* som.c (som_set_reloc_info): Do not set any relocation info
[binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
3
4 Contributed by the Center for Software Science at the
5 University of Utah (pa-gdb-bugs@cs.utah.edu).
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23 #include "bfd.h"
24 #include "sysdep.h"
25
26 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)
27
28 #include "libbfd.h"
29 #include "som.h"
30
31 #include <stdio.h>
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <signal.h>
35 #include <machine/reg.h>
36 #include <sys/file.h>
37 #include <errno.h>
38
39 /* Magic not defined in standard HP-UX header files until 8.0 */
40
41 #ifndef CPU_PA_RISC1_0
42 #define CPU_PA_RISC1_0 0x20B
43 #endif /* CPU_PA_RISC1_0 */
44
45 #ifndef CPU_PA_RISC1_1
46 #define CPU_PA_RISC1_1 0x210
47 #endif /* CPU_PA_RISC1_1 */
48
49 #ifndef _PA_RISC1_0_ID
50 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
51 #endif /* _PA_RISC1_0_ID */
52
53 #ifndef _PA_RISC1_1_ID
54 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
55 #endif /* _PA_RISC1_1_ID */
56
57 #ifndef _PA_RISC_MAXID
58 #define _PA_RISC_MAXID 0x2FF
59 #endif /* _PA_RISC_MAXID */
60
61 #ifndef _PA_RISC_ID
62 #define _PA_RISC_ID(__m_num) \
63 (((__m_num) == _PA_RISC1_0_ID) || \
64 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
65 #endif /* _PA_RISC_ID */
66
67 /* Size (in chars) of the temporary buffers used during fixup and string
68 table writes. */
69
70 #define SOM_TMP_BUFSIZE 8192
71
72 /* Size of the hash table in archives. */
73 #define SOM_LST_HASH_SIZE 31
74
75 /* Max number of SOMs to be found in an archive. */
76 #define SOM_LST_MODULE_LIMIT 1024
77
78 /* Generic alignment macro. */
79 #define SOM_ALIGN(val, alignment) \
80 (((val) + (alignment) - 1) & ~((alignment) - 1))
81
82 /* SOM allows any one of the four previous relocations to be reused
83 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
84 relocations are always a single byte, using a R_PREV_FIXUP instead
85 of some multi-byte relocation makes object files smaller.
86
87 Note one side effect of using a R_PREV_FIXUP is the relocation that
88 is being repeated moves to the front of the queue. */
89 struct reloc_queue
90 {
91 unsigned char *reloc;
92 unsigned int size;
93 } reloc_queue[4];
94
95 /* This fully describes the symbol types which may be attached to
96 an EXPORT or IMPORT directive. Only SOM uses this formation
97 (ELF has no need for it). */
98 typedef enum
99 {
100 SYMBOL_TYPE_UNKNOWN,
101 SYMBOL_TYPE_ABSOLUTE,
102 SYMBOL_TYPE_CODE,
103 SYMBOL_TYPE_DATA,
104 SYMBOL_TYPE_ENTRY,
105 SYMBOL_TYPE_MILLICODE,
106 SYMBOL_TYPE_PLABEL,
107 SYMBOL_TYPE_PRI_PROG,
108 SYMBOL_TYPE_SEC_PROG,
109 } pa_symbol_type;
110
111 struct section_to_type
112 {
113 char *section;
114 char type;
115 };
116
117 /* Assorted symbol information that needs to be derived from the BFD symbol
118 and/or the BFD backend private symbol data. */
119 struct som_misc_symbol_info
120 {
121 unsigned int symbol_type;
122 unsigned int symbol_scope;
123 unsigned int arg_reloc;
124 unsigned int symbol_info;
125 unsigned int symbol_value;
126 };
127
128 /* Forward declarations */
129
130 static boolean som_mkobject PARAMS ((bfd *));
131 static bfd_target * som_object_setup PARAMS ((bfd *,
132 struct header *,
133 struct som_exec_auxhdr *));
134 static boolean setup_sections PARAMS ((bfd *, struct header *));
135 static bfd_target * som_object_p PARAMS ((bfd *));
136 static boolean som_write_object_contents PARAMS ((bfd *));
137 static boolean som_slurp_string_table PARAMS ((bfd *));
138 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
139 static long som_get_symtab_upper_bound PARAMS ((bfd *));
140 static long som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
141 arelent **, asymbol **));
142 static long som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
143 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
144 arelent *, asection *,
145 asymbol **, boolean));
146 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
147 asymbol **, boolean));
148 static long som_get_symtab PARAMS ((bfd *, asymbol **));
149 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
150 static void som_print_symbol PARAMS ((bfd *, PTR,
151 asymbol *, bfd_print_symbol_type));
152 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
153 static boolean som_bfd_copy_private_section_data PARAMS ((bfd *, asection *,
154 bfd *, asection *));
155 static boolean som_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
156 static boolean som_bfd_is_local_label PARAMS ((bfd *, asymbol *));
157 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
158 file_ptr, bfd_size_type));
159 static boolean som_get_section_contents PARAMS ((bfd *, sec_ptr, PTR,
160 file_ptr, bfd_size_type));
161 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
162 unsigned long));
163 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
164 asymbol **, bfd_vma,
165 CONST char **,
166 CONST char **,
167 unsigned int *));
168 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
169 static asection * bfd_section_from_som_symbol PARAMS ((bfd *,
170 struct symbol_dictionary_record *));
171 static int log2 PARAMS ((unsigned int));
172 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
173 asymbol *, PTR,
174 asection *, bfd *,
175 char **));
176 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
177 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
178 struct reloc_queue *));
179 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
180 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
181 struct reloc_queue *));
182 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
183 unsigned int,
184 struct reloc_queue *));
185
186 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
187 unsigned char *, unsigned int *,
188 struct reloc_queue *));
189 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
190 unsigned int *,
191 struct reloc_queue *));
192 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
193 unsigned int *,
194 arelent *, int,
195 struct reloc_queue *));
196 static unsigned long som_count_spaces PARAMS ((bfd *));
197 static unsigned long som_count_subspaces PARAMS ((bfd *));
198 static int compare_syms PARAMS ((const void *, const void *));
199 static unsigned long som_compute_checksum PARAMS ((bfd *));
200 static boolean som_prep_headers PARAMS ((bfd *));
201 static int som_sizeof_headers PARAMS ((bfd *, boolean));
202 static boolean som_write_headers PARAMS ((bfd *));
203 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
204 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
205 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
206 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
207 unsigned int *));
208 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
209 asymbol **, unsigned int,
210 unsigned *));
211 static boolean som_begin_writing PARAMS ((bfd *));
212 static const reloc_howto_type * som_bfd_reloc_type_lookup
213 PARAMS ((bfd *, bfd_reloc_code_real_type));
214 static char som_section_type PARAMS ((const char *));
215 static int som_decode_symclass PARAMS ((asymbol *));
216 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
217 symindex *));
218
219 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
220 carsym **syms));
221 static boolean som_slurp_armap PARAMS ((bfd *));
222 static boolean som_write_armap PARAMS ((bfd *, unsigned int, struct orl *,
223 unsigned int, int));
224 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
225 struct som_misc_symbol_info *));
226 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
227 unsigned int *));
228 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
229 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
230 unsigned int,
231 struct lst_header));
232 static CONST char *normalize PARAMS ((CONST char *file));
233 static boolean som_is_space PARAMS ((asection *));
234 static boolean som_is_subspace PARAMS ((asection *));
235 static boolean som_is_container PARAMS ((asection *, asection *));
236 static boolean som_bfd_free_cached_info PARAMS ((bfd *));
237
238 /* Map SOM section names to POSIX/BSD single-character symbol types.
239
240 This table includes all the standard subspaces as defined in the
241 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
242 some reason was left out, and sections specific to embedded stabs. */
243
244 static const struct section_to_type stt[] = {
245 {"$TEXT$", 't'},
246 {"$SHLIB_INFO$", 't'},
247 {"$MILLICODE$", 't'},
248 {"$LIT$", 't'},
249 {"$CODE$", 't'},
250 {"$UNWIND_START$", 't'},
251 {"$UNWIND$", 't'},
252 {"$PRIVATE$", 'd'},
253 {"$PLT$", 'd'},
254 {"$SHLIB_DATA$", 'd'},
255 {"$DATA$", 'd'},
256 {"$SHORTDATA$", 'g'},
257 {"$DLT$", 'd'},
258 {"$GLOBAL$", 'g'},
259 {"$SHORTBSS$", 's'},
260 {"$BSS$", 'b'},
261 {"$GDB_STRINGS$", 'N'},
262 {"$GDB_SYMBOLS$", 'N'},
263 {0, 0}
264 };
265
266 /* About the relocation formatting table...
267
268 There are 256 entries in the table, one for each possible
269 relocation opcode available in SOM. We index the table by
270 the relocation opcode. The names and operations are those
271 defined by a.out_800 (4).
272
273 Right now this table is only used to count and perform minimal
274 processing on relocation streams so that they can be internalized
275 into BFD and symbolically printed by utilities. To make actual use
276 of them would be much more difficult, BFD's concept of relocations
277 is far too simple to handle SOM relocations. The basic assumption
278 that a relocation can be completely processed independent of other
279 relocations before an object file is written is invalid for SOM.
280
281 The SOM relocations are meant to be processed as a stream, they
282 specify copying of data from the input section to the output section
283 while possibly modifying the data in some manner. They also can
284 specify that a variable number of zeros or uninitialized data be
285 inserted on in the output segment at the current offset. Some
286 relocations specify that some previous relocation be re-applied at
287 the current location in the input/output sections. And finally a number
288 of relocations have effects on other sections (R_ENTRY, R_EXIT,
289 R_UNWIND_AUX and a variety of others). There isn't even enough room
290 in the BFD relocation data structure to store enough information to
291 perform all the relocations.
292
293 Each entry in the table has three fields.
294
295 The first entry is an index into this "class" of relocations. This
296 index can then be used as a variable within the relocation itself.
297
298 The second field is a format string which actually controls processing
299 of the relocation. It uses a simple postfix machine to do calculations
300 based on variables/constants found in the string and the relocation
301 stream.
302
303 The third field specifys whether or not this relocation may use
304 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
305 stored in the instruction.
306
307 Variables:
308
309 L = input space byte count
310 D = index into class of relocations
311 M = output space byte count
312 N = statement number (unused?)
313 O = stack operation
314 R = parameter relocation bits
315 S = symbol index
316 U = 64 bits of stack unwind and frame size info (we only keep 32 bits)
317 V = a literal constant (usually used in the next relocation)
318 P = a previous relocation
319
320 Lower case letters (starting with 'b') refer to following
321 bytes in the relocation stream. 'b' is the next 1 byte,
322 c is the next 2 bytes, d is the next 3 bytes, etc...
323 This is the variable part of the relocation entries that
324 makes our life a living hell.
325
326 numerical constants are also used in the format string. Note
327 the constants are represented in decimal.
328
329 '+', "*" and "=" represents the obvious postfix operators.
330 '<' represents a left shift.
331
332 Stack Operations:
333
334 Parameter Relocation Bits:
335
336 Unwind Entries:
337
338 Previous Relocations: The index field represents which in the queue
339 of 4 previous fixups should be re-applied.
340
341 Literal Constants: These are generally used to represent addend
342 parts of relocations when these constants are not stored in the
343 fields of the instructions themselves. For example the instruction
344 addil foo-$global$-0x1234 would use an override for "0x1234" rather
345 than storing it into the addil itself. */
346
347 struct fixup_format
348 {
349 int D;
350 char *format;
351 };
352
353 static const struct fixup_format som_fixup_formats[256] =
354 {
355 /* R_NO_RELOCATION */
356 0, "LD1+4*=", /* 0x00 */
357 1, "LD1+4*=", /* 0x01 */
358 2, "LD1+4*=", /* 0x02 */
359 3, "LD1+4*=", /* 0x03 */
360 4, "LD1+4*=", /* 0x04 */
361 5, "LD1+4*=", /* 0x05 */
362 6, "LD1+4*=", /* 0x06 */
363 7, "LD1+4*=", /* 0x07 */
364 8, "LD1+4*=", /* 0x08 */
365 9, "LD1+4*=", /* 0x09 */
366 10, "LD1+4*=", /* 0x0a */
367 11, "LD1+4*=", /* 0x0b */
368 12, "LD1+4*=", /* 0x0c */
369 13, "LD1+4*=", /* 0x0d */
370 14, "LD1+4*=", /* 0x0e */
371 15, "LD1+4*=", /* 0x0f */
372 16, "LD1+4*=", /* 0x10 */
373 17, "LD1+4*=", /* 0x11 */
374 18, "LD1+4*=", /* 0x12 */
375 19, "LD1+4*=", /* 0x13 */
376 20, "LD1+4*=", /* 0x14 */
377 21, "LD1+4*=", /* 0x15 */
378 22, "LD1+4*=", /* 0x16 */
379 23, "LD1+4*=", /* 0x17 */
380 0, "LD8<b+1+4*=", /* 0x18 */
381 1, "LD8<b+1+4*=", /* 0x19 */
382 2, "LD8<b+1+4*=", /* 0x1a */
383 3, "LD8<b+1+4*=", /* 0x1b */
384 0, "LD16<c+1+4*=", /* 0x1c */
385 1, "LD16<c+1+4*=", /* 0x1d */
386 2, "LD16<c+1+4*=", /* 0x1e */
387 0, "Ld1+=", /* 0x1f */
388 /* R_ZEROES */
389 0, "Lb1+4*=", /* 0x20 */
390 1, "Ld1+=", /* 0x21 */
391 /* R_UNINIT */
392 0, "Lb1+4*=", /* 0x22 */
393 1, "Ld1+=", /* 0x23 */
394 /* R_RELOCATION */
395 0, "L4=", /* 0x24 */
396 /* R_DATA_ONE_SYMBOL */
397 0, "L4=Sb=", /* 0x25 */
398 1, "L4=Sd=", /* 0x26 */
399 /* R_DATA_PLEBEL */
400 0, "L4=Sb=", /* 0x27 */
401 1, "L4=Sd=", /* 0x28 */
402 /* R_SPACE_REF */
403 0, "L4=", /* 0x29 */
404 /* R_REPEATED_INIT */
405 0, "L4=Mb1+4*=", /* 0x2a */
406 1, "Lb4*=Mb1+L*=", /* 0x2b */
407 2, "Lb4*=Md1+4*=", /* 0x2c */
408 3, "Ld1+=Me1+=", /* 0x2d */
409 /* R_RESERVED */
410 0, "", /* 0x2e */
411 0, "", /* 0x2f */
412 /* R_PCREL_CALL */
413 0, "L4=RD=Sb=", /* 0x30 */
414 1, "L4=RD=Sb=", /* 0x31 */
415 2, "L4=RD=Sb=", /* 0x32 */
416 3, "L4=RD=Sb=", /* 0x33 */
417 4, "L4=RD=Sb=", /* 0x34 */
418 5, "L4=RD=Sb=", /* 0x35 */
419 6, "L4=RD=Sb=", /* 0x36 */
420 7, "L4=RD=Sb=", /* 0x37 */
421 8, "L4=RD=Sb=", /* 0x38 */
422 9, "L4=RD=Sb=", /* 0x39 */
423 0, "L4=RD8<b+=Sb=",/* 0x3a */
424 1, "L4=RD8<b+=Sb=",/* 0x3b */
425 0, "L4=RD8<b+=Sd=",/* 0x3c */
426 1, "L4=RD8<b+=Sd=",/* 0x3d */
427 /* R_RESERVED */
428 0, "", /* 0x3e */
429 0, "", /* 0x3f */
430 /* R_ABS_CALL */
431 0, "L4=RD=Sb=", /* 0x40 */
432 1, "L4=RD=Sb=", /* 0x41 */
433 2, "L4=RD=Sb=", /* 0x42 */
434 3, "L4=RD=Sb=", /* 0x43 */
435 4, "L4=RD=Sb=", /* 0x44 */
436 5, "L4=RD=Sb=", /* 0x45 */
437 6, "L4=RD=Sb=", /* 0x46 */
438 7, "L4=RD=Sb=", /* 0x47 */
439 8, "L4=RD=Sb=", /* 0x48 */
440 9, "L4=RD=Sb=", /* 0x49 */
441 0, "L4=RD8<b+=Sb=",/* 0x4a */
442 1, "L4=RD8<b+=Sb=",/* 0x4b */
443 0, "L4=RD8<b+=Sd=",/* 0x4c */
444 1, "L4=RD8<b+=Sd=",/* 0x4d */
445 /* R_RESERVED */
446 0, "", /* 0x4e */
447 0, "", /* 0x4f */
448 /* R_DP_RELATIVE */
449 0, "L4=SD=", /* 0x50 */
450 1, "L4=SD=", /* 0x51 */
451 2, "L4=SD=", /* 0x52 */
452 3, "L4=SD=", /* 0x53 */
453 4, "L4=SD=", /* 0x54 */
454 5, "L4=SD=", /* 0x55 */
455 6, "L4=SD=", /* 0x56 */
456 7, "L4=SD=", /* 0x57 */
457 8, "L4=SD=", /* 0x58 */
458 9, "L4=SD=", /* 0x59 */
459 10, "L4=SD=", /* 0x5a */
460 11, "L4=SD=", /* 0x5b */
461 12, "L4=SD=", /* 0x5c */
462 13, "L4=SD=", /* 0x5d */
463 14, "L4=SD=", /* 0x5e */
464 15, "L4=SD=", /* 0x5f */
465 16, "L4=SD=", /* 0x60 */
466 17, "L4=SD=", /* 0x61 */
467 18, "L4=SD=", /* 0x62 */
468 19, "L4=SD=", /* 0x63 */
469 20, "L4=SD=", /* 0x64 */
470 21, "L4=SD=", /* 0x65 */
471 22, "L4=SD=", /* 0x66 */
472 23, "L4=SD=", /* 0x67 */
473 24, "L4=SD=", /* 0x68 */
474 25, "L4=SD=", /* 0x69 */
475 26, "L4=SD=", /* 0x6a */
476 27, "L4=SD=", /* 0x6b */
477 28, "L4=SD=", /* 0x6c */
478 29, "L4=SD=", /* 0x6d */
479 30, "L4=SD=", /* 0x6e */
480 31, "L4=SD=", /* 0x6f */
481 32, "L4=Sb=", /* 0x70 */
482 33, "L4=Sd=", /* 0x71 */
483 /* R_RESERVED */
484 0, "", /* 0x72 */
485 0, "", /* 0x73 */
486 0, "", /* 0x74 */
487 0, "", /* 0x75 */
488 0, "", /* 0x76 */
489 0, "", /* 0x77 */
490 /* R_DLT_REL */
491 0, "L4=Sb=", /* 0x78 */
492 1, "L4=Sd=", /* 0x79 */
493 /* R_RESERVED */
494 0, "", /* 0x7a */
495 0, "", /* 0x7b */
496 0, "", /* 0x7c */
497 0, "", /* 0x7d */
498 0, "", /* 0x7e */
499 0, "", /* 0x7f */
500 /* R_CODE_ONE_SYMBOL */
501 0, "L4=SD=", /* 0x80 */
502 1, "L4=SD=", /* 0x81 */
503 2, "L4=SD=", /* 0x82 */
504 3, "L4=SD=", /* 0x83 */
505 4, "L4=SD=", /* 0x84 */
506 5, "L4=SD=", /* 0x85 */
507 6, "L4=SD=", /* 0x86 */
508 7, "L4=SD=", /* 0x87 */
509 8, "L4=SD=", /* 0x88 */
510 9, "L4=SD=", /* 0x89 */
511 10, "L4=SD=", /* 0x8q */
512 11, "L4=SD=", /* 0x8b */
513 12, "L4=SD=", /* 0x8c */
514 13, "L4=SD=", /* 0x8d */
515 14, "L4=SD=", /* 0x8e */
516 15, "L4=SD=", /* 0x8f */
517 16, "L4=SD=", /* 0x90 */
518 17, "L4=SD=", /* 0x91 */
519 18, "L4=SD=", /* 0x92 */
520 19, "L4=SD=", /* 0x93 */
521 20, "L4=SD=", /* 0x94 */
522 21, "L4=SD=", /* 0x95 */
523 22, "L4=SD=", /* 0x96 */
524 23, "L4=SD=", /* 0x97 */
525 24, "L4=SD=", /* 0x98 */
526 25, "L4=SD=", /* 0x99 */
527 26, "L4=SD=", /* 0x9a */
528 27, "L4=SD=", /* 0x9b */
529 28, "L4=SD=", /* 0x9c */
530 29, "L4=SD=", /* 0x9d */
531 30, "L4=SD=", /* 0x9e */
532 31, "L4=SD=", /* 0x9f */
533 32, "L4=Sb=", /* 0xa0 */
534 33, "L4=Sd=", /* 0xa1 */
535 /* R_RESERVED */
536 0, "", /* 0xa2 */
537 0, "", /* 0xa3 */
538 0, "", /* 0xa4 */
539 0, "", /* 0xa5 */
540 0, "", /* 0xa6 */
541 0, "", /* 0xa7 */
542 0, "", /* 0xa8 */
543 0, "", /* 0xa9 */
544 0, "", /* 0xaa */
545 0, "", /* 0xab */
546 0, "", /* 0xac */
547 0, "", /* 0xad */
548 /* R_MILLI_REL */
549 0, "L4=Sb=", /* 0xae */
550 1, "L4=Sd=", /* 0xaf */
551 /* R_CODE_PLABEL */
552 0, "L4=Sb=", /* 0xb0 */
553 1, "L4=Sd=", /* 0xb1 */
554 /* R_BREAKPOINT */
555 0, "L4=", /* 0xb2 */
556 /* R_ENTRY */
557 0, "Ui=", /* 0xb3 */
558 1, "Uf=", /* 0xb4 */
559 /* R_ALT_ENTRY */
560 0, "", /* 0xb5 */
561 /* R_EXIT */
562 0, "", /* 0xb6 */
563 /* R_BEGIN_TRY */
564 0, "", /* 0xb7 */
565 /* R_END_TRY */
566 0, "R0=", /* 0xb8 */
567 1, "Rb4*=", /* 0xb9 */
568 2, "Rd4*=", /* 0xba */
569 /* R_BEGIN_BRTAB */
570 0, "", /* 0xbb */
571 /* R_END_BRTAB */
572 0, "", /* 0xbc */
573 /* R_STATEMENT */
574 0, "Nb=", /* 0xbd */
575 1, "Nc=", /* 0xbe */
576 2, "Nd=", /* 0xbf */
577 /* R_DATA_EXPR */
578 0, "L4=", /* 0xc0 */
579 /* R_CODE_EXPR */
580 0, "L4=", /* 0xc1 */
581 /* R_FSEL */
582 0, "", /* 0xc2 */
583 /* R_LSEL */
584 0, "", /* 0xc3 */
585 /* R_RSEL */
586 0, "", /* 0xc4 */
587 /* R_N_MODE */
588 0, "", /* 0xc5 */
589 /* R_S_MODE */
590 0, "", /* 0xc6 */
591 /* R_D_MODE */
592 0, "", /* 0xc7 */
593 /* R_R_MODE */
594 0, "", /* 0xc8 */
595 /* R_DATA_OVERRIDE */
596 0, "V0=", /* 0xc9 */
597 1, "Vb=", /* 0xca */
598 2, "Vc=", /* 0xcb */
599 3, "Vd=", /* 0xcc */
600 4, "Ve=", /* 0xcd */
601 /* R_TRANSLATED */
602 0, "", /* 0xce */
603 /* R_RESERVED */
604 0, "", /* 0xcf */
605 /* R_COMP1 */
606 0, "Ob=", /* 0xd0 */
607 /* R_COMP2 */
608 0, "Ob=Sd=", /* 0xd1 */
609 /* R_COMP3 */
610 0, "Ob=Ve=", /* 0xd2 */
611 /* R_PREV_FIXUP */
612 0, "P", /* 0xd3 */
613 1, "P", /* 0xd4 */
614 2, "P", /* 0xd5 */
615 3, "P", /* 0xd6 */
616 /* R_RESERVED */
617 0, "", /* 0xd7 */
618 0, "", /* 0xd8 */
619 0, "", /* 0xd9 */
620 0, "", /* 0xda */
621 0, "", /* 0xdb */
622 0, "", /* 0xdc */
623 0, "", /* 0xdd */
624 0, "", /* 0xde */
625 0, "", /* 0xdf */
626 0, "", /* 0xe0 */
627 0, "", /* 0xe1 */
628 0, "", /* 0xe2 */
629 0, "", /* 0xe3 */
630 0, "", /* 0xe4 */
631 0, "", /* 0xe5 */
632 0, "", /* 0xe6 */
633 0, "", /* 0xe7 */
634 0, "", /* 0xe8 */
635 0, "", /* 0xe9 */
636 0, "", /* 0xea */
637 0, "", /* 0xeb */
638 0, "", /* 0xec */
639 0, "", /* 0xed */
640 0, "", /* 0xee */
641 0, "", /* 0xef */
642 0, "", /* 0xf0 */
643 0, "", /* 0xf1 */
644 0, "", /* 0xf2 */
645 0, "", /* 0xf3 */
646 0, "", /* 0xf4 */
647 0, "", /* 0xf5 */
648 0, "", /* 0xf6 */
649 0, "", /* 0xf7 */
650 0, "", /* 0xf8 */
651 0, "", /* 0xf9 */
652 0, "", /* 0xfa */
653 0, "", /* 0xfb */
654 0, "", /* 0xfc */
655 0, "", /* 0xfd */
656 0, "", /* 0xfe */
657 0, "", /* 0xff */
658 };
659
660 static const int comp1_opcodes[] =
661 {
662 0x00,
663 0x40,
664 0x41,
665 0x42,
666 0x43,
667 0x44,
668 0x45,
669 0x46,
670 0x47,
671 0x48,
672 0x49,
673 0x4a,
674 0x4b,
675 0x60,
676 0x80,
677 0xa0,
678 0xc0,
679 -1
680 };
681
682 static const int comp2_opcodes[] =
683 {
684 0x00,
685 0x80,
686 0x82,
687 0xc0,
688 -1
689 };
690
691 static const int comp3_opcodes[] =
692 {
693 0x00,
694 0x02,
695 -1
696 };
697
698 /* These apparently are not in older versions of hpux reloc.h. */
699 #ifndef R_DLT_REL
700 #define R_DLT_REL 0x78
701 #endif
702
703 #ifndef R_AUX_UNWIND
704 #define R_AUX_UNWIND 0xcf
705 #endif
706
707 #ifndef R_SEC_STMT
708 #define R_SEC_STMT 0xd7
709 #endif
710
711 static reloc_howto_type som_hppa_howto_table[] =
712 {
713 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
714 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
715 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
716 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
717 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
718 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
719 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
720 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
721 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
722 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
723 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
724 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
725 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
726 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
727 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
728 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
729 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
730 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
731 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
732 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
733 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
734 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
735 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
736 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
737 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
738 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
739 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
740 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
741 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
742 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
743 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
744 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
745 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
746 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
747 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
748 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
749 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
750 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
751 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
752 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
753 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
754 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
755 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
756 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
757 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
758 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
759 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
760 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
761 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
762 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
763 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
764 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
765 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
766 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
767 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
768 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
769 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
770 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
771 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
772 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
773 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
774 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
775 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
776 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
777 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
778 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
779 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
780 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
781 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
782 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
783 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
784 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
785 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
786 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
787 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
788 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
789 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
790 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
791 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
792 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
793 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
794 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
795 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
796 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
797 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
798 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
799 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
800 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
801 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
802 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
803 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
804 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
805 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
806 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
807 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
808 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
809 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
810 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
811 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
812 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
813 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
814 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
815 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
816 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
817 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
818 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
819 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
820 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
821 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
822 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
823 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
824 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
825 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
826 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
827 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
828 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
829 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
830 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
831 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
832 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
833 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
834 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
835 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
836 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
837 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
838 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
839 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
840 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
841 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
842 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
843 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
844 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
845 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
846 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
847 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
848 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
849 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
850 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
851 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
852 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
853 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
854 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
855 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
856 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
857 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
858 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
859 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
860 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
861 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
862 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
863 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
864 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
865 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
866 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
867 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
868 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
869 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
870 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
871 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
872 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
873 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
874 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
875 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
876 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
877 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
878 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
879 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
880 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
881 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
882 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
883 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
884 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
885 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
886 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
887 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
888 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
889 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
890 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
891 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
892 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
893 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
894 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
895 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
896 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
897 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
898 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
899 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
900 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
901 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
902 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
903 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
904 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
905 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
906 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
907 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
908 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
909 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
910 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
911 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
912 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
913 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
914 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
915 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
916 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
917 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
918 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
919 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
920 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
921 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
922 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
923 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
924 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
925 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
926 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
927 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
928 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
929 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
930 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
931 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
932 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
933 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
934 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
935 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
936 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
937 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
938 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
939 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
940 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
941 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
942 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
943 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
944 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
945 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
946 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
947 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
948 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
949 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
950 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
951 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
952 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
953 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
954 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
955 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
956 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
957 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
958 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
959 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
960 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
961 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
962 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
963 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
964 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
965 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
966 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
967 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
968 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
969
970 /* Initialize the SOM relocation queue. By definition the queue holds
971 the last four multibyte fixups. */
972
973 static void
974 som_initialize_reloc_queue (queue)
975 struct reloc_queue *queue;
976 {
977 queue[0].reloc = NULL;
978 queue[0].size = 0;
979 queue[1].reloc = NULL;
980 queue[1].size = 0;
981 queue[2].reloc = NULL;
982 queue[2].size = 0;
983 queue[3].reloc = NULL;
984 queue[3].size = 0;
985 }
986
987 /* Insert a new relocation into the relocation queue. */
988
989 static void
990 som_reloc_queue_insert (p, size, queue)
991 unsigned char *p;
992 unsigned int size;
993 struct reloc_queue *queue;
994 {
995 queue[3].reloc = queue[2].reloc;
996 queue[3].size = queue[2].size;
997 queue[2].reloc = queue[1].reloc;
998 queue[2].size = queue[1].size;
999 queue[1].reloc = queue[0].reloc;
1000 queue[1].size = queue[0].size;
1001 queue[0].reloc = p;
1002 queue[0].size = size;
1003 }
1004
1005 /* When an entry in the relocation queue is reused, the entry moves
1006 to the front of the queue. */
1007
1008 static void
1009 som_reloc_queue_fix (queue, index)
1010 struct reloc_queue *queue;
1011 unsigned int index;
1012 {
1013 if (index == 0)
1014 return;
1015
1016 if (index == 1)
1017 {
1018 unsigned char *tmp1 = queue[0].reloc;
1019 unsigned int tmp2 = queue[0].size;
1020 queue[0].reloc = queue[1].reloc;
1021 queue[0].size = queue[1].size;
1022 queue[1].reloc = tmp1;
1023 queue[1].size = tmp2;
1024 return;
1025 }
1026
1027 if (index == 2)
1028 {
1029 unsigned char *tmp1 = queue[0].reloc;
1030 unsigned int tmp2 = queue[0].size;
1031 queue[0].reloc = queue[2].reloc;
1032 queue[0].size = queue[2].size;
1033 queue[2].reloc = queue[1].reloc;
1034 queue[2].size = queue[1].size;
1035 queue[1].reloc = tmp1;
1036 queue[1].size = tmp2;
1037 return;
1038 }
1039
1040 if (index == 3)
1041 {
1042 unsigned char *tmp1 = queue[0].reloc;
1043 unsigned int tmp2 = queue[0].size;
1044 queue[0].reloc = queue[3].reloc;
1045 queue[0].size = queue[3].size;
1046 queue[3].reloc = queue[2].reloc;
1047 queue[3].size = queue[2].size;
1048 queue[2].reloc = queue[1].reloc;
1049 queue[2].size = queue[1].size;
1050 queue[1].reloc = tmp1;
1051 queue[1].size = tmp2;
1052 return;
1053 }
1054 abort();
1055 }
1056
1057 /* Search for a particular relocation in the relocation queue. */
1058
1059 static int
1060 som_reloc_queue_find (p, size, queue)
1061 unsigned char *p;
1062 unsigned int size;
1063 struct reloc_queue *queue;
1064 {
1065 if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
1066 && size == queue[0].size)
1067 return 0;
1068 if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
1069 && size == queue[1].size)
1070 return 1;
1071 if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
1072 && size == queue[2].size)
1073 return 2;
1074 if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
1075 && size == queue[3].size)
1076 return 3;
1077 return -1;
1078 }
1079
1080 static unsigned char *
1081 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1082 bfd *abfd;
1083 int *subspace_reloc_sizep;
1084 unsigned char *p;
1085 unsigned int size;
1086 struct reloc_queue *queue;
1087 {
1088 int queue_index = som_reloc_queue_find (p, size, queue);
1089
1090 if (queue_index != -1)
1091 {
1092 /* Found this in a previous fixup. Undo the fixup we
1093 just built and use R_PREV_FIXUP instead. We saved
1094 a total of size - 1 bytes in the fixup stream. */
1095 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1096 p += 1;
1097 *subspace_reloc_sizep += 1;
1098 som_reloc_queue_fix (queue, queue_index);
1099 }
1100 else
1101 {
1102 som_reloc_queue_insert (p, size, queue);
1103 *subspace_reloc_sizep += size;
1104 p += size;
1105 }
1106 return p;
1107 }
1108
1109 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1110 bytes without any relocation. Update the size of the subspace
1111 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1112 current pointer into the relocation stream. */
1113
1114 static unsigned char *
1115 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1116 bfd *abfd;
1117 unsigned int skip;
1118 unsigned char *p;
1119 unsigned int *subspace_reloc_sizep;
1120 struct reloc_queue *queue;
1121 {
1122 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1123 then R_PREV_FIXUPs to get the difference down to a
1124 reasonable size. */
1125 if (skip >= 0x1000000)
1126 {
1127 skip -= 0x1000000;
1128 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1129 bfd_put_8 (abfd, 0xff, p + 1);
1130 bfd_put_16 (abfd, 0xffff, p + 2);
1131 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1132 while (skip >= 0x1000000)
1133 {
1134 skip -= 0x1000000;
1135 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1136 p++;
1137 *subspace_reloc_sizep += 1;
1138 /* No need to adjust queue here since we are repeating the
1139 most recent fixup. */
1140 }
1141 }
1142
1143 /* The difference must be less than 0x1000000. Use one
1144 more R_NO_RELOCATION entry to get to the right difference. */
1145 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1146 {
1147 /* Difference can be handled in a simple single-byte
1148 R_NO_RELOCATION entry. */
1149 if (skip <= 0x60)
1150 {
1151 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1152 *subspace_reloc_sizep += 1;
1153 p++;
1154 }
1155 /* Handle it with a two byte R_NO_RELOCATION entry. */
1156 else if (skip <= 0x1000)
1157 {
1158 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1159 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1160 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1161 }
1162 /* Handle it with a three byte R_NO_RELOCATION entry. */
1163 else
1164 {
1165 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1166 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1167 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1168 }
1169 }
1170 /* Ugh. Punt and use a 4 byte entry. */
1171 else if (skip > 0)
1172 {
1173 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1174 bfd_put_8 (abfd, skip >> 16, p + 1);
1175 bfd_put_16 (abfd, skip, p + 2);
1176 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1177 }
1178 return p;
1179 }
1180
1181 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1182 from a BFD relocation. Update the size of the subspace relocation
1183 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1184 into the relocation stream. */
1185
1186 static unsigned char *
1187 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1188 bfd *abfd;
1189 int addend;
1190 unsigned char *p;
1191 unsigned int *subspace_reloc_sizep;
1192 struct reloc_queue *queue;
1193 {
1194 if ((unsigned)(addend) + 0x80 < 0x100)
1195 {
1196 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1197 bfd_put_8 (abfd, addend, p + 1);
1198 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1199 }
1200 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1201 {
1202 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1203 bfd_put_16 (abfd, addend, p + 1);
1204 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1205 }
1206 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1207 {
1208 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1209 bfd_put_8 (abfd, addend >> 16, p + 1);
1210 bfd_put_16 (abfd, addend, p + 2);
1211 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1212 }
1213 else
1214 {
1215 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1216 bfd_put_32 (abfd, addend, p + 1);
1217 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1218 }
1219 return p;
1220 }
1221
1222 /* Handle a single function call relocation. */
1223
1224 static unsigned char *
1225 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1226 bfd *abfd;
1227 unsigned char *p;
1228 unsigned int *subspace_reloc_sizep;
1229 arelent *bfd_reloc;
1230 int sym_num;
1231 struct reloc_queue *queue;
1232 {
1233 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1234 int rtn_bits = arg_bits & 0x3;
1235 int type, done = 0;
1236
1237 /* You'll never believe all this is necessary to handle relocations
1238 for function calls. Having to compute and pack the argument
1239 relocation bits is the real nightmare.
1240
1241 If you're interested in how this works, just forget it. You really
1242 do not want to know about this braindamage. */
1243
1244 /* First see if this can be done with a "simple" relocation. Simple
1245 relocations have a symbol number < 0x100 and have simple encodings
1246 of argument relocations. */
1247
1248 if (sym_num < 0x100)
1249 {
1250 switch (arg_bits)
1251 {
1252 case 0:
1253 case 1:
1254 type = 0;
1255 break;
1256 case 1 << 8:
1257 case 1 << 8 | 1:
1258 type = 1;
1259 break;
1260 case 1 << 8 | 1 << 6:
1261 case 1 << 8 | 1 << 6 | 1:
1262 type = 2;
1263 break;
1264 case 1 << 8 | 1 << 6 | 1 << 4:
1265 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1266 type = 3;
1267 break;
1268 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1269 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1270 type = 4;
1271 break;
1272 default:
1273 /* Not one of the easy encodings. This will have to be
1274 handled by the more complex code below. */
1275 type = -1;
1276 break;
1277 }
1278 if (type != -1)
1279 {
1280 /* Account for the return value too. */
1281 if (rtn_bits)
1282 type += 5;
1283
1284 /* Emit a 2 byte relocation. Then see if it can be handled
1285 with a relocation which is already in the relocation queue. */
1286 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1287 bfd_put_8 (abfd, sym_num, p + 1);
1288 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1289 done = 1;
1290 }
1291 }
1292
1293 /* If this could not be handled with a simple relocation, then do a hard
1294 one. Hard relocations occur if the symbol number was too high or if
1295 the encoding of argument relocation bits is too complex. */
1296 if (! done)
1297 {
1298 /* Don't ask about these magic sequences. I took them straight
1299 from gas-1.36 which took them from the a.out man page. */
1300 type = rtn_bits;
1301 if ((arg_bits >> 6 & 0xf) == 0xe)
1302 type += 9 * 40;
1303 else
1304 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1305 if ((arg_bits >> 2 & 0xf) == 0xe)
1306 type += 9 * 4;
1307 else
1308 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1309
1310 /* Output the first two bytes of the relocation. These describe
1311 the length of the relocation and encoding style. */
1312 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1313 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1314 p);
1315 bfd_put_8 (abfd, type, p + 1);
1316
1317 /* Now output the symbol index and see if this bizarre relocation
1318 just happened to be in the relocation queue. */
1319 if (sym_num < 0x100)
1320 {
1321 bfd_put_8 (abfd, sym_num, p + 2);
1322 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1323 }
1324 else
1325 {
1326 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1327 bfd_put_16 (abfd, sym_num, p + 3);
1328 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1329 }
1330 }
1331 return p;
1332 }
1333
1334
1335 /* Return the logarithm of X, base 2, considering X unsigned.
1336 Abort -1 if X is not a power or two or is zero. */
1337
1338 static int
1339 log2 (x)
1340 unsigned int x;
1341 {
1342 int log = 0;
1343
1344 /* Test for 0 or a power of 2. */
1345 if (x == 0 || x != (x & -x))
1346 return -1;
1347
1348 while ((x >>= 1) != 0)
1349 log++;
1350 return log;
1351 }
1352
1353 static bfd_reloc_status_type
1354 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1355 input_section, output_bfd, error_message)
1356 bfd *abfd;
1357 arelent *reloc_entry;
1358 asymbol *symbol_in;
1359 PTR data;
1360 asection *input_section;
1361 bfd *output_bfd;
1362 char **error_message;
1363 {
1364 if (output_bfd)
1365 {
1366 reloc_entry->address += input_section->output_offset;
1367 return bfd_reloc_ok;
1368 }
1369 return bfd_reloc_ok;
1370 }
1371
1372 /* Given a generic HPPA relocation type, the instruction format,
1373 and a field selector, return one or more appropriate SOM relocations. */
1374
1375 int **
1376 hppa_som_gen_reloc_type (abfd, base_type, format, field)
1377 bfd *abfd;
1378 int base_type;
1379 int format;
1380 enum hppa_reloc_field_selector_type_alt field;
1381 {
1382 int *final_type, **final_types;
1383
1384 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 3);
1385 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1386 if (!final_types || !final_type)
1387 {
1388 bfd_set_error (bfd_error_no_memory);
1389 return NULL;
1390 }
1391
1392 /* The field selector may require additional relocations to be
1393 generated. It's impossible to know at this moment if additional
1394 relocations will be needed, so we make them. The code to actually
1395 write the relocation/fixup stream is responsible for removing
1396 any redundant relocations. */
1397 switch (field)
1398 {
1399 case e_fsel:
1400 case e_psel:
1401 case e_lpsel:
1402 case e_rpsel:
1403 final_types[0] = final_type;
1404 final_types[1] = NULL;
1405 final_types[2] = NULL;
1406 *final_type = base_type;
1407 break;
1408
1409 case e_tsel:
1410 case e_ltsel:
1411 case e_rtsel:
1412 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1413 if (!final_types[0])
1414 {
1415 bfd_set_error (bfd_error_no_memory);
1416 return NULL;
1417 }
1418 if (field == e_tsel)
1419 *final_types[0] = R_FSEL;
1420 else if (field == e_ltsel)
1421 *final_types[0] = R_LSEL;
1422 else
1423 *final_types[0] = R_RSEL;
1424 final_types[1] = final_type;
1425 final_types[2] = NULL;
1426 *final_type = base_type;
1427 break;
1428
1429 case e_lssel:
1430 case e_rssel:
1431 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1432 if (!final_types[0])
1433 {
1434 bfd_set_error (bfd_error_no_memory);
1435 return NULL;
1436 }
1437 *final_types[0] = R_S_MODE;
1438 final_types[1] = final_type;
1439 final_types[2] = NULL;
1440 *final_type = base_type;
1441 break;
1442
1443 case e_lsel:
1444 case e_rsel:
1445 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1446 if (!final_types[0])
1447 {
1448 bfd_set_error (bfd_error_no_memory);
1449 return NULL;
1450 }
1451 *final_types[0] = R_N_MODE;
1452 final_types[1] = final_type;
1453 final_types[2] = NULL;
1454 *final_type = base_type;
1455 break;
1456
1457 case e_ldsel:
1458 case e_rdsel:
1459 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1460 if (!final_types[0])
1461 {
1462 bfd_set_error (bfd_error_no_memory);
1463 return NULL;
1464 }
1465 *final_types[0] = R_D_MODE;
1466 final_types[1] = final_type;
1467 final_types[2] = NULL;
1468 *final_type = base_type;
1469 break;
1470
1471 case e_lrsel:
1472 case e_rrsel:
1473 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1474 if (!final_types[0])
1475 {
1476 bfd_set_error (bfd_error_no_memory);
1477 return NULL;
1478 }
1479 *final_types[0] = R_R_MODE;
1480 final_types[1] = final_type;
1481 final_types[2] = NULL;
1482 *final_type = base_type;
1483 break;
1484 }
1485
1486 switch (base_type)
1487 {
1488 case R_HPPA:
1489 /* PLABELs get their own relocation type. */
1490 if (field == e_psel
1491 || field == e_lpsel
1492 || field == e_rpsel)
1493 {
1494 /* A PLABEL relocation that has a size of 32 bits must
1495 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1496 if (format == 32)
1497 *final_type = R_DATA_PLABEL;
1498 else
1499 *final_type = R_CODE_PLABEL;
1500 }
1501 /* PIC stuff. */
1502 else if (field == e_tsel
1503 || field == e_ltsel
1504 || field == e_rtsel)
1505 *final_type = R_DLT_REL;
1506 /* A relocation in the data space is always a full 32bits. */
1507 else if (format == 32)
1508 *final_type = R_DATA_ONE_SYMBOL;
1509
1510 break;
1511
1512 case R_HPPA_GOTOFF:
1513 /* More PLABEL special cases. */
1514 if (field == e_psel
1515 || field == e_lpsel
1516 || field == e_rpsel)
1517 *final_type = R_DATA_PLABEL;
1518 break;
1519
1520 case R_HPPA_NONE:
1521 case R_HPPA_ABS_CALL:
1522 case R_HPPA_PCREL_CALL:
1523 /* Right now we can default all these. */
1524 break;
1525 }
1526 return final_types;
1527 }
1528
1529 /* Return the address of the correct entry in the PA SOM relocation
1530 howto table. */
1531
1532 /*ARGSUSED*/
1533 static const reloc_howto_type *
1534 som_bfd_reloc_type_lookup (abfd, code)
1535 bfd *abfd;
1536 bfd_reloc_code_real_type code;
1537 {
1538 if ((int) code < (int) R_NO_RELOCATION + 255)
1539 {
1540 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1541 return &som_hppa_howto_table[(int) code];
1542 }
1543
1544 return (reloc_howto_type *) 0;
1545 }
1546
1547 /* Perform some initialization for an object. Save results of this
1548 initialization in the BFD. */
1549
1550 static bfd_target *
1551 som_object_setup (abfd, file_hdrp, aux_hdrp)
1552 bfd *abfd;
1553 struct header *file_hdrp;
1554 struct som_exec_auxhdr *aux_hdrp;
1555 {
1556 /* som_mkobject will set bfd_error if som_mkobject fails. */
1557 if (som_mkobject (abfd) != true)
1558 return 0;
1559
1560 /* Set BFD flags based on what information is available in the SOM. */
1561 abfd->flags = NO_FLAGS;
1562 if (file_hdrp->symbol_total)
1563 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1564
1565 switch (file_hdrp->a_magic)
1566 {
1567 case DEMAND_MAGIC:
1568 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1569 break;
1570 case SHARE_MAGIC:
1571 abfd->flags |= (WP_TEXT | EXEC_P);
1572 break;
1573 case EXEC_MAGIC:
1574 abfd->flags |= (EXEC_P);
1575 break;
1576 case RELOC_MAGIC:
1577 abfd->flags |= HAS_RELOC;
1578 break;
1579 #ifdef SHL_MAGIC
1580 case SHL_MAGIC:
1581 #endif
1582 #ifdef DL_MAGIC
1583 case DL_MAGIC:
1584 #endif
1585 abfd->flags |= DYNAMIC;
1586 break;
1587
1588 default:
1589 break;
1590 }
1591
1592 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1593 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 0);
1594 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1595
1596 /* Initialize the saved symbol table and string table to NULL.
1597 Save important offsets and sizes from the SOM header into
1598 the BFD. */
1599 obj_som_stringtab (abfd) = (char *) NULL;
1600 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1601 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1602 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1603 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1604 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
1605
1606 obj_som_exec_data (abfd) = (struct som_exec_data *)
1607 bfd_zalloc (abfd, sizeof (struct som_exec_data ));
1608 if (obj_som_exec_data (abfd) == NULL)
1609 {
1610 bfd_set_error (bfd_error_no_memory);
1611 return NULL;
1612 }
1613
1614 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1615 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1616 return abfd->xvec;
1617 }
1618
1619 /* Convert all of the space and subspace info into BFD sections. Each space
1620 contains a number of subspaces, which in turn describe the mapping between
1621 regions of the exec file, and the address space that the program runs in.
1622 BFD sections which correspond to spaces will overlap the sections for the
1623 associated subspaces. */
1624
1625 static boolean
1626 setup_sections (abfd, file_hdr)
1627 bfd *abfd;
1628 struct header *file_hdr;
1629 {
1630 char *space_strings;
1631 int space_index;
1632 unsigned int total_subspaces = 0;
1633
1634 /* First, read in space names */
1635
1636 space_strings = malloc (file_hdr->space_strings_size);
1637 if (!space_strings && file_hdr->space_strings_size != 0)
1638 {
1639 bfd_set_error (bfd_error_no_memory);
1640 goto error_return;
1641 }
1642
1643 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
1644 goto error_return;
1645 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1646 != file_hdr->space_strings_size)
1647 goto error_return;
1648
1649 /* Loop over all of the space dictionaries, building up sections */
1650 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1651 {
1652 struct space_dictionary_record space;
1653 struct subspace_dictionary_record subspace, save_subspace;
1654 int subspace_index;
1655 asection *space_asect;
1656 char *newname;
1657
1658 /* Read the space dictionary element */
1659 if (bfd_seek (abfd, file_hdr->space_location
1660 + space_index * sizeof space, SEEK_SET) < 0)
1661 goto error_return;
1662 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1663 goto error_return;
1664
1665 /* Setup the space name string */
1666 space.name.n_name = space.name.n_strx + space_strings;
1667
1668 /* Make a section out of it */
1669 newname = bfd_alloc (abfd, strlen (space.name.n_name) + 1);
1670 if (!newname)
1671 goto error_return;
1672 strcpy (newname, space.name.n_name);
1673
1674 space_asect = bfd_make_section_anyway (abfd, newname);
1675 if (!space_asect)
1676 goto error_return;
1677
1678 if (space.is_loadable == 0)
1679 space_asect->flags |= SEC_DEBUGGING;
1680
1681 /* Set up all the attributes for the space. */
1682 if (bfd_som_set_section_attributes (space_asect, space.is_defined,
1683 space.is_private, space.sort_key,
1684 space.space_number) == false)
1685 goto error_return;
1686
1687 /* Now, read in the first subspace for this space */
1688 if (bfd_seek (abfd, file_hdr->subspace_location
1689 + space.subspace_index * sizeof subspace,
1690 SEEK_SET) < 0)
1691 goto error_return;
1692 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1693 goto error_return;
1694 /* Seek back to the start of the subspaces for loop below */
1695 if (bfd_seek (abfd, file_hdr->subspace_location
1696 + space.subspace_index * sizeof subspace,
1697 SEEK_SET) < 0)
1698 goto error_return;
1699
1700 /* Setup the start address and file loc from the first subspace record */
1701 space_asect->vma = subspace.subspace_start;
1702 space_asect->filepos = subspace.file_loc_init_value;
1703 space_asect->alignment_power = log2 (subspace.alignment);
1704 if (space_asect->alignment_power == -1)
1705 goto error_return;
1706
1707 /* Initialize save_subspace so we can reliably determine if this
1708 loop placed any useful values into it. */
1709 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1710
1711 /* Loop over the rest of the subspaces, building up more sections */
1712 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1713 subspace_index++)
1714 {
1715 asection *subspace_asect;
1716
1717 /* Read in the next subspace */
1718 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1719 != sizeof subspace)
1720 goto error_return;
1721
1722 /* Setup the subspace name string */
1723 subspace.name.n_name = subspace.name.n_strx + space_strings;
1724
1725 newname = bfd_alloc (abfd, strlen (subspace.name.n_name) + 1);
1726 if (!newname)
1727 goto error_return;
1728 strcpy (newname, subspace.name.n_name);
1729
1730 /* Make a section out of this subspace */
1731 subspace_asect = bfd_make_section_anyway (abfd, newname);
1732 if (!subspace_asect)
1733 goto error_return;
1734
1735 /* Store private information about the section. */
1736 if (bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1737 subspace.access_control_bits,
1738 subspace.sort_key,
1739 subspace.quadrant) == false)
1740 goto error_return;
1741
1742 /* Keep an easy mapping between subspaces and sections. */
1743 subspace_asect->target_index = total_subspaces++;
1744
1745 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1746 by the access_control_bits in the subspace header. */
1747 switch (subspace.access_control_bits >> 4)
1748 {
1749 /* Readonly data. */
1750 case 0x0:
1751 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1752 break;
1753
1754 /* Normal data. */
1755 case 0x1:
1756 subspace_asect->flags |= SEC_DATA;
1757 break;
1758
1759 /* Readonly code and the gateways.
1760 Gateways have other attributes which do not map
1761 into anything BFD knows about. */
1762 case 0x2:
1763 case 0x4:
1764 case 0x5:
1765 case 0x6:
1766 case 0x7:
1767 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1768 break;
1769
1770 /* dynamic (writable) code. */
1771 case 0x3:
1772 subspace_asect->flags |= SEC_CODE;
1773 break;
1774 }
1775
1776 if (subspace.dup_common || subspace.is_common)
1777 subspace_asect->flags |= SEC_IS_COMMON;
1778 else if (subspace.subspace_length > 0)
1779 subspace_asect->flags |= SEC_HAS_CONTENTS;
1780
1781 if (subspace.is_loadable)
1782 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1783 else
1784 subspace_asect->flags |= SEC_DEBUGGING;
1785
1786 if (subspace.code_only)
1787 subspace_asect->flags |= SEC_CODE;
1788
1789 /* Both file_loc_init_value and initialization_length will
1790 be zero for a BSS like subspace. */
1791 if (subspace.file_loc_init_value == 0
1792 && subspace.initialization_length == 0)
1793 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD);
1794
1795 /* This subspace has relocations.
1796 The fixup_request_quantity is a byte count for the number of
1797 entries in the relocation stream; it is not the actual number
1798 of relocations in the subspace. */
1799 if (subspace.fixup_request_quantity != 0)
1800 {
1801 subspace_asect->flags |= SEC_RELOC;
1802 subspace_asect->rel_filepos = subspace.fixup_request_index;
1803 som_section_data (subspace_asect)->reloc_size
1804 = subspace.fixup_request_quantity;
1805 /* We can not determine this yet. When we read in the
1806 relocation table the correct value will be filled in. */
1807 subspace_asect->reloc_count = -1;
1808 }
1809
1810 /* Update save_subspace if appropriate. */
1811 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1812 save_subspace = subspace;
1813
1814 subspace_asect->vma = subspace.subspace_start;
1815 subspace_asect->_cooked_size = subspace.subspace_length;
1816 subspace_asect->_raw_size = subspace.subspace_length;
1817 subspace_asect->filepos = subspace.file_loc_init_value;
1818 subspace_asect->alignment_power = log2 (subspace.alignment);
1819 if (subspace_asect->alignment_power == -1)
1820 goto error_return;
1821 }
1822
1823 /* Yow! there is no subspace within the space which actually
1824 has initialized information in it; this should never happen
1825 as far as I know. */
1826 if (!save_subspace.file_loc_init_value)
1827 goto error_return;
1828
1829 /* Setup the sizes for the space section based upon the info in the
1830 last subspace of the space. */
1831 space_asect->_cooked_size = save_subspace.subspace_start
1832 - space_asect->vma + save_subspace.subspace_length;
1833 space_asect->_raw_size = save_subspace.file_loc_init_value
1834 - space_asect->filepos + save_subspace.initialization_length;
1835 }
1836 if (space_strings != NULL)
1837 free (space_strings);
1838 return true;
1839
1840 error_return:
1841 if (space_strings != NULL)
1842 free (space_strings);
1843 return false;
1844 }
1845
1846 /* Read in a SOM object and make it into a BFD. */
1847
1848 static bfd_target *
1849 som_object_p (abfd)
1850 bfd *abfd;
1851 {
1852 struct header file_hdr;
1853 struct som_exec_auxhdr aux_hdr;
1854
1855 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
1856 {
1857 if (bfd_get_error () != bfd_error_system_call)
1858 bfd_set_error (bfd_error_wrong_format);
1859 return 0;
1860 }
1861
1862 if (!_PA_RISC_ID (file_hdr.system_id))
1863 {
1864 bfd_set_error (bfd_error_wrong_format);
1865 return 0;
1866 }
1867
1868 switch (file_hdr.a_magic)
1869 {
1870 case RELOC_MAGIC:
1871 case EXEC_MAGIC:
1872 case SHARE_MAGIC:
1873 case DEMAND_MAGIC:
1874 #ifdef DL_MAGIC
1875 case DL_MAGIC:
1876 #endif
1877 #ifdef SHL_MAGIC
1878 case SHL_MAGIC:
1879 #endif
1880 #ifdef EXECLIBMAGIC
1881 case EXECLIBMAGIC:
1882 #endif
1883 #ifdef SHARED_MAGIC_CNX
1884 case SHARED_MAGIC_CNX:
1885 #endif
1886 break;
1887 default:
1888 bfd_set_error (bfd_error_wrong_format);
1889 return 0;
1890 }
1891
1892 if (file_hdr.version_id != VERSION_ID
1893 && file_hdr.version_id != NEW_VERSION_ID)
1894 {
1895 bfd_set_error (bfd_error_wrong_format);
1896 return 0;
1897 }
1898
1899 /* If the aux_header_size field in the file header is zero, then this
1900 object is an incomplete executable (a .o file). Do not try to read
1901 a non-existant auxiliary header. */
1902 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
1903 if (file_hdr.aux_header_size != 0)
1904 {
1905 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
1906 {
1907 if (bfd_get_error () != bfd_error_system_call)
1908 bfd_set_error (bfd_error_wrong_format);
1909 return 0;
1910 }
1911 }
1912
1913 if (!setup_sections (abfd, &file_hdr))
1914 {
1915 /* setup_sections does not bubble up a bfd error code. */
1916 bfd_set_error (bfd_error_bad_value);
1917 return 0;
1918 }
1919
1920 /* This appears to be a valid SOM object. Do some initialization. */
1921 return som_object_setup (abfd, &file_hdr, &aux_hdr);
1922 }
1923
1924 /* Create a SOM object. */
1925
1926 static boolean
1927 som_mkobject (abfd)
1928 bfd *abfd;
1929 {
1930 /* Allocate memory to hold backend information. */
1931 abfd->tdata.som_data = (struct som_data_struct *)
1932 bfd_zalloc (abfd, sizeof (struct som_data_struct));
1933 if (abfd->tdata.som_data == NULL)
1934 {
1935 bfd_set_error (bfd_error_no_memory);
1936 return false;
1937 }
1938 return true;
1939 }
1940
1941 /* Initialize some information in the file header. This routine makes
1942 not attempt at doing the right thing for a full executable; it
1943 is only meant to handle relocatable objects. */
1944
1945 static boolean
1946 som_prep_headers (abfd)
1947 bfd *abfd;
1948 {
1949 struct header *file_hdr;
1950 asection *section;
1951
1952 /* Make and attach a file header to the BFD. */
1953 file_hdr = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
1954 if (file_hdr == NULL)
1955
1956 {
1957 bfd_set_error (bfd_error_no_memory);
1958 return false;
1959 }
1960 obj_som_file_hdr (abfd) = file_hdr;
1961
1962 /* FIXME. This should really be conditional based on whether or not
1963 PA1.1 instructions/registers have been used. */
1964 if (abfd->flags & (EXEC_P | DYNAMIC))
1965 file_hdr->system_id = obj_som_exec_data (abfd)->system_id;
1966 else
1967 file_hdr->system_id = CPU_PA_RISC1_0;
1968
1969 if (abfd->flags & (EXEC_P | DYNAMIC))
1970 {
1971 if (abfd->flags & D_PAGED)
1972 file_hdr->a_magic = DEMAND_MAGIC;
1973 else if (abfd->flags & WP_TEXT)
1974 file_hdr->a_magic = SHARE_MAGIC;
1975 #ifdef SHL_MAGIC
1976 else if (abfd->flags & DYNAMIC)
1977 file_hdr->a_magic = SHL_MAGIC;
1978 #endif
1979 else
1980 file_hdr->a_magic = EXEC_MAGIC;
1981 }
1982 else
1983 file_hdr->a_magic = RELOC_MAGIC;
1984
1985 /* Only new format SOM is supported. */
1986 file_hdr->version_id = NEW_VERSION_ID;
1987
1988 /* These fields are optional, and embedding timestamps is not always
1989 a wise thing to do, it makes comparing objects during a multi-stage
1990 bootstrap difficult. */
1991 file_hdr->file_time.secs = 0;
1992 file_hdr->file_time.nanosecs = 0;
1993
1994 file_hdr->entry_space = 0;
1995 file_hdr->entry_subspace = 0;
1996 file_hdr->entry_offset = 0;
1997 file_hdr->presumed_dp = 0;
1998
1999 /* Now iterate over the sections translating information from
2000 BFD sections to SOM spaces/subspaces. */
2001
2002 for (section = abfd->sections; section != NULL; section = section->next)
2003 {
2004 /* Ignore anything which has not been marked as a space or
2005 subspace. */
2006 if (!som_is_space (section) && !som_is_subspace (section))
2007 continue;
2008
2009 if (som_is_space (section))
2010 {
2011 /* Allocate space for the space dictionary. */
2012 som_section_data (section)->space_dict
2013 = (struct space_dictionary_record *)
2014 bfd_zalloc (abfd, sizeof (struct space_dictionary_record));
2015 if (som_section_data (section)->space_dict == NULL)
2016 {
2017 bfd_set_error (bfd_error_no_memory);
2018 return false;
2019 }
2020 /* Set space attributes. Note most attributes of SOM spaces
2021 are set based on the subspaces it contains. */
2022 som_section_data (section)->space_dict->loader_fix_index = -1;
2023 som_section_data (section)->space_dict->init_pointer_index = -1;
2024
2025 /* Set more attributes that were stuffed away in private data. */
2026 som_section_data (section)->space_dict->sort_key =
2027 som_section_data (section)->copy_data->sort_key;
2028 som_section_data (section)->space_dict->is_defined =
2029 som_section_data (section)->copy_data->is_defined;
2030 som_section_data (section)->space_dict->is_private =
2031 som_section_data (section)->copy_data->is_private;
2032 som_section_data (section)->space_dict->space_number =
2033 som_section_data (section)->copy_data->space_number;
2034 }
2035 else
2036 {
2037 /* Allocate space for the subspace dictionary. */
2038 som_section_data (section)->subspace_dict
2039 = (struct subspace_dictionary_record *)
2040 bfd_zalloc (abfd, sizeof (struct subspace_dictionary_record));
2041 if (som_section_data (section)->subspace_dict == NULL)
2042 {
2043 bfd_set_error (bfd_error_no_memory);
2044 return false;
2045 }
2046
2047 /* Set subspace attributes. Basic stuff is done here, additional
2048 attributes are filled in later as more information becomes
2049 available. */
2050 if (section->flags & SEC_IS_COMMON)
2051 {
2052 som_section_data (section)->subspace_dict->dup_common = 1;
2053 som_section_data (section)->subspace_dict->is_common = 1;
2054 }
2055
2056 if (section->flags & SEC_ALLOC)
2057 som_section_data (section)->subspace_dict->is_loadable = 1;
2058
2059 if (section->flags & SEC_CODE)
2060 som_section_data (section)->subspace_dict->code_only = 1;
2061
2062 som_section_data (section)->subspace_dict->subspace_start =
2063 section->vma;
2064 som_section_data (section)->subspace_dict->subspace_length =
2065 bfd_section_size (abfd, section);
2066 som_section_data (section)->subspace_dict->initialization_length =
2067 bfd_section_size (abfd, section);
2068 som_section_data (section)->subspace_dict->alignment =
2069 1 << section->alignment_power;
2070
2071 /* Set more attributes that were stuffed away in private data. */
2072 som_section_data (section)->subspace_dict->sort_key =
2073 som_section_data (section)->copy_data->sort_key;
2074 som_section_data (section)->subspace_dict->access_control_bits =
2075 som_section_data (section)->copy_data->access_control_bits;
2076 som_section_data (section)->subspace_dict->quadrant =
2077 som_section_data (section)->copy_data->quadrant;
2078 }
2079 }
2080 return true;
2081 }
2082
2083 /* Return true if the given section is a SOM space, false otherwise. */
2084
2085 static boolean
2086 som_is_space (section)
2087 asection *section;
2088 {
2089 /* If no copy data is available, then it's neither a space nor a
2090 subspace. */
2091 if (som_section_data (section)->copy_data == NULL)
2092 return false;
2093
2094 /* If the containing space isn't the same as the given section,
2095 then this isn't a space. */
2096 if (som_section_data (section)->copy_data->container != section)
2097 return false;
2098
2099 /* OK. Must be a space. */
2100 return true;
2101 }
2102
2103 /* Return true if the given section is a SOM subspace, false otherwise. */
2104
2105 static boolean
2106 som_is_subspace (section)
2107 asection *section;
2108 {
2109 /* If no copy data is available, then it's neither a space nor a
2110 subspace. */
2111 if (som_section_data (section)->copy_data == NULL)
2112 return false;
2113
2114 /* If the containing space is the same as the given section,
2115 then this isn't a subspace. */
2116 if (som_section_data (section)->copy_data->container == section)
2117 return false;
2118
2119 /* OK. Must be a subspace. */
2120 return true;
2121 }
2122
2123 /* Return true if the given space containins the given subspace. It
2124 is safe to assume space really is a space, and subspace really
2125 is a subspace. */
2126
2127 static boolean
2128 som_is_container (space, subspace)
2129 asection *space, *subspace;
2130 {
2131 return som_section_data (subspace)->copy_data->container == space;
2132 }
2133
2134 /* Count and return the number of spaces attached to the given BFD. */
2135
2136 static unsigned long
2137 som_count_spaces (abfd)
2138 bfd *abfd;
2139 {
2140 int count = 0;
2141 asection *section;
2142
2143 for (section = abfd->sections; section != NULL; section = section->next)
2144 count += som_is_space (section);
2145
2146 return count;
2147 }
2148
2149 /* Count the number of subspaces attached to the given BFD. */
2150
2151 static unsigned long
2152 som_count_subspaces (abfd)
2153 bfd *abfd;
2154 {
2155 int count = 0;
2156 asection *section;
2157
2158 for (section = abfd->sections; section != NULL; section = section->next)
2159 count += som_is_subspace (section);
2160
2161 return count;
2162 }
2163
2164 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2165
2166 We desire symbols to be ordered starting with the symbol with the
2167 highest relocation count down to the symbol with the lowest relocation
2168 count. Doing so compacts the relocation stream. */
2169
2170 static int
2171 compare_syms (arg1, arg2)
2172 const PTR arg1;
2173 const PTR arg2;
2174
2175 {
2176 asymbol **sym1 = (asymbol **) arg1;
2177 asymbol **sym2 = (asymbol **) arg2;
2178 unsigned int count1, count2;
2179
2180 /* Get relocation count for each symbol. Note that the count
2181 is stored in the udata pointer for section symbols! */
2182 if ((*sym1)->flags & BSF_SECTION_SYM)
2183 count1 = (int)(*sym1)->udata;
2184 else
2185 count1 = som_symbol_data (*sym1)->reloc_count;
2186
2187 if ((*sym2)->flags & BSF_SECTION_SYM)
2188 count2 = (int)(*sym2)->udata;
2189 else
2190 count2 = som_symbol_data (*sym2)->reloc_count;
2191
2192 /* Return the appropriate value. */
2193 if (count1 < count2)
2194 return 1;
2195 else if (count1 > count2)
2196 return -1;
2197 return 0;
2198 }
2199
2200 /* Perform various work in preparation for emitting the fixup stream. */
2201
2202 static void
2203 som_prep_for_fixups (abfd, syms, num_syms)
2204 bfd *abfd;
2205 asymbol **syms;
2206 unsigned long num_syms;
2207 {
2208 int i;
2209 asection *section;
2210
2211 /* Most SOM relocations involving a symbol have a length which is
2212 dependent on the index of the symbol. So symbols which are
2213 used often in relocations should have a small index. */
2214
2215 /* First initialize the counters for each symbol. */
2216 for (i = 0; i < num_syms; i++)
2217 {
2218 /* Handle a section symbol; these have no pointers back to the
2219 SOM symbol info. So we just use the pointer field (udata)
2220 to hold the relocation count. */
2221 if (som_symbol_data (syms[i]) == NULL
2222 || syms[i]->flags & BSF_SECTION_SYM)
2223 {
2224 syms[i]->flags |= BSF_SECTION_SYM;
2225 syms[i]->udata = (PTR) 0;
2226 }
2227 else
2228 som_symbol_data (syms[i])->reloc_count = 0;
2229 }
2230
2231 /* Now that the counters are initialized, make a weighted count
2232 of how often a given symbol is used in a relocation. */
2233 for (section = abfd->sections; section != NULL; section = section->next)
2234 {
2235 int i;
2236
2237 /* Does this section have any relocations? */
2238 if (section->reloc_count <= 0)
2239 continue;
2240
2241 /* Walk through each relocation for this section. */
2242 for (i = 1; i < section->reloc_count; i++)
2243 {
2244 arelent *reloc = section->orelocation[i];
2245 int scale;
2246
2247 /* A relocation against a symbol in the *ABS* section really
2248 does not have a symbol. Likewise if the symbol isn't associated
2249 with any section. */
2250 if (reloc->sym_ptr_ptr == NULL
2251 || (*reloc->sym_ptr_ptr)->section == &bfd_abs_section)
2252 continue;
2253
2254 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2255 and R_CODE_ONE_SYMBOL relocations to come first. These
2256 two relocations have single byte versions if the symbol
2257 index is very small. */
2258 if (reloc->howto->type == R_DP_RELATIVE
2259 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2260 scale = 2;
2261 else
2262 scale = 1;
2263
2264 /* Handle section symbols by ramming the count in the udata
2265 field. It will not be used and the count is very important
2266 for these symbols. */
2267 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2268 {
2269 (*reloc->sym_ptr_ptr)->udata =
2270 (PTR) ((int) (*reloc->sym_ptr_ptr)->udata + scale);
2271 continue;
2272 }
2273
2274 /* A normal symbol. Increment the count. */
2275 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2276 }
2277 }
2278
2279 /* Now sort the symbols. */
2280 qsort (syms, num_syms, sizeof (asymbol *), compare_syms);
2281
2282 /* Compute the symbol indexes, they will be needed by the relocation
2283 code. */
2284 for (i = 0; i < num_syms; i++)
2285 {
2286 /* A section symbol. Again, there is no pointer to backend symbol
2287 information, so we reuse (abuse) the udata field again. */
2288 if (syms[i]->flags & BSF_SECTION_SYM)
2289 syms[i]->udata = (PTR) i;
2290 else
2291 som_symbol_data (syms[i])->index = i;
2292 }
2293 }
2294
2295 static boolean
2296 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2297 bfd *abfd;
2298 unsigned long current_offset;
2299 unsigned int *total_reloc_sizep;
2300 {
2301 unsigned int i, j;
2302 /* Chunk of memory that we can use as buffer space, then throw
2303 away. */
2304 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2305 unsigned char *p;
2306 unsigned int total_reloc_size = 0;
2307 unsigned int subspace_reloc_size = 0;
2308 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2309 asection *section = abfd->sections;
2310
2311 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2312 p = tmp_space;
2313
2314 /* All the fixups for a particular subspace are emitted in a single
2315 stream. All the subspaces for a particular space are emitted
2316 as a single stream.
2317
2318 So, to get all the locations correct one must iterate through all the
2319 spaces, for each space iterate through its subspaces and output a
2320 fixups stream. */
2321 for (i = 0; i < num_spaces; i++)
2322 {
2323 asection *subsection;
2324
2325 /* Find a space. */
2326 while (!som_is_space (section))
2327 section = section->next;
2328
2329 /* Now iterate through each of its subspaces. */
2330 for (subsection = abfd->sections;
2331 subsection != NULL;
2332 subsection = subsection->next)
2333 {
2334 int reloc_offset, current_rounding_mode;
2335
2336 /* Find a subspace of this space. */
2337 if (!som_is_subspace (subsection)
2338 || !som_is_container (section, subsection))
2339 continue;
2340
2341 /* If this subspace does not have real data, then we are
2342 finised with it. */
2343 if ((subsection->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0)
2344 {
2345 som_section_data (subsection)->subspace_dict->fixup_request_index
2346 = -1;
2347 continue;
2348 }
2349
2350 /* This subspace has some relocations. Put the relocation stream
2351 index into the subspace record. */
2352 som_section_data (subsection)->subspace_dict->fixup_request_index
2353 = total_reloc_size;
2354
2355 /* To make life easier start over with a clean slate for
2356 each subspace. Seek to the start of the relocation stream
2357 for this subspace in preparation for writing out its fixup
2358 stream. */
2359 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) < 0)
2360 return false;
2361
2362 /* Buffer space has already been allocated. Just perform some
2363 initialization here. */
2364 p = tmp_space;
2365 subspace_reloc_size = 0;
2366 reloc_offset = 0;
2367 som_initialize_reloc_queue (reloc_queue);
2368 current_rounding_mode = R_N_MODE;
2369
2370 /* Translate each BFD relocation into one or more SOM
2371 relocations. */
2372 for (j = 0; j < subsection->reloc_count; j++)
2373 {
2374 arelent *bfd_reloc = subsection->orelocation[j];
2375 unsigned int skip;
2376 int sym_num;
2377
2378 /* Get the symbol number. Remember it's stored in a
2379 special place for section symbols. */
2380 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2381 sym_num = (int) (*bfd_reloc->sym_ptr_ptr)->udata;
2382 else
2383 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2384
2385 /* If there is not enough room for the next couple relocations,
2386 then dump the current buffer contents now. Also reinitialize
2387 the relocation queue.
2388
2389 No single BFD relocation could ever translate into more
2390 than 100 bytes of SOM relocations (20bytes is probably the
2391 upper limit, but leave lots of space for growth). */
2392 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2393 {
2394 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2395 != p - tmp_space)
2396 return false;
2397
2398 p = tmp_space;
2399 som_initialize_reloc_queue (reloc_queue);
2400 }
2401
2402 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2403 skipped. */
2404 skip = bfd_reloc->address - reloc_offset;
2405 p = som_reloc_skip (abfd, skip, p,
2406 &subspace_reloc_size, reloc_queue);
2407
2408 /* Update reloc_offset for the next iteration.
2409
2410 Many relocations do not consume input bytes. They
2411 are markers, or set state necessary to perform some
2412 later relocation. */
2413 switch (bfd_reloc->howto->type)
2414 {
2415 /* This only needs to handle relocations that may be
2416 made by hppa_som_gen_reloc. */
2417 case R_ENTRY:
2418 case R_EXIT:
2419 case R_N_MODE:
2420 case R_S_MODE:
2421 case R_D_MODE:
2422 case R_R_MODE:
2423 case R_FSEL:
2424 case R_LSEL:
2425 case R_RSEL:
2426 reloc_offset = bfd_reloc->address;
2427 break;
2428
2429 default:
2430 reloc_offset = bfd_reloc->address + 4;
2431 break;
2432 }
2433
2434 /* Now the actual relocation we care about. */
2435 switch (bfd_reloc->howto->type)
2436 {
2437 case R_PCREL_CALL:
2438 case R_ABS_CALL:
2439 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2440 bfd_reloc, sym_num, reloc_queue);
2441 break;
2442
2443 case R_CODE_ONE_SYMBOL:
2444 case R_DP_RELATIVE:
2445 /* Account for any addend. */
2446 if (bfd_reloc->addend)
2447 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2448 &subspace_reloc_size, reloc_queue);
2449
2450 if (sym_num < 0x20)
2451 {
2452 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2453 subspace_reloc_size += 1;
2454 p += 1;
2455 }
2456 else if (sym_num < 0x100)
2457 {
2458 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2459 bfd_put_8 (abfd, sym_num, p + 1);
2460 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2461 2, reloc_queue);
2462 }
2463 else if (sym_num < 0x10000000)
2464 {
2465 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2466 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2467 bfd_put_16 (abfd, sym_num, p + 2);
2468 p = try_prev_fixup (abfd, &subspace_reloc_size,
2469 p, 4, reloc_queue);
2470 }
2471 else
2472 abort ();
2473 break;
2474
2475 case R_DATA_ONE_SYMBOL:
2476 case R_DATA_PLABEL:
2477 case R_CODE_PLABEL:
2478 case R_DLT_REL:
2479 /* Account for any addend. */
2480 if (bfd_reloc->addend)
2481 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2482 &subspace_reloc_size, reloc_queue);
2483
2484 if (sym_num < 0x100)
2485 {
2486 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2487 bfd_put_8 (abfd, sym_num, p + 1);
2488 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2489 2, reloc_queue);
2490 }
2491 else if (sym_num < 0x10000000)
2492 {
2493 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2494 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2495 bfd_put_16 (abfd, sym_num, p + 2);
2496 p = try_prev_fixup (abfd, &subspace_reloc_size,
2497 p, 4, reloc_queue);
2498 }
2499 else
2500 abort ();
2501 break;
2502
2503 case R_ENTRY:
2504 {
2505 int *descp
2506 = (int *) som_symbol_data (*bfd_reloc->sym_ptr_ptr)->unwind;
2507 bfd_put_8 (abfd, R_ENTRY, p);
2508 bfd_put_32 (abfd, descp[0], p + 1);
2509 bfd_put_32 (abfd, descp[1], p + 5);
2510 p = try_prev_fixup (abfd, &subspace_reloc_size,
2511 p, 9, reloc_queue);
2512 break;
2513 }
2514
2515 case R_EXIT:
2516 bfd_put_8 (abfd, R_EXIT, p);
2517 subspace_reloc_size += 1;
2518 p += 1;
2519 break;
2520
2521 case R_N_MODE:
2522 case R_S_MODE:
2523 case R_D_MODE:
2524 case R_R_MODE:
2525 /* If this relocation requests the current rounding
2526 mode, then it is redundant. */
2527 if (bfd_reloc->howto->type != current_rounding_mode)
2528 {
2529 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2530 subspace_reloc_size += 1;
2531 p += 1;
2532 current_rounding_mode = bfd_reloc->howto->type;
2533 }
2534 break;
2535
2536 case R_FSEL:
2537 case R_LSEL:
2538 case R_RSEL:
2539 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2540 subspace_reloc_size += 1;
2541 p += 1;
2542 break;
2543
2544 /* Put a "R_RESERVED" relocation in the stream if
2545 we hit something we do not understand. The linker
2546 will complain loudly if this ever happens. */
2547 default:
2548 bfd_put_8 (abfd, 0xff, p);
2549 subspace_reloc_size += 1;
2550 p += 1;
2551 break;
2552 }
2553 }
2554
2555 /* Last BFD relocation for a subspace has been processed.
2556 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2557 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2558 - reloc_offset,
2559 p, &subspace_reloc_size, reloc_queue);
2560
2561 /* Scribble out the relocations. */
2562 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2563 != p - tmp_space)
2564 return false;
2565 p = tmp_space;
2566
2567 total_reloc_size += subspace_reloc_size;
2568 som_section_data (subsection)->subspace_dict->fixup_request_quantity
2569 = subspace_reloc_size;
2570 }
2571 section = section->next;
2572 }
2573 *total_reloc_sizep = total_reloc_size;
2574 return true;
2575 }
2576
2577 /* Write out the space/subspace string table. */
2578
2579 static boolean
2580 som_write_space_strings (abfd, current_offset, string_sizep)
2581 bfd *abfd;
2582 unsigned long current_offset;
2583 unsigned int *string_sizep;
2584 {
2585 /* Chunk of memory that we can use as buffer space, then throw
2586 away. */
2587 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2588 unsigned char *p;
2589 unsigned int strings_size = 0;
2590 asection *section;
2591
2592 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2593 p = tmp_space;
2594
2595 /* Seek to the start of the space strings in preparation for writing
2596 them out. */
2597 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2598 return false;
2599
2600 /* Walk through all the spaces and subspaces (order is not important)
2601 building up and writing string table entries for their names. */
2602 for (section = abfd->sections; section != NULL; section = section->next)
2603 {
2604 int length;
2605
2606 /* Only work with space/subspaces; avoid any other sections
2607 which might have been made (.text for example). */
2608 if (!som_is_space (section) && !som_is_subspace (section))
2609 continue;
2610
2611 /* Get the length of the space/subspace name. */
2612 length = strlen (section->name);
2613
2614 /* If there is not enough room for the next entry, then dump the
2615 current buffer contents now. Each entry will take 4 bytes to
2616 hold the string length + the string itself + null terminator. */
2617 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2618 {
2619 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2620 != p - tmp_space)
2621 return false;
2622 /* Reset to beginning of the buffer space. */
2623 p = tmp_space;
2624 }
2625
2626 /* First element in a string table entry is the length of the
2627 string. Alignment issues are already handled. */
2628 bfd_put_32 (abfd, length, p);
2629 p += 4;
2630 strings_size += 4;
2631
2632 /* Record the index in the space/subspace records. */
2633 if (som_is_space (section))
2634 som_section_data (section)->space_dict->name.n_strx = strings_size;
2635 else
2636 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
2637
2638 /* Next comes the string itself + a null terminator. */
2639 strcpy (p, section->name);
2640 p += length + 1;
2641 strings_size += length + 1;
2642
2643 /* Always align up to the next word boundary. */
2644 while (strings_size % 4)
2645 {
2646 bfd_put_8 (abfd, 0, p);
2647 p++;
2648 strings_size++;
2649 }
2650 }
2651
2652 /* Done with the space/subspace strings. Write out any information
2653 contained in a partial block. */
2654 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2655 return false;
2656 *string_sizep = strings_size;
2657 return true;
2658 }
2659
2660 /* Write out the symbol string table. */
2661
2662 static boolean
2663 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
2664 bfd *abfd;
2665 unsigned long current_offset;
2666 asymbol **syms;
2667 unsigned int num_syms;
2668 unsigned int *string_sizep;
2669 {
2670 unsigned int i;
2671
2672 /* Chunk of memory that we can use as buffer space, then throw
2673 away. */
2674 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2675 unsigned char *p;
2676 unsigned int strings_size = 0;
2677
2678 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2679 p = tmp_space;
2680
2681 /* Seek to the start of the space strings in preparation for writing
2682 them out. */
2683 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2684 return false;
2685
2686 for (i = 0; i < num_syms; i++)
2687 {
2688 int length = strlen (syms[i]->name);
2689
2690 /* If there is not enough room for the next entry, then dump the
2691 current buffer contents now. */
2692 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2693 {
2694 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2695 != p - tmp_space)
2696 return false;
2697 /* Reset to beginning of the buffer space. */
2698 p = tmp_space;
2699 }
2700
2701 /* First element in a string table entry is the length of the
2702 string. This must always be 4 byte aligned. This is also
2703 an appropriate time to fill in the string index field in the
2704 symbol table entry. */
2705 bfd_put_32 (abfd, length, p);
2706 strings_size += 4;
2707 p += 4;
2708
2709 /* Next comes the string itself + a null terminator. */
2710 strcpy (p, syms[i]->name);
2711
2712 /* ACK. FIXME. */
2713 syms[i]->name = (char *)strings_size;
2714 p += length + 1;
2715 strings_size += length + 1;
2716
2717 /* Always align up to the next word boundary. */
2718 while (strings_size % 4)
2719 {
2720 bfd_put_8 (abfd, 0, p);
2721 strings_size++;
2722 p++;
2723 }
2724 }
2725
2726 /* Scribble out any partial block. */
2727 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2728 return false;
2729
2730 *string_sizep = strings_size;
2731 return true;
2732 }
2733
2734 /* Compute variable information to be placed in the SOM headers,
2735 space/subspace dictionaries, relocation streams, etc. Begin
2736 writing parts of the object file. */
2737
2738 static boolean
2739 som_begin_writing (abfd)
2740 bfd *abfd;
2741 {
2742 unsigned long current_offset = 0;
2743 int strings_size = 0;
2744 unsigned int total_reloc_size = 0;
2745 unsigned long num_spaces, num_subspaces, num_syms, i;
2746 asection *section;
2747 asymbol **syms = bfd_get_outsymbols (abfd);
2748 unsigned int total_subspaces = 0;
2749 struct som_exec_auxhdr exec_header;
2750
2751 /* The file header will always be first in an object file,
2752 everything else can be in random locations. To keep things
2753 "simple" BFD will lay out the object file in the manner suggested
2754 by the PRO ABI for PA-RISC Systems. */
2755
2756 /* Before any output can really begin offsets for all the major
2757 portions of the object file must be computed. So, starting
2758 with the initial file header compute (and sometimes write)
2759 each portion of the object file. */
2760
2761 /* Make room for the file header, it's contents are not complete
2762 yet, so it can not be written at this time. */
2763 current_offset += sizeof (struct header);
2764
2765 /* Any auxiliary headers will follow the file header. Right now
2766 we support only the copyright and version headers. */
2767 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
2768 obj_som_file_hdr (abfd)->aux_header_size = 0;
2769 if (abfd->flags & (EXEC_P | DYNAMIC))
2770 {
2771 /* Parts of the exec header will be filled in later, so
2772 delay writing the header itself. Fill in the defaults,
2773 and write it later. */
2774 current_offset += sizeof (exec_header);
2775 obj_som_file_hdr (abfd)->aux_header_size += sizeof (exec_header);
2776 memset (&exec_header, 0, sizeof (exec_header));
2777 exec_header.som_auxhdr.type = HPUX_AUX_ID;
2778 exec_header.som_auxhdr.length = 40;
2779 }
2780 if (obj_som_version_hdr (abfd) != NULL)
2781 {
2782 unsigned int len;
2783
2784 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2785 return false;
2786
2787 /* Write the aux_id structure and the string length. */
2788 len = sizeof (struct aux_id) + sizeof (unsigned int);
2789 obj_som_file_hdr (abfd)->aux_header_size += len;
2790 current_offset += len;
2791 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
2792 return false;
2793
2794 /* Write the version string. */
2795 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
2796 obj_som_file_hdr (abfd)->aux_header_size += len;
2797 current_offset += len;
2798 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
2799 len, 1, abfd) != len)
2800 return false;
2801 }
2802
2803 if (obj_som_copyright_hdr (abfd) != NULL)
2804 {
2805 unsigned int len;
2806
2807 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2808 return false;
2809
2810 /* Write the aux_id structure and the string length. */
2811 len = sizeof (struct aux_id) + sizeof (unsigned int);
2812 obj_som_file_hdr (abfd)->aux_header_size += len;
2813 current_offset += len;
2814 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
2815 return false;
2816
2817 /* Write the copyright string. */
2818 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
2819 obj_som_file_hdr (abfd)->aux_header_size += len;
2820 current_offset += len;
2821 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
2822 len, 1, abfd) != len)
2823 return false;
2824 }
2825
2826 /* Next comes the initialization pointers; we have no initialization
2827 pointers, so current offset does not change. */
2828 obj_som_file_hdr (abfd)->init_array_location = current_offset;
2829 obj_som_file_hdr (abfd)->init_array_total = 0;
2830
2831 /* Next are the space records. These are fixed length records.
2832
2833 Count the number of spaces to determine how much room is needed
2834 in the object file for the space records.
2835
2836 The names of the spaces are stored in a separate string table,
2837 and the index for each space into the string table is computed
2838 below. Therefore, it is not possible to write the space headers
2839 at this time. */
2840 num_spaces = som_count_spaces (abfd);
2841 obj_som_file_hdr (abfd)->space_location = current_offset;
2842 obj_som_file_hdr (abfd)->space_total = num_spaces;
2843 current_offset += num_spaces * sizeof (struct space_dictionary_record);
2844
2845 /* Next are the subspace records. These are fixed length records.
2846
2847 Count the number of subspaes to determine how much room is needed
2848 in the object file for the subspace records.
2849
2850 A variety if fields in the subspace record are still unknown at
2851 this time (index into string table, fixup stream location/size, etc). */
2852 num_subspaces = som_count_subspaces (abfd);
2853 obj_som_file_hdr (abfd)->subspace_location = current_offset;
2854 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
2855 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
2856
2857 /* Next is the string table for the space/subspace names. We will
2858 build and write the string table on the fly. At the same time
2859 we will fill in the space/subspace name index fields. */
2860
2861 /* The string table needs to be aligned on a word boundary. */
2862 if (current_offset % 4)
2863 current_offset += (4 - (current_offset % 4));
2864
2865 /* Mark the offset of the space/subspace string table in the
2866 file header. */
2867 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
2868
2869 /* Scribble out the space strings. */
2870 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
2871 return false;
2872
2873 /* Record total string table size in the header and update the
2874 current offset. */
2875 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
2876 current_offset += strings_size;
2877
2878 /* Next is the symbol table. These are fixed length records.
2879
2880 Count the number of symbols to determine how much room is needed
2881 in the object file for the symbol table.
2882
2883 The names of the symbols are stored in a separate string table,
2884 and the index for each symbol name into the string table is computed
2885 below. Therefore, it is not possible to write the symobl table
2886 at this time. */
2887 num_syms = bfd_get_symcount (abfd);
2888 obj_som_file_hdr (abfd)->symbol_location = current_offset;
2889 obj_som_file_hdr (abfd)->symbol_total = num_syms;
2890 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
2891
2892 /* Do prep work before handling fixups. */
2893 som_prep_for_fixups (abfd, syms, num_syms);
2894
2895 /* Next comes the fixup stream which starts on a word boundary. */
2896 if (current_offset % 4)
2897 current_offset += (4 - (current_offset % 4));
2898 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
2899
2900 /* Write the fixups and update fields in subspace headers which
2901 relate to the fixup stream. */
2902 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
2903 return false;
2904
2905 /* Record the total size of the fixup stream in the file header. */
2906 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
2907 current_offset += total_reloc_size;
2908
2909 /* Next are the symbol strings.
2910 Align them to a word boundary. */
2911 if (current_offset % 4)
2912 current_offset += (4 - (current_offset % 4));
2913 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
2914
2915 /* Scribble out the symbol strings. */
2916 if (som_write_symbol_strings (abfd, current_offset, syms,
2917 num_syms, &strings_size)
2918 == false)
2919 return false;
2920
2921 /* Record total string table size in header and update the
2922 current offset. */
2923 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
2924 current_offset += strings_size;
2925
2926 /* Next is the compiler records. We do not use these. */
2927 obj_som_file_hdr (abfd)->compiler_location = current_offset;
2928 obj_som_file_hdr (abfd)->compiler_total = 0;
2929
2930 /* Now compute the file positions for the loadable subspaces, taking
2931 care to make sure everything stays properly aligned. */
2932
2933 section = abfd->sections;
2934 for (i = 0; i < num_spaces; i++)
2935 {
2936 asection *subsection;
2937 int first_subspace;
2938 unsigned int subspace_offset = 0;
2939
2940 /* Find a space. */
2941 while (!som_is_space (section))
2942 section = section->next;
2943
2944 first_subspace = 1;
2945 /* Now look for all its subspaces. */
2946 for (subsection = abfd->sections;
2947 subsection != NULL;
2948 subsection = subsection->next)
2949 {
2950
2951 if (!som_is_subspace (subsection)
2952 || !som_is_container (section, subsection)
2953 || (subsection->flags & SEC_ALLOC) == 0)
2954 continue;
2955
2956 /* If this is the first subspace in the space, and we are
2957 building an executable, then take care to make sure all
2958 the alignments are correct and update the exec header. */
2959 if (first_subspace
2960 && (abfd->flags & (EXEC_P | DYNAMIC)))
2961 {
2962 /* Demand paged executables have each space aligned to a
2963 page boundary. Sharable executables (write-protected
2964 text) have just the private (aka data & bss) space aligned
2965 to a page boundary. Ugh. Not true for HPUX.
2966
2967 The HPUX kernel requires the text to always be page aligned
2968 within the file regardless of the executable's type. */
2969 if (abfd->flags & (D_PAGED | DYNAMIC)
2970 || (subsection->flags & SEC_CODE)
2971 || ((abfd->flags & WP_TEXT)
2972 && (subsection->flags & SEC_DATA)))
2973 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
2974
2975 /* Update the exec header. */
2976 if (subsection->flags & SEC_CODE && exec_header.exec_tfile == 0)
2977 {
2978 exec_header.exec_tmem = section->vma;
2979 exec_header.exec_tfile = current_offset;
2980 }
2981 if (subsection->flags & SEC_DATA && exec_header.exec_dfile == 0)
2982 {
2983 exec_header.exec_dmem = section->vma;
2984 exec_header.exec_dfile = current_offset;
2985 }
2986
2987 /* Keep track of exactly where we are within a particular
2988 space. This is necessary as the braindamaged HPUX
2989 loader will create holes between subspaces *and*
2990 subspace alignments are *NOT* preserved. What a crock. */
2991 subspace_offset = subsection->vma;
2992
2993 /* Only do this for the first subspace within each space. */
2994 first_subspace = 0;
2995 }
2996 else if (abfd->flags & (EXEC_P | DYNAMIC))
2997 {
2998 /* The braindamaged HPUX loader may have created a hole
2999 between two subspaces. It is *not* sufficient to use
3000 the alignment specifications within the subspaces to
3001 account for these holes -- I've run into at least one
3002 case where the loader left one code subspace unaligned
3003 in a final executable.
3004
3005 To combat this we keep a current offset within each space,
3006 and use the subspace vma fields to detect and preserve
3007 holes. What a crock!
3008
3009 ps. This is not necessary for unloadable space/subspaces. */
3010 current_offset += subsection->vma - subspace_offset;
3011 if (subsection->flags & SEC_CODE)
3012 exec_header.exec_tsize += subsection->vma - subspace_offset;
3013 else
3014 exec_header.exec_dsize += subsection->vma - subspace_offset;
3015 subspace_offset += subsection->vma - subspace_offset;
3016 }
3017
3018
3019 subsection->target_index = total_subspaces++;
3020 /* This is real data to be loaded from the file. */
3021 if (subsection->flags & SEC_LOAD)
3022 {
3023 /* Update the size of the code & data. */
3024 if (abfd->flags & (EXEC_P | DYNAMIC)
3025 && subsection->flags & SEC_CODE)
3026 exec_header.exec_tsize += subsection->_cooked_size;
3027 else if (abfd->flags & (EXEC_P | DYNAMIC)
3028 && subsection->flags & SEC_DATA)
3029 exec_header.exec_dsize += subsection->_cooked_size;
3030 som_section_data (subsection)->subspace_dict->file_loc_init_value
3031 = current_offset;
3032 subsection->filepos = current_offset;
3033 current_offset += bfd_section_size (abfd, subsection);
3034 subspace_offset += bfd_section_size (abfd, subsection);
3035 }
3036 /* Looks like uninitialized data. */
3037 else
3038 {
3039 /* Update the size of the bss section. */
3040 if (abfd->flags & (EXEC_P | DYNAMIC))
3041 exec_header.exec_bsize += subsection->_cooked_size;
3042
3043 som_section_data (subsection)->subspace_dict->file_loc_init_value
3044 = 0;
3045 som_section_data (subsection)->subspace_dict->
3046 initialization_length = 0;
3047 }
3048 }
3049 /* Goto the next section. */
3050 section = section->next;
3051 }
3052
3053 /* Finally compute the file positions for unloadable subspaces.
3054 If building an executable, start the unloadable stuff on its
3055 own page. */
3056
3057 if (abfd->flags & (EXEC_P | DYNAMIC))
3058 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3059
3060 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3061 section = abfd->sections;
3062 for (i = 0; i < num_spaces; i++)
3063 {
3064 asection *subsection;
3065
3066 /* Find a space. */
3067 while (!som_is_space (section))
3068 section = section->next;
3069
3070 if (abfd->flags & (EXEC_P | DYNAMIC))
3071 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3072
3073 /* Now look for all its subspaces. */
3074 for (subsection = abfd->sections;
3075 subsection != NULL;
3076 subsection = subsection->next)
3077 {
3078
3079 if (!som_is_subspace (subsection)
3080 || !som_is_container (section, subsection)
3081 || (subsection->flags & SEC_ALLOC) != 0)
3082 continue;
3083
3084 subsection->target_index = total_subspaces;
3085 /* This is real data to be loaded from the file. */
3086 if ((subsection->flags & SEC_LOAD) == 0)
3087 {
3088 som_section_data (subsection)->subspace_dict->file_loc_init_value
3089 = current_offset;
3090 subsection->filepos = current_offset;
3091 current_offset += bfd_section_size (abfd, subsection);
3092 }
3093 /* Looks like uninitialized data. */
3094 else
3095 {
3096 som_section_data (subsection)->subspace_dict->file_loc_init_value
3097 = 0;
3098 som_section_data (subsection)->subspace_dict->
3099 initialization_length = bfd_section_size (abfd, subsection);
3100 }
3101 }
3102 /* Goto the next section. */
3103 section = section->next;
3104 }
3105
3106 /* If building an executable, then make sure to seek to and write
3107 one byte at the end of the file to make sure any necessary
3108 zeros are filled in. Ugh. */
3109 if (abfd->flags & (EXEC_P | DYNAMIC))
3110 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3111 if (bfd_seek (abfd, current_offset - 1, SEEK_SET) < 0)
3112 return false;
3113 if (bfd_write ((PTR) "", 1, 1, abfd) != 1)
3114 return false;
3115
3116 obj_som_file_hdr (abfd)->unloadable_sp_size
3117 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3118
3119 /* Loader fixups are not supported in any way shape or form. */
3120 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3121 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3122
3123 /* Done. Store the total size of the SOM. */
3124 obj_som_file_hdr (abfd)->som_length = current_offset;
3125
3126 /* Now write the exec header. */
3127 if (abfd->flags & (EXEC_P | DYNAMIC))
3128 {
3129 long tmp;
3130
3131 exec_header.exec_entry = bfd_get_start_address (abfd);
3132 exec_header.exec_flags = obj_som_exec_data (abfd)->exec_flags;
3133
3134 /* Oh joys. Ram some of the BSS data into the DATA section
3135 to be compatable with how the hp linker makes objects
3136 (saves memory space). */
3137 tmp = exec_header.exec_dsize;
3138 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3139 exec_header.exec_bsize -= (tmp - exec_header.exec_dsize);
3140 if (exec_header.exec_bsize < 0)
3141 exec_header.exec_bsize = 0;
3142 exec_header.exec_dsize = tmp;
3143
3144 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
3145 SEEK_SET) < 0)
3146 return false;
3147
3148 if (bfd_write ((PTR) &exec_header, AUX_HDR_SIZE, 1, abfd)
3149 != AUX_HDR_SIZE)
3150 return false;
3151 }
3152 return true;
3153 }
3154
3155 /* Finally, scribble out the various headers to the disk. */
3156
3157 static boolean
3158 som_write_headers (abfd)
3159 bfd *abfd;
3160 {
3161 int num_spaces = som_count_spaces (abfd);
3162 int i;
3163 int subspace_index = 0;
3164 file_ptr location;
3165 asection *section;
3166
3167 /* Subspaces are written first so that we can set up information
3168 about them in their containing spaces as the subspace is written. */
3169
3170 /* Seek to the start of the subspace dictionary records. */
3171 location = obj_som_file_hdr (abfd)->subspace_location;
3172 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3173 return false;
3174
3175 section = abfd->sections;
3176 /* Now for each loadable space write out records for its subspaces. */
3177 for (i = 0; i < num_spaces; i++)
3178 {
3179 asection *subsection;
3180
3181 /* Find a space. */
3182 while (!som_is_space (section))
3183 section = section->next;
3184
3185 /* Now look for all its subspaces. */
3186 for (subsection = abfd->sections;
3187 subsection != NULL;
3188 subsection = subsection->next)
3189 {
3190
3191 /* Skip any section which does not correspond to a space
3192 or subspace. Or does not have SEC_ALLOC set (and therefore
3193 has no real bits on the disk). */
3194 if (!som_is_subspace (subsection)
3195 || !som_is_container (section, subsection)
3196 || (subsection->flags & SEC_ALLOC) == 0)
3197 continue;
3198
3199 /* If this is the first subspace for this space, then save
3200 the index of the subspace in its containing space. Also
3201 set "is_loadable" in the containing space. */
3202
3203 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3204 {
3205 som_section_data (section)->space_dict->is_loadable = 1;
3206 som_section_data (section)->space_dict->subspace_index
3207 = subspace_index;
3208 }
3209
3210 /* Increment the number of subspaces seen and the number of
3211 subspaces contained within the current space. */
3212 subspace_index++;
3213 som_section_data (section)->space_dict->subspace_quantity++;
3214
3215 /* Mark the index of the current space within the subspace's
3216 dictionary record. */
3217 som_section_data (subsection)->subspace_dict->space_index = i;
3218
3219 /* Dump the current subspace header. */
3220 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3221 sizeof (struct subspace_dictionary_record), 1, abfd)
3222 != sizeof (struct subspace_dictionary_record))
3223 return false;
3224 }
3225 /* Goto the next section. */
3226 section = section->next;
3227 }
3228
3229 /* Now repeat the process for unloadable subspaces. */
3230 section = abfd->sections;
3231 /* Now for each space write out records for its subspaces. */
3232 for (i = 0; i < num_spaces; i++)
3233 {
3234 asection *subsection;
3235
3236 /* Find a space. */
3237 while (!som_is_space (section))
3238 section = section->next;
3239
3240 /* Now look for all its subspaces. */
3241 for (subsection = abfd->sections;
3242 subsection != NULL;
3243 subsection = subsection->next)
3244 {
3245
3246 /* Skip any section which does not correspond to a space or
3247 subspace, or which SEC_ALLOC set (and therefore handled
3248 in the loadable spaces/subspaces code above). */
3249
3250 if (!som_is_subspace (subsection)
3251 || !som_is_container (section, subsection)
3252 || (subsection->flags & SEC_ALLOC) != 0)
3253 continue;
3254
3255 /* If this is the first subspace for this space, then save
3256 the index of the subspace in its containing space. Clear
3257 "is_loadable". */
3258
3259 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3260 {
3261 som_section_data (section)->space_dict->is_loadable = 0;
3262 som_section_data (section)->space_dict->subspace_index
3263 = subspace_index;
3264 }
3265
3266 /* Increment the number of subspaces seen and the number of
3267 subspaces contained within the current space. */
3268 som_section_data (section)->space_dict->subspace_quantity++;
3269 subspace_index++;
3270
3271 /* Mark the index of the current space within the subspace's
3272 dictionary record. */
3273 som_section_data (subsection)->subspace_dict->space_index = i;
3274
3275 /* Dump this subspace header. */
3276 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3277 sizeof (struct subspace_dictionary_record), 1, abfd)
3278 != sizeof (struct subspace_dictionary_record))
3279 return false;
3280 }
3281 /* Goto the next section. */
3282 section = section->next;
3283 }
3284
3285 /* All the subspace dictiondary records are written, and all the
3286 fields are set up in the space dictionary records.
3287
3288 Seek to the right location and start writing the space
3289 dictionary records. */
3290 location = obj_som_file_hdr (abfd)->space_location;
3291 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3292 return false;
3293
3294 section = abfd->sections;
3295 for (i = 0; i < num_spaces; i++)
3296 {
3297
3298 /* Find a space. */
3299 while (!som_is_space (section))
3300 section = section->next;
3301
3302 /* Dump its header */
3303 if (bfd_write ((PTR) som_section_data (section)->space_dict,
3304 sizeof (struct space_dictionary_record), 1, abfd)
3305 != sizeof (struct space_dictionary_record))
3306 return false;
3307
3308 /* Goto the next section. */
3309 section = section->next;
3310 }
3311
3312 /* Only thing left to do is write out the file header. It is always
3313 at location zero. Seek there and write it. */
3314 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0)
3315 return false;
3316 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3317 sizeof (struct header), 1, abfd)
3318 != sizeof (struct header))
3319 return false;
3320 return true;
3321 }
3322
3323 /* Compute and return the checksum for a SOM file header. */
3324
3325 static unsigned long
3326 som_compute_checksum (abfd)
3327 bfd *abfd;
3328 {
3329 unsigned long checksum, count, i;
3330 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3331
3332 checksum = 0;
3333 count = sizeof (struct header) / sizeof (unsigned long);
3334 for (i = 0; i < count; i++)
3335 checksum ^= *(buffer + i);
3336
3337 return checksum;
3338 }
3339
3340 static void
3341 som_bfd_derive_misc_symbol_info (abfd, sym, info)
3342 bfd *abfd;
3343 asymbol *sym;
3344 struct som_misc_symbol_info *info;
3345 {
3346 /* Initialize. */
3347 memset (info, 0, sizeof (struct som_misc_symbol_info));
3348
3349 /* The HP SOM linker requires detailed type information about
3350 all symbols (including undefined symbols!). Unfortunately,
3351 the type specified in an import/export statement does not
3352 always match what the linker wants. Severe braindamage. */
3353
3354 /* Section symbols will not have a SOM symbol type assigned to
3355 them yet. Assign all section symbols type ST_DATA. */
3356 if (sym->flags & BSF_SECTION_SYM)
3357 info->symbol_type = ST_DATA;
3358 else
3359 {
3360 /* Common symbols must have scope SS_UNSAT and type
3361 ST_STORAGE or the linker will choke. */
3362 if (sym->section == &bfd_com_section)
3363 {
3364 info->symbol_scope = SS_UNSAT;
3365 info->symbol_type = ST_STORAGE;
3366 }
3367
3368 /* It is possible to have a symbol without an associated
3369 type. This happens if the user imported the symbol
3370 without a type and the symbol was never defined
3371 locally. If BSF_FUNCTION is set for this symbol, then
3372 assign it type ST_CODE (the HP linker requires undefined
3373 external functions to have type ST_CODE rather than ST_ENTRY). */
3374 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3375 && sym->section == &bfd_und_section
3376 && sym->flags & BSF_FUNCTION)
3377 info->symbol_type = ST_CODE;
3378
3379 /* Handle function symbols which were defined in this file.
3380 They should have type ST_ENTRY. Also retrieve the argument
3381 relocation bits from the SOM backend information. */
3382 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3383 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3384 && (sym->flags & BSF_FUNCTION))
3385 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3386 && (sym->flags & BSF_FUNCTION)))
3387 {
3388 info->symbol_type = ST_ENTRY;
3389 info->arg_reloc = som_symbol_data (sym)->tc_data.hppa_arg_reloc;
3390 }
3391
3392 /* If the type is unknown at this point, it should be
3393 ST_DATA (functions were handled as special cases above). */
3394 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3395 info->symbol_type = ST_DATA;
3396
3397 /* From now on it's a very simple mapping. */
3398 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3399 info->symbol_type = ST_ABSOLUTE;
3400 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3401 info->symbol_type = ST_CODE;
3402 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3403 info->symbol_type = ST_DATA;
3404 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3405 info->symbol_type = ST_MILLICODE;
3406 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3407 info->symbol_type = ST_PLABEL;
3408 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3409 info->symbol_type = ST_PRI_PROG;
3410 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3411 info->symbol_type = ST_SEC_PROG;
3412 }
3413
3414 /* Now handle the symbol's scope. Exported data which is not
3415 in the common section has scope SS_UNIVERSAL. Note scope
3416 of common symbols was handled earlier! */
3417 if (sym->flags & BSF_EXPORT && sym->section != &bfd_com_section)
3418 info->symbol_scope = SS_UNIVERSAL;
3419 /* Any undefined symbol at this point has a scope SS_UNSAT. */
3420 else if (sym->section == &bfd_und_section)
3421 info->symbol_scope = SS_UNSAT;
3422 /* Anything else which is not in the common section has scope
3423 SS_LOCAL. */
3424 else if (sym->section != &bfd_com_section)
3425 info->symbol_scope = SS_LOCAL;
3426
3427 /* Now set the symbol_info field. It has no real meaning
3428 for undefined or common symbols, but the HP linker will
3429 choke if it's not set to some "reasonable" value. We
3430 use zero as a reasonable value. */
3431 if (sym->section == &bfd_com_section || sym->section == &bfd_und_section
3432 || sym->section == &bfd_abs_section)
3433 info->symbol_info = 0;
3434 /* For all other symbols, the symbol_info field contains the
3435 subspace index of the space this symbol is contained in. */
3436 else
3437 info->symbol_info = sym->section->target_index;
3438
3439 /* Set the symbol's value. */
3440 info->symbol_value = sym->value + sym->section->vma;
3441 }
3442
3443 /* Build and write, in one big chunk, the entire symbol table for
3444 this BFD. */
3445
3446 static boolean
3447 som_build_and_write_symbol_table (abfd)
3448 bfd *abfd;
3449 {
3450 unsigned int num_syms = bfd_get_symcount (abfd);
3451 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3452 asymbol **bfd_syms = bfd_get_outsymbols (abfd);
3453 struct symbol_dictionary_record *som_symtab = NULL;
3454 int i, symtab_size;
3455
3456 /* Compute total symbol table size and allocate a chunk of memory
3457 to hold the symbol table as we build it. */
3458 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3459 som_symtab = (struct symbol_dictionary_record *) malloc (symtab_size);
3460 if (som_symtab == NULL && symtab_size != 0)
3461 {
3462 bfd_set_error (bfd_error_no_memory);
3463 goto error_return;
3464 }
3465 memset (som_symtab, 0, symtab_size);
3466
3467 /* Walk over each symbol. */
3468 for (i = 0; i < num_syms; i++)
3469 {
3470 struct som_misc_symbol_info info;
3471
3472 /* This is really an index into the symbol strings table.
3473 By the time we get here, the index has already been
3474 computed and stored into the name field in the BFD symbol. */
3475 som_symtab[i].name.n_strx = (int) bfd_syms[i]->name;
3476
3477 /* Derive SOM information from the BFD symbol. */
3478 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
3479
3480 /* Now use it. */
3481 som_symtab[i].symbol_type = info.symbol_type;
3482 som_symtab[i].symbol_scope = info.symbol_scope;
3483 som_symtab[i].arg_reloc = info.arg_reloc;
3484 som_symtab[i].symbol_info = info.symbol_info;
3485 som_symtab[i].symbol_value = info.symbol_value;
3486 }
3487
3488 /* Everything is ready, seek to the right location and
3489 scribble out the symbol table. */
3490 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3491 return false;
3492
3493 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3494 goto error_return;
3495
3496 if (som_symtab != NULL)
3497 free (som_symtab);
3498 return true;
3499 error_return:
3500 if (som_symtab != NULL)
3501 free (som_symtab);
3502 return false;
3503 }
3504
3505 /* Write an object in SOM format. */
3506
3507 static boolean
3508 som_write_object_contents (abfd)
3509 bfd *abfd;
3510 {
3511 if (abfd->output_has_begun == false)
3512 {
3513 /* Set up fixed parts of the file, space, and subspace headers.
3514 Notify the world that output has begun. */
3515 som_prep_headers (abfd);
3516 abfd->output_has_begun = true;
3517 /* Start writing the object file. This include all the string
3518 tables, fixup streams, and other portions of the object file. */
3519 som_begin_writing (abfd);
3520 }
3521
3522 /* Now that the symbol table information is complete, build and
3523 write the symbol table. */
3524 if (som_build_and_write_symbol_table (abfd) == false)
3525 return false;
3526
3527 /* Compute the checksum for the file header just before writing
3528 the header to disk. */
3529 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3530 return (som_write_headers (abfd));
3531 }
3532
3533 \f
3534 /* Read and save the string table associated with the given BFD. */
3535
3536 static boolean
3537 som_slurp_string_table (abfd)
3538 bfd *abfd;
3539 {
3540 char *stringtab;
3541
3542 /* Use the saved version if its available. */
3543 if (obj_som_stringtab (abfd) != NULL)
3544 return true;
3545
3546 /* I don't think this can currently happen, and I'm not sure it should
3547 really be an error, but it's better than getting unpredictable results
3548 from the host's malloc when passed a size of zero. */
3549 if (obj_som_stringtab_size (abfd) == 0)
3550 {
3551 bfd_set_error (bfd_error_no_symbols);
3552 return false;
3553 }
3554
3555 /* Allocate and read in the string table. */
3556 stringtab = malloc (obj_som_stringtab_size (abfd));
3557 if (stringtab == NULL)
3558 {
3559 bfd_set_error (bfd_error_no_memory);
3560 return false;
3561 }
3562
3563 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3564 return false;
3565
3566 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3567 != obj_som_stringtab_size (abfd))
3568 return false;
3569
3570 /* Save our results and return success. */
3571 obj_som_stringtab (abfd) = stringtab;
3572 return true;
3573 }
3574
3575 /* Return the amount of data (in bytes) required to hold the symbol
3576 table for this object. */
3577
3578 static long
3579 som_get_symtab_upper_bound (abfd)
3580 bfd *abfd;
3581 {
3582 if (!som_slurp_symbol_table (abfd))
3583 return -1;
3584
3585 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
3586 }
3587
3588 /* Convert from a SOM subspace index to a BFD section. */
3589
3590 static asection *
3591 bfd_section_from_som_symbol (abfd, symbol)
3592 bfd *abfd;
3593 struct symbol_dictionary_record *symbol;
3594 {
3595 asection *section;
3596
3597 /* The meaning of the symbol_info field changes for functions
3598 within executables. So only use the quick symbol_info mapping for
3599 incomplete objects and non-function symbols in executables. */
3600 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
3601 || (symbol->symbol_type != ST_ENTRY
3602 && symbol->symbol_type != ST_PRI_PROG
3603 && symbol->symbol_type != ST_SEC_PROG
3604 && symbol->symbol_type != ST_MILLICODE))
3605 {
3606 unsigned int index = symbol->symbol_info;
3607 for (section = abfd->sections; section != NULL; section = section->next)
3608 if (section->target_index == index)
3609 return section;
3610
3611 /* Should never happen. */
3612 abort();
3613 }
3614 else
3615 {
3616 unsigned int value = symbol->symbol_value;
3617
3618 /* For executables we will have to use the symbol's address and
3619 find out what section would contain that address. Yuk. */
3620 for (section = abfd->sections; section; section = section->next)
3621 {
3622 if (value >= section->vma
3623 && value <= section->vma + section->_cooked_size)
3624 return section;
3625 }
3626
3627 /* Should never happen. */
3628 abort ();
3629 }
3630 }
3631
3632 /* Read and save the symbol table associated with the given BFD. */
3633
3634 static unsigned int
3635 som_slurp_symbol_table (abfd)
3636 bfd *abfd;
3637 {
3638 int symbol_count = bfd_get_symcount (abfd);
3639 int symsize = sizeof (struct symbol_dictionary_record);
3640 char *stringtab;
3641 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
3642 som_symbol_type *sym, *symbase;
3643
3644 /* Return saved value if it exists. */
3645 if (obj_som_symtab (abfd) != NULL)
3646 goto successful_return;
3647
3648 /* Special case. This is *not* an error. */
3649 if (symbol_count == 0)
3650 goto successful_return;
3651
3652 if (!som_slurp_string_table (abfd))
3653 goto error_return;
3654
3655 stringtab = obj_som_stringtab (abfd);
3656
3657 symbase = (som_symbol_type *)
3658 malloc (symbol_count * sizeof (som_symbol_type));
3659 if (symbase == NULL)
3660 {
3661 bfd_set_error (bfd_error_no_memory);
3662 goto error_return;
3663 }
3664
3665 /* Read in the external SOM representation. */
3666 buf = malloc (symbol_count * symsize);
3667 if (buf == NULL && symbol_count * symsize != 0)
3668 {
3669 bfd_set_error (bfd_error_no_memory);
3670 goto error_return;
3671 }
3672 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
3673 goto error_return;
3674 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
3675 != symbol_count * symsize)
3676 goto error_return;
3677
3678 /* Iterate over all the symbols and internalize them. */
3679 endbufp = buf + symbol_count;
3680 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
3681 {
3682
3683 /* I don't think we care about these. */
3684 if (bufp->symbol_type == ST_SYM_EXT
3685 || bufp->symbol_type == ST_ARG_EXT)
3686 continue;
3687
3688 /* Set some private data we care about. */
3689 if (bufp->symbol_type == ST_NULL)
3690 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3691 else if (bufp->symbol_type == ST_ABSOLUTE)
3692 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
3693 else if (bufp->symbol_type == ST_DATA)
3694 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
3695 else if (bufp->symbol_type == ST_CODE)
3696 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
3697 else if (bufp->symbol_type == ST_PRI_PROG)
3698 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
3699 else if (bufp->symbol_type == ST_SEC_PROG)
3700 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
3701 else if (bufp->symbol_type == ST_ENTRY)
3702 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
3703 else if (bufp->symbol_type == ST_MILLICODE)
3704 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
3705 else if (bufp->symbol_type == ST_PLABEL)
3706 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
3707 else
3708 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3709 som_symbol_data (sym)->tc_data.hppa_arg_reloc = bufp->arg_reloc;
3710
3711 /* Some reasonable defaults. */
3712 sym->symbol.the_bfd = abfd;
3713 sym->symbol.name = bufp->name.n_strx + stringtab;
3714 sym->symbol.value = bufp->symbol_value;
3715 sym->symbol.section = 0;
3716 sym->symbol.flags = 0;
3717
3718 switch (bufp->symbol_type)
3719 {
3720 case ST_ENTRY:
3721 case ST_PRI_PROG:
3722 case ST_SEC_PROG:
3723 case ST_MILLICODE:
3724 sym->symbol.flags |= BSF_FUNCTION;
3725 sym->symbol.value &= ~0x3;
3726 break;
3727
3728 case ST_STUB:
3729 case ST_CODE:
3730 sym->symbol.value &= ~0x3;
3731
3732 default:
3733 break;
3734 }
3735
3736 /* Handle scoping and section information. */
3737 switch (bufp->symbol_scope)
3738 {
3739 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
3740 so the section associated with this symbol can't be known. */
3741 case SS_EXTERNAL:
3742 if (bufp->symbol_type != ST_STORAGE)
3743 sym->symbol.section = &bfd_und_section;
3744 else
3745 sym->symbol.section = &bfd_com_section;
3746 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3747 break;
3748
3749 case SS_UNSAT:
3750 if (bufp->symbol_type != ST_STORAGE)
3751 sym->symbol.section = &bfd_und_section;
3752 else
3753 sym->symbol.section = &bfd_com_section;
3754 break;
3755
3756 case SS_UNIVERSAL:
3757 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3758 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3759 sym->symbol.value -= sym->symbol.section->vma;
3760 break;
3761
3762 #if 0
3763 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
3764 Sound dumb? It is. */
3765 case SS_GLOBAL:
3766 #endif
3767 case SS_LOCAL:
3768 sym->symbol.flags |= BSF_LOCAL;
3769 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3770 sym->symbol.value -= sym->symbol.section->vma;
3771 break;
3772 }
3773
3774 /* Mark section symbols and symbols used by the debugger. */
3775 if (sym->symbol.name[0] == '$'
3776 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$')
3777 sym->symbol.flags |= BSF_SECTION_SYM;
3778 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
3779 {
3780 sym->symbol.flags |= BSF_SECTION_SYM;
3781 sym->symbol.name = sym->symbol.section->name;
3782 }
3783 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
3784 sym->symbol.flags |= BSF_DEBUGGING;
3785
3786 /* Note increment at bottom of loop, since we skip some symbols
3787 we can not include it as part of the for statement. */
3788 sym++;
3789 }
3790
3791 /* Save our results and return success. */
3792 obj_som_symtab (abfd) = symbase;
3793 successful_return:
3794 if (buf != NULL)
3795 free (buf);
3796 return (true);
3797
3798 error_return:
3799 if (buf != NULL)
3800 free (buf);
3801 return false;
3802 }
3803
3804 /* Canonicalize a SOM symbol table. Return the number of entries
3805 in the symbol table. */
3806
3807 static long
3808 som_get_symtab (abfd, location)
3809 bfd *abfd;
3810 asymbol **location;
3811 {
3812 int i;
3813 som_symbol_type *symbase;
3814
3815 if (!som_slurp_symbol_table (abfd))
3816 return -1;
3817
3818 i = bfd_get_symcount (abfd);
3819 symbase = obj_som_symtab (abfd);
3820
3821 for (; i > 0; i--, location++, symbase++)
3822 *location = &symbase->symbol;
3823
3824 /* Final null pointer. */
3825 *location = 0;
3826 return (bfd_get_symcount (abfd));
3827 }
3828
3829 /* Make a SOM symbol. There is nothing special to do here. */
3830
3831 static asymbol *
3832 som_make_empty_symbol (abfd)
3833 bfd *abfd;
3834 {
3835 som_symbol_type *new =
3836 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
3837 if (new == NULL)
3838 {
3839 bfd_set_error (bfd_error_no_memory);
3840 return 0;
3841 }
3842 new->symbol.the_bfd = abfd;
3843
3844 return &new->symbol;
3845 }
3846
3847 /* Print symbol information. */
3848
3849 static void
3850 som_print_symbol (ignore_abfd, afile, symbol, how)
3851 bfd *ignore_abfd;
3852 PTR afile;
3853 asymbol *symbol;
3854 bfd_print_symbol_type how;
3855 {
3856 FILE *file = (FILE *) afile;
3857 switch (how)
3858 {
3859 case bfd_print_symbol_name:
3860 fprintf (file, "%s", symbol->name);
3861 break;
3862 case bfd_print_symbol_more:
3863 fprintf (file, "som ");
3864 fprintf_vma (file, symbol->value);
3865 fprintf (file, " %lx", (long) symbol->flags);
3866 break;
3867 case bfd_print_symbol_all:
3868 {
3869 CONST char *section_name;
3870 section_name = symbol->section ? symbol->section->name : "(*none*)";
3871 bfd_print_symbol_vandf ((PTR) file, symbol);
3872 fprintf (file, " %s\t%s", section_name, symbol->name);
3873 break;
3874 }
3875 }
3876 }
3877
3878 static boolean
3879 som_bfd_is_local_label (abfd, sym)
3880 bfd *abfd;
3881 asymbol *sym;
3882 {
3883 return (sym->name[0] == 'L' && sym->name[1] == '$');
3884 }
3885
3886 /* Count or process variable-length SOM fixup records.
3887
3888 To avoid code duplication we use this code both to compute the number
3889 of relocations requested by a stream, and to internalize the stream.
3890
3891 When computing the number of relocations requested by a stream the
3892 variables rptr, section, and symbols have no meaning.
3893
3894 Return the number of relocations requested by the fixup stream. When
3895 not just counting
3896
3897 This needs at least two or three more passes to get it cleaned up. */
3898
3899 static unsigned int
3900 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
3901 unsigned char *fixup;
3902 unsigned int end;
3903 arelent *internal_relocs;
3904 asection *section;
3905 asymbol **symbols;
3906 boolean just_count;
3907 {
3908 unsigned int op, varname;
3909 unsigned char *end_fixups = &fixup[end];
3910 const struct fixup_format *fp;
3911 char *cp;
3912 unsigned char *save_fixup;
3913 int variables[26], stack[20], c, v, count, prev_fixup, *sp;
3914 const int *subop;
3915 arelent *rptr= internal_relocs;
3916 unsigned int offset = just_count ? 0 : section->vma;
3917
3918 #define var(c) variables[(c) - 'A']
3919 #define push(v) (*sp++ = (v))
3920 #define pop() (*--sp)
3921 #define emptystack() (sp == stack)
3922
3923 som_initialize_reloc_queue (reloc_queue);
3924 memset (variables, 0, sizeof (variables));
3925 memset (stack, 0, sizeof (stack));
3926 count = 0;
3927 prev_fixup = 0;
3928 sp = stack;
3929
3930 while (fixup < end_fixups)
3931 {
3932
3933 /* Save pointer to the start of this fixup. We'll use
3934 it later to determine if it is necessary to put this fixup
3935 on the queue. */
3936 save_fixup = fixup;
3937
3938 /* Get the fixup code and its associated format. */
3939 op = *fixup++;
3940 fp = &som_fixup_formats[op];
3941
3942 /* Handle a request for a previous fixup. */
3943 if (*fp->format == 'P')
3944 {
3945 /* Get pointer to the beginning of the prev fixup, move
3946 the repeated fixup to the head of the queue. */
3947 fixup = reloc_queue[fp->D].reloc;
3948 som_reloc_queue_fix (reloc_queue, fp->D);
3949 prev_fixup = 1;
3950
3951 /* Get the fixup code and its associated format. */
3952 op = *fixup++;
3953 fp = &som_fixup_formats[op];
3954 }
3955
3956 /* If this fixup will be passed to BFD, set some reasonable defaults. */
3957 if (! just_count
3958 && som_hppa_howto_table[op].type != R_NO_RELOCATION
3959 && som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
3960 {
3961 rptr->address = offset;
3962 rptr->howto = &som_hppa_howto_table[op];
3963 rptr->addend = 0;
3964 rptr->sym_ptr_ptr = bfd_abs_section.symbol_ptr_ptr;
3965 }
3966
3967 /* Set default input length to 0. Get the opcode class index
3968 into D. */
3969 var ('L') = 0;
3970 var ('D') = fp->D;
3971
3972 /* Get the opcode format. */
3973 cp = fp->format;
3974
3975 /* Process the format string. Parsing happens in two phases,
3976 parse RHS, then assign to LHS. Repeat until no more
3977 characters in the format string. */
3978 while (*cp)
3979 {
3980 /* The variable this pass is going to compute a value for. */
3981 varname = *cp++;
3982
3983 /* Start processing RHS. Continue until a NULL or '=' is found. */
3984 do
3985 {
3986 c = *cp++;
3987
3988 /* If this is a variable, push it on the stack. */
3989 if (isupper (c))
3990 push (var (c));
3991
3992 /* If this is a lower case letter, then it represents
3993 additional data from the fixup stream to be pushed onto
3994 the stack. */
3995 else if (islower (c))
3996 {
3997 for (v = 0; c > 'a'; --c)
3998 v = (v << 8) | *fixup++;
3999 push (v);
4000 }
4001
4002 /* A decimal constant. Push it on the stack. */
4003 else if (isdigit (c))
4004 {
4005 v = c - '0';
4006 while (isdigit (*cp))
4007 v = (v * 10) + (*cp++ - '0');
4008 push (v);
4009 }
4010 else
4011
4012 /* An operator. Pop two two values from the stack and
4013 use them as operands to the given operation. Push
4014 the result of the operation back on the stack. */
4015 switch (c)
4016 {
4017 case '+':
4018 v = pop ();
4019 v += pop ();
4020 push (v);
4021 break;
4022 case '*':
4023 v = pop ();
4024 v *= pop ();
4025 push (v);
4026 break;
4027 case '<':
4028 v = pop ();
4029 v = pop () << v;
4030 push (v);
4031 break;
4032 default:
4033 abort ();
4034 }
4035 }
4036 while (*cp && *cp != '=');
4037
4038 /* Move over the equal operator. */
4039 cp++;
4040
4041 /* Pop the RHS off the stack. */
4042 c = pop ();
4043
4044 /* Perform the assignment. */
4045 var (varname) = c;
4046
4047 /* Handle side effects. and special 'O' stack cases. */
4048 switch (varname)
4049 {
4050 /* Consume some bytes from the input space. */
4051 case 'L':
4052 offset += c;
4053 break;
4054 /* A symbol to use in the relocation. Make a note
4055 of this if we are not just counting. */
4056 case 'S':
4057 if (! just_count)
4058 rptr->sym_ptr_ptr = &symbols[c];
4059 break;
4060 /* Handle the linker expression stack. */
4061 case 'O':
4062 switch (op)
4063 {
4064 case R_COMP1:
4065 subop = comp1_opcodes;
4066 break;
4067 case R_COMP2:
4068 subop = comp2_opcodes;
4069 break;
4070 case R_COMP3:
4071 subop = comp3_opcodes;
4072 break;
4073 default:
4074 abort ();
4075 }
4076 while (*subop <= (unsigned char) c)
4077 ++subop;
4078 --subop;
4079 break;
4080 default:
4081 break;
4082 }
4083 }
4084
4085 /* If we used a previous fixup, clean up after it. */
4086 if (prev_fixup)
4087 {
4088 fixup = save_fixup + 1;
4089 prev_fixup = 0;
4090 }
4091 /* Queue it. */
4092 else if (fixup > save_fixup + 1)
4093 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4094
4095 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4096 fixups to BFD. */
4097 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4098 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4099 {
4100 /* Done with a single reloction. Loop back to the top. */
4101 if (! just_count)
4102 {
4103 rptr->addend = var ('V');
4104 rptr++;
4105 }
4106 count++;
4107 /* Now that we've handled a "full" relocation, reset
4108 some state. */
4109 memset (variables, 0, sizeof (variables));
4110 memset (stack, 0, sizeof (stack));
4111 }
4112 }
4113 return count;
4114
4115 #undef var
4116 #undef push
4117 #undef pop
4118 #undef emptystack
4119 }
4120
4121 /* Read in the relocs (aka fixups in SOM terms) for a section.
4122
4123 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4124 set to true to indicate it only needs a count of the number
4125 of actual relocations. */
4126
4127 static boolean
4128 som_slurp_reloc_table (abfd, section, symbols, just_count)
4129 bfd *abfd;
4130 asection *section;
4131 asymbol **symbols;
4132 boolean just_count;
4133 {
4134 char *external_relocs;
4135 unsigned int fixup_stream_size;
4136 arelent *internal_relocs;
4137 unsigned int num_relocs;
4138
4139 fixup_stream_size = som_section_data (section)->reloc_size;
4140 /* If there were no relocations, then there is nothing to do. */
4141 if (section->reloc_count == 0)
4142 return true;
4143
4144 /* If reloc_count is -1, then the relocation stream has not been
4145 parsed. We must do so now to know how many relocations exist. */
4146 if (section->reloc_count == -1)
4147 {
4148 external_relocs = (char *) malloc (fixup_stream_size);
4149 if (external_relocs == (char *) NULL)
4150 {
4151 bfd_set_error (bfd_error_no_memory);
4152 return false;
4153 }
4154 /* Read in the external forms. */
4155 if (bfd_seek (abfd,
4156 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4157 SEEK_SET)
4158 != 0)
4159 return false;
4160 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
4161 != fixup_stream_size)
4162 return false;
4163
4164 /* Let callers know how many relocations found.
4165 also save the relocation stream as we will
4166 need it again. */
4167 section->reloc_count = som_set_reloc_info (external_relocs,
4168 fixup_stream_size,
4169 NULL, NULL, NULL, true);
4170
4171 som_section_data (section)->reloc_stream = external_relocs;
4172 }
4173
4174 /* If the caller only wanted a count, then return now. */
4175 if (just_count)
4176 return true;
4177
4178 num_relocs = section->reloc_count;
4179 external_relocs = som_section_data (section)->reloc_stream;
4180 /* Return saved information about the relocations if it is available. */
4181 if (section->relocation != (arelent *) NULL)
4182 return true;
4183
4184 internal_relocs = (arelent *) malloc (num_relocs * sizeof (arelent));
4185 if (internal_relocs == (arelent *) NULL)
4186 {
4187 bfd_set_error (bfd_error_no_memory);
4188 return false;
4189 }
4190
4191 /* Process and internalize the relocations. */
4192 som_set_reloc_info (external_relocs, fixup_stream_size,
4193 internal_relocs, section, symbols, false);
4194
4195 /* Save our results and return success. */
4196 section->relocation = internal_relocs;
4197 return (true);
4198 }
4199
4200 /* Return the number of bytes required to store the relocation
4201 information associated with the given section. */
4202
4203 static long
4204 som_get_reloc_upper_bound (abfd, asect)
4205 bfd *abfd;
4206 sec_ptr asect;
4207 {
4208 /* If section has relocations, then read in the relocation stream
4209 and parse it to determine how many relocations exist. */
4210 if (asect->flags & SEC_RELOC)
4211 {
4212 if (! som_slurp_reloc_table (abfd, asect, NULL, true))
4213 return false;
4214 return (asect->reloc_count + 1) * sizeof (arelent);
4215 }
4216 /* There are no relocations. */
4217 return 0;
4218 }
4219
4220 /* Convert relocations from SOM (external) form into BFD internal
4221 form. Return the number of relocations. */
4222
4223 static long
4224 som_canonicalize_reloc (abfd, section, relptr, symbols)
4225 bfd *abfd;
4226 sec_ptr section;
4227 arelent **relptr;
4228 asymbol **symbols;
4229 {
4230 arelent *tblptr;
4231 int count;
4232
4233 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
4234 return -1;
4235
4236 count = section->reloc_count;
4237 tblptr = section->relocation;
4238
4239 while (count--)
4240 *relptr++ = tblptr++;
4241
4242 *relptr = (arelent *) NULL;
4243 return section->reloc_count;
4244 }
4245
4246 extern bfd_target som_vec;
4247
4248 /* A hook to set up object file dependent section information. */
4249
4250 static boolean
4251 som_new_section_hook (abfd, newsect)
4252 bfd *abfd;
4253 asection *newsect;
4254 {
4255 newsect->used_by_bfd =
4256 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
4257 if (!newsect->used_by_bfd)
4258 {
4259 bfd_set_error (bfd_error_no_memory);
4260 return false;
4261 }
4262 newsect->alignment_power = 3;
4263
4264 /* We allow more than three sections internally */
4265 return true;
4266 }
4267
4268 /* Copy any private info we understand from the input section
4269 to the output section. */
4270 static boolean
4271 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
4272 bfd *ibfd;
4273 asection *isection;
4274 bfd *obfd;
4275 asection *osection;
4276 {
4277 /* One day we may try to grok other private data. */
4278 if (ibfd->xvec->flavour != bfd_target_som_flavour
4279 || obfd->xvec->flavour != bfd_target_som_flavour
4280 || (!som_is_space (isection) && !som_is_subspace (isection)))
4281 return false;
4282
4283 som_section_data (osection)->copy_data
4284 = (struct som_copyable_section_data_struct *)
4285 bfd_zalloc (obfd, sizeof (struct som_copyable_section_data_struct));
4286 if (som_section_data (osection)->copy_data == NULL)
4287 {
4288 bfd_set_error (bfd_error_no_memory);
4289 return false;
4290 }
4291
4292 memcpy (som_section_data (osection)->copy_data,
4293 som_section_data (isection)->copy_data,
4294 sizeof (struct som_copyable_section_data_struct));
4295
4296 /* Reparent if necessary. */
4297 if (som_section_data (osection)->copy_data->container)
4298 som_section_data (osection)->copy_data->container =
4299 som_section_data (osection)->copy_data->container->output_section;
4300
4301 return true;
4302 }
4303
4304 /* Copy any private info we understand from the input bfd
4305 to the output bfd. */
4306
4307 static boolean
4308 som_bfd_copy_private_bfd_data (ibfd, obfd)
4309 bfd *ibfd, *obfd;
4310 {
4311 /* One day we may try to grok other private data. */
4312 if (ibfd->xvec->flavour != bfd_target_som_flavour
4313 || obfd->xvec->flavour != bfd_target_som_flavour)
4314 return false;
4315
4316 /* Allocate some memory to hold the data we need. */
4317 obj_som_exec_data (obfd) = (struct som_exec_data *)
4318 bfd_zalloc (obfd, sizeof (struct som_exec_data));
4319 if (obj_som_exec_data (obfd) == NULL)
4320 {
4321 bfd_set_error (bfd_error_no_memory);
4322 return false;
4323 }
4324
4325 /* Now copy the data. */
4326 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
4327 sizeof (struct som_exec_data));
4328
4329 return true;
4330 }
4331
4332 /* Set backend info for sections which can not be described
4333 in the BFD data structures. */
4334
4335 boolean
4336 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
4337 asection *section;
4338 int defined;
4339 int private;
4340 unsigned int sort_key;
4341 int spnum;
4342 {
4343 /* Allocate memory to hold the magic information. */
4344 if (som_section_data (section)->copy_data == NULL)
4345 {
4346 som_section_data (section)->copy_data
4347 = (struct som_copyable_section_data_struct *)
4348 bfd_zalloc (section->owner,
4349 sizeof (struct som_copyable_section_data_struct));
4350 if (som_section_data (section)->copy_data == NULL)
4351 {
4352 bfd_set_error (bfd_error_no_memory);
4353 return false;
4354 }
4355 }
4356 som_section_data (section)->copy_data->sort_key = sort_key;
4357 som_section_data (section)->copy_data->is_defined = defined;
4358 som_section_data (section)->copy_data->is_private = private;
4359 som_section_data (section)->copy_data->container = section;
4360 som_section_data (section)->copy_data->space_number = spnum;
4361 return true;
4362 }
4363
4364 /* Set backend info for subsections which can not be described
4365 in the BFD data structures. */
4366
4367 boolean
4368 bfd_som_set_subsection_attributes (section, container, access,
4369 sort_key, quadrant)
4370 asection *section;
4371 asection *container;
4372 int access;
4373 unsigned int sort_key;
4374 int quadrant;
4375 {
4376 /* Allocate memory to hold the magic information. */
4377 if (som_section_data (section)->copy_data == NULL)
4378 {
4379 som_section_data (section)->copy_data
4380 = (struct som_copyable_section_data_struct *)
4381 bfd_zalloc (section->owner,
4382 sizeof (struct som_copyable_section_data_struct));
4383 if (som_section_data (section)->copy_data == NULL)
4384 {
4385 bfd_set_error (bfd_error_no_memory);
4386 return false;
4387 }
4388 }
4389 som_section_data (section)->copy_data->sort_key = sort_key;
4390 som_section_data (section)->copy_data->access_control_bits = access;
4391 som_section_data (section)->copy_data->quadrant = quadrant;
4392 som_section_data (section)->copy_data->container = container;
4393 return true;
4394 }
4395
4396 /* Set the full SOM symbol type. SOM needs far more symbol information
4397 than any other object file format I'm aware of. It is mandatory
4398 to be able to know if a symbol is an entry point, millicode, data,
4399 code, absolute, storage request, or procedure label. If you get
4400 the symbol type wrong your program will not link. */
4401
4402 void
4403 bfd_som_set_symbol_type (symbol, type)
4404 asymbol *symbol;
4405 unsigned int type;
4406 {
4407 som_symbol_data (symbol)->som_type = type;
4408 }
4409
4410 /* Attach 64bits of unwind information to a symbol (which hopefully
4411 is a function of some kind!). It would be better to keep this
4412 in the R_ENTRY relocation, but there is not enough space. */
4413
4414 void
4415 bfd_som_attach_unwind_info (symbol, unwind_desc)
4416 asymbol *symbol;
4417 char *unwind_desc;
4418 {
4419 som_symbol_data (symbol)->unwind = unwind_desc;
4420 }
4421
4422 /* Attach an auxiliary header to the BFD backend so that it may be
4423 written into the object file. */
4424 boolean
4425 bfd_som_attach_aux_hdr (abfd, type, string)
4426 bfd *abfd;
4427 int type;
4428 char *string;
4429 {
4430 if (type == VERSION_AUX_ID)
4431 {
4432 int len = strlen (string);
4433 int pad = 0;
4434
4435 if (len % 4)
4436 pad = (4 - (len % 4));
4437 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
4438 bfd_zalloc (abfd, sizeof (struct aux_id)
4439 + sizeof (unsigned int) + len + pad);
4440 if (!obj_som_version_hdr (abfd))
4441 {
4442 bfd_set_error (bfd_error_no_memory);
4443 return false;
4444 }
4445 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
4446 obj_som_version_hdr (abfd)->header_id.length = len + pad;
4447 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
4448 obj_som_version_hdr (abfd)->string_length = len;
4449 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
4450 }
4451 else if (type == COPYRIGHT_AUX_ID)
4452 {
4453 int len = strlen (string);
4454 int pad = 0;
4455
4456 if (len % 4)
4457 pad = (4 - (len % 4));
4458 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
4459 bfd_zalloc (abfd, sizeof (struct aux_id)
4460 + sizeof (unsigned int) + len + pad);
4461 if (!obj_som_copyright_hdr (abfd))
4462 {
4463 bfd_set_error (bfd_error_no_memory);
4464 return false;
4465 }
4466 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
4467 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
4468 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
4469 obj_som_copyright_hdr (abfd)->string_length = len;
4470 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
4471 }
4472 return true;
4473 }
4474
4475 static boolean
4476 som_get_section_contents (abfd, section, location, offset, count)
4477 bfd *abfd;
4478 sec_ptr section;
4479 PTR location;
4480 file_ptr offset;
4481 bfd_size_type count;
4482 {
4483 if (count == 0 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4484 return true;
4485 if ((bfd_size_type)(offset+count) > section->_raw_size
4486 || bfd_seek (abfd, (file_ptr)(section->filepos + offset), SEEK_SET) == -1
4487 || bfd_read (location, (bfd_size_type)1, count, abfd) != count)
4488 return (false); /* on error */
4489 return (true);
4490 }
4491
4492 static boolean
4493 som_set_section_contents (abfd, section, location, offset, count)
4494 bfd *abfd;
4495 sec_ptr section;
4496 PTR location;
4497 file_ptr offset;
4498 bfd_size_type count;
4499 {
4500 if (abfd->output_has_begun == false)
4501 {
4502 /* Set up fixed parts of the file, space, and subspace headers.
4503 Notify the world that output has begun. */
4504 som_prep_headers (abfd);
4505 abfd->output_has_begun = true;
4506 /* Start writing the object file. This include all the string
4507 tables, fixup streams, and other portions of the object file. */
4508 som_begin_writing (abfd);
4509 }
4510
4511 /* Only write subspaces which have "real" contents (eg. the contents
4512 are not generated at run time by the OS). */
4513 if (!som_is_subspace (section)
4514 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4515 return true;
4516
4517 /* Seek to the proper offset within the object file and write the
4518 data. */
4519 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
4520 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
4521 return false;
4522
4523 if (bfd_write ((PTR) location, 1, count, abfd) != count)
4524 return false;
4525 return true;
4526 }
4527
4528 static boolean
4529 som_set_arch_mach (abfd, arch, machine)
4530 bfd *abfd;
4531 enum bfd_architecture arch;
4532 unsigned long machine;
4533 {
4534 /* Allow any architecture to be supported by the SOM backend */
4535 return bfd_default_set_arch_mach (abfd, arch, machine);
4536 }
4537
4538 static boolean
4539 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4540 functionname_ptr, line_ptr)
4541 bfd *abfd;
4542 asection *section;
4543 asymbol **symbols;
4544 bfd_vma offset;
4545 CONST char **filename_ptr;
4546 CONST char **functionname_ptr;
4547 unsigned int *line_ptr;
4548 {
4549 fprintf (stderr, "som_find_nearest_line unimplemented\n");
4550 fflush (stderr);
4551 abort ();
4552 return (false);
4553 }
4554
4555 static int
4556 som_sizeof_headers (abfd, reloc)
4557 bfd *abfd;
4558 boolean reloc;
4559 {
4560 fprintf (stderr, "som_sizeof_headers unimplemented\n");
4561 fflush (stderr);
4562 abort ();
4563 return (0);
4564 }
4565
4566 /* Return the single-character symbol type corresponding to
4567 SOM section S, or '?' for an unknown SOM section. */
4568
4569 static char
4570 som_section_type (s)
4571 const char *s;
4572 {
4573 const struct section_to_type *t;
4574
4575 for (t = &stt[0]; t->section; t++)
4576 if (!strcmp (s, t->section))
4577 return t->type;
4578 return '?';
4579 }
4580
4581 static int
4582 som_decode_symclass (symbol)
4583 asymbol *symbol;
4584 {
4585 char c;
4586
4587 if (bfd_is_com_section (symbol->section))
4588 return 'C';
4589 if (symbol->section == &bfd_und_section)
4590 return 'U';
4591 if (symbol->section == &bfd_ind_section)
4592 return 'I';
4593 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
4594 return '?';
4595
4596 if (symbol->section == &bfd_abs_section)
4597 c = 'a';
4598 else if (symbol->section)
4599 c = som_section_type (symbol->section->name);
4600 else
4601 return '?';
4602 if (symbol->flags & BSF_GLOBAL)
4603 c = toupper (c);
4604 return c;
4605 }
4606
4607 /* Return information about SOM symbol SYMBOL in RET. */
4608
4609 static void
4610 som_get_symbol_info (ignore_abfd, symbol, ret)
4611 bfd *ignore_abfd;
4612 asymbol *symbol;
4613 symbol_info *ret;
4614 {
4615 ret->type = som_decode_symclass (symbol);
4616 if (ret->type != 'U')
4617 ret->value = symbol->value+symbol->section->vma;
4618 else
4619 ret->value = 0;
4620 ret->name = symbol->name;
4621 }
4622
4623 /* Count the number of symbols in the archive symbol table. Necessary
4624 so that we can allocate space for all the carsyms at once. */
4625
4626 static boolean
4627 som_bfd_count_ar_symbols (abfd, lst_header, count)
4628 bfd *abfd;
4629 struct lst_header *lst_header;
4630 symindex *count;
4631 {
4632 unsigned int i;
4633 unsigned int *hash_table = NULL;
4634 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4635
4636 hash_table =
4637 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4638 if (hash_table == NULL && lst_header->hash_size != 0)
4639 {
4640 bfd_set_error (bfd_error_no_memory);
4641 goto error_return;
4642 }
4643
4644 /* Don't forget to initialize the counter! */
4645 *count = 0;
4646
4647 /* Read in the hash table. The has table is an array of 32bit file offsets
4648 which point to the hash chains. */
4649 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4650 != lst_header->hash_size * 4)
4651 goto error_return;
4652
4653 /* Walk each chain counting the number of symbols found on that particular
4654 chain. */
4655 for (i = 0; i < lst_header->hash_size; i++)
4656 {
4657 struct lst_symbol_record lst_symbol;
4658
4659 /* An empty chain has zero as it's file offset. */
4660 if (hash_table[i] == 0)
4661 continue;
4662
4663 /* Seek to the first symbol in this hash chain. */
4664 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4665 goto error_return;
4666
4667 /* Read in this symbol and update the counter. */
4668 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4669 != sizeof (lst_symbol))
4670 goto error_return;
4671
4672 (*count)++;
4673
4674 /* Now iterate through the rest of the symbols on this chain. */
4675 while (lst_symbol.next_entry)
4676 {
4677
4678 /* Seek to the next symbol. */
4679 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4680 < 0)
4681 goto error_return;
4682
4683 /* Read the symbol in and update the counter. */
4684 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4685 != sizeof (lst_symbol))
4686 goto error_return;
4687
4688 (*count)++;
4689 }
4690 }
4691 if (hash_table != NULL)
4692 free (hash_table);
4693 return true;
4694
4695 error_return:
4696 if (hash_table != NULL)
4697 free (hash_table);
4698 return false;
4699 }
4700
4701 /* Fill in the canonical archive symbols (SYMS) from the archive described
4702 by ABFD and LST_HEADER. */
4703
4704 static boolean
4705 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
4706 bfd *abfd;
4707 struct lst_header *lst_header;
4708 carsym **syms;
4709 {
4710 unsigned int i, len;
4711 carsym *set = syms[0];
4712 unsigned int *hash_table = NULL;
4713 struct som_entry *som_dict = NULL;
4714 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4715
4716 hash_table =
4717 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4718 if (hash_table == NULL && lst_header->hash_size != 0)
4719 {
4720 bfd_set_error (bfd_error_no_memory);
4721 goto error_return;
4722 }
4723
4724 som_dict =
4725 (struct som_entry *) malloc (lst_header->module_count
4726 * sizeof (struct som_entry));
4727 if (som_dict == NULL && lst_header->module_count != 0)
4728 {
4729 bfd_set_error (bfd_error_no_memory);
4730 goto error_return;
4731 }
4732
4733 /* Read in the hash table. The has table is an array of 32bit file offsets
4734 which point to the hash chains. */
4735 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4736 != lst_header->hash_size * 4)
4737 goto error_return;
4738
4739 /* Seek to and read in the SOM dictionary. We will need this to fill
4740 in the carsym's filepos field. */
4741 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
4742 goto error_return;
4743
4744 if (bfd_read ((PTR) som_dict, lst_header->module_count,
4745 sizeof (struct som_entry), abfd)
4746 != lst_header->module_count * sizeof (struct som_entry))
4747 goto error_return;
4748
4749 /* Walk each chain filling in the carsyms as we go along. */
4750 for (i = 0; i < lst_header->hash_size; i++)
4751 {
4752 struct lst_symbol_record lst_symbol;
4753
4754 /* An empty chain has zero as it's file offset. */
4755 if (hash_table[i] == 0)
4756 continue;
4757
4758 /* Seek to and read the first symbol on the chain. */
4759 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4760 goto error_return;
4761
4762 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4763 != sizeof (lst_symbol))
4764 goto error_return;
4765
4766 /* Get the name of the symbol, first get the length which is stored
4767 as a 32bit integer just before the symbol.
4768
4769 One might ask why we don't just read in the entire string table
4770 and index into it. Well, according to the SOM ABI the string
4771 index can point *anywhere* in the archive to save space, so just
4772 using the string table would not be safe. */
4773 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4774 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4775 goto error_return;
4776
4777 if (bfd_read (&len, 1, 4, abfd) != 4)
4778 goto error_return;
4779
4780 /* Allocate space for the name and null terminate it too. */
4781 set->name = bfd_zalloc (abfd, len + 1);
4782 if (!set->name)
4783 {
4784 bfd_set_error (bfd_error_no_memory);
4785 goto error_return;
4786 }
4787 if (bfd_read (set->name, 1, len, abfd) != len)
4788 goto error_return;
4789
4790 set->name[len] = 0;
4791
4792 /* Fill in the file offset. Note that the "location" field points
4793 to the SOM itself, not the ar_hdr in front of it. */
4794 set->file_offset = som_dict[lst_symbol.som_index].location
4795 - sizeof (struct ar_hdr);
4796
4797 /* Go to the next symbol. */
4798 set++;
4799
4800 /* Iterate through the rest of the chain. */
4801 while (lst_symbol.next_entry)
4802 {
4803 /* Seek to the next symbol and read it in. */
4804 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET) <0)
4805 goto error_return;
4806
4807 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4808 != sizeof (lst_symbol))
4809 goto error_return;
4810
4811 /* Seek to the name length & string and read them in. */
4812 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4813 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4814 goto error_return;
4815
4816 if (bfd_read (&len, 1, 4, abfd) != 4)
4817 goto error_return;
4818
4819 /* Allocate space for the name and null terminate it too. */
4820 set->name = bfd_zalloc (abfd, len + 1);
4821 if (!set->name)
4822 {
4823 bfd_set_error (bfd_error_no_memory);
4824 goto error_return;
4825 }
4826
4827 if (bfd_read (set->name, 1, len, abfd) != len)
4828 goto error_return;
4829 set->name[len] = 0;
4830
4831 /* Fill in the file offset. Note that the "location" field points
4832 to the SOM itself, not the ar_hdr in front of it. */
4833 set->file_offset = som_dict[lst_symbol.som_index].location
4834 - sizeof (struct ar_hdr);
4835
4836 /* Go on to the next symbol. */
4837 set++;
4838 }
4839 }
4840 /* If we haven't died by now, then we successfully read the entire
4841 archive symbol table. */
4842 if (hash_table != NULL)
4843 free (hash_table);
4844 if (som_dict != NULL)
4845 free (som_dict);
4846 return true;
4847
4848 error_return:
4849 if (hash_table != NULL)
4850 free (hash_table);
4851 if (som_dict != NULL)
4852 free (som_dict);
4853 return false;
4854 }
4855
4856 /* Read in the LST from the archive. */
4857 static boolean
4858 som_slurp_armap (abfd)
4859 bfd *abfd;
4860 {
4861 struct lst_header lst_header;
4862 struct ar_hdr ar_header;
4863 unsigned int parsed_size;
4864 struct artdata *ardata = bfd_ardata (abfd);
4865 char nextname[17];
4866 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
4867
4868 /* Special cases. */
4869 if (i == 0)
4870 return true;
4871 if (i != 16)
4872 return false;
4873
4874 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
4875 return false;
4876
4877 /* For archives without .o files there is no symbol table. */
4878 if (strncmp (nextname, "/ ", 16))
4879 {
4880 bfd_has_map (abfd) = false;
4881 return true;
4882 }
4883
4884 /* Read in and sanity check the archive header. */
4885 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
4886 != sizeof (struct ar_hdr))
4887 return false;
4888
4889 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
4890 {
4891 bfd_set_error (bfd_error_malformed_archive);
4892 return false;
4893 }
4894
4895 /* How big is the archive symbol table entry? */
4896 errno = 0;
4897 parsed_size = strtol (ar_header.ar_size, NULL, 10);
4898 if (errno != 0)
4899 {
4900 bfd_set_error (bfd_error_malformed_archive);
4901 return false;
4902 }
4903
4904 /* Save off the file offset of the first real user data. */
4905 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
4906
4907 /* Read in the library symbol table. We'll make heavy use of this
4908 in just a minute. */
4909 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
4910 != sizeof (struct lst_header))
4911 return false;
4912
4913 /* Sanity check. */
4914 if (lst_header.a_magic != LIBMAGIC)
4915 {
4916 bfd_set_error (bfd_error_malformed_archive);
4917 return false;
4918 }
4919
4920 /* Count the number of symbols in the library symbol table. */
4921 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
4922 == false)
4923 return false;
4924
4925 /* Get back to the start of the library symbol table. */
4926 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
4927 + sizeof (struct lst_header), SEEK_SET) < 0)
4928 return false;
4929
4930 /* Initializae the cache and allocate space for the library symbols. */
4931 ardata->cache = 0;
4932 ardata->symdefs = (carsym *) bfd_alloc (abfd,
4933 (ardata->symdef_count
4934 * sizeof (carsym)));
4935 if (!ardata->symdefs)
4936 {
4937 bfd_set_error (bfd_error_no_memory);
4938 return false;
4939 }
4940
4941 /* Now fill in the canonical archive symbols. */
4942 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
4943 == false)
4944 return false;
4945
4946 /* Seek back to the "first" file in the archive. Note the "first"
4947 file may be the extended name table. */
4948 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) < 0)
4949 return false;
4950
4951 /* Notify the generic archive code that we have a symbol map. */
4952 bfd_has_map (abfd) = true;
4953 return true;
4954 }
4955
4956 /* Begin preparing to write a SOM library symbol table.
4957
4958 As part of the prep work we need to determine the number of symbols
4959 and the size of the associated string section. */
4960
4961 static boolean
4962 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
4963 bfd *abfd;
4964 unsigned int *num_syms, *stringsize;
4965 {
4966 bfd *curr_bfd = abfd->archive_head;
4967
4968 /* Some initialization. */
4969 *num_syms = 0;
4970 *stringsize = 0;
4971
4972 /* Iterate over each BFD within this archive. */
4973 while (curr_bfd != NULL)
4974 {
4975 unsigned int curr_count, i;
4976 som_symbol_type *sym;
4977
4978 /* Don't bother for non-SOM objects. */
4979 if (curr_bfd->format != bfd_object
4980 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
4981 {
4982 curr_bfd = curr_bfd->next;
4983 continue;
4984 }
4985
4986 /* Make sure the symbol table has been read, then snag a pointer
4987 to it. It's a little slimey to grab the symbols via obj_som_symtab,
4988 but doing so avoids allocating lots of extra memory. */
4989 if (som_slurp_symbol_table (curr_bfd) == false)
4990 return false;
4991
4992 sym = obj_som_symtab (curr_bfd);
4993 curr_count = bfd_get_symcount (curr_bfd);
4994
4995 /* Examine each symbol to determine if it belongs in the
4996 library symbol table. */
4997 for (i = 0; i < curr_count; i++, sym++)
4998 {
4999 struct som_misc_symbol_info info;
5000
5001 /* Derive SOM information from the BFD symbol. */
5002 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5003
5004 /* Should we include this symbol? */
5005 if (info.symbol_type == ST_NULL
5006 || info.symbol_type == ST_SYM_EXT
5007 || info.symbol_type == ST_ARG_EXT)
5008 continue;
5009
5010 /* Only global symbols and unsatisfied commons. */
5011 if (info.symbol_scope != SS_UNIVERSAL
5012 && info.symbol_type != ST_STORAGE)
5013 continue;
5014
5015 /* Do no include undefined symbols. */
5016 if (sym->symbol.section == &bfd_und_section)
5017 continue;
5018
5019 /* Bump the various counters, being careful to honor
5020 alignment considerations in the string table. */
5021 (*num_syms)++;
5022 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5023 while (*stringsize % 4)
5024 (*stringsize)++;
5025 }
5026
5027 curr_bfd = curr_bfd->next;
5028 }
5029 return true;
5030 }
5031
5032 /* Hash a symbol name based on the hashing algorithm presented in the
5033 SOM ABI. */
5034 static unsigned int
5035 som_bfd_ar_symbol_hash (symbol)
5036 asymbol *symbol;
5037 {
5038 unsigned int len = strlen (symbol->name);
5039
5040 /* Names with length 1 are special. */
5041 if (len == 1)
5042 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5043
5044 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5045 | (symbol->name[len-2] << 8) | symbol->name[len-1];
5046 }
5047
5048 static CONST char *
5049 normalize (file)
5050 CONST char *file;
5051 {
5052 CONST char *filename = strrchr (file, '/');
5053
5054 if (filename != NULL)
5055 filename++;
5056 else
5057 filename = file;
5058 return filename;
5059 }
5060
5061 /* Do the bulk of the work required to write the SOM library
5062 symbol table. */
5063
5064 static boolean
5065 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst)
5066 bfd *abfd;
5067 unsigned int nsyms, string_size;
5068 struct lst_header lst;
5069 {
5070 file_ptr lst_filepos;
5071 char *strings = NULL, *p;
5072 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5073 bfd *curr_bfd;
5074 unsigned int *hash_table = NULL;
5075 struct som_entry *som_dict = NULL;
5076 struct lst_symbol_record **last_hash_entry = NULL;
5077 unsigned int curr_som_offset, som_index, extended_name_length = 0;
5078 unsigned int maxname = abfd->xvec->ar_max_namelen;
5079
5080 hash_table =
5081 (unsigned int *) malloc (lst.hash_size * sizeof (unsigned int));
5082 if (hash_table == NULL && lst.hash_size != 0)
5083 {
5084 bfd_set_error (bfd_error_no_memory);
5085 goto error_return;
5086 }
5087 som_dict =
5088 (struct som_entry *) malloc (lst.module_count
5089 * sizeof (struct som_entry));
5090 if (som_dict == NULL && lst.module_count != 0)
5091 {
5092 bfd_set_error (bfd_error_no_memory);
5093 goto error_return;
5094 }
5095
5096 last_hash_entry =
5097 ((struct lst_symbol_record **)
5098 malloc (lst.hash_size * sizeof (struct lst_symbol_record *)));
5099 if (last_hash_entry == NULL && lst.hash_size != 0)
5100 {
5101 bfd_set_error (bfd_error_no_memory);
5102 goto error_return;
5103 }
5104
5105 /* Lots of fields are file positions relative to the start
5106 of the lst record. So save its location. */
5107 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5108
5109 /* Some initialization. */
5110 memset (hash_table, 0, 4 * lst.hash_size);
5111 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
5112 memset (last_hash_entry, 0,
5113 lst.hash_size * sizeof (struct lst_symbol_record *));
5114
5115 /* Symbols have som_index fields, so we have to keep track of the
5116 index of each SOM in the archive.
5117
5118 The SOM dictionary has (among other things) the absolute file
5119 position for the SOM which a particular dictionary entry
5120 describes. We have to compute that information as we iterate
5121 through the SOMs/symbols. */
5122 som_index = 0;
5123 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5124
5125 /* Yow! We have to know the size of the extended name table
5126 too. */
5127 for (curr_bfd = abfd->archive_head;
5128 curr_bfd != NULL;
5129 curr_bfd = curr_bfd->next)
5130 {
5131 CONST char *normal = normalize (curr_bfd->filename);
5132 unsigned int thislen;
5133
5134 if (!normal)
5135 {
5136 bfd_set_error (bfd_error_no_memory);
5137 return false;
5138 }
5139 thislen = strlen (normal);
5140 if (thislen > maxname)
5141 extended_name_length += thislen + 1;
5142 }
5143
5144 /* Make room for the archive header and the contents of the
5145 extended string table. */
5146 if (extended_name_length)
5147 curr_som_offset += extended_name_length + sizeof (struct ar_hdr);
5148
5149 /* Make sure we're properly aligned. */
5150 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5151
5152 /* FIXME should be done with buffers just like everything else... */
5153 lst_syms = malloc (nsyms * sizeof (struct lst_symbol_record));
5154 if (lst_syms == NULL && nsyms != 0)
5155 {
5156 bfd_set_error (bfd_error_no_memory);
5157 goto error_return;
5158 }
5159 strings = malloc (string_size);
5160 if (strings == NULL && string_size != 0)
5161 {
5162 bfd_set_error (bfd_error_no_memory);
5163 goto error_return;
5164 }
5165
5166 p = strings;
5167 curr_lst_sym = lst_syms;
5168
5169 curr_bfd = abfd->archive_head;
5170 while (curr_bfd != NULL)
5171 {
5172 unsigned int curr_count, i;
5173 som_symbol_type *sym;
5174
5175 /* Don't bother for non-SOM objects. */
5176 if (curr_bfd->format != bfd_object
5177 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5178 {
5179 curr_bfd = curr_bfd->next;
5180 continue;
5181 }
5182
5183 /* Make sure the symbol table has been read, then snag a pointer
5184 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5185 but doing so avoids allocating lots of extra memory. */
5186 if (som_slurp_symbol_table (curr_bfd) == false)
5187 goto error_return;
5188
5189 sym = obj_som_symtab (curr_bfd);
5190 curr_count = bfd_get_symcount (curr_bfd);
5191
5192 for (i = 0; i < curr_count; i++, sym++)
5193 {
5194 struct som_misc_symbol_info info;
5195
5196 /* Derive SOM information from the BFD symbol. */
5197 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5198
5199 /* Should we include this symbol? */
5200 if (info.symbol_type == ST_NULL
5201 || info.symbol_type == ST_SYM_EXT
5202 || info.symbol_type == ST_ARG_EXT)
5203 continue;
5204
5205 /* Only global symbols and unsatisfied commons. */
5206 if (info.symbol_scope != SS_UNIVERSAL
5207 && info.symbol_type != ST_STORAGE)
5208 continue;
5209
5210 /* Do no include undefined symbols. */
5211 if (sym->symbol.section == &bfd_und_section)
5212 continue;
5213
5214 /* If this is the first symbol from this SOM, then update
5215 the SOM dictionary too. */
5216 if (som_dict[som_index].location == 0)
5217 {
5218 som_dict[som_index].location = curr_som_offset;
5219 som_dict[som_index].length = arelt_size (curr_bfd);
5220 }
5221
5222 /* Fill in the lst symbol record. */
5223 curr_lst_sym->hidden = 0;
5224 curr_lst_sym->secondary_def = 0;
5225 curr_lst_sym->symbol_type = info.symbol_type;
5226 curr_lst_sym->symbol_scope = info.symbol_scope;
5227 curr_lst_sym->check_level = 0;
5228 curr_lst_sym->must_qualify = 0;
5229 curr_lst_sym->initially_frozen = 0;
5230 curr_lst_sym->memory_resident = 0;
5231 curr_lst_sym->is_common = (sym->symbol.section == &bfd_com_section);
5232 curr_lst_sym->dup_common = 0;
5233 curr_lst_sym->xleast = 0;
5234 curr_lst_sym->arg_reloc = info.arg_reloc;
5235 curr_lst_sym->name.n_strx = p - strings + 4;
5236 curr_lst_sym->qualifier_name.n_strx = 0;
5237 curr_lst_sym->symbol_info = info.symbol_info;
5238 curr_lst_sym->symbol_value = info.symbol_value;
5239 curr_lst_sym->symbol_descriptor = 0;
5240 curr_lst_sym->reserved = 0;
5241 curr_lst_sym->som_index = som_index;
5242 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
5243 curr_lst_sym->next_entry = 0;
5244
5245 /* Insert into the hash table. */
5246 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
5247 {
5248 struct lst_symbol_record *tmp;
5249
5250 /* There is already something at the head of this hash chain,
5251 so tack this symbol onto the end of the chain. */
5252 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
5253 tmp->next_entry
5254 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5255 + lst.hash_size * 4
5256 + lst.module_count * sizeof (struct som_entry)
5257 + sizeof (struct lst_header);
5258 }
5259 else
5260 {
5261 /* First entry in this hash chain. */
5262 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
5263 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5264 + lst.hash_size * 4
5265 + lst.module_count * sizeof (struct som_entry)
5266 + sizeof (struct lst_header);
5267 }
5268
5269 /* Keep track of the last symbol we added to this chain so we can
5270 easily update its next_entry pointer. */
5271 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
5272 = curr_lst_sym;
5273
5274
5275 /* Update the string table. */
5276 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
5277 p += 4;
5278 strcpy (p, sym->symbol.name);
5279 p += strlen (sym->symbol.name) + 1;
5280 while ((int)p % 4)
5281 {
5282 bfd_put_8 (abfd, 0, p);
5283 p++;
5284 }
5285
5286 /* Head to the next symbol. */
5287 curr_lst_sym++;
5288 }
5289
5290 /* Keep track of where each SOM will finally reside; then look
5291 at the next BFD. */
5292 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
5293 curr_bfd = curr_bfd->next;
5294 som_index++;
5295 }
5296
5297 /* Now scribble out the hash table. */
5298 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
5299 != lst.hash_size * 4)
5300 goto error_return;
5301
5302 /* Then the SOM dictionary. */
5303 if (bfd_write ((PTR) som_dict, lst.module_count,
5304 sizeof (struct som_entry), abfd)
5305 != lst.module_count * sizeof (struct som_entry))
5306 goto error_return;
5307
5308 /* The library symbols. */
5309 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
5310 != nsyms * sizeof (struct lst_symbol_record))
5311 goto error_return;
5312
5313 /* And finally the strings. */
5314 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
5315 goto error_return;
5316
5317 if (hash_table != NULL)
5318 free (hash_table);
5319 if (som_dict != NULL)
5320 free (som_dict);
5321 if (last_hash_entry != NULL)
5322 free (last_hash_entry);
5323 if (lst_syms != NULL)
5324 free (lst_syms);
5325 if (strings != NULL)
5326 free (strings);
5327 return true;
5328
5329 error_return:
5330 if (hash_table != NULL)
5331 free (hash_table);
5332 if (som_dict != NULL)
5333 free (som_dict);
5334 if (last_hash_entry != NULL)
5335 free (last_hash_entry);
5336 if (lst_syms != NULL)
5337 free (lst_syms);
5338 if (strings != NULL)
5339 free (strings);
5340
5341 return false;
5342 }
5343
5344 /* Write out the LST for the archive.
5345
5346 You'll never believe this is really how armaps are handled in SOM... */
5347
5348 /*ARGSUSED*/
5349 static boolean
5350 som_write_armap (abfd, elength, map, orl_count, stridx)
5351 bfd *abfd;
5352 unsigned int elength;
5353 struct orl *map;
5354 unsigned int orl_count;
5355 int stridx;
5356 {
5357 bfd *curr_bfd;
5358 struct stat statbuf;
5359 unsigned int i, lst_size, nsyms, stringsize;
5360 struct ar_hdr hdr;
5361 struct lst_header lst;
5362 int *p;
5363
5364 /* We'll use this for the archive's date and mode later. */
5365 if (stat (abfd->filename, &statbuf) != 0)
5366 {
5367 bfd_set_error (bfd_error_system_call);
5368 return false;
5369 }
5370 /* Fudge factor. */
5371 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
5372
5373 /* Account for the lst header first. */
5374 lst_size = sizeof (struct lst_header);
5375
5376 /* Start building the LST header. */
5377 lst.system_id = HP9000S800_ID;
5378 lst.a_magic = LIBMAGIC;
5379 lst.version_id = VERSION_ID;
5380 lst.file_time.secs = 0;
5381 lst.file_time.nanosecs = 0;
5382
5383 lst.hash_loc = lst_size;
5384 lst.hash_size = SOM_LST_HASH_SIZE;
5385
5386 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
5387 lst_size += 4 * SOM_LST_HASH_SIZE;
5388
5389 /* We need to count the number of SOMs in this archive. */
5390 curr_bfd = abfd->archive_head;
5391 lst.module_count = 0;
5392 while (curr_bfd != NULL)
5393 {
5394 /* Only true SOM objects count. */
5395 if (curr_bfd->format == bfd_object
5396 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
5397 lst.module_count++;
5398 curr_bfd = curr_bfd->next;
5399 }
5400 lst.module_limit = lst.module_count;
5401 lst.dir_loc = lst_size;
5402 lst_size += sizeof (struct som_entry) * lst.module_count;
5403
5404 /* We don't support import/export tables, auxiliary headers,
5405 or free lists yet. Make the linker work a little harder
5406 to make our life easier. */
5407
5408 lst.export_loc = 0;
5409 lst.export_count = 0;
5410 lst.import_loc = 0;
5411 lst.aux_loc = 0;
5412 lst.aux_size = 0;
5413
5414 /* Count how many symbols we will have on the hash chains and the
5415 size of the associated string table. */
5416 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
5417 return false;
5418
5419 lst_size += sizeof (struct lst_symbol_record) * nsyms;
5420
5421 /* For the string table. One day we might actually use this info
5422 to avoid small seeks/reads when reading archives. */
5423 lst.string_loc = lst_size;
5424 lst.string_size = stringsize;
5425 lst_size += stringsize;
5426
5427 /* SOM ABI says this must be zero. */
5428 lst.free_list = 0;
5429 lst.file_end = lst_size;
5430
5431 /* Compute the checksum. Must happen after the entire lst header
5432 has filled in. */
5433 p = (int *)&lst;
5434 lst.checksum = 0;
5435 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
5436 lst.checksum ^= *p++;
5437
5438 sprintf (hdr.ar_name, "/ ");
5439 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
5440 sprintf (hdr.ar_uid, "%ld", (long) getuid ());
5441 sprintf (hdr.ar_gid, "%ld", (long) getgid ());
5442 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
5443 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
5444 hdr.ar_fmag[0] = '`';
5445 hdr.ar_fmag[1] = '\012';
5446
5447 /* Turn any nulls into spaces. */
5448 for (i = 0; i < sizeof (struct ar_hdr); i++)
5449 if (((char *) (&hdr))[i] == '\0')
5450 (((char *) (&hdr))[i]) = ' ';
5451
5452 /* Scribble out the ar header. */
5453 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
5454 != sizeof (struct ar_hdr))
5455 return false;
5456
5457 /* Now scribble out the lst header. */
5458 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
5459 != sizeof (struct lst_header))
5460 return false;
5461
5462 /* Build and write the armap. */
5463 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst) == false)
5464 return false;
5465
5466 /* Done. */
5467 return true;
5468 }
5469
5470 /* Free all information we have cached for this BFD. We can always
5471 read it again later if we need it. */
5472
5473 static boolean
5474 som_bfd_free_cached_info (abfd)
5475 bfd *abfd;
5476 {
5477 asection *o;
5478
5479 if (bfd_get_format (abfd) != bfd_object)
5480 return true;
5481
5482 #define FREE(x) if (x != NULL) { free (x); x = NULL; }
5483 /* Free the native string and symbol tables. */
5484 FREE (obj_som_symtab (abfd));
5485 FREE (obj_som_stringtab (abfd));
5486 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5487 {
5488 /* Free the native relocations. */
5489 o->reloc_count = -1;
5490 FREE (som_section_data (o)->reloc_stream);
5491 /* Free the generic relocations. */
5492 FREE (o->relocation);
5493 }
5494 #undef FREE
5495
5496 return true;
5497 }
5498
5499 /* End of miscellaneous support functions. */
5500
5501 #define som_close_and_cleanup som_bfd_free_cached_info
5502
5503 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
5504 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
5505 #define som_truncate_arname bfd_bsd_truncate_arname
5506 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
5507
5508 #define som_get_lineno _bfd_nosymbols_get_lineno
5509 #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
5510
5511 #define som_bfd_get_relocated_section_contents \
5512 bfd_generic_get_relocated_section_contents
5513 #define som_bfd_relax_section bfd_generic_relax_section
5514 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
5515 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
5516 #define som_bfd_final_link _bfd_generic_final_link
5517
5518 bfd_target som_vec =
5519 {
5520 "som", /* name */
5521 bfd_target_som_flavour,
5522 true, /* target byte order */
5523 true, /* target headers byte order */
5524 (HAS_RELOC | EXEC_P | /* object flags */
5525 HAS_LINENO | HAS_DEBUG |
5526 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
5527 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
5528 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
5529
5530 /* leading_symbol_char: is the first char of a user symbol
5531 predictable, and if so what is it */
5532 0,
5533 '/', /* ar_pad_char */
5534 14, /* ar_max_namelen */
5535 3, /* minimum alignment */
5536 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5537 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5538 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
5539 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5540 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5541 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
5542 {_bfd_dummy_target,
5543 som_object_p, /* bfd_check_format */
5544 bfd_generic_archive_p,
5545 _bfd_dummy_target
5546 },
5547 {
5548 bfd_false,
5549 som_mkobject,
5550 _bfd_generic_mkarchive,
5551 bfd_false
5552 },
5553 {
5554 bfd_false,
5555 som_write_object_contents,
5556 _bfd_write_archive_contents,
5557 bfd_false,
5558 },
5559 #undef som
5560
5561 BFD_JUMP_TABLE_GENERIC (som),
5562 BFD_JUMP_TABLE_COPY (som),
5563 BFD_JUMP_TABLE_CORE (_bfd_nocore),
5564 BFD_JUMP_TABLE_ARCHIVE (som),
5565 BFD_JUMP_TABLE_SYMBOLS (som),
5566 BFD_JUMP_TABLE_RELOCS (som),
5567 BFD_JUMP_TABLE_WRITE (som),
5568 BFD_JUMP_TABLE_LINK (som),
5569 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
5570
5571 (PTR) 0
5572 };
5573
5574 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */