* som.c (som_object_setup): More heruistics to detect the
[binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
23
24 #include "bfd.h"
25 #include "sysdep.h"
26
27 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)
28
29 #include "libbfd.h"
30 #include "som.h"
31
32 #include <stdio.h>
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <signal.h>
36 #include <machine/reg.h>
37 #include <sys/file.h>
38 #include <errno.h>
39
40 /* Magic not defined in standard HP-UX header files until 8.0 */
41
42 #ifndef CPU_PA_RISC1_0
43 #define CPU_PA_RISC1_0 0x20B
44 #endif /* CPU_PA_RISC1_0 */
45
46 #ifndef CPU_PA_RISC1_1
47 #define CPU_PA_RISC1_1 0x210
48 #endif /* CPU_PA_RISC1_1 */
49
50 #ifndef _PA_RISC1_0_ID
51 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
52 #endif /* _PA_RISC1_0_ID */
53
54 #ifndef _PA_RISC1_1_ID
55 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
56 #endif /* _PA_RISC1_1_ID */
57
58 #ifndef _PA_RISC_MAXID
59 #define _PA_RISC_MAXID 0x2FF
60 #endif /* _PA_RISC_MAXID */
61
62 #ifndef _PA_RISC_ID
63 #define _PA_RISC_ID(__m_num) \
64 (((__m_num) == _PA_RISC1_0_ID) || \
65 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
66 #endif /* _PA_RISC_ID */
67
68
69 /* HIUX in it's infinite stupidity changed the names for several "well
70 known" constants. Work around such braindamage. Try the HPUX version
71 first, then the HIUX version, and finally provide a default. */
72 #ifdef HPUX_AUX_ID
73 #define EXEC_AUX_ID HPUX_AUX_ID
74 #endif
75
76 #if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID)
77 #define EXEC_AUX_ID HIUX_AUX_ID
78 #endif
79
80 #ifndef EXEC_AUX_ID
81 #define EXEC_AUX_ID 0
82 #endif
83
84 /* Size (in chars) of the temporary buffers used during fixup and string
85 table writes. */
86
87 #define SOM_TMP_BUFSIZE 8192
88
89 /* Size of the hash table in archives. */
90 #define SOM_LST_HASH_SIZE 31
91
92 /* Max number of SOMs to be found in an archive. */
93 #define SOM_LST_MODULE_LIMIT 1024
94
95 /* Generic alignment macro. */
96 #define SOM_ALIGN(val, alignment) \
97 (((val) + (alignment) - 1) & ~((alignment) - 1))
98
99 /* SOM allows any one of the four previous relocations to be reused
100 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
101 relocations are always a single byte, using a R_PREV_FIXUP instead
102 of some multi-byte relocation makes object files smaller.
103
104 Note one side effect of using a R_PREV_FIXUP is the relocation that
105 is being repeated moves to the front of the queue. */
106 struct reloc_queue
107 {
108 unsigned char *reloc;
109 unsigned int size;
110 } reloc_queue[4];
111
112 /* This fully describes the symbol types which may be attached to
113 an EXPORT or IMPORT directive. Only SOM uses this formation
114 (ELF has no need for it). */
115 typedef enum
116 {
117 SYMBOL_TYPE_UNKNOWN,
118 SYMBOL_TYPE_ABSOLUTE,
119 SYMBOL_TYPE_CODE,
120 SYMBOL_TYPE_DATA,
121 SYMBOL_TYPE_ENTRY,
122 SYMBOL_TYPE_MILLICODE,
123 SYMBOL_TYPE_PLABEL,
124 SYMBOL_TYPE_PRI_PROG,
125 SYMBOL_TYPE_SEC_PROG,
126 } pa_symbol_type;
127
128 struct section_to_type
129 {
130 char *section;
131 char type;
132 };
133
134 /* Assorted symbol information that needs to be derived from the BFD symbol
135 and/or the BFD backend private symbol data. */
136 struct som_misc_symbol_info
137 {
138 unsigned int symbol_type;
139 unsigned int symbol_scope;
140 unsigned int arg_reloc;
141 unsigned int symbol_info;
142 unsigned int symbol_value;
143 };
144
145 /* Forward declarations */
146
147 static boolean som_mkobject PARAMS ((bfd *));
148 static const bfd_target * som_object_setup PARAMS ((bfd *,
149 struct header *,
150 struct som_exec_auxhdr *));
151 static boolean setup_sections PARAMS ((bfd *, struct header *));
152 static const bfd_target * som_object_p PARAMS ((bfd *));
153 static boolean som_write_object_contents PARAMS ((bfd *));
154 static boolean som_slurp_string_table PARAMS ((bfd *));
155 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
156 static long som_get_symtab_upper_bound PARAMS ((bfd *));
157 static long som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
158 arelent **, asymbol **));
159 static long som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
160 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
161 arelent *, asection *,
162 asymbol **, boolean));
163 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
164 asymbol **, boolean));
165 static long som_get_symtab PARAMS ((bfd *, asymbol **));
166 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
167 static void som_print_symbol PARAMS ((bfd *, PTR,
168 asymbol *, bfd_print_symbol_type));
169 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
170 static boolean som_bfd_copy_private_section_data PARAMS ((bfd *, asection *,
171 bfd *, asection *));
172 static boolean som_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
173 static boolean som_bfd_is_local_label PARAMS ((bfd *, asymbol *));
174 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
175 file_ptr, bfd_size_type));
176 static boolean som_get_section_contents PARAMS ((bfd *, sec_ptr, PTR,
177 file_ptr, bfd_size_type));
178 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
179 unsigned long));
180 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
181 asymbol **, bfd_vma,
182 CONST char **,
183 CONST char **,
184 unsigned int *));
185 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
186 static asection * bfd_section_from_som_symbol PARAMS ((bfd *,
187 struct symbol_dictionary_record *));
188 static int log2 PARAMS ((unsigned int));
189 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
190 asymbol *, PTR,
191 asection *, bfd *,
192 char **));
193 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
194 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
195 struct reloc_queue *));
196 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
197 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
198 struct reloc_queue *));
199 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
200 unsigned int,
201 struct reloc_queue *));
202
203 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
204 unsigned char *, unsigned int *,
205 struct reloc_queue *));
206 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
207 unsigned int *,
208 struct reloc_queue *));
209 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
210 unsigned int *,
211 arelent *, int,
212 struct reloc_queue *));
213 static unsigned long som_count_spaces PARAMS ((bfd *));
214 static unsigned long som_count_subspaces PARAMS ((bfd *));
215 static int compare_syms PARAMS ((const void *, const void *));
216 static int compare_subspaces PARAMS ((const void *, const void *));
217 static unsigned long som_compute_checksum PARAMS ((bfd *));
218 static boolean som_prep_headers PARAMS ((bfd *));
219 static int som_sizeof_headers PARAMS ((bfd *, boolean));
220 static boolean som_finish_writing PARAMS ((bfd *));
221 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
222 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
223 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
224 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
225 unsigned int *));
226 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
227 asymbol **, unsigned int,
228 unsigned *));
229 static boolean som_begin_writing PARAMS ((bfd *));
230 static reloc_howto_type * som_bfd_reloc_type_lookup
231 PARAMS ((bfd *, bfd_reloc_code_real_type));
232 static char som_section_type PARAMS ((const char *));
233 static int som_decode_symclass PARAMS ((asymbol *));
234 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
235 symindex *));
236
237 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
238 carsym **syms));
239 static boolean som_slurp_armap PARAMS ((bfd *));
240 static boolean som_write_armap PARAMS ((bfd *, unsigned int, struct orl *,
241 unsigned int, int));
242 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
243 struct som_misc_symbol_info *));
244 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
245 unsigned int *));
246 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
247 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
248 unsigned int,
249 struct lst_header));
250 static CONST char *normalize PARAMS ((CONST char *file));
251 static boolean som_is_space PARAMS ((asection *));
252 static boolean som_is_subspace PARAMS ((asection *));
253 static boolean som_is_container PARAMS ((asection *, asection *));
254 static boolean som_bfd_free_cached_info PARAMS ((bfd *));
255
256 /* Map SOM section names to POSIX/BSD single-character symbol types.
257
258 This table includes all the standard subspaces as defined in the
259 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
260 some reason was left out, and sections specific to embedded stabs. */
261
262 static const struct section_to_type stt[] = {
263 {"$TEXT$", 't'},
264 {"$SHLIB_INFO$", 't'},
265 {"$MILLICODE$", 't'},
266 {"$LIT$", 't'},
267 {"$CODE$", 't'},
268 {"$UNWIND_START$", 't'},
269 {"$UNWIND$", 't'},
270 {"$PRIVATE$", 'd'},
271 {"$PLT$", 'd'},
272 {"$SHLIB_DATA$", 'd'},
273 {"$DATA$", 'd'},
274 {"$SHORTDATA$", 'g'},
275 {"$DLT$", 'd'},
276 {"$GLOBAL$", 'g'},
277 {"$SHORTBSS$", 's'},
278 {"$BSS$", 'b'},
279 {"$GDB_STRINGS$", 'N'},
280 {"$GDB_SYMBOLS$", 'N'},
281 {0, 0}
282 };
283
284 /* About the relocation formatting table...
285
286 There are 256 entries in the table, one for each possible
287 relocation opcode available in SOM. We index the table by
288 the relocation opcode. The names and operations are those
289 defined by a.out_800 (4).
290
291 Right now this table is only used to count and perform minimal
292 processing on relocation streams so that they can be internalized
293 into BFD and symbolically printed by utilities. To make actual use
294 of them would be much more difficult, BFD's concept of relocations
295 is far too simple to handle SOM relocations. The basic assumption
296 that a relocation can be completely processed independent of other
297 relocations before an object file is written is invalid for SOM.
298
299 The SOM relocations are meant to be processed as a stream, they
300 specify copying of data from the input section to the output section
301 while possibly modifying the data in some manner. They also can
302 specify that a variable number of zeros or uninitialized data be
303 inserted on in the output segment at the current offset. Some
304 relocations specify that some previous relocation be re-applied at
305 the current location in the input/output sections. And finally a number
306 of relocations have effects on other sections (R_ENTRY, R_EXIT,
307 R_UNWIND_AUX and a variety of others). There isn't even enough room
308 in the BFD relocation data structure to store enough information to
309 perform all the relocations.
310
311 Each entry in the table has three fields.
312
313 The first entry is an index into this "class" of relocations. This
314 index can then be used as a variable within the relocation itself.
315
316 The second field is a format string which actually controls processing
317 of the relocation. It uses a simple postfix machine to do calculations
318 based on variables/constants found in the string and the relocation
319 stream.
320
321 The third field specifys whether or not this relocation may use
322 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
323 stored in the instruction.
324
325 Variables:
326
327 L = input space byte count
328 D = index into class of relocations
329 M = output space byte count
330 N = statement number (unused?)
331 O = stack operation
332 R = parameter relocation bits
333 S = symbol index
334 T = first 32 bits of stack unwind information
335 U = second 32 bits of stack unwind information
336 V = a literal constant (usually used in the next relocation)
337 P = a previous relocation
338
339 Lower case letters (starting with 'b') refer to following
340 bytes in the relocation stream. 'b' is the next 1 byte,
341 c is the next 2 bytes, d is the next 3 bytes, etc...
342 This is the variable part of the relocation entries that
343 makes our life a living hell.
344
345 numerical constants are also used in the format string. Note
346 the constants are represented in decimal.
347
348 '+', "*" and "=" represents the obvious postfix operators.
349 '<' represents a left shift.
350
351 Stack Operations:
352
353 Parameter Relocation Bits:
354
355 Unwind Entries:
356
357 Previous Relocations: The index field represents which in the queue
358 of 4 previous fixups should be re-applied.
359
360 Literal Constants: These are generally used to represent addend
361 parts of relocations when these constants are not stored in the
362 fields of the instructions themselves. For example the instruction
363 addil foo-$global$-0x1234 would use an override for "0x1234" rather
364 than storing it into the addil itself. */
365
366 struct fixup_format
367 {
368 int D;
369 char *format;
370 };
371
372 static const struct fixup_format som_fixup_formats[256] =
373 {
374 /* R_NO_RELOCATION */
375 0, "LD1+4*=", /* 0x00 */
376 1, "LD1+4*=", /* 0x01 */
377 2, "LD1+4*=", /* 0x02 */
378 3, "LD1+4*=", /* 0x03 */
379 4, "LD1+4*=", /* 0x04 */
380 5, "LD1+4*=", /* 0x05 */
381 6, "LD1+4*=", /* 0x06 */
382 7, "LD1+4*=", /* 0x07 */
383 8, "LD1+4*=", /* 0x08 */
384 9, "LD1+4*=", /* 0x09 */
385 10, "LD1+4*=", /* 0x0a */
386 11, "LD1+4*=", /* 0x0b */
387 12, "LD1+4*=", /* 0x0c */
388 13, "LD1+4*=", /* 0x0d */
389 14, "LD1+4*=", /* 0x0e */
390 15, "LD1+4*=", /* 0x0f */
391 16, "LD1+4*=", /* 0x10 */
392 17, "LD1+4*=", /* 0x11 */
393 18, "LD1+4*=", /* 0x12 */
394 19, "LD1+4*=", /* 0x13 */
395 20, "LD1+4*=", /* 0x14 */
396 21, "LD1+4*=", /* 0x15 */
397 22, "LD1+4*=", /* 0x16 */
398 23, "LD1+4*=", /* 0x17 */
399 0, "LD8<b+1+4*=", /* 0x18 */
400 1, "LD8<b+1+4*=", /* 0x19 */
401 2, "LD8<b+1+4*=", /* 0x1a */
402 3, "LD8<b+1+4*=", /* 0x1b */
403 0, "LD16<c+1+4*=", /* 0x1c */
404 1, "LD16<c+1+4*=", /* 0x1d */
405 2, "LD16<c+1+4*=", /* 0x1e */
406 0, "Ld1+=", /* 0x1f */
407 /* R_ZEROES */
408 0, "Lb1+4*=", /* 0x20 */
409 1, "Ld1+=", /* 0x21 */
410 /* R_UNINIT */
411 0, "Lb1+4*=", /* 0x22 */
412 1, "Ld1+=", /* 0x23 */
413 /* R_RELOCATION */
414 0, "L4=", /* 0x24 */
415 /* R_DATA_ONE_SYMBOL */
416 0, "L4=Sb=", /* 0x25 */
417 1, "L4=Sd=", /* 0x26 */
418 /* R_DATA_PLEBEL */
419 0, "L4=Sb=", /* 0x27 */
420 1, "L4=Sd=", /* 0x28 */
421 /* R_SPACE_REF */
422 0, "L4=", /* 0x29 */
423 /* R_REPEATED_INIT */
424 0, "L4=Mb1+4*=", /* 0x2a */
425 1, "Lb4*=Mb1+L*=", /* 0x2b */
426 2, "Lb4*=Md1+4*=", /* 0x2c */
427 3, "Ld1+=Me1+=", /* 0x2d */
428 /* R_RESERVED */
429 0, "", /* 0x2e */
430 0, "", /* 0x2f */
431 /* R_PCREL_CALL */
432 0, "L4=RD=Sb=", /* 0x30 */
433 1, "L4=RD=Sb=", /* 0x31 */
434 2, "L4=RD=Sb=", /* 0x32 */
435 3, "L4=RD=Sb=", /* 0x33 */
436 4, "L4=RD=Sb=", /* 0x34 */
437 5, "L4=RD=Sb=", /* 0x35 */
438 6, "L4=RD=Sb=", /* 0x36 */
439 7, "L4=RD=Sb=", /* 0x37 */
440 8, "L4=RD=Sb=", /* 0x38 */
441 9, "L4=RD=Sb=", /* 0x39 */
442 0, "L4=RD8<b+=Sb=",/* 0x3a */
443 1, "L4=RD8<b+=Sb=",/* 0x3b */
444 0, "L4=RD8<b+=Sd=",/* 0x3c */
445 1, "L4=RD8<b+=Sd=",/* 0x3d */
446 /* R_RESERVED */
447 0, "", /* 0x3e */
448 0, "", /* 0x3f */
449 /* R_ABS_CALL */
450 0, "L4=RD=Sb=", /* 0x40 */
451 1, "L4=RD=Sb=", /* 0x41 */
452 2, "L4=RD=Sb=", /* 0x42 */
453 3, "L4=RD=Sb=", /* 0x43 */
454 4, "L4=RD=Sb=", /* 0x44 */
455 5, "L4=RD=Sb=", /* 0x45 */
456 6, "L4=RD=Sb=", /* 0x46 */
457 7, "L4=RD=Sb=", /* 0x47 */
458 8, "L4=RD=Sb=", /* 0x48 */
459 9, "L4=RD=Sb=", /* 0x49 */
460 0, "L4=RD8<b+=Sb=",/* 0x4a */
461 1, "L4=RD8<b+=Sb=",/* 0x4b */
462 0, "L4=RD8<b+=Sd=",/* 0x4c */
463 1, "L4=RD8<b+=Sd=",/* 0x4d */
464 /* R_RESERVED */
465 0, "", /* 0x4e */
466 0, "", /* 0x4f */
467 /* R_DP_RELATIVE */
468 0, "L4=SD=", /* 0x50 */
469 1, "L4=SD=", /* 0x51 */
470 2, "L4=SD=", /* 0x52 */
471 3, "L4=SD=", /* 0x53 */
472 4, "L4=SD=", /* 0x54 */
473 5, "L4=SD=", /* 0x55 */
474 6, "L4=SD=", /* 0x56 */
475 7, "L4=SD=", /* 0x57 */
476 8, "L4=SD=", /* 0x58 */
477 9, "L4=SD=", /* 0x59 */
478 10, "L4=SD=", /* 0x5a */
479 11, "L4=SD=", /* 0x5b */
480 12, "L4=SD=", /* 0x5c */
481 13, "L4=SD=", /* 0x5d */
482 14, "L4=SD=", /* 0x5e */
483 15, "L4=SD=", /* 0x5f */
484 16, "L4=SD=", /* 0x60 */
485 17, "L4=SD=", /* 0x61 */
486 18, "L4=SD=", /* 0x62 */
487 19, "L4=SD=", /* 0x63 */
488 20, "L4=SD=", /* 0x64 */
489 21, "L4=SD=", /* 0x65 */
490 22, "L4=SD=", /* 0x66 */
491 23, "L4=SD=", /* 0x67 */
492 24, "L4=SD=", /* 0x68 */
493 25, "L4=SD=", /* 0x69 */
494 26, "L4=SD=", /* 0x6a */
495 27, "L4=SD=", /* 0x6b */
496 28, "L4=SD=", /* 0x6c */
497 29, "L4=SD=", /* 0x6d */
498 30, "L4=SD=", /* 0x6e */
499 31, "L4=SD=", /* 0x6f */
500 32, "L4=Sb=", /* 0x70 */
501 33, "L4=Sd=", /* 0x71 */
502 /* R_RESERVED */
503 0, "", /* 0x72 */
504 0, "", /* 0x73 */
505 0, "", /* 0x74 */
506 0, "", /* 0x75 */
507 0, "", /* 0x76 */
508 0, "", /* 0x77 */
509 /* R_DLT_REL */
510 0, "L4=Sb=", /* 0x78 */
511 1, "L4=Sd=", /* 0x79 */
512 /* R_RESERVED */
513 0, "", /* 0x7a */
514 0, "", /* 0x7b */
515 0, "", /* 0x7c */
516 0, "", /* 0x7d */
517 0, "", /* 0x7e */
518 0, "", /* 0x7f */
519 /* R_CODE_ONE_SYMBOL */
520 0, "L4=SD=", /* 0x80 */
521 1, "L4=SD=", /* 0x81 */
522 2, "L4=SD=", /* 0x82 */
523 3, "L4=SD=", /* 0x83 */
524 4, "L4=SD=", /* 0x84 */
525 5, "L4=SD=", /* 0x85 */
526 6, "L4=SD=", /* 0x86 */
527 7, "L4=SD=", /* 0x87 */
528 8, "L4=SD=", /* 0x88 */
529 9, "L4=SD=", /* 0x89 */
530 10, "L4=SD=", /* 0x8q */
531 11, "L4=SD=", /* 0x8b */
532 12, "L4=SD=", /* 0x8c */
533 13, "L4=SD=", /* 0x8d */
534 14, "L4=SD=", /* 0x8e */
535 15, "L4=SD=", /* 0x8f */
536 16, "L4=SD=", /* 0x90 */
537 17, "L4=SD=", /* 0x91 */
538 18, "L4=SD=", /* 0x92 */
539 19, "L4=SD=", /* 0x93 */
540 20, "L4=SD=", /* 0x94 */
541 21, "L4=SD=", /* 0x95 */
542 22, "L4=SD=", /* 0x96 */
543 23, "L4=SD=", /* 0x97 */
544 24, "L4=SD=", /* 0x98 */
545 25, "L4=SD=", /* 0x99 */
546 26, "L4=SD=", /* 0x9a */
547 27, "L4=SD=", /* 0x9b */
548 28, "L4=SD=", /* 0x9c */
549 29, "L4=SD=", /* 0x9d */
550 30, "L4=SD=", /* 0x9e */
551 31, "L4=SD=", /* 0x9f */
552 32, "L4=Sb=", /* 0xa0 */
553 33, "L4=Sd=", /* 0xa1 */
554 /* R_RESERVED */
555 0, "", /* 0xa2 */
556 0, "", /* 0xa3 */
557 0, "", /* 0xa4 */
558 0, "", /* 0xa5 */
559 0, "", /* 0xa6 */
560 0, "", /* 0xa7 */
561 0, "", /* 0xa8 */
562 0, "", /* 0xa9 */
563 0, "", /* 0xaa */
564 0, "", /* 0xab */
565 0, "", /* 0xac */
566 0, "", /* 0xad */
567 /* R_MILLI_REL */
568 0, "L4=Sb=", /* 0xae */
569 1, "L4=Sd=", /* 0xaf */
570 /* R_CODE_PLABEL */
571 0, "L4=Sb=", /* 0xb0 */
572 1, "L4=Sd=", /* 0xb1 */
573 /* R_BREAKPOINT */
574 0, "L4=", /* 0xb2 */
575 /* R_ENTRY */
576 0, "Te=Ue=", /* 0xb3 */
577 1, "Uf=", /* 0xb4 */
578 /* R_ALT_ENTRY */
579 0, "", /* 0xb5 */
580 /* R_EXIT */
581 0, "", /* 0xb6 */
582 /* R_BEGIN_TRY */
583 0, "", /* 0xb7 */
584 /* R_END_TRY */
585 0, "R0=", /* 0xb8 */
586 1, "Rb4*=", /* 0xb9 */
587 2, "Rd4*=", /* 0xba */
588 /* R_BEGIN_BRTAB */
589 0, "", /* 0xbb */
590 /* R_END_BRTAB */
591 0, "", /* 0xbc */
592 /* R_STATEMENT */
593 0, "Nb=", /* 0xbd */
594 1, "Nc=", /* 0xbe */
595 2, "Nd=", /* 0xbf */
596 /* R_DATA_EXPR */
597 0, "L4=", /* 0xc0 */
598 /* R_CODE_EXPR */
599 0, "L4=", /* 0xc1 */
600 /* R_FSEL */
601 0, "", /* 0xc2 */
602 /* R_LSEL */
603 0, "", /* 0xc3 */
604 /* R_RSEL */
605 0, "", /* 0xc4 */
606 /* R_N_MODE */
607 0, "", /* 0xc5 */
608 /* R_S_MODE */
609 0, "", /* 0xc6 */
610 /* R_D_MODE */
611 0, "", /* 0xc7 */
612 /* R_R_MODE */
613 0, "", /* 0xc8 */
614 /* R_DATA_OVERRIDE */
615 0, "V0=", /* 0xc9 */
616 1, "Vb=", /* 0xca */
617 2, "Vc=", /* 0xcb */
618 3, "Vd=", /* 0xcc */
619 4, "Ve=", /* 0xcd */
620 /* R_TRANSLATED */
621 0, "", /* 0xce */
622 /* R_RESERVED */
623 0, "", /* 0xcf */
624 /* R_COMP1 */
625 0, "Ob=", /* 0xd0 */
626 /* R_COMP2 */
627 0, "Ob=Sd=", /* 0xd1 */
628 /* R_COMP3 */
629 0, "Ob=Ve=", /* 0xd2 */
630 /* R_PREV_FIXUP */
631 0, "P", /* 0xd3 */
632 1, "P", /* 0xd4 */
633 2, "P", /* 0xd5 */
634 3, "P", /* 0xd6 */
635 /* R_RESERVED */
636 0, "", /* 0xd7 */
637 0, "", /* 0xd8 */
638 0, "", /* 0xd9 */
639 0, "", /* 0xda */
640 0, "", /* 0xdb */
641 0, "", /* 0xdc */
642 0, "", /* 0xdd */
643 0, "", /* 0xde */
644 0, "", /* 0xdf */
645 0, "", /* 0xe0 */
646 0, "", /* 0xe1 */
647 0, "", /* 0xe2 */
648 0, "", /* 0xe3 */
649 0, "", /* 0xe4 */
650 0, "", /* 0xe5 */
651 0, "", /* 0xe6 */
652 0, "", /* 0xe7 */
653 0, "", /* 0xe8 */
654 0, "", /* 0xe9 */
655 0, "", /* 0xea */
656 0, "", /* 0xeb */
657 0, "", /* 0xec */
658 0, "", /* 0xed */
659 0, "", /* 0xee */
660 0, "", /* 0xef */
661 0, "", /* 0xf0 */
662 0, "", /* 0xf1 */
663 0, "", /* 0xf2 */
664 0, "", /* 0xf3 */
665 0, "", /* 0xf4 */
666 0, "", /* 0xf5 */
667 0, "", /* 0xf6 */
668 0, "", /* 0xf7 */
669 0, "", /* 0xf8 */
670 0, "", /* 0xf9 */
671 0, "", /* 0xfa */
672 0, "", /* 0xfb */
673 0, "", /* 0xfc */
674 0, "", /* 0xfd */
675 0, "", /* 0xfe */
676 0, "", /* 0xff */
677 };
678
679 static const int comp1_opcodes[] =
680 {
681 0x00,
682 0x40,
683 0x41,
684 0x42,
685 0x43,
686 0x44,
687 0x45,
688 0x46,
689 0x47,
690 0x48,
691 0x49,
692 0x4a,
693 0x4b,
694 0x60,
695 0x80,
696 0xa0,
697 0xc0,
698 -1
699 };
700
701 static const int comp2_opcodes[] =
702 {
703 0x00,
704 0x80,
705 0x82,
706 0xc0,
707 -1
708 };
709
710 static const int comp3_opcodes[] =
711 {
712 0x00,
713 0x02,
714 -1
715 };
716
717 /* These apparently are not in older versions of hpux reloc.h. */
718 #ifndef R_DLT_REL
719 #define R_DLT_REL 0x78
720 #endif
721
722 #ifndef R_AUX_UNWIND
723 #define R_AUX_UNWIND 0xcf
724 #endif
725
726 #ifndef R_SEC_STMT
727 #define R_SEC_STMT 0xd7
728 #endif
729
730 static reloc_howto_type som_hppa_howto_table[] =
731 {
732 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
733 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
734 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
735 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
736 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
737 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
738 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
739 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
740 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
741 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
742 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
743 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
744 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
745 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
746 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
747 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
748 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
749 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
750 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
751 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
752 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
753 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
754 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
755 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
756 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
757 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
758 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
759 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
760 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
761 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
762 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
763 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
764 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
765 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
766 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
767 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
768 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
769 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
770 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
771 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
772 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
773 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
774 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
775 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
776 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
777 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
778 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
779 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
780 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
781 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
782 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
783 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
784 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
785 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
786 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
787 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
788 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
789 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
790 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
791 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
792 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
793 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
794 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
795 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
796 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
797 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
798 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
799 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
800 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
801 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
802 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
803 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
804 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
805 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
806 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
807 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
808 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
809 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
810 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
811 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
812 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
813 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
814 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
815 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
816 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
817 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
818 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
819 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
820 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
821 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
822 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
823 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
824 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
825 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
826 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
827 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
828 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
829 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
830 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
831 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
832 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
833 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
834 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
835 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
836 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
837 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
838 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
839 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
840 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
841 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
842 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
843 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
844 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
845 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
846 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
847 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
848 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
849 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
850 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
851 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
852 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
853 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
854 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
855 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
856 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
857 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
858 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
859 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
860 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
861 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
862 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
863 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
864 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
865 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
866 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
867 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
868 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
869 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
870 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
871 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
872 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
873 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
874 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
875 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
876 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
877 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
878 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
879 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
880 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
881 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
882 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
883 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
884 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
885 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
886 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
887 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
888 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
889 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
890 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
891 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
892 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
893 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
894 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
895 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
896 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
897 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
898 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
899 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
900 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
901 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
902 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
903 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
904 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
905 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
906 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
907 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
908 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
909 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
910 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
911 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
912 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
913 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
914 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
915 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
916 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
917 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
918 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
919 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
920 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
921 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
922 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
923 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
924 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
925 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
926 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
927 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
928 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
929 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
930 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
931 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
932 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
933 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
934 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
935 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
936 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
937 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
938 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
939 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
940 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
941 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
942 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
943 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
944 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
945 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
946 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
947 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
948 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
949 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
950 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
951 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
952 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
953 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
954 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
955 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
956 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
957 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
958 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
959 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
960 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
961 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
962 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
963 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
964 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
965 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
966 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
967 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
968 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
969 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
970 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
971 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
972 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
973 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
974 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
975 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
976 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
977 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
978 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
979 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
980 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
981 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
982 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
983 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
984 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
985 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
986 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
987 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
988
989 /* Initialize the SOM relocation queue. By definition the queue holds
990 the last four multibyte fixups. */
991
992 static void
993 som_initialize_reloc_queue (queue)
994 struct reloc_queue *queue;
995 {
996 queue[0].reloc = NULL;
997 queue[0].size = 0;
998 queue[1].reloc = NULL;
999 queue[1].size = 0;
1000 queue[2].reloc = NULL;
1001 queue[2].size = 0;
1002 queue[3].reloc = NULL;
1003 queue[3].size = 0;
1004 }
1005
1006 /* Insert a new relocation into the relocation queue. */
1007
1008 static void
1009 som_reloc_queue_insert (p, size, queue)
1010 unsigned char *p;
1011 unsigned int size;
1012 struct reloc_queue *queue;
1013 {
1014 queue[3].reloc = queue[2].reloc;
1015 queue[3].size = queue[2].size;
1016 queue[2].reloc = queue[1].reloc;
1017 queue[2].size = queue[1].size;
1018 queue[1].reloc = queue[0].reloc;
1019 queue[1].size = queue[0].size;
1020 queue[0].reloc = p;
1021 queue[0].size = size;
1022 }
1023
1024 /* When an entry in the relocation queue is reused, the entry moves
1025 to the front of the queue. */
1026
1027 static void
1028 som_reloc_queue_fix (queue, index)
1029 struct reloc_queue *queue;
1030 unsigned int index;
1031 {
1032 if (index == 0)
1033 return;
1034
1035 if (index == 1)
1036 {
1037 unsigned char *tmp1 = queue[0].reloc;
1038 unsigned int tmp2 = queue[0].size;
1039 queue[0].reloc = queue[1].reloc;
1040 queue[0].size = queue[1].size;
1041 queue[1].reloc = tmp1;
1042 queue[1].size = tmp2;
1043 return;
1044 }
1045
1046 if (index == 2)
1047 {
1048 unsigned char *tmp1 = queue[0].reloc;
1049 unsigned int tmp2 = queue[0].size;
1050 queue[0].reloc = queue[2].reloc;
1051 queue[0].size = queue[2].size;
1052 queue[2].reloc = queue[1].reloc;
1053 queue[2].size = queue[1].size;
1054 queue[1].reloc = tmp1;
1055 queue[1].size = tmp2;
1056 return;
1057 }
1058
1059 if (index == 3)
1060 {
1061 unsigned char *tmp1 = queue[0].reloc;
1062 unsigned int tmp2 = queue[0].size;
1063 queue[0].reloc = queue[3].reloc;
1064 queue[0].size = queue[3].size;
1065 queue[3].reloc = queue[2].reloc;
1066 queue[3].size = queue[2].size;
1067 queue[2].reloc = queue[1].reloc;
1068 queue[2].size = queue[1].size;
1069 queue[1].reloc = tmp1;
1070 queue[1].size = tmp2;
1071 return;
1072 }
1073 abort();
1074 }
1075
1076 /* Search for a particular relocation in the relocation queue. */
1077
1078 static int
1079 som_reloc_queue_find (p, size, queue)
1080 unsigned char *p;
1081 unsigned int size;
1082 struct reloc_queue *queue;
1083 {
1084 if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
1085 && size == queue[0].size)
1086 return 0;
1087 if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
1088 && size == queue[1].size)
1089 return 1;
1090 if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
1091 && size == queue[2].size)
1092 return 2;
1093 if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
1094 && size == queue[3].size)
1095 return 3;
1096 return -1;
1097 }
1098
1099 static unsigned char *
1100 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1101 bfd *abfd;
1102 int *subspace_reloc_sizep;
1103 unsigned char *p;
1104 unsigned int size;
1105 struct reloc_queue *queue;
1106 {
1107 int queue_index = som_reloc_queue_find (p, size, queue);
1108
1109 if (queue_index != -1)
1110 {
1111 /* Found this in a previous fixup. Undo the fixup we
1112 just built and use R_PREV_FIXUP instead. We saved
1113 a total of size - 1 bytes in the fixup stream. */
1114 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1115 p += 1;
1116 *subspace_reloc_sizep += 1;
1117 som_reloc_queue_fix (queue, queue_index);
1118 }
1119 else
1120 {
1121 som_reloc_queue_insert (p, size, queue);
1122 *subspace_reloc_sizep += size;
1123 p += size;
1124 }
1125 return p;
1126 }
1127
1128 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1129 bytes without any relocation. Update the size of the subspace
1130 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1131 current pointer into the relocation stream. */
1132
1133 static unsigned char *
1134 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1135 bfd *abfd;
1136 unsigned int skip;
1137 unsigned char *p;
1138 unsigned int *subspace_reloc_sizep;
1139 struct reloc_queue *queue;
1140 {
1141 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1142 then R_PREV_FIXUPs to get the difference down to a
1143 reasonable size. */
1144 if (skip >= 0x1000000)
1145 {
1146 skip -= 0x1000000;
1147 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1148 bfd_put_8 (abfd, 0xff, p + 1);
1149 bfd_put_16 (abfd, 0xffff, p + 2);
1150 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1151 while (skip >= 0x1000000)
1152 {
1153 skip -= 0x1000000;
1154 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1155 p++;
1156 *subspace_reloc_sizep += 1;
1157 /* No need to adjust queue here since we are repeating the
1158 most recent fixup. */
1159 }
1160 }
1161
1162 /* The difference must be less than 0x1000000. Use one
1163 more R_NO_RELOCATION entry to get to the right difference. */
1164 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1165 {
1166 /* Difference can be handled in a simple single-byte
1167 R_NO_RELOCATION entry. */
1168 if (skip <= 0x60)
1169 {
1170 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1171 *subspace_reloc_sizep += 1;
1172 p++;
1173 }
1174 /* Handle it with a two byte R_NO_RELOCATION entry. */
1175 else if (skip <= 0x1000)
1176 {
1177 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1178 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1179 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1180 }
1181 /* Handle it with a three byte R_NO_RELOCATION entry. */
1182 else
1183 {
1184 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1185 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1186 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1187 }
1188 }
1189 /* Ugh. Punt and use a 4 byte entry. */
1190 else if (skip > 0)
1191 {
1192 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1193 bfd_put_8 (abfd, (skip - 1) >> 16, p + 1);
1194 bfd_put_16 (abfd, skip - 1, p + 2);
1195 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1196 }
1197 return p;
1198 }
1199
1200 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1201 from a BFD relocation. Update the size of the subspace relocation
1202 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1203 into the relocation stream. */
1204
1205 static unsigned char *
1206 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1207 bfd *abfd;
1208 int addend;
1209 unsigned char *p;
1210 unsigned int *subspace_reloc_sizep;
1211 struct reloc_queue *queue;
1212 {
1213 if ((unsigned)(addend) + 0x80 < 0x100)
1214 {
1215 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1216 bfd_put_8 (abfd, addend, p + 1);
1217 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1218 }
1219 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1220 {
1221 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1222 bfd_put_16 (abfd, addend, p + 1);
1223 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1224 }
1225 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1226 {
1227 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1228 bfd_put_8 (abfd, addend >> 16, p + 1);
1229 bfd_put_16 (abfd, addend, p + 2);
1230 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1231 }
1232 else
1233 {
1234 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1235 bfd_put_32 (abfd, addend, p + 1);
1236 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1237 }
1238 return p;
1239 }
1240
1241 /* Handle a single function call relocation. */
1242
1243 static unsigned char *
1244 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1245 bfd *abfd;
1246 unsigned char *p;
1247 unsigned int *subspace_reloc_sizep;
1248 arelent *bfd_reloc;
1249 int sym_num;
1250 struct reloc_queue *queue;
1251 {
1252 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1253 int rtn_bits = arg_bits & 0x3;
1254 int type, done = 0;
1255
1256 /* You'll never believe all this is necessary to handle relocations
1257 for function calls. Having to compute and pack the argument
1258 relocation bits is the real nightmare.
1259
1260 If you're interested in how this works, just forget it. You really
1261 do not want to know about this braindamage. */
1262
1263 /* First see if this can be done with a "simple" relocation. Simple
1264 relocations have a symbol number < 0x100 and have simple encodings
1265 of argument relocations. */
1266
1267 if (sym_num < 0x100)
1268 {
1269 switch (arg_bits)
1270 {
1271 case 0:
1272 case 1:
1273 type = 0;
1274 break;
1275 case 1 << 8:
1276 case 1 << 8 | 1:
1277 type = 1;
1278 break;
1279 case 1 << 8 | 1 << 6:
1280 case 1 << 8 | 1 << 6 | 1:
1281 type = 2;
1282 break;
1283 case 1 << 8 | 1 << 6 | 1 << 4:
1284 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1285 type = 3;
1286 break;
1287 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1288 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1289 type = 4;
1290 break;
1291 default:
1292 /* Not one of the easy encodings. This will have to be
1293 handled by the more complex code below. */
1294 type = -1;
1295 break;
1296 }
1297 if (type != -1)
1298 {
1299 /* Account for the return value too. */
1300 if (rtn_bits)
1301 type += 5;
1302
1303 /* Emit a 2 byte relocation. Then see if it can be handled
1304 with a relocation which is already in the relocation queue. */
1305 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1306 bfd_put_8 (abfd, sym_num, p + 1);
1307 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1308 done = 1;
1309 }
1310 }
1311
1312 /* If this could not be handled with a simple relocation, then do a hard
1313 one. Hard relocations occur if the symbol number was too high or if
1314 the encoding of argument relocation bits is too complex. */
1315 if (! done)
1316 {
1317 /* Don't ask about these magic sequences. I took them straight
1318 from gas-1.36 which took them from the a.out man page. */
1319 type = rtn_bits;
1320 if ((arg_bits >> 6 & 0xf) == 0xe)
1321 type += 9 * 40;
1322 else
1323 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1324 if ((arg_bits >> 2 & 0xf) == 0xe)
1325 type += 9 * 4;
1326 else
1327 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1328
1329 /* Output the first two bytes of the relocation. These describe
1330 the length of the relocation and encoding style. */
1331 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1332 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1333 p);
1334 bfd_put_8 (abfd, type, p + 1);
1335
1336 /* Now output the symbol index and see if this bizarre relocation
1337 just happened to be in the relocation queue. */
1338 if (sym_num < 0x100)
1339 {
1340 bfd_put_8 (abfd, sym_num, p + 2);
1341 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1342 }
1343 else
1344 {
1345 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1346 bfd_put_16 (abfd, sym_num, p + 3);
1347 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1348 }
1349 }
1350 return p;
1351 }
1352
1353
1354 /* Return the logarithm of X, base 2, considering X unsigned.
1355 Abort -1 if X is not a power or two or is zero. */
1356
1357 static int
1358 log2 (x)
1359 unsigned int x;
1360 {
1361 int log = 0;
1362
1363 /* Test for 0 or a power of 2. */
1364 if (x == 0 || x != (x & -x))
1365 return -1;
1366
1367 while ((x >>= 1) != 0)
1368 log++;
1369 return log;
1370 }
1371
1372 static bfd_reloc_status_type
1373 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1374 input_section, output_bfd, error_message)
1375 bfd *abfd;
1376 arelent *reloc_entry;
1377 asymbol *symbol_in;
1378 PTR data;
1379 asection *input_section;
1380 bfd *output_bfd;
1381 char **error_message;
1382 {
1383 if (output_bfd)
1384 {
1385 reloc_entry->address += input_section->output_offset;
1386 return bfd_reloc_ok;
1387 }
1388 return bfd_reloc_ok;
1389 }
1390
1391 /* Given a generic HPPA relocation type, the instruction format,
1392 and a field selector, return one or more appropriate SOM relocations. */
1393
1394 int **
1395 hppa_som_gen_reloc_type (abfd, base_type, format, field)
1396 bfd *abfd;
1397 int base_type;
1398 int format;
1399 enum hppa_reloc_field_selector_type_alt field;
1400 {
1401 int *final_type, **final_types;
1402
1403 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 3);
1404 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1405 if (!final_types || !final_type)
1406 {
1407 bfd_set_error (bfd_error_no_memory);
1408 return NULL;
1409 }
1410
1411 /* The field selector may require additional relocations to be
1412 generated. It's impossible to know at this moment if additional
1413 relocations will be needed, so we make them. The code to actually
1414 write the relocation/fixup stream is responsible for removing
1415 any redundant relocations. */
1416 switch (field)
1417 {
1418 case e_fsel:
1419 case e_psel:
1420 case e_lpsel:
1421 case e_rpsel:
1422 final_types[0] = final_type;
1423 final_types[1] = NULL;
1424 final_types[2] = NULL;
1425 *final_type = base_type;
1426 break;
1427
1428 case e_tsel:
1429 case e_ltsel:
1430 case e_rtsel:
1431 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1432 if (!final_types[0])
1433 {
1434 bfd_set_error (bfd_error_no_memory);
1435 return NULL;
1436 }
1437 if (field == e_tsel)
1438 *final_types[0] = R_FSEL;
1439 else if (field == e_ltsel)
1440 *final_types[0] = R_LSEL;
1441 else
1442 *final_types[0] = R_RSEL;
1443 final_types[1] = final_type;
1444 final_types[2] = NULL;
1445 *final_type = base_type;
1446 break;
1447
1448 case e_lssel:
1449 case e_rssel:
1450 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1451 if (!final_types[0])
1452 {
1453 bfd_set_error (bfd_error_no_memory);
1454 return NULL;
1455 }
1456 *final_types[0] = R_S_MODE;
1457 final_types[1] = final_type;
1458 final_types[2] = NULL;
1459 *final_type = base_type;
1460 break;
1461
1462 case e_lsel:
1463 case e_rsel:
1464 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1465 if (!final_types[0])
1466 {
1467 bfd_set_error (bfd_error_no_memory);
1468 return NULL;
1469 }
1470 *final_types[0] = R_N_MODE;
1471 final_types[1] = final_type;
1472 final_types[2] = NULL;
1473 *final_type = base_type;
1474 break;
1475
1476 case e_ldsel:
1477 case e_rdsel:
1478 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1479 if (!final_types[0])
1480 {
1481 bfd_set_error (bfd_error_no_memory);
1482 return NULL;
1483 }
1484 *final_types[0] = R_D_MODE;
1485 final_types[1] = final_type;
1486 final_types[2] = NULL;
1487 *final_type = base_type;
1488 break;
1489
1490 case e_lrsel:
1491 case e_rrsel:
1492 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1493 if (!final_types[0])
1494 {
1495 bfd_set_error (bfd_error_no_memory);
1496 return NULL;
1497 }
1498 *final_types[0] = R_R_MODE;
1499 final_types[1] = final_type;
1500 final_types[2] = NULL;
1501 *final_type = base_type;
1502 break;
1503 }
1504
1505 switch (base_type)
1506 {
1507 case R_HPPA:
1508 /* PLABELs get their own relocation type. */
1509 if (field == e_psel
1510 || field == e_lpsel
1511 || field == e_rpsel)
1512 {
1513 /* A PLABEL relocation that has a size of 32 bits must
1514 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1515 if (format == 32)
1516 *final_type = R_DATA_PLABEL;
1517 else
1518 *final_type = R_CODE_PLABEL;
1519 }
1520 /* PIC stuff. */
1521 else if (field == e_tsel
1522 || field == e_ltsel
1523 || field == e_rtsel)
1524 *final_type = R_DLT_REL;
1525 /* A relocation in the data space is always a full 32bits. */
1526 else if (format == 32)
1527 *final_type = R_DATA_ONE_SYMBOL;
1528
1529 break;
1530
1531 case R_HPPA_GOTOFF:
1532 /* More PLABEL special cases. */
1533 if (field == e_psel
1534 || field == e_lpsel
1535 || field == e_rpsel)
1536 *final_type = R_DATA_PLABEL;
1537 break;
1538
1539 case R_HPPA_NONE:
1540 case R_HPPA_ABS_CALL:
1541 case R_HPPA_PCREL_CALL:
1542 /* Right now we can default all these. */
1543 break;
1544 }
1545 return final_types;
1546 }
1547
1548 /* Return the address of the correct entry in the PA SOM relocation
1549 howto table. */
1550
1551 /*ARGSUSED*/
1552 static reloc_howto_type *
1553 som_bfd_reloc_type_lookup (abfd, code)
1554 bfd *abfd;
1555 bfd_reloc_code_real_type code;
1556 {
1557 if ((int) code < (int) R_NO_RELOCATION + 255)
1558 {
1559 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1560 return &som_hppa_howto_table[(int) code];
1561 }
1562
1563 return (reloc_howto_type *) 0;
1564 }
1565
1566 /* Perform some initialization for an object. Save results of this
1567 initialization in the BFD. */
1568
1569 static const bfd_target *
1570 som_object_setup (abfd, file_hdrp, aux_hdrp)
1571 bfd *abfd;
1572 struct header *file_hdrp;
1573 struct som_exec_auxhdr *aux_hdrp;
1574 {
1575 asection *section;
1576 int found;
1577
1578 /* som_mkobject will set bfd_error if som_mkobject fails. */
1579 if (som_mkobject (abfd) != true)
1580 return 0;
1581
1582 /* Set BFD flags based on what information is available in the SOM. */
1583 abfd->flags = NO_FLAGS;
1584 if (file_hdrp->symbol_total)
1585 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1586
1587 switch (file_hdrp->a_magic)
1588 {
1589 case DEMAND_MAGIC:
1590 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1591 break;
1592 case SHARE_MAGIC:
1593 abfd->flags |= (WP_TEXT | EXEC_P);
1594 break;
1595 case EXEC_MAGIC:
1596 abfd->flags |= (EXEC_P);
1597 break;
1598 case RELOC_MAGIC:
1599 abfd->flags |= HAS_RELOC;
1600 break;
1601 #ifdef SHL_MAGIC
1602 case SHL_MAGIC:
1603 #endif
1604 #ifdef DL_MAGIC
1605 case DL_MAGIC:
1606 #endif
1607 abfd->flags |= DYNAMIC;
1608 break;
1609
1610 default:
1611 break;
1612 }
1613
1614 /* Allocate space to hold the saved exec header information. */
1615 obj_som_exec_data (abfd) = (struct som_exec_data *)
1616 bfd_zalloc (abfd, sizeof (struct som_exec_data ));
1617 if (obj_som_exec_data (abfd) == NULL)
1618 {
1619 bfd_set_error (bfd_error_no_memory);
1620 return NULL;
1621 }
1622
1623 /* The braindamaged OSF1 linker switched exec_flags and exec_entry!
1624
1625 We used to identify OSF1 binaries based on NEW_VERSION_ID, but
1626 apparently the latest HPUX linker is using NEW_VERSION_ID now.
1627
1628 It's about time, OSF has used the new id since at least 1992;
1629 HPUX didn't start till nearly 1995!.
1630
1631 The new approach examines the entry field. If it's zero or not 4
1632 byte aligned then it's not a proper code address and we guess it's
1633 really the executable flags. */
1634 found = 0;
1635 for (section = abfd->sections; section; section = section->next)
1636 {
1637 if ((section->flags & SEC_CODE) == 0)
1638 continue;
1639 if (aux_hdrp->exec_entry >= section->vma
1640 && aux_hdrp->exec_entry < section->vma + section->_cooked_size)
1641 found = 1;
1642 }
1643 if (aux_hdrp->exec_entry == 0
1644 || (aux_hdrp->exec_entry & 0x3) != 0
1645 || ! found)
1646 {
1647 bfd_get_start_address (abfd) = aux_hdrp->exec_flags;
1648 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_entry;
1649 }
1650 else
1651 {
1652 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1653 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1654 }
1655
1656 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 0);
1657 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1658
1659 /* Initialize the saved symbol table and string table to NULL.
1660 Save important offsets and sizes from the SOM header into
1661 the BFD. */
1662 obj_som_stringtab (abfd) = (char *) NULL;
1663 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1664 obj_som_sorted_syms (abfd) = NULL;
1665 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1666 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1667 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1668 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
1669 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1670
1671 return abfd->xvec;
1672 }
1673
1674 /* Convert all of the space and subspace info into BFD sections. Each space
1675 contains a number of subspaces, which in turn describe the mapping between
1676 regions of the exec file, and the address space that the program runs in.
1677 BFD sections which correspond to spaces will overlap the sections for the
1678 associated subspaces. */
1679
1680 static boolean
1681 setup_sections (abfd, file_hdr)
1682 bfd *abfd;
1683 struct header *file_hdr;
1684 {
1685 char *space_strings;
1686 unsigned int space_index, i;
1687 unsigned int total_subspaces = 0;
1688 asection **subspace_sections, *section;
1689
1690 /* First, read in space names */
1691
1692 space_strings = malloc (file_hdr->space_strings_size);
1693 if (!space_strings && file_hdr->space_strings_size != 0)
1694 {
1695 bfd_set_error (bfd_error_no_memory);
1696 goto error_return;
1697 }
1698
1699 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
1700 goto error_return;
1701 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1702 != file_hdr->space_strings_size)
1703 goto error_return;
1704
1705 /* Loop over all of the space dictionaries, building up sections */
1706 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1707 {
1708 struct space_dictionary_record space;
1709 struct subspace_dictionary_record subspace, save_subspace;
1710 int subspace_index;
1711 asection *space_asect;
1712 char *newname;
1713
1714 /* Read the space dictionary element */
1715 if (bfd_seek (abfd, file_hdr->space_location
1716 + space_index * sizeof space, SEEK_SET) < 0)
1717 goto error_return;
1718 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1719 goto error_return;
1720
1721 /* Setup the space name string */
1722 space.name.n_name = space.name.n_strx + space_strings;
1723
1724 /* Make a section out of it */
1725 newname = bfd_alloc (abfd, strlen (space.name.n_name) + 1);
1726 if (!newname)
1727 goto error_return;
1728 strcpy (newname, space.name.n_name);
1729
1730 space_asect = bfd_make_section_anyway (abfd, newname);
1731 if (!space_asect)
1732 goto error_return;
1733
1734 if (space.is_loadable == 0)
1735 space_asect->flags |= SEC_DEBUGGING;
1736
1737 /* Set up all the attributes for the space. */
1738 if (bfd_som_set_section_attributes (space_asect, space.is_defined,
1739 space.is_private, space.sort_key,
1740 space.space_number) == false)
1741 goto error_return;
1742
1743 /* Now, read in the first subspace for this space */
1744 if (bfd_seek (abfd, file_hdr->subspace_location
1745 + space.subspace_index * sizeof subspace,
1746 SEEK_SET) < 0)
1747 goto error_return;
1748 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1749 goto error_return;
1750 /* Seek back to the start of the subspaces for loop below */
1751 if (bfd_seek (abfd, file_hdr->subspace_location
1752 + space.subspace_index * sizeof subspace,
1753 SEEK_SET) < 0)
1754 goto error_return;
1755
1756 /* Setup the start address and file loc from the first subspace record */
1757 space_asect->vma = subspace.subspace_start;
1758 space_asect->filepos = subspace.file_loc_init_value;
1759 space_asect->alignment_power = log2 (subspace.alignment);
1760 if (space_asect->alignment_power == -1)
1761 goto error_return;
1762
1763 /* Initialize save_subspace so we can reliably determine if this
1764 loop placed any useful values into it. */
1765 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1766
1767 /* Loop over the rest of the subspaces, building up more sections */
1768 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1769 subspace_index++)
1770 {
1771 asection *subspace_asect;
1772
1773 /* Read in the next subspace */
1774 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1775 != sizeof subspace)
1776 goto error_return;
1777
1778 /* Setup the subspace name string */
1779 subspace.name.n_name = subspace.name.n_strx + space_strings;
1780
1781 newname = bfd_alloc (abfd, strlen (subspace.name.n_name) + 1);
1782 if (!newname)
1783 goto error_return;
1784 strcpy (newname, subspace.name.n_name);
1785
1786 /* Make a section out of this subspace */
1787 subspace_asect = bfd_make_section_anyway (abfd, newname);
1788 if (!subspace_asect)
1789 goto error_return;
1790
1791 /* Store private information about the section. */
1792 if (bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1793 subspace.access_control_bits,
1794 subspace.sort_key,
1795 subspace.quadrant) == false)
1796 goto error_return;
1797
1798 /* Keep an easy mapping between subspaces and sections.
1799 Note we do not necessarily read the subspaces in the
1800 same order in which they appear in the object file.
1801
1802 So to make the target index come out correctly, we
1803 store the location of the subspace header in target
1804 index, then sort using the location of the subspace
1805 header as the key. Then we can assign correct
1806 subspace indices. */
1807 total_subspaces++;
1808 subspace_asect->target_index = bfd_tell (abfd) - sizeof (subspace);
1809
1810 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1811 by the access_control_bits in the subspace header. */
1812 switch (subspace.access_control_bits >> 4)
1813 {
1814 /* Readonly data. */
1815 case 0x0:
1816 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1817 break;
1818
1819 /* Normal data. */
1820 case 0x1:
1821 subspace_asect->flags |= SEC_DATA;
1822 break;
1823
1824 /* Readonly code and the gateways.
1825 Gateways have other attributes which do not map
1826 into anything BFD knows about. */
1827 case 0x2:
1828 case 0x4:
1829 case 0x5:
1830 case 0x6:
1831 case 0x7:
1832 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1833 break;
1834
1835 /* dynamic (writable) code. */
1836 case 0x3:
1837 subspace_asect->flags |= SEC_CODE;
1838 break;
1839 }
1840
1841 if (subspace.dup_common || subspace.is_common)
1842 subspace_asect->flags |= SEC_IS_COMMON;
1843 else if (subspace.subspace_length > 0)
1844 subspace_asect->flags |= SEC_HAS_CONTENTS;
1845
1846 if (subspace.is_loadable)
1847 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1848 else
1849 subspace_asect->flags |= SEC_DEBUGGING;
1850
1851 if (subspace.code_only)
1852 subspace_asect->flags |= SEC_CODE;
1853
1854 /* Both file_loc_init_value and initialization_length will
1855 be zero for a BSS like subspace. */
1856 if (subspace.file_loc_init_value == 0
1857 && subspace.initialization_length == 0)
1858 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD | SEC_HAS_CONTENTS);
1859
1860 /* This subspace has relocations.
1861 The fixup_request_quantity is a byte count for the number of
1862 entries in the relocation stream; it is not the actual number
1863 of relocations in the subspace. */
1864 if (subspace.fixup_request_quantity != 0)
1865 {
1866 subspace_asect->flags |= SEC_RELOC;
1867 subspace_asect->rel_filepos = subspace.fixup_request_index;
1868 som_section_data (subspace_asect)->reloc_size
1869 = subspace.fixup_request_quantity;
1870 /* We can not determine this yet. When we read in the
1871 relocation table the correct value will be filled in. */
1872 subspace_asect->reloc_count = -1;
1873 }
1874
1875 /* Update save_subspace if appropriate. */
1876 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1877 save_subspace = subspace;
1878
1879 subspace_asect->vma = subspace.subspace_start;
1880 subspace_asect->_cooked_size = subspace.subspace_length;
1881 subspace_asect->_raw_size = subspace.subspace_length;
1882 subspace_asect->filepos = subspace.file_loc_init_value;
1883 subspace_asect->alignment_power = log2 (subspace.alignment);
1884 if (subspace_asect->alignment_power == -1)
1885 goto error_return;
1886 }
1887
1888 /* Yow! there is no subspace within the space which actually
1889 has initialized information in it; this should never happen
1890 as far as I know. */
1891 if (!save_subspace.file_loc_init_value)
1892 goto error_return;
1893
1894 /* Setup the sizes for the space section based upon the info in the
1895 last subspace of the space. */
1896 space_asect->_cooked_size = save_subspace.subspace_start
1897 - space_asect->vma + save_subspace.subspace_length;
1898 space_asect->_raw_size = save_subspace.file_loc_init_value
1899 - space_asect->filepos + save_subspace.initialization_length;
1900 }
1901 /* Now that we've read in all the subspace records, we need to assign
1902 a target index to each subspace. */
1903 subspace_sections = (asection **) malloc (total_subspaces
1904 * sizeof (asection *));
1905 if (subspace_sections == NULL)
1906 goto error_return;
1907
1908 for (i = 0, section = abfd->sections; section; section = section->next)
1909 {
1910 if (!som_is_subspace (section))
1911 continue;
1912
1913 subspace_sections[i] = section;
1914 i++;
1915 }
1916 qsort (subspace_sections, total_subspaces,
1917 sizeof (asection *), compare_subspaces);
1918
1919 /* subspace_sections is now sorted in the order in which the subspaces
1920 appear in the object file. Assign an index to each one now. */
1921 for (i = 0; i < total_subspaces; i++)
1922 subspace_sections[i]->target_index = i;
1923
1924 if (space_strings != NULL)
1925 free (space_strings);
1926
1927 if (subspace_sections != NULL)
1928 free (subspace_sections);
1929
1930 return true;
1931
1932 error_return:
1933 if (space_strings != NULL)
1934 free (space_strings);
1935
1936 if (subspace_sections != NULL)
1937 free (subspace_sections);
1938 return false;
1939 }
1940
1941 /* Read in a SOM object and make it into a BFD. */
1942
1943 static const bfd_target *
1944 som_object_p (abfd)
1945 bfd *abfd;
1946 {
1947 struct header file_hdr;
1948 struct som_exec_auxhdr aux_hdr;
1949
1950 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
1951 {
1952 if (bfd_get_error () != bfd_error_system_call)
1953 bfd_set_error (bfd_error_wrong_format);
1954 return 0;
1955 }
1956
1957 if (!_PA_RISC_ID (file_hdr.system_id))
1958 {
1959 bfd_set_error (bfd_error_wrong_format);
1960 return 0;
1961 }
1962
1963 switch (file_hdr.a_magic)
1964 {
1965 case RELOC_MAGIC:
1966 case EXEC_MAGIC:
1967 case SHARE_MAGIC:
1968 case DEMAND_MAGIC:
1969 #ifdef DL_MAGIC
1970 case DL_MAGIC:
1971 #endif
1972 #ifdef SHL_MAGIC
1973 case SHL_MAGIC:
1974 #endif
1975 #ifdef EXECLIBMAGIC
1976 case EXECLIBMAGIC:
1977 #endif
1978 #ifdef SHARED_MAGIC_CNX
1979 case SHARED_MAGIC_CNX:
1980 #endif
1981 break;
1982 default:
1983 bfd_set_error (bfd_error_wrong_format);
1984 return 0;
1985 }
1986
1987 if (file_hdr.version_id != VERSION_ID
1988 && file_hdr.version_id != NEW_VERSION_ID)
1989 {
1990 bfd_set_error (bfd_error_wrong_format);
1991 return 0;
1992 }
1993
1994 /* If the aux_header_size field in the file header is zero, then this
1995 object is an incomplete executable (a .o file). Do not try to read
1996 a non-existant auxiliary header. */
1997 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
1998 if (file_hdr.aux_header_size != 0)
1999 {
2000 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
2001 {
2002 if (bfd_get_error () != bfd_error_system_call)
2003 bfd_set_error (bfd_error_wrong_format);
2004 return 0;
2005 }
2006 }
2007
2008 if (!setup_sections (abfd, &file_hdr))
2009 {
2010 /* setup_sections does not bubble up a bfd error code. */
2011 bfd_set_error (bfd_error_bad_value);
2012 return 0;
2013 }
2014
2015 /* This appears to be a valid SOM object. Do some initialization. */
2016 return som_object_setup (abfd, &file_hdr, &aux_hdr);
2017 }
2018
2019 /* Create a SOM object. */
2020
2021 static boolean
2022 som_mkobject (abfd)
2023 bfd *abfd;
2024 {
2025 /* Allocate memory to hold backend information. */
2026 abfd->tdata.som_data = (struct som_data_struct *)
2027 bfd_zalloc (abfd, sizeof (struct som_data_struct));
2028 if (abfd->tdata.som_data == NULL)
2029 {
2030 bfd_set_error (bfd_error_no_memory);
2031 return false;
2032 }
2033 return true;
2034 }
2035
2036 /* Initialize some information in the file header. This routine makes
2037 not attempt at doing the right thing for a full executable; it
2038 is only meant to handle relocatable objects. */
2039
2040 static boolean
2041 som_prep_headers (abfd)
2042 bfd *abfd;
2043 {
2044 struct header *file_hdr;
2045 asection *section;
2046
2047 /* Make and attach a file header to the BFD. */
2048 file_hdr = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
2049 if (file_hdr == NULL)
2050
2051 {
2052 bfd_set_error (bfd_error_no_memory);
2053 return false;
2054 }
2055 obj_som_file_hdr (abfd) = file_hdr;
2056
2057 if (abfd->flags & (EXEC_P | DYNAMIC))
2058 {
2059
2060 /* Make and attach an exec header to the BFD. */
2061 obj_som_exec_hdr (abfd) = (struct som_exec_auxhdr *)
2062 bfd_zalloc (abfd, sizeof (struct som_exec_auxhdr));
2063 if (obj_som_exec_hdr (abfd) == NULL)
2064 {
2065 bfd_set_error (bfd_error_no_memory);
2066 return false;
2067 }
2068
2069 if (abfd->flags & D_PAGED)
2070 file_hdr->a_magic = DEMAND_MAGIC;
2071 else if (abfd->flags & WP_TEXT)
2072 file_hdr->a_magic = SHARE_MAGIC;
2073 #ifdef SHL_MAGIC
2074 else if (abfd->flags & DYNAMIC)
2075 file_hdr->a_magic = SHL_MAGIC;
2076 #endif
2077 else
2078 file_hdr->a_magic = EXEC_MAGIC;
2079 }
2080 else
2081 file_hdr->a_magic = RELOC_MAGIC;
2082
2083 /* Only new format SOM is supported. */
2084 file_hdr->version_id = NEW_VERSION_ID;
2085
2086 /* These fields are optional, and embedding timestamps is not always
2087 a wise thing to do, it makes comparing objects during a multi-stage
2088 bootstrap difficult. */
2089 file_hdr->file_time.secs = 0;
2090 file_hdr->file_time.nanosecs = 0;
2091
2092 file_hdr->entry_space = 0;
2093 file_hdr->entry_subspace = 0;
2094 file_hdr->entry_offset = 0;
2095 file_hdr->presumed_dp = 0;
2096
2097 /* Now iterate over the sections translating information from
2098 BFD sections to SOM spaces/subspaces. */
2099
2100 for (section = abfd->sections; section != NULL; section = section->next)
2101 {
2102 /* Ignore anything which has not been marked as a space or
2103 subspace. */
2104 if (!som_is_space (section) && !som_is_subspace (section))
2105 continue;
2106
2107 if (som_is_space (section))
2108 {
2109 /* Allocate space for the space dictionary. */
2110 som_section_data (section)->space_dict
2111 = (struct space_dictionary_record *)
2112 bfd_zalloc (abfd, sizeof (struct space_dictionary_record));
2113 if (som_section_data (section)->space_dict == NULL)
2114 {
2115 bfd_set_error (bfd_error_no_memory);
2116 return false;
2117 }
2118 /* Set space attributes. Note most attributes of SOM spaces
2119 are set based on the subspaces it contains. */
2120 som_section_data (section)->space_dict->loader_fix_index = -1;
2121 som_section_data (section)->space_dict->init_pointer_index = -1;
2122
2123 /* Set more attributes that were stuffed away in private data. */
2124 som_section_data (section)->space_dict->sort_key =
2125 som_section_data (section)->copy_data->sort_key;
2126 som_section_data (section)->space_dict->is_defined =
2127 som_section_data (section)->copy_data->is_defined;
2128 som_section_data (section)->space_dict->is_private =
2129 som_section_data (section)->copy_data->is_private;
2130 som_section_data (section)->space_dict->space_number =
2131 som_section_data (section)->copy_data->space_number;
2132 }
2133 else
2134 {
2135 /* Allocate space for the subspace dictionary. */
2136 som_section_data (section)->subspace_dict
2137 = (struct subspace_dictionary_record *)
2138 bfd_zalloc (abfd, sizeof (struct subspace_dictionary_record));
2139 if (som_section_data (section)->subspace_dict == NULL)
2140 {
2141 bfd_set_error (bfd_error_no_memory);
2142 return false;
2143 }
2144
2145 /* Set subspace attributes. Basic stuff is done here, additional
2146 attributes are filled in later as more information becomes
2147 available. */
2148 if (section->flags & SEC_IS_COMMON)
2149 {
2150 som_section_data (section)->subspace_dict->dup_common = 1;
2151 som_section_data (section)->subspace_dict->is_common = 1;
2152 }
2153
2154 if (section->flags & SEC_ALLOC)
2155 som_section_data (section)->subspace_dict->is_loadable = 1;
2156
2157 if (section->flags & SEC_CODE)
2158 som_section_data (section)->subspace_dict->code_only = 1;
2159
2160 som_section_data (section)->subspace_dict->subspace_start =
2161 section->vma;
2162 som_section_data (section)->subspace_dict->subspace_length =
2163 bfd_section_size (abfd, section);
2164 som_section_data (section)->subspace_dict->initialization_length =
2165 bfd_section_size (abfd, section);
2166 som_section_data (section)->subspace_dict->alignment =
2167 1 << section->alignment_power;
2168
2169 /* Set more attributes that were stuffed away in private data. */
2170 som_section_data (section)->subspace_dict->sort_key =
2171 som_section_data (section)->copy_data->sort_key;
2172 som_section_data (section)->subspace_dict->access_control_bits =
2173 som_section_data (section)->copy_data->access_control_bits;
2174 som_section_data (section)->subspace_dict->quadrant =
2175 som_section_data (section)->copy_data->quadrant;
2176 }
2177 }
2178 return true;
2179 }
2180
2181 /* Return true if the given section is a SOM space, false otherwise. */
2182
2183 static boolean
2184 som_is_space (section)
2185 asection *section;
2186 {
2187 /* If no copy data is available, then it's neither a space nor a
2188 subspace. */
2189 if (som_section_data (section)->copy_data == NULL)
2190 return false;
2191
2192 /* If the containing space isn't the same as the given section,
2193 then this isn't a space. */
2194 if (som_section_data (section)->copy_data->container != section
2195 && (som_section_data (section)->copy_data->container->output_section
2196 != section))
2197 return false;
2198
2199 /* OK. Must be a space. */
2200 return true;
2201 }
2202
2203 /* Return true if the given section is a SOM subspace, false otherwise. */
2204
2205 static boolean
2206 som_is_subspace (section)
2207 asection *section;
2208 {
2209 /* If no copy data is available, then it's neither a space nor a
2210 subspace. */
2211 if (som_section_data (section)->copy_data == NULL)
2212 return false;
2213
2214 /* If the containing space is the same as the given section,
2215 then this isn't a subspace. */
2216 if (som_section_data (section)->copy_data->container == section
2217 || (som_section_data (section)->copy_data->container->output_section
2218 == section))
2219 return false;
2220
2221 /* OK. Must be a subspace. */
2222 return true;
2223 }
2224
2225 /* Return true if the given space containins the given subspace. It
2226 is safe to assume space really is a space, and subspace really
2227 is a subspace. */
2228
2229 static boolean
2230 som_is_container (space, subspace)
2231 asection *space, *subspace;
2232 {
2233 return (som_section_data (subspace)->copy_data->container == space
2234 || (som_section_data (subspace)->copy_data->container->output_section
2235 == space));
2236 }
2237
2238 /* Count and return the number of spaces attached to the given BFD. */
2239
2240 static unsigned long
2241 som_count_spaces (abfd)
2242 bfd *abfd;
2243 {
2244 int count = 0;
2245 asection *section;
2246
2247 for (section = abfd->sections; section != NULL; section = section->next)
2248 count += som_is_space (section);
2249
2250 return count;
2251 }
2252
2253 /* Count the number of subspaces attached to the given BFD. */
2254
2255 static unsigned long
2256 som_count_subspaces (abfd)
2257 bfd *abfd;
2258 {
2259 int count = 0;
2260 asection *section;
2261
2262 for (section = abfd->sections; section != NULL; section = section->next)
2263 count += som_is_subspace (section);
2264
2265 return count;
2266 }
2267
2268 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2269
2270 We desire symbols to be ordered starting with the symbol with the
2271 highest relocation count down to the symbol with the lowest relocation
2272 count. Doing so compacts the relocation stream. */
2273
2274 static int
2275 compare_syms (arg1, arg2)
2276 const PTR arg1;
2277 const PTR arg2;
2278
2279 {
2280 asymbol **sym1 = (asymbol **) arg1;
2281 asymbol **sym2 = (asymbol **) arg2;
2282 unsigned int count1, count2;
2283
2284 /* Get relocation count for each symbol. Note that the count
2285 is stored in the udata pointer for section symbols! */
2286 if ((*sym1)->flags & BSF_SECTION_SYM)
2287 count1 = (*sym1)->udata.i;
2288 else
2289 count1 = som_symbol_data (*sym1)->reloc_count;
2290
2291 if ((*sym2)->flags & BSF_SECTION_SYM)
2292 count2 = (*sym2)->udata.i;
2293 else
2294 count2 = som_symbol_data (*sym2)->reloc_count;
2295
2296 /* Return the appropriate value. */
2297 if (count1 < count2)
2298 return 1;
2299 else if (count1 > count2)
2300 return -1;
2301 return 0;
2302 }
2303
2304 /* Return -1, 0, 1 indicating the relative ordering of subspace1
2305 and subspace. */
2306
2307 static int
2308 compare_subspaces (arg1, arg2)
2309 const PTR arg1;
2310 const PTR arg2;
2311
2312 {
2313 asection **subspace1 = (asection **) arg1;
2314 asection **subspace2 = (asection **) arg2;
2315 unsigned int count1, count2;
2316
2317 if ((*subspace1)->target_index < (*subspace2)->target_index)
2318 return -1;
2319 else if ((*subspace2)->target_index < (*subspace1)->target_index)
2320 return 1;
2321 else
2322 return 0;
2323 }
2324
2325 /* Perform various work in preparation for emitting the fixup stream. */
2326
2327 static void
2328 som_prep_for_fixups (abfd, syms, num_syms)
2329 bfd *abfd;
2330 asymbol **syms;
2331 unsigned long num_syms;
2332 {
2333 int i;
2334 asection *section;
2335 asymbol **sorted_syms;
2336
2337 /* Most SOM relocations involving a symbol have a length which is
2338 dependent on the index of the symbol. So symbols which are
2339 used often in relocations should have a small index. */
2340
2341 /* First initialize the counters for each symbol. */
2342 for (i = 0; i < num_syms; i++)
2343 {
2344 /* Handle a section symbol; these have no pointers back to the
2345 SOM symbol info. So we just use the udata field to hold the
2346 relocation count. */
2347 if (som_symbol_data (syms[i]) == NULL
2348 || syms[i]->flags & BSF_SECTION_SYM)
2349 {
2350 syms[i]->flags |= BSF_SECTION_SYM;
2351 syms[i]->udata.i = 0;
2352 }
2353 else
2354 som_symbol_data (syms[i])->reloc_count = 0;
2355 }
2356
2357 /* Now that the counters are initialized, make a weighted count
2358 of how often a given symbol is used in a relocation. */
2359 for (section = abfd->sections; section != NULL; section = section->next)
2360 {
2361 int i;
2362
2363 /* Does this section have any relocations? */
2364 if (section->reloc_count <= 0)
2365 continue;
2366
2367 /* Walk through each relocation for this section. */
2368 for (i = 1; i < section->reloc_count; i++)
2369 {
2370 arelent *reloc = section->orelocation[i];
2371 int scale;
2372
2373 /* A relocation against a symbol in the *ABS* section really
2374 does not have a symbol. Likewise if the symbol isn't associated
2375 with any section. */
2376 if (reloc->sym_ptr_ptr == NULL
2377 || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section))
2378 continue;
2379
2380 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2381 and R_CODE_ONE_SYMBOL relocations to come first. These
2382 two relocations have single byte versions if the symbol
2383 index is very small. */
2384 if (reloc->howto->type == R_DP_RELATIVE
2385 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2386 scale = 2;
2387 else
2388 scale = 1;
2389
2390 /* Handle section symbols by storing the count in the udata
2391 field. It will not be used and the count is very important
2392 for these symbols. */
2393 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2394 {
2395 (*reloc->sym_ptr_ptr)->udata.i =
2396 (*reloc->sym_ptr_ptr)->udata.i + scale;
2397 continue;
2398 }
2399
2400 /* A normal symbol. Increment the count. */
2401 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2402 }
2403 }
2404
2405 /* Sort a copy of the symbol table, rather than the canonical
2406 output symbol table. */
2407 sorted_syms = (asymbol **) bfd_zalloc (abfd, num_syms * sizeof (asymbol *));
2408 memcpy (sorted_syms, syms, num_syms * sizeof (asymbol *));
2409 qsort (sorted_syms, num_syms, sizeof (asymbol *), compare_syms);
2410 obj_som_sorted_syms (abfd) = sorted_syms;
2411
2412 /* Compute the symbol indexes, they will be needed by the relocation
2413 code. */
2414 for (i = 0; i < num_syms; i++)
2415 {
2416 /* A section symbol. Again, there is no pointer to backend symbol
2417 information, so we reuse the udata field again. */
2418 if (sorted_syms[i]->flags & BSF_SECTION_SYM)
2419 sorted_syms[i]->udata.i = i;
2420 else
2421 som_symbol_data (sorted_syms[i])->index = i;
2422 }
2423 }
2424
2425 static boolean
2426 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2427 bfd *abfd;
2428 unsigned long current_offset;
2429 unsigned int *total_reloc_sizep;
2430 {
2431 unsigned int i, j;
2432 /* Chunk of memory that we can use as buffer space, then throw
2433 away. */
2434 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2435 unsigned char *p;
2436 unsigned int total_reloc_size = 0;
2437 unsigned int subspace_reloc_size = 0;
2438 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2439 asection *section = abfd->sections;
2440
2441 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2442 p = tmp_space;
2443
2444 /* All the fixups for a particular subspace are emitted in a single
2445 stream. All the subspaces for a particular space are emitted
2446 as a single stream.
2447
2448 So, to get all the locations correct one must iterate through all the
2449 spaces, for each space iterate through its subspaces and output a
2450 fixups stream. */
2451 for (i = 0; i < num_spaces; i++)
2452 {
2453 asection *subsection;
2454
2455 /* Find a space. */
2456 while (!som_is_space (section))
2457 section = section->next;
2458
2459 /* Now iterate through each of its subspaces. */
2460 for (subsection = abfd->sections;
2461 subsection != NULL;
2462 subsection = subsection->next)
2463 {
2464 int reloc_offset, current_rounding_mode;
2465
2466 /* Find a subspace of this space. */
2467 if (!som_is_subspace (subsection)
2468 || !som_is_container (section, subsection))
2469 continue;
2470
2471 /* If this subspace does not have real data, then we are
2472 finised with it. */
2473 if ((subsection->flags & SEC_HAS_CONTENTS) == 0)
2474 {
2475 som_section_data (subsection)->subspace_dict->fixup_request_index
2476 = -1;
2477 continue;
2478 }
2479
2480 /* This subspace has some relocations. Put the relocation stream
2481 index into the subspace record. */
2482 som_section_data (subsection)->subspace_dict->fixup_request_index
2483 = total_reloc_size;
2484
2485 /* To make life easier start over with a clean slate for
2486 each subspace. Seek to the start of the relocation stream
2487 for this subspace in preparation for writing out its fixup
2488 stream. */
2489 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) < 0)
2490 return false;
2491
2492 /* Buffer space has already been allocated. Just perform some
2493 initialization here. */
2494 p = tmp_space;
2495 subspace_reloc_size = 0;
2496 reloc_offset = 0;
2497 som_initialize_reloc_queue (reloc_queue);
2498 current_rounding_mode = R_N_MODE;
2499
2500 /* Translate each BFD relocation into one or more SOM
2501 relocations. */
2502 for (j = 0; j < subsection->reloc_count; j++)
2503 {
2504 arelent *bfd_reloc = subsection->orelocation[j];
2505 unsigned int skip;
2506 int sym_num;
2507
2508 /* Get the symbol number. Remember it's stored in a
2509 special place for section symbols. */
2510 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2511 sym_num = (*bfd_reloc->sym_ptr_ptr)->udata.i;
2512 else
2513 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2514
2515 /* If there is not enough room for the next couple relocations,
2516 then dump the current buffer contents now. Also reinitialize
2517 the relocation queue.
2518
2519 No single BFD relocation could ever translate into more
2520 than 100 bytes of SOM relocations (20bytes is probably the
2521 upper limit, but leave lots of space for growth). */
2522 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2523 {
2524 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2525 != p - tmp_space)
2526 return false;
2527
2528 p = tmp_space;
2529 som_initialize_reloc_queue (reloc_queue);
2530 }
2531
2532 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2533 skipped. */
2534 skip = bfd_reloc->address - reloc_offset;
2535 p = som_reloc_skip (abfd, skip, p,
2536 &subspace_reloc_size, reloc_queue);
2537
2538 /* Update reloc_offset for the next iteration.
2539
2540 Many relocations do not consume input bytes. They
2541 are markers, or set state necessary to perform some
2542 later relocation. */
2543 switch (bfd_reloc->howto->type)
2544 {
2545 /* This only needs to handle relocations that may be
2546 made by hppa_som_gen_reloc. */
2547 case R_ENTRY:
2548 case R_ALT_ENTRY:
2549 case R_EXIT:
2550 case R_N_MODE:
2551 case R_S_MODE:
2552 case R_D_MODE:
2553 case R_R_MODE:
2554 case R_FSEL:
2555 case R_LSEL:
2556 case R_RSEL:
2557 reloc_offset = bfd_reloc->address;
2558 break;
2559
2560 default:
2561 reloc_offset = bfd_reloc->address + 4;
2562 break;
2563 }
2564
2565 /* Now the actual relocation we care about. */
2566 switch (bfd_reloc->howto->type)
2567 {
2568 case R_PCREL_CALL:
2569 case R_ABS_CALL:
2570 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2571 bfd_reloc, sym_num, reloc_queue);
2572 break;
2573
2574 case R_CODE_ONE_SYMBOL:
2575 case R_DP_RELATIVE:
2576 /* Account for any addend. */
2577 if (bfd_reloc->addend)
2578 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2579 &subspace_reloc_size, reloc_queue);
2580
2581 if (sym_num < 0x20)
2582 {
2583 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2584 subspace_reloc_size += 1;
2585 p += 1;
2586 }
2587 else if (sym_num < 0x100)
2588 {
2589 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2590 bfd_put_8 (abfd, sym_num, p + 1);
2591 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2592 2, reloc_queue);
2593 }
2594 else if (sym_num < 0x10000000)
2595 {
2596 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2597 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2598 bfd_put_16 (abfd, sym_num, p + 2);
2599 p = try_prev_fixup (abfd, &subspace_reloc_size,
2600 p, 4, reloc_queue);
2601 }
2602 else
2603 abort ();
2604 break;
2605
2606 case R_DATA_ONE_SYMBOL:
2607 case R_DATA_PLABEL:
2608 case R_CODE_PLABEL:
2609 case R_DLT_REL:
2610 /* Account for any addend. */
2611 if (bfd_reloc->addend)
2612 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2613 &subspace_reloc_size, reloc_queue);
2614
2615 if (sym_num < 0x100)
2616 {
2617 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2618 bfd_put_8 (abfd, sym_num, p + 1);
2619 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2620 2, reloc_queue);
2621 }
2622 else if (sym_num < 0x10000000)
2623 {
2624 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2625 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2626 bfd_put_16 (abfd, sym_num, p + 2);
2627 p = try_prev_fixup (abfd, &subspace_reloc_size,
2628 p, 4, reloc_queue);
2629 }
2630 else
2631 abort ();
2632 break;
2633
2634 case R_ENTRY:
2635 {
2636 int tmp;
2637 arelent *tmp_reloc = NULL;
2638 bfd_put_8 (abfd, R_ENTRY, p);
2639
2640 /* R_ENTRY relocations have 64 bits of associated
2641 data. Unfortunately the addend field of a bfd
2642 relocation is only 32 bits. So, we split up
2643 the 64bit unwind information and store part in
2644 the R_ENTRY relocation, and the rest in the R_EXIT
2645 relocation. */
2646 bfd_put_32 (abfd, bfd_reloc->addend, p + 1);
2647
2648 /* Find the next R_EXIT relocation. */
2649 for (tmp = j; tmp < subsection->reloc_count; tmp++)
2650 {
2651 tmp_reloc = subsection->orelocation[tmp];
2652 if (tmp_reloc->howto->type == R_EXIT)
2653 break;
2654 }
2655
2656 if (tmp == subsection->reloc_count)
2657 abort ();
2658
2659 bfd_put_32 (abfd, tmp_reloc->addend, p + 5);
2660 p = try_prev_fixup (abfd, &subspace_reloc_size,
2661 p, 9, reloc_queue);
2662 break;
2663 }
2664
2665 case R_N_MODE:
2666 case R_S_MODE:
2667 case R_D_MODE:
2668 case R_R_MODE:
2669 /* If this relocation requests the current rounding
2670 mode, then it is redundant. */
2671 if (bfd_reloc->howto->type != current_rounding_mode)
2672 {
2673 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2674 subspace_reloc_size += 1;
2675 p += 1;
2676 current_rounding_mode = bfd_reloc->howto->type;
2677 }
2678 break;
2679
2680 case R_EXIT:
2681 case R_ALT_ENTRY:
2682 case R_FSEL:
2683 case R_LSEL:
2684 case R_RSEL:
2685 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2686 subspace_reloc_size += 1;
2687 p += 1;
2688 break;
2689
2690 /* Put a "R_RESERVED" relocation in the stream if
2691 we hit something we do not understand. The linker
2692 will complain loudly if this ever happens. */
2693 default:
2694 bfd_put_8 (abfd, 0xff, p);
2695 subspace_reloc_size += 1;
2696 p += 1;
2697 break;
2698 }
2699 }
2700
2701 /* Last BFD relocation for a subspace has been processed.
2702 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2703 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2704 - reloc_offset,
2705 p, &subspace_reloc_size, reloc_queue);
2706
2707 /* Scribble out the relocations. */
2708 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2709 != p - tmp_space)
2710 return false;
2711 p = tmp_space;
2712
2713 total_reloc_size += subspace_reloc_size;
2714 som_section_data (subsection)->subspace_dict->fixup_request_quantity
2715 = subspace_reloc_size;
2716 }
2717 section = section->next;
2718 }
2719 *total_reloc_sizep = total_reloc_size;
2720 return true;
2721 }
2722
2723 /* Write out the space/subspace string table. */
2724
2725 static boolean
2726 som_write_space_strings (abfd, current_offset, string_sizep)
2727 bfd *abfd;
2728 unsigned long current_offset;
2729 unsigned int *string_sizep;
2730 {
2731 /* Chunk of memory that we can use as buffer space, then throw
2732 away. */
2733 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2734 unsigned char *p;
2735 unsigned int strings_size = 0;
2736 asection *section;
2737
2738 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2739 p = tmp_space;
2740
2741 /* Seek to the start of the space strings in preparation for writing
2742 them out. */
2743 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2744 return false;
2745
2746 /* Walk through all the spaces and subspaces (order is not important)
2747 building up and writing string table entries for their names. */
2748 for (section = abfd->sections; section != NULL; section = section->next)
2749 {
2750 int length;
2751
2752 /* Only work with space/subspaces; avoid any other sections
2753 which might have been made (.text for example). */
2754 if (!som_is_space (section) && !som_is_subspace (section))
2755 continue;
2756
2757 /* Get the length of the space/subspace name. */
2758 length = strlen (section->name);
2759
2760 /* If there is not enough room for the next entry, then dump the
2761 current buffer contents now. Each entry will take 4 bytes to
2762 hold the string length + the string itself + null terminator. */
2763 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2764 {
2765 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2766 != p - tmp_space)
2767 return false;
2768 /* Reset to beginning of the buffer space. */
2769 p = tmp_space;
2770 }
2771
2772 /* First element in a string table entry is the length of the
2773 string. Alignment issues are already handled. */
2774 bfd_put_32 (abfd, length, p);
2775 p += 4;
2776 strings_size += 4;
2777
2778 /* Record the index in the space/subspace records. */
2779 if (som_is_space (section))
2780 som_section_data (section)->space_dict->name.n_strx = strings_size;
2781 else
2782 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
2783
2784 /* Next comes the string itself + a null terminator. */
2785 strcpy (p, section->name);
2786 p += length + 1;
2787 strings_size += length + 1;
2788
2789 /* Always align up to the next word boundary. */
2790 while (strings_size % 4)
2791 {
2792 bfd_put_8 (abfd, 0, p);
2793 p++;
2794 strings_size++;
2795 }
2796 }
2797
2798 /* Done with the space/subspace strings. Write out any information
2799 contained in a partial block. */
2800 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2801 return false;
2802 *string_sizep = strings_size;
2803 return true;
2804 }
2805
2806 /* Write out the symbol string table. */
2807
2808 static boolean
2809 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
2810 bfd *abfd;
2811 unsigned long current_offset;
2812 asymbol **syms;
2813 unsigned int num_syms;
2814 unsigned int *string_sizep;
2815 {
2816 unsigned int i;
2817
2818 /* Chunk of memory that we can use as buffer space, then throw
2819 away. */
2820 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2821 unsigned char *p;
2822 unsigned int strings_size = 0;
2823
2824 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2825 p = tmp_space;
2826
2827 /* Seek to the start of the space strings in preparation for writing
2828 them out. */
2829 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2830 return false;
2831
2832 for (i = 0; i < num_syms; i++)
2833 {
2834 int length = strlen (syms[i]->name);
2835
2836 /* If there is not enough room for the next entry, then dump the
2837 current buffer contents now. */
2838 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2839 {
2840 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2841 != p - tmp_space)
2842 return false;
2843 /* Reset to beginning of the buffer space. */
2844 p = tmp_space;
2845 }
2846
2847 /* First element in a string table entry is the length of the
2848 string. This must always be 4 byte aligned. This is also
2849 an appropriate time to fill in the string index field in the
2850 symbol table entry. */
2851 bfd_put_32 (abfd, length, p);
2852 strings_size += 4;
2853 p += 4;
2854
2855 /* Next comes the string itself + a null terminator. */
2856 strcpy (p, syms[i]->name);
2857
2858 som_symbol_data(syms[i])->stringtab_offset = strings_size;
2859 p += length + 1;
2860 strings_size += length + 1;
2861
2862 /* Always align up to the next word boundary. */
2863 while (strings_size % 4)
2864 {
2865 bfd_put_8 (abfd, 0, p);
2866 strings_size++;
2867 p++;
2868 }
2869 }
2870
2871 /* Scribble out any partial block. */
2872 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2873 return false;
2874
2875 *string_sizep = strings_size;
2876 return true;
2877 }
2878
2879 /* Compute variable information to be placed in the SOM headers,
2880 space/subspace dictionaries, relocation streams, etc. Begin
2881 writing parts of the object file. */
2882
2883 static boolean
2884 som_begin_writing (abfd)
2885 bfd *abfd;
2886 {
2887 unsigned long current_offset = 0;
2888 int strings_size = 0;
2889 unsigned int total_reloc_size = 0;
2890 unsigned long num_spaces, num_subspaces, num_syms, i;
2891 asection *section;
2892 asymbol **syms = bfd_get_outsymbols (abfd);
2893 unsigned int total_subspaces = 0;
2894 struct som_exec_auxhdr *exec_header = NULL;
2895
2896 /* The file header will always be first in an object file,
2897 everything else can be in random locations. To keep things
2898 "simple" BFD will lay out the object file in the manner suggested
2899 by the PRO ABI for PA-RISC Systems. */
2900
2901 /* Before any output can really begin offsets for all the major
2902 portions of the object file must be computed. So, starting
2903 with the initial file header compute (and sometimes write)
2904 each portion of the object file. */
2905
2906 /* Make room for the file header, it's contents are not complete
2907 yet, so it can not be written at this time. */
2908 current_offset += sizeof (struct header);
2909
2910 /* Any auxiliary headers will follow the file header. Right now
2911 we support only the copyright and version headers. */
2912 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
2913 obj_som_file_hdr (abfd)->aux_header_size = 0;
2914 if (abfd->flags & (EXEC_P | DYNAMIC))
2915 {
2916 /* Parts of the exec header will be filled in later, so
2917 delay writing the header itself. Fill in the defaults,
2918 and write it later. */
2919 current_offset += sizeof (struct som_exec_auxhdr);
2920 obj_som_file_hdr (abfd)->aux_header_size
2921 += sizeof (struct som_exec_auxhdr);
2922 exec_header = obj_som_exec_hdr (abfd);
2923 exec_header->som_auxhdr.type = EXEC_AUX_ID;
2924 exec_header->som_auxhdr.length = 40;
2925 }
2926 if (obj_som_version_hdr (abfd) != NULL)
2927 {
2928 unsigned int len;
2929
2930 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2931 return false;
2932
2933 /* Write the aux_id structure and the string length. */
2934 len = sizeof (struct aux_id) + sizeof (unsigned int);
2935 obj_som_file_hdr (abfd)->aux_header_size += len;
2936 current_offset += len;
2937 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
2938 return false;
2939
2940 /* Write the version string. */
2941 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
2942 obj_som_file_hdr (abfd)->aux_header_size += len;
2943 current_offset += len;
2944 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
2945 len, 1, abfd) != len)
2946 return false;
2947 }
2948
2949 if (obj_som_copyright_hdr (abfd) != NULL)
2950 {
2951 unsigned int len;
2952
2953 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2954 return false;
2955
2956 /* Write the aux_id structure and the string length. */
2957 len = sizeof (struct aux_id) + sizeof (unsigned int);
2958 obj_som_file_hdr (abfd)->aux_header_size += len;
2959 current_offset += len;
2960 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
2961 return false;
2962
2963 /* Write the copyright string. */
2964 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
2965 obj_som_file_hdr (abfd)->aux_header_size += len;
2966 current_offset += len;
2967 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
2968 len, 1, abfd) != len)
2969 return false;
2970 }
2971
2972 /* Next comes the initialization pointers; we have no initialization
2973 pointers, so current offset does not change. */
2974 obj_som_file_hdr (abfd)->init_array_location = current_offset;
2975 obj_som_file_hdr (abfd)->init_array_total = 0;
2976
2977 /* Next are the space records. These are fixed length records.
2978
2979 Count the number of spaces to determine how much room is needed
2980 in the object file for the space records.
2981
2982 The names of the spaces are stored in a separate string table,
2983 and the index for each space into the string table is computed
2984 below. Therefore, it is not possible to write the space headers
2985 at this time. */
2986 num_spaces = som_count_spaces (abfd);
2987 obj_som_file_hdr (abfd)->space_location = current_offset;
2988 obj_som_file_hdr (abfd)->space_total = num_spaces;
2989 current_offset += num_spaces * sizeof (struct space_dictionary_record);
2990
2991 /* Next are the subspace records. These are fixed length records.
2992
2993 Count the number of subspaes to determine how much room is needed
2994 in the object file for the subspace records.
2995
2996 A variety if fields in the subspace record are still unknown at
2997 this time (index into string table, fixup stream location/size, etc). */
2998 num_subspaces = som_count_subspaces (abfd);
2999 obj_som_file_hdr (abfd)->subspace_location = current_offset;
3000 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
3001 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
3002
3003 /* Next is the string table for the space/subspace names. We will
3004 build and write the string table on the fly. At the same time
3005 we will fill in the space/subspace name index fields. */
3006
3007 /* The string table needs to be aligned on a word boundary. */
3008 if (current_offset % 4)
3009 current_offset += (4 - (current_offset % 4));
3010
3011 /* Mark the offset of the space/subspace string table in the
3012 file header. */
3013 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
3014
3015 /* Scribble out the space strings. */
3016 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
3017 return false;
3018
3019 /* Record total string table size in the header and update the
3020 current offset. */
3021 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
3022 current_offset += strings_size;
3023
3024 /* Next is the symbol table. These are fixed length records.
3025
3026 Count the number of symbols to determine how much room is needed
3027 in the object file for the symbol table.
3028
3029 The names of the symbols are stored in a separate string table,
3030 and the index for each symbol name into the string table is computed
3031 below. Therefore, it is not possible to write the symobl table
3032 at this time. */
3033 num_syms = bfd_get_symcount (abfd);
3034 obj_som_file_hdr (abfd)->symbol_location = current_offset;
3035 obj_som_file_hdr (abfd)->symbol_total = num_syms;
3036 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
3037
3038 /* Next are the symbol strings.
3039 Align them to a word boundary. */
3040 if (current_offset % 4)
3041 current_offset += (4 - (current_offset % 4));
3042 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
3043
3044 /* Scribble out the symbol strings. */
3045 if (som_write_symbol_strings (abfd, current_offset, syms,
3046 num_syms, &strings_size)
3047 == false)
3048 return false;
3049
3050 /* Record total string table size in header and update the
3051 current offset. */
3052 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
3053 current_offset += strings_size;
3054
3055 /* Next is the compiler records. We do not use these. */
3056 obj_som_file_hdr (abfd)->compiler_location = current_offset;
3057 obj_som_file_hdr (abfd)->compiler_total = 0;
3058
3059 /* Now compute the file positions for the loadable subspaces, taking
3060 care to make sure everything stays properly aligned. */
3061
3062 section = abfd->sections;
3063 for (i = 0; i < num_spaces; i++)
3064 {
3065 asection *subsection;
3066 int first_subspace;
3067 unsigned int subspace_offset = 0;
3068
3069 /* Find a space. */
3070 while (!som_is_space (section))
3071 section = section->next;
3072
3073 first_subspace = 1;
3074 /* Now look for all its subspaces. */
3075 for (subsection = abfd->sections;
3076 subsection != NULL;
3077 subsection = subsection->next)
3078 {
3079
3080 if (!som_is_subspace (subsection)
3081 || !som_is_container (section, subsection)
3082 || (subsection->flags & SEC_ALLOC) == 0)
3083 continue;
3084
3085 /* If this is the first subspace in the space, and we are
3086 building an executable, then take care to make sure all
3087 the alignments are correct and update the exec header. */
3088 if (first_subspace
3089 && (abfd->flags & (EXEC_P | DYNAMIC)))
3090 {
3091 /* Demand paged executables have each space aligned to a
3092 page boundary. Sharable executables (write-protected
3093 text) have just the private (aka data & bss) space aligned
3094 to a page boundary. Ugh. Not true for HPUX.
3095
3096 The HPUX kernel requires the text to always be page aligned
3097 within the file regardless of the executable's type. */
3098 if (abfd->flags & (D_PAGED | DYNAMIC)
3099 || (subsection->flags & SEC_CODE)
3100 || ((abfd->flags & WP_TEXT)
3101 && (subsection->flags & SEC_DATA)))
3102 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3103
3104 /* Update the exec header. */
3105 if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0)
3106 {
3107 exec_header->exec_tmem = section->vma;
3108 exec_header->exec_tfile = current_offset;
3109 }
3110 if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0)
3111 {
3112 exec_header->exec_dmem = section->vma;
3113 exec_header->exec_dfile = current_offset;
3114 }
3115
3116 /* Keep track of exactly where we are within a particular
3117 space. This is necessary as the braindamaged HPUX
3118 loader will create holes between subspaces *and*
3119 subspace alignments are *NOT* preserved. What a crock. */
3120 subspace_offset = subsection->vma;
3121
3122 /* Only do this for the first subspace within each space. */
3123 first_subspace = 0;
3124 }
3125 else if (abfd->flags & (EXEC_P | DYNAMIC))
3126 {
3127 /* The braindamaged HPUX loader may have created a hole
3128 between two subspaces. It is *not* sufficient to use
3129 the alignment specifications within the subspaces to
3130 account for these holes -- I've run into at least one
3131 case where the loader left one code subspace unaligned
3132 in a final executable.
3133
3134 To combat this we keep a current offset within each space,
3135 and use the subspace vma fields to detect and preserve
3136 holes. What a crock!
3137
3138 ps. This is not necessary for unloadable space/subspaces. */
3139 current_offset += subsection->vma - subspace_offset;
3140 if (subsection->flags & SEC_CODE)
3141 exec_header->exec_tsize += subsection->vma - subspace_offset;
3142 else
3143 exec_header->exec_dsize += subsection->vma - subspace_offset;
3144 subspace_offset += subsection->vma - subspace_offset;
3145 }
3146
3147
3148 subsection->target_index = total_subspaces++;
3149 /* This is real data to be loaded from the file. */
3150 if (subsection->flags & SEC_LOAD)
3151 {
3152 /* Update the size of the code & data. */
3153 if (abfd->flags & (EXEC_P | DYNAMIC)
3154 && subsection->flags & SEC_CODE)
3155 exec_header->exec_tsize += subsection->_cooked_size;
3156 else if (abfd->flags & (EXEC_P | DYNAMIC)
3157 && subsection->flags & SEC_DATA)
3158 exec_header->exec_dsize += subsection->_cooked_size;
3159 som_section_data (subsection)->subspace_dict->file_loc_init_value
3160 = current_offset;
3161 subsection->filepos = current_offset;
3162 current_offset += bfd_section_size (abfd, subsection);
3163 subspace_offset += bfd_section_size (abfd, subsection);
3164 }
3165 /* Looks like uninitialized data. */
3166 else
3167 {
3168 /* Update the size of the bss section. */
3169 if (abfd->flags & (EXEC_P | DYNAMIC))
3170 exec_header->exec_bsize += subsection->_cooked_size;
3171
3172 som_section_data (subsection)->subspace_dict->file_loc_init_value
3173 = 0;
3174 som_section_data (subsection)->subspace_dict->
3175 initialization_length = 0;
3176 }
3177 }
3178 /* Goto the next section. */
3179 section = section->next;
3180 }
3181
3182 /* Finally compute the file positions for unloadable subspaces.
3183 If building an executable, start the unloadable stuff on its
3184 own page. */
3185
3186 if (abfd->flags & (EXEC_P | DYNAMIC))
3187 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3188
3189 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3190 section = abfd->sections;
3191 for (i = 0; i < num_spaces; i++)
3192 {
3193 asection *subsection;
3194
3195 /* Find a space. */
3196 while (!som_is_space (section))
3197 section = section->next;
3198
3199 if (abfd->flags & (EXEC_P | DYNAMIC))
3200 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3201
3202 /* Now look for all its subspaces. */
3203 for (subsection = abfd->sections;
3204 subsection != NULL;
3205 subsection = subsection->next)
3206 {
3207
3208 if (!som_is_subspace (subsection)
3209 || !som_is_container (section, subsection)
3210 || (subsection->flags & SEC_ALLOC) != 0)
3211 continue;
3212
3213 subsection->target_index = total_subspaces++;
3214 /* This is real data to be loaded from the file. */
3215 if ((subsection->flags & SEC_LOAD) == 0)
3216 {
3217 som_section_data (subsection)->subspace_dict->file_loc_init_value
3218 = current_offset;
3219 subsection->filepos = current_offset;
3220 current_offset += bfd_section_size (abfd, subsection);
3221 }
3222 /* Looks like uninitialized data. */
3223 else
3224 {
3225 som_section_data (subsection)->subspace_dict->file_loc_init_value
3226 = 0;
3227 som_section_data (subsection)->subspace_dict->
3228 initialization_length = bfd_section_size (abfd, subsection);
3229 }
3230 }
3231 /* Goto the next section. */
3232 section = section->next;
3233 }
3234
3235 /* If building an executable, then make sure to seek to and write
3236 one byte at the end of the file to make sure any necessary
3237 zeros are filled in. Ugh. */
3238 if (abfd->flags & (EXEC_P | DYNAMIC))
3239 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3240 if (bfd_seek (abfd, current_offset - 1, SEEK_SET) < 0)
3241 return false;
3242 if (bfd_write ((PTR) "", 1, 1, abfd) != 1)
3243 return false;
3244
3245 obj_som_file_hdr (abfd)->unloadable_sp_size
3246 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3247
3248 /* Loader fixups are not supported in any way shape or form. */
3249 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3250 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3251
3252 /* Done. Store the total size of the SOM so far. */
3253 obj_som_file_hdr (abfd)->som_length = current_offset;
3254
3255 return true;
3256 }
3257
3258 /* Finally, scribble out the various headers to the disk. */
3259
3260 static boolean
3261 som_finish_writing (abfd)
3262 bfd *abfd;
3263 {
3264 int num_spaces = som_count_spaces (abfd);
3265 int i;
3266 int subspace_index = 0;
3267 file_ptr location;
3268 asection *section;
3269 unsigned long current_offset;
3270 unsigned int total_reloc_size;
3271
3272 /* Do prep work before handling fixups. */
3273 som_prep_for_fixups (abfd,
3274 bfd_get_outsymbols (abfd),
3275 bfd_get_symcount (abfd));
3276
3277 current_offset = obj_som_file_hdr (abfd)->som_length;
3278
3279 /* At the end of the file is the fixup stream which starts on a
3280 word boundary. */
3281 if (current_offset % 4)
3282 current_offset += (4 - (current_offset % 4));
3283 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
3284
3285 /* Write the fixups and update fields in subspace headers which
3286 relate to the fixup stream. */
3287 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
3288 return false;
3289
3290 /* Record the total size of the fixup stream in the file header. */
3291 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
3292
3293 obj_som_file_hdr (abfd)->som_length += total_reloc_size;
3294
3295 /* Now that the symbol table information is complete, build and
3296 write the symbol table. */
3297 if (som_build_and_write_symbol_table (abfd) == false)
3298 return false;
3299
3300 /* Subspaces are written first so that we can set up information
3301 about them in their containing spaces as the subspace is written. */
3302
3303 /* Seek to the start of the subspace dictionary records. */
3304 location = obj_som_file_hdr (abfd)->subspace_location;
3305 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3306 return false;
3307
3308 section = abfd->sections;
3309 /* Now for each loadable space write out records for its subspaces. */
3310 for (i = 0; i < num_spaces; i++)
3311 {
3312 asection *subsection;
3313
3314 /* Find a space. */
3315 while (!som_is_space (section))
3316 section = section->next;
3317
3318 /* Now look for all its subspaces. */
3319 for (subsection = abfd->sections;
3320 subsection != NULL;
3321 subsection = subsection->next)
3322 {
3323
3324 /* Skip any section which does not correspond to a space
3325 or subspace. Or does not have SEC_ALLOC set (and therefore
3326 has no real bits on the disk). */
3327 if (!som_is_subspace (subsection)
3328 || !som_is_container (section, subsection)
3329 || (subsection->flags & SEC_ALLOC) == 0)
3330 continue;
3331
3332 /* If this is the first subspace for this space, then save
3333 the index of the subspace in its containing space. Also
3334 set "is_loadable" in the containing space. */
3335
3336 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3337 {
3338 som_section_data (section)->space_dict->is_loadable = 1;
3339 som_section_data (section)->space_dict->subspace_index
3340 = subspace_index;
3341 }
3342
3343 /* Increment the number of subspaces seen and the number of
3344 subspaces contained within the current space. */
3345 subspace_index++;
3346 som_section_data (section)->space_dict->subspace_quantity++;
3347
3348 /* Mark the index of the current space within the subspace's
3349 dictionary record. */
3350 som_section_data (subsection)->subspace_dict->space_index = i;
3351
3352 /* Dump the current subspace header. */
3353 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3354 sizeof (struct subspace_dictionary_record), 1, abfd)
3355 != sizeof (struct subspace_dictionary_record))
3356 return false;
3357 }
3358 /* Goto the next section. */
3359 section = section->next;
3360 }
3361
3362 /* Now repeat the process for unloadable subspaces. */
3363 section = abfd->sections;
3364 /* Now for each space write out records for its subspaces. */
3365 for (i = 0; i < num_spaces; i++)
3366 {
3367 asection *subsection;
3368
3369 /* Find a space. */
3370 while (!som_is_space (section))
3371 section = section->next;
3372
3373 /* Now look for all its subspaces. */
3374 for (subsection = abfd->sections;
3375 subsection != NULL;
3376 subsection = subsection->next)
3377 {
3378
3379 /* Skip any section which does not correspond to a space or
3380 subspace, or which SEC_ALLOC set (and therefore handled
3381 in the loadable spaces/subspaces code above). */
3382
3383 if (!som_is_subspace (subsection)
3384 || !som_is_container (section, subsection)
3385 || (subsection->flags & SEC_ALLOC) != 0)
3386 continue;
3387
3388 /* If this is the first subspace for this space, then save
3389 the index of the subspace in its containing space. Clear
3390 "is_loadable". */
3391
3392 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3393 {
3394 som_section_data (section)->space_dict->is_loadable = 0;
3395 som_section_data (section)->space_dict->subspace_index
3396 = subspace_index;
3397 }
3398
3399 /* Increment the number of subspaces seen and the number of
3400 subspaces contained within the current space. */
3401 som_section_data (section)->space_dict->subspace_quantity++;
3402 subspace_index++;
3403
3404 /* Mark the index of the current space within the subspace's
3405 dictionary record. */
3406 som_section_data (subsection)->subspace_dict->space_index = i;
3407
3408 /* Dump this subspace header. */
3409 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3410 sizeof (struct subspace_dictionary_record), 1, abfd)
3411 != sizeof (struct subspace_dictionary_record))
3412 return false;
3413 }
3414 /* Goto the next section. */
3415 section = section->next;
3416 }
3417
3418 /* All the subspace dictiondary records are written, and all the
3419 fields are set up in the space dictionary records.
3420
3421 Seek to the right location and start writing the space
3422 dictionary records. */
3423 location = obj_som_file_hdr (abfd)->space_location;
3424 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3425 return false;
3426
3427 section = abfd->sections;
3428 for (i = 0; i < num_spaces; i++)
3429 {
3430
3431 /* Find a space. */
3432 while (!som_is_space (section))
3433 section = section->next;
3434
3435 /* Dump its header */
3436 if (bfd_write ((PTR) som_section_data (section)->space_dict,
3437 sizeof (struct space_dictionary_record), 1, abfd)
3438 != sizeof (struct space_dictionary_record))
3439 return false;
3440
3441 /* Goto the next section. */
3442 section = section->next;
3443 }
3444
3445 /* FIXME. This should really be conditional based on whether or not
3446 PA1.1 instructions/registers have been used.
3447
3448 Setting of the system_id has to happen very late now that copying of
3449 BFD private data happens *after* section contents are set. */
3450 if (abfd->flags & (EXEC_P | DYNAMIC))
3451 obj_som_file_hdr(abfd)->system_id = obj_som_exec_data (abfd)->system_id;
3452 else
3453 obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC1_0;
3454
3455 /* Compute the checksum for the file header just before writing
3456 the header to disk. */
3457 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3458
3459 /* Only thing left to do is write out the file header. It is always
3460 at location zero. Seek there and write it. */
3461 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0)
3462 return false;
3463 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3464 sizeof (struct header), 1, abfd)
3465 != sizeof (struct header))
3466 return false;
3467
3468 /* Now write the exec header. */
3469 if (abfd->flags & (EXEC_P | DYNAMIC))
3470 {
3471 long tmp;
3472 struct som_exec_auxhdr *exec_header;
3473
3474 exec_header = obj_som_exec_hdr (abfd);
3475 exec_header->exec_entry = bfd_get_start_address (abfd);
3476 exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags;
3477
3478 /* Oh joys. Ram some of the BSS data into the DATA section
3479 to be compatable with how the hp linker makes objects
3480 (saves memory space). */
3481 tmp = exec_header->exec_dsize;
3482 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3483 exec_header->exec_bsize -= (tmp - exec_header->exec_dsize);
3484 if (exec_header->exec_bsize < 0)
3485 exec_header->exec_bsize = 0;
3486 exec_header->exec_dsize = tmp;
3487
3488 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
3489 SEEK_SET) < 0)
3490 return false;
3491
3492 if (bfd_write ((PTR) exec_header, AUX_HDR_SIZE, 1, abfd)
3493 != AUX_HDR_SIZE)
3494 return false;
3495 }
3496 return true;
3497 }
3498
3499 /* Compute and return the checksum for a SOM file header. */
3500
3501 static unsigned long
3502 som_compute_checksum (abfd)
3503 bfd *abfd;
3504 {
3505 unsigned long checksum, count, i;
3506 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3507
3508 checksum = 0;
3509 count = sizeof (struct header) / sizeof (unsigned long);
3510 for (i = 0; i < count; i++)
3511 checksum ^= *(buffer + i);
3512
3513 return checksum;
3514 }
3515
3516 static void
3517 som_bfd_derive_misc_symbol_info (abfd, sym, info)
3518 bfd *abfd;
3519 asymbol *sym;
3520 struct som_misc_symbol_info *info;
3521 {
3522 /* Initialize. */
3523 memset (info, 0, sizeof (struct som_misc_symbol_info));
3524
3525 /* The HP SOM linker requires detailed type information about
3526 all symbols (including undefined symbols!). Unfortunately,
3527 the type specified in an import/export statement does not
3528 always match what the linker wants. Severe braindamage. */
3529
3530 /* Section symbols will not have a SOM symbol type assigned to
3531 them yet. Assign all section symbols type ST_DATA. */
3532 if (sym->flags & BSF_SECTION_SYM)
3533 info->symbol_type = ST_DATA;
3534 else
3535 {
3536 /* Common symbols must have scope SS_UNSAT and type
3537 ST_STORAGE or the linker will choke. */
3538 if (bfd_is_com_section (sym->section))
3539 {
3540 info->symbol_scope = SS_UNSAT;
3541 info->symbol_type = ST_STORAGE;
3542 }
3543
3544 /* It is possible to have a symbol without an associated
3545 type. This happens if the user imported the symbol
3546 without a type and the symbol was never defined
3547 locally. If BSF_FUNCTION is set for this symbol, then
3548 assign it type ST_CODE (the HP linker requires undefined
3549 external functions to have type ST_CODE rather than ST_ENTRY). */
3550 else if ((som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3551 || som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3552 && bfd_is_und_section (sym->section)
3553 && sym->flags & BSF_FUNCTION)
3554 info->symbol_type = ST_CODE;
3555
3556 /* Handle function symbols which were defined in this file.
3557 They should have type ST_ENTRY. Also retrieve the argument
3558 relocation bits from the SOM backend information. */
3559 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3560 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3561 && (sym->flags & BSF_FUNCTION))
3562 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3563 && (sym->flags & BSF_FUNCTION)))
3564 {
3565 info->symbol_type = ST_ENTRY;
3566 info->arg_reloc = som_symbol_data (sym)->tc_data.hppa_arg_reloc;
3567 }
3568
3569 /* If the type is unknown at this point, it should be ST_DATA or
3570 ST_CODE (function/ST_ENTRY symbols were handled as special
3571 cases above). */
3572 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3573 {
3574 if (sym->section->flags & SEC_CODE)
3575 info->symbol_type = ST_CODE;
3576 else
3577 info->symbol_type = ST_DATA;
3578 }
3579
3580 /* From now on it's a very simple mapping. */
3581 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3582 info->symbol_type = ST_ABSOLUTE;
3583 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3584 info->symbol_type = ST_CODE;
3585 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3586 info->symbol_type = ST_DATA;
3587 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3588 info->symbol_type = ST_MILLICODE;
3589 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3590 info->symbol_type = ST_PLABEL;
3591 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3592 info->symbol_type = ST_PRI_PROG;
3593 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3594 info->symbol_type = ST_SEC_PROG;
3595 }
3596
3597 /* Now handle the symbol's scope. Exported data which is not
3598 in the common section has scope SS_UNIVERSAL. Note scope
3599 of common symbols was handled earlier! */
3600 if (bfd_is_und_section (sym->section))
3601 info->symbol_scope = SS_UNSAT;
3602 else if (sym->flags & BSF_EXPORT && ! bfd_is_com_section (sym->section))
3603 info->symbol_scope = SS_UNIVERSAL;
3604 /* Anything else which is not in the common section has scope
3605 SS_LOCAL. */
3606 else if (! bfd_is_com_section (sym->section))
3607 info->symbol_scope = SS_LOCAL;
3608
3609 /* Now set the symbol_info field. It has no real meaning
3610 for undefined or common symbols, but the HP linker will
3611 choke if it's not set to some "reasonable" value. We
3612 use zero as a reasonable value. */
3613 if (bfd_is_com_section (sym->section)
3614 || bfd_is_und_section (sym->section)
3615 || bfd_is_abs_section (sym->section))
3616 info->symbol_info = 0;
3617 /* For all other symbols, the symbol_info field contains the
3618 subspace index of the space this symbol is contained in. */
3619 else
3620 info->symbol_info = sym->section->target_index;
3621
3622 /* Set the symbol's value. */
3623 info->symbol_value = sym->value + sym->section->vma;
3624 }
3625
3626 /* Build and write, in one big chunk, the entire symbol table for
3627 this BFD. */
3628
3629 static boolean
3630 som_build_and_write_symbol_table (abfd)
3631 bfd *abfd;
3632 {
3633 unsigned int num_syms = bfd_get_symcount (abfd);
3634 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3635 asymbol **bfd_syms = obj_som_sorted_syms (abfd);
3636 struct symbol_dictionary_record *som_symtab = NULL;
3637 int i, symtab_size;
3638
3639 /* Compute total symbol table size and allocate a chunk of memory
3640 to hold the symbol table as we build it. */
3641 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3642 som_symtab = (struct symbol_dictionary_record *) malloc (symtab_size);
3643 if (som_symtab == NULL && symtab_size != 0)
3644 {
3645 bfd_set_error (bfd_error_no_memory);
3646 goto error_return;
3647 }
3648 memset (som_symtab, 0, symtab_size);
3649
3650 /* Walk over each symbol. */
3651 for (i = 0; i < num_syms; i++)
3652 {
3653 struct som_misc_symbol_info info;
3654
3655 /* This is really an index into the symbol strings table.
3656 By the time we get here, the index has already been
3657 computed and stored into the name field in the BFD symbol. */
3658 som_symtab[i].name.n_strx = som_symbol_data(bfd_syms[i])->stringtab_offset;
3659
3660 /* Derive SOM information from the BFD symbol. */
3661 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
3662
3663 /* Now use it. */
3664 som_symtab[i].symbol_type = info.symbol_type;
3665 som_symtab[i].symbol_scope = info.symbol_scope;
3666 som_symtab[i].arg_reloc = info.arg_reloc;
3667 som_symtab[i].symbol_info = info.symbol_info;
3668 som_symtab[i].symbol_value = info.symbol_value;
3669 }
3670
3671 /* Everything is ready, seek to the right location and
3672 scribble out the symbol table. */
3673 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3674 return false;
3675
3676 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3677 goto error_return;
3678
3679 if (som_symtab != NULL)
3680 free (som_symtab);
3681 return true;
3682 error_return:
3683 if (som_symtab != NULL)
3684 free (som_symtab);
3685 return false;
3686 }
3687
3688 /* Write an object in SOM format. */
3689
3690 static boolean
3691 som_write_object_contents (abfd)
3692 bfd *abfd;
3693 {
3694 if (abfd->output_has_begun == false)
3695 {
3696 /* Set up fixed parts of the file, space, and subspace headers.
3697 Notify the world that output has begun. */
3698 som_prep_headers (abfd);
3699 abfd->output_has_begun = true;
3700 /* Start writing the object file. This include all the string
3701 tables, fixup streams, and other portions of the object file. */
3702 som_begin_writing (abfd);
3703 }
3704
3705 return (som_finish_writing (abfd));
3706 }
3707
3708 \f
3709 /* Read and save the string table associated with the given BFD. */
3710
3711 static boolean
3712 som_slurp_string_table (abfd)
3713 bfd *abfd;
3714 {
3715 char *stringtab;
3716
3717 /* Use the saved version if its available. */
3718 if (obj_som_stringtab (abfd) != NULL)
3719 return true;
3720
3721 /* I don't think this can currently happen, and I'm not sure it should
3722 really be an error, but it's better than getting unpredictable results
3723 from the host's malloc when passed a size of zero. */
3724 if (obj_som_stringtab_size (abfd) == 0)
3725 {
3726 bfd_set_error (bfd_error_no_symbols);
3727 return false;
3728 }
3729
3730 /* Allocate and read in the string table. */
3731 stringtab = bfd_zalloc (abfd, obj_som_stringtab_size (abfd));
3732 if (stringtab == NULL)
3733 {
3734 bfd_set_error (bfd_error_no_memory);
3735 return false;
3736 }
3737
3738 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3739 return false;
3740
3741 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3742 != obj_som_stringtab_size (abfd))
3743 return false;
3744
3745 /* Save our results and return success. */
3746 obj_som_stringtab (abfd) = stringtab;
3747 return true;
3748 }
3749
3750 /* Return the amount of data (in bytes) required to hold the symbol
3751 table for this object. */
3752
3753 static long
3754 som_get_symtab_upper_bound (abfd)
3755 bfd *abfd;
3756 {
3757 if (!som_slurp_symbol_table (abfd))
3758 return -1;
3759
3760 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
3761 }
3762
3763 /* Convert from a SOM subspace index to a BFD section. */
3764
3765 static asection *
3766 bfd_section_from_som_symbol (abfd, symbol)
3767 bfd *abfd;
3768 struct symbol_dictionary_record *symbol;
3769 {
3770 asection *section;
3771
3772 /* The meaning of the symbol_info field changes for functions
3773 within executables. So only use the quick symbol_info mapping for
3774 incomplete objects and non-function symbols in executables. */
3775 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
3776 || (symbol->symbol_type != ST_ENTRY
3777 && symbol->symbol_type != ST_PRI_PROG
3778 && symbol->symbol_type != ST_SEC_PROG
3779 && symbol->symbol_type != ST_MILLICODE))
3780 {
3781 unsigned int index = symbol->symbol_info;
3782 for (section = abfd->sections; section != NULL; section = section->next)
3783 if (section->target_index == index && som_is_subspace (section))
3784 return section;
3785
3786 /* Could be a symbol from an external library (such as an OMOS
3787 shared library). Don't abort. */
3788 return bfd_abs_section_ptr;
3789
3790 }
3791 else
3792 {
3793 unsigned int value = symbol->symbol_value;
3794
3795 /* For executables we will have to use the symbol's address and
3796 find out what section would contain that address. Yuk. */
3797 for (section = abfd->sections; section; section = section->next)
3798 {
3799 if (value >= section->vma
3800 && value <= section->vma + section->_cooked_size
3801 && som_is_subspace (section))
3802 return section;
3803 }
3804
3805 /* Could be a symbol from an external library (such as an OMOS
3806 shared library). Don't abort. */
3807 return bfd_abs_section_ptr;
3808
3809 }
3810 }
3811
3812 /* Read and save the symbol table associated with the given BFD. */
3813
3814 static unsigned int
3815 som_slurp_symbol_table (abfd)
3816 bfd *abfd;
3817 {
3818 int symbol_count = bfd_get_symcount (abfd);
3819 int symsize = sizeof (struct symbol_dictionary_record);
3820 char *stringtab;
3821 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
3822 som_symbol_type *sym, *symbase;
3823
3824 /* Return saved value if it exists. */
3825 if (obj_som_symtab (abfd) != NULL)
3826 goto successful_return;
3827
3828 /* Special case. This is *not* an error. */
3829 if (symbol_count == 0)
3830 goto successful_return;
3831
3832 if (!som_slurp_string_table (abfd))
3833 goto error_return;
3834
3835 stringtab = obj_som_stringtab (abfd);
3836
3837 symbase = (som_symbol_type *)
3838 bfd_zalloc (abfd, symbol_count * sizeof (som_symbol_type));
3839 if (symbase == NULL)
3840 {
3841 bfd_set_error (bfd_error_no_memory);
3842 goto error_return;
3843 }
3844
3845 /* Read in the external SOM representation. */
3846 buf = malloc (symbol_count * symsize);
3847 if (buf == NULL && symbol_count * symsize != 0)
3848 {
3849 bfd_set_error (bfd_error_no_memory);
3850 goto error_return;
3851 }
3852 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
3853 goto error_return;
3854 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
3855 != symbol_count * symsize)
3856 goto error_return;
3857
3858 /* Iterate over all the symbols and internalize them. */
3859 endbufp = buf + symbol_count;
3860 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
3861 {
3862
3863 /* I don't think we care about these. */
3864 if (bufp->symbol_type == ST_SYM_EXT
3865 || bufp->symbol_type == ST_ARG_EXT)
3866 continue;
3867
3868 /* Set some private data we care about. */
3869 if (bufp->symbol_type == ST_NULL)
3870 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3871 else if (bufp->symbol_type == ST_ABSOLUTE)
3872 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
3873 else if (bufp->symbol_type == ST_DATA)
3874 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
3875 else if (bufp->symbol_type == ST_CODE)
3876 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
3877 else if (bufp->symbol_type == ST_PRI_PROG)
3878 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
3879 else if (bufp->symbol_type == ST_SEC_PROG)
3880 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
3881 else if (bufp->symbol_type == ST_ENTRY)
3882 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
3883 else if (bufp->symbol_type == ST_MILLICODE)
3884 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
3885 else if (bufp->symbol_type == ST_PLABEL)
3886 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
3887 else
3888 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3889 som_symbol_data (sym)->tc_data.hppa_arg_reloc = bufp->arg_reloc;
3890
3891 /* Some reasonable defaults. */
3892 sym->symbol.the_bfd = abfd;
3893 sym->symbol.name = bufp->name.n_strx + stringtab;
3894 sym->symbol.value = bufp->symbol_value;
3895 sym->symbol.section = 0;
3896 sym->symbol.flags = 0;
3897
3898 switch (bufp->symbol_type)
3899 {
3900 case ST_ENTRY:
3901 case ST_MILLICODE:
3902 sym->symbol.flags |= BSF_FUNCTION;
3903 sym->symbol.value &= ~0x3;
3904 break;
3905
3906 case ST_STUB:
3907 case ST_CODE:
3908 case ST_PRI_PROG:
3909 case ST_SEC_PROG:
3910 sym->symbol.value &= ~0x3;
3911 /* If the symbol's scope is ST_UNSAT, then these are
3912 undefined function symbols. */
3913 if (bufp->symbol_scope == SS_UNSAT)
3914 sym->symbol.flags |= BSF_FUNCTION;
3915
3916
3917 default:
3918 break;
3919 }
3920
3921 /* Handle scoping and section information. */
3922 switch (bufp->symbol_scope)
3923 {
3924 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
3925 so the section associated with this symbol can't be known. */
3926 case SS_EXTERNAL:
3927 if (bufp->symbol_type != ST_STORAGE)
3928 sym->symbol.section = bfd_und_section_ptr;
3929 else
3930 sym->symbol.section = bfd_com_section_ptr;
3931 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3932 break;
3933
3934 case SS_UNSAT:
3935 if (bufp->symbol_type != ST_STORAGE)
3936 sym->symbol.section = bfd_und_section_ptr;
3937 else
3938 sym->symbol.section = bfd_com_section_ptr;
3939 break;
3940
3941 case SS_UNIVERSAL:
3942 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3943 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3944 sym->symbol.value -= sym->symbol.section->vma;
3945 break;
3946
3947 #if 0
3948 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
3949 Sound dumb? It is. */
3950 case SS_GLOBAL:
3951 #endif
3952 case SS_LOCAL:
3953 sym->symbol.flags |= BSF_LOCAL;
3954 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3955 sym->symbol.value -= sym->symbol.section->vma;
3956 break;
3957 }
3958
3959 /* Mark section symbols and symbols used by the debugger.
3960 Note $START$ is a magic code symbol, NOT a section symbol. */
3961 if (sym->symbol.name[0] == '$'
3962 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$'
3963 && strcmp (sym->symbol.name, "$START$"))
3964 sym->symbol.flags |= BSF_SECTION_SYM;
3965 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
3966 {
3967 sym->symbol.flags |= BSF_SECTION_SYM;
3968 sym->symbol.name = sym->symbol.section->name;
3969 }
3970 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
3971 sym->symbol.flags |= BSF_DEBUGGING;
3972
3973 /* Note increment at bottom of loop, since we skip some symbols
3974 we can not include it as part of the for statement. */
3975 sym++;
3976 }
3977
3978 /* Save our results and return success. */
3979 obj_som_symtab (abfd) = symbase;
3980 successful_return:
3981 if (buf != NULL)
3982 free (buf);
3983 return (true);
3984
3985 error_return:
3986 if (buf != NULL)
3987 free (buf);
3988 return false;
3989 }
3990
3991 /* Canonicalize a SOM symbol table. Return the number of entries
3992 in the symbol table. */
3993
3994 static long
3995 som_get_symtab (abfd, location)
3996 bfd *abfd;
3997 asymbol **location;
3998 {
3999 int i;
4000 som_symbol_type *symbase;
4001
4002 if (!som_slurp_symbol_table (abfd))
4003 return -1;
4004
4005 i = bfd_get_symcount (abfd);
4006 symbase = obj_som_symtab (abfd);
4007
4008 for (; i > 0; i--, location++, symbase++)
4009 *location = &symbase->symbol;
4010
4011 /* Final null pointer. */
4012 *location = 0;
4013 return (bfd_get_symcount (abfd));
4014 }
4015
4016 /* Make a SOM symbol. There is nothing special to do here. */
4017
4018 static asymbol *
4019 som_make_empty_symbol (abfd)
4020 bfd *abfd;
4021 {
4022 som_symbol_type *new =
4023 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
4024 if (new == NULL)
4025 {
4026 bfd_set_error (bfd_error_no_memory);
4027 return 0;
4028 }
4029 new->symbol.the_bfd = abfd;
4030
4031 return &new->symbol;
4032 }
4033
4034 /* Print symbol information. */
4035
4036 static void
4037 som_print_symbol (ignore_abfd, afile, symbol, how)
4038 bfd *ignore_abfd;
4039 PTR afile;
4040 asymbol *symbol;
4041 bfd_print_symbol_type how;
4042 {
4043 FILE *file = (FILE *) afile;
4044 switch (how)
4045 {
4046 case bfd_print_symbol_name:
4047 fprintf (file, "%s", symbol->name);
4048 break;
4049 case bfd_print_symbol_more:
4050 fprintf (file, "som ");
4051 fprintf_vma (file, symbol->value);
4052 fprintf (file, " %lx", (long) symbol->flags);
4053 break;
4054 case bfd_print_symbol_all:
4055 {
4056 CONST char *section_name;
4057 section_name = symbol->section ? symbol->section->name : "(*none*)";
4058 bfd_print_symbol_vandf ((PTR) file, symbol);
4059 fprintf (file, " %s\t%s", section_name, symbol->name);
4060 break;
4061 }
4062 }
4063 }
4064
4065 static boolean
4066 som_bfd_is_local_label (abfd, sym)
4067 bfd *abfd;
4068 asymbol *sym;
4069 {
4070 return (sym->name[0] == 'L' && sym->name[1] == '$');
4071 }
4072
4073 /* Count or process variable-length SOM fixup records.
4074
4075 To avoid code duplication we use this code both to compute the number
4076 of relocations requested by a stream, and to internalize the stream.
4077
4078 When computing the number of relocations requested by a stream the
4079 variables rptr, section, and symbols have no meaning.
4080
4081 Return the number of relocations requested by the fixup stream. When
4082 not just counting
4083
4084 This needs at least two or three more passes to get it cleaned up. */
4085
4086 static unsigned int
4087 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
4088 unsigned char *fixup;
4089 unsigned int end;
4090 arelent *internal_relocs;
4091 asection *section;
4092 asymbol **symbols;
4093 boolean just_count;
4094 {
4095 unsigned int op, varname;
4096 unsigned char *end_fixups = &fixup[end];
4097 const struct fixup_format *fp;
4098 char *cp;
4099 unsigned char *save_fixup;
4100 int variables[26], stack[20], c, v, count, prev_fixup, *sp, saved_unwind_bits;
4101 const int *subop;
4102 arelent *rptr= internal_relocs;
4103 unsigned int offset = 0;
4104
4105 #define var(c) variables[(c) - 'A']
4106 #define push(v) (*sp++ = (v))
4107 #define pop() (*--sp)
4108 #define emptystack() (sp == stack)
4109
4110 som_initialize_reloc_queue (reloc_queue);
4111 memset (variables, 0, sizeof (variables));
4112 memset (stack, 0, sizeof (stack));
4113 count = 0;
4114 prev_fixup = 0;
4115 saved_unwind_bits = 0;
4116 sp = stack;
4117
4118 while (fixup < end_fixups)
4119 {
4120
4121 /* Save pointer to the start of this fixup. We'll use
4122 it later to determine if it is necessary to put this fixup
4123 on the queue. */
4124 save_fixup = fixup;
4125
4126 /* Get the fixup code and its associated format. */
4127 op = *fixup++;
4128 fp = &som_fixup_formats[op];
4129
4130 /* Handle a request for a previous fixup. */
4131 if (*fp->format == 'P')
4132 {
4133 /* Get pointer to the beginning of the prev fixup, move
4134 the repeated fixup to the head of the queue. */
4135 fixup = reloc_queue[fp->D].reloc;
4136 som_reloc_queue_fix (reloc_queue, fp->D);
4137 prev_fixup = 1;
4138
4139 /* Get the fixup code and its associated format. */
4140 op = *fixup++;
4141 fp = &som_fixup_formats[op];
4142 }
4143
4144 /* If this fixup will be passed to BFD, set some reasonable defaults. */
4145 if (! just_count
4146 && som_hppa_howto_table[op].type != R_NO_RELOCATION
4147 && som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
4148 {
4149 rptr->address = offset;
4150 rptr->howto = &som_hppa_howto_table[op];
4151 rptr->addend = 0;
4152 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
4153 }
4154
4155 /* Set default input length to 0. Get the opcode class index
4156 into D. */
4157 var ('L') = 0;
4158 var ('D') = fp->D;
4159 var ('U') = saved_unwind_bits;
4160
4161 /* Get the opcode format. */
4162 cp = fp->format;
4163
4164 /* Process the format string. Parsing happens in two phases,
4165 parse RHS, then assign to LHS. Repeat until no more
4166 characters in the format string. */
4167 while (*cp)
4168 {
4169 /* The variable this pass is going to compute a value for. */
4170 varname = *cp++;
4171
4172 /* Start processing RHS. Continue until a NULL or '=' is found. */
4173 do
4174 {
4175 c = *cp++;
4176
4177 /* If this is a variable, push it on the stack. */
4178 if (isupper (c))
4179 push (var (c));
4180
4181 /* If this is a lower case letter, then it represents
4182 additional data from the fixup stream to be pushed onto
4183 the stack. */
4184 else if (islower (c))
4185 {
4186 for (v = 0; c > 'a'; --c)
4187 v = (v << 8) | *fixup++;
4188 push (v);
4189 }
4190
4191 /* A decimal constant. Push it on the stack. */
4192 else if (isdigit (c))
4193 {
4194 v = c - '0';
4195 while (isdigit (*cp))
4196 v = (v * 10) + (*cp++ - '0');
4197 push (v);
4198 }
4199 else
4200
4201 /* An operator. Pop two two values from the stack and
4202 use them as operands to the given operation. Push
4203 the result of the operation back on the stack. */
4204 switch (c)
4205 {
4206 case '+':
4207 v = pop ();
4208 v += pop ();
4209 push (v);
4210 break;
4211 case '*':
4212 v = pop ();
4213 v *= pop ();
4214 push (v);
4215 break;
4216 case '<':
4217 v = pop ();
4218 v = pop () << v;
4219 push (v);
4220 break;
4221 default:
4222 abort ();
4223 }
4224 }
4225 while (*cp && *cp != '=');
4226
4227 /* Move over the equal operator. */
4228 cp++;
4229
4230 /* Pop the RHS off the stack. */
4231 c = pop ();
4232
4233 /* Perform the assignment. */
4234 var (varname) = c;
4235
4236 /* Handle side effects. and special 'O' stack cases. */
4237 switch (varname)
4238 {
4239 /* Consume some bytes from the input space. */
4240 case 'L':
4241 offset += c;
4242 break;
4243 /* A symbol to use in the relocation. Make a note
4244 of this if we are not just counting. */
4245 case 'S':
4246 if (! just_count)
4247 rptr->sym_ptr_ptr = &symbols[c];
4248 break;
4249 /* Argument relocation bits for a function call. */
4250 case 'R':
4251 if (! just_count)
4252 {
4253 unsigned int tmp = var ('R');
4254 rptr->addend = 0;
4255
4256 if ((som_hppa_howto_table[op].type == R_PCREL_CALL
4257 && R_PCREL_CALL + 10 > op)
4258 || (som_hppa_howto_table[op].type == R_ABS_CALL
4259 && R_ABS_CALL + 10 > op))
4260 {
4261 /* Simple encoding. */
4262 if (tmp > 4)
4263 {
4264 tmp -= 5;
4265 rptr->addend |= 1;
4266 }
4267 if (tmp == 4)
4268 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2;
4269 else if (tmp == 3)
4270 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4;
4271 else if (tmp == 2)
4272 rptr->addend |= 1 << 8 | 1 << 6;
4273 else if (tmp == 1)
4274 rptr->addend |= 1 << 8;
4275 }
4276 else
4277 {
4278 unsigned int tmp1, tmp2;
4279
4280 /* First part is easy -- low order two bits are
4281 directly copied, then shifted away. */
4282 rptr->addend = tmp & 0x3;
4283 tmp >>= 2;
4284
4285 /* Diving the result by 10 gives us the second
4286 part. If it is 9, then the first two words
4287 are a double precision paramater, else it is
4288 3 * the first arg bits + the 2nd arg bits. */
4289 tmp1 = tmp / 10;
4290 tmp -= tmp1 * 10;
4291 if (tmp1 == 9)
4292 rptr->addend += (0xe << 6);
4293 else
4294 {
4295 /* Get the two pieces. */
4296 tmp2 = tmp1 / 3;
4297 tmp1 -= tmp2 * 3;
4298 /* Put them in the addend. */
4299 rptr->addend += (tmp2 << 8) + (tmp1 << 6);
4300 }
4301
4302 /* What's left is the third part. It's unpacked
4303 just like the second. */
4304 if (tmp == 9)
4305 rptr->addend += (0xe << 2);
4306 else
4307 {
4308 tmp2 = tmp / 3;
4309 tmp -= tmp2 * 3;
4310 rptr->addend += (tmp2 << 4) + (tmp << 2);
4311 }
4312 }
4313 rptr->addend = HPPA_R_ADDEND (rptr->addend, 0);
4314 }
4315 break;
4316 /* Handle the linker expression stack. */
4317 case 'O':
4318 switch (op)
4319 {
4320 case R_COMP1:
4321 subop = comp1_opcodes;
4322 break;
4323 case R_COMP2:
4324 subop = comp2_opcodes;
4325 break;
4326 case R_COMP3:
4327 subop = comp3_opcodes;
4328 break;
4329 default:
4330 abort ();
4331 }
4332 while (*subop <= (unsigned char) c)
4333 ++subop;
4334 --subop;
4335 break;
4336 /* The lower 32unwind bits must be persistent. */
4337 case 'U':
4338 saved_unwind_bits = var ('U');
4339 break;
4340
4341 default:
4342 break;
4343 }
4344 }
4345
4346 /* If we used a previous fixup, clean up after it. */
4347 if (prev_fixup)
4348 {
4349 fixup = save_fixup + 1;
4350 prev_fixup = 0;
4351 }
4352 /* Queue it. */
4353 else if (fixup > save_fixup + 1)
4354 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4355
4356 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4357 fixups to BFD. */
4358 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4359 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4360 {
4361 /* Done with a single reloction. Loop back to the top. */
4362 if (! just_count)
4363 {
4364 if (som_hppa_howto_table[op].type == R_ENTRY)
4365 rptr->addend = var ('T');
4366 else if (som_hppa_howto_table[op].type == R_EXIT)
4367 rptr->addend = var ('U');
4368 else if (som_hppa_howto_table[op].type == R_PCREL_CALL
4369 || som_hppa_howto_table[op].type == R_ABS_CALL)
4370 ;
4371 else
4372 rptr->addend = var ('V');
4373 rptr++;
4374 }
4375 count++;
4376 /* Now that we've handled a "full" relocation, reset
4377 some state. */
4378 memset (variables, 0, sizeof (variables));
4379 memset (stack, 0, sizeof (stack));
4380 }
4381 }
4382 return count;
4383
4384 #undef var
4385 #undef push
4386 #undef pop
4387 #undef emptystack
4388 }
4389
4390 /* Read in the relocs (aka fixups in SOM terms) for a section.
4391
4392 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4393 set to true to indicate it only needs a count of the number
4394 of actual relocations. */
4395
4396 static boolean
4397 som_slurp_reloc_table (abfd, section, symbols, just_count)
4398 bfd *abfd;
4399 asection *section;
4400 asymbol **symbols;
4401 boolean just_count;
4402 {
4403 char *external_relocs;
4404 unsigned int fixup_stream_size;
4405 arelent *internal_relocs;
4406 unsigned int num_relocs;
4407
4408 fixup_stream_size = som_section_data (section)->reloc_size;
4409 /* If there were no relocations, then there is nothing to do. */
4410 if (section->reloc_count == 0)
4411 return true;
4412
4413 /* If reloc_count is -1, then the relocation stream has not been
4414 parsed. We must do so now to know how many relocations exist. */
4415 if (section->reloc_count == -1)
4416 {
4417 external_relocs = (char *) malloc (fixup_stream_size);
4418 if (external_relocs == (char *) NULL)
4419 {
4420 bfd_set_error (bfd_error_no_memory);
4421 return false;
4422 }
4423 /* Read in the external forms. */
4424 if (bfd_seek (abfd,
4425 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4426 SEEK_SET)
4427 != 0)
4428 return false;
4429 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
4430 != fixup_stream_size)
4431 return false;
4432
4433 /* Let callers know how many relocations found.
4434 also save the relocation stream as we will
4435 need it again. */
4436 section->reloc_count = som_set_reloc_info (external_relocs,
4437 fixup_stream_size,
4438 NULL, NULL, NULL, true);
4439
4440 som_section_data (section)->reloc_stream = external_relocs;
4441 }
4442
4443 /* If the caller only wanted a count, then return now. */
4444 if (just_count)
4445 return true;
4446
4447 num_relocs = section->reloc_count;
4448 external_relocs = som_section_data (section)->reloc_stream;
4449 /* Return saved information about the relocations if it is available. */
4450 if (section->relocation != (arelent *) NULL)
4451 return true;
4452
4453 internal_relocs = (arelent *)
4454 bfd_zalloc (abfd, (num_relocs * sizeof (arelent)));
4455 if (internal_relocs == (arelent *) NULL)
4456 {
4457 bfd_set_error (bfd_error_no_memory);
4458 return false;
4459 }
4460
4461 /* Process and internalize the relocations. */
4462 som_set_reloc_info (external_relocs, fixup_stream_size,
4463 internal_relocs, section, symbols, false);
4464
4465 /* We're done with the external relocations. Free them. */
4466 free (external_relocs);
4467
4468 /* Save our results and return success. */
4469 section->relocation = internal_relocs;
4470 return (true);
4471 }
4472
4473 /* Return the number of bytes required to store the relocation
4474 information associated with the given section. */
4475
4476 static long
4477 som_get_reloc_upper_bound (abfd, asect)
4478 bfd *abfd;
4479 sec_ptr asect;
4480 {
4481 /* If section has relocations, then read in the relocation stream
4482 and parse it to determine how many relocations exist. */
4483 if (asect->flags & SEC_RELOC)
4484 {
4485 if (! som_slurp_reloc_table (abfd, asect, NULL, true))
4486 return false;
4487 return (asect->reloc_count + 1) * sizeof (arelent);
4488 }
4489 /* There are no relocations. */
4490 return 0;
4491 }
4492
4493 /* Convert relocations from SOM (external) form into BFD internal
4494 form. Return the number of relocations. */
4495
4496 static long
4497 som_canonicalize_reloc (abfd, section, relptr, symbols)
4498 bfd *abfd;
4499 sec_ptr section;
4500 arelent **relptr;
4501 asymbol **symbols;
4502 {
4503 arelent *tblptr;
4504 int count;
4505
4506 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
4507 return -1;
4508
4509 count = section->reloc_count;
4510 tblptr = section->relocation;
4511
4512 while (count--)
4513 *relptr++ = tblptr++;
4514
4515 *relptr = (arelent *) NULL;
4516 return section->reloc_count;
4517 }
4518
4519 extern const bfd_target som_vec;
4520
4521 /* A hook to set up object file dependent section information. */
4522
4523 static boolean
4524 som_new_section_hook (abfd, newsect)
4525 bfd *abfd;
4526 asection *newsect;
4527 {
4528 newsect->used_by_bfd =
4529 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
4530 if (!newsect->used_by_bfd)
4531 {
4532 bfd_set_error (bfd_error_no_memory);
4533 return false;
4534 }
4535 newsect->alignment_power = 3;
4536
4537 /* We allow more than three sections internally */
4538 return true;
4539 }
4540
4541 /* Copy any private info we understand from the input section
4542 to the output section. */
4543 static boolean
4544 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
4545 bfd *ibfd;
4546 asection *isection;
4547 bfd *obfd;
4548 asection *osection;
4549 {
4550 /* One day we may try to grok other private data. */
4551 if (ibfd->xvec->flavour != bfd_target_som_flavour
4552 || obfd->xvec->flavour != bfd_target_som_flavour
4553 || (!som_is_space (isection) && !som_is_subspace (isection)))
4554 return false;
4555
4556 som_section_data (osection)->copy_data
4557 = (struct som_copyable_section_data_struct *)
4558 bfd_zalloc (obfd, sizeof (struct som_copyable_section_data_struct));
4559 if (som_section_data (osection)->copy_data == NULL)
4560 {
4561 bfd_set_error (bfd_error_no_memory);
4562 return false;
4563 }
4564
4565 memcpy (som_section_data (osection)->copy_data,
4566 som_section_data (isection)->copy_data,
4567 sizeof (struct som_copyable_section_data_struct));
4568
4569 /* Reparent if necessary. */
4570 if (som_section_data (osection)->copy_data->container)
4571 som_section_data (osection)->copy_data->container =
4572 som_section_data (osection)->copy_data->container->output_section;
4573
4574 return true;
4575 }
4576
4577 /* Copy any private info we understand from the input bfd
4578 to the output bfd. */
4579
4580 static boolean
4581 som_bfd_copy_private_bfd_data (ibfd, obfd)
4582 bfd *ibfd, *obfd;
4583 {
4584 /* One day we may try to grok other private data. */
4585 if (ibfd->xvec->flavour != bfd_target_som_flavour
4586 || obfd->xvec->flavour != bfd_target_som_flavour)
4587 return false;
4588
4589 /* Allocate some memory to hold the data we need. */
4590 obj_som_exec_data (obfd) = (struct som_exec_data *)
4591 bfd_zalloc (obfd, sizeof (struct som_exec_data));
4592 if (obj_som_exec_data (obfd) == NULL)
4593 {
4594 bfd_set_error (bfd_error_no_memory);
4595 return false;
4596 }
4597
4598 /* Now copy the data. */
4599 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
4600 sizeof (struct som_exec_data));
4601
4602 return true;
4603 }
4604
4605 /* Set backend info for sections which can not be described
4606 in the BFD data structures. */
4607
4608 boolean
4609 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
4610 asection *section;
4611 int defined;
4612 int private;
4613 unsigned int sort_key;
4614 int spnum;
4615 {
4616 /* Allocate memory to hold the magic information. */
4617 if (som_section_data (section)->copy_data == NULL)
4618 {
4619 som_section_data (section)->copy_data
4620 = (struct som_copyable_section_data_struct *)
4621 bfd_zalloc (section->owner,
4622 sizeof (struct som_copyable_section_data_struct));
4623 if (som_section_data (section)->copy_data == NULL)
4624 {
4625 bfd_set_error (bfd_error_no_memory);
4626 return false;
4627 }
4628 }
4629 som_section_data (section)->copy_data->sort_key = sort_key;
4630 som_section_data (section)->copy_data->is_defined = defined;
4631 som_section_data (section)->copy_data->is_private = private;
4632 som_section_data (section)->copy_data->container = section;
4633 som_section_data (section)->copy_data->space_number = spnum;
4634 return true;
4635 }
4636
4637 /* Set backend info for subsections which can not be described
4638 in the BFD data structures. */
4639
4640 boolean
4641 bfd_som_set_subsection_attributes (section, container, access,
4642 sort_key, quadrant)
4643 asection *section;
4644 asection *container;
4645 int access;
4646 unsigned int sort_key;
4647 int quadrant;
4648 {
4649 /* Allocate memory to hold the magic information. */
4650 if (som_section_data (section)->copy_data == NULL)
4651 {
4652 som_section_data (section)->copy_data
4653 = (struct som_copyable_section_data_struct *)
4654 bfd_zalloc (section->owner,
4655 sizeof (struct som_copyable_section_data_struct));
4656 if (som_section_data (section)->copy_data == NULL)
4657 {
4658 bfd_set_error (bfd_error_no_memory);
4659 return false;
4660 }
4661 }
4662 som_section_data (section)->copy_data->sort_key = sort_key;
4663 som_section_data (section)->copy_data->access_control_bits = access;
4664 som_section_data (section)->copy_data->quadrant = quadrant;
4665 som_section_data (section)->copy_data->container = container;
4666 return true;
4667 }
4668
4669 /* Set the full SOM symbol type. SOM needs far more symbol information
4670 than any other object file format I'm aware of. It is mandatory
4671 to be able to know if a symbol is an entry point, millicode, data,
4672 code, absolute, storage request, or procedure label. If you get
4673 the symbol type wrong your program will not link. */
4674
4675 void
4676 bfd_som_set_symbol_type (symbol, type)
4677 asymbol *symbol;
4678 unsigned int type;
4679 {
4680 som_symbol_data (symbol)->som_type = type;
4681 }
4682
4683 /* Attach an auxiliary header to the BFD backend so that it may be
4684 written into the object file. */
4685 boolean
4686 bfd_som_attach_aux_hdr (abfd, type, string)
4687 bfd *abfd;
4688 int type;
4689 char *string;
4690 {
4691 if (type == VERSION_AUX_ID)
4692 {
4693 int len = strlen (string);
4694 int pad = 0;
4695
4696 if (len % 4)
4697 pad = (4 - (len % 4));
4698 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
4699 bfd_zalloc (abfd, sizeof (struct aux_id)
4700 + sizeof (unsigned int) + len + pad);
4701 if (!obj_som_version_hdr (abfd))
4702 {
4703 bfd_set_error (bfd_error_no_memory);
4704 return false;
4705 }
4706 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
4707 obj_som_version_hdr (abfd)->header_id.length = len + pad;
4708 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
4709 obj_som_version_hdr (abfd)->string_length = len;
4710 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
4711 }
4712 else if (type == COPYRIGHT_AUX_ID)
4713 {
4714 int len = strlen (string);
4715 int pad = 0;
4716
4717 if (len % 4)
4718 pad = (4 - (len % 4));
4719 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
4720 bfd_zalloc (abfd, sizeof (struct aux_id)
4721 + sizeof (unsigned int) + len + pad);
4722 if (!obj_som_copyright_hdr (abfd))
4723 {
4724 bfd_set_error (bfd_error_no_memory);
4725 return false;
4726 }
4727 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
4728 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
4729 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
4730 obj_som_copyright_hdr (abfd)->string_length = len;
4731 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
4732 }
4733 return true;
4734 }
4735
4736 static boolean
4737 som_get_section_contents (abfd, section, location, offset, count)
4738 bfd *abfd;
4739 sec_ptr section;
4740 PTR location;
4741 file_ptr offset;
4742 bfd_size_type count;
4743 {
4744 if (count == 0 || ((section->flags & SEC_HAS_CONTENTS) == 0))
4745 return true;
4746 if ((bfd_size_type)(offset+count) > section->_raw_size
4747 || bfd_seek (abfd, (file_ptr)(section->filepos + offset), SEEK_SET) == -1
4748 || bfd_read (location, (bfd_size_type)1, count, abfd) != count)
4749 return (false); /* on error */
4750 return (true);
4751 }
4752
4753 static boolean
4754 som_set_section_contents (abfd, section, location, offset, count)
4755 bfd *abfd;
4756 sec_ptr section;
4757 PTR location;
4758 file_ptr offset;
4759 bfd_size_type count;
4760 {
4761 if (abfd->output_has_begun == false)
4762 {
4763 /* Set up fixed parts of the file, space, and subspace headers.
4764 Notify the world that output has begun. */
4765 som_prep_headers (abfd);
4766 abfd->output_has_begun = true;
4767 /* Start writing the object file. This include all the string
4768 tables, fixup streams, and other portions of the object file. */
4769 som_begin_writing (abfd);
4770 }
4771
4772 /* Only write subspaces which have "real" contents (eg. the contents
4773 are not generated at run time by the OS). */
4774 if (!som_is_subspace (section)
4775 || ((section->flags & SEC_HAS_CONTENTS) == 0))
4776 return true;
4777
4778 /* Seek to the proper offset within the object file and write the
4779 data. */
4780 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
4781 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
4782 return false;
4783
4784 if (bfd_write ((PTR) location, 1, count, abfd) != count)
4785 return false;
4786 return true;
4787 }
4788
4789 static boolean
4790 som_set_arch_mach (abfd, arch, machine)
4791 bfd *abfd;
4792 enum bfd_architecture arch;
4793 unsigned long machine;
4794 {
4795 /* Allow any architecture to be supported by the SOM backend */
4796 return bfd_default_set_arch_mach (abfd, arch, machine);
4797 }
4798
4799 static boolean
4800 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4801 functionname_ptr, line_ptr)
4802 bfd *abfd;
4803 asection *section;
4804 asymbol **symbols;
4805 bfd_vma offset;
4806 CONST char **filename_ptr;
4807 CONST char **functionname_ptr;
4808 unsigned int *line_ptr;
4809 {
4810 fprintf (stderr, "som_find_nearest_line unimplemented\n");
4811 fflush (stderr);
4812 abort ();
4813 return (false);
4814 }
4815
4816 static int
4817 som_sizeof_headers (abfd, reloc)
4818 bfd *abfd;
4819 boolean reloc;
4820 {
4821 fprintf (stderr, "som_sizeof_headers unimplemented\n");
4822 fflush (stderr);
4823 abort ();
4824 return (0);
4825 }
4826
4827 /* Return the single-character symbol type corresponding to
4828 SOM section S, or '?' for an unknown SOM section. */
4829
4830 static char
4831 som_section_type (s)
4832 const char *s;
4833 {
4834 const struct section_to_type *t;
4835
4836 for (t = &stt[0]; t->section; t++)
4837 if (!strcmp (s, t->section))
4838 return t->type;
4839 return '?';
4840 }
4841
4842 static int
4843 som_decode_symclass (symbol)
4844 asymbol *symbol;
4845 {
4846 char c;
4847
4848 if (bfd_is_com_section (symbol->section))
4849 return 'C';
4850 if (bfd_is_und_section (symbol->section))
4851 return 'U';
4852 if (bfd_is_ind_section (symbol->section))
4853 return 'I';
4854 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
4855 return '?';
4856
4857 if (bfd_is_abs_section (symbol->section))
4858 c = 'a';
4859 else if (symbol->section)
4860 c = som_section_type (symbol->section->name);
4861 else
4862 return '?';
4863 if (symbol->flags & BSF_GLOBAL)
4864 c = toupper (c);
4865 return c;
4866 }
4867
4868 /* Return information about SOM symbol SYMBOL in RET. */
4869
4870 static void
4871 som_get_symbol_info (ignore_abfd, symbol, ret)
4872 bfd *ignore_abfd;
4873 asymbol *symbol;
4874 symbol_info *ret;
4875 {
4876 ret->type = som_decode_symclass (symbol);
4877 if (ret->type != 'U')
4878 ret->value = symbol->value+symbol->section->vma;
4879 else
4880 ret->value = 0;
4881 ret->name = symbol->name;
4882 }
4883
4884 /* Count the number of symbols in the archive symbol table. Necessary
4885 so that we can allocate space for all the carsyms at once. */
4886
4887 static boolean
4888 som_bfd_count_ar_symbols (abfd, lst_header, count)
4889 bfd *abfd;
4890 struct lst_header *lst_header;
4891 symindex *count;
4892 {
4893 unsigned int i;
4894 unsigned int *hash_table = NULL;
4895 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4896
4897 hash_table =
4898 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4899 if (hash_table == NULL && lst_header->hash_size != 0)
4900 {
4901 bfd_set_error (bfd_error_no_memory);
4902 goto error_return;
4903 }
4904
4905 /* Don't forget to initialize the counter! */
4906 *count = 0;
4907
4908 /* Read in the hash table. The has table is an array of 32bit file offsets
4909 which point to the hash chains. */
4910 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4911 != lst_header->hash_size * 4)
4912 goto error_return;
4913
4914 /* Walk each chain counting the number of symbols found on that particular
4915 chain. */
4916 for (i = 0; i < lst_header->hash_size; i++)
4917 {
4918 struct lst_symbol_record lst_symbol;
4919
4920 /* An empty chain has zero as it's file offset. */
4921 if (hash_table[i] == 0)
4922 continue;
4923
4924 /* Seek to the first symbol in this hash chain. */
4925 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4926 goto error_return;
4927
4928 /* Read in this symbol and update the counter. */
4929 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4930 != sizeof (lst_symbol))
4931 goto error_return;
4932
4933 (*count)++;
4934
4935 /* Now iterate through the rest of the symbols on this chain. */
4936 while (lst_symbol.next_entry)
4937 {
4938
4939 /* Seek to the next symbol. */
4940 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4941 < 0)
4942 goto error_return;
4943
4944 /* Read the symbol in and update the counter. */
4945 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4946 != sizeof (lst_symbol))
4947 goto error_return;
4948
4949 (*count)++;
4950 }
4951 }
4952 if (hash_table != NULL)
4953 free (hash_table);
4954 return true;
4955
4956 error_return:
4957 if (hash_table != NULL)
4958 free (hash_table);
4959 return false;
4960 }
4961
4962 /* Fill in the canonical archive symbols (SYMS) from the archive described
4963 by ABFD and LST_HEADER. */
4964
4965 static boolean
4966 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
4967 bfd *abfd;
4968 struct lst_header *lst_header;
4969 carsym **syms;
4970 {
4971 unsigned int i, len;
4972 carsym *set = syms[0];
4973 unsigned int *hash_table = NULL;
4974 struct som_entry *som_dict = NULL;
4975 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4976
4977 hash_table =
4978 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4979 if (hash_table == NULL && lst_header->hash_size != 0)
4980 {
4981 bfd_set_error (bfd_error_no_memory);
4982 goto error_return;
4983 }
4984
4985 som_dict =
4986 (struct som_entry *) malloc (lst_header->module_count
4987 * sizeof (struct som_entry));
4988 if (som_dict == NULL && lst_header->module_count != 0)
4989 {
4990 bfd_set_error (bfd_error_no_memory);
4991 goto error_return;
4992 }
4993
4994 /* Read in the hash table. The has table is an array of 32bit file offsets
4995 which point to the hash chains. */
4996 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4997 != lst_header->hash_size * 4)
4998 goto error_return;
4999
5000 /* Seek to and read in the SOM dictionary. We will need this to fill
5001 in the carsym's filepos field. */
5002 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
5003 goto error_return;
5004
5005 if (bfd_read ((PTR) som_dict, lst_header->module_count,
5006 sizeof (struct som_entry), abfd)
5007 != lst_header->module_count * sizeof (struct som_entry))
5008 goto error_return;
5009
5010 /* Walk each chain filling in the carsyms as we go along. */
5011 for (i = 0; i < lst_header->hash_size; i++)
5012 {
5013 struct lst_symbol_record lst_symbol;
5014
5015 /* An empty chain has zero as it's file offset. */
5016 if (hash_table[i] == 0)
5017 continue;
5018
5019 /* Seek to and read the first symbol on the chain. */
5020 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
5021 goto error_return;
5022
5023 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5024 != sizeof (lst_symbol))
5025 goto error_return;
5026
5027 /* Get the name of the symbol, first get the length which is stored
5028 as a 32bit integer just before the symbol.
5029
5030 One might ask why we don't just read in the entire string table
5031 and index into it. Well, according to the SOM ABI the string
5032 index can point *anywhere* in the archive to save space, so just
5033 using the string table would not be safe. */
5034 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5035 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
5036 goto error_return;
5037
5038 if (bfd_read (&len, 1, 4, abfd) != 4)
5039 goto error_return;
5040
5041 /* Allocate space for the name and null terminate it too. */
5042 set->name = bfd_zalloc (abfd, len + 1);
5043 if (!set->name)
5044 {
5045 bfd_set_error (bfd_error_no_memory);
5046 goto error_return;
5047 }
5048 if (bfd_read (set->name, 1, len, abfd) != len)
5049 goto error_return;
5050
5051 set->name[len] = 0;
5052
5053 /* Fill in the file offset. Note that the "location" field points
5054 to the SOM itself, not the ar_hdr in front of it. */
5055 set->file_offset = som_dict[lst_symbol.som_index].location
5056 - sizeof (struct ar_hdr);
5057
5058 /* Go to the next symbol. */
5059 set++;
5060
5061 /* Iterate through the rest of the chain. */
5062 while (lst_symbol.next_entry)
5063 {
5064 /* Seek to the next symbol and read it in. */
5065 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET) <0)
5066 goto error_return;
5067
5068 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
5069 != sizeof (lst_symbol))
5070 goto error_return;
5071
5072 /* Seek to the name length & string and read them in. */
5073 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5074 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
5075 goto error_return;
5076
5077 if (bfd_read (&len, 1, 4, abfd) != 4)
5078 goto error_return;
5079
5080 /* Allocate space for the name and null terminate it too. */
5081 set->name = bfd_zalloc (abfd, len + 1);
5082 if (!set->name)
5083 {
5084 bfd_set_error (bfd_error_no_memory);
5085 goto error_return;
5086 }
5087
5088 if (bfd_read (set->name, 1, len, abfd) != len)
5089 goto error_return;
5090 set->name[len] = 0;
5091
5092 /* Fill in the file offset. Note that the "location" field points
5093 to the SOM itself, not the ar_hdr in front of it. */
5094 set->file_offset = som_dict[lst_symbol.som_index].location
5095 - sizeof (struct ar_hdr);
5096
5097 /* Go on to the next symbol. */
5098 set++;
5099 }
5100 }
5101 /* If we haven't died by now, then we successfully read the entire
5102 archive symbol table. */
5103 if (hash_table != NULL)
5104 free (hash_table);
5105 if (som_dict != NULL)
5106 free (som_dict);
5107 return true;
5108
5109 error_return:
5110 if (hash_table != NULL)
5111 free (hash_table);
5112 if (som_dict != NULL)
5113 free (som_dict);
5114 return false;
5115 }
5116
5117 /* Read in the LST from the archive. */
5118 static boolean
5119 som_slurp_armap (abfd)
5120 bfd *abfd;
5121 {
5122 struct lst_header lst_header;
5123 struct ar_hdr ar_header;
5124 unsigned int parsed_size;
5125 struct artdata *ardata = bfd_ardata (abfd);
5126 char nextname[17];
5127 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
5128
5129 /* Special cases. */
5130 if (i == 0)
5131 return true;
5132 if (i != 16)
5133 return false;
5134
5135 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
5136 return false;
5137
5138 /* For archives without .o files there is no symbol table. */
5139 if (strncmp (nextname, "/ ", 16))
5140 {
5141 bfd_has_map (abfd) = false;
5142 return true;
5143 }
5144
5145 /* Read in and sanity check the archive header. */
5146 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
5147 != sizeof (struct ar_hdr))
5148 return false;
5149
5150 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
5151 {
5152 bfd_set_error (bfd_error_malformed_archive);
5153 return false;
5154 }
5155
5156 /* How big is the archive symbol table entry? */
5157 errno = 0;
5158 parsed_size = strtol (ar_header.ar_size, NULL, 10);
5159 if (errno != 0)
5160 {
5161 bfd_set_error (bfd_error_malformed_archive);
5162 return false;
5163 }
5164
5165 /* Save off the file offset of the first real user data. */
5166 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
5167
5168 /* Read in the library symbol table. We'll make heavy use of this
5169 in just a minute. */
5170 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
5171 != sizeof (struct lst_header))
5172 return false;
5173
5174 /* Sanity check. */
5175 if (lst_header.a_magic != LIBMAGIC)
5176 {
5177 bfd_set_error (bfd_error_malformed_archive);
5178 return false;
5179 }
5180
5181 /* Count the number of symbols in the library symbol table. */
5182 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
5183 == false)
5184 return false;
5185
5186 /* Get back to the start of the library symbol table. */
5187 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
5188 + sizeof (struct lst_header), SEEK_SET) < 0)
5189 return false;
5190
5191 /* Initializae the cache and allocate space for the library symbols. */
5192 ardata->cache = 0;
5193 ardata->symdefs = (carsym *) bfd_alloc (abfd,
5194 (ardata->symdef_count
5195 * sizeof (carsym)));
5196 if (!ardata->symdefs)
5197 {
5198 bfd_set_error (bfd_error_no_memory);
5199 return false;
5200 }
5201
5202 /* Now fill in the canonical archive symbols. */
5203 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
5204 == false)
5205 return false;
5206
5207 /* Seek back to the "first" file in the archive. Note the "first"
5208 file may be the extended name table. */
5209 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) < 0)
5210 return false;
5211
5212 /* Notify the generic archive code that we have a symbol map. */
5213 bfd_has_map (abfd) = true;
5214 return true;
5215 }
5216
5217 /* Begin preparing to write a SOM library symbol table.
5218
5219 As part of the prep work we need to determine the number of symbols
5220 and the size of the associated string section. */
5221
5222 static boolean
5223 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
5224 bfd *abfd;
5225 unsigned int *num_syms, *stringsize;
5226 {
5227 bfd *curr_bfd = abfd->archive_head;
5228
5229 /* Some initialization. */
5230 *num_syms = 0;
5231 *stringsize = 0;
5232
5233 /* Iterate over each BFD within this archive. */
5234 while (curr_bfd != NULL)
5235 {
5236 unsigned int curr_count, i;
5237 som_symbol_type *sym;
5238
5239 /* Don't bother for non-SOM objects. */
5240 if (curr_bfd->format != bfd_object
5241 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5242 {
5243 curr_bfd = curr_bfd->next;
5244 continue;
5245 }
5246
5247 /* Make sure the symbol table has been read, then snag a pointer
5248 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5249 but doing so avoids allocating lots of extra memory. */
5250 if (som_slurp_symbol_table (curr_bfd) == false)
5251 return false;
5252
5253 sym = obj_som_symtab (curr_bfd);
5254 curr_count = bfd_get_symcount (curr_bfd);
5255
5256 /* Examine each symbol to determine if it belongs in the
5257 library symbol table. */
5258 for (i = 0; i < curr_count; i++, sym++)
5259 {
5260 struct som_misc_symbol_info info;
5261
5262 /* Derive SOM information from the BFD symbol. */
5263 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5264
5265 /* Should we include this symbol? */
5266 if (info.symbol_type == ST_NULL
5267 || info.symbol_type == ST_SYM_EXT
5268 || info.symbol_type == ST_ARG_EXT)
5269 continue;
5270
5271 /* Only global symbols and unsatisfied commons. */
5272 if (info.symbol_scope != SS_UNIVERSAL
5273 && info.symbol_type != ST_STORAGE)
5274 continue;
5275
5276 /* Do no include undefined symbols. */
5277 if (bfd_is_und_section (sym->symbol.section))
5278 continue;
5279
5280 /* Bump the various counters, being careful to honor
5281 alignment considerations in the string table. */
5282 (*num_syms)++;
5283 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5284 while (*stringsize % 4)
5285 (*stringsize)++;
5286 }
5287
5288 curr_bfd = curr_bfd->next;
5289 }
5290 return true;
5291 }
5292
5293 /* Hash a symbol name based on the hashing algorithm presented in the
5294 SOM ABI. */
5295 static unsigned int
5296 som_bfd_ar_symbol_hash (symbol)
5297 asymbol *symbol;
5298 {
5299 unsigned int len = strlen (symbol->name);
5300
5301 /* Names with length 1 are special. */
5302 if (len == 1)
5303 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5304
5305 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5306 | (symbol->name[len-2] << 8) | symbol->name[len-1];
5307 }
5308
5309 static CONST char *
5310 normalize (file)
5311 CONST char *file;
5312 {
5313 CONST char *filename = strrchr (file, '/');
5314
5315 if (filename != NULL)
5316 filename++;
5317 else
5318 filename = file;
5319 return filename;
5320 }
5321
5322 /* Do the bulk of the work required to write the SOM library
5323 symbol table. */
5324
5325 static boolean
5326 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst)
5327 bfd *abfd;
5328 unsigned int nsyms, string_size;
5329 struct lst_header lst;
5330 {
5331 file_ptr lst_filepos;
5332 char *strings = NULL, *p;
5333 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5334 bfd *curr_bfd;
5335 unsigned int *hash_table = NULL;
5336 struct som_entry *som_dict = NULL;
5337 struct lst_symbol_record **last_hash_entry = NULL;
5338 unsigned int curr_som_offset, som_index, extended_name_length = 0;
5339 unsigned int maxname = abfd->xvec->ar_max_namelen;
5340
5341 hash_table =
5342 (unsigned int *) malloc (lst.hash_size * sizeof (unsigned int));
5343 if (hash_table == NULL && lst.hash_size != 0)
5344 {
5345 bfd_set_error (bfd_error_no_memory);
5346 goto error_return;
5347 }
5348 som_dict =
5349 (struct som_entry *) malloc (lst.module_count
5350 * sizeof (struct som_entry));
5351 if (som_dict == NULL && lst.module_count != 0)
5352 {
5353 bfd_set_error (bfd_error_no_memory);
5354 goto error_return;
5355 }
5356
5357 last_hash_entry =
5358 ((struct lst_symbol_record **)
5359 malloc (lst.hash_size * sizeof (struct lst_symbol_record *)));
5360 if (last_hash_entry == NULL && lst.hash_size != 0)
5361 {
5362 bfd_set_error (bfd_error_no_memory);
5363 goto error_return;
5364 }
5365
5366 /* Lots of fields are file positions relative to the start
5367 of the lst record. So save its location. */
5368 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5369
5370 /* Some initialization. */
5371 memset (hash_table, 0, 4 * lst.hash_size);
5372 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
5373 memset (last_hash_entry, 0,
5374 lst.hash_size * sizeof (struct lst_symbol_record *));
5375
5376 /* Symbols have som_index fields, so we have to keep track of the
5377 index of each SOM in the archive.
5378
5379 The SOM dictionary has (among other things) the absolute file
5380 position for the SOM which a particular dictionary entry
5381 describes. We have to compute that information as we iterate
5382 through the SOMs/symbols. */
5383 som_index = 0;
5384 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5385
5386 /* Yow! We have to know the size of the extended name table
5387 too. */
5388 for (curr_bfd = abfd->archive_head;
5389 curr_bfd != NULL;
5390 curr_bfd = curr_bfd->next)
5391 {
5392 CONST char *normal = normalize (curr_bfd->filename);
5393 unsigned int thislen;
5394
5395 if (!normal)
5396 {
5397 bfd_set_error (bfd_error_no_memory);
5398 return false;
5399 }
5400 thislen = strlen (normal);
5401 if (thislen > maxname)
5402 extended_name_length += thislen + 1;
5403 }
5404
5405 /* Make room for the archive header and the contents of the
5406 extended string table. */
5407 if (extended_name_length)
5408 curr_som_offset += extended_name_length + sizeof (struct ar_hdr);
5409
5410 /* Make sure we're properly aligned. */
5411 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5412
5413 /* FIXME should be done with buffers just like everything else... */
5414 lst_syms = malloc (nsyms * sizeof (struct lst_symbol_record));
5415 if (lst_syms == NULL && nsyms != 0)
5416 {
5417 bfd_set_error (bfd_error_no_memory);
5418 goto error_return;
5419 }
5420 strings = malloc (string_size);
5421 if (strings == NULL && string_size != 0)
5422 {
5423 bfd_set_error (bfd_error_no_memory);
5424 goto error_return;
5425 }
5426
5427 p = strings;
5428 curr_lst_sym = lst_syms;
5429
5430 curr_bfd = abfd->archive_head;
5431 while (curr_bfd != NULL)
5432 {
5433 unsigned int curr_count, i;
5434 som_symbol_type *sym;
5435
5436 /* Don't bother for non-SOM objects. */
5437 if (curr_bfd->format != bfd_object
5438 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5439 {
5440 curr_bfd = curr_bfd->next;
5441 continue;
5442 }
5443
5444 /* Make sure the symbol table has been read, then snag a pointer
5445 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5446 but doing so avoids allocating lots of extra memory. */
5447 if (som_slurp_symbol_table (curr_bfd) == false)
5448 goto error_return;
5449
5450 sym = obj_som_symtab (curr_bfd);
5451 curr_count = bfd_get_symcount (curr_bfd);
5452
5453 for (i = 0; i < curr_count; i++, sym++)
5454 {
5455 struct som_misc_symbol_info info;
5456
5457 /* Derive SOM information from the BFD symbol. */
5458 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5459
5460 /* Should we include this symbol? */
5461 if (info.symbol_type == ST_NULL
5462 || info.symbol_type == ST_SYM_EXT
5463 || info.symbol_type == ST_ARG_EXT)
5464 continue;
5465
5466 /* Only global symbols and unsatisfied commons. */
5467 if (info.symbol_scope != SS_UNIVERSAL
5468 && info.symbol_type != ST_STORAGE)
5469 continue;
5470
5471 /* Do no include undefined symbols. */
5472 if (bfd_is_und_section (sym->symbol.section))
5473 continue;
5474
5475 /* If this is the first symbol from this SOM, then update
5476 the SOM dictionary too. */
5477 if (som_dict[som_index].location == 0)
5478 {
5479 som_dict[som_index].location = curr_som_offset;
5480 som_dict[som_index].length = arelt_size (curr_bfd);
5481 }
5482
5483 /* Fill in the lst symbol record. */
5484 curr_lst_sym->hidden = 0;
5485 curr_lst_sym->secondary_def = 0;
5486 curr_lst_sym->symbol_type = info.symbol_type;
5487 curr_lst_sym->symbol_scope = info.symbol_scope;
5488 curr_lst_sym->check_level = 0;
5489 curr_lst_sym->must_qualify = 0;
5490 curr_lst_sym->initially_frozen = 0;
5491 curr_lst_sym->memory_resident = 0;
5492 curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section);
5493 curr_lst_sym->dup_common = 0;
5494 curr_lst_sym->xleast = 0;
5495 curr_lst_sym->arg_reloc = info.arg_reloc;
5496 curr_lst_sym->name.n_strx = p - strings + 4;
5497 curr_lst_sym->qualifier_name.n_strx = 0;
5498 curr_lst_sym->symbol_info = info.symbol_info;
5499 curr_lst_sym->symbol_value = info.symbol_value;
5500 curr_lst_sym->symbol_descriptor = 0;
5501 curr_lst_sym->reserved = 0;
5502 curr_lst_sym->som_index = som_index;
5503 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
5504 curr_lst_sym->next_entry = 0;
5505
5506 /* Insert into the hash table. */
5507 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
5508 {
5509 struct lst_symbol_record *tmp;
5510
5511 /* There is already something at the head of this hash chain,
5512 so tack this symbol onto the end of the chain. */
5513 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
5514 tmp->next_entry
5515 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5516 + lst.hash_size * 4
5517 + lst.module_count * sizeof (struct som_entry)
5518 + sizeof (struct lst_header);
5519 }
5520 else
5521 {
5522 /* First entry in this hash chain. */
5523 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
5524 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5525 + lst.hash_size * 4
5526 + lst.module_count * sizeof (struct som_entry)
5527 + sizeof (struct lst_header);
5528 }
5529
5530 /* Keep track of the last symbol we added to this chain so we can
5531 easily update its next_entry pointer. */
5532 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
5533 = curr_lst_sym;
5534
5535
5536 /* Update the string table. */
5537 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
5538 p += 4;
5539 strcpy (p, sym->symbol.name);
5540 p += strlen (sym->symbol.name) + 1;
5541 while ((int)p % 4)
5542 {
5543 bfd_put_8 (abfd, 0, p);
5544 p++;
5545 }
5546
5547 /* Head to the next symbol. */
5548 curr_lst_sym++;
5549 }
5550
5551 /* Keep track of where each SOM will finally reside; then look
5552 at the next BFD. */
5553 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
5554 curr_bfd = curr_bfd->next;
5555 som_index++;
5556 }
5557
5558 /* Now scribble out the hash table. */
5559 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
5560 != lst.hash_size * 4)
5561 goto error_return;
5562
5563 /* Then the SOM dictionary. */
5564 if (bfd_write ((PTR) som_dict, lst.module_count,
5565 sizeof (struct som_entry), abfd)
5566 != lst.module_count * sizeof (struct som_entry))
5567 goto error_return;
5568
5569 /* The library symbols. */
5570 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
5571 != nsyms * sizeof (struct lst_symbol_record))
5572 goto error_return;
5573
5574 /* And finally the strings. */
5575 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
5576 goto error_return;
5577
5578 if (hash_table != NULL)
5579 free (hash_table);
5580 if (som_dict != NULL)
5581 free (som_dict);
5582 if (last_hash_entry != NULL)
5583 free (last_hash_entry);
5584 if (lst_syms != NULL)
5585 free (lst_syms);
5586 if (strings != NULL)
5587 free (strings);
5588 return true;
5589
5590 error_return:
5591 if (hash_table != NULL)
5592 free (hash_table);
5593 if (som_dict != NULL)
5594 free (som_dict);
5595 if (last_hash_entry != NULL)
5596 free (last_hash_entry);
5597 if (lst_syms != NULL)
5598 free (lst_syms);
5599 if (strings != NULL)
5600 free (strings);
5601
5602 return false;
5603 }
5604
5605 /* SOM almost uses the SVR4 style extended name support, but not
5606 quite. */
5607
5608 static boolean
5609 som_construct_extended_name_table (abfd, tabloc, tablen, name)
5610 bfd *abfd;
5611 char **tabloc;
5612 bfd_size_type *tablen;
5613 const char **name;
5614 {
5615 *name = "//";
5616 return _bfd_construct_extended_name_table (abfd, false, tabloc, tablen);
5617 }
5618
5619 /* Write out the LST for the archive.
5620
5621 You'll never believe this is really how armaps are handled in SOM... */
5622
5623 /*ARGSUSED*/
5624 static boolean
5625 som_write_armap (abfd, elength, map, orl_count, stridx)
5626 bfd *abfd;
5627 unsigned int elength;
5628 struct orl *map;
5629 unsigned int orl_count;
5630 int stridx;
5631 {
5632 bfd *curr_bfd;
5633 struct stat statbuf;
5634 unsigned int i, lst_size, nsyms, stringsize;
5635 struct ar_hdr hdr;
5636 struct lst_header lst;
5637 int *p;
5638
5639 /* We'll use this for the archive's date and mode later. */
5640 if (stat (abfd->filename, &statbuf) != 0)
5641 {
5642 bfd_set_error (bfd_error_system_call);
5643 return false;
5644 }
5645 /* Fudge factor. */
5646 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
5647
5648 /* Account for the lst header first. */
5649 lst_size = sizeof (struct lst_header);
5650
5651 /* Start building the LST header. */
5652 lst.system_id = CPU_PA_RISC1_0;
5653 lst.a_magic = LIBMAGIC;
5654 lst.version_id = VERSION_ID;
5655 lst.file_time.secs = 0;
5656 lst.file_time.nanosecs = 0;
5657
5658 lst.hash_loc = lst_size;
5659 lst.hash_size = SOM_LST_HASH_SIZE;
5660
5661 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
5662 lst_size += 4 * SOM_LST_HASH_SIZE;
5663
5664 /* We need to count the number of SOMs in this archive. */
5665 curr_bfd = abfd->archive_head;
5666 lst.module_count = 0;
5667 while (curr_bfd != NULL)
5668 {
5669 /* Only true SOM objects count. */
5670 if (curr_bfd->format == bfd_object
5671 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
5672 lst.module_count++;
5673 curr_bfd = curr_bfd->next;
5674 }
5675 lst.module_limit = lst.module_count;
5676 lst.dir_loc = lst_size;
5677 lst_size += sizeof (struct som_entry) * lst.module_count;
5678
5679 /* We don't support import/export tables, auxiliary headers,
5680 or free lists yet. Make the linker work a little harder
5681 to make our life easier. */
5682
5683 lst.export_loc = 0;
5684 lst.export_count = 0;
5685 lst.import_loc = 0;
5686 lst.aux_loc = 0;
5687 lst.aux_size = 0;
5688
5689 /* Count how many symbols we will have on the hash chains and the
5690 size of the associated string table. */
5691 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
5692 return false;
5693
5694 lst_size += sizeof (struct lst_symbol_record) * nsyms;
5695
5696 /* For the string table. One day we might actually use this info
5697 to avoid small seeks/reads when reading archives. */
5698 lst.string_loc = lst_size;
5699 lst.string_size = stringsize;
5700 lst_size += stringsize;
5701
5702 /* SOM ABI says this must be zero. */
5703 lst.free_list = 0;
5704 lst.file_end = lst_size;
5705
5706 /* Compute the checksum. Must happen after the entire lst header
5707 has filled in. */
5708 p = (int *)&lst;
5709 lst.checksum = 0;
5710 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
5711 lst.checksum ^= *p++;
5712
5713 sprintf (hdr.ar_name, "/ ");
5714 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
5715 sprintf (hdr.ar_uid, "%ld", (long) getuid ());
5716 sprintf (hdr.ar_gid, "%ld", (long) getgid ());
5717 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
5718 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
5719 hdr.ar_fmag[0] = '`';
5720 hdr.ar_fmag[1] = '\012';
5721
5722 /* Turn any nulls into spaces. */
5723 for (i = 0; i < sizeof (struct ar_hdr); i++)
5724 if (((char *) (&hdr))[i] == '\0')
5725 (((char *) (&hdr))[i]) = ' ';
5726
5727 /* Scribble out the ar header. */
5728 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
5729 != sizeof (struct ar_hdr))
5730 return false;
5731
5732 /* Now scribble out the lst header. */
5733 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
5734 != sizeof (struct lst_header))
5735 return false;
5736
5737 /* Build and write the armap. */
5738 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst) == false)
5739 return false;
5740
5741 /* Done. */
5742 return true;
5743 }
5744
5745 /* Free all information we have cached for this BFD. We can always
5746 read it again later if we need it. */
5747
5748 static boolean
5749 som_bfd_free_cached_info (abfd)
5750 bfd *abfd;
5751 {
5752 asection *o;
5753
5754 if (bfd_get_format (abfd) != bfd_object)
5755 return true;
5756
5757 #define FREE(x) if (x != NULL) { free (x); x = NULL; }
5758 /* Free the native string and symbol tables. */
5759 FREE (obj_som_symtab (abfd));
5760 FREE (obj_som_stringtab (abfd));
5761 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5762 {
5763 /* Free the native relocations. */
5764 o->reloc_count = -1;
5765 FREE (som_section_data (o)->reloc_stream);
5766 /* Free the generic relocations. */
5767 FREE (o->relocation);
5768 }
5769 #undef FREE
5770
5771 return true;
5772 }
5773
5774 /* End of miscellaneous support functions. */
5775
5776 #define som_close_and_cleanup som_bfd_free_cached_info
5777
5778 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
5779 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
5780 #define som_truncate_arname bfd_bsd_truncate_arname
5781 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
5782 #define som_update_armap_timestamp bfd_true
5783
5784 #define som_get_lineno _bfd_nosymbols_get_lineno
5785 #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
5786
5787 #define som_bfd_get_relocated_section_contents \
5788 bfd_generic_get_relocated_section_contents
5789 #define som_bfd_relax_section bfd_generic_relax_section
5790 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
5791 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
5792 #define som_bfd_final_link _bfd_generic_final_link
5793
5794 const bfd_target som_vec =
5795 {
5796 "som", /* name */
5797 bfd_target_som_flavour,
5798 true, /* target byte order */
5799 true, /* target headers byte order */
5800 (HAS_RELOC | EXEC_P | /* object flags */
5801 HAS_LINENO | HAS_DEBUG |
5802 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
5803 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
5804 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
5805
5806 /* leading_symbol_char: is the first char of a user symbol
5807 predictable, and if so what is it */
5808 0,
5809 '/', /* ar_pad_char */
5810 14, /* ar_max_namelen */
5811 3, /* minimum alignment */
5812 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5813 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5814 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
5815 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5816 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5817 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
5818 {_bfd_dummy_target,
5819 som_object_p, /* bfd_check_format */
5820 bfd_generic_archive_p,
5821 _bfd_dummy_target
5822 },
5823 {
5824 bfd_false,
5825 som_mkobject,
5826 _bfd_generic_mkarchive,
5827 bfd_false
5828 },
5829 {
5830 bfd_false,
5831 som_write_object_contents,
5832 _bfd_write_archive_contents,
5833 bfd_false,
5834 },
5835 #undef som
5836
5837 BFD_JUMP_TABLE_GENERIC (som),
5838 BFD_JUMP_TABLE_COPY (som),
5839 BFD_JUMP_TABLE_CORE (_bfd_nocore),
5840 BFD_JUMP_TABLE_ARCHIVE (som),
5841 BFD_JUMP_TABLE_SYMBOLS (som),
5842 BFD_JUMP_TABLE_RELOCS (som),
5843 BFD_JUMP_TABLE_WRITE (som),
5844 BFD_JUMP_TABLE_LINK (som),
5845 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
5846
5847 (PTR) 0
5848 };
5849
5850 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */