* config/hppaosf.mh (RANLIB): Do not set.
[binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
3
4 Contributed by the Center for Software Science at the
5 University of Utah (pa-gdb-bugs@cs.utah.edu).
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23 #include "bfd.h"
24 #include "sysdep.h"
25
26 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)
27
28 #include "libbfd.h"
29 #include "som.h"
30
31 #include <stdio.h>
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <signal.h>
35 #include <machine/reg.h>
36 #include <sys/file.h>
37 #include <errno.h>
38
39 /* Magic not defined in standard HP-UX header files until 8.0 */
40
41 #ifndef CPU_PA_RISC1_0
42 #define CPU_PA_RISC1_0 0x20B
43 #endif /* CPU_PA_RISC1_0 */
44
45 #ifndef CPU_PA_RISC1_1
46 #define CPU_PA_RISC1_1 0x210
47 #endif /* CPU_PA_RISC1_1 */
48
49 #ifndef _PA_RISC1_0_ID
50 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
51 #endif /* _PA_RISC1_0_ID */
52
53 #ifndef _PA_RISC1_1_ID
54 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
55 #endif /* _PA_RISC1_1_ID */
56
57 #ifndef _PA_RISC_MAXID
58 #define _PA_RISC_MAXID 0x2FF
59 #endif /* _PA_RISC_MAXID */
60
61 #ifndef _PA_RISC_ID
62 #define _PA_RISC_ID(__m_num) \
63 (((__m_num) == _PA_RISC1_0_ID) || \
64 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
65 #endif /* _PA_RISC_ID */
66
67
68 /* HIUX in it's infinite stupidity changed the names for several "well
69 known" constants. Work around such braindamage. Try the HPUX version
70 first, then the HIUX version, and finally provide a default. */
71 #ifdef HPUX_AUX_ID
72 #define EXEC_AUX_ID HPUX_AUX_ID
73 #endif
74
75 #if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID)
76 #define EXEC_AUX_ID HIUX_AUX_ID
77 #endif
78
79 #ifndef EXEC_AUX_ID
80 #define EXEC_AUX_ID 0
81 #endif
82
83 /* Size (in chars) of the temporary buffers used during fixup and string
84 table writes. */
85
86 #define SOM_TMP_BUFSIZE 8192
87
88 /* Size of the hash table in archives. */
89 #define SOM_LST_HASH_SIZE 31
90
91 /* Max number of SOMs to be found in an archive. */
92 #define SOM_LST_MODULE_LIMIT 1024
93
94 /* Generic alignment macro. */
95 #define SOM_ALIGN(val, alignment) \
96 (((val) + (alignment) - 1) & ~((alignment) - 1))
97
98 /* SOM allows any one of the four previous relocations to be reused
99 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
100 relocations are always a single byte, using a R_PREV_FIXUP instead
101 of some multi-byte relocation makes object files smaller.
102
103 Note one side effect of using a R_PREV_FIXUP is the relocation that
104 is being repeated moves to the front of the queue. */
105 struct reloc_queue
106 {
107 unsigned char *reloc;
108 unsigned int size;
109 } reloc_queue[4];
110
111 /* This fully describes the symbol types which may be attached to
112 an EXPORT or IMPORT directive. Only SOM uses this formation
113 (ELF has no need for it). */
114 typedef enum
115 {
116 SYMBOL_TYPE_UNKNOWN,
117 SYMBOL_TYPE_ABSOLUTE,
118 SYMBOL_TYPE_CODE,
119 SYMBOL_TYPE_DATA,
120 SYMBOL_TYPE_ENTRY,
121 SYMBOL_TYPE_MILLICODE,
122 SYMBOL_TYPE_PLABEL,
123 SYMBOL_TYPE_PRI_PROG,
124 SYMBOL_TYPE_SEC_PROG,
125 } pa_symbol_type;
126
127 struct section_to_type
128 {
129 char *section;
130 char type;
131 };
132
133 /* Assorted symbol information that needs to be derived from the BFD symbol
134 and/or the BFD backend private symbol data. */
135 struct som_misc_symbol_info
136 {
137 unsigned int symbol_type;
138 unsigned int symbol_scope;
139 unsigned int arg_reloc;
140 unsigned int symbol_info;
141 unsigned int symbol_value;
142 };
143
144 /* Forward declarations */
145
146 static boolean som_mkobject PARAMS ((bfd *));
147 static const bfd_target * som_object_setup PARAMS ((bfd *,
148 struct header *,
149 struct som_exec_auxhdr *));
150 static boolean setup_sections PARAMS ((bfd *, struct header *));
151 static const bfd_target * som_object_p PARAMS ((bfd *));
152 static boolean som_write_object_contents PARAMS ((bfd *));
153 static boolean som_slurp_string_table PARAMS ((bfd *));
154 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
155 static long som_get_symtab_upper_bound PARAMS ((bfd *));
156 static long som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
157 arelent **, asymbol **));
158 static long som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
159 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
160 arelent *, asection *,
161 asymbol **, boolean));
162 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
163 asymbol **, boolean));
164 static long som_get_symtab PARAMS ((bfd *, asymbol **));
165 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
166 static void som_print_symbol PARAMS ((bfd *, PTR,
167 asymbol *, bfd_print_symbol_type));
168 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
169 static boolean som_bfd_copy_private_section_data PARAMS ((bfd *, asection *,
170 bfd *, asection *));
171 static boolean som_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
172 static boolean som_bfd_is_local_label PARAMS ((bfd *, asymbol *));
173 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
174 file_ptr, bfd_size_type));
175 static boolean som_get_section_contents PARAMS ((bfd *, sec_ptr, PTR,
176 file_ptr, bfd_size_type));
177 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
178 unsigned long));
179 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
180 asymbol **, bfd_vma,
181 CONST char **,
182 CONST char **,
183 unsigned int *));
184 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
185 static asection * bfd_section_from_som_symbol PARAMS ((bfd *,
186 struct symbol_dictionary_record *));
187 static int log2 PARAMS ((unsigned int));
188 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
189 asymbol *, PTR,
190 asection *, bfd *,
191 char **));
192 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
193 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
194 struct reloc_queue *));
195 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
196 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
197 struct reloc_queue *));
198 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
199 unsigned int,
200 struct reloc_queue *));
201
202 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
203 unsigned char *, unsigned int *,
204 struct reloc_queue *));
205 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
206 unsigned int *,
207 struct reloc_queue *));
208 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
209 unsigned int *,
210 arelent *, int,
211 struct reloc_queue *));
212 static unsigned long som_count_spaces PARAMS ((bfd *));
213 static unsigned long som_count_subspaces PARAMS ((bfd *));
214 static int compare_syms PARAMS ((const void *, const void *));
215 static unsigned long som_compute_checksum PARAMS ((bfd *));
216 static boolean som_prep_headers PARAMS ((bfd *));
217 static int som_sizeof_headers PARAMS ((bfd *, boolean));
218 static boolean som_write_headers PARAMS ((bfd *));
219 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
220 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
221 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
222 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
223 unsigned int *));
224 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
225 asymbol **, unsigned int,
226 unsigned *));
227 static boolean som_begin_writing PARAMS ((bfd *));
228 static const reloc_howto_type * som_bfd_reloc_type_lookup
229 PARAMS ((bfd *, bfd_reloc_code_real_type));
230 static char som_section_type PARAMS ((const char *));
231 static int som_decode_symclass PARAMS ((asymbol *));
232 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
233 symindex *));
234
235 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
236 carsym **syms));
237 static boolean som_slurp_armap PARAMS ((bfd *));
238 static boolean som_write_armap PARAMS ((bfd *, unsigned int, struct orl *,
239 unsigned int, int));
240 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
241 struct som_misc_symbol_info *));
242 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
243 unsigned int *));
244 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
245 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
246 unsigned int,
247 struct lst_header));
248 static CONST char *normalize PARAMS ((CONST char *file));
249 static boolean som_is_space PARAMS ((asection *));
250 static boolean som_is_subspace PARAMS ((asection *));
251 static boolean som_is_container PARAMS ((asection *, asection *));
252 static boolean som_bfd_free_cached_info PARAMS ((bfd *));
253
254 /* Map SOM section names to POSIX/BSD single-character symbol types.
255
256 This table includes all the standard subspaces as defined in the
257 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
258 some reason was left out, and sections specific to embedded stabs. */
259
260 static const struct section_to_type stt[] = {
261 {"$TEXT$", 't'},
262 {"$SHLIB_INFO$", 't'},
263 {"$MILLICODE$", 't'},
264 {"$LIT$", 't'},
265 {"$CODE$", 't'},
266 {"$UNWIND_START$", 't'},
267 {"$UNWIND$", 't'},
268 {"$PRIVATE$", 'd'},
269 {"$PLT$", 'd'},
270 {"$SHLIB_DATA$", 'd'},
271 {"$DATA$", 'd'},
272 {"$SHORTDATA$", 'g'},
273 {"$DLT$", 'd'},
274 {"$GLOBAL$", 'g'},
275 {"$SHORTBSS$", 's'},
276 {"$BSS$", 'b'},
277 {"$GDB_STRINGS$", 'N'},
278 {"$GDB_SYMBOLS$", 'N'},
279 {0, 0}
280 };
281
282 /* About the relocation formatting table...
283
284 There are 256 entries in the table, one for each possible
285 relocation opcode available in SOM. We index the table by
286 the relocation opcode. The names and operations are those
287 defined by a.out_800 (4).
288
289 Right now this table is only used to count and perform minimal
290 processing on relocation streams so that they can be internalized
291 into BFD and symbolically printed by utilities. To make actual use
292 of them would be much more difficult, BFD's concept of relocations
293 is far too simple to handle SOM relocations. The basic assumption
294 that a relocation can be completely processed independent of other
295 relocations before an object file is written is invalid for SOM.
296
297 The SOM relocations are meant to be processed as a stream, they
298 specify copying of data from the input section to the output section
299 while possibly modifying the data in some manner. They also can
300 specify that a variable number of zeros or uninitialized data be
301 inserted on in the output segment at the current offset. Some
302 relocations specify that some previous relocation be re-applied at
303 the current location in the input/output sections. And finally a number
304 of relocations have effects on other sections (R_ENTRY, R_EXIT,
305 R_UNWIND_AUX and a variety of others). There isn't even enough room
306 in the BFD relocation data structure to store enough information to
307 perform all the relocations.
308
309 Each entry in the table has three fields.
310
311 The first entry is an index into this "class" of relocations. This
312 index can then be used as a variable within the relocation itself.
313
314 The second field is a format string which actually controls processing
315 of the relocation. It uses a simple postfix machine to do calculations
316 based on variables/constants found in the string and the relocation
317 stream.
318
319 The third field specifys whether or not this relocation may use
320 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
321 stored in the instruction.
322
323 Variables:
324
325 L = input space byte count
326 D = index into class of relocations
327 M = output space byte count
328 N = statement number (unused?)
329 O = stack operation
330 R = parameter relocation bits
331 S = symbol index
332 U = 64 bits of stack unwind and frame size info (we only keep 32 bits)
333 V = a literal constant (usually used in the next relocation)
334 P = a previous relocation
335
336 Lower case letters (starting with 'b') refer to following
337 bytes in the relocation stream. 'b' is the next 1 byte,
338 c is the next 2 bytes, d is the next 3 bytes, etc...
339 This is the variable part of the relocation entries that
340 makes our life a living hell.
341
342 numerical constants are also used in the format string. Note
343 the constants are represented in decimal.
344
345 '+', "*" and "=" represents the obvious postfix operators.
346 '<' represents a left shift.
347
348 Stack Operations:
349
350 Parameter Relocation Bits:
351
352 Unwind Entries:
353
354 Previous Relocations: The index field represents which in the queue
355 of 4 previous fixups should be re-applied.
356
357 Literal Constants: These are generally used to represent addend
358 parts of relocations when these constants are not stored in the
359 fields of the instructions themselves. For example the instruction
360 addil foo-$global$-0x1234 would use an override for "0x1234" rather
361 than storing it into the addil itself. */
362
363 struct fixup_format
364 {
365 int D;
366 char *format;
367 };
368
369 static const struct fixup_format som_fixup_formats[256] =
370 {
371 /* R_NO_RELOCATION */
372 0, "LD1+4*=", /* 0x00 */
373 1, "LD1+4*=", /* 0x01 */
374 2, "LD1+4*=", /* 0x02 */
375 3, "LD1+4*=", /* 0x03 */
376 4, "LD1+4*=", /* 0x04 */
377 5, "LD1+4*=", /* 0x05 */
378 6, "LD1+4*=", /* 0x06 */
379 7, "LD1+4*=", /* 0x07 */
380 8, "LD1+4*=", /* 0x08 */
381 9, "LD1+4*=", /* 0x09 */
382 10, "LD1+4*=", /* 0x0a */
383 11, "LD1+4*=", /* 0x0b */
384 12, "LD1+4*=", /* 0x0c */
385 13, "LD1+4*=", /* 0x0d */
386 14, "LD1+4*=", /* 0x0e */
387 15, "LD1+4*=", /* 0x0f */
388 16, "LD1+4*=", /* 0x10 */
389 17, "LD1+4*=", /* 0x11 */
390 18, "LD1+4*=", /* 0x12 */
391 19, "LD1+4*=", /* 0x13 */
392 20, "LD1+4*=", /* 0x14 */
393 21, "LD1+4*=", /* 0x15 */
394 22, "LD1+4*=", /* 0x16 */
395 23, "LD1+4*=", /* 0x17 */
396 0, "LD8<b+1+4*=", /* 0x18 */
397 1, "LD8<b+1+4*=", /* 0x19 */
398 2, "LD8<b+1+4*=", /* 0x1a */
399 3, "LD8<b+1+4*=", /* 0x1b */
400 0, "LD16<c+1+4*=", /* 0x1c */
401 1, "LD16<c+1+4*=", /* 0x1d */
402 2, "LD16<c+1+4*=", /* 0x1e */
403 0, "Ld1+=", /* 0x1f */
404 /* R_ZEROES */
405 0, "Lb1+4*=", /* 0x20 */
406 1, "Ld1+=", /* 0x21 */
407 /* R_UNINIT */
408 0, "Lb1+4*=", /* 0x22 */
409 1, "Ld1+=", /* 0x23 */
410 /* R_RELOCATION */
411 0, "L4=", /* 0x24 */
412 /* R_DATA_ONE_SYMBOL */
413 0, "L4=Sb=", /* 0x25 */
414 1, "L4=Sd=", /* 0x26 */
415 /* R_DATA_PLEBEL */
416 0, "L4=Sb=", /* 0x27 */
417 1, "L4=Sd=", /* 0x28 */
418 /* R_SPACE_REF */
419 0, "L4=", /* 0x29 */
420 /* R_REPEATED_INIT */
421 0, "L4=Mb1+4*=", /* 0x2a */
422 1, "Lb4*=Mb1+L*=", /* 0x2b */
423 2, "Lb4*=Md1+4*=", /* 0x2c */
424 3, "Ld1+=Me1+=", /* 0x2d */
425 /* R_RESERVED */
426 0, "", /* 0x2e */
427 0, "", /* 0x2f */
428 /* R_PCREL_CALL */
429 0, "L4=RD=Sb=", /* 0x30 */
430 1, "L4=RD=Sb=", /* 0x31 */
431 2, "L4=RD=Sb=", /* 0x32 */
432 3, "L4=RD=Sb=", /* 0x33 */
433 4, "L4=RD=Sb=", /* 0x34 */
434 5, "L4=RD=Sb=", /* 0x35 */
435 6, "L4=RD=Sb=", /* 0x36 */
436 7, "L4=RD=Sb=", /* 0x37 */
437 8, "L4=RD=Sb=", /* 0x38 */
438 9, "L4=RD=Sb=", /* 0x39 */
439 0, "L4=RD8<b+=Sb=",/* 0x3a */
440 1, "L4=RD8<b+=Sb=",/* 0x3b */
441 0, "L4=RD8<b+=Sd=",/* 0x3c */
442 1, "L4=RD8<b+=Sd=",/* 0x3d */
443 /* R_RESERVED */
444 0, "", /* 0x3e */
445 0, "", /* 0x3f */
446 /* R_ABS_CALL */
447 0, "L4=RD=Sb=", /* 0x40 */
448 1, "L4=RD=Sb=", /* 0x41 */
449 2, "L4=RD=Sb=", /* 0x42 */
450 3, "L4=RD=Sb=", /* 0x43 */
451 4, "L4=RD=Sb=", /* 0x44 */
452 5, "L4=RD=Sb=", /* 0x45 */
453 6, "L4=RD=Sb=", /* 0x46 */
454 7, "L4=RD=Sb=", /* 0x47 */
455 8, "L4=RD=Sb=", /* 0x48 */
456 9, "L4=RD=Sb=", /* 0x49 */
457 0, "L4=RD8<b+=Sb=",/* 0x4a */
458 1, "L4=RD8<b+=Sb=",/* 0x4b */
459 0, "L4=RD8<b+=Sd=",/* 0x4c */
460 1, "L4=RD8<b+=Sd=",/* 0x4d */
461 /* R_RESERVED */
462 0, "", /* 0x4e */
463 0, "", /* 0x4f */
464 /* R_DP_RELATIVE */
465 0, "L4=SD=", /* 0x50 */
466 1, "L4=SD=", /* 0x51 */
467 2, "L4=SD=", /* 0x52 */
468 3, "L4=SD=", /* 0x53 */
469 4, "L4=SD=", /* 0x54 */
470 5, "L4=SD=", /* 0x55 */
471 6, "L4=SD=", /* 0x56 */
472 7, "L4=SD=", /* 0x57 */
473 8, "L4=SD=", /* 0x58 */
474 9, "L4=SD=", /* 0x59 */
475 10, "L4=SD=", /* 0x5a */
476 11, "L4=SD=", /* 0x5b */
477 12, "L4=SD=", /* 0x5c */
478 13, "L4=SD=", /* 0x5d */
479 14, "L4=SD=", /* 0x5e */
480 15, "L4=SD=", /* 0x5f */
481 16, "L4=SD=", /* 0x60 */
482 17, "L4=SD=", /* 0x61 */
483 18, "L4=SD=", /* 0x62 */
484 19, "L4=SD=", /* 0x63 */
485 20, "L4=SD=", /* 0x64 */
486 21, "L4=SD=", /* 0x65 */
487 22, "L4=SD=", /* 0x66 */
488 23, "L4=SD=", /* 0x67 */
489 24, "L4=SD=", /* 0x68 */
490 25, "L4=SD=", /* 0x69 */
491 26, "L4=SD=", /* 0x6a */
492 27, "L4=SD=", /* 0x6b */
493 28, "L4=SD=", /* 0x6c */
494 29, "L4=SD=", /* 0x6d */
495 30, "L4=SD=", /* 0x6e */
496 31, "L4=SD=", /* 0x6f */
497 32, "L4=Sb=", /* 0x70 */
498 33, "L4=Sd=", /* 0x71 */
499 /* R_RESERVED */
500 0, "", /* 0x72 */
501 0, "", /* 0x73 */
502 0, "", /* 0x74 */
503 0, "", /* 0x75 */
504 0, "", /* 0x76 */
505 0, "", /* 0x77 */
506 /* R_DLT_REL */
507 0, "L4=Sb=", /* 0x78 */
508 1, "L4=Sd=", /* 0x79 */
509 /* R_RESERVED */
510 0, "", /* 0x7a */
511 0, "", /* 0x7b */
512 0, "", /* 0x7c */
513 0, "", /* 0x7d */
514 0, "", /* 0x7e */
515 0, "", /* 0x7f */
516 /* R_CODE_ONE_SYMBOL */
517 0, "L4=SD=", /* 0x80 */
518 1, "L4=SD=", /* 0x81 */
519 2, "L4=SD=", /* 0x82 */
520 3, "L4=SD=", /* 0x83 */
521 4, "L4=SD=", /* 0x84 */
522 5, "L4=SD=", /* 0x85 */
523 6, "L4=SD=", /* 0x86 */
524 7, "L4=SD=", /* 0x87 */
525 8, "L4=SD=", /* 0x88 */
526 9, "L4=SD=", /* 0x89 */
527 10, "L4=SD=", /* 0x8q */
528 11, "L4=SD=", /* 0x8b */
529 12, "L4=SD=", /* 0x8c */
530 13, "L4=SD=", /* 0x8d */
531 14, "L4=SD=", /* 0x8e */
532 15, "L4=SD=", /* 0x8f */
533 16, "L4=SD=", /* 0x90 */
534 17, "L4=SD=", /* 0x91 */
535 18, "L4=SD=", /* 0x92 */
536 19, "L4=SD=", /* 0x93 */
537 20, "L4=SD=", /* 0x94 */
538 21, "L4=SD=", /* 0x95 */
539 22, "L4=SD=", /* 0x96 */
540 23, "L4=SD=", /* 0x97 */
541 24, "L4=SD=", /* 0x98 */
542 25, "L4=SD=", /* 0x99 */
543 26, "L4=SD=", /* 0x9a */
544 27, "L4=SD=", /* 0x9b */
545 28, "L4=SD=", /* 0x9c */
546 29, "L4=SD=", /* 0x9d */
547 30, "L4=SD=", /* 0x9e */
548 31, "L4=SD=", /* 0x9f */
549 32, "L4=Sb=", /* 0xa0 */
550 33, "L4=Sd=", /* 0xa1 */
551 /* R_RESERVED */
552 0, "", /* 0xa2 */
553 0, "", /* 0xa3 */
554 0, "", /* 0xa4 */
555 0, "", /* 0xa5 */
556 0, "", /* 0xa6 */
557 0, "", /* 0xa7 */
558 0, "", /* 0xa8 */
559 0, "", /* 0xa9 */
560 0, "", /* 0xaa */
561 0, "", /* 0xab */
562 0, "", /* 0xac */
563 0, "", /* 0xad */
564 /* R_MILLI_REL */
565 0, "L4=Sb=", /* 0xae */
566 1, "L4=Sd=", /* 0xaf */
567 /* R_CODE_PLABEL */
568 0, "L4=Sb=", /* 0xb0 */
569 1, "L4=Sd=", /* 0xb1 */
570 /* R_BREAKPOINT */
571 0, "L4=", /* 0xb2 */
572 /* R_ENTRY */
573 0, "Ui=", /* 0xb3 */
574 1, "Uf=", /* 0xb4 */
575 /* R_ALT_ENTRY */
576 0, "", /* 0xb5 */
577 /* R_EXIT */
578 0, "", /* 0xb6 */
579 /* R_BEGIN_TRY */
580 0, "", /* 0xb7 */
581 /* R_END_TRY */
582 0, "R0=", /* 0xb8 */
583 1, "Rb4*=", /* 0xb9 */
584 2, "Rd4*=", /* 0xba */
585 /* R_BEGIN_BRTAB */
586 0, "", /* 0xbb */
587 /* R_END_BRTAB */
588 0, "", /* 0xbc */
589 /* R_STATEMENT */
590 0, "Nb=", /* 0xbd */
591 1, "Nc=", /* 0xbe */
592 2, "Nd=", /* 0xbf */
593 /* R_DATA_EXPR */
594 0, "L4=", /* 0xc0 */
595 /* R_CODE_EXPR */
596 0, "L4=", /* 0xc1 */
597 /* R_FSEL */
598 0, "", /* 0xc2 */
599 /* R_LSEL */
600 0, "", /* 0xc3 */
601 /* R_RSEL */
602 0, "", /* 0xc4 */
603 /* R_N_MODE */
604 0, "", /* 0xc5 */
605 /* R_S_MODE */
606 0, "", /* 0xc6 */
607 /* R_D_MODE */
608 0, "", /* 0xc7 */
609 /* R_R_MODE */
610 0, "", /* 0xc8 */
611 /* R_DATA_OVERRIDE */
612 0, "V0=", /* 0xc9 */
613 1, "Vb=", /* 0xca */
614 2, "Vc=", /* 0xcb */
615 3, "Vd=", /* 0xcc */
616 4, "Ve=", /* 0xcd */
617 /* R_TRANSLATED */
618 0, "", /* 0xce */
619 /* R_RESERVED */
620 0, "", /* 0xcf */
621 /* R_COMP1 */
622 0, "Ob=", /* 0xd0 */
623 /* R_COMP2 */
624 0, "Ob=Sd=", /* 0xd1 */
625 /* R_COMP3 */
626 0, "Ob=Ve=", /* 0xd2 */
627 /* R_PREV_FIXUP */
628 0, "P", /* 0xd3 */
629 1, "P", /* 0xd4 */
630 2, "P", /* 0xd5 */
631 3, "P", /* 0xd6 */
632 /* R_RESERVED */
633 0, "", /* 0xd7 */
634 0, "", /* 0xd8 */
635 0, "", /* 0xd9 */
636 0, "", /* 0xda */
637 0, "", /* 0xdb */
638 0, "", /* 0xdc */
639 0, "", /* 0xdd */
640 0, "", /* 0xde */
641 0, "", /* 0xdf */
642 0, "", /* 0xe0 */
643 0, "", /* 0xe1 */
644 0, "", /* 0xe2 */
645 0, "", /* 0xe3 */
646 0, "", /* 0xe4 */
647 0, "", /* 0xe5 */
648 0, "", /* 0xe6 */
649 0, "", /* 0xe7 */
650 0, "", /* 0xe8 */
651 0, "", /* 0xe9 */
652 0, "", /* 0xea */
653 0, "", /* 0xeb */
654 0, "", /* 0xec */
655 0, "", /* 0xed */
656 0, "", /* 0xee */
657 0, "", /* 0xef */
658 0, "", /* 0xf0 */
659 0, "", /* 0xf1 */
660 0, "", /* 0xf2 */
661 0, "", /* 0xf3 */
662 0, "", /* 0xf4 */
663 0, "", /* 0xf5 */
664 0, "", /* 0xf6 */
665 0, "", /* 0xf7 */
666 0, "", /* 0xf8 */
667 0, "", /* 0xf9 */
668 0, "", /* 0xfa */
669 0, "", /* 0xfb */
670 0, "", /* 0xfc */
671 0, "", /* 0xfd */
672 0, "", /* 0xfe */
673 0, "", /* 0xff */
674 };
675
676 static const int comp1_opcodes[] =
677 {
678 0x00,
679 0x40,
680 0x41,
681 0x42,
682 0x43,
683 0x44,
684 0x45,
685 0x46,
686 0x47,
687 0x48,
688 0x49,
689 0x4a,
690 0x4b,
691 0x60,
692 0x80,
693 0xa0,
694 0xc0,
695 -1
696 };
697
698 static const int comp2_opcodes[] =
699 {
700 0x00,
701 0x80,
702 0x82,
703 0xc0,
704 -1
705 };
706
707 static const int comp3_opcodes[] =
708 {
709 0x00,
710 0x02,
711 -1
712 };
713
714 /* These apparently are not in older versions of hpux reloc.h. */
715 #ifndef R_DLT_REL
716 #define R_DLT_REL 0x78
717 #endif
718
719 #ifndef R_AUX_UNWIND
720 #define R_AUX_UNWIND 0xcf
721 #endif
722
723 #ifndef R_SEC_STMT
724 #define R_SEC_STMT 0xd7
725 #endif
726
727 static reloc_howto_type som_hppa_howto_table[] =
728 {
729 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
730 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
731 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
732 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
733 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
734 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
735 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
736 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
737 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
738 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
739 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
740 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
741 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
742 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
743 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
744 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
745 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
746 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
747 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
748 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
749 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
750 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
751 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
752 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
753 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
754 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
755 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
756 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
757 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
758 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
759 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
760 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
761 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
762 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
763 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
764 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
765 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
766 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
767 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
768 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
769 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
770 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
771 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
772 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
773 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
774 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
775 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
776 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
777 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
778 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
779 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
780 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
781 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
782 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
783 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
784 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
785 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
786 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
787 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
788 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
789 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
790 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
791 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
792 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
793 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
794 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
795 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
796 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
797 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
798 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
799 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
800 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
801 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
802 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
803 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
804 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
805 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
806 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
807 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
808 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
809 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
810 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
811 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
812 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
813 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
814 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
815 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
816 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
817 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
818 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
819 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
820 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
821 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
822 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
823 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
824 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
825 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
826 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
827 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
828 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
829 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
830 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
831 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
832 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
833 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
834 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
835 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
836 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
837 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
838 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
839 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
840 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
841 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
842 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
843 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
844 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
845 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
846 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
847 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
848 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
849 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
850 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
851 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
852 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
853 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
854 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
855 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
856 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
857 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
858 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
859 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
860 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
861 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
862 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
863 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
864 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
865 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
866 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
867 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
868 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
869 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
870 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
871 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
872 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
873 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
874 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
875 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
876 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
877 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
878 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
879 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
880 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
881 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
882 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
883 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
884 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
885 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
886 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
887 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
888 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
889 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
890 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
891 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
892 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
893 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
894 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
895 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
896 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
897 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
898 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
899 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
900 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
901 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
902 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
903 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
904 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
905 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
906 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
907 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
908 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
909 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
910 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
911 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
912 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
913 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
914 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
915 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
916 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
917 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
918 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
919 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
920 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
921 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
922 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
923 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
924 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
925 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
926 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
927 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
928 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
929 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
930 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
931 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
932 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
933 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
934 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
935 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
936 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
937 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
938 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
939 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
940 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
941 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
942 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
943 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
944 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
945 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
946 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
947 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
948 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
949 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
950 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
951 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
952 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
953 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
954 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
955 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
956 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
957 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
958 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
959 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
960 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
961 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
962 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
963 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
964 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
965 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
966 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
967 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
968 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
969 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
970 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
971 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
972 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
973 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
974 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
975 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
976 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
977 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
978 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
979 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
980 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
981 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
982 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
983 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
984 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
985
986 /* Initialize the SOM relocation queue. By definition the queue holds
987 the last four multibyte fixups. */
988
989 static void
990 som_initialize_reloc_queue (queue)
991 struct reloc_queue *queue;
992 {
993 queue[0].reloc = NULL;
994 queue[0].size = 0;
995 queue[1].reloc = NULL;
996 queue[1].size = 0;
997 queue[2].reloc = NULL;
998 queue[2].size = 0;
999 queue[3].reloc = NULL;
1000 queue[3].size = 0;
1001 }
1002
1003 /* Insert a new relocation into the relocation queue. */
1004
1005 static void
1006 som_reloc_queue_insert (p, size, queue)
1007 unsigned char *p;
1008 unsigned int size;
1009 struct reloc_queue *queue;
1010 {
1011 queue[3].reloc = queue[2].reloc;
1012 queue[3].size = queue[2].size;
1013 queue[2].reloc = queue[1].reloc;
1014 queue[2].size = queue[1].size;
1015 queue[1].reloc = queue[0].reloc;
1016 queue[1].size = queue[0].size;
1017 queue[0].reloc = p;
1018 queue[0].size = size;
1019 }
1020
1021 /* When an entry in the relocation queue is reused, the entry moves
1022 to the front of the queue. */
1023
1024 static void
1025 som_reloc_queue_fix (queue, index)
1026 struct reloc_queue *queue;
1027 unsigned int index;
1028 {
1029 if (index == 0)
1030 return;
1031
1032 if (index == 1)
1033 {
1034 unsigned char *tmp1 = queue[0].reloc;
1035 unsigned int tmp2 = queue[0].size;
1036 queue[0].reloc = queue[1].reloc;
1037 queue[0].size = queue[1].size;
1038 queue[1].reloc = tmp1;
1039 queue[1].size = tmp2;
1040 return;
1041 }
1042
1043 if (index == 2)
1044 {
1045 unsigned char *tmp1 = queue[0].reloc;
1046 unsigned int tmp2 = queue[0].size;
1047 queue[0].reloc = queue[2].reloc;
1048 queue[0].size = queue[2].size;
1049 queue[2].reloc = queue[1].reloc;
1050 queue[2].size = queue[1].size;
1051 queue[1].reloc = tmp1;
1052 queue[1].size = tmp2;
1053 return;
1054 }
1055
1056 if (index == 3)
1057 {
1058 unsigned char *tmp1 = queue[0].reloc;
1059 unsigned int tmp2 = queue[0].size;
1060 queue[0].reloc = queue[3].reloc;
1061 queue[0].size = queue[3].size;
1062 queue[3].reloc = queue[2].reloc;
1063 queue[3].size = queue[2].size;
1064 queue[2].reloc = queue[1].reloc;
1065 queue[2].size = queue[1].size;
1066 queue[1].reloc = tmp1;
1067 queue[1].size = tmp2;
1068 return;
1069 }
1070 abort();
1071 }
1072
1073 /* Search for a particular relocation in the relocation queue. */
1074
1075 static int
1076 som_reloc_queue_find (p, size, queue)
1077 unsigned char *p;
1078 unsigned int size;
1079 struct reloc_queue *queue;
1080 {
1081 if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
1082 && size == queue[0].size)
1083 return 0;
1084 if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
1085 && size == queue[1].size)
1086 return 1;
1087 if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
1088 && size == queue[2].size)
1089 return 2;
1090 if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
1091 && size == queue[3].size)
1092 return 3;
1093 return -1;
1094 }
1095
1096 static unsigned char *
1097 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1098 bfd *abfd;
1099 int *subspace_reloc_sizep;
1100 unsigned char *p;
1101 unsigned int size;
1102 struct reloc_queue *queue;
1103 {
1104 int queue_index = som_reloc_queue_find (p, size, queue);
1105
1106 if (queue_index != -1)
1107 {
1108 /* Found this in a previous fixup. Undo the fixup we
1109 just built and use R_PREV_FIXUP instead. We saved
1110 a total of size - 1 bytes in the fixup stream. */
1111 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1112 p += 1;
1113 *subspace_reloc_sizep += 1;
1114 som_reloc_queue_fix (queue, queue_index);
1115 }
1116 else
1117 {
1118 som_reloc_queue_insert (p, size, queue);
1119 *subspace_reloc_sizep += size;
1120 p += size;
1121 }
1122 return p;
1123 }
1124
1125 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1126 bytes without any relocation. Update the size of the subspace
1127 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1128 current pointer into the relocation stream. */
1129
1130 static unsigned char *
1131 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1132 bfd *abfd;
1133 unsigned int skip;
1134 unsigned char *p;
1135 unsigned int *subspace_reloc_sizep;
1136 struct reloc_queue *queue;
1137 {
1138 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1139 then R_PREV_FIXUPs to get the difference down to a
1140 reasonable size. */
1141 if (skip >= 0x1000000)
1142 {
1143 skip -= 0x1000000;
1144 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1145 bfd_put_8 (abfd, 0xff, p + 1);
1146 bfd_put_16 (abfd, 0xffff, p + 2);
1147 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1148 while (skip >= 0x1000000)
1149 {
1150 skip -= 0x1000000;
1151 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1152 p++;
1153 *subspace_reloc_sizep += 1;
1154 /* No need to adjust queue here since we are repeating the
1155 most recent fixup. */
1156 }
1157 }
1158
1159 /* The difference must be less than 0x1000000. Use one
1160 more R_NO_RELOCATION entry to get to the right difference. */
1161 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1162 {
1163 /* Difference can be handled in a simple single-byte
1164 R_NO_RELOCATION entry. */
1165 if (skip <= 0x60)
1166 {
1167 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1168 *subspace_reloc_sizep += 1;
1169 p++;
1170 }
1171 /* Handle it with a two byte R_NO_RELOCATION entry. */
1172 else if (skip <= 0x1000)
1173 {
1174 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1175 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1176 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1177 }
1178 /* Handle it with a three byte R_NO_RELOCATION entry. */
1179 else
1180 {
1181 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1182 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1183 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1184 }
1185 }
1186 /* Ugh. Punt and use a 4 byte entry. */
1187 else if (skip > 0)
1188 {
1189 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1190 bfd_put_8 (abfd, skip >> 16, p + 1);
1191 bfd_put_16 (abfd, skip, p + 2);
1192 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1193 }
1194 return p;
1195 }
1196
1197 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1198 from a BFD relocation. Update the size of the subspace relocation
1199 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1200 into the relocation stream. */
1201
1202 static unsigned char *
1203 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1204 bfd *abfd;
1205 int addend;
1206 unsigned char *p;
1207 unsigned int *subspace_reloc_sizep;
1208 struct reloc_queue *queue;
1209 {
1210 if ((unsigned)(addend) + 0x80 < 0x100)
1211 {
1212 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1213 bfd_put_8 (abfd, addend, p + 1);
1214 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1215 }
1216 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1217 {
1218 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1219 bfd_put_16 (abfd, addend, p + 1);
1220 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1221 }
1222 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1223 {
1224 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1225 bfd_put_8 (abfd, addend >> 16, p + 1);
1226 bfd_put_16 (abfd, addend, p + 2);
1227 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1228 }
1229 else
1230 {
1231 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1232 bfd_put_32 (abfd, addend, p + 1);
1233 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1234 }
1235 return p;
1236 }
1237
1238 /* Handle a single function call relocation. */
1239
1240 static unsigned char *
1241 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1242 bfd *abfd;
1243 unsigned char *p;
1244 unsigned int *subspace_reloc_sizep;
1245 arelent *bfd_reloc;
1246 int sym_num;
1247 struct reloc_queue *queue;
1248 {
1249 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1250 int rtn_bits = arg_bits & 0x3;
1251 int type, done = 0;
1252
1253 /* You'll never believe all this is necessary to handle relocations
1254 for function calls. Having to compute and pack the argument
1255 relocation bits is the real nightmare.
1256
1257 If you're interested in how this works, just forget it. You really
1258 do not want to know about this braindamage. */
1259
1260 /* First see if this can be done with a "simple" relocation. Simple
1261 relocations have a symbol number < 0x100 and have simple encodings
1262 of argument relocations. */
1263
1264 if (sym_num < 0x100)
1265 {
1266 switch (arg_bits)
1267 {
1268 case 0:
1269 case 1:
1270 type = 0;
1271 break;
1272 case 1 << 8:
1273 case 1 << 8 | 1:
1274 type = 1;
1275 break;
1276 case 1 << 8 | 1 << 6:
1277 case 1 << 8 | 1 << 6 | 1:
1278 type = 2;
1279 break;
1280 case 1 << 8 | 1 << 6 | 1 << 4:
1281 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1282 type = 3;
1283 break;
1284 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1285 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1286 type = 4;
1287 break;
1288 default:
1289 /* Not one of the easy encodings. This will have to be
1290 handled by the more complex code below. */
1291 type = -1;
1292 break;
1293 }
1294 if (type != -1)
1295 {
1296 /* Account for the return value too. */
1297 if (rtn_bits)
1298 type += 5;
1299
1300 /* Emit a 2 byte relocation. Then see if it can be handled
1301 with a relocation which is already in the relocation queue. */
1302 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1303 bfd_put_8 (abfd, sym_num, p + 1);
1304 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1305 done = 1;
1306 }
1307 }
1308
1309 /* If this could not be handled with a simple relocation, then do a hard
1310 one. Hard relocations occur if the symbol number was too high or if
1311 the encoding of argument relocation bits is too complex. */
1312 if (! done)
1313 {
1314 /* Don't ask about these magic sequences. I took them straight
1315 from gas-1.36 which took them from the a.out man page. */
1316 type = rtn_bits;
1317 if ((arg_bits >> 6 & 0xf) == 0xe)
1318 type += 9 * 40;
1319 else
1320 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1321 if ((arg_bits >> 2 & 0xf) == 0xe)
1322 type += 9 * 4;
1323 else
1324 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1325
1326 /* Output the first two bytes of the relocation. These describe
1327 the length of the relocation and encoding style. */
1328 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1329 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1330 p);
1331 bfd_put_8 (abfd, type, p + 1);
1332
1333 /* Now output the symbol index and see if this bizarre relocation
1334 just happened to be in the relocation queue. */
1335 if (sym_num < 0x100)
1336 {
1337 bfd_put_8 (abfd, sym_num, p + 2);
1338 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1339 }
1340 else
1341 {
1342 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1343 bfd_put_16 (abfd, sym_num, p + 3);
1344 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1345 }
1346 }
1347 return p;
1348 }
1349
1350
1351 /* Return the logarithm of X, base 2, considering X unsigned.
1352 Abort -1 if X is not a power or two or is zero. */
1353
1354 static int
1355 log2 (x)
1356 unsigned int x;
1357 {
1358 int log = 0;
1359
1360 /* Test for 0 or a power of 2. */
1361 if (x == 0 || x != (x & -x))
1362 return -1;
1363
1364 while ((x >>= 1) != 0)
1365 log++;
1366 return log;
1367 }
1368
1369 static bfd_reloc_status_type
1370 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1371 input_section, output_bfd, error_message)
1372 bfd *abfd;
1373 arelent *reloc_entry;
1374 asymbol *symbol_in;
1375 PTR data;
1376 asection *input_section;
1377 bfd *output_bfd;
1378 char **error_message;
1379 {
1380 if (output_bfd)
1381 {
1382 reloc_entry->address += input_section->output_offset;
1383 return bfd_reloc_ok;
1384 }
1385 return bfd_reloc_ok;
1386 }
1387
1388 /* Given a generic HPPA relocation type, the instruction format,
1389 and a field selector, return one or more appropriate SOM relocations. */
1390
1391 int **
1392 hppa_som_gen_reloc_type (abfd, base_type, format, field)
1393 bfd *abfd;
1394 int base_type;
1395 int format;
1396 enum hppa_reloc_field_selector_type_alt field;
1397 {
1398 int *final_type, **final_types;
1399
1400 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 3);
1401 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1402 if (!final_types || !final_type)
1403 {
1404 bfd_set_error (bfd_error_no_memory);
1405 return NULL;
1406 }
1407
1408 /* The field selector may require additional relocations to be
1409 generated. It's impossible to know at this moment if additional
1410 relocations will be needed, so we make them. The code to actually
1411 write the relocation/fixup stream is responsible for removing
1412 any redundant relocations. */
1413 switch (field)
1414 {
1415 case e_fsel:
1416 case e_psel:
1417 case e_lpsel:
1418 case e_rpsel:
1419 final_types[0] = final_type;
1420 final_types[1] = NULL;
1421 final_types[2] = NULL;
1422 *final_type = base_type;
1423 break;
1424
1425 case e_tsel:
1426 case e_ltsel:
1427 case e_rtsel:
1428 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1429 if (!final_types[0])
1430 {
1431 bfd_set_error (bfd_error_no_memory);
1432 return NULL;
1433 }
1434 if (field == e_tsel)
1435 *final_types[0] = R_FSEL;
1436 else if (field == e_ltsel)
1437 *final_types[0] = R_LSEL;
1438 else
1439 *final_types[0] = R_RSEL;
1440 final_types[1] = final_type;
1441 final_types[2] = NULL;
1442 *final_type = base_type;
1443 break;
1444
1445 case e_lssel:
1446 case e_rssel:
1447 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1448 if (!final_types[0])
1449 {
1450 bfd_set_error (bfd_error_no_memory);
1451 return NULL;
1452 }
1453 *final_types[0] = R_S_MODE;
1454 final_types[1] = final_type;
1455 final_types[2] = NULL;
1456 *final_type = base_type;
1457 break;
1458
1459 case e_lsel:
1460 case e_rsel:
1461 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1462 if (!final_types[0])
1463 {
1464 bfd_set_error (bfd_error_no_memory);
1465 return NULL;
1466 }
1467 *final_types[0] = R_N_MODE;
1468 final_types[1] = final_type;
1469 final_types[2] = NULL;
1470 *final_type = base_type;
1471 break;
1472
1473 case e_ldsel:
1474 case e_rdsel:
1475 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1476 if (!final_types[0])
1477 {
1478 bfd_set_error (bfd_error_no_memory);
1479 return NULL;
1480 }
1481 *final_types[0] = R_D_MODE;
1482 final_types[1] = final_type;
1483 final_types[2] = NULL;
1484 *final_type = base_type;
1485 break;
1486
1487 case e_lrsel:
1488 case e_rrsel:
1489 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1490 if (!final_types[0])
1491 {
1492 bfd_set_error (bfd_error_no_memory);
1493 return NULL;
1494 }
1495 *final_types[0] = R_R_MODE;
1496 final_types[1] = final_type;
1497 final_types[2] = NULL;
1498 *final_type = base_type;
1499 break;
1500 }
1501
1502 switch (base_type)
1503 {
1504 case R_HPPA:
1505 /* PLABELs get their own relocation type. */
1506 if (field == e_psel
1507 || field == e_lpsel
1508 || field == e_rpsel)
1509 {
1510 /* A PLABEL relocation that has a size of 32 bits must
1511 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1512 if (format == 32)
1513 *final_type = R_DATA_PLABEL;
1514 else
1515 *final_type = R_CODE_PLABEL;
1516 }
1517 /* PIC stuff. */
1518 else if (field == e_tsel
1519 || field == e_ltsel
1520 || field == e_rtsel)
1521 *final_type = R_DLT_REL;
1522 /* A relocation in the data space is always a full 32bits. */
1523 else if (format == 32)
1524 *final_type = R_DATA_ONE_SYMBOL;
1525
1526 break;
1527
1528 case R_HPPA_GOTOFF:
1529 /* More PLABEL special cases. */
1530 if (field == e_psel
1531 || field == e_lpsel
1532 || field == e_rpsel)
1533 *final_type = R_DATA_PLABEL;
1534 break;
1535
1536 case R_HPPA_NONE:
1537 case R_HPPA_ABS_CALL:
1538 case R_HPPA_PCREL_CALL:
1539 /* Right now we can default all these. */
1540 break;
1541 }
1542 return final_types;
1543 }
1544
1545 /* Return the address of the correct entry in the PA SOM relocation
1546 howto table. */
1547
1548 /*ARGSUSED*/
1549 static const reloc_howto_type *
1550 som_bfd_reloc_type_lookup (abfd, code)
1551 bfd *abfd;
1552 bfd_reloc_code_real_type code;
1553 {
1554 if ((int) code < (int) R_NO_RELOCATION + 255)
1555 {
1556 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1557 return &som_hppa_howto_table[(int) code];
1558 }
1559
1560 return (reloc_howto_type *) 0;
1561 }
1562
1563 /* Perform some initialization for an object. Save results of this
1564 initialization in the BFD. */
1565
1566 static const bfd_target *
1567 som_object_setup (abfd, file_hdrp, aux_hdrp)
1568 bfd *abfd;
1569 struct header *file_hdrp;
1570 struct som_exec_auxhdr *aux_hdrp;
1571 {
1572 /* som_mkobject will set bfd_error if som_mkobject fails. */
1573 if (som_mkobject (abfd) != true)
1574 return 0;
1575
1576 /* Set BFD flags based on what information is available in the SOM. */
1577 abfd->flags = NO_FLAGS;
1578 if (file_hdrp->symbol_total)
1579 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1580
1581 switch (file_hdrp->a_magic)
1582 {
1583 case DEMAND_MAGIC:
1584 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1585 break;
1586 case SHARE_MAGIC:
1587 abfd->flags |= (WP_TEXT | EXEC_P);
1588 break;
1589 case EXEC_MAGIC:
1590 abfd->flags |= (EXEC_P);
1591 break;
1592 case RELOC_MAGIC:
1593 abfd->flags |= HAS_RELOC;
1594 break;
1595 #ifdef SHL_MAGIC
1596 case SHL_MAGIC:
1597 #endif
1598 #ifdef DL_MAGIC
1599 case DL_MAGIC:
1600 #endif
1601 abfd->flags |= DYNAMIC;
1602 break;
1603
1604 default:
1605 break;
1606 }
1607
1608 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1609 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 0);
1610 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1611
1612 /* Initialize the saved symbol table and string table to NULL.
1613 Save important offsets and sizes from the SOM header into
1614 the BFD. */
1615 obj_som_stringtab (abfd) = (char *) NULL;
1616 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1617 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1618 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1619 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1620 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
1621
1622 obj_som_exec_data (abfd) = (struct som_exec_data *)
1623 bfd_zalloc (abfd, sizeof (struct som_exec_data ));
1624 if (obj_som_exec_data (abfd) == NULL)
1625 {
1626 bfd_set_error (bfd_error_no_memory);
1627 return NULL;
1628 }
1629
1630 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1631 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1632 return abfd->xvec;
1633 }
1634
1635 /* Convert all of the space and subspace info into BFD sections. Each space
1636 contains a number of subspaces, which in turn describe the mapping between
1637 regions of the exec file, and the address space that the program runs in.
1638 BFD sections which correspond to spaces will overlap the sections for the
1639 associated subspaces. */
1640
1641 static boolean
1642 setup_sections (abfd, file_hdr)
1643 bfd *abfd;
1644 struct header *file_hdr;
1645 {
1646 char *space_strings;
1647 int space_index;
1648 unsigned int total_subspaces = 0;
1649
1650 /* First, read in space names */
1651
1652 space_strings = malloc (file_hdr->space_strings_size);
1653 if (!space_strings && file_hdr->space_strings_size != 0)
1654 {
1655 bfd_set_error (bfd_error_no_memory);
1656 goto error_return;
1657 }
1658
1659 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
1660 goto error_return;
1661 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1662 != file_hdr->space_strings_size)
1663 goto error_return;
1664
1665 /* Loop over all of the space dictionaries, building up sections */
1666 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1667 {
1668 struct space_dictionary_record space;
1669 struct subspace_dictionary_record subspace, save_subspace;
1670 int subspace_index;
1671 asection *space_asect;
1672 char *newname;
1673
1674 /* Read the space dictionary element */
1675 if (bfd_seek (abfd, file_hdr->space_location
1676 + space_index * sizeof space, SEEK_SET) < 0)
1677 goto error_return;
1678 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1679 goto error_return;
1680
1681 /* Setup the space name string */
1682 space.name.n_name = space.name.n_strx + space_strings;
1683
1684 /* Make a section out of it */
1685 newname = bfd_alloc (abfd, strlen (space.name.n_name) + 1);
1686 if (!newname)
1687 goto error_return;
1688 strcpy (newname, space.name.n_name);
1689
1690 space_asect = bfd_make_section_anyway (abfd, newname);
1691 if (!space_asect)
1692 goto error_return;
1693
1694 if (space.is_loadable == 0)
1695 space_asect->flags |= SEC_DEBUGGING;
1696
1697 /* Set up all the attributes for the space. */
1698 if (bfd_som_set_section_attributes (space_asect, space.is_defined,
1699 space.is_private, space.sort_key,
1700 space.space_number) == false)
1701 goto error_return;
1702
1703 /* Now, read in the first subspace for this space */
1704 if (bfd_seek (abfd, file_hdr->subspace_location
1705 + space.subspace_index * sizeof subspace,
1706 SEEK_SET) < 0)
1707 goto error_return;
1708 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1709 goto error_return;
1710 /* Seek back to the start of the subspaces for loop below */
1711 if (bfd_seek (abfd, file_hdr->subspace_location
1712 + space.subspace_index * sizeof subspace,
1713 SEEK_SET) < 0)
1714 goto error_return;
1715
1716 /* Setup the start address and file loc from the first subspace record */
1717 space_asect->vma = subspace.subspace_start;
1718 space_asect->filepos = subspace.file_loc_init_value;
1719 space_asect->alignment_power = log2 (subspace.alignment);
1720 if (space_asect->alignment_power == -1)
1721 goto error_return;
1722
1723 /* Initialize save_subspace so we can reliably determine if this
1724 loop placed any useful values into it. */
1725 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1726
1727 /* Loop over the rest of the subspaces, building up more sections */
1728 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1729 subspace_index++)
1730 {
1731 asection *subspace_asect;
1732
1733 /* Read in the next subspace */
1734 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1735 != sizeof subspace)
1736 goto error_return;
1737
1738 /* Setup the subspace name string */
1739 subspace.name.n_name = subspace.name.n_strx + space_strings;
1740
1741 newname = bfd_alloc (abfd, strlen (subspace.name.n_name) + 1);
1742 if (!newname)
1743 goto error_return;
1744 strcpy (newname, subspace.name.n_name);
1745
1746 /* Make a section out of this subspace */
1747 subspace_asect = bfd_make_section_anyway (abfd, newname);
1748 if (!subspace_asect)
1749 goto error_return;
1750
1751 /* Store private information about the section. */
1752 if (bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1753 subspace.access_control_bits,
1754 subspace.sort_key,
1755 subspace.quadrant) == false)
1756 goto error_return;
1757
1758 /* Keep an easy mapping between subspaces and sections. */
1759 subspace_asect->target_index = total_subspaces++;
1760
1761 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1762 by the access_control_bits in the subspace header. */
1763 switch (subspace.access_control_bits >> 4)
1764 {
1765 /* Readonly data. */
1766 case 0x0:
1767 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1768 break;
1769
1770 /* Normal data. */
1771 case 0x1:
1772 subspace_asect->flags |= SEC_DATA;
1773 break;
1774
1775 /* Readonly code and the gateways.
1776 Gateways have other attributes which do not map
1777 into anything BFD knows about. */
1778 case 0x2:
1779 case 0x4:
1780 case 0x5:
1781 case 0x6:
1782 case 0x7:
1783 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1784 break;
1785
1786 /* dynamic (writable) code. */
1787 case 0x3:
1788 subspace_asect->flags |= SEC_CODE;
1789 break;
1790 }
1791
1792 if (subspace.dup_common || subspace.is_common)
1793 subspace_asect->flags |= SEC_IS_COMMON;
1794 else if (subspace.subspace_length > 0)
1795 subspace_asect->flags |= SEC_HAS_CONTENTS;
1796
1797 if (subspace.is_loadable)
1798 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1799 else
1800 subspace_asect->flags |= SEC_DEBUGGING;
1801
1802 if (subspace.code_only)
1803 subspace_asect->flags |= SEC_CODE;
1804
1805 /* Both file_loc_init_value and initialization_length will
1806 be zero for a BSS like subspace. */
1807 if (subspace.file_loc_init_value == 0
1808 && subspace.initialization_length == 0)
1809 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD);
1810
1811 /* This subspace has relocations.
1812 The fixup_request_quantity is a byte count for the number of
1813 entries in the relocation stream; it is not the actual number
1814 of relocations in the subspace. */
1815 if (subspace.fixup_request_quantity != 0)
1816 {
1817 subspace_asect->flags |= SEC_RELOC;
1818 subspace_asect->rel_filepos = subspace.fixup_request_index;
1819 som_section_data (subspace_asect)->reloc_size
1820 = subspace.fixup_request_quantity;
1821 /* We can not determine this yet. When we read in the
1822 relocation table the correct value will be filled in. */
1823 subspace_asect->reloc_count = -1;
1824 }
1825
1826 /* Update save_subspace if appropriate. */
1827 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1828 save_subspace = subspace;
1829
1830 subspace_asect->vma = subspace.subspace_start;
1831 subspace_asect->_cooked_size = subspace.subspace_length;
1832 subspace_asect->_raw_size = subspace.subspace_length;
1833 subspace_asect->filepos = subspace.file_loc_init_value;
1834 subspace_asect->alignment_power = log2 (subspace.alignment);
1835 if (subspace_asect->alignment_power == -1)
1836 goto error_return;
1837 }
1838
1839 /* Yow! there is no subspace within the space which actually
1840 has initialized information in it; this should never happen
1841 as far as I know. */
1842 if (!save_subspace.file_loc_init_value)
1843 goto error_return;
1844
1845 /* Setup the sizes for the space section based upon the info in the
1846 last subspace of the space. */
1847 space_asect->_cooked_size = save_subspace.subspace_start
1848 - space_asect->vma + save_subspace.subspace_length;
1849 space_asect->_raw_size = save_subspace.file_loc_init_value
1850 - space_asect->filepos + save_subspace.initialization_length;
1851 }
1852 if (space_strings != NULL)
1853 free (space_strings);
1854 return true;
1855
1856 error_return:
1857 if (space_strings != NULL)
1858 free (space_strings);
1859 return false;
1860 }
1861
1862 /* Read in a SOM object and make it into a BFD. */
1863
1864 static const bfd_target *
1865 som_object_p (abfd)
1866 bfd *abfd;
1867 {
1868 struct header file_hdr;
1869 struct som_exec_auxhdr aux_hdr;
1870
1871 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
1872 {
1873 if (bfd_get_error () != bfd_error_system_call)
1874 bfd_set_error (bfd_error_wrong_format);
1875 return 0;
1876 }
1877
1878 if (!_PA_RISC_ID (file_hdr.system_id))
1879 {
1880 bfd_set_error (bfd_error_wrong_format);
1881 return 0;
1882 }
1883
1884 switch (file_hdr.a_magic)
1885 {
1886 case RELOC_MAGIC:
1887 case EXEC_MAGIC:
1888 case SHARE_MAGIC:
1889 case DEMAND_MAGIC:
1890 #ifdef DL_MAGIC
1891 case DL_MAGIC:
1892 #endif
1893 #ifdef SHL_MAGIC
1894 case SHL_MAGIC:
1895 #endif
1896 #ifdef EXECLIBMAGIC
1897 case EXECLIBMAGIC:
1898 #endif
1899 #ifdef SHARED_MAGIC_CNX
1900 case SHARED_MAGIC_CNX:
1901 #endif
1902 break;
1903 default:
1904 bfd_set_error (bfd_error_wrong_format);
1905 return 0;
1906 }
1907
1908 if (file_hdr.version_id != VERSION_ID
1909 && file_hdr.version_id != NEW_VERSION_ID)
1910 {
1911 bfd_set_error (bfd_error_wrong_format);
1912 return 0;
1913 }
1914
1915 /* If the aux_header_size field in the file header is zero, then this
1916 object is an incomplete executable (a .o file). Do not try to read
1917 a non-existant auxiliary header. */
1918 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
1919 if (file_hdr.aux_header_size != 0)
1920 {
1921 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
1922 {
1923 if (bfd_get_error () != bfd_error_system_call)
1924 bfd_set_error (bfd_error_wrong_format);
1925 return 0;
1926 }
1927 }
1928
1929 if (!setup_sections (abfd, &file_hdr))
1930 {
1931 /* setup_sections does not bubble up a bfd error code. */
1932 bfd_set_error (bfd_error_bad_value);
1933 return 0;
1934 }
1935
1936 /* This appears to be a valid SOM object. Do some initialization. */
1937 return som_object_setup (abfd, &file_hdr, &aux_hdr);
1938 }
1939
1940 /* Create a SOM object. */
1941
1942 static boolean
1943 som_mkobject (abfd)
1944 bfd *abfd;
1945 {
1946 /* Allocate memory to hold backend information. */
1947 abfd->tdata.som_data = (struct som_data_struct *)
1948 bfd_zalloc (abfd, sizeof (struct som_data_struct));
1949 if (abfd->tdata.som_data == NULL)
1950 {
1951 bfd_set_error (bfd_error_no_memory);
1952 return false;
1953 }
1954 return true;
1955 }
1956
1957 /* Initialize some information in the file header. This routine makes
1958 not attempt at doing the right thing for a full executable; it
1959 is only meant to handle relocatable objects. */
1960
1961 static boolean
1962 som_prep_headers (abfd)
1963 bfd *abfd;
1964 {
1965 struct header *file_hdr;
1966 asection *section;
1967
1968 /* Make and attach a file header to the BFD. */
1969 file_hdr = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
1970 if (file_hdr == NULL)
1971
1972 {
1973 bfd_set_error (bfd_error_no_memory);
1974 return false;
1975 }
1976 obj_som_file_hdr (abfd) = file_hdr;
1977
1978 if (abfd->flags & (EXEC_P | DYNAMIC))
1979 {
1980
1981 /* Make and attach an exec header to the BFD. */
1982 obj_som_exec_hdr (abfd) = (struct som_exec_auxhdr *)
1983 bfd_zalloc (abfd, sizeof (struct som_exec_auxhdr));
1984 if (obj_som_exec_hdr (abfd) == NULL)
1985 {
1986 bfd_set_error (bfd_error_no_memory);
1987 return false;
1988 }
1989
1990 if (abfd->flags & D_PAGED)
1991 file_hdr->a_magic = DEMAND_MAGIC;
1992 else if (abfd->flags & WP_TEXT)
1993 file_hdr->a_magic = SHARE_MAGIC;
1994 #ifdef SHL_MAGIC
1995 else if (abfd->flags & DYNAMIC)
1996 file_hdr->a_magic = SHL_MAGIC;
1997 #endif
1998 else
1999 file_hdr->a_magic = EXEC_MAGIC;
2000 }
2001 else
2002 file_hdr->a_magic = RELOC_MAGIC;
2003
2004 /* Only new format SOM is supported. */
2005 file_hdr->version_id = NEW_VERSION_ID;
2006
2007 /* These fields are optional, and embedding timestamps is not always
2008 a wise thing to do, it makes comparing objects during a multi-stage
2009 bootstrap difficult. */
2010 file_hdr->file_time.secs = 0;
2011 file_hdr->file_time.nanosecs = 0;
2012
2013 file_hdr->entry_space = 0;
2014 file_hdr->entry_subspace = 0;
2015 file_hdr->entry_offset = 0;
2016 file_hdr->presumed_dp = 0;
2017
2018 /* Now iterate over the sections translating information from
2019 BFD sections to SOM spaces/subspaces. */
2020
2021 for (section = abfd->sections; section != NULL; section = section->next)
2022 {
2023 /* Ignore anything which has not been marked as a space or
2024 subspace. */
2025 if (!som_is_space (section) && !som_is_subspace (section))
2026 continue;
2027
2028 if (som_is_space (section))
2029 {
2030 /* Allocate space for the space dictionary. */
2031 som_section_data (section)->space_dict
2032 = (struct space_dictionary_record *)
2033 bfd_zalloc (abfd, sizeof (struct space_dictionary_record));
2034 if (som_section_data (section)->space_dict == NULL)
2035 {
2036 bfd_set_error (bfd_error_no_memory);
2037 return false;
2038 }
2039 /* Set space attributes. Note most attributes of SOM spaces
2040 are set based on the subspaces it contains. */
2041 som_section_data (section)->space_dict->loader_fix_index = -1;
2042 som_section_data (section)->space_dict->init_pointer_index = -1;
2043
2044 /* Set more attributes that were stuffed away in private data. */
2045 som_section_data (section)->space_dict->sort_key =
2046 som_section_data (section)->copy_data->sort_key;
2047 som_section_data (section)->space_dict->is_defined =
2048 som_section_data (section)->copy_data->is_defined;
2049 som_section_data (section)->space_dict->is_private =
2050 som_section_data (section)->copy_data->is_private;
2051 som_section_data (section)->space_dict->space_number =
2052 som_section_data (section)->copy_data->space_number;
2053 }
2054 else
2055 {
2056 /* Allocate space for the subspace dictionary. */
2057 som_section_data (section)->subspace_dict
2058 = (struct subspace_dictionary_record *)
2059 bfd_zalloc (abfd, sizeof (struct subspace_dictionary_record));
2060 if (som_section_data (section)->subspace_dict == NULL)
2061 {
2062 bfd_set_error (bfd_error_no_memory);
2063 return false;
2064 }
2065
2066 /* Set subspace attributes. Basic stuff is done here, additional
2067 attributes are filled in later as more information becomes
2068 available. */
2069 if (section->flags & SEC_IS_COMMON)
2070 {
2071 som_section_data (section)->subspace_dict->dup_common = 1;
2072 som_section_data (section)->subspace_dict->is_common = 1;
2073 }
2074
2075 if (section->flags & SEC_ALLOC)
2076 som_section_data (section)->subspace_dict->is_loadable = 1;
2077
2078 if (section->flags & SEC_CODE)
2079 som_section_data (section)->subspace_dict->code_only = 1;
2080
2081 som_section_data (section)->subspace_dict->subspace_start =
2082 section->vma;
2083 som_section_data (section)->subspace_dict->subspace_length =
2084 bfd_section_size (abfd, section);
2085 som_section_data (section)->subspace_dict->initialization_length =
2086 bfd_section_size (abfd, section);
2087 som_section_data (section)->subspace_dict->alignment =
2088 1 << section->alignment_power;
2089
2090 /* Set more attributes that were stuffed away in private data. */
2091 som_section_data (section)->subspace_dict->sort_key =
2092 som_section_data (section)->copy_data->sort_key;
2093 som_section_data (section)->subspace_dict->access_control_bits =
2094 som_section_data (section)->copy_data->access_control_bits;
2095 som_section_data (section)->subspace_dict->quadrant =
2096 som_section_data (section)->copy_data->quadrant;
2097 }
2098 }
2099 return true;
2100 }
2101
2102 /* Return true if the given section is a SOM space, false otherwise. */
2103
2104 static boolean
2105 som_is_space (section)
2106 asection *section;
2107 {
2108 /* If no copy data is available, then it's neither a space nor a
2109 subspace. */
2110 if (som_section_data (section)->copy_data == NULL)
2111 return false;
2112
2113 /* If the containing space isn't the same as the given section,
2114 then this isn't a space. */
2115 if (som_section_data (section)->copy_data->container != section)
2116 return false;
2117
2118 /* OK. Must be a space. */
2119 return true;
2120 }
2121
2122 /* Return true if the given section is a SOM subspace, false otherwise. */
2123
2124 static boolean
2125 som_is_subspace (section)
2126 asection *section;
2127 {
2128 /* If no copy data is available, then it's neither a space nor a
2129 subspace. */
2130 if (som_section_data (section)->copy_data == NULL)
2131 return false;
2132
2133 /* If the containing space is the same as the given section,
2134 then this isn't a subspace. */
2135 if (som_section_data (section)->copy_data->container == section)
2136 return false;
2137
2138 /* OK. Must be a subspace. */
2139 return true;
2140 }
2141
2142 /* Return true if the given space containins the given subspace. It
2143 is safe to assume space really is a space, and subspace really
2144 is a subspace. */
2145
2146 static boolean
2147 som_is_container (space, subspace)
2148 asection *space, *subspace;
2149 {
2150 return som_section_data (subspace)->copy_data->container == space;
2151 }
2152
2153 /* Count and return the number of spaces attached to the given BFD. */
2154
2155 static unsigned long
2156 som_count_spaces (abfd)
2157 bfd *abfd;
2158 {
2159 int count = 0;
2160 asection *section;
2161
2162 for (section = abfd->sections; section != NULL; section = section->next)
2163 count += som_is_space (section);
2164
2165 return count;
2166 }
2167
2168 /* Count the number of subspaces attached to the given BFD. */
2169
2170 static unsigned long
2171 som_count_subspaces (abfd)
2172 bfd *abfd;
2173 {
2174 int count = 0;
2175 asection *section;
2176
2177 for (section = abfd->sections; section != NULL; section = section->next)
2178 count += som_is_subspace (section);
2179
2180 return count;
2181 }
2182
2183 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2184
2185 We desire symbols to be ordered starting with the symbol with the
2186 highest relocation count down to the symbol with the lowest relocation
2187 count. Doing so compacts the relocation stream. */
2188
2189 static int
2190 compare_syms (arg1, arg2)
2191 const PTR arg1;
2192 const PTR arg2;
2193
2194 {
2195 asymbol **sym1 = (asymbol **) arg1;
2196 asymbol **sym2 = (asymbol **) arg2;
2197 unsigned int count1, count2;
2198
2199 /* Get relocation count for each symbol. Note that the count
2200 is stored in the udata pointer for section symbols! */
2201 if ((*sym1)->flags & BSF_SECTION_SYM)
2202 count1 = (int)(*sym1)->udata;
2203 else
2204 count1 = som_symbol_data (*sym1)->reloc_count;
2205
2206 if ((*sym2)->flags & BSF_SECTION_SYM)
2207 count2 = (int)(*sym2)->udata;
2208 else
2209 count2 = som_symbol_data (*sym2)->reloc_count;
2210
2211 /* Return the appropriate value. */
2212 if (count1 < count2)
2213 return 1;
2214 else if (count1 > count2)
2215 return -1;
2216 return 0;
2217 }
2218
2219 /* Perform various work in preparation for emitting the fixup stream. */
2220
2221 static void
2222 som_prep_for_fixups (abfd, syms, num_syms)
2223 bfd *abfd;
2224 asymbol **syms;
2225 unsigned long num_syms;
2226 {
2227 int i;
2228 asection *section;
2229
2230 /* Most SOM relocations involving a symbol have a length which is
2231 dependent on the index of the symbol. So symbols which are
2232 used often in relocations should have a small index. */
2233
2234 /* First initialize the counters for each symbol. */
2235 for (i = 0; i < num_syms; i++)
2236 {
2237 /* Handle a section symbol; these have no pointers back to the
2238 SOM symbol info. So we just use the pointer field (udata)
2239 to hold the relocation count. */
2240 if (som_symbol_data (syms[i]) == NULL
2241 || syms[i]->flags & BSF_SECTION_SYM)
2242 {
2243 syms[i]->flags |= BSF_SECTION_SYM;
2244 syms[i]->udata = (PTR) 0;
2245 }
2246 else
2247 som_symbol_data (syms[i])->reloc_count = 0;
2248 }
2249
2250 /* Now that the counters are initialized, make a weighted count
2251 of how often a given symbol is used in a relocation. */
2252 for (section = abfd->sections; section != NULL; section = section->next)
2253 {
2254 int i;
2255
2256 /* Does this section have any relocations? */
2257 if (section->reloc_count <= 0)
2258 continue;
2259
2260 /* Walk through each relocation for this section. */
2261 for (i = 1; i < section->reloc_count; i++)
2262 {
2263 arelent *reloc = section->orelocation[i];
2264 int scale;
2265
2266 /* A relocation against a symbol in the *ABS* section really
2267 does not have a symbol. Likewise if the symbol isn't associated
2268 with any section. */
2269 if (reloc->sym_ptr_ptr == NULL
2270 || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section))
2271 continue;
2272
2273 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2274 and R_CODE_ONE_SYMBOL relocations to come first. These
2275 two relocations have single byte versions if the symbol
2276 index is very small. */
2277 if (reloc->howto->type == R_DP_RELATIVE
2278 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2279 scale = 2;
2280 else
2281 scale = 1;
2282
2283 /* Handle section symbols by ramming the count in the udata
2284 field. It will not be used and the count is very important
2285 for these symbols. */
2286 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2287 {
2288 (*reloc->sym_ptr_ptr)->udata =
2289 (PTR) ((int) (*reloc->sym_ptr_ptr)->udata + scale);
2290 continue;
2291 }
2292
2293 /* A normal symbol. Increment the count. */
2294 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2295 }
2296 }
2297 #if 0
2298 /* Now sort the symbols. */
2299 qsort (syms, num_syms, sizeof (asymbol *), compare_syms);
2300 #endif
2301
2302 /* Compute the symbol indexes, they will be needed by the relocation
2303 code. */
2304 for (i = 0; i < num_syms; i++)
2305 {
2306 /* A section symbol. Again, there is no pointer to backend symbol
2307 information, so we reuse (abuse) the udata field again. */
2308 if (syms[i]->flags & BSF_SECTION_SYM)
2309 syms[i]->udata = (PTR) i;
2310 else
2311 som_symbol_data (syms[i])->index = i;
2312 }
2313 }
2314
2315 static boolean
2316 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2317 bfd *abfd;
2318 unsigned long current_offset;
2319 unsigned int *total_reloc_sizep;
2320 {
2321 unsigned int i, j;
2322 /* Chunk of memory that we can use as buffer space, then throw
2323 away. */
2324 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2325 unsigned char *p;
2326 unsigned int total_reloc_size = 0;
2327 unsigned int subspace_reloc_size = 0;
2328 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2329 asection *section = abfd->sections;
2330
2331 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2332 p = tmp_space;
2333
2334 /* All the fixups for a particular subspace are emitted in a single
2335 stream. All the subspaces for a particular space are emitted
2336 as a single stream.
2337
2338 So, to get all the locations correct one must iterate through all the
2339 spaces, for each space iterate through its subspaces and output a
2340 fixups stream. */
2341 for (i = 0; i < num_spaces; i++)
2342 {
2343 asection *subsection;
2344
2345 /* Find a space. */
2346 while (!som_is_space (section))
2347 section = section->next;
2348
2349 /* Now iterate through each of its subspaces. */
2350 for (subsection = abfd->sections;
2351 subsection != NULL;
2352 subsection = subsection->next)
2353 {
2354 int reloc_offset, current_rounding_mode;
2355
2356 /* Find a subspace of this space. */
2357 if (!som_is_subspace (subsection)
2358 || !som_is_container (section, subsection))
2359 continue;
2360
2361 /* If this subspace does not have real data, then we are
2362 finised with it. */
2363 if ((subsection->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0)
2364 {
2365 som_section_data (subsection)->subspace_dict->fixup_request_index
2366 = -1;
2367 continue;
2368 }
2369
2370 /* This subspace has some relocations. Put the relocation stream
2371 index into the subspace record. */
2372 som_section_data (subsection)->subspace_dict->fixup_request_index
2373 = total_reloc_size;
2374
2375 /* To make life easier start over with a clean slate for
2376 each subspace. Seek to the start of the relocation stream
2377 for this subspace in preparation for writing out its fixup
2378 stream. */
2379 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) < 0)
2380 return false;
2381
2382 /* Buffer space has already been allocated. Just perform some
2383 initialization here. */
2384 p = tmp_space;
2385 subspace_reloc_size = 0;
2386 reloc_offset = 0;
2387 som_initialize_reloc_queue (reloc_queue);
2388 current_rounding_mode = R_N_MODE;
2389
2390 /* Translate each BFD relocation into one or more SOM
2391 relocations. */
2392 for (j = 0; j < subsection->reloc_count; j++)
2393 {
2394 arelent *bfd_reloc = subsection->orelocation[j];
2395 unsigned int skip;
2396 int sym_num;
2397
2398 /* Get the symbol number. Remember it's stored in a
2399 special place for section symbols. */
2400 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2401 sym_num = (int) (*bfd_reloc->sym_ptr_ptr)->udata;
2402 else
2403 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2404
2405 /* If there is not enough room for the next couple relocations,
2406 then dump the current buffer contents now. Also reinitialize
2407 the relocation queue.
2408
2409 No single BFD relocation could ever translate into more
2410 than 100 bytes of SOM relocations (20bytes is probably the
2411 upper limit, but leave lots of space for growth). */
2412 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2413 {
2414 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2415 != p - tmp_space)
2416 return false;
2417
2418 p = tmp_space;
2419 som_initialize_reloc_queue (reloc_queue);
2420 }
2421
2422 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2423 skipped. */
2424 skip = bfd_reloc->address - reloc_offset;
2425 p = som_reloc_skip (abfd, skip, p,
2426 &subspace_reloc_size, reloc_queue);
2427
2428 /* Update reloc_offset for the next iteration.
2429
2430 Many relocations do not consume input bytes. They
2431 are markers, or set state necessary to perform some
2432 later relocation. */
2433 switch (bfd_reloc->howto->type)
2434 {
2435 /* This only needs to handle relocations that may be
2436 made by hppa_som_gen_reloc. */
2437 case R_ENTRY:
2438 case R_EXIT:
2439 case R_N_MODE:
2440 case R_S_MODE:
2441 case R_D_MODE:
2442 case R_R_MODE:
2443 case R_FSEL:
2444 case R_LSEL:
2445 case R_RSEL:
2446 reloc_offset = bfd_reloc->address;
2447 break;
2448
2449 default:
2450 reloc_offset = bfd_reloc->address + 4;
2451 break;
2452 }
2453
2454 /* Now the actual relocation we care about. */
2455 switch (bfd_reloc->howto->type)
2456 {
2457 case R_PCREL_CALL:
2458 case R_ABS_CALL:
2459 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2460 bfd_reloc, sym_num, reloc_queue);
2461 break;
2462
2463 case R_CODE_ONE_SYMBOL:
2464 case R_DP_RELATIVE:
2465 /* Account for any addend. */
2466 if (bfd_reloc->addend)
2467 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2468 &subspace_reloc_size, reloc_queue);
2469
2470 if (sym_num < 0x20)
2471 {
2472 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2473 subspace_reloc_size += 1;
2474 p += 1;
2475 }
2476 else if (sym_num < 0x100)
2477 {
2478 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2479 bfd_put_8 (abfd, sym_num, p + 1);
2480 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2481 2, reloc_queue);
2482 }
2483 else if (sym_num < 0x10000000)
2484 {
2485 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2486 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2487 bfd_put_16 (abfd, sym_num, p + 2);
2488 p = try_prev_fixup (abfd, &subspace_reloc_size,
2489 p, 4, reloc_queue);
2490 }
2491 else
2492 abort ();
2493 break;
2494
2495 case R_DATA_ONE_SYMBOL:
2496 case R_DATA_PLABEL:
2497 case R_CODE_PLABEL:
2498 case R_DLT_REL:
2499 /* Account for any addend. */
2500 if (bfd_reloc->addend)
2501 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2502 &subspace_reloc_size, reloc_queue);
2503
2504 if (sym_num < 0x100)
2505 {
2506 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2507 bfd_put_8 (abfd, sym_num, p + 1);
2508 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2509 2, reloc_queue);
2510 }
2511 else if (sym_num < 0x10000000)
2512 {
2513 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2514 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2515 bfd_put_16 (abfd, sym_num, p + 2);
2516 p = try_prev_fixup (abfd, &subspace_reloc_size,
2517 p, 4, reloc_queue);
2518 }
2519 else
2520 abort ();
2521 break;
2522
2523 case R_ENTRY:
2524 {
2525 int *descp = (int *)
2526 som_symbol_data (*bfd_reloc->sym_ptr_ptr)->unwind;
2527 bfd_put_8 (abfd, R_ENTRY, p);
2528
2529 /* FIXME: We should set the sym_ptr for the R_ENTRY
2530 reloc to point to the appropriate function symbol,
2531 and attach unwind bits to the function symbol as
2532 we canonicalize the relocs. Doing so would ensure
2533 descp would always point to something useful. */
2534 if (descp)
2535 {
2536 bfd_put_32 (abfd, descp[0], p + 1);
2537 bfd_put_32 (abfd, descp[1], p + 5);
2538 }
2539 else
2540 {
2541 bfd_put_32 (abfd, 0, p + 1);
2542 bfd_put_32 (abfd, 0, p + 5);
2543 }
2544 p = try_prev_fixup (abfd, &subspace_reloc_size,
2545 p, 9, reloc_queue);
2546 break;
2547 }
2548
2549 case R_EXIT:
2550 bfd_put_8 (abfd, R_EXIT, p);
2551 subspace_reloc_size += 1;
2552 p += 1;
2553 break;
2554
2555 case R_N_MODE:
2556 case R_S_MODE:
2557 case R_D_MODE:
2558 case R_R_MODE:
2559 /* If this relocation requests the current rounding
2560 mode, then it is redundant. */
2561 if (bfd_reloc->howto->type != current_rounding_mode)
2562 {
2563 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2564 subspace_reloc_size += 1;
2565 p += 1;
2566 current_rounding_mode = bfd_reloc->howto->type;
2567 }
2568 break;
2569
2570 case R_FSEL:
2571 case R_LSEL:
2572 case R_RSEL:
2573 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2574 subspace_reloc_size += 1;
2575 p += 1;
2576 break;
2577
2578 /* Put a "R_RESERVED" relocation in the stream if
2579 we hit something we do not understand. The linker
2580 will complain loudly if this ever happens. */
2581 default:
2582 bfd_put_8 (abfd, 0xff, p);
2583 subspace_reloc_size += 1;
2584 p += 1;
2585 break;
2586 }
2587 }
2588
2589 /* Last BFD relocation for a subspace has been processed.
2590 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2591 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2592 - reloc_offset,
2593 p, &subspace_reloc_size, reloc_queue);
2594
2595 /* Scribble out the relocations. */
2596 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2597 != p - tmp_space)
2598 return false;
2599 p = tmp_space;
2600
2601 total_reloc_size += subspace_reloc_size;
2602 som_section_data (subsection)->subspace_dict->fixup_request_quantity
2603 = subspace_reloc_size;
2604 }
2605 section = section->next;
2606 }
2607 *total_reloc_sizep = total_reloc_size;
2608 return true;
2609 }
2610
2611 /* Write out the space/subspace string table. */
2612
2613 static boolean
2614 som_write_space_strings (abfd, current_offset, string_sizep)
2615 bfd *abfd;
2616 unsigned long current_offset;
2617 unsigned int *string_sizep;
2618 {
2619 /* Chunk of memory that we can use as buffer space, then throw
2620 away. */
2621 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2622 unsigned char *p;
2623 unsigned int strings_size = 0;
2624 asection *section;
2625
2626 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2627 p = tmp_space;
2628
2629 /* Seek to the start of the space strings in preparation for writing
2630 them out. */
2631 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2632 return false;
2633
2634 /* Walk through all the spaces and subspaces (order is not important)
2635 building up and writing string table entries for their names. */
2636 for (section = abfd->sections; section != NULL; section = section->next)
2637 {
2638 int length;
2639
2640 /* Only work with space/subspaces; avoid any other sections
2641 which might have been made (.text for example). */
2642 if (!som_is_space (section) && !som_is_subspace (section))
2643 continue;
2644
2645 /* Get the length of the space/subspace name. */
2646 length = strlen (section->name);
2647
2648 /* If there is not enough room for the next entry, then dump the
2649 current buffer contents now. Each entry will take 4 bytes to
2650 hold the string length + the string itself + null terminator. */
2651 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2652 {
2653 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2654 != p - tmp_space)
2655 return false;
2656 /* Reset to beginning of the buffer space. */
2657 p = tmp_space;
2658 }
2659
2660 /* First element in a string table entry is the length of the
2661 string. Alignment issues are already handled. */
2662 bfd_put_32 (abfd, length, p);
2663 p += 4;
2664 strings_size += 4;
2665
2666 /* Record the index in the space/subspace records. */
2667 if (som_is_space (section))
2668 som_section_data (section)->space_dict->name.n_strx = strings_size;
2669 else
2670 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
2671
2672 /* Next comes the string itself + a null terminator. */
2673 strcpy (p, section->name);
2674 p += length + 1;
2675 strings_size += length + 1;
2676
2677 /* Always align up to the next word boundary. */
2678 while (strings_size % 4)
2679 {
2680 bfd_put_8 (abfd, 0, p);
2681 p++;
2682 strings_size++;
2683 }
2684 }
2685
2686 /* Done with the space/subspace strings. Write out any information
2687 contained in a partial block. */
2688 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2689 return false;
2690 *string_sizep = strings_size;
2691 return true;
2692 }
2693
2694 /* Write out the symbol string table. */
2695
2696 static boolean
2697 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
2698 bfd *abfd;
2699 unsigned long current_offset;
2700 asymbol **syms;
2701 unsigned int num_syms;
2702 unsigned int *string_sizep;
2703 {
2704 unsigned int i;
2705
2706 /* Chunk of memory that we can use as buffer space, then throw
2707 away. */
2708 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2709 unsigned char *p;
2710 unsigned int strings_size = 0;
2711
2712 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2713 p = tmp_space;
2714
2715 /* Seek to the start of the space strings in preparation for writing
2716 them out. */
2717 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2718 return false;
2719
2720 for (i = 0; i < num_syms; i++)
2721 {
2722 int length = strlen (syms[i]->name);
2723
2724 /* If there is not enough room for the next entry, then dump the
2725 current buffer contents now. */
2726 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2727 {
2728 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2729 != p - tmp_space)
2730 return false;
2731 /* Reset to beginning of the buffer space. */
2732 p = tmp_space;
2733 }
2734
2735 /* First element in a string table entry is the length of the
2736 string. This must always be 4 byte aligned. This is also
2737 an appropriate time to fill in the string index field in the
2738 symbol table entry. */
2739 bfd_put_32 (abfd, length, p);
2740 strings_size += 4;
2741 p += 4;
2742
2743 /* Next comes the string itself + a null terminator. */
2744 strcpy (p, syms[i]->name);
2745
2746 /* ACK. FIXME. */
2747 syms[i]->name = (char *)strings_size;
2748 p += length + 1;
2749 strings_size += length + 1;
2750
2751 /* Always align up to the next word boundary. */
2752 while (strings_size % 4)
2753 {
2754 bfd_put_8 (abfd, 0, p);
2755 strings_size++;
2756 p++;
2757 }
2758 }
2759
2760 /* Scribble out any partial block. */
2761 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2762 return false;
2763
2764 *string_sizep = strings_size;
2765 return true;
2766 }
2767
2768 /* Compute variable information to be placed in the SOM headers,
2769 space/subspace dictionaries, relocation streams, etc. Begin
2770 writing parts of the object file. */
2771
2772 static boolean
2773 som_begin_writing (abfd)
2774 bfd *abfd;
2775 {
2776 unsigned long current_offset = 0;
2777 int strings_size = 0;
2778 unsigned int total_reloc_size = 0;
2779 unsigned long num_spaces, num_subspaces, num_syms, i;
2780 asection *section;
2781 asymbol **syms = bfd_get_outsymbols (abfd);
2782 unsigned int total_subspaces = 0;
2783 struct som_exec_auxhdr *exec_header;
2784
2785 /* The file header will always be first in an object file,
2786 everything else can be in random locations. To keep things
2787 "simple" BFD will lay out the object file in the manner suggested
2788 by the PRO ABI for PA-RISC Systems. */
2789
2790 /* Before any output can really begin offsets for all the major
2791 portions of the object file must be computed. So, starting
2792 with the initial file header compute (and sometimes write)
2793 each portion of the object file. */
2794
2795 /* Make room for the file header, it's contents are not complete
2796 yet, so it can not be written at this time. */
2797 current_offset += sizeof (struct header);
2798
2799 /* Any auxiliary headers will follow the file header. Right now
2800 we support only the copyright and version headers. */
2801 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
2802 obj_som_file_hdr (abfd)->aux_header_size = 0;
2803 if (abfd->flags & (EXEC_P | DYNAMIC))
2804 {
2805 /* Parts of the exec header will be filled in later, so
2806 delay writing the header itself. Fill in the defaults,
2807 and write it later. */
2808 current_offset += sizeof (struct som_exec_auxhdr);
2809 obj_som_file_hdr (abfd)->aux_header_size
2810 += sizeof (struct som_exec_auxhdr);
2811 exec_header = obj_som_exec_hdr (abfd);
2812 exec_header->som_auxhdr.type = EXEC_AUX_ID;
2813 exec_header->som_auxhdr.length = 40;
2814 }
2815 if (obj_som_version_hdr (abfd) != NULL)
2816 {
2817 unsigned int len;
2818
2819 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2820 return false;
2821
2822 /* Write the aux_id structure and the string length. */
2823 len = sizeof (struct aux_id) + sizeof (unsigned int);
2824 obj_som_file_hdr (abfd)->aux_header_size += len;
2825 current_offset += len;
2826 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
2827 return false;
2828
2829 /* Write the version string. */
2830 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
2831 obj_som_file_hdr (abfd)->aux_header_size += len;
2832 current_offset += len;
2833 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
2834 len, 1, abfd) != len)
2835 return false;
2836 }
2837
2838 if (obj_som_copyright_hdr (abfd) != NULL)
2839 {
2840 unsigned int len;
2841
2842 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2843 return false;
2844
2845 /* Write the aux_id structure and the string length. */
2846 len = sizeof (struct aux_id) + sizeof (unsigned int);
2847 obj_som_file_hdr (abfd)->aux_header_size += len;
2848 current_offset += len;
2849 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
2850 return false;
2851
2852 /* Write the copyright string. */
2853 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
2854 obj_som_file_hdr (abfd)->aux_header_size += len;
2855 current_offset += len;
2856 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
2857 len, 1, abfd) != len)
2858 return false;
2859 }
2860
2861 /* Next comes the initialization pointers; we have no initialization
2862 pointers, so current offset does not change. */
2863 obj_som_file_hdr (abfd)->init_array_location = current_offset;
2864 obj_som_file_hdr (abfd)->init_array_total = 0;
2865
2866 /* Next are the space records. These are fixed length records.
2867
2868 Count the number of spaces to determine how much room is needed
2869 in the object file for the space records.
2870
2871 The names of the spaces are stored in a separate string table,
2872 and the index for each space into the string table is computed
2873 below. Therefore, it is not possible to write the space headers
2874 at this time. */
2875 num_spaces = som_count_spaces (abfd);
2876 obj_som_file_hdr (abfd)->space_location = current_offset;
2877 obj_som_file_hdr (abfd)->space_total = num_spaces;
2878 current_offset += num_spaces * sizeof (struct space_dictionary_record);
2879
2880 /* Next are the subspace records. These are fixed length records.
2881
2882 Count the number of subspaes to determine how much room is needed
2883 in the object file for the subspace records.
2884
2885 A variety if fields in the subspace record are still unknown at
2886 this time (index into string table, fixup stream location/size, etc). */
2887 num_subspaces = som_count_subspaces (abfd);
2888 obj_som_file_hdr (abfd)->subspace_location = current_offset;
2889 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
2890 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
2891
2892 /* Next is the string table for the space/subspace names. We will
2893 build and write the string table on the fly. At the same time
2894 we will fill in the space/subspace name index fields. */
2895
2896 /* The string table needs to be aligned on a word boundary. */
2897 if (current_offset % 4)
2898 current_offset += (4 - (current_offset % 4));
2899
2900 /* Mark the offset of the space/subspace string table in the
2901 file header. */
2902 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
2903
2904 /* Scribble out the space strings. */
2905 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
2906 return false;
2907
2908 /* Record total string table size in the header and update the
2909 current offset. */
2910 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
2911 current_offset += strings_size;
2912
2913 /* Next is the symbol table. These are fixed length records.
2914
2915 Count the number of symbols to determine how much room is needed
2916 in the object file for the symbol table.
2917
2918 The names of the symbols are stored in a separate string table,
2919 and the index for each symbol name into the string table is computed
2920 below. Therefore, it is not possible to write the symobl table
2921 at this time. */
2922 num_syms = bfd_get_symcount (abfd);
2923 obj_som_file_hdr (abfd)->symbol_location = current_offset;
2924 obj_som_file_hdr (abfd)->symbol_total = num_syms;
2925 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
2926
2927 /* Do prep work before handling fixups. */
2928 som_prep_for_fixups (abfd, syms, num_syms);
2929
2930 /* Next comes the fixup stream which starts on a word boundary. */
2931 if (current_offset % 4)
2932 current_offset += (4 - (current_offset % 4));
2933 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
2934
2935 /* Write the fixups and update fields in subspace headers which
2936 relate to the fixup stream. */
2937 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
2938 return false;
2939
2940 /* Record the total size of the fixup stream in the file header. */
2941 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
2942 current_offset += total_reloc_size;
2943
2944 /* Next are the symbol strings.
2945 Align them to a word boundary. */
2946 if (current_offset % 4)
2947 current_offset += (4 - (current_offset % 4));
2948 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
2949
2950 /* Scribble out the symbol strings. */
2951 if (som_write_symbol_strings (abfd, current_offset, syms,
2952 num_syms, &strings_size)
2953 == false)
2954 return false;
2955
2956 /* Record total string table size in header and update the
2957 current offset. */
2958 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
2959 current_offset += strings_size;
2960
2961 /* Next is the compiler records. We do not use these. */
2962 obj_som_file_hdr (abfd)->compiler_location = current_offset;
2963 obj_som_file_hdr (abfd)->compiler_total = 0;
2964
2965 /* Now compute the file positions for the loadable subspaces, taking
2966 care to make sure everything stays properly aligned. */
2967
2968 section = abfd->sections;
2969 for (i = 0; i < num_spaces; i++)
2970 {
2971 asection *subsection;
2972 int first_subspace;
2973 unsigned int subspace_offset = 0;
2974
2975 /* Find a space. */
2976 while (!som_is_space (section))
2977 section = section->next;
2978
2979 first_subspace = 1;
2980 /* Now look for all its subspaces. */
2981 for (subsection = abfd->sections;
2982 subsection != NULL;
2983 subsection = subsection->next)
2984 {
2985
2986 if (!som_is_subspace (subsection)
2987 || !som_is_container (section, subsection)
2988 || (subsection->flags & SEC_ALLOC) == 0)
2989 continue;
2990
2991 /* If this is the first subspace in the space, and we are
2992 building an executable, then take care to make sure all
2993 the alignments are correct and update the exec header. */
2994 if (first_subspace
2995 && (abfd->flags & (EXEC_P | DYNAMIC)))
2996 {
2997 /* Demand paged executables have each space aligned to a
2998 page boundary. Sharable executables (write-protected
2999 text) have just the private (aka data & bss) space aligned
3000 to a page boundary. Ugh. Not true for HPUX.
3001
3002 The HPUX kernel requires the text to always be page aligned
3003 within the file regardless of the executable's type. */
3004 if (abfd->flags & (D_PAGED | DYNAMIC)
3005 || (subsection->flags & SEC_CODE)
3006 || ((abfd->flags & WP_TEXT)
3007 && (subsection->flags & SEC_DATA)))
3008 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3009
3010 /* Update the exec header. */
3011 if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0)
3012 {
3013 exec_header->exec_tmem = section->vma;
3014 exec_header->exec_tfile = current_offset;
3015 }
3016 if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0)
3017 {
3018 exec_header->exec_dmem = section->vma;
3019 exec_header->exec_dfile = current_offset;
3020 }
3021
3022 /* Keep track of exactly where we are within a particular
3023 space. This is necessary as the braindamaged HPUX
3024 loader will create holes between subspaces *and*
3025 subspace alignments are *NOT* preserved. What a crock. */
3026 subspace_offset = subsection->vma;
3027
3028 /* Only do this for the first subspace within each space. */
3029 first_subspace = 0;
3030 }
3031 else if (abfd->flags & (EXEC_P | DYNAMIC))
3032 {
3033 /* The braindamaged HPUX loader may have created a hole
3034 between two subspaces. It is *not* sufficient to use
3035 the alignment specifications within the subspaces to
3036 account for these holes -- I've run into at least one
3037 case where the loader left one code subspace unaligned
3038 in a final executable.
3039
3040 To combat this we keep a current offset within each space,
3041 and use the subspace vma fields to detect and preserve
3042 holes. What a crock!
3043
3044 ps. This is not necessary for unloadable space/subspaces. */
3045 current_offset += subsection->vma - subspace_offset;
3046 if (subsection->flags & SEC_CODE)
3047 exec_header->exec_tsize += subsection->vma - subspace_offset;
3048 else
3049 exec_header->exec_dsize += subsection->vma - subspace_offset;
3050 subspace_offset += subsection->vma - subspace_offset;
3051 }
3052
3053
3054 subsection->target_index = total_subspaces++;
3055 /* This is real data to be loaded from the file. */
3056 if (subsection->flags & SEC_LOAD)
3057 {
3058 /* Update the size of the code & data. */
3059 if (abfd->flags & (EXEC_P | DYNAMIC)
3060 && subsection->flags & SEC_CODE)
3061 exec_header->exec_tsize += subsection->_cooked_size;
3062 else if (abfd->flags & (EXEC_P | DYNAMIC)
3063 && subsection->flags & SEC_DATA)
3064 exec_header->exec_dsize += subsection->_cooked_size;
3065 som_section_data (subsection)->subspace_dict->file_loc_init_value
3066 = current_offset;
3067 subsection->filepos = current_offset;
3068 current_offset += bfd_section_size (abfd, subsection);
3069 subspace_offset += bfd_section_size (abfd, subsection);
3070 }
3071 /* Looks like uninitialized data. */
3072 else
3073 {
3074 /* Update the size of the bss section. */
3075 if (abfd->flags & (EXEC_P | DYNAMIC))
3076 exec_header->exec_bsize += subsection->_cooked_size;
3077
3078 som_section_data (subsection)->subspace_dict->file_loc_init_value
3079 = 0;
3080 som_section_data (subsection)->subspace_dict->
3081 initialization_length = 0;
3082 }
3083 }
3084 /* Goto the next section. */
3085 section = section->next;
3086 }
3087
3088 /* Finally compute the file positions for unloadable subspaces.
3089 If building an executable, start the unloadable stuff on its
3090 own page. */
3091
3092 if (abfd->flags & (EXEC_P | DYNAMIC))
3093 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3094
3095 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3096 section = abfd->sections;
3097 for (i = 0; i < num_spaces; i++)
3098 {
3099 asection *subsection;
3100
3101 /* Find a space. */
3102 while (!som_is_space (section))
3103 section = section->next;
3104
3105 if (abfd->flags & (EXEC_P | DYNAMIC))
3106 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3107
3108 /* Now look for all its subspaces. */
3109 for (subsection = abfd->sections;
3110 subsection != NULL;
3111 subsection = subsection->next)
3112 {
3113
3114 if (!som_is_subspace (subsection)
3115 || !som_is_container (section, subsection)
3116 || (subsection->flags & SEC_ALLOC) != 0)
3117 continue;
3118
3119 subsection->target_index = total_subspaces;
3120 /* This is real data to be loaded from the file. */
3121 if ((subsection->flags & SEC_LOAD) == 0)
3122 {
3123 som_section_data (subsection)->subspace_dict->file_loc_init_value
3124 = current_offset;
3125 subsection->filepos = current_offset;
3126 current_offset += bfd_section_size (abfd, subsection);
3127 }
3128 /* Looks like uninitialized data. */
3129 else
3130 {
3131 som_section_data (subsection)->subspace_dict->file_loc_init_value
3132 = 0;
3133 som_section_data (subsection)->subspace_dict->
3134 initialization_length = bfd_section_size (abfd, subsection);
3135 }
3136 }
3137 /* Goto the next section. */
3138 section = section->next;
3139 }
3140
3141 /* If building an executable, then make sure to seek to and write
3142 one byte at the end of the file to make sure any necessary
3143 zeros are filled in. Ugh. */
3144 if (abfd->flags & (EXEC_P | DYNAMIC))
3145 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3146 if (bfd_seek (abfd, current_offset - 1, SEEK_SET) < 0)
3147 return false;
3148 if (bfd_write ((PTR) "", 1, 1, abfd) != 1)
3149 return false;
3150
3151 obj_som_file_hdr (abfd)->unloadable_sp_size
3152 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3153
3154 /* Loader fixups are not supported in any way shape or form. */
3155 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3156 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3157
3158 /* Done. Store the total size of the SOM. */
3159 obj_som_file_hdr (abfd)->som_length = current_offset;
3160
3161 return true;
3162 }
3163
3164 /* Finally, scribble out the various headers to the disk. */
3165
3166 static boolean
3167 som_write_headers (abfd)
3168 bfd *abfd;
3169 {
3170 int num_spaces = som_count_spaces (abfd);
3171 int i;
3172 int subspace_index = 0;
3173 file_ptr location;
3174 asection *section;
3175
3176 /* Subspaces are written first so that we can set up information
3177 about them in their containing spaces as the subspace is written. */
3178
3179 /* Seek to the start of the subspace dictionary records. */
3180 location = obj_som_file_hdr (abfd)->subspace_location;
3181 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3182 return false;
3183
3184 section = abfd->sections;
3185 /* Now for each loadable space write out records for its subspaces. */
3186 for (i = 0; i < num_spaces; i++)
3187 {
3188 asection *subsection;
3189
3190 /* Find a space. */
3191 while (!som_is_space (section))
3192 section = section->next;
3193
3194 /* Now look for all its subspaces. */
3195 for (subsection = abfd->sections;
3196 subsection != NULL;
3197 subsection = subsection->next)
3198 {
3199
3200 /* Skip any section which does not correspond to a space
3201 or subspace. Or does not have SEC_ALLOC set (and therefore
3202 has no real bits on the disk). */
3203 if (!som_is_subspace (subsection)
3204 || !som_is_container (section, subsection)
3205 || (subsection->flags & SEC_ALLOC) == 0)
3206 continue;
3207
3208 /* If this is the first subspace for this space, then save
3209 the index of the subspace in its containing space. Also
3210 set "is_loadable" in the containing space. */
3211
3212 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3213 {
3214 som_section_data (section)->space_dict->is_loadable = 1;
3215 som_section_data (section)->space_dict->subspace_index
3216 = subspace_index;
3217 }
3218
3219 /* Increment the number of subspaces seen and the number of
3220 subspaces contained within the current space. */
3221 subspace_index++;
3222 som_section_data (section)->space_dict->subspace_quantity++;
3223
3224 /* Mark the index of the current space within the subspace's
3225 dictionary record. */
3226 som_section_data (subsection)->subspace_dict->space_index = i;
3227
3228 /* Dump the current subspace header. */
3229 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3230 sizeof (struct subspace_dictionary_record), 1, abfd)
3231 != sizeof (struct subspace_dictionary_record))
3232 return false;
3233 }
3234 /* Goto the next section. */
3235 section = section->next;
3236 }
3237
3238 /* Now repeat the process for unloadable subspaces. */
3239 section = abfd->sections;
3240 /* Now for each space write out records for its subspaces. */
3241 for (i = 0; i < num_spaces; i++)
3242 {
3243 asection *subsection;
3244
3245 /* Find a space. */
3246 while (!som_is_space (section))
3247 section = section->next;
3248
3249 /* Now look for all its subspaces. */
3250 for (subsection = abfd->sections;
3251 subsection != NULL;
3252 subsection = subsection->next)
3253 {
3254
3255 /* Skip any section which does not correspond to a space or
3256 subspace, or which SEC_ALLOC set (and therefore handled
3257 in the loadable spaces/subspaces code above). */
3258
3259 if (!som_is_subspace (subsection)
3260 || !som_is_container (section, subsection)
3261 || (subsection->flags & SEC_ALLOC) != 0)
3262 continue;
3263
3264 /* If this is the first subspace for this space, then save
3265 the index of the subspace in its containing space. Clear
3266 "is_loadable". */
3267
3268 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3269 {
3270 som_section_data (section)->space_dict->is_loadable = 0;
3271 som_section_data (section)->space_dict->subspace_index
3272 = subspace_index;
3273 }
3274
3275 /* Increment the number of subspaces seen and the number of
3276 subspaces contained within the current space. */
3277 som_section_data (section)->space_dict->subspace_quantity++;
3278 subspace_index++;
3279
3280 /* Mark the index of the current space within the subspace's
3281 dictionary record. */
3282 som_section_data (subsection)->subspace_dict->space_index = i;
3283
3284 /* Dump this subspace header. */
3285 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3286 sizeof (struct subspace_dictionary_record), 1, abfd)
3287 != sizeof (struct subspace_dictionary_record))
3288 return false;
3289 }
3290 /* Goto the next section. */
3291 section = section->next;
3292 }
3293
3294 /* All the subspace dictiondary records are written, and all the
3295 fields are set up in the space dictionary records.
3296
3297 Seek to the right location and start writing the space
3298 dictionary records. */
3299 location = obj_som_file_hdr (abfd)->space_location;
3300 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3301 return false;
3302
3303 section = abfd->sections;
3304 for (i = 0; i < num_spaces; i++)
3305 {
3306
3307 /* Find a space. */
3308 while (!som_is_space (section))
3309 section = section->next;
3310
3311 /* Dump its header */
3312 if (bfd_write ((PTR) som_section_data (section)->space_dict,
3313 sizeof (struct space_dictionary_record), 1, abfd)
3314 != sizeof (struct space_dictionary_record))
3315 return false;
3316
3317 /* Goto the next section. */
3318 section = section->next;
3319 }
3320
3321 /* FIXME. This should really be conditional based on whether or not
3322 PA1.1 instructions/registers have been used.
3323
3324 Setting of the system_id has to happen very late now that copying of
3325 BFD private data happens *after* section contents are set. */
3326 if (abfd->flags & (EXEC_P | DYNAMIC))
3327 obj_som_file_hdr(abfd)->system_id = obj_som_exec_data (abfd)->system_id;
3328 else
3329 obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC1_0;
3330
3331 /* Compute the checksum for the file header just before writing
3332 the header to disk. */
3333 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3334
3335 /* Only thing left to do is write out the file header. It is always
3336 at location zero. Seek there and write it. */
3337 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0)
3338 return false;
3339 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3340 sizeof (struct header), 1, abfd)
3341 != sizeof (struct header))
3342 return false;
3343
3344 /* Now write the exec header. */
3345 if (abfd->flags & (EXEC_P | DYNAMIC))
3346 {
3347 long tmp;
3348 struct som_exec_auxhdr *exec_header;
3349
3350 exec_header = obj_som_exec_hdr (abfd);
3351 exec_header->exec_entry = bfd_get_start_address (abfd);
3352 exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags;
3353
3354 /* Oh joys. Ram some of the BSS data into the DATA section
3355 to be compatable with how the hp linker makes objects
3356 (saves memory space). */
3357 tmp = exec_header->exec_dsize;
3358 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3359 exec_header->exec_bsize -= (tmp - exec_header->exec_dsize);
3360 if (exec_header->exec_bsize < 0)
3361 exec_header->exec_bsize = 0;
3362 exec_header->exec_dsize = tmp;
3363
3364 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
3365 SEEK_SET) < 0)
3366 return false;
3367
3368 if (bfd_write ((PTR) exec_header, AUX_HDR_SIZE, 1, abfd)
3369 != AUX_HDR_SIZE)
3370 return false;
3371 }
3372 return true;
3373 }
3374
3375 /* Compute and return the checksum for a SOM file header. */
3376
3377 static unsigned long
3378 som_compute_checksum (abfd)
3379 bfd *abfd;
3380 {
3381 unsigned long checksum, count, i;
3382 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3383
3384 checksum = 0;
3385 count = sizeof (struct header) / sizeof (unsigned long);
3386 for (i = 0; i < count; i++)
3387 checksum ^= *(buffer + i);
3388
3389 return checksum;
3390 }
3391
3392 static void
3393 som_bfd_derive_misc_symbol_info (abfd, sym, info)
3394 bfd *abfd;
3395 asymbol *sym;
3396 struct som_misc_symbol_info *info;
3397 {
3398 /* Initialize. */
3399 memset (info, 0, sizeof (struct som_misc_symbol_info));
3400
3401 /* The HP SOM linker requires detailed type information about
3402 all symbols (including undefined symbols!). Unfortunately,
3403 the type specified in an import/export statement does not
3404 always match what the linker wants. Severe braindamage. */
3405
3406 /* Section symbols will not have a SOM symbol type assigned to
3407 them yet. Assign all section symbols type ST_DATA. */
3408 if (sym->flags & BSF_SECTION_SYM)
3409 info->symbol_type = ST_DATA;
3410 else
3411 {
3412 /* Common symbols must have scope SS_UNSAT and type
3413 ST_STORAGE or the linker will choke. */
3414 if (bfd_is_com_section (sym->section))
3415 {
3416 info->symbol_scope = SS_UNSAT;
3417 info->symbol_type = ST_STORAGE;
3418 }
3419
3420 /* It is possible to have a symbol without an associated
3421 type. This happens if the user imported the symbol
3422 without a type and the symbol was never defined
3423 locally. If BSF_FUNCTION is set for this symbol, then
3424 assign it type ST_CODE (the HP linker requires undefined
3425 external functions to have type ST_CODE rather than ST_ENTRY). */
3426 else if ((som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3427 || som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3428 && bfd_is_und_section (sym->section)
3429 && sym->flags & BSF_FUNCTION)
3430 info->symbol_type = ST_CODE;
3431
3432 /* Handle function symbols which were defined in this file.
3433 They should have type ST_ENTRY. Also retrieve the argument
3434 relocation bits from the SOM backend information. */
3435 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3436 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3437 && (sym->flags & BSF_FUNCTION))
3438 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3439 && (sym->flags & BSF_FUNCTION)))
3440 {
3441 info->symbol_type = ST_ENTRY;
3442 info->arg_reloc = som_symbol_data (sym)->tc_data.hppa_arg_reloc;
3443 }
3444
3445 /* If the type is unknown at this point, it should be ST_DATA or
3446 ST_CODE (function/ST_ENTRY symbols were handled as special
3447 cases above). */
3448 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3449 {
3450 if (sym->section->flags & SEC_CODE)
3451 info->symbol_type = ST_CODE;
3452 else
3453 info->symbol_type = ST_DATA;
3454 }
3455
3456 /* From now on it's a very simple mapping. */
3457 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3458 info->symbol_type = ST_ABSOLUTE;
3459 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3460 info->symbol_type = ST_CODE;
3461 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3462 info->symbol_type = ST_DATA;
3463 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3464 info->symbol_type = ST_MILLICODE;
3465 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3466 info->symbol_type = ST_PLABEL;
3467 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3468 info->symbol_type = ST_PRI_PROG;
3469 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3470 info->symbol_type = ST_SEC_PROG;
3471 }
3472
3473 /* Now handle the symbol's scope. Exported data which is not
3474 in the common section has scope SS_UNIVERSAL. Note scope
3475 of common symbols was handled earlier! */
3476 if (sym->flags & BSF_EXPORT && ! bfd_is_com_section (sym->section))
3477 info->symbol_scope = SS_UNIVERSAL;
3478 /* Any undefined symbol at this point has a scope SS_UNSAT. */
3479 else if (bfd_is_und_section (sym->section))
3480 info->symbol_scope = SS_UNSAT;
3481 /* Anything else which is not in the common section has scope
3482 SS_LOCAL. */
3483 else if (! bfd_is_com_section (sym->section))
3484 info->symbol_scope = SS_LOCAL;
3485
3486 /* Now set the symbol_info field. It has no real meaning
3487 for undefined or common symbols, but the HP linker will
3488 choke if it's not set to some "reasonable" value. We
3489 use zero as a reasonable value. */
3490 if (bfd_is_com_section (sym->section)
3491 || bfd_is_und_section (sym->section)
3492 || bfd_is_abs_section (sym->section))
3493 info->symbol_info = 0;
3494 /* For all other symbols, the symbol_info field contains the
3495 subspace index of the space this symbol is contained in. */
3496 else
3497 info->symbol_info = sym->section->target_index;
3498
3499 /* Set the symbol's value. */
3500 info->symbol_value = sym->value + sym->section->vma;
3501 }
3502
3503 /* Build and write, in one big chunk, the entire symbol table for
3504 this BFD. */
3505
3506 static boolean
3507 som_build_and_write_symbol_table (abfd)
3508 bfd *abfd;
3509 {
3510 unsigned int num_syms = bfd_get_symcount (abfd);
3511 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3512 asymbol **bfd_syms = bfd_get_outsymbols (abfd);
3513 struct symbol_dictionary_record *som_symtab = NULL;
3514 int i, symtab_size;
3515
3516 /* Compute total symbol table size and allocate a chunk of memory
3517 to hold the symbol table as we build it. */
3518 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3519 som_symtab = (struct symbol_dictionary_record *) malloc (symtab_size);
3520 if (som_symtab == NULL && symtab_size != 0)
3521 {
3522 bfd_set_error (bfd_error_no_memory);
3523 goto error_return;
3524 }
3525 memset (som_symtab, 0, symtab_size);
3526
3527 /* Walk over each symbol. */
3528 for (i = 0; i < num_syms; i++)
3529 {
3530 struct som_misc_symbol_info info;
3531
3532 /* This is really an index into the symbol strings table.
3533 By the time we get here, the index has already been
3534 computed and stored into the name field in the BFD symbol. */
3535 som_symtab[i].name.n_strx = (int) bfd_syms[i]->name;
3536
3537 /* Derive SOM information from the BFD symbol. */
3538 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
3539
3540 /* Now use it. */
3541 som_symtab[i].symbol_type = info.symbol_type;
3542 som_symtab[i].symbol_scope = info.symbol_scope;
3543 som_symtab[i].arg_reloc = info.arg_reloc;
3544 som_symtab[i].symbol_info = info.symbol_info;
3545 som_symtab[i].symbol_value = info.symbol_value;
3546 }
3547
3548 /* Everything is ready, seek to the right location and
3549 scribble out the symbol table. */
3550 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3551 return false;
3552
3553 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3554 goto error_return;
3555
3556 if (som_symtab != NULL)
3557 free (som_symtab);
3558 return true;
3559 error_return:
3560 if (som_symtab != NULL)
3561 free (som_symtab);
3562 return false;
3563 }
3564
3565 /* Write an object in SOM format. */
3566
3567 static boolean
3568 som_write_object_contents (abfd)
3569 bfd *abfd;
3570 {
3571 if (abfd->output_has_begun == false)
3572 {
3573 /* Set up fixed parts of the file, space, and subspace headers.
3574 Notify the world that output has begun. */
3575 som_prep_headers (abfd);
3576 abfd->output_has_begun = true;
3577 /* Start writing the object file. This include all the string
3578 tables, fixup streams, and other portions of the object file. */
3579 som_begin_writing (abfd);
3580 }
3581
3582 /* Now that the symbol table information is complete, build and
3583 write the symbol table. */
3584 if (som_build_and_write_symbol_table (abfd) == false)
3585 return false;
3586
3587 return (som_write_headers (abfd));
3588 }
3589
3590 \f
3591 /* Read and save the string table associated with the given BFD. */
3592
3593 static boolean
3594 som_slurp_string_table (abfd)
3595 bfd *abfd;
3596 {
3597 char *stringtab;
3598
3599 /* Use the saved version if its available. */
3600 if (obj_som_stringtab (abfd) != NULL)
3601 return true;
3602
3603 /* I don't think this can currently happen, and I'm not sure it should
3604 really be an error, but it's better than getting unpredictable results
3605 from the host's malloc when passed a size of zero. */
3606 if (obj_som_stringtab_size (abfd) == 0)
3607 {
3608 bfd_set_error (bfd_error_no_symbols);
3609 return false;
3610 }
3611
3612 /* Allocate and read in the string table. */
3613 stringtab = malloc (obj_som_stringtab_size (abfd));
3614 if (stringtab == NULL)
3615 {
3616 bfd_set_error (bfd_error_no_memory);
3617 return false;
3618 }
3619
3620 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3621 return false;
3622
3623 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3624 != obj_som_stringtab_size (abfd))
3625 return false;
3626
3627 /* Save our results and return success. */
3628 obj_som_stringtab (abfd) = stringtab;
3629 return true;
3630 }
3631
3632 /* Return the amount of data (in bytes) required to hold the symbol
3633 table for this object. */
3634
3635 static long
3636 som_get_symtab_upper_bound (abfd)
3637 bfd *abfd;
3638 {
3639 if (!som_slurp_symbol_table (abfd))
3640 return -1;
3641
3642 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
3643 }
3644
3645 /* Convert from a SOM subspace index to a BFD section. */
3646
3647 static asection *
3648 bfd_section_from_som_symbol (abfd, symbol)
3649 bfd *abfd;
3650 struct symbol_dictionary_record *symbol;
3651 {
3652 asection *section;
3653
3654 /* The meaning of the symbol_info field changes for functions
3655 within executables. So only use the quick symbol_info mapping for
3656 incomplete objects and non-function symbols in executables. */
3657 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
3658 || (symbol->symbol_type != ST_ENTRY
3659 && symbol->symbol_type != ST_PRI_PROG
3660 && symbol->symbol_type != ST_SEC_PROG
3661 && symbol->symbol_type != ST_MILLICODE))
3662 {
3663 unsigned int index = symbol->symbol_info;
3664 for (section = abfd->sections; section != NULL; section = section->next)
3665 if (section->target_index == index)
3666 return section;
3667
3668 /* Should never happen. */
3669 abort();
3670 }
3671 else
3672 {
3673 unsigned int value = symbol->symbol_value;
3674
3675 /* For executables we will have to use the symbol's address and
3676 find out what section would contain that address. Yuk. */
3677 for (section = abfd->sections; section; section = section->next)
3678 {
3679 if (value >= section->vma
3680 && value <= section->vma + section->_cooked_size)
3681 return section;
3682 }
3683
3684 /* Should never happen. */
3685 abort ();
3686 }
3687 }
3688
3689 /* Read and save the symbol table associated with the given BFD. */
3690
3691 static unsigned int
3692 som_slurp_symbol_table (abfd)
3693 bfd *abfd;
3694 {
3695 int symbol_count = bfd_get_symcount (abfd);
3696 int symsize = sizeof (struct symbol_dictionary_record);
3697 char *stringtab;
3698 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
3699 som_symbol_type *sym, *symbase;
3700
3701 /* Return saved value if it exists. */
3702 if (obj_som_symtab (abfd) != NULL)
3703 goto successful_return;
3704
3705 /* Special case. This is *not* an error. */
3706 if (symbol_count == 0)
3707 goto successful_return;
3708
3709 if (!som_slurp_string_table (abfd))
3710 goto error_return;
3711
3712 stringtab = obj_som_stringtab (abfd);
3713
3714 symbase = (som_symbol_type *)
3715 malloc (symbol_count * sizeof (som_symbol_type));
3716 if (symbase == NULL)
3717 {
3718 bfd_set_error (bfd_error_no_memory);
3719 goto error_return;
3720 }
3721
3722 /* Read in the external SOM representation. */
3723 buf = malloc (symbol_count * symsize);
3724 if (buf == NULL && symbol_count * symsize != 0)
3725 {
3726 bfd_set_error (bfd_error_no_memory);
3727 goto error_return;
3728 }
3729 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
3730 goto error_return;
3731 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
3732 != symbol_count * symsize)
3733 goto error_return;
3734
3735 /* Iterate over all the symbols and internalize them. */
3736 endbufp = buf + symbol_count;
3737 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
3738 {
3739
3740 /* I don't think we care about these. */
3741 if (bufp->symbol_type == ST_SYM_EXT
3742 || bufp->symbol_type == ST_ARG_EXT)
3743 continue;
3744
3745 /* Set some private data we care about. */
3746 if (bufp->symbol_type == ST_NULL)
3747 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3748 else if (bufp->symbol_type == ST_ABSOLUTE)
3749 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
3750 else if (bufp->symbol_type == ST_DATA)
3751 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
3752 else if (bufp->symbol_type == ST_CODE)
3753 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
3754 else if (bufp->symbol_type == ST_PRI_PROG)
3755 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
3756 else if (bufp->symbol_type == ST_SEC_PROG)
3757 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
3758 else if (bufp->symbol_type == ST_ENTRY)
3759 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
3760 else if (bufp->symbol_type == ST_MILLICODE)
3761 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
3762 else if (bufp->symbol_type == ST_PLABEL)
3763 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
3764 else
3765 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3766 som_symbol_data (sym)->tc_data.hppa_arg_reloc = bufp->arg_reloc;
3767
3768 /* Some reasonable defaults. */
3769 sym->symbol.the_bfd = abfd;
3770 sym->symbol.name = bufp->name.n_strx + stringtab;
3771 sym->symbol.value = bufp->symbol_value;
3772 sym->symbol.section = 0;
3773 sym->symbol.flags = 0;
3774
3775 switch (bufp->symbol_type)
3776 {
3777 case ST_ENTRY:
3778 case ST_PRI_PROG:
3779 case ST_SEC_PROG:
3780 case ST_MILLICODE:
3781 sym->symbol.flags |= BSF_FUNCTION;
3782 sym->symbol.value &= ~0x3;
3783 break;
3784
3785 case ST_STUB:
3786 case ST_CODE:
3787 sym->symbol.value &= ~0x3;
3788 /* If the symbol's scope is ST_UNSAT, then these are
3789 undefined function symbols. */
3790 if (bufp->symbol_scope == SS_UNSAT)
3791 sym->symbol.flags |= BSF_FUNCTION;
3792
3793
3794 default:
3795 break;
3796 }
3797
3798 /* Handle scoping and section information. */
3799 switch (bufp->symbol_scope)
3800 {
3801 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
3802 so the section associated with this symbol can't be known. */
3803 case SS_EXTERNAL:
3804 if (bufp->symbol_type != ST_STORAGE)
3805 sym->symbol.section = bfd_und_section_ptr;
3806 else
3807 sym->symbol.section = bfd_com_section_ptr;
3808 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3809 break;
3810
3811 case SS_UNSAT:
3812 if (bufp->symbol_type != ST_STORAGE)
3813 sym->symbol.section = bfd_und_section_ptr;
3814 else
3815 sym->symbol.section = bfd_com_section_ptr;
3816 break;
3817
3818 case SS_UNIVERSAL:
3819 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3820 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3821 sym->symbol.value -= sym->symbol.section->vma;
3822 break;
3823
3824 #if 0
3825 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
3826 Sound dumb? It is. */
3827 case SS_GLOBAL:
3828 #endif
3829 case SS_LOCAL:
3830 sym->symbol.flags |= BSF_LOCAL;
3831 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3832 sym->symbol.value -= sym->symbol.section->vma;
3833 break;
3834 }
3835
3836 /* Mark section symbols and symbols used by the debugger. */
3837 if (sym->symbol.name[0] == '$'
3838 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$')
3839 sym->symbol.flags |= BSF_SECTION_SYM;
3840 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
3841 {
3842 sym->symbol.flags |= BSF_SECTION_SYM;
3843 sym->symbol.name = sym->symbol.section->name;
3844 }
3845 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
3846 sym->symbol.flags |= BSF_DEBUGGING;
3847
3848 /* Note increment at bottom of loop, since we skip some symbols
3849 we can not include it as part of the for statement. */
3850 sym++;
3851 }
3852
3853 /* Save our results and return success. */
3854 obj_som_symtab (abfd) = symbase;
3855 successful_return:
3856 if (buf != NULL)
3857 free (buf);
3858 return (true);
3859
3860 error_return:
3861 if (buf != NULL)
3862 free (buf);
3863 return false;
3864 }
3865
3866 /* Canonicalize a SOM symbol table. Return the number of entries
3867 in the symbol table. */
3868
3869 static long
3870 som_get_symtab (abfd, location)
3871 bfd *abfd;
3872 asymbol **location;
3873 {
3874 int i;
3875 som_symbol_type *symbase;
3876
3877 if (!som_slurp_symbol_table (abfd))
3878 return -1;
3879
3880 i = bfd_get_symcount (abfd);
3881 symbase = obj_som_symtab (abfd);
3882
3883 for (; i > 0; i--, location++, symbase++)
3884 *location = &symbase->symbol;
3885
3886 /* Final null pointer. */
3887 *location = 0;
3888 return (bfd_get_symcount (abfd));
3889 }
3890
3891 /* Make a SOM symbol. There is nothing special to do here. */
3892
3893 static asymbol *
3894 som_make_empty_symbol (abfd)
3895 bfd *abfd;
3896 {
3897 som_symbol_type *new =
3898 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
3899 if (new == NULL)
3900 {
3901 bfd_set_error (bfd_error_no_memory);
3902 return 0;
3903 }
3904 new->symbol.the_bfd = abfd;
3905
3906 return &new->symbol;
3907 }
3908
3909 /* Print symbol information. */
3910
3911 static void
3912 som_print_symbol (ignore_abfd, afile, symbol, how)
3913 bfd *ignore_abfd;
3914 PTR afile;
3915 asymbol *symbol;
3916 bfd_print_symbol_type how;
3917 {
3918 FILE *file = (FILE *) afile;
3919 switch (how)
3920 {
3921 case bfd_print_symbol_name:
3922 fprintf (file, "%s", symbol->name);
3923 break;
3924 case bfd_print_symbol_more:
3925 fprintf (file, "som ");
3926 fprintf_vma (file, symbol->value);
3927 fprintf (file, " %lx", (long) symbol->flags);
3928 break;
3929 case bfd_print_symbol_all:
3930 {
3931 CONST char *section_name;
3932 section_name = symbol->section ? symbol->section->name : "(*none*)";
3933 bfd_print_symbol_vandf ((PTR) file, symbol);
3934 fprintf (file, " %s\t%s", section_name, symbol->name);
3935 break;
3936 }
3937 }
3938 }
3939
3940 static boolean
3941 som_bfd_is_local_label (abfd, sym)
3942 bfd *abfd;
3943 asymbol *sym;
3944 {
3945 return (sym->name[0] == 'L' && sym->name[1] == '$');
3946 }
3947
3948 /* Count or process variable-length SOM fixup records.
3949
3950 To avoid code duplication we use this code both to compute the number
3951 of relocations requested by a stream, and to internalize the stream.
3952
3953 When computing the number of relocations requested by a stream the
3954 variables rptr, section, and symbols have no meaning.
3955
3956 Return the number of relocations requested by the fixup stream. When
3957 not just counting
3958
3959 This needs at least two or three more passes to get it cleaned up. */
3960
3961 static unsigned int
3962 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
3963 unsigned char *fixup;
3964 unsigned int end;
3965 arelent *internal_relocs;
3966 asection *section;
3967 asymbol **symbols;
3968 boolean just_count;
3969 {
3970 unsigned int op, varname;
3971 unsigned char *end_fixups = &fixup[end];
3972 const struct fixup_format *fp;
3973 char *cp;
3974 unsigned char *save_fixup;
3975 int variables[26], stack[20], c, v, count, prev_fixup, *sp;
3976 const int *subop;
3977 arelent *rptr= internal_relocs;
3978 unsigned int offset = 0;
3979
3980 #define var(c) variables[(c) - 'A']
3981 #define push(v) (*sp++ = (v))
3982 #define pop() (*--sp)
3983 #define emptystack() (sp == stack)
3984
3985 som_initialize_reloc_queue (reloc_queue);
3986 memset (variables, 0, sizeof (variables));
3987 memset (stack, 0, sizeof (stack));
3988 count = 0;
3989 prev_fixup = 0;
3990 sp = stack;
3991
3992 while (fixup < end_fixups)
3993 {
3994
3995 /* Save pointer to the start of this fixup. We'll use
3996 it later to determine if it is necessary to put this fixup
3997 on the queue. */
3998 save_fixup = fixup;
3999
4000 /* Get the fixup code and its associated format. */
4001 op = *fixup++;
4002 fp = &som_fixup_formats[op];
4003
4004 /* Handle a request for a previous fixup. */
4005 if (*fp->format == 'P')
4006 {
4007 /* Get pointer to the beginning of the prev fixup, move
4008 the repeated fixup to the head of the queue. */
4009 fixup = reloc_queue[fp->D].reloc;
4010 som_reloc_queue_fix (reloc_queue, fp->D);
4011 prev_fixup = 1;
4012
4013 /* Get the fixup code and its associated format. */
4014 op = *fixup++;
4015 fp = &som_fixup_formats[op];
4016 }
4017
4018 /* If this fixup will be passed to BFD, set some reasonable defaults. */
4019 if (! just_count
4020 && som_hppa_howto_table[op].type != R_NO_RELOCATION
4021 && som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
4022 {
4023 rptr->address = offset;
4024 rptr->howto = &som_hppa_howto_table[op];
4025 rptr->addend = 0;
4026 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
4027 }
4028
4029 /* Set default input length to 0. Get the opcode class index
4030 into D. */
4031 var ('L') = 0;
4032 var ('D') = fp->D;
4033
4034 /* Get the opcode format. */
4035 cp = fp->format;
4036
4037 /* Process the format string. Parsing happens in two phases,
4038 parse RHS, then assign to LHS. Repeat until no more
4039 characters in the format string. */
4040 while (*cp)
4041 {
4042 /* The variable this pass is going to compute a value for. */
4043 varname = *cp++;
4044
4045 /* Start processing RHS. Continue until a NULL or '=' is found. */
4046 do
4047 {
4048 c = *cp++;
4049
4050 /* If this is a variable, push it on the stack. */
4051 if (isupper (c))
4052 push (var (c));
4053
4054 /* If this is a lower case letter, then it represents
4055 additional data from the fixup stream to be pushed onto
4056 the stack. */
4057 else if (islower (c))
4058 {
4059 for (v = 0; c > 'a'; --c)
4060 v = (v << 8) | *fixup++;
4061 push (v);
4062 }
4063
4064 /* A decimal constant. Push it on the stack. */
4065 else if (isdigit (c))
4066 {
4067 v = c - '0';
4068 while (isdigit (*cp))
4069 v = (v * 10) + (*cp++ - '0');
4070 push (v);
4071 }
4072 else
4073
4074 /* An operator. Pop two two values from the stack and
4075 use them as operands to the given operation. Push
4076 the result of the operation back on the stack. */
4077 switch (c)
4078 {
4079 case '+':
4080 v = pop ();
4081 v += pop ();
4082 push (v);
4083 break;
4084 case '*':
4085 v = pop ();
4086 v *= pop ();
4087 push (v);
4088 break;
4089 case '<':
4090 v = pop ();
4091 v = pop () << v;
4092 push (v);
4093 break;
4094 default:
4095 abort ();
4096 }
4097 }
4098 while (*cp && *cp != '=');
4099
4100 /* Move over the equal operator. */
4101 cp++;
4102
4103 /* Pop the RHS off the stack. */
4104 c = pop ();
4105
4106 /* Perform the assignment. */
4107 var (varname) = c;
4108
4109 /* Handle side effects. and special 'O' stack cases. */
4110 switch (varname)
4111 {
4112 /* Consume some bytes from the input space. */
4113 case 'L':
4114 offset += c;
4115 break;
4116 /* A symbol to use in the relocation. Make a note
4117 of this if we are not just counting. */
4118 case 'S':
4119 if (! just_count)
4120 rptr->sym_ptr_ptr = &symbols[c];
4121 break;
4122 /* Handle the linker expression stack. */
4123 case 'O':
4124 switch (op)
4125 {
4126 case R_COMP1:
4127 subop = comp1_opcodes;
4128 break;
4129 case R_COMP2:
4130 subop = comp2_opcodes;
4131 break;
4132 case R_COMP3:
4133 subop = comp3_opcodes;
4134 break;
4135 default:
4136 abort ();
4137 }
4138 while (*subop <= (unsigned char) c)
4139 ++subop;
4140 --subop;
4141 break;
4142 default:
4143 break;
4144 }
4145 }
4146
4147 /* If we used a previous fixup, clean up after it. */
4148 if (prev_fixup)
4149 {
4150 fixup = save_fixup + 1;
4151 prev_fixup = 0;
4152 }
4153 /* Queue it. */
4154 else if (fixup > save_fixup + 1)
4155 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4156
4157 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4158 fixups to BFD. */
4159 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4160 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4161 {
4162 /* Done with a single reloction. Loop back to the top. */
4163 if (! just_count)
4164 {
4165 rptr->addend = var ('V');
4166 rptr++;
4167 }
4168 count++;
4169 /* Now that we've handled a "full" relocation, reset
4170 some state. */
4171 memset (variables, 0, sizeof (variables));
4172 memset (stack, 0, sizeof (stack));
4173 }
4174 }
4175 return count;
4176
4177 #undef var
4178 #undef push
4179 #undef pop
4180 #undef emptystack
4181 }
4182
4183 /* Read in the relocs (aka fixups in SOM terms) for a section.
4184
4185 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4186 set to true to indicate it only needs a count of the number
4187 of actual relocations. */
4188
4189 static boolean
4190 som_slurp_reloc_table (abfd, section, symbols, just_count)
4191 bfd *abfd;
4192 asection *section;
4193 asymbol **symbols;
4194 boolean just_count;
4195 {
4196 char *external_relocs;
4197 unsigned int fixup_stream_size;
4198 arelent *internal_relocs;
4199 unsigned int num_relocs;
4200
4201 fixup_stream_size = som_section_data (section)->reloc_size;
4202 /* If there were no relocations, then there is nothing to do. */
4203 if (section->reloc_count == 0)
4204 return true;
4205
4206 /* If reloc_count is -1, then the relocation stream has not been
4207 parsed. We must do so now to know how many relocations exist. */
4208 if (section->reloc_count == -1)
4209 {
4210 external_relocs = (char *) malloc (fixup_stream_size);
4211 if (external_relocs == (char *) NULL)
4212 {
4213 bfd_set_error (bfd_error_no_memory);
4214 return false;
4215 }
4216 /* Read in the external forms. */
4217 if (bfd_seek (abfd,
4218 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4219 SEEK_SET)
4220 != 0)
4221 return false;
4222 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
4223 != fixup_stream_size)
4224 return false;
4225
4226 /* Let callers know how many relocations found.
4227 also save the relocation stream as we will
4228 need it again. */
4229 section->reloc_count = som_set_reloc_info (external_relocs,
4230 fixup_stream_size,
4231 NULL, NULL, NULL, true);
4232
4233 som_section_data (section)->reloc_stream = external_relocs;
4234 }
4235
4236 /* If the caller only wanted a count, then return now. */
4237 if (just_count)
4238 return true;
4239
4240 num_relocs = section->reloc_count;
4241 external_relocs = som_section_data (section)->reloc_stream;
4242 /* Return saved information about the relocations if it is available. */
4243 if (section->relocation != (arelent *) NULL)
4244 return true;
4245
4246 internal_relocs = (arelent *) malloc (num_relocs * sizeof (arelent));
4247 if (internal_relocs == (arelent *) NULL)
4248 {
4249 bfd_set_error (bfd_error_no_memory);
4250 return false;
4251 }
4252
4253 /* Process and internalize the relocations. */
4254 som_set_reloc_info (external_relocs, fixup_stream_size,
4255 internal_relocs, section, symbols, false);
4256
4257 /* Save our results and return success. */
4258 section->relocation = internal_relocs;
4259 return (true);
4260 }
4261
4262 /* Return the number of bytes required to store the relocation
4263 information associated with the given section. */
4264
4265 static long
4266 som_get_reloc_upper_bound (abfd, asect)
4267 bfd *abfd;
4268 sec_ptr asect;
4269 {
4270 /* If section has relocations, then read in the relocation stream
4271 and parse it to determine how many relocations exist. */
4272 if (asect->flags & SEC_RELOC)
4273 {
4274 if (! som_slurp_reloc_table (abfd, asect, NULL, true))
4275 return false;
4276 return (asect->reloc_count + 1) * sizeof (arelent);
4277 }
4278 /* There are no relocations. */
4279 return 0;
4280 }
4281
4282 /* Convert relocations from SOM (external) form into BFD internal
4283 form. Return the number of relocations. */
4284
4285 static long
4286 som_canonicalize_reloc (abfd, section, relptr, symbols)
4287 bfd *abfd;
4288 sec_ptr section;
4289 arelent **relptr;
4290 asymbol **symbols;
4291 {
4292 arelent *tblptr;
4293 int count;
4294
4295 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
4296 return -1;
4297
4298 count = section->reloc_count;
4299 tblptr = section->relocation;
4300
4301 while (count--)
4302 *relptr++ = tblptr++;
4303
4304 *relptr = (arelent *) NULL;
4305 return section->reloc_count;
4306 }
4307
4308 extern const bfd_target som_vec;
4309
4310 /* A hook to set up object file dependent section information. */
4311
4312 static boolean
4313 som_new_section_hook (abfd, newsect)
4314 bfd *abfd;
4315 asection *newsect;
4316 {
4317 newsect->used_by_bfd =
4318 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
4319 if (!newsect->used_by_bfd)
4320 {
4321 bfd_set_error (bfd_error_no_memory);
4322 return false;
4323 }
4324 newsect->alignment_power = 3;
4325
4326 /* We allow more than three sections internally */
4327 return true;
4328 }
4329
4330 /* Copy any private info we understand from the input section
4331 to the output section. */
4332 static boolean
4333 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
4334 bfd *ibfd;
4335 asection *isection;
4336 bfd *obfd;
4337 asection *osection;
4338 {
4339 /* One day we may try to grok other private data. */
4340 if (ibfd->xvec->flavour != bfd_target_som_flavour
4341 || obfd->xvec->flavour != bfd_target_som_flavour
4342 || (!som_is_space (isection) && !som_is_subspace (isection)))
4343 return false;
4344
4345 som_section_data (osection)->copy_data
4346 = (struct som_copyable_section_data_struct *)
4347 bfd_zalloc (obfd, sizeof (struct som_copyable_section_data_struct));
4348 if (som_section_data (osection)->copy_data == NULL)
4349 {
4350 bfd_set_error (bfd_error_no_memory);
4351 return false;
4352 }
4353
4354 memcpy (som_section_data (osection)->copy_data,
4355 som_section_data (isection)->copy_data,
4356 sizeof (struct som_copyable_section_data_struct));
4357
4358 /* Reparent if necessary. */
4359 if (som_section_data (osection)->copy_data->container)
4360 som_section_data (osection)->copy_data->container =
4361 som_section_data (osection)->copy_data->container->output_section;
4362
4363 return true;
4364 }
4365
4366 /* Copy any private info we understand from the input bfd
4367 to the output bfd. */
4368
4369 static boolean
4370 som_bfd_copy_private_bfd_data (ibfd, obfd)
4371 bfd *ibfd, *obfd;
4372 {
4373 /* One day we may try to grok other private data. */
4374 if (ibfd->xvec->flavour != bfd_target_som_flavour
4375 || obfd->xvec->flavour != bfd_target_som_flavour)
4376 return false;
4377
4378 /* Allocate some memory to hold the data we need. */
4379 obj_som_exec_data (obfd) = (struct som_exec_data *)
4380 bfd_zalloc (obfd, sizeof (struct som_exec_data));
4381 if (obj_som_exec_data (obfd) == NULL)
4382 {
4383 bfd_set_error (bfd_error_no_memory);
4384 return false;
4385 }
4386
4387 /* Now copy the data. */
4388 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
4389 sizeof (struct som_exec_data));
4390
4391 return true;
4392 }
4393
4394 /* Set backend info for sections which can not be described
4395 in the BFD data structures. */
4396
4397 boolean
4398 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
4399 asection *section;
4400 int defined;
4401 int private;
4402 unsigned int sort_key;
4403 int spnum;
4404 {
4405 /* Allocate memory to hold the magic information. */
4406 if (som_section_data (section)->copy_data == NULL)
4407 {
4408 som_section_data (section)->copy_data
4409 = (struct som_copyable_section_data_struct *)
4410 bfd_zalloc (section->owner,
4411 sizeof (struct som_copyable_section_data_struct));
4412 if (som_section_data (section)->copy_data == NULL)
4413 {
4414 bfd_set_error (bfd_error_no_memory);
4415 return false;
4416 }
4417 }
4418 som_section_data (section)->copy_data->sort_key = sort_key;
4419 som_section_data (section)->copy_data->is_defined = defined;
4420 som_section_data (section)->copy_data->is_private = private;
4421 som_section_data (section)->copy_data->container = section;
4422 som_section_data (section)->copy_data->space_number = spnum;
4423 return true;
4424 }
4425
4426 /* Set backend info for subsections which can not be described
4427 in the BFD data structures. */
4428
4429 boolean
4430 bfd_som_set_subsection_attributes (section, container, access,
4431 sort_key, quadrant)
4432 asection *section;
4433 asection *container;
4434 int access;
4435 unsigned int sort_key;
4436 int quadrant;
4437 {
4438 /* Allocate memory to hold the magic information. */
4439 if (som_section_data (section)->copy_data == NULL)
4440 {
4441 som_section_data (section)->copy_data
4442 = (struct som_copyable_section_data_struct *)
4443 bfd_zalloc (section->owner,
4444 sizeof (struct som_copyable_section_data_struct));
4445 if (som_section_data (section)->copy_data == NULL)
4446 {
4447 bfd_set_error (bfd_error_no_memory);
4448 return false;
4449 }
4450 }
4451 som_section_data (section)->copy_data->sort_key = sort_key;
4452 som_section_data (section)->copy_data->access_control_bits = access;
4453 som_section_data (section)->copy_data->quadrant = quadrant;
4454 som_section_data (section)->copy_data->container = container;
4455 return true;
4456 }
4457
4458 /* Set the full SOM symbol type. SOM needs far more symbol information
4459 than any other object file format I'm aware of. It is mandatory
4460 to be able to know if a symbol is an entry point, millicode, data,
4461 code, absolute, storage request, or procedure label. If you get
4462 the symbol type wrong your program will not link. */
4463
4464 void
4465 bfd_som_set_symbol_type (symbol, type)
4466 asymbol *symbol;
4467 unsigned int type;
4468 {
4469 som_symbol_data (symbol)->som_type = type;
4470 }
4471
4472 /* Attach 64bits of unwind information to a symbol (which hopefully
4473 is a function of some kind!). It would be better to keep this
4474 in the R_ENTRY relocation, but there is not enough space. */
4475
4476 void
4477 bfd_som_attach_unwind_info (symbol, unwind_desc)
4478 asymbol *symbol;
4479 char *unwind_desc;
4480 {
4481 som_symbol_data (symbol)->unwind = unwind_desc;
4482 }
4483
4484 /* Attach an auxiliary header to the BFD backend so that it may be
4485 written into the object file. */
4486 boolean
4487 bfd_som_attach_aux_hdr (abfd, type, string)
4488 bfd *abfd;
4489 int type;
4490 char *string;
4491 {
4492 if (type == VERSION_AUX_ID)
4493 {
4494 int len = strlen (string);
4495 int pad = 0;
4496
4497 if (len % 4)
4498 pad = (4 - (len % 4));
4499 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
4500 bfd_zalloc (abfd, sizeof (struct aux_id)
4501 + sizeof (unsigned int) + len + pad);
4502 if (!obj_som_version_hdr (abfd))
4503 {
4504 bfd_set_error (bfd_error_no_memory);
4505 return false;
4506 }
4507 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
4508 obj_som_version_hdr (abfd)->header_id.length = len + pad;
4509 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
4510 obj_som_version_hdr (abfd)->string_length = len;
4511 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
4512 }
4513 else if (type == COPYRIGHT_AUX_ID)
4514 {
4515 int len = strlen (string);
4516 int pad = 0;
4517
4518 if (len % 4)
4519 pad = (4 - (len % 4));
4520 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
4521 bfd_zalloc (abfd, sizeof (struct aux_id)
4522 + sizeof (unsigned int) + len + pad);
4523 if (!obj_som_copyright_hdr (abfd))
4524 {
4525 bfd_set_error (bfd_error_no_memory);
4526 return false;
4527 }
4528 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
4529 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
4530 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
4531 obj_som_copyright_hdr (abfd)->string_length = len;
4532 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
4533 }
4534 return true;
4535 }
4536
4537 static boolean
4538 som_get_section_contents (abfd, section, location, offset, count)
4539 bfd *abfd;
4540 sec_ptr section;
4541 PTR location;
4542 file_ptr offset;
4543 bfd_size_type count;
4544 {
4545 if (count == 0 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4546 return true;
4547 if ((bfd_size_type)(offset+count) > section->_raw_size
4548 || bfd_seek (abfd, (file_ptr)(section->filepos + offset), SEEK_SET) == -1
4549 || bfd_read (location, (bfd_size_type)1, count, abfd) != count)
4550 return (false); /* on error */
4551 return (true);
4552 }
4553
4554 static boolean
4555 som_set_section_contents (abfd, section, location, offset, count)
4556 bfd *abfd;
4557 sec_ptr section;
4558 PTR location;
4559 file_ptr offset;
4560 bfd_size_type count;
4561 {
4562 if (abfd->output_has_begun == false)
4563 {
4564 /* Set up fixed parts of the file, space, and subspace headers.
4565 Notify the world that output has begun. */
4566 som_prep_headers (abfd);
4567 abfd->output_has_begun = true;
4568 /* Start writing the object file. This include all the string
4569 tables, fixup streams, and other portions of the object file. */
4570 som_begin_writing (abfd);
4571 }
4572
4573 /* Only write subspaces which have "real" contents (eg. the contents
4574 are not generated at run time by the OS). */
4575 if (!som_is_subspace (section)
4576 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4577 return true;
4578
4579 /* Seek to the proper offset within the object file and write the
4580 data. */
4581 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
4582 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
4583 return false;
4584
4585 if (bfd_write ((PTR) location, 1, count, abfd) != count)
4586 return false;
4587 return true;
4588 }
4589
4590 static boolean
4591 som_set_arch_mach (abfd, arch, machine)
4592 bfd *abfd;
4593 enum bfd_architecture arch;
4594 unsigned long machine;
4595 {
4596 /* Allow any architecture to be supported by the SOM backend */
4597 return bfd_default_set_arch_mach (abfd, arch, machine);
4598 }
4599
4600 static boolean
4601 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4602 functionname_ptr, line_ptr)
4603 bfd *abfd;
4604 asection *section;
4605 asymbol **symbols;
4606 bfd_vma offset;
4607 CONST char **filename_ptr;
4608 CONST char **functionname_ptr;
4609 unsigned int *line_ptr;
4610 {
4611 fprintf (stderr, "som_find_nearest_line unimplemented\n");
4612 fflush (stderr);
4613 abort ();
4614 return (false);
4615 }
4616
4617 static int
4618 som_sizeof_headers (abfd, reloc)
4619 bfd *abfd;
4620 boolean reloc;
4621 {
4622 fprintf (stderr, "som_sizeof_headers unimplemented\n");
4623 fflush (stderr);
4624 abort ();
4625 return (0);
4626 }
4627
4628 /* Return the single-character symbol type corresponding to
4629 SOM section S, or '?' for an unknown SOM section. */
4630
4631 static char
4632 som_section_type (s)
4633 const char *s;
4634 {
4635 const struct section_to_type *t;
4636
4637 for (t = &stt[0]; t->section; t++)
4638 if (!strcmp (s, t->section))
4639 return t->type;
4640 return '?';
4641 }
4642
4643 static int
4644 som_decode_symclass (symbol)
4645 asymbol *symbol;
4646 {
4647 char c;
4648
4649 if (bfd_is_com_section (symbol->section))
4650 return 'C';
4651 if (bfd_is_und_section (symbol->section))
4652 return 'U';
4653 if (bfd_is_ind_section (symbol->section))
4654 return 'I';
4655 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
4656 return '?';
4657
4658 if (bfd_is_abs_section (symbol->section))
4659 c = 'a';
4660 else if (symbol->section)
4661 c = som_section_type (symbol->section->name);
4662 else
4663 return '?';
4664 if (symbol->flags & BSF_GLOBAL)
4665 c = toupper (c);
4666 return c;
4667 }
4668
4669 /* Return information about SOM symbol SYMBOL in RET. */
4670
4671 static void
4672 som_get_symbol_info (ignore_abfd, symbol, ret)
4673 bfd *ignore_abfd;
4674 asymbol *symbol;
4675 symbol_info *ret;
4676 {
4677 ret->type = som_decode_symclass (symbol);
4678 if (ret->type != 'U')
4679 ret->value = symbol->value+symbol->section->vma;
4680 else
4681 ret->value = 0;
4682 ret->name = symbol->name;
4683 }
4684
4685 /* Count the number of symbols in the archive symbol table. Necessary
4686 so that we can allocate space for all the carsyms at once. */
4687
4688 static boolean
4689 som_bfd_count_ar_symbols (abfd, lst_header, count)
4690 bfd *abfd;
4691 struct lst_header *lst_header;
4692 symindex *count;
4693 {
4694 unsigned int i;
4695 unsigned int *hash_table = NULL;
4696 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4697
4698 hash_table =
4699 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4700 if (hash_table == NULL && lst_header->hash_size != 0)
4701 {
4702 bfd_set_error (bfd_error_no_memory);
4703 goto error_return;
4704 }
4705
4706 /* Don't forget to initialize the counter! */
4707 *count = 0;
4708
4709 /* Read in the hash table. The has table is an array of 32bit file offsets
4710 which point to the hash chains. */
4711 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4712 != lst_header->hash_size * 4)
4713 goto error_return;
4714
4715 /* Walk each chain counting the number of symbols found on that particular
4716 chain. */
4717 for (i = 0; i < lst_header->hash_size; i++)
4718 {
4719 struct lst_symbol_record lst_symbol;
4720
4721 /* An empty chain has zero as it's file offset. */
4722 if (hash_table[i] == 0)
4723 continue;
4724
4725 /* Seek to the first symbol in this hash chain. */
4726 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4727 goto error_return;
4728
4729 /* Read in this symbol and update the counter. */
4730 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4731 != sizeof (lst_symbol))
4732 goto error_return;
4733
4734 (*count)++;
4735
4736 /* Now iterate through the rest of the symbols on this chain. */
4737 while (lst_symbol.next_entry)
4738 {
4739
4740 /* Seek to the next symbol. */
4741 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4742 < 0)
4743 goto error_return;
4744
4745 /* Read the symbol in and update the counter. */
4746 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4747 != sizeof (lst_symbol))
4748 goto error_return;
4749
4750 (*count)++;
4751 }
4752 }
4753 if (hash_table != NULL)
4754 free (hash_table);
4755 return true;
4756
4757 error_return:
4758 if (hash_table != NULL)
4759 free (hash_table);
4760 return false;
4761 }
4762
4763 /* Fill in the canonical archive symbols (SYMS) from the archive described
4764 by ABFD and LST_HEADER. */
4765
4766 static boolean
4767 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
4768 bfd *abfd;
4769 struct lst_header *lst_header;
4770 carsym **syms;
4771 {
4772 unsigned int i, len;
4773 carsym *set = syms[0];
4774 unsigned int *hash_table = NULL;
4775 struct som_entry *som_dict = NULL;
4776 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4777
4778 hash_table =
4779 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4780 if (hash_table == NULL && lst_header->hash_size != 0)
4781 {
4782 bfd_set_error (bfd_error_no_memory);
4783 goto error_return;
4784 }
4785
4786 som_dict =
4787 (struct som_entry *) malloc (lst_header->module_count
4788 * sizeof (struct som_entry));
4789 if (som_dict == NULL && lst_header->module_count != 0)
4790 {
4791 bfd_set_error (bfd_error_no_memory);
4792 goto error_return;
4793 }
4794
4795 /* Read in the hash table. The has table is an array of 32bit file offsets
4796 which point to the hash chains. */
4797 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4798 != lst_header->hash_size * 4)
4799 goto error_return;
4800
4801 /* Seek to and read in the SOM dictionary. We will need this to fill
4802 in the carsym's filepos field. */
4803 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
4804 goto error_return;
4805
4806 if (bfd_read ((PTR) som_dict, lst_header->module_count,
4807 sizeof (struct som_entry), abfd)
4808 != lst_header->module_count * sizeof (struct som_entry))
4809 goto error_return;
4810
4811 /* Walk each chain filling in the carsyms as we go along. */
4812 for (i = 0; i < lst_header->hash_size; i++)
4813 {
4814 struct lst_symbol_record lst_symbol;
4815
4816 /* An empty chain has zero as it's file offset. */
4817 if (hash_table[i] == 0)
4818 continue;
4819
4820 /* Seek to and read the first symbol on the chain. */
4821 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4822 goto error_return;
4823
4824 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4825 != sizeof (lst_symbol))
4826 goto error_return;
4827
4828 /* Get the name of the symbol, first get the length which is stored
4829 as a 32bit integer just before the symbol.
4830
4831 One might ask why we don't just read in the entire string table
4832 and index into it. Well, according to the SOM ABI the string
4833 index can point *anywhere* in the archive to save space, so just
4834 using the string table would not be safe. */
4835 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4836 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4837 goto error_return;
4838
4839 if (bfd_read (&len, 1, 4, abfd) != 4)
4840 goto error_return;
4841
4842 /* Allocate space for the name and null terminate it too. */
4843 set->name = bfd_zalloc (abfd, len + 1);
4844 if (!set->name)
4845 {
4846 bfd_set_error (bfd_error_no_memory);
4847 goto error_return;
4848 }
4849 if (bfd_read (set->name, 1, len, abfd) != len)
4850 goto error_return;
4851
4852 set->name[len] = 0;
4853
4854 /* Fill in the file offset. Note that the "location" field points
4855 to the SOM itself, not the ar_hdr in front of it. */
4856 set->file_offset = som_dict[lst_symbol.som_index].location
4857 - sizeof (struct ar_hdr);
4858
4859 /* Go to the next symbol. */
4860 set++;
4861
4862 /* Iterate through the rest of the chain. */
4863 while (lst_symbol.next_entry)
4864 {
4865 /* Seek to the next symbol and read it in. */
4866 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET) <0)
4867 goto error_return;
4868
4869 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4870 != sizeof (lst_symbol))
4871 goto error_return;
4872
4873 /* Seek to the name length & string and read them in. */
4874 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4875 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4876 goto error_return;
4877
4878 if (bfd_read (&len, 1, 4, abfd) != 4)
4879 goto error_return;
4880
4881 /* Allocate space for the name and null terminate it too. */
4882 set->name = bfd_zalloc (abfd, len + 1);
4883 if (!set->name)
4884 {
4885 bfd_set_error (bfd_error_no_memory);
4886 goto error_return;
4887 }
4888
4889 if (bfd_read (set->name, 1, len, abfd) != len)
4890 goto error_return;
4891 set->name[len] = 0;
4892
4893 /* Fill in the file offset. Note that the "location" field points
4894 to the SOM itself, not the ar_hdr in front of it. */
4895 set->file_offset = som_dict[lst_symbol.som_index].location
4896 - sizeof (struct ar_hdr);
4897
4898 /* Go on to the next symbol. */
4899 set++;
4900 }
4901 }
4902 /* If we haven't died by now, then we successfully read the entire
4903 archive symbol table. */
4904 if (hash_table != NULL)
4905 free (hash_table);
4906 if (som_dict != NULL)
4907 free (som_dict);
4908 return true;
4909
4910 error_return:
4911 if (hash_table != NULL)
4912 free (hash_table);
4913 if (som_dict != NULL)
4914 free (som_dict);
4915 return false;
4916 }
4917
4918 /* Read in the LST from the archive. */
4919 static boolean
4920 som_slurp_armap (abfd)
4921 bfd *abfd;
4922 {
4923 struct lst_header lst_header;
4924 struct ar_hdr ar_header;
4925 unsigned int parsed_size;
4926 struct artdata *ardata = bfd_ardata (abfd);
4927 char nextname[17];
4928 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
4929
4930 /* Special cases. */
4931 if (i == 0)
4932 return true;
4933 if (i != 16)
4934 return false;
4935
4936 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
4937 return false;
4938
4939 /* For archives without .o files there is no symbol table. */
4940 if (strncmp (nextname, "/ ", 16))
4941 {
4942 bfd_has_map (abfd) = false;
4943 return true;
4944 }
4945
4946 /* Read in and sanity check the archive header. */
4947 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
4948 != sizeof (struct ar_hdr))
4949 return false;
4950
4951 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
4952 {
4953 bfd_set_error (bfd_error_malformed_archive);
4954 return false;
4955 }
4956
4957 /* How big is the archive symbol table entry? */
4958 errno = 0;
4959 parsed_size = strtol (ar_header.ar_size, NULL, 10);
4960 if (errno != 0)
4961 {
4962 bfd_set_error (bfd_error_malformed_archive);
4963 return false;
4964 }
4965
4966 /* Save off the file offset of the first real user data. */
4967 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
4968
4969 /* Read in the library symbol table. We'll make heavy use of this
4970 in just a minute. */
4971 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
4972 != sizeof (struct lst_header))
4973 return false;
4974
4975 /* Sanity check. */
4976 if (lst_header.a_magic != LIBMAGIC)
4977 {
4978 bfd_set_error (bfd_error_malformed_archive);
4979 return false;
4980 }
4981
4982 /* Count the number of symbols in the library symbol table. */
4983 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
4984 == false)
4985 return false;
4986
4987 /* Get back to the start of the library symbol table. */
4988 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
4989 + sizeof (struct lst_header), SEEK_SET) < 0)
4990 return false;
4991
4992 /* Initializae the cache and allocate space for the library symbols. */
4993 ardata->cache = 0;
4994 ardata->symdefs = (carsym *) bfd_alloc (abfd,
4995 (ardata->symdef_count
4996 * sizeof (carsym)));
4997 if (!ardata->symdefs)
4998 {
4999 bfd_set_error (bfd_error_no_memory);
5000 return false;
5001 }
5002
5003 /* Now fill in the canonical archive symbols. */
5004 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
5005 == false)
5006 return false;
5007
5008 /* Seek back to the "first" file in the archive. Note the "first"
5009 file may be the extended name table. */
5010 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) < 0)
5011 return false;
5012
5013 /* Notify the generic archive code that we have a symbol map. */
5014 bfd_has_map (abfd) = true;
5015 return true;
5016 }
5017
5018 /* Begin preparing to write a SOM library symbol table.
5019
5020 As part of the prep work we need to determine the number of symbols
5021 and the size of the associated string section. */
5022
5023 static boolean
5024 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
5025 bfd *abfd;
5026 unsigned int *num_syms, *stringsize;
5027 {
5028 bfd *curr_bfd = abfd->archive_head;
5029
5030 /* Some initialization. */
5031 *num_syms = 0;
5032 *stringsize = 0;
5033
5034 /* Iterate over each BFD within this archive. */
5035 while (curr_bfd != NULL)
5036 {
5037 unsigned int curr_count, i;
5038 som_symbol_type *sym;
5039
5040 /* Don't bother for non-SOM objects. */
5041 if (curr_bfd->format != bfd_object
5042 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5043 {
5044 curr_bfd = curr_bfd->next;
5045 continue;
5046 }
5047
5048 /* Make sure the symbol table has been read, then snag a pointer
5049 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5050 but doing so avoids allocating lots of extra memory. */
5051 if (som_slurp_symbol_table (curr_bfd) == false)
5052 return false;
5053
5054 sym = obj_som_symtab (curr_bfd);
5055 curr_count = bfd_get_symcount (curr_bfd);
5056
5057 /* Examine each symbol to determine if it belongs in the
5058 library symbol table. */
5059 for (i = 0; i < curr_count; i++, sym++)
5060 {
5061 struct som_misc_symbol_info info;
5062
5063 /* Derive SOM information from the BFD symbol. */
5064 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5065
5066 /* Should we include this symbol? */
5067 if (info.symbol_type == ST_NULL
5068 || info.symbol_type == ST_SYM_EXT
5069 || info.symbol_type == ST_ARG_EXT)
5070 continue;
5071
5072 /* Only global symbols and unsatisfied commons. */
5073 if (info.symbol_scope != SS_UNIVERSAL
5074 && info.symbol_type != ST_STORAGE)
5075 continue;
5076
5077 /* Do no include undefined symbols. */
5078 if (bfd_is_und_section (sym->symbol.section))
5079 continue;
5080
5081 /* Bump the various counters, being careful to honor
5082 alignment considerations in the string table. */
5083 (*num_syms)++;
5084 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5085 while (*stringsize % 4)
5086 (*stringsize)++;
5087 }
5088
5089 curr_bfd = curr_bfd->next;
5090 }
5091 return true;
5092 }
5093
5094 /* Hash a symbol name based on the hashing algorithm presented in the
5095 SOM ABI. */
5096 static unsigned int
5097 som_bfd_ar_symbol_hash (symbol)
5098 asymbol *symbol;
5099 {
5100 unsigned int len = strlen (symbol->name);
5101
5102 /* Names with length 1 are special. */
5103 if (len == 1)
5104 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5105
5106 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5107 | (symbol->name[len-2] << 8) | symbol->name[len-1];
5108 }
5109
5110 static CONST char *
5111 normalize (file)
5112 CONST char *file;
5113 {
5114 CONST char *filename = strrchr (file, '/');
5115
5116 if (filename != NULL)
5117 filename++;
5118 else
5119 filename = file;
5120 return filename;
5121 }
5122
5123 /* Do the bulk of the work required to write the SOM library
5124 symbol table. */
5125
5126 static boolean
5127 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst)
5128 bfd *abfd;
5129 unsigned int nsyms, string_size;
5130 struct lst_header lst;
5131 {
5132 file_ptr lst_filepos;
5133 char *strings = NULL, *p;
5134 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5135 bfd *curr_bfd;
5136 unsigned int *hash_table = NULL;
5137 struct som_entry *som_dict = NULL;
5138 struct lst_symbol_record **last_hash_entry = NULL;
5139 unsigned int curr_som_offset, som_index, extended_name_length = 0;
5140 unsigned int maxname = abfd->xvec->ar_max_namelen;
5141
5142 hash_table =
5143 (unsigned int *) malloc (lst.hash_size * sizeof (unsigned int));
5144 if (hash_table == NULL && lst.hash_size != 0)
5145 {
5146 bfd_set_error (bfd_error_no_memory);
5147 goto error_return;
5148 }
5149 som_dict =
5150 (struct som_entry *) malloc (lst.module_count
5151 * sizeof (struct som_entry));
5152 if (som_dict == NULL && lst.module_count != 0)
5153 {
5154 bfd_set_error (bfd_error_no_memory);
5155 goto error_return;
5156 }
5157
5158 last_hash_entry =
5159 ((struct lst_symbol_record **)
5160 malloc (lst.hash_size * sizeof (struct lst_symbol_record *)));
5161 if (last_hash_entry == NULL && lst.hash_size != 0)
5162 {
5163 bfd_set_error (bfd_error_no_memory);
5164 goto error_return;
5165 }
5166
5167 /* Lots of fields are file positions relative to the start
5168 of the lst record. So save its location. */
5169 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5170
5171 /* Some initialization. */
5172 memset (hash_table, 0, 4 * lst.hash_size);
5173 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
5174 memset (last_hash_entry, 0,
5175 lst.hash_size * sizeof (struct lst_symbol_record *));
5176
5177 /* Symbols have som_index fields, so we have to keep track of the
5178 index of each SOM in the archive.
5179
5180 The SOM dictionary has (among other things) the absolute file
5181 position for the SOM which a particular dictionary entry
5182 describes. We have to compute that information as we iterate
5183 through the SOMs/symbols. */
5184 som_index = 0;
5185 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5186
5187 /* Yow! We have to know the size of the extended name table
5188 too. */
5189 for (curr_bfd = abfd->archive_head;
5190 curr_bfd != NULL;
5191 curr_bfd = curr_bfd->next)
5192 {
5193 CONST char *normal = normalize (curr_bfd->filename);
5194 unsigned int thislen;
5195
5196 if (!normal)
5197 {
5198 bfd_set_error (bfd_error_no_memory);
5199 return false;
5200 }
5201 thislen = strlen (normal);
5202 if (thislen > maxname)
5203 extended_name_length += thislen + 1;
5204 }
5205
5206 /* Make room for the archive header and the contents of the
5207 extended string table. */
5208 if (extended_name_length)
5209 curr_som_offset += extended_name_length + sizeof (struct ar_hdr);
5210
5211 /* Make sure we're properly aligned. */
5212 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5213
5214 /* FIXME should be done with buffers just like everything else... */
5215 lst_syms = malloc (nsyms * sizeof (struct lst_symbol_record));
5216 if (lst_syms == NULL && nsyms != 0)
5217 {
5218 bfd_set_error (bfd_error_no_memory);
5219 goto error_return;
5220 }
5221 strings = malloc (string_size);
5222 if (strings == NULL && string_size != 0)
5223 {
5224 bfd_set_error (bfd_error_no_memory);
5225 goto error_return;
5226 }
5227
5228 p = strings;
5229 curr_lst_sym = lst_syms;
5230
5231 curr_bfd = abfd->archive_head;
5232 while (curr_bfd != NULL)
5233 {
5234 unsigned int curr_count, i;
5235 som_symbol_type *sym;
5236
5237 /* Don't bother for non-SOM objects. */
5238 if (curr_bfd->format != bfd_object
5239 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5240 {
5241 curr_bfd = curr_bfd->next;
5242 continue;
5243 }
5244
5245 /* Make sure the symbol table has been read, then snag a pointer
5246 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5247 but doing so avoids allocating lots of extra memory. */
5248 if (som_slurp_symbol_table (curr_bfd) == false)
5249 goto error_return;
5250
5251 sym = obj_som_symtab (curr_bfd);
5252 curr_count = bfd_get_symcount (curr_bfd);
5253
5254 for (i = 0; i < curr_count; i++, sym++)
5255 {
5256 struct som_misc_symbol_info info;
5257
5258 /* Derive SOM information from the BFD symbol. */
5259 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5260
5261 /* Should we include this symbol? */
5262 if (info.symbol_type == ST_NULL
5263 || info.symbol_type == ST_SYM_EXT
5264 || info.symbol_type == ST_ARG_EXT)
5265 continue;
5266
5267 /* Only global symbols and unsatisfied commons. */
5268 if (info.symbol_scope != SS_UNIVERSAL
5269 && info.symbol_type != ST_STORAGE)
5270 continue;
5271
5272 /* Do no include undefined symbols. */
5273 if (bfd_is_und_section (sym->symbol.section))
5274 continue;
5275
5276 /* If this is the first symbol from this SOM, then update
5277 the SOM dictionary too. */
5278 if (som_dict[som_index].location == 0)
5279 {
5280 som_dict[som_index].location = curr_som_offset;
5281 som_dict[som_index].length = arelt_size (curr_bfd);
5282 }
5283
5284 /* Fill in the lst symbol record. */
5285 curr_lst_sym->hidden = 0;
5286 curr_lst_sym->secondary_def = 0;
5287 curr_lst_sym->symbol_type = info.symbol_type;
5288 curr_lst_sym->symbol_scope = info.symbol_scope;
5289 curr_lst_sym->check_level = 0;
5290 curr_lst_sym->must_qualify = 0;
5291 curr_lst_sym->initially_frozen = 0;
5292 curr_lst_sym->memory_resident = 0;
5293 curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section);
5294 curr_lst_sym->dup_common = 0;
5295 curr_lst_sym->xleast = 0;
5296 curr_lst_sym->arg_reloc = info.arg_reloc;
5297 curr_lst_sym->name.n_strx = p - strings + 4;
5298 curr_lst_sym->qualifier_name.n_strx = 0;
5299 curr_lst_sym->symbol_info = info.symbol_info;
5300 curr_lst_sym->symbol_value = info.symbol_value;
5301 curr_lst_sym->symbol_descriptor = 0;
5302 curr_lst_sym->reserved = 0;
5303 curr_lst_sym->som_index = som_index;
5304 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
5305 curr_lst_sym->next_entry = 0;
5306
5307 /* Insert into the hash table. */
5308 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
5309 {
5310 struct lst_symbol_record *tmp;
5311
5312 /* There is already something at the head of this hash chain,
5313 so tack this symbol onto the end of the chain. */
5314 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
5315 tmp->next_entry
5316 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5317 + lst.hash_size * 4
5318 + lst.module_count * sizeof (struct som_entry)
5319 + sizeof (struct lst_header);
5320 }
5321 else
5322 {
5323 /* First entry in this hash chain. */
5324 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
5325 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5326 + lst.hash_size * 4
5327 + lst.module_count * sizeof (struct som_entry)
5328 + sizeof (struct lst_header);
5329 }
5330
5331 /* Keep track of the last symbol we added to this chain so we can
5332 easily update its next_entry pointer. */
5333 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
5334 = curr_lst_sym;
5335
5336
5337 /* Update the string table. */
5338 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
5339 p += 4;
5340 strcpy (p, sym->symbol.name);
5341 p += strlen (sym->symbol.name) + 1;
5342 while ((int)p % 4)
5343 {
5344 bfd_put_8 (abfd, 0, p);
5345 p++;
5346 }
5347
5348 /* Head to the next symbol. */
5349 curr_lst_sym++;
5350 }
5351
5352 /* Keep track of where each SOM will finally reside; then look
5353 at the next BFD. */
5354 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
5355 curr_bfd = curr_bfd->next;
5356 som_index++;
5357 }
5358
5359 /* Now scribble out the hash table. */
5360 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
5361 != lst.hash_size * 4)
5362 goto error_return;
5363
5364 /* Then the SOM dictionary. */
5365 if (bfd_write ((PTR) som_dict, lst.module_count,
5366 sizeof (struct som_entry), abfd)
5367 != lst.module_count * sizeof (struct som_entry))
5368 goto error_return;
5369
5370 /* The library symbols. */
5371 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
5372 != nsyms * sizeof (struct lst_symbol_record))
5373 goto error_return;
5374
5375 /* And finally the strings. */
5376 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
5377 goto error_return;
5378
5379 if (hash_table != NULL)
5380 free (hash_table);
5381 if (som_dict != NULL)
5382 free (som_dict);
5383 if (last_hash_entry != NULL)
5384 free (last_hash_entry);
5385 if (lst_syms != NULL)
5386 free (lst_syms);
5387 if (strings != NULL)
5388 free (strings);
5389 return true;
5390
5391 error_return:
5392 if (hash_table != NULL)
5393 free (hash_table);
5394 if (som_dict != NULL)
5395 free (som_dict);
5396 if (last_hash_entry != NULL)
5397 free (last_hash_entry);
5398 if (lst_syms != NULL)
5399 free (lst_syms);
5400 if (strings != NULL)
5401 free (strings);
5402
5403 return false;
5404 }
5405
5406 /* Write out the LST for the archive.
5407
5408 You'll never believe this is really how armaps are handled in SOM... */
5409
5410 /*ARGSUSED*/
5411 static boolean
5412 som_write_armap (abfd, elength, map, orl_count, stridx)
5413 bfd *abfd;
5414 unsigned int elength;
5415 struct orl *map;
5416 unsigned int orl_count;
5417 int stridx;
5418 {
5419 bfd *curr_bfd;
5420 struct stat statbuf;
5421 unsigned int i, lst_size, nsyms, stringsize;
5422 struct ar_hdr hdr;
5423 struct lst_header lst;
5424 int *p;
5425
5426 /* We'll use this for the archive's date and mode later. */
5427 if (stat (abfd->filename, &statbuf) != 0)
5428 {
5429 bfd_set_error (bfd_error_system_call);
5430 return false;
5431 }
5432 /* Fudge factor. */
5433 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
5434
5435 /* Account for the lst header first. */
5436 lst_size = sizeof (struct lst_header);
5437
5438 /* Start building the LST header. */
5439 lst.system_id = CPU_PA_RISC1_0;
5440 lst.a_magic = LIBMAGIC;
5441 lst.version_id = VERSION_ID;
5442 lst.file_time.secs = 0;
5443 lst.file_time.nanosecs = 0;
5444
5445 lst.hash_loc = lst_size;
5446 lst.hash_size = SOM_LST_HASH_SIZE;
5447
5448 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
5449 lst_size += 4 * SOM_LST_HASH_SIZE;
5450
5451 /* We need to count the number of SOMs in this archive. */
5452 curr_bfd = abfd->archive_head;
5453 lst.module_count = 0;
5454 while (curr_bfd != NULL)
5455 {
5456 /* Only true SOM objects count. */
5457 if (curr_bfd->format == bfd_object
5458 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
5459 lst.module_count++;
5460 curr_bfd = curr_bfd->next;
5461 }
5462 lst.module_limit = lst.module_count;
5463 lst.dir_loc = lst_size;
5464 lst_size += sizeof (struct som_entry) * lst.module_count;
5465
5466 /* We don't support import/export tables, auxiliary headers,
5467 or free lists yet. Make the linker work a little harder
5468 to make our life easier. */
5469
5470 lst.export_loc = 0;
5471 lst.export_count = 0;
5472 lst.import_loc = 0;
5473 lst.aux_loc = 0;
5474 lst.aux_size = 0;
5475
5476 /* Count how many symbols we will have on the hash chains and the
5477 size of the associated string table. */
5478 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
5479 return false;
5480
5481 lst_size += sizeof (struct lst_symbol_record) * nsyms;
5482
5483 /* For the string table. One day we might actually use this info
5484 to avoid small seeks/reads when reading archives. */
5485 lst.string_loc = lst_size;
5486 lst.string_size = stringsize;
5487 lst_size += stringsize;
5488
5489 /* SOM ABI says this must be zero. */
5490 lst.free_list = 0;
5491 lst.file_end = lst_size;
5492
5493 /* Compute the checksum. Must happen after the entire lst header
5494 has filled in. */
5495 p = (int *)&lst;
5496 lst.checksum = 0;
5497 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
5498 lst.checksum ^= *p++;
5499
5500 sprintf (hdr.ar_name, "/ ");
5501 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
5502 sprintf (hdr.ar_uid, "%ld", (long) getuid ());
5503 sprintf (hdr.ar_gid, "%ld", (long) getgid ());
5504 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
5505 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
5506 hdr.ar_fmag[0] = '`';
5507 hdr.ar_fmag[1] = '\012';
5508
5509 /* Turn any nulls into spaces. */
5510 for (i = 0; i < sizeof (struct ar_hdr); i++)
5511 if (((char *) (&hdr))[i] == '\0')
5512 (((char *) (&hdr))[i]) = ' ';
5513
5514 /* Scribble out the ar header. */
5515 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
5516 != sizeof (struct ar_hdr))
5517 return false;
5518
5519 /* Now scribble out the lst header. */
5520 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
5521 != sizeof (struct lst_header))
5522 return false;
5523
5524 /* Build and write the armap. */
5525 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst) == false)
5526 return false;
5527
5528 /* Done. */
5529 return true;
5530 }
5531
5532 /* Free all information we have cached for this BFD. We can always
5533 read it again later if we need it. */
5534
5535 static boolean
5536 som_bfd_free_cached_info (abfd)
5537 bfd *abfd;
5538 {
5539 asection *o;
5540
5541 if (bfd_get_format (abfd) != bfd_object)
5542 return true;
5543
5544 #define FREE(x) if (x != NULL) { free (x); x = NULL; }
5545 /* Free the native string and symbol tables. */
5546 FREE (obj_som_symtab (abfd));
5547 FREE (obj_som_stringtab (abfd));
5548 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5549 {
5550 /* Free the native relocations. */
5551 o->reloc_count = -1;
5552 FREE (som_section_data (o)->reloc_stream);
5553 /* Free the generic relocations. */
5554 FREE (o->relocation);
5555 }
5556 #undef FREE
5557
5558 return true;
5559 }
5560
5561 /* End of miscellaneous support functions. */
5562
5563 #define som_close_and_cleanup som_bfd_free_cached_info
5564
5565 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
5566 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
5567 #define som_truncate_arname bfd_bsd_truncate_arname
5568 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
5569 #define som_update_armap_timestamp bfd_true
5570
5571 #define som_get_lineno _bfd_nosymbols_get_lineno
5572 #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
5573
5574 #define som_bfd_get_relocated_section_contents \
5575 bfd_generic_get_relocated_section_contents
5576 #define som_bfd_relax_section bfd_generic_relax_section
5577 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
5578 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
5579 #define som_bfd_final_link _bfd_generic_final_link
5580
5581 const bfd_target som_vec =
5582 {
5583 "som", /* name */
5584 bfd_target_som_flavour,
5585 true, /* target byte order */
5586 true, /* target headers byte order */
5587 (HAS_RELOC | EXEC_P | /* object flags */
5588 HAS_LINENO | HAS_DEBUG |
5589 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
5590 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
5591 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
5592
5593 /* leading_symbol_char: is the first char of a user symbol
5594 predictable, and if so what is it */
5595 0,
5596 '/', /* ar_pad_char */
5597 14, /* ar_max_namelen */
5598 3, /* minimum alignment */
5599 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5600 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5601 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
5602 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5603 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5604 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
5605 {_bfd_dummy_target,
5606 som_object_p, /* bfd_check_format */
5607 bfd_generic_archive_p,
5608 _bfd_dummy_target
5609 },
5610 {
5611 bfd_false,
5612 som_mkobject,
5613 _bfd_generic_mkarchive,
5614 bfd_false
5615 },
5616 {
5617 bfd_false,
5618 som_write_object_contents,
5619 _bfd_write_archive_contents,
5620 bfd_false,
5621 },
5622 #undef som
5623
5624 BFD_JUMP_TABLE_GENERIC (som),
5625 BFD_JUMP_TABLE_COPY (som),
5626 BFD_JUMP_TABLE_CORE (_bfd_nocore),
5627 BFD_JUMP_TABLE_ARCHIVE (som),
5628 BFD_JUMP_TABLE_SYMBOLS (som),
5629 BFD_JUMP_TABLE_RELOCS (som),
5630 BFD_JUMP_TABLE_WRITE (som),
5631 BFD_JUMP_TABLE_LINK (som),
5632 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
5633
5634 (PTR) 0
5635 };
5636
5637 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */