, SEEK_SET);
2665
2666 /* Write the aux_id structure and the string length. */
2667 len = sizeof (struct aux_id) + sizeof (unsigned int);
2668 obj_som_file_hdr (abfd)->aux_header_size += len;
2669 current_offset += len;
2670 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
2671 {
2672 bfd_set_error (bfd_error_system_call);
2673 return false;
2674 }
2675
2676 /* Write the version string. */
2677 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
2678 obj_som_file_hdr (abfd)->aux_header_size += len;
2679 current_offset += len;
2680 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
2681 len, 1, abfd) != len)
2682 {
2683 bfd_set_error (bfd_error_system_call);
2684 return false;
2685 }
2686 }
2687
2688 if (obj_som_copyright_hdr (abfd) != NULL)
2689 {
2690 unsigned int len;
2691
2692 bfd_seek (abfd, current_offset, SEEK_SET);
2693
2694 /* Write the aux_id structure and the string length. */
2695 len = sizeof (struct aux_id) + sizeof (unsigned int);
2696 obj_som_file_hdr (abfd)->aux_header_size += len;
2697 current_offset += len;
2698 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
2699 {
2700 bfd_set_error (bfd_error_system_call);
2701 return false;
2702 }
2703
2704 /* Write the copyright string. */
2705 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
2706 obj_som_file_hdr (abfd)->aux_header_size += len;
2707 current_offset += len;
2708 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
2709 len, 1, abfd) != len)
2710 {
2711 bfd_set_error (bfd_error_system_call);
2712 return false;
2713 }
2714 }
2715
2716 /* Next comes the initialization pointers; we have no initialization
2717 pointers, so current offset does not change. */
2718 obj_som_file_hdr (abfd)->init_array_location = current_offset;
2719 obj_som_file_hdr (abfd)->init_array_total = 0;
2720
2721 /* Next are the space records. These are fixed length records.
2722
2723 Count the number of spaces to determine how much room is needed
2724 in the object file for the space records.
2725
2726 The names of the spaces are stored in a separate string table,
2727 and the index for each space into the string table is computed
2728 below. Therefore, it is not possible to write the space headers
2729 at this time. */
2730 num_spaces = som_count_spaces (abfd);
2731 obj_som_file_hdr (abfd)->space_location = current_offset;
2732 obj_som_file_hdr (abfd)->space_total = num_spaces;
2733 current_offset += num_spaces * sizeof (struct space_dictionary_record);
2734
2735 /* Next are the subspace records. These are fixed length records.
2736
2737 Count the number of subspaes to determine how much room is needed
2738 in the object file for the subspace records.
2739
2740 A variety if fields in the subspace record are still unknown at
2741 this time (index into string table, fixup stream location/size, etc). */
2742 num_subspaces = som_count_subspaces (abfd);
2743 obj_som_file_hdr (abfd)->subspace_location = current_offset;
2744 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
2745 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
2746
2747 /* Next is the string table for the space/subspace names. We will
2748 build and write the string table on the fly. At the same time
2749 we will fill in the space/subspace name index fields. */
2750
2751 /* The string table needs to be aligned on a word boundary. */
2752 if (current_offset % 4)
2753 current_offset += (4 - (current_offset % 4));
2754
2755 /* Mark the offset of the space/subspace string table in the
2756 file header. */
2757 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
2758
2759 /* Scribble out the space strings. */
2760 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
2761 return false;
2762
2763 /* Record total string table size in the header and update the
2764 current offset. */
2765 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
2766 current_offset += strings_size;
2767
2768 /* Next is the symbol table. These are fixed length records.
2769
2770 Count the number of symbols to determine how much room is needed
2771 in the object file for the symbol table.
2772
2773 The names of the symbols are stored in a separate string table,
2774 and the index for each symbol name into the string table is computed
2775 below. Therefore, it is not possible to write the symobl table
2776 at this time. */
2777 num_syms = bfd_get_symcount (abfd);
2778 obj_som_file_hdr (abfd)->symbol_location = current_offset;
2779 obj_som_file_hdr (abfd)->symbol_total = num_syms;
2780 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
2781
2782 /* Do prep work before handling fixups. */
2783 som_prep_for_fixups (abfd, syms, num_syms);
2784
2785 /* Next comes the fixup stream which starts on a word boundary. */
2786 if (current_offset % 4)
2787 current_offset += (4 - (current_offset % 4));
2788 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
2789
2790 /* Write the fixups and update fields in subspace headers which
2791 relate to the fixup stream. */
2792 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
2793 return false;
2794
2795 /* Record the total size of the fixup stream in the file header. */
2796 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
2797 current_offset += total_reloc_size;
2798
2799 /* Next are the symbol strings.
2800 Align them to a word boundary. */
2801 if (current_offset % 4)
2802 current_offset += (4 - (current_offset % 4));
2803 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
2804
2805 /* Scribble out the symbol strings. */
2806 if (som_write_symbol_strings (abfd, current_offset, syms,
2807 num_syms, &strings_size)
2808 == false)
2809 return false;
2810
2811 /* Record total string table size in header and update the
2812 current offset. */
2813 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
2814 current_offset += strings_size;
2815
2816 /* Next is the compiler records. We do not use these. */
2817 obj_som_file_hdr (abfd)->compiler_location = current_offset;
2818 obj_som_file_hdr (abfd)->compiler_total = 0;
2819
2820 /* Now compute the file positions for the loadable subspaces. */
2821
2822 section = abfd->sections;
2823 for (i = 0; i < num_spaces; i++)
2824 {
2825 asection *subsection;
2826
2827 /* Find a space. */
2828 while (som_section_data (section)->is_space == 0)
2829 section = section->next;
2830
2831 /* Now look for all its subspaces. */
2832 for (subsection = abfd->sections;
2833 subsection != NULL;
2834 subsection = subsection->next)
2835 {
2836
2837 if (som_section_data (subsection)->is_subspace == 0
2838 || som_section_data (subsection)->containing_space != section
2839 || (subsection->flags & SEC_ALLOC) == 0)
2840 continue;
2841
2842 som_section_data (subsection)->subspace_index = total_subspaces++;
2843 /* This is real data to be loaded from the file. */
2844 if (subsection->flags & SEC_LOAD)
2845 {
2846 som_section_data (subsection)->subspace_dict.file_loc_init_value
2847 = current_offset;
2848 section->filepos = current_offset;
2849 current_offset += bfd_section_size (abfd, subsection);
2850 }
2851 /* Looks like uninitialized data. */
2852 else
2853 {
2854 som_section_data (subsection)->subspace_dict.file_loc_init_value
2855 = 0;
2856 som_section_data (subsection)->subspace_dict.
2857 initialization_length = 0;
2858 }
2859 }
2860 /* Goto the next section. */
2861 section = section->next;
2862 }
2863
2864 /* Finally compute the file positions for unloadable subspaces. */
2865
2866 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
2867 section = abfd->sections;
2868 for (i = 0; i < num_spaces; i++)
2869 {
2870 asection *subsection;
2871
2872 /* Find a space. */
2873 while (som_section_data (section)->is_space == 0)
2874 section = section->next;
2875
2876 /* Now look for all its subspaces. */
2877 for (subsection = abfd->sections;
2878 subsection != NULL;
2879 subsection = subsection->next)
2880 {
2881
2882 if (som_section_data (subsection)->is_subspace == 0
2883 || som_section_data (subsection)->containing_space != section
2884 || (subsection->flags & SEC_ALLOC) != 0)
2885 continue;
2886
2887 som_section_data (subsection)->subspace_index = total_subspaces++;
2888 /* This is real data to be loaded from the file. */
2889 if ((subsection->flags & SEC_LOAD) == 0)
2890 {
2891 som_section_data (subsection)->subspace_dict.file_loc_init_value
2892 = current_offset;
2893 section->filepos = current_offset;
2894 current_offset += bfd_section_size (abfd, subsection);
2895 }
2896 /* Looks like uninitialized data. */
2897 else
2898 {
2899 som_section_data (subsection)->subspace_dict.file_loc_init_value
2900 = 0;
2901 som_section_data (subsection)->subspace_dict.
2902 initialization_length = bfd_section_size (abfd, subsection);
2903 }
2904 }
2905 /* Goto the next section. */
2906 section = section->next;
2907 }
2908
2909 obj_som_file_hdr (abfd)->unloadable_sp_size
2910 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
2911
2912 /* Loader fixups are not supported in any way shape or form. */
2913 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
2914 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
2915
2916 /* Done. Store the total size of the SOM. */
2917 obj_som_file_hdr (abfd)->som_length = current_offset;
2918 return true;
2919 }
2920
2921 /* Finally, scribble out the various headers to the disk. */
2922
2923 static boolean
2924 som_write_headers (abfd)
2925 bfd *abfd;
2926 {
2927 int num_spaces = som_count_spaces (abfd);
2928 int i;
2929 int subspace_index = 0;
2930 file_ptr location;
2931 asection *section;
2932
2933 /* Subspaces are written first so that we can set up information
2934 about them in their containing spaces as the subspace is written. */
2935
2936 /* Seek to the start of the subspace dictionary records. */
2937 location = obj_som_file_hdr (abfd)->subspace_location;
2938 bfd_seek (abfd, location, SEEK_SET);
2939 section = abfd->sections;
2940 /* Now for each loadable space write out records for its subspaces. */
2941 for (i = 0; i < num_spaces; i++)
2942 {
2943 asection *subsection;
2944
2945 /* Find a space. */
2946 while (som_section_data (section)->is_space == 0)
2947 section = section->next;
2948
2949 /* Now look for all its subspaces. */
2950 for (subsection = abfd->sections;
2951 subsection != NULL;
2952 subsection = subsection->next)
2953 {
2954
2955 /* Skip any section which does not correspond to a space
2956 or subspace. Or does not have SEC_ALLOC set (and therefore
2957 has no real bits on the disk). */
2958 if (som_section_data (subsection)->is_subspace == 0
2959 || som_section_data (subsection)->containing_space != section
2960 || (subsection->flags & SEC_ALLOC) == 0)
2961 continue;
2962
2963 /* If this is the first subspace for this space, then save
2964 the index of the subspace in its containing space. Also
2965 set "is_loadable" in the containing space. */
2966
2967 if (som_section_data (section)->space_dict.subspace_quantity == 0)
2968 {
2969 som_section_data (section)->space_dict.is_loadable = 1;
2970 som_section_data (section)->space_dict.subspace_index
2971 = subspace_index;
2972 }
2973
2974 /* Increment the number of subspaces seen and the number of
2975 subspaces contained within the current space. */
2976 subspace_index++;
2977 som_section_data (section)->space_dict.subspace_quantity++;
2978
2979 /* Mark the index of the current space within the subspace's
2980 dictionary record. */
2981 som_section_data (subsection)->subspace_dict.space_index = i;
2982
2983 /* Dump the current subspace header. */
2984 if (bfd_write ((PTR) &som_section_data (subsection)->subspace_dict,
2985 sizeof (struct subspace_dictionary_record), 1, abfd)
2986 != sizeof (struct subspace_dictionary_record))
2987 {
2988 bfd_set_error (bfd_error_system_call);
2989 return false;
2990 }
2991 }
2992 /* Goto the next section. */
2993 section = section->next;
2994 }
2995
2996 /* Now repeat the process for unloadable subspaces. */
2997 section = abfd->sections;
2998 /* Now for each space write out records for its subspaces. */
2999 for (i = 0; i < num_spaces; i++)
3000 {
3001 asection *subsection;
3002
3003 /* Find a space. */
3004 while (som_section_data (section)->is_space == 0)
3005 section = section->next;
3006
3007 /* Now look for all its subspaces. */
3008 for (subsection = abfd->sections;
3009 subsection != NULL;
3010 subsection = subsection->next)
3011 {
3012
3013 /* Skip any section which does not correspond to a space or
3014 subspace, or which SEC_ALLOC set (and therefore handled
3015 in the loadable spaces/subspaces code above. */
3016
3017 if (som_section_data (subsection)->is_subspace == 0
3018 || som_section_data (subsection)->containing_space != section
3019 || (subsection->flags & SEC_ALLOC) != 0)
3020 continue;
3021
3022 /* If this is the first subspace for this space, then save
3023 the index of the subspace in its containing space. Clear
3024 "is_loadable". */
3025
3026 if (som_section_data (section)->space_dict.subspace_quantity == 0)
3027 {
3028 som_section_data (section)->space_dict.is_loadable = 0;
3029 som_section_data (section)->space_dict.subspace_index
3030 = subspace_index;
3031 }
3032
3033 /* Increment the number of subspaces seen and the number of
3034 subspaces contained within the current space. */
3035 som_section_data (section)->space_dict.subspace_quantity++;
3036 subspace_index++;
3037
3038 /* Mark the index of the current space within the subspace's
3039 dictionary record. */
3040 som_section_data (subsection)->subspace_dict.space_index = i;
3041
3042 /* Dump this subspace header. */
3043 if (bfd_write ((PTR) &som_section_data (subsection)->subspace_dict,
3044 sizeof (struct subspace_dictionary_record), 1, abfd)
3045 != sizeof (struct subspace_dictionary_record))
3046 {
3047 bfd_set_error (bfd_error_system_call);
3048 return false;
3049 }
3050 }
3051 /* Goto the next section. */
3052 section = section->next;
3053 }
3054
3055 /* All the subspace dictiondary records are written, and all the
3056 fields are set up in the space dictionary records.
3057
3058 Seek to the right location and start writing the space
3059 dictionary records. */
3060 location = obj_som_file_hdr (abfd)->space_location;
3061 bfd_seek (abfd, location, SEEK_SET);
3062
3063 section = abfd->sections;
3064 for (i = 0; i < num_spaces; i++)
3065 {
3066
3067 /* Find a space. */
3068 while (som_section_data (section)->is_space == 0)
3069 section = section->next;
3070
3071 /* Dump its header */
3072 if (bfd_write ((PTR) &som_section_data (section)->space_dict,
3073 sizeof (struct space_dictionary_record), 1, abfd)
3074 != sizeof (struct space_dictionary_record))
3075 {
3076 bfd_set_error (bfd_error_system_call);
3077 return false;
3078 }
3079
3080 /* Goto the next section. */
3081 section = section->next;
3082 }
3083
3084 /* Only thing left to do is write out the file header. It is always
3085 at location zero. Seek there and write it. */
3086 bfd_seek (abfd, (file_ptr) 0, SEEK_SET);
3087 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3088 sizeof (struct header), 1, abfd)
3089 != sizeof (struct header))
3090 {
3091 bfd_set_error (bfd_error_system_call);
3092 return false;
3093 }
3094 return true;
3095 }
3096
3097 /* Compute and return the checksum for a SOM file header. */
3098
3099 static unsigned long
3100 som_compute_checksum (abfd)
3101 bfd *abfd;
3102 {
3103 unsigned long checksum, count, i;
3104 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3105
3106 checksum = 0;
3107 count = sizeof (struct header) / sizeof (unsigned long);
3108 for (i = 0; i < count; i++)
3109 checksum ^= *(buffer + i);
3110
3111 return checksum;
3112 }
3113
3114 static void
3115 som_bfd_derive_misc_symbol_info (abfd, sym, info)
3116 bfd *abfd;
3117 asymbol *sym;
3118 struct som_misc_symbol_info *info;
3119 {
3120 /* Initialize. */
3121 memset (info, 0, sizeof (struct som_misc_symbol_info));
3122
3123 /* The HP SOM linker requires detailed type information about
3124 all symbols (including undefined symbols!). Unfortunately,
3125 the type specified in an import/export statement does not
3126 always match what the linker wants. Severe braindamage. */
3127
3128 /* Section symbols will not have a SOM symbol type assigned to
3129 them yet. Assign all section symbols type ST_DATA. */
3130 if (sym->flags & BSF_SECTION_SYM)
3131 info->symbol_type = ST_DATA;
3132 else
3133 {
3134 /* Common symbols must have scope SS_UNSAT and type
3135 ST_STORAGE or the linker will choke. */
3136 if (sym->section == &bfd_com_section)
3137 {
3138 info->symbol_scope = SS_UNSAT;
3139 info->symbol_type = ST_STORAGE;
3140 }
3141
3142 /* It is possible to have a symbol without an associated
3143 type. This happens if the user imported the symbol
3144 without a type and the symbol was never defined
3145 locally. If BSF_FUNCTION is set for this symbol, then
3146 assign it type ST_CODE (the HP linker requires undefined
3147 external functions to have type ST_CODE rather than ST_ENTRY). */
3148 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3149 && sym->section == &bfd_und_section
3150 && sym->flags & BSF_FUNCTION)
3151 info->symbol_type = ST_CODE;
3152
3153 /* Handle function symbols which were defined in this file.
3154 They should have type ST_ENTRY. Also retrieve the argument
3155 relocation bits from the SOM backend information. */
3156 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3157 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3158 && (sym->flags & BSF_FUNCTION))
3159 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3160 && (sym->flags & BSF_FUNCTION)))
3161 {
3162 info->symbol_type = ST_ENTRY;
3163 info->arg_reloc = som_symbol_data (sym)->tc_data.hppa_arg_reloc;
3164 }
3165
3166 /* If the type is unknown at this point, it should be
3167 ST_DATA (functions were handled as special cases above). */
3168 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3169 info->symbol_type = ST_DATA;
3170
3171 /* From now on it's a very simple mapping. */
3172 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3173 info->symbol_type = ST_ABSOLUTE;
3174 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3175 info->symbol_type = ST_CODE;
3176 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3177 info->symbol_type = ST_DATA;
3178 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3179 info->symbol_type = ST_MILLICODE;
3180 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3181 info->symbol_type = ST_PLABEL;
3182 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3183 info->symbol_type = ST_PRI_PROG;
3184 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3185 info->symbol_type = ST_SEC_PROG;
3186 }
3187
3188 /* Now handle the symbol's scope. Exported data which is not
3189 in the common section has scope SS_UNIVERSAL. Note scope
3190 of common symbols was handled earlier! */
3191 if (sym->flags & BSF_EXPORT && sym->section != &bfd_com_section)
3192 info->symbol_scope = SS_UNIVERSAL;
3193 /* Any undefined symbol at this point has a scope SS_UNSAT. */
3194 else if (sym->section == &bfd_und_section)
3195 info->symbol_scope = SS_UNSAT;
3196 /* Anything else which is not in the common section has scope
3197 SS_LOCAL. */
3198 else if (sym->section != &bfd_com_section)
3199 info->symbol_scope = SS_LOCAL;
3200
3201 /* Now set the symbol_info field. It has no real meaning
3202 for undefined or common symbols, but the HP linker will
3203 choke if it's not set to some "reasonable" value. We
3204 use zero as a reasonable value. */
3205 if (sym->section == &bfd_com_section || sym->section == &bfd_und_section
3206 || sym->section == &bfd_abs_section)
3207 info->symbol_info = 0;
3208 /* For all other symbols, the symbol_info field contains the
3209 subspace index of the space this symbol is contained in. */
3210 else
3211 info->symbol_info = som_section_data (sym->section)->subspace_index;
3212
3213 /* Set the symbol's value. */
3214 info->symbol_value = sym->value + sym->section->vma;
3215 }
3216
3217 /* Build and write, in one big chunk, the entire symbol table for
3218 this BFD. */
3219
3220 static boolean
3221 som_build_and_write_symbol_table (abfd)
3222 bfd *abfd;
3223 {
3224 unsigned int num_syms = bfd_get_symcount (abfd);
3225 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3226 asymbol **bfd_syms = bfd_get_outsymbols (abfd);
3227 struct symbol_dictionary_record *som_symtab = NULL;
3228 int i, symtab_size;
3229
3230 /* Compute total symbol table size and allocate a chunk of memory
3231 to hold the symbol table as we build it. */
3232 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3233 som_symtab = (struct symbol_dictionary_record *) malloc (symtab_size);
3234 if (som_symtab == NULL)
3235 {
3236 bfd_set_error (bfd_error_no_memory);
3237 goto error_return;
3238 }
3239 memset (som_symtab, 0, symtab_size);
3240
3241 /* Walk over each symbol. */
3242 for (i = 0; i < num_syms; i++)
3243 {
3244 struct som_misc_symbol_info info;
3245
3246 /* This is really an index into the symbol strings table.
3247 By the time we get here, the index has already been
3248 computed and stored into the name field in the BFD symbol. */
3249 som_symtab[i].name.n_strx = (int) bfd_syms[i]->name;
3250
3251 /* Derive SOM information from the BFD symbol. */
3252 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
3253
3254 /* Now use it. */
3255 som_symtab[i].symbol_type = info.symbol_type;
3256 som_symtab[i].symbol_scope = info.symbol_scope;
3257 som_symtab[i].arg_reloc = info.arg_reloc;
3258 som_symtab[i].symbol_info = info.symbol_info;
3259 som_symtab[i].symbol_value = info.symbol_value;
3260 }
3261
3262 /* Everything is ready, seek to the right location and
3263 scribble out the symbol table. */
3264 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3265 {
3266 bfd_set_error (bfd_error_system_call);
3267 goto error_return;
3268 }
3269
3270 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3271 {
3272 bfd_set_error (bfd_error_system_call);
3273 goto error_return;
3274 }
3275
3276 if (som_symtab != NULL)
3277 free (som_symtab);
3278 return true;
3279 error_return:
3280 if (som_symtab != NULL)
3281 free (som_symtab);
3282 return false;
3283 }
3284
3285 /* Write an object in SOM format. */
3286
3287 static boolean
3288 som_write_object_contents (abfd)
3289 bfd *abfd;
3290 {
3291 if (abfd->output_has_begun == false)
3292 {
3293 /* Set up fixed parts of the file, space, and subspace headers.
3294 Notify the world that output has begun. */
3295 som_prep_headers (abfd);
3296 abfd->output_has_begun = true;
3297 /* Start writing the object file. This include all the string
3298 tables, fixup streams, and other portions of the object file. */
3299 som_begin_writing (abfd);
3300 }
3301
3302 /* Now that the symbol table information is complete, build and
3303 write the symbol table. */
3304 if (som_build_and_write_symbol_table (abfd) == false)
3305 return false;
3306
3307 /* Compute the checksum for the file header just before writing
3308 the header to disk. */
3309 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3310 return (som_write_headers (abfd));
3311 }
3312
3313 \f
3314 /* Read and save the string table associated with the given BFD. */
3315
3316 static boolean
3317 som_slurp_string_table (abfd)
3318 bfd *abfd;
3319 {
3320 char *stringtab;
3321
3322 /* Use the saved version if its available. */
3323 if (obj_som_stringtab (abfd) != NULL)
3324 return true;
3325
3326 /* Allocate and read in the string table. */
3327 stringtab = bfd_zalloc (abfd, obj_som_stringtab_size (abfd));
3328 if (stringtab == NULL)
3329 {
3330 bfd_set_error (bfd_error_no_memory);
3331 return false;
3332 }
3333
3334 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3335 {
3336 bfd_set_error (bfd_error_system_call);
3337 return false;
3338 }
3339
3340 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3341 != obj_som_stringtab_size (abfd))
3342 {
3343 bfd_set_error (bfd_error_system_call);
3344 return false;
3345 }
3346
3347 /* Save our results and return success. */
3348 obj_som_stringtab (abfd) = stringtab;
3349 return true;
3350 }
3351
3352 /* Return the amount of data (in bytes) required to hold the symbol
3353 table for this object. */
3354
3355 static unsigned int
3356 som_get_symtab_upper_bound (abfd)
3357 bfd *abfd;
3358 {
3359 if (!som_slurp_symbol_table (abfd))
3360 return 0;
3361
3362 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
3363 }
3364
3365 /* Convert from a SOM subspace index to a BFD section. */
3366
3367 static asection *
3368 som_section_from_subspace_index (abfd, index)
3369 bfd *abfd;
3370 unsigned int index;
3371 {
3372 asection *section;
3373
3374 for (section = abfd->sections; section != NULL; section = section->next)
3375 if (som_section_data (section)->subspace_index == index)
3376 return section;
3377
3378 /* Should never happen. */
3379 abort();
3380 }
3381
3382 /* Read and save the symbol table associated with the given BFD. */
3383
3384 static unsigned int
3385 som_slurp_symbol_table (abfd)
3386 bfd *abfd;
3387 {
3388 int symbol_count = bfd_get_symcount (abfd);
3389 int symsize = sizeof (struct symbol_dictionary_record);
3390 char *stringtab;
3391 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
3392 som_symbol_type *sym, *symbase;
3393
3394 /* Return saved value if it exists. */
3395 if (obj_som_symtab (abfd) != NULL)
3396 goto successful_return;
3397
3398 /* Special case. This is *not* an error. */
3399 if (symbol_count == 0)
3400 goto successful_return;
3401
3402 if (!som_slurp_string_table (abfd))
3403 goto error_return;
3404
3405 stringtab = obj_som_stringtab (abfd);
3406
3407 symbase = (som_symbol_type *)
3408 bfd_zalloc (abfd, symbol_count * sizeof (som_symbol_type));
3409 if (symbase == NULL)
3410 {
3411 bfd_set_error (bfd_error_no_memory);
3412 goto error_return;
3413 }
3414
3415 /* Read in the external SOM representation. */
3416 buf = malloc (symbol_count * symsize);
3417 if (buf == NULL)
3418 {
3419 bfd_set_error (bfd_error_no_memory);
3420 goto error_return;
3421 }
3422 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
3423 {
3424 bfd_set_error (bfd_error_system_call);
3425 goto error_return;
3426 }
3427 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
3428 != symbol_count * symsize)
3429 {
3430 bfd_set_error (bfd_error_no_symbols);
3431 goto error_return;
3432 }
3433
3434 /* Iterate over all the symbols and internalize them. */
3435 endbufp = buf + symbol_count;
3436 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
3437 {
3438
3439 /* I don't think we care about these. */
3440 if (bufp->symbol_type == ST_SYM_EXT
3441 || bufp->symbol_type == ST_ARG_EXT)
3442 continue;
3443
3444 /* Set some private data we care about. */
3445 if (bufp->symbol_type == ST_NULL)
3446 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3447 else if (bufp->symbol_type == ST_ABSOLUTE)
3448 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
3449 else if (bufp->symbol_type == ST_DATA)
3450 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
3451 else if (bufp->symbol_type == ST_CODE)
3452 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
3453 else if (bufp->symbol_type == ST_PRI_PROG)
3454 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
3455 else if (bufp->symbol_type == ST_SEC_PROG)
3456 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
3457 else if (bufp->symbol_type == ST_ENTRY)
3458 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
3459 else if (bufp->symbol_type == ST_MILLICODE)
3460 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
3461 else if (bufp->symbol_type == ST_PLABEL)
3462 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
3463 else
3464 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3465 som_symbol_data (sym)->tc_data.hppa_arg_reloc = bufp->arg_reloc;
3466
3467 /* Some reasonable defaults. */
3468 sym->symbol.the_bfd = abfd;
3469 sym->symbol.name = bufp->name.n_strx + stringtab;
3470 sym->symbol.value = bufp->symbol_value;
3471 sym->symbol.section = 0;
3472 sym->symbol.flags = 0;
3473
3474 switch (bufp->symbol_type)
3475 {
3476 case ST_ENTRY:
3477 case ST_PRI_PROG:
3478 case ST_SEC_PROG:
3479 case ST_MILLICODE:
3480 sym->symbol.flags |= BSF_FUNCTION;
3481 sym->symbol.value &= ~0x3;
3482 break;
3483
3484 case ST_STUB:
3485 case ST_CODE:
3486 sym->symbol.value &= ~0x3;
3487
3488 default:
3489 break;
3490 }
3491
3492 /* Handle scoping and section information. */
3493 switch (bufp->symbol_scope)
3494 {
3495 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
3496 so the section associated with this symbol can't be known. */
3497 case SS_EXTERNAL:
3498 case SS_UNSAT:
3499 if (bufp->symbol_type != ST_STORAGE)
3500 sym->symbol.section = &bfd_und_section;
3501 else
3502 sym->symbol.section = &bfd_com_section;
3503 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3504 break;
3505
3506 case SS_UNIVERSAL:
3507 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3508 sym->symbol.section
3509 = som_section_from_subspace_index (abfd, bufp->symbol_info);
3510 sym->symbol.value -= sym->symbol.section->vma;
3511 break;
3512
3513 #if 0
3514 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
3515 Sound dumb? It is. */
3516 case SS_GLOBAL:
3517 #endif
3518 case SS_LOCAL:
3519 sym->symbol.flags |= BSF_LOCAL;
3520 sym->symbol.section
3521 = som_section_from_subspace_index (abfd, bufp->symbol_info);
3522 sym->symbol.value -= sym->symbol.section->vma;
3523 break;
3524 }
3525
3526 /* Mark symbols left around by the debugger. */
3527 if (strlen (sym->symbol.name) >= 2
3528 && sym->symbol.name[0] == 'L'
3529 && (sym->symbol.name[1] == '$' || sym->symbol.name[2] == '$'
3530 || sym->symbol.name[3] == '$'))
3531 sym->symbol.flags |= BSF_DEBUGGING;
3532
3533 /* Note increment at bottom of loop, since we skip some symbols
3534 we can not include it as part of the for statement. */
3535 sym++;
3536 }
3537
3538 /* Save our results and return success. */
3539 obj_som_symtab (abfd) = symbase;
3540 successful_return:
3541 if (buf != NULL)
3542 free (buf);
3543 return (true);
3544
3545 error_return:
3546 if (buf != NULL)
3547 free (buf);
3548 return false;
3549 }
3550
3551 /* Canonicalize a SOM symbol table. Return the number of entries
3552 in the symbol table. */
3553
3554 static unsigned int
3555 som_get_symtab (abfd, location)
3556 bfd *abfd;
3557 asymbol **location;
3558 {
3559 int i;
3560 som_symbol_type *symbase;
3561
3562 if (!som_slurp_symbol_table (abfd))
3563 return 0;
3564
3565 i = bfd_get_symcount (abfd);
3566 symbase = obj_som_symtab (abfd);
3567
3568 for (; i > 0; i--, location++, symbase++)
3569 *location = &symbase->symbol;
3570
3571 /* Final null pointer. */
3572 *location = 0;
3573 return (bfd_get_symcount (abfd));
3574 }
3575
3576 /* Make a SOM symbol. There is nothing special to do here. */
3577
3578 static asymbol *
3579 som_make_empty_symbol (abfd)
3580 bfd *abfd;
3581 {
3582 som_symbol_type *new =
3583 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
3584 if (new == NULL)
3585 {
3586 bfd_set_error (bfd_error_no_memory);
3587 return 0;
3588 }
3589 new->symbol.the_bfd = abfd;
3590
3591 return &new->symbol;
3592 }
3593
3594 /* Print symbol information. */
3595
3596 static void
3597 som_print_symbol (ignore_abfd, afile, symbol, how)
3598 bfd *ignore_abfd;
3599 PTR afile;
3600 asymbol *symbol;
3601 bfd_print_symbol_type how;
3602 {
3603 FILE *file = (FILE *) afile;
3604 switch (how)
3605 {
3606 case bfd_print_symbol_name:
3607 fprintf (file, "%s", symbol->name);
3608 break;
3609 case bfd_print_symbol_more:
3610 fprintf (file, "som ");
3611 fprintf_vma (file, symbol->value);
3612 fprintf (file, " %lx", (long) symbol->flags);
3613 break;
3614 case bfd_print_symbol_all:
3615 {
3616 CONST char *section_name;
3617 section_name = symbol->section ? symbol->section->name : "(*none*)";
3618 bfd_print_symbol_vandf ((PTR) file, symbol);
3619 fprintf (file, " %s\t%s", section_name, symbol->name);
3620 break;
3621 }
3622 }
3623 }
3624
3625 /* Count or process variable-length SOM fixup records.
3626
3627 To avoid code duplication we use this code both to compute the number
3628 of relocations requested by a stream, and to internalize the stream.
3629
3630 When computing the number of relocations requested by a stream the
3631 variables rptr, section, and symbols have no meaning.
3632
3633 Return the number of relocations requested by the fixup stream. When
3634 not just counting
3635
3636 This needs at least two or three more passes to get it cleaned up. */
3637
3638 static unsigned int
3639 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
3640 unsigned char *fixup;
3641 unsigned int end;
3642 arelent *internal_relocs;
3643 asection *section;
3644 asymbol **symbols;
3645 boolean just_count;
3646 {
3647 unsigned int op, varname;
3648 unsigned char *end_fixups = &fixup[end];
3649 const struct fixup_format *fp;
3650 char *cp;
3651 unsigned char *save_fixup;
3652 int variables[26], stack[20], c, v, count, prev_fixup, *sp;
3653 const int *subop;
3654 arelent *rptr= internal_relocs;
3655 unsigned int offset = just_count ? 0 : section->vma;
3656
3657 #define var(c) variables[(c) - 'A']
3658 #define push(v) (*sp++ = (v))
3659 #define pop() (*--sp)
3660 #define emptystack() (sp == stack)
3661
3662 som_initialize_reloc_queue (reloc_queue);
3663 memset (variables, 0, sizeof (variables));
3664 memset (stack, 0, sizeof (stack));
3665 count = 0;
3666 prev_fixup = 0;
3667 sp = stack;
3668
3669 while (fixup < end_fixups)
3670 {
3671
3672 /* Save pointer to the start of this fixup. We'll use
3673 it later to determine if it is necessary to put this fixup
3674 on the queue. */
3675 save_fixup = fixup;
3676
3677 /* Get the fixup code and its associated format. */
3678 op = *fixup++;
3679 fp = &som_fixup_formats[op];
3680
3681 /* Handle a request for a previous fixup. */
3682 if (*fp->format == 'P')
3683 {
3684 /* Get pointer to the beginning of the prev fixup, move
3685 the repeated fixup to the head of the queue. */
3686 fixup = reloc_queue[fp->D].reloc;
3687 som_reloc_queue_fix (reloc_queue, fp->D);
3688 prev_fixup = 1;
3689
3690 /* Get the fixup code and its associated format. */
3691 op = *fixup++;
3692 fp = &som_fixup_formats[op];
3693 }
3694
3695 /* If we are not just counting, set some reasonable defaults. */
3696 if (! just_count)
3697 {
3698 rptr->address = offset;
3699 rptr->howto = &som_hppa_howto_table[op];
3700 rptr->addend = 0;
3701 rptr->sym_ptr_ptr = bfd_abs_section.symbol_ptr_ptr;
3702 }
3703
3704 /* Set default input length to 0. Get the opcode class index
3705 into D. */
3706 var ('L') = 0;
3707 var ('D') = fp->D;
3708
3709 /* Get the opcode format. */
3710 cp = fp->format;
3711
3712 /* Process the format string. Parsing happens in two phases,
3713 parse RHS, then assign to LHS. Repeat until no more
3714 characters in the format string. */
3715 while (*cp)
3716 {
3717 /* The variable this pass is going to compute a value for. */
3718 varname = *cp++;
3719
3720 /* Start processing RHS. Continue until a NULL or '=' is found. */
3721 do
3722 {
3723 c = *cp++;
3724
3725 /* If this is a variable, push it on the stack. */
3726 if (isupper (c))
3727 push (var (c));
3728
3729 /* If this is a lower case letter, then it represents
3730 additional data from the fixup stream to be pushed onto
3731 the stack. */
3732 else if (islower (c))
3733 {
3734 for (v = 0; c > 'a'; --c)
3735 v = (v << 8) | *fixup++;
3736 push (v);
3737 }
3738
3739 /* A decimal constant. Push it on the stack. */
3740 else if (isdigit (c))
3741 {
3742 v = c - '0';
3743 while (isdigit (*cp))
3744 v = (v * 10) + (*cp++ - '0');
3745 push (v);
3746 }
3747 else
3748
3749 /* An operator. Pop two two values from the stack and
3750 use them as operands to the given operation. Push
3751 the result of the operation back on the stack. */
3752 switch (c)
3753 {
3754 case '+':
3755 v = pop ();
3756 v += pop ();
3757 push (v);
3758 break;
3759 case '*':
3760 v = pop ();
3761 v *= pop ();
3762 push (v);
3763 break;
3764 case '<':
3765 v = pop ();
3766 v = pop () << v;
3767 push (v);
3768 break;
3769 default:
3770 abort ();
3771 }
3772 }
3773 while (*cp && *cp != '=');
3774
3775 /* Move over the equal operator. */
3776 cp++;
3777
3778 /* Pop the RHS off the stack. */
3779 c = pop ();
3780
3781 /* Perform the assignment. */
3782 var (varname) = c;
3783
3784 /* Handle side effects. and special 'O' stack cases. */
3785 switch (varname)
3786 {
3787 /* Consume some bytes from the input space. */
3788 case 'L':
3789 offset += c;
3790 break;
3791 /* A symbol to use in the relocation. Make a note
3792 of this if we are not just counting. */
3793 case 'S':
3794 if (! just_count)
3795 rptr->sym_ptr_ptr = &symbols[c];
3796 break;
3797 /* Handle the linker expression stack. */
3798 case 'O':
3799 switch (op)
3800 {
3801 case R_COMP1:
3802 subop = comp1_opcodes;
3803 break;
3804 case R_COMP2:
3805 subop = comp2_opcodes;
3806 break;
3807 case R_COMP3:
3808 subop = comp3_opcodes;
3809 break;
3810 default:
3811 abort ();
3812 }
3813 while (*subop <= (unsigned char) c)
3814 ++subop;
3815 --subop;
3816 break;
3817 default:
3818 break;
3819 }
3820 }
3821
3822 /* If we used a previous fixup, clean up after it. */
3823 if (prev_fixup)
3824 {
3825 fixup = save_fixup + 1;
3826 prev_fixup = 0;
3827 }
3828 /* Queue it. */
3829 else if (fixup > save_fixup + 1)
3830 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
3831
3832 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
3833 fixups to BFD. */
3834 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
3835 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
3836 {
3837 /* Done with a single reloction. Loop back to the top. */
3838 if (! just_count)
3839 {
3840 rptr->addend = var ('V');
3841 rptr++;
3842 }
3843 count++;
3844 /* Now that we've handled a "full" relocation, reset
3845 some state. */
3846 memset (variables, 0, sizeof (variables));
3847 memset (stack, 0, sizeof (stack));
3848 }
3849 }
3850 return count;
3851
3852 #undef var
3853 #undef push
3854 #undef pop
3855 #undef emptystack
3856 }
3857
3858 /* Read in the relocs (aka fixups in SOM terms) for a section.
3859
3860 som_get_reloc_upper_bound calls this routine with JUST_COUNT
3861 set to true to indicate it only needs a count of the number
3862 of actual relocations. */
3863
3864 static boolean
3865 som_slurp_reloc_table (abfd, section, symbols, just_count)
3866 bfd *abfd;
3867 asection *section;
3868 asymbol **symbols;
3869 boolean just_count;
3870 {
3871 char *external_relocs;
3872 unsigned int fixup_stream_size;
3873 arelent *internal_relocs;
3874 unsigned int num_relocs;
3875
3876 fixup_stream_size = som_section_data (section)->reloc_size;
3877 /* If there were no relocations, then there is nothing to do. */
3878 if (section->reloc_count == 0)
3879 return true;
3880
3881 /* If reloc_count is -1, then the relocation stream has not been
3882 parsed. We must do so now to know how many relocations exist. */
3883 if (section->reloc_count == -1)
3884 {
3885 external_relocs = (char *) bfd_zalloc (abfd, fixup_stream_size);
3886 if (external_relocs == (char *) NULL)
3887 {
3888 bfd_set_error (bfd_error_no_memory);
3889 return false;
3890 }
3891 /* Read in the external forms. */
3892 if (bfd_seek (abfd,
3893 obj_som_reloc_filepos (abfd) + section->rel_filepos,
3894 SEEK_SET)
3895 != 0)
3896 {
3897 bfd_set_error (bfd_error_system_call);
3898 return false;
3899 }
3900 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
3901 != fixup_stream_size)
3902 {
3903 bfd_set_error (bfd_error_system_call);
3904 return false;
3905 }
3906 /* Let callers know how many relocations found.
3907 also save the relocation stream as we will
3908 need it again. */
3909 section->reloc_count = som_set_reloc_info (external_relocs,
3910 fixup_stream_size,
3911 NULL, NULL, NULL, true);
3912
3913 som_section_data (section)->reloc_stream = external_relocs;
3914 }
3915
3916 /* If the caller only wanted a count, then return now. */
3917 if (just_count)
3918 return true;
3919
3920 num_relocs = section->reloc_count;
3921 external_relocs = som_section_data (section)->reloc_stream;
3922 /* Return saved information about the relocations if it is available. */
3923 if (section->relocation != (arelent *) NULL)
3924 return true;
3925
3926 internal_relocs = (arelent *) bfd_zalloc (abfd,
3927 num_relocs * sizeof (arelent));
3928 if (internal_relocs == (arelent *) NULL)
3929 {
3930 bfd_set_error (bfd_error_no_memory);
3931 return false;
3932 }
3933
3934 /* Process and internalize the relocations. */
3935 som_set_reloc_info (external_relocs, fixup_stream_size,
3936 internal_relocs, section, symbols, false);
3937
3938 /* Save our results and return success. */
3939 section->relocation = internal_relocs;
3940 return (true);
3941 }
3942
3943 /* Return the number of bytes required to store the relocation
3944 information associated with the given section. */
3945
3946 static unsigned int
3947 som_get_reloc_upper_bound (abfd, asect)
3948 bfd *abfd;
3949 sec_ptr asect;
3950 {
3951 /* If section has relocations, then read in the relocation stream
3952 and parse it to determine how many relocations exist. */
3953 if (asect->flags & SEC_RELOC)
3954 {
3955 if (som_slurp_reloc_table (abfd, asect, NULL, true))
3956 return (asect->reloc_count + 1) * sizeof (arelent);
3957 }
3958 /* Either there are no relocations or an error occurred while
3959 reading and parsing the relocation stream. */
3960 return 0;
3961 }
3962
3963 /* Convert relocations from SOM (external) form into BFD internal
3964 form. Return the number of relocations. */
3965
3966 static unsigned int
3967 som_canonicalize_reloc (abfd, section, relptr, symbols)
3968 bfd *abfd;
3969 sec_ptr section;
3970 arelent **relptr;
3971 asymbol **symbols;
3972 {
3973 arelent *tblptr;
3974 int count;
3975
3976 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
3977 return 0;
3978
3979 count = section->reloc_count;
3980 tblptr = section->relocation;
3981 if (tblptr == (arelent *) NULL)
3982 return 0;
3983
3984 while (count--)
3985 *relptr++ = tblptr++;
3986
3987 *relptr = (arelent *) NULL;
3988 return section->reloc_count;
3989 }
3990
3991 extern bfd_target som_vec;
3992
3993 /* A hook to set up object file dependent section information. */
3994
3995 static boolean
3996 som_new_section_hook (abfd, newsect)
3997 bfd *abfd;
3998 asection *newsect;
3999 {
4000 newsect->used_by_bfd =
4001 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
4002 if (!newsect->used_by_bfd)
4003 {
4004 bfd_set_error (bfd_error_no_memory);
4005 return false;
4006 }
4007 newsect->alignment_power = 3;
4008
4009 /* Initialize the subspace_index field to -1 so that it does
4010 not match a subspace with an index of 0. */
4011 som_section_data (newsect)->subspace_index = -1;
4012
4013 /* We allow more than three sections internally */
4014 return true;
4015 }
4016
4017 /* Set backend info for sections which can not be described
4018 in the BFD data structures. */
4019
4020 void
4021 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
4022 asection *section;
4023 int defined;
4024 int private;
4025 unsigned int sort_key;
4026 int spnum;
4027 {
4028 struct space_dictionary_record *space_dict;
4029
4030 som_section_data (section)->is_space = 1;
4031 space_dict = &som_section_data (section)->space_dict;
4032 space_dict->is_defined = defined;
4033 space_dict->is_private = private;
4034 space_dict->sort_key = sort_key;
4035 space_dict->space_number = spnum;
4036 }
4037
4038 /* Set backend info for subsections which can not be described
4039 in the BFD data structures. */
4040
4041 void
4042 bfd_som_set_subsection_attributes (section, container, access,
4043 sort_key, quadrant)
4044 asection *section;
4045 asection *container;
4046 int access;
4047 unsigned int sort_key;
4048 int quadrant;
4049 {
4050 struct subspace_dictionary_record *subspace_dict;
4051 som_section_data (section)->is_subspace = 1;
4052 subspace_dict = &som_section_data (section)->subspace_dict;
4053 subspace_dict->access_control_bits = access;
4054 subspace_dict->sort_key = sort_key;
4055 subspace_dict->quadrant = quadrant;
4056 som_section_data (section)->containing_space = container;
4057 }
4058
4059 /* Set the full SOM symbol type. SOM needs far more symbol information
4060 than any other object file format I'm aware of. It is mandatory
4061 to be able to know if a symbol is an entry point, millicode, data,
4062 code, absolute, storage request, or procedure label. If you get
4063 the symbol type wrong your program will not link. */
4064
4065 void
4066 bfd_som_set_symbol_type (symbol, type)
4067 asymbol *symbol;
4068 unsigned int type;
4069 {
4070 som_symbol_data (symbol)->som_type = type;
4071 }
4072
4073 /* Attach 64bits of unwind information to a symbol (which hopefully
4074 is a function of some kind!). It would be better to keep this
4075 in the R_ENTRY relocation, but there is not enough space. */
4076
4077 void
4078 bfd_som_attach_unwind_info (symbol, unwind_desc)
4079 asymbol *symbol;
4080 char *unwind_desc;
4081 {
4082 som_symbol_data (symbol)->unwind = unwind_desc;
4083 }
4084
4085 /* Attach an auxiliary header to the BFD backend so that it may be
4086 written into the object file. */
4087 boolean
4088 bfd_som_attach_aux_hdr (abfd, type, string)
4089 bfd *abfd;
4090 int type;
4091 char *string;
4092 {
4093 if (type == VERSION_AUX_ID)
4094 {
4095 int len = strlen (string);
4096 int pad = 0;
4097
4098 if (len % 4)
4099 pad = (4 - (len % 4));
4100 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
4101 bfd_zalloc (abfd, sizeof (struct aux_id)
4102 + sizeof (unsigned int) + len + pad);
4103 if (!obj_som_version_hdr (abfd))
4104 {
4105 bfd_set_error (bfd_error_no_memory);
4106 return false;
4107 }
4108 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
4109 obj_som_version_hdr (abfd)->header_id.length = len + pad;
4110 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
4111 obj_som_version_hdr (abfd)->string_length = len;
4112 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
4113 }
4114 else if (type == COPYRIGHT_AUX_ID)
4115 {
4116 int len = strlen (string);
4117 int pad = 0;
4118
4119 if (len % 4)
4120 pad = (4 - (len % 4));
4121 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
4122 bfd_zalloc (abfd, sizeof (struct aux_id)
4123 + sizeof (unsigned int) + len + pad);
4124 if (!obj_som_copyright_hdr (abfd))
4125 {
4126 bfd_set_error (bfd_error_no_error);
4127 return false;
4128 }
4129 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
4130 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
4131 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
4132 obj_som_copyright_hdr (abfd)->string_length = len;
4133 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
4134 }
4135 return true;
4136 }
4137
4138 static boolean
4139 som_set_section_contents (abfd, section, location, offset, count)
4140 bfd *abfd;
4141 sec_ptr section;
4142 PTR location;
4143 file_ptr offset;
4144 bfd_size_type count;
4145 {
4146 if (abfd->output_has_begun == false)
4147 {
4148 /* Set up fixed parts of the file, space, and subspace headers.
4149 Notify the world that output has begun. */
4150 som_prep_headers (abfd);
4151 abfd->output_has_begun = true;
4152 /* Start writing the object file. This include all the string
4153 tables, fixup streams, and other portions of the object file. */
4154 som_begin_writing (abfd);
4155 }
4156
4157 /* Only write subspaces which have "real" contents (eg. the contents
4158 are not generated at run time by the OS). */
4159 if (som_section_data (section)->is_subspace != 1
4160 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4161 return true;
4162
4163 /* Seek to the proper offset within the object file and write the
4164 data. */
4165 offset += som_section_data (section)->subspace_dict.file_loc_init_value;
4166 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
4167 {
4168 bfd_set_error (bfd_error_system_call);
4169 return false;
4170 }
4171
4172 if (bfd_write ((PTR) location, 1, count, abfd) != count)
4173 {
4174 bfd_set_error (bfd_error_system_call);
4175 return false;
4176 }
4177 return true;
4178 }
4179
4180 static boolean
4181 som_set_arch_mach (abfd, arch, machine)
4182 bfd *abfd;
4183 enum bfd_architecture arch;
4184 unsigned long machine;
4185 {
4186 /* Allow any architecture to be supported by the SOM backend */
4187 return bfd_default_set_arch_mach (abfd, arch, machine);
4188 }
4189
4190 static boolean
4191 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4192 functionname_ptr, line_ptr)
4193 bfd *abfd;
4194 asection *section;
4195 asymbol **symbols;
4196 bfd_vma offset;
4197 CONST char **filename_ptr;
4198 CONST char **functionname_ptr;
4199 unsigned int *line_ptr;
4200 {
4201 fprintf (stderr, "som_find_nearest_line unimplemented\n");
4202 fflush (stderr);
4203 abort ();
4204 return (false);
4205 }
4206
4207 static int
4208 som_sizeof_headers (abfd, reloc)
4209 bfd *abfd;
4210 boolean reloc;
4211 {
4212 fprintf (stderr, "som_sizeof_headers unimplemented\n");
4213 fflush (stderr);
4214 abort ();
4215 return (0);
4216 }
4217
4218 /* Return the single-character symbol type corresponding to
4219 SOM section S, or '?' for an unknown SOM section. */
4220
4221 static char
4222 som_section_type (s)
4223 const char *s;
4224 {
4225 const struct section_to_type *t;
4226
4227 for (t = &stt[0]; t->section; t++)
4228 if (!strcmp (s, t->section))
4229 return t->type;
4230 return '?';
4231 }
4232
4233 static int
4234 som_decode_symclass (symbol)
4235 asymbol *symbol;
4236 {
4237 char c;
4238
4239 if (bfd_is_com_section (symbol->section))
4240 return 'C';
4241 if (symbol->section == &bfd_und_section)
4242 return 'U';
4243 if (symbol->section == &bfd_ind_section)
4244 return 'I';
4245 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
4246 return '?';
4247
4248 if (symbol->section == &bfd_abs_section)
4249 c = 'a';
4250 else if (symbol->section)
4251 c = som_section_type (symbol->section->name);
4252 else
4253 return '?';
4254 if (symbol->flags & BSF_GLOBAL)
4255 c = toupper (c);
4256 return c;
4257 }
4258
4259 /* Return information about SOM symbol SYMBOL in RET. */
4260
4261 static void
4262 som_get_symbol_info (ignore_abfd, symbol, ret)
4263 bfd *ignore_abfd;
4264 asymbol *symbol;
4265 symbol_info *ret;
4266 {
4267 ret->type = som_decode_symclass (symbol);
4268 if (ret->type != 'U')
4269 ret->value = symbol->value+symbol->section->vma;
4270 else
4271 ret->value = 0;
4272 ret->name = symbol->name;
4273 }
4274
4275 /* Count the number of symbols in the archive symbol table. Necessary
4276 so that we can allocate space for all the carsyms at once. */
4277
4278 static boolean
4279 som_bfd_count_ar_symbols (abfd, lst_header, count)
4280 bfd *abfd;
4281 struct lst_header *lst_header;
4282 symindex *count;
4283 {
4284 unsigned int i;
4285 unsigned int *hash_table = NULL
4286 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4287
4288 hash_table =
4289 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4290 if (hash_table == NULL)
4291 {
4292 bfd_set_error (bfd_error_no_memory);
4293 goto error_return;
4294 }
4295
4296 /* Don't forget to initialize the counter! */
4297 *count = 0;
4298
4299 /* Read in the hash table. The has table is an array of 32bit file offsets
4300 which point to the hash chains. */
4301 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4302 != lst_header->hash_size * 4)
4303 {
4304 bfd_set_error (bfd_error_system_call);
4305 goto error_return;
4306 }
4307
4308 /* Walk each chain counting the number of symbols found on that particular
4309 chain. */
4310 for (i = 0; i < lst_header->hash_size; i++)
4311 {
4312 struct lst_symbol_record lst_symbol;
4313
4314 /* An empty chain has zero as it's file offset. */
4315 if (hash_table[i] == 0)
4316 continue;
4317
4318 /* Seek to the first symbol in this hash chain. */
4319 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4320 {
4321 bfd_set_error (bfd_error_system_call);
4322 goto error_return;
4323 }
4324
4325 /* Read in this symbol and update the counter. */
4326 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4327 != sizeof (lst_symbol))
4328 {
4329 bfd_set_error (bfd_error_system_call);
4330 goto error_return;
4331 }
4332 (*count)++;
4333
4334 /* Now iterate through the rest of the symbols on this chain. */
4335 while (lst_symbol.next_entry)
4336 {
4337
4338 /* Seek to the next symbol. */
4339 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4340 < 0)
4341 {
4342 bfd_set_error (bfd_error_system_call);
4343 goto error_return;
4344 }
4345
4346 /* Read the symbol in and update the counter. */
4347 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4348 != sizeof (lst_symbol))
4349 {
4350 bfd_set_error (bfd_error_system_call);
4351 goto error_return;
4352 }
4353 (*count)++;
4354 }
4355 }
4356 if (hash_table != NULL)
4357 free (hash_table);
4358 return true;
4359
4360 error_return:
4361 if (hash_table != NULL)
4362 free (hash_table);
4363 return false;
4364 }
4365
4366 /* Fill in the canonical archive symbols (SYMS) from the archive described
4367 by ABFD and LST_HEADER. */
4368
4369 static boolean
4370 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
4371 bfd *abfd;
4372 struct lst_header *lst_header;
4373 carsym **syms;
4374 {
4375 unsigned int i, len;
4376 carsym *set = syms[0];
4377 unsigned int *hash_table = NULL;
4378 struct som_entry *som_dict = NULL;
4379 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4380
4381 hash_table =
4382 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4383 if (hash_table == NULL)
4384 {
4385 bfd_set_error (bfd_error_no_memory);
4386 goto error_return;
4387 }
4388
4389 som_dict =
4390 (struct som_entry *) malloc (lst_header->module_count
4391 * sizeof (struct som_entry));
4392 if (som_dict == NULL)
4393 {
4394 bfd_set_error (bfd_error_no_memory);
4395 goto error_return;
4396 }
4397
4398 /* Read in the hash table. The has table is an array of 32bit file offsets
4399 which point to the hash chains. */
4400 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4401 != lst_header->hash_size * 4)
4402 {
4403 bfd_set_error (bfd_error_system_call);
4404 goto error_return;
4405 }
4406
4407 /* Seek to and read in the SOM dictionary. We will need this to fill
4408 in the carsym's filepos field. */
4409 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
4410 {
4411 bfd_set_error (bfd_error_system_call);
4412 goto error_return;
4413 }
4414
4415 if (bfd_read ((PTR) som_dict, lst_header->module_count,
4416 sizeof (struct som_entry), abfd)
4417 != lst_header->module_count * sizeof (struct som_entry))
4418 {
4419 bfd_set_error (bfd_error_system_call);
4420 goto error_return;
4421 }
4422
4423 /* Walk each chain filling in the carsyms as we go along. */
4424 for (i = 0; i < lst_header->hash_size; i++)
4425 {
4426 struct lst_symbol_record lst_symbol;
4427
4428 /* An empty chain has zero as it's file offset. */
4429 if (hash_table[i] == 0)
4430 continue;
4431
4432 /* Seek to and read the first symbol on the chain. */
4433 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4434 {
4435 bfd_set_error (bfd_error_system_call);
4436 goto error_return;
4437 }
4438
4439 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4440 != sizeof (lst_symbol))
4441 {
4442 bfd_set_error (bfd_error_system_call);
4443 goto error_return;
4444 }
4445
4446 /* Get the name of the symbol, first get the length which is stored
4447 as a 32bit integer just before the symbol.
4448
4449 One might ask why we don't just read in the entire string table
4450 and index into it. Well, according to the SOM ABI the string
4451 index can point *anywhere* in the archive to save space, so just
4452 using the string table would not be safe. */
4453 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4454 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4455 {
4456 bfd_set_error (bfd_error_system_call);
4457 goto error_return;
4458 }
4459
4460 if (bfd_read (&len, 1, 4, abfd) != 4)
4461 {
4462 bfd_set_error (bfd_error_system_call);
4463 goto error_return;
4464 }
4465
4466 /* Allocate space for the name and null terminate it too. */
4467 set->name = bfd_zalloc (abfd, len + 1);
4468 if (!set->name)
4469 {
4470 bfd_set_error (bfd_error_no_memory);
4471 goto error_return;
4472 }
4473 if (bfd_read (set->name, 1, len, abfd) != len)
4474 {
4475 bfd_set_error (bfd_error_system_call);
4476 goto error_return;
4477 }
4478 set->name[len] = 0;
4479
4480 /* Fill in the file offset. Note that the "location" field points
4481 to the SOM itself, not the ar_hdr in front of it. */
4482 set->file_offset = som_dict[lst_symbol.som_index].location
4483 - sizeof (struct ar_hdr);
4484
4485 /* Go to the next symbol. */
4486 set++;
4487
4488 /* Iterate through the rest of the chain. */
4489 while (lst_symbol.next_entry)
4490 {
4491 /* Seek to the next symbol and read it in. */
4492 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4493 < 0)
4494 {
4495 bfd_set_error (bfd_error_system_call);
4496 goto error_return;
4497 }
4498
4499 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4500 != sizeof (lst_symbol))
4501 {
4502 bfd_set_error (bfd_error_system_call);
4503 goto error_return;
4504 }
4505
4506 /* Seek to the name length & string and read them in. */
4507 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4508 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4509 {
4510 bfd_set_error (bfd_error_system_call);
4511 goto error_return;
4512 }
4513
4514 if (bfd_read (&len, 1, 4, abfd) != 4)
4515 {
4516 bfd_set_error (bfd_error_system_call);
4517 goto error_return;
4518 }
4519
4520 /* Allocate space for the name and null terminate it too. */
4521 set->name = bfd_zalloc (abfd, len + 1);
4522 if (!set->name)
4523 {
4524 bfd_set_error (bfd_error_no_memory);
4525 goto error_return;
4526 }
4527 if (bfd_read (set->name, 1, len, abfd) != len)
4528 {
4529 bfd_set_error (bfd_error_system_call);
4530 goto error_return;
4531 }
4532 set->name[len] = 0;
4533
4534 /* Fill in the file offset. Note that the "location" field points
4535 to the SOM itself, not the ar_hdr in front of it. */
4536 set->file_offset = som_dict[lst_symbol.som_index].location
4537 - sizeof (struct ar_hdr);
4538
4539 /* Go on to the next symbol. */
4540 set++;
4541 }
4542 }
4543 /* If we haven't died by now, then we successfully read the entire
4544 archive symbol table. */
4545 if (hash_table != NULL)
4546 free (hash_table);
4547 if (som_dict != NULL)
4548 free (som_dict);
4549 return true;
4550
4551 error_return:
4552 if (hash_table != NULL)
4553 free (hash_table);
4554 if (som_dict != NULL)
4555 free (som_dict);
4556 return false;
4557 }
4558
4559 /* Read in the LST from the archive. */
4560 static boolean
4561 som_slurp_armap (abfd)
4562 bfd *abfd;
4563 {
4564 struct lst_header lst_header;
4565 struct ar_hdr ar_header;
4566 unsigned int parsed_size;
4567 struct artdata *ardata = bfd_ardata (abfd);
4568 char nextname[17];
4569 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
4570
4571 /* Special cases. */
4572 if (i == 0)
4573 return true;
4574 if (i != 16)
4575 return false;
4576
4577 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
4578 {
4579 bfd_set_error (bfd_error_system_call);
4580 return false;
4581 }
4582
4583 /* For archives without .o files there is no symbol table. */
4584 if (strncmp (nextname, "/ ", 16))
4585 {
4586 bfd_has_map (abfd) = false;
4587 return true;
4588 }
4589
4590 /* Read in and sanity check the archive header. */
4591 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
4592 != sizeof (struct ar_hdr))
4593 {
4594 bfd_set_error (bfd_error_system_call);
4595 return false;
4596 }
4597
4598 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
4599 {
4600 bfd_set_error (bfd_error_malformed_archive);
4601 return NULL;
4602 }
4603
4604 /* How big is the archive symbol table entry? */
4605 errno = 0;
4606 parsed_size = strtol (ar_header.ar_size, NULL, 10);
4607 if (errno != 0)
4608 {
4609 bfd_set_error (bfd_error_malformed_archive);
4610 return NULL;
4611 }
4612
4613 /* Save off the file offset of the first real user data. */
4614 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
4615
4616 /* Read in the library symbol table. We'll make heavy use of this
4617 in just a minute. */
4618 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
4619 != sizeof (struct lst_header))
4620 {
4621 bfd_set_error (bfd_error_system_call);
4622 return false;
4623 }
4624
4625 /* Sanity check. */
4626 if (lst_header.a_magic != LIBMAGIC)
4627 {
4628 bfd_set_error (bfd_error_malformed_archive);
4629 return NULL;
4630 }
4631
4632 /* Count the number of symbols in the library symbol table. */
4633 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
4634 == false)
4635 return false;
4636
4637 /* Get back to the start of the library symbol table. */
4638 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
4639 + sizeof (struct lst_header), SEEK_SET) < 0)
4640 {
4641 bfd_set_error (bfd_error_system_call);
4642 return false;
4643 }
4644
4645 /* Initializae the cache and allocate space for the library symbols. */
4646 ardata->cache = 0;
4647 ardata->symdefs = (carsym *) bfd_alloc (abfd,
4648 (ardata->symdef_count
4649 * sizeof (carsym)));
4650 if (!ardata->symdefs)
4651 {
4652 bfd_set_error (bfd_error_no_memory);
4653 return false;
4654 }
4655
4656 /* Now fill in the canonical archive symbols. */
4657 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
4658 == false)
4659 return false;
4660
4661 /* Notify the generic archive code that we have a symbol map. */
4662 bfd_has_map (abfd) = true;
4663 return true;
4664 }
4665
4666 /* Begin preparing to write a SOM library symbol table.
4667
4668 As part of the prep work we need to determine the number of symbols
4669 and the size of the associated string section. */
4670
4671 static boolean
4672 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
4673 bfd *abfd;
4674 unsigned int *num_syms, *stringsize;
4675 {
4676 bfd *curr_bfd = abfd->archive_head;
4677
4678 /* Some initialization. */
4679 *num_syms = 0;
4680 *stringsize = 0;
4681
4682 /* Iterate over each BFD within this archive. */
4683 while (curr_bfd != NULL)
4684 {
4685 unsigned int curr_count, i;
4686 som_symbol_type *sym;
4687
4688 /* Make sure the symbol table has been read, then snag a pointer
4689 to it. It's a little slimey to grab the symbols via obj_som_symtab,
4690 but doing so avoids allocating lots of extra memory. */
4691 if (som_slurp_symbol_table (curr_bfd) == false)
4692 return false;
4693
4694 sym = obj_som_symtab (curr_bfd);
4695 curr_count = bfd_get_symcount (curr_bfd);
4696
4697 /* Examine each symbol to determine if it belongs in the
4698 library symbol table. */
4699 for (i = 0; i < curr_count; i++, sym++)
4700 {
4701 struct som_misc_symbol_info info;
4702
4703 /* Derive SOM information from the BFD symbol. */
4704 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
4705
4706 /* Should we include this symbol? */
4707 if (info.symbol_type == ST_NULL
4708 || info.symbol_type == ST_SYM_EXT
4709 || info.symbol_type == ST_ARG_EXT)
4710 continue;
4711
4712 /* Only global symbols and unsatisfied commons. */
4713 if (info.symbol_scope != SS_UNIVERSAL
4714 && info.symbol_type != ST_STORAGE)
4715 continue;
4716
4717 /* Do no include undefined symbols. */
4718 if (sym->symbol.section == &bfd_und_section)
4719 continue;
4720
4721 /* Bump the various counters, being careful to honor
4722 alignment considerations in the string table. */
4723 (*num_syms)++;
4724 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
4725 while (*stringsize % 4)
4726 (*stringsize)++;
4727 }
4728
4729 curr_bfd = curr_bfd->next;
4730 }
4731 return true;
4732 }
4733
4734 /* Hash a symbol name based on the hashing algorithm presented in the
4735 SOM ABI. */
4736 static unsigned int
4737 som_bfd_ar_symbol_hash (symbol)
4738 asymbol *symbol;
4739 {
4740 unsigned int len = strlen (symbol->name);
4741
4742 /* Names with length 1 are special. */
4743 if (len == 1)
4744 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
4745
4746 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
4747 | (symbol->name[len-2] << 8) | symbol->name[len-1];
4748 }
4749
4750 /* Do the bulk of the work required to write the SOM library
4751 symbol table. */
4752
4753 static boolean
4754 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst)
4755 bfd *abfd;
4756 unsigned int nsyms, string_size;
4757 struct lst_header lst;
4758 {
4759 file_ptr lst_filepos;
4760 char *strings = NULL, *p;
4761 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
4762 bfd *curr_bfd = abfd->archive_head;
4763 unsigned int *hash_table = NULL;
4764 struct som_entry *som_dict = NULL;
4765 struct lst_symbol_record **last_hash_entry = NULL;
4766 unsigned int curr_som_offset, som_index;
4767
4768 hash_table =
4769 (unsigned int *) malloc (lst.hash_size * sizeof (unsigned int));
4770 if (hash_table == NULL)
4771 {
4772 bfd_set_error (bfd_error_no_memory);
4773 goto error_return;
4774 }
4775 som_dict =
4776 (struct som_entry *) malloc (lst.module_count
4777 * sizeof (struct som_entry));
4778 if (som_dict == NULL)
4779 {
4780 bfd_set_error (bfd_error_no_memory);
4781 goto error_return;
4782 }
4783
4784 last_hash_entry =
4785 ((struct lst_symbol_record **)
4786 malloc (lst.hash_size * sizeof (struct lst_symbol_record *)));
4787 if (last_hash_entry == NULL)
4788 {
4789 bfd_set_error (bfd_error_no_memory);
4790 goto error_return;
4791 }
4792
4793 /* Lots of fields are file positions relative to the start
4794 of the lst record. So save its location. */
4795 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4796
4797 /* Some initialization. */
4798 memset (hash_table, 0, 4 * lst.hash_size);
4799 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
4800 memset (last_hash_entry, 0,
4801 lst.hash_size * sizeof (struct lst_symbol_record *));
4802
4803 /* Symbols have som_index fields, so we have to keep track of the
4804 index of each SOM in the archive.
4805
4806 The SOM dictionary has (among other things) the absolute file
4807 position for the SOM which a particular dictionary entry
4808 describes. We have to compute that information as we iterate
4809 through the SOMs/symbols. */
4810 som_index = 0;
4811 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
4812
4813 /* FIXME should be done with buffers just like everything else... */
4814 lst_syms = malloc (nsyms * sizeof (struct lst_symbol_record));
4815 if (lst_syms == NULL)
4816 {
4817 bfd_set_error (bfd_error_no_memory);
4818 goto error_return;
4819 }
4820 strings = malloc (string_size);
4821 if (strings == NULL)
4822 {
4823 bfd_set_error (bfd_error_no_memory);
4824 goto error_return;
4825 }
4826
4827 p = strings;
4828 curr_lst_sym = lst_syms;
4829
4830
4831 while (curr_bfd != NULL)
4832 {
4833 unsigned int curr_count, i;
4834 som_symbol_type *sym;
4835
4836 /* Make sure the symbol table has been read, then snag a pointer
4837 to it. It's a little slimey to grab the symbols via obj_som_symtab,
4838 but doing so avoids allocating lots of extra memory. */
4839 if (som_slurp_symbol_table (curr_bfd) == false)
4840 goto error_return;
4841
4842 sym = obj_som_symtab (curr_bfd);
4843 curr_count = bfd_get_symcount (curr_bfd);
4844
4845 for (i = 0; i < curr_count; i++, sym++)
4846 {
4847 struct som_misc_symbol_info info;
4848
4849 /* Derive SOM information from the BFD symbol. */
4850 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
4851
4852 /* Should we include this symbol? */
4853 if (info.symbol_type == ST_NULL
4854 || info.symbol_type == ST_SYM_EXT
4855 || info.symbol_type == ST_ARG_EXT)
4856 continue;
4857
4858 /* Only global symbols and unsatisfied commons. */
4859 if (info.symbol_scope != SS_UNIVERSAL
4860 && info.symbol_type != ST_STORAGE)
4861 continue;
4862
4863 /* Do no include undefined symbols. */
4864 if (sym->symbol.section == &bfd_und_section)
4865 continue;
4866
4867 /* If this is the first symbol from this SOM, then update
4868 the SOM dictionary too. */
4869 if (som_dict[som_index].location == 0)
4870 {
4871 som_dict[som_index].location = curr_som_offset;
4872 som_dict[som_index].length = arelt_size (curr_bfd);
4873 }
4874
4875 /* Fill in the lst symbol record. */
4876 curr_lst_sym->hidden = 0;
4877 curr_lst_sym->secondary_def = 0;
4878 curr_lst_sym->symbol_type = info.symbol_type;
4879 curr_lst_sym->symbol_scope = info.symbol_scope;
4880 curr_lst_sym->check_level = 0;
4881 curr_lst_sym->must_qualify = 0;
4882 curr_lst_sym->initially_frozen = 0;
4883 curr_lst_sym->memory_resident = 0;
4884 curr_lst_sym->is_common = (sym->symbol.section == &bfd_com_section);
4885 curr_lst_sym->dup_common = 0;
4886 curr_lst_sym->xleast = 0;
4887 curr_lst_sym->arg_reloc = info.arg_reloc;
4888 curr_lst_sym->name.n_strx = p - strings + 4;
4889 curr_lst_sym->qualifier_name.n_strx = 0;
4890 curr_lst_sym->symbol_info = info.symbol_info;
4891 curr_lst_sym->symbol_value = info.symbol_value;
4892 curr_lst_sym->symbol_descriptor = 0;
4893 curr_lst_sym->reserved = 0;
4894 curr_lst_sym->som_index = som_index;
4895 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
4896 curr_lst_sym->next_entry = 0;
4897
4898 /* Insert into the hash table. */
4899 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
4900 {
4901 struct lst_symbol_record *tmp;
4902
4903 /* There is already something at the head of this hash chain,
4904 so tack this symbol onto the end of the chain. */
4905 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
4906 tmp->next_entry
4907 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
4908 + lst.hash_size * 4
4909 + lst.module_count * sizeof (struct som_entry)
4910 + sizeof (struct lst_header);
4911 }
4912 else
4913 {
4914 /* First entry in this hash chain. */
4915 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
4916 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
4917 + lst.hash_size * 4
4918 + lst.module_count * sizeof (struct som_entry)
4919 + sizeof (struct lst_header);
4920 }
4921
4922 /* Keep track of the last symbol we added to this chain so we can
4923 easily update its next_entry pointer. */
4924 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
4925 = curr_lst_sym;
4926
4927
4928 /* Update the string table. */
4929 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
4930 p += 4;
4931 strcpy (p, sym->symbol.name);
4932 p += strlen (sym->symbol.name) + 1;
4933 while ((int)p % 4)
4934 {
4935 bfd_put_8 (abfd, 0, p);
4936 p++;
4937 }
4938
4939 /* Head to the next symbol. */
4940 curr_lst_sym++;
4941 }
4942
4943 /* Keep track of where each SOM will finally reside; then look
4944 at the next BFD. */
4945 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
4946 curr_bfd = curr_bfd->next;
4947 som_index++;
4948 }
4949
4950 /* Now scribble out the hash table. */
4951 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
4952 != lst.hash_size * 4)
4953 {
4954 bfd_set_error (bfd_error_system_call);
4955 goto error_return;
4956 }
4957
4958 /* Then the SOM dictionary. */
4959 if (bfd_write ((PTR) som_dict, lst.module_count,
4960 sizeof (struct som_entry), abfd)
4961 != lst.module_count * sizeof (struct som_entry))
4962 {
4963 bfd_set_error (bfd_error_system_call);
4964 goto error_return;
4965 }
4966
4967 /* The library symbols. */
4968 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
4969 != nsyms * sizeof (struct lst_symbol_record))
4970 {
4971 bfd_set_error (bfd_error_system_call);
4972 goto error_return;
4973 }
4974
4975 /* And finally the strings. */
4976 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
4977 {
4978 bfd_set_error (bfd_error_system_call);
4979 goto error_return;
4980 }
4981
4982 if (hash_table != NULL)
4983 free (hash_table);
4984 if (som_dict != NULL)
4985 free (som_dict);
4986 if (last_hash_entry != NULL)
4987 free (last_hash_entry);
4988 if (lst_syms != NULL)
4989 free (lst_syms);
4990 if (strings != NULL)
4991 free (strings);
4992 return true;
4993
4994 error_return:
4995 if (hash_table != NULL)
4996 free (hash_table);
4997 if (som_dict != NULL)
4998 free (som_dict);
4999 if (last_hash_entry != NULL)
5000 free (last_hash_entry);
5001 if (lst_syms != NULL)
5002 free (lst_syms);
5003 if (strings != NULL)
5004 free (strings);
5005
5006 return false;
5007 }
5008
5009 /* Write out the LST for the archive.
5010
5011 You'll never believe this is really how armaps are handled in SOM... */
5012
5013 static boolean
5014 som_write_armap (abfd)
5015 bfd *abfd;
5016 {
5017 bfd *curr_bfd;
5018 struct stat statbuf;
5019 unsigned int i, lst_size, nsyms, stringsize;
5020 struct ar_hdr hdr;
5021 struct lst_header lst;
5022 int *p;
5023
5024 /* We'll use this for the archive's date and mode later. */
5025 if (stat (abfd->filename, &statbuf) != 0)
5026 {
5027 bfd_set_error (bfd_error_system_call);
5028 return false;
5029 }
5030 /* Fudge factor. */
5031 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
5032
5033 /* Account for the lst header first. */
5034 lst_size = sizeof (struct lst_header);
5035
5036 /* Start building the LST header. */
5037 lst.system_id = HP9000S800_ID;
5038 lst.a_magic = LIBMAGIC;
5039 lst.version_id = VERSION_ID;
5040 lst.file_time.secs = 0;
5041 lst.file_time.nanosecs = 0;
5042
5043 lst.hash_loc = lst_size;
5044 lst.hash_size = SOM_LST_HASH_SIZE;
5045
5046 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
5047 lst_size += 4 * SOM_LST_HASH_SIZE;
5048
5049 /* We need to count the number of SOMs in this archive. */
5050 curr_bfd = abfd->archive_head;
5051 lst.module_count = 0;
5052 while (curr_bfd != NULL)
5053 {
5054 lst.module_count++;
5055 curr_bfd = curr_bfd->next;
5056 }
5057 lst.module_limit = lst.module_count;
5058 lst.dir_loc = lst_size;
5059 lst_size += sizeof (struct som_entry) * lst.module_count;
5060
5061 /* We don't support import/export tables, auxiliary headers,
5062 or free lists yet. Make the linker work a little harder
5063 to make our life easier. */
5064
5065 lst.export_loc = 0;
5066 lst.export_count = 0;
5067 lst.import_loc = 0;
5068 lst.aux_loc = 0;
5069 lst.aux_size = 0;
5070
5071 /* Count how many symbols we will have on the hash chains and the
5072 size of the associated string table. */
5073 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
5074 return false;
5075
5076 lst_size += sizeof (struct lst_symbol_record) * nsyms;
5077
5078 /* For the string table. One day we might actually use this info
5079 to avoid small seeks/reads when reading archives. */
5080 lst.string_loc = lst_size;
5081 lst.string_size = stringsize;
5082 lst_size += stringsize;
5083
5084 /* SOM ABI says this must be zero. */
5085 lst.free_list = 0;
5086
5087 lst.file_end = lst_size;
5088
5089 /* Compute the checksum. Must happen after the entire lst header
5090 has filled in. */
5091 p = (int *)&lst;
5092 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
5093 lst.checksum ^= *p++;
5094
5095 sprintf (hdr.ar_name, "/ ");
5096 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
5097 sprintf (hdr.ar_uid, "%d", getuid ());
5098 sprintf (hdr.ar_gid, "%d", getgid ());
5099 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
5100 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
5101 hdr.ar_fmag[0] = '`';
5102 hdr.ar_fmag[1] = '\012';
5103
5104 /* Turn any nulls into spaces. */
5105 for (i = 0; i < sizeof (struct ar_hdr); i++)
5106 if (((char *) (&hdr))[i] == '\0')
5107 (((char *) (&hdr))[i]) = ' ';
5108
5109 /* Scribble out the ar header. */
5110 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
5111 != sizeof (struct ar_hdr))
5112 {
5113 bfd_set_error (bfd_error_system_call);
5114 return false;
5115 }
5116
5117 /* Now scribble out the lst header. */
5118 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
5119 != sizeof (struct lst_header))
5120 {
5121 bfd_set_error (bfd_error_system_call);
5122 return false;
5123 }
5124
5125 /* Build and write the armap. */
5126 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst) == false)
5127 return false;
5128
5129 /* Done. */
5130 return true;
5131 }
5132
5133 /* Apparently the extened names are never used, even though they appear
5134 in the SOM ABI. Hmmm. */
5135 static boolean
5136 som_slurp_extended_name_table (abfd)
5137 bfd *abfd;
5138 {
5139 bfd_ardata (abfd)->extended_names = NULL;
5140 return true;
5141 }
5142
5143 /* End of miscellaneous support functions. */
5144
5145 #define som_bfd_debug_info_start bfd_void
5146 #define som_bfd_debug_info_end bfd_void
5147 #define som_bfd_debug_info_accumulate (PROTO(void,(*),(bfd*, struct sec *))) bfd_void
5148
5149 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
5150 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
5151 #define som_truncate_arname bfd_bsd_truncate_arname
5152
5153 #define som_get_lineno (struct lineno_cache_entry *(*)())bfd_nullvoidptr
5154 #define som_close_and_cleanup bfd_generic_close_and_cleanup
5155 #define som_get_section_contents bfd_generic_get_section_contents
5156
5157 #define som_bfd_get_relocated_section_contents \
5158 bfd_generic_get_relocated_section_contents
5159 #define som_bfd_relax_section bfd_generic_relax_section
5160 #define som_bfd_make_debug_symbol \
5161 ((asymbol *(*) PARAMS ((bfd *, void *, unsigned long))) bfd_nullvoidptr)
5162 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
5163 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
5164 #define som_bfd_final_link _bfd_generic_final_link
5165
5166 /* Core file support is in the hpux-core backend. */
5167 #define som_core_file_failing_command _bfd_dummy_core_file_failing_command
5168 #define som_core_file_failing_signal _bfd_dummy_core_file_failing_signal
5169 #define som_core_file_matches_executable_p _bfd_dummy_core_file_matches_executable_p
5170
5171 bfd_target som_vec =
5172 {
5173 "som", /* name */
5174 bfd_target_som_flavour,
5175 true, /* target byte order */
5176 true, /* target headers byte order */
5177 (HAS_RELOC | EXEC_P | /* object flags */
5178 HAS_LINENO | HAS_DEBUG |
5179 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
5180 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
5181 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
5182
5183 /* leading_symbol_char: is the first char of a user symbol
5184 predictable, and if so what is it */
5185 0,
5186 '/', /* ar_pad_char */
5187 16, /* ar_max_namelen */
5188 3, /* minimum alignment */
5189 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5190 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5191 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
5192 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5193 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5194 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
5195 {_bfd_dummy_target,
5196 som_object_p, /* bfd_check_format */
5197 bfd_generic_archive_p,
5198 _bfd_dummy_target
5199 },
5200 {
5201 bfd_false,
5202 som_mkobject,
5203 _bfd_generic_mkarchive,
5204 bfd_false
5205 },
5206 {
5207 bfd_false,
5208 som_write_object_contents,
5209 _bfd_write_archive_contents,
5210 bfd_false,
5211 },
5212 #undef som
5213 JUMP_TABLE (som),
5214 (PTR) 0
5215 };
5216
5217 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */