* som.c: Don't include <sys/dir.h> or <sys/user.h>.
[binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
3
4 Contributed by the Center for Software Science at the
5 University of Utah (pa-gdb-bugs@cs.utah.edu).
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23 #include "bfd.h"
24 #include "sysdep.h"
25
26 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)
27
28 #include "libbfd.h"
29 #include "som.h"
30
31 #include <stdio.h>
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <signal.h>
35 #include <machine/reg.h>
36 #include <sys/file.h>
37 #include <errno.h>
38
39 /* Magic not defined in standard HP-UX header files until 8.0 */
40
41 #ifndef CPU_PA_RISC1_0
42 #define CPU_PA_RISC1_0 0x20B
43 #endif /* CPU_PA_RISC1_0 */
44
45 #ifndef CPU_PA_RISC1_1
46 #define CPU_PA_RISC1_1 0x210
47 #endif /* CPU_PA_RISC1_1 */
48
49 #ifndef _PA_RISC1_0_ID
50 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
51 #endif /* _PA_RISC1_0_ID */
52
53 #ifndef _PA_RISC1_1_ID
54 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
55 #endif /* _PA_RISC1_1_ID */
56
57 #ifndef _PA_RISC_MAXID
58 #define _PA_RISC_MAXID 0x2FF
59 #endif /* _PA_RISC_MAXID */
60
61 #ifndef _PA_RISC_ID
62 #define _PA_RISC_ID(__m_num) \
63 (((__m_num) == _PA_RISC1_0_ID) || \
64 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
65 #endif /* _PA_RISC_ID */
66
67 /* Size (in chars) of the temporary buffers used during fixup and string
68 table writes. */
69
70 #define SOM_TMP_BUFSIZE 8192
71
72 /* Size of the hash table in archives. */
73 #define SOM_LST_HASH_SIZE 31
74
75 /* Max number of SOMs to be found in an archive. */
76 #define SOM_LST_MODULE_LIMIT 1024
77
78 /* Generic alignment macro. */
79 #define SOM_ALIGN(val, alignment) \
80 (((val) + (alignment) - 1) & ~((alignment) - 1))
81
82 /* SOM allows any one of the four previous relocations to be reused
83 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
84 relocations are always a single byte, using a R_PREV_FIXUP instead
85 of some multi-byte relocation makes object files smaller.
86
87 Note one side effect of using a R_PREV_FIXUP is the relocation that
88 is being repeated moves to the front of the queue. */
89 struct reloc_queue
90 {
91 unsigned char *reloc;
92 unsigned int size;
93 } reloc_queue[4];
94
95 /* This fully describes the symbol types which may be attached to
96 an EXPORT or IMPORT directive. Only SOM uses this formation
97 (ELF has no need for it). */
98 typedef enum
99 {
100 SYMBOL_TYPE_UNKNOWN,
101 SYMBOL_TYPE_ABSOLUTE,
102 SYMBOL_TYPE_CODE,
103 SYMBOL_TYPE_DATA,
104 SYMBOL_TYPE_ENTRY,
105 SYMBOL_TYPE_MILLICODE,
106 SYMBOL_TYPE_PLABEL,
107 SYMBOL_TYPE_PRI_PROG,
108 SYMBOL_TYPE_SEC_PROG,
109 } pa_symbol_type;
110
111 struct section_to_type
112 {
113 char *section;
114 char type;
115 };
116
117 /* Assorted symbol information that needs to be derived from the BFD symbol
118 and/or the BFD backend private symbol data. */
119 struct som_misc_symbol_info
120 {
121 unsigned int symbol_type;
122 unsigned int symbol_scope;
123 unsigned int arg_reloc;
124 unsigned int symbol_info;
125 unsigned int symbol_value;
126 };
127
128 /* Forward declarations */
129
130 static boolean som_mkobject PARAMS ((bfd *));
131 static bfd_target * som_object_setup PARAMS ((bfd *,
132 struct header *,
133 struct som_exec_auxhdr *));
134 static boolean setup_sections PARAMS ((bfd *, struct header *));
135 static bfd_target * som_object_p PARAMS ((bfd *));
136 static boolean som_write_object_contents PARAMS ((bfd *));
137 static boolean som_slurp_string_table PARAMS ((bfd *));
138 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
139 static long som_get_symtab_upper_bound PARAMS ((bfd *));
140 static long som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
141 arelent **, asymbol **));
142 static long som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
143 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
144 arelent *, asection *,
145 asymbol **, boolean));
146 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
147 asymbol **, boolean));
148 static long som_get_symtab PARAMS ((bfd *, asymbol **));
149 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
150 static void som_print_symbol PARAMS ((bfd *, PTR,
151 asymbol *, bfd_print_symbol_type));
152 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
153 static boolean som_bfd_copy_private_section_data PARAMS ((bfd *, asection *,
154 bfd *, asection *));
155 static boolean som_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
156 static boolean som_bfd_is_local_label PARAMS ((bfd *, asymbol *));
157 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
158 file_ptr, bfd_size_type));
159 static boolean som_get_section_contents PARAMS ((bfd *, sec_ptr, PTR,
160 file_ptr, bfd_size_type));
161 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
162 unsigned long));
163 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
164 asymbol **, bfd_vma,
165 CONST char **,
166 CONST char **,
167 unsigned int *));
168 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
169 static asection * bfd_section_from_som_symbol PARAMS ((bfd *,
170 struct symbol_dictionary_record *));
171 static int log2 PARAMS ((unsigned int));
172 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
173 asymbol *, PTR,
174 asection *, bfd *,
175 char **));
176 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
177 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
178 struct reloc_queue *));
179 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
180 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
181 struct reloc_queue *));
182 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
183 unsigned int,
184 struct reloc_queue *));
185
186 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
187 unsigned char *, unsigned int *,
188 struct reloc_queue *));
189 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
190 unsigned int *,
191 struct reloc_queue *));
192 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
193 unsigned int *,
194 arelent *, int,
195 struct reloc_queue *));
196 static unsigned long som_count_spaces PARAMS ((bfd *));
197 static unsigned long som_count_subspaces PARAMS ((bfd *));
198 static int compare_syms PARAMS ((const void *, const void *));
199 static unsigned long som_compute_checksum PARAMS ((bfd *));
200 static boolean som_prep_headers PARAMS ((bfd *));
201 static int som_sizeof_headers PARAMS ((bfd *, boolean));
202 static boolean som_write_headers PARAMS ((bfd *));
203 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
204 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
205 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
206 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
207 unsigned int *));
208 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
209 asymbol **, unsigned int,
210 unsigned *));
211 static boolean som_begin_writing PARAMS ((bfd *));
212 static const reloc_howto_type * som_bfd_reloc_type_lookup
213 PARAMS ((bfd *, bfd_reloc_code_real_type));
214 static char som_section_type PARAMS ((const char *));
215 static int som_decode_symclass PARAMS ((asymbol *));
216 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
217 symindex *));
218
219 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
220 carsym **syms));
221 static boolean som_slurp_armap PARAMS ((bfd *));
222 static boolean som_write_armap PARAMS ((bfd *, unsigned int, struct orl *,
223 unsigned int, int));
224 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
225 struct som_misc_symbol_info *));
226 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
227 unsigned int *));
228 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
229 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
230 unsigned int,
231 struct lst_header));
232 static CONST char *normalize PARAMS ((CONST char *file));
233 static boolean som_is_space PARAMS ((asection *));
234 static boolean som_is_subspace PARAMS ((asection *));
235 static boolean som_is_container PARAMS ((asection *, asection *));
236 static boolean som_bfd_free_cached_info PARAMS ((bfd *));
237
238 /* Map SOM section names to POSIX/BSD single-character symbol types.
239
240 This table includes all the standard subspaces as defined in the
241 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
242 some reason was left out, and sections specific to embedded stabs. */
243
244 static const struct section_to_type stt[] = {
245 {"$TEXT$", 't'},
246 {"$SHLIB_INFO$", 't'},
247 {"$MILLICODE$", 't'},
248 {"$LIT$", 't'},
249 {"$CODE$", 't'},
250 {"$UNWIND_START$", 't'},
251 {"$UNWIND$", 't'},
252 {"$PRIVATE$", 'd'},
253 {"$PLT$", 'd'},
254 {"$SHLIB_DATA$", 'd'},
255 {"$DATA$", 'd'},
256 {"$SHORTDATA$", 'g'},
257 {"$DLT$", 'd'},
258 {"$GLOBAL$", 'g'},
259 {"$SHORTBSS$", 's'},
260 {"$BSS$", 'b'},
261 {"$GDB_STRINGS$", 'N'},
262 {"$GDB_SYMBOLS$", 'N'},
263 {0, 0}
264 };
265
266 /* About the relocation formatting table...
267
268 There are 256 entries in the table, one for each possible
269 relocation opcode available in SOM. We index the table by
270 the relocation opcode. The names and operations are those
271 defined by a.out_800 (4).
272
273 Right now this table is only used to count and perform minimal
274 processing on relocation streams so that they can be internalized
275 into BFD and symbolically printed by utilities. To make actual use
276 of them would be much more difficult, BFD's concept of relocations
277 is far too simple to handle SOM relocations. The basic assumption
278 that a relocation can be completely processed independent of other
279 relocations before an object file is written is invalid for SOM.
280
281 The SOM relocations are meant to be processed as a stream, they
282 specify copying of data from the input section to the output section
283 while possibly modifying the data in some manner. They also can
284 specify that a variable number of zeros or uninitialized data be
285 inserted on in the output segment at the current offset. Some
286 relocations specify that some previous relocation be re-applied at
287 the current location in the input/output sections. And finally a number
288 of relocations have effects on other sections (R_ENTRY, R_EXIT,
289 R_UNWIND_AUX and a variety of others). There isn't even enough room
290 in the BFD relocation data structure to store enough information to
291 perform all the relocations.
292
293 Each entry in the table has three fields.
294
295 The first entry is an index into this "class" of relocations. This
296 index can then be used as a variable within the relocation itself.
297
298 The second field is a format string which actually controls processing
299 of the relocation. It uses a simple postfix machine to do calculations
300 based on variables/constants found in the string and the relocation
301 stream.
302
303 The third field specifys whether or not this relocation may use
304 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
305 stored in the instruction.
306
307 Variables:
308
309 L = input space byte count
310 D = index into class of relocations
311 M = output space byte count
312 N = statement number (unused?)
313 O = stack operation
314 R = parameter relocation bits
315 S = symbol index
316 U = 64 bits of stack unwind and frame size info (we only keep 32 bits)
317 V = a literal constant (usually used in the next relocation)
318 P = a previous relocation
319
320 Lower case letters (starting with 'b') refer to following
321 bytes in the relocation stream. 'b' is the next 1 byte,
322 c is the next 2 bytes, d is the next 3 bytes, etc...
323 This is the variable part of the relocation entries that
324 makes our life a living hell.
325
326 numerical constants are also used in the format string. Note
327 the constants are represented in decimal.
328
329 '+', "*" and "=" represents the obvious postfix operators.
330 '<' represents a left shift.
331
332 Stack Operations:
333
334 Parameter Relocation Bits:
335
336 Unwind Entries:
337
338 Previous Relocations: The index field represents which in the queue
339 of 4 previous fixups should be re-applied.
340
341 Literal Constants: These are generally used to represent addend
342 parts of relocations when these constants are not stored in the
343 fields of the instructions themselves. For example the instruction
344 addil foo-$global$-0x1234 would use an override for "0x1234" rather
345 than storing it into the addil itself. */
346
347 struct fixup_format
348 {
349 int D;
350 char *format;
351 };
352
353 static const struct fixup_format som_fixup_formats[256] =
354 {
355 /* R_NO_RELOCATION */
356 0, "LD1+4*=", /* 0x00 */
357 1, "LD1+4*=", /* 0x01 */
358 2, "LD1+4*=", /* 0x02 */
359 3, "LD1+4*=", /* 0x03 */
360 4, "LD1+4*=", /* 0x04 */
361 5, "LD1+4*=", /* 0x05 */
362 6, "LD1+4*=", /* 0x06 */
363 7, "LD1+4*=", /* 0x07 */
364 8, "LD1+4*=", /* 0x08 */
365 9, "LD1+4*=", /* 0x09 */
366 10, "LD1+4*=", /* 0x0a */
367 11, "LD1+4*=", /* 0x0b */
368 12, "LD1+4*=", /* 0x0c */
369 13, "LD1+4*=", /* 0x0d */
370 14, "LD1+4*=", /* 0x0e */
371 15, "LD1+4*=", /* 0x0f */
372 16, "LD1+4*=", /* 0x10 */
373 17, "LD1+4*=", /* 0x11 */
374 18, "LD1+4*=", /* 0x12 */
375 19, "LD1+4*=", /* 0x13 */
376 20, "LD1+4*=", /* 0x14 */
377 21, "LD1+4*=", /* 0x15 */
378 22, "LD1+4*=", /* 0x16 */
379 23, "LD1+4*=", /* 0x17 */
380 0, "LD8<b+1+4*=", /* 0x18 */
381 1, "LD8<b+1+4*=", /* 0x19 */
382 2, "LD8<b+1+4*=", /* 0x1a */
383 3, "LD8<b+1+4*=", /* 0x1b */
384 0, "LD16<c+1+4*=", /* 0x1c */
385 1, "LD16<c+1+4*=", /* 0x1d */
386 2, "LD16<c+1+4*=", /* 0x1e */
387 0, "Ld1+=", /* 0x1f */
388 /* R_ZEROES */
389 0, "Lb1+4*=", /* 0x20 */
390 1, "Ld1+=", /* 0x21 */
391 /* R_UNINIT */
392 0, "Lb1+4*=", /* 0x22 */
393 1, "Ld1+=", /* 0x23 */
394 /* R_RELOCATION */
395 0, "L4=", /* 0x24 */
396 /* R_DATA_ONE_SYMBOL */
397 0, "L4=Sb=", /* 0x25 */
398 1, "L4=Sd=", /* 0x26 */
399 /* R_DATA_PLEBEL */
400 0, "L4=Sb=", /* 0x27 */
401 1, "L4=Sd=", /* 0x28 */
402 /* R_SPACE_REF */
403 0, "L4=", /* 0x29 */
404 /* R_REPEATED_INIT */
405 0, "L4=Mb1+4*=", /* 0x2a */
406 1, "Lb4*=Mb1+L*=", /* 0x2b */
407 2, "Lb4*=Md1+4*=", /* 0x2c */
408 3, "Ld1+=Me1+=", /* 0x2d */
409 /* R_RESERVED */
410 0, "", /* 0x2e */
411 0, "", /* 0x2f */
412 /* R_PCREL_CALL */
413 0, "L4=RD=Sb=", /* 0x30 */
414 1, "L4=RD=Sb=", /* 0x31 */
415 2, "L4=RD=Sb=", /* 0x32 */
416 3, "L4=RD=Sb=", /* 0x33 */
417 4, "L4=RD=Sb=", /* 0x34 */
418 5, "L4=RD=Sb=", /* 0x35 */
419 6, "L4=RD=Sb=", /* 0x36 */
420 7, "L4=RD=Sb=", /* 0x37 */
421 8, "L4=RD=Sb=", /* 0x38 */
422 9, "L4=RD=Sb=", /* 0x39 */
423 0, "L4=RD8<b+=Sb=",/* 0x3a */
424 1, "L4=RD8<b+=Sb=",/* 0x3b */
425 0, "L4=RD8<b+=Sd=",/* 0x3c */
426 1, "L4=RD8<b+=Sd=",/* 0x3d */
427 /* R_RESERVED */
428 0, "", /* 0x3e */
429 0, "", /* 0x3f */
430 /* R_ABS_CALL */
431 0, "L4=RD=Sb=", /* 0x40 */
432 1, "L4=RD=Sb=", /* 0x41 */
433 2, "L4=RD=Sb=", /* 0x42 */
434 3, "L4=RD=Sb=", /* 0x43 */
435 4, "L4=RD=Sb=", /* 0x44 */
436 5, "L4=RD=Sb=", /* 0x45 */
437 6, "L4=RD=Sb=", /* 0x46 */
438 7, "L4=RD=Sb=", /* 0x47 */
439 8, "L4=RD=Sb=", /* 0x48 */
440 9, "L4=RD=Sb=", /* 0x49 */
441 0, "L4=RD8<b+=Sb=",/* 0x4a */
442 1, "L4=RD8<b+=Sb=",/* 0x4b */
443 0, "L4=RD8<b+=Sd=",/* 0x4c */
444 1, "L4=RD8<b+=Sd=",/* 0x4d */
445 /* R_RESERVED */
446 0, "", /* 0x4e */
447 0, "", /* 0x4f */
448 /* R_DP_RELATIVE */
449 0, "L4=SD=", /* 0x50 */
450 1, "L4=SD=", /* 0x51 */
451 2, "L4=SD=", /* 0x52 */
452 3, "L4=SD=", /* 0x53 */
453 4, "L4=SD=", /* 0x54 */
454 5, "L4=SD=", /* 0x55 */
455 6, "L4=SD=", /* 0x56 */
456 7, "L4=SD=", /* 0x57 */
457 8, "L4=SD=", /* 0x58 */
458 9, "L4=SD=", /* 0x59 */
459 10, "L4=SD=", /* 0x5a */
460 11, "L4=SD=", /* 0x5b */
461 12, "L4=SD=", /* 0x5c */
462 13, "L4=SD=", /* 0x5d */
463 14, "L4=SD=", /* 0x5e */
464 15, "L4=SD=", /* 0x5f */
465 16, "L4=SD=", /* 0x60 */
466 17, "L4=SD=", /* 0x61 */
467 18, "L4=SD=", /* 0x62 */
468 19, "L4=SD=", /* 0x63 */
469 20, "L4=SD=", /* 0x64 */
470 21, "L4=SD=", /* 0x65 */
471 22, "L4=SD=", /* 0x66 */
472 23, "L4=SD=", /* 0x67 */
473 24, "L4=SD=", /* 0x68 */
474 25, "L4=SD=", /* 0x69 */
475 26, "L4=SD=", /* 0x6a */
476 27, "L4=SD=", /* 0x6b */
477 28, "L4=SD=", /* 0x6c */
478 29, "L4=SD=", /* 0x6d */
479 30, "L4=SD=", /* 0x6e */
480 31, "L4=SD=", /* 0x6f */
481 32, "L4=Sb=", /* 0x70 */
482 33, "L4=Sd=", /* 0x71 */
483 /* R_RESERVED */
484 0, "", /* 0x72 */
485 0, "", /* 0x73 */
486 0, "", /* 0x74 */
487 0, "", /* 0x75 */
488 0, "", /* 0x76 */
489 0, "", /* 0x77 */
490 /* R_DLT_REL */
491 0, "L4=Sb=", /* 0x78 */
492 1, "L4=Sd=", /* 0x79 */
493 /* R_RESERVED */
494 0, "", /* 0x7a */
495 0, "", /* 0x7b */
496 0, "", /* 0x7c */
497 0, "", /* 0x7d */
498 0, "", /* 0x7e */
499 0, "", /* 0x7f */
500 /* R_CODE_ONE_SYMBOL */
501 0, "L4=SD=", /* 0x80 */
502 1, "L4=SD=", /* 0x81 */
503 2, "L4=SD=", /* 0x82 */
504 3, "L4=SD=", /* 0x83 */
505 4, "L4=SD=", /* 0x84 */
506 5, "L4=SD=", /* 0x85 */
507 6, "L4=SD=", /* 0x86 */
508 7, "L4=SD=", /* 0x87 */
509 8, "L4=SD=", /* 0x88 */
510 9, "L4=SD=", /* 0x89 */
511 10, "L4=SD=", /* 0x8q */
512 11, "L4=SD=", /* 0x8b */
513 12, "L4=SD=", /* 0x8c */
514 13, "L4=SD=", /* 0x8d */
515 14, "L4=SD=", /* 0x8e */
516 15, "L4=SD=", /* 0x8f */
517 16, "L4=SD=", /* 0x90 */
518 17, "L4=SD=", /* 0x91 */
519 18, "L4=SD=", /* 0x92 */
520 19, "L4=SD=", /* 0x93 */
521 20, "L4=SD=", /* 0x94 */
522 21, "L4=SD=", /* 0x95 */
523 22, "L4=SD=", /* 0x96 */
524 23, "L4=SD=", /* 0x97 */
525 24, "L4=SD=", /* 0x98 */
526 25, "L4=SD=", /* 0x99 */
527 26, "L4=SD=", /* 0x9a */
528 27, "L4=SD=", /* 0x9b */
529 28, "L4=SD=", /* 0x9c */
530 29, "L4=SD=", /* 0x9d */
531 30, "L4=SD=", /* 0x9e */
532 31, "L4=SD=", /* 0x9f */
533 32, "L4=Sb=", /* 0xa0 */
534 33, "L4=Sd=", /* 0xa1 */
535 /* R_RESERVED */
536 0, "", /* 0xa2 */
537 0, "", /* 0xa3 */
538 0, "", /* 0xa4 */
539 0, "", /* 0xa5 */
540 0, "", /* 0xa6 */
541 0, "", /* 0xa7 */
542 0, "", /* 0xa8 */
543 0, "", /* 0xa9 */
544 0, "", /* 0xaa */
545 0, "", /* 0xab */
546 0, "", /* 0xac */
547 0, "", /* 0xad */
548 /* R_MILLI_REL */
549 0, "L4=Sb=", /* 0xae */
550 1, "L4=Sd=", /* 0xaf */
551 /* R_CODE_PLABEL */
552 0, "L4=Sb=", /* 0xb0 */
553 1, "L4=Sd=", /* 0xb1 */
554 /* R_BREAKPOINT */
555 0, "L4=", /* 0xb2 */
556 /* R_ENTRY */
557 0, "Ui=", /* 0xb3 */
558 1, "Uf=", /* 0xb4 */
559 /* R_ALT_ENTRY */
560 0, "", /* 0xb5 */
561 /* R_EXIT */
562 0, "", /* 0xb6 */
563 /* R_BEGIN_TRY */
564 0, "", /* 0xb7 */
565 /* R_END_TRY */
566 0, "R0=", /* 0xb8 */
567 1, "Rb4*=", /* 0xb9 */
568 2, "Rd4*=", /* 0xba */
569 /* R_BEGIN_BRTAB */
570 0, "", /* 0xbb */
571 /* R_END_BRTAB */
572 0, "", /* 0xbc */
573 /* R_STATEMENT */
574 0, "Nb=", /* 0xbd */
575 1, "Nc=", /* 0xbe */
576 2, "Nd=", /* 0xbf */
577 /* R_DATA_EXPR */
578 0, "L4=", /* 0xc0 */
579 /* R_CODE_EXPR */
580 0, "L4=", /* 0xc1 */
581 /* R_FSEL */
582 0, "", /* 0xc2 */
583 /* R_LSEL */
584 0, "", /* 0xc3 */
585 /* R_RSEL */
586 0, "", /* 0xc4 */
587 /* R_N_MODE */
588 0, "", /* 0xc5 */
589 /* R_S_MODE */
590 0, "", /* 0xc6 */
591 /* R_D_MODE */
592 0, "", /* 0xc7 */
593 /* R_R_MODE */
594 0, "", /* 0xc8 */
595 /* R_DATA_OVERRIDE */
596 0, "V0=", /* 0xc9 */
597 1, "Vb=", /* 0xca */
598 2, "Vc=", /* 0xcb */
599 3, "Vd=", /* 0xcc */
600 4, "Ve=", /* 0xcd */
601 /* R_TRANSLATED */
602 0, "", /* 0xce */
603 /* R_RESERVED */
604 0, "", /* 0xcf */
605 /* R_COMP1 */
606 0, "Ob=", /* 0xd0 */
607 /* R_COMP2 */
608 0, "Ob=Sd=", /* 0xd1 */
609 /* R_COMP3 */
610 0, "Ob=Ve=", /* 0xd2 */
611 /* R_PREV_FIXUP */
612 0, "P", /* 0xd3 */
613 1, "P", /* 0xd4 */
614 2, "P", /* 0xd5 */
615 3, "P", /* 0xd6 */
616 /* R_RESERVED */
617 0, "", /* 0xd7 */
618 0, "", /* 0xd8 */
619 0, "", /* 0xd9 */
620 0, "", /* 0xda */
621 0, "", /* 0xdb */
622 0, "", /* 0xdc */
623 0, "", /* 0xdd */
624 0, "", /* 0xde */
625 0, "", /* 0xdf */
626 0, "", /* 0xe0 */
627 0, "", /* 0xe1 */
628 0, "", /* 0xe2 */
629 0, "", /* 0xe3 */
630 0, "", /* 0xe4 */
631 0, "", /* 0xe5 */
632 0, "", /* 0xe6 */
633 0, "", /* 0xe7 */
634 0, "", /* 0xe8 */
635 0, "", /* 0xe9 */
636 0, "", /* 0xea */
637 0, "", /* 0xeb */
638 0, "", /* 0xec */
639 0, "", /* 0xed */
640 0, "", /* 0xee */
641 0, "", /* 0xef */
642 0, "", /* 0xf0 */
643 0, "", /* 0xf1 */
644 0, "", /* 0xf2 */
645 0, "", /* 0xf3 */
646 0, "", /* 0xf4 */
647 0, "", /* 0xf5 */
648 0, "", /* 0xf6 */
649 0, "", /* 0xf7 */
650 0, "", /* 0xf8 */
651 0, "", /* 0xf9 */
652 0, "", /* 0xfa */
653 0, "", /* 0xfb */
654 0, "", /* 0xfc */
655 0, "", /* 0xfd */
656 0, "", /* 0xfe */
657 0, "", /* 0xff */
658 };
659
660 static const int comp1_opcodes[] =
661 {
662 0x00,
663 0x40,
664 0x41,
665 0x42,
666 0x43,
667 0x44,
668 0x45,
669 0x46,
670 0x47,
671 0x48,
672 0x49,
673 0x4a,
674 0x4b,
675 0x60,
676 0x80,
677 0xa0,
678 0xc0,
679 -1
680 };
681
682 static const int comp2_opcodes[] =
683 {
684 0x00,
685 0x80,
686 0x82,
687 0xc0,
688 -1
689 };
690
691 static const int comp3_opcodes[] =
692 {
693 0x00,
694 0x02,
695 -1
696 };
697
698 /* These apparently are not in older versions of hpux reloc.h. */
699 #ifndef R_DLT_REL
700 #define R_DLT_REL 0x78
701 #endif
702
703 #ifndef R_AUX_UNWIND
704 #define R_AUX_UNWIND 0xcf
705 #endif
706
707 #ifndef R_SEC_STMT
708 #define R_SEC_STMT 0xd7
709 #endif
710
711 static reloc_howto_type som_hppa_howto_table[] =
712 {
713 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
714 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
715 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
716 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
717 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
718 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
719 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
720 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
721 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
722 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
723 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
724 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
725 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
726 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
727 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
728 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
729 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
730 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
731 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
732 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
733 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
734 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
735 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
736 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
737 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
738 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
739 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
740 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
741 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
742 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
743 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
744 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
745 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
746 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
747 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
748 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
749 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
750 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
751 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
752 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
753 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
754 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
755 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
756 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
757 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
758 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
759 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
760 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
761 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
762 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
763 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
764 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
765 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
766 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
767 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
768 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
769 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
770 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
771 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
772 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
773 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
774 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
775 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
776 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
777 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
778 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
779 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
780 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
781 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
782 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
783 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
784 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
785 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
786 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
787 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
788 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
789 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
790 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
791 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
792 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
793 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
794 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
795 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
796 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
797 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
798 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
799 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
800 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
801 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
802 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
803 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
804 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
805 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
806 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
807 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
808 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
809 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
810 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
811 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
812 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
813 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
814 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
815 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
816 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
817 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
818 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
819 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
820 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
821 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
822 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
823 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
824 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
825 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
826 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
827 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
828 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
829 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
830 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
831 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
832 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
833 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
834 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
835 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
836 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
837 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
838 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
839 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
840 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
841 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
842 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
843 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
844 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
845 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
846 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
847 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
848 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
849 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
850 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
851 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
852 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
853 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
854 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
855 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
856 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
857 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
858 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
859 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
860 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
861 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
862 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
863 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
864 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
865 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
866 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
867 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
868 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
869 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
870 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
871 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
872 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
873 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
874 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
875 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
876 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
877 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
878 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
879 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
880 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
881 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
882 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
883 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
884 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
885 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
886 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
887 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
888 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
889 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
890 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
891 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
892 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
893 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
894 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
895 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
896 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
897 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
898 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
899 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
900 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
901 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
902 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
903 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
904 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
905 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
906 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
907 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
908 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
909 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
910 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
911 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
912 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
913 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
914 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
915 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
916 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
917 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
918 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
919 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
920 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
921 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
922 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
923 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
924 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
925 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
926 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
927 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
928 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
929 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
930 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
931 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
932 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
933 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
934 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
935 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
936 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
937 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
938 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
939 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
940 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
941 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
942 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
943 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
944 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
945 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
946 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
947 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
948 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
949 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
950 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
951 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
952 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
953 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
954 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
955 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
956 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
957 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
958 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
959 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
960 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
961 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
962 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
963 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
964 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
965 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
966 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
967 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
968 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
969
970 /* Initialize the SOM relocation queue. By definition the queue holds
971 the last four multibyte fixups. */
972
973 static void
974 som_initialize_reloc_queue (queue)
975 struct reloc_queue *queue;
976 {
977 queue[0].reloc = NULL;
978 queue[0].size = 0;
979 queue[1].reloc = NULL;
980 queue[1].size = 0;
981 queue[2].reloc = NULL;
982 queue[2].size = 0;
983 queue[3].reloc = NULL;
984 queue[3].size = 0;
985 }
986
987 /* Insert a new relocation into the relocation queue. */
988
989 static void
990 som_reloc_queue_insert (p, size, queue)
991 unsigned char *p;
992 unsigned int size;
993 struct reloc_queue *queue;
994 {
995 queue[3].reloc = queue[2].reloc;
996 queue[3].size = queue[2].size;
997 queue[2].reloc = queue[1].reloc;
998 queue[2].size = queue[1].size;
999 queue[1].reloc = queue[0].reloc;
1000 queue[1].size = queue[0].size;
1001 queue[0].reloc = p;
1002 queue[0].size = size;
1003 }
1004
1005 /* When an entry in the relocation queue is reused, the entry moves
1006 to the front of the queue. */
1007
1008 static void
1009 som_reloc_queue_fix (queue, index)
1010 struct reloc_queue *queue;
1011 unsigned int index;
1012 {
1013 if (index == 0)
1014 return;
1015
1016 if (index == 1)
1017 {
1018 unsigned char *tmp1 = queue[0].reloc;
1019 unsigned int tmp2 = queue[0].size;
1020 queue[0].reloc = queue[1].reloc;
1021 queue[0].size = queue[1].size;
1022 queue[1].reloc = tmp1;
1023 queue[1].size = tmp2;
1024 return;
1025 }
1026
1027 if (index == 2)
1028 {
1029 unsigned char *tmp1 = queue[0].reloc;
1030 unsigned int tmp2 = queue[0].size;
1031 queue[0].reloc = queue[2].reloc;
1032 queue[0].size = queue[2].size;
1033 queue[2].reloc = queue[1].reloc;
1034 queue[2].size = queue[1].size;
1035 queue[1].reloc = tmp1;
1036 queue[1].size = tmp2;
1037 return;
1038 }
1039
1040 if (index == 3)
1041 {
1042 unsigned char *tmp1 = queue[0].reloc;
1043 unsigned int tmp2 = queue[0].size;
1044 queue[0].reloc = queue[3].reloc;
1045 queue[0].size = queue[3].size;
1046 queue[3].reloc = queue[2].reloc;
1047 queue[3].size = queue[2].size;
1048 queue[2].reloc = queue[1].reloc;
1049 queue[2].size = queue[1].size;
1050 queue[1].reloc = tmp1;
1051 queue[1].size = tmp2;
1052 return;
1053 }
1054 abort();
1055 }
1056
1057 /* Search for a particular relocation in the relocation queue. */
1058
1059 static int
1060 som_reloc_queue_find (p, size, queue)
1061 unsigned char *p;
1062 unsigned int size;
1063 struct reloc_queue *queue;
1064 {
1065 if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
1066 && size == queue[0].size)
1067 return 0;
1068 if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
1069 && size == queue[1].size)
1070 return 1;
1071 if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
1072 && size == queue[2].size)
1073 return 2;
1074 if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
1075 && size == queue[3].size)
1076 return 3;
1077 return -1;
1078 }
1079
1080 static unsigned char *
1081 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1082 bfd *abfd;
1083 int *subspace_reloc_sizep;
1084 unsigned char *p;
1085 unsigned int size;
1086 struct reloc_queue *queue;
1087 {
1088 int queue_index = som_reloc_queue_find (p, size, queue);
1089
1090 if (queue_index != -1)
1091 {
1092 /* Found this in a previous fixup. Undo the fixup we
1093 just built and use R_PREV_FIXUP instead. We saved
1094 a total of size - 1 bytes in the fixup stream. */
1095 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1096 p += 1;
1097 *subspace_reloc_sizep += 1;
1098 som_reloc_queue_fix (queue, queue_index);
1099 }
1100 else
1101 {
1102 som_reloc_queue_insert (p, size, queue);
1103 *subspace_reloc_sizep += size;
1104 p += size;
1105 }
1106 return p;
1107 }
1108
1109 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1110 bytes without any relocation. Update the size of the subspace
1111 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1112 current pointer into the relocation stream. */
1113
1114 static unsigned char *
1115 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1116 bfd *abfd;
1117 unsigned int skip;
1118 unsigned char *p;
1119 unsigned int *subspace_reloc_sizep;
1120 struct reloc_queue *queue;
1121 {
1122 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1123 then R_PREV_FIXUPs to get the difference down to a
1124 reasonable size. */
1125 if (skip >= 0x1000000)
1126 {
1127 skip -= 0x1000000;
1128 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1129 bfd_put_8 (abfd, 0xff, p + 1);
1130 bfd_put_16 (abfd, 0xffff, p + 2);
1131 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1132 while (skip >= 0x1000000)
1133 {
1134 skip -= 0x1000000;
1135 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1136 p++;
1137 *subspace_reloc_sizep += 1;
1138 /* No need to adjust queue here since we are repeating the
1139 most recent fixup. */
1140 }
1141 }
1142
1143 /* The difference must be less than 0x1000000. Use one
1144 more R_NO_RELOCATION entry to get to the right difference. */
1145 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1146 {
1147 /* Difference can be handled in a simple single-byte
1148 R_NO_RELOCATION entry. */
1149 if (skip <= 0x60)
1150 {
1151 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1152 *subspace_reloc_sizep += 1;
1153 p++;
1154 }
1155 /* Handle it with a two byte R_NO_RELOCATION entry. */
1156 else if (skip <= 0x1000)
1157 {
1158 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1159 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1160 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1161 }
1162 /* Handle it with a three byte R_NO_RELOCATION entry. */
1163 else
1164 {
1165 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1166 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1167 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1168 }
1169 }
1170 /* Ugh. Punt and use a 4 byte entry. */
1171 else if (skip > 0)
1172 {
1173 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1174 bfd_put_8 (abfd, skip >> 16, p + 1);
1175 bfd_put_16 (abfd, skip, p + 2);
1176 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1177 }
1178 return p;
1179 }
1180
1181 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1182 from a BFD relocation. Update the size of the subspace relocation
1183 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1184 into the relocation stream. */
1185
1186 static unsigned char *
1187 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1188 bfd *abfd;
1189 int addend;
1190 unsigned char *p;
1191 unsigned int *subspace_reloc_sizep;
1192 struct reloc_queue *queue;
1193 {
1194 if ((unsigned)(addend) + 0x80 < 0x100)
1195 {
1196 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1197 bfd_put_8 (abfd, addend, p + 1);
1198 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1199 }
1200 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1201 {
1202 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1203 bfd_put_16 (abfd, addend, p + 1);
1204 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1205 }
1206 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1207 {
1208 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1209 bfd_put_8 (abfd, addend >> 16, p + 1);
1210 bfd_put_16 (abfd, addend, p + 2);
1211 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1212 }
1213 else
1214 {
1215 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1216 bfd_put_32 (abfd, addend, p + 1);
1217 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1218 }
1219 return p;
1220 }
1221
1222 /* Handle a single function call relocation. */
1223
1224 static unsigned char *
1225 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1226 bfd *abfd;
1227 unsigned char *p;
1228 unsigned int *subspace_reloc_sizep;
1229 arelent *bfd_reloc;
1230 int sym_num;
1231 struct reloc_queue *queue;
1232 {
1233 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1234 int rtn_bits = arg_bits & 0x3;
1235 int type, done = 0;
1236
1237 /* You'll never believe all this is necessary to handle relocations
1238 for function calls. Having to compute and pack the argument
1239 relocation bits is the real nightmare.
1240
1241 If you're interested in how this works, just forget it. You really
1242 do not want to know about this braindamage. */
1243
1244 /* First see if this can be done with a "simple" relocation. Simple
1245 relocations have a symbol number < 0x100 and have simple encodings
1246 of argument relocations. */
1247
1248 if (sym_num < 0x100)
1249 {
1250 switch (arg_bits)
1251 {
1252 case 0:
1253 case 1:
1254 type = 0;
1255 break;
1256 case 1 << 8:
1257 case 1 << 8 | 1:
1258 type = 1;
1259 break;
1260 case 1 << 8 | 1 << 6:
1261 case 1 << 8 | 1 << 6 | 1:
1262 type = 2;
1263 break;
1264 case 1 << 8 | 1 << 6 | 1 << 4:
1265 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1266 type = 3;
1267 break;
1268 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1269 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1270 type = 4;
1271 break;
1272 default:
1273 /* Not one of the easy encodings. This will have to be
1274 handled by the more complex code below. */
1275 type = -1;
1276 break;
1277 }
1278 if (type != -1)
1279 {
1280 /* Account for the return value too. */
1281 if (rtn_bits)
1282 type += 5;
1283
1284 /* Emit a 2 byte relocation. Then see if it can be handled
1285 with a relocation which is already in the relocation queue. */
1286 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1287 bfd_put_8 (abfd, sym_num, p + 1);
1288 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1289 done = 1;
1290 }
1291 }
1292
1293 /* If this could not be handled with a simple relocation, then do a hard
1294 one. Hard relocations occur if the symbol number was too high or if
1295 the encoding of argument relocation bits is too complex. */
1296 if (! done)
1297 {
1298 /* Don't ask about these magic sequences. I took them straight
1299 from gas-1.36 which took them from the a.out man page. */
1300 type = rtn_bits;
1301 if ((arg_bits >> 6 & 0xf) == 0xe)
1302 type += 9 * 40;
1303 else
1304 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1305 if ((arg_bits >> 2 & 0xf) == 0xe)
1306 type += 9 * 4;
1307 else
1308 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1309
1310 /* Output the first two bytes of the relocation. These describe
1311 the length of the relocation and encoding style. */
1312 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1313 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1314 p);
1315 bfd_put_8 (abfd, type, p + 1);
1316
1317 /* Now output the symbol index and see if this bizarre relocation
1318 just happened to be in the relocation queue. */
1319 if (sym_num < 0x100)
1320 {
1321 bfd_put_8 (abfd, sym_num, p + 2);
1322 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1323 }
1324 else
1325 {
1326 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1327 bfd_put_16 (abfd, sym_num, p + 3);
1328 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1329 }
1330 }
1331 return p;
1332 }
1333
1334
1335 /* Return the logarithm of X, base 2, considering X unsigned.
1336 Abort -1 if X is not a power or two or is zero. */
1337
1338 static int
1339 log2 (x)
1340 unsigned int x;
1341 {
1342 int log = 0;
1343
1344 /* Test for 0 or a power of 2. */
1345 if (x == 0 || x != (x & -x))
1346 return -1;
1347
1348 while ((x >>= 1) != 0)
1349 log++;
1350 return log;
1351 }
1352
1353 static bfd_reloc_status_type
1354 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1355 input_section, output_bfd, error_message)
1356 bfd *abfd;
1357 arelent *reloc_entry;
1358 asymbol *symbol_in;
1359 PTR data;
1360 asection *input_section;
1361 bfd *output_bfd;
1362 char **error_message;
1363 {
1364 if (output_bfd)
1365 {
1366 reloc_entry->address += input_section->output_offset;
1367 return bfd_reloc_ok;
1368 }
1369 return bfd_reloc_ok;
1370 }
1371
1372 /* Given a generic HPPA relocation type, the instruction format,
1373 and a field selector, return one or more appropriate SOM relocations. */
1374
1375 int **
1376 hppa_som_gen_reloc_type (abfd, base_type, format, field)
1377 bfd *abfd;
1378 int base_type;
1379 int format;
1380 enum hppa_reloc_field_selector_type_alt field;
1381 {
1382 int *final_type, **final_types;
1383
1384 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 3);
1385 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1386 if (!final_types || !final_type)
1387 {
1388 bfd_set_error (bfd_error_no_memory);
1389 return NULL;
1390 }
1391
1392 /* The field selector may require additional relocations to be
1393 generated. It's impossible to know at this moment if additional
1394 relocations will be needed, so we make them. The code to actually
1395 write the relocation/fixup stream is responsible for removing
1396 any redundant relocations. */
1397 switch (field)
1398 {
1399 case e_fsel:
1400 case e_psel:
1401 case e_lpsel:
1402 case e_rpsel:
1403 final_types[0] = final_type;
1404 final_types[1] = NULL;
1405 final_types[2] = NULL;
1406 *final_type = base_type;
1407 break;
1408
1409 case e_tsel:
1410 case e_ltsel:
1411 case e_rtsel:
1412 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1413 if (!final_types[0])
1414 {
1415 bfd_set_error (bfd_error_no_memory);
1416 return NULL;
1417 }
1418 if (field == e_tsel)
1419 *final_types[0] = R_FSEL;
1420 else if (field == e_ltsel)
1421 *final_types[0] = R_LSEL;
1422 else
1423 *final_types[0] = R_RSEL;
1424 final_types[1] = final_type;
1425 final_types[2] = NULL;
1426 *final_type = base_type;
1427 break;
1428
1429 case e_lssel:
1430 case e_rssel:
1431 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1432 if (!final_types[0])
1433 {
1434 bfd_set_error (bfd_error_no_memory);
1435 return NULL;
1436 }
1437 *final_types[0] = R_S_MODE;
1438 final_types[1] = final_type;
1439 final_types[2] = NULL;
1440 *final_type = base_type;
1441 break;
1442
1443 case e_lsel:
1444 case e_rsel:
1445 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1446 if (!final_types[0])
1447 {
1448 bfd_set_error (bfd_error_no_memory);
1449 return NULL;
1450 }
1451 *final_types[0] = R_N_MODE;
1452 final_types[1] = final_type;
1453 final_types[2] = NULL;
1454 *final_type = base_type;
1455 break;
1456
1457 case e_ldsel:
1458 case e_rdsel:
1459 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1460 if (!final_types[0])
1461 {
1462 bfd_set_error (bfd_error_no_memory);
1463 return NULL;
1464 }
1465 *final_types[0] = R_D_MODE;
1466 final_types[1] = final_type;
1467 final_types[2] = NULL;
1468 *final_type = base_type;
1469 break;
1470
1471 case e_lrsel:
1472 case e_rrsel:
1473 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1474 if (!final_types[0])
1475 {
1476 bfd_set_error (bfd_error_no_memory);
1477 return NULL;
1478 }
1479 *final_types[0] = R_R_MODE;
1480 final_types[1] = final_type;
1481 final_types[2] = NULL;
1482 *final_type = base_type;
1483 break;
1484 }
1485
1486 switch (base_type)
1487 {
1488 case R_HPPA:
1489 /* PLABELs get their own relocation type. */
1490 if (field == e_psel
1491 || field == e_lpsel
1492 || field == e_rpsel)
1493 {
1494 /* A PLABEL relocation that has a size of 32 bits must
1495 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1496 if (format == 32)
1497 *final_type = R_DATA_PLABEL;
1498 else
1499 *final_type = R_CODE_PLABEL;
1500 }
1501 /* PIC stuff. */
1502 else if (field == e_tsel
1503 || field == e_ltsel
1504 || field == e_rtsel)
1505 *final_type = R_DLT_REL;
1506 /* A relocation in the data space is always a full 32bits. */
1507 else if (format == 32)
1508 *final_type = R_DATA_ONE_SYMBOL;
1509
1510 break;
1511
1512 case R_HPPA_GOTOFF:
1513 /* More PLABEL special cases. */
1514 if (field == e_psel
1515 || field == e_lpsel
1516 || field == e_rpsel)
1517 *final_type = R_DATA_PLABEL;
1518 break;
1519
1520 case R_HPPA_NONE:
1521 case R_HPPA_ABS_CALL:
1522 case R_HPPA_PCREL_CALL:
1523 /* Right now we can default all these. */
1524 break;
1525 }
1526 return final_types;
1527 }
1528
1529 /* Return the address of the correct entry in the PA SOM relocation
1530 howto table. */
1531
1532 /*ARGSUSED*/
1533 static const reloc_howto_type *
1534 som_bfd_reloc_type_lookup (abfd, code)
1535 bfd *abfd;
1536 bfd_reloc_code_real_type code;
1537 {
1538 if ((int) code < (int) R_NO_RELOCATION + 255)
1539 {
1540 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1541 return &som_hppa_howto_table[(int) code];
1542 }
1543
1544 return (reloc_howto_type *) 0;
1545 }
1546
1547 /* Perform some initialization for an object. Save results of this
1548 initialization in the BFD. */
1549
1550 static bfd_target *
1551 som_object_setup (abfd, file_hdrp, aux_hdrp)
1552 bfd *abfd;
1553 struct header *file_hdrp;
1554 struct som_exec_auxhdr *aux_hdrp;
1555 {
1556 /* som_mkobject will set bfd_error if som_mkobject fails. */
1557 if (som_mkobject (abfd) != true)
1558 return 0;
1559
1560 /* Set BFD flags based on what information is available in the SOM. */
1561 abfd->flags = NO_FLAGS;
1562 if (file_hdrp->symbol_total)
1563 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1564
1565 switch (file_hdrp->a_magic)
1566 {
1567 case DEMAND_MAGIC:
1568 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1569 break;
1570 case SHARE_MAGIC:
1571 abfd->flags |= (WP_TEXT | EXEC_P);
1572 break;
1573 case EXEC_MAGIC:
1574 abfd->flags |= (EXEC_P);
1575 break;
1576 case RELOC_MAGIC:
1577 abfd->flags |= HAS_RELOC;
1578 break;
1579 #ifdef SHL_MAGIC
1580 case SHL_MAGIC:
1581 #endif
1582 #ifdef DL_MAGIC
1583 case DL_MAGIC:
1584 #endif
1585 abfd->flags |= DYNAMIC;
1586 break;
1587
1588 default:
1589 break;
1590 }
1591
1592 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1593 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 0);
1594 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1595
1596 /* Initialize the saved symbol table and string table to NULL.
1597 Save important offsets and sizes from the SOM header into
1598 the BFD. */
1599 obj_som_stringtab (abfd) = (char *) NULL;
1600 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1601 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1602 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1603 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1604 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
1605
1606 obj_som_exec_data (abfd) = (struct som_exec_data *)
1607 bfd_zalloc (abfd, sizeof (struct som_exec_data ));
1608 if (obj_som_exec_data (abfd) == NULL)
1609 {
1610 bfd_set_error (bfd_error_no_memory);
1611 return NULL;
1612 }
1613
1614 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1615 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1616 return abfd->xvec;
1617 }
1618
1619 /* Convert all of the space and subspace info into BFD sections. Each space
1620 contains a number of subspaces, which in turn describe the mapping between
1621 regions of the exec file, and the address space that the program runs in.
1622 BFD sections which correspond to spaces will overlap the sections for the
1623 associated subspaces. */
1624
1625 static boolean
1626 setup_sections (abfd, file_hdr)
1627 bfd *abfd;
1628 struct header *file_hdr;
1629 {
1630 char *space_strings;
1631 int space_index;
1632 unsigned int total_subspaces = 0;
1633
1634 /* First, read in space names */
1635
1636 space_strings = malloc (file_hdr->space_strings_size);
1637 if (!space_strings && file_hdr->space_strings_size != 0)
1638 {
1639 bfd_set_error (bfd_error_no_memory);
1640 goto error_return;
1641 }
1642
1643 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
1644 goto error_return;
1645 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1646 != file_hdr->space_strings_size)
1647 goto error_return;
1648
1649 /* Loop over all of the space dictionaries, building up sections */
1650 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1651 {
1652 struct space_dictionary_record space;
1653 struct subspace_dictionary_record subspace, save_subspace;
1654 int subspace_index;
1655 asection *space_asect;
1656 char *newname;
1657
1658 /* Read the space dictionary element */
1659 if (bfd_seek (abfd, file_hdr->space_location
1660 + space_index * sizeof space, SEEK_SET) < 0)
1661 goto error_return;
1662 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1663 goto error_return;
1664
1665 /* Setup the space name string */
1666 space.name.n_name = space.name.n_strx + space_strings;
1667
1668 /* Make a section out of it */
1669 newname = bfd_alloc (abfd, strlen (space.name.n_name) + 1);
1670 if (!newname)
1671 goto error_return;
1672 strcpy (newname, space.name.n_name);
1673
1674 space_asect = bfd_make_section_anyway (abfd, newname);
1675 if (!space_asect)
1676 goto error_return;
1677
1678 if (space.is_loadable == 0)
1679 space_asect->flags |= SEC_DEBUGGING;
1680
1681 /* Set up all the attributes for the space. */
1682 if (bfd_som_set_section_attributes (space_asect, space.is_defined,
1683 space.is_private, space.sort_key,
1684 space.space_number) == false)
1685 goto error_return;
1686
1687 /* Now, read in the first subspace for this space */
1688 if (bfd_seek (abfd, file_hdr->subspace_location
1689 + space.subspace_index * sizeof subspace,
1690 SEEK_SET) < 0)
1691 goto error_return;
1692 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1693 goto error_return;
1694 /* Seek back to the start of the subspaces for loop below */
1695 if (bfd_seek (abfd, file_hdr->subspace_location
1696 + space.subspace_index * sizeof subspace,
1697 SEEK_SET) < 0)
1698 goto error_return;
1699
1700 /* Setup the start address and file loc from the first subspace record */
1701 space_asect->vma = subspace.subspace_start;
1702 space_asect->filepos = subspace.file_loc_init_value;
1703 space_asect->alignment_power = log2 (subspace.alignment);
1704 if (space_asect->alignment_power == -1)
1705 goto error_return;
1706
1707 /* Initialize save_subspace so we can reliably determine if this
1708 loop placed any useful values into it. */
1709 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1710
1711 /* Loop over the rest of the subspaces, building up more sections */
1712 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1713 subspace_index++)
1714 {
1715 asection *subspace_asect;
1716
1717 /* Read in the next subspace */
1718 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1719 != sizeof subspace)
1720 goto error_return;
1721
1722 /* Setup the subspace name string */
1723 subspace.name.n_name = subspace.name.n_strx + space_strings;
1724
1725 newname = bfd_alloc (abfd, strlen (subspace.name.n_name) + 1);
1726 if (!newname)
1727 goto error_return;
1728 strcpy (newname, subspace.name.n_name);
1729
1730 /* Make a section out of this subspace */
1731 subspace_asect = bfd_make_section_anyway (abfd, newname);
1732 if (!subspace_asect)
1733 goto error_return;
1734
1735 /* Store private information about the section. */
1736 if (bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1737 subspace.access_control_bits,
1738 subspace.sort_key,
1739 subspace.quadrant) == false)
1740 goto error_return;
1741
1742 /* Keep an easy mapping between subspaces and sections. */
1743 subspace_asect->target_index = total_subspaces++;
1744
1745 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1746 by the access_control_bits in the subspace header. */
1747 switch (subspace.access_control_bits >> 4)
1748 {
1749 /* Readonly data. */
1750 case 0x0:
1751 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1752 break;
1753
1754 /* Normal data. */
1755 case 0x1:
1756 subspace_asect->flags |= SEC_DATA;
1757 break;
1758
1759 /* Readonly code and the gateways.
1760 Gateways have other attributes which do not map
1761 into anything BFD knows about. */
1762 case 0x2:
1763 case 0x4:
1764 case 0x5:
1765 case 0x6:
1766 case 0x7:
1767 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1768 break;
1769
1770 /* dynamic (writable) code. */
1771 case 0x3:
1772 subspace_asect->flags |= SEC_CODE;
1773 break;
1774 }
1775
1776 if (subspace.dup_common || subspace.is_common)
1777 subspace_asect->flags |= SEC_IS_COMMON;
1778 else if (subspace.subspace_length > 0)
1779 subspace_asect->flags |= SEC_HAS_CONTENTS;
1780
1781 if (subspace.is_loadable)
1782 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1783 else
1784 subspace_asect->flags |= SEC_DEBUGGING;
1785
1786 if (subspace.code_only)
1787 subspace_asect->flags |= SEC_CODE;
1788
1789 /* Both file_loc_init_value and initialization_length will
1790 be zero for a BSS like subspace. */
1791 if (subspace.file_loc_init_value == 0
1792 && subspace.initialization_length == 0)
1793 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD);
1794
1795 /* This subspace has relocations.
1796 The fixup_request_quantity is a byte count for the number of
1797 entries in the relocation stream; it is not the actual number
1798 of relocations in the subspace. */
1799 if (subspace.fixup_request_quantity != 0)
1800 {
1801 subspace_asect->flags |= SEC_RELOC;
1802 subspace_asect->rel_filepos = subspace.fixup_request_index;
1803 som_section_data (subspace_asect)->reloc_size
1804 = subspace.fixup_request_quantity;
1805 /* We can not determine this yet. When we read in the
1806 relocation table the correct value will be filled in. */
1807 subspace_asect->reloc_count = -1;
1808 }
1809
1810 /* Update save_subspace if appropriate. */
1811 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1812 save_subspace = subspace;
1813
1814 subspace_asect->vma = subspace.subspace_start;
1815 subspace_asect->_cooked_size = subspace.subspace_length;
1816 subspace_asect->_raw_size = subspace.subspace_length;
1817 subspace_asect->filepos = subspace.file_loc_init_value;
1818 subspace_asect->alignment_power = log2 (subspace.alignment);
1819 if (subspace_asect->alignment_power == -1)
1820 goto error_return;
1821 }
1822
1823 /* Yow! there is no subspace within the space which actually
1824 has initialized information in it; this should never happen
1825 as far as I know. */
1826 if (!save_subspace.file_loc_init_value)
1827 goto error_return;
1828
1829 /* Setup the sizes for the space section based upon the info in the
1830 last subspace of the space. */
1831 space_asect->_cooked_size = save_subspace.subspace_start
1832 - space_asect->vma + save_subspace.subspace_length;
1833 space_asect->_raw_size = save_subspace.file_loc_init_value
1834 - space_asect->filepos + save_subspace.initialization_length;
1835 }
1836 if (space_strings != NULL)
1837 free (space_strings);
1838 return true;
1839
1840 error_return:
1841 if (space_strings != NULL)
1842 free (space_strings);
1843 return false;
1844 }
1845
1846 /* Read in a SOM object and make it into a BFD. */
1847
1848 static bfd_target *
1849 som_object_p (abfd)
1850 bfd *abfd;
1851 {
1852 struct header file_hdr;
1853 struct som_exec_auxhdr aux_hdr;
1854
1855 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
1856 {
1857 if (bfd_get_error () != bfd_error_system_call)
1858 bfd_set_error (bfd_error_wrong_format);
1859 return 0;
1860 }
1861
1862 if (!_PA_RISC_ID (file_hdr.system_id))
1863 {
1864 bfd_set_error (bfd_error_wrong_format);
1865 return 0;
1866 }
1867
1868 switch (file_hdr.a_magic)
1869 {
1870 case RELOC_MAGIC:
1871 case EXEC_MAGIC:
1872 case SHARE_MAGIC:
1873 case DEMAND_MAGIC:
1874 #ifdef DL_MAGIC
1875 case DL_MAGIC:
1876 #endif
1877 #ifdef SHL_MAGIC
1878 case SHL_MAGIC:
1879 #endif
1880 #ifdef EXECLIBMAGIC
1881 case EXECLIBMAGIC:
1882 #endif
1883 #ifdef SHARED_MAGIC_CNX
1884 case SHARED_MAGIC_CNX:
1885 #endif
1886 break;
1887 default:
1888 bfd_set_error (bfd_error_wrong_format);
1889 return 0;
1890 }
1891
1892 if (file_hdr.version_id != VERSION_ID
1893 && file_hdr.version_id != NEW_VERSION_ID)
1894 {
1895 bfd_set_error (bfd_error_wrong_format);
1896 return 0;
1897 }
1898
1899 /* If the aux_header_size field in the file header is zero, then this
1900 object is an incomplete executable (a .o file). Do not try to read
1901 a non-existant auxiliary header. */
1902 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
1903 if (file_hdr.aux_header_size != 0)
1904 {
1905 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
1906 {
1907 if (bfd_get_error () != bfd_error_system_call)
1908 bfd_set_error (bfd_error_wrong_format);
1909 return 0;
1910 }
1911 }
1912
1913 if (!setup_sections (abfd, &file_hdr))
1914 {
1915 /* setup_sections does not bubble up a bfd error code. */
1916 bfd_set_error (bfd_error_bad_value);
1917 return 0;
1918 }
1919
1920 /* This appears to be a valid SOM object. Do some initialization. */
1921 return som_object_setup (abfd, &file_hdr, &aux_hdr);
1922 }
1923
1924 /* Create a SOM object. */
1925
1926 static boolean
1927 som_mkobject (abfd)
1928 bfd *abfd;
1929 {
1930 /* Allocate memory to hold backend information. */
1931 abfd->tdata.som_data = (struct som_data_struct *)
1932 bfd_zalloc (abfd, sizeof (struct som_data_struct));
1933 if (abfd->tdata.som_data == NULL)
1934 {
1935 bfd_set_error (bfd_error_no_memory);
1936 return false;
1937 }
1938 return true;
1939 }
1940
1941 /* Initialize some information in the file header. This routine makes
1942 not attempt at doing the right thing for a full executable; it
1943 is only meant to handle relocatable objects. */
1944
1945 static boolean
1946 som_prep_headers (abfd)
1947 bfd *abfd;
1948 {
1949 struct header *file_hdr;
1950 asection *section;
1951
1952 /* Make and attach a file header to the BFD. */
1953 file_hdr = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
1954 if (file_hdr == NULL)
1955
1956 {
1957 bfd_set_error (bfd_error_no_memory);
1958 return false;
1959 }
1960 obj_som_file_hdr (abfd) = file_hdr;
1961
1962 /* FIXME. This should really be conditional based on whether or not
1963 PA1.1 instructions/registers have been used. */
1964 if (abfd->flags & (EXEC_P | DYNAMIC))
1965 file_hdr->system_id = obj_som_exec_data (abfd)->system_id;
1966 else
1967 file_hdr->system_id = CPU_PA_RISC1_0;
1968
1969 if (abfd->flags & (EXEC_P | DYNAMIC))
1970 {
1971 if (abfd->flags & D_PAGED)
1972 file_hdr->a_magic = DEMAND_MAGIC;
1973 else if (abfd->flags & WP_TEXT)
1974 file_hdr->a_magic = SHARE_MAGIC;
1975 #ifdef SHL_MAGIC
1976 else if (abfd->flags & DYNAMIC)
1977 file_hdr->a_magic = SHL_MAGIC;
1978 #endif
1979 else
1980 file_hdr->a_magic = EXEC_MAGIC;
1981 }
1982 else
1983 file_hdr->a_magic = RELOC_MAGIC;
1984
1985 /* Only new format SOM is supported. */
1986 file_hdr->version_id = NEW_VERSION_ID;
1987
1988 /* These fields are optional, and embedding timestamps is not always
1989 a wise thing to do, it makes comparing objects during a multi-stage
1990 bootstrap difficult. */
1991 file_hdr->file_time.secs = 0;
1992 file_hdr->file_time.nanosecs = 0;
1993
1994 file_hdr->entry_space = 0;
1995 file_hdr->entry_subspace = 0;
1996 file_hdr->entry_offset = 0;
1997 file_hdr->presumed_dp = 0;
1998
1999 /* Now iterate over the sections translating information from
2000 BFD sections to SOM spaces/subspaces. */
2001
2002 for (section = abfd->sections; section != NULL; section = section->next)
2003 {
2004 /* Ignore anything which has not been marked as a space or
2005 subspace. */
2006 if (!som_is_space (section) && !som_is_subspace (section))
2007 continue;
2008
2009 if (som_is_space (section))
2010 {
2011 /* Allocate space for the space dictionary. */
2012 som_section_data (section)->space_dict
2013 = (struct space_dictionary_record *)
2014 bfd_zalloc (abfd, sizeof (struct space_dictionary_record));
2015 if (som_section_data (section)->space_dict == NULL)
2016 {
2017 bfd_set_error (bfd_error_no_memory);
2018 return false;
2019 }
2020 /* Set space attributes. Note most attributes of SOM spaces
2021 are set based on the subspaces it contains. */
2022 som_section_data (section)->space_dict->loader_fix_index = -1;
2023 som_section_data (section)->space_dict->init_pointer_index = -1;
2024
2025 /* Set more attributes that were stuffed away in private data. */
2026 som_section_data (section)->space_dict->sort_key =
2027 som_section_data (section)->copy_data->sort_key;
2028 som_section_data (section)->space_dict->is_defined =
2029 som_section_data (section)->copy_data->is_defined;
2030 som_section_data (section)->space_dict->is_private =
2031 som_section_data (section)->copy_data->is_private;
2032 som_section_data (section)->space_dict->space_number =
2033 som_section_data (section)->copy_data->space_number;
2034 }
2035 else
2036 {
2037 /* Allocate space for the subspace dictionary. */
2038 som_section_data (section)->subspace_dict
2039 = (struct subspace_dictionary_record *)
2040 bfd_zalloc (abfd, sizeof (struct subspace_dictionary_record));
2041 if (som_section_data (section)->subspace_dict == NULL)
2042 {
2043 bfd_set_error (bfd_error_no_memory);
2044 return false;
2045 }
2046
2047 /* Set subspace attributes. Basic stuff is done here, additional
2048 attributes are filled in later as more information becomes
2049 available. */
2050 if (section->flags & SEC_IS_COMMON)
2051 {
2052 som_section_data (section)->subspace_dict->dup_common = 1;
2053 som_section_data (section)->subspace_dict->is_common = 1;
2054 }
2055
2056 if (section->flags & SEC_ALLOC)
2057 som_section_data (section)->subspace_dict->is_loadable = 1;
2058
2059 if (section->flags & SEC_CODE)
2060 som_section_data (section)->subspace_dict->code_only = 1;
2061
2062 som_section_data (section)->subspace_dict->subspace_start =
2063 section->vma;
2064 som_section_data (section)->subspace_dict->subspace_length =
2065 bfd_section_size (abfd, section);
2066 som_section_data (section)->subspace_dict->initialization_length =
2067 bfd_section_size (abfd, section);
2068 som_section_data (section)->subspace_dict->alignment =
2069 1 << section->alignment_power;
2070
2071 /* Set more attributes that were stuffed away in private data. */
2072 som_section_data (section)->subspace_dict->sort_key =
2073 som_section_data (section)->copy_data->sort_key;
2074 som_section_data (section)->subspace_dict->access_control_bits =
2075 som_section_data (section)->copy_data->access_control_bits;
2076 som_section_data (section)->subspace_dict->quadrant =
2077 som_section_data (section)->copy_data->quadrant;
2078 }
2079 }
2080 return true;
2081 }
2082
2083 /* Return true if the given section is a SOM space, false otherwise. */
2084
2085 static boolean
2086 som_is_space (section)
2087 asection *section;
2088 {
2089 /* If no copy data is available, then it's neither a space nor a
2090 subspace. */
2091 if (som_section_data (section)->copy_data == NULL)
2092 return false;
2093
2094 /* If the containing space isn't the same as the given section,
2095 then this isn't a space. */
2096 if (som_section_data (section)->copy_data->container != section)
2097 return false;
2098
2099 /* OK. Must be a space. */
2100 return true;
2101 }
2102
2103 /* Return true if the given section is a SOM subspace, false otherwise. */
2104
2105 static boolean
2106 som_is_subspace (section)
2107 asection *section;
2108 {
2109 /* If no copy data is available, then it's neither a space nor a
2110 subspace. */
2111 if (som_section_data (section)->copy_data == NULL)
2112 return false;
2113
2114 /* If the containing space is the same as the given section,
2115 then this isn't a subspace. */
2116 if (som_section_data (section)->copy_data->container == section)
2117 return false;
2118
2119 /* OK. Must be a subspace. */
2120 return true;
2121 }
2122
2123 /* Return true if the given space containins the given subspace. It
2124 is safe to assume space really is a space, and subspace really
2125 is a subspace. */
2126
2127 static boolean
2128 som_is_container (space, subspace)
2129 asection *space, *subspace;
2130 {
2131 return som_section_data (subspace)->copy_data->container == space;
2132 }
2133
2134 /* Count and return the number of spaces attached to the given BFD. */
2135
2136 static unsigned long
2137 som_count_spaces (abfd)
2138 bfd *abfd;
2139 {
2140 int count = 0;
2141 asection *section;
2142
2143 for (section = abfd->sections; section != NULL; section = section->next)
2144 count += som_is_space (section);
2145
2146 return count;
2147 }
2148
2149 /* Count the number of subspaces attached to the given BFD. */
2150
2151 static unsigned long
2152 som_count_subspaces (abfd)
2153 bfd *abfd;
2154 {
2155 int count = 0;
2156 asection *section;
2157
2158 for (section = abfd->sections; section != NULL; section = section->next)
2159 count += som_is_subspace (section);
2160
2161 return count;
2162 }
2163
2164 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2165
2166 We desire symbols to be ordered starting with the symbol with the
2167 highest relocation count down to the symbol with the lowest relocation
2168 count. Doing so compacts the relocation stream. */
2169
2170 static int
2171 compare_syms (arg1, arg2)
2172 const PTR arg1;
2173 const PTR arg2;
2174
2175 {
2176 asymbol **sym1 = (asymbol **) arg1;
2177 asymbol **sym2 = (asymbol **) arg2;
2178 unsigned int count1, count2;
2179
2180 /* Get relocation count for each symbol. Note that the count
2181 is stored in the udata pointer for section symbols! */
2182 if ((*sym1)->flags & BSF_SECTION_SYM)
2183 count1 = (int)(*sym1)->udata;
2184 else
2185 count1 = som_symbol_data (*sym1)->reloc_count;
2186
2187 if ((*sym2)->flags & BSF_SECTION_SYM)
2188 count2 = (int)(*sym2)->udata;
2189 else
2190 count2 = som_symbol_data (*sym2)->reloc_count;
2191
2192 /* Return the appropriate value. */
2193 if (count1 < count2)
2194 return 1;
2195 else if (count1 > count2)
2196 return -1;
2197 return 0;
2198 }
2199
2200 /* Perform various work in preparation for emitting the fixup stream. */
2201
2202 static void
2203 som_prep_for_fixups (abfd, syms, num_syms)
2204 bfd *abfd;
2205 asymbol **syms;
2206 unsigned long num_syms;
2207 {
2208 int i;
2209 asection *section;
2210
2211 /* Most SOM relocations involving a symbol have a length which is
2212 dependent on the index of the symbol. So symbols which are
2213 used often in relocations should have a small index. */
2214
2215 /* First initialize the counters for each symbol. */
2216 for (i = 0; i < num_syms; i++)
2217 {
2218 /* Handle a section symbol; these have no pointers back to the
2219 SOM symbol info. So we just use the pointer field (udata)
2220 to hold the relocation count. */
2221 if (som_symbol_data (syms[i]) == NULL
2222 || syms[i]->flags & BSF_SECTION_SYM)
2223 {
2224 syms[i]->flags |= BSF_SECTION_SYM;
2225 syms[i]->udata = (PTR) 0;
2226 }
2227 else
2228 som_symbol_data (syms[i])->reloc_count = 0;
2229 }
2230
2231 /* Now that the counters are initialized, make a weighted count
2232 of how often a given symbol is used in a relocation. */
2233 for (section = abfd->sections; section != NULL; section = section->next)
2234 {
2235 int i;
2236
2237 /* Does this section have any relocations? */
2238 if (section->reloc_count <= 0)
2239 continue;
2240
2241 /* Walk through each relocation for this section. */
2242 for (i = 1; i < section->reloc_count; i++)
2243 {
2244 arelent *reloc = section->orelocation[i];
2245 int scale;
2246
2247 /* A relocation against a symbol in the *ABS* section really
2248 does not have a symbol. Likewise if the symbol isn't associated
2249 with any section. */
2250 if (reloc->sym_ptr_ptr == NULL
2251 || (*reloc->sym_ptr_ptr)->section == &bfd_abs_section)
2252 continue;
2253
2254 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2255 and R_CODE_ONE_SYMBOL relocations to come first. These
2256 two relocations have single byte versions if the symbol
2257 index is very small. */
2258 if (reloc->howto->type == R_DP_RELATIVE
2259 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2260 scale = 2;
2261 else
2262 scale = 1;
2263
2264 /* Handle section symbols by ramming the count in the udata
2265 field. It will not be used and the count is very important
2266 for these symbols. */
2267 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2268 {
2269 (*reloc->sym_ptr_ptr)->udata =
2270 (PTR) ((int) (*reloc->sym_ptr_ptr)->udata + scale);
2271 continue;
2272 }
2273
2274 /* A normal symbol. Increment the count. */
2275 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2276 }
2277 }
2278
2279 /* Now sort the symbols. */
2280 qsort (syms, num_syms, sizeof (asymbol *), compare_syms);
2281
2282 /* Compute the symbol indexes, they will be needed by the relocation
2283 code. */
2284 for (i = 0; i < num_syms; i++)
2285 {
2286 /* A section symbol. Again, there is no pointer to backend symbol
2287 information, so we reuse (abuse) the udata field again. */
2288 if (syms[i]->flags & BSF_SECTION_SYM)
2289 syms[i]->udata = (PTR) i;
2290 else
2291 som_symbol_data (syms[i])->index = i;
2292 }
2293 }
2294
2295 static boolean
2296 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2297 bfd *abfd;
2298 unsigned long current_offset;
2299 unsigned int *total_reloc_sizep;
2300 {
2301 unsigned int i, j;
2302 /* Chunk of memory that we can use as buffer space, then throw
2303 away. */
2304 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2305 unsigned char *p;
2306 unsigned int total_reloc_size = 0;
2307 unsigned int subspace_reloc_size = 0;
2308 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2309 asection *section = abfd->sections;
2310
2311 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2312 p = tmp_space;
2313
2314 /* All the fixups for a particular subspace are emitted in a single
2315 stream. All the subspaces for a particular space are emitted
2316 as a single stream.
2317
2318 So, to get all the locations correct one must iterate through all the
2319 spaces, for each space iterate through its subspaces and output a
2320 fixups stream. */
2321 for (i = 0; i < num_spaces; i++)
2322 {
2323 asection *subsection;
2324
2325 /* Find a space. */
2326 while (!som_is_space (section))
2327 section = section->next;
2328
2329 /* Now iterate through each of its subspaces. */
2330 for (subsection = abfd->sections;
2331 subsection != NULL;
2332 subsection = subsection->next)
2333 {
2334 int reloc_offset, current_rounding_mode;
2335
2336 /* Find a subspace of this space. */
2337 if (!som_is_subspace (subsection)
2338 || !som_is_container (section, subsection))
2339 continue;
2340
2341 /* If this subspace does not have real data, then we are
2342 finised with it. */
2343 if ((subsection->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0)
2344 {
2345 som_section_data (subsection)->subspace_dict->fixup_request_index
2346 = -1;
2347 continue;
2348 }
2349
2350 /* This subspace has some relocations. Put the relocation stream
2351 index into the subspace record. */
2352 som_section_data (subsection)->subspace_dict->fixup_request_index
2353 = total_reloc_size;
2354
2355 /* To make life easier start over with a clean slate for
2356 each subspace. Seek to the start of the relocation stream
2357 for this subspace in preparation for writing out its fixup
2358 stream. */
2359 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) < 0)
2360 return false;
2361
2362 /* Buffer space has already been allocated. Just perform some
2363 initialization here. */
2364 p = tmp_space;
2365 subspace_reloc_size = 0;
2366 reloc_offset = 0;
2367 som_initialize_reloc_queue (reloc_queue);
2368 current_rounding_mode = R_N_MODE;
2369
2370 /* Translate each BFD relocation into one or more SOM
2371 relocations. */
2372 for (j = 0; j < subsection->reloc_count; j++)
2373 {
2374 arelent *bfd_reloc = subsection->orelocation[j];
2375 unsigned int skip;
2376 int sym_num;
2377
2378 /* Get the symbol number. Remember it's stored in a
2379 special place for section symbols. */
2380 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2381 sym_num = (int) (*bfd_reloc->sym_ptr_ptr)->udata;
2382 else
2383 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2384
2385 /* If there is not enough room for the next couple relocations,
2386 then dump the current buffer contents now. Also reinitialize
2387 the relocation queue.
2388
2389 No single BFD relocation could ever translate into more
2390 than 100 bytes of SOM relocations (20bytes is probably the
2391 upper limit, but leave lots of space for growth). */
2392 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2393 {
2394 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2395 != p - tmp_space)
2396 return false;
2397
2398 p = tmp_space;
2399 som_initialize_reloc_queue (reloc_queue);
2400 }
2401
2402 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2403 skipped. */
2404 skip = bfd_reloc->address - reloc_offset;
2405 p = som_reloc_skip (abfd, skip, p,
2406 &subspace_reloc_size, reloc_queue);
2407
2408 /* Update reloc_offset for the next iteration.
2409
2410 Many relocations do not consume input bytes. They
2411 are markers, or set state necessary to perform some
2412 later relocation. */
2413 switch (bfd_reloc->howto->type)
2414 {
2415 /* This only needs to handle relocations that may be
2416 made by hppa_som_gen_reloc. */
2417 case R_ENTRY:
2418 case R_EXIT:
2419 case R_N_MODE:
2420 case R_S_MODE:
2421 case R_D_MODE:
2422 case R_R_MODE:
2423 case R_FSEL:
2424 case R_LSEL:
2425 case R_RSEL:
2426 reloc_offset = bfd_reloc->address;
2427 break;
2428
2429 default:
2430 reloc_offset = bfd_reloc->address + 4;
2431 break;
2432 }
2433
2434 /* Now the actual relocation we care about. */
2435 switch (bfd_reloc->howto->type)
2436 {
2437 case R_PCREL_CALL:
2438 case R_ABS_CALL:
2439 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2440 bfd_reloc, sym_num, reloc_queue);
2441 break;
2442
2443 case R_CODE_ONE_SYMBOL:
2444 case R_DP_RELATIVE:
2445 /* Account for any addend. */
2446 if (bfd_reloc->addend)
2447 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2448 &subspace_reloc_size, reloc_queue);
2449
2450 if (sym_num < 0x20)
2451 {
2452 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2453 subspace_reloc_size += 1;
2454 p += 1;
2455 }
2456 else if (sym_num < 0x100)
2457 {
2458 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2459 bfd_put_8 (abfd, sym_num, p + 1);
2460 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2461 2, reloc_queue);
2462 }
2463 else if (sym_num < 0x10000000)
2464 {
2465 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2466 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2467 bfd_put_16 (abfd, sym_num, p + 2);
2468 p = try_prev_fixup (abfd, &subspace_reloc_size,
2469 p, 4, reloc_queue);
2470 }
2471 else
2472 abort ();
2473 break;
2474
2475 case R_DATA_ONE_SYMBOL:
2476 case R_DATA_PLABEL:
2477 case R_CODE_PLABEL:
2478 case R_DLT_REL:
2479 /* Account for any addend. */
2480 if (bfd_reloc->addend)
2481 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2482 &subspace_reloc_size, reloc_queue);
2483
2484 if (sym_num < 0x100)
2485 {
2486 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2487 bfd_put_8 (abfd, sym_num, p + 1);
2488 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2489 2, reloc_queue);
2490 }
2491 else if (sym_num < 0x10000000)
2492 {
2493 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2494 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2495 bfd_put_16 (abfd, sym_num, p + 2);
2496 p = try_prev_fixup (abfd, &subspace_reloc_size,
2497 p, 4, reloc_queue);
2498 }
2499 else
2500 abort ();
2501 break;
2502
2503 case R_ENTRY:
2504 {
2505 int *descp
2506 = (int *) som_symbol_data (*bfd_reloc->sym_ptr_ptr)->unwind;
2507 bfd_put_8 (abfd, R_ENTRY, p);
2508 bfd_put_32 (abfd, descp[0], p + 1);
2509 bfd_put_32 (abfd, descp[1], p + 5);
2510 p = try_prev_fixup (abfd, &subspace_reloc_size,
2511 p, 9, reloc_queue);
2512 break;
2513 }
2514
2515 case R_EXIT:
2516 bfd_put_8 (abfd, R_EXIT, p);
2517 subspace_reloc_size += 1;
2518 p += 1;
2519 break;
2520
2521 case R_N_MODE:
2522 case R_S_MODE:
2523 case R_D_MODE:
2524 case R_R_MODE:
2525 /* If this relocation requests the current rounding
2526 mode, then it is redundant. */
2527 if (bfd_reloc->howto->type != current_rounding_mode)
2528 {
2529 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2530 subspace_reloc_size += 1;
2531 p += 1;
2532 current_rounding_mode = bfd_reloc->howto->type;
2533 }
2534 break;
2535
2536 case R_FSEL:
2537 case R_LSEL:
2538 case R_RSEL:
2539 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2540 subspace_reloc_size += 1;
2541 p += 1;
2542 break;
2543
2544 /* Put a "R_RESERVED" relocation in the stream if
2545 we hit something we do not understand. The linker
2546 will complain loudly if this ever happens. */
2547 default:
2548 bfd_put_8 (abfd, 0xff, p);
2549 subspace_reloc_size += 1;
2550 p += 1;
2551 break;
2552 }
2553 }
2554
2555 /* Last BFD relocation for a subspace has been processed.
2556 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2557 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2558 - reloc_offset,
2559 p, &subspace_reloc_size, reloc_queue);
2560
2561 /* Scribble out the relocations. */
2562 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2563 != p - tmp_space)
2564 return false;
2565 p = tmp_space;
2566
2567 total_reloc_size += subspace_reloc_size;
2568 som_section_data (subsection)->subspace_dict->fixup_request_quantity
2569 = subspace_reloc_size;
2570 }
2571 section = section->next;
2572 }
2573 *total_reloc_sizep = total_reloc_size;
2574 return true;
2575 }
2576
2577 /* Write out the space/subspace string table. */
2578
2579 static boolean
2580 som_write_space_strings (abfd, current_offset, string_sizep)
2581 bfd *abfd;
2582 unsigned long current_offset;
2583 unsigned int *string_sizep;
2584 {
2585 /* Chunk of memory that we can use as buffer space, then throw
2586 away. */
2587 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2588 unsigned char *p;
2589 unsigned int strings_size = 0;
2590 asection *section;
2591
2592 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2593 p = tmp_space;
2594
2595 /* Seek to the start of the space strings in preparation for writing
2596 them out. */
2597 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2598 return false;
2599
2600 /* Walk through all the spaces and subspaces (order is not important)
2601 building up and writing string table entries for their names. */
2602 for (section = abfd->sections; section != NULL; section = section->next)
2603 {
2604 int length;
2605
2606 /* Only work with space/subspaces; avoid any other sections
2607 which might have been made (.text for example). */
2608 if (!som_is_space (section) && !som_is_subspace (section))
2609 continue;
2610
2611 /* Get the length of the space/subspace name. */
2612 length = strlen (section->name);
2613
2614 /* If there is not enough room for the next entry, then dump the
2615 current buffer contents now. Each entry will take 4 bytes to
2616 hold the string length + the string itself + null terminator. */
2617 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2618 {
2619 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2620 != p - tmp_space)
2621 return false;
2622 /* Reset to beginning of the buffer space. */
2623 p = tmp_space;
2624 }
2625
2626 /* First element in a string table entry is the length of the
2627 string. Alignment issues are already handled. */
2628 bfd_put_32 (abfd, length, p);
2629 p += 4;
2630 strings_size += 4;
2631
2632 /* Record the index in the space/subspace records. */
2633 if (som_is_space (section))
2634 som_section_data (section)->space_dict->name.n_strx = strings_size;
2635 else
2636 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
2637
2638 /* Next comes the string itself + a null terminator. */
2639 strcpy (p, section->name);
2640 p += length + 1;
2641 strings_size += length + 1;
2642
2643 /* Always align up to the next word boundary. */
2644 while (strings_size % 4)
2645 {
2646 bfd_put_8 (abfd, 0, p);
2647 p++;
2648 strings_size++;
2649 }
2650 }
2651
2652 /* Done with the space/subspace strings. Write out any information
2653 contained in a partial block. */
2654 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2655 return false;
2656 *string_sizep = strings_size;
2657 return true;
2658 }
2659
2660 /* Write out the symbol string table. */
2661
2662 static boolean
2663 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
2664 bfd *abfd;
2665 unsigned long current_offset;
2666 asymbol **syms;
2667 unsigned int num_syms;
2668 unsigned int *string_sizep;
2669 {
2670 unsigned int i;
2671
2672 /* Chunk of memory that we can use as buffer space, then throw
2673 away. */
2674 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2675 unsigned char *p;
2676 unsigned int strings_size = 0;
2677
2678 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2679 p = tmp_space;
2680
2681 /* Seek to the start of the space strings in preparation for writing
2682 them out. */
2683 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2684 return false;
2685
2686 for (i = 0; i < num_syms; i++)
2687 {
2688 int length = strlen (syms[i]->name);
2689
2690 /* If there is not enough room for the next entry, then dump the
2691 current buffer contents now. */
2692 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2693 {
2694 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2695 != p - tmp_space)
2696 return false;
2697 /* Reset to beginning of the buffer space. */
2698 p = tmp_space;
2699 }
2700
2701 /* First element in a string table entry is the length of the
2702 string. This must always be 4 byte aligned. This is also
2703 an appropriate time to fill in the string index field in the
2704 symbol table entry. */
2705 bfd_put_32 (abfd, length, p);
2706 strings_size += 4;
2707 p += 4;
2708
2709 /* Next comes the string itself + a null terminator. */
2710 strcpy (p, syms[i]->name);
2711
2712 /* ACK. FIXME. */
2713 syms[i]->name = (char *)strings_size;
2714 p += length + 1;
2715 strings_size += length + 1;
2716
2717 /* Always align up to the next word boundary. */
2718 while (strings_size % 4)
2719 {
2720 bfd_put_8 (abfd, 0, p);
2721 strings_size++;
2722 p++;
2723 }
2724 }
2725
2726 /* Scribble out any partial block. */
2727 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2728 return false;
2729
2730 *string_sizep = strings_size;
2731 return true;
2732 }
2733
2734 /* Compute variable information to be placed in the SOM headers,
2735 space/subspace dictionaries, relocation streams, etc. Begin
2736 writing parts of the object file. */
2737
2738 static boolean
2739 som_begin_writing (abfd)
2740 bfd *abfd;
2741 {
2742 unsigned long current_offset = 0;
2743 int strings_size = 0;
2744 unsigned int total_reloc_size = 0;
2745 unsigned long num_spaces, num_subspaces, num_syms, i;
2746 asection *section;
2747 asymbol **syms = bfd_get_outsymbols (abfd);
2748 unsigned int total_subspaces = 0;
2749 struct som_exec_auxhdr exec_header;
2750
2751 /* The file header will always be first in an object file,
2752 everything else can be in random locations. To keep things
2753 "simple" BFD will lay out the object file in the manner suggested
2754 by the PRO ABI for PA-RISC Systems. */
2755
2756 /* Before any output can really begin offsets for all the major
2757 portions of the object file must be computed. So, starting
2758 with the initial file header compute (and sometimes write)
2759 each portion of the object file. */
2760
2761 /* Make room for the file header, it's contents are not complete
2762 yet, so it can not be written at this time. */
2763 current_offset += sizeof (struct header);
2764
2765 /* Any auxiliary headers will follow the file header. Right now
2766 we support only the copyright and version headers. */
2767 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
2768 obj_som_file_hdr (abfd)->aux_header_size = 0;
2769 if (abfd->flags & (EXEC_P | DYNAMIC))
2770 {
2771 /* Parts of the exec header will be filled in later, so
2772 delay writing the header itself. Fill in the defaults,
2773 and write it later. */
2774 current_offset += sizeof (exec_header);
2775 obj_som_file_hdr (abfd)->aux_header_size += sizeof (exec_header);
2776 memset (&exec_header, 0, sizeof (exec_header));
2777 exec_header.som_auxhdr.type = HPUX_AUX_ID;
2778 exec_header.som_auxhdr.length = 40;
2779 }
2780 if (obj_som_version_hdr (abfd) != NULL)
2781 {
2782 unsigned int len;
2783
2784 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2785 return false;
2786
2787 /* Write the aux_id structure and the string length. */
2788 len = sizeof (struct aux_id) + sizeof (unsigned int);
2789 obj_som_file_hdr (abfd)->aux_header_size += len;
2790 current_offset += len;
2791 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
2792 return false;
2793
2794 /* Write the version string. */
2795 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
2796 obj_som_file_hdr (abfd)->aux_header_size += len;
2797 current_offset += len;
2798 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
2799 len, 1, abfd) != len)
2800 return false;
2801 }
2802
2803 if (obj_som_copyright_hdr (abfd) != NULL)
2804 {
2805 unsigned int len;
2806
2807 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2808 return false;
2809
2810 /* Write the aux_id structure and the string length. */
2811 len = sizeof (struct aux_id) + sizeof (unsigned int);
2812 obj_som_file_hdr (abfd)->aux_header_size += len;
2813 current_offset += len;
2814 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
2815 return false;
2816
2817 /* Write the copyright string. */
2818 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
2819 obj_som_file_hdr (abfd)->aux_header_size += len;
2820 current_offset += len;
2821 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
2822 len, 1, abfd) != len)
2823 return false;
2824 }
2825
2826 /* Next comes the initialization pointers; we have no initialization
2827 pointers, so current offset does not change. */
2828 obj_som_file_hdr (abfd)->init_array_location = current_offset;
2829 obj_som_file_hdr (abfd)->init_array_total = 0;
2830
2831 /* Next are the space records. These are fixed length records.
2832
2833 Count the number of spaces to determine how much room is needed
2834 in the object file for the space records.
2835
2836 The names of the spaces are stored in a separate string table,
2837 and the index for each space into the string table is computed
2838 below. Therefore, it is not possible to write the space headers
2839 at this time. */
2840 num_spaces = som_count_spaces (abfd);
2841 obj_som_file_hdr (abfd)->space_location = current_offset;
2842 obj_som_file_hdr (abfd)->space_total = num_spaces;
2843 current_offset += num_spaces * sizeof (struct space_dictionary_record);
2844
2845 /* Next are the subspace records. These are fixed length records.
2846
2847 Count the number of subspaes to determine how much room is needed
2848 in the object file for the subspace records.
2849
2850 A variety if fields in the subspace record are still unknown at
2851 this time (index into string table, fixup stream location/size, etc). */
2852 num_subspaces = som_count_subspaces (abfd);
2853 obj_som_file_hdr (abfd)->subspace_location = current_offset;
2854 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
2855 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
2856
2857 /* Next is the string table for the space/subspace names. We will
2858 build and write the string table on the fly. At the same time
2859 we will fill in the space/subspace name index fields. */
2860
2861 /* The string table needs to be aligned on a word boundary. */
2862 if (current_offset % 4)
2863 current_offset += (4 - (current_offset % 4));
2864
2865 /* Mark the offset of the space/subspace string table in the
2866 file header. */
2867 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
2868
2869 /* Scribble out the space strings. */
2870 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
2871 return false;
2872
2873 /* Record total string table size in the header and update the
2874 current offset. */
2875 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
2876 current_offset += strings_size;
2877
2878 /* Next is the symbol table. These are fixed length records.
2879
2880 Count the number of symbols to determine how much room is needed
2881 in the object file for the symbol table.
2882
2883 The names of the symbols are stored in a separate string table,
2884 and the index for each symbol name into the string table is computed
2885 below. Therefore, it is not possible to write the symobl table
2886 at this time. */
2887 num_syms = bfd_get_symcount (abfd);
2888 obj_som_file_hdr (abfd)->symbol_location = current_offset;
2889 obj_som_file_hdr (abfd)->symbol_total = num_syms;
2890 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
2891
2892 /* Do prep work before handling fixups. */
2893 som_prep_for_fixups (abfd, syms, num_syms);
2894
2895 /* Next comes the fixup stream which starts on a word boundary. */
2896 if (current_offset % 4)
2897 current_offset += (4 - (current_offset % 4));
2898 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
2899
2900 /* Write the fixups and update fields in subspace headers which
2901 relate to the fixup stream. */
2902 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
2903 return false;
2904
2905 /* Record the total size of the fixup stream in the file header. */
2906 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
2907 current_offset += total_reloc_size;
2908
2909 /* Next are the symbol strings.
2910 Align them to a word boundary. */
2911 if (current_offset % 4)
2912 current_offset += (4 - (current_offset % 4));
2913 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
2914
2915 /* Scribble out the symbol strings. */
2916 if (som_write_symbol_strings (abfd, current_offset, syms,
2917 num_syms, &strings_size)
2918 == false)
2919 return false;
2920
2921 /* Record total string table size in header and update the
2922 current offset. */
2923 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
2924 current_offset += strings_size;
2925
2926 /* Next is the compiler records. We do not use these. */
2927 obj_som_file_hdr (abfd)->compiler_location = current_offset;
2928 obj_som_file_hdr (abfd)->compiler_total = 0;
2929
2930 /* Now compute the file positions for the loadable subspaces, taking
2931 care to make sure everything stays properly aligned. */
2932
2933 section = abfd->sections;
2934 for (i = 0; i < num_spaces; i++)
2935 {
2936 asection *subsection;
2937 int first_subspace;
2938 unsigned int subspace_offset = 0;
2939
2940 /* Find a space. */
2941 while (!som_is_space (section))
2942 section = section->next;
2943
2944 first_subspace = 1;
2945 /* Now look for all its subspaces. */
2946 for (subsection = abfd->sections;
2947 subsection != NULL;
2948 subsection = subsection->next)
2949 {
2950
2951 if (!som_is_subspace (subsection)
2952 || !som_is_container (section, subsection)
2953 || (subsection->flags & SEC_ALLOC) == 0)
2954 continue;
2955
2956 /* If this is the first subspace in the space, and we are
2957 building an executable, then take care to make sure all
2958 the alignments are correct and update the exec header. */
2959 if (first_subspace
2960 && (abfd->flags & (EXEC_P | DYNAMIC)))
2961 {
2962 /* Demand paged executables have each space aligned to a
2963 page boundary. Sharable executables (write-protected
2964 text) have just the private (aka data & bss) space aligned
2965 to a page boundary. Ugh. Not true for HPUX.
2966
2967 The HPUX kernel requires the text to always be page aligned
2968 within the file regardless of the executable's type. */
2969 if (abfd->flags & (D_PAGED | DYNAMIC)
2970 || (subsection->flags & SEC_CODE)
2971 || ((abfd->flags & WP_TEXT)
2972 && (subsection->flags & SEC_DATA)))
2973 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
2974
2975 /* Update the exec header. */
2976 if (subsection->flags & SEC_CODE && exec_header.exec_tfile == 0)
2977 {
2978 exec_header.exec_tmem = section->vma;
2979 exec_header.exec_tfile = current_offset;
2980 }
2981 if (subsection->flags & SEC_DATA && exec_header.exec_dfile == 0)
2982 {
2983 exec_header.exec_dmem = section->vma;
2984 exec_header.exec_dfile = current_offset;
2985 }
2986
2987 /* Keep track of exactly where we are within a particular
2988 space. This is necessary as the braindamaged HPUX
2989 loader will create holes between subspaces *and*
2990 subspace alignments are *NOT* preserved. What a crock. */
2991 subspace_offset = subsection->vma;
2992
2993 /* Only do this for the first subspace within each space. */
2994 first_subspace = 0;
2995 }
2996 else if (abfd->flags & (EXEC_P | DYNAMIC))
2997 {
2998 /* The braindamaged HPUX loader may have created a hole
2999 between two subspaces. It is *not* sufficient to use
3000 the alignment specifications within the subspaces to
3001 account for these holes -- I've run into at least one
3002 case where the loader left one code subspace unaligned
3003 in a final executable.
3004
3005 To combat this we keep a current offset within each space,
3006 and use the subspace vma fields to detect and preserve
3007 holes. What a crock!
3008
3009 ps. This is not necessary for unloadable space/subspaces. */
3010 current_offset += subsection->vma - subspace_offset;
3011 if (subsection->flags & SEC_CODE)
3012 exec_header.exec_tsize += subsection->vma - subspace_offset;
3013 else
3014 exec_header.exec_dsize += subsection->vma - subspace_offset;
3015 subspace_offset += subsection->vma - subspace_offset;
3016 }
3017
3018
3019 subsection->target_index = total_subspaces++;
3020 /* This is real data to be loaded from the file. */
3021 if (subsection->flags & SEC_LOAD)
3022 {
3023 /* Update the size of the code & data. */
3024 if (abfd->flags & (EXEC_P | DYNAMIC)
3025 && subsection->flags & SEC_CODE)
3026 exec_header.exec_tsize += subsection->_cooked_size;
3027 else if (abfd->flags & (EXEC_P | DYNAMIC)
3028 && subsection->flags & SEC_DATA)
3029 exec_header.exec_dsize += subsection->_cooked_size;
3030 som_section_data (subsection)->subspace_dict->file_loc_init_value
3031 = current_offset;
3032 subsection->filepos = current_offset;
3033 current_offset += bfd_section_size (abfd, subsection);
3034 subspace_offset += bfd_section_size (abfd, subsection);
3035 }
3036 /* Looks like uninitialized data. */
3037 else
3038 {
3039 /* Update the size of the bss section. */
3040 if (abfd->flags & (EXEC_P | DYNAMIC))
3041 exec_header.exec_bsize += subsection->_cooked_size;
3042
3043 som_section_data (subsection)->subspace_dict->file_loc_init_value
3044 = 0;
3045 som_section_data (subsection)->subspace_dict->
3046 initialization_length = 0;
3047 }
3048 }
3049 /* Goto the next section. */
3050 section = section->next;
3051 }
3052
3053 /* Finally compute the file positions for unloadable subspaces.
3054 If building an executable, start the unloadable stuff on its
3055 own page. */
3056
3057 if (abfd->flags & (EXEC_P | DYNAMIC))
3058 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3059
3060 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3061 section = abfd->sections;
3062 for (i = 0; i < num_spaces; i++)
3063 {
3064 asection *subsection;
3065
3066 /* Find a space. */
3067 while (!som_is_space (section))
3068 section = section->next;
3069
3070 if (abfd->flags & (EXEC_P | DYNAMIC))
3071 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3072
3073 /* Now look for all its subspaces. */
3074 for (subsection = abfd->sections;
3075 subsection != NULL;
3076 subsection = subsection->next)
3077 {
3078
3079 if (!som_is_subspace (subsection)
3080 || !som_is_container (section, subsection)
3081 || (subsection->flags & SEC_ALLOC) != 0)
3082 continue;
3083
3084 subsection->target_index = total_subspaces;
3085 /* This is real data to be loaded from the file. */
3086 if ((subsection->flags & SEC_LOAD) == 0)
3087 {
3088 som_section_data (subsection)->subspace_dict->file_loc_init_value
3089 = current_offset;
3090 subsection->filepos = current_offset;
3091 current_offset += bfd_section_size (abfd, subsection);
3092 }
3093 /* Looks like uninitialized data. */
3094 else
3095 {
3096 som_section_data (subsection)->subspace_dict->file_loc_init_value
3097 = 0;
3098 som_section_data (subsection)->subspace_dict->
3099 initialization_length = bfd_section_size (abfd, subsection);
3100 }
3101 }
3102 /* Goto the next section. */
3103 section = section->next;
3104 }
3105
3106 /* If building an executable, then make sure to seek to and write
3107 one byte at the end of the file to make sure any necessary
3108 zeros are filled in. Ugh. */
3109 if (abfd->flags & (EXEC_P | DYNAMIC))
3110 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3111 if (bfd_seek (abfd, current_offset - 1, SEEK_SET) < 0)
3112 return false;
3113 if (bfd_write ((PTR) "", 1, 1, abfd) != 1)
3114 return false;
3115
3116 obj_som_file_hdr (abfd)->unloadable_sp_size
3117 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3118
3119 /* Loader fixups are not supported in any way shape or form. */
3120 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3121 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3122
3123 /* Done. Store the total size of the SOM. */
3124 obj_som_file_hdr (abfd)->som_length = current_offset;
3125
3126 /* Now write the exec header. */
3127 if (abfd->flags & (EXEC_P | DYNAMIC))
3128 {
3129 long tmp;
3130
3131 exec_header.exec_entry = bfd_get_start_address (abfd);
3132 exec_header.exec_flags = obj_som_exec_data (abfd)->exec_flags;
3133
3134 /* Oh joys. Ram some of the BSS data into the DATA section
3135 to be compatable with how the hp linker makes objects
3136 (saves memory space). */
3137 tmp = exec_header.exec_dsize;
3138 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3139 exec_header.exec_bsize -= (tmp - exec_header.exec_dsize);
3140 if (exec_header.exec_bsize < 0)
3141 exec_header.exec_bsize = 0;
3142 exec_header.exec_dsize = tmp;
3143
3144 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
3145 SEEK_SET) < 0)
3146 return false;
3147
3148 if (bfd_write ((PTR) &exec_header, AUX_HDR_SIZE, 1, abfd)
3149 != AUX_HDR_SIZE)
3150 return false;
3151 }
3152 return true;
3153 }
3154
3155 /* Finally, scribble out the various headers to the disk. */
3156
3157 static boolean
3158 som_write_headers (abfd)
3159 bfd *abfd;
3160 {
3161 int num_spaces = som_count_spaces (abfd);
3162 int i;
3163 int subspace_index = 0;
3164 file_ptr location;
3165 asection *section;
3166
3167 /* Subspaces are written first so that we can set up information
3168 about them in their containing spaces as the subspace is written. */
3169
3170 /* Seek to the start of the subspace dictionary records. */
3171 location = obj_som_file_hdr (abfd)->subspace_location;
3172 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3173 return false;
3174
3175 section = abfd->sections;
3176 /* Now for each loadable space write out records for its subspaces. */
3177 for (i = 0; i < num_spaces; i++)
3178 {
3179 asection *subsection;
3180
3181 /* Find a space. */
3182 while (!som_is_space (section))
3183 section = section->next;
3184
3185 /* Now look for all its subspaces. */
3186 for (subsection = abfd->sections;
3187 subsection != NULL;
3188 subsection = subsection->next)
3189 {
3190
3191 /* Skip any section which does not correspond to a space
3192 or subspace. Or does not have SEC_ALLOC set (and therefore
3193 has no real bits on the disk). */
3194 if (!som_is_subspace (subsection)
3195 || !som_is_container (section, subsection)
3196 || (subsection->flags & SEC_ALLOC) == 0)
3197 continue;
3198
3199 /* If this is the first subspace for this space, then save
3200 the index of the subspace in its containing space. Also
3201 set "is_loadable" in the containing space. */
3202
3203 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3204 {
3205 som_section_data (section)->space_dict->is_loadable = 1;
3206 som_section_data (section)->space_dict->subspace_index
3207 = subspace_index;
3208 }
3209
3210 /* Increment the number of subspaces seen and the number of
3211 subspaces contained within the current space. */
3212 subspace_index++;
3213 som_section_data (section)->space_dict->subspace_quantity++;
3214
3215 /* Mark the index of the current space within the subspace's
3216 dictionary record. */
3217 som_section_data (subsection)->subspace_dict->space_index = i;
3218
3219 /* Dump the current subspace header. */
3220 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3221 sizeof (struct subspace_dictionary_record), 1, abfd)
3222 != sizeof (struct subspace_dictionary_record))
3223 return false;
3224 }
3225 /* Goto the next section. */
3226 section = section->next;
3227 }
3228
3229 /* Now repeat the process for unloadable subspaces. */
3230 section = abfd->sections;
3231 /* Now for each space write out records for its subspaces. */
3232 for (i = 0; i < num_spaces; i++)
3233 {
3234 asection *subsection;
3235
3236 /* Find a space. */
3237 while (!som_is_space (section))
3238 section = section->next;
3239
3240 /* Now look for all its subspaces. */
3241 for (subsection = abfd->sections;
3242 subsection != NULL;
3243 subsection = subsection->next)
3244 {
3245
3246 /* Skip any section which does not correspond to a space or
3247 subspace, or which SEC_ALLOC set (and therefore handled
3248 in the loadable spaces/subspaces code above). */
3249
3250 if (!som_is_subspace (subsection)
3251 || !som_is_container (section, subsection)
3252 || (subsection->flags & SEC_ALLOC) != 0)
3253 continue;
3254
3255 /* If this is the first subspace for this space, then save
3256 the index of the subspace in its containing space. Clear
3257 "is_loadable". */
3258
3259 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3260 {
3261 som_section_data (section)->space_dict->is_loadable = 0;
3262 som_section_data (section)->space_dict->subspace_index
3263 = subspace_index;
3264 }
3265
3266 /* Increment the number of subspaces seen and the number of
3267 subspaces contained within the current space. */
3268 som_section_data (section)->space_dict->subspace_quantity++;
3269 subspace_index++;
3270
3271 /* Mark the index of the current space within the subspace's
3272 dictionary record. */
3273 som_section_data (subsection)->subspace_dict->space_index = i;
3274
3275 /* Dump this subspace header. */
3276 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3277 sizeof (struct subspace_dictionary_record), 1, abfd)
3278 != sizeof (struct subspace_dictionary_record))
3279 return false;
3280 }
3281 /* Goto the next section. */
3282 section = section->next;
3283 }
3284
3285 /* All the subspace dictiondary records are written, and all the
3286 fields are set up in the space dictionary records.
3287
3288 Seek to the right location and start writing the space
3289 dictionary records. */
3290 location = obj_som_file_hdr (abfd)->space_location;
3291 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3292 return false;
3293
3294 section = abfd->sections;
3295 for (i = 0; i < num_spaces; i++)
3296 {
3297
3298 /* Find a space. */
3299 while (!som_is_space (section))
3300 section = section->next;
3301
3302 /* Dump its header */
3303 if (bfd_write ((PTR) som_section_data (section)->space_dict,
3304 sizeof (struct space_dictionary_record), 1, abfd)
3305 != sizeof (struct space_dictionary_record))
3306 return false;
3307
3308 /* Goto the next section. */
3309 section = section->next;
3310 }
3311
3312 /* Only thing left to do is write out the file header. It is always
3313 at location zero. Seek there and write it. */
3314 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0)
3315 return false;
3316 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3317 sizeof (struct header), 1, abfd)
3318 != sizeof (struct header))
3319 return false;
3320 return true;
3321 }
3322
3323 /* Compute and return the checksum for a SOM file header. */
3324
3325 static unsigned long
3326 som_compute_checksum (abfd)
3327 bfd *abfd;
3328 {
3329 unsigned long checksum, count, i;
3330 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3331
3332 checksum = 0;
3333 count = sizeof (struct header) / sizeof (unsigned long);
3334 for (i = 0; i < count; i++)
3335 checksum ^= *(buffer + i);
3336
3337 return checksum;
3338 }
3339
3340 static void
3341 som_bfd_derive_misc_symbol_info (abfd, sym, info)
3342 bfd *abfd;
3343 asymbol *sym;
3344 struct som_misc_symbol_info *info;
3345 {
3346 /* Initialize. */
3347 memset (info, 0, sizeof (struct som_misc_symbol_info));
3348
3349 /* The HP SOM linker requires detailed type information about
3350 all symbols (including undefined symbols!). Unfortunately,
3351 the type specified in an import/export statement does not
3352 always match what the linker wants. Severe braindamage. */
3353
3354 /* Section symbols will not have a SOM symbol type assigned to
3355 them yet. Assign all section symbols type ST_DATA. */
3356 if (sym->flags & BSF_SECTION_SYM)
3357 info->symbol_type = ST_DATA;
3358 else
3359 {
3360 /* Common symbols must have scope SS_UNSAT and type
3361 ST_STORAGE or the linker will choke. */
3362 if (sym->section == &bfd_com_section)
3363 {
3364 info->symbol_scope = SS_UNSAT;
3365 info->symbol_type = ST_STORAGE;
3366 }
3367
3368 /* It is possible to have a symbol without an associated
3369 type. This happens if the user imported the symbol
3370 without a type and the symbol was never defined
3371 locally. If BSF_FUNCTION is set for this symbol, then
3372 assign it type ST_CODE (the HP linker requires undefined
3373 external functions to have type ST_CODE rather than ST_ENTRY). */
3374 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3375 && sym->section == &bfd_und_section
3376 && sym->flags & BSF_FUNCTION)
3377 info->symbol_type = ST_CODE;
3378
3379 /* Handle function symbols which were defined in this file.
3380 They should have type ST_ENTRY. Also retrieve the argument
3381 relocation bits from the SOM backend information. */
3382 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3383 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3384 && (sym->flags & BSF_FUNCTION))
3385 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3386 && (sym->flags & BSF_FUNCTION)))
3387 {
3388 info->symbol_type = ST_ENTRY;
3389 info->arg_reloc = som_symbol_data (sym)->tc_data.hppa_arg_reloc;
3390 }
3391
3392 /* If the type is unknown at this point, it should be
3393 ST_DATA (functions were handled as special cases above). */
3394 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3395 info->symbol_type = ST_DATA;
3396
3397 /* From now on it's a very simple mapping. */
3398 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3399 info->symbol_type = ST_ABSOLUTE;
3400 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3401 info->symbol_type = ST_CODE;
3402 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3403 info->symbol_type = ST_DATA;
3404 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3405 info->symbol_type = ST_MILLICODE;
3406 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3407 info->symbol_type = ST_PLABEL;
3408 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3409 info->symbol_type = ST_PRI_PROG;
3410 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3411 info->symbol_type = ST_SEC_PROG;
3412 }
3413
3414 /* Now handle the symbol's scope. Exported data which is not
3415 in the common section has scope SS_UNIVERSAL. Note scope
3416 of common symbols was handled earlier! */
3417 if (sym->flags & BSF_EXPORT && sym->section != &bfd_com_section)
3418 info->symbol_scope = SS_UNIVERSAL;
3419 /* Any undefined symbol at this point has a scope SS_UNSAT. */
3420 else if (sym->section == &bfd_und_section)
3421 info->symbol_scope = SS_UNSAT;
3422 /* Anything else which is not in the common section has scope
3423 SS_LOCAL. */
3424 else if (sym->section != &bfd_com_section)
3425 info->symbol_scope = SS_LOCAL;
3426
3427 /* Now set the symbol_info field. It has no real meaning
3428 for undefined or common symbols, but the HP linker will
3429 choke if it's not set to some "reasonable" value. We
3430 use zero as a reasonable value. */
3431 if (sym->section == &bfd_com_section || sym->section == &bfd_und_section
3432 || sym->section == &bfd_abs_section)
3433 info->symbol_info = 0;
3434 /* For all other symbols, the symbol_info field contains the
3435 subspace index of the space this symbol is contained in. */
3436 else
3437 info->symbol_info = sym->section->target_index;
3438
3439 /* Set the symbol's value. */
3440 info->symbol_value = sym->value + sym->section->vma;
3441 }
3442
3443 /* Build and write, in one big chunk, the entire symbol table for
3444 this BFD. */
3445
3446 static boolean
3447 som_build_and_write_symbol_table (abfd)
3448 bfd *abfd;
3449 {
3450 unsigned int num_syms = bfd_get_symcount (abfd);
3451 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3452 asymbol **bfd_syms = bfd_get_outsymbols (abfd);
3453 struct symbol_dictionary_record *som_symtab = NULL;
3454 int i, symtab_size;
3455
3456 /* Compute total symbol table size and allocate a chunk of memory
3457 to hold the symbol table as we build it. */
3458 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3459 som_symtab = (struct symbol_dictionary_record *) malloc (symtab_size);
3460 if (som_symtab == NULL && symtab_size != 0)
3461 {
3462 bfd_set_error (bfd_error_no_memory);
3463 goto error_return;
3464 }
3465 memset (som_symtab, 0, symtab_size);
3466
3467 /* Walk over each symbol. */
3468 for (i = 0; i < num_syms; i++)
3469 {
3470 struct som_misc_symbol_info info;
3471
3472 /* This is really an index into the symbol strings table.
3473 By the time we get here, the index has already been
3474 computed and stored into the name field in the BFD symbol. */
3475 som_symtab[i].name.n_strx = (int) bfd_syms[i]->name;
3476
3477 /* Derive SOM information from the BFD symbol. */
3478 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
3479
3480 /* Now use it. */
3481 som_symtab[i].symbol_type = info.symbol_type;
3482 som_symtab[i].symbol_scope = info.symbol_scope;
3483 som_symtab[i].arg_reloc = info.arg_reloc;
3484 som_symtab[i].symbol_info = info.symbol_info;
3485 som_symtab[i].symbol_value = info.symbol_value;
3486 }
3487
3488 /* Everything is ready, seek to the right location and
3489 scribble out the symbol table. */
3490 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3491 return false;
3492
3493 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3494 goto error_return;
3495
3496 if (som_symtab != NULL)
3497 free (som_symtab);
3498 return true;
3499 error_return:
3500 if (som_symtab != NULL)
3501 free (som_symtab);
3502 return false;
3503 }
3504
3505 /* Write an object in SOM format. */
3506
3507 static boolean
3508 som_write_object_contents (abfd)
3509 bfd *abfd;
3510 {
3511 if (abfd->output_has_begun == false)
3512 {
3513 /* Set up fixed parts of the file, space, and subspace headers.
3514 Notify the world that output has begun. */
3515 som_prep_headers (abfd);
3516 abfd->output_has_begun = true;
3517 /* Start writing the object file. This include all the string
3518 tables, fixup streams, and other portions of the object file. */
3519 som_begin_writing (abfd);
3520 }
3521
3522 /* Now that the symbol table information is complete, build and
3523 write the symbol table. */
3524 if (som_build_and_write_symbol_table (abfd) == false)
3525 return false;
3526
3527 /* Compute the checksum for the file header just before writing
3528 the header to disk. */
3529 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3530 return (som_write_headers (abfd));
3531 }
3532
3533 \f
3534 /* Read and save the string table associated with the given BFD. */
3535
3536 static boolean
3537 som_slurp_string_table (abfd)
3538 bfd *abfd;
3539 {
3540 char *stringtab;
3541
3542 /* Use the saved version if its available. */
3543 if (obj_som_stringtab (abfd) != NULL)
3544 return true;
3545
3546 /* I don't think this can currently happen, and I'm not sure it should
3547 really be an error, but it's better than getting unpredictable results
3548 from the host's malloc when passed a size of zero. */
3549 if (obj_som_stringtab_size (abfd) == 0)
3550 {
3551 bfd_set_error (bfd_error_no_symbols);
3552 return false;
3553 }
3554
3555 /* Allocate and read in the string table. */
3556 stringtab = malloc (obj_som_stringtab_size (abfd));
3557 if (stringtab == NULL)
3558 {
3559 bfd_set_error (bfd_error_no_memory);
3560 return false;
3561 }
3562
3563 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3564 return false;
3565
3566 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3567 != obj_som_stringtab_size (abfd))
3568 return false;
3569
3570 /* Save our results and return success. */
3571 obj_som_stringtab (abfd) = stringtab;
3572 return true;
3573 }
3574
3575 /* Return the amount of data (in bytes) required to hold the symbol
3576 table for this object. */
3577
3578 static long
3579 som_get_symtab_upper_bound (abfd)
3580 bfd *abfd;
3581 {
3582 if (!som_slurp_symbol_table (abfd))
3583 return -1;
3584
3585 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
3586 }
3587
3588 /* Convert from a SOM subspace index to a BFD section. */
3589
3590 static asection *
3591 bfd_section_from_som_symbol (abfd, symbol)
3592 bfd *abfd;
3593 struct symbol_dictionary_record *symbol;
3594 {
3595 asection *section;
3596
3597 /* The meaning of the symbol_info field changes for functions
3598 within executables. So only use the quick symbol_info mapping for
3599 incomplete objects and non-function symbols in executables. */
3600 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
3601 || (symbol->symbol_type != ST_ENTRY
3602 && symbol->symbol_type != ST_PRI_PROG
3603 && symbol->symbol_type != ST_SEC_PROG
3604 && symbol->symbol_type != ST_MILLICODE))
3605 {
3606 unsigned int index = symbol->symbol_info;
3607 for (section = abfd->sections; section != NULL; section = section->next)
3608 if (section->target_index == index)
3609 return section;
3610
3611 /* Should never happen. */
3612 abort();
3613 }
3614 else
3615 {
3616 unsigned int value = symbol->symbol_value;
3617
3618 /* For executables we will have to use the symbol's address and
3619 find out what section would contain that address. Yuk. */
3620 for (section = abfd->sections; section; section = section->next)
3621 {
3622 if (value >= section->vma
3623 && value <= section->vma + section->_cooked_size)
3624 return section;
3625 }
3626
3627 /* Should never happen. */
3628 abort ();
3629 }
3630 }
3631
3632 /* Read and save the symbol table associated with the given BFD. */
3633
3634 static unsigned int
3635 som_slurp_symbol_table (abfd)
3636 bfd *abfd;
3637 {
3638 int symbol_count = bfd_get_symcount (abfd);
3639 int symsize = sizeof (struct symbol_dictionary_record);
3640 char *stringtab;
3641 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
3642 som_symbol_type *sym, *symbase;
3643
3644 /* Return saved value if it exists. */
3645 if (obj_som_symtab (abfd) != NULL)
3646 goto successful_return;
3647
3648 /* Special case. This is *not* an error. */
3649 if (symbol_count == 0)
3650 goto successful_return;
3651
3652 if (!som_slurp_string_table (abfd))
3653 goto error_return;
3654
3655 stringtab = obj_som_stringtab (abfd);
3656
3657 symbase = (som_symbol_type *)
3658 malloc (symbol_count * sizeof (som_symbol_type));
3659 if (symbase == NULL)
3660 {
3661 bfd_set_error (bfd_error_no_memory);
3662 goto error_return;
3663 }
3664
3665 /* Read in the external SOM representation. */
3666 buf = malloc (symbol_count * symsize);
3667 if (buf == NULL && symbol_count * symsize != 0)
3668 {
3669 bfd_set_error (bfd_error_no_memory);
3670 goto error_return;
3671 }
3672 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
3673 goto error_return;
3674 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
3675 != symbol_count * symsize)
3676 goto error_return;
3677
3678 /* Iterate over all the symbols and internalize them. */
3679 endbufp = buf + symbol_count;
3680 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
3681 {
3682
3683 /* I don't think we care about these. */
3684 if (bufp->symbol_type == ST_SYM_EXT
3685 || bufp->symbol_type == ST_ARG_EXT)
3686 continue;
3687
3688 /* Set some private data we care about. */
3689 if (bufp->symbol_type == ST_NULL)
3690 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3691 else if (bufp->symbol_type == ST_ABSOLUTE)
3692 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
3693 else if (bufp->symbol_type == ST_DATA)
3694 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
3695 else if (bufp->symbol_type == ST_CODE)
3696 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
3697 else if (bufp->symbol_type == ST_PRI_PROG)
3698 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
3699 else if (bufp->symbol_type == ST_SEC_PROG)
3700 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
3701 else if (bufp->symbol_type == ST_ENTRY)
3702 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
3703 else if (bufp->symbol_type == ST_MILLICODE)
3704 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
3705 else if (bufp->symbol_type == ST_PLABEL)
3706 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
3707 else
3708 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3709 som_symbol_data (sym)->tc_data.hppa_arg_reloc = bufp->arg_reloc;
3710
3711 /* Some reasonable defaults. */
3712 sym->symbol.the_bfd = abfd;
3713 sym->symbol.name = bufp->name.n_strx + stringtab;
3714 sym->symbol.value = bufp->symbol_value;
3715 sym->symbol.section = 0;
3716 sym->symbol.flags = 0;
3717
3718 switch (bufp->symbol_type)
3719 {
3720 case ST_ENTRY:
3721 case ST_PRI_PROG:
3722 case ST_SEC_PROG:
3723 case ST_MILLICODE:
3724 sym->symbol.flags |= BSF_FUNCTION;
3725 sym->symbol.value &= ~0x3;
3726 break;
3727
3728 case ST_STUB:
3729 case ST_CODE:
3730 sym->symbol.value &= ~0x3;
3731
3732 default:
3733 break;
3734 }
3735
3736 /* Handle scoping and section information. */
3737 switch (bufp->symbol_scope)
3738 {
3739 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
3740 so the section associated with this symbol can't be known. */
3741 case SS_EXTERNAL:
3742 if (bufp->symbol_type != ST_STORAGE)
3743 sym->symbol.section = &bfd_und_section;
3744 else
3745 sym->symbol.section = &bfd_com_section;
3746 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3747 break;
3748
3749 case SS_UNSAT:
3750 if (bufp->symbol_type != ST_STORAGE)
3751 sym->symbol.section = &bfd_und_section;
3752 else
3753 sym->symbol.section = &bfd_com_section;
3754 break;
3755
3756 case SS_UNIVERSAL:
3757 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3758 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3759 sym->symbol.value -= sym->symbol.section->vma;
3760 break;
3761
3762 #if 0
3763 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
3764 Sound dumb? It is. */
3765 case SS_GLOBAL:
3766 #endif
3767 case SS_LOCAL:
3768 sym->symbol.flags |= BSF_LOCAL;
3769 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3770 sym->symbol.value -= sym->symbol.section->vma;
3771 break;
3772 }
3773
3774 /* Mark section symbols and symbols used by the debugger. */
3775 if (sym->symbol.name[0] == '$'
3776 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$')
3777 sym->symbol.flags |= BSF_SECTION_SYM;
3778 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
3779 {
3780 sym->symbol.flags |= BSF_SECTION_SYM;
3781 sym->symbol.name = sym->symbol.section->name;
3782 }
3783 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
3784 sym->symbol.flags |= BSF_DEBUGGING;
3785
3786 /* Note increment at bottom of loop, since we skip some symbols
3787 we can not include it as part of the for statement. */
3788 sym++;
3789 }
3790
3791 /* Save our results and return success. */
3792 obj_som_symtab (abfd) = symbase;
3793 successful_return:
3794 if (buf != NULL)
3795 free (buf);
3796 return (true);
3797
3798 error_return:
3799 if (buf != NULL)
3800 free (buf);
3801 return false;
3802 }
3803
3804 /* Canonicalize a SOM symbol table. Return the number of entries
3805 in the symbol table. */
3806
3807 static long
3808 som_get_symtab (abfd, location)
3809 bfd *abfd;
3810 asymbol **location;
3811 {
3812 int i;
3813 som_symbol_type *symbase;
3814
3815 if (!som_slurp_symbol_table (abfd))
3816 return -1;
3817
3818 i = bfd_get_symcount (abfd);
3819 symbase = obj_som_symtab (abfd);
3820
3821 for (; i > 0; i--, location++, symbase++)
3822 *location = &symbase->symbol;
3823
3824 /* Final null pointer. */
3825 *location = 0;
3826 return (bfd_get_symcount (abfd));
3827 }
3828
3829 /* Make a SOM symbol. There is nothing special to do here. */
3830
3831 static asymbol *
3832 som_make_empty_symbol (abfd)
3833 bfd *abfd;
3834 {
3835 som_symbol_type *new =
3836 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
3837 if (new == NULL)
3838 {
3839 bfd_set_error (bfd_error_no_memory);
3840 return 0;
3841 }
3842 new->symbol.the_bfd = abfd;
3843
3844 return &new->symbol;
3845 }
3846
3847 /* Print symbol information. */
3848
3849 static void
3850 som_print_symbol (ignore_abfd, afile, symbol, how)
3851 bfd *ignore_abfd;
3852 PTR afile;
3853 asymbol *symbol;
3854 bfd_print_symbol_type how;
3855 {
3856 FILE *file = (FILE *) afile;
3857 switch (how)
3858 {
3859 case bfd_print_symbol_name:
3860 fprintf (file, "%s", symbol->name);
3861 break;
3862 case bfd_print_symbol_more:
3863 fprintf (file, "som ");
3864 fprintf_vma (file, symbol->value);
3865 fprintf (file, " %lx", (long) symbol->flags);
3866 break;
3867 case bfd_print_symbol_all:
3868 {
3869 CONST char *section_name;
3870 section_name = symbol->section ? symbol->section->name : "(*none*)";
3871 bfd_print_symbol_vandf ((PTR) file, symbol);
3872 fprintf (file, " %s\t%s", section_name, symbol->name);
3873 break;
3874 }
3875 }
3876 }
3877
3878 static boolean
3879 som_bfd_is_local_label (abfd, sym)
3880 bfd *abfd;
3881 asymbol *sym;
3882 {
3883 return (sym->name[0] == 'L' && sym->name[1] == '$');
3884 }
3885
3886 /* Count or process variable-length SOM fixup records.
3887
3888 To avoid code duplication we use this code both to compute the number
3889 of relocations requested by a stream, and to internalize the stream.
3890
3891 When computing the number of relocations requested by a stream the
3892 variables rptr, section, and symbols have no meaning.
3893
3894 Return the number of relocations requested by the fixup stream. When
3895 not just counting
3896
3897 This needs at least two or three more passes to get it cleaned up. */
3898
3899 static unsigned int
3900 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
3901 unsigned char *fixup;
3902 unsigned int end;
3903 arelent *internal_relocs;
3904 asection *section;
3905 asymbol **symbols;
3906 boolean just_count;
3907 {
3908 unsigned int op, varname;
3909 unsigned char *end_fixups = &fixup[end];
3910 const struct fixup_format *fp;
3911 char *cp;
3912 unsigned char *save_fixup;
3913 int variables[26], stack[20], c, v, count, prev_fixup, *sp;
3914 const int *subop;
3915 arelent *rptr= internal_relocs;
3916 unsigned int offset = just_count ? 0 : section->vma;
3917
3918 #define var(c) variables[(c) - 'A']
3919 #define push(v) (*sp++ = (v))
3920 #define pop() (*--sp)
3921 #define emptystack() (sp == stack)
3922
3923 som_initialize_reloc_queue (reloc_queue);
3924 memset (variables, 0, sizeof (variables));
3925 memset (stack, 0, sizeof (stack));
3926 count = 0;
3927 prev_fixup = 0;
3928 sp = stack;
3929
3930 while (fixup < end_fixups)
3931 {
3932
3933 /* Save pointer to the start of this fixup. We'll use
3934 it later to determine if it is necessary to put this fixup
3935 on the queue. */
3936 save_fixup = fixup;
3937
3938 /* Get the fixup code and its associated format. */
3939 op = *fixup++;
3940 fp = &som_fixup_formats[op];
3941
3942 /* Handle a request for a previous fixup. */
3943 if (*fp->format == 'P')
3944 {
3945 /* Get pointer to the beginning of the prev fixup, move
3946 the repeated fixup to the head of the queue. */
3947 fixup = reloc_queue[fp->D].reloc;
3948 som_reloc_queue_fix (reloc_queue, fp->D);
3949 prev_fixup = 1;
3950
3951 /* Get the fixup code and its associated format. */
3952 op = *fixup++;
3953 fp = &som_fixup_formats[op];
3954 }
3955
3956 /* If we are not just counting, set some reasonable defaults. */
3957 if (! just_count)
3958 {
3959 rptr->address = offset;
3960 rptr->howto = &som_hppa_howto_table[op];
3961 rptr->addend = 0;
3962 rptr->sym_ptr_ptr = bfd_abs_section.symbol_ptr_ptr;
3963 }
3964
3965 /* Set default input length to 0. Get the opcode class index
3966 into D. */
3967 var ('L') = 0;
3968 var ('D') = fp->D;
3969
3970 /* Get the opcode format. */
3971 cp = fp->format;
3972
3973 /* Process the format string. Parsing happens in two phases,
3974 parse RHS, then assign to LHS. Repeat until no more
3975 characters in the format string. */
3976 while (*cp)
3977 {
3978 /* The variable this pass is going to compute a value for. */
3979 varname = *cp++;
3980
3981 /* Start processing RHS. Continue until a NULL or '=' is found. */
3982 do
3983 {
3984 c = *cp++;
3985
3986 /* If this is a variable, push it on the stack. */
3987 if (isupper (c))
3988 push (var (c));
3989
3990 /* If this is a lower case letter, then it represents
3991 additional data from the fixup stream to be pushed onto
3992 the stack. */
3993 else if (islower (c))
3994 {
3995 for (v = 0; c > 'a'; --c)
3996 v = (v << 8) | *fixup++;
3997 push (v);
3998 }
3999
4000 /* A decimal constant. Push it on the stack. */
4001 else if (isdigit (c))
4002 {
4003 v = c - '0';
4004 while (isdigit (*cp))
4005 v = (v * 10) + (*cp++ - '0');
4006 push (v);
4007 }
4008 else
4009
4010 /* An operator. Pop two two values from the stack and
4011 use them as operands to the given operation. Push
4012 the result of the operation back on the stack. */
4013 switch (c)
4014 {
4015 case '+':
4016 v = pop ();
4017 v += pop ();
4018 push (v);
4019 break;
4020 case '*':
4021 v = pop ();
4022 v *= pop ();
4023 push (v);
4024 break;
4025 case '<':
4026 v = pop ();
4027 v = pop () << v;
4028 push (v);
4029 break;
4030 default:
4031 abort ();
4032 }
4033 }
4034 while (*cp && *cp != '=');
4035
4036 /* Move over the equal operator. */
4037 cp++;
4038
4039 /* Pop the RHS off the stack. */
4040 c = pop ();
4041
4042 /* Perform the assignment. */
4043 var (varname) = c;
4044
4045 /* Handle side effects. and special 'O' stack cases. */
4046 switch (varname)
4047 {
4048 /* Consume some bytes from the input space. */
4049 case 'L':
4050 offset += c;
4051 break;
4052 /* A symbol to use in the relocation. Make a note
4053 of this if we are not just counting. */
4054 case 'S':
4055 if (! just_count)
4056 rptr->sym_ptr_ptr = &symbols[c];
4057 break;
4058 /* Handle the linker expression stack. */
4059 case 'O':
4060 switch (op)
4061 {
4062 case R_COMP1:
4063 subop = comp1_opcodes;
4064 break;
4065 case R_COMP2:
4066 subop = comp2_opcodes;
4067 break;
4068 case R_COMP3:
4069 subop = comp3_opcodes;
4070 break;
4071 default:
4072 abort ();
4073 }
4074 while (*subop <= (unsigned char) c)
4075 ++subop;
4076 --subop;
4077 break;
4078 default:
4079 break;
4080 }
4081 }
4082
4083 /* If we used a previous fixup, clean up after it. */
4084 if (prev_fixup)
4085 {
4086 fixup = save_fixup + 1;
4087 prev_fixup = 0;
4088 }
4089 /* Queue it. */
4090 else if (fixup > save_fixup + 1)
4091 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4092
4093 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4094 fixups to BFD. */
4095 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4096 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4097 {
4098 /* Done with a single reloction. Loop back to the top. */
4099 if (! just_count)
4100 {
4101 rptr->addend = var ('V');
4102 rptr++;
4103 }
4104 count++;
4105 /* Now that we've handled a "full" relocation, reset
4106 some state. */
4107 memset (variables, 0, sizeof (variables));
4108 memset (stack, 0, sizeof (stack));
4109 }
4110 }
4111 return count;
4112
4113 #undef var
4114 #undef push
4115 #undef pop
4116 #undef emptystack
4117 }
4118
4119 /* Read in the relocs (aka fixups in SOM terms) for a section.
4120
4121 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4122 set to true to indicate it only needs a count of the number
4123 of actual relocations. */
4124
4125 static boolean
4126 som_slurp_reloc_table (abfd, section, symbols, just_count)
4127 bfd *abfd;
4128 asection *section;
4129 asymbol **symbols;
4130 boolean just_count;
4131 {
4132 char *external_relocs;
4133 unsigned int fixup_stream_size;
4134 arelent *internal_relocs;
4135 unsigned int num_relocs;
4136
4137 fixup_stream_size = som_section_data (section)->reloc_size;
4138 /* If there were no relocations, then there is nothing to do. */
4139 if (section->reloc_count == 0)
4140 return true;
4141
4142 /* If reloc_count is -1, then the relocation stream has not been
4143 parsed. We must do so now to know how many relocations exist. */
4144 if (section->reloc_count == -1)
4145 {
4146 external_relocs = (char *) malloc (fixup_stream_size);
4147 if (external_relocs == (char *) NULL)
4148 {
4149 bfd_set_error (bfd_error_no_memory);
4150 return false;
4151 }
4152 /* Read in the external forms. */
4153 if (bfd_seek (abfd,
4154 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4155 SEEK_SET)
4156 != 0)
4157 return false;
4158 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
4159 != fixup_stream_size)
4160 return false;
4161
4162 /* Let callers know how many relocations found.
4163 also save the relocation stream as we will
4164 need it again. */
4165 section->reloc_count = som_set_reloc_info (external_relocs,
4166 fixup_stream_size,
4167 NULL, NULL, NULL, true);
4168
4169 som_section_data (section)->reloc_stream = external_relocs;
4170 }
4171
4172 /* If the caller only wanted a count, then return now. */
4173 if (just_count)
4174 return true;
4175
4176 num_relocs = section->reloc_count;
4177 external_relocs = som_section_data (section)->reloc_stream;
4178 /* Return saved information about the relocations if it is available. */
4179 if (section->relocation != (arelent *) NULL)
4180 return true;
4181
4182 internal_relocs = (arelent *) malloc (num_relocs * sizeof (arelent));
4183 if (internal_relocs == (arelent *) NULL)
4184 {
4185 bfd_set_error (bfd_error_no_memory);
4186 return false;
4187 }
4188
4189 /* Process and internalize the relocations. */
4190 som_set_reloc_info (external_relocs, fixup_stream_size,
4191 internal_relocs, section, symbols, false);
4192
4193 /* Save our results and return success. */
4194 section->relocation = internal_relocs;
4195 return (true);
4196 }
4197
4198 /* Return the number of bytes required to store the relocation
4199 information associated with the given section. */
4200
4201 static long
4202 som_get_reloc_upper_bound (abfd, asect)
4203 bfd *abfd;
4204 sec_ptr asect;
4205 {
4206 /* If section has relocations, then read in the relocation stream
4207 and parse it to determine how many relocations exist. */
4208 if (asect->flags & SEC_RELOC)
4209 {
4210 if (! som_slurp_reloc_table (abfd, asect, NULL, true))
4211 return false;
4212 return (asect->reloc_count + 1) * sizeof (arelent);
4213 }
4214 /* There are no relocations. */
4215 return 0;
4216 }
4217
4218 /* Convert relocations from SOM (external) form into BFD internal
4219 form. Return the number of relocations. */
4220
4221 static long
4222 som_canonicalize_reloc (abfd, section, relptr, symbols)
4223 bfd *abfd;
4224 sec_ptr section;
4225 arelent **relptr;
4226 asymbol **symbols;
4227 {
4228 arelent *tblptr;
4229 int count;
4230
4231 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
4232 return -1;
4233
4234 count = section->reloc_count;
4235 tblptr = section->relocation;
4236
4237 while (count--)
4238 *relptr++ = tblptr++;
4239
4240 *relptr = (arelent *) NULL;
4241 return section->reloc_count;
4242 }
4243
4244 extern bfd_target som_vec;
4245
4246 /* A hook to set up object file dependent section information. */
4247
4248 static boolean
4249 som_new_section_hook (abfd, newsect)
4250 bfd *abfd;
4251 asection *newsect;
4252 {
4253 newsect->used_by_bfd =
4254 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
4255 if (!newsect->used_by_bfd)
4256 {
4257 bfd_set_error (bfd_error_no_memory);
4258 return false;
4259 }
4260 newsect->alignment_power = 3;
4261
4262 /* We allow more than three sections internally */
4263 return true;
4264 }
4265
4266 /* Copy any private info we understand from the input section
4267 to the output section. */
4268 static boolean
4269 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
4270 bfd *ibfd;
4271 asection *isection;
4272 bfd *obfd;
4273 asection *osection;
4274 {
4275 /* One day we may try to grok other private data. */
4276 if (ibfd->xvec->flavour != bfd_target_som_flavour
4277 || obfd->xvec->flavour != bfd_target_som_flavour
4278 || (!som_is_space (isection) && !som_is_subspace (isection)))
4279 return false;
4280
4281 som_section_data (osection)->copy_data
4282 = (struct som_copyable_section_data_struct *)
4283 bfd_zalloc (obfd, sizeof (struct som_copyable_section_data_struct));
4284 if (som_section_data (osection)->copy_data == NULL)
4285 {
4286 bfd_set_error (bfd_error_no_memory);
4287 return false;
4288 }
4289
4290 memcpy (som_section_data (osection)->copy_data,
4291 som_section_data (isection)->copy_data,
4292 sizeof (struct som_copyable_section_data_struct));
4293
4294 /* Reparent if necessary. */
4295 if (som_section_data (osection)->copy_data->container)
4296 som_section_data (osection)->copy_data->container =
4297 som_section_data (osection)->copy_data->container->output_section;
4298
4299 return true;
4300 }
4301
4302 /* Copy any private info we understand from the input bfd
4303 to the output bfd. */
4304
4305 static boolean
4306 som_bfd_copy_private_bfd_data (ibfd, obfd)
4307 bfd *ibfd, *obfd;
4308 {
4309 /* One day we may try to grok other private data. */
4310 if (ibfd->xvec->flavour != bfd_target_som_flavour
4311 || obfd->xvec->flavour != bfd_target_som_flavour)
4312 return false;
4313
4314 /* Allocate some memory to hold the data we need. */
4315 obj_som_exec_data (obfd) = (struct som_exec_data *)
4316 bfd_zalloc (obfd, sizeof (struct som_exec_data));
4317 if (obj_som_exec_data (obfd) == NULL)
4318 {
4319 bfd_set_error (bfd_error_no_memory);
4320 return false;
4321 }
4322
4323 /* Now copy the data. */
4324 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
4325 sizeof (struct som_exec_data));
4326
4327 return true;
4328 }
4329
4330 /* Set backend info for sections which can not be described
4331 in the BFD data structures. */
4332
4333 boolean
4334 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
4335 asection *section;
4336 int defined;
4337 int private;
4338 unsigned int sort_key;
4339 int spnum;
4340 {
4341 /* Allocate memory to hold the magic information. */
4342 if (som_section_data (section)->copy_data == NULL)
4343 {
4344 som_section_data (section)->copy_data
4345 = (struct som_copyable_section_data_struct *)
4346 bfd_zalloc (section->owner,
4347 sizeof (struct som_copyable_section_data_struct));
4348 if (som_section_data (section)->copy_data == NULL)
4349 {
4350 bfd_set_error (bfd_error_no_memory);
4351 return false;
4352 }
4353 }
4354 som_section_data (section)->copy_data->sort_key = sort_key;
4355 som_section_data (section)->copy_data->is_defined = defined;
4356 som_section_data (section)->copy_data->is_private = private;
4357 som_section_data (section)->copy_data->container = section;
4358 som_section_data (section)->copy_data->space_number = spnum;
4359 return true;
4360 }
4361
4362 /* Set backend info for subsections which can not be described
4363 in the BFD data structures. */
4364
4365 boolean
4366 bfd_som_set_subsection_attributes (section, container, access,
4367 sort_key, quadrant)
4368 asection *section;
4369 asection *container;
4370 int access;
4371 unsigned int sort_key;
4372 int quadrant;
4373 {
4374 /* Allocate memory to hold the magic information. */
4375 if (som_section_data (section)->copy_data == NULL)
4376 {
4377 som_section_data (section)->copy_data
4378 = (struct som_copyable_section_data_struct *)
4379 bfd_zalloc (section->owner,
4380 sizeof (struct som_copyable_section_data_struct));
4381 if (som_section_data (section)->copy_data == NULL)
4382 {
4383 bfd_set_error (bfd_error_no_memory);
4384 return false;
4385 }
4386 }
4387 som_section_data (section)->copy_data->sort_key = sort_key;
4388 som_section_data (section)->copy_data->access_control_bits = access;
4389 som_section_data (section)->copy_data->quadrant = quadrant;
4390 som_section_data (section)->copy_data->container = container;
4391 return true;
4392 }
4393
4394 /* Set the full SOM symbol type. SOM needs far more symbol information
4395 than any other object file format I'm aware of. It is mandatory
4396 to be able to know if a symbol is an entry point, millicode, data,
4397 code, absolute, storage request, or procedure label. If you get
4398 the symbol type wrong your program will not link. */
4399
4400 void
4401 bfd_som_set_symbol_type (symbol, type)
4402 asymbol *symbol;
4403 unsigned int type;
4404 {
4405 som_symbol_data (symbol)->som_type = type;
4406 }
4407
4408 /* Attach 64bits of unwind information to a symbol (which hopefully
4409 is a function of some kind!). It would be better to keep this
4410 in the R_ENTRY relocation, but there is not enough space. */
4411
4412 void
4413 bfd_som_attach_unwind_info (symbol, unwind_desc)
4414 asymbol *symbol;
4415 char *unwind_desc;
4416 {
4417 som_symbol_data (symbol)->unwind = unwind_desc;
4418 }
4419
4420 /* Attach an auxiliary header to the BFD backend so that it may be
4421 written into the object file. */
4422 boolean
4423 bfd_som_attach_aux_hdr (abfd, type, string)
4424 bfd *abfd;
4425 int type;
4426 char *string;
4427 {
4428 if (type == VERSION_AUX_ID)
4429 {
4430 int len = strlen (string);
4431 int pad = 0;
4432
4433 if (len % 4)
4434 pad = (4 - (len % 4));
4435 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
4436 bfd_zalloc (abfd, sizeof (struct aux_id)
4437 + sizeof (unsigned int) + len + pad);
4438 if (!obj_som_version_hdr (abfd))
4439 {
4440 bfd_set_error (bfd_error_no_memory);
4441 return false;
4442 }
4443 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
4444 obj_som_version_hdr (abfd)->header_id.length = len + pad;
4445 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
4446 obj_som_version_hdr (abfd)->string_length = len;
4447 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
4448 }
4449 else if (type == COPYRIGHT_AUX_ID)
4450 {
4451 int len = strlen (string);
4452 int pad = 0;
4453
4454 if (len % 4)
4455 pad = (4 - (len % 4));
4456 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
4457 bfd_zalloc (abfd, sizeof (struct aux_id)
4458 + sizeof (unsigned int) + len + pad);
4459 if (!obj_som_copyright_hdr (abfd))
4460 {
4461 bfd_set_error (bfd_error_no_memory);
4462 return false;
4463 }
4464 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
4465 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
4466 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
4467 obj_som_copyright_hdr (abfd)->string_length = len;
4468 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
4469 }
4470 return true;
4471 }
4472
4473 static boolean
4474 som_get_section_contents (abfd, section, location, offset, count)
4475 bfd *abfd;
4476 sec_ptr section;
4477 PTR location;
4478 file_ptr offset;
4479 bfd_size_type count;
4480 {
4481 if (count == 0 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4482 return true;
4483 if ((bfd_size_type)(offset+count) > section->_raw_size
4484 || bfd_seek (abfd, (file_ptr)(section->filepos + offset), SEEK_SET) == -1
4485 || bfd_read (location, (bfd_size_type)1, count, abfd) != count)
4486 return (false); /* on error */
4487 return (true);
4488 }
4489
4490 static boolean
4491 som_set_section_contents (abfd, section, location, offset, count)
4492 bfd *abfd;
4493 sec_ptr section;
4494 PTR location;
4495 file_ptr offset;
4496 bfd_size_type count;
4497 {
4498 if (abfd->output_has_begun == false)
4499 {
4500 /* Set up fixed parts of the file, space, and subspace headers.
4501 Notify the world that output has begun. */
4502 som_prep_headers (abfd);
4503 abfd->output_has_begun = true;
4504 /* Start writing the object file. This include all the string
4505 tables, fixup streams, and other portions of the object file. */
4506 som_begin_writing (abfd);
4507 }
4508
4509 /* Only write subspaces which have "real" contents (eg. the contents
4510 are not generated at run time by the OS). */
4511 if (!som_is_subspace (section)
4512 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4513 return true;
4514
4515 /* Seek to the proper offset within the object file and write the
4516 data. */
4517 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
4518 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
4519 return false;
4520
4521 if (bfd_write ((PTR) location, 1, count, abfd) != count)
4522 return false;
4523 return true;
4524 }
4525
4526 static boolean
4527 som_set_arch_mach (abfd, arch, machine)
4528 bfd *abfd;
4529 enum bfd_architecture arch;
4530 unsigned long machine;
4531 {
4532 /* Allow any architecture to be supported by the SOM backend */
4533 return bfd_default_set_arch_mach (abfd, arch, machine);
4534 }
4535
4536 static boolean
4537 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4538 functionname_ptr, line_ptr)
4539 bfd *abfd;
4540 asection *section;
4541 asymbol **symbols;
4542 bfd_vma offset;
4543 CONST char **filename_ptr;
4544 CONST char **functionname_ptr;
4545 unsigned int *line_ptr;
4546 {
4547 fprintf (stderr, "som_find_nearest_line unimplemented\n");
4548 fflush (stderr);
4549 abort ();
4550 return (false);
4551 }
4552
4553 static int
4554 som_sizeof_headers (abfd, reloc)
4555 bfd *abfd;
4556 boolean reloc;
4557 {
4558 fprintf (stderr, "som_sizeof_headers unimplemented\n");
4559 fflush (stderr);
4560 abort ();
4561 return (0);
4562 }
4563
4564 /* Return the single-character symbol type corresponding to
4565 SOM section S, or '?' for an unknown SOM section. */
4566
4567 static char
4568 som_section_type (s)
4569 const char *s;
4570 {
4571 const struct section_to_type *t;
4572
4573 for (t = &stt[0]; t->section; t++)
4574 if (!strcmp (s, t->section))
4575 return t->type;
4576 return '?';
4577 }
4578
4579 static int
4580 som_decode_symclass (symbol)
4581 asymbol *symbol;
4582 {
4583 char c;
4584
4585 if (bfd_is_com_section (symbol->section))
4586 return 'C';
4587 if (symbol->section == &bfd_und_section)
4588 return 'U';
4589 if (symbol->section == &bfd_ind_section)
4590 return 'I';
4591 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
4592 return '?';
4593
4594 if (symbol->section == &bfd_abs_section)
4595 c = 'a';
4596 else if (symbol->section)
4597 c = som_section_type (symbol->section->name);
4598 else
4599 return '?';
4600 if (symbol->flags & BSF_GLOBAL)
4601 c = toupper (c);
4602 return c;
4603 }
4604
4605 /* Return information about SOM symbol SYMBOL in RET. */
4606
4607 static void
4608 som_get_symbol_info (ignore_abfd, symbol, ret)
4609 bfd *ignore_abfd;
4610 asymbol *symbol;
4611 symbol_info *ret;
4612 {
4613 ret->type = som_decode_symclass (symbol);
4614 if (ret->type != 'U')
4615 ret->value = symbol->value+symbol->section->vma;
4616 else
4617 ret->value = 0;
4618 ret->name = symbol->name;
4619 }
4620
4621 /* Count the number of symbols in the archive symbol table. Necessary
4622 so that we can allocate space for all the carsyms at once. */
4623
4624 static boolean
4625 som_bfd_count_ar_symbols (abfd, lst_header, count)
4626 bfd *abfd;
4627 struct lst_header *lst_header;
4628 symindex *count;
4629 {
4630 unsigned int i;
4631 unsigned int *hash_table = NULL;
4632 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4633
4634 hash_table =
4635 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4636 if (hash_table == NULL && lst_header->hash_size != 0)
4637 {
4638 bfd_set_error (bfd_error_no_memory);
4639 goto error_return;
4640 }
4641
4642 /* Don't forget to initialize the counter! */
4643 *count = 0;
4644
4645 /* Read in the hash table. The has table is an array of 32bit file offsets
4646 which point to the hash chains. */
4647 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4648 != lst_header->hash_size * 4)
4649 goto error_return;
4650
4651 /* Walk each chain counting the number of symbols found on that particular
4652 chain. */
4653 for (i = 0; i < lst_header->hash_size; i++)
4654 {
4655 struct lst_symbol_record lst_symbol;
4656
4657 /* An empty chain has zero as it's file offset. */
4658 if (hash_table[i] == 0)
4659 continue;
4660
4661 /* Seek to the first symbol in this hash chain. */
4662 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4663 goto error_return;
4664
4665 /* Read in this symbol and update the counter. */
4666 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4667 != sizeof (lst_symbol))
4668 goto error_return;
4669
4670 (*count)++;
4671
4672 /* Now iterate through the rest of the symbols on this chain. */
4673 while (lst_symbol.next_entry)
4674 {
4675
4676 /* Seek to the next symbol. */
4677 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4678 < 0)
4679 goto error_return;
4680
4681 /* Read the symbol in and update the counter. */
4682 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4683 != sizeof (lst_symbol))
4684 goto error_return;
4685
4686 (*count)++;
4687 }
4688 }
4689 if (hash_table != NULL)
4690 free (hash_table);
4691 return true;
4692
4693 error_return:
4694 if (hash_table != NULL)
4695 free (hash_table);
4696 return false;
4697 }
4698
4699 /* Fill in the canonical archive symbols (SYMS) from the archive described
4700 by ABFD and LST_HEADER. */
4701
4702 static boolean
4703 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
4704 bfd *abfd;
4705 struct lst_header *lst_header;
4706 carsym **syms;
4707 {
4708 unsigned int i, len;
4709 carsym *set = syms[0];
4710 unsigned int *hash_table = NULL;
4711 struct som_entry *som_dict = NULL;
4712 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4713
4714 hash_table =
4715 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4716 if (hash_table == NULL && lst_header->hash_size != 0)
4717 {
4718 bfd_set_error (bfd_error_no_memory);
4719 goto error_return;
4720 }
4721
4722 som_dict =
4723 (struct som_entry *) malloc (lst_header->module_count
4724 * sizeof (struct som_entry));
4725 if (som_dict == NULL && lst_header->module_count != 0)
4726 {
4727 bfd_set_error (bfd_error_no_memory);
4728 goto error_return;
4729 }
4730
4731 /* Read in the hash table. The has table is an array of 32bit file offsets
4732 which point to the hash chains. */
4733 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4734 != lst_header->hash_size * 4)
4735 goto error_return;
4736
4737 /* Seek to and read in the SOM dictionary. We will need this to fill
4738 in the carsym's filepos field. */
4739 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
4740 goto error_return;
4741
4742 if (bfd_read ((PTR) som_dict, lst_header->module_count,
4743 sizeof (struct som_entry), abfd)
4744 != lst_header->module_count * sizeof (struct som_entry))
4745 goto error_return;
4746
4747 /* Walk each chain filling in the carsyms as we go along. */
4748 for (i = 0; i < lst_header->hash_size; i++)
4749 {
4750 struct lst_symbol_record lst_symbol;
4751
4752 /* An empty chain has zero as it's file offset. */
4753 if (hash_table[i] == 0)
4754 continue;
4755
4756 /* Seek to and read the first symbol on the chain. */
4757 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4758 goto error_return;
4759
4760 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4761 != sizeof (lst_symbol))
4762 goto error_return;
4763
4764 /* Get the name of the symbol, first get the length which is stored
4765 as a 32bit integer just before the symbol.
4766
4767 One might ask why we don't just read in the entire string table
4768 and index into it. Well, according to the SOM ABI the string
4769 index can point *anywhere* in the archive to save space, so just
4770 using the string table would not be safe. */
4771 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4772 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4773 goto error_return;
4774
4775 if (bfd_read (&len, 1, 4, abfd) != 4)
4776 goto error_return;
4777
4778 /* Allocate space for the name and null terminate it too. */
4779 set->name = bfd_zalloc (abfd, len + 1);
4780 if (!set->name)
4781 {
4782 bfd_set_error (bfd_error_no_memory);
4783 goto error_return;
4784 }
4785 if (bfd_read (set->name, 1, len, abfd) != len)
4786 goto error_return;
4787
4788 set->name[len] = 0;
4789
4790 /* Fill in the file offset. Note that the "location" field points
4791 to the SOM itself, not the ar_hdr in front of it. */
4792 set->file_offset = som_dict[lst_symbol.som_index].location
4793 - sizeof (struct ar_hdr);
4794
4795 /* Go to the next symbol. */
4796 set++;
4797
4798 /* Iterate through the rest of the chain. */
4799 while (lst_symbol.next_entry)
4800 {
4801 /* Seek to the next symbol and read it in. */
4802 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET) <0)
4803 goto error_return;
4804
4805 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4806 != sizeof (lst_symbol))
4807 goto error_return;
4808
4809 /* Seek to the name length & string and read them in. */
4810 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4811 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4812 goto error_return;
4813
4814 if (bfd_read (&len, 1, 4, abfd) != 4)
4815 goto error_return;
4816
4817 /* Allocate space for the name and null terminate it too. */
4818 set->name = bfd_zalloc (abfd, len + 1);
4819 if (!set->name)
4820 {
4821 bfd_set_error (bfd_error_no_memory);
4822 goto error_return;
4823 }
4824
4825 if (bfd_read (set->name, 1, len, abfd) != len)
4826 goto error_return;
4827 set->name[len] = 0;
4828
4829 /* Fill in the file offset. Note that the "location" field points
4830 to the SOM itself, not the ar_hdr in front of it. */
4831 set->file_offset = som_dict[lst_symbol.som_index].location
4832 - sizeof (struct ar_hdr);
4833
4834 /* Go on to the next symbol. */
4835 set++;
4836 }
4837 }
4838 /* If we haven't died by now, then we successfully read the entire
4839 archive symbol table. */
4840 if (hash_table != NULL)
4841 free (hash_table);
4842 if (som_dict != NULL)
4843 free (som_dict);
4844 return true;
4845
4846 error_return:
4847 if (hash_table != NULL)
4848 free (hash_table);
4849 if (som_dict != NULL)
4850 free (som_dict);
4851 return false;
4852 }
4853
4854 /* Read in the LST from the archive. */
4855 static boolean
4856 som_slurp_armap (abfd)
4857 bfd *abfd;
4858 {
4859 struct lst_header lst_header;
4860 struct ar_hdr ar_header;
4861 unsigned int parsed_size;
4862 struct artdata *ardata = bfd_ardata (abfd);
4863 char nextname[17];
4864 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
4865
4866 /* Special cases. */
4867 if (i == 0)
4868 return true;
4869 if (i != 16)
4870 return false;
4871
4872 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
4873 return false;
4874
4875 /* For archives without .o files there is no symbol table. */
4876 if (strncmp (nextname, "/ ", 16))
4877 {
4878 bfd_has_map (abfd) = false;
4879 return true;
4880 }
4881
4882 /* Read in and sanity check the archive header. */
4883 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
4884 != sizeof (struct ar_hdr))
4885 return false;
4886
4887 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
4888 {
4889 bfd_set_error (bfd_error_malformed_archive);
4890 return false;
4891 }
4892
4893 /* How big is the archive symbol table entry? */
4894 errno = 0;
4895 parsed_size = strtol (ar_header.ar_size, NULL, 10);
4896 if (errno != 0)
4897 {
4898 bfd_set_error (bfd_error_malformed_archive);
4899 return false;
4900 }
4901
4902 /* Save off the file offset of the first real user data. */
4903 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
4904
4905 /* Read in the library symbol table. We'll make heavy use of this
4906 in just a minute. */
4907 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
4908 != sizeof (struct lst_header))
4909 return false;
4910
4911 /* Sanity check. */
4912 if (lst_header.a_magic != LIBMAGIC)
4913 {
4914 bfd_set_error (bfd_error_malformed_archive);
4915 return false;
4916 }
4917
4918 /* Count the number of symbols in the library symbol table. */
4919 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
4920 == false)
4921 return false;
4922
4923 /* Get back to the start of the library symbol table. */
4924 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
4925 + sizeof (struct lst_header), SEEK_SET) < 0)
4926 return false;
4927
4928 /* Initializae the cache and allocate space for the library symbols. */
4929 ardata->cache = 0;
4930 ardata->symdefs = (carsym *) bfd_alloc (abfd,
4931 (ardata->symdef_count
4932 * sizeof (carsym)));
4933 if (!ardata->symdefs)
4934 {
4935 bfd_set_error (bfd_error_no_memory);
4936 return false;
4937 }
4938
4939 /* Now fill in the canonical archive symbols. */
4940 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
4941 == false)
4942 return false;
4943
4944 /* Seek back to the "first" file in the archive. Note the "first"
4945 file may be the extended name table. */
4946 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) < 0)
4947 return false;
4948
4949 /* Notify the generic archive code that we have a symbol map. */
4950 bfd_has_map (abfd) = true;
4951 return true;
4952 }
4953
4954 /* Begin preparing to write a SOM library symbol table.
4955
4956 As part of the prep work we need to determine the number of symbols
4957 and the size of the associated string section. */
4958
4959 static boolean
4960 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
4961 bfd *abfd;
4962 unsigned int *num_syms, *stringsize;
4963 {
4964 bfd *curr_bfd = abfd->archive_head;
4965
4966 /* Some initialization. */
4967 *num_syms = 0;
4968 *stringsize = 0;
4969
4970 /* Iterate over each BFD within this archive. */
4971 while (curr_bfd != NULL)
4972 {
4973 unsigned int curr_count, i;
4974 som_symbol_type *sym;
4975
4976 /* Don't bother for non-SOM objects. */
4977 if (curr_bfd->format != bfd_object
4978 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
4979 {
4980 curr_bfd = curr_bfd->next;
4981 continue;
4982 }
4983
4984 /* Make sure the symbol table has been read, then snag a pointer
4985 to it. It's a little slimey to grab the symbols via obj_som_symtab,
4986 but doing so avoids allocating lots of extra memory. */
4987 if (som_slurp_symbol_table (curr_bfd) == false)
4988 return false;
4989
4990 sym = obj_som_symtab (curr_bfd);
4991 curr_count = bfd_get_symcount (curr_bfd);
4992
4993 /* Examine each symbol to determine if it belongs in the
4994 library symbol table. */
4995 for (i = 0; i < curr_count; i++, sym++)
4996 {
4997 struct som_misc_symbol_info info;
4998
4999 /* Derive SOM information from the BFD symbol. */
5000 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5001
5002 /* Should we include this symbol? */
5003 if (info.symbol_type == ST_NULL
5004 || info.symbol_type == ST_SYM_EXT
5005 || info.symbol_type == ST_ARG_EXT)
5006 continue;
5007
5008 /* Only global symbols and unsatisfied commons. */
5009 if (info.symbol_scope != SS_UNIVERSAL
5010 && info.symbol_type != ST_STORAGE)
5011 continue;
5012
5013 /* Do no include undefined symbols. */
5014 if (sym->symbol.section == &bfd_und_section)
5015 continue;
5016
5017 /* Bump the various counters, being careful to honor
5018 alignment considerations in the string table. */
5019 (*num_syms)++;
5020 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5021 while (*stringsize % 4)
5022 (*stringsize)++;
5023 }
5024
5025 curr_bfd = curr_bfd->next;
5026 }
5027 return true;
5028 }
5029
5030 /* Hash a symbol name based on the hashing algorithm presented in the
5031 SOM ABI. */
5032 static unsigned int
5033 som_bfd_ar_symbol_hash (symbol)
5034 asymbol *symbol;
5035 {
5036 unsigned int len = strlen (symbol->name);
5037
5038 /* Names with length 1 are special. */
5039 if (len == 1)
5040 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5041
5042 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5043 | (symbol->name[len-2] << 8) | symbol->name[len-1];
5044 }
5045
5046 static CONST char *
5047 normalize (file)
5048 CONST char *file;
5049 {
5050 CONST char *filename = strrchr (file, '/');
5051
5052 if (filename != NULL)
5053 filename++;
5054 else
5055 filename = file;
5056 return filename;
5057 }
5058
5059 /* Do the bulk of the work required to write the SOM library
5060 symbol table. */
5061
5062 static boolean
5063 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst)
5064 bfd *abfd;
5065 unsigned int nsyms, string_size;
5066 struct lst_header lst;
5067 {
5068 file_ptr lst_filepos;
5069 char *strings = NULL, *p;
5070 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5071 bfd *curr_bfd;
5072 unsigned int *hash_table = NULL;
5073 struct som_entry *som_dict = NULL;
5074 struct lst_symbol_record **last_hash_entry = NULL;
5075 unsigned int curr_som_offset, som_index, extended_name_length = 0;
5076 unsigned int maxname = abfd->xvec->ar_max_namelen;
5077
5078 hash_table =
5079 (unsigned int *) malloc (lst.hash_size * sizeof (unsigned int));
5080 if (hash_table == NULL && lst.hash_size != 0)
5081 {
5082 bfd_set_error (bfd_error_no_memory);
5083 goto error_return;
5084 }
5085 som_dict =
5086 (struct som_entry *) malloc (lst.module_count
5087 * sizeof (struct som_entry));
5088 if (som_dict == NULL && lst.module_count != 0)
5089 {
5090 bfd_set_error (bfd_error_no_memory);
5091 goto error_return;
5092 }
5093
5094 last_hash_entry =
5095 ((struct lst_symbol_record **)
5096 malloc (lst.hash_size * sizeof (struct lst_symbol_record *)));
5097 if (last_hash_entry == NULL && lst.hash_size != 0)
5098 {
5099 bfd_set_error (bfd_error_no_memory);
5100 goto error_return;
5101 }
5102
5103 /* Lots of fields are file positions relative to the start
5104 of the lst record. So save its location. */
5105 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5106
5107 /* Some initialization. */
5108 memset (hash_table, 0, 4 * lst.hash_size);
5109 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
5110 memset (last_hash_entry, 0,
5111 lst.hash_size * sizeof (struct lst_symbol_record *));
5112
5113 /* Symbols have som_index fields, so we have to keep track of the
5114 index of each SOM in the archive.
5115
5116 The SOM dictionary has (among other things) the absolute file
5117 position for the SOM which a particular dictionary entry
5118 describes. We have to compute that information as we iterate
5119 through the SOMs/symbols. */
5120 som_index = 0;
5121 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5122
5123 /* Yow! We have to know the size of the extended name table
5124 too. */
5125 for (curr_bfd = abfd->archive_head;
5126 curr_bfd != NULL;
5127 curr_bfd = curr_bfd->next)
5128 {
5129 CONST char *normal = normalize (curr_bfd->filename);
5130 unsigned int thislen;
5131
5132 if (!normal)
5133 {
5134 bfd_set_error (bfd_error_no_memory);
5135 return false;
5136 }
5137 thislen = strlen (normal);
5138 if (thislen > maxname)
5139 extended_name_length += thislen + 1;
5140 }
5141
5142 /* Make room for the archive header and the contents of the
5143 extended string table. */
5144 if (extended_name_length)
5145 curr_som_offset += extended_name_length + sizeof (struct ar_hdr);
5146
5147 /* Make sure we're properly aligned. */
5148 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5149
5150 /* FIXME should be done with buffers just like everything else... */
5151 lst_syms = malloc (nsyms * sizeof (struct lst_symbol_record));
5152 if (lst_syms == NULL && nsyms != 0)
5153 {
5154 bfd_set_error (bfd_error_no_memory);
5155 goto error_return;
5156 }
5157 strings = malloc (string_size);
5158 if (strings == NULL && string_size != 0)
5159 {
5160 bfd_set_error (bfd_error_no_memory);
5161 goto error_return;
5162 }
5163
5164 p = strings;
5165 curr_lst_sym = lst_syms;
5166
5167 curr_bfd = abfd->archive_head;
5168 while (curr_bfd != NULL)
5169 {
5170 unsigned int curr_count, i;
5171 som_symbol_type *sym;
5172
5173 /* Don't bother for non-SOM objects. */
5174 if (curr_bfd->format != bfd_object
5175 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5176 {
5177 curr_bfd = curr_bfd->next;
5178 continue;
5179 }
5180
5181 /* Make sure the symbol table has been read, then snag a pointer
5182 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5183 but doing so avoids allocating lots of extra memory. */
5184 if (som_slurp_symbol_table (curr_bfd) == false)
5185 goto error_return;
5186
5187 sym = obj_som_symtab (curr_bfd);
5188 curr_count = bfd_get_symcount (curr_bfd);
5189
5190 for (i = 0; i < curr_count; i++, sym++)
5191 {
5192 struct som_misc_symbol_info info;
5193
5194 /* Derive SOM information from the BFD symbol. */
5195 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5196
5197 /* Should we include this symbol? */
5198 if (info.symbol_type == ST_NULL
5199 || info.symbol_type == ST_SYM_EXT
5200 || info.symbol_type == ST_ARG_EXT)
5201 continue;
5202
5203 /* Only global symbols and unsatisfied commons. */
5204 if (info.symbol_scope != SS_UNIVERSAL
5205 && info.symbol_type != ST_STORAGE)
5206 continue;
5207
5208 /* Do no include undefined symbols. */
5209 if (sym->symbol.section == &bfd_und_section)
5210 continue;
5211
5212 /* If this is the first symbol from this SOM, then update
5213 the SOM dictionary too. */
5214 if (som_dict[som_index].location == 0)
5215 {
5216 som_dict[som_index].location = curr_som_offset;
5217 som_dict[som_index].length = arelt_size (curr_bfd);
5218 }
5219
5220 /* Fill in the lst symbol record. */
5221 curr_lst_sym->hidden = 0;
5222 curr_lst_sym->secondary_def = 0;
5223 curr_lst_sym->symbol_type = info.symbol_type;
5224 curr_lst_sym->symbol_scope = info.symbol_scope;
5225 curr_lst_sym->check_level = 0;
5226 curr_lst_sym->must_qualify = 0;
5227 curr_lst_sym->initially_frozen = 0;
5228 curr_lst_sym->memory_resident = 0;
5229 curr_lst_sym->is_common = (sym->symbol.section == &bfd_com_section);
5230 curr_lst_sym->dup_common = 0;
5231 curr_lst_sym->xleast = 0;
5232 curr_lst_sym->arg_reloc = info.arg_reloc;
5233 curr_lst_sym->name.n_strx = p - strings + 4;
5234 curr_lst_sym->qualifier_name.n_strx = 0;
5235 curr_lst_sym->symbol_info = info.symbol_info;
5236 curr_lst_sym->symbol_value = info.symbol_value;
5237 curr_lst_sym->symbol_descriptor = 0;
5238 curr_lst_sym->reserved = 0;
5239 curr_lst_sym->som_index = som_index;
5240 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
5241 curr_lst_sym->next_entry = 0;
5242
5243 /* Insert into the hash table. */
5244 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
5245 {
5246 struct lst_symbol_record *tmp;
5247
5248 /* There is already something at the head of this hash chain,
5249 so tack this symbol onto the end of the chain. */
5250 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
5251 tmp->next_entry
5252 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5253 + lst.hash_size * 4
5254 + lst.module_count * sizeof (struct som_entry)
5255 + sizeof (struct lst_header);
5256 }
5257 else
5258 {
5259 /* First entry in this hash chain. */
5260 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
5261 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5262 + lst.hash_size * 4
5263 + lst.module_count * sizeof (struct som_entry)
5264 + sizeof (struct lst_header);
5265 }
5266
5267 /* Keep track of the last symbol we added to this chain so we can
5268 easily update its next_entry pointer. */
5269 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
5270 = curr_lst_sym;
5271
5272
5273 /* Update the string table. */
5274 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
5275 p += 4;
5276 strcpy (p, sym->symbol.name);
5277 p += strlen (sym->symbol.name) + 1;
5278 while ((int)p % 4)
5279 {
5280 bfd_put_8 (abfd, 0, p);
5281 p++;
5282 }
5283
5284 /* Head to the next symbol. */
5285 curr_lst_sym++;
5286 }
5287
5288 /* Keep track of where each SOM will finally reside; then look
5289 at the next BFD. */
5290 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
5291 curr_bfd = curr_bfd->next;
5292 som_index++;
5293 }
5294
5295 /* Now scribble out the hash table. */
5296 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
5297 != lst.hash_size * 4)
5298 goto error_return;
5299
5300 /* Then the SOM dictionary. */
5301 if (bfd_write ((PTR) som_dict, lst.module_count,
5302 sizeof (struct som_entry), abfd)
5303 != lst.module_count * sizeof (struct som_entry))
5304 goto error_return;
5305
5306 /* The library symbols. */
5307 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
5308 != nsyms * sizeof (struct lst_symbol_record))
5309 goto error_return;
5310
5311 /* And finally the strings. */
5312 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
5313 goto error_return;
5314
5315 if (hash_table != NULL)
5316 free (hash_table);
5317 if (som_dict != NULL)
5318 free (som_dict);
5319 if (last_hash_entry != NULL)
5320 free (last_hash_entry);
5321 if (lst_syms != NULL)
5322 free (lst_syms);
5323 if (strings != NULL)
5324 free (strings);
5325 return true;
5326
5327 error_return:
5328 if (hash_table != NULL)
5329 free (hash_table);
5330 if (som_dict != NULL)
5331 free (som_dict);
5332 if (last_hash_entry != NULL)
5333 free (last_hash_entry);
5334 if (lst_syms != NULL)
5335 free (lst_syms);
5336 if (strings != NULL)
5337 free (strings);
5338
5339 return false;
5340 }
5341
5342 /* Write out the LST for the archive.
5343
5344 You'll never believe this is really how armaps are handled in SOM... */
5345
5346 /*ARGSUSED*/
5347 static boolean
5348 som_write_armap (abfd, elength, map, orl_count, stridx)
5349 bfd *abfd;
5350 unsigned int elength;
5351 struct orl *map;
5352 unsigned int orl_count;
5353 int stridx;
5354 {
5355 bfd *curr_bfd;
5356 struct stat statbuf;
5357 unsigned int i, lst_size, nsyms, stringsize;
5358 struct ar_hdr hdr;
5359 struct lst_header lst;
5360 int *p;
5361
5362 /* We'll use this for the archive's date and mode later. */
5363 if (stat (abfd->filename, &statbuf) != 0)
5364 {
5365 bfd_set_error (bfd_error_system_call);
5366 return false;
5367 }
5368 /* Fudge factor. */
5369 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
5370
5371 /* Account for the lst header first. */
5372 lst_size = sizeof (struct lst_header);
5373
5374 /* Start building the LST header. */
5375 lst.system_id = HP9000S800_ID;
5376 lst.a_magic = LIBMAGIC;
5377 lst.version_id = VERSION_ID;
5378 lst.file_time.secs = 0;
5379 lst.file_time.nanosecs = 0;
5380
5381 lst.hash_loc = lst_size;
5382 lst.hash_size = SOM_LST_HASH_SIZE;
5383
5384 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
5385 lst_size += 4 * SOM_LST_HASH_SIZE;
5386
5387 /* We need to count the number of SOMs in this archive. */
5388 curr_bfd = abfd->archive_head;
5389 lst.module_count = 0;
5390 while (curr_bfd != NULL)
5391 {
5392 /* Only true SOM objects count. */
5393 if (curr_bfd->format == bfd_object
5394 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
5395 lst.module_count++;
5396 curr_bfd = curr_bfd->next;
5397 }
5398 lst.module_limit = lst.module_count;
5399 lst.dir_loc = lst_size;
5400 lst_size += sizeof (struct som_entry) * lst.module_count;
5401
5402 /* We don't support import/export tables, auxiliary headers,
5403 or free lists yet. Make the linker work a little harder
5404 to make our life easier. */
5405
5406 lst.export_loc = 0;
5407 lst.export_count = 0;
5408 lst.import_loc = 0;
5409 lst.aux_loc = 0;
5410 lst.aux_size = 0;
5411
5412 /* Count how many symbols we will have on the hash chains and the
5413 size of the associated string table. */
5414 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
5415 return false;
5416
5417 lst_size += sizeof (struct lst_symbol_record) * nsyms;
5418
5419 /* For the string table. One day we might actually use this info
5420 to avoid small seeks/reads when reading archives. */
5421 lst.string_loc = lst_size;
5422 lst.string_size = stringsize;
5423 lst_size += stringsize;
5424
5425 /* SOM ABI says this must be zero. */
5426 lst.free_list = 0;
5427 lst.file_end = lst_size;
5428
5429 /* Compute the checksum. Must happen after the entire lst header
5430 has filled in. */
5431 p = (int *)&lst;
5432 lst.checksum = 0;
5433 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
5434 lst.checksum ^= *p++;
5435
5436 sprintf (hdr.ar_name, "/ ");
5437 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
5438 sprintf (hdr.ar_uid, "%ld", (long) getuid ());
5439 sprintf (hdr.ar_gid, "%ld", (long) getgid ());
5440 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
5441 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
5442 hdr.ar_fmag[0] = '`';
5443 hdr.ar_fmag[1] = '\012';
5444
5445 /* Turn any nulls into spaces. */
5446 for (i = 0; i < sizeof (struct ar_hdr); i++)
5447 if (((char *) (&hdr))[i] == '\0')
5448 (((char *) (&hdr))[i]) = ' ';
5449
5450 /* Scribble out the ar header. */
5451 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
5452 != sizeof (struct ar_hdr))
5453 return false;
5454
5455 /* Now scribble out the lst header. */
5456 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
5457 != sizeof (struct lst_header))
5458 return false;
5459
5460 /* Build and write the armap. */
5461 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst) == false)
5462 return false;
5463
5464 /* Done. */
5465 return true;
5466 }
5467
5468 /* Free all information we have cached for this BFD. We can always
5469 read it again later if we need it. */
5470
5471 static boolean
5472 som_bfd_free_cached_info (abfd)
5473 bfd *abfd;
5474 {
5475 asection *o;
5476
5477 if (bfd_get_format (abfd) != bfd_object)
5478 return true;
5479
5480 #define FREE(x) if (x != NULL) { free (x); x = NULL; }
5481 /* Free the native string and symbol tables. */
5482 FREE (obj_som_symtab (abfd));
5483 FREE (obj_som_stringtab (abfd));
5484 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5485 {
5486 /* Free the native relocations. */
5487 o->reloc_count = -1;
5488 FREE (som_section_data (o)->reloc_stream);
5489 /* Free the generic relocations. */
5490 FREE (o->relocation);
5491 }
5492 #undef FREE
5493
5494 return true;
5495 }
5496
5497 /* End of miscellaneous support functions. */
5498
5499 #define som_close_and_cleanup som_bfd_free_cached_info
5500
5501 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
5502 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
5503 #define som_truncate_arname bfd_bsd_truncate_arname
5504 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
5505
5506 #define som_get_lineno _bfd_nosymbols_get_lineno
5507 #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
5508
5509 #define som_bfd_get_relocated_section_contents \
5510 bfd_generic_get_relocated_section_contents
5511 #define som_bfd_relax_section bfd_generic_relax_section
5512 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
5513 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
5514 #define som_bfd_final_link _bfd_generic_final_link
5515
5516 bfd_target som_vec =
5517 {
5518 "som", /* name */
5519 bfd_target_som_flavour,
5520 true, /* target byte order */
5521 true, /* target headers byte order */
5522 (HAS_RELOC | EXEC_P | /* object flags */
5523 HAS_LINENO | HAS_DEBUG |
5524 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
5525 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
5526 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
5527
5528 /* leading_symbol_char: is the first char of a user symbol
5529 predictable, and if so what is it */
5530 0,
5531 '/', /* ar_pad_char */
5532 14, /* ar_max_namelen */
5533 3, /* minimum alignment */
5534 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5535 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5536 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
5537 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5538 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5539 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
5540 {_bfd_dummy_target,
5541 som_object_p, /* bfd_check_format */
5542 bfd_generic_archive_p,
5543 _bfd_dummy_target
5544 },
5545 {
5546 bfd_false,
5547 som_mkobject,
5548 _bfd_generic_mkarchive,
5549 bfd_false
5550 },
5551 {
5552 bfd_false,
5553 som_write_object_contents,
5554 _bfd_write_archive_contents,
5555 bfd_false,
5556 },
5557 #undef som
5558
5559 BFD_JUMP_TABLE_GENERIC (som),
5560 BFD_JUMP_TABLE_COPY (som),
5561 BFD_JUMP_TABLE_CORE (_bfd_nocore),
5562 BFD_JUMP_TABLE_ARCHIVE (som),
5563 BFD_JUMP_TABLE_SYMBOLS (som),
5564 BFD_JUMP_TABLE_RELOCS (som),
5565 BFD_JUMP_TABLE_WRITE (som),
5566 BFD_JUMP_TABLE_LINK (som),
5567 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
5568
5569 (PTR) 0
5570 };
5571
5572 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */