* som.c: Cast return values from BFD memory allocation routines to
[binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
3
4 Contributed by the Center for Software Science at the
5 University of Utah (pa-gdb-bugs@cs.utah.edu).
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23 #include "bfd.h"
24 #include "sysdep.h"
25
26 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)
27
28 #include "libbfd.h"
29 #include "som.h"
30 #include "libhppa.h"
31
32 #include <stdio.h>
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/dir.h>
36 #include <signal.h>
37 #include <machine/reg.h>
38 #include <sys/user.h> /* After a.out.h */
39 #include <sys/file.h>
40 #include <errno.h>
41
42 /* Magic not defined in standard HP-UX header files until 8.0 */
43
44 #ifndef CPU_PA_RISC1_0
45 #define CPU_PA_RISC1_0 0x20B
46 #endif /* CPU_PA_RISC1_0 */
47
48 #ifndef CPU_PA_RISC1_1
49 #define CPU_PA_RISC1_1 0x210
50 #endif /* CPU_PA_RISC1_1 */
51
52 #ifndef _PA_RISC1_0_ID
53 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
54 #endif /* _PA_RISC1_0_ID */
55
56 #ifndef _PA_RISC1_1_ID
57 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
58 #endif /* _PA_RISC1_1_ID */
59
60 #ifndef _PA_RISC_MAXID
61 #define _PA_RISC_MAXID 0x2FF
62 #endif /* _PA_RISC_MAXID */
63
64 #ifndef _PA_RISC_ID
65 #define _PA_RISC_ID(__m_num) \
66 (((__m_num) == _PA_RISC1_0_ID) || \
67 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
68 #endif /* _PA_RISC_ID */
69
70 /* Size (in chars) of the temporary buffers used during fixup and string
71 table writes. */
72
73 #define SOM_TMP_BUFSIZE 8192
74
75
76 /* SOM allows any one of the four previous relocations to be reused
77 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
78 relocations are always a single byte, using a R_PREV_FIXUP instead
79 of some multi-byte relocation makes object files smaller.
80
81 Note one side effect of using a R_PREV_FIXUP is the relocation that
82 is being repeated moves to the front of the queue. */
83 struct reloc_queue
84 {
85 unsigned char *reloc;
86 unsigned int size;
87 } reloc_queue[4];
88
89 /* This fully describes the symbol types which may be attached to
90 an EXPORT or IMPORT directive. Only SOM uses this formation
91 (ELF has no need for it). */
92 typedef enum
93 {
94 SYMBOL_TYPE_UNKNOWN,
95 SYMBOL_TYPE_ABSOLUTE,
96 SYMBOL_TYPE_CODE,
97 SYMBOL_TYPE_DATA,
98 SYMBOL_TYPE_ENTRY,
99 SYMBOL_TYPE_MILLICODE,
100 SYMBOL_TYPE_PLABEL,
101 SYMBOL_TYPE_PRI_PROG,
102 SYMBOL_TYPE_SEC_PROG,
103 } pa_symbol_type;
104
105 struct section_to_type
106 {
107 char *section;
108 char type;
109 };
110
111 /* Forward declarations */
112
113 static boolean som_mkobject PARAMS ((bfd *));
114 static bfd_target * som_object_setup PARAMS ((bfd *,
115 struct header *,
116 struct som_exec_auxhdr *));
117 static asection * make_unique_section PARAMS ((bfd *, CONST char *, int));
118 static boolean setup_sections PARAMS ((bfd *, struct header *));
119 static bfd_target * som_object_p PARAMS ((bfd *));
120 static boolean som_write_object_contents PARAMS ((bfd *));
121 static boolean som_slurp_string_table PARAMS ((bfd *));
122 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
123 static unsigned int som_get_symtab_upper_bound PARAMS ((bfd *));
124 static unsigned int som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
125 arelent **, asymbol **));
126 static unsigned int som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
127 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
128 arelent *, asection *,
129 asymbol **, boolean));
130 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
131 asymbol **, boolean));
132 static unsigned int som_get_symtab PARAMS ((bfd *, asymbol **));
133 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
134 static void som_print_symbol PARAMS ((bfd *, PTR,
135 asymbol *, bfd_print_symbol_type));
136 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
137 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
138 file_ptr, bfd_size_type));
139 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
140 unsigned long));
141 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
142 asymbol **, bfd_vma,
143 CONST char **,
144 CONST char **,
145 unsigned int *));
146 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
147 static asection * som_section_from_subspace_index PARAMS ((bfd *,
148 unsigned int));
149 static int log2 PARAMS ((unsigned int));
150 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
151 asymbol *, PTR,
152 asection *, bfd *,
153 char **));
154 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
155 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
156 struct reloc_queue *));
157 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
158 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
159 struct reloc_queue *));
160 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
161 unsigned int,
162 struct reloc_queue *));
163
164 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
165 unsigned char *, unsigned int *,
166 struct reloc_queue *));
167 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
168 unsigned int *,
169 struct reloc_queue *));
170 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
171 unsigned int *,
172 arelent *, int,
173 struct reloc_queue *));
174 static unsigned long som_count_spaces PARAMS ((bfd *));
175 static unsigned long som_count_subspaces PARAMS ((bfd *));
176 static int compare_syms PARAMS ((asymbol **, asymbol **));
177 static unsigned long som_compute_checksum PARAMS ((bfd *));
178 static boolean som_prep_headers PARAMS ((bfd *));
179 static int som_sizeof_headers PARAMS ((bfd *, boolean));
180 static boolean som_write_headers PARAMS ((bfd *));
181 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
182 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
183 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
184 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
185 unsigned int *));
186 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
187 asymbol **, unsigned int,
188 unsigned *));
189 static boolean som_begin_writing PARAMS ((bfd *));
190 static const reloc_howto_type * som_bfd_reloc_type_lookup
191 PARAMS ((bfd_arch_info_type *, bfd_reloc_code_real_type));
192 static char som_section_type PARAMS ((const char *));
193 static int som_decode_symclass PARAMS ((asymbol *));
194
195
196 /* Map SOM section names to POSIX/BSD single-character symbol types.
197
198 This table includes all the standard subspaces as defined in the
199 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
200 some reason was left out, and sections specific to embedded stabs. */
201
202 static const struct section_to_type stt[] = {
203 {"$TEXT$", 't'},
204 {"$SHLIB_INFO$", 't'},
205 {"$MILLICODE$", 't'},
206 {"$LIT$", 't'},
207 {"$CODE$", 't'},
208 {"$UNWIND_START$", 't'},
209 {"$UNWIND$", 't'},
210 {"$PRIVATE$", 'd'},
211 {"$PLT$", 'd'},
212 {"$SHLIB_DATA$", 'd'},
213 {"$DATA$", 'd'},
214 {"$SHORTDATA$", 'g'},
215 {"$DLT$", 'd'},
216 {"$GLOBAL$", 'g'},
217 {"$SHORTBSS$", 's'},
218 {"$BSS$", 'b'},
219 {"$GDB_STRINGS$", 'N'},
220 {"$GDB_SYMBOLS$", 'N'},
221 {0, 0}
222 };
223
224 /* About the relocation formatting table...
225
226 There are 256 entries in the table, one for each possible
227 relocation opcode available in SOM. We index the table by
228 the relocation opcode. The names and operations are those
229 defined by a.out_800 (4).
230
231 Right now this table is only used to count and perform minimal
232 processing on relocation streams so that they can be internalized
233 into BFD and symbolically printed by utilities. To make actual use
234 of them would be much more difficult, BFD's concept of relocations
235 is far too simple to handle SOM relocations. The basic assumption
236 that a relocation can be completely processed independent of other
237 relocations before an object file is written is invalid for SOM.
238
239 The SOM relocations are meant to be processed as a stream, they
240 specify copying of data from the input section to the output section
241 while possibly modifying the data in some manner. They also can
242 specify that a variable number of zeros or uninitialized data be
243 inserted on in the output segment at the current offset. Some
244 relocations specify that some previous relocation be re-applied at
245 the current location in the input/output sections. And finally a number
246 of relocations have effects on other sections (R_ENTRY, R_EXIT,
247 R_UNWIND_AUX and a variety of others). There isn't even enough room
248 in the BFD relocation data structure to store enough information to
249 perform all the relocations.
250
251 Each entry in the table has three fields.
252
253 The first entry is an index into this "class" of relocations. This
254 index can then be used as a variable within the relocation itself.
255
256 The second field is a format string which actually controls processing
257 of the relocation. It uses a simple postfix machine to do calculations
258 based on variables/constants found in the string and the relocation
259 stream.
260
261 The third field specifys whether or not this relocation may use
262 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
263 stored in the instruction.
264
265 Variables:
266
267 L = input space byte count
268 D = index into class of relocations
269 M = output space byte count
270 N = statement number (unused?)
271 O = stack operation
272 R = parameter relocation bits
273 S = symbol index
274 U = 64 bits of stack unwind and frame size info (we only keep 32 bits)
275 V = a literal constant (usually used in the next relocation)
276 P = a previous relocation
277
278 Lower case letters (starting with 'b') refer to following
279 bytes in the relocation stream. 'b' is the next 1 byte,
280 c is the next 2 bytes, d is the next 3 bytes, etc...
281 This is the variable part of the relocation entries that
282 makes our life a living hell.
283
284 numerical constants are also used in the format string. Note
285 the constants are represented in decimal.
286
287 '+', "*" and "=" represents the obvious postfix operators.
288 '<' represents a left shift.
289
290 Stack Operations:
291
292 Parameter Relocation Bits:
293
294 Unwind Entries:
295
296 Previous Relocations: The index field represents which in the queue
297 of 4 previous fixups should be re-applied.
298
299 Literal Constants: These are generally used to represent addend
300 parts of relocations when these constants are not stored in the
301 fields of the instructions themselves. For example the instruction
302 addil foo-$global$-0x1234 would use an override for "0x1234" rather
303 than storing it into the addil itself. */
304
305 struct fixup_format
306 {
307 int D;
308 char *format;
309 };
310
311 static const struct fixup_format som_fixup_formats[256] =
312 {
313 /* R_NO_RELOCATION */
314 0, "LD1+4*=", /* 0x00 */
315 1, "LD1+4*=", /* 0x01 */
316 2, "LD1+4*=", /* 0x02 */
317 3, "LD1+4*=", /* 0x03 */
318 4, "LD1+4*=", /* 0x04 */
319 5, "LD1+4*=", /* 0x05 */
320 6, "LD1+4*=", /* 0x06 */
321 7, "LD1+4*=", /* 0x07 */
322 8, "LD1+4*=", /* 0x08 */
323 9, "LD1+4*=", /* 0x09 */
324 10, "LD1+4*=", /* 0x0a */
325 11, "LD1+4*=", /* 0x0b */
326 12, "LD1+4*=", /* 0x0c */
327 13, "LD1+4*=", /* 0x0d */
328 14, "LD1+4*=", /* 0x0e */
329 15, "LD1+4*=", /* 0x0f */
330 16, "LD1+4*=", /* 0x10 */
331 17, "LD1+4*=", /* 0x11 */
332 18, "LD1+4*=", /* 0x12 */
333 19, "LD1+4*=", /* 0x13 */
334 20, "LD1+4*=", /* 0x14 */
335 21, "LD1+4*=", /* 0x15 */
336 22, "LD1+4*=", /* 0x16 */
337 23, "LD1+4*=", /* 0x17 */
338 0, "LD8<b+1+4*=", /* 0x18 */
339 1, "LD8<b+1+4*=", /* 0x19 */
340 2, "LD8<b+1+4*=", /* 0x1a */
341 3, "LD8<b+1+4*=", /* 0x1b */
342 0, "LD16<c+1+4*=", /* 0x1c */
343 1, "LD16<c+1+4*=", /* 0x1d */
344 2, "LD16<c+1+4*=", /* 0x1e */
345 0, "Ld1+=", /* 0x1f */
346 /* R_ZEROES */
347 0, "Lb1+4*=", /* 0x20 */
348 1, "Ld1+=", /* 0x21 */
349 /* R_UNINIT */
350 0, "Lb1+4*=", /* 0x22 */
351 1, "Ld1+=", /* 0x23 */
352 /* R_RELOCATION */
353 0, "L4=", /* 0x24 */
354 /* R_DATA_ONE_SYMBOL */
355 0, "L4=Sb=", /* 0x25 */
356 1, "L4=Sd=", /* 0x26 */
357 /* R_DATA_PLEBEL */
358 0, "L4=Sb=", /* 0x27 */
359 1, "L4=Sd=", /* 0x28 */
360 /* R_SPACE_REF */
361 0, "L4=", /* 0x29 */
362 /* R_REPEATED_INIT */
363 0, "L4=Mb1+4*=", /* 0x2a */
364 1, "Lb4*=Mb1+L*=", /* 0x2b */
365 2, "Lb4*=Md1+4*=", /* 0x2c */
366 3, "Ld1+=Me1+=", /* 0x2d */
367 /* R_RESERVED */
368 0, "", /* 0x2e */
369 0, "", /* 0x2f */
370 /* R_PCREL_CALL */
371 0, "L4=RD=Sb=", /* 0x30 */
372 1, "L4=RD=Sb=", /* 0x31 */
373 2, "L4=RD=Sb=", /* 0x32 */
374 3, "L4=RD=Sb=", /* 0x33 */
375 4, "L4=RD=Sb=", /* 0x34 */
376 5, "L4=RD=Sb=", /* 0x35 */
377 6, "L4=RD=Sb=", /* 0x36 */
378 7, "L4=RD=Sb=", /* 0x37 */
379 8, "L4=RD=Sb=", /* 0x38 */
380 9, "L4=RD=Sb=", /* 0x39 */
381 0, "L4=RD8<b+=Sb=",/* 0x3a */
382 1, "L4=RD8<b+=Sb=",/* 0x3b */
383 0, "L4=RD8<b+=Sd=",/* 0x3c */
384 1, "L4=RD8<b+=Sd=",/* 0x3d */
385 /* R_RESERVED */
386 0, "", /* 0x3e */
387 0, "", /* 0x3f */
388 /* R_ABS_CALL */
389 0, "L4=RD=Sb=", /* 0x40 */
390 1, "L4=RD=Sb=", /* 0x41 */
391 2, "L4=RD=Sb=", /* 0x42 */
392 3, "L4=RD=Sb=", /* 0x43 */
393 4, "L4=RD=Sb=", /* 0x44 */
394 5, "L4=RD=Sb=", /* 0x45 */
395 6, "L4=RD=Sb=", /* 0x46 */
396 7, "L4=RD=Sb=", /* 0x47 */
397 8, "L4=RD=Sb=", /* 0x48 */
398 9, "L4=RD=Sb=", /* 0x49 */
399 0, "L4=RD8<b+=Sb=",/* 0x4a */
400 1, "L4=RD8<b+=Sb=",/* 0x4b */
401 0, "L4=RD8<b+=Sd=",/* 0x4c */
402 1, "L4=RD8<b+=Sd=",/* 0x4d */
403 /* R_RESERVED */
404 0, "", /* 0x4e */
405 0, "", /* 0x4f */
406 /* R_DP_RELATIVE */
407 0, "L4=SD=", /* 0x50 */
408 1, "L4=SD=", /* 0x51 */
409 2, "L4=SD=", /* 0x52 */
410 3, "L4=SD=", /* 0x53 */
411 4, "L4=SD=", /* 0x54 */
412 5, "L4=SD=", /* 0x55 */
413 6, "L4=SD=", /* 0x56 */
414 7, "L4=SD=", /* 0x57 */
415 8, "L4=SD=", /* 0x58 */
416 9, "L4=SD=", /* 0x59 */
417 10, "L4=SD=", /* 0x5a */
418 11, "L4=SD=", /* 0x5b */
419 12, "L4=SD=", /* 0x5c */
420 13, "L4=SD=", /* 0x5d */
421 14, "L4=SD=", /* 0x5e */
422 15, "L4=SD=", /* 0x5f */
423 16, "L4=SD=", /* 0x60 */
424 17, "L4=SD=", /* 0x61 */
425 18, "L4=SD=", /* 0x62 */
426 19, "L4=SD=", /* 0x63 */
427 20, "L4=SD=", /* 0x64 */
428 21, "L4=SD=", /* 0x65 */
429 22, "L4=SD=", /* 0x66 */
430 23, "L4=SD=", /* 0x67 */
431 24, "L4=SD=", /* 0x68 */
432 25, "L4=SD=", /* 0x69 */
433 26, "L4=SD=", /* 0x6a */
434 27, "L4=SD=", /* 0x6b */
435 28, "L4=SD=", /* 0x6c */
436 29, "L4=SD=", /* 0x6d */
437 30, "L4=SD=", /* 0x6e */
438 31, "L4=SD=", /* 0x6f */
439 32, "L4=Sb=", /* 0x70 */
440 33, "L4=Sd=", /* 0x71 */
441 /* R_RESERVED */
442 0, "", /* 0x72 */
443 0, "", /* 0x73 */
444 0, "", /* 0x74 */
445 0, "", /* 0x75 */
446 0, "", /* 0x76 */
447 0, "", /* 0x77 */
448 /* R_DLT_REL */
449 0, "L4=Sb=", /* 0x78 */
450 1, "L4=Sd=", /* 0x79 */
451 /* R_RESERVED */
452 0, "", /* 0x7a */
453 0, "", /* 0x7b */
454 0, "", /* 0x7c */
455 0, "", /* 0x7d */
456 0, "", /* 0x7e */
457 0, "", /* 0x7f */
458 /* R_CODE_ONE_SYMBOL */
459 0, "L4=SD=", /* 0x80 */
460 1, "L4=SD=", /* 0x81 */
461 2, "L4=SD=", /* 0x82 */
462 3, "L4=SD=", /* 0x83 */
463 4, "L4=SD=", /* 0x84 */
464 5, "L4=SD=", /* 0x85 */
465 6, "L4=SD=", /* 0x86 */
466 7, "L4=SD=", /* 0x87 */
467 8, "L4=SD=", /* 0x88 */
468 9, "L4=SD=", /* 0x89 */
469 10, "L4=SD=", /* 0x8q */
470 11, "L4=SD=", /* 0x8b */
471 12, "L4=SD=", /* 0x8c */
472 13, "L4=SD=", /* 0x8d */
473 14, "L4=SD=", /* 0x8e */
474 15, "L4=SD=", /* 0x8f */
475 16, "L4=SD=", /* 0x90 */
476 17, "L4=SD=", /* 0x91 */
477 18, "L4=SD=", /* 0x92 */
478 19, "L4=SD=", /* 0x93 */
479 20, "L4=SD=", /* 0x94 */
480 21, "L4=SD=", /* 0x95 */
481 22, "L4=SD=", /* 0x96 */
482 23, "L4=SD=", /* 0x97 */
483 24, "L4=SD=", /* 0x98 */
484 25, "L4=SD=", /* 0x99 */
485 26, "L4=SD=", /* 0x9a */
486 27, "L4=SD=", /* 0x9b */
487 28, "L4=SD=", /* 0x9c */
488 29, "L4=SD=", /* 0x9d */
489 30, "L4=SD=", /* 0x9e */
490 31, "L4=SD=", /* 0x9f */
491 32, "L4=Sb=", /* 0xa0 */
492 33, "L4=Sd=", /* 0xa1 */
493 /* R_RESERVED */
494 0, "", /* 0xa2 */
495 0, "", /* 0xa3 */
496 0, "", /* 0xa4 */
497 0, "", /* 0xa5 */
498 0, "", /* 0xa6 */
499 0, "", /* 0xa7 */
500 0, "", /* 0xa8 */
501 0, "", /* 0xa9 */
502 0, "", /* 0xaa */
503 0, "", /* 0xab */
504 0, "", /* 0xac */
505 0, "", /* 0xad */
506 /* R_MILLI_REL */
507 0, "L4=Sb=", /* 0xae */
508 1, "L4=Sd=", /* 0xaf */
509 /* R_CODE_PLABEL */
510 0, "L4=Sb=", /* 0xb0 */
511 1, "L4=Sd=", /* 0xb1 */
512 /* R_BREAKPOINT */
513 0, "L4=", /* 0xb2 */
514 /* R_ENTRY */
515 0, "Ui=", /* 0xb3 */
516 1, "Uf=", /* 0xb4 */
517 /* R_ALT_ENTRY */
518 0, "", /* 0xb5 */
519 /* R_EXIT */
520 0, "", /* 0xb6 */
521 /* R_BEGIN_TRY */
522 0, "", /* 0xb7 */
523 /* R_END_TRY */
524 0, "R0=", /* 0xb8 */
525 1, "Rb4*=", /* 0xb9 */
526 2, "Rd4*=", /* 0xba */
527 /* R_BEGIN_BRTAB */
528 0, "", /* 0xbb */
529 /* R_END_BRTAB */
530 0, "", /* 0xbc */
531 /* R_STATEMENT */
532 0, "Nb=", /* 0xbd */
533 1, "Nc=", /* 0xbe */
534 2, "Nd=", /* 0xbf */
535 /* R_DATA_EXPR */
536 0, "L4=", /* 0xc0 */
537 /* R_CODE_EXPR */
538 0, "L4=", /* 0xc1 */
539 /* R_FSEL */
540 0, "", /* 0xc2 */
541 /* R_LSEL */
542 0, "", /* 0xc3 */
543 /* R_RSEL */
544 0, "", /* 0xc4 */
545 /* R_N_MODE */
546 0, "", /* 0xc5 */
547 /* R_S_MODE */
548 0, "", /* 0xc6 */
549 /* R_D_MODE */
550 0, "", /* 0xc7 */
551 /* R_R_MODE */
552 0, "", /* 0xc8 */
553 /* R_DATA_OVERRIDE */
554 0, "V0=", /* 0xc9 */
555 1, "Vb=", /* 0xca */
556 2, "Vc=", /* 0xcb */
557 3, "Vd=", /* 0xcc */
558 4, "Ve=", /* 0xcd */
559 /* R_TRANSLATED */
560 0, "", /* 0xce */
561 /* R_RESERVED */
562 0, "", /* 0xcf */
563 /* R_COMP1 */
564 0, "Ob=", /* 0xd0 */
565 /* R_COMP2 */
566 0, "Ob=Sd=", /* 0xd1 */
567 /* R_COMP3 */
568 0, "Ob=Ve=", /* 0xd2 */
569 /* R_PREV_FIXUP */
570 0, "P", /* 0xd3 */
571 1, "P", /* 0xd4 */
572 2, "P", /* 0xd5 */
573 3, "P", /* 0xd6 */
574 /* R_RESERVED */
575 0, "", /* 0xd7 */
576 0, "", /* 0xd8 */
577 0, "", /* 0xd9 */
578 0, "", /* 0xda */
579 0, "", /* 0xdb */
580 0, "", /* 0xdc */
581 0, "", /* 0xdd */
582 0, "", /* 0xde */
583 0, "", /* 0xdf */
584 0, "", /* 0xe0 */
585 0, "", /* 0xe1 */
586 0, "", /* 0xe2 */
587 0, "", /* 0xe3 */
588 0, "", /* 0xe4 */
589 0, "", /* 0xe5 */
590 0, "", /* 0xe6 */
591 0, "", /* 0xe7 */
592 0, "", /* 0xe8 */
593 0, "", /* 0xe9 */
594 0, "", /* 0xea */
595 0, "", /* 0xeb */
596 0, "", /* 0xec */
597 0, "", /* 0xed */
598 0, "", /* 0xee */
599 0, "", /* 0xef */
600 0, "", /* 0xf0 */
601 0, "", /* 0xf1 */
602 0, "", /* 0xf2 */
603 0, "", /* 0xf3 */
604 0, "", /* 0xf4 */
605 0, "", /* 0xf5 */
606 0, "", /* 0xf6 */
607 0, "", /* 0xf7 */
608 0, "", /* 0xf8 */
609 0, "", /* 0xf9 */
610 0, "", /* 0xfa */
611 0, "", /* 0xfb */
612 0, "", /* 0xfc */
613 0, "", /* 0xfd */
614 0, "", /* 0xfe */
615 0, "", /* 0xff */
616 };
617
618 static const int comp1_opcodes[] =
619 {
620 0x00,
621 0x40,
622 0x41,
623 0x42,
624 0x43,
625 0x44,
626 0x45,
627 0x46,
628 0x47,
629 0x48,
630 0x49,
631 0x4a,
632 0x4b,
633 0x60,
634 0x80,
635 0xa0,
636 0xc0,
637 -1
638 };
639
640 static const int comp2_opcodes[] =
641 {
642 0x00,
643 0x80,
644 0x82,
645 0xc0,
646 -1
647 };
648
649 static const int comp3_opcodes[] =
650 {
651 0x00,
652 0x02,
653 -1
654 };
655
656 /* These apparently are not in older versions of hpux reloc.h. */
657 #ifndef R_DLT_REL
658 #define R_DLT_REL 0x78
659 #endif
660
661 #ifndef R_AUX_UNWIND
662 #define R_AUX_UNWIND 0xcf
663 #endif
664
665 #ifndef R_SEC_STMT
666 #define R_SEC_STMT 0xd7
667 #endif
668
669 static reloc_howto_type som_hppa_howto_table[] =
670 {
671 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
672 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
673 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
674 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
675 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
676 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
677 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
678 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
679 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
680 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
681 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
682 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
683 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
684 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
685 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
686 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
687 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
688 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
689 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
690 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
691 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
692 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
693 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
694 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
695 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
696 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
697 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
698 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
699 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
700 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
701 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
702 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
703 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
704 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
705 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
706 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
707 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
708 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
709 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
710 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
711 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
712 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
713 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
714 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
715 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
716 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
717 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
718 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
719 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
720 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
721 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
722 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
723 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
724 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
725 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
726 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
727 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
728 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
729 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
730 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
731 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
732 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
733 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
734 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
735 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
736 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
737 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
738 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
739 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
740 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
741 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
742 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
743 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
744 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
745 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
746 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
747 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
748 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
749 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
750 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
751 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
752 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
753 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
754 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
755 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
756 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
757 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
758 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
759 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
760 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
761 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
762 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
763 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
764 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
765 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
766 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
767 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
768 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
769 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
770 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
771 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
772 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
773 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
774 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
775 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
776 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
777 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
778 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
779 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
780 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
781 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
782 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
783 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
784 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
785 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
786 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
787 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
788 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
789 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
790 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
791 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
792 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
793 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
794 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
795 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
796 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
797 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
798 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
799 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
800 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
801 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
802 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
803 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
804 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
805 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
806 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
807 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
808 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
809 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
810 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
811 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
812 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
813 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
814 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
815 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
816 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
817 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
818 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
819 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
820 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
821 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
822 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
823 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
824 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
825 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
826 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
827 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
828 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
829 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
830 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
831 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
832 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
833 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
834 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
835 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
836 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
837 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
838 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
839 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
840 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
841 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
842 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
843 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
844 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
845 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
846 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
847 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
848 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
849 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
850 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
851 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
852 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
853 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
854 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
855 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
856 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
857 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
858 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
859 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
860 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
861 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
862 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
863 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
864 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
865 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
866 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
867 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
868 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
869 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
870 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
871 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
872 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
873 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
874 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
875 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
876 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
877 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
878 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
879 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
880 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
881 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
882 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
883 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
884 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
885 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
886 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
887 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
888 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
889 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
890 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
891 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
892 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
893 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
894 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
895 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
896 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
897 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
898 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
899 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
900 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
901 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
902 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
903 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
904 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
905 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
906 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
907 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
908 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
909 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
910 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
911 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
912 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
913 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
914 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
915 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
916 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
917 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
918 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
919 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
920 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
921 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
922 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
923 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
924 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
925 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
926 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
927
928
929 /* Initialize the SOM relocation queue. By definition the queue holds
930 the last four multibyte fixups. */
931
932 static void
933 som_initialize_reloc_queue (queue)
934 struct reloc_queue *queue;
935 {
936 queue[0].reloc = NULL;
937 queue[0].size = 0;
938 queue[1].reloc = NULL;
939 queue[1].size = 0;
940 queue[2].reloc = NULL;
941 queue[2].size = 0;
942 queue[3].reloc = NULL;
943 queue[3].size = 0;
944 }
945
946 /* Insert a new relocation into the relocation queue. */
947
948 static void
949 som_reloc_queue_insert (p, size, queue)
950 unsigned char *p;
951 unsigned int size;
952 struct reloc_queue *queue;
953 {
954 queue[3].reloc = queue[2].reloc;
955 queue[3].size = queue[2].size;
956 queue[2].reloc = queue[1].reloc;
957 queue[2].size = queue[1].size;
958 queue[1].reloc = queue[0].reloc;
959 queue[1].size = queue[0].size;
960 queue[0].reloc = p;
961 queue[0].size = size;
962 }
963
964 /* When an entry in the relocation queue is reused, the entry moves
965 to the front of the queue. */
966
967 static void
968 som_reloc_queue_fix (queue, index)
969 struct reloc_queue *queue;
970 unsigned int index;
971 {
972 if (index == 0)
973 return;
974
975 if (index == 1)
976 {
977 unsigned char *tmp1 = queue[0].reloc;
978 unsigned int tmp2 = queue[0].size;
979 queue[0].reloc = queue[1].reloc;
980 queue[0].size = queue[1].size;
981 queue[1].reloc = tmp1;
982 queue[1].size = tmp2;
983 return;
984 }
985
986 if (index == 2)
987 {
988 unsigned char *tmp1 = queue[0].reloc;
989 unsigned int tmp2 = queue[0].size;
990 queue[0].reloc = queue[2].reloc;
991 queue[0].size = queue[2].size;
992 queue[2].reloc = queue[1].reloc;
993 queue[2].size = queue[1].size;
994 queue[1].reloc = tmp1;
995 queue[1].size = tmp2;
996 return;
997 }
998
999 if (index == 3)
1000 {
1001 unsigned char *tmp1 = queue[0].reloc;
1002 unsigned int tmp2 = queue[0].size;
1003 queue[0].reloc = queue[3].reloc;
1004 queue[0].size = queue[3].size;
1005 queue[3].reloc = queue[2].reloc;
1006 queue[3].size = queue[2].size;
1007 queue[2].reloc = queue[1].reloc;
1008 queue[2].size = queue[1].size;
1009 queue[1].reloc = tmp1;
1010 queue[1].size = tmp2;
1011 return;
1012 }
1013 abort();
1014 }
1015
1016 /* Search for a particular relocation in the relocation queue. */
1017
1018 static int
1019 som_reloc_queue_find (p, size, queue)
1020 unsigned char *p;
1021 unsigned int size;
1022 struct reloc_queue *queue;
1023 {
1024 if (!bcmp (p, queue[0].reloc, size)
1025 && size == queue[0].size)
1026 return 0;
1027 if (!bcmp (p, queue[1].reloc, size)
1028 && size == queue[1].size)
1029 return 1;
1030 if (!bcmp (p, queue[2].reloc, size)
1031 && size == queue[2].size)
1032 return 2;
1033 if (!bcmp (p, queue[3].reloc, size)
1034 && size == queue[3].size)
1035 return 3;
1036 return -1;
1037 }
1038
1039 static unsigned char *
1040 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1041 bfd *abfd;
1042 int *subspace_reloc_sizep;
1043 unsigned char *p;
1044 unsigned int size;
1045 struct reloc_queue *queue;
1046 {
1047 int queue_index = som_reloc_queue_find (p, size, queue);
1048
1049 if (queue_index != -1)
1050 {
1051 /* Found this in a previous fixup. Undo the fixup we
1052 just built and use R_PREV_FIXUP instead. We saved
1053 a total of size - 1 bytes in the fixup stream. */
1054 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1055 p += 1;
1056 *subspace_reloc_sizep += 1;
1057 som_reloc_queue_fix (queue, queue_index);
1058 }
1059 else
1060 {
1061 som_reloc_queue_insert (p, size, queue);
1062 *subspace_reloc_sizep += size;
1063 p += size;
1064 }
1065 return p;
1066 }
1067
1068 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1069 bytes without any relocation. Update the size of the subspace
1070 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1071 current pointer into the relocation stream. */
1072
1073 static unsigned char *
1074 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1075 bfd *abfd;
1076 unsigned int skip;
1077 unsigned char *p;
1078 unsigned int *subspace_reloc_sizep;
1079 struct reloc_queue *queue;
1080 {
1081 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1082 then R_PREV_FIXUPs to get the difference down to a
1083 reasonable size. */
1084 if (skip >= 0x1000000)
1085 {
1086 skip -= 0x1000000;
1087 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1088 bfd_put_8 (abfd, 0xff, p + 1);
1089 bfd_put_16 (abfd, 0xffff, p + 2);
1090 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1091 while (skip >= 0x1000000)
1092 {
1093 skip -= 0x1000000;
1094 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1095 p++;
1096 *subspace_reloc_sizep += 1;
1097 /* No need to adjust queue here since we are repeating the
1098 most recent fixup. */
1099 }
1100 }
1101
1102 /* The difference must be less than 0x1000000. Use one
1103 more R_NO_RELOCATION entry to get to the right difference. */
1104 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1105 {
1106 /* Difference can be handled in a simple single-byte
1107 R_NO_RELOCATION entry. */
1108 if (skip <= 0x60)
1109 {
1110 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1111 *subspace_reloc_sizep += 1;
1112 p++;
1113 }
1114 /* Handle it with a two byte R_NO_RELOCATION entry. */
1115 else if (skip <= 0x1000)
1116 {
1117 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1118 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1119 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1120 }
1121 /* Handle it with a three byte R_NO_RELOCATION entry. */
1122 else
1123 {
1124 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1125 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1126 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1127 }
1128 }
1129 /* Ugh. Punt and use a 4 byte entry. */
1130 else if (skip > 0)
1131 {
1132 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1133 bfd_put_8 (abfd, skip >> 16, p + 1);
1134 bfd_put_16 (abfd, skip, p + 2);
1135 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1136 }
1137 return p;
1138 }
1139
1140 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1141 from a BFD relocation. Update the size of the subspace relocation
1142 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1143 into the relocation stream. */
1144
1145 static unsigned char *
1146 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1147 bfd *abfd;
1148 int addend;
1149 unsigned char *p;
1150 unsigned int *subspace_reloc_sizep;
1151 struct reloc_queue *queue;
1152 {
1153 if ((unsigned)(addend) + 0x80 < 0x100)
1154 {
1155 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1156 bfd_put_8 (abfd, addend, p + 1);
1157 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1158 }
1159 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1160 {
1161 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1162 bfd_put_16 (abfd, addend, p + 1);
1163 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1164 }
1165 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1166 {
1167 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1168 bfd_put_8 (abfd, addend >> 16, p + 1);
1169 bfd_put_16 (abfd, addend, p + 2);
1170 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1171 }
1172 else
1173 {
1174 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1175 bfd_put_32 (abfd, addend, p + 1);
1176 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1177 }
1178 return p;
1179 }
1180
1181 /* Handle a single function call relocation. */
1182
1183 static unsigned char *
1184 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1185 bfd *abfd;
1186 unsigned char *p;
1187 unsigned int *subspace_reloc_sizep;
1188 arelent *bfd_reloc;
1189 int sym_num;
1190 struct reloc_queue *queue;
1191 {
1192 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1193 int rtn_bits = arg_bits & 0x3;
1194 int type, done = 0;
1195
1196 /* You'll never believe all this is necessary to handle relocations
1197 for function calls. Having to compute and pack the argument
1198 relocation bits is the real nightmare.
1199
1200 If you're interested in how this works, just forget it. You really
1201 do not want to know about this braindamage. */
1202
1203 /* First see if this can be done with a "simple" relocation. Simple
1204 relocations have a symbol number < 0x100 and have simple encodings
1205 of argument relocations. */
1206
1207 if (sym_num < 0x100)
1208 {
1209 switch (arg_bits)
1210 {
1211 case 0:
1212 case 1:
1213 type = 0;
1214 break;
1215 case 1 << 8:
1216 case 1 << 8 | 1:
1217 type = 1;
1218 break;
1219 case 1 << 8 | 1 << 6:
1220 case 1 << 8 | 1 << 6 | 1:
1221 type = 2;
1222 break;
1223 case 1 << 8 | 1 << 6 | 1 << 4:
1224 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1225 type = 3;
1226 break;
1227 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1228 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1229 type = 4;
1230 break;
1231 default:
1232 /* Not one of the easy encodings. This will have to be
1233 handled by the more complex code below. */
1234 type = -1;
1235 break;
1236 }
1237 if (type != -1)
1238 {
1239 /* Account for the return value too. */
1240 if (rtn_bits)
1241 type += 5;
1242
1243 /* Emit a 2 byte relocation. Then see if it can be handled
1244 with a relocation which is already in the relocation queue. */
1245 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1246 bfd_put_8 (abfd, sym_num, p + 1);
1247 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1248 done = 1;
1249 }
1250 }
1251
1252 /* If this could not be handled with a simple relocation, then do a hard
1253 one. Hard relocations occur if the symbol number was too high or if
1254 the encoding of argument relocation bits is too complex. */
1255 if (! done)
1256 {
1257 /* Don't ask about these magic sequences. I took them straight
1258 from gas-1.36 which took them from the a.out man page. */
1259 type = rtn_bits;
1260 if ((arg_bits >> 6 & 0xf) == 0xe)
1261 type += 9 * 40;
1262 else
1263 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1264 if ((arg_bits >> 2 & 0xf) == 0xe)
1265 type += 9 * 4;
1266 else
1267 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1268
1269 /* Output the first two bytes of the relocation. These describe
1270 the length of the relocation and encoding style. */
1271 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1272 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1273 p);
1274 bfd_put_8 (abfd, type, p + 1);
1275
1276 /* Now output the symbol index and see if this bizarre relocation
1277 just happened to be in the relocation queue. */
1278 if (sym_num < 0x100)
1279 {
1280 bfd_put_8 (abfd, sym_num, p + 2);
1281 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1282 }
1283 else
1284 {
1285 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1286 bfd_put_16 (abfd, sym_num, p + 3);
1287 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1288 }
1289 }
1290 return p;
1291 }
1292
1293
1294 /* Return the logarithm of X, base 2, considering X unsigned.
1295 Abort if X is not a power of two -- this should never happen (FIXME:
1296 It will happen on corrupt executables. GDB should give an error, not
1297 a coredump, in that case). */
1298
1299 static int
1300 log2 (x)
1301 unsigned int x;
1302 {
1303 int log = 0;
1304
1305 /* Test for 0 or a power of 2. */
1306 if (x == 0 || x != (x & -x))
1307 abort();
1308
1309 while ((x >>= 1) != 0)
1310 log++;
1311 return log;
1312 }
1313
1314 static bfd_reloc_status_type
1315 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1316 input_section, output_bfd, error_message)
1317 bfd *abfd;
1318 arelent *reloc_entry;
1319 asymbol *symbol_in;
1320 PTR data;
1321 asection *input_section;
1322 bfd *output_bfd;
1323 char **error_message;
1324 {
1325 if (output_bfd)
1326 {
1327 reloc_entry->address += input_section->output_offset;
1328 return bfd_reloc_ok;
1329 }
1330 return bfd_reloc_ok;
1331 }
1332
1333 /* Given a generic HPPA relocation type, the instruction format,
1334 and a field selector, return an appropriate SOM reloation.
1335
1336 FIXME. Need to handle %RR, %LR and the like as field selectors.
1337 These will need to generate multiple SOM relocations. */
1338
1339 int **
1340 hppa_som_gen_reloc_type (abfd, base_type, format, field)
1341 bfd *abfd;
1342 int base_type;
1343 int format;
1344 enum hppa_reloc_field_selector_type field;
1345 {
1346 int *final_type, **final_types;
1347
1348 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 3);
1349 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1350
1351 /* The field selector may require additional relocations to be
1352 generated. It's impossible to know at this moment if additional
1353 relocations will be needed, so we make them. The code to actually
1354 write the relocation/fixup stream is responsible for removing
1355 any redundant relocations. */
1356 switch (field)
1357 {
1358 case e_fsel:
1359 case e_psel:
1360 case e_lpsel:
1361 case e_rpsel:
1362 final_types[0] = final_type;
1363 final_types[1] = NULL;
1364 final_types[2] = NULL;
1365 *final_type = base_type;
1366 break;
1367
1368 case e_tsel:
1369 case e_ltsel:
1370 case e_rtsel:
1371 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1372 if (field == e_tsel)
1373 *final_types[0] = R_FSEL;
1374 else if (field == e_ltsel)
1375 *final_types[0] = R_LSEL;
1376 else
1377 *final_types[0] = R_RSEL;
1378 final_types[1] = final_type;
1379 final_types[2] = NULL;
1380 *final_type = base_type;
1381 break;
1382
1383 case e_lssel:
1384 case e_rssel:
1385 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1386 *final_types[0] = R_S_MODE;
1387 final_types[1] = final_type;
1388 final_types[2] = NULL;
1389 *final_type = base_type;
1390 break;
1391
1392 case e_lsel:
1393 case e_rsel:
1394 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1395 *final_types[0] = R_N_MODE;
1396 final_types[1] = final_type;
1397 final_types[2] = NULL;
1398 *final_type = base_type;
1399 break;
1400
1401 case e_ldsel:
1402 case e_rdsel:
1403 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1404 *final_types[0] = R_D_MODE;
1405 final_types[1] = final_type;
1406 final_types[2] = NULL;
1407 *final_type = base_type;
1408 break;
1409
1410 case e_lrsel:
1411 case e_rrsel:
1412 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1413 *final_types[0] = R_R_MODE;
1414 final_types[1] = final_type;
1415 final_types[2] = NULL;
1416 *final_type = base_type;
1417 break;
1418 }
1419
1420 switch (base_type)
1421 {
1422 case R_HPPA:
1423 /* PLABELs get their own relocation type. */
1424 if (field == e_psel
1425 || field == e_lpsel
1426 || field == e_rpsel)
1427 {
1428 /* A PLABEL relocation that has a size of 32 bits must
1429 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1430 if (format == 32)
1431 *final_type = R_DATA_PLABEL;
1432 else
1433 *final_type = R_CODE_PLABEL;
1434 }
1435 /* PIC stuff. */
1436 else if (field == e_tsel
1437 || field == e_ltsel
1438 || field == e_rtsel)
1439 *final_type = R_DLT_REL;
1440 /* A relocation in the data space is always a full 32bits. */
1441 else if (format == 32)
1442 *final_type = R_DATA_ONE_SYMBOL;
1443
1444 break;
1445
1446 case R_HPPA_GOTOFF:
1447 /* More PLABEL special cases. */
1448 if (field == e_psel
1449 || field == e_lpsel
1450 || field == e_rpsel)
1451 *final_type = R_DATA_PLABEL;
1452 break;
1453
1454 case R_HPPA_NONE:
1455 case R_HPPA_ABS_CALL:
1456 case R_HPPA_PCREL_CALL:
1457 case R_HPPA_COMPLEX:
1458 case R_HPPA_COMPLEX_PCREL_CALL:
1459 case R_HPPA_COMPLEX_ABS_CALL:
1460 /* Right now we can default all these. */
1461 break;
1462 }
1463 return final_types;
1464 }
1465
1466 /* Return the address of the correct entry in the PA SOM relocation
1467 howto table. */
1468
1469 static const reloc_howto_type *
1470 som_bfd_reloc_type_lookup (arch, code)
1471 bfd_arch_info_type *arch;
1472 bfd_reloc_code_real_type code;
1473 {
1474 if ((int) code < (int) R_NO_RELOCATION + 255)
1475 {
1476 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1477 return &som_hppa_howto_table[(int) code];
1478 }
1479
1480 return (reloc_howto_type *) 0;
1481 }
1482
1483 /* Perform some initialization for an object. Save results of this
1484 initialization in the BFD. */
1485
1486 static bfd_target *
1487 som_object_setup (abfd, file_hdrp, aux_hdrp)
1488 bfd *abfd;
1489 struct header *file_hdrp;
1490 struct som_exec_auxhdr *aux_hdrp;
1491 {
1492 /* som_mkobject will set bfd_error if som_mkobject fails. */
1493 if (som_mkobject (abfd) != true)
1494 return 0;
1495
1496 /* Set BFD flags based on what information is available in the SOM. */
1497 abfd->flags = NO_FLAGS;
1498 if (! file_hdrp->entry_offset)
1499 abfd->flags |= HAS_RELOC;
1500 else
1501 abfd->flags |= EXEC_P;
1502 if (file_hdrp->symbol_total)
1503 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1504
1505 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1506 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 0);
1507 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1508
1509 /* Initialize the saved symbol table and string table to NULL.
1510 Save important offsets and sizes from the SOM header into
1511 the BFD. */
1512 obj_som_stringtab (abfd) = (char *) NULL;
1513 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1514 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1515 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1516 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1517 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
1518
1519 return abfd->xvec;
1520 }
1521
1522 /* Create a new BFD section for NAME. If NAME already exists, then create a
1523 new unique name, with NAME as the prefix. This exists because SOM .o files
1524 may have more than one $CODE$ subspace. */
1525
1526 static asection *
1527 make_unique_section (abfd, name, num)
1528 bfd *abfd;
1529 CONST char *name;
1530 int num;
1531 {
1532 asection *sect;
1533 char *newname;
1534 char altname[100];
1535
1536 sect = bfd_make_section (abfd, name);
1537 while (!sect)
1538 {
1539 sprintf (altname, "%s-%d", name, num++);
1540 sect = bfd_make_section (abfd, altname);
1541 }
1542
1543 newname = bfd_alloc (abfd, strlen (sect->name) + 1);
1544 strcpy (newname, sect->name);
1545
1546 sect->name = newname;
1547 return sect;
1548 }
1549
1550 /* Convert all of the space and subspace info into BFD sections. Each space
1551 contains a number of subspaces, which in turn describe the mapping between
1552 regions of the exec file, and the address space that the program runs in.
1553 BFD sections which correspond to spaces will overlap the sections for the
1554 associated subspaces. */
1555
1556 static boolean
1557 setup_sections (abfd, file_hdr)
1558 bfd *abfd;
1559 struct header *file_hdr;
1560 {
1561 char *space_strings;
1562 int space_index;
1563 unsigned int total_subspaces = 0;
1564
1565 /* First, read in space names */
1566
1567 space_strings = alloca (file_hdr->space_strings_size);
1568 if (!space_strings)
1569 return false;
1570
1571 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
1572 return false;
1573 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1574 != file_hdr->space_strings_size)
1575 return false;
1576
1577 /* Loop over all of the space dictionaries, building up sections */
1578 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1579 {
1580 struct space_dictionary_record space;
1581 struct subspace_dictionary_record subspace, save_subspace;
1582 int subspace_index;
1583 asection *space_asect;
1584
1585 /* Read the space dictionary element */
1586 if (bfd_seek (abfd, file_hdr->space_location
1587 + space_index * sizeof space, SEEK_SET) < 0)
1588 return false;
1589 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1590 return false;
1591
1592 /* Setup the space name string */
1593 space.name.n_name = space.name.n_strx + space_strings;
1594
1595 /* Make a section out of it */
1596 space_asect = make_unique_section (abfd, space.name.n_name, space_index);
1597 if (!space_asect)
1598 return false;
1599
1600 /* Now, read in the first subspace for this space */
1601 if (bfd_seek (abfd, file_hdr->subspace_location
1602 + space.subspace_index * sizeof subspace,
1603 SEEK_SET) < 0)
1604 return false;
1605 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1606 return false;
1607 /* Seek back to the start of the subspaces for loop below */
1608 if (bfd_seek (abfd, file_hdr->subspace_location
1609 + space.subspace_index * sizeof subspace,
1610 SEEK_SET) < 0)
1611 return false;
1612
1613 /* Setup the start address and file loc from the first subspace record */
1614 space_asect->vma = subspace.subspace_start;
1615 space_asect->filepos = subspace.file_loc_init_value;
1616 space_asect->alignment_power = log2 (subspace.alignment);
1617
1618 /* Initialize save_subspace so we can reliably determine if this
1619 loop placed any useful values into it. */
1620 bzero (&save_subspace, sizeof (struct subspace_dictionary_record));
1621
1622 /* Loop over the rest of the subspaces, building up more sections */
1623 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1624 subspace_index++)
1625 {
1626 asection *subspace_asect;
1627
1628 /* Read in the next subspace */
1629 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1630 != sizeof subspace)
1631 return false;
1632
1633 /* Setup the subspace name string */
1634 subspace.name.n_name = subspace.name.n_strx + space_strings;
1635
1636 /* Make a section out of this subspace */
1637 subspace_asect = make_unique_section (abfd, subspace.name.n_name,
1638 space.subspace_index + subspace_index);
1639
1640 if (!subspace_asect)
1641 return false;
1642
1643 /* Keep an easy mapping between subspaces and sections. */
1644 som_section_data (subspace_asect)->subspace_index
1645 = total_subspaces++;
1646
1647 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1648 by the access_control_bits in the subspace header. */
1649 switch (subspace.access_control_bits >> 4)
1650 {
1651 /* Readonly data. */
1652 case 0x0:
1653 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1654 break;
1655
1656 /* Normal data. */
1657 case 0x1:
1658 subspace_asect->flags |= SEC_DATA;
1659 break;
1660
1661 /* Readonly code and the gateways.
1662 Gateways have other attributes which do not map
1663 into anything BFD knows about. */
1664 case 0x2:
1665 case 0x4:
1666 case 0x5:
1667 case 0x6:
1668 case 0x7:
1669 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1670 break;
1671
1672 /* dynamic (writable) code. */
1673 case 0x3:
1674 subspace_asect->flags |= SEC_CODE;
1675 break;
1676 }
1677
1678 if (subspace.dup_common || subspace.is_common)
1679 subspace_asect->flags |= SEC_IS_COMMON;
1680 else if (subspace.subspace_length > 0)
1681 subspace_asect->flags |= SEC_HAS_CONTENTS;
1682 if (subspace.is_loadable)
1683 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1684 if (subspace.code_only)
1685 subspace_asect->flags |= SEC_CODE;
1686
1687 /* Both file_loc_init_value and initialization_length will
1688 be zero for a BSS like subspace. */
1689 if (subspace.file_loc_init_value == 0
1690 && subspace.initialization_length == 0)
1691 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD);
1692
1693 /* This subspace has relocations.
1694 The fixup_request_quantity is a byte count for the number of
1695 entries in the relocation stream; it is not the actual number
1696 of relocations in the subspace. */
1697 if (subspace.fixup_request_quantity != 0)
1698 {
1699 subspace_asect->flags |= SEC_RELOC;
1700 subspace_asect->rel_filepos = subspace.fixup_request_index;
1701 som_section_data (subspace_asect)->reloc_size
1702 = subspace.fixup_request_quantity;
1703 /* We can not determine this yet. When we read in the
1704 relocation table the correct value will be filled in. */
1705 subspace_asect->reloc_count = -1;
1706 }
1707
1708 /* Update save_subspace if appropriate. */
1709 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1710 save_subspace = subspace;
1711
1712 subspace_asect->vma = subspace.subspace_start;
1713 subspace_asect->_cooked_size = subspace.subspace_length;
1714 subspace_asect->_raw_size = subspace.subspace_length;
1715 subspace_asect->alignment_power = log2 (subspace.alignment);
1716 subspace_asect->filepos = subspace.file_loc_init_value;
1717 }
1718
1719 /* Yow! there is no subspace within the space which actually
1720 has initialized information in it; this should never happen
1721 as far as I know. */
1722 if (!save_subspace.file_loc_init_value)
1723 abort ();
1724
1725 /* Setup the sizes for the space section based upon the info in the
1726 last subspace of the space. */
1727 space_asect->_cooked_size = save_subspace.subspace_start
1728 - space_asect->vma + save_subspace.subspace_length;
1729 space_asect->_raw_size = save_subspace.file_loc_init_value
1730 - space_asect->filepos + save_subspace.initialization_length;
1731 }
1732 return true;
1733 }
1734
1735 /* Read in a SOM object and make it into a BFD. */
1736
1737 static bfd_target *
1738 som_object_p (abfd)
1739 bfd *abfd;
1740 {
1741 struct header file_hdr;
1742 struct som_exec_auxhdr aux_hdr;
1743
1744 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
1745 {
1746 bfd_error = system_call_error;
1747 return 0;
1748 }
1749
1750 if (!_PA_RISC_ID (file_hdr.system_id))
1751 {
1752 bfd_error = wrong_format;
1753 return 0;
1754 }
1755
1756 switch (file_hdr.a_magic)
1757 {
1758 case RELOC_MAGIC:
1759 case EXEC_MAGIC:
1760 case SHARE_MAGIC:
1761 case DEMAND_MAGIC:
1762 #ifdef DL_MAGIC
1763 case DL_MAGIC:
1764 #endif
1765 #ifdef SHL_MAGIC
1766 case SHL_MAGIC:
1767 #endif
1768 #ifdef EXECLIBMAGIC
1769 case EXECLIBMAGIC:
1770 #endif
1771 #ifdef SHARED_MAGIC_CNX
1772 case SHARED_MAGIC_CNX:
1773 #endif
1774 break;
1775 default:
1776 bfd_error = wrong_format;
1777 return 0;
1778 }
1779
1780 if (file_hdr.version_id != VERSION_ID
1781 && file_hdr.version_id != NEW_VERSION_ID)
1782 {
1783 bfd_error = wrong_format;
1784 return 0;
1785 }
1786
1787 /* If the aux_header_size field in the file header is zero, then this
1788 object is an incomplete executable (a .o file). Do not try to read
1789 a non-existant auxiliary header. */
1790 bzero (&aux_hdr, sizeof (struct som_exec_auxhdr));
1791 if (file_hdr.aux_header_size != 0)
1792 {
1793 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
1794 {
1795 bfd_error = wrong_format;
1796 return 0;
1797 }
1798 }
1799
1800 if (!setup_sections (abfd, &file_hdr))
1801 {
1802 /* setup_sections does not bubble up a bfd error code. */
1803 bfd_error = bad_value;
1804 return 0;
1805 }
1806
1807 /* This appears to be a valid SOM object. Do some initialization. */
1808 return som_object_setup (abfd, &file_hdr, &aux_hdr);
1809 }
1810
1811 /* Create a SOM object. */
1812
1813 static boolean
1814 som_mkobject (abfd)
1815 bfd *abfd;
1816 {
1817 /* Allocate memory to hold backend information. */
1818 abfd->tdata.som_data = (struct som_data_struct *)
1819 bfd_zalloc (abfd, sizeof (struct som_data_struct));
1820 if (abfd->tdata.som_data == NULL)
1821 {
1822 bfd_error = no_memory;
1823 return false;
1824 }
1825 obj_som_file_hdr (abfd)
1826 = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
1827 if (obj_som_file_hdr (abfd) == NULL)
1828
1829 {
1830 bfd_error = no_memory;
1831 return false;
1832 }
1833 return true;
1834 }
1835
1836 /* Initialize some information in the file header. This routine makes
1837 not attempt at doing the right thing for a full executable; it
1838 is only meant to handle relocatable objects. */
1839
1840 static boolean
1841 som_prep_headers (abfd)
1842 bfd *abfd;
1843 {
1844 struct header *file_hdr = obj_som_file_hdr (abfd);
1845 asection *section;
1846
1847 /* FIXME. This should really be conditional based on whether or not
1848 PA1.1 instructions/registers have been used. */
1849 file_hdr->system_id = HP9000S800_ID;
1850
1851 /* FIXME. Only correct for building relocatable objects. */
1852 if (abfd->flags & EXEC_P)
1853 abort ();
1854 else
1855 file_hdr->a_magic = RELOC_MAGIC;
1856
1857 /* Only new format SOM is supported. */
1858 file_hdr->version_id = NEW_VERSION_ID;
1859
1860 /* These fields are optional, and embedding timestamps is not always
1861 a wise thing to do, it makes comparing objects during a multi-stage
1862 bootstrap difficult. */
1863 file_hdr->file_time.secs = 0;
1864 file_hdr->file_time.nanosecs = 0;
1865
1866 if (abfd->flags & EXEC_P)
1867 abort ();
1868 else
1869 {
1870 file_hdr->entry_space = 0;
1871 file_hdr->entry_subspace = 0;
1872 file_hdr->entry_offset = 0;
1873 }
1874
1875 /* FIXME. I do not know if we ever need to put anything other
1876 than zero in this field. */
1877 file_hdr->presumed_dp = 0;
1878
1879 /* Now iterate over the sections translating information from
1880 BFD sections to SOM spaces/subspaces. */
1881
1882 for (section = abfd->sections; section != NULL; section = section->next)
1883 {
1884 /* Ignore anything which has not been marked as a space or
1885 subspace. */
1886 if (som_section_data (section)->is_space == 0
1887
1888 && som_section_data (section)->is_subspace == 0)
1889 continue;
1890
1891 if (som_section_data (section)->is_space)
1892 {
1893 /* Set space attributes. Note most attributes of SOM spaces
1894 are set based on the subspaces it contains. */
1895 som_section_data (section)->space_dict.loader_fix_index = -1;
1896 som_section_data (section)->space_dict.init_pointer_index = -1;
1897 }
1898 else
1899 {
1900 /* Set subspace attributes. Basic stuff is done here, additional
1901 attributes are filled in later as more information becomes
1902 available. */
1903 if (section->flags & SEC_IS_COMMON)
1904 {
1905 som_section_data (section)->subspace_dict.dup_common = 1;
1906 som_section_data (section)->subspace_dict.is_common = 1;
1907 }
1908
1909 if (section->flags & SEC_ALLOC)
1910 som_section_data (section)->subspace_dict.is_loadable = 1;
1911
1912 if (section->flags & SEC_CODE)
1913 som_section_data (section)->subspace_dict.code_only = 1;
1914
1915 som_section_data (section)->subspace_dict.subspace_start =
1916 section->vma;
1917 som_section_data (section)->subspace_dict.subspace_length =
1918 bfd_section_size (abfd, section);
1919 som_section_data (section)->subspace_dict.initialization_length =
1920 bfd_section_size (abfd, section);
1921 som_section_data (section)->subspace_dict.alignment =
1922 1 << section->alignment_power;
1923 }
1924 }
1925 return true;
1926 }
1927
1928 /* Count and return the number of spaces attached to the given BFD. */
1929
1930 static unsigned long
1931 som_count_spaces (abfd)
1932 bfd *abfd;
1933 {
1934 int count = 0;
1935 asection *section;
1936
1937 for (section = abfd->sections; section != NULL; section = section->next)
1938 count += som_section_data (section)->is_space;
1939
1940 return count;
1941 }
1942
1943 /* Count the number of subspaces attached to the given BFD. */
1944
1945 static unsigned long
1946 som_count_subspaces (abfd)
1947 bfd *abfd;
1948 {
1949 int count = 0;
1950 asection *section;
1951
1952 for (section = abfd->sections; section != NULL; section = section->next)
1953 count += som_section_data (section)->is_subspace;
1954
1955 return count;
1956 }
1957
1958 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
1959
1960 We desire symbols to be ordered starting with the symbol with the
1961 highest relocation count down to the symbol with the lowest relocation
1962 count. Doing so compacts the relocation stream. */
1963
1964 static int
1965 compare_syms (sym1, sym2)
1966 asymbol **sym1;
1967 asymbol **sym2;
1968
1969 {
1970 unsigned int count1, count2;
1971
1972 /* Get relocation count for each symbol. Note that the count
1973 is stored in the udata pointer for section symbols! */
1974 if ((*sym1)->flags & BSF_SECTION_SYM)
1975 count1 = (int)(*sym1)->udata;
1976 else
1977 count1 = (*som_symbol_data ((*sym1)))->reloc_count;
1978
1979 if ((*sym2)->flags & BSF_SECTION_SYM)
1980 count2 = (int)(*sym2)->udata;
1981 else
1982 count2 = (*som_symbol_data ((*sym2)))->reloc_count;
1983
1984 /* Return the appropriate value. */
1985 if (count1 < count2)
1986 return 1;
1987 else if (count1 > count2)
1988 return -1;
1989 return 0;
1990 }
1991
1992 /* Perform various work in preparation for emitting the fixup stream. */
1993
1994 static void
1995 som_prep_for_fixups (abfd, syms, num_syms)
1996 bfd *abfd;
1997 asymbol **syms;
1998 unsigned long num_syms;
1999 {
2000 int i;
2001 asection *section;
2002
2003 /* Most SOM relocations involving a symbol have a length which is
2004 dependent on the index of the symbol. So symbols which are
2005 used often in relocations should have a small index. */
2006
2007 /* First initialize the counters for each symbol. */
2008 for (i = 0; i < num_syms; i++)
2009 {
2010 /* Handle a section symbol; these have no pointers back to the
2011 SOM symbol info. So we just use the pointer field (udata)
2012 to hold the relocation count.
2013
2014 FIXME. While we're here set the name of any section symbol
2015 to something which will not screw GDB. How do other formats
2016 deal with this?!? */
2017 if (som_symbol_data (syms[i]) == NULL)
2018 {
2019 syms[i]->flags |= BSF_SECTION_SYM;
2020 syms[i]->name = "L$0\002";
2021 syms[i]->udata = (PTR) 0;
2022 }
2023 else
2024 (*som_symbol_data (syms[i]))->reloc_count = 0;
2025 }
2026
2027 /* Now that the counters are initialized, make a weighted count
2028 of how often a given symbol is used in a relocation. */
2029 for (section = abfd->sections; section != NULL; section = section->next)
2030 {
2031 int i;
2032
2033 /* Does this section have any relocations? */
2034 if (section->reloc_count <= 0)
2035 continue;
2036
2037 /* Walk through each relocation for this section. */
2038 for (i = 1; i < section->reloc_count; i++)
2039 {
2040 arelent *reloc = section->orelocation[i];
2041 int scale;
2042
2043 /* If no symbol, then there is no counter to increase. */
2044 if (reloc->sym_ptr_ptr == NULL)
2045 continue;
2046
2047 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2048 and R_CODE_ONE_SYMBOL relocations to come first. These
2049 two relocations have single byte versions if the symbol
2050 index is very small. */
2051 if (reloc->howto->type == R_DP_RELATIVE
2052 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2053 scale = 2;
2054 else
2055 scale = 1;
2056
2057 /* Handle section symbols by ramming the count in the udata
2058 field. It will not be used and the count is very important
2059 for these symbols. */
2060 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2061 {
2062 (*reloc->sym_ptr_ptr)->udata =
2063 (PTR) ((int) (*reloc->sym_ptr_ptr)->udata + scale);
2064 continue;
2065 }
2066
2067 /* A normal symbol. Increment the count. */
2068 (*som_symbol_data ((*reloc->sym_ptr_ptr)))->reloc_count += scale;
2069 }
2070 }
2071
2072 /* Now sort the symbols. */
2073 qsort (syms, num_syms, sizeof (asymbol *), compare_syms);
2074
2075 /* Compute the symbol indexes, they will be needed by the relocation
2076 code. */
2077 for (i = 0; i < num_syms; i++)
2078 {
2079 /* A section symbol. Again, there is no pointer to backend symbol
2080 information, so we reuse (abuse) the udata field again. */
2081 if (syms[i]->flags & BSF_SECTION_SYM)
2082 syms[i]->udata = (PTR) i;
2083 else
2084 (*som_symbol_data (syms[i]))->index = i;
2085 }
2086 }
2087
2088 static boolean
2089 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2090 bfd *abfd;
2091 unsigned long current_offset;
2092 unsigned int *total_reloc_sizep;
2093 {
2094 unsigned int i, j;
2095 unsigned char *tmp_space, *p;
2096 unsigned int total_reloc_size = 0;
2097 unsigned int subspace_reloc_size = 0;
2098 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2099 asection *section = abfd->sections;
2100
2101 /* Get a chunk of memory that we can use as buffer space, then throw
2102 away. */
2103 tmp_space = alloca (SOM_TMP_BUFSIZE);
2104 bzero (tmp_space, SOM_TMP_BUFSIZE);
2105 p = tmp_space;
2106
2107 /* All the fixups for a particular subspace are emitted in a single
2108 stream. All the subspaces for a particular space are emitted
2109 as a single stream.
2110
2111 So, to get all the locations correct one must iterate through all the
2112 spaces, for each space iterate through its subspaces and output a
2113 fixups stream. */
2114 for (i = 0; i < num_spaces; i++)
2115 {
2116 asection *subsection;
2117
2118 /* Find a space. */
2119 while (som_section_data (section)->is_space == 0)
2120 section = section->next;
2121
2122 /* Now iterate through each of its subspaces. */
2123 for (subsection = abfd->sections;
2124 subsection != NULL;
2125 subsection = subsection->next)
2126 {
2127 int reloc_offset, current_rounding_mode;
2128
2129 /* Find a subspace of this space. */
2130 if (som_section_data (subsection)->is_subspace == 0
2131 || som_section_data (subsection)->containing_space != section)
2132 continue;
2133
2134 /* If this subspace had no relocations, then we're finished
2135 with it. */
2136 if (subsection->reloc_count <= 0)
2137 {
2138 som_section_data (subsection)->subspace_dict.fixup_request_index
2139 = -1;
2140 continue;
2141 }
2142
2143 /* This subspace has some relocations. Put the relocation stream
2144 index into the subspace record. */
2145 som_section_data (subsection)->subspace_dict.fixup_request_index
2146 = total_reloc_size;
2147
2148 /* To make life easier start over with a clean slate for
2149 each subspace. Seek to the start of the relocation stream
2150 for this subspace in preparation for writing out its fixup
2151 stream. */
2152 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) != 0)
2153 {
2154 bfd_error = system_call_error;
2155 return false;
2156 }
2157
2158 /* Buffer space has already been allocated. Just perform some
2159 initialization here. */
2160 p = tmp_space;
2161 subspace_reloc_size = 0;
2162 reloc_offset = 0;
2163 som_initialize_reloc_queue (reloc_queue);
2164 current_rounding_mode = R_N_MODE;
2165
2166 /* Translate each BFD relocation into one or more SOM
2167 relocations. */
2168 for (j = 0; j < subsection->reloc_count; j++)
2169 {
2170 arelent *bfd_reloc = subsection->orelocation[j];
2171 unsigned int skip;
2172 int sym_num;
2173
2174 /* Get the symbol number. Remember it's stored in a
2175 special place for section symbols. */
2176 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2177 sym_num = (int) (*bfd_reloc->sym_ptr_ptr)->udata;
2178 else
2179 sym_num = (*som_symbol_data ((*bfd_reloc->sym_ptr_ptr)))->index;
2180
2181 /* If there is not enough room for the next couple relocations,
2182 then dump the current buffer contents now. Also reinitialize
2183 the relocation queue.
2184
2185 FIXME. We assume here that no BFD relocation will expand
2186 to more than 100 bytes of SOM relocations. This should (?!?)
2187 be quite safe. */
2188 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2189 {
2190 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2191 != p - tmp_space)
2192 {
2193 bfd_error = system_call_error;
2194 return false;
2195 }
2196 p = tmp_space;
2197 som_initialize_reloc_queue (reloc_queue);
2198 }
2199
2200 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2201 skipped. */
2202 skip = bfd_reloc->address - reloc_offset;
2203 p = som_reloc_skip (abfd, skip, p,
2204 &subspace_reloc_size, reloc_queue);
2205
2206 /* Update reloc_offset for the next iteration.
2207
2208 Many relocations do not consume input bytes. They
2209 are markers, or set state necessary to perform some
2210 later relocation. */
2211 switch (bfd_reloc->howto->type)
2212 {
2213 /* This only needs to handle relocations that may be
2214 made by hppa_som_gen_reloc. */
2215 case R_ENTRY:
2216 case R_EXIT:
2217 case R_N_MODE:
2218 case R_S_MODE:
2219 case R_D_MODE:
2220 case R_R_MODE:
2221 case R_FSEL:
2222 case R_LSEL:
2223 case R_RSEL:
2224 reloc_offset = bfd_reloc->address;
2225 break;
2226
2227 default:
2228 reloc_offset = bfd_reloc->address + 4;
2229 break;
2230 }
2231
2232 /* Now the actual relocation we care about. */
2233 switch (bfd_reloc->howto->type)
2234 {
2235 case R_PCREL_CALL:
2236 case R_ABS_CALL:
2237 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2238 bfd_reloc, sym_num, reloc_queue);
2239 break;
2240
2241 case R_CODE_ONE_SYMBOL:
2242 case R_DP_RELATIVE:
2243 /* Account for any addend. */
2244 if (bfd_reloc->addend)
2245 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2246 &subspace_reloc_size, reloc_queue);
2247
2248 if (sym_num < 0x20)
2249 {
2250 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2251 subspace_reloc_size += 1;
2252 p += 1;
2253 }
2254 else if (sym_num < 0x100)
2255 {
2256 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2257 bfd_put_8 (abfd, sym_num, p + 1);
2258 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2259 2, reloc_queue);
2260 }
2261 else if (sym_num < 0x10000000)
2262 {
2263 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2264 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2265 bfd_put_16 (abfd, sym_num, p + 2);
2266 p = try_prev_fixup (abfd, &subspace_reloc_size,
2267 p, 4, reloc_queue);
2268 }
2269 else
2270 abort ();
2271 break;
2272
2273 case R_DATA_ONE_SYMBOL:
2274 case R_DATA_PLABEL:
2275 case R_CODE_PLABEL:
2276 case R_DLT_REL:
2277 /* Account for any addend. */
2278 if (bfd_reloc->addend)
2279 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2280 &subspace_reloc_size, reloc_queue);
2281
2282 if (sym_num < 0x100)
2283 {
2284 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2285 bfd_put_8 (abfd, sym_num, p + 1);
2286 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2287 2, reloc_queue);
2288 }
2289 else if (sym_num < 0x10000000)
2290 {
2291 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2292 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2293 bfd_put_16 (abfd, sym_num, p + 2);
2294 p = try_prev_fixup (abfd, &subspace_reloc_size,
2295 p, 4, reloc_queue);
2296 }
2297 else
2298 abort ();
2299 break;
2300
2301 case R_ENTRY:
2302 {
2303 int *descp
2304 = (int *) (*som_symbol_data ((*bfd_reloc->sym_ptr_ptr)))->unwind;
2305 bfd_put_8 (abfd, R_ENTRY, p);
2306 bfd_put_32 (abfd, descp[0], p + 1);
2307 bfd_put_32 (abfd, descp[1], p + 5);
2308 p = try_prev_fixup (abfd, &subspace_reloc_size,
2309 p, 9, reloc_queue);
2310 break;
2311 }
2312
2313 case R_EXIT:
2314 bfd_put_8 (abfd, R_EXIT, p);
2315 subspace_reloc_size += 1;
2316 p += 1;
2317 break;
2318
2319 case R_N_MODE:
2320 case R_S_MODE:
2321 case R_D_MODE:
2322 case R_R_MODE:
2323 /* If this relocation requests the current rounding
2324 mode, then it is redundant. */
2325 if (bfd_reloc->howto->type != current_rounding_mode)
2326 {
2327 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2328 subspace_reloc_size += 1;
2329 p += 1;
2330 current_rounding_mode = bfd_reloc->howto->type;
2331 }
2332 break;
2333
2334 case R_FSEL:
2335 case R_LSEL:
2336 case R_RSEL:
2337 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2338 subspace_reloc_size += 1;
2339 p += 1;
2340 break;
2341
2342 /* Put a "R_RESERVED" relocation in the stream if
2343 we hit something we do not understand. The linker
2344 will complain loudly if this ever happens. */
2345 default:
2346 bfd_put_8 (abfd, 0xff, p);
2347 subspace_reloc_size += 1;
2348 p += 1;
2349 break;
2350 }
2351 }
2352
2353 /* Last BFD relocation for a subspace has been processed.
2354 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2355 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2356 - reloc_offset,
2357 p, &subspace_reloc_size, reloc_queue);
2358
2359 /* Scribble out the relocations. */
2360 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2361 != p - tmp_space)
2362 {
2363 bfd_error = system_call_error;
2364 return false;
2365 }
2366 p = tmp_space;
2367
2368 total_reloc_size += subspace_reloc_size;
2369 som_section_data (subsection)->subspace_dict.fixup_request_quantity
2370 = subspace_reloc_size;
2371 }
2372 section = section->next;
2373 }
2374 *total_reloc_sizep = total_reloc_size;
2375 return true;
2376 }
2377
2378 /* Write out the space/subspace string table. */
2379
2380 static boolean
2381 som_write_space_strings (abfd, current_offset, string_sizep)
2382 bfd *abfd;
2383 unsigned long current_offset;
2384 unsigned int *string_sizep;
2385 {
2386 unsigned char *tmp_space, *p;
2387 unsigned int strings_size = 0;
2388 asection *section;
2389
2390 /* Get a chunk of memory that we can use as buffer space, then throw
2391 away. */
2392 tmp_space = alloca (SOM_TMP_BUFSIZE);
2393 bzero (tmp_space, SOM_TMP_BUFSIZE);
2394 p = tmp_space;
2395
2396 /* Seek to the start of the space strings in preparation for writing
2397 them out. */
2398 if (bfd_seek (abfd, current_offset, SEEK_SET) != 0)
2399 {
2400 bfd_error = system_call_error;
2401 return false;
2402 }
2403
2404 /* Walk through all the spaces and subspaces (order is not important)
2405 building up and writing string table entries for their names. */
2406 for (section = abfd->sections; section != NULL; section = section->next)
2407 {
2408 int length;
2409
2410 /* Only work with space/subspaces; avoid any other sections
2411 which might have been made (.text for example). */
2412 if (som_section_data (section)->is_space == 0
2413 && som_section_data (section)->is_subspace == 0)
2414 continue;
2415
2416 /* Get the length of the space/subspace name. */
2417 length = strlen (section->name);
2418
2419 /* If there is not enough room for the next entry, then dump the
2420 current buffer contents now. Each entry will take 4 bytes to
2421 hold the string length + the string itself + null terminator. */
2422 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2423 {
2424 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2425 != p - tmp_space)
2426 {
2427 bfd_error = system_call_error;
2428 return false;
2429 }
2430 /* Reset to beginning of the buffer space. */
2431 p = tmp_space;
2432 }
2433
2434 /* First element in a string table entry is the length of the
2435 string. Alignment issues are already handled. */
2436 bfd_put_32 (abfd, length, p);
2437 p += 4;
2438 strings_size += 4;
2439
2440 /* Record the index in the space/subspace records. */
2441 if (som_section_data (section)->is_space)
2442 som_section_data (section)->space_dict.name.n_strx = strings_size;
2443 else
2444 som_section_data (section)->subspace_dict.name.n_strx = strings_size;
2445
2446 /* Next comes the string itself + a null terminator. */
2447 strcpy (p, section->name);
2448 p += length + 1;
2449 strings_size += length + 1;
2450
2451 /* Always align up to the next word boundary. */
2452 while (strings_size % 4)
2453 {
2454 bfd_put_8 (abfd, 0, p);
2455 p++;
2456 strings_size++;
2457 }
2458 }
2459
2460 /* Done with the space/subspace strings. Write out any information
2461 contained in a partial block. */
2462 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd) != p - tmp_space)
2463 {
2464 bfd_error = system_call_error;
2465 return false;
2466 }
2467 *string_sizep = strings_size;
2468 return true;
2469 }
2470
2471 /* Write out the symbol string table. */
2472
2473 static boolean
2474 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
2475 bfd *abfd;
2476 unsigned long current_offset;
2477 asymbol **syms;
2478 unsigned int num_syms;
2479 unsigned int *string_sizep;
2480 {
2481 unsigned int i;
2482 unsigned char *tmp_space, *p;
2483 unsigned int strings_size = 0;
2484
2485 /* Get a chunk of memory that we can use as buffer space, then throw
2486 away. */
2487 tmp_space = alloca (SOM_TMP_BUFSIZE);
2488 bzero (tmp_space, SOM_TMP_BUFSIZE);
2489 p = tmp_space;
2490
2491 /* Seek to the start of the space strings in preparation for writing
2492 them out. */
2493 if (bfd_seek (abfd, current_offset, SEEK_SET) != 0)
2494 {
2495 bfd_error = system_call_error;
2496 return false;
2497 }
2498
2499 for (i = 0; i < num_syms; i++)
2500 {
2501 int length = strlen (syms[i]->name);
2502
2503 /* If there is not enough room for the next entry, then dump the
2504 current buffer contents now. */
2505 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2506 {
2507 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2508 != p - tmp_space)
2509 {
2510 bfd_error = system_call_error;
2511 return false;
2512 }
2513 /* Reset to beginning of the buffer space. */
2514 p = tmp_space;
2515 }
2516
2517 /* First element in a string table entry is the length of the
2518 string. This must always be 4 byte aligned. This is also
2519 an appropriate time to fill in the string index field in the
2520 symbol table entry. */
2521 bfd_put_32 (abfd, length, p);
2522 strings_size += 4;
2523 p += 4;
2524
2525 /* Next comes the string itself + a null terminator. */
2526 strcpy (p, syms[i]->name);
2527
2528 /* ACK. FIXME. */
2529 syms[i]->name = (char *)strings_size;
2530 p += length + 1;
2531 strings_size += length + 1;
2532
2533 /* Always align up to the next word boundary. */
2534 while (strings_size % 4)
2535 {
2536 bfd_put_8 (abfd, 0, p);
2537 strings_size++;
2538 p++;
2539 }
2540 }
2541
2542 /* Scribble out any partial block. */
2543 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd) != p - tmp_space)
2544 {
2545 bfd_error = system_call_error;
2546 return false;
2547 }
2548
2549 *string_sizep = strings_size;
2550 return true;
2551 }
2552
2553 /* Compute variable information to be placed in the SOM headers,
2554 space/subspace dictionaries, relocation streams, etc. Begin
2555 writing parts of the object file. */
2556
2557 static boolean
2558 som_begin_writing (abfd)
2559 bfd *abfd;
2560 {
2561 unsigned long current_offset = 0;
2562 int strings_size = 0;
2563 unsigned int total_reloc_size = 0;
2564 unsigned long num_spaces, num_subspaces, num_syms, i;
2565 asection *section;
2566 asymbol **syms = bfd_get_outsymbols (abfd);
2567 unsigned int total_subspaces = 0;
2568
2569 /* The file header will always be first in an object file,
2570 everything else can be in random locations. To keep things
2571 "simple" BFD will lay out the object file in the manner suggested
2572 by the PRO ABI for PA-RISC Systems. */
2573
2574 /* Before any output can really begin offsets for all the major
2575 portions of the object file must be computed. So, starting
2576 with the initial file header compute (and sometimes write)
2577 each portion of the object file. */
2578
2579 /* Make room for the file header, it's contents are not complete
2580 yet, so it can not be written at this time. */
2581 current_offset += sizeof (struct header);
2582
2583 /* Any auxiliary headers will follow the file header. Right now
2584 we support only the copyright and version headers. */
2585 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
2586 obj_som_file_hdr (abfd)->aux_header_size = 0;
2587 if (obj_som_version_hdr (abfd) != NULL)
2588 {
2589 unsigned int len;
2590
2591 bfd_seek (abfd, current_offset, SEEK_SET);
2592
2593 /* Write the aux_id structure and the string length. */
2594 len = sizeof (struct aux_id) + sizeof (unsigned int);
2595 obj_som_file_hdr (abfd)->aux_header_size += len;
2596 current_offset += len;
2597 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
2598 {
2599 bfd_error = system_call_error;
2600 return false;
2601 }
2602
2603 /* Write the version string. */
2604 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
2605 obj_som_file_hdr (abfd)->aux_header_size += len;
2606 current_offset += len;
2607 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
2608 len, 1, abfd) != len)
2609 {
2610 bfd_error = system_call_error;
2611 return false;
2612 }
2613 }
2614
2615 if (obj_som_copyright_hdr (abfd) != NULL)
2616 {
2617 unsigned int len;
2618
2619 bfd_seek (abfd, current_offset, SEEK_SET);
2620
2621 /* Write the aux_id structure and the string length. */
2622 len = sizeof (struct aux_id) + sizeof (unsigned int);
2623 obj_som_file_hdr (abfd)->aux_header_size += len;
2624 current_offset += len;
2625 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
2626 {
2627 bfd_error = system_call_error;
2628 return false;
2629 }
2630
2631 /* Write the copyright string. */
2632 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
2633 obj_som_file_hdr (abfd)->aux_header_size += len;
2634 current_offset += len;
2635 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
2636 len, 1, abfd) != len)
2637 {
2638 bfd_error = system_call_error;
2639 return false;
2640 }
2641 }
2642
2643 /* Next comes the initialization pointers; we have no initialization
2644 pointers, so current offset does not change. */
2645 obj_som_file_hdr (abfd)->init_array_location = current_offset;
2646 obj_som_file_hdr (abfd)->init_array_total = 0;
2647
2648 /* Next are the space records. These are fixed length records.
2649
2650 Count the number of spaces to determine how much room is needed
2651 in the object file for the space records.
2652
2653 The names of the spaces are stored in a separate string table,
2654 and the index for each space into the string table is computed
2655 below. Therefore, it is not possible to write the space headers
2656 at this time. */
2657 num_spaces = som_count_spaces (abfd);
2658 obj_som_file_hdr (abfd)->space_location = current_offset;
2659 obj_som_file_hdr (abfd)->space_total = num_spaces;
2660 current_offset += num_spaces * sizeof (struct space_dictionary_record);
2661
2662 /* Next are the subspace records. These are fixed length records.
2663
2664 Count the number of subspaes to determine how much room is needed
2665 in the object file for the subspace records.
2666
2667 A variety if fields in the subspace record are still unknown at
2668 this time (index into string table, fixup stream location/size, etc). */
2669 num_subspaces = som_count_subspaces (abfd);
2670 obj_som_file_hdr (abfd)->subspace_location = current_offset;
2671 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
2672 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
2673
2674 /* Next is the string table for the space/subspace names. We will
2675 build and write the string table on the fly. At the same time
2676 we will fill in the space/subspace name index fields. */
2677
2678 /* The string table needs to be aligned on a word boundary. */
2679 if (current_offset % 4)
2680 current_offset += (4 - (current_offset % 4));
2681
2682 /* Mark the offset of the space/subspace string table in the
2683 file header. */
2684 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
2685
2686 /* Scribble out the space strings. */
2687 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
2688 return false;
2689
2690 /* Record total string table size in the header and update the
2691 current offset. */
2692 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
2693 current_offset += strings_size;
2694
2695 /* Next is the symbol table. These are fixed length records.
2696
2697 Count the number of symbols to determine how much room is needed
2698 in the object file for the symbol table.
2699
2700 The names of the symbols are stored in a separate string table,
2701 and the index for each symbol name into the string table is computed
2702 below. Therefore, it is not possible to write the symobl table
2703 at this time. */
2704 num_syms = bfd_get_symcount (abfd);
2705 obj_som_file_hdr (abfd)->symbol_location = current_offset;
2706 obj_som_file_hdr (abfd)->symbol_total = num_syms;
2707 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
2708
2709 /* Do prep work before handling fixups. */
2710 som_prep_for_fixups (abfd, syms, num_syms);
2711
2712 /* Next comes the fixup stream which starts on a word boundary. */
2713 if (current_offset % 4)
2714 current_offset += (4 - (current_offset % 4));
2715 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
2716
2717 /* Write the fixups and update fields in subspace headers which
2718 relate to the fixup stream. */
2719 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
2720 return false;
2721
2722 /* Record the total size of the fixup stream in the file header. */
2723 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
2724 current_offset += total_reloc_size;
2725
2726 /* Next are the symbol strings.
2727 Align them to a word boundary. */
2728 if (current_offset % 4)
2729 current_offset += (4 - (current_offset % 4));
2730 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
2731
2732 /* Scribble out the symbol strings. */
2733 if (som_write_symbol_strings (abfd, current_offset, syms,
2734 num_syms, &strings_size)
2735 == false)
2736 return false;
2737
2738 /* Record total string table size in header and update the
2739 current offset. */
2740 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
2741 current_offset += strings_size;
2742
2743 /* Next is the compiler records. We do not use these. */
2744 obj_som_file_hdr (abfd)->compiler_location = current_offset;
2745 obj_som_file_hdr (abfd)->compiler_total = 0;
2746
2747 /* Now compute the file positions for the loadable subspaces. */
2748
2749 section = abfd->sections;
2750 for (i = 0; i < num_spaces; i++)
2751 {
2752 asection *subsection;
2753
2754 /* Find a space. */
2755 while (som_section_data (section)->is_space == 0)
2756 section = section->next;
2757
2758 /* Now look for all its subspaces. */
2759 for (subsection = abfd->sections;
2760 subsection != NULL;
2761 subsection = subsection->next)
2762 {
2763
2764 if (som_section_data (subsection)->is_subspace == 0
2765 || som_section_data (subsection)->containing_space != section
2766 || (subsection->flags & SEC_ALLOC) == 0)
2767 continue;
2768
2769 som_section_data (subsection)->subspace_index = total_subspaces++;
2770 /* This is real data to be loaded from the file. */
2771 if (subsection->flags & SEC_LOAD)
2772 {
2773 som_section_data (subsection)->subspace_dict.file_loc_init_value
2774 = current_offset;
2775 section->filepos = current_offset;
2776 current_offset += bfd_section_size (abfd, subsection);
2777 }
2778 /* Looks like uninitialized data. */
2779 else
2780 {
2781 som_section_data (subsection)->subspace_dict.file_loc_init_value
2782 = 0;
2783 som_section_data (subsection)->subspace_dict.
2784 initialization_length = 0;
2785 }
2786 }
2787 /* Goto the next section. */
2788 section = section->next;
2789 }
2790
2791 /* Finally compute the file positions for unloadable subspaces. */
2792
2793 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
2794 section = abfd->sections;
2795 for (i = 0; i < num_spaces; i++)
2796 {
2797 asection *subsection;
2798
2799 /* Find a space. */
2800 while (som_section_data (section)->is_space == 0)
2801 section = section->next;
2802
2803 /* Now look for all its subspaces. */
2804 for (subsection = abfd->sections;
2805 subsection != NULL;
2806 subsection = subsection->next)
2807 {
2808
2809 if (som_section_data (subsection)->is_subspace == 0
2810 || som_section_data (subsection)->containing_space != section
2811 || (subsection->flags & SEC_ALLOC) != 0)
2812 continue;
2813
2814 som_section_data (subsection)->subspace_index = total_subspaces++;
2815 /* This is real data to be loaded from the file. */
2816 if ((subsection->flags & SEC_LOAD) == 0)
2817 {
2818 som_section_data (subsection)->subspace_dict.file_loc_init_value
2819 = current_offset;
2820 section->filepos = current_offset;
2821 current_offset += bfd_section_size (abfd, subsection);
2822 }
2823 /* Looks like uninitialized data. */
2824 else
2825 {
2826 som_section_data (subsection)->subspace_dict.file_loc_init_value
2827 = 0;
2828 som_section_data (subsection)->subspace_dict.
2829 initialization_length = bfd_section_size (abfd, subsection);
2830 }
2831 }
2832 /* Goto the next section. */
2833 section = section->next;
2834 }
2835
2836 obj_som_file_hdr (abfd)->unloadable_sp_size
2837 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
2838
2839 /* Loader fixups are not supported in any way shape or form. */
2840 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
2841 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
2842
2843 /* Done. Store the total size of the SOM. */
2844 obj_som_file_hdr (abfd)->som_length = current_offset;
2845 return true;
2846 }
2847
2848 /* Finally, scribble out the various headers to the disk. */
2849
2850 static boolean
2851 som_write_headers (abfd)
2852 bfd *abfd;
2853 {
2854 int num_spaces = som_count_spaces (abfd);
2855 int i;
2856 int subspace_index = 0;
2857 file_ptr location;
2858 asection *section;
2859
2860 /* Subspaces are written first so that we can set up information
2861 about them in their containing spaces as the subspace is written. */
2862
2863 /* Seek to the start of the subspace dictionary records. */
2864 location = obj_som_file_hdr (abfd)->subspace_location;
2865 bfd_seek (abfd, location, SEEK_SET);
2866 section = abfd->sections;
2867 /* Now for each loadable space write out records for its subspaces. */
2868 for (i = 0; i < num_spaces; i++)
2869 {
2870 asection *subsection;
2871
2872 /* Find a space. */
2873 while (som_section_data (section)->is_space == 0)
2874 section = section->next;
2875
2876 /* Now look for all its subspaces. */
2877 for (subsection = abfd->sections;
2878 subsection != NULL;
2879 subsection = subsection->next)
2880 {
2881
2882 /* Skip any section which does not correspond to a space
2883 or subspace. Or does not have SEC_ALLOC set (and therefore
2884 has no real bits on the disk). */
2885 if (som_section_data (subsection)->is_subspace == 0
2886 || som_section_data (subsection)->containing_space != section
2887 || (subsection->flags & SEC_ALLOC) == 0)
2888 continue;
2889
2890 /* If this is the first subspace for this space, then save
2891 the index of the subspace in its containing space. Also
2892 set "is_loadable" in the containing space. */
2893
2894 if (som_section_data (section)->space_dict.subspace_quantity == 0)
2895 {
2896 som_section_data (section)->space_dict.is_loadable = 1;
2897 som_section_data (section)->space_dict.subspace_index
2898 = subspace_index;
2899 }
2900
2901 /* Increment the number of subspaces seen and the number of
2902 subspaces contained within the current space. */
2903 subspace_index++;
2904 som_section_data (section)->space_dict.subspace_quantity++;
2905
2906 /* Mark the index of the current space within the subspace's
2907 dictionary record. */
2908 som_section_data (subsection)->subspace_dict.space_index = i;
2909
2910 /* Dump the current subspace header. */
2911 if (bfd_write ((PTR) &som_section_data (subsection)->subspace_dict,
2912 sizeof (struct subspace_dictionary_record), 1, abfd)
2913 != sizeof (struct subspace_dictionary_record))
2914 {
2915 bfd_error = system_call_error;
2916 return false;
2917 }
2918 }
2919 /* Goto the next section. */
2920 section = section->next;
2921 }
2922
2923 /* Now repeat the process for unloadable subspaces. */
2924 section = abfd->sections;
2925 /* Now for each space write out records for its subspaces. */
2926 for (i = 0; i < num_spaces; i++)
2927 {
2928 asection *subsection;
2929
2930 /* Find a space. */
2931 while (som_section_data (section)->is_space == 0)
2932 section = section->next;
2933
2934 /* Now look for all its subspaces. */
2935 for (subsection = abfd->sections;
2936 subsection != NULL;
2937 subsection = subsection->next)
2938 {
2939
2940 /* Skip any section which does not correspond to a space or
2941 subspace, or which SEC_ALLOC set (and therefore handled
2942 in the loadable spaces/subspaces code above. */
2943
2944 if (som_section_data (subsection)->is_subspace == 0
2945 || som_section_data (subsection)->containing_space != section
2946 || (subsection->flags & SEC_ALLOC) != 0)
2947 continue;
2948
2949 /* If this is the first subspace for this space, then save
2950 the index of the subspace in its containing space. Clear
2951 "is_loadable". */
2952
2953 if (som_section_data (section)->space_dict.subspace_quantity == 0)
2954 {
2955 som_section_data (section)->space_dict.is_loadable = 0;
2956 som_section_data (section)->space_dict.subspace_index
2957 = subspace_index;
2958 }
2959
2960 /* Increment the number of subspaces seen and the number of
2961 subspaces contained within the current space. */
2962 som_section_data (section)->space_dict.subspace_quantity++;
2963 subspace_index++;
2964
2965 /* Mark the index of the current space within the subspace's
2966 dictionary record. */
2967 som_section_data (subsection)->subspace_dict.space_index = i;
2968
2969 /* Dump this subspace header. */
2970 if (bfd_write ((PTR) &som_section_data (subsection)->subspace_dict,
2971 sizeof (struct subspace_dictionary_record), 1, abfd)
2972 != sizeof (struct subspace_dictionary_record))
2973 {
2974 bfd_error = system_call_error;
2975 return false;
2976 }
2977 }
2978 /* Goto the next section. */
2979 section = section->next;
2980 }
2981
2982 /* All the subspace dictiondary records are written, and all the
2983 fields are set up in the space dictionary records.
2984
2985 Seek to the right location and start writing the space
2986 dictionary records. */
2987 location = obj_som_file_hdr (abfd)->space_location;
2988 bfd_seek (abfd, location, SEEK_SET);
2989
2990 section = abfd->sections;
2991 for (i = 0; i < num_spaces; i++)
2992 {
2993
2994 /* Find a space. */
2995 while (som_section_data (section)->is_space == 0)
2996 section = section->next;
2997
2998 /* Dump its header */
2999 if (bfd_write ((PTR) &som_section_data (section)->space_dict,
3000 sizeof (struct space_dictionary_record), 1, abfd)
3001 != sizeof (struct space_dictionary_record))
3002 {
3003 bfd_error = system_call_error;
3004 return false;
3005 }
3006
3007 /* Goto the next section. */
3008 section = section->next;
3009 }
3010
3011 /* Only thing left to do is write out the file header. It is always
3012 at location zero. Seek there and write it. */
3013 bfd_seek (abfd, (file_ptr) 0, SEEK_SET);
3014 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3015 sizeof (struct header), 1, abfd)
3016 != sizeof (struct header))
3017 {
3018 bfd_error = system_call_error;
3019 return false;
3020 }
3021 return true;
3022 }
3023
3024 /* Compute and return the checksum for a SOM file header. */
3025
3026 static unsigned long
3027 som_compute_checksum (abfd)
3028 bfd *abfd;
3029 {
3030 unsigned long checksum, count, i;
3031 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3032
3033 checksum = 0;
3034 count = sizeof (struct header) / sizeof (unsigned long);
3035 for (i = 0; i < count; i++)
3036 checksum ^= *(buffer + i);
3037
3038 return checksum;
3039 }
3040
3041 /* Build and write, in one big chunk, the entire symbol table for
3042 this BFD. */
3043
3044 static boolean
3045 som_build_and_write_symbol_table (abfd)
3046 bfd *abfd;
3047 {
3048 unsigned int num_syms = bfd_get_symcount (abfd);
3049 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3050 asymbol **bfd_syms = bfd_get_outsymbols (abfd);
3051 struct symbol_dictionary_record *som_symtab;
3052 int i, symtab_size;
3053
3054 /* Compute total symbol table size and allocate a chunk of memory
3055 to hold the symbol table as we build it. */
3056 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3057 som_symtab = (struct symbol_dictionary_record *) alloca (symtab_size);
3058 bzero (som_symtab, symtab_size);
3059
3060 /* Walk over each symbol. */
3061 for (i = 0; i < num_syms; i++)
3062 {
3063 /* This is really an index into the symbol strings table.
3064 By the time we get here, the index has already been
3065 computed and stored into the name field in the BFD symbol. */
3066 som_symtab[i].name.n_strx = (int) bfd_syms[i]->name;
3067
3068 /* The HP SOM linker requires detailed type information about
3069 all symbols (including undefined symbols!). Unfortunately,
3070 the type specified in an import/export statement does not
3071 always match what the linker wants. Severe braindamage. */
3072
3073 /* Section symbols will not have a SOM symbol type assigned to
3074 them yet. Assign all section symbols type ST_DATA. */
3075 if (bfd_syms[i]->flags & BSF_SECTION_SYM)
3076 som_symtab[i].symbol_type = ST_DATA;
3077 else
3078 {
3079 /* Common symbols must have scope SS_UNSAT and type
3080 ST_STORAGE or the linker will choke. */
3081 if (bfd_syms[i]->section == &bfd_com_section)
3082 {
3083 som_symtab[i].symbol_scope = SS_UNSAT;
3084 som_symtab[i].symbol_type = ST_STORAGE;
3085 }
3086
3087 /* It is possible to have a symbol without an associated
3088 type. This happens if the user imported the symbol
3089 without a type and the symbol was never defined
3090 locally. If BSF_FUNCTION is set for this symbol, then
3091 assign it type ST_CODE (the HP linker requires undefined
3092 external functions to have type ST_CODE rather than ST_ENTRY. */
3093 else if (((*som_symbol_data (bfd_syms[i]))->som_type
3094 == SYMBOL_TYPE_UNKNOWN)
3095 && (bfd_syms[i]->section == &bfd_und_section)
3096 && (bfd_syms[i]->flags & BSF_FUNCTION))
3097 som_symtab[i].symbol_type = ST_CODE;
3098
3099 /* Handle function symbols which were defined in this file.
3100 They should have type ST_ENTRY. Also retrieve the argument
3101 relocation bits from the SOM backend information. */
3102 else if (((*som_symbol_data (bfd_syms[i]))->som_type
3103 == SYMBOL_TYPE_ENTRY)
3104 || (((*som_symbol_data (bfd_syms[i]))->som_type
3105 == SYMBOL_TYPE_CODE)
3106 && (bfd_syms[i]->flags & BSF_FUNCTION))
3107 || (((*som_symbol_data (bfd_syms[i]))->som_type
3108 == SYMBOL_TYPE_UNKNOWN)
3109 && (bfd_syms[i]->flags & BSF_FUNCTION)))
3110 {
3111 som_symtab[i].symbol_type = ST_ENTRY;
3112 som_symtab[i].arg_reloc
3113 = (*som_symbol_data (bfd_syms[i]))->tc_data.hppa_arg_reloc;
3114 }
3115
3116 /* If the type is unknown at this point, it should be
3117 ST_DATA (functions were handled as special cases above). */
3118 else if ((*som_symbol_data (bfd_syms[i]))->som_type
3119 == SYMBOL_TYPE_UNKNOWN)
3120 som_symtab[i].symbol_type = ST_DATA;
3121
3122 /* From now on it's a very simple mapping. */
3123 else if ((*som_symbol_data (bfd_syms[i]))->som_type
3124 == SYMBOL_TYPE_ABSOLUTE)
3125 som_symtab[i].symbol_type = ST_ABSOLUTE;
3126 else if ((*som_symbol_data (bfd_syms[i]))->som_type
3127 == SYMBOL_TYPE_CODE)
3128 som_symtab[i].symbol_type = ST_CODE;
3129 else if ((*som_symbol_data (bfd_syms[i]))->som_type
3130 == SYMBOL_TYPE_DATA)
3131 som_symtab[i].symbol_type = ST_DATA;
3132 else if ((*som_symbol_data (bfd_syms[i]))->som_type
3133 == SYMBOL_TYPE_MILLICODE)
3134 som_symtab[i].symbol_type = ST_MILLICODE;
3135 else if ((*som_symbol_data (bfd_syms[i]))->som_type
3136 == SYMBOL_TYPE_PLABEL)
3137 som_symtab[i].symbol_type = ST_PLABEL;
3138 else if ((*som_symbol_data (bfd_syms[i]))->som_type
3139 == SYMBOL_TYPE_PRI_PROG)
3140 som_symtab[i].symbol_type = ST_PRI_PROG;
3141 else if ((*som_symbol_data (bfd_syms[i]))->som_type
3142 == SYMBOL_TYPE_SEC_PROG)
3143 som_symtab[i].symbol_type = ST_SEC_PROG;
3144 }
3145
3146 /* Now handle the symbol's scope. Exported data which is not
3147 in the common section has scope SS_UNIVERSAL. Note scope
3148 of common symbols was handled earlier! */
3149 if (bfd_syms[i]->flags & BSF_EXPORT
3150 && bfd_syms[i]->section != &bfd_com_section)
3151 som_symtab[i].symbol_scope = SS_UNIVERSAL;
3152 /* Any undefined symbol at this point has a scope SS_UNSAT. */
3153 else if (bfd_syms[i]->section == &bfd_und_section)
3154 som_symtab[i].symbol_scope = SS_UNSAT;
3155 /* Anything else which is not in the common section has scope
3156 SS_LOCAL. */
3157 else if (bfd_syms[i]->section != &bfd_com_section)
3158 som_symtab[i].symbol_scope = SS_LOCAL;
3159
3160 /* Now set the symbol_info field. It has no real meaning
3161 for undefined or common symbols, but the HP linker will
3162 choke if it's not set to some "reasonable" value. We
3163 use zero as a reasonable value. */
3164 if (bfd_syms[i]->section == &bfd_com_section
3165 || bfd_syms[i]->section == &bfd_und_section)
3166 som_symtab[i].symbol_info = 0;
3167 /* For all other symbols, the symbol_info field contains the
3168 subspace index of the space this symbol is contained in. */
3169 else
3170 som_symtab[i].symbol_info
3171 = som_section_data (bfd_syms[i]->section)->subspace_index;
3172
3173 /* Set the symbol's value. */
3174 som_symtab[i].symbol_value
3175 = bfd_syms[i]->value + bfd_syms[i]->section->vma;
3176 }
3177
3178 /* Egad. Everything is ready, seek to the right location and
3179 scribble out the symbol table. */
3180 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3181 {
3182 bfd_error = system_call_error;
3183 return false;
3184 }
3185
3186 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3187 {
3188 bfd_error = system_call_error;
3189 return false;
3190 }
3191 return true;
3192 }
3193
3194 /* Write an object in SOM format. */
3195
3196 static boolean
3197 som_write_object_contents (abfd)
3198 bfd *abfd;
3199 {
3200 if (abfd->output_has_begun == false)
3201 {
3202 /* Set up fixed parts of the file, space, and subspace headers.
3203 Notify the world that output has begun. */
3204 som_prep_headers (abfd);
3205 abfd->output_has_begun = true;
3206 /* Start writing the object file. This include all the string
3207 tables, fixup streams, and other portions of the object file. */
3208 som_begin_writing (abfd);
3209 }
3210
3211 /* Now that the symbol table information is complete, build and
3212 write the symbol table. */
3213 if (som_build_and_write_symbol_table (abfd) == false)
3214 return false;
3215
3216 /* Compute the checksum for the file header just before writing
3217 the header to disk. */
3218 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3219 return (som_write_headers (abfd));
3220 }
3221
3222 \f
3223 /* Read and save the string table associated with the given BFD. */
3224
3225 static boolean
3226 som_slurp_string_table (abfd)
3227 bfd *abfd;
3228 {
3229 char *stringtab;
3230
3231 /* Use the saved version if its available. */
3232 if (obj_som_stringtab (abfd) != NULL)
3233 return true;
3234
3235 /* Allocate and read in the string table. */
3236 stringtab = bfd_zalloc (abfd, obj_som_stringtab_size (abfd));
3237 if (stringtab == NULL)
3238 {
3239 bfd_error = no_memory;
3240 return false;
3241 }
3242
3243 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3244 {
3245 bfd_error = system_call_error;
3246 return false;
3247 }
3248
3249 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3250 != obj_som_stringtab_size (abfd))
3251 {
3252 bfd_error = system_call_error;
3253 return false;
3254 }
3255
3256 /* Save our results and return success. */
3257 obj_som_stringtab (abfd) = stringtab;
3258 return true;
3259 }
3260
3261 /* Return the amount of data (in bytes) required to hold the symbol
3262 table for this object. */
3263
3264 static unsigned int
3265 som_get_symtab_upper_bound (abfd)
3266 bfd *abfd;
3267 {
3268 if (!som_slurp_symbol_table (abfd))
3269 return 0;
3270
3271 return (bfd_get_symcount (abfd) + 1) * (sizeof (som_symbol_type *));
3272 }
3273
3274 /* Convert from a SOM subspace index to a BFD section. */
3275
3276 static asection *
3277 som_section_from_subspace_index (abfd, index)
3278 bfd *abfd;
3279 unsigned int index;
3280 {
3281 asection *section;
3282
3283 for (section = abfd->sections; section != NULL; section = section->next)
3284 if (som_section_data (section)->subspace_index == index)
3285 return section;
3286
3287 /* Should never happen. */
3288 abort();
3289 }
3290
3291 /* Read and save the symbol table associated with the given BFD. */
3292
3293 static unsigned int
3294 som_slurp_symbol_table (abfd)
3295 bfd *abfd;
3296 {
3297 int symbol_count = bfd_get_symcount (abfd);
3298 int symsize = sizeof (struct symbol_dictionary_record);
3299 char *stringtab;
3300 struct symbol_dictionary_record *buf, *bufp, *endbufp;
3301 som_symbol_type *sym, *symbase;
3302
3303 /* Return saved value if it exists. */
3304 if (obj_som_symtab (abfd) != NULL)
3305 return true;
3306
3307 /* Sanity checking. Make sure there are some symbols and that
3308 we can read the string table too. */
3309 if (symbol_count == 0)
3310 {
3311 bfd_error = no_symbols;
3312 return false;
3313 }
3314
3315 if (!som_slurp_string_table (abfd))
3316 return false;
3317
3318 stringtab = obj_som_stringtab (abfd);
3319
3320 symbase = (som_symbol_type *)
3321 bfd_zalloc (abfd, symbol_count * sizeof (som_symbol_type));
3322 if (symbase == NULL)
3323 {
3324 bfd_error = no_memory;
3325 return false;
3326 }
3327
3328 /* Read in the external SOM representation. */
3329 buf = alloca (symbol_count * symsize);
3330 if (buf == NULL)
3331 {
3332 bfd_error = no_memory;
3333 return false;
3334 }
3335 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
3336 {
3337 bfd_error = system_call_error;
3338 return false;
3339 }
3340 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
3341 != symbol_count * symsize)
3342 {
3343 bfd_error = no_symbols;
3344 return (false);
3345 }
3346
3347 /* Iterate over all the symbols and internalize them. */
3348 endbufp = buf + symbol_count;
3349 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
3350 {
3351
3352 /* I don't think we care about these. */
3353 if (bufp->symbol_type == ST_SYM_EXT
3354 || bufp->symbol_type == ST_ARG_EXT)
3355 continue;
3356
3357 /* Some reasonable defaults. */
3358 sym->symbol.the_bfd = abfd;
3359 sym->symbol.name = bufp->name.n_strx + stringtab;
3360 sym->symbol.value = bufp->symbol_value;
3361 sym->symbol.section = 0;
3362 sym->symbol.flags = 0;
3363
3364 switch (bufp->symbol_type)
3365 {
3366 case ST_ENTRY:
3367 case ST_PRI_PROG:
3368 case ST_SEC_PROG:
3369 case ST_MILLICODE:
3370 sym->symbol.flags |= BSF_FUNCTION;
3371 sym->symbol.value &= ~0x3;
3372 break;
3373
3374 case ST_STUB:
3375 case ST_CODE:
3376 sym->symbol.value &= ~0x3;
3377
3378 default:
3379 break;
3380 }
3381
3382 /* Handle scoping and section information. */
3383 switch (bufp->symbol_scope)
3384 {
3385 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
3386 so the section associated with this symbol can't be known. */
3387 case SS_EXTERNAL:
3388 case SS_UNSAT:
3389 if (bufp->symbol_type != ST_STORAGE)
3390 sym->symbol.section = &bfd_und_section;
3391 else
3392 sym->symbol.section = &bfd_com_section;
3393 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3394 break;
3395
3396 case SS_UNIVERSAL:
3397 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3398 sym->symbol.section
3399 = som_section_from_subspace_index (abfd, bufp->symbol_info);
3400 sym->symbol.value -= sym->symbol.section->vma;
3401 break;
3402
3403 #if 0
3404 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
3405 Sound dumb? It is. */
3406 case SS_GLOBAL:
3407 #endif
3408 case SS_LOCAL:
3409 sym->symbol.flags |= BSF_LOCAL;
3410 sym->symbol.section
3411 = som_section_from_subspace_index (abfd, bufp->symbol_info);
3412 sym->symbol.value -= sym->symbol.section->vma;
3413 break;
3414 }
3415
3416 /* Mark symbols left around by the debugger. */
3417 if (strlen (sym->symbol.name) >= 2
3418 && sym->symbol.name[0] == 'L'
3419 && (sym->symbol.name[1] == '$' || sym->symbol.name[2] == '$'
3420 || sym->symbol.name[3] == '$'))
3421 sym->symbol.flags |= BSF_DEBUGGING;
3422
3423 /* Note increment at bottom of loop, since we skip some symbols
3424 we can not include it as part of the for statement. */
3425 sym++;
3426 }
3427
3428 /* Save our results and return success. */
3429 obj_som_symtab (abfd) = symbase;
3430 return (true);
3431 }
3432
3433 /* Canonicalize a SOM symbol table. Return the number of entries
3434 in the symbol table. */
3435
3436 static unsigned int
3437 som_get_symtab (abfd, location)
3438 bfd *abfd;
3439 asymbol **location;
3440 {
3441 int i;
3442 som_symbol_type *symbase;
3443
3444 if (!som_slurp_symbol_table (abfd))
3445 return 0;
3446
3447 i = bfd_get_symcount (abfd);
3448 symbase = obj_som_symtab (abfd);
3449
3450 for (; i > 0; i--, location++, symbase++)
3451 *location = &symbase->symbol;
3452
3453 /* Final null pointer. */
3454 *location = 0;
3455 return (bfd_get_symcount (abfd));
3456 }
3457
3458 /* Make a SOM symbol. There is nothing special to do here. */
3459
3460 static asymbol *
3461 som_make_empty_symbol (abfd)
3462 bfd *abfd;
3463 {
3464 som_symbol_type *new =
3465 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
3466 if (new == NULL)
3467 {
3468 bfd_error = no_memory;
3469 return 0;
3470 }
3471 new->symbol.the_bfd = abfd;
3472
3473 return &new->symbol;
3474 }
3475
3476 /* Print symbol information. */
3477
3478 static void
3479 som_print_symbol (ignore_abfd, afile, symbol, how)
3480 bfd *ignore_abfd;
3481 PTR afile;
3482 asymbol *symbol;
3483 bfd_print_symbol_type how;
3484 {
3485 FILE *file = (FILE *) afile;
3486 switch (how)
3487 {
3488 case bfd_print_symbol_name:
3489 fprintf (file, "%s", symbol->name);
3490 break;
3491 case bfd_print_symbol_more:
3492 fprintf (file, "som ");
3493 fprintf_vma (file, symbol->value);
3494 fprintf (file, " %lx", (long) symbol->flags);
3495 break;
3496 case bfd_print_symbol_all:
3497 {
3498 CONST char *section_name;
3499 section_name = symbol->section ? symbol->section->name : "(*none*)";
3500 bfd_print_symbol_vandf ((PTR) file, symbol);
3501 fprintf (file, " %s\t%s", section_name, symbol->name);
3502 break;
3503 }
3504 }
3505 }
3506
3507 /* Count or process variable-length SOM fixup records.
3508
3509 To avoid code duplication we use this code both to compute the number
3510 of relocations requested by a stream, and to internalize the stream.
3511
3512 When computing the number of relocations requested by a stream the
3513 variables rptr, section, and symbols have no meaning.
3514
3515 Return the number of relocations requested by the fixup stream. When
3516 not just counting
3517
3518 This needs at least two or three more passes to get it cleaned up. */
3519
3520 static unsigned int
3521 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
3522 unsigned char *fixup;
3523 unsigned int end;
3524 arelent *internal_relocs;
3525 asection *section;
3526 asymbol **symbols;
3527 boolean just_count;
3528 {
3529 unsigned int op, varname;
3530 unsigned char *end_fixups = &fixup[end];
3531 const struct fixup_format *fp;
3532 char *cp;
3533 unsigned char *save_fixup;
3534 int variables[26], stack[20], c, v, count, prev_fixup, *sp;
3535 const int *subop;
3536 arelent *rptr= internal_relocs;
3537 unsigned int offset = just_count ? 0 : section->vma;
3538
3539 #define var(c) variables[(c) - 'A']
3540 #define push(v) (*sp++ = (v))
3541 #define pop() (*--sp)
3542 #define emptystack() (sp == stack)
3543
3544 som_initialize_reloc_queue (reloc_queue);
3545 bzero (variables, sizeof (variables));
3546 bzero (stack, sizeof (stack));
3547 count = 0;
3548 prev_fixup = 0;
3549 sp = stack;
3550
3551 while (fixup < end_fixups)
3552 {
3553
3554 /* Save pointer to the start of this fixup. We'll use
3555 it later to determine if it is necessary to put this fixup
3556 on the queue. */
3557 save_fixup = fixup;
3558
3559 /* Get the fixup code and its associated format. */
3560 op = *fixup++;
3561 fp = &som_fixup_formats[op];
3562
3563 /* Handle a request for a previous fixup. */
3564 if (*fp->format == 'P')
3565 {
3566 /* Get pointer to the beginning of the prev fixup, move
3567 the repeated fixup to the head of the queue. */
3568 fixup = reloc_queue[fp->D].reloc;
3569 som_reloc_queue_fix (reloc_queue, fp->D);
3570 prev_fixup = 1;
3571
3572 /* Get the fixup code and its associated format. */
3573 op = *fixup++;
3574 fp = &som_fixup_formats[op];
3575 }
3576
3577 /* If we are not just counting, set some reasonable defaults. */
3578 if (! just_count)
3579 {
3580 rptr->address = offset;
3581 rptr->howto = &som_hppa_howto_table[op];
3582 rptr->addend = 0;
3583 rptr->sym_ptr_ptr = bfd_abs_section.symbol_ptr_ptr;
3584 }
3585
3586 /* Set default input length to 0. Get the opcode class index
3587 into D. */
3588 var ('L') = 0;
3589 var ('D') = fp->D;
3590
3591 /* Get the opcode format. */
3592 cp = fp->format;
3593
3594 /* Process the format string. Parsing happens in two phases,
3595 parse RHS, then assign to LHS. Repeat until no more
3596 characters in the format string. */
3597 while (*cp)
3598 {
3599 /* The variable this pass is going to compute a value for. */
3600 varname = *cp++;
3601
3602 /* Start processing RHS. Continue until a NULL or '=' is found. */
3603 do
3604 {
3605 c = *cp++;
3606
3607 /* If this is a variable, push it on the stack. */
3608 if (isupper (c))
3609 push (var (c));
3610
3611 /* If this is a lower case letter, then it represents
3612 additional data from the fixup stream to be pushed onto
3613 the stack. */
3614 else if (islower (c))
3615 {
3616 for (v = 0; c > 'a'; --c)
3617 v = (v << 8) | *fixup++;
3618 push (v);
3619 }
3620
3621 /* A decimal constant. Push it on the stack. */
3622 else if (isdigit (c))
3623 {
3624 v = c - '0';
3625 while (isdigit (*cp))
3626 v = (v * 10) + (*cp++ - '0');
3627 push (v);
3628 }
3629 else
3630
3631 /* An operator. Pop two two values from the stack and
3632 use them as operands to the given operation. Push
3633 the result of the operation back on the stack. */
3634 switch (c)
3635 {
3636 case '+':
3637 v = pop ();
3638 v += pop ();
3639 push (v);
3640 break;
3641 case '*':
3642 v = pop ();
3643 v *= pop ();
3644 push (v);
3645 break;
3646 case '<':
3647 v = pop ();
3648 v = pop () << v;
3649 push (v);
3650 break;
3651 default:
3652 abort ();
3653 }
3654 }
3655 while (*cp && *cp != '=');
3656
3657 /* Move over the equal operator. */
3658 cp++;
3659
3660 /* Pop the RHS off the stack. */
3661 c = pop ();
3662
3663 /* Perform the assignment. */
3664 var (varname) = c;
3665
3666 /* Handle side effects. and special 'O' stack cases. */
3667 switch (varname)
3668 {
3669 /* Consume some bytes from the input space. */
3670 case 'L':
3671 offset += c;
3672 break;
3673 /* A symbol to use in the relocation. Make a note
3674 of this if we are not just counting. */
3675 case 'S':
3676 if (! just_count)
3677 rptr->sym_ptr_ptr = &symbols[c];
3678 break;
3679 /* Handle the linker expression stack. */
3680 case 'O':
3681 switch (op)
3682 {
3683 case R_COMP1:
3684 subop = comp1_opcodes;
3685 break;
3686 case R_COMP2:
3687 subop = comp2_opcodes;
3688 break;
3689 case R_COMP3:
3690 subop = comp3_opcodes;
3691 break;
3692 default:
3693 abort ();
3694 }
3695 while (*subop <= (unsigned char) c)
3696 ++subop;
3697 --subop;
3698 break;
3699 default:
3700 break;
3701 }
3702 }
3703
3704 /* If we used a previous fixup, clean up after it. */
3705 if (prev_fixup)
3706 {
3707 fixup = save_fixup + 1;
3708 prev_fixup = 0;
3709 }
3710 /* Queue it. */
3711 else if (fixup > save_fixup + 1)
3712 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
3713
3714 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
3715 fixups to BFD. */
3716 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
3717 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
3718 {
3719 /* Done with a single reloction. Loop back to the top. */
3720 if (! just_count)
3721 {
3722 rptr->addend = var ('V');
3723 rptr++;
3724 }
3725 count++;
3726 /* Now that we've handled a "full" relocation, reset
3727 some state. */
3728 bzero (variables, sizeof (variables));
3729 bzero (stack, sizeof (stack));
3730 }
3731 }
3732 return count;
3733
3734 #undef var
3735 #undef push
3736 #undef pop
3737 #undef emptystack
3738 }
3739
3740 /* Read in the relocs (aka fixups in SOM terms) for a section.
3741
3742 som_get_reloc_upper_bound calls this routine with JUST_COUNT
3743 set to true to indicate it only needs a count of the number
3744 of actual relocations. */
3745
3746 static boolean
3747 som_slurp_reloc_table (abfd, section, symbols, just_count)
3748 bfd *abfd;
3749 asection *section;
3750 asymbol **symbols;
3751 boolean just_count;
3752 {
3753 char *external_relocs;
3754 unsigned int fixup_stream_size;
3755 arelent *internal_relocs;
3756 unsigned int num_relocs;
3757
3758 fixup_stream_size = som_section_data (section)->reloc_size;
3759 /* If there were no relocations, then there is nothing to do. */
3760 if (section->reloc_count == 0)
3761 return true;
3762
3763 /* If reloc_count is -1, then the relocation stream has not been
3764 parsed. We must do so now to know how many relocations exist. */
3765 if (section->reloc_count == -1)
3766 {
3767 external_relocs = (char *) bfd_zalloc (abfd, fixup_stream_size);
3768 if (external_relocs == (char *) NULL)
3769 {
3770 bfd_error = no_memory;
3771 return false;
3772 }
3773 /* Read in the external forms. */
3774 if (bfd_seek (abfd,
3775 obj_som_reloc_filepos (abfd) + section->rel_filepos,
3776 SEEK_SET)
3777 != 0)
3778 {
3779 bfd_error = system_call_error;
3780 return false;
3781 }
3782 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
3783 != fixup_stream_size)
3784 {
3785 bfd_error = system_call_error;
3786 return false;
3787 }
3788 /* Let callers know how many relocations found.
3789 also save the relocation stream as we will
3790 need it again. */
3791 section->reloc_count = som_set_reloc_info (external_relocs,
3792 fixup_stream_size,
3793 NULL, NULL, NULL, true);
3794
3795 som_section_data (section)->reloc_stream = external_relocs;
3796 }
3797
3798 /* If the caller only wanted a count, then return now. */
3799 if (just_count)
3800 return true;
3801
3802 num_relocs = section->reloc_count;
3803 external_relocs = som_section_data (section)->reloc_stream;
3804 /* Return saved information about the relocations if it is available. */
3805 if (section->relocation != (arelent *) NULL)
3806 return true;
3807
3808 internal_relocs = (arelent *) bfd_zalloc (abfd,
3809 num_relocs * sizeof (arelent));
3810 if (internal_relocs == (arelent *) NULL)
3811 {
3812 bfd_error = no_memory;
3813 return false;
3814 }
3815
3816 /* Process and internalize the relocations. */
3817 som_set_reloc_info (external_relocs, fixup_stream_size,
3818 internal_relocs, section, symbols, false);
3819
3820 /* Save our results and return success. */
3821 section->relocation = internal_relocs;
3822 return (true);
3823 }
3824
3825 /* Return the number of bytes required to store the relocation
3826 information associated with the given section. */
3827
3828 static unsigned int
3829 som_get_reloc_upper_bound (abfd, asect)
3830 bfd *abfd;
3831 sec_ptr asect;
3832 {
3833 /* If section has relocations, then read in the relocation stream
3834 and parse it to determine how many relocations exist. */
3835 if (asect->flags & SEC_RELOC)
3836 {
3837 if (som_slurp_reloc_table (abfd, asect, NULL, true))
3838 return (asect->reloc_count + 1) * sizeof (arelent);
3839 }
3840 /* Either there are no relocations or an error occurred while
3841 reading and parsing the relocation stream. */
3842 return 0;
3843 }
3844
3845 /* Convert relocations from SOM (external) form into BFD internal
3846 form. Return the number of relocations. */
3847
3848 static unsigned int
3849 som_canonicalize_reloc (abfd, section, relptr, symbols)
3850 bfd *abfd;
3851 sec_ptr section;
3852 arelent **relptr;
3853 asymbol **symbols;
3854 {
3855 arelent *tblptr;
3856 int count;
3857
3858 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
3859 return 0;
3860
3861 count = section->reloc_count;
3862 tblptr = section->relocation;
3863 if (tblptr == (arelent *) NULL)
3864 return 0;
3865
3866 while (count--)
3867 *relptr++ = tblptr++;
3868
3869 *relptr = (arelent *) NULL;
3870 return section->reloc_count;
3871 }
3872
3873 extern bfd_target som_vec;
3874
3875 /* A hook to set up object file dependent section information. */
3876
3877 static boolean
3878 som_new_section_hook (abfd, newsect)
3879 bfd *abfd;
3880 asection *newsect;
3881 {
3882 newsect->used_by_bfd
3883 = (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
3884 newsect->alignment_power = 3;
3885
3886 /* Initialize the subspace_index field to -1 so that it does
3887 not match a subspace with an index of 0. */
3888 som_section_data (newsect)->subspace_index = -1;
3889
3890 /* We allow more than three sections internally */
3891 return true;
3892 }
3893
3894 /* Set backend info for sections which can not be described
3895 in the BFD data structures. */
3896
3897 void
3898 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
3899 asection *section;
3900 int defined;
3901 int private;
3902 unsigned char sort_key;
3903 int spnum;
3904 {
3905 struct space_dictionary_record *space_dict;
3906
3907 som_section_data (section)->is_space = 1;
3908 space_dict = &som_section_data (section)->space_dict;
3909 space_dict->is_defined = defined;
3910 space_dict->is_private = private;
3911 space_dict->sort_key = sort_key;
3912 space_dict->space_number = spnum;
3913 }
3914
3915 /* Set backend info for subsections which can not be described
3916 in the BFD data structures. */
3917
3918 void
3919 bfd_som_set_subsection_attributes (section, container, access,
3920 sort_key, quadrant)
3921 asection *section;
3922 asection *container;
3923 int access;
3924 unsigned int sort_key;
3925 int quadrant;
3926 {
3927 struct subspace_dictionary_record *subspace_dict;
3928 som_section_data (section)->is_subspace = 1;
3929 subspace_dict = &som_section_data (section)->subspace_dict;
3930 subspace_dict->access_control_bits = access;
3931 subspace_dict->sort_key = sort_key;
3932 subspace_dict->quadrant = quadrant;
3933 som_section_data (section)->containing_space = container;
3934 }
3935
3936 /* Set the full SOM symbol type. SOM needs far more symbol information
3937 than any other object file format I'm aware of. It is mandatory
3938 to be able to know if a symbol is an entry point, millicode, data,
3939 code, absolute, storage request, or procedure label. If you get
3940 the symbol type wrong your program will not link. */
3941
3942 void
3943 bfd_som_set_symbol_type (symbol, type)
3944 asymbol *symbol;
3945 unsigned int type;
3946 {
3947 (*som_symbol_data (symbol))->som_type = type;
3948 }
3949
3950 /* Attach 64bits of unwind information to a symbol (which hopefully
3951 is a function of some kind!). It would be better to keep this
3952 in the R_ENTRY relocation, but there is not enough space. */
3953
3954 void
3955 bfd_som_attach_unwind_info (symbol, unwind_desc)
3956 asymbol *symbol;
3957 char *unwind_desc;
3958 {
3959 (*som_symbol_data (symbol))->unwind = unwind_desc;
3960 }
3961
3962 /* Attach an auxiliary header to the BFD backend so that it may be
3963 written into the object file. */
3964 void
3965 bfd_som_attach_aux_hdr (abfd, type, string)
3966 bfd *abfd;
3967 int type;
3968 char *string;
3969 {
3970 if (type == VERSION_AUX_ID)
3971 {
3972 int len = strlen (string);
3973 int pad = 0;
3974
3975 if (len % 4)
3976 pad = (4 - (len % 4));
3977 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
3978 bfd_zalloc (abfd, sizeof (struct aux_id)
3979 + sizeof (unsigned int) + len + pad);
3980 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
3981 obj_som_version_hdr (abfd)->header_id.length = len + pad;
3982 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
3983 obj_som_version_hdr (abfd)->string_length = len;
3984 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
3985 }
3986 else if (type == COPYRIGHT_AUX_ID)
3987 {
3988 int len = strlen (string);
3989 int pad = 0;
3990
3991 if (len % 4)
3992 pad = (4 - (len % 4));
3993 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
3994 bfd_zalloc (abfd, sizeof (struct aux_id)
3995 + sizeof (unsigned int) + len + pad);
3996 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
3997 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
3998 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
3999 obj_som_copyright_hdr (abfd)->string_length = len;
4000 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
4001 }
4002 else
4003 abort ();
4004 }
4005
4006 static boolean
4007 som_set_section_contents (abfd, section, location, offset, count)
4008 bfd *abfd;
4009 sec_ptr section;
4010 PTR location;
4011 file_ptr offset;
4012 bfd_size_type count;
4013 {
4014 if (abfd->output_has_begun == false)
4015 {
4016 /* Set up fixed parts of the file, space, and subspace headers.
4017 Notify the world that output has begun. */
4018 som_prep_headers (abfd);
4019 abfd->output_has_begun = true;
4020 /* Start writing the object file. This include all the string
4021 tables, fixup streams, and other portions of the object file. */
4022 som_begin_writing (abfd);
4023 }
4024
4025 /* Only write subspaces which have "real" contents (eg. the contents
4026 are not generated at run time by the OS). */
4027 if (som_section_data (section)->is_subspace != 1
4028 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4029 return true;
4030
4031 /* Seek to the proper offset within the object file and write the
4032 data. */
4033 offset += som_section_data (section)->subspace_dict.file_loc_init_value;
4034 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
4035 {
4036 bfd_error = system_call_error;
4037 return false;
4038 }
4039
4040 if (bfd_write ((PTR) location, 1, count, abfd) != count)
4041 {
4042 bfd_error = system_call_error;
4043 return false;
4044 }
4045 return true;
4046 }
4047
4048 static boolean
4049 som_set_arch_mach (abfd, arch, machine)
4050 bfd *abfd;
4051 enum bfd_architecture arch;
4052 unsigned long machine;
4053 {
4054 /* Allow any architecture to be supported by the SOM backend */
4055 return bfd_default_set_arch_mach (abfd, arch, machine);
4056 }
4057
4058 static boolean
4059 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4060 functionname_ptr, line_ptr)
4061 bfd *abfd;
4062 asection *section;
4063 asymbol **symbols;
4064 bfd_vma offset;
4065 CONST char **filename_ptr;
4066 CONST char **functionname_ptr;
4067 unsigned int *line_ptr;
4068 {
4069 fprintf (stderr, "som_find_nearest_line unimplemented\n");
4070 fflush (stderr);
4071 abort ();
4072 return (false);
4073 }
4074
4075 static int
4076 som_sizeof_headers (abfd, reloc)
4077 bfd *abfd;
4078 boolean reloc;
4079 {
4080 fprintf (stderr, "som_sizeof_headers unimplemented\n");
4081 fflush (stderr);
4082 abort ();
4083 return (0);
4084 }
4085
4086 /* Return the single-character symbol type corresponding to
4087 SOM section S, or '?' for an unknown SOM section. */
4088
4089 static char
4090 som_section_type (s)
4091 const char *s;
4092 {
4093 const struct section_to_type *t;
4094
4095 for (t = &stt[0]; t->section; t++)
4096 if (!strcmp (s, t->section))
4097 return t->type;
4098 return '?';
4099 }
4100
4101 static int
4102 som_decode_symclass (symbol)
4103 asymbol *symbol;
4104 {
4105 char c;
4106
4107 if (bfd_is_com_section (symbol->section))
4108 return 'C';
4109 if (symbol->section == &bfd_und_section)
4110 return 'U';
4111 if (symbol->section == &bfd_ind_section)
4112 return 'I';
4113 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
4114 return '?';
4115
4116 if (symbol->section == &bfd_abs_section)
4117 c = 'a';
4118 else if (symbol->section)
4119 c = som_section_type (symbol->section->name);
4120 else
4121 return '?';
4122 if (symbol->flags & BSF_GLOBAL)
4123 c = toupper (c);
4124 return c;
4125 }
4126
4127 /* Return information about SOM symbol SYMBOL in RET. */
4128
4129 static void
4130 som_get_symbol_info (ignore_abfd, symbol, ret)
4131 bfd *ignore_abfd;
4132 asymbol *symbol;
4133 symbol_info *ret;
4134 {
4135 ret->type = som_decode_symclass (symbol);
4136 if (ret->type != 'U')
4137 ret->value = symbol->value+symbol->section->vma;
4138 else
4139 ret->value = 0;
4140 ret->name = symbol->name;
4141 }
4142
4143 /* End of miscellaneous support functions. */
4144
4145 #define som_bfd_debug_info_start bfd_void
4146 #define som_bfd_debug_info_end bfd_void
4147 #define som_bfd_debug_info_accumulate (PROTO(void,(*),(bfd*, struct sec *))) bfd_void
4148
4149 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
4150 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
4151 #define som_slurp_armap bfd_false
4152 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
4153 #define som_truncate_arname (void (*)())bfd_nullvoidptr
4154 #define som_write_armap 0
4155
4156 #define som_get_lineno (struct lineno_cache_entry *(*)())bfd_nullvoidptr
4157 #define som_close_and_cleanup bfd_generic_close_and_cleanup
4158 #define som_get_section_contents bfd_generic_get_section_contents
4159
4160 #define som_bfd_get_relocated_section_contents \
4161 bfd_generic_get_relocated_section_contents
4162 #define som_bfd_relax_section bfd_generic_relax_section
4163 #define som_bfd_make_debug_symbol \
4164 ((asymbol *(*) PARAMS ((bfd *, void *, unsigned long))) bfd_nullvoidptr)
4165 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
4166 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
4167 #define som_bfd_final_link _bfd_generic_final_link
4168
4169 /* Core file support is in the hpux-core backend. */
4170 #define som_core_file_failing_command _bfd_dummy_core_file_failing_command
4171 #define som_core_file_failing_signal _bfd_dummy_core_file_failing_signal
4172 #define som_core_file_matches_executable_p _bfd_dummy_core_file_matches_executable_p
4173
4174 bfd_target som_vec =
4175 {
4176 "som", /* name */
4177 bfd_target_som_flavour,
4178 true, /* target byte order */
4179 true, /* target headers byte order */
4180 (HAS_RELOC | EXEC_P | /* object flags */
4181 HAS_LINENO | HAS_DEBUG |
4182 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
4183 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
4184 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
4185
4186 /* leading_symbol_char: is the first char of a user symbol
4187 predictable, and if so what is it */
4188 0,
4189 ' ', /* ar_pad_char */
4190 16, /* ar_max_namelen */
4191 3, /* minimum alignment */
4192 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
4193 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
4194 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
4195 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
4196 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
4197 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
4198 {_bfd_dummy_target,
4199 som_object_p, /* bfd_check_format */
4200 bfd_generic_archive_p,
4201 _bfd_dummy_target
4202 },
4203 {
4204 bfd_false,
4205 som_mkobject,
4206 _bfd_generic_mkarchive,
4207 bfd_false
4208 },
4209 {
4210 bfd_false,
4211 som_write_object_contents,
4212 _bfd_write_archive_contents,
4213 bfd_false,
4214 },
4215 #undef som
4216 JUMP_TABLE (som),
4217 (PTR) 0
4218 };
4219
4220 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */