* targets.c (bfd_target): Add _bfd_free_cached_info field.
[binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
3
4 Contributed by the Center for Software Science at the
5 University of Utah (pa-gdb-bugs@cs.utah.edu).
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23 #include "bfd.h"
24 #include "sysdep.h"
25
26 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)
27
28 #include "libbfd.h"
29 #include "som.h"
30
31 #include <stdio.h>
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/dir.h>
35 #include <signal.h>
36 #include <machine/reg.h>
37 #include <sys/user.h> /* After a.out.h */
38 #include <sys/file.h>
39 #include <errno.h>
40
41 /* Magic not defined in standard HP-UX header files until 8.0 */
42
43 #ifndef CPU_PA_RISC1_0
44 #define CPU_PA_RISC1_0 0x20B
45 #endif /* CPU_PA_RISC1_0 */
46
47 #ifndef CPU_PA_RISC1_1
48 #define CPU_PA_RISC1_1 0x210
49 #endif /* CPU_PA_RISC1_1 */
50
51 #ifndef _PA_RISC1_0_ID
52 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
53 #endif /* _PA_RISC1_0_ID */
54
55 #ifndef _PA_RISC1_1_ID
56 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
57 #endif /* _PA_RISC1_1_ID */
58
59 #ifndef _PA_RISC_MAXID
60 #define _PA_RISC_MAXID 0x2FF
61 #endif /* _PA_RISC_MAXID */
62
63 #ifndef _PA_RISC_ID
64 #define _PA_RISC_ID(__m_num) \
65 (((__m_num) == _PA_RISC1_0_ID) || \
66 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
67 #endif /* _PA_RISC_ID */
68
69 /* Size (in chars) of the temporary buffers used during fixup and string
70 table writes. */
71
72 #define SOM_TMP_BUFSIZE 8192
73
74 /* Size of the hash table in archives. */
75 #define SOM_LST_HASH_SIZE 31
76
77 /* Max number of SOMs to be found in an archive. */
78 #define SOM_LST_MODULE_LIMIT 1024
79
80 /* Generic alignment macro. */
81 #define SOM_ALIGN(val, alignment) \
82 (((val) + (alignment) - 1) & ~((alignment) - 1))
83
84 /* SOM allows any one of the four previous relocations to be reused
85 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
86 relocations are always a single byte, using a R_PREV_FIXUP instead
87 of some multi-byte relocation makes object files smaller.
88
89 Note one side effect of using a R_PREV_FIXUP is the relocation that
90 is being repeated moves to the front of the queue. */
91 struct reloc_queue
92 {
93 unsigned char *reloc;
94 unsigned int size;
95 } reloc_queue[4];
96
97 /* This fully describes the symbol types which may be attached to
98 an EXPORT or IMPORT directive. Only SOM uses this formation
99 (ELF has no need for it). */
100 typedef enum
101 {
102 SYMBOL_TYPE_UNKNOWN,
103 SYMBOL_TYPE_ABSOLUTE,
104 SYMBOL_TYPE_CODE,
105 SYMBOL_TYPE_DATA,
106 SYMBOL_TYPE_ENTRY,
107 SYMBOL_TYPE_MILLICODE,
108 SYMBOL_TYPE_PLABEL,
109 SYMBOL_TYPE_PRI_PROG,
110 SYMBOL_TYPE_SEC_PROG,
111 } pa_symbol_type;
112
113 struct section_to_type
114 {
115 char *section;
116 char type;
117 };
118
119 /* Assorted symbol information that needs to be derived from the BFD symbol
120 and/or the BFD backend private symbol data. */
121 struct som_misc_symbol_info
122 {
123 unsigned int symbol_type;
124 unsigned int symbol_scope;
125 unsigned int arg_reloc;
126 unsigned int symbol_info;
127 unsigned int symbol_value;
128 };
129
130 /* Forward declarations */
131
132 static boolean som_mkobject PARAMS ((bfd *));
133 static bfd_target * som_object_setup PARAMS ((bfd *,
134 struct header *,
135 struct som_exec_auxhdr *));
136 static boolean setup_sections PARAMS ((bfd *, struct header *));
137 static bfd_target * som_object_p PARAMS ((bfd *));
138 static boolean som_write_object_contents PARAMS ((bfd *));
139 static boolean som_slurp_string_table PARAMS ((bfd *));
140 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
141 static long som_get_symtab_upper_bound PARAMS ((bfd *));
142 static long som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
143 arelent **, asymbol **));
144 static long som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
145 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
146 arelent *, asection *,
147 asymbol **, boolean));
148 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
149 asymbol **, boolean));
150 static long som_get_symtab PARAMS ((bfd *, asymbol **));
151 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
152 static void som_print_symbol PARAMS ((bfd *, PTR,
153 asymbol *, bfd_print_symbol_type));
154 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
155 static boolean som_bfd_copy_private_section_data PARAMS ((bfd *, asection *,
156 bfd *, asection *));
157 static boolean som_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
158 static boolean som_bfd_is_local_label PARAMS ((bfd *, asymbol *));
159 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
160 file_ptr, bfd_size_type));
161 static boolean som_get_section_contents PARAMS ((bfd *, sec_ptr, PTR,
162 file_ptr, bfd_size_type));
163 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
164 unsigned long));
165 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
166 asymbol **, bfd_vma,
167 CONST char **,
168 CONST char **,
169 unsigned int *));
170 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
171 static asection * bfd_section_from_som_symbol PARAMS ((bfd *,
172 struct symbol_dictionary_record *));
173 static int log2 PARAMS ((unsigned int));
174 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
175 asymbol *, PTR,
176 asection *, bfd *,
177 char **));
178 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
179 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
180 struct reloc_queue *));
181 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
182 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
183 struct reloc_queue *));
184 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
185 unsigned int,
186 struct reloc_queue *));
187
188 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
189 unsigned char *, unsigned int *,
190 struct reloc_queue *));
191 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
192 unsigned int *,
193 struct reloc_queue *));
194 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
195 unsigned int *,
196 arelent *, int,
197 struct reloc_queue *));
198 static unsigned long som_count_spaces PARAMS ((bfd *));
199 static unsigned long som_count_subspaces PARAMS ((bfd *));
200 static int compare_syms PARAMS ((asymbol **, asymbol **));
201 static unsigned long som_compute_checksum PARAMS ((bfd *));
202 static boolean som_prep_headers PARAMS ((bfd *));
203 static int som_sizeof_headers PARAMS ((bfd *, boolean));
204 static boolean som_write_headers PARAMS ((bfd *));
205 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
206 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
207 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
208 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
209 unsigned int *));
210 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
211 asymbol **, unsigned int,
212 unsigned *));
213 static boolean som_begin_writing PARAMS ((bfd *));
214 static const reloc_howto_type * som_bfd_reloc_type_lookup
215 PARAMS ((bfd_arch_info_type *, bfd_reloc_code_real_type));
216 static char som_section_type PARAMS ((const char *));
217 static int som_decode_symclass PARAMS ((asymbol *));
218 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
219 symindex *));
220
221 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
222 carsym **syms));
223 static boolean som_slurp_armap PARAMS ((bfd *));
224 static boolean som_write_armap PARAMS ((bfd *));
225 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
226 struct som_misc_symbol_info *));
227 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
228 unsigned int *));
229 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
230 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
231 unsigned int,
232 struct lst_header));
233 static CONST char *normalize PARAMS ((CONST char *file));
234 static boolean som_is_space PARAMS ((asection *));
235 static boolean som_is_subspace PARAMS ((asection *));
236 static boolean som_is_container PARAMS ((asection *, asection *));
237
238 /* Map SOM section names to POSIX/BSD single-character symbol types.
239
240 This table includes all the standard subspaces as defined in the
241 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
242 some reason was left out, and sections specific to embedded stabs. */
243
244 static const struct section_to_type stt[] = {
245 {"$TEXT$", 't'},
246 {"$SHLIB_INFO$", 't'},
247 {"$MILLICODE$", 't'},
248 {"$LIT$", 't'},
249 {"$CODE$", 't'},
250 {"$UNWIND_START$", 't'},
251 {"$UNWIND$", 't'},
252 {"$PRIVATE$", 'd'},
253 {"$PLT$", 'd'},
254 {"$SHLIB_DATA$", 'd'},
255 {"$DATA$", 'd'},
256 {"$SHORTDATA$", 'g'},
257 {"$DLT$", 'd'},
258 {"$GLOBAL$", 'g'},
259 {"$SHORTBSS$", 's'},
260 {"$BSS$", 'b'},
261 {"$GDB_STRINGS$", 'N'},
262 {"$GDB_SYMBOLS$", 'N'},
263 {0, 0}
264 };
265
266 /* About the relocation formatting table...
267
268 There are 256 entries in the table, one for each possible
269 relocation opcode available in SOM. We index the table by
270 the relocation opcode. The names and operations are those
271 defined by a.out_800 (4).
272
273 Right now this table is only used to count and perform minimal
274 processing on relocation streams so that they can be internalized
275 into BFD and symbolically printed by utilities. To make actual use
276 of them would be much more difficult, BFD's concept of relocations
277 is far too simple to handle SOM relocations. The basic assumption
278 that a relocation can be completely processed independent of other
279 relocations before an object file is written is invalid for SOM.
280
281 The SOM relocations are meant to be processed as a stream, they
282 specify copying of data from the input section to the output section
283 while possibly modifying the data in some manner. They also can
284 specify that a variable number of zeros or uninitialized data be
285 inserted on in the output segment at the current offset. Some
286 relocations specify that some previous relocation be re-applied at
287 the current location in the input/output sections. And finally a number
288 of relocations have effects on other sections (R_ENTRY, R_EXIT,
289 R_UNWIND_AUX and a variety of others). There isn't even enough room
290 in the BFD relocation data structure to store enough information to
291 perform all the relocations.
292
293 Each entry in the table has three fields.
294
295 The first entry is an index into this "class" of relocations. This
296 index can then be used as a variable within the relocation itself.
297
298 The second field is a format string which actually controls processing
299 of the relocation. It uses a simple postfix machine to do calculations
300 based on variables/constants found in the string and the relocation
301 stream.
302
303 The third field specifys whether or not this relocation may use
304 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
305 stored in the instruction.
306
307 Variables:
308
309 L = input space byte count
310 D = index into class of relocations
311 M = output space byte count
312 N = statement number (unused?)
313 O = stack operation
314 R = parameter relocation bits
315 S = symbol index
316 U = 64 bits of stack unwind and frame size info (we only keep 32 bits)
317 V = a literal constant (usually used in the next relocation)
318 P = a previous relocation
319
320 Lower case letters (starting with 'b') refer to following
321 bytes in the relocation stream. 'b' is the next 1 byte,
322 c is the next 2 bytes, d is the next 3 bytes, etc...
323 This is the variable part of the relocation entries that
324 makes our life a living hell.
325
326 numerical constants are also used in the format string. Note
327 the constants are represented in decimal.
328
329 '+', "*" and "=" represents the obvious postfix operators.
330 '<' represents a left shift.
331
332 Stack Operations:
333
334 Parameter Relocation Bits:
335
336 Unwind Entries:
337
338 Previous Relocations: The index field represents which in the queue
339 of 4 previous fixups should be re-applied.
340
341 Literal Constants: These are generally used to represent addend
342 parts of relocations when these constants are not stored in the
343 fields of the instructions themselves. For example the instruction
344 addil foo-$global$-0x1234 would use an override for "0x1234" rather
345 than storing it into the addil itself. */
346
347 struct fixup_format
348 {
349 int D;
350 char *format;
351 };
352
353 static const struct fixup_format som_fixup_formats[256] =
354 {
355 /* R_NO_RELOCATION */
356 0, "LD1+4*=", /* 0x00 */
357 1, "LD1+4*=", /* 0x01 */
358 2, "LD1+4*=", /* 0x02 */
359 3, "LD1+4*=", /* 0x03 */
360 4, "LD1+4*=", /* 0x04 */
361 5, "LD1+4*=", /* 0x05 */
362 6, "LD1+4*=", /* 0x06 */
363 7, "LD1+4*=", /* 0x07 */
364 8, "LD1+4*=", /* 0x08 */
365 9, "LD1+4*=", /* 0x09 */
366 10, "LD1+4*=", /* 0x0a */
367 11, "LD1+4*=", /* 0x0b */
368 12, "LD1+4*=", /* 0x0c */
369 13, "LD1+4*=", /* 0x0d */
370 14, "LD1+4*=", /* 0x0e */
371 15, "LD1+4*=", /* 0x0f */
372 16, "LD1+4*=", /* 0x10 */
373 17, "LD1+4*=", /* 0x11 */
374 18, "LD1+4*=", /* 0x12 */
375 19, "LD1+4*=", /* 0x13 */
376 20, "LD1+4*=", /* 0x14 */
377 21, "LD1+4*=", /* 0x15 */
378 22, "LD1+4*=", /* 0x16 */
379 23, "LD1+4*=", /* 0x17 */
380 0, "LD8<b+1+4*=", /* 0x18 */
381 1, "LD8<b+1+4*=", /* 0x19 */
382 2, "LD8<b+1+4*=", /* 0x1a */
383 3, "LD8<b+1+4*=", /* 0x1b */
384 0, "LD16<c+1+4*=", /* 0x1c */
385 1, "LD16<c+1+4*=", /* 0x1d */
386 2, "LD16<c+1+4*=", /* 0x1e */
387 0, "Ld1+=", /* 0x1f */
388 /* R_ZEROES */
389 0, "Lb1+4*=", /* 0x20 */
390 1, "Ld1+=", /* 0x21 */
391 /* R_UNINIT */
392 0, "Lb1+4*=", /* 0x22 */
393 1, "Ld1+=", /* 0x23 */
394 /* R_RELOCATION */
395 0, "L4=", /* 0x24 */
396 /* R_DATA_ONE_SYMBOL */
397 0, "L4=Sb=", /* 0x25 */
398 1, "L4=Sd=", /* 0x26 */
399 /* R_DATA_PLEBEL */
400 0, "L4=Sb=", /* 0x27 */
401 1, "L4=Sd=", /* 0x28 */
402 /* R_SPACE_REF */
403 0, "L4=", /* 0x29 */
404 /* R_REPEATED_INIT */
405 0, "L4=Mb1+4*=", /* 0x2a */
406 1, "Lb4*=Mb1+L*=", /* 0x2b */
407 2, "Lb4*=Md1+4*=", /* 0x2c */
408 3, "Ld1+=Me1+=", /* 0x2d */
409 /* R_RESERVED */
410 0, "", /* 0x2e */
411 0, "", /* 0x2f */
412 /* R_PCREL_CALL */
413 0, "L4=RD=Sb=", /* 0x30 */
414 1, "L4=RD=Sb=", /* 0x31 */
415 2, "L4=RD=Sb=", /* 0x32 */
416 3, "L4=RD=Sb=", /* 0x33 */
417 4, "L4=RD=Sb=", /* 0x34 */
418 5, "L4=RD=Sb=", /* 0x35 */
419 6, "L4=RD=Sb=", /* 0x36 */
420 7, "L4=RD=Sb=", /* 0x37 */
421 8, "L4=RD=Sb=", /* 0x38 */
422 9, "L4=RD=Sb=", /* 0x39 */
423 0, "L4=RD8<b+=Sb=",/* 0x3a */
424 1, "L4=RD8<b+=Sb=",/* 0x3b */
425 0, "L4=RD8<b+=Sd=",/* 0x3c */
426 1, "L4=RD8<b+=Sd=",/* 0x3d */
427 /* R_RESERVED */
428 0, "", /* 0x3e */
429 0, "", /* 0x3f */
430 /* R_ABS_CALL */
431 0, "L4=RD=Sb=", /* 0x40 */
432 1, "L4=RD=Sb=", /* 0x41 */
433 2, "L4=RD=Sb=", /* 0x42 */
434 3, "L4=RD=Sb=", /* 0x43 */
435 4, "L4=RD=Sb=", /* 0x44 */
436 5, "L4=RD=Sb=", /* 0x45 */
437 6, "L4=RD=Sb=", /* 0x46 */
438 7, "L4=RD=Sb=", /* 0x47 */
439 8, "L4=RD=Sb=", /* 0x48 */
440 9, "L4=RD=Sb=", /* 0x49 */
441 0, "L4=RD8<b+=Sb=",/* 0x4a */
442 1, "L4=RD8<b+=Sb=",/* 0x4b */
443 0, "L4=RD8<b+=Sd=",/* 0x4c */
444 1, "L4=RD8<b+=Sd=",/* 0x4d */
445 /* R_RESERVED */
446 0, "", /* 0x4e */
447 0, "", /* 0x4f */
448 /* R_DP_RELATIVE */
449 0, "L4=SD=", /* 0x50 */
450 1, "L4=SD=", /* 0x51 */
451 2, "L4=SD=", /* 0x52 */
452 3, "L4=SD=", /* 0x53 */
453 4, "L4=SD=", /* 0x54 */
454 5, "L4=SD=", /* 0x55 */
455 6, "L4=SD=", /* 0x56 */
456 7, "L4=SD=", /* 0x57 */
457 8, "L4=SD=", /* 0x58 */
458 9, "L4=SD=", /* 0x59 */
459 10, "L4=SD=", /* 0x5a */
460 11, "L4=SD=", /* 0x5b */
461 12, "L4=SD=", /* 0x5c */
462 13, "L4=SD=", /* 0x5d */
463 14, "L4=SD=", /* 0x5e */
464 15, "L4=SD=", /* 0x5f */
465 16, "L4=SD=", /* 0x60 */
466 17, "L4=SD=", /* 0x61 */
467 18, "L4=SD=", /* 0x62 */
468 19, "L4=SD=", /* 0x63 */
469 20, "L4=SD=", /* 0x64 */
470 21, "L4=SD=", /* 0x65 */
471 22, "L4=SD=", /* 0x66 */
472 23, "L4=SD=", /* 0x67 */
473 24, "L4=SD=", /* 0x68 */
474 25, "L4=SD=", /* 0x69 */
475 26, "L4=SD=", /* 0x6a */
476 27, "L4=SD=", /* 0x6b */
477 28, "L4=SD=", /* 0x6c */
478 29, "L4=SD=", /* 0x6d */
479 30, "L4=SD=", /* 0x6e */
480 31, "L4=SD=", /* 0x6f */
481 32, "L4=Sb=", /* 0x70 */
482 33, "L4=Sd=", /* 0x71 */
483 /* R_RESERVED */
484 0, "", /* 0x72 */
485 0, "", /* 0x73 */
486 0, "", /* 0x74 */
487 0, "", /* 0x75 */
488 0, "", /* 0x76 */
489 0, "", /* 0x77 */
490 /* R_DLT_REL */
491 0, "L4=Sb=", /* 0x78 */
492 1, "L4=Sd=", /* 0x79 */
493 /* R_RESERVED */
494 0, "", /* 0x7a */
495 0, "", /* 0x7b */
496 0, "", /* 0x7c */
497 0, "", /* 0x7d */
498 0, "", /* 0x7e */
499 0, "", /* 0x7f */
500 /* R_CODE_ONE_SYMBOL */
501 0, "L4=SD=", /* 0x80 */
502 1, "L4=SD=", /* 0x81 */
503 2, "L4=SD=", /* 0x82 */
504 3, "L4=SD=", /* 0x83 */
505 4, "L4=SD=", /* 0x84 */
506 5, "L4=SD=", /* 0x85 */
507 6, "L4=SD=", /* 0x86 */
508 7, "L4=SD=", /* 0x87 */
509 8, "L4=SD=", /* 0x88 */
510 9, "L4=SD=", /* 0x89 */
511 10, "L4=SD=", /* 0x8q */
512 11, "L4=SD=", /* 0x8b */
513 12, "L4=SD=", /* 0x8c */
514 13, "L4=SD=", /* 0x8d */
515 14, "L4=SD=", /* 0x8e */
516 15, "L4=SD=", /* 0x8f */
517 16, "L4=SD=", /* 0x90 */
518 17, "L4=SD=", /* 0x91 */
519 18, "L4=SD=", /* 0x92 */
520 19, "L4=SD=", /* 0x93 */
521 20, "L4=SD=", /* 0x94 */
522 21, "L4=SD=", /* 0x95 */
523 22, "L4=SD=", /* 0x96 */
524 23, "L4=SD=", /* 0x97 */
525 24, "L4=SD=", /* 0x98 */
526 25, "L4=SD=", /* 0x99 */
527 26, "L4=SD=", /* 0x9a */
528 27, "L4=SD=", /* 0x9b */
529 28, "L4=SD=", /* 0x9c */
530 29, "L4=SD=", /* 0x9d */
531 30, "L4=SD=", /* 0x9e */
532 31, "L4=SD=", /* 0x9f */
533 32, "L4=Sb=", /* 0xa0 */
534 33, "L4=Sd=", /* 0xa1 */
535 /* R_RESERVED */
536 0, "", /* 0xa2 */
537 0, "", /* 0xa3 */
538 0, "", /* 0xa4 */
539 0, "", /* 0xa5 */
540 0, "", /* 0xa6 */
541 0, "", /* 0xa7 */
542 0, "", /* 0xa8 */
543 0, "", /* 0xa9 */
544 0, "", /* 0xaa */
545 0, "", /* 0xab */
546 0, "", /* 0xac */
547 0, "", /* 0xad */
548 /* R_MILLI_REL */
549 0, "L4=Sb=", /* 0xae */
550 1, "L4=Sd=", /* 0xaf */
551 /* R_CODE_PLABEL */
552 0, "L4=Sb=", /* 0xb0 */
553 1, "L4=Sd=", /* 0xb1 */
554 /* R_BREAKPOINT */
555 0, "L4=", /* 0xb2 */
556 /* R_ENTRY */
557 0, "Ui=", /* 0xb3 */
558 1, "Uf=", /* 0xb4 */
559 /* R_ALT_ENTRY */
560 0, "", /* 0xb5 */
561 /* R_EXIT */
562 0, "", /* 0xb6 */
563 /* R_BEGIN_TRY */
564 0, "", /* 0xb7 */
565 /* R_END_TRY */
566 0, "R0=", /* 0xb8 */
567 1, "Rb4*=", /* 0xb9 */
568 2, "Rd4*=", /* 0xba */
569 /* R_BEGIN_BRTAB */
570 0, "", /* 0xbb */
571 /* R_END_BRTAB */
572 0, "", /* 0xbc */
573 /* R_STATEMENT */
574 0, "Nb=", /* 0xbd */
575 1, "Nc=", /* 0xbe */
576 2, "Nd=", /* 0xbf */
577 /* R_DATA_EXPR */
578 0, "L4=", /* 0xc0 */
579 /* R_CODE_EXPR */
580 0, "L4=", /* 0xc1 */
581 /* R_FSEL */
582 0, "", /* 0xc2 */
583 /* R_LSEL */
584 0, "", /* 0xc3 */
585 /* R_RSEL */
586 0, "", /* 0xc4 */
587 /* R_N_MODE */
588 0, "", /* 0xc5 */
589 /* R_S_MODE */
590 0, "", /* 0xc6 */
591 /* R_D_MODE */
592 0, "", /* 0xc7 */
593 /* R_R_MODE */
594 0, "", /* 0xc8 */
595 /* R_DATA_OVERRIDE */
596 0, "V0=", /* 0xc9 */
597 1, "Vb=", /* 0xca */
598 2, "Vc=", /* 0xcb */
599 3, "Vd=", /* 0xcc */
600 4, "Ve=", /* 0xcd */
601 /* R_TRANSLATED */
602 0, "", /* 0xce */
603 /* R_RESERVED */
604 0, "", /* 0xcf */
605 /* R_COMP1 */
606 0, "Ob=", /* 0xd0 */
607 /* R_COMP2 */
608 0, "Ob=Sd=", /* 0xd1 */
609 /* R_COMP3 */
610 0, "Ob=Ve=", /* 0xd2 */
611 /* R_PREV_FIXUP */
612 0, "P", /* 0xd3 */
613 1, "P", /* 0xd4 */
614 2, "P", /* 0xd5 */
615 3, "P", /* 0xd6 */
616 /* R_RESERVED */
617 0, "", /* 0xd7 */
618 0, "", /* 0xd8 */
619 0, "", /* 0xd9 */
620 0, "", /* 0xda */
621 0, "", /* 0xdb */
622 0, "", /* 0xdc */
623 0, "", /* 0xdd */
624 0, "", /* 0xde */
625 0, "", /* 0xdf */
626 0, "", /* 0xe0 */
627 0, "", /* 0xe1 */
628 0, "", /* 0xe2 */
629 0, "", /* 0xe3 */
630 0, "", /* 0xe4 */
631 0, "", /* 0xe5 */
632 0, "", /* 0xe6 */
633 0, "", /* 0xe7 */
634 0, "", /* 0xe8 */
635 0, "", /* 0xe9 */
636 0, "", /* 0xea */
637 0, "", /* 0xeb */
638 0, "", /* 0xec */
639 0, "", /* 0xed */
640 0, "", /* 0xee */
641 0, "", /* 0xef */
642 0, "", /* 0xf0 */
643 0, "", /* 0xf1 */
644 0, "", /* 0xf2 */
645 0, "", /* 0xf3 */
646 0, "", /* 0xf4 */
647 0, "", /* 0xf5 */
648 0, "", /* 0xf6 */
649 0, "", /* 0xf7 */
650 0, "", /* 0xf8 */
651 0, "", /* 0xf9 */
652 0, "", /* 0xfa */
653 0, "", /* 0xfb */
654 0, "", /* 0xfc */
655 0, "", /* 0xfd */
656 0, "", /* 0xfe */
657 0, "", /* 0xff */
658 };
659
660 static const int comp1_opcodes[] =
661 {
662 0x00,
663 0x40,
664 0x41,
665 0x42,
666 0x43,
667 0x44,
668 0x45,
669 0x46,
670 0x47,
671 0x48,
672 0x49,
673 0x4a,
674 0x4b,
675 0x60,
676 0x80,
677 0xa0,
678 0xc0,
679 -1
680 };
681
682 static const int comp2_opcodes[] =
683 {
684 0x00,
685 0x80,
686 0x82,
687 0xc0,
688 -1
689 };
690
691 static const int comp3_opcodes[] =
692 {
693 0x00,
694 0x02,
695 -1
696 };
697
698 /* These apparently are not in older versions of hpux reloc.h. */
699 #ifndef R_DLT_REL
700 #define R_DLT_REL 0x78
701 #endif
702
703 #ifndef R_AUX_UNWIND
704 #define R_AUX_UNWIND 0xcf
705 #endif
706
707 #ifndef R_SEC_STMT
708 #define R_SEC_STMT 0xd7
709 #endif
710
711 static reloc_howto_type som_hppa_howto_table[] =
712 {
713 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
714 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
715 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
716 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
717 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
718 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
719 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
720 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
721 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
722 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
723 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
724 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
725 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
726 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
727 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
728 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
729 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
730 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
731 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
732 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
733 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
734 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
735 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
736 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
737 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
738 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
739 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
740 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
741 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
742 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
743 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
744 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
745 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
746 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
747 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
748 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
749 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
750 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
751 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
752 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
753 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
754 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
755 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
756 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
757 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
758 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
759 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
760 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
761 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
762 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
763 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
764 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
765 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
766 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
767 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
768 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
769 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
770 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
771 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
772 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
773 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
774 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
775 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
776 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
777 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
778 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
779 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
780 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
781 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
782 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
783 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
784 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
785 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
786 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
787 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
788 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
789 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
790 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
791 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
792 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
793 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
794 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
795 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
796 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
797 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
798 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
799 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
800 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
801 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
802 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
803 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
804 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
805 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
806 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
807 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
808 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
809 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
810 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
811 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
812 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
813 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
814 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
815 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
816 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
817 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
818 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
819 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
820 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
821 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
822 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
823 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
824 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
825 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
826 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
827 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
828 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
829 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
830 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
831 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
832 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
833 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
834 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
835 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
836 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
837 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
838 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
839 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
840 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
841 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
842 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
843 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
844 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
845 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
846 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
847 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
848 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
849 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
850 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
851 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
852 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
853 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
854 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
855 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
856 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
857 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
858 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
859 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
860 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
861 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
862 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
863 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
864 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
865 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
866 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
867 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
868 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
869 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
870 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
871 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
872 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
873 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
874 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
875 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
876 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
877 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
878 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
879 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
880 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
881 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
882 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
883 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
884 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
885 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
886 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
887 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
888 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
889 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
890 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
891 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
892 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
893 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
894 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
895 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
896 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
897 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
898 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
899 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
900 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
901 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
902 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
903 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
904 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
905 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
906 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
907 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
908 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
909 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
910 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
911 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
912 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
913 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
914 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
915 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
916 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
917 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
918 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
919 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
920 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
921 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
922 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
923 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
924 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
925 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
926 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
927 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
928 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
929 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
930 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
931 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
932 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
933 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
934 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
935 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
936 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
937 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
938 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
939 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
940 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
941 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
942 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
943 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
944 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
945 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
946 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
947 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
948 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
949 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
950 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
951 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
952 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
953 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
954 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
955 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
956 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
957 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
958 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
959 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
960 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
961 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
962 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
963 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
964 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
965 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
966 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
967 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
968 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
969
970 /* Initialize the SOM relocation queue. By definition the queue holds
971 the last four multibyte fixups. */
972
973 static void
974 som_initialize_reloc_queue (queue)
975 struct reloc_queue *queue;
976 {
977 queue[0].reloc = NULL;
978 queue[0].size = 0;
979 queue[1].reloc = NULL;
980 queue[1].size = 0;
981 queue[2].reloc = NULL;
982 queue[2].size = 0;
983 queue[3].reloc = NULL;
984 queue[3].size = 0;
985 }
986
987 /* Insert a new relocation into the relocation queue. */
988
989 static void
990 som_reloc_queue_insert (p, size, queue)
991 unsigned char *p;
992 unsigned int size;
993 struct reloc_queue *queue;
994 {
995 queue[3].reloc = queue[2].reloc;
996 queue[3].size = queue[2].size;
997 queue[2].reloc = queue[1].reloc;
998 queue[2].size = queue[1].size;
999 queue[1].reloc = queue[0].reloc;
1000 queue[1].size = queue[0].size;
1001 queue[0].reloc = p;
1002 queue[0].size = size;
1003 }
1004
1005 /* When an entry in the relocation queue is reused, the entry moves
1006 to the front of the queue. */
1007
1008 static void
1009 som_reloc_queue_fix (queue, index)
1010 struct reloc_queue *queue;
1011 unsigned int index;
1012 {
1013 if (index == 0)
1014 return;
1015
1016 if (index == 1)
1017 {
1018 unsigned char *tmp1 = queue[0].reloc;
1019 unsigned int tmp2 = queue[0].size;
1020 queue[0].reloc = queue[1].reloc;
1021 queue[0].size = queue[1].size;
1022 queue[1].reloc = tmp1;
1023 queue[1].size = tmp2;
1024 return;
1025 }
1026
1027 if (index == 2)
1028 {
1029 unsigned char *tmp1 = queue[0].reloc;
1030 unsigned int tmp2 = queue[0].size;
1031 queue[0].reloc = queue[2].reloc;
1032 queue[0].size = queue[2].size;
1033 queue[2].reloc = queue[1].reloc;
1034 queue[2].size = queue[1].size;
1035 queue[1].reloc = tmp1;
1036 queue[1].size = tmp2;
1037 return;
1038 }
1039
1040 if (index == 3)
1041 {
1042 unsigned char *tmp1 = queue[0].reloc;
1043 unsigned int tmp2 = queue[0].size;
1044 queue[0].reloc = queue[3].reloc;
1045 queue[0].size = queue[3].size;
1046 queue[3].reloc = queue[2].reloc;
1047 queue[3].size = queue[2].size;
1048 queue[2].reloc = queue[1].reloc;
1049 queue[2].size = queue[1].size;
1050 queue[1].reloc = tmp1;
1051 queue[1].size = tmp2;
1052 return;
1053 }
1054 abort();
1055 }
1056
1057 /* Search for a particular relocation in the relocation queue. */
1058
1059 static int
1060 som_reloc_queue_find (p, size, queue)
1061 unsigned char *p;
1062 unsigned int size;
1063 struct reloc_queue *queue;
1064 {
1065 if (queue[0].reloc && !bcmp (p, queue[0].reloc, size)
1066 && size == queue[0].size)
1067 return 0;
1068 if (queue[1].reloc && !bcmp (p, queue[1].reloc, size)
1069 && size == queue[1].size)
1070 return 1;
1071 if (queue[2].reloc && !bcmp (p, queue[2].reloc, size)
1072 && size == queue[2].size)
1073 return 2;
1074 if (queue[3].reloc && !bcmp (p, queue[3].reloc, size)
1075 && size == queue[3].size)
1076 return 3;
1077 return -1;
1078 }
1079
1080 static unsigned char *
1081 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1082 bfd *abfd;
1083 int *subspace_reloc_sizep;
1084 unsigned char *p;
1085 unsigned int size;
1086 struct reloc_queue *queue;
1087 {
1088 int queue_index = som_reloc_queue_find (p, size, queue);
1089
1090 if (queue_index != -1)
1091 {
1092 /* Found this in a previous fixup. Undo the fixup we
1093 just built and use R_PREV_FIXUP instead. We saved
1094 a total of size - 1 bytes in the fixup stream. */
1095 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1096 p += 1;
1097 *subspace_reloc_sizep += 1;
1098 som_reloc_queue_fix (queue, queue_index);
1099 }
1100 else
1101 {
1102 som_reloc_queue_insert (p, size, queue);
1103 *subspace_reloc_sizep += size;
1104 p += size;
1105 }
1106 return p;
1107 }
1108
1109 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1110 bytes without any relocation. Update the size of the subspace
1111 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1112 current pointer into the relocation stream. */
1113
1114 static unsigned char *
1115 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1116 bfd *abfd;
1117 unsigned int skip;
1118 unsigned char *p;
1119 unsigned int *subspace_reloc_sizep;
1120 struct reloc_queue *queue;
1121 {
1122 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1123 then R_PREV_FIXUPs to get the difference down to a
1124 reasonable size. */
1125 if (skip >= 0x1000000)
1126 {
1127 skip -= 0x1000000;
1128 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1129 bfd_put_8 (abfd, 0xff, p + 1);
1130 bfd_put_16 (abfd, 0xffff, p + 2);
1131 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1132 while (skip >= 0x1000000)
1133 {
1134 skip -= 0x1000000;
1135 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1136 p++;
1137 *subspace_reloc_sizep += 1;
1138 /* No need to adjust queue here since we are repeating the
1139 most recent fixup. */
1140 }
1141 }
1142
1143 /* The difference must be less than 0x1000000. Use one
1144 more R_NO_RELOCATION entry to get to the right difference. */
1145 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1146 {
1147 /* Difference can be handled in a simple single-byte
1148 R_NO_RELOCATION entry. */
1149 if (skip <= 0x60)
1150 {
1151 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1152 *subspace_reloc_sizep += 1;
1153 p++;
1154 }
1155 /* Handle it with a two byte R_NO_RELOCATION entry. */
1156 else if (skip <= 0x1000)
1157 {
1158 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1159 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1160 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1161 }
1162 /* Handle it with a three byte R_NO_RELOCATION entry. */
1163 else
1164 {
1165 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1166 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1167 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1168 }
1169 }
1170 /* Ugh. Punt and use a 4 byte entry. */
1171 else if (skip > 0)
1172 {
1173 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1174 bfd_put_8 (abfd, skip >> 16, p + 1);
1175 bfd_put_16 (abfd, skip, p + 2);
1176 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1177 }
1178 return p;
1179 }
1180
1181 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1182 from a BFD relocation. Update the size of the subspace relocation
1183 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1184 into the relocation stream. */
1185
1186 static unsigned char *
1187 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1188 bfd *abfd;
1189 int addend;
1190 unsigned char *p;
1191 unsigned int *subspace_reloc_sizep;
1192 struct reloc_queue *queue;
1193 {
1194 if ((unsigned)(addend) + 0x80 < 0x100)
1195 {
1196 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1197 bfd_put_8 (abfd, addend, p + 1);
1198 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1199 }
1200 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1201 {
1202 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1203 bfd_put_16 (abfd, addend, p + 1);
1204 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1205 }
1206 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1207 {
1208 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1209 bfd_put_8 (abfd, addend >> 16, p + 1);
1210 bfd_put_16 (abfd, addend, p + 2);
1211 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1212 }
1213 else
1214 {
1215 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1216 bfd_put_32 (abfd, addend, p + 1);
1217 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1218 }
1219 return p;
1220 }
1221
1222 /* Handle a single function call relocation. */
1223
1224 static unsigned char *
1225 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1226 bfd *abfd;
1227 unsigned char *p;
1228 unsigned int *subspace_reloc_sizep;
1229 arelent *bfd_reloc;
1230 int sym_num;
1231 struct reloc_queue *queue;
1232 {
1233 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1234 int rtn_bits = arg_bits & 0x3;
1235 int type, done = 0;
1236
1237 /* You'll never believe all this is necessary to handle relocations
1238 for function calls. Having to compute and pack the argument
1239 relocation bits is the real nightmare.
1240
1241 If you're interested in how this works, just forget it. You really
1242 do not want to know about this braindamage. */
1243
1244 /* First see if this can be done with a "simple" relocation. Simple
1245 relocations have a symbol number < 0x100 and have simple encodings
1246 of argument relocations. */
1247
1248 if (sym_num < 0x100)
1249 {
1250 switch (arg_bits)
1251 {
1252 case 0:
1253 case 1:
1254 type = 0;
1255 break;
1256 case 1 << 8:
1257 case 1 << 8 | 1:
1258 type = 1;
1259 break;
1260 case 1 << 8 | 1 << 6:
1261 case 1 << 8 | 1 << 6 | 1:
1262 type = 2;
1263 break;
1264 case 1 << 8 | 1 << 6 | 1 << 4:
1265 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1266 type = 3;
1267 break;
1268 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1269 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1270 type = 4;
1271 break;
1272 default:
1273 /* Not one of the easy encodings. This will have to be
1274 handled by the more complex code below. */
1275 type = -1;
1276 break;
1277 }
1278 if (type != -1)
1279 {
1280 /* Account for the return value too. */
1281 if (rtn_bits)
1282 type += 5;
1283
1284 /* Emit a 2 byte relocation. Then see if it can be handled
1285 with a relocation which is already in the relocation queue. */
1286 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1287 bfd_put_8 (abfd, sym_num, p + 1);
1288 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1289 done = 1;
1290 }
1291 }
1292
1293 /* If this could not be handled with a simple relocation, then do a hard
1294 one. Hard relocations occur if the symbol number was too high or if
1295 the encoding of argument relocation bits is too complex. */
1296 if (! done)
1297 {
1298 /* Don't ask about these magic sequences. I took them straight
1299 from gas-1.36 which took them from the a.out man page. */
1300 type = rtn_bits;
1301 if ((arg_bits >> 6 & 0xf) == 0xe)
1302 type += 9 * 40;
1303 else
1304 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1305 if ((arg_bits >> 2 & 0xf) == 0xe)
1306 type += 9 * 4;
1307 else
1308 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1309
1310 /* Output the first two bytes of the relocation. These describe
1311 the length of the relocation and encoding style. */
1312 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1313 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1314 p);
1315 bfd_put_8 (abfd, type, p + 1);
1316
1317 /* Now output the symbol index and see if this bizarre relocation
1318 just happened to be in the relocation queue. */
1319 if (sym_num < 0x100)
1320 {
1321 bfd_put_8 (abfd, sym_num, p + 2);
1322 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1323 }
1324 else
1325 {
1326 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1327 bfd_put_16 (abfd, sym_num, p + 3);
1328 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1329 }
1330 }
1331 return p;
1332 }
1333
1334
1335 /* Return the logarithm of X, base 2, considering X unsigned.
1336 Abort -1 if X is not a power or two or is zero. */
1337
1338 static int
1339 log2 (x)
1340 unsigned int x;
1341 {
1342 int log = 0;
1343
1344 /* Test for 0 or a power of 2. */
1345 if (x == 0 || x != (x & -x))
1346 return -1;
1347
1348 while ((x >>= 1) != 0)
1349 log++;
1350 return log;
1351 }
1352
1353 static bfd_reloc_status_type
1354 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1355 input_section, output_bfd, error_message)
1356 bfd *abfd;
1357 arelent *reloc_entry;
1358 asymbol *symbol_in;
1359 PTR data;
1360 asection *input_section;
1361 bfd *output_bfd;
1362 char **error_message;
1363 {
1364 if (output_bfd)
1365 {
1366 reloc_entry->address += input_section->output_offset;
1367 return bfd_reloc_ok;
1368 }
1369 return bfd_reloc_ok;
1370 }
1371
1372 /* Given a generic HPPA relocation type, the instruction format,
1373 and a field selector, return one or more appropriate SOM relocations. */
1374
1375 int **
1376 hppa_som_gen_reloc_type (abfd, base_type, format, field)
1377 bfd *abfd;
1378 int base_type;
1379 int format;
1380 enum hppa_reloc_field_selector_type_alt field;
1381 {
1382 int *final_type, **final_types;
1383
1384 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 3);
1385 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1386 if (!final_types || !final_type)
1387 {
1388 bfd_set_error (bfd_error_no_memory);
1389 return NULL;
1390 }
1391
1392 /* The field selector may require additional relocations to be
1393 generated. It's impossible to know at this moment if additional
1394 relocations will be needed, so we make them. The code to actually
1395 write the relocation/fixup stream is responsible for removing
1396 any redundant relocations. */
1397 switch (field)
1398 {
1399 case e_fsel:
1400 case e_psel:
1401 case e_lpsel:
1402 case e_rpsel:
1403 final_types[0] = final_type;
1404 final_types[1] = NULL;
1405 final_types[2] = NULL;
1406 *final_type = base_type;
1407 break;
1408
1409 case e_tsel:
1410 case e_ltsel:
1411 case e_rtsel:
1412 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1413 if (!final_types[0])
1414 {
1415 bfd_set_error (bfd_error_no_memory);
1416 return NULL;
1417 }
1418 if (field == e_tsel)
1419 *final_types[0] = R_FSEL;
1420 else if (field == e_ltsel)
1421 *final_types[0] = R_LSEL;
1422 else
1423 *final_types[0] = R_RSEL;
1424 final_types[1] = final_type;
1425 final_types[2] = NULL;
1426 *final_type = base_type;
1427 break;
1428
1429 case e_lssel:
1430 case e_rssel:
1431 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1432 if (!final_types[0])
1433 {
1434 bfd_set_error (bfd_error_no_memory);
1435 return NULL;
1436 }
1437 *final_types[0] = R_S_MODE;
1438 final_types[1] = final_type;
1439 final_types[2] = NULL;
1440 *final_type = base_type;
1441 break;
1442
1443 case e_lsel:
1444 case e_rsel:
1445 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1446 if (!final_types[0])
1447 {
1448 bfd_set_error (bfd_error_no_memory);
1449 return NULL;
1450 }
1451 *final_types[0] = R_N_MODE;
1452 final_types[1] = final_type;
1453 final_types[2] = NULL;
1454 *final_type = base_type;
1455 break;
1456
1457 case e_ldsel:
1458 case e_rdsel:
1459 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1460 if (!final_types[0])
1461 {
1462 bfd_set_error (bfd_error_no_memory);
1463 return NULL;
1464 }
1465 *final_types[0] = R_D_MODE;
1466 final_types[1] = final_type;
1467 final_types[2] = NULL;
1468 *final_type = base_type;
1469 break;
1470
1471 case e_lrsel:
1472 case e_rrsel:
1473 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1474 if (!final_types[0])
1475 {
1476 bfd_set_error (bfd_error_no_memory);
1477 return NULL;
1478 }
1479 *final_types[0] = R_R_MODE;
1480 final_types[1] = final_type;
1481 final_types[2] = NULL;
1482 *final_type = base_type;
1483 break;
1484 }
1485
1486 switch (base_type)
1487 {
1488 case R_HPPA:
1489 /* PLABELs get their own relocation type. */
1490 if (field == e_psel
1491 || field == e_lpsel
1492 || field == e_rpsel)
1493 {
1494 /* A PLABEL relocation that has a size of 32 bits must
1495 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1496 if (format == 32)
1497 *final_type = R_DATA_PLABEL;
1498 else
1499 *final_type = R_CODE_PLABEL;
1500 }
1501 /* PIC stuff. */
1502 else if (field == e_tsel
1503 || field == e_ltsel
1504 || field == e_rtsel)
1505 *final_type = R_DLT_REL;
1506 /* A relocation in the data space is always a full 32bits. */
1507 else if (format == 32)
1508 *final_type = R_DATA_ONE_SYMBOL;
1509
1510 break;
1511
1512 case R_HPPA_GOTOFF:
1513 /* More PLABEL special cases. */
1514 if (field == e_psel
1515 || field == e_lpsel
1516 || field == e_rpsel)
1517 *final_type = R_DATA_PLABEL;
1518 break;
1519
1520 case R_HPPA_NONE:
1521 case R_HPPA_ABS_CALL:
1522 case R_HPPA_PCREL_CALL:
1523 case R_HPPA_COMPLEX:
1524 case R_HPPA_COMPLEX_PCREL_CALL:
1525 case R_HPPA_COMPLEX_ABS_CALL:
1526 /* Right now we can default all these. */
1527 break;
1528 }
1529 return final_types;
1530 }
1531
1532 /* Return the address of the correct entry in the PA SOM relocation
1533 howto table. */
1534
1535 static const reloc_howto_type *
1536 som_bfd_reloc_type_lookup (arch, code)
1537 bfd_arch_info_type *arch;
1538 bfd_reloc_code_real_type code;
1539 {
1540 if ((int) code < (int) R_NO_RELOCATION + 255)
1541 {
1542 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1543 return &som_hppa_howto_table[(int) code];
1544 }
1545
1546 return (reloc_howto_type *) 0;
1547 }
1548
1549 /* Perform some initialization for an object. Save results of this
1550 initialization in the BFD. */
1551
1552 static bfd_target *
1553 som_object_setup (abfd, file_hdrp, aux_hdrp)
1554 bfd *abfd;
1555 struct header *file_hdrp;
1556 struct som_exec_auxhdr *aux_hdrp;
1557 {
1558 /* som_mkobject will set bfd_error if som_mkobject fails. */
1559 if (som_mkobject (abfd) != true)
1560 return 0;
1561
1562 /* Set BFD flags based on what information is available in the SOM. */
1563 abfd->flags = NO_FLAGS;
1564 if (file_hdrp->symbol_total)
1565 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1566
1567 switch (file_hdrp->a_magic)
1568 {
1569 case DEMAND_MAGIC:
1570 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1571 break;
1572 case SHARE_MAGIC:
1573 abfd->flags |= (WP_TEXT | EXEC_P);
1574 break;
1575 case EXEC_MAGIC:
1576 abfd->flags |= (EXEC_P);
1577 break;
1578 case RELOC_MAGIC:
1579 abfd->flags |= HAS_RELOC;
1580 break;
1581 default:
1582 break;
1583 }
1584
1585 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1586 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 0);
1587 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1588
1589 /* Initialize the saved symbol table and string table to NULL.
1590 Save important offsets and sizes from the SOM header into
1591 the BFD. */
1592 obj_som_stringtab (abfd) = (char *) NULL;
1593 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1594 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1595 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1596 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1597 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
1598
1599 obj_som_exec_data (abfd) = (struct som_exec_data *)
1600 bfd_zalloc (abfd, sizeof (struct som_exec_data ));
1601 if (obj_som_exec_data (abfd) == NULL)
1602 {
1603 bfd_set_error (bfd_error_no_memory);
1604 return NULL;
1605 }
1606
1607 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1608 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1609 return abfd->xvec;
1610 }
1611
1612 /* Convert all of the space and subspace info into BFD sections. Each space
1613 contains a number of subspaces, which in turn describe the mapping between
1614 regions of the exec file, and the address space that the program runs in.
1615 BFD sections which correspond to spaces will overlap the sections for the
1616 associated subspaces. */
1617
1618 static boolean
1619 setup_sections (abfd, file_hdr)
1620 bfd *abfd;
1621 struct header *file_hdr;
1622 {
1623 char *space_strings;
1624 int space_index;
1625 unsigned int total_subspaces = 0;
1626
1627 /* First, read in space names */
1628
1629 space_strings = malloc (file_hdr->space_strings_size);
1630 if (!space_strings && file_hdr->space_strings_size != 0)
1631 {
1632 bfd_set_error (bfd_error_no_memory);
1633 goto error_return;
1634 }
1635
1636 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
1637 goto error_return;
1638 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1639 != file_hdr->space_strings_size)
1640 goto error_return;
1641
1642 /* Loop over all of the space dictionaries, building up sections */
1643 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1644 {
1645 struct space_dictionary_record space;
1646 struct subspace_dictionary_record subspace, save_subspace;
1647 int subspace_index;
1648 asection *space_asect;
1649 char *newname;
1650
1651 /* Read the space dictionary element */
1652 if (bfd_seek (abfd, file_hdr->space_location
1653 + space_index * sizeof space, SEEK_SET) < 0)
1654 goto error_return;
1655 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1656 goto error_return;
1657
1658 /* Setup the space name string */
1659 space.name.n_name = space.name.n_strx + space_strings;
1660
1661 /* Make a section out of it */
1662 newname = bfd_alloc (abfd, strlen (space.name.n_name) + 1);
1663 if (!newname)
1664 goto error_return;
1665 strcpy (newname, space.name.n_name);
1666
1667 space_asect = bfd_make_section_anyway (abfd, newname);
1668 if (!space_asect)
1669 goto error_return;
1670
1671 if (space.is_loadable == 0)
1672 space_asect->flags |= SEC_DEBUGGING;
1673
1674 /* Set up all the attributes for the space. */
1675 if (bfd_som_set_section_attributes (space_asect, space.is_defined,
1676 space.is_private, space.sort_key,
1677 space.space_number) == false)
1678 goto error_return;
1679
1680 /* Now, read in the first subspace for this space */
1681 if (bfd_seek (abfd, file_hdr->subspace_location
1682 + space.subspace_index * sizeof subspace,
1683 SEEK_SET) < 0)
1684 goto error_return;
1685 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1686 goto error_return;
1687 /* Seek back to the start of the subspaces for loop below */
1688 if (bfd_seek (abfd, file_hdr->subspace_location
1689 + space.subspace_index * sizeof subspace,
1690 SEEK_SET) < 0)
1691 goto error_return;
1692
1693 /* Setup the start address and file loc from the first subspace record */
1694 space_asect->vma = subspace.subspace_start;
1695 space_asect->filepos = subspace.file_loc_init_value;
1696 space_asect->alignment_power = log2 (subspace.alignment);
1697 if (space_asect->alignment_power == -1)
1698 goto error_return;
1699
1700 /* Initialize save_subspace so we can reliably determine if this
1701 loop placed any useful values into it. */
1702 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1703
1704 /* Loop over the rest of the subspaces, building up more sections */
1705 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1706 subspace_index++)
1707 {
1708 asection *subspace_asect;
1709
1710 /* Read in the next subspace */
1711 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1712 != sizeof subspace)
1713 goto error_return;
1714
1715 /* Setup the subspace name string */
1716 subspace.name.n_name = subspace.name.n_strx + space_strings;
1717
1718 newname = bfd_alloc (abfd, strlen (subspace.name.n_name) + 1);
1719 if (!newname)
1720 goto error_return;
1721 strcpy (newname, subspace.name.n_name);
1722
1723 /* Make a section out of this subspace */
1724 subspace_asect = bfd_make_section_anyway (abfd, newname);
1725 if (!subspace_asect)
1726 goto error_return;
1727
1728 /* Store private information about the section. */
1729 if (bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1730 subspace.access_control_bits,
1731 subspace.sort_key,
1732 subspace.quadrant) == false)
1733 goto error_return;
1734
1735 /* Keep an easy mapping between subspaces and sections. */
1736 subspace_asect->target_index = total_subspaces++;
1737
1738 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1739 by the access_control_bits in the subspace header. */
1740 switch (subspace.access_control_bits >> 4)
1741 {
1742 /* Readonly data. */
1743 case 0x0:
1744 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1745 break;
1746
1747 /* Normal data. */
1748 case 0x1:
1749 subspace_asect->flags |= SEC_DATA;
1750 break;
1751
1752 /* Readonly code and the gateways.
1753 Gateways have other attributes which do not map
1754 into anything BFD knows about. */
1755 case 0x2:
1756 case 0x4:
1757 case 0x5:
1758 case 0x6:
1759 case 0x7:
1760 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1761 break;
1762
1763 /* dynamic (writable) code. */
1764 case 0x3:
1765 subspace_asect->flags |= SEC_CODE;
1766 break;
1767 }
1768
1769 if (subspace.dup_common || subspace.is_common)
1770 subspace_asect->flags |= SEC_IS_COMMON;
1771 else if (subspace.subspace_length > 0)
1772 subspace_asect->flags |= SEC_HAS_CONTENTS;
1773
1774 if (subspace.is_loadable)
1775 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1776 else
1777 subspace_asect->flags |= SEC_DEBUGGING;
1778
1779 if (subspace.code_only)
1780 subspace_asect->flags |= SEC_CODE;
1781
1782 /* Both file_loc_init_value and initialization_length will
1783 be zero for a BSS like subspace. */
1784 if (subspace.file_loc_init_value == 0
1785 && subspace.initialization_length == 0)
1786 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD);
1787
1788 /* This subspace has relocations.
1789 The fixup_request_quantity is a byte count for the number of
1790 entries in the relocation stream; it is not the actual number
1791 of relocations in the subspace. */
1792 if (subspace.fixup_request_quantity != 0)
1793 {
1794 subspace_asect->flags |= SEC_RELOC;
1795 subspace_asect->rel_filepos = subspace.fixup_request_index;
1796 som_section_data (subspace_asect)->reloc_size
1797 = subspace.fixup_request_quantity;
1798 /* We can not determine this yet. When we read in the
1799 relocation table the correct value will be filled in. */
1800 subspace_asect->reloc_count = -1;
1801 }
1802
1803 /* Update save_subspace if appropriate. */
1804 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1805 save_subspace = subspace;
1806
1807 subspace_asect->vma = subspace.subspace_start;
1808 subspace_asect->_cooked_size = subspace.subspace_length;
1809 subspace_asect->_raw_size = subspace.subspace_length;
1810 subspace_asect->filepos = subspace.file_loc_init_value;
1811 subspace_asect->alignment_power = log2 (subspace.alignment);
1812 if (subspace_asect->alignment_power == -1)
1813 goto error_return;
1814 }
1815
1816 /* Yow! there is no subspace within the space which actually
1817 has initialized information in it; this should never happen
1818 as far as I know. */
1819 if (!save_subspace.file_loc_init_value)
1820 goto error_return;
1821
1822 /* Setup the sizes for the space section based upon the info in the
1823 last subspace of the space. */
1824 space_asect->_cooked_size = save_subspace.subspace_start
1825 - space_asect->vma + save_subspace.subspace_length;
1826 space_asect->_raw_size = save_subspace.file_loc_init_value
1827 - space_asect->filepos + save_subspace.initialization_length;
1828 }
1829 if (space_strings != NULL)
1830 free (space_strings);
1831 return true;
1832
1833 error_return:
1834 if (space_strings != NULL)
1835 free (space_strings);
1836 return false;
1837 }
1838
1839 /* Read in a SOM object and make it into a BFD. */
1840
1841 static bfd_target *
1842 som_object_p (abfd)
1843 bfd *abfd;
1844 {
1845 struct header file_hdr;
1846 struct som_exec_auxhdr aux_hdr;
1847
1848 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
1849 {
1850 if (bfd_get_error () != bfd_error_system_call)
1851 bfd_set_error (bfd_error_wrong_format);
1852 return 0;
1853 }
1854
1855 if (!_PA_RISC_ID (file_hdr.system_id))
1856 {
1857 bfd_set_error (bfd_error_wrong_format);
1858 return 0;
1859 }
1860
1861 switch (file_hdr.a_magic)
1862 {
1863 case RELOC_MAGIC:
1864 case EXEC_MAGIC:
1865 case SHARE_MAGIC:
1866 case DEMAND_MAGIC:
1867 #ifdef DL_MAGIC
1868 case DL_MAGIC:
1869 #endif
1870 #ifdef SHL_MAGIC
1871 case SHL_MAGIC:
1872 #endif
1873 #ifdef EXECLIBMAGIC
1874 case EXECLIBMAGIC:
1875 #endif
1876 #ifdef SHARED_MAGIC_CNX
1877 case SHARED_MAGIC_CNX:
1878 #endif
1879 break;
1880 default:
1881 bfd_set_error (bfd_error_wrong_format);
1882 return 0;
1883 }
1884
1885 if (file_hdr.version_id != VERSION_ID
1886 && file_hdr.version_id != NEW_VERSION_ID)
1887 {
1888 bfd_set_error (bfd_error_wrong_format);
1889 return 0;
1890 }
1891
1892 /* If the aux_header_size field in the file header is zero, then this
1893 object is an incomplete executable (a .o file). Do not try to read
1894 a non-existant auxiliary header. */
1895 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
1896 if (file_hdr.aux_header_size != 0)
1897 {
1898 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
1899 {
1900 if (bfd_get_error () != bfd_error_system_call)
1901 bfd_set_error (bfd_error_wrong_format);
1902 return 0;
1903 }
1904 }
1905
1906 if (!setup_sections (abfd, &file_hdr))
1907 {
1908 /* setup_sections does not bubble up a bfd error code. */
1909 bfd_set_error (bfd_error_bad_value);
1910 return 0;
1911 }
1912
1913 /* This appears to be a valid SOM object. Do some initialization. */
1914 return som_object_setup (abfd, &file_hdr, &aux_hdr);
1915 }
1916
1917 /* Create a SOM object. */
1918
1919 static boolean
1920 som_mkobject (abfd)
1921 bfd *abfd;
1922 {
1923 /* Allocate memory to hold backend information. */
1924 abfd->tdata.som_data = (struct som_data_struct *)
1925 bfd_zalloc (abfd, sizeof (struct som_data_struct));
1926 if (abfd->tdata.som_data == NULL)
1927 {
1928 bfd_set_error (bfd_error_no_memory);
1929 return false;
1930 }
1931 return true;
1932 }
1933
1934 /* Initialize some information in the file header. This routine makes
1935 not attempt at doing the right thing for a full executable; it
1936 is only meant to handle relocatable objects. */
1937
1938 static boolean
1939 som_prep_headers (abfd)
1940 bfd *abfd;
1941 {
1942 struct header *file_hdr;
1943 asection *section;
1944
1945 /* Make and attach a file header to the BFD. */
1946 file_hdr = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
1947 if (file_hdr == NULL)
1948
1949 {
1950 bfd_set_error (bfd_error_no_memory);
1951 return false;
1952 }
1953 obj_som_file_hdr (abfd) = file_hdr;
1954
1955 /* FIXME. This should really be conditional based on whether or not
1956 PA1.1 instructions/registers have been used. */
1957 if (abfd->flags & EXEC_P)
1958 file_hdr->system_id = obj_som_exec_data (abfd)->system_id;
1959 else
1960 file_hdr->system_id = CPU_PA_RISC1_0;
1961
1962 if (abfd->flags & EXEC_P)
1963 {
1964 if (abfd->flags & D_PAGED)
1965 file_hdr->a_magic = DEMAND_MAGIC;
1966 else if (abfd->flags & WP_TEXT)
1967 file_hdr->a_magic = SHARE_MAGIC;
1968 else
1969 file_hdr->a_magic = EXEC_MAGIC;
1970 }
1971 else
1972 file_hdr->a_magic = RELOC_MAGIC;
1973
1974 /* Only new format SOM is supported. */
1975 file_hdr->version_id = NEW_VERSION_ID;
1976
1977 /* These fields are optional, and embedding timestamps is not always
1978 a wise thing to do, it makes comparing objects during a multi-stage
1979 bootstrap difficult. */
1980 file_hdr->file_time.secs = 0;
1981 file_hdr->file_time.nanosecs = 0;
1982
1983 file_hdr->entry_space = 0;
1984 file_hdr->entry_subspace = 0;
1985 file_hdr->entry_offset = 0;
1986 file_hdr->presumed_dp = 0;
1987
1988 /* Now iterate over the sections translating information from
1989 BFD sections to SOM spaces/subspaces. */
1990
1991 for (section = abfd->sections; section != NULL; section = section->next)
1992 {
1993 /* Ignore anything which has not been marked as a space or
1994 subspace. */
1995 if (!som_is_space (section) && !som_is_subspace (section))
1996 continue;
1997
1998 if (som_is_space (section))
1999 {
2000 /* Allocate space for the space dictionary. */
2001 som_section_data (section)->space_dict
2002 = (struct space_dictionary_record *)
2003 bfd_zalloc (abfd, sizeof (struct space_dictionary_record));
2004 if (som_section_data (section)->space_dict == NULL)
2005 {
2006 bfd_set_error (bfd_error_no_memory);
2007 return false;
2008 }
2009 /* Set space attributes. Note most attributes of SOM spaces
2010 are set based on the subspaces it contains. */
2011 som_section_data (section)->space_dict->loader_fix_index = -1;
2012 som_section_data (section)->space_dict->init_pointer_index = -1;
2013
2014 /* Set more attributes that were stuffed away in private data. */
2015 som_section_data (section)->space_dict->sort_key =
2016 som_section_data (section)->copy_data->sort_key;
2017 som_section_data (section)->space_dict->is_defined =
2018 som_section_data (section)->copy_data->is_defined;
2019 som_section_data (section)->space_dict->is_private =
2020 som_section_data (section)->copy_data->is_private;
2021 som_section_data (section)->space_dict->space_number =
2022 section->target_index;
2023 }
2024 else
2025 {
2026 /* Allocate space for the subspace dictionary. */
2027 som_section_data (section)->subspace_dict
2028 = (struct subspace_dictionary_record *)
2029 bfd_zalloc (abfd, sizeof (struct subspace_dictionary_record));
2030 if (som_section_data (section)->subspace_dict == NULL)
2031 {
2032 bfd_set_error (bfd_error_no_memory);
2033 return false;
2034 }
2035
2036 /* Set subspace attributes. Basic stuff is done here, additional
2037 attributes are filled in later as more information becomes
2038 available. */
2039 if (section->flags & SEC_IS_COMMON)
2040 {
2041 som_section_data (section)->subspace_dict->dup_common = 1;
2042 som_section_data (section)->subspace_dict->is_common = 1;
2043 }
2044
2045 if (section->flags & SEC_ALLOC)
2046 som_section_data (section)->subspace_dict->is_loadable = 1;
2047
2048 if (section->flags & SEC_CODE)
2049 som_section_data (section)->subspace_dict->code_only = 1;
2050
2051 som_section_data (section)->subspace_dict->subspace_start =
2052 section->vma;
2053 som_section_data (section)->subspace_dict->subspace_length =
2054 bfd_section_size (abfd, section);
2055 som_section_data (section)->subspace_dict->initialization_length =
2056 bfd_section_size (abfd, section);
2057 som_section_data (section)->subspace_dict->alignment =
2058 1 << section->alignment_power;
2059
2060 /* Set more attributes that were stuffed away in private data. */
2061 som_section_data (section)->subspace_dict->sort_key =
2062 som_section_data (section)->copy_data->sort_key;
2063 som_section_data (section)->subspace_dict->access_control_bits =
2064 som_section_data (section)->copy_data->access_control_bits;
2065 som_section_data (section)->subspace_dict->quadrant =
2066 som_section_data (section)->copy_data->quadrant;
2067 }
2068 }
2069 return true;
2070 }
2071
2072 /* Return true if the given section is a SOM space, false otherwise. */
2073
2074 static boolean
2075 som_is_space (section)
2076 asection *section;
2077 {
2078 /* If no copy data is available, then it's neither a space nor a
2079 subspace. */
2080 if (som_section_data (section)->copy_data == NULL)
2081 return false;
2082
2083 /* If the containing space isn't the same as the given section,
2084 then this isn't a space. */
2085 if (som_section_data (section)->copy_data->container != section)
2086 return false;
2087
2088 /* OK. Must be a space. */
2089 return true;
2090 }
2091
2092 /* Return true if the given section is a SOM subspace, false otherwise. */
2093
2094 static boolean
2095 som_is_subspace (section)
2096 asection *section;
2097 {
2098 /* If no copy data is available, then it's neither a space nor a
2099 subspace. */
2100 if (som_section_data (section)->copy_data == NULL)
2101 return false;
2102
2103 /* If the containing space is the same as the given section,
2104 then this isn't a subspace. */
2105 if (som_section_data (section)->copy_data->container == section)
2106 return false;
2107
2108 /* OK. Must be a subspace. */
2109 return true;
2110 }
2111
2112 /* Return true if the given space containins the given subspace. It
2113 is safe to assume space really is a space, and subspace really
2114 is a subspace. */
2115
2116 static boolean
2117 som_is_container (space, subspace)
2118 asection *space, *subspace;
2119 {
2120 return som_section_data (subspace)->copy_data->container == space;
2121 }
2122
2123 /* Count and return the number of spaces attached to the given BFD. */
2124
2125 static unsigned long
2126 som_count_spaces (abfd)
2127 bfd *abfd;
2128 {
2129 int count = 0;
2130 asection *section;
2131
2132 for (section = abfd->sections; section != NULL; section = section->next)
2133 count += som_is_space (section);
2134
2135 return count;
2136 }
2137
2138 /* Count the number of subspaces attached to the given BFD. */
2139
2140 static unsigned long
2141 som_count_subspaces (abfd)
2142 bfd *abfd;
2143 {
2144 int count = 0;
2145 asection *section;
2146
2147 for (section = abfd->sections; section != NULL; section = section->next)
2148 count += som_is_subspace (section);
2149
2150 return count;
2151 }
2152
2153 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2154
2155 We desire symbols to be ordered starting with the symbol with the
2156 highest relocation count down to the symbol with the lowest relocation
2157 count. Doing so compacts the relocation stream. */
2158
2159 static int
2160 compare_syms (sym1, sym2)
2161 asymbol **sym1;
2162 asymbol **sym2;
2163
2164 {
2165 unsigned int count1, count2;
2166
2167 /* Get relocation count for each symbol. Note that the count
2168 is stored in the udata pointer for section symbols! */
2169 if ((*sym1)->flags & BSF_SECTION_SYM)
2170 count1 = (int)(*sym1)->udata;
2171 else
2172 count1 = som_symbol_data (*sym1)->reloc_count;
2173
2174 if ((*sym2)->flags & BSF_SECTION_SYM)
2175 count2 = (int)(*sym2)->udata;
2176 else
2177 count2 = som_symbol_data (*sym2)->reloc_count;
2178
2179 /* Return the appropriate value. */
2180 if (count1 < count2)
2181 return 1;
2182 else if (count1 > count2)
2183 return -1;
2184 return 0;
2185 }
2186
2187 /* Perform various work in preparation for emitting the fixup stream. */
2188
2189 static void
2190 som_prep_for_fixups (abfd, syms, num_syms)
2191 bfd *abfd;
2192 asymbol **syms;
2193 unsigned long num_syms;
2194 {
2195 int i;
2196 asection *section;
2197
2198 /* Most SOM relocations involving a symbol have a length which is
2199 dependent on the index of the symbol. So symbols which are
2200 used often in relocations should have a small index. */
2201
2202 /* First initialize the counters for each symbol. */
2203 for (i = 0; i < num_syms; i++)
2204 {
2205 /* Handle a section symbol; these have no pointers back to the
2206 SOM symbol info. So we just use the pointer field (udata)
2207 to hold the relocation count. */
2208 if (som_symbol_data (syms[i]) == NULL
2209 || syms[i]->flags & BSF_SECTION_SYM)
2210 {
2211 syms[i]->flags |= BSF_SECTION_SYM;
2212 syms[i]->udata = (PTR) 0;
2213 }
2214 else
2215 som_symbol_data (syms[i])->reloc_count = 0;
2216 }
2217
2218 /* Now that the counters are initialized, make a weighted count
2219 of how often a given symbol is used in a relocation. */
2220 for (section = abfd->sections; section != NULL; section = section->next)
2221 {
2222 int i;
2223
2224 /* Does this section have any relocations? */
2225 if (section->reloc_count <= 0)
2226 continue;
2227
2228 /* Walk through each relocation for this section. */
2229 for (i = 1; i < section->reloc_count; i++)
2230 {
2231 arelent *reloc = section->orelocation[i];
2232 int scale;
2233
2234 /* A relocation against a symbol in the *ABS* section really
2235 does not have a symbol. Likewise if the symbol isn't associated
2236 with any section. */
2237 if (reloc->sym_ptr_ptr == NULL
2238 || (*reloc->sym_ptr_ptr)->section == &bfd_abs_section)
2239 continue;
2240
2241 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2242 and R_CODE_ONE_SYMBOL relocations to come first. These
2243 two relocations have single byte versions if the symbol
2244 index is very small. */
2245 if (reloc->howto->type == R_DP_RELATIVE
2246 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2247 scale = 2;
2248 else
2249 scale = 1;
2250
2251 /* Handle section symbols by ramming the count in the udata
2252 field. It will not be used and the count is very important
2253 for these symbols. */
2254 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2255 {
2256 (*reloc->sym_ptr_ptr)->udata =
2257 (PTR) ((int) (*reloc->sym_ptr_ptr)->udata + scale);
2258 continue;
2259 }
2260
2261 /* A normal symbol. Increment the count. */
2262 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2263 }
2264 }
2265
2266 /* Now sort the symbols. */
2267 qsort (syms, num_syms, sizeof (asymbol *), compare_syms);
2268
2269 /* Compute the symbol indexes, they will be needed by the relocation
2270 code. */
2271 for (i = 0; i < num_syms; i++)
2272 {
2273 /* A section symbol. Again, there is no pointer to backend symbol
2274 information, so we reuse (abuse) the udata field again. */
2275 if (syms[i]->flags & BSF_SECTION_SYM)
2276 syms[i]->udata = (PTR) i;
2277 else
2278 som_symbol_data (syms[i])->index = i;
2279 }
2280 }
2281
2282 static boolean
2283 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2284 bfd *abfd;
2285 unsigned long current_offset;
2286 unsigned int *total_reloc_sizep;
2287 {
2288 unsigned int i, j;
2289 /* Chunk of memory that we can use as buffer space, then throw
2290 away. */
2291 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2292 unsigned char *p;
2293 unsigned int total_reloc_size = 0;
2294 unsigned int subspace_reloc_size = 0;
2295 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2296 asection *section = abfd->sections;
2297
2298 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2299 p = tmp_space;
2300
2301 /* All the fixups for a particular subspace are emitted in a single
2302 stream. All the subspaces for a particular space are emitted
2303 as a single stream.
2304
2305 So, to get all the locations correct one must iterate through all the
2306 spaces, for each space iterate through its subspaces and output a
2307 fixups stream. */
2308 for (i = 0; i < num_spaces; i++)
2309 {
2310 asection *subsection;
2311
2312 /* Find a space. */
2313 while (!som_is_space (section))
2314 section = section->next;
2315
2316 /* Now iterate through each of its subspaces. */
2317 for (subsection = abfd->sections;
2318 subsection != NULL;
2319 subsection = subsection->next)
2320 {
2321 int reloc_offset, current_rounding_mode;
2322
2323 /* Find a subspace of this space. */
2324 if (!som_is_subspace (subsection)
2325 || !som_is_container (section, subsection))
2326 continue;
2327
2328 /* If this subspace had no relocations, then we're finished
2329 with it. */
2330 if (subsection->reloc_count <= 0)
2331 {
2332 som_section_data (subsection)->subspace_dict->fixup_request_index
2333 = -1;
2334 continue;
2335 }
2336
2337 /* This subspace has some relocations. Put the relocation stream
2338 index into the subspace record. */
2339 som_section_data (subsection)->subspace_dict->fixup_request_index
2340 = total_reloc_size;
2341
2342 /* To make life easier start over with a clean slate for
2343 each subspace. Seek to the start of the relocation stream
2344 for this subspace in preparation for writing out its fixup
2345 stream. */
2346 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) < 0)
2347 return false;
2348
2349 /* Buffer space has already been allocated. Just perform some
2350 initialization here. */
2351 p = tmp_space;
2352 subspace_reloc_size = 0;
2353 reloc_offset = 0;
2354 som_initialize_reloc_queue (reloc_queue);
2355 current_rounding_mode = R_N_MODE;
2356
2357 /* Translate each BFD relocation into one or more SOM
2358 relocations. */
2359 for (j = 0; j < subsection->reloc_count; j++)
2360 {
2361 arelent *bfd_reloc = subsection->orelocation[j];
2362 unsigned int skip;
2363 int sym_num;
2364
2365 /* Get the symbol number. Remember it's stored in a
2366 special place for section symbols. */
2367 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2368 sym_num = (int) (*bfd_reloc->sym_ptr_ptr)->udata;
2369 else
2370 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2371
2372 /* If there is not enough room for the next couple relocations,
2373 then dump the current buffer contents now. Also reinitialize
2374 the relocation queue.
2375
2376 No single BFD relocation could ever translate into more
2377 than 100 bytes of SOM relocations (20bytes is probably the
2378 upper limit, but leave lots of space for growth). */
2379 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2380 {
2381 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2382 != p - tmp_space)
2383 return false;
2384
2385 p = tmp_space;
2386 som_initialize_reloc_queue (reloc_queue);
2387 }
2388
2389 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2390 skipped. */
2391 skip = bfd_reloc->address - reloc_offset;
2392 p = som_reloc_skip (abfd, skip, p,
2393 &subspace_reloc_size, reloc_queue);
2394
2395 /* Update reloc_offset for the next iteration.
2396
2397 Many relocations do not consume input bytes. They
2398 are markers, or set state necessary to perform some
2399 later relocation. */
2400 switch (bfd_reloc->howto->type)
2401 {
2402 /* This only needs to handle relocations that may be
2403 made by hppa_som_gen_reloc. */
2404 case R_ENTRY:
2405 case R_EXIT:
2406 case R_N_MODE:
2407 case R_S_MODE:
2408 case R_D_MODE:
2409 case R_R_MODE:
2410 case R_FSEL:
2411 case R_LSEL:
2412 case R_RSEL:
2413 reloc_offset = bfd_reloc->address;
2414 break;
2415
2416 default:
2417 reloc_offset = bfd_reloc->address + 4;
2418 break;
2419 }
2420
2421 /* Now the actual relocation we care about. */
2422 switch (bfd_reloc->howto->type)
2423 {
2424 case R_PCREL_CALL:
2425 case R_ABS_CALL:
2426 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2427 bfd_reloc, sym_num, reloc_queue);
2428 break;
2429
2430 case R_CODE_ONE_SYMBOL:
2431 case R_DP_RELATIVE:
2432 /* Account for any addend. */
2433 if (bfd_reloc->addend)
2434 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2435 &subspace_reloc_size, reloc_queue);
2436
2437 if (sym_num < 0x20)
2438 {
2439 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2440 subspace_reloc_size += 1;
2441 p += 1;
2442 }
2443 else if (sym_num < 0x100)
2444 {
2445 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2446 bfd_put_8 (abfd, sym_num, p + 1);
2447 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2448 2, reloc_queue);
2449 }
2450 else if (sym_num < 0x10000000)
2451 {
2452 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2453 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2454 bfd_put_16 (abfd, sym_num, p + 2);
2455 p = try_prev_fixup (abfd, &subspace_reloc_size,
2456 p, 4, reloc_queue);
2457 }
2458 else
2459 abort ();
2460 break;
2461
2462 case R_DATA_ONE_SYMBOL:
2463 case R_DATA_PLABEL:
2464 case R_CODE_PLABEL:
2465 case R_DLT_REL:
2466 /* Account for any addend. */
2467 if (bfd_reloc->addend)
2468 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2469 &subspace_reloc_size, reloc_queue);
2470
2471 if (sym_num < 0x100)
2472 {
2473 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2474 bfd_put_8 (abfd, sym_num, p + 1);
2475 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2476 2, reloc_queue);
2477 }
2478 else if (sym_num < 0x10000000)
2479 {
2480 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2481 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2482 bfd_put_16 (abfd, sym_num, p + 2);
2483 p = try_prev_fixup (abfd, &subspace_reloc_size,
2484 p, 4, reloc_queue);
2485 }
2486 else
2487 abort ();
2488 break;
2489
2490 case R_ENTRY:
2491 {
2492 int *descp
2493 = (int *) som_symbol_data (*bfd_reloc->sym_ptr_ptr)->unwind;
2494 bfd_put_8 (abfd, R_ENTRY, p);
2495 bfd_put_32 (abfd, descp[0], p + 1);
2496 bfd_put_32 (abfd, descp[1], p + 5);
2497 p = try_prev_fixup (abfd, &subspace_reloc_size,
2498 p, 9, reloc_queue);
2499 break;
2500 }
2501
2502 case R_EXIT:
2503 bfd_put_8 (abfd, R_EXIT, p);
2504 subspace_reloc_size += 1;
2505 p += 1;
2506 break;
2507
2508 case R_N_MODE:
2509 case R_S_MODE:
2510 case R_D_MODE:
2511 case R_R_MODE:
2512 /* If this relocation requests the current rounding
2513 mode, then it is redundant. */
2514 if (bfd_reloc->howto->type != current_rounding_mode)
2515 {
2516 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2517 subspace_reloc_size += 1;
2518 p += 1;
2519 current_rounding_mode = bfd_reloc->howto->type;
2520 }
2521 break;
2522
2523 case R_FSEL:
2524 case R_LSEL:
2525 case R_RSEL:
2526 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2527 subspace_reloc_size += 1;
2528 p += 1;
2529 break;
2530
2531 /* Put a "R_RESERVED" relocation in the stream if
2532 we hit something we do not understand. The linker
2533 will complain loudly if this ever happens. */
2534 default:
2535 bfd_put_8 (abfd, 0xff, p);
2536 subspace_reloc_size += 1;
2537 p += 1;
2538 break;
2539 }
2540 }
2541
2542 /* Last BFD relocation for a subspace has been processed.
2543 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2544 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2545 - reloc_offset,
2546 p, &subspace_reloc_size, reloc_queue);
2547
2548 /* Scribble out the relocations. */
2549 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2550 != p - tmp_space)
2551 return false;
2552 p = tmp_space;
2553
2554 total_reloc_size += subspace_reloc_size;
2555 som_section_data (subsection)->subspace_dict->fixup_request_quantity
2556 = subspace_reloc_size;
2557 }
2558 section = section->next;
2559 }
2560 *total_reloc_sizep = total_reloc_size;
2561 return true;
2562 }
2563
2564 /* Write out the space/subspace string table. */
2565
2566 static boolean
2567 som_write_space_strings (abfd, current_offset, string_sizep)
2568 bfd *abfd;
2569 unsigned long current_offset;
2570 unsigned int *string_sizep;
2571 {
2572 /* Chunk of memory that we can use as buffer space, then throw
2573 away. */
2574 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2575 unsigned char *p;
2576 unsigned int strings_size = 0;
2577 asection *section;
2578
2579 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2580 p = tmp_space;
2581
2582 /* Seek to the start of the space strings in preparation for writing
2583 them out. */
2584 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2585 return false;
2586
2587 /* Walk through all the spaces and subspaces (order is not important)
2588 building up and writing string table entries for their names. */
2589 for (section = abfd->sections; section != NULL; section = section->next)
2590 {
2591 int length;
2592
2593 /* Only work with space/subspaces; avoid any other sections
2594 which might have been made (.text for example). */
2595 if (!som_is_space (section) && !som_is_subspace (section))
2596 continue;
2597
2598 /* Get the length of the space/subspace name. */
2599 length = strlen (section->name);
2600
2601 /* If there is not enough room for the next entry, then dump the
2602 current buffer contents now. Each entry will take 4 bytes to
2603 hold the string length + the string itself + null terminator. */
2604 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2605 {
2606 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2607 != p - tmp_space)
2608 return false;
2609 /* Reset to beginning of the buffer space. */
2610 p = tmp_space;
2611 }
2612
2613 /* First element in a string table entry is the length of the
2614 string. Alignment issues are already handled. */
2615 bfd_put_32 (abfd, length, p);
2616 p += 4;
2617 strings_size += 4;
2618
2619 /* Record the index in the space/subspace records. */
2620 if (som_is_space (section))
2621 som_section_data (section)->space_dict->name.n_strx = strings_size;
2622 else
2623 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
2624
2625 /* Next comes the string itself + a null terminator. */
2626 strcpy (p, section->name);
2627 p += length + 1;
2628 strings_size += length + 1;
2629
2630 /* Always align up to the next word boundary. */
2631 while (strings_size % 4)
2632 {
2633 bfd_put_8 (abfd, 0, p);
2634 p++;
2635 strings_size++;
2636 }
2637 }
2638
2639 /* Done with the space/subspace strings. Write out any information
2640 contained in a partial block. */
2641 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2642 return false;
2643 *string_sizep = strings_size;
2644 return true;
2645 }
2646
2647 /* Write out the symbol string table. */
2648
2649 static boolean
2650 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
2651 bfd *abfd;
2652 unsigned long current_offset;
2653 asymbol **syms;
2654 unsigned int num_syms;
2655 unsigned int *string_sizep;
2656 {
2657 unsigned int i;
2658
2659 /* Chunk of memory that we can use as buffer space, then throw
2660 away. */
2661 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2662 unsigned char *p;
2663 unsigned int strings_size = 0;
2664
2665 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2666 p = tmp_space;
2667
2668 /* Seek to the start of the space strings in preparation for writing
2669 them out. */
2670 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2671 return false;
2672
2673 for (i = 0; i < num_syms; i++)
2674 {
2675 int length = strlen (syms[i]->name);
2676
2677 /* If there is not enough room for the next entry, then dump the
2678 current buffer contents now. */
2679 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2680 {
2681 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2682 != p - tmp_space)
2683 return false;
2684 /* Reset to beginning of the buffer space. */
2685 p = tmp_space;
2686 }
2687
2688 /* First element in a string table entry is the length of the
2689 string. This must always be 4 byte aligned. This is also
2690 an appropriate time to fill in the string index field in the
2691 symbol table entry. */
2692 bfd_put_32 (abfd, length, p);
2693 strings_size += 4;
2694 p += 4;
2695
2696 /* Next comes the string itself + a null terminator. */
2697 strcpy (p, syms[i]->name);
2698
2699 /* ACK. FIXME. */
2700 syms[i]->name = (char *)strings_size;
2701 p += length + 1;
2702 strings_size += length + 1;
2703
2704 /* Always align up to the next word boundary. */
2705 while (strings_size % 4)
2706 {
2707 bfd_put_8 (abfd, 0, p);
2708 strings_size++;
2709 p++;
2710 }
2711 }
2712
2713 /* Scribble out any partial block. */
2714 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2715 return false;
2716
2717 *string_sizep = strings_size;
2718 return true;
2719 }
2720
2721 /* Compute variable information to be placed in the SOM headers,
2722 space/subspace dictionaries, relocation streams, etc. Begin
2723 writing parts of the object file. */
2724
2725 static boolean
2726 som_begin_writing (abfd)
2727 bfd *abfd;
2728 {
2729 unsigned long current_offset = 0;
2730 int strings_size = 0;
2731 unsigned int total_reloc_size = 0;
2732 unsigned long num_spaces, num_subspaces, num_syms, i;
2733 asection *section;
2734 asymbol **syms = bfd_get_outsymbols (abfd);
2735 unsigned int total_subspaces = 0;
2736 struct som_exec_auxhdr exec_header;
2737
2738 /* The file header will always be first in an object file,
2739 everything else can be in random locations. To keep things
2740 "simple" BFD will lay out the object file in the manner suggested
2741 by the PRO ABI for PA-RISC Systems. */
2742
2743 /* Before any output can really begin offsets for all the major
2744 portions of the object file must be computed. So, starting
2745 with the initial file header compute (and sometimes write)
2746 each portion of the object file. */
2747
2748 /* Make room for the file header, it's contents are not complete
2749 yet, so it can not be written at this time. */
2750 current_offset += sizeof (struct header);
2751
2752 /* Any auxiliary headers will follow the file header. Right now
2753 we support only the copyright and version headers. */
2754 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
2755 obj_som_file_hdr (abfd)->aux_header_size = 0;
2756 if (abfd->flags & EXEC_P)
2757 {
2758 /* Parts of the exec header will be filled in later, so
2759 delay writing the header itself. Fill in the defaults,
2760 and write it later. */
2761 current_offset += sizeof (exec_header);
2762 obj_som_file_hdr (abfd)->aux_header_size += sizeof (exec_header);
2763 memset (&exec_header, 0, sizeof (exec_header));
2764 exec_header.som_auxhdr.type = HPUX_AUX_ID;
2765 exec_header.som_auxhdr.length = 40;
2766 }
2767 if (obj_som_version_hdr (abfd) != NULL)
2768 {
2769 unsigned int len;
2770
2771 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2772 return false;
2773
2774 /* Write the aux_id structure and the string length. */
2775 len = sizeof (struct aux_id) + sizeof (unsigned int);
2776 obj_som_file_hdr (abfd)->aux_header_size += len;
2777 current_offset += len;
2778 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
2779 return false;
2780
2781 /* Write the version string. */
2782 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
2783 obj_som_file_hdr (abfd)->aux_header_size += len;
2784 current_offset += len;
2785 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
2786 len, 1, abfd) != len)
2787 return false;
2788 }
2789
2790 if (obj_som_copyright_hdr (abfd) != NULL)
2791 {
2792 unsigned int len;
2793
2794 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2795 return false;
2796
2797 /* Write the aux_id structure and the string length. */
2798 len = sizeof (struct aux_id) + sizeof (unsigned int);
2799 obj_som_file_hdr (abfd)->aux_header_size += len;
2800 current_offset += len;
2801 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
2802 return false;
2803
2804 /* Write the copyright string. */
2805 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
2806 obj_som_file_hdr (abfd)->aux_header_size += len;
2807 current_offset += len;
2808 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
2809 len, 1, abfd) != len)
2810 return false;
2811 }
2812
2813 /* Next comes the initialization pointers; we have no initialization
2814 pointers, so current offset does not change. */
2815 obj_som_file_hdr (abfd)->init_array_location = current_offset;
2816 obj_som_file_hdr (abfd)->init_array_total = 0;
2817
2818 /* Next are the space records. These are fixed length records.
2819
2820 Count the number of spaces to determine how much room is needed
2821 in the object file for the space records.
2822
2823 The names of the spaces are stored in a separate string table,
2824 and the index for each space into the string table is computed
2825 below. Therefore, it is not possible to write the space headers
2826 at this time. */
2827 num_spaces = som_count_spaces (abfd);
2828 obj_som_file_hdr (abfd)->space_location = current_offset;
2829 obj_som_file_hdr (abfd)->space_total = num_spaces;
2830 current_offset += num_spaces * sizeof (struct space_dictionary_record);
2831
2832 /* Next are the subspace records. These are fixed length records.
2833
2834 Count the number of subspaes to determine how much room is needed
2835 in the object file for the subspace records.
2836
2837 A variety if fields in the subspace record are still unknown at
2838 this time (index into string table, fixup stream location/size, etc). */
2839 num_subspaces = som_count_subspaces (abfd);
2840 obj_som_file_hdr (abfd)->subspace_location = current_offset;
2841 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
2842 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
2843
2844 /* Next is the string table for the space/subspace names. We will
2845 build and write the string table on the fly. At the same time
2846 we will fill in the space/subspace name index fields. */
2847
2848 /* The string table needs to be aligned on a word boundary. */
2849 if (current_offset % 4)
2850 current_offset += (4 - (current_offset % 4));
2851
2852 /* Mark the offset of the space/subspace string table in the
2853 file header. */
2854 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
2855
2856 /* Scribble out the space strings. */
2857 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
2858 return false;
2859
2860 /* Record total string table size in the header and update the
2861 current offset. */
2862 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
2863 current_offset += strings_size;
2864
2865 /* Next is the symbol table. These are fixed length records.
2866
2867 Count the number of symbols to determine how much room is needed
2868 in the object file for the symbol table.
2869
2870 The names of the symbols are stored in a separate string table,
2871 and the index for each symbol name into the string table is computed
2872 below. Therefore, it is not possible to write the symobl table
2873 at this time. */
2874 num_syms = bfd_get_symcount (abfd);
2875 obj_som_file_hdr (abfd)->symbol_location = current_offset;
2876 obj_som_file_hdr (abfd)->symbol_total = num_syms;
2877 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
2878
2879 /* Do prep work before handling fixups. */
2880 som_prep_for_fixups (abfd, syms, num_syms);
2881
2882 /* Next comes the fixup stream which starts on a word boundary. */
2883 if (current_offset % 4)
2884 current_offset += (4 - (current_offset % 4));
2885 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
2886
2887 /* Write the fixups and update fields in subspace headers which
2888 relate to the fixup stream. */
2889 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
2890 return false;
2891
2892 /* Record the total size of the fixup stream in the file header. */
2893 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
2894 current_offset += total_reloc_size;
2895
2896 /* Next are the symbol strings.
2897 Align them to a word boundary. */
2898 if (current_offset % 4)
2899 current_offset += (4 - (current_offset % 4));
2900 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
2901
2902 /* Scribble out the symbol strings. */
2903 if (som_write_symbol_strings (abfd, current_offset, syms,
2904 num_syms, &strings_size)
2905 == false)
2906 return false;
2907
2908 /* Record total string table size in header and update the
2909 current offset. */
2910 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
2911 current_offset += strings_size;
2912
2913 /* Next is the compiler records. We do not use these. */
2914 obj_som_file_hdr (abfd)->compiler_location = current_offset;
2915 obj_som_file_hdr (abfd)->compiler_total = 0;
2916
2917 /* Now compute the file positions for the loadable subspaces, taking
2918 care to make sure everything stays properly aligned. */
2919
2920 section = abfd->sections;
2921 for (i = 0; i < num_spaces; i++)
2922 {
2923 asection *subsection;
2924 int first_subspace;
2925 unsigned int subspace_offset = 0;
2926
2927 /* Find a space. */
2928 while (!som_is_space (section))
2929 section = section->next;
2930
2931 first_subspace = 1;
2932 /* Now look for all its subspaces. */
2933 for (subsection = abfd->sections;
2934 subsection != NULL;
2935 subsection = subsection->next)
2936 {
2937
2938 if (!som_is_subspace (subsection)
2939 || !som_is_container (section, subsection)
2940 || (subsection->flags & SEC_ALLOC) == 0)
2941 continue;
2942
2943 /* If this is the first subspace in the space, and we are
2944 building an executable, then take care to make sure all
2945 the alignments are correct and update the exec header. */
2946 if (first_subspace
2947 && (abfd->flags & EXEC_P))
2948 {
2949 /* Demand paged executables have each space aligned to a
2950 page boundary. Sharable executables (write-protected
2951 text) have just the private (aka data & bss) space aligned
2952 to a page boundary. Ugh. Not true for HPUX.
2953
2954 The HPUX kernel requires the text to always be page aligned
2955 within the file regardless of the executable's type. */
2956 if (abfd->flags & D_PAGED
2957 || (subsection->flags & SEC_CODE)
2958 || ((abfd->flags & WP_TEXT)
2959 && (subsection->flags & SEC_DATA)))
2960 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
2961
2962 /* Update the exec header. */
2963 if (subsection->flags & SEC_CODE && exec_header.exec_tfile == 0)
2964 {
2965 exec_header.exec_tmem = section->vma;
2966 exec_header.exec_tfile = current_offset;
2967 }
2968 if (subsection->flags & SEC_DATA && exec_header.exec_dfile == 0)
2969 {
2970 exec_header.exec_dmem = section->vma;
2971 exec_header.exec_dfile = current_offset;
2972 }
2973
2974 /* Keep track of exactly where we are within a particular
2975 space. This is necessary as the braindamaged HPUX
2976 loader will create holes between subspaces *and*
2977 subspace alignments are *NOT* preserved. What a crock. */
2978 subspace_offset = subsection->vma;
2979
2980 /* Only do this for the first subspace within each space. */
2981 first_subspace = 0;
2982 }
2983 else if (abfd->flags & EXEC_P)
2984 {
2985 /* The braindamaged HPUX loader may have created a hole
2986 between two subspaces. It is *not* sufficient to use
2987 the alignment specifications within the subspaces to
2988 account for these holes -- I've run into at least one
2989 case where the loader left one code subspace unaligned
2990 in a final executable.
2991
2992 To combat this we keep a current offset within each space,
2993 and use the subspace vma fields to detect and preserve
2994 holes. What a crock!
2995
2996 ps. This is not necessary for unloadable space/subspaces. */
2997 current_offset += subsection->vma - subspace_offset;
2998 if (subsection->flags & SEC_CODE)
2999 exec_header.exec_tsize += subsection->vma - subspace_offset;
3000 else
3001 exec_header.exec_dsize += subsection->vma - subspace_offset;
3002 subspace_offset += subsection->vma - subspace_offset;
3003 }
3004
3005
3006 subsection->target_index = total_subspaces++;
3007 /* This is real data to be loaded from the file. */
3008 if (subsection->flags & SEC_LOAD)
3009 {
3010 /* Update the size of the code & data. */
3011 if (abfd->flags & EXEC_P
3012 && subsection->flags & SEC_CODE)
3013 exec_header.exec_tsize += subsection->_cooked_size;
3014 else if (abfd->flags & EXEC_P
3015 && subsection->flags & SEC_DATA)
3016 exec_header.exec_dsize += subsection->_cooked_size;
3017 som_section_data (subsection)->subspace_dict->file_loc_init_value
3018 = current_offset;
3019 subsection->filepos = current_offset;
3020 current_offset += bfd_section_size (abfd, subsection);
3021 subspace_offset += bfd_section_size (abfd, subsection);
3022 }
3023 /* Looks like uninitialized data. */
3024 else
3025 {
3026 /* Update the size of the bss section. */
3027 if (abfd->flags & EXEC_P)
3028 exec_header.exec_bsize += subsection->_cooked_size;
3029
3030 som_section_data (subsection)->subspace_dict->file_loc_init_value
3031 = 0;
3032 som_section_data (subsection)->subspace_dict->
3033 initialization_length = 0;
3034 }
3035 }
3036 /* Goto the next section. */
3037 section = section->next;
3038 }
3039
3040 /* Finally compute the file positions for unloadable subspaces.
3041 If building an executable, start the unloadable stuff on its
3042 own page. */
3043
3044 if (abfd->flags & EXEC_P)
3045 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3046
3047 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3048 section = abfd->sections;
3049 for (i = 0; i < num_spaces; i++)
3050 {
3051 asection *subsection;
3052
3053 /* Find a space. */
3054 while (!som_is_space (section))
3055 section = section->next;
3056
3057 if (abfd->flags & EXEC_P)
3058 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3059
3060 /* Now look for all its subspaces. */
3061 for (subsection = abfd->sections;
3062 subsection != NULL;
3063 subsection = subsection->next)
3064 {
3065
3066 if (!som_is_subspace (subsection)
3067 || !som_is_container (section, subsection)
3068 || (subsection->flags & SEC_ALLOC) != 0)
3069 continue;
3070
3071 subsection->target_index = total_subspaces;
3072 /* This is real data to be loaded from the file. */
3073 if ((subsection->flags & SEC_LOAD) == 0)
3074 {
3075 som_section_data (subsection)->subspace_dict->file_loc_init_value
3076 = current_offset;
3077 subsection->filepos = current_offset;
3078 current_offset += bfd_section_size (abfd, subsection);
3079 }
3080 /* Looks like uninitialized data. */
3081 else
3082 {
3083 som_section_data (subsection)->subspace_dict->file_loc_init_value
3084 = 0;
3085 som_section_data (subsection)->subspace_dict->
3086 initialization_length = bfd_section_size (abfd, subsection);
3087 }
3088 }
3089 /* Goto the next section. */
3090 section = section->next;
3091 }
3092
3093 /* If building an executable, then make sure to seek to and write
3094 one byte at the end of the file to make sure any necessary
3095 zeros are filled in. Ugh. */
3096 if (abfd->flags & EXEC_P)
3097 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3098 if (bfd_seek (abfd, current_offset - 1, SEEK_SET) < 0)
3099 return false;
3100 if (bfd_write ((PTR) "", 1, 1, abfd) != 1)
3101 return false;
3102
3103 obj_som_file_hdr (abfd)->unloadable_sp_size
3104 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3105
3106 /* Loader fixups are not supported in any way shape or form. */
3107 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3108 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3109
3110 /* Done. Store the total size of the SOM. */
3111 obj_som_file_hdr (abfd)->som_length = current_offset;
3112
3113 /* Now write the exec header. */
3114 if (abfd->flags & EXEC_P)
3115 {
3116 long tmp;
3117
3118 exec_header.exec_entry = bfd_get_start_address (abfd);
3119 exec_header.exec_flags = obj_som_exec_data (abfd)->exec_flags;
3120
3121 /* Oh joys. Ram some of the BSS data into the DATA section
3122 to be compatable with how the hp linker makes objects
3123 (saves memory space). */
3124 tmp = exec_header.exec_dsize;
3125 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3126 exec_header.exec_bsize -= (tmp - exec_header.exec_dsize);
3127 if (exec_header.exec_bsize < 0)
3128 exec_header.exec_bsize = 0;
3129 exec_header.exec_dsize = tmp;
3130
3131 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
3132 SEEK_SET) < 0)
3133 return false;
3134
3135 if (bfd_write ((PTR) &exec_header, AUX_HDR_SIZE, 1, abfd)
3136 != AUX_HDR_SIZE)
3137 return false;
3138 }
3139 return true;
3140 }
3141
3142 /* Finally, scribble out the various headers to the disk. */
3143
3144 static boolean
3145 som_write_headers (abfd)
3146 bfd *abfd;
3147 {
3148 int num_spaces = som_count_spaces (abfd);
3149 int i;
3150 int subspace_index = 0;
3151 file_ptr location;
3152 asection *section;
3153
3154 /* Subspaces are written first so that we can set up information
3155 about them in their containing spaces as the subspace is written. */
3156
3157 /* Seek to the start of the subspace dictionary records. */
3158 location = obj_som_file_hdr (abfd)->subspace_location;
3159 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3160 return false;
3161
3162 section = abfd->sections;
3163 /* Now for each loadable space write out records for its subspaces. */
3164 for (i = 0; i < num_spaces; i++)
3165 {
3166 asection *subsection;
3167
3168 /* Find a space. */
3169 while (!som_is_space (section))
3170 section = section->next;
3171
3172 /* Now look for all its subspaces. */
3173 for (subsection = abfd->sections;
3174 subsection != NULL;
3175 subsection = subsection->next)
3176 {
3177
3178 /* Skip any section which does not correspond to a space
3179 or subspace. Or does not have SEC_ALLOC set (and therefore
3180 has no real bits on the disk). */
3181 if (!som_is_subspace (subsection)
3182 || !som_is_container (section, subsection)
3183 || (subsection->flags & SEC_ALLOC) == 0)
3184 continue;
3185
3186 /* If this is the first subspace for this space, then save
3187 the index of the subspace in its containing space. Also
3188 set "is_loadable" in the containing space. */
3189
3190 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3191 {
3192 som_section_data (section)->space_dict->is_loadable = 1;
3193 som_section_data (section)->space_dict->subspace_index
3194 = subspace_index;
3195 }
3196
3197 /* Increment the number of subspaces seen and the number of
3198 subspaces contained within the current space. */
3199 subspace_index++;
3200 som_section_data (section)->space_dict->subspace_quantity++;
3201
3202 /* Mark the index of the current space within the subspace's
3203 dictionary record. */
3204 som_section_data (subsection)->subspace_dict->space_index = i;
3205
3206 /* Dump the current subspace header. */
3207 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3208 sizeof (struct subspace_dictionary_record), 1, abfd)
3209 != sizeof (struct subspace_dictionary_record))
3210 return false;
3211 }
3212 /* Goto the next section. */
3213 section = section->next;
3214 }
3215
3216 /* Now repeat the process for unloadable subspaces. */
3217 section = abfd->sections;
3218 /* Now for each space write out records for its subspaces. */
3219 for (i = 0; i < num_spaces; i++)
3220 {
3221 asection *subsection;
3222
3223 /* Find a space. */
3224 while (!som_is_space (section))
3225 section = section->next;
3226
3227 /* Now look for all its subspaces. */
3228 for (subsection = abfd->sections;
3229 subsection != NULL;
3230 subsection = subsection->next)
3231 {
3232
3233 /* Skip any section which does not correspond to a space or
3234 subspace, or which SEC_ALLOC set (and therefore handled
3235 in the loadable spaces/subspaces code above). */
3236
3237 if (!som_is_subspace (subsection)
3238 || !som_is_container (section, subsection)
3239 || (subsection->flags & SEC_ALLOC) != 0)
3240 continue;
3241
3242 /* If this is the first subspace for this space, then save
3243 the index of the subspace in its containing space. Clear
3244 "is_loadable". */
3245
3246 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3247 {
3248 som_section_data (section)->space_dict->is_loadable = 0;
3249 som_section_data (section)->space_dict->subspace_index
3250 = subspace_index;
3251 }
3252
3253 /* Increment the number of subspaces seen and the number of
3254 subspaces contained within the current space. */
3255 som_section_data (section)->space_dict->subspace_quantity++;
3256 subspace_index++;
3257
3258 /* Mark the index of the current space within the subspace's
3259 dictionary record. */
3260 som_section_data (subsection)->subspace_dict->space_index = i;
3261
3262 /* Dump this subspace header. */
3263 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3264 sizeof (struct subspace_dictionary_record), 1, abfd)
3265 != sizeof (struct subspace_dictionary_record))
3266 return false;
3267 }
3268 /* Goto the next section. */
3269 section = section->next;
3270 }
3271
3272 /* All the subspace dictiondary records are written, and all the
3273 fields are set up in the space dictionary records.
3274
3275 Seek to the right location and start writing the space
3276 dictionary records. */
3277 location = obj_som_file_hdr (abfd)->space_location;
3278 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3279 return false;
3280
3281 section = abfd->sections;
3282 for (i = 0; i < num_spaces; i++)
3283 {
3284
3285 /* Find a space. */
3286 while (!som_is_space (section))
3287 section = section->next;
3288
3289 /* Dump its header */
3290 if (bfd_write ((PTR) som_section_data (section)->space_dict,
3291 sizeof (struct space_dictionary_record), 1, abfd)
3292 != sizeof (struct space_dictionary_record))
3293 return false;
3294
3295 /* Goto the next section. */
3296 section = section->next;
3297 }
3298
3299 /* Only thing left to do is write out the file header. It is always
3300 at location zero. Seek there and write it. */
3301 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0)
3302 return false;
3303 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3304 sizeof (struct header), 1, abfd)
3305 != sizeof (struct header))
3306 return false;
3307 return true;
3308 }
3309
3310 /* Compute and return the checksum for a SOM file header. */
3311
3312 static unsigned long
3313 som_compute_checksum (abfd)
3314 bfd *abfd;
3315 {
3316 unsigned long checksum, count, i;
3317 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3318
3319 checksum = 0;
3320 count = sizeof (struct header) / sizeof (unsigned long);
3321 for (i = 0; i < count; i++)
3322 checksum ^= *(buffer + i);
3323
3324 return checksum;
3325 }
3326
3327 static void
3328 som_bfd_derive_misc_symbol_info (abfd, sym, info)
3329 bfd *abfd;
3330 asymbol *sym;
3331 struct som_misc_symbol_info *info;
3332 {
3333 /* Initialize. */
3334 memset (info, 0, sizeof (struct som_misc_symbol_info));
3335
3336 /* The HP SOM linker requires detailed type information about
3337 all symbols (including undefined symbols!). Unfortunately,
3338 the type specified in an import/export statement does not
3339 always match what the linker wants. Severe braindamage. */
3340
3341 /* Section symbols will not have a SOM symbol type assigned to
3342 them yet. Assign all section symbols type ST_DATA. */
3343 if (sym->flags & BSF_SECTION_SYM)
3344 info->symbol_type = ST_DATA;
3345 else
3346 {
3347 /* Common symbols must have scope SS_UNSAT and type
3348 ST_STORAGE or the linker will choke. */
3349 if (sym->section == &bfd_com_section)
3350 {
3351 info->symbol_scope = SS_UNSAT;
3352 info->symbol_type = ST_STORAGE;
3353 }
3354
3355 /* It is possible to have a symbol without an associated
3356 type. This happens if the user imported the symbol
3357 without a type and the symbol was never defined
3358 locally. If BSF_FUNCTION is set for this symbol, then
3359 assign it type ST_CODE (the HP linker requires undefined
3360 external functions to have type ST_CODE rather than ST_ENTRY). */
3361 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3362 && sym->section == &bfd_und_section
3363 && sym->flags & BSF_FUNCTION)
3364 info->symbol_type = ST_CODE;
3365
3366 /* Handle function symbols which were defined in this file.
3367 They should have type ST_ENTRY. Also retrieve the argument
3368 relocation bits from the SOM backend information. */
3369 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3370 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3371 && (sym->flags & BSF_FUNCTION))
3372 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3373 && (sym->flags & BSF_FUNCTION)))
3374 {
3375 info->symbol_type = ST_ENTRY;
3376 info->arg_reloc = som_symbol_data (sym)->tc_data.hppa_arg_reloc;
3377 }
3378
3379 /* If the type is unknown at this point, it should be
3380 ST_DATA (functions were handled as special cases above). */
3381 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3382 info->symbol_type = ST_DATA;
3383
3384 /* From now on it's a very simple mapping. */
3385 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3386 info->symbol_type = ST_ABSOLUTE;
3387 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3388 info->symbol_type = ST_CODE;
3389 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3390 info->symbol_type = ST_DATA;
3391 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3392 info->symbol_type = ST_MILLICODE;
3393 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3394 info->symbol_type = ST_PLABEL;
3395 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3396 info->symbol_type = ST_PRI_PROG;
3397 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3398 info->symbol_type = ST_SEC_PROG;
3399 }
3400
3401 /* Now handle the symbol's scope. Exported data which is not
3402 in the common section has scope SS_UNIVERSAL. Note scope
3403 of common symbols was handled earlier! */
3404 if (sym->flags & BSF_EXPORT && sym->section != &bfd_com_section)
3405 info->symbol_scope = SS_UNIVERSAL;
3406 /* Any undefined symbol at this point has a scope SS_UNSAT. */
3407 else if (sym->section == &bfd_und_section)
3408 info->symbol_scope = SS_UNSAT;
3409 /* Anything else which is not in the common section has scope
3410 SS_LOCAL. */
3411 else if (sym->section != &bfd_com_section)
3412 info->symbol_scope = SS_LOCAL;
3413
3414 /* Now set the symbol_info field. It has no real meaning
3415 for undefined or common symbols, but the HP linker will
3416 choke if it's not set to some "reasonable" value. We
3417 use zero as a reasonable value. */
3418 if (sym->section == &bfd_com_section || sym->section == &bfd_und_section
3419 || sym->section == &bfd_abs_section)
3420 info->symbol_info = 0;
3421 /* For all other symbols, the symbol_info field contains the
3422 subspace index of the space this symbol is contained in. */
3423 else
3424 info->symbol_info = sym->section->target_index;
3425
3426 /* Set the symbol's value. */
3427 info->symbol_value = sym->value + sym->section->vma;
3428 }
3429
3430 /* Build and write, in one big chunk, the entire symbol table for
3431 this BFD. */
3432
3433 static boolean
3434 som_build_and_write_symbol_table (abfd)
3435 bfd *abfd;
3436 {
3437 unsigned int num_syms = bfd_get_symcount (abfd);
3438 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3439 asymbol **bfd_syms = bfd_get_outsymbols (abfd);
3440 struct symbol_dictionary_record *som_symtab = NULL;
3441 int i, symtab_size;
3442
3443 /* Compute total symbol table size and allocate a chunk of memory
3444 to hold the symbol table as we build it. */
3445 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3446 som_symtab = (struct symbol_dictionary_record *) malloc (symtab_size);
3447 if (som_symtab == NULL && symtab_size != 0)
3448 {
3449 bfd_set_error (bfd_error_no_memory);
3450 goto error_return;
3451 }
3452 memset (som_symtab, 0, symtab_size);
3453
3454 /* Walk over each symbol. */
3455 for (i = 0; i < num_syms; i++)
3456 {
3457 struct som_misc_symbol_info info;
3458
3459 /* This is really an index into the symbol strings table.
3460 By the time we get here, the index has already been
3461 computed and stored into the name field in the BFD symbol. */
3462 som_symtab[i].name.n_strx = (int) bfd_syms[i]->name;
3463
3464 /* Derive SOM information from the BFD symbol. */
3465 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
3466
3467 /* Now use it. */
3468 som_symtab[i].symbol_type = info.symbol_type;
3469 som_symtab[i].symbol_scope = info.symbol_scope;
3470 som_symtab[i].arg_reloc = info.arg_reloc;
3471 som_symtab[i].symbol_info = info.symbol_info;
3472 som_symtab[i].symbol_value = info.symbol_value;
3473 }
3474
3475 /* Everything is ready, seek to the right location and
3476 scribble out the symbol table. */
3477 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3478 return false;
3479
3480 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3481 goto error_return;
3482
3483 if (som_symtab != NULL)
3484 free (som_symtab);
3485 return true;
3486 error_return:
3487 if (som_symtab != NULL)
3488 free (som_symtab);
3489 return false;
3490 }
3491
3492 /* Write an object in SOM format. */
3493
3494 static boolean
3495 som_write_object_contents (abfd)
3496 bfd *abfd;
3497 {
3498 if (abfd->output_has_begun == false)
3499 {
3500 /* Set up fixed parts of the file, space, and subspace headers.
3501 Notify the world that output has begun. */
3502 som_prep_headers (abfd);
3503 abfd->output_has_begun = true;
3504 /* Start writing the object file. This include all the string
3505 tables, fixup streams, and other portions of the object file. */
3506 som_begin_writing (abfd);
3507 }
3508
3509 /* Now that the symbol table information is complete, build and
3510 write the symbol table. */
3511 if (som_build_and_write_symbol_table (abfd) == false)
3512 return false;
3513
3514 /* Compute the checksum for the file header just before writing
3515 the header to disk. */
3516 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3517 return (som_write_headers (abfd));
3518 }
3519
3520 \f
3521 /* Read and save the string table associated with the given BFD. */
3522
3523 static boolean
3524 som_slurp_string_table (abfd)
3525 bfd *abfd;
3526 {
3527 char *stringtab;
3528
3529 /* Use the saved version if its available. */
3530 if (obj_som_stringtab (abfd) != NULL)
3531 return true;
3532
3533 /* Allocate and read in the string table. */
3534 stringtab = bfd_zalloc (abfd, obj_som_stringtab_size (abfd));
3535 if (stringtab == NULL)
3536 {
3537 bfd_set_error (bfd_error_no_memory);
3538 return false;
3539 }
3540
3541 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3542 return false;
3543
3544 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3545 != obj_som_stringtab_size (abfd))
3546 return false;
3547
3548 /* Save our results and return success. */
3549 obj_som_stringtab (abfd) = stringtab;
3550 return true;
3551 }
3552
3553 /* Return the amount of data (in bytes) required to hold the symbol
3554 table for this object. */
3555
3556 static long
3557 som_get_symtab_upper_bound (abfd)
3558 bfd *abfd;
3559 {
3560 if (!som_slurp_symbol_table (abfd))
3561 return -1;
3562
3563 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
3564 }
3565
3566 /* Convert from a SOM subspace index to a BFD section. */
3567
3568 static asection *
3569 bfd_section_from_som_symbol (abfd, symbol)
3570 bfd *abfd;
3571 struct symbol_dictionary_record *symbol;
3572 {
3573 asection *section;
3574
3575 /* The meaning of the symbol_info field changes for functions
3576 within executables. So only use the quick symbol_info mapping for
3577 incomplete objects and non-function symbols in executables. */
3578 if ((abfd->flags & EXEC_P) == 0
3579 || (symbol->symbol_type != ST_ENTRY
3580 && symbol->symbol_type != ST_PRI_PROG
3581 && symbol->symbol_type != ST_SEC_PROG
3582 && symbol->symbol_type != ST_MILLICODE))
3583 {
3584 unsigned int index = symbol->symbol_info;
3585 for (section = abfd->sections; section != NULL; section = section->next)
3586 if (section->target_index == index)
3587 return section;
3588
3589 /* Should never happen. */
3590 abort();
3591 }
3592 else
3593 {
3594 unsigned int value = symbol->symbol_value;
3595 unsigned int found = 0;
3596
3597 /* For executables we will have to use the symbol's address and
3598 find out what section would contain that address. Yuk. */
3599 for (section = abfd->sections; section; section = section->next)
3600 {
3601 if (value >= section->vma
3602 && value <= section->vma + section->_cooked_size)
3603 return section;
3604 }
3605
3606 /* Should never happen. */
3607 abort ();
3608 }
3609 }
3610
3611 /* Read and save the symbol table associated with the given BFD. */
3612
3613 static unsigned int
3614 som_slurp_symbol_table (abfd)
3615 bfd *abfd;
3616 {
3617 int symbol_count = bfd_get_symcount (abfd);
3618 int symsize = sizeof (struct symbol_dictionary_record);
3619 char *stringtab;
3620 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
3621 som_symbol_type *sym, *symbase;
3622
3623 /* Return saved value if it exists. */
3624 if (obj_som_symtab (abfd) != NULL)
3625 goto successful_return;
3626
3627 /* Special case. This is *not* an error. */
3628 if (symbol_count == 0)
3629 goto successful_return;
3630
3631 if (!som_slurp_string_table (abfd))
3632 goto error_return;
3633
3634 stringtab = obj_som_stringtab (abfd);
3635
3636 symbase = (som_symbol_type *)
3637 bfd_zalloc (abfd, symbol_count * sizeof (som_symbol_type));
3638 if (symbase == NULL)
3639 {
3640 bfd_set_error (bfd_error_no_memory);
3641 goto error_return;
3642 }
3643
3644 /* Read in the external SOM representation. */
3645 buf = malloc (symbol_count * symsize);
3646 if (buf == NULL && symbol_count * symsize != 0)
3647 {
3648 bfd_set_error (bfd_error_no_memory);
3649 goto error_return;
3650 }
3651 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
3652 goto error_return;
3653 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
3654 != symbol_count * symsize)
3655 goto error_return;
3656
3657 /* Iterate over all the symbols and internalize them. */
3658 endbufp = buf + symbol_count;
3659 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
3660 {
3661
3662 /* I don't think we care about these. */
3663 if (bufp->symbol_type == ST_SYM_EXT
3664 || bufp->symbol_type == ST_ARG_EXT)
3665 continue;
3666
3667 /* Set some private data we care about. */
3668 if (bufp->symbol_type == ST_NULL)
3669 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3670 else if (bufp->symbol_type == ST_ABSOLUTE)
3671 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
3672 else if (bufp->symbol_type == ST_DATA)
3673 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
3674 else if (bufp->symbol_type == ST_CODE)
3675 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
3676 else if (bufp->symbol_type == ST_PRI_PROG)
3677 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
3678 else if (bufp->symbol_type == ST_SEC_PROG)
3679 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
3680 else if (bufp->symbol_type == ST_ENTRY)
3681 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
3682 else if (bufp->symbol_type == ST_MILLICODE)
3683 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
3684 else if (bufp->symbol_type == ST_PLABEL)
3685 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
3686 else
3687 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3688 som_symbol_data (sym)->tc_data.hppa_arg_reloc = bufp->arg_reloc;
3689
3690 /* Some reasonable defaults. */
3691 sym->symbol.the_bfd = abfd;
3692 sym->symbol.name = bufp->name.n_strx + stringtab;
3693 sym->symbol.value = bufp->symbol_value;
3694 sym->symbol.section = 0;
3695 sym->symbol.flags = 0;
3696
3697 switch (bufp->symbol_type)
3698 {
3699 case ST_ENTRY:
3700 case ST_PRI_PROG:
3701 case ST_SEC_PROG:
3702 case ST_MILLICODE:
3703 sym->symbol.flags |= BSF_FUNCTION;
3704 sym->symbol.value &= ~0x3;
3705 break;
3706
3707 case ST_STUB:
3708 case ST_CODE:
3709 sym->symbol.value &= ~0x3;
3710
3711 default:
3712 break;
3713 }
3714
3715 /* Handle scoping and section information. */
3716 switch (bufp->symbol_scope)
3717 {
3718 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
3719 so the section associated with this symbol can't be known. */
3720 case SS_EXTERNAL:
3721 if (bufp->symbol_type != ST_STORAGE)
3722 sym->symbol.section = &bfd_und_section;
3723 else
3724 sym->symbol.section = &bfd_com_section;
3725 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3726 break;
3727
3728 case SS_UNSAT:
3729 if (bufp->symbol_type != ST_STORAGE)
3730 sym->symbol.section = &bfd_und_section;
3731 else
3732 sym->symbol.section = &bfd_com_section;
3733 break;
3734
3735 case SS_UNIVERSAL:
3736 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3737 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3738 sym->symbol.value -= sym->symbol.section->vma;
3739 break;
3740
3741 #if 0
3742 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
3743 Sound dumb? It is. */
3744 case SS_GLOBAL:
3745 #endif
3746 case SS_LOCAL:
3747 sym->symbol.flags |= BSF_LOCAL;
3748 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3749 sym->symbol.value -= sym->symbol.section->vma;
3750 break;
3751 }
3752
3753 /* Mark section symbols and symbols used by the debugger. */
3754 if (sym->symbol.name[0] == '$'
3755 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$')
3756 sym->symbol.flags |= BSF_SECTION_SYM;
3757 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
3758 {
3759 sym->symbol.flags |= BSF_SECTION_SYM;
3760 sym->symbol.name = sym->symbol.section->name;
3761 }
3762 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
3763 sym->symbol.flags |= BSF_DEBUGGING;
3764
3765 /* Note increment at bottom of loop, since we skip some symbols
3766 we can not include it as part of the for statement. */
3767 sym++;
3768 }
3769
3770 /* Save our results and return success. */
3771 obj_som_symtab (abfd) = symbase;
3772 successful_return:
3773 if (buf != NULL)
3774 free (buf);
3775 return (true);
3776
3777 error_return:
3778 if (buf != NULL)
3779 free (buf);
3780 return false;
3781 }
3782
3783 /* Canonicalize a SOM symbol table. Return the number of entries
3784 in the symbol table. */
3785
3786 static long
3787 som_get_symtab (abfd, location)
3788 bfd *abfd;
3789 asymbol **location;
3790 {
3791 int i;
3792 som_symbol_type *symbase;
3793
3794 if (!som_slurp_symbol_table (abfd))
3795 return -1;
3796
3797 i = bfd_get_symcount (abfd);
3798 symbase = obj_som_symtab (abfd);
3799
3800 for (; i > 0; i--, location++, symbase++)
3801 *location = &symbase->symbol;
3802
3803 /* Final null pointer. */
3804 *location = 0;
3805 return (bfd_get_symcount (abfd));
3806 }
3807
3808 /* Make a SOM symbol. There is nothing special to do here. */
3809
3810 static asymbol *
3811 som_make_empty_symbol (abfd)
3812 bfd *abfd;
3813 {
3814 som_symbol_type *new =
3815 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
3816 if (new == NULL)
3817 {
3818 bfd_set_error (bfd_error_no_memory);
3819 return 0;
3820 }
3821 new->symbol.the_bfd = abfd;
3822
3823 return &new->symbol;
3824 }
3825
3826 /* Print symbol information. */
3827
3828 static void
3829 som_print_symbol (ignore_abfd, afile, symbol, how)
3830 bfd *ignore_abfd;
3831 PTR afile;
3832 asymbol *symbol;
3833 bfd_print_symbol_type how;
3834 {
3835 FILE *file = (FILE *) afile;
3836 switch (how)
3837 {
3838 case bfd_print_symbol_name:
3839 fprintf (file, "%s", symbol->name);
3840 break;
3841 case bfd_print_symbol_more:
3842 fprintf (file, "som ");
3843 fprintf_vma (file, symbol->value);
3844 fprintf (file, " %lx", (long) symbol->flags);
3845 break;
3846 case bfd_print_symbol_all:
3847 {
3848 CONST char *section_name;
3849 section_name = symbol->section ? symbol->section->name : "(*none*)";
3850 bfd_print_symbol_vandf ((PTR) file, symbol);
3851 fprintf (file, " %s\t%s", section_name, symbol->name);
3852 break;
3853 }
3854 }
3855 }
3856
3857 static boolean
3858 som_bfd_is_local_label (abfd, sym)
3859 bfd *abfd;
3860 asymbol *sym;
3861 {
3862 return (sym->name[0] == 'L' && sym->name[1] == '$');
3863 }
3864
3865 /* Count or process variable-length SOM fixup records.
3866
3867 To avoid code duplication we use this code both to compute the number
3868 of relocations requested by a stream, and to internalize the stream.
3869
3870 When computing the number of relocations requested by a stream the
3871 variables rptr, section, and symbols have no meaning.
3872
3873 Return the number of relocations requested by the fixup stream. When
3874 not just counting
3875
3876 This needs at least two or three more passes to get it cleaned up. */
3877
3878 static unsigned int
3879 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
3880 unsigned char *fixup;
3881 unsigned int end;
3882 arelent *internal_relocs;
3883 asection *section;
3884 asymbol **symbols;
3885 boolean just_count;
3886 {
3887 unsigned int op, varname;
3888 unsigned char *end_fixups = &fixup[end];
3889 const struct fixup_format *fp;
3890 char *cp;
3891 unsigned char *save_fixup;
3892 int variables[26], stack[20], c, v, count, prev_fixup, *sp;
3893 const int *subop;
3894 arelent *rptr= internal_relocs;
3895 unsigned int offset = just_count ? 0 : section->vma;
3896
3897 #define var(c) variables[(c) - 'A']
3898 #define push(v) (*sp++ = (v))
3899 #define pop() (*--sp)
3900 #define emptystack() (sp == stack)
3901
3902 som_initialize_reloc_queue (reloc_queue);
3903 memset (variables, 0, sizeof (variables));
3904 memset (stack, 0, sizeof (stack));
3905 count = 0;
3906 prev_fixup = 0;
3907 sp = stack;
3908
3909 while (fixup < end_fixups)
3910 {
3911
3912 /* Save pointer to the start of this fixup. We'll use
3913 it later to determine if it is necessary to put this fixup
3914 on the queue. */
3915 save_fixup = fixup;
3916
3917 /* Get the fixup code and its associated format. */
3918 op = *fixup++;
3919 fp = &som_fixup_formats[op];
3920
3921 /* Handle a request for a previous fixup. */
3922 if (*fp->format == 'P')
3923 {
3924 /* Get pointer to the beginning of the prev fixup, move
3925 the repeated fixup to the head of the queue. */
3926 fixup = reloc_queue[fp->D].reloc;
3927 som_reloc_queue_fix (reloc_queue, fp->D);
3928 prev_fixup = 1;
3929
3930 /* Get the fixup code and its associated format. */
3931 op = *fixup++;
3932 fp = &som_fixup_formats[op];
3933 }
3934
3935 /* If we are not just counting, set some reasonable defaults. */
3936 if (! just_count)
3937 {
3938 rptr->address = offset;
3939 rptr->howto = &som_hppa_howto_table[op];
3940 rptr->addend = 0;
3941 rptr->sym_ptr_ptr = bfd_abs_section.symbol_ptr_ptr;
3942 }
3943
3944 /* Set default input length to 0. Get the opcode class index
3945 into D. */
3946 var ('L') = 0;
3947 var ('D') = fp->D;
3948
3949 /* Get the opcode format. */
3950 cp = fp->format;
3951
3952 /* Process the format string. Parsing happens in two phases,
3953 parse RHS, then assign to LHS. Repeat until no more
3954 characters in the format string. */
3955 while (*cp)
3956 {
3957 /* The variable this pass is going to compute a value for. */
3958 varname = *cp++;
3959
3960 /* Start processing RHS. Continue until a NULL or '=' is found. */
3961 do
3962 {
3963 c = *cp++;
3964
3965 /* If this is a variable, push it on the stack. */
3966 if (isupper (c))
3967 push (var (c));
3968
3969 /* If this is a lower case letter, then it represents
3970 additional data from the fixup stream to be pushed onto
3971 the stack. */
3972 else if (islower (c))
3973 {
3974 for (v = 0; c > 'a'; --c)
3975 v = (v << 8) | *fixup++;
3976 push (v);
3977 }
3978
3979 /* A decimal constant. Push it on the stack. */
3980 else if (isdigit (c))
3981 {
3982 v = c - '0';
3983 while (isdigit (*cp))
3984 v = (v * 10) + (*cp++ - '0');
3985 push (v);
3986 }
3987 else
3988
3989 /* An operator. Pop two two values from the stack and
3990 use them as operands to the given operation. Push
3991 the result of the operation back on the stack. */
3992 switch (c)
3993 {
3994 case '+':
3995 v = pop ();
3996 v += pop ();
3997 push (v);
3998 break;
3999 case '*':
4000 v = pop ();
4001 v *= pop ();
4002 push (v);
4003 break;
4004 case '<':
4005 v = pop ();
4006 v = pop () << v;
4007 push (v);
4008 break;
4009 default:
4010 abort ();
4011 }
4012 }
4013 while (*cp && *cp != '=');
4014
4015 /* Move over the equal operator. */
4016 cp++;
4017
4018 /* Pop the RHS off the stack. */
4019 c = pop ();
4020
4021 /* Perform the assignment. */
4022 var (varname) = c;
4023
4024 /* Handle side effects. and special 'O' stack cases. */
4025 switch (varname)
4026 {
4027 /* Consume some bytes from the input space. */
4028 case 'L':
4029 offset += c;
4030 break;
4031 /* A symbol to use in the relocation. Make a note
4032 of this if we are not just counting. */
4033 case 'S':
4034 if (! just_count)
4035 rptr->sym_ptr_ptr = &symbols[c];
4036 break;
4037 /* Handle the linker expression stack. */
4038 case 'O':
4039 switch (op)
4040 {
4041 case R_COMP1:
4042 subop = comp1_opcodes;
4043 break;
4044 case R_COMP2:
4045 subop = comp2_opcodes;
4046 break;
4047 case R_COMP3:
4048 subop = comp3_opcodes;
4049 break;
4050 default:
4051 abort ();
4052 }
4053 while (*subop <= (unsigned char) c)
4054 ++subop;
4055 --subop;
4056 break;
4057 default:
4058 break;
4059 }
4060 }
4061
4062 /* If we used a previous fixup, clean up after it. */
4063 if (prev_fixup)
4064 {
4065 fixup = save_fixup + 1;
4066 prev_fixup = 0;
4067 }
4068 /* Queue it. */
4069 else if (fixup > save_fixup + 1)
4070 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4071
4072 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4073 fixups to BFD. */
4074 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4075 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4076 {
4077 /* Done with a single reloction. Loop back to the top. */
4078 if (! just_count)
4079 {
4080 rptr->addend = var ('V');
4081 rptr++;
4082 }
4083 count++;
4084 /* Now that we've handled a "full" relocation, reset
4085 some state. */
4086 memset (variables, 0, sizeof (variables));
4087 memset (stack, 0, sizeof (stack));
4088 }
4089 }
4090 return count;
4091
4092 #undef var
4093 #undef push
4094 #undef pop
4095 #undef emptystack
4096 }
4097
4098 /* Read in the relocs (aka fixups in SOM terms) for a section.
4099
4100 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4101 set to true to indicate it only needs a count of the number
4102 of actual relocations. */
4103
4104 static boolean
4105 som_slurp_reloc_table (abfd, section, symbols, just_count)
4106 bfd *abfd;
4107 asection *section;
4108 asymbol **symbols;
4109 boolean just_count;
4110 {
4111 char *external_relocs;
4112 unsigned int fixup_stream_size;
4113 arelent *internal_relocs;
4114 unsigned int num_relocs;
4115
4116 fixup_stream_size = som_section_data (section)->reloc_size;
4117 /* If there were no relocations, then there is nothing to do. */
4118 if (section->reloc_count == 0)
4119 return true;
4120
4121 /* If reloc_count is -1, then the relocation stream has not been
4122 parsed. We must do so now to know how many relocations exist. */
4123 if (section->reloc_count == -1)
4124 {
4125 external_relocs = (char *) bfd_zalloc (abfd, fixup_stream_size);
4126 if (external_relocs == (char *) NULL)
4127 {
4128 bfd_set_error (bfd_error_no_memory);
4129 return false;
4130 }
4131 /* Read in the external forms. */
4132 if (bfd_seek (abfd,
4133 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4134 SEEK_SET)
4135 != 0)
4136 return false;
4137 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
4138 != fixup_stream_size)
4139 return false;
4140
4141 /* Let callers know how many relocations found.
4142 also save the relocation stream as we will
4143 need it again. */
4144 section->reloc_count = som_set_reloc_info (external_relocs,
4145 fixup_stream_size,
4146 NULL, NULL, NULL, true);
4147
4148 som_section_data (section)->reloc_stream = external_relocs;
4149 }
4150
4151 /* If the caller only wanted a count, then return now. */
4152 if (just_count)
4153 return true;
4154
4155 num_relocs = section->reloc_count;
4156 external_relocs = som_section_data (section)->reloc_stream;
4157 /* Return saved information about the relocations if it is available. */
4158 if (section->relocation != (arelent *) NULL)
4159 return true;
4160
4161 internal_relocs = (arelent *) bfd_zalloc (abfd,
4162 num_relocs * sizeof (arelent));
4163 if (internal_relocs == (arelent *) NULL)
4164 {
4165 bfd_set_error (bfd_error_no_memory);
4166 return false;
4167 }
4168
4169 /* Process and internalize the relocations. */
4170 som_set_reloc_info (external_relocs, fixup_stream_size,
4171 internal_relocs, section, symbols, false);
4172
4173 /* Save our results and return success. */
4174 section->relocation = internal_relocs;
4175 return (true);
4176 }
4177
4178 /* Return the number of bytes required to store the relocation
4179 information associated with the given section. */
4180
4181 static long
4182 som_get_reloc_upper_bound (abfd, asect)
4183 bfd *abfd;
4184 sec_ptr asect;
4185 {
4186 /* If section has relocations, then read in the relocation stream
4187 and parse it to determine how many relocations exist. */
4188 if (asect->flags & SEC_RELOC)
4189 {
4190 if (! som_slurp_reloc_table (abfd, asect, NULL, true))
4191 return false;
4192 return (asect->reloc_count + 1) * sizeof (arelent);
4193 }
4194 /* There are no relocations. */
4195 return 0;
4196 }
4197
4198 /* Convert relocations from SOM (external) form into BFD internal
4199 form. Return the number of relocations. */
4200
4201 static long
4202 som_canonicalize_reloc (abfd, section, relptr, symbols)
4203 bfd *abfd;
4204 sec_ptr section;
4205 arelent **relptr;
4206 asymbol **symbols;
4207 {
4208 arelent *tblptr;
4209 int count;
4210
4211 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
4212 return -1;
4213
4214 count = section->reloc_count;
4215 tblptr = section->relocation;
4216 if (tblptr == (arelent *) NULL)
4217 return -1;
4218
4219 while (count--)
4220 *relptr++ = tblptr++;
4221
4222 *relptr = (arelent *) NULL;
4223 return section->reloc_count;
4224 }
4225
4226 extern bfd_target som_vec;
4227
4228 /* A hook to set up object file dependent section information. */
4229
4230 static boolean
4231 som_new_section_hook (abfd, newsect)
4232 bfd *abfd;
4233 asection *newsect;
4234 {
4235 newsect->used_by_bfd =
4236 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
4237 if (!newsect->used_by_bfd)
4238 {
4239 bfd_set_error (bfd_error_no_memory);
4240 return false;
4241 }
4242 newsect->alignment_power = 3;
4243
4244 /* We allow more than three sections internally */
4245 return true;
4246 }
4247
4248 /* Copy any private info we understand from the input section
4249 to the output section. */
4250 static boolean
4251 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
4252 bfd *ibfd;
4253 asection *isection;
4254 bfd *obfd;
4255 asection *osection;
4256 {
4257 /* One day we may try to grok other private data. */
4258 if (ibfd->xvec->flavour != bfd_target_som_flavour
4259 || obfd->xvec->flavour != bfd_target_som_flavour
4260 || (!som_is_space (isection) && !som_is_subspace (isection)))
4261 return false;
4262
4263 som_section_data (osection)->copy_data
4264 = (struct som_copyable_section_data_struct *)
4265 bfd_zalloc (obfd, sizeof (struct som_copyable_section_data_struct));
4266 if (som_section_data (osection)->copy_data == NULL)
4267 {
4268 bfd_set_error (bfd_error_no_memory);
4269 return false;
4270 }
4271
4272 memcpy (som_section_data (osection)->copy_data,
4273 som_section_data (isection)->copy_data,
4274 sizeof (struct som_copyable_section_data_struct));
4275
4276 /* Reparent if necessary. */
4277 if (som_section_data (osection)->copy_data->container)
4278 som_section_data (osection)->copy_data->container =
4279 som_section_data (osection)->copy_data->container->output_section;
4280
4281 return true;
4282 }
4283
4284 /* Copy any private info we understand from the input bfd
4285 to the output bfd. */
4286
4287 static boolean
4288 som_bfd_copy_private_bfd_data (ibfd, obfd)
4289 bfd *ibfd, *obfd;
4290 {
4291 /* One day we may try to grok other private data. */
4292 if (ibfd->xvec->flavour != bfd_target_som_flavour
4293 || obfd->xvec->flavour != bfd_target_som_flavour)
4294 return false;
4295
4296 /* Allocate some memory to hold the data we need. */
4297 obj_som_exec_data (obfd) = (struct som_exec_data *)
4298 bfd_zalloc (obfd, sizeof (struct som_exec_data));
4299 if (obj_som_exec_data (obfd) == NULL)
4300 {
4301 bfd_set_error (bfd_error_no_memory);
4302 return false;
4303 }
4304
4305 /* Now copy the data. */
4306 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
4307 sizeof (struct som_exec_data));
4308
4309 return true;
4310 }
4311
4312 /* Set backend info for sections which can not be described
4313 in the BFD data structures. */
4314
4315 boolean
4316 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
4317 asection *section;
4318 int defined;
4319 int private;
4320 unsigned int sort_key;
4321 int spnum;
4322 {
4323 /* Allocate memory to hold the magic information. */
4324 if (som_section_data (section)->copy_data == NULL)
4325 {
4326 som_section_data (section)->copy_data
4327 = (struct som_copyable_section_data_struct *)
4328 bfd_zalloc (section->owner,
4329 sizeof (struct som_copyable_section_data_struct));
4330 if (som_section_data (section)->copy_data == NULL)
4331 {
4332 bfd_set_error (bfd_error_no_memory);
4333 return false;
4334 }
4335 }
4336 som_section_data (section)->copy_data->sort_key = sort_key;
4337 som_section_data (section)->copy_data->is_defined = defined;
4338 som_section_data (section)->copy_data->is_private = private;
4339 som_section_data (section)->copy_data->container = section;
4340 section->target_index = spnum;
4341 return true;
4342 }
4343
4344 /* Set backend info for subsections which can not be described
4345 in the BFD data structures. */
4346
4347 boolean
4348 bfd_som_set_subsection_attributes (section, container, access,
4349 sort_key, quadrant)
4350 asection *section;
4351 asection *container;
4352 int access;
4353 unsigned int sort_key;
4354 int quadrant;
4355 {
4356 /* Allocate memory to hold the magic information. */
4357 if (som_section_data (section)->copy_data == NULL)
4358 {
4359 som_section_data (section)->copy_data
4360 = (struct som_copyable_section_data_struct *)
4361 bfd_zalloc (section->owner,
4362 sizeof (struct som_copyable_section_data_struct));
4363 if (som_section_data (section)->copy_data == NULL)
4364 {
4365 bfd_set_error (bfd_error_no_memory);
4366 return false;
4367 }
4368 }
4369 som_section_data (section)->copy_data->sort_key = sort_key;
4370 som_section_data (section)->copy_data->access_control_bits = access;
4371 som_section_data (section)->copy_data->quadrant = quadrant;
4372 som_section_data (section)->copy_data->container = container;
4373 return true;
4374 }
4375
4376 /* Set the full SOM symbol type. SOM needs far more symbol information
4377 than any other object file format I'm aware of. It is mandatory
4378 to be able to know if a symbol is an entry point, millicode, data,
4379 code, absolute, storage request, or procedure label. If you get
4380 the symbol type wrong your program will not link. */
4381
4382 void
4383 bfd_som_set_symbol_type (symbol, type)
4384 asymbol *symbol;
4385 unsigned int type;
4386 {
4387 som_symbol_data (symbol)->som_type = type;
4388 }
4389
4390 /* Attach 64bits of unwind information to a symbol (which hopefully
4391 is a function of some kind!). It would be better to keep this
4392 in the R_ENTRY relocation, but there is not enough space. */
4393
4394 void
4395 bfd_som_attach_unwind_info (symbol, unwind_desc)
4396 asymbol *symbol;
4397 char *unwind_desc;
4398 {
4399 som_symbol_data (symbol)->unwind = unwind_desc;
4400 }
4401
4402 /* Attach an auxiliary header to the BFD backend so that it may be
4403 written into the object file. */
4404 boolean
4405 bfd_som_attach_aux_hdr (abfd, type, string)
4406 bfd *abfd;
4407 int type;
4408 char *string;
4409 {
4410 if (type == VERSION_AUX_ID)
4411 {
4412 int len = strlen (string);
4413 int pad = 0;
4414
4415 if (len % 4)
4416 pad = (4 - (len % 4));
4417 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
4418 bfd_zalloc (abfd, sizeof (struct aux_id)
4419 + sizeof (unsigned int) + len + pad);
4420 if (!obj_som_version_hdr (abfd))
4421 {
4422 bfd_set_error (bfd_error_no_memory);
4423 return false;
4424 }
4425 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
4426 obj_som_version_hdr (abfd)->header_id.length = len + pad;
4427 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
4428 obj_som_version_hdr (abfd)->string_length = len;
4429 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
4430 }
4431 else if (type == COPYRIGHT_AUX_ID)
4432 {
4433 int len = strlen (string);
4434 int pad = 0;
4435
4436 if (len % 4)
4437 pad = (4 - (len % 4));
4438 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
4439 bfd_zalloc (abfd, sizeof (struct aux_id)
4440 + sizeof (unsigned int) + len + pad);
4441 if (!obj_som_copyright_hdr (abfd))
4442 {
4443 bfd_set_error (bfd_error_no_memory);
4444 return false;
4445 }
4446 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
4447 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
4448 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
4449 obj_som_copyright_hdr (abfd)->string_length = len;
4450 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
4451 }
4452 return true;
4453 }
4454
4455 static boolean
4456 som_get_section_contents (abfd, section, location, offset, count)
4457 bfd *abfd;
4458 sec_ptr section;
4459 PTR location;
4460 file_ptr offset;
4461 bfd_size_type count;
4462 {
4463 if (count == 0 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4464 return true;
4465 if ((bfd_size_type)(offset+count) > section->_raw_size
4466 || bfd_seek (abfd, (file_ptr)(section->filepos + offset), SEEK_SET) == -1
4467 || bfd_read (location, (bfd_size_type)1, count, abfd) != count)
4468 return (false); /* on error */
4469 return (true);
4470 }
4471
4472 static boolean
4473 som_set_section_contents (abfd, section, location, offset, count)
4474 bfd *abfd;
4475 sec_ptr section;
4476 PTR location;
4477 file_ptr offset;
4478 bfd_size_type count;
4479 {
4480 if (abfd->output_has_begun == false)
4481 {
4482 /* Set up fixed parts of the file, space, and subspace headers.
4483 Notify the world that output has begun. */
4484 som_prep_headers (abfd);
4485 abfd->output_has_begun = true;
4486 /* Start writing the object file. This include all the string
4487 tables, fixup streams, and other portions of the object file. */
4488 som_begin_writing (abfd);
4489 }
4490
4491 /* Only write subspaces which have "real" contents (eg. the contents
4492 are not generated at run time by the OS). */
4493 if (!som_is_subspace (section)
4494 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4495 return true;
4496
4497 /* Seek to the proper offset within the object file and write the
4498 data. */
4499 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
4500 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
4501 return false;
4502
4503 if (bfd_write ((PTR) location, 1, count, abfd) != count)
4504 return false;
4505 return true;
4506 }
4507
4508 static boolean
4509 som_set_arch_mach (abfd, arch, machine)
4510 bfd *abfd;
4511 enum bfd_architecture arch;
4512 unsigned long machine;
4513 {
4514 /* Allow any architecture to be supported by the SOM backend */
4515 return bfd_default_set_arch_mach (abfd, arch, machine);
4516 }
4517
4518 static boolean
4519 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4520 functionname_ptr, line_ptr)
4521 bfd *abfd;
4522 asection *section;
4523 asymbol **symbols;
4524 bfd_vma offset;
4525 CONST char **filename_ptr;
4526 CONST char **functionname_ptr;
4527 unsigned int *line_ptr;
4528 {
4529 fprintf (stderr, "som_find_nearest_line unimplemented\n");
4530 fflush (stderr);
4531 abort ();
4532 return (false);
4533 }
4534
4535 static int
4536 som_sizeof_headers (abfd, reloc)
4537 bfd *abfd;
4538 boolean reloc;
4539 {
4540 fprintf (stderr, "som_sizeof_headers unimplemented\n");
4541 fflush (stderr);
4542 abort ();
4543 return (0);
4544 }
4545
4546 /* Return the single-character symbol type corresponding to
4547 SOM section S, or '?' for an unknown SOM section. */
4548
4549 static char
4550 som_section_type (s)
4551 const char *s;
4552 {
4553 const struct section_to_type *t;
4554
4555 for (t = &stt[0]; t->section; t++)
4556 if (!strcmp (s, t->section))
4557 return t->type;
4558 return '?';
4559 }
4560
4561 static int
4562 som_decode_symclass (symbol)
4563 asymbol *symbol;
4564 {
4565 char c;
4566
4567 if (bfd_is_com_section (symbol->section))
4568 return 'C';
4569 if (symbol->section == &bfd_und_section)
4570 return 'U';
4571 if (symbol->section == &bfd_ind_section)
4572 return 'I';
4573 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
4574 return '?';
4575
4576 if (symbol->section == &bfd_abs_section)
4577 c = 'a';
4578 else if (symbol->section)
4579 c = som_section_type (symbol->section->name);
4580 else
4581 return '?';
4582 if (symbol->flags & BSF_GLOBAL)
4583 c = toupper (c);
4584 return c;
4585 }
4586
4587 /* Return information about SOM symbol SYMBOL in RET. */
4588
4589 static void
4590 som_get_symbol_info (ignore_abfd, symbol, ret)
4591 bfd *ignore_abfd;
4592 asymbol *symbol;
4593 symbol_info *ret;
4594 {
4595 ret->type = som_decode_symclass (symbol);
4596 if (ret->type != 'U')
4597 ret->value = symbol->value+symbol->section->vma;
4598 else
4599 ret->value = 0;
4600 ret->name = symbol->name;
4601 }
4602
4603 /* Count the number of symbols in the archive symbol table. Necessary
4604 so that we can allocate space for all the carsyms at once. */
4605
4606 static boolean
4607 som_bfd_count_ar_symbols (abfd, lst_header, count)
4608 bfd *abfd;
4609 struct lst_header *lst_header;
4610 symindex *count;
4611 {
4612 unsigned int i;
4613 unsigned int *hash_table = NULL;
4614 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4615
4616 hash_table =
4617 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4618 if (hash_table == NULL && lst_header->hash_size != 0)
4619 {
4620 bfd_set_error (bfd_error_no_memory);
4621 goto error_return;
4622 }
4623
4624 /* Don't forget to initialize the counter! */
4625 *count = 0;
4626
4627 /* Read in the hash table. The has table is an array of 32bit file offsets
4628 which point to the hash chains. */
4629 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4630 != lst_header->hash_size * 4)
4631 goto error_return;
4632
4633 /* Walk each chain counting the number of symbols found on that particular
4634 chain. */
4635 for (i = 0; i < lst_header->hash_size; i++)
4636 {
4637 struct lst_symbol_record lst_symbol;
4638
4639 /* An empty chain has zero as it's file offset. */
4640 if (hash_table[i] == 0)
4641 continue;
4642
4643 /* Seek to the first symbol in this hash chain. */
4644 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4645 goto error_return;
4646
4647 /* Read in this symbol and update the counter. */
4648 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4649 != sizeof (lst_symbol))
4650 goto error_return;
4651
4652 (*count)++;
4653
4654 /* Now iterate through the rest of the symbols on this chain. */
4655 while (lst_symbol.next_entry)
4656 {
4657
4658 /* Seek to the next symbol. */
4659 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4660 < 0)
4661 goto error_return;
4662
4663 /* Read the symbol in and update the counter. */
4664 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4665 != sizeof (lst_symbol))
4666 goto error_return;
4667
4668 (*count)++;
4669 }
4670 }
4671 if (hash_table != NULL)
4672 free (hash_table);
4673 return true;
4674
4675 error_return:
4676 if (hash_table != NULL)
4677 free (hash_table);
4678 return false;
4679 }
4680
4681 /* Fill in the canonical archive symbols (SYMS) from the archive described
4682 by ABFD and LST_HEADER. */
4683
4684 static boolean
4685 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
4686 bfd *abfd;
4687 struct lst_header *lst_header;
4688 carsym **syms;
4689 {
4690 unsigned int i, len;
4691 carsym *set = syms[0];
4692 unsigned int *hash_table = NULL;
4693 struct som_entry *som_dict = NULL;
4694 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4695
4696 hash_table =
4697 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4698 if (hash_table == NULL && lst_header->hash_size != 0)
4699 {
4700 bfd_set_error (bfd_error_no_memory);
4701 goto error_return;
4702 }
4703
4704 som_dict =
4705 (struct som_entry *) malloc (lst_header->module_count
4706 * sizeof (struct som_entry));
4707 if (som_dict == NULL && lst_header->module_count != 0)
4708 {
4709 bfd_set_error (bfd_error_no_memory);
4710 goto error_return;
4711 }
4712
4713 /* Read in the hash table. The has table is an array of 32bit file offsets
4714 which point to the hash chains. */
4715 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4716 != lst_header->hash_size * 4)
4717 goto error_return;
4718
4719 /* Seek to and read in the SOM dictionary. We will need this to fill
4720 in the carsym's filepos field. */
4721 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
4722 goto error_return;
4723
4724 if (bfd_read ((PTR) som_dict, lst_header->module_count,
4725 sizeof (struct som_entry), abfd)
4726 != lst_header->module_count * sizeof (struct som_entry))
4727 goto error_return;
4728
4729 /* Walk each chain filling in the carsyms as we go along. */
4730 for (i = 0; i < lst_header->hash_size; i++)
4731 {
4732 struct lst_symbol_record lst_symbol;
4733
4734 /* An empty chain has zero as it's file offset. */
4735 if (hash_table[i] == 0)
4736 continue;
4737
4738 /* Seek to and read the first symbol on the chain. */
4739 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4740 goto error_return;
4741
4742 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4743 != sizeof (lst_symbol))
4744 goto error_return;
4745
4746 /* Get the name of the symbol, first get the length which is stored
4747 as a 32bit integer just before the symbol.
4748
4749 One might ask why we don't just read in the entire string table
4750 and index into it. Well, according to the SOM ABI the string
4751 index can point *anywhere* in the archive to save space, so just
4752 using the string table would not be safe. */
4753 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4754 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4755 goto error_return;
4756
4757 if (bfd_read (&len, 1, 4, abfd) != 4)
4758 goto error_return;
4759
4760 /* Allocate space for the name and null terminate it too. */
4761 set->name = bfd_zalloc (abfd, len + 1);
4762 if (!set->name)
4763 {
4764 bfd_set_error (bfd_error_no_memory);
4765 goto error_return;
4766 }
4767 if (bfd_read (set->name, 1, len, abfd) != len)
4768 goto error_return;
4769
4770 set->name[len] = 0;
4771
4772 /* Fill in the file offset. Note that the "location" field points
4773 to the SOM itself, not the ar_hdr in front of it. */
4774 set->file_offset = som_dict[lst_symbol.som_index].location
4775 - sizeof (struct ar_hdr);
4776
4777 /* Go to the next symbol. */
4778 set++;
4779
4780 /* Iterate through the rest of the chain. */
4781 while (lst_symbol.next_entry)
4782 {
4783 /* Seek to the next symbol and read it in. */
4784 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET) <0)
4785 goto error_return;
4786
4787 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4788 != sizeof (lst_symbol))
4789 goto error_return;
4790
4791 /* Seek to the name length & string and read them in. */
4792 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4793 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4794 goto error_return;
4795
4796 if (bfd_read (&len, 1, 4, abfd) != 4)
4797 goto error_return;
4798
4799 /* Allocate space for the name and null terminate it too. */
4800 set->name = bfd_zalloc (abfd, len + 1);
4801 if (!set->name)
4802 {
4803 bfd_set_error (bfd_error_no_memory);
4804 goto error_return;
4805 }
4806
4807 if (bfd_read (set->name, 1, len, abfd) != len)
4808 goto error_return;
4809 set->name[len] = 0;
4810
4811 /* Fill in the file offset. Note that the "location" field points
4812 to the SOM itself, not the ar_hdr in front of it. */
4813 set->file_offset = som_dict[lst_symbol.som_index].location
4814 - sizeof (struct ar_hdr);
4815
4816 /* Go on to the next symbol. */
4817 set++;
4818 }
4819 }
4820 /* If we haven't died by now, then we successfully read the entire
4821 archive symbol table. */
4822 if (hash_table != NULL)
4823 free (hash_table);
4824 if (som_dict != NULL)
4825 free (som_dict);
4826 return true;
4827
4828 error_return:
4829 if (hash_table != NULL)
4830 free (hash_table);
4831 if (som_dict != NULL)
4832 free (som_dict);
4833 return false;
4834 }
4835
4836 /* Read in the LST from the archive. */
4837 static boolean
4838 som_slurp_armap (abfd)
4839 bfd *abfd;
4840 {
4841 struct lst_header lst_header;
4842 struct ar_hdr ar_header;
4843 unsigned int parsed_size;
4844 struct artdata *ardata = bfd_ardata (abfd);
4845 char nextname[17];
4846 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
4847
4848 /* Special cases. */
4849 if (i == 0)
4850 return true;
4851 if (i != 16)
4852 return false;
4853
4854 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
4855 return false;
4856
4857 /* For archives without .o files there is no symbol table. */
4858 if (strncmp (nextname, "/ ", 16))
4859 {
4860 bfd_has_map (abfd) = false;
4861 return true;
4862 }
4863
4864 /* Read in and sanity check the archive header. */
4865 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
4866 != sizeof (struct ar_hdr))
4867 return false;
4868
4869 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
4870 {
4871 bfd_set_error (bfd_error_malformed_archive);
4872 return false;
4873 }
4874
4875 /* How big is the archive symbol table entry? */
4876 errno = 0;
4877 parsed_size = strtol (ar_header.ar_size, NULL, 10);
4878 if (errno != 0)
4879 {
4880 bfd_set_error (bfd_error_malformed_archive);
4881 return false;
4882 }
4883
4884 /* Save off the file offset of the first real user data. */
4885 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
4886
4887 /* Read in the library symbol table. We'll make heavy use of this
4888 in just a minute. */
4889 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
4890 != sizeof (struct lst_header))
4891 return false;
4892
4893 /* Sanity check. */
4894 if (lst_header.a_magic != LIBMAGIC)
4895 {
4896 bfd_set_error (bfd_error_malformed_archive);
4897 return false;
4898 }
4899
4900 /* Count the number of symbols in the library symbol table. */
4901 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
4902 == false)
4903 return false;
4904
4905 /* Get back to the start of the library symbol table. */
4906 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
4907 + sizeof (struct lst_header), SEEK_SET) < 0)
4908 return false;
4909
4910 /* Initializae the cache and allocate space for the library symbols. */
4911 ardata->cache = 0;
4912 ardata->symdefs = (carsym *) bfd_alloc (abfd,
4913 (ardata->symdef_count
4914 * sizeof (carsym)));
4915 if (!ardata->symdefs)
4916 {
4917 bfd_set_error (bfd_error_no_memory);
4918 return false;
4919 }
4920
4921 /* Now fill in the canonical archive symbols. */
4922 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
4923 == false)
4924 return false;
4925
4926 /* Seek back to the "first" file in the archive. Note the "first"
4927 file may be the extended name table. */
4928 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) < 0)
4929 return false;
4930
4931 /* Notify the generic archive code that we have a symbol map. */
4932 bfd_has_map (abfd) = true;
4933 return true;
4934 }
4935
4936 /* Begin preparing to write a SOM library symbol table.
4937
4938 As part of the prep work we need to determine the number of symbols
4939 and the size of the associated string section. */
4940
4941 static boolean
4942 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
4943 bfd *abfd;
4944 unsigned int *num_syms, *stringsize;
4945 {
4946 bfd *curr_bfd = abfd->archive_head;
4947
4948 /* Some initialization. */
4949 *num_syms = 0;
4950 *stringsize = 0;
4951
4952 /* Iterate over each BFD within this archive. */
4953 while (curr_bfd != NULL)
4954 {
4955 unsigned int curr_count, i;
4956 som_symbol_type *sym;
4957
4958 /* Don't bother for non-SOM objects. */
4959 if (curr_bfd->format != bfd_object
4960 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
4961 {
4962 curr_bfd = curr_bfd->next;
4963 continue;
4964 }
4965
4966 /* Make sure the symbol table has been read, then snag a pointer
4967 to it. It's a little slimey to grab the symbols via obj_som_symtab,
4968 but doing so avoids allocating lots of extra memory. */
4969 if (som_slurp_symbol_table (curr_bfd) == false)
4970 return false;
4971
4972 sym = obj_som_symtab (curr_bfd);
4973 curr_count = bfd_get_symcount (curr_bfd);
4974
4975 /* Examine each symbol to determine if it belongs in the
4976 library symbol table. */
4977 for (i = 0; i < curr_count; i++, sym++)
4978 {
4979 struct som_misc_symbol_info info;
4980
4981 /* Derive SOM information from the BFD symbol. */
4982 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
4983
4984 /* Should we include this symbol? */
4985 if (info.symbol_type == ST_NULL
4986 || info.symbol_type == ST_SYM_EXT
4987 || info.symbol_type == ST_ARG_EXT)
4988 continue;
4989
4990 /* Only global symbols and unsatisfied commons. */
4991 if (info.symbol_scope != SS_UNIVERSAL
4992 && info.symbol_type != ST_STORAGE)
4993 continue;
4994
4995 /* Do no include undefined symbols. */
4996 if (sym->symbol.section == &bfd_und_section)
4997 continue;
4998
4999 /* Bump the various counters, being careful to honor
5000 alignment considerations in the string table. */
5001 (*num_syms)++;
5002 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5003 while (*stringsize % 4)
5004 (*stringsize)++;
5005 }
5006
5007 curr_bfd = curr_bfd->next;
5008 }
5009 return true;
5010 }
5011
5012 /* Hash a symbol name based on the hashing algorithm presented in the
5013 SOM ABI. */
5014 static unsigned int
5015 som_bfd_ar_symbol_hash (symbol)
5016 asymbol *symbol;
5017 {
5018 unsigned int len = strlen (symbol->name);
5019
5020 /* Names with length 1 are special. */
5021 if (len == 1)
5022 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5023
5024 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5025 | (symbol->name[len-2] << 8) | symbol->name[len-1];
5026 }
5027
5028 static CONST char *
5029 normalize (file)
5030 CONST char *file;
5031 {
5032 CONST char *filename = strrchr (file, '/');
5033
5034 if (filename != NULL)
5035 filename++;
5036 else
5037 filename = file;
5038 return filename;
5039 }
5040
5041 /* Do the bulk of the work required to write the SOM library
5042 symbol table. */
5043
5044 static boolean
5045 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst)
5046 bfd *abfd;
5047 unsigned int nsyms, string_size;
5048 struct lst_header lst;
5049 {
5050 file_ptr lst_filepos;
5051 char *strings = NULL, *p;
5052 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5053 bfd *curr_bfd;
5054 unsigned int *hash_table = NULL;
5055 struct som_entry *som_dict = NULL;
5056 struct lst_symbol_record **last_hash_entry = NULL;
5057 unsigned int curr_som_offset, som_index, extended_name_length = 0;
5058 unsigned int maxname = abfd->xvec->ar_max_namelen;
5059
5060 hash_table =
5061 (unsigned int *) malloc (lst.hash_size * sizeof (unsigned int));
5062 if (hash_table == NULL && lst.hash_size != 0)
5063 {
5064 bfd_set_error (bfd_error_no_memory);
5065 goto error_return;
5066 }
5067 som_dict =
5068 (struct som_entry *) malloc (lst.module_count
5069 * sizeof (struct som_entry));
5070 if (som_dict == NULL && lst.module_count != 0)
5071 {
5072 bfd_set_error (bfd_error_no_memory);
5073 goto error_return;
5074 }
5075
5076 last_hash_entry =
5077 ((struct lst_symbol_record **)
5078 malloc (lst.hash_size * sizeof (struct lst_symbol_record *)));
5079 if (last_hash_entry == NULL && lst.hash_size != 0)
5080 {
5081 bfd_set_error (bfd_error_no_memory);
5082 goto error_return;
5083 }
5084
5085 /* Lots of fields are file positions relative to the start
5086 of the lst record. So save its location. */
5087 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5088
5089 /* Some initialization. */
5090 memset (hash_table, 0, 4 * lst.hash_size);
5091 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
5092 memset (last_hash_entry, 0,
5093 lst.hash_size * sizeof (struct lst_symbol_record *));
5094
5095 /* Symbols have som_index fields, so we have to keep track of the
5096 index of each SOM in the archive.
5097
5098 The SOM dictionary has (among other things) the absolute file
5099 position for the SOM which a particular dictionary entry
5100 describes. We have to compute that information as we iterate
5101 through the SOMs/symbols. */
5102 som_index = 0;
5103 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5104
5105 /* Yow! We have to know the size of the extended name table
5106 too. */
5107 for (curr_bfd = abfd->archive_head;
5108 curr_bfd != NULL;
5109 curr_bfd = curr_bfd->next)
5110 {
5111 CONST char *normal = normalize (curr_bfd->filename);
5112 unsigned int thislen;
5113
5114 if (!normal)
5115 {
5116 bfd_set_error (bfd_error_no_memory);
5117 return false;
5118 }
5119 thislen = strlen (normal);
5120 if (thislen > maxname)
5121 extended_name_length += thislen + 1;
5122 }
5123
5124 /* Make room for the archive header and the contents of the
5125 extended string table. */
5126 if (extended_name_length)
5127 curr_som_offset += extended_name_length + sizeof (struct ar_hdr);
5128
5129 /* Make sure we're properly aligned. */
5130 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5131
5132 /* FIXME should be done with buffers just like everything else... */
5133 lst_syms = malloc (nsyms * sizeof (struct lst_symbol_record));
5134 if (lst_syms == NULL && nsyms != 0)
5135 {
5136 bfd_set_error (bfd_error_no_memory);
5137 goto error_return;
5138 }
5139 strings = malloc (string_size);
5140 if (strings == NULL && string_size != 0)
5141 {
5142 bfd_set_error (bfd_error_no_memory);
5143 goto error_return;
5144 }
5145
5146 p = strings;
5147 curr_lst_sym = lst_syms;
5148
5149 curr_bfd = abfd->archive_head;
5150 while (curr_bfd != NULL)
5151 {
5152 unsigned int curr_count, i;
5153 som_symbol_type *sym;
5154
5155 /* Don't bother for non-SOM objects. */
5156 if (curr_bfd->format != bfd_object
5157 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5158 {
5159 curr_bfd = curr_bfd->next;
5160 continue;
5161 }
5162
5163 /* Make sure the symbol table has been read, then snag a pointer
5164 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5165 but doing so avoids allocating lots of extra memory. */
5166 if (som_slurp_symbol_table (curr_bfd) == false)
5167 goto error_return;
5168
5169 sym = obj_som_symtab (curr_bfd);
5170 curr_count = bfd_get_symcount (curr_bfd);
5171
5172 for (i = 0; i < curr_count; i++, sym++)
5173 {
5174 struct som_misc_symbol_info info;
5175
5176 /* Derive SOM information from the BFD symbol. */
5177 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5178
5179 /* Should we include this symbol? */
5180 if (info.symbol_type == ST_NULL
5181 || info.symbol_type == ST_SYM_EXT
5182 || info.symbol_type == ST_ARG_EXT)
5183 continue;
5184
5185 /* Only global symbols and unsatisfied commons. */
5186 if (info.symbol_scope != SS_UNIVERSAL
5187 && info.symbol_type != ST_STORAGE)
5188 continue;
5189
5190 /* Do no include undefined symbols. */
5191 if (sym->symbol.section == &bfd_und_section)
5192 continue;
5193
5194 /* If this is the first symbol from this SOM, then update
5195 the SOM dictionary too. */
5196 if (som_dict[som_index].location == 0)
5197 {
5198 som_dict[som_index].location = curr_som_offset;
5199 som_dict[som_index].length = arelt_size (curr_bfd);
5200 }
5201
5202 /* Fill in the lst symbol record. */
5203 curr_lst_sym->hidden = 0;
5204 curr_lst_sym->secondary_def = 0;
5205 curr_lst_sym->symbol_type = info.symbol_type;
5206 curr_lst_sym->symbol_scope = info.symbol_scope;
5207 curr_lst_sym->check_level = 0;
5208 curr_lst_sym->must_qualify = 0;
5209 curr_lst_sym->initially_frozen = 0;
5210 curr_lst_sym->memory_resident = 0;
5211 curr_lst_sym->is_common = (sym->symbol.section == &bfd_com_section);
5212 curr_lst_sym->dup_common = 0;
5213 curr_lst_sym->xleast = 0;
5214 curr_lst_sym->arg_reloc = info.arg_reloc;
5215 curr_lst_sym->name.n_strx = p - strings + 4;
5216 curr_lst_sym->qualifier_name.n_strx = 0;
5217 curr_lst_sym->symbol_info = info.symbol_info;
5218 curr_lst_sym->symbol_value = info.symbol_value;
5219 curr_lst_sym->symbol_descriptor = 0;
5220 curr_lst_sym->reserved = 0;
5221 curr_lst_sym->som_index = som_index;
5222 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
5223 curr_lst_sym->next_entry = 0;
5224
5225 /* Insert into the hash table. */
5226 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
5227 {
5228 struct lst_symbol_record *tmp;
5229
5230 /* There is already something at the head of this hash chain,
5231 so tack this symbol onto the end of the chain. */
5232 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
5233 tmp->next_entry
5234 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5235 + lst.hash_size * 4
5236 + lst.module_count * sizeof (struct som_entry)
5237 + sizeof (struct lst_header);
5238 }
5239 else
5240 {
5241 /* First entry in this hash chain. */
5242 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
5243 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5244 + lst.hash_size * 4
5245 + lst.module_count * sizeof (struct som_entry)
5246 + sizeof (struct lst_header);
5247 }
5248
5249 /* Keep track of the last symbol we added to this chain so we can
5250 easily update its next_entry pointer. */
5251 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
5252 = curr_lst_sym;
5253
5254
5255 /* Update the string table. */
5256 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
5257 p += 4;
5258 strcpy (p, sym->symbol.name);
5259 p += strlen (sym->symbol.name) + 1;
5260 while ((int)p % 4)
5261 {
5262 bfd_put_8 (abfd, 0, p);
5263 p++;
5264 }
5265
5266 /* Head to the next symbol. */
5267 curr_lst_sym++;
5268 }
5269
5270 /* Keep track of where each SOM will finally reside; then look
5271 at the next BFD. */
5272 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
5273 curr_bfd = curr_bfd->next;
5274 som_index++;
5275 }
5276
5277 /* Now scribble out the hash table. */
5278 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
5279 != lst.hash_size * 4)
5280 goto error_return;
5281
5282 /* Then the SOM dictionary. */
5283 if (bfd_write ((PTR) som_dict, lst.module_count,
5284 sizeof (struct som_entry), abfd)
5285 != lst.module_count * sizeof (struct som_entry))
5286 goto error_return;
5287
5288 /* The library symbols. */
5289 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
5290 != nsyms * sizeof (struct lst_symbol_record))
5291 goto error_return;
5292
5293 /* And finally the strings. */
5294 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
5295 goto error_return;
5296
5297 if (hash_table != NULL)
5298 free (hash_table);
5299 if (som_dict != NULL)
5300 free (som_dict);
5301 if (last_hash_entry != NULL)
5302 free (last_hash_entry);
5303 if (lst_syms != NULL)
5304 free (lst_syms);
5305 if (strings != NULL)
5306 free (strings);
5307 return true;
5308
5309 error_return:
5310 if (hash_table != NULL)
5311 free (hash_table);
5312 if (som_dict != NULL)
5313 free (som_dict);
5314 if (last_hash_entry != NULL)
5315 free (last_hash_entry);
5316 if (lst_syms != NULL)
5317 free (lst_syms);
5318 if (strings != NULL)
5319 free (strings);
5320
5321 return false;
5322 }
5323
5324 /* Write out the LST for the archive.
5325
5326 You'll never believe this is really how armaps are handled in SOM... */
5327
5328 static boolean
5329 som_write_armap (abfd)
5330 bfd *abfd;
5331 {
5332 bfd *curr_bfd;
5333 struct stat statbuf;
5334 unsigned int i, lst_size, nsyms, stringsize;
5335 struct ar_hdr hdr;
5336 struct lst_header lst;
5337 int *p;
5338
5339 /* We'll use this for the archive's date and mode later. */
5340 if (stat (abfd->filename, &statbuf) != 0)
5341 {
5342 bfd_set_error (bfd_error_system_call);
5343 return false;
5344 }
5345 /* Fudge factor. */
5346 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
5347
5348 /* Account for the lst header first. */
5349 lst_size = sizeof (struct lst_header);
5350
5351 /* Start building the LST header. */
5352 lst.system_id = HP9000S800_ID;
5353 lst.a_magic = LIBMAGIC;
5354 lst.version_id = VERSION_ID;
5355 lst.file_time.secs = 0;
5356 lst.file_time.nanosecs = 0;
5357
5358 lst.hash_loc = lst_size;
5359 lst.hash_size = SOM_LST_HASH_SIZE;
5360
5361 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
5362 lst_size += 4 * SOM_LST_HASH_SIZE;
5363
5364 /* We need to count the number of SOMs in this archive. */
5365 curr_bfd = abfd->archive_head;
5366 lst.module_count = 0;
5367 while (curr_bfd != NULL)
5368 {
5369 /* Only true SOM objects count. */
5370 if (curr_bfd->format == bfd_object
5371 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
5372 lst.module_count++;
5373 curr_bfd = curr_bfd->next;
5374 }
5375 lst.module_limit = lst.module_count;
5376 lst.dir_loc = lst_size;
5377 lst_size += sizeof (struct som_entry) * lst.module_count;
5378
5379 /* We don't support import/export tables, auxiliary headers,
5380 or free lists yet. Make the linker work a little harder
5381 to make our life easier. */
5382
5383 lst.export_loc = 0;
5384 lst.export_count = 0;
5385 lst.import_loc = 0;
5386 lst.aux_loc = 0;
5387 lst.aux_size = 0;
5388
5389 /* Count how many symbols we will have on the hash chains and the
5390 size of the associated string table. */
5391 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
5392 return false;
5393
5394 lst_size += sizeof (struct lst_symbol_record) * nsyms;
5395
5396 /* For the string table. One day we might actually use this info
5397 to avoid small seeks/reads when reading archives. */
5398 lst.string_loc = lst_size;
5399 lst.string_size = stringsize;
5400 lst_size += stringsize;
5401
5402 /* SOM ABI says this must be zero. */
5403 lst.free_list = 0;
5404 lst.file_end = lst_size;
5405
5406 /* Compute the checksum. Must happen after the entire lst header
5407 has filled in. */
5408 p = (int *)&lst;
5409 lst.checksum = 0;
5410 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
5411 lst.checksum ^= *p++;
5412
5413 sprintf (hdr.ar_name, "/ ");
5414 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
5415 sprintf (hdr.ar_uid, "%d", getuid ());
5416 sprintf (hdr.ar_gid, "%d", getgid ());
5417 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
5418 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
5419 hdr.ar_fmag[0] = '`';
5420 hdr.ar_fmag[1] = '\012';
5421
5422 /* Turn any nulls into spaces. */
5423 for (i = 0; i < sizeof (struct ar_hdr); i++)
5424 if (((char *) (&hdr))[i] == '\0')
5425 (((char *) (&hdr))[i]) = ' ';
5426
5427 /* Scribble out the ar header. */
5428 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
5429 != sizeof (struct ar_hdr))
5430 return false;
5431
5432 /* Now scribble out the lst header. */
5433 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
5434 != sizeof (struct lst_header))
5435 return false;
5436
5437 /* Build and write the armap. */
5438 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst) == false)
5439 return false;
5440
5441 /* Done. */
5442 return true;
5443 }
5444
5445 /* End of miscellaneous support functions. */
5446
5447 #define som_bfd_debug_info_start bfd_void
5448 #define som_bfd_debug_info_end bfd_void
5449 #define som_bfd_debug_info_accumulate (PROTO(void,(*),(bfd*, struct sec *))) bfd_void
5450
5451 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
5452 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
5453 #define som_truncate_arname bfd_bsd_truncate_arname
5454 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
5455
5456 #define som_get_lineno (struct lineno_cache_entry *(*)())bfd_nullvoidptr
5457 #define som_close_and_cleanup bfd_generic_close_and_cleanup
5458
5459 #define som_bfd_get_relocated_section_contents \
5460 bfd_generic_get_relocated_section_contents
5461 #define som_bfd_relax_section bfd_generic_relax_section
5462 #define som_bfd_make_debug_symbol \
5463 ((asymbol *(*) PARAMS ((bfd *, void *, unsigned long))) bfd_nullvoidptr)
5464 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
5465 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
5466 #define som_bfd_final_link _bfd_generic_final_link
5467 #define som_bfd_free_cached_info bfd_true
5468
5469 /* Core file support is in the hpux-core backend. */
5470 #define som_core_file_failing_command _bfd_dummy_core_file_failing_command
5471 #define som_core_file_failing_signal _bfd_dummy_core_file_failing_signal
5472 #define som_core_file_matches_executable_p _bfd_dummy_core_file_matches_executable_p
5473
5474 bfd_target som_vec =
5475 {
5476 "som", /* name */
5477 bfd_target_som_flavour,
5478 true, /* target byte order */
5479 true, /* target headers byte order */
5480 (HAS_RELOC | EXEC_P | /* object flags */
5481 HAS_LINENO | HAS_DEBUG |
5482 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
5483 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
5484 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
5485
5486 /* leading_symbol_char: is the first char of a user symbol
5487 predictable, and if so what is it */
5488 0,
5489 '/', /* ar_pad_char */
5490 14, /* ar_max_namelen */
5491 3, /* minimum alignment */
5492 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5493 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5494 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
5495 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5496 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5497 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
5498 {_bfd_dummy_target,
5499 som_object_p, /* bfd_check_format */
5500 bfd_generic_archive_p,
5501 _bfd_dummy_target
5502 },
5503 {
5504 bfd_false,
5505 som_mkobject,
5506 _bfd_generic_mkarchive,
5507 bfd_false
5508 },
5509 {
5510 bfd_false,
5511 som_write_object_contents,
5512 _bfd_write_archive_contents,
5513 bfd_false,
5514 },
5515 #undef som
5516 JUMP_TABLE (som),
5517 (PTR) 0
5518 };
5519
5520 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */