* som.h (som_symbol_type): Add "stringtab_offset" field.
[binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
3
4 Contributed by the Center for Software Science at the
5 University of Utah (pa-gdb-bugs@cs.utah.edu).
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23 #include "bfd.h"
24 #include "sysdep.h"
25
26 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)
27
28 #include "libbfd.h"
29 #include "som.h"
30
31 #include <stdio.h>
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <signal.h>
35 #include <machine/reg.h>
36 #include <sys/file.h>
37 #include <errno.h>
38
39 /* Magic not defined in standard HP-UX header files until 8.0 */
40
41 #ifndef CPU_PA_RISC1_0
42 #define CPU_PA_RISC1_0 0x20B
43 #endif /* CPU_PA_RISC1_0 */
44
45 #ifndef CPU_PA_RISC1_1
46 #define CPU_PA_RISC1_1 0x210
47 #endif /* CPU_PA_RISC1_1 */
48
49 #ifndef _PA_RISC1_0_ID
50 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
51 #endif /* _PA_RISC1_0_ID */
52
53 #ifndef _PA_RISC1_1_ID
54 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
55 #endif /* _PA_RISC1_1_ID */
56
57 #ifndef _PA_RISC_MAXID
58 #define _PA_RISC_MAXID 0x2FF
59 #endif /* _PA_RISC_MAXID */
60
61 #ifndef _PA_RISC_ID
62 #define _PA_RISC_ID(__m_num) \
63 (((__m_num) == _PA_RISC1_0_ID) || \
64 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
65 #endif /* _PA_RISC_ID */
66
67
68 /* HIUX in it's infinite stupidity changed the names for several "well
69 known" constants. Work around such braindamage. Try the HPUX version
70 first, then the HIUX version, and finally provide a default. */
71 #ifdef HPUX_AUX_ID
72 #define EXEC_AUX_ID HPUX_AUX_ID
73 #endif
74
75 #if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID)
76 #define EXEC_AUX_ID HIUX_AUX_ID
77 #endif
78
79 #ifndef EXEC_AUX_ID
80 #define EXEC_AUX_ID 0
81 #endif
82
83 /* Size (in chars) of the temporary buffers used during fixup and string
84 table writes. */
85
86 #define SOM_TMP_BUFSIZE 8192
87
88 /* Size of the hash table in archives. */
89 #define SOM_LST_HASH_SIZE 31
90
91 /* Max number of SOMs to be found in an archive. */
92 #define SOM_LST_MODULE_LIMIT 1024
93
94 /* Generic alignment macro. */
95 #define SOM_ALIGN(val, alignment) \
96 (((val) + (alignment) - 1) & ~((alignment) - 1))
97
98 /* SOM allows any one of the four previous relocations to be reused
99 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
100 relocations are always a single byte, using a R_PREV_FIXUP instead
101 of some multi-byte relocation makes object files smaller.
102
103 Note one side effect of using a R_PREV_FIXUP is the relocation that
104 is being repeated moves to the front of the queue. */
105 struct reloc_queue
106 {
107 unsigned char *reloc;
108 unsigned int size;
109 } reloc_queue[4];
110
111 /* This fully describes the symbol types which may be attached to
112 an EXPORT or IMPORT directive. Only SOM uses this formation
113 (ELF has no need for it). */
114 typedef enum
115 {
116 SYMBOL_TYPE_UNKNOWN,
117 SYMBOL_TYPE_ABSOLUTE,
118 SYMBOL_TYPE_CODE,
119 SYMBOL_TYPE_DATA,
120 SYMBOL_TYPE_ENTRY,
121 SYMBOL_TYPE_MILLICODE,
122 SYMBOL_TYPE_PLABEL,
123 SYMBOL_TYPE_PRI_PROG,
124 SYMBOL_TYPE_SEC_PROG,
125 } pa_symbol_type;
126
127 struct section_to_type
128 {
129 char *section;
130 char type;
131 };
132
133 /* Assorted symbol information that needs to be derived from the BFD symbol
134 and/or the BFD backend private symbol data. */
135 struct som_misc_symbol_info
136 {
137 unsigned int symbol_type;
138 unsigned int symbol_scope;
139 unsigned int arg_reloc;
140 unsigned int symbol_info;
141 unsigned int symbol_value;
142 };
143
144 /* Forward declarations */
145
146 static boolean som_mkobject PARAMS ((bfd *));
147 static const bfd_target * som_object_setup PARAMS ((bfd *,
148 struct header *,
149 struct som_exec_auxhdr *));
150 static boolean setup_sections PARAMS ((bfd *, struct header *));
151 static const bfd_target * som_object_p PARAMS ((bfd *));
152 static boolean som_write_object_contents PARAMS ((bfd *));
153 static boolean som_slurp_string_table PARAMS ((bfd *));
154 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
155 static long som_get_symtab_upper_bound PARAMS ((bfd *));
156 static long som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
157 arelent **, asymbol **));
158 static long som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
159 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
160 arelent *, asection *,
161 asymbol **, boolean));
162 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
163 asymbol **, boolean));
164 static long som_get_symtab PARAMS ((bfd *, asymbol **));
165 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
166 static void som_print_symbol PARAMS ((bfd *, PTR,
167 asymbol *, bfd_print_symbol_type));
168 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
169 static boolean som_bfd_copy_private_section_data PARAMS ((bfd *, asection *,
170 bfd *, asection *));
171 static boolean som_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
172 static boolean som_bfd_is_local_label PARAMS ((bfd *, asymbol *));
173 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
174 file_ptr, bfd_size_type));
175 static boolean som_get_section_contents PARAMS ((bfd *, sec_ptr, PTR,
176 file_ptr, bfd_size_type));
177 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
178 unsigned long));
179 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
180 asymbol **, bfd_vma,
181 CONST char **,
182 CONST char **,
183 unsigned int *));
184 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
185 static asection * bfd_section_from_som_symbol PARAMS ((bfd *,
186 struct symbol_dictionary_record *));
187 static int log2 PARAMS ((unsigned int));
188 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
189 asymbol *, PTR,
190 asection *, bfd *,
191 char **));
192 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
193 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
194 struct reloc_queue *));
195 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
196 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
197 struct reloc_queue *));
198 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
199 unsigned int,
200 struct reloc_queue *));
201
202 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
203 unsigned char *, unsigned int *,
204 struct reloc_queue *));
205 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
206 unsigned int *,
207 struct reloc_queue *));
208 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
209 unsigned int *,
210 arelent *, int,
211 struct reloc_queue *));
212 static unsigned long som_count_spaces PARAMS ((bfd *));
213 static unsigned long som_count_subspaces PARAMS ((bfd *));
214 static int compare_syms PARAMS ((const void *, const void *));
215 static unsigned long som_compute_checksum PARAMS ((bfd *));
216 static boolean som_prep_headers PARAMS ((bfd *));
217 static int som_sizeof_headers PARAMS ((bfd *, boolean));
218 static boolean som_write_headers PARAMS ((bfd *));
219 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
220 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
221 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
222 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
223 unsigned int *));
224 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
225 asymbol **, unsigned int,
226 unsigned *));
227 static boolean som_begin_writing PARAMS ((bfd *));
228 static const reloc_howto_type * som_bfd_reloc_type_lookup
229 PARAMS ((bfd *, bfd_reloc_code_real_type));
230 static char som_section_type PARAMS ((const char *));
231 static int som_decode_symclass PARAMS ((asymbol *));
232 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
233 symindex *));
234
235 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
236 carsym **syms));
237 static boolean som_slurp_armap PARAMS ((bfd *));
238 static boolean som_write_armap PARAMS ((bfd *, unsigned int, struct orl *,
239 unsigned int, int));
240 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
241 struct som_misc_symbol_info *));
242 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
243 unsigned int *));
244 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
245 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
246 unsigned int,
247 struct lst_header));
248 static CONST char *normalize PARAMS ((CONST char *file));
249 static boolean som_is_space PARAMS ((asection *));
250 static boolean som_is_subspace PARAMS ((asection *));
251 static boolean som_is_container PARAMS ((asection *, asection *));
252 static boolean som_bfd_free_cached_info PARAMS ((bfd *));
253
254 /* Map SOM section names to POSIX/BSD single-character symbol types.
255
256 This table includes all the standard subspaces as defined in the
257 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
258 some reason was left out, and sections specific to embedded stabs. */
259
260 static const struct section_to_type stt[] = {
261 {"$TEXT$", 't'},
262 {"$SHLIB_INFO$", 't'},
263 {"$MILLICODE$", 't'},
264 {"$LIT$", 't'},
265 {"$CODE$", 't'},
266 {"$UNWIND_START$", 't'},
267 {"$UNWIND$", 't'},
268 {"$PRIVATE$", 'd'},
269 {"$PLT$", 'd'},
270 {"$SHLIB_DATA$", 'd'},
271 {"$DATA$", 'd'},
272 {"$SHORTDATA$", 'g'},
273 {"$DLT$", 'd'},
274 {"$GLOBAL$", 'g'},
275 {"$SHORTBSS$", 's'},
276 {"$BSS$", 'b'},
277 {"$GDB_STRINGS$", 'N'},
278 {"$GDB_SYMBOLS$", 'N'},
279 {0, 0}
280 };
281
282 /* About the relocation formatting table...
283
284 There are 256 entries in the table, one for each possible
285 relocation opcode available in SOM. We index the table by
286 the relocation opcode. The names and operations are those
287 defined by a.out_800 (4).
288
289 Right now this table is only used to count and perform minimal
290 processing on relocation streams so that they can be internalized
291 into BFD and symbolically printed by utilities. To make actual use
292 of them would be much more difficult, BFD's concept of relocations
293 is far too simple to handle SOM relocations. The basic assumption
294 that a relocation can be completely processed independent of other
295 relocations before an object file is written is invalid for SOM.
296
297 The SOM relocations are meant to be processed as a stream, they
298 specify copying of data from the input section to the output section
299 while possibly modifying the data in some manner. They also can
300 specify that a variable number of zeros or uninitialized data be
301 inserted on in the output segment at the current offset. Some
302 relocations specify that some previous relocation be re-applied at
303 the current location in the input/output sections. And finally a number
304 of relocations have effects on other sections (R_ENTRY, R_EXIT,
305 R_UNWIND_AUX and a variety of others). There isn't even enough room
306 in the BFD relocation data structure to store enough information to
307 perform all the relocations.
308
309 Each entry in the table has three fields.
310
311 The first entry is an index into this "class" of relocations. This
312 index can then be used as a variable within the relocation itself.
313
314 The second field is a format string which actually controls processing
315 of the relocation. It uses a simple postfix machine to do calculations
316 based on variables/constants found in the string and the relocation
317 stream.
318
319 The third field specifys whether or not this relocation may use
320 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
321 stored in the instruction.
322
323 Variables:
324
325 L = input space byte count
326 D = index into class of relocations
327 M = output space byte count
328 N = statement number (unused?)
329 O = stack operation
330 R = parameter relocation bits
331 S = symbol index
332 T = first 32 bits of stack unwind information
333 U = second 32 bits of stack unwind information
334 V = a literal constant (usually used in the next relocation)
335 P = a previous relocation
336
337 Lower case letters (starting with 'b') refer to following
338 bytes in the relocation stream. 'b' is the next 1 byte,
339 c is the next 2 bytes, d is the next 3 bytes, etc...
340 This is the variable part of the relocation entries that
341 makes our life a living hell.
342
343 numerical constants are also used in the format string. Note
344 the constants are represented in decimal.
345
346 '+', "*" and "=" represents the obvious postfix operators.
347 '<' represents a left shift.
348
349 Stack Operations:
350
351 Parameter Relocation Bits:
352
353 Unwind Entries:
354
355 Previous Relocations: The index field represents which in the queue
356 of 4 previous fixups should be re-applied.
357
358 Literal Constants: These are generally used to represent addend
359 parts of relocations when these constants are not stored in the
360 fields of the instructions themselves. For example the instruction
361 addil foo-$global$-0x1234 would use an override for "0x1234" rather
362 than storing it into the addil itself. */
363
364 struct fixup_format
365 {
366 int D;
367 char *format;
368 };
369
370 static const struct fixup_format som_fixup_formats[256] =
371 {
372 /* R_NO_RELOCATION */
373 0, "LD1+4*=", /* 0x00 */
374 1, "LD1+4*=", /* 0x01 */
375 2, "LD1+4*=", /* 0x02 */
376 3, "LD1+4*=", /* 0x03 */
377 4, "LD1+4*=", /* 0x04 */
378 5, "LD1+4*=", /* 0x05 */
379 6, "LD1+4*=", /* 0x06 */
380 7, "LD1+4*=", /* 0x07 */
381 8, "LD1+4*=", /* 0x08 */
382 9, "LD1+4*=", /* 0x09 */
383 10, "LD1+4*=", /* 0x0a */
384 11, "LD1+4*=", /* 0x0b */
385 12, "LD1+4*=", /* 0x0c */
386 13, "LD1+4*=", /* 0x0d */
387 14, "LD1+4*=", /* 0x0e */
388 15, "LD1+4*=", /* 0x0f */
389 16, "LD1+4*=", /* 0x10 */
390 17, "LD1+4*=", /* 0x11 */
391 18, "LD1+4*=", /* 0x12 */
392 19, "LD1+4*=", /* 0x13 */
393 20, "LD1+4*=", /* 0x14 */
394 21, "LD1+4*=", /* 0x15 */
395 22, "LD1+4*=", /* 0x16 */
396 23, "LD1+4*=", /* 0x17 */
397 0, "LD8<b+1+4*=", /* 0x18 */
398 1, "LD8<b+1+4*=", /* 0x19 */
399 2, "LD8<b+1+4*=", /* 0x1a */
400 3, "LD8<b+1+4*=", /* 0x1b */
401 0, "LD16<c+1+4*=", /* 0x1c */
402 1, "LD16<c+1+4*=", /* 0x1d */
403 2, "LD16<c+1+4*=", /* 0x1e */
404 0, "Ld1+=", /* 0x1f */
405 /* R_ZEROES */
406 0, "Lb1+4*=", /* 0x20 */
407 1, "Ld1+=", /* 0x21 */
408 /* R_UNINIT */
409 0, "Lb1+4*=", /* 0x22 */
410 1, "Ld1+=", /* 0x23 */
411 /* R_RELOCATION */
412 0, "L4=", /* 0x24 */
413 /* R_DATA_ONE_SYMBOL */
414 0, "L4=Sb=", /* 0x25 */
415 1, "L4=Sd=", /* 0x26 */
416 /* R_DATA_PLEBEL */
417 0, "L4=Sb=", /* 0x27 */
418 1, "L4=Sd=", /* 0x28 */
419 /* R_SPACE_REF */
420 0, "L4=", /* 0x29 */
421 /* R_REPEATED_INIT */
422 0, "L4=Mb1+4*=", /* 0x2a */
423 1, "Lb4*=Mb1+L*=", /* 0x2b */
424 2, "Lb4*=Md1+4*=", /* 0x2c */
425 3, "Ld1+=Me1+=", /* 0x2d */
426 /* R_RESERVED */
427 0, "", /* 0x2e */
428 0, "", /* 0x2f */
429 /* R_PCREL_CALL */
430 0, "L4=RD=Sb=", /* 0x30 */
431 1, "L4=RD=Sb=", /* 0x31 */
432 2, "L4=RD=Sb=", /* 0x32 */
433 3, "L4=RD=Sb=", /* 0x33 */
434 4, "L4=RD=Sb=", /* 0x34 */
435 5, "L4=RD=Sb=", /* 0x35 */
436 6, "L4=RD=Sb=", /* 0x36 */
437 7, "L4=RD=Sb=", /* 0x37 */
438 8, "L4=RD=Sb=", /* 0x38 */
439 9, "L4=RD=Sb=", /* 0x39 */
440 0, "L4=RD8<b+=Sb=",/* 0x3a */
441 1, "L4=RD8<b+=Sb=",/* 0x3b */
442 0, "L4=RD8<b+=Sd=",/* 0x3c */
443 1, "L4=RD8<b+=Sd=",/* 0x3d */
444 /* R_RESERVED */
445 0, "", /* 0x3e */
446 0, "", /* 0x3f */
447 /* R_ABS_CALL */
448 0, "L4=RD=Sb=", /* 0x40 */
449 1, "L4=RD=Sb=", /* 0x41 */
450 2, "L4=RD=Sb=", /* 0x42 */
451 3, "L4=RD=Sb=", /* 0x43 */
452 4, "L4=RD=Sb=", /* 0x44 */
453 5, "L4=RD=Sb=", /* 0x45 */
454 6, "L4=RD=Sb=", /* 0x46 */
455 7, "L4=RD=Sb=", /* 0x47 */
456 8, "L4=RD=Sb=", /* 0x48 */
457 9, "L4=RD=Sb=", /* 0x49 */
458 0, "L4=RD8<b+=Sb=",/* 0x4a */
459 1, "L4=RD8<b+=Sb=",/* 0x4b */
460 0, "L4=RD8<b+=Sd=",/* 0x4c */
461 1, "L4=RD8<b+=Sd=",/* 0x4d */
462 /* R_RESERVED */
463 0, "", /* 0x4e */
464 0, "", /* 0x4f */
465 /* R_DP_RELATIVE */
466 0, "L4=SD=", /* 0x50 */
467 1, "L4=SD=", /* 0x51 */
468 2, "L4=SD=", /* 0x52 */
469 3, "L4=SD=", /* 0x53 */
470 4, "L4=SD=", /* 0x54 */
471 5, "L4=SD=", /* 0x55 */
472 6, "L4=SD=", /* 0x56 */
473 7, "L4=SD=", /* 0x57 */
474 8, "L4=SD=", /* 0x58 */
475 9, "L4=SD=", /* 0x59 */
476 10, "L4=SD=", /* 0x5a */
477 11, "L4=SD=", /* 0x5b */
478 12, "L4=SD=", /* 0x5c */
479 13, "L4=SD=", /* 0x5d */
480 14, "L4=SD=", /* 0x5e */
481 15, "L4=SD=", /* 0x5f */
482 16, "L4=SD=", /* 0x60 */
483 17, "L4=SD=", /* 0x61 */
484 18, "L4=SD=", /* 0x62 */
485 19, "L4=SD=", /* 0x63 */
486 20, "L4=SD=", /* 0x64 */
487 21, "L4=SD=", /* 0x65 */
488 22, "L4=SD=", /* 0x66 */
489 23, "L4=SD=", /* 0x67 */
490 24, "L4=SD=", /* 0x68 */
491 25, "L4=SD=", /* 0x69 */
492 26, "L4=SD=", /* 0x6a */
493 27, "L4=SD=", /* 0x6b */
494 28, "L4=SD=", /* 0x6c */
495 29, "L4=SD=", /* 0x6d */
496 30, "L4=SD=", /* 0x6e */
497 31, "L4=SD=", /* 0x6f */
498 32, "L4=Sb=", /* 0x70 */
499 33, "L4=Sd=", /* 0x71 */
500 /* R_RESERVED */
501 0, "", /* 0x72 */
502 0, "", /* 0x73 */
503 0, "", /* 0x74 */
504 0, "", /* 0x75 */
505 0, "", /* 0x76 */
506 0, "", /* 0x77 */
507 /* R_DLT_REL */
508 0, "L4=Sb=", /* 0x78 */
509 1, "L4=Sd=", /* 0x79 */
510 /* R_RESERVED */
511 0, "", /* 0x7a */
512 0, "", /* 0x7b */
513 0, "", /* 0x7c */
514 0, "", /* 0x7d */
515 0, "", /* 0x7e */
516 0, "", /* 0x7f */
517 /* R_CODE_ONE_SYMBOL */
518 0, "L4=SD=", /* 0x80 */
519 1, "L4=SD=", /* 0x81 */
520 2, "L4=SD=", /* 0x82 */
521 3, "L4=SD=", /* 0x83 */
522 4, "L4=SD=", /* 0x84 */
523 5, "L4=SD=", /* 0x85 */
524 6, "L4=SD=", /* 0x86 */
525 7, "L4=SD=", /* 0x87 */
526 8, "L4=SD=", /* 0x88 */
527 9, "L4=SD=", /* 0x89 */
528 10, "L4=SD=", /* 0x8q */
529 11, "L4=SD=", /* 0x8b */
530 12, "L4=SD=", /* 0x8c */
531 13, "L4=SD=", /* 0x8d */
532 14, "L4=SD=", /* 0x8e */
533 15, "L4=SD=", /* 0x8f */
534 16, "L4=SD=", /* 0x90 */
535 17, "L4=SD=", /* 0x91 */
536 18, "L4=SD=", /* 0x92 */
537 19, "L4=SD=", /* 0x93 */
538 20, "L4=SD=", /* 0x94 */
539 21, "L4=SD=", /* 0x95 */
540 22, "L4=SD=", /* 0x96 */
541 23, "L4=SD=", /* 0x97 */
542 24, "L4=SD=", /* 0x98 */
543 25, "L4=SD=", /* 0x99 */
544 26, "L4=SD=", /* 0x9a */
545 27, "L4=SD=", /* 0x9b */
546 28, "L4=SD=", /* 0x9c */
547 29, "L4=SD=", /* 0x9d */
548 30, "L4=SD=", /* 0x9e */
549 31, "L4=SD=", /* 0x9f */
550 32, "L4=Sb=", /* 0xa0 */
551 33, "L4=Sd=", /* 0xa1 */
552 /* R_RESERVED */
553 0, "", /* 0xa2 */
554 0, "", /* 0xa3 */
555 0, "", /* 0xa4 */
556 0, "", /* 0xa5 */
557 0, "", /* 0xa6 */
558 0, "", /* 0xa7 */
559 0, "", /* 0xa8 */
560 0, "", /* 0xa9 */
561 0, "", /* 0xaa */
562 0, "", /* 0xab */
563 0, "", /* 0xac */
564 0, "", /* 0xad */
565 /* R_MILLI_REL */
566 0, "L4=Sb=", /* 0xae */
567 1, "L4=Sd=", /* 0xaf */
568 /* R_CODE_PLABEL */
569 0, "L4=Sb=", /* 0xb0 */
570 1, "L4=Sd=", /* 0xb1 */
571 /* R_BREAKPOINT */
572 0, "L4=", /* 0xb2 */
573 /* R_ENTRY */
574 0, "Te=Ue=", /* 0xb3 */
575 1, "Uf=", /* 0xb4 */
576 /* R_ALT_ENTRY */
577 0, "", /* 0xb5 */
578 /* R_EXIT */
579 0, "", /* 0xb6 */
580 /* R_BEGIN_TRY */
581 0, "", /* 0xb7 */
582 /* R_END_TRY */
583 0, "R0=", /* 0xb8 */
584 1, "Rb4*=", /* 0xb9 */
585 2, "Rd4*=", /* 0xba */
586 /* R_BEGIN_BRTAB */
587 0, "", /* 0xbb */
588 /* R_END_BRTAB */
589 0, "", /* 0xbc */
590 /* R_STATEMENT */
591 0, "Nb=", /* 0xbd */
592 1, "Nc=", /* 0xbe */
593 2, "Nd=", /* 0xbf */
594 /* R_DATA_EXPR */
595 0, "L4=", /* 0xc0 */
596 /* R_CODE_EXPR */
597 0, "L4=", /* 0xc1 */
598 /* R_FSEL */
599 0, "", /* 0xc2 */
600 /* R_LSEL */
601 0, "", /* 0xc3 */
602 /* R_RSEL */
603 0, "", /* 0xc4 */
604 /* R_N_MODE */
605 0, "", /* 0xc5 */
606 /* R_S_MODE */
607 0, "", /* 0xc6 */
608 /* R_D_MODE */
609 0, "", /* 0xc7 */
610 /* R_R_MODE */
611 0, "", /* 0xc8 */
612 /* R_DATA_OVERRIDE */
613 0, "V0=", /* 0xc9 */
614 1, "Vb=", /* 0xca */
615 2, "Vc=", /* 0xcb */
616 3, "Vd=", /* 0xcc */
617 4, "Ve=", /* 0xcd */
618 /* R_TRANSLATED */
619 0, "", /* 0xce */
620 /* R_RESERVED */
621 0, "", /* 0xcf */
622 /* R_COMP1 */
623 0, "Ob=", /* 0xd0 */
624 /* R_COMP2 */
625 0, "Ob=Sd=", /* 0xd1 */
626 /* R_COMP3 */
627 0, "Ob=Ve=", /* 0xd2 */
628 /* R_PREV_FIXUP */
629 0, "P", /* 0xd3 */
630 1, "P", /* 0xd4 */
631 2, "P", /* 0xd5 */
632 3, "P", /* 0xd6 */
633 /* R_RESERVED */
634 0, "", /* 0xd7 */
635 0, "", /* 0xd8 */
636 0, "", /* 0xd9 */
637 0, "", /* 0xda */
638 0, "", /* 0xdb */
639 0, "", /* 0xdc */
640 0, "", /* 0xdd */
641 0, "", /* 0xde */
642 0, "", /* 0xdf */
643 0, "", /* 0xe0 */
644 0, "", /* 0xe1 */
645 0, "", /* 0xe2 */
646 0, "", /* 0xe3 */
647 0, "", /* 0xe4 */
648 0, "", /* 0xe5 */
649 0, "", /* 0xe6 */
650 0, "", /* 0xe7 */
651 0, "", /* 0xe8 */
652 0, "", /* 0xe9 */
653 0, "", /* 0xea */
654 0, "", /* 0xeb */
655 0, "", /* 0xec */
656 0, "", /* 0xed */
657 0, "", /* 0xee */
658 0, "", /* 0xef */
659 0, "", /* 0xf0 */
660 0, "", /* 0xf1 */
661 0, "", /* 0xf2 */
662 0, "", /* 0xf3 */
663 0, "", /* 0xf4 */
664 0, "", /* 0xf5 */
665 0, "", /* 0xf6 */
666 0, "", /* 0xf7 */
667 0, "", /* 0xf8 */
668 0, "", /* 0xf9 */
669 0, "", /* 0xfa */
670 0, "", /* 0xfb */
671 0, "", /* 0xfc */
672 0, "", /* 0xfd */
673 0, "", /* 0xfe */
674 0, "", /* 0xff */
675 };
676
677 static const int comp1_opcodes[] =
678 {
679 0x00,
680 0x40,
681 0x41,
682 0x42,
683 0x43,
684 0x44,
685 0x45,
686 0x46,
687 0x47,
688 0x48,
689 0x49,
690 0x4a,
691 0x4b,
692 0x60,
693 0x80,
694 0xa0,
695 0xc0,
696 -1
697 };
698
699 static const int comp2_opcodes[] =
700 {
701 0x00,
702 0x80,
703 0x82,
704 0xc0,
705 -1
706 };
707
708 static const int comp3_opcodes[] =
709 {
710 0x00,
711 0x02,
712 -1
713 };
714
715 /* These apparently are not in older versions of hpux reloc.h. */
716 #ifndef R_DLT_REL
717 #define R_DLT_REL 0x78
718 #endif
719
720 #ifndef R_AUX_UNWIND
721 #define R_AUX_UNWIND 0xcf
722 #endif
723
724 #ifndef R_SEC_STMT
725 #define R_SEC_STMT 0xd7
726 #endif
727
728 static reloc_howto_type som_hppa_howto_table[] =
729 {
730 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
731 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
732 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
733 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
734 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
735 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
736 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
737 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
738 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
739 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
740 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
741 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
742 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
743 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
744 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
745 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
746 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
747 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
748 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
749 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
750 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
751 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
752 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
753 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
754 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
755 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
756 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
757 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
758 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
759 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
760 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
761 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
762 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
763 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
764 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
765 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
766 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
767 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
768 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
769 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
770 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
771 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
772 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
773 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
774 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
775 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
776 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
777 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
778 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
779 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
780 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
781 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
782 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
783 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
784 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
785 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
786 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
787 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
788 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
789 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
790 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
791 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
792 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
793 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
794 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
795 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
796 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
797 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
798 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
799 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
800 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
801 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
802 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
803 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
804 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
805 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
806 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
807 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
808 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
809 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
810 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
811 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
812 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
813 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
814 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
815 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
816 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
817 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
818 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
819 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
820 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
821 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
822 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
823 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
824 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
825 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
826 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
827 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
828 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
829 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
830 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
831 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
832 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
833 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
834 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
835 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
836 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
837 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
838 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
839 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
840 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
841 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
842 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
843 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
844 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
845 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
846 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
847 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
848 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
849 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
850 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
851 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
852 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
853 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
854 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
855 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
856 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
857 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
858 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
859 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
860 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
861 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
862 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
863 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
864 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
865 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
866 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
867 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
868 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
869 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
870 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
871 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
872 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
873 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
874 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
875 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
876 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
877 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
878 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
879 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
880 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
881 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
882 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
883 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
884 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
885 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
886 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
887 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
888 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
889 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
890 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
891 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
892 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
893 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
894 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
895 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
896 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
897 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
898 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
899 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
900 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
901 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
902 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
903 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
904 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
905 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
906 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
907 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
908 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
909 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
910 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
911 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
912 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
913 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
914 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
915 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
916 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
917 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
918 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
919 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
920 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
921 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
922 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
923 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
924 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
925 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
926 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
927 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
928 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
929 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
930 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
931 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
932 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
933 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
934 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
935 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
936 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
937 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
938 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
939 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
940 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
941 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
942 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
943 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
944 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
945 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
946 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
947 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
948 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
949 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
950 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
951 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
952 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
953 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
954 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
955 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
956 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
957 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
958 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
959 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
960 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
961 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
962 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
963 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
964 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
965 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
966 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
967 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
968 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
969 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
970 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
971 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
972 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
973 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
974 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
975 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
976 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
977 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
978 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
979 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
980 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
981 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
982 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
983 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
984 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
985 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
986
987 /* Initialize the SOM relocation queue. By definition the queue holds
988 the last four multibyte fixups. */
989
990 static void
991 som_initialize_reloc_queue (queue)
992 struct reloc_queue *queue;
993 {
994 queue[0].reloc = NULL;
995 queue[0].size = 0;
996 queue[1].reloc = NULL;
997 queue[1].size = 0;
998 queue[2].reloc = NULL;
999 queue[2].size = 0;
1000 queue[3].reloc = NULL;
1001 queue[3].size = 0;
1002 }
1003
1004 /* Insert a new relocation into the relocation queue. */
1005
1006 static void
1007 som_reloc_queue_insert (p, size, queue)
1008 unsigned char *p;
1009 unsigned int size;
1010 struct reloc_queue *queue;
1011 {
1012 queue[3].reloc = queue[2].reloc;
1013 queue[3].size = queue[2].size;
1014 queue[2].reloc = queue[1].reloc;
1015 queue[2].size = queue[1].size;
1016 queue[1].reloc = queue[0].reloc;
1017 queue[1].size = queue[0].size;
1018 queue[0].reloc = p;
1019 queue[0].size = size;
1020 }
1021
1022 /* When an entry in the relocation queue is reused, the entry moves
1023 to the front of the queue. */
1024
1025 static void
1026 som_reloc_queue_fix (queue, index)
1027 struct reloc_queue *queue;
1028 unsigned int index;
1029 {
1030 if (index == 0)
1031 return;
1032
1033 if (index == 1)
1034 {
1035 unsigned char *tmp1 = queue[0].reloc;
1036 unsigned int tmp2 = queue[0].size;
1037 queue[0].reloc = queue[1].reloc;
1038 queue[0].size = queue[1].size;
1039 queue[1].reloc = tmp1;
1040 queue[1].size = tmp2;
1041 return;
1042 }
1043
1044 if (index == 2)
1045 {
1046 unsigned char *tmp1 = queue[0].reloc;
1047 unsigned int tmp2 = queue[0].size;
1048 queue[0].reloc = queue[2].reloc;
1049 queue[0].size = queue[2].size;
1050 queue[2].reloc = queue[1].reloc;
1051 queue[2].size = queue[1].size;
1052 queue[1].reloc = tmp1;
1053 queue[1].size = tmp2;
1054 return;
1055 }
1056
1057 if (index == 3)
1058 {
1059 unsigned char *tmp1 = queue[0].reloc;
1060 unsigned int tmp2 = queue[0].size;
1061 queue[0].reloc = queue[3].reloc;
1062 queue[0].size = queue[3].size;
1063 queue[3].reloc = queue[2].reloc;
1064 queue[3].size = queue[2].size;
1065 queue[2].reloc = queue[1].reloc;
1066 queue[2].size = queue[1].size;
1067 queue[1].reloc = tmp1;
1068 queue[1].size = tmp2;
1069 return;
1070 }
1071 abort();
1072 }
1073
1074 /* Search for a particular relocation in the relocation queue. */
1075
1076 static int
1077 som_reloc_queue_find (p, size, queue)
1078 unsigned char *p;
1079 unsigned int size;
1080 struct reloc_queue *queue;
1081 {
1082 if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
1083 && size == queue[0].size)
1084 return 0;
1085 if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
1086 && size == queue[1].size)
1087 return 1;
1088 if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
1089 && size == queue[2].size)
1090 return 2;
1091 if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
1092 && size == queue[3].size)
1093 return 3;
1094 return -1;
1095 }
1096
1097 static unsigned char *
1098 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1099 bfd *abfd;
1100 int *subspace_reloc_sizep;
1101 unsigned char *p;
1102 unsigned int size;
1103 struct reloc_queue *queue;
1104 {
1105 int queue_index = som_reloc_queue_find (p, size, queue);
1106
1107 if (queue_index != -1)
1108 {
1109 /* Found this in a previous fixup. Undo the fixup we
1110 just built and use R_PREV_FIXUP instead. We saved
1111 a total of size - 1 bytes in the fixup stream. */
1112 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1113 p += 1;
1114 *subspace_reloc_sizep += 1;
1115 som_reloc_queue_fix (queue, queue_index);
1116 }
1117 else
1118 {
1119 som_reloc_queue_insert (p, size, queue);
1120 *subspace_reloc_sizep += size;
1121 p += size;
1122 }
1123 return p;
1124 }
1125
1126 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1127 bytes without any relocation. Update the size of the subspace
1128 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1129 current pointer into the relocation stream. */
1130
1131 static unsigned char *
1132 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1133 bfd *abfd;
1134 unsigned int skip;
1135 unsigned char *p;
1136 unsigned int *subspace_reloc_sizep;
1137 struct reloc_queue *queue;
1138 {
1139 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1140 then R_PREV_FIXUPs to get the difference down to a
1141 reasonable size. */
1142 if (skip >= 0x1000000)
1143 {
1144 skip -= 0x1000000;
1145 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1146 bfd_put_8 (abfd, 0xff, p + 1);
1147 bfd_put_16 (abfd, 0xffff, p + 2);
1148 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1149 while (skip >= 0x1000000)
1150 {
1151 skip -= 0x1000000;
1152 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1153 p++;
1154 *subspace_reloc_sizep += 1;
1155 /* No need to adjust queue here since we are repeating the
1156 most recent fixup. */
1157 }
1158 }
1159
1160 /* The difference must be less than 0x1000000. Use one
1161 more R_NO_RELOCATION entry to get to the right difference. */
1162 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1163 {
1164 /* Difference can be handled in a simple single-byte
1165 R_NO_RELOCATION entry. */
1166 if (skip <= 0x60)
1167 {
1168 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1169 *subspace_reloc_sizep += 1;
1170 p++;
1171 }
1172 /* Handle it with a two byte R_NO_RELOCATION entry. */
1173 else if (skip <= 0x1000)
1174 {
1175 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1176 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1177 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1178 }
1179 /* Handle it with a three byte R_NO_RELOCATION entry. */
1180 else
1181 {
1182 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1183 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1184 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1185 }
1186 }
1187 /* Ugh. Punt and use a 4 byte entry. */
1188 else if (skip > 0)
1189 {
1190 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1191 bfd_put_8 (abfd, (skip - 1) >> 16, p + 1);
1192 bfd_put_16 (abfd, skip - 1, p + 2);
1193 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1194 }
1195 return p;
1196 }
1197
1198 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1199 from a BFD relocation. Update the size of the subspace relocation
1200 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1201 into the relocation stream. */
1202
1203 static unsigned char *
1204 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1205 bfd *abfd;
1206 int addend;
1207 unsigned char *p;
1208 unsigned int *subspace_reloc_sizep;
1209 struct reloc_queue *queue;
1210 {
1211 if ((unsigned)(addend) + 0x80 < 0x100)
1212 {
1213 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1214 bfd_put_8 (abfd, addend, p + 1);
1215 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1216 }
1217 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1218 {
1219 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1220 bfd_put_16 (abfd, addend, p + 1);
1221 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1222 }
1223 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1224 {
1225 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1226 bfd_put_8 (abfd, addend >> 16, p + 1);
1227 bfd_put_16 (abfd, addend, p + 2);
1228 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1229 }
1230 else
1231 {
1232 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1233 bfd_put_32 (abfd, addend, p + 1);
1234 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1235 }
1236 return p;
1237 }
1238
1239 /* Handle a single function call relocation. */
1240
1241 static unsigned char *
1242 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1243 bfd *abfd;
1244 unsigned char *p;
1245 unsigned int *subspace_reloc_sizep;
1246 arelent *bfd_reloc;
1247 int sym_num;
1248 struct reloc_queue *queue;
1249 {
1250 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1251 int rtn_bits = arg_bits & 0x3;
1252 int type, done = 0;
1253
1254 /* You'll never believe all this is necessary to handle relocations
1255 for function calls. Having to compute and pack the argument
1256 relocation bits is the real nightmare.
1257
1258 If you're interested in how this works, just forget it. You really
1259 do not want to know about this braindamage. */
1260
1261 /* First see if this can be done with a "simple" relocation. Simple
1262 relocations have a symbol number < 0x100 and have simple encodings
1263 of argument relocations. */
1264
1265 if (sym_num < 0x100)
1266 {
1267 switch (arg_bits)
1268 {
1269 case 0:
1270 case 1:
1271 type = 0;
1272 break;
1273 case 1 << 8:
1274 case 1 << 8 | 1:
1275 type = 1;
1276 break;
1277 case 1 << 8 | 1 << 6:
1278 case 1 << 8 | 1 << 6 | 1:
1279 type = 2;
1280 break;
1281 case 1 << 8 | 1 << 6 | 1 << 4:
1282 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1283 type = 3;
1284 break;
1285 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1286 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1287 type = 4;
1288 break;
1289 default:
1290 /* Not one of the easy encodings. This will have to be
1291 handled by the more complex code below. */
1292 type = -1;
1293 break;
1294 }
1295 if (type != -1)
1296 {
1297 /* Account for the return value too. */
1298 if (rtn_bits)
1299 type += 5;
1300
1301 /* Emit a 2 byte relocation. Then see if it can be handled
1302 with a relocation which is already in the relocation queue. */
1303 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1304 bfd_put_8 (abfd, sym_num, p + 1);
1305 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1306 done = 1;
1307 }
1308 }
1309
1310 /* If this could not be handled with a simple relocation, then do a hard
1311 one. Hard relocations occur if the symbol number was too high or if
1312 the encoding of argument relocation bits is too complex. */
1313 if (! done)
1314 {
1315 /* Don't ask about these magic sequences. I took them straight
1316 from gas-1.36 which took them from the a.out man page. */
1317 type = rtn_bits;
1318 if ((arg_bits >> 6 & 0xf) == 0xe)
1319 type += 9 * 40;
1320 else
1321 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1322 if ((arg_bits >> 2 & 0xf) == 0xe)
1323 type += 9 * 4;
1324 else
1325 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1326
1327 /* Output the first two bytes of the relocation. These describe
1328 the length of the relocation and encoding style. */
1329 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1330 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1331 p);
1332 bfd_put_8 (abfd, type, p + 1);
1333
1334 /* Now output the symbol index and see if this bizarre relocation
1335 just happened to be in the relocation queue. */
1336 if (sym_num < 0x100)
1337 {
1338 bfd_put_8 (abfd, sym_num, p + 2);
1339 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1340 }
1341 else
1342 {
1343 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1344 bfd_put_16 (abfd, sym_num, p + 3);
1345 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1346 }
1347 }
1348 return p;
1349 }
1350
1351
1352 /* Return the logarithm of X, base 2, considering X unsigned.
1353 Abort -1 if X is not a power or two or is zero. */
1354
1355 static int
1356 log2 (x)
1357 unsigned int x;
1358 {
1359 int log = 0;
1360
1361 /* Test for 0 or a power of 2. */
1362 if (x == 0 || x != (x & -x))
1363 return -1;
1364
1365 while ((x >>= 1) != 0)
1366 log++;
1367 return log;
1368 }
1369
1370 static bfd_reloc_status_type
1371 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1372 input_section, output_bfd, error_message)
1373 bfd *abfd;
1374 arelent *reloc_entry;
1375 asymbol *symbol_in;
1376 PTR data;
1377 asection *input_section;
1378 bfd *output_bfd;
1379 char **error_message;
1380 {
1381 if (output_bfd)
1382 {
1383 reloc_entry->address += input_section->output_offset;
1384 return bfd_reloc_ok;
1385 }
1386 return bfd_reloc_ok;
1387 }
1388
1389 /* Given a generic HPPA relocation type, the instruction format,
1390 and a field selector, return one or more appropriate SOM relocations. */
1391
1392 int **
1393 hppa_som_gen_reloc_type (abfd, base_type, format, field)
1394 bfd *abfd;
1395 int base_type;
1396 int format;
1397 enum hppa_reloc_field_selector_type_alt field;
1398 {
1399 int *final_type, **final_types;
1400
1401 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 3);
1402 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1403 if (!final_types || !final_type)
1404 {
1405 bfd_set_error (bfd_error_no_memory);
1406 return NULL;
1407 }
1408
1409 /* The field selector may require additional relocations to be
1410 generated. It's impossible to know at this moment if additional
1411 relocations will be needed, so we make them. The code to actually
1412 write the relocation/fixup stream is responsible for removing
1413 any redundant relocations. */
1414 switch (field)
1415 {
1416 case e_fsel:
1417 case e_psel:
1418 case e_lpsel:
1419 case e_rpsel:
1420 final_types[0] = final_type;
1421 final_types[1] = NULL;
1422 final_types[2] = NULL;
1423 *final_type = base_type;
1424 break;
1425
1426 case e_tsel:
1427 case e_ltsel:
1428 case e_rtsel:
1429 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1430 if (!final_types[0])
1431 {
1432 bfd_set_error (bfd_error_no_memory);
1433 return NULL;
1434 }
1435 if (field == e_tsel)
1436 *final_types[0] = R_FSEL;
1437 else if (field == e_ltsel)
1438 *final_types[0] = R_LSEL;
1439 else
1440 *final_types[0] = R_RSEL;
1441 final_types[1] = final_type;
1442 final_types[2] = NULL;
1443 *final_type = base_type;
1444 break;
1445
1446 case e_lssel:
1447 case e_rssel:
1448 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1449 if (!final_types[0])
1450 {
1451 bfd_set_error (bfd_error_no_memory);
1452 return NULL;
1453 }
1454 *final_types[0] = R_S_MODE;
1455 final_types[1] = final_type;
1456 final_types[2] = NULL;
1457 *final_type = base_type;
1458 break;
1459
1460 case e_lsel:
1461 case e_rsel:
1462 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1463 if (!final_types[0])
1464 {
1465 bfd_set_error (bfd_error_no_memory);
1466 return NULL;
1467 }
1468 *final_types[0] = R_N_MODE;
1469 final_types[1] = final_type;
1470 final_types[2] = NULL;
1471 *final_type = base_type;
1472 break;
1473
1474 case e_ldsel:
1475 case e_rdsel:
1476 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1477 if (!final_types[0])
1478 {
1479 bfd_set_error (bfd_error_no_memory);
1480 return NULL;
1481 }
1482 *final_types[0] = R_D_MODE;
1483 final_types[1] = final_type;
1484 final_types[2] = NULL;
1485 *final_type = base_type;
1486 break;
1487
1488 case e_lrsel:
1489 case e_rrsel:
1490 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1491 if (!final_types[0])
1492 {
1493 bfd_set_error (bfd_error_no_memory);
1494 return NULL;
1495 }
1496 *final_types[0] = R_R_MODE;
1497 final_types[1] = final_type;
1498 final_types[2] = NULL;
1499 *final_type = base_type;
1500 break;
1501 }
1502
1503 switch (base_type)
1504 {
1505 case R_HPPA:
1506 /* PLABELs get their own relocation type. */
1507 if (field == e_psel
1508 || field == e_lpsel
1509 || field == e_rpsel)
1510 {
1511 /* A PLABEL relocation that has a size of 32 bits must
1512 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1513 if (format == 32)
1514 *final_type = R_DATA_PLABEL;
1515 else
1516 *final_type = R_CODE_PLABEL;
1517 }
1518 /* PIC stuff. */
1519 else if (field == e_tsel
1520 || field == e_ltsel
1521 || field == e_rtsel)
1522 *final_type = R_DLT_REL;
1523 /* A relocation in the data space is always a full 32bits. */
1524 else if (format == 32)
1525 *final_type = R_DATA_ONE_SYMBOL;
1526
1527 break;
1528
1529 case R_HPPA_GOTOFF:
1530 /* More PLABEL special cases. */
1531 if (field == e_psel
1532 || field == e_lpsel
1533 || field == e_rpsel)
1534 *final_type = R_DATA_PLABEL;
1535 break;
1536
1537 case R_HPPA_NONE:
1538 case R_HPPA_ABS_CALL:
1539 case R_HPPA_PCREL_CALL:
1540 /* Right now we can default all these. */
1541 break;
1542 }
1543 return final_types;
1544 }
1545
1546 /* Return the address of the correct entry in the PA SOM relocation
1547 howto table. */
1548
1549 /*ARGSUSED*/
1550 static const reloc_howto_type *
1551 som_bfd_reloc_type_lookup (abfd, code)
1552 bfd *abfd;
1553 bfd_reloc_code_real_type code;
1554 {
1555 if ((int) code < (int) R_NO_RELOCATION + 255)
1556 {
1557 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1558 return &som_hppa_howto_table[(int) code];
1559 }
1560
1561 return (reloc_howto_type *) 0;
1562 }
1563
1564 /* Perform some initialization for an object. Save results of this
1565 initialization in the BFD. */
1566
1567 static const bfd_target *
1568 som_object_setup (abfd, file_hdrp, aux_hdrp)
1569 bfd *abfd;
1570 struct header *file_hdrp;
1571 struct som_exec_auxhdr *aux_hdrp;
1572 {
1573 /* som_mkobject will set bfd_error if som_mkobject fails. */
1574 if (som_mkobject (abfd) != true)
1575 return 0;
1576
1577 /* Set BFD flags based on what information is available in the SOM. */
1578 abfd->flags = NO_FLAGS;
1579 if (file_hdrp->symbol_total)
1580 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1581
1582 switch (file_hdrp->a_magic)
1583 {
1584 case DEMAND_MAGIC:
1585 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1586 break;
1587 case SHARE_MAGIC:
1588 abfd->flags |= (WP_TEXT | EXEC_P);
1589 break;
1590 case EXEC_MAGIC:
1591 abfd->flags |= (EXEC_P);
1592 break;
1593 case RELOC_MAGIC:
1594 abfd->flags |= HAS_RELOC;
1595 break;
1596 #ifdef SHL_MAGIC
1597 case SHL_MAGIC:
1598 #endif
1599 #ifdef DL_MAGIC
1600 case DL_MAGIC:
1601 #endif
1602 abfd->flags |= DYNAMIC;
1603 break;
1604
1605 default:
1606 break;
1607 }
1608
1609 /* Allocate space to hold the saved exec header information. */
1610 obj_som_exec_data (abfd) = (struct som_exec_data *)
1611 bfd_zalloc (abfd, sizeof (struct som_exec_data ));
1612 if (obj_som_exec_data (abfd) == NULL)
1613 {
1614 bfd_set_error (bfd_error_no_memory);
1615 return NULL;
1616 }
1617
1618 /* The braindamaged OSF1 linker switched exec_flags and exec_entry!
1619
1620 It seems rather backward that the OSF1 linker which is much
1621 older than any HPUX linker I've got uses a newer SOM version
1622 id... But that's what I've found by experimentation. */
1623 if (file_hdrp->version_id == NEW_VERSION_ID)
1624 {
1625 bfd_get_start_address (abfd) = aux_hdrp->exec_flags;
1626 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_entry;
1627 }
1628 else
1629 {
1630 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1631 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1632 }
1633
1634 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 0);
1635 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1636
1637 /* Initialize the saved symbol table and string table to NULL.
1638 Save important offsets and sizes from the SOM header into
1639 the BFD. */
1640 obj_som_stringtab (abfd) = (char *) NULL;
1641 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1642 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1643 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1644 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1645 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
1646 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1647
1648 return abfd->xvec;
1649 }
1650
1651 /* Convert all of the space and subspace info into BFD sections. Each space
1652 contains a number of subspaces, which in turn describe the mapping between
1653 regions of the exec file, and the address space that the program runs in.
1654 BFD sections which correspond to spaces will overlap the sections for the
1655 associated subspaces. */
1656
1657 static boolean
1658 setup_sections (abfd, file_hdr)
1659 bfd *abfd;
1660 struct header *file_hdr;
1661 {
1662 char *space_strings;
1663 int space_index;
1664 unsigned int total_subspaces = 0;
1665
1666 /* First, read in space names */
1667
1668 space_strings = malloc (file_hdr->space_strings_size);
1669 if (!space_strings && file_hdr->space_strings_size != 0)
1670 {
1671 bfd_set_error (bfd_error_no_memory);
1672 goto error_return;
1673 }
1674
1675 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
1676 goto error_return;
1677 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1678 != file_hdr->space_strings_size)
1679 goto error_return;
1680
1681 /* Loop over all of the space dictionaries, building up sections */
1682 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1683 {
1684 struct space_dictionary_record space;
1685 struct subspace_dictionary_record subspace, save_subspace;
1686 int subspace_index;
1687 asection *space_asect;
1688 char *newname;
1689
1690 /* Read the space dictionary element */
1691 if (bfd_seek (abfd, file_hdr->space_location
1692 + space_index * sizeof space, SEEK_SET) < 0)
1693 goto error_return;
1694 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1695 goto error_return;
1696
1697 /* Setup the space name string */
1698 space.name.n_name = space.name.n_strx + space_strings;
1699
1700 /* Make a section out of it */
1701 newname = bfd_alloc (abfd, strlen (space.name.n_name) + 1);
1702 if (!newname)
1703 goto error_return;
1704 strcpy (newname, space.name.n_name);
1705
1706 space_asect = bfd_make_section_anyway (abfd, newname);
1707 if (!space_asect)
1708 goto error_return;
1709
1710 if (space.is_loadable == 0)
1711 space_asect->flags |= SEC_DEBUGGING;
1712
1713 /* Set up all the attributes for the space. */
1714 if (bfd_som_set_section_attributes (space_asect, space.is_defined,
1715 space.is_private, space.sort_key,
1716 space.space_number) == false)
1717 goto error_return;
1718
1719 /* Now, read in the first subspace for this space */
1720 if (bfd_seek (abfd, file_hdr->subspace_location
1721 + space.subspace_index * sizeof subspace,
1722 SEEK_SET) < 0)
1723 goto error_return;
1724 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1725 goto error_return;
1726 /* Seek back to the start of the subspaces for loop below */
1727 if (bfd_seek (abfd, file_hdr->subspace_location
1728 + space.subspace_index * sizeof subspace,
1729 SEEK_SET) < 0)
1730 goto error_return;
1731
1732 /* Setup the start address and file loc from the first subspace record */
1733 space_asect->vma = subspace.subspace_start;
1734 space_asect->filepos = subspace.file_loc_init_value;
1735 space_asect->alignment_power = log2 (subspace.alignment);
1736 if (space_asect->alignment_power == -1)
1737 goto error_return;
1738
1739 /* Initialize save_subspace so we can reliably determine if this
1740 loop placed any useful values into it. */
1741 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1742
1743 /* Loop over the rest of the subspaces, building up more sections */
1744 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1745 subspace_index++)
1746 {
1747 asection *subspace_asect;
1748
1749 /* Read in the next subspace */
1750 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1751 != sizeof subspace)
1752 goto error_return;
1753
1754 /* Setup the subspace name string */
1755 subspace.name.n_name = subspace.name.n_strx + space_strings;
1756
1757 newname = bfd_alloc (abfd, strlen (subspace.name.n_name) + 1);
1758 if (!newname)
1759 goto error_return;
1760 strcpy (newname, subspace.name.n_name);
1761
1762 /* Make a section out of this subspace */
1763 subspace_asect = bfd_make_section_anyway (abfd, newname);
1764 if (!subspace_asect)
1765 goto error_return;
1766
1767 /* Store private information about the section. */
1768 if (bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1769 subspace.access_control_bits,
1770 subspace.sort_key,
1771 subspace.quadrant) == false)
1772 goto error_return;
1773
1774 /* Keep an easy mapping between subspaces and sections. */
1775 subspace_asect->target_index = total_subspaces++;
1776
1777 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1778 by the access_control_bits in the subspace header. */
1779 switch (subspace.access_control_bits >> 4)
1780 {
1781 /* Readonly data. */
1782 case 0x0:
1783 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1784 break;
1785
1786 /* Normal data. */
1787 case 0x1:
1788 subspace_asect->flags |= SEC_DATA;
1789 break;
1790
1791 /* Readonly code and the gateways.
1792 Gateways have other attributes which do not map
1793 into anything BFD knows about. */
1794 case 0x2:
1795 case 0x4:
1796 case 0x5:
1797 case 0x6:
1798 case 0x7:
1799 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1800 break;
1801
1802 /* dynamic (writable) code. */
1803 case 0x3:
1804 subspace_asect->flags |= SEC_CODE;
1805 break;
1806 }
1807
1808 if (subspace.dup_common || subspace.is_common)
1809 subspace_asect->flags |= SEC_IS_COMMON;
1810 else if (subspace.subspace_length > 0)
1811 subspace_asect->flags |= SEC_HAS_CONTENTS;
1812
1813 if (subspace.is_loadable)
1814 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1815 else
1816 subspace_asect->flags |= SEC_DEBUGGING;
1817
1818 if (subspace.code_only)
1819 subspace_asect->flags |= SEC_CODE;
1820
1821 /* Both file_loc_init_value and initialization_length will
1822 be zero for a BSS like subspace. */
1823 if (subspace.file_loc_init_value == 0
1824 && subspace.initialization_length == 0)
1825 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD);
1826
1827 /* This subspace has relocations.
1828 The fixup_request_quantity is a byte count for the number of
1829 entries in the relocation stream; it is not the actual number
1830 of relocations in the subspace. */
1831 if (subspace.fixup_request_quantity != 0)
1832 {
1833 subspace_asect->flags |= SEC_RELOC;
1834 subspace_asect->rel_filepos = subspace.fixup_request_index;
1835 som_section_data (subspace_asect)->reloc_size
1836 = subspace.fixup_request_quantity;
1837 /* We can not determine this yet. When we read in the
1838 relocation table the correct value will be filled in. */
1839 subspace_asect->reloc_count = -1;
1840 }
1841
1842 /* Update save_subspace if appropriate. */
1843 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1844 save_subspace = subspace;
1845
1846 subspace_asect->vma = subspace.subspace_start;
1847 subspace_asect->_cooked_size = subspace.subspace_length;
1848 subspace_asect->_raw_size = subspace.subspace_length;
1849 subspace_asect->filepos = subspace.file_loc_init_value;
1850 subspace_asect->alignment_power = log2 (subspace.alignment);
1851 if (subspace_asect->alignment_power == -1)
1852 goto error_return;
1853 }
1854
1855 /* Yow! there is no subspace within the space which actually
1856 has initialized information in it; this should never happen
1857 as far as I know. */
1858 if (!save_subspace.file_loc_init_value)
1859 goto error_return;
1860
1861 /* Setup the sizes for the space section based upon the info in the
1862 last subspace of the space. */
1863 space_asect->_cooked_size = save_subspace.subspace_start
1864 - space_asect->vma + save_subspace.subspace_length;
1865 space_asect->_raw_size = save_subspace.file_loc_init_value
1866 - space_asect->filepos + save_subspace.initialization_length;
1867 }
1868 if (space_strings != NULL)
1869 free (space_strings);
1870 return true;
1871
1872 error_return:
1873 if (space_strings != NULL)
1874 free (space_strings);
1875 return false;
1876 }
1877
1878 /* Read in a SOM object and make it into a BFD. */
1879
1880 static const bfd_target *
1881 som_object_p (abfd)
1882 bfd *abfd;
1883 {
1884 struct header file_hdr;
1885 struct som_exec_auxhdr aux_hdr;
1886
1887 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
1888 {
1889 if (bfd_get_error () != bfd_error_system_call)
1890 bfd_set_error (bfd_error_wrong_format);
1891 return 0;
1892 }
1893
1894 if (!_PA_RISC_ID (file_hdr.system_id))
1895 {
1896 bfd_set_error (bfd_error_wrong_format);
1897 return 0;
1898 }
1899
1900 switch (file_hdr.a_magic)
1901 {
1902 case RELOC_MAGIC:
1903 case EXEC_MAGIC:
1904 case SHARE_MAGIC:
1905 case DEMAND_MAGIC:
1906 #ifdef DL_MAGIC
1907 case DL_MAGIC:
1908 #endif
1909 #ifdef SHL_MAGIC
1910 case SHL_MAGIC:
1911 #endif
1912 #ifdef EXECLIBMAGIC
1913 case EXECLIBMAGIC:
1914 #endif
1915 #ifdef SHARED_MAGIC_CNX
1916 case SHARED_MAGIC_CNX:
1917 #endif
1918 break;
1919 default:
1920 bfd_set_error (bfd_error_wrong_format);
1921 return 0;
1922 }
1923
1924 if (file_hdr.version_id != VERSION_ID
1925 && file_hdr.version_id != NEW_VERSION_ID)
1926 {
1927 bfd_set_error (bfd_error_wrong_format);
1928 return 0;
1929 }
1930
1931 /* If the aux_header_size field in the file header is zero, then this
1932 object is an incomplete executable (a .o file). Do not try to read
1933 a non-existant auxiliary header. */
1934 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
1935 if (file_hdr.aux_header_size != 0)
1936 {
1937 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
1938 {
1939 if (bfd_get_error () != bfd_error_system_call)
1940 bfd_set_error (bfd_error_wrong_format);
1941 return 0;
1942 }
1943 }
1944
1945 if (!setup_sections (abfd, &file_hdr))
1946 {
1947 /* setup_sections does not bubble up a bfd error code. */
1948 bfd_set_error (bfd_error_bad_value);
1949 return 0;
1950 }
1951
1952 /* This appears to be a valid SOM object. Do some initialization. */
1953 return som_object_setup (abfd, &file_hdr, &aux_hdr);
1954 }
1955
1956 /* Create a SOM object. */
1957
1958 static boolean
1959 som_mkobject (abfd)
1960 bfd *abfd;
1961 {
1962 /* Allocate memory to hold backend information. */
1963 abfd->tdata.som_data = (struct som_data_struct *)
1964 bfd_zalloc (abfd, sizeof (struct som_data_struct));
1965 if (abfd->tdata.som_data == NULL)
1966 {
1967 bfd_set_error (bfd_error_no_memory);
1968 return false;
1969 }
1970 return true;
1971 }
1972
1973 /* Initialize some information in the file header. This routine makes
1974 not attempt at doing the right thing for a full executable; it
1975 is only meant to handle relocatable objects. */
1976
1977 static boolean
1978 som_prep_headers (abfd)
1979 bfd *abfd;
1980 {
1981 struct header *file_hdr;
1982 asection *section;
1983
1984 /* Make and attach a file header to the BFD. */
1985 file_hdr = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
1986 if (file_hdr == NULL)
1987
1988 {
1989 bfd_set_error (bfd_error_no_memory);
1990 return false;
1991 }
1992 obj_som_file_hdr (abfd) = file_hdr;
1993
1994 if (abfd->flags & (EXEC_P | DYNAMIC))
1995 {
1996
1997 /* Make and attach an exec header to the BFD. */
1998 obj_som_exec_hdr (abfd) = (struct som_exec_auxhdr *)
1999 bfd_zalloc (abfd, sizeof (struct som_exec_auxhdr));
2000 if (obj_som_exec_hdr (abfd) == NULL)
2001 {
2002 bfd_set_error (bfd_error_no_memory);
2003 return false;
2004 }
2005
2006 if (abfd->flags & D_PAGED)
2007 file_hdr->a_magic = DEMAND_MAGIC;
2008 else if (abfd->flags & WP_TEXT)
2009 file_hdr->a_magic = SHARE_MAGIC;
2010 #ifdef SHL_MAGIC
2011 else if (abfd->flags & DYNAMIC)
2012 file_hdr->a_magic = SHL_MAGIC;
2013 #endif
2014 else
2015 file_hdr->a_magic = EXEC_MAGIC;
2016 }
2017 else
2018 file_hdr->a_magic = RELOC_MAGIC;
2019
2020 /* Only new format SOM is supported. */
2021 file_hdr->version_id = NEW_VERSION_ID;
2022
2023 /* These fields are optional, and embedding timestamps is not always
2024 a wise thing to do, it makes comparing objects during a multi-stage
2025 bootstrap difficult. */
2026 file_hdr->file_time.secs = 0;
2027 file_hdr->file_time.nanosecs = 0;
2028
2029 file_hdr->entry_space = 0;
2030 file_hdr->entry_subspace = 0;
2031 file_hdr->entry_offset = 0;
2032 file_hdr->presumed_dp = 0;
2033
2034 /* Now iterate over the sections translating information from
2035 BFD sections to SOM spaces/subspaces. */
2036
2037 for (section = abfd->sections; section != NULL; section = section->next)
2038 {
2039 /* Ignore anything which has not been marked as a space or
2040 subspace. */
2041 if (!som_is_space (section) && !som_is_subspace (section))
2042 continue;
2043
2044 if (som_is_space (section))
2045 {
2046 /* Allocate space for the space dictionary. */
2047 som_section_data (section)->space_dict
2048 = (struct space_dictionary_record *)
2049 bfd_zalloc (abfd, sizeof (struct space_dictionary_record));
2050 if (som_section_data (section)->space_dict == NULL)
2051 {
2052 bfd_set_error (bfd_error_no_memory);
2053 return false;
2054 }
2055 /* Set space attributes. Note most attributes of SOM spaces
2056 are set based on the subspaces it contains. */
2057 som_section_data (section)->space_dict->loader_fix_index = -1;
2058 som_section_data (section)->space_dict->init_pointer_index = -1;
2059
2060 /* Set more attributes that were stuffed away in private data. */
2061 som_section_data (section)->space_dict->sort_key =
2062 som_section_data (section)->copy_data->sort_key;
2063 som_section_data (section)->space_dict->is_defined =
2064 som_section_data (section)->copy_data->is_defined;
2065 som_section_data (section)->space_dict->is_private =
2066 som_section_data (section)->copy_data->is_private;
2067 som_section_data (section)->space_dict->space_number =
2068 som_section_data (section)->copy_data->space_number;
2069 }
2070 else
2071 {
2072 /* Allocate space for the subspace dictionary. */
2073 som_section_data (section)->subspace_dict
2074 = (struct subspace_dictionary_record *)
2075 bfd_zalloc (abfd, sizeof (struct subspace_dictionary_record));
2076 if (som_section_data (section)->subspace_dict == NULL)
2077 {
2078 bfd_set_error (bfd_error_no_memory);
2079 return false;
2080 }
2081
2082 /* Set subspace attributes. Basic stuff is done here, additional
2083 attributes are filled in later as more information becomes
2084 available. */
2085 if (section->flags & SEC_IS_COMMON)
2086 {
2087 som_section_data (section)->subspace_dict->dup_common = 1;
2088 som_section_data (section)->subspace_dict->is_common = 1;
2089 }
2090
2091 if (section->flags & SEC_ALLOC)
2092 som_section_data (section)->subspace_dict->is_loadable = 1;
2093
2094 if (section->flags & SEC_CODE)
2095 som_section_data (section)->subspace_dict->code_only = 1;
2096
2097 som_section_data (section)->subspace_dict->subspace_start =
2098 section->vma;
2099 som_section_data (section)->subspace_dict->subspace_length =
2100 bfd_section_size (abfd, section);
2101 som_section_data (section)->subspace_dict->initialization_length =
2102 bfd_section_size (abfd, section);
2103 som_section_data (section)->subspace_dict->alignment =
2104 1 << section->alignment_power;
2105
2106 /* Set more attributes that were stuffed away in private data. */
2107 som_section_data (section)->subspace_dict->sort_key =
2108 som_section_data (section)->copy_data->sort_key;
2109 som_section_data (section)->subspace_dict->access_control_bits =
2110 som_section_data (section)->copy_data->access_control_bits;
2111 som_section_data (section)->subspace_dict->quadrant =
2112 som_section_data (section)->copy_data->quadrant;
2113 }
2114 }
2115 return true;
2116 }
2117
2118 /* Return true if the given section is a SOM space, false otherwise. */
2119
2120 static boolean
2121 som_is_space (section)
2122 asection *section;
2123 {
2124 /* If no copy data is available, then it's neither a space nor a
2125 subspace. */
2126 if (som_section_data (section)->copy_data == NULL)
2127 return false;
2128
2129 /* If the containing space isn't the same as the given section,
2130 then this isn't a space. */
2131 if (som_section_data (section)->copy_data->container != section)
2132 return false;
2133
2134 /* OK. Must be a space. */
2135 return true;
2136 }
2137
2138 /* Return true if the given section is a SOM subspace, false otherwise. */
2139
2140 static boolean
2141 som_is_subspace (section)
2142 asection *section;
2143 {
2144 /* If no copy data is available, then it's neither a space nor a
2145 subspace. */
2146 if (som_section_data (section)->copy_data == NULL)
2147 return false;
2148
2149 /* If the containing space is the same as the given section,
2150 then this isn't a subspace. */
2151 if (som_section_data (section)->copy_data->container == section)
2152 return false;
2153
2154 /* OK. Must be a subspace. */
2155 return true;
2156 }
2157
2158 /* Return true if the given space containins the given subspace. It
2159 is safe to assume space really is a space, and subspace really
2160 is a subspace. */
2161
2162 static boolean
2163 som_is_container (space, subspace)
2164 asection *space, *subspace;
2165 {
2166 return som_section_data (subspace)->copy_data->container == space;
2167 }
2168
2169 /* Count and return the number of spaces attached to the given BFD. */
2170
2171 static unsigned long
2172 som_count_spaces (abfd)
2173 bfd *abfd;
2174 {
2175 int count = 0;
2176 asection *section;
2177
2178 for (section = abfd->sections; section != NULL; section = section->next)
2179 count += som_is_space (section);
2180
2181 return count;
2182 }
2183
2184 /* Count the number of subspaces attached to the given BFD. */
2185
2186 static unsigned long
2187 som_count_subspaces (abfd)
2188 bfd *abfd;
2189 {
2190 int count = 0;
2191 asection *section;
2192
2193 for (section = abfd->sections; section != NULL; section = section->next)
2194 count += som_is_subspace (section);
2195
2196 return count;
2197 }
2198
2199 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2200
2201 We desire symbols to be ordered starting with the symbol with the
2202 highest relocation count down to the symbol with the lowest relocation
2203 count. Doing so compacts the relocation stream. */
2204
2205 static int
2206 compare_syms (arg1, arg2)
2207 const PTR arg1;
2208 const PTR arg2;
2209
2210 {
2211 asymbol **sym1 = (asymbol **) arg1;
2212 asymbol **sym2 = (asymbol **) arg2;
2213 unsigned int count1, count2;
2214
2215 /* Get relocation count for each symbol. Note that the count
2216 is stored in the udata pointer for section symbols! */
2217 if ((*sym1)->flags & BSF_SECTION_SYM)
2218 count1 = (int)(*sym1)->udata;
2219 else
2220 count1 = som_symbol_data (*sym1)->reloc_count;
2221
2222 if ((*sym2)->flags & BSF_SECTION_SYM)
2223 count2 = (int)(*sym2)->udata;
2224 else
2225 count2 = som_symbol_data (*sym2)->reloc_count;
2226
2227 /* Return the appropriate value. */
2228 if (count1 < count2)
2229 return 1;
2230 else if (count1 > count2)
2231 return -1;
2232 return 0;
2233 }
2234
2235 /* Perform various work in preparation for emitting the fixup stream. */
2236
2237 static void
2238 som_prep_for_fixups (abfd, syms, num_syms)
2239 bfd *abfd;
2240 asymbol **syms;
2241 unsigned long num_syms;
2242 {
2243 int i;
2244 asection *section;
2245
2246 /* Most SOM relocations involving a symbol have a length which is
2247 dependent on the index of the symbol. So symbols which are
2248 used often in relocations should have a small index. */
2249
2250 /* First initialize the counters for each symbol. */
2251 for (i = 0; i < num_syms; i++)
2252 {
2253 /* Handle a section symbol; these have no pointers back to the
2254 SOM symbol info. So we just use the pointer field (udata)
2255 to hold the relocation count. */
2256 if (som_symbol_data (syms[i]) == NULL
2257 || syms[i]->flags & BSF_SECTION_SYM)
2258 {
2259 syms[i]->flags |= BSF_SECTION_SYM;
2260 syms[i]->udata = (PTR) 0;
2261 }
2262 else
2263 som_symbol_data (syms[i])->reloc_count = 0;
2264 }
2265
2266 /* Now that the counters are initialized, make a weighted count
2267 of how often a given symbol is used in a relocation. */
2268 for (section = abfd->sections; section != NULL; section = section->next)
2269 {
2270 int i;
2271
2272 /* Does this section have any relocations? */
2273 if (section->reloc_count <= 0)
2274 continue;
2275
2276 /* Walk through each relocation for this section. */
2277 for (i = 1; i < section->reloc_count; i++)
2278 {
2279 arelent *reloc = section->orelocation[i];
2280 int scale;
2281
2282 /* A relocation against a symbol in the *ABS* section really
2283 does not have a symbol. Likewise if the symbol isn't associated
2284 with any section. */
2285 if (reloc->sym_ptr_ptr == NULL
2286 || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section))
2287 continue;
2288
2289 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2290 and R_CODE_ONE_SYMBOL relocations to come first. These
2291 two relocations have single byte versions if the symbol
2292 index is very small. */
2293 if (reloc->howto->type == R_DP_RELATIVE
2294 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2295 scale = 2;
2296 else
2297 scale = 1;
2298
2299 /* Handle section symbols by ramming the count in the udata
2300 field. It will not be used and the count is very important
2301 for these symbols. */
2302 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2303 {
2304 (*reloc->sym_ptr_ptr)->udata =
2305 (PTR) ((int) (*reloc->sym_ptr_ptr)->udata + scale);
2306 continue;
2307 }
2308
2309 /* A normal symbol. Increment the count. */
2310 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2311 }
2312 }
2313
2314 qsort (syms, num_syms, sizeof (asymbol *), compare_syms);
2315
2316 /* Compute the symbol indexes, they will be needed by the relocation
2317 code. */
2318 for (i = 0; i < num_syms; i++)
2319 {
2320 /* A section symbol. Again, there is no pointer to backend symbol
2321 information, so we reuse (abuse) the udata field again. */
2322 if (syms[i]->flags & BSF_SECTION_SYM)
2323 syms[i]->udata = (PTR) i;
2324 else
2325 som_symbol_data (syms[i])->index = i;
2326 }
2327 }
2328
2329 static boolean
2330 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2331 bfd *abfd;
2332 unsigned long current_offset;
2333 unsigned int *total_reloc_sizep;
2334 {
2335 unsigned int i, j;
2336 /* Chunk of memory that we can use as buffer space, then throw
2337 away. */
2338 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2339 unsigned char *p;
2340 unsigned int total_reloc_size = 0;
2341 unsigned int subspace_reloc_size = 0;
2342 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2343 asection *section = abfd->sections;
2344
2345 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2346 p = tmp_space;
2347
2348 /* All the fixups for a particular subspace are emitted in a single
2349 stream. All the subspaces for a particular space are emitted
2350 as a single stream.
2351
2352 So, to get all the locations correct one must iterate through all the
2353 spaces, for each space iterate through its subspaces and output a
2354 fixups stream. */
2355 for (i = 0; i < num_spaces; i++)
2356 {
2357 asection *subsection;
2358
2359 /* Find a space. */
2360 while (!som_is_space (section))
2361 section = section->next;
2362
2363 /* Now iterate through each of its subspaces. */
2364 for (subsection = abfd->sections;
2365 subsection != NULL;
2366 subsection = subsection->next)
2367 {
2368 int reloc_offset, current_rounding_mode;
2369
2370 /* Find a subspace of this space. */
2371 if (!som_is_subspace (subsection)
2372 || !som_is_container (section, subsection))
2373 continue;
2374
2375 /* If this subspace does not have real data, then we are
2376 finised with it. */
2377 if ((subsection->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0)
2378 {
2379 som_section_data (subsection)->subspace_dict->fixup_request_index
2380 = -1;
2381 continue;
2382 }
2383
2384 /* This subspace has some relocations. Put the relocation stream
2385 index into the subspace record. */
2386 som_section_data (subsection)->subspace_dict->fixup_request_index
2387 = total_reloc_size;
2388
2389 /* To make life easier start over with a clean slate for
2390 each subspace. Seek to the start of the relocation stream
2391 for this subspace in preparation for writing out its fixup
2392 stream. */
2393 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) < 0)
2394 return false;
2395
2396 /* Buffer space has already been allocated. Just perform some
2397 initialization here. */
2398 p = tmp_space;
2399 subspace_reloc_size = 0;
2400 reloc_offset = 0;
2401 som_initialize_reloc_queue (reloc_queue);
2402 current_rounding_mode = R_N_MODE;
2403
2404 /* Translate each BFD relocation into one or more SOM
2405 relocations. */
2406 for (j = 0; j < subsection->reloc_count; j++)
2407 {
2408 arelent *bfd_reloc = subsection->orelocation[j];
2409 unsigned int skip;
2410 int sym_num;
2411
2412 /* Get the symbol number. Remember it's stored in a
2413 special place for section symbols. */
2414 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2415 sym_num = (int) (*bfd_reloc->sym_ptr_ptr)->udata;
2416 else
2417 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2418
2419 /* If there is not enough room for the next couple relocations,
2420 then dump the current buffer contents now. Also reinitialize
2421 the relocation queue.
2422
2423 No single BFD relocation could ever translate into more
2424 than 100 bytes of SOM relocations (20bytes is probably the
2425 upper limit, but leave lots of space for growth). */
2426 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2427 {
2428 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2429 != p - tmp_space)
2430 return false;
2431
2432 p = tmp_space;
2433 som_initialize_reloc_queue (reloc_queue);
2434 }
2435
2436 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2437 skipped. */
2438 skip = bfd_reloc->address - reloc_offset;
2439 p = som_reloc_skip (abfd, skip, p,
2440 &subspace_reloc_size, reloc_queue);
2441
2442 /* Update reloc_offset for the next iteration.
2443
2444 Many relocations do not consume input bytes. They
2445 are markers, or set state necessary to perform some
2446 later relocation. */
2447 switch (bfd_reloc->howto->type)
2448 {
2449 /* This only needs to handle relocations that may be
2450 made by hppa_som_gen_reloc. */
2451 case R_ENTRY:
2452 case R_ALT_ENTRY:
2453 case R_EXIT:
2454 case R_N_MODE:
2455 case R_S_MODE:
2456 case R_D_MODE:
2457 case R_R_MODE:
2458 case R_FSEL:
2459 case R_LSEL:
2460 case R_RSEL:
2461 reloc_offset = bfd_reloc->address;
2462 break;
2463
2464 default:
2465 reloc_offset = bfd_reloc->address + 4;
2466 break;
2467 }
2468
2469 /* Now the actual relocation we care about. */
2470 switch (bfd_reloc->howto->type)
2471 {
2472 case R_PCREL_CALL:
2473 case R_ABS_CALL:
2474 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2475 bfd_reloc, sym_num, reloc_queue);
2476 break;
2477
2478 case R_CODE_ONE_SYMBOL:
2479 case R_DP_RELATIVE:
2480 /* Account for any addend. */
2481 if (bfd_reloc->addend)
2482 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2483 &subspace_reloc_size, reloc_queue);
2484
2485 if (sym_num < 0x20)
2486 {
2487 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2488 subspace_reloc_size += 1;
2489 p += 1;
2490 }
2491 else if (sym_num < 0x100)
2492 {
2493 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2494 bfd_put_8 (abfd, sym_num, p + 1);
2495 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2496 2, reloc_queue);
2497 }
2498 else if (sym_num < 0x10000000)
2499 {
2500 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2501 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2502 bfd_put_16 (abfd, sym_num, p + 2);
2503 p = try_prev_fixup (abfd, &subspace_reloc_size,
2504 p, 4, reloc_queue);
2505 }
2506 else
2507 abort ();
2508 break;
2509
2510 case R_DATA_ONE_SYMBOL:
2511 case R_DATA_PLABEL:
2512 case R_CODE_PLABEL:
2513 case R_DLT_REL:
2514 /* Account for any addend. */
2515 if (bfd_reloc->addend)
2516 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2517 &subspace_reloc_size, reloc_queue);
2518
2519 if (sym_num < 0x100)
2520 {
2521 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2522 bfd_put_8 (abfd, sym_num, p + 1);
2523 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2524 2, reloc_queue);
2525 }
2526 else if (sym_num < 0x10000000)
2527 {
2528 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2529 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2530 bfd_put_16 (abfd, sym_num, p + 2);
2531 p = try_prev_fixup (abfd, &subspace_reloc_size,
2532 p, 4, reloc_queue);
2533 }
2534 else
2535 abort ();
2536 break;
2537
2538 case R_ENTRY:
2539 {
2540 int tmp;
2541 arelent *tmp_reloc;
2542 bfd_put_8 (abfd, R_ENTRY, p);
2543
2544 /* R_ENTRY relocations have 64 bits of associated
2545 data. Unfortunately the addend field of a bfd
2546 relocation is only 32 bits. So, we split up
2547 the 64bit unwind information and store part in
2548 the R_ENTRY relocation, and the rest in the R_EXIT
2549 relocation. */
2550 bfd_put_32 (abfd, bfd_reloc->addend, p + 1);
2551
2552 /* Find the next R_EXIT relocation. */
2553 for (tmp = j; tmp < subsection->reloc_count; tmp++)
2554 {
2555 tmp_reloc = subsection->orelocation[tmp];
2556 if (tmp_reloc->howto->type == R_EXIT)
2557 break;
2558 }
2559
2560 if (tmp == subsection->reloc_count)
2561 abort ();
2562
2563 bfd_put_32 (abfd, tmp_reloc->addend, p + 5);
2564 p = try_prev_fixup (abfd, &subspace_reloc_size,
2565 p, 9, reloc_queue);
2566 break;
2567 }
2568
2569 case R_N_MODE:
2570 case R_S_MODE:
2571 case R_D_MODE:
2572 case R_R_MODE:
2573 /* If this relocation requests the current rounding
2574 mode, then it is redundant. */
2575 if (bfd_reloc->howto->type != current_rounding_mode)
2576 {
2577 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2578 subspace_reloc_size += 1;
2579 p += 1;
2580 current_rounding_mode = bfd_reloc->howto->type;
2581 }
2582 break;
2583
2584 case R_EXIT:
2585 case R_ALT_ENTRY:
2586 case R_FSEL:
2587 case R_LSEL:
2588 case R_RSEL:
2589 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2590 subspace_reloc_size += 1;
2591 p += 1;
2592 break;
2593
2594 /* Put a "R_RESERVED" relocation in the stream if
2595 we hit something we do not understand. The linker
2596 will complain loudly if this ever happens. */
2597 default:
2598 bfd_put_8 (abfd, 0xff, p);
2599 subspace_reloc_size += 1;
2600 p += 1;
2601 break;
2602 }
2603 }
2604
2605 /* Last BFD relocation for a subspace has been processed.
2606 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2607 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2608 - reloc_offset,
2609 p, &subspace_reloc_size, reloc_queue);
2610
2611 /* Scribble out the relocations. */
2612 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2613 != p - tmp_space)
2614 return false;
2615 p = tmp_space;
2616
2617 total_reloc_size += subspace_reloc_size;
2618 som_section_data (subsection)->subspace_dict->fixup_request_quantity
2619 = subspace_reloc_size;
2620 }
2621 section = section->next;
2622 }
2623 *total_reloc_sizep = total_reloc_size;
2624 return true;
2625 }
2626
2627 /* Write out the space/subspace string table. */
2628
2629 static boolean
2630 som_write_space_strings (abfd, current_offset, string_sizep)
2631 bfd *abfd;
2632 unsigned long current_offset;
2633 unsigned int *string_sizep;
2634 {
2635 /* Chunk of memory that we can use as buffer space, then throw
2636 away. */
2637 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2638 unsigned char *p;
2639 unsigned int strings_size = 0;
2640 asection *section;
2641
2642 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2643 p = tmp_space;
2644
2645 /* Seek to the start of the space strings in preparation for writing
2646 them out. */
2647 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2648 return false;
2649
2650 /* Walk through all the spaces and subspaces (order is not important)
2651 building up and writing string table entries for their names. */
2652 for (section = abfd->sections; section != NULL; section = section->next)
2653 {
2654 int length;
2655
2656 /* Only work with space/subspaces; avoid any other sections
2657 which might have been made (.text for example). */
2658 if (!som_is_space (section) && !som_is_subspace (section))
2659 continue;
2660
2661 /* Get the length of the space/subspace name. */
2662 length = strlen (section->name);
2663
2664 /* If there is not enough room for the next entry, then dump the
2665 current buffer contents now. Each entry will take 4 bytes to
2666 hold the string length + the string itself + null terminator. */
2667 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2668 {
2669 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2670 != p - tmp_space)
2671 return false;
2672 /* Reset to beginning of the buffer space. */
2673 p = tmp_space;
2674 }
2675
2676 /* First element in a string table entry is the length of the
2677 string. Alignment issues are already handled. */
2678 bfd_put_32 (abfd, length, p);
2679 p += 4;
2680 strings_size += 4;
2681
2682 /* Record the index in the space/subspace records. */
2683 if (som_is_space (section))
2684 som_section_data (section)->space_dict->name.n_strx = strings_size;
2685 else
2686 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
2687
2688 /* Next comes the string itself + a null terminator. */
2689 strcpy (p, section->name);
2690 p += length + 1;
2691 strings_size += length + 1;
2692
2693 /* Always align up to the next word boundary. */
2694 while (strings_size % 4)
2695 {
2696 bfd_put_8 (abfd, 0, p);
2697 p++;
2698 strings_size++;
2699 }
2700 }
2701
2702 /* Done with the space/subspace strings. Write out any information
2703 contained in a partial block. */
2704 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2705 return false;
2706 *string_sizep = strings_size;
2707 return true;
2708 }
2709
2710 /* Write out the symbol string table. */
2711
2712 static boolean
2713 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
2714 bfd *abfd;
2715 unsigned long current_offset;
2716 asymbol **syms;
2717 unsigned int num_syms;
2718 unsigned int *string_sizep;
2719 {
2720 unsigned int i;
2721
2722 /* Chunk of memory that we can use as buffer space, then throw
2723 away. */
2724 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2725 unsigned char *p;
2726 unsigned int strings_size = 0;
2727
2728 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2729 p = tmp_space;
2730
2731 /* Seek to the start of the space strings in preparation for writing
2732 them out. */
2733 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2734 return false;
2735
2736 for (i = 0; i < num_syms; i++)
2737 {
2738 int length = strlen (syms[i]->name);
2739
2740 /* If there is not enough room for the next entry, then dump the
2741 current buffer contents now. */
2742 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2743 {
2744 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2745 != p - tmp_space)
2746 return false;
2747 /* Reset to beginning of the buffer space. */
2748 p = tmp_space;
2749 }
2750
2751 /* First element in a string table entry is the length of the
2752 string. This must always be 4 byte aligned. This is also
2753 an appropriate time to fill in the string index field in the
2754 symbol table entry. */
2755 bfd_put_32 (abfd, length, p);
2756 strings_size += 4;
2757 p += 4;
2758
2759 /* Next comes the string itself + a null terminator. */
2760 strcpy (p, syms[i]->name);
2761
2762 som_symbol_data(syms[i])->stringtab_offset = strings_size;
2763 p += length + 1;
2764 strings_size += length + 1;
2765
2766 /* Always align up to the next word boundary. */
2767 while (strings_size % 4)
2768 {
2769 bfd_put_8 (abfd, 0, p);
2770 strings_size++;
2771 p++;
2772 }
2773 }
2774
2775 /* Scribble out any partial block. */
2776 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2777 return false;
2778
2779 *string_sizep = strings_size;
2780 return true;
2781 }
2782
2783 /* Compute variable information to be placed in the SOM headers,
2784 space/subspace dictionaries, relocation streams, etc. Begin
2785 writing parts of the object file. */
2786
2787 static boolean
2788 som_begin_writing (abfd)
2789 bfd *abfd;
2790 {
2791 unsigned long current_offset = 0;
2792 int strings_size = 0;
2793 unsigned int total_reloc_size = 0;
2794 unsigned long num_spaces, num_subspaces, num_syms, i;
2795 asection *section;
2796 asymbol **syms = bfd_get_outsymbols (abfd);
2797 unsigned int total_subspaces = 0;
2798 struct som_exec_auxhdr *exec_header;
2799
2800 /* The file header will always be first in an object file,
2801 everything else can be in random locations. To keep things
2802 "simple" BFD will lay out the object file in the manner suggested
2803 by the PRO ABI for PA-RISC Systems. */
2804
2805 /* Before any output can really begin offsets for all the major
2806 portions of the object file must be computed. So, starting
2807 with the initial file header compute (and sometimes write)
2808 each portion of the object file. */
2809
2810 /* Make room for the file header, it's contents are not complete
2811 yet, so it can not be written at this time. */
2812 current_offset += sizeof (struct header);
2813
2814 /* Any auxiliary headers will follow the file header. Right now
2815 we support only the copyright and version headers. */
2816 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
2817 obj_som_file_hdr (abfd)->aux_header_size = 0;
2818 if (abfd->flags & (EXEC_P | DYNAMIC))
2819 {
2820 /* Parts of the exec header will be filled in later, so
2821 delay writing the header itself. Fill in the defaults,
2822 and write it later. */
2823 current_offset += sizeof (struct som_exec_auxhdr);
2824 obj_som_file_hdr (abfd)->aux_header_size
2825 += sizeof (struct som_exec_auxhdr);
2826 exec_header = obj_som_exec_hdr (abfd);
2827 exec_header->som_auxhdr.type = EXEC_AUX_ID;
2828 exec_header->som_auxhdr.length = 40;
2829 }
2830 if (obj_som_version_hdr (abfd) != NULL)
2831 {
2832 unsigned int len;
2833
2834 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2835 return false;
2836
2837 /* Write the aux_id structure and the string length. */
2838 len = sizeof (struct aux_id) + sizeof (unsigned int);
2839 obj_som_file_hdr (abfd)->aux_header_size += len;
2840 current_offset += len;
2841 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
2842 return false;
2843
2844 /* Write the version string. */
2845 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
2846 obj_som_file_hdr (abfd)->aux_header_size += len;
2847 current_offset += len;
2848 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
2849 len, 1, abfd) != len)
2850 return false;
2851 }
2852
2853 if (obj_som_copyright_hdr (abfd) != NULL)
2854 {
2855 unsigned int len;
2856
2857 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2858 return false;
2859
2860 /* Write the aux_id structure and the string length. */
2861 len = sizeof (struct aux_id) + sizeof (unsigned int);
2862 obj_som_file_hdr (abfd)->aux_header_size += len;
2863 current_offset += len;
2864 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
2865 return false;
2866
2867 /* Write the copyright string. */
2868 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
2869 obj_som_file_hdr (abfd)->aux_header_size += len;
2870 current_offset += len;
2871 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
2872 len, 1, abfd) != len)
2873 return false;
2874 }
2875
2876 /* Next comes the initialization pointers; we have no initialization
2877 pointers, so current offset does not change. */
2878 obj_som_file_hdr (abfd)->init_array_location = current_offset;
2879 obj_som_file_hdr (abfd)->init_array_total = 0;
2880
2881 /* Next are the space records. These are fixed length records.
2882
2883 Count the number of spaces to determine how much room is needed
2884 in the object file for the space records.
2885
2886 The names of the spaces are stored in a separate string table,
2887 and the index for each space into the string table is computed
2888 below. Therefore, it is not possible to write the space headers
2889 at this time. */
2890 num_spaces = som_count_spaces (abfd);
2891 obj_som_file_hdr (abfd)->space_location = current_offset;
2892 obj_som_file_hdr (abfd)->space_total = num_spaces;
2893 current_offset += num_spaces * sizeof (struct space_dictionary_record);
2894
2895 /* Next are the subspace records. These are fixed length records.
2896
2897 Count the number of subspaes to determine how much room is needed
2898 in the object file for the subspace records.
2899
2900 A variety if fields in the subspace record are still unknown at
2901 this time (index into string table, fixup stream location/size, etc). */
2902 num_subspaces = som_count_subspaces (abfd);
2903 obj_som_file_hdr (abfd)->subspace_location = current_offset;
2904 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
2905 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
2906
2907 /* Next is the string table for the space/subspace names. We will
2908 build and write the string table on the fly. At the same time
2909 we will fill in the space/subspace name index fields. */
2910
2911 /* The string table needs to be aligned on a word boundary. */
2912 if (current_offset % 4)
2913 current_offset += (4 - (current_offset % 4));
2914
2915 /* Mark the offset of the space/subspace string table in the
2916 file header. */
2917 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
2918
2919 /* Scribble out the space strings. */
2920 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
2921 return false;
2922
2923 /* Record total string table size in the header and update the
2924 current offset. */
2925 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
2926 current_offset += strings_size;
2927
2928 /* Next is the symbol table. These are fixed length records.
2929
2930 Count the number of symbols to determine how much room is needed
2931 in the object file for the symbol table.
2932
2933 The names of the symbols are stored in a separate string table,
2934 and the index for each symbol name into the string table is computed
2935 below. Therefore, it is not possible to write the symobl table
2936 at this time. */
2937 num_syms = bfd_get_symcount (abfd);
2938 obj_som_file_hdr (abfd)->symbol_location = current_offset;
2939 obj_som_file_hdr (abfd)->symbol_total = num_syms;
2940 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
2941
2942 /* Do prep work before handling fixups. */
2943 som_prep_for_fixups (abfd, syms, num_syms);
2944
2945 /* Next comes the fixup stream which starts on a word boundary. */
2946 if (current_offset % 4)
2947 current_offset += (4 - (current_offset % 4));
2948 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
2949
2950 /* Write the fixups and update fields in subspace headers which
2951 relate to the fixup stream. */
2952 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
2953 return false;
2954
2955 /* Record the total size of the fixup stream in the file header. */
2956 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
2957 current_offset += total_reloc_size;
2958
2959 /* Next are the symbol strings.
2960 Align them to a word boundary. */
2961 if (current_offset % 4)
2962 current_offset += (4 - (current_offset % 4));
2963 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
2964
2965 /* Scribble out the symbol strings. */
2966 if (som_write_symbol_strings (abfd, current_offset, syms,
2967 num_syms, &strings_size)
2968 == false)
2969 return false;
2970
2971 /* Record total string table size in header and update the
2972 current offset. */
2973 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
2974 current_offset += strings_size;
2975
2976 /* Next is the compiler records. We do not use these. */
2977 obj_som_file_hdr (abfd)->compiler_location = current_offset;
2978 obj_som_file_hdr (abfd)->compiler_total = 0;
2979
2980 /* Now compute the file positions for the loadable subspaces, taking
2981 care to make sure everything stays properly aligned. */
2982
2983 section = abfd->sections;
2984 for (i = 0; i < num_spaces; i++)
2985 {
2986 asection *subsection;
2987 int first_subspace;
2988 unsigned int subspace_offset = 0;
2989
2990 /* Find a space. */
2991 while (!som_is_space (section))
2992 section = section->next;
2993
2994 first_subspace = 1;
2995 /* Now look for all its subspaces. */
2996 for (subsection = abfd->sections;
2997 subsection != NULL;
2998 subsection = subsection->next)
2999 {
3000
3001 if (!som_is_subspace (subsection)
3002 || !som_is_container (section, subsection)
3003 || (subsection->flags & SEC_ALLOC) == 0)
3004 continue;
3005
3006 /* If this is the first subspace in the space, and we are
3007 building an executable, then take care to make sure all
3008 the alignments are correct and update the exec header. */
3009 if (first_subspace
3010 && (abfd->flags & (EXEC_P | DYNAMIC)))
3011 {
3012 /* Demand paged executables have each space aligned to a
3013 page boundary. Sharable executables (write-protected
3014 text) have just the private (aka data & bss) space aligned
3015 to a page boundary. Ugh. Not true for HPUX.
3016
3017 The HPUX kernel requires the text to always be page aligned
3018 within the file regardless of the executable's type. */
3019 if (abfd->flags & (D_PAGED | DYNAMIC)
3020 || (subsection->flags & SEC_CODE)
3021 || ((abfd->flags & WP_TEXT)
3022 && (subsection->flags & SEC_DATA)))
3023 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3024
3025 /* Update the exec header. */
3026 if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0)
3027 {
3028 exec_header->exec_tmem = section->vma;
3029 exec_header->exec_tfile = current_offset;
3030 }
3031 if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0)
3032 {
3033 exec_header->exec_dmem = section->vma;
3034 exec_header->exec_dfile = current_offset;
3035 }
3036
3037 /* Keep track of exactly where we are within a particular
3038 space. This is necessary as the braindamaged HPUX
3039 loader will create holes between subspaces *and*
3040 subspace alignments are *NOT* preserved. What a crock. */
3041 subspace_offset = subsection->vma;
3042
3043 /* Only do this for the first subspace within each space. */
3044 first_subspace = 0;
3045 }
3046 else if (abfd->flags & (EXEC_P | DYNAMIC))
3047 {
3048 /* The braindamaged HPUX loader may have created a hole
3049 between two subspaces. It is *not* sufficient to use
3050 the alignment specifications within the subspaces to
3051 account for these holes -- I've run into at least one
3052 case where the loader left one code subspace unaligned
3053 in a final executable.
3054
3055 To combat this we keep a current offset within each space,
3056 and use the subspace vma fields to detect and preserve
3057 holes. What a crock!
3058
3059 ps. This is not necessary for unloadable space/subspaces. */
3060 current_offset += subsection->vma - subspace_offset;
3061 if (subsection->flags & SEC_CODE)
3062 exec_header->exec_tsize += subsection->vma - subspace_offset;
3063 else
3064 exec_header->exec_dsize += subsection->vma - subspace_offset;
3065 subspace_offset += subsection->vma - subspace_offset;
3066 }
3067
3068
3069 subsection->target_index = total_subspaces++;
3070 /* This is real data to be loaded from the file. */
3071 if (subsection->flags & SEC_LOAD)
3072 {
3073 /* Update the size of the code & data. */
3074 if (abfd->flags & (EXEC_P | DYNAMIC)
3075 && subsection->flags & SEC_CODE)
3076 exec_header->exec_tsize += subsection->_cooked_size;
3077 else if (abfd->flags & (EXEC_P | DYNAMIC)
3078 && subsection->flags & SEC_DATA)
3079 exec_header->exec_dsize += subsection->_cooked_size;
3080 som_section_data (subsection)->subspace_dict->file_loc_init_value
3081 = current_offset;
3082 subsection->filepos = current_offset;
3083 current_offset += bfd_section_size (abfd, subsection);
3084 subspace_offset += bfd_section_size (abfd, subsection);
3085 }
3086 /* Looks like uninitialized data. */
3087 else
3088 {
3089 /* Update the size of the bss section. */
3090 if (abfd->flags & (EXEC_P | DYNAMIC))
3091 exec_header->exec_bsize += subsection->_cooked_size;
3092
3093 som_section_data (subsection)->subspace_dict->file_loc_init_value
3094 = 0;
3095 som_section_data (subsection)->subspace_dict->
3096 initialization_length = 0;
3097 }
3098 }
3099 /* Goto the next section. */
3100 section = section->next;
3101 }
3102
3103 /* Finally compute the file positions for unloadable subspaces.
3104 If building an executable, start the unloadable stuff on its
3105 own page. */
3106
3107 if (abfd->flags & (EXEC_P | DYNAMIC))
3108 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3109
3110 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3111 section = abfd->sections;
3112 for (i = 0; i < num_spaces; i++)
3113 {
3114 asection *subsection;
3115
3116 /* Find a space. */
3117 while (!som_is_space (section))
3118 section = section->next;
3119
3120 if (abfd->flags & (EXEC_P | DYNAMIC))
3121 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3122
3123 /* Now look for all its subspaces. */
3124 for (subsection = abfd->sections;
3125 subsection != NULL;
3126 subsection = subsection->next)
3127 {
3128
3129 if (!som_is_subspace (subsection)
3130 || !som_is_container (section, subsection)
3131 || (subsection->flags & SEC_ALLOC) != 0)
3132 continue;
3133
3134 subsection->target_index = total_subspaces;
3135 /* This is real data to be loaded from the file. */
3136 if ((subsection->flags & SEC_LOAD) == 0)
3137 {
3138 som_section_data (subsection)->subspace_dict->file_loc_init_value
3139 = current_offset;
3140 subsection->filepos = current_offset;
3141 current_offset += bfd_section_size (abfd, subsection);
3142 }
3143 /* Looks like uninitialized data. */
3144 else
3145 {
3146 som_section_data (subsection)->subspace_dict->file_loc_init_value
3147 = 0;
3148 som_section_data (subsection)->subspace_dict->
3149 initialization_length = bfd_section_size (abfd, subsection);
3150 }
3151 }
3152 /* Goto the next section. */
3153 section = section->next;
3154 }
3155
3156 /* If building an executable, then make sure to seek to and write
3157 one byte at the end of the file to make sure any necessary
3158 zeros are filled in. Ugh. */
3159 if (abfd->flags & (EXEC_P | DYNAMIC))
3160 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3161 if (bfd_seek (abfd, current_offset - 1, SEEK_SET) < 0)
3162 return false;
3163 if (bfd_write ((PTR) "", 1, 1, abfd) != 1)
3164 return false;
3165
3166 obj_som_file_hdr (abfd)->unloadable_sp_size
3167 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3168
3169 /* Loader fixups are not supported in any way shape or form. */
3170 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3171 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3172
3173 /* Done. Store the total size of the SOM. */
3174 obj_som_file_hdr (abfd)->som_length = current_offset;
3175
3176 return true;
3177 }
3178
3179 /* Finally, scribble out the various headers to the disk. */
3180
3181 static boolean
3182 som_write_headers (abfd)
3183 bfd *abfd;
3184 {
3185 int num_spaces = som_count_spaces (abfd);
3186 int i;
3187 int subspace_index = 0;
3188 file_ptr location;
3189 asection *section;
3190
3191 /* Subspaces are written first so that we can set up information
3192 about them in their containing spaces as the subspace is written. */
3193
3194 /* Seek to the start of the subspace dictionary records. */
3195 location = obj_som_file_hdr (abfd)->subspace_location;
3196 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3197 return false;
3198
3199 section = abfd->sections;
3200 /* Now for each loadable space write out records for its subspaces. */
3201 for (i = 0; i < num_spaces; i++)
3202 {
3203 asection *subsection;
3204
3205 /* Find a space. */
3206 while (!som_is_space (section))
3207 section = section->next;
3208
3209 /* Now look for all its subspaces. */
3210 for (subsection = abfd->sections;
3211 subsection != NULL;
3212 subsection = subsection->next)
3213 {
3214
3215 /* Skip any section which does not correspond to a space
3216 or subspace. Or does not have SEC_ALLOC set (and therefore
3217 has no real bits on the disk). */
3218 if (!som_is_subspace (subsection)
3219 || !som_is_container (section, subsection)
3220 || (subsection->flags & SEC_ALLOC) == 0)
3221 continue;
3222
3223 /* If this is the first subspace for this space, then save
3224 the index of the subspace in its containing space. Also
3225 set "is_loadable" in the containing space. */
3226
3227 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3228 {
3229 som_section_data (section)->space_dict->is_loadable = 1;
3230 som_section_data (section)->space_dict->subspace_index
3231 = subspace_index;
3232 }
3233
3234 /* Increment the number of subspaces seen and the number of
3235 subspaces contained within the current space. */
3236 subspace_index++;
3237 som_section_data (section)->space_dict->subspace_quantity++;
3238
3239 /* Mark the index of the current space within the subspace's
3240 dictionary record. */
3241 som_section_data (subsection)->subspace_dict->space_index = i;
3242
3243 /* Dump the current subspace header. */
3244 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3245 sizeof (struct subspace_dictionary_record), 1, abfd)
3246 != sizeof (struct subspace_dictionary_record))
3247 return false;
3248 }
3249 /* Goto the next section. */
3250 section = section->next;
3251 }
3252
3253 /* Now repeat the process for unloadable subspaces. */
3254 section = abfd->sections;
3255 /* Now for each space write out records for its subspaces. */
3256 for (i = 0; i < num_spaces; i++)
3257 {
3258 asection *subsection;
3259
3260 /* Find a space. */
3261 while (!som_is_space (section))
3262 section = section->next;
3263
3264 /* Now look for all its subspaces. */
3265 for (subsection = abfd->sections;
3266 subsection != NULL;
3267 subsection = subsection->next)
3268 {
3269
3270 /* Skip any section which does not correspond to a space or
3271 subspace, or which SEC_ALLOC set (and therefore handled
3272 in the loadable spaces/subspaces code above). */
3273
3274 if (!som_is_subspace (subsection)
3275 || !som_is_container (section, subsection)
3276 || (subsection->flags & SEC_ALLOC) != 0)
3277 continue;
3278
3279 /* If this is the first subspace for this space, then save
3280 the index of the subspace in its containing space. Clear
3281 "is_loadable". */
3282
3283 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3284 {
3285 som_section_data (section)->space_dict->is_loadable = 0;
3286 som_section_data (section)->space_dict->subspace_index
3287 = subspace_index;
3288 }
3289
3290 /* Increment the number of subspaces seen and the number of
3291 subspaces contained within the current space. */
3292 som_section_data (section)->space_dict->subspace_quantity++;
3293 subspace_index++;
3294
3295 /* Mark the index of the current space within the subspace's
3296 dictionary record. */
3297 som_section_data (subsection)->subspace_dict->space_index = i;
3298
3299 /* Dump this subspace header. */
3300 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3301 sizeof (struct subspace_dictionary_record), 1, abfd)
3302 != sizeof (struct subspace_dictionary_record))
3303 return false;
3304 }
3305 /* Goto the next section. */
3306 section = section->next;
3307 }
3308
3309 /* All the subspace dictiondary records are written, and all the
3310 fields are set up in the space dictionary records.
3311
3312 Seek to the right location and start writing the space
3313 dictionary records. */
3314 location = obj_som_file_hdr (abfd)->space_location;
3315 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3316 return false;
3317
3318 section = abfd->sections;
3319 for (i = 0; i < num_spaces; i++)
3320 {
3321
3322 /* Find a space. */
3323 while (!som_is_space (section))
3324 section = section->next;
3325
3326 /* Dump its header */
3327 if (bfd_write ((PTR) som_section_data (section)->space_dict,
3328 sizeof (struct space_dictionary_record), 1, abfd)
3329 != sizeof (struct space_dictionary_record))
3330 return false;
3331
3332 /* Goto the next section. */
3333 section = section->next;
3334 }
3335
3336 /* FIXME. This should really be conditional based on whether or not
3337 PA1.1 instructions/registers have been used.
3338
3339 Setting of the system_id has to happen very late now that copying of
3340 BFD private data happens *after* section contents are set. */
3341 if (abfd->flags & (EXEC_P | DYNAMIC))
3342 obj_som_file_hdr(abfd)->system_id = obj_som_exec_data (abfd)->system_id;
3343 else
3344 obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC1_0;
3345
3346 /* Compute the checksum for the file header just before writing
3347 the header to disk. */
3348 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3349
3350 /* Only thing left to do is write out the file header. It is always
3351 at location zero. Seek there and write it. */
3352 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0)
3353 return false;
3354 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3355 sizeof (struct header), 1, abfd)
3356 != sizeof (struct header))
3357 return false;
3358
3359 /* Now write the exec header. */
3360 if (abfd->flags & (EXEC_P | DYNAMIC))
3361 {
3362 long tmp;
3363 struct som_exec_auxhdr *exec_header;
3364
3365 exec_header = obj_som_exec_hdr (abfd);
3366 exec_header->exec_entry = bfd_get_start_address (abfd);
3367 exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags;
3368
3369 /* Oh joys. Ram some of the BSS data into the DATA section
3370 to be compatable with how the hp linker makes objects
3371 (saves memory space). */
3372 tmp = exec_header->exec_dsize;
3373 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3374 exec_header->exec_bsize -= (tmp - exec_header->exec_dsize);
3375 if (exec_header->exec_bsize < 0)
3376 exec_header->exec_bsize = 0;
3377 exec_header->exec_dsize = tmp;
3378
3379 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
3380 SEEK_SET) < 0)
3381 return false;
3382
3383 if (bfd_write ((PTR) exec_header, AUX_HDR_SIZE, 1, abfd)
3384 != AUX_HDR_SIZE)
3385 return false;
3386 }
3387 return true;
3388 }
3389
3390 /* Compute and return the checksum for a SOM file header. */
3391
3392 static unsigned long
3393 som_compute_checksum (abfd)
3394 bfd *abfd;
3395 {
3396 unsigned long checksum, count, i;
3397 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3398
3399 checksum = 0;
3400 count = sizeof (struct header) / sizeof (unsigned long);
3401 for (i = 0; i < count; i++)
3402 checksum ^= *(buffer + i);
3403
3404 return checksum;
3405 }
3406
3407 static void
3408 som_bfd_derive_misc_symbol_info (abfd, sym, info)
3409 bfd *abfd;
3410 asymbol *sym;
3411 struct som_misc_symbol_info *info;
3412 {
3413 /* Initialize. */
3414 memset (info, 0, sizeof (struct som_misc_symbol_info));
3415
3416 /* The HP SOM linker requires detailed type information about
3417 all symbols (including undefined symbols!). Unfortunately,
3418 the type specified in an import/export statement does not
3419 always match what the linker wants. Severe braindamage. */
3420
3421 /* Section symbols will not have a SOM symbol type assigned to
3422 them yet. Assign all section symbols type ST_DATA. */
3423 if (sym->flags & BSF_SECTION_SYM)
3424 info->symbol_type = ST_DATA;
3425 else
3426 {
3427 /* Common symbols must have scope SS_UNSAT and type
3428 ST_STORAGE or the linker will choke. */
3429 if (bfd_is_com_section (sym->section))
3430 {
3431 info->symbol_scope = SS_UNSAT;
3432 info->symbol_type = ST_STORAGE;
3433 }
3434
3435 /* It is possible to have a symbol without an associated
3436 type. This happens if the user imported the symbol
3437 without a type and the symbol was never defined
3438 locally. If BSF_FUNCTION is set for this symbol, then
3439 assign it type ST_CODE (the HP linker requires undefined
3440 external functions to have type ST_CODE rather than ST_ENTRY). */
3441 else if ((som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3442 || som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3443 && bfd_is_und_section (sym->section)
3444 && sym->flags & BSF_FUNCTION)
3445 info->symbol_type = ST_CODE;
3446
3447 /* Handle function symbols which were defined in this file.
3448 They should have type ST_ENTRY. Also retrieve the argument
3449 relocation bits from the SOM backend information. */
3450 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3451 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3452 && (sym->flags & BSF_FUNCTION))
3453 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3454 && (sym->flags & BSF_FUNCTION)))
3455 {
3456 info->symbol_type = ST_ENTRY;
3457 info->arg_reloc = som_symbol_data (sym)->tc_data.hppa_arg_reloc;
3458 }
3459
3460 /* If the type is unknown at this point, it should be ST_DATA or
3461 ST_CODE (function/ST_ENTRY symbols were handled as special
3462 cases above). */
3463 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3464 {
3465 if (sym->section->flags & SEC_CODE)
3466 info->symbol_type = ST_CODE;
3467 else
3468 info->symbol_type = ST_DATA;
3469 }
3470
3471 /* From now on it's a very simple mapping. */
3472 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3473 info->symbol_type = ST_ABSOLUTE;
3474 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3475 info->symbol_type = ST_CODE;
3476 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3477 info->symbol_type = ST_DATA;
3478 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3479 info->symbol_type = ST_MILLICODE;
3480 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3481 info->symbol_type = ST_PLABEL;
3482 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3483 info->symbol_type = ST_PRI_PROG;
3484 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3485 info->symbol_type = ST_SEC_PROG;
3486 }
3487
3488 /* Now handle the symbol's scope. Exported data which is not
3489 in the common section has scope SS_UNIVERSAL. Note scope
3490 of common symbols was handled earlier! */
3491 if (sym->flags & BSF_EXPORT && ! bfd_is_com_section (sym->section))
3492 info->symbol_scope = SS_UNIVERSAL;
3493 /* Any undefined symbol at this point has a scope SS_UNSAT. */
3494 else if (bfd_is_und_section (sym->section))
3495 info->symbol_scope = SS_UNSAT;
3496 /* Anything else which is not in the common section has scope
3497 SS_LOCAL. */
3498 else if (! bfd_is_com_section (sym->section))
3499 info->symbol_scope = SS_LOCAL;
3500
3501 /* Now set the symbol_info field. It has no real meaning
3502 for undefined or common symbols, but the HP linker will
3503 choke if it's not set to some "reasonable" value. We
3504 use zero as a reasonable value. */
3505 if (bfd_is_com_section (sym->section)
3506 || bfd_is_und_section (sym->section)
3507 || bfd_is_abs_section (sym->section))
3508 info->symbol_info = 0;
3509 /* For all other symbols, the symbol_info field contains the
3510 subspace index of the space this symbol is contained in. */
3511 else
3512 info->symbol_info = sym->section->target_index;
3513
3514 /* Set the symbol's value. */
3515 info->symbol_value = sym->value + sym->section->vma;
3516 }
3517
3518 /* Build and write, in one big chunk, the entire symbol table for
3519 this BFD. */
3520
3521 static boolean
3522 som_build_and_write_symbol_table (abfd)
3523 bfd *abfd;
3524 {
3525 unsigned int num_syms = bfd_get_symcount (abfd);
3526 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3527 asymbol **bfd_syms = bfd_get_outsymbols (abfd);
3528 struct symbol_dictionary_record *som_symtab = NULL;
3529 int i, symtab_size;
3530
3531 /* Compute total symbol table size and allocate a chunk of memory
3532 to hold the symbol table as we build it. */
3533 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3534 som_symtab = (struct symbol_dictionary_record *) malloc (symtab_size);
3535 if (som_symtab == NULL && symtab_size != 0)
3536 {
3537 bfd_set_error (bfd_error_no_memory);
3538 goto error_return;
3539 }
3540 memset (som_symtab, 0, symtab_size);
3541
3542 /* Walk over each symbol. */
3543 for (i = 0; i < num_syms; i++)
3544 {
3545 struct som_misc_symbol_info info;
3546
3547 /* This is really an index into the symbol strings table.
3548 By the time we get here, the index has already been
3549 computed and stored into the name field in the BFD symbol. */
3550 som_symtab[i].name.n_strx = som_symbol_data(bfd_syms[i])->stringtab_offset;
3551
3552 /* Derive SOM information from the BFD symbol. */
3553 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
3554
3555 /* Now use it. */
3556 som_symtab[i].symbol_type = info.symbol_type;
3557 som_symtab[i].symbol_scope = info.symbol_scope;
3558 som_symtab[i].arg_reloc = info.arg_reloc;
3559 som_symtab[i].symbol_info = info.symbol_info;
3560 som_symtab[i].symbol_value = info.symbol_value;
3561 }
3562
3563 /* Everything is ready, seek to the right location and
3564 scribble out the symbol table. */
3565 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3566 return false;
3567
3568 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3569 goto error_return;
3570
3571 if (som_symtab != NULL)
3572 free (som_symtab);
3573 return true;
3574 error_return:
3575 if (som_symtab != NULL)
3576 free (som_symtab);
3577 return false;
3578 }
3579
3580 /* Write an object in SOM format. */
3581
3582 static boolean
3583 som_write_object_contents (abfd)
3584 bfd *abfd;
3585 {
3586 if (abfd->output_has_begun == false)
3587 {
3588 /* Set up fixed parts of the file, space, and subspace headers.
3589 Notify the world that output has begun. */
3590 som_prep_headers (abfd);
3591 abfd->output_has_begun = true;
3592 /* Start writing the object file. This include all the string
3593 tables, fixup streams, and other portions of the object file. */
3594 som_begin_writing (abfd);
3595 }
3596
3597 /* Now that the symbol table information is complete, build and
3598 write the symbol table. */
3599 if (som_build_and_write_symbol_table (abfd) == false)
3600 return false;
3601
3602 return (som_write_headers (abfd));
3603 }
3604
3605 \f
3606 /* Read and save the string table associated with the given BFD. */
3607
3608 static boolean
3609 som_slurp_string_table (abfd)
3610 bfd *abfd;
3611 {
3612 char *stringtab;
3613
3614 /* Use the saved version if its available. */
3615 if (obj_som_stringtab (abfd) != NULL)
3616 return true;
3617
3618 /* I don't think this can currently happen, and I'm not sure it should
3619 really be an error, but it's better than getting unpredictable results
3620 from the host's malloc when passed a size of zero. */
3621 if (obj_som_stringtab_size (abfd) == 0)
3622 {
3623 bfd_set_error (bfd_error_no_symbols);
3624 return false;
3625 }
3626
3627 /* Allocate and read in the string table. */
3628 stringtab = malloc (obj_som_stringtab_size (abfd));
3629 if (stringtab == NULL)
3630 {
3631 bfd_set_error (bfd_error_no_memory);
3632 return false;
3633 }
3634
3635 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3636 return false;
3637
3638 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3639 != obj_som_stringtab_size (abfd))
3640 return false;
3641
3642 /* Save our results and return success. */
3643 obj_som_stringtab (abfd) = stringtab;
3644 return true;
3645 }
3646
3647 /* Return the amount of data (in bytes) required to hold the symbol
3648 table for this object. */
3649
3650 static long
3651 som_get_symtab_upper_bound (abfd)
3652 bfd *abfd;
3653 {
3654 if (!som_slurp_symbol_table (abfd))
3655 return -1;
3656
3657 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
3658 }
3659
3660 /* Convert from a SOM subspace index to a BFD section. */
3661
3662 static asection *
3663 bfd_section_from_som_symbol (abfd, symbol)
3664 bfd *abfd;
3665 struct symbol_dictionary_record *symbol;
3666 {
3667 asection *section;
3668
3669 /* The meaning of the symbol_info field changes for functions
3670 within executables. So only use the quick symbol_info mapping for
3671 incomplete objects and non-function symbols in executables. */
3672 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
3673 || (symbol->symbol_type != ST_ENTRY
3674 && symbol->symbol_type != ST_PRI_PROG
3675 && symbol->symbol_type != ST_SEC_PROG
3676 && symbol->symbol_type != ST_MILLICODE))
3677 {
3678 unsigned int index = symbol->symbol_info;
3679 for (section = abfd->sections; section != NULL; section = section->next)
3680 if (section->target_index == index)
3681 return section;
3682
3683 /* Could be a symbol from an external library (such as an OMOS
3684 shared library). Don't abort. */
3685 return bfd_abs_section_ptr;
3686
3687 }
3688 else
3689 {
3690 unsigned int value = symbol->symbol_value;
3691
3692 /* For executables we will have to use the symbol's address and
3693 find out what section would contain that address. Yuk. */
3694 for (section = abfd->sections; section; section = section->next)
3695 {
3696 if (value >= section->vma
3697 && value <= section->vma + section->_cooked_size)
3698 return section;
3699 }
3700
3701 /* Could be a symbol from an external library (such as an OMOS
3702 shared library). Don't abort. */
3703 return bfd_abs_section_ptr;
3704
3705 }
3706 }
3707
3708 /* Read and save the symbol table associated with the given BFD. */
3709
3710 static unsigned int
3711 som_slurp_symbol_table (abfd)
3712 bfd *abfd;
3713 {
3714 int symbol_count = bfd_get_symcount (abfd);
3715 int symsize = sizeof (struct symbol_dictionary_record);
3716 char *stringtab;
3717 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
3718 som_symbol_type *sym, *symbase;
3719
3720 /* Return saved value if it exists. */
3721 if (obj_som_symtab (abfd) != NULL)
3722 goto successful_return;
3723
3724 /* Special case. This is *not* an error. */
3725 if (symbol_count == 0)
3726 goto successful_return;
3727
3728 if (!som_slurp_string_table (abfd))
3729 goto error_return;
3730
3731 stringtab = obj_som_stringtab (abfd);
3732
3733 symbase = (som_symbol_type *)
3734 malloc (symbol_count * sizeof (som_symbol_type));
3735 if (symbase == NULL)
3736 {
3737 bfd_set_error (bfd_error_no_memory);
3738 goto error_return;
3739 }
3740
3741 /* Read in the external SOM representation. */
3742 buf = malloc (symbol_count * symsize);
3743 if (buf == NULL && symbol_count * symsize != 0)
3744 {
3745 bfd_set_error (bfd_error_no_memory);
3746 goto error_return;
3747 }
3748 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
3749 goto error_return;
3750 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
3751 != symbol_count * symsize)
3752 goto error_return;
3753
3754 /* Iterate over all the symbols and internalize them. */
3755 endbufp = buf + symbol_count;
3756 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
3757 {
3758
3759 /* I don't think we care about these. */
3760 if (bufp->symbol_type == ST_SYM_EXT
3761 || bufp->symbol_type == ST_ARG_EXT)
3762 continue;
3763
3764 /* Set some private data we care about. */
3765 if (bufp->symbol_type == ST_NULL)
3766 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3767 else if (bufp->symbol_type == ST_ABSOLUTE)
3768 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
3769 else if (bufp->symbol_type == ST_DATA)
3770 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
3771 else if (bufp->symbol_type == ST_CODE)
3772 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
3773 else if (bufp->symbol_type == ST_PRI_PROG)
3774 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
3775 else if (bufp->symbol_type == ST_SEC_PROG)
3776 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
3777 else if (bufp->symbol_type == ST_ENTRY)
3778 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
3779 else if (bufp->symbol_type == ST_MILLICODE)
3780 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
3781 else if (bufp->symbol_type == ST_PLABEL)
3782 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
3783 else
3784 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3785 som_symbol_data (sym)->tc_data.hppa_arg_reloc = bufp->arg_reloc;
3786
3787 /* Some reasonable defaults. */
3788 sym->symbol.the_bfd = abfd;
3789 sym->symbol.name = bufp->name.n_strx + stringtab;
3790 sym->symbol.value = bufp->symbol_value;
3791 sym->symbol.section = 0;
3792 sym->symbol.flags = 0;
3793
3794 switch (bufp->symbol_type)
3795 {
3796 case ST_ENTRY:
3797 case ST_MILLICODE:
3798 sym->symbol.flags |= BSF_FUNCTION;
3799 sym->symbol.value &= ~0x3;
3800 break;
3801
3802 case ST_STUB:
3803 case ST_CODE:
3804 case ST_PRI_PROG:
3805 case ST_SEC_PROG:
3806 sym->symbol.value &= ~0x3;
3807 /* If the symbol's scope is ST_UNSAT, then these are
3808 undefined function symbols. */
3809 if (bufp->symbol_scope == SS_UNSAT)
3810 sym->symbol.flags |= BSF_FUNCTION;
3811
3812
3813 default:
3814 break;
3815 }
3816
3817 /* Handle scoping and section information. */
3818 switch (bufp->symbol_scope)
3819 {
3820 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
3821 so the section associated with this symbol can't be known. */
3822 case SS_EXTERNAL:
3823 if (bufp->symbol_type != ST_STORAGE)
3824 sym->symbol.section = bfd_und_section_ptr;
3825 else
3826 sym->symbol.section = bfd_com_section_ptr;
3827 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3828 break;
3829
3830 case SS_UNSAT:
3831 if (bufp->symbol_type != ST_STORAGE)
3832 sym->symbol.section = bfd_und_section_ptr;
3833 else
3834 sym->symbol.section = bfd_com_section_ptr;
3835 break;
3836
3837 case SS_UNIVERSAL:
3838 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3839 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3840 sym->symbol.value -= sym->symbol.section->vma;
3841 break;
3842
3843 #if 0
3844 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
3845 Sound dumb? It is. */
3846 case SS_GLOBAL:
3847 #endif
3848 case SS_LOCAL:
3849 sym->symbol.flags |= BSF_LOCAL;
3850 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3851 sym->symbol.value -= sym->symbol.section->vma;
3852 break;
3853 }
3854
3855 /* Mark section symbols and symbols used by the debugger.
3856 Note $START$ is a magic code symbol, NOT a section symbol. */
3857 if (sym->symbol.name[0] == '$'
3858 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$'
3859 && strcmp (sym->symbol.name, "$START$"))
3860 sym->symbol.flags |= BSF_SECTION_SYM;
3861 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
3862 {
3863 sym->symbol.flags |= BSF_SECTION_SYM;
3864 sym->symbol.name = sym->symbol.section->name;
3865 }
3866 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
3867 sym->symbol.flags |= BSF_DEBUGGING;
3868
3869 /* Note increment at bottom of loop, since we skip some symbols
3870 we can not include it as part of the for statement. */
3871 sym++;
3872 }
3873
3874 /* Save our results and return success. */
3875 obj_som_symtab (abfd) = symbase;
3876 successful_return:
3877 if (buf != NULL)
3878 free (buf);
3879 return (true);
3880
3881 error_return:
3882 if (buf != NULL)
3883 free (buf);
3884 return false;
3885 }
3886
3887 /* Canonicalize a SOM symbol table. Return the number of entries
3888 in the symbol table. */
3889
3890 static long
3891 som_get_symtab (abfd, location)
3892 bfd *abfd;
3893 asymbol **location;
3894 {
3895 int i;
3896 som_symbol_type *symbase;
3897
3898 if (!som_slurp_symbol_table (abfd))
3899 return -1;
3900
3901 i = bfd_get_symcount (abfd);
3902 symbase = obj_som_symtab (abfd);
3903
3904 for (; i > 0; i--, location++, symbase++)
3905 *location = &symbase->symbol;
3906
3907 /* Final null pointer. */
3908 *location = 0;
3909 return (bfd_get_symcount (abfd));
3910 }
3911
3912 /* Make a SOM symbol. There is nothing special to do here. */
3913
3914 static asymbol *
3915 som_make_empty_symbol (abfd)
3916 bfd *abfd;
3917 {
3918 som_symbol_type *new =
3919 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
3920 if (new == NULL)
3921 {
3922 bfd_set_error (bfd_error_no_memory);
3923 return 0;
3924 }
3925 new->symbol.the_bfd = abfd;
3926
3927 return &new->symbol;
3928 }
3929
3930 /* Print symbol information. */
3931
3932 static void
3933 som_print_symbol (ignore_abfd, afile, symbol, how)
3934 bfd *ignore_abfd;
3935 PTR afile;
3936 asymbol *symbol;
3937 bfd_print_symbol_type how;
3938 {
3939 FILE *file = (FILE *) afile;
3940 switch (how)
3941 {
3942 case bfd_print_symbol_name:
3943 fprintf (file, "%s", symbol->name);
3944 break;
3945 case bfd_print_symbol_more:
3946 fprintf (file, "som ");
3947 fprintf_vma (file, symbol->value);
3948 fprintf (file, " %lx", (long) symbol->flags);
3949 break;
3950 case bfd_print_symbol_all:
3951 {
3952 CONST char *section_name;
3953 section_name = symbol->section ? symbol->section->name : "(*none*)";
3954 bfd_print_symbol_vandf ((PTR) file, symbol);
3955 fprintf (file, " %s\t%s", section_name, symbol->name);
3956 break;
3957 }
3958 }
3959 }
3960
3961 static boolean
3962 som_bfd_is_local_label (abfd, sym)
3963 bfd *abfd;
3964 asymbol *sym;
3965 {
3966 return (sym->name[0] == 'L' && sym->name[1] == '$');
3967 }
3968
3969 /* Count or process variable-length SOM fixup records.
3970
3971 To avoid code duplication we use this code both to compute the number
3972 of relocations requested by a stream, and to internalize the stream.
3973
3974 When computing the number of relocations requested by a stream the
3975 variables rptr, section, and symbols have no meaning.
3976
3977 Return the number of relocations requested by the fixup stream. When
3978 not just counting
3979
3980 This needs at least two or three more passes to get it cleaned up. */
3981
3982 static unsigned int
3983 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
3984 unsigned char *fixup;
3985 unsigned int end;
3986 arelent *internal_relocs;
3987 asection *section;
3988 asymbol **symbols;
3989 boolean just_count;
3990 {
3991 unsigned int op, varname;
3992 unsigned char *end_fixups = &fixup[end];
3993 const struct fixup_format *fp;
3994 char *cp;
3995 unsigned char *save_fixup;
3996 int variables[26], stack[20], c, v, count, prev_fixup, *sp, saved_unwind_bits;
3997 const int *subop;
3998 arelent *rptr= internal_relocs;
3999 unsigned int offset = 0;
4000
4001 #define var(c) variables[(c) - 'A']
4002 #define push(v) (*sp++ = (v))
4003 #define pop() (*--sp)
4004 #define emptystack() (sp == stack)
4005
4006 som_initialize_reloc_queue (reloc_queue);
4007 memset (variables, 0, sizeof (variables));
4008 memset (stack, 0, sizeof (stack));
4009 count = 0;
4010 prev_fixup = 0;
4011 saved_unwind_bits = 0;
4012 sp = stack;
4013
4014 while (fixup < end_fixups)
4015 {
4016
4017 /* Save pointer to the start of this fixup. We'll use
4018 it later to determine if it is necessary to put this fixup
4019 on the queue. */
4020 save_fixup = fixup;
4021
4022 /* Get the fixup code and its associated format. */
4023 op = *fixup++;
4024 fp = &som_fixup_formats[op];
4025
4026 /* Handle a request for a previous fixup. */
4027 if (*fp->format == 'P')
4028 {
4029 /* Get pointer to the beginning of the prev fixup, move
4030 the repeated fixup to the head of the queue. */
4031 fixup = reloc_queue[fp->D].reloc;
4032 som_reloc_queue_fix (reloc_queue, fp->D);
4033 prev_fixup = 1;
4034
4035 /* Get the fixup code and its associated format. */
4036 op = *fixup++;
4037 fp = &som_fixup_formats[op];
4038 }
4039
4040 /* If this fixup will be passed to BFD, set some reasonable defaults. */
4041 if (! just_count
4042 && som_hppa_howto_table[op].type != R_NO_RELOCATION
4043 && som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
4044 {
4045 rptr->address = offset;
4046 rptr->howto = &som_hppa_howto_table[op];
4047 rptr->addend = 0;
4048 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
4049 }
4050
4051 /* Set default input length to 0. Get the opcode class index
4052 into D. */
4053 var ('L') = 0;
4054 var ('D') = fp->D;
4055 var ('U') = saved_unwind_bits;
4056
4057 /* Get the opcode format. */
4058 cp = fp->format;
4059
4060 /* Process the format string. Parsing happens in two phases,
4061 parse RHS, then assign to LHS. Repeat until no more
4062 characters in the format string. */
4063 while (*cp)
4064 {
4065 /* The variable this pass is going to compute a value for. */
4066 varname = *cp++;
4067
4068 /* Start processing RHS. Continue until a NULL or '=' is found. */
4069 do
4070 {
4071 c = *cp++;
4072
4073 /* If this is a variable, push it on the stack. */
4074 if (isupper (c))
4075 push (var (c));
4076
4077 /* If this is a lower case letter, then it represents
4078 additional data from the fixup stream to be pushed onto
4079 the stack. */
4080 else if (islower (c))
4081 {
4082 for (v = 0; c > 'a'; --c)
4083 v = (v << 8) | *fixup++;
4084 push (v);
4085 }
4086
4087 /* A decimal constant. Push it on the stack. */
4088 else if (isdigit (c))
4089 {
4090 v = c - '0';
4091 while (isdigit (*cp))
4092 v = (v * 10) + (*cp++ - '0');
4093 push (v);
4094 }
4095 else
4096
4097 /* An operator. Pop two two values from the stack and
4098 use them as operands to the given operation. Push
4099 the result of the operation back on the stack. */
4100 switch (c)
4101 {
4102 case '+':
4103 v = pop ();
4104 v += pop ();
4105 push (v);
4106 break;
4107 case '*':
4108 v = pop ();
4109 v *= pop ();
4110 push (v);
4111 break;
4112 case '<':
4113 v = pop ();
4114 v = pop () << v;
4115 push (v);
4116 break;
4117 default:
4118 abort ();
4119 }
4120 }
4121 while (*cp && *cp != '=');
4122
4123 /* Move over the equal operator. */
4124 cp++;
4125
4126 /* Pop the RHS off the stack. */
4127 c = pop ();
4128
4129 /* Perform the assignment. */
4130 var (varname) = c;
4131
4132 /* Handle side effects. and special 'O' stack cases. */
4133 switch (varname)
4134 {
4135 /* Consume some bytes from the input space. */
4136 case 'L':
4137 offset += c;
4138 break;
4139 /* A symbol to use in the relocation. Make a note
4140 of this if we are not just counting. */
4141 case 'S':
4142 if (! just_count)
4143 rptr->sym_ptr_ptr = &symbols[c];
4144 break;
4145 /* Handle the linker expression stack. */
4146 case 'O':
4147 switch (op)
4148 {
4149 case R_COMP1:
4150 subop = comp1_opcodes;
4151 break;
4152 case R_COMP2:
4153 subop = comp2_opcodes;
4154 break;
4155 case R_COMP3:
4156 subop = comp3_opcodes;
4157 break;
4158 default:
4159 abort ();
4160 }
4161 while (*subop <= (unsigned char) c)
4162 ++subop;
4163 --subop;
4164 break;
4165 /* The lower 32unwind bits must be persistent. */
4166 case 'U':
4167 saved_unwind_bits = var ('U');
4168 break;
4169
4170 default:
4171 break;
4172 }
4173 }
4174
4175 /* If we used a previous fixup, clean up after it. */
4176 if (prev_fixup)
4177 {
4178 fixup = save_fixup + 1;
4179 prev_fixup = 0;
4180 }
4181 /* Queue it. */
4182 else if (fixup > save_fixup + 1)
4183 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4184
4185 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4186 fixups to BFD. */
4187 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4188 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4189 {
4190 /* Done with a single reloction. Loop back to the top. */
4191 if (! just_count)
4192 {
4193 if (som_hppa_howto_table[op].type == R_ENTRY)
4194 rptr->addend = var ('T');
4195 else if (som_hppa_howto_table[op].type == R_EXIT)
4196 rptr->addend = var ('U');
4197 else
4198 rptr->addend = var ('V');
4199 rptr++;
4200 }
4201 count++;
4202 /* Now that we've handled a "full" relocation, reset
4203 some state. */
4204 memset (variables, 0, sizeof (variables));
4205 memset (stack, 0, sizeof (stack));
4206 }
4207 }
4208 return count;
4209
4210 #undef var
4211 #undef push
4212 #undef pop
4213 #undef emptystack
4214 }
4215
4216 /* Read in the relocs (aka fixups in SOM terms) for a section.
4217
4218 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4219 set to true to indicate it only needs a count of the number
4220 of actual relocations. */
4221
4222 static boolean
4223 som_slurp_reloc_table (abfd, section, symbols, just_count)
4224 bfd *abfd;
4225 asection *section;
4226 asymbol **symbols;
4227 boolean just_count;
4228 {
4229 char *external_relocs;
4230 unsigned int fixup_stream_size;
4231 arelent *internal_relocs;
4232 unsigned int num_relocs;
4233
4234 fixup_stream_size = som_section_data (section)->reloc_size;
4235 /* If there were no relocations, then there is nothing to do. */
4236 if (section->reloc_count == 0)
4237 return true;
4238
4239 /* If reloc_count is -1, then the relocation stream has not been
4240 parsed. We must do so now to know how many relocations exist. */
4241 if (section->reloc_count == -1)
4242 {
4243 external_relocs = (char *) malloc (fixup_stream_size);
4244 if (external_relocs == (char *) NULL)
4245 {
4246 bfd_set_error (bfd_error_no_memory);
4247 return false;
4248 }
4249 /* Read in the external forms. */
4250 if (bfd_seek (abfd,
4251 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4252 SEEK_SET)
4253 != 0)
4254 return false;
4255 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
4256 != fixup_stream_size)
4257 return false;
4258
4259 /* Let callers know how many relocations found.
4260 also save the relocation stream as we will
4261 need it again. */
4262 section->reloc_count = som_set_reloc_info (external_relocs,
4263 fixup_stream_size,
4264 NULL, NULL, NULL, true);
4265
4266 som_section_data (section)->reloc_stream = external_relocs;
4267 }
4268
4269 /* If the caller only wanted a count, then return now. */
4270 if (just_count)
4271 return true;
4272
4273 num_relocs = section->reloc_count;
4274 external_relocs = som_section_data (section)->reloc_stream;
4275 /* Return saved information about the relocations if it is available. */
4276 if (section->relocation != (arelent *) NULL)
4277 return true;
4278
4279 internal_relocs = (arelent *) malloc (num_relocs * sizeof (arelent));
4280 if (internal_relocs == (arelent *) NULL)
4281 {
4282 bfd_set_error (bfd_error_no_memory);
4283 return false;
4284 }
4285
4286 /* Process and internalize the relocations. */
4287 som_set_reloc_info (external_relocs, fixup_stream_size,
4288 internal_relocs, section, symbols, false);
4289
4290 /* Save our results and return success. */
4291 section->relocation = internal_relocs;
4292 return (true);
4293 }
4294
4295 /* Return the number of bytes required to store the relocation
4296 information associated with the given section. */
4297
4298 static long
4299 som_get_reloc_upper_bound (abfd, asect)
4300 bfd *abfd;
4301 sec_ptr asect;
4302 {
4303 /* If section has relocations, then read in the relocation stream
4304 and parse it to determine how many relocations exist. */
4305 if (asect->flags & SEC_RELOC)
4306 {
4307 if (! som_slurp_reloc_table (abfd, asect, NULL, true))
4308 return false;
4309 return (asect->reloc_count + 1) * sizeof (arelent);
4310 }
4311 /* There are no relocations. */
4312 return 0;
4313 }
4314
4315 /* Convert relocations from SOM (external) form into BFD internal
4316 form. Return the number of relocations. */
4317
4318 static long
4319 som_canonicalize_reloc (abfd, section, relptr, symbols)
4320 bfd *abfd;
4321 sec_ptr section;
4322 arelent **relptr;
4323 asymbol **symbols;
4324 {
4325 arelent *tblptr;
4326 int count;
4327
4328 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
4329 return -1;
4330
4331 count = section->reloc_count;
4332 tblptr = section->relocation;
4333
4334 while (count--)
4335 *relptr++ = tblptr++;
4336
4337 *relptr = (arelent *) NULL;
4338 return section->reloc_count;
4339 }
4340
4341 extern const bfd_target som_vec;
4342
4343 /* A hook to set up object file dependent section information. */
4344
4345 static boolean
4346 som_new_section_hook (abfd, newsect)
4347 bfd *abfd;
4348 asection *newsect;
4349 {
4350 newsect->used_by_bfd =
4351 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
4352 if (!newsect->used_by_bfd)
4353 {
4354 bfd_set_error (bfd_error_no_memory);
4355 return false;
4356 }
4357 newsect->alignment_power = 3;
4358
4359 /* We allow more than three sections internally */
4360 return true;
4361 }
4362
4363 /* Copy any private info we understand from the input section
4364 to the output section. */
4365 static boolean
4366 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
4367 bfd *ibfd;
4368 asection *isection;
4369 bfd *obfd;
4370 asection *osection;
4371 {
4372 /* One day we may try to grok other private data. */
4373 if (ibfd->xvec->flavour != bfd_target_som_flavour
4374 || obfd->xvec->flavour != bfd_target_som_flavour
4375 || (!som_is_space (isection) && !som_is_subspace (isection)))
4376 return false;
4377
4378 som_section_data (osection)->copy_data
4379 = (struct som_copyable_section_data_struct *)
4380 bfd_zalloc (obfd, sizeof (struct som_copyable_section_data_struct));
4381 if (som_section_data (osection)->copy_data == NULL)
4382 {
4383 bfd_set_error (bfd_error_no_memory);
4384 return false;
4385 }
4386
4387 memcpy (som_section_data (osection)->copy_data,
4388 som_section_data (isection)->copy_data,
4389 sizeof (struct som_copyable_section_data_struct));
4390
4391 /* Reparent if necessary. */
4392 if (som_section_data (osection)->copy_data->container)
4393 som_section_data (osection)->copy_data->container =
4394 som_section_data (osection)->copy_data->container->output_section;
4395
4396 return true;
4397 }
4398
4399 /* Copy any private info we understand from the input bfd
4400 to the output bfd. */
4401
4402 static boolean
4403 som_bfd_copy_private_bfd_data (ibfd, obfd)
4404 bfd *ibfd, *obfd;
4405 {
4406 /* One day we may try to grok other private data. */
4407 if (ibfd->xvec->flavour != bfd_target_som_flavour
4408 || obfd->xvec->flavour != bfd_target_som_flavour)
4409 return false;
4410
4411 /* Allocate some memory to hold the data we need. */
4412 obj_som_exec_data (obfd) = (struct som_exec_data *)
4413 bfd_zalloc (obfd, sizeof (struct som_exec_data));
4414 if (obj_som_exec_data (obfd) == NULL)
4415 {
4416 bfd_set_error (bfd_error_no_memory);
4417 return false;
4418 }
4419
4420 /* Now copy the data. */
4421 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
4422 sizeof (struct som_exec_data));
4423
4424 return true;
4425 }
4426
4427 /* Set backend info for sections which can not be described
4428 in the BFD data structures. */
4429
4430 boolean
4431 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
4432 asection *section;
4433 int defined;
4434 int private;
4435 unsigned int sort_key;
4436 int spnum;
4437 {
4438 /* Allocate memory to hold the magic information. */
4439 if (som_section_data (section)->copy_data == NULL)
4440 {
4441 som_section_data (section)->copy_data
4442 = (struct som_copyable_section_data_struct *)
4443 bfd_zalloc (section->owner,
4444 sizeof (struct som_copyable_section_data_struct));
4445 if (som_section_data (section)->copy_data == NULL)
4446 {
4447 bfd_set_error (bfd_error_no_memory);
4448 return false;
4449 }
4450 }
4451 som_section_data (section)->copy_data->sort_key = sort_key;
4452 som_section_data (section)->copy_data->is_defined = defined;
4453 som_section_data (section)->copy_data->is_private = private;
4454 som_section_data (section)->copy_data->container = section;
4455 som_section_data (section)->copy_data->space_number = spnum;
4456 return true;
4457 }
4458
4459 /* Set backend info for subsections which can not be described
4460 in the BFD data structures. */
4461
4462 boolean
4463 bfd_som_set_subsection_attributes (section, container, access,
4464 sort_key, quadrant)
4465 asection *section;
4466 asection *container;
4467 int access;
4468 unsigned int sort_key;
4469 int quadrant;
4470 {
4471 /* Allocate memory to hold the magic information. */
4472 if (som_section_data (section)->copy_data == NULL)
4473 {
4474 som_section_data (section)->copy_data
4475 = (struct som_copyable_section_data_struct *)
4476 bfd_zalloc (section->owner,
4477 sizeof (struct som_copyable_section_data_struct));
4478 if (som_section_data (section)->copy_data == NULL)
4479 {
4480 bfd_set_error (bfd_error_no_memory);
4481 return false;
4482 }
4483 }
4484 som_section_data (section)->copy_data->sort_key = sort_key;
4485 som_section_data (section)->copy_data->access_control_bits = access;
4486 som_section_data (section)->copy_data->quadrant = quadrant;
4487 som_section_data (section)->copy_data->container = container;
4488 return true;
4489 }
4490
4491 /* Set the full SOM symbol type. SOM needs far more symbol information
4492 than any other object file format I'm aware of. It is mandatory
4493 to be able to know if a symbol is an entry point, millicode, data,
4494 code, absolute, storage request, or procedure label. If you get
4495 the symbol type wrong your program will not link. */
4496
4497 void
4498 bfd_som_set_symbol_type (symbol, type)
4499 asymbol *symbol;
4500 unsigned int type;
4501 {
4502 som_symbol_data (symbol)->som_type = type;
4503 }
4504
4505 /* Attach an auxiliary header to the BFD backend so that it may be
4506 written into the object file. */
4507 boolean
4508 bfd_som_attach_aux_hdr (abfd, type, string)
4509 bfd *abfd;
4510 int type;
4511 char *string;
4512 {
4513 if (type == VERSION_AUX_ID)
4514 {
4515 int len = strlen (string);
4516 int pad = 0;
4517
4518 if (len % 4)
4519 pad = (4 - (len % 4));
4520 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
4521 bfd_zalloc (abfd, sizeof (struct aux_id)
4522 + sizeof (unsigned int) + len + pad);
4523 if (!obj_som_version_hdr (abfd))
4524 {
4525 bfd_set_error (bfd_error_no_memory);
4526 return false;
4527 }
4528 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
4529 obj_som_version_hdr (abfd)->header_id.length = len + pad;
4530 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
4531 obj_som_version_hdr (abfd)->string_length = len;
4532 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
4533 }
4534 else if (type == COPYRIGHT_AUX_ID)
4535 {
4536 int len = strlen (string);
4537 int pad = 0;
4538
4539 if (len % 4)
4540 pad = (4 - (len % 4));
4541 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
4542 bfd_zalloc (abfd, sizeof (struct aux_id)
4543 + sizeof (unsigned int) + len + pad);
4544 if (!obj_som_copyright_hdr (abfd))
4545 {
4546 bfd_set_error (bfd_error_no_memory);
4547 return false;
4548 }
4549 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
4550 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
4551 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
4552 obj_som_copyright_hdr (abfd)->string_length = len;
4553 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
4554 }
4555 return true;
4556 }
4557
4558 static boolean
4559 som_get_section_contents (abfd, section, location, offset, count)
4560 bfd *abfd;
4561 sec_ptr section;
4562 PTR location;
4563 file_ptr offset;
4564 bfd_size_type count;
4565 {
4566 if (count == 0 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4567 return true;
4568 if ((bfd_size_type)(offset+count) > section->_raw_size
4569 || bfd_seek (abfd, (file_ptr)(section->filepos + offset), SEEK_SET) == -1
4570 || bfd_read (location, (bfd_size_type)1, count, abfd) != count)
4571 return (false); /* on error */
4572 return (true);
4573 }
4574
4575 static boolean
4576 som_set_section_contents (abfd, section, location, offset, count)
4577 bfd *abfd;
4578 sec_ptr section;
4579 PTR location;
4580 file_ptr offset;
4581 bfd_size_type count;
4582 {
4583 if (abfd->output_has_begun == false)
4584 {
4585 /* Set up fixed parts of the file, space, and subspace headers.
4586 Notify the world that output has begun. */
4587 som_prep_headers (abfd);
4588 abfd->output_has_begun = true;
4589 /* Start writing the object file. This include all the string
4590 tables, fixup streams, and other portions of the object file. */
4591 som_begin_writing (abfd);
4592 }
4593
4594 /* Only write subspaces which have "real" contents (eg. the contents
4595 are not generated at run time by the OS). */
4596 if (!som_is_subspace (section)
4597 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4598 return true;
4599
4600 /* Seek to the proper offset within the object file and write the
4601 data. */
4602 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
4603 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
4604 return false;
4605
4606 if (bfd_write ((PTR) location, 1, count, abfd) != count)
4607 return false;
4608 return true;
4609 }
4610
4611 static boolean
4612 som_set_arch_mach (abfd, arch, machine)
4613 bfd *abfd;
4614 enum bfd_architecture arch;
4615 unsigned long machine;
4616 {
4617 /* Allow any architecture to be supported by the SOM backend */
4618 return bfd_default_set_arch_mach (abfd, arch, machine);
4619 }
4620
4621 static boolean
4622 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4623 functionname_ptr, line_ptr)
4624 bfd *abfd;
4625 asection *section;
4626 asymbol **symbols;
4627 bfd_vma offset;
4628 CONST char **filename_ptr;
4629 CONST char **functionname_ptr;
4630 unsigned int *line_ptr;
4631 {
4632 fprintf (stderr, "som_find_nearest_line unimplemented\n");
4633 fflush (stderr);
4634 abort ();
4635 return (false);
4636 }
4637
4638 static int
4639 som_sizeof_headers (abfd, reloc)
4640 bfd *abfd;
4641 boolean reloc;
4642 {
4643 fprintf (stderr, "som_sizeof_headers unimplemented\n");
4644 fflush (stderr);
4645 abort ();
4646 return (0);
4647 }
4648
4649 /* Return the single-character symbol type corresponding to
4650 SOM section S, or '?' for an unknown SOM section. */
4651
4652 static char
4653 som_section_type (s)
4654 const char *s;
4655 {
4656 const struct section_to_type *t;
4657
4658 for (t = &stt[0]; t->section; t++)
4659 if (!strcmp (s, t->section))
4660 return t->type;
4661 return '?';
4662 }
4663
4664 static int
4665 som_decode_symclass (symbol)
4666 asymbol *symbol;
4667 {
4668 char c;
4669
4670 if (bfd_is_com_section (symbol->section))
4671 return 'C';
4672 if (bfd_is_und_section (symbol->section))
4673 return 'U';
4674 if (bfd_is_ind_section (symbol->section))
4675 return 'I';
4676 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
4677 return '?';
4678
4679 if (bfd_is_abs_section (symbol->section))
4680 c = 'a';
4681 else if (symbol->section)
4682 c = som_section_type (symbol->section->name);
4683 else
4684 return '?';
4685 if (symbol->flags & BSF_GLOBAL)
4686 c = toupper (c);
4687 return c;
4688 }
4689
4690 /* Return information about SOM symbol SYMBOL in RET. */
4691
4692 static void
4693 som_get_symbol_info (ignore_abfd, symbol, ret)
4694 bfd *ignore_abfd;
4695 asymbol *symbol;
4696 symbol_info *ret;
4697 {
4698 ret->type = som_decode_symclass (symbol);
4699 if (ret->type != 'U')
4700 ret->value = symbol->value+symbol->section->vma;
4701 else
4702 ret->value = 0;
4703 ret->name = symbol->name;
4704 }
4705
4706 /* Count the number of symbols in the archive symbol table. Necessary
4707 so that we can allocate space for all the carsyms at once. */
4708
4709 static boolean
4710 som_bfd_count_ar_symbols (abfd, lst_header, count)
4711 bfd *abfd;
4712 struct lst_header *lst_header;
4713 symindex *count;
4714 {
4715 unsigned int i;
4716 unsigned int *hash_table = NULL;
4717 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4718
4719 hash_table =
4720 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4721 if (hash_table == NULL && lst_header->hash_size != 0)
4722 {
4723 bfd_set_error (bfd_error_no_memory);
4724 goto error_return;
4725 }
4726
4727 /* Don't forget to initialize the counter! */
4728 *count = 0;
4729
4730 /* Read in the hash table. The has table is an array of 32bit file offsets
4731 which point to the hash chains. */
4732 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4733 != lst_header->hash_size * 4)
4734 goto error_return;
4735
4736 /* Walk each chain counting the number of symbols found on that particular
4737 chain. */
4738 for (i = 0; i < lst_header->hash_size; i++)
4739 {
4740 struct lst_symbol_record lst_symbol;
4741
4742 /* An empty chain has zero as it's file offset. */
4743 if (hash_table[i] == 0)
4744 continue;
4745
4746 /* Seek to the first symbol in this hash chain. */
4747 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4748 goto error_return;
4749
4750 /* Read in this symbol and update the counter. */
4751 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4752 != sizeof (lst_symbol))
4753 goto error_return;
4754
4755 (*count)++;
4756
4757 /* Now iterate through the rest of the symbols on this chain. */
4758 while (lst_symbol.next_entry)
4759 {
4760
4761 /* Seek to the next symbol. */
4762 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4763 < 0)
4764 goto error_return;
4765
4766 /* Read the symbol in and update the counter. */
4767 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4768 != sizeof (lst_symbol))
4769 goto error_return;
4770
4771 (*count)++;
4772 }
4773 }
4774 if (hash_table != NULL)
4775 free (hash_table);
4776 return true;
4777
4778 error_return:
4779 if (hash_table != NULL)
4780 free (hash_table);
4781 return false;
4782 }
4783
4784 /* Fill in the canonical archive symbols (SYMS) from the archive described
4785 by ABFD and LST_HEADER. */
4786
4787 static boolean
4788 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
4789 bfd *abfd;
4790 struct lst_header *lst_header;
4791 carsym **syms;
4792 {
4793 unsigned int i, len;
4794 carsym *set = syms[0];
4795 unsigned int *hash_table = NULL;
4796 struct som_entry *som_dict = NULL;
4797 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4798
4799 hash_table =
4800 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4801 if (hash_table == NULL && lst_header->hash_size != 0)
4802 {
4803 bfd_set_error (bfd_error_no_memory);
4804 goto error_return;
4805 }
4806
4807 som_dict =
4808 (struct som_entry *) malloc (lst_header->module_count
4809 * sizeof (struct som_entry));
4810 if (som_dict == NULL && lst_header->module_count != 0)
4811 {
4812 bfd_set_error (bfd_error_no_memory);
4813 goto error_return;
4814 }
4815
4816 /* Read in the hash table. The has table is an array of 32bit file offsets
4817 which point to the hash chains. */
4818 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4819 != lst_header->hash_size * 4)
4820 goto error_return;
4821
4822 /* Seek to and read in the SOM dictionary. We will need this to fill
4823 in the carsym's filepos field. */
4824 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
4825 goto error_return;
4826
4827 if (bfd_read ((PTR) som_dict, lst_header->module_count,
4828 sizeof (struct som_entry), abfd)
4829 != lst_header->module_count * sizeof (struct som_entry))
4830 goto error_return;
4831
4832 /* Walk each chain filling in the carsyms as we go along. */
4833 for (i = 0; i < lst_header->hash_size; i++)
4834 {
4835 struct lst_symbol_record lst_symbol;
4836
4837 /* An empty chain has zero as it's file offset. */
4838 if (hash_table[i] == 0)
4839 continue;
4840
4841 /* Seek to and read the first symbol on the chain. */
4842 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4843 goto error_return;
4844
4845 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4846 != sizeof (lst_symbol))
4847 goto error_return;
4848
4849 /* Get the name of the symbol, first get the length which is stored
4850 as a 32bit integer just before the symbol.
4851
4852 One might ask why we don't just read in the entire string table
4853 and index into it. Well, according to the SOM ABI the string
4854 index can point *anywhere* in the archive to save space, so just
4855 using the string table would not be safe. */
4856 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4857 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4858 goto error_return;
4859
4860 if (bfd_read (&len, 1, 4, abfd) != 4)
4861 goto error_return;
4862
4863 /* Allocate space for the name and null terminate it too. */
4864 set->name = bfd_zalloc (abfd, len + 1);
4865 if (!set->name)
4866 {
4867 bfd_set_error (bfd_error_no_memory);
4868 goto error_return;
4869 }
4870 if (bfd_read (set->name, 1, len, abfd) != len)
4871 goto error_return;
4872
4873 set->name[len] = 0;
4874
4875 /* Fill in the file offset. Note that the "location" field points
4876 to the SOM itself, not the ar_hdr in front of it. */
4877 set->file_offset = som_dict[lst_symbol.som_index].location
4878 - sizeof (struct ar_hdr);
4879
4880 /* Go to the next symbol. */
4881 set++;
4882
4883 /* Iterate through the rest of the chain. */
4884 while (lst_symbol.next_entry)
4885 {
4886 /* Seek to the next symbol and read it in. */
4887 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET) <0)
4888 goto error_return;
4889
4890 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4891 != sizeof (lst_symbol))
4892 goto error_return;
4893
4894 /* Seek to the name length & string and read them in. */
4895 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4896 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4897 goto error_return;
4898
4899 if (bfd_read (&len, 1, 4, abfd) != 4)
4900 goto error_return;
4901
4902 /* Allocate space for the name and null terminate it too. */
4903 set->name = bfd_zalloc (abfd, len + 1);
4904 if (!set->name)
4905 {
4906 bfd_set_error (bfd_error_no_memory);
4907 goto error_return;
4908 }
4909
4910 if (bfd_read (set->name, 1, len, abfd) != len)
4911 goto error_return;
4912 set->name[len] = 0;
4913
4914 /* Fill in the file offset. Note that the "location" field points
4915 to the SOM itself, not the ar_hdr in front of it. */
4916 set->file_offset = som_dict[lst_symbol.som_index].location
4917 - sizeof (struct ar_hdr);
4918
4919 /* Go on to the next symbol. */
4920 set++;
4921 }
4922 }
4923 /* If we haven't died by now, then we successfully read the entire
4924 archive symbol table. */
4925 if (hash_table != NULL)
4926 free (hash_table);
4927 if (som_dict != NULL)
4928 free (som_dict);
4929 return true;
4930
4931 error_return:
4932 if (hash_table != NULL)
4933 free (hash_table);
4934 if (som_dict != NULL)
4935 free (som_dict);
4936 return false;
4937 }
4938
4939 /* Read in the LST from the archive. */
4940 static boolean
4941 som_slurp_armap (abfd)
4942 bfd *abfd;
4943 {
4944 struct lst_header lst_header;
4945 struct ar_hdr ar_header;
4946 unsigned int parsed_size;
4947 struct artdata *ardata = bfd_ardata (abfd);
4948 char nextname[17];
4949 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
4950
4951 /* Special cases. */
4952 if (i == 0)
4953 return true;
4954 if (i != 16)
4955 return false;
4956
4957 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
4958 return false;
4959
4960 /* For archives without .o files there is no symbol table. */
4961 if (strncmp (nextname, "/ ", 16))
4962 {
4963 bfd_has_map (abfd) = false;
4964 return true;
4965 }
4966
4967 /* Read in and sanity check the archive header. */
4968 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
4969 != sizeof (struct ar_hdr))
4970 return false;
4971
4972 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
4973 {
4974 bfd_set_error (bfd_error_malformed_archive);
4975 return false;
4976 }
4977
4978 /* How big is the archive symbol table entry? */
4979 errno = 0;
4980 parsed_size = strtol (ar_header.ar_size, NULL, 10);
4981 if (errno != 0)
4982 {
4983 bfd_set_error (bfd_error_malformed_archive);
4984 return false;
4985 }
4986
4987 /* Save off the file offset of the first real user data. */
4988 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
4989
4990 /* Read in the library symbol table. We'll make heavy use of this
4991 in just a minute. */
4992 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
4993 != sizeof (struct lst_header))
4994 return false;
4995
4996 /* Sanity check. */
4997 if (lst_header.a_magic != LIBMAGIC)
4998 {
4999 bfd_set_error (bfd_error_malformed_archive);
5000 return false;
5001 }
5002
5003 /* Count the number of symbols in the library symbol table. */
5004 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
5005 == false)
5006 return false;
5007
5008 /* Get back to the start of the library symbol table. */
5009 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
5010 + sizeof (struct lst_header), SEEK_SET) < 0)
5011 return false;
5012
5013 /* Initializae the cache and allocate space for the library symbols. */
5014 ardata->cache = 0;
5015 ardata->symdefs = (carsym *) bfd_alloc (abfd,
5016 (ardata->symdef_count
5017 * sizeof (carsym)));
5018 if (!ardata->symdefs)
5019 {
5020 bfd_set_error (bfd_error_no_memory);
5021 return false;
5022 }
5023
5024 /* Now fill in the canonical archive symbols. */
5025 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
5026 == false)
5027 return false;
5028
5029 /* Seek back to the "first" file in the archive. Note the "first"
5030 file may be the extended name table. */
5031 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) < 0)
5032 return false;
5033
5034 /* Notify the generic archive code that we have a symbol map. */
5035 bfd_has_map (abfd) = true;
5036 return true;
5037 }
5038
5039 /* Begin preparing to write a SOM library symbol table.
5040
5041 As part of the prep work we need to determine the number of symbols
5042 and the size of the associated string section. */
5043
5044 static boolean
5045 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
5046 bfd *abfd;
5047 unsigned int *num_syms, *stringsize;
5048 {
5049 bfd *curr_bfd = abfd->archive_head;
5050
5051 /* Some initialization. */
5052 *num_syms = 0;
5053 *stringsize = 0;
5054
5055 /* Iterate over each BFD within this archive. */
5056 while (curr_bfd != NULL)
5057 {
5058 unsigned int curr_count, i;
5059 som_symbol_type *sym;
5060
5061 /* Don't bother for non-SOM objects. */
5062 if (curr_bfd->format != bfd_object
5063 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5064 {
5065 curr_bfd = curr_bfd->next;
5066 continue;
5067 }
5068
5069 /* Make sure the symbol table has been read, then snag a pointer
5070 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5071 but doing so avoids allocating lots of extra memory. */
5072 if (som_slurp_symbol_table (curr_bfd) == false)
5073 return false;
5074
5075 sym = obj_som_symtab (curr_bfd);
5076 curr_count = bfd_get_symcount (curr_bfd);
5077
5078 /* Examine each symbol to determine if it belongs in the
5079 library symbol table. */
5080 for (i = 0; i < curr_count; i++, sym++)
5081 {
5082 struct som_misc_symbol_info info;
5083
5084 /* Derive SOM information from the BFD symbol. */
5085 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5086
5087 /* Should we include this symbol? */
5088 if (info.symbol_type == ST_NULL
5089 || info.symbol_type == ST_SYM_EXT
5090 || info.symbol_type == ST_ARG_EXT)
5091 continue;
5092
5093 /* Only global symbols and unsatisfied commons. */
5094 if (info.symbol_scope != SS_UNIVERSAL
5095 && info.symbol_type != ST_STORAGE)
5096 continue;
5097
5098 /* Do no include undefined symbols. */
5099 if (bfd_is_und_section (sym->symbol.section))
5100 continue;
5101
5102 /* Bump the various counters, being careful to honor
5103 alignment considerations in the string table. */
5104 (*num_syms)++;
5105 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5106 while (*stringsize % 4)
5107 (*stringsize)++;
5108 }
5109
5110 curr_bfd = curr_bfd->next;
5111 }
5112 return true;
5113 }
5114
5115 /* Hash a symbol name based on the hashing algorithm presented in the
5116 SOM ABI. */
5117 static unsigned int
5118 som_bfd_ar_symbol_hash (symbol)
5119 asymbol *symbol;
5120 {
5121 unsigned int len = strlen (symbol->name);
5122
5123 /* Names with length 1 are special. */
5124 if (len == 1)
5125 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5126
5127 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5128 | (symbol->name[len-2] << 8) | symbol->name[len-1];
5129 }
5130
5131 static CONST char *
5132 normalize (file)
5133 CONST char *file;
5134 {
5135 CONST char *filename = strrchr (file, '/');
5136
5137 if (filename != NULL)
5138 filename++;
5139 else
5140 filename = file;
5141 return filename;
5142 }
5143
5144 /* Do the bulk of the work required to write the SOM library
5145 symbol table. */
5146
5147 static boolean
5148 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst)
5149 bfd *abfd;
5150 unsigned int nsyms, string_size;
5151 struct lst_header lst;
5152 {
5153 file_ptr lst_filepos;
5154 char *strings = NULL, *p;
5155 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5156 bfd *curr_bfd;
5157 unsigned int *hash_table = NULL;
5158 struct som_entry *som_dict = NULL;
5159 struct lst_symbol_record **last_hash_entry = NULL;
5160 unsigned int curr_som_offset, som_index, extended_name_length = 0;
5161 unsigned int maxname = abfd->xvec->ar_max_namelen;
5162
5163 hash_table =
5164 (unsigned int *) malloc (lst.hash_size * sizeof (unsigned int));
5165 if (hash_table == NULL && lst.hash_size != 0)
5166 {
5167 bfd_set_error (bfd_error_no_memory);
5168 goto error_return;
5169 }
5170 som_dict =
5171 (struct som_entry *) malloc (lst.module_count
5172 * sizeof (struct som_entry));
5173 if (som_dict == NULL && lst.module_count != 0)
5174 {
5175 bfd_set_error (bfd_error_no_memory);
5176 goto error_return;
5177 }
5178
5179 last_hash_entry =
5180 ((struct lst_symbol_record **)
5181 malloc (lst.hash_size * sizeof (struct lst_symbol_record *)));
5182 if (last_hash_entry == NULL && lst.hash_size != 0)
5183 {
5184 bfd_set_error (bfd_error_no_memory);
5185 goto error_return;
5186 }
5187
5188 /* Lots of fields are file positions relative to the start
5189 of the lst record. So save its location. */
5190 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5191
5192 /* Some initialization. */
5193 memset (hash_table, 0, 4 * lst.hash_size);
5194 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
5195 memset (last_hash_entry, 0,
5196 lst.hash_size * sizeof (struct lst_symbol_record *));
5197
5198 /* Symbols have som_index fields, so we have to keep track of the
5199 index of each SOM in the archive.
5200
5201 The SOM dictionary has (among other things) the absolute file
5202 position for the SOM which a particular dictionary entry
5203 describes. We have to compute that information as we iterate
5204 through the SOMs/symbols. */
5205 som_index = 0;
5206 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5207
5208 /* Yow! We have to know the size of the extended name table
5209 too. */
5210 for (curr_bfd = abfd->archive_head;
5211 curr_bfd != NULL;
5212 curr_bfd = curr_bfd->next)
5213 {
5214 CONST char *normal = normalize (curr_bfd->filename);
5215 unsigned int thislen;
5216
5217 if (!normal)
5218 {
5219 bfd_set_error (bfd_error_no_memory);
5220 return false;
5221 }
5222 thislen = strlen (normal);
5223 if (thislen > maxname)
5224 extended_name_length += thislen + 1;
5225 }
5226
5227 /* Make room for the archive header and the contents of the
5228 extended string table. */
5229 if (extended_name_length)
5230 curr_som_offset += extended_name_length + sizeof (struct ar_hdr);
5231
5232 /* Make sure we're properly aligned. */
5233 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5234
5235 /* FIXME should be done with buffers just like everything else... */
5236 lst_syms = malloc (nsyms * sizeof (struct lst_symbol_record));
5237 if (lst_syms == NULL && nsyms != 0)
5238 {
5239 bfd_set_error (bfd_error_no_memory);
5240 goto error_return;
5241 }
5242 strings = malloc (string_size);
5243 if (strings == NULL && string_size != 0)
5244 {
5245 bfd_set_error (bfd_error_no_memory);
5246 goto error_return;
5247 }
5248
5249 p = strings;
5250 curr_lst_sym = lst_syms;
5251
5252 curr_bfd = abfd->archive_head;
5253 while (curr_bfd != NULL)
5254 {
5255 unsigned int curr_count, i;
5256 som_symbol_type *sym;
5257
5258 /* Don't bother for non-SOM objects. */
5259 if (curr_bfd->format != bfd_object
5260 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5261 {
5262 curr_bfd = curr_bfd->next;
5263 continue;
5264 }
5265
5266 /* Make sure the symbol table has been read, then snag a pointer
5267 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5268 but doing so avoids allocating lots of extra memory. */
5269 if (som_slurp_symbol_table (curr_bfd) == false)
5270 goto error_return;
5271
5272 sym = obj_som_symtab (curr_bfd);
5273 curr_count = bfd_get_symcount (curr_bfd);
5274
5275 for (i = 0; i < curr_count; i++, sym++)
5276 {
5277 struct som_misc_symbol_info info;
5278
5279 /* Derive SOM information from the BFD symbol. */
5280 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5281
5282 /* Should we include this symbol? */
5283 if (info.symbol_type == ST_NULL
5284 || info.symbol_type == ST_SYM_EXT
5285 || info.symbol_type == ST_ARG_EXT)
5286 continue;
5287
5288 /* Only global symbols and unsatisfied commons. */
5289 if (info.symbol_scope != SS_UNIVERSAL
5290 && info.symbol_type != ST_STORAGE)
5291 continue;
5292
5293 /* Do no include undefined symbols. */
5294 if (bfd_is_und_section (sym->symbol.section))
5295 continue;
5296
5297 /* If this is the first symbol from this SOM, then update
5298 the SOM dictionary too. */
5299 if (som_dict[som_index].location == 0)
5300 {
5301 som_dict[som_index].location = curr_som_offset;
5302 som_dict[som_index].length = arelt_size (curr_bfd);
5303 }
5304
5305 /* Fill in the lst symbol record. */
5306 curr_lst_sym->hidden = 0;
5307 curr_lst_sym->secondary_def = 0;
5308 curr_lst_sym->symbol_type = info.symbol_type;
5309 curr_lst_sym->symbol_scope = info.symbol_scope;
5310 curr_lst_sym->check_level = 0;
5311 curr_lst_sym->must_qualify = 0;
5312 curr_lst_sym->initially_frozen = 0;
5313 curr_lst_sym->memory_resident = 0;
5314 curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section);
5315 curr_lst_sym->dup_common = 0;
5316 curr_lst_sym->xleast = 0;
5317 curr_lst_sym->arg_reloc = info.arg_reloc;
5318 curr_lst_sym->name.n_strx = p - strings + 4;
5319 curr_lst_sym->qualifier_name.n_strx = 0;
5320 curr_lst_sym->symbol_info = info.symbol_info;
5321 curr_lst_sym->symbol_value = info.symbol_value;
5322 curr_lst_sym->symbol_descriptor = 0;
5323 curr_lst_sym->reserved = 0;
5324 curr_lst_sym->som_index = som_index;
5325 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
5326 curr_lst_sym->next_entry = 0;
5327
5328 /* Insert into the hash table. */
5329 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
5330 {
5331 struct lst_symbol_record *tmp;
5332
5333 /* There is already something at the head of this hash chain,
5334 so tack this symbol onto the end of the chain. */
5335 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
5336 tmp->next_entry
5337 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5338 + lst.hash_size * 4
5339 + lst.module_count * sizeof (struct som_entry)
5340 + sizeof (struct lst_header);
5341 }
5342 else
5343 {
5344 /* First entry in this hash chain. */
5345 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
5346 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5347 + lst.hash_size * 4
5348 + lst.module_count * sizeof (struct som_entry)
5349 + sizeof (struct lst_header);
5350 }
5351
5352 /* Keep track of the last symbol we added to this chain so we can
5353 easily update its next_entry pointer. */
5354 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
5355 = curr_lst_sym;
5356
5357
5358 /* Update the string table. */
5359 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
5360 p += 4;
5361 strcpy (p, sym->symbol.name);
5362 p += strlen (sym->symbol.name) + 1;
5363 while ((int)p % 4)
5364 {
5365 bfd_put_8 (abfd, 0, p);
5366 p++;
5367 }
5368
5369 /* Head to the next symbol. */
5370 curr_lst_sym++;
5371 }
5372
5373 /* Keep track of where each SOM will finally reside; then look
5374 at the next BFD. */
5375 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
5376 curr_bfd = curr_bfd->next;
5377 som_index++;
5378 }
5379
5380 /* Now scribble out the hash table. */
5381 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
5382 != lst.hash_size * 4)
5383 goto error_return;
5384
5385 /* Then the SOM dictionary. */
5386 if (bfd_write ((PTR) som_dict, lst.module_count,
5387 sizeof (struct som_entry), abfd)
5388 != lst.module_count * sizeof (struct som_entry))
5389 goto error_return;
5390
5391 /* The library symbols. */
5392 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
5393 != nsyms * sizeof (struct lst_symbol_record))
5394 goto error_return;
5395
5396 /* And finally the strings. */
5397 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
5398 goto error_return;
5399
5400 if (hash_table != NULL)
5401 free (hash_table);
5402 if (som_dict != NULL)
5403 free (som_dict);
5404 if (last_hash_entry != NULL)
5405 free (last_hash_entry);
5406 if (lst_syms != NULL)
5407 free (lst_syms);
5408 if (strings != NULL)
5409 free (strings);
5410 return true;
5411
5412 error_return:
5413 if (hash_table != NULL)
5414 free (hash_table);
5415 if (som_dict != NULL)
5416 free (som_dict);
5417 if (last_hash_entry != NULL)
5418 free (last_hash_entry);
5419 if (lst_syms != NULL)
5420 free (lst_syms);
5421 if (strings != NULL)
5422 free (strings);
5423
5424 return false;
5425 }
5426
5427 /* Write out the LST for the archive.
5428
5429 You'll never believe this is really how armaps are handled in SOM... */
5430
5431 /*ARGSUSED*/
5432 static boolean
5433 som_write_armap (abfd, elength, map, orl_count, stridx)
5434 bfd *abfd;
5435 unsigned int elength;
5436 struct orl *map;
5437 unsigned int orl_count;
5438 int stridx;
5439 {
5440 bfd *curr_bfd;
5441 struct stat statbuf;
5442 unsigned int i, lst_size, nsyms, stringsize;
5443 struct ar_hdr hdr;
5444 struct lst_header lst;
5445 int *p;
5446
5447 /* We'll use this for the archive's date and mode later. */
5448 if (stat (abfd->filename, &statbuf) != 0)
5449 {
5450 bfd_set_error (bfd_error_system_call);
5451 return false;
5452 }
5453 /* Fudge factor. */
5454 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
5455
5456 /* Account for the lst header first. */
5457 lst_size = sizeof (struct lst_header);
5458
5459 /* Start building the LST header. */
5460 lst.system_id = CPU_PA_RISC1_0;
5461 lst.a_magic = LIBMAGIC;
5462 lst.version_id = VERSION_ID;
5463 lst.file_time.secs = 0;
5464 lst.file_time.nanosecs = 0;
5465
5466 lst.hash_loc = lst_size;
5467 lst.hash_size = SOM_LST_HASH_SIZE;
5468
5469 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
5470 lst_size += 4 * SOM_LST_HASH_SIZE;
5471
5472 /* We need to count the number of SOMs in this archive. */
5473 curr_bfd = abfd->archive_head;
5474 lst.module_count = 0;
5475 while (curr_bfd != NULL)
5476 {
5477 /* Only true SOM objects count. */
5478 if (curr_bfd->format == bfd_object
5479 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
5480 lst.module_count++;
5481 curr_bfd = curr_bfd->next;
5482 }
5483 lst.module_limit = lst.module_count;
5484 lst.dir_loc = lst_size;
5485 lst_size += sizeof (struct som_entry) * lst.module_count;
5486
5487 /* We don't support import/export tables, auxiliary headers,
5488 or free lists yet. Make the linker work a little harder
5489 to make our life easier. */
5490
5491 lst.export_loc = 0;
5492 lst.export_count = 0;
5493 lst.import_loc = 0;
5494 lst.aux_loc = 0;
5495 lst.aux_size = 0;
5496
5497 /* Count how many symbols we will have on the hash chains and the
5498 size of the associated string table. */
5499 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
5500 return false;
5501
5502 lst_size += sizeof (struct lst_symbol_record) * nsyms;
5503
5504 /* For the string table. One day we might actually use this info
5505 to avoid small seeks/reads when reading archives. */
5506 lst.string_loc = lst_size;
5507 lst.string_size = stringsize;
5508 lst_size += stringsize;
5509
5510 /* SOM ABI says this must be zero. */
5511 lst.free_list = 0;
5512 lst.file_end = lst_size;
5513
5514 /* Compute the checksum. Must happen after the entire lst header
5515 has filled in. */
5516 p = (int *)&lst;
5517 lst.checksum = 0;
5518 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
5519 lst.checksum ^= *p++;
5520
5521 sprintf (hdr.ar_name, "/ ");
5522 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
5523 sprintf (hdr.ar_uid, "%ld", (long) getuid ());
5524 sprintf (hdr.ar_gid, "%ld", (long) getgid ());
5525 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
5526 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
5527 hdr.ar_fmag[0] = '`';
5528 hdr.ar_fmag[1] = '\012';
5529
5530 /* Turn any nulls into spaces. */
5531 for (i = 0; i < sizeof (struct ar_hdr); i++)
5532 if (((char *) (&hdr))[i] == '\0')
5533 (((char *) (&hdr))[i]) = ' ';
5534
5535 /* Scribble out the ar header. */
5536 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
5537 != sizeof (struct ar_hdr))
5538 return false;
5539
5540 /* Now scribble out the lst header. */
5541 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
5542 != sizeof (struct lst_header))
5543 return false;
5544
5545 /* Build and write the armap. */
5546 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst) == false)
5547 return false;
5548
5549 /* Done. */
5550 return true;
5551 }
5552
5553 /* Free all information we have cached for this BFD. We can always
5554 read it again later if we need it. */
5555
5556 static boolean
5557 som_bfd_free_cached_info (abfd)
5558 bfd *abfd;
5559 {
5560 asection *o;
5561
5562 if (bfd_get_format (abfd) != bfd_object)
5563 return true;
5564
5565 #define FREE(x) if (x != NULL) { free (x); x = NULL; }
5566 /* Free the native string and symbol tables. */
5567 FREE (obj_som_symtab (abfd));
5568 FREE (obj_som_stringtab (abfd));
5569 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5570 {
5571 /* Free the native relocations. */
5572 o->reloc_count = -1;
5573 FREE (som_section_data (o)->reloc_stream);
5574 /* Free the generic relocations. */
5575 FREE (o->relocation);
5576 }
5577 #undef FREE
5578
5579 return true;
5580 }
5581
5582 /* End of miscellaneous support functions. */
5583
5584 #define som_close_and_cleanup som_bfd_free_cached_info
5585
5586 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
5587 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
5588 #define som_truncate_arname bfd_bsd_truncate_arname
5589 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
5590 #define som_update_armap_timestamp bfd_true
5591
5592 #define som_get_lineno _bfd_nosymbols_get_lineno
5593 #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
5594
5595 #define som_bfd_get_relocated_section_contents \
5596 bfd_generic_get_relocated_section_contents
5597 #define som_bfd_relax_section bfd_generic_relax_section
5598 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
5599 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
5600 #define som_bfd_final_link _bfd_generic_final_link
5601
5602 const bfd_target som_vec =
5603 {
5604 "som", /* name */
5605 bfd_target_som_flavour,
5606 true, /* target byte order */
5607 true, /* target headers byte order */
5608 (HAS_RELOC | EXEC_P | /* object flags */
5609 HAS_LINENO | HAS_DEBUG |
5610 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
5611 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
5612 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
5613
5614 /* leading_symbol_char: is the first char of a user symbol
5615 predictable, and if so what is it */
5616 0,
5617 '/', /* ar_pad_char */
5618 14, /* ar_max_namelen */
5619 3, /* minimum alignment */
5620 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5621 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5622 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
5623 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5624 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5625 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
5626 {_bfd_dummy_target,
5627 som_object_p, /* bfd_check_format */
5628 bfd_generic_archive_p,
5629 _bfd_dummy_target
5630 },
5631 {
5632 bfd_false,
5633 som_mkobject,
5634 _bfd_generic_mkarchive,
5635 bfd_false
5636 },
5637 {
5638 bfd_false,
5639 som_write_object_contents,
5640 _bfd_write_archive_contents,
5641 bfd_false,
5642 },
5643 #undef som
5644
5645 BFD_JUMP_TABLE_GENERIC (som),
5646 BFD_JUMP_TABLE_COPY (som),
5647 BFD_JUMP_TABLE_CORE (_bfd_nocore),
5648 BFD_JUMP_TABLE_ARCHIVE (som),
5649 BFD_JUMP_TABLE_SYMBOLS (som),
5650 BFD_JUMP_TABLE_RELOCS (som),
5651 BFD_JUMP_TABLE_WRITE (som),
5652 BFD_JUMP_TABLE_LINK (som),
5653 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
5654
5655 (PTR) 0
5656 };
5657
5658 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */