* som.c (som_prep_headers): Do not set the system_id here, private
[binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
3
4 Contributed by the Center for Software Science at the
5 University of Utah (pa-gdb-bugs@cs.utah.edu).
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23 #include "bfd.h"
24 #include "sysdep.h"
25
26 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)
27
28 #include "libbfd.h"
29 #include "som.h"
30
31 #include <stdio.h>
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <signal.h>
35 #include <machine/reg.h>
36 #include <sys/file.h>
37 #include <errno.h>
38
39 /* Magic not defined in standard HP-UX header files until 8.0 */
40
41 #ifndef CPU_PA_RISC1_0
42 #define CPU_PA_RISC1_0 0x20B
43 #endif /* CPU_PA_RISC1_0 */
44
45 #ifndef CPU_PA_RISC1_1
46 #define CPU_PA_RISC1_1 0x210
47 #endif /* CPU_PA_RISC1_1 */
48
49 #ifndef _PA_RISC1_0_ID
50 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
51 #endif /* _PA_RISC1_0_ID */
52
53 #ifndef _PA_RISC1_1_ID
54 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
55 #endif /* _PA_RISC1_1_ID */
56
57 #ifndef _PA_RISC_MAXID
58 #define _PA_RISC_MAXID 0x2FF
59 #endif /* _PA_RISC_MAXID */
60
61 #ifndef _PA_RISC_ID
62 #define _PA_RISC_ID(__m_num) \
63 (((__m_num) == _PA_RISC1_0_ID) || \
64 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
65 #endif /* _PA_RISC_ID */
66
67 /* Size (in chars) of the temporary buffers used during fixup and string
68 table writes. */
69
70 #define SOM_TMP_BUFSIZE 8192
71
72 /* Size of the hash table in archives. */
73 #define SOM_LST_HASH_SIZE 31
74
75 /* Max number of SOMs to be found in an archive. */
76 #define SOM_LST_MODULE_LIMIT 1024
77
78 /* Generic alignment macro. */
79 #define SOM_ALIGN(val, alignment) \
80 (((val) + (alignment) - 1) & ~((alignment) - 1))
81
82 /* SOM allows any one of the four previous relocations to be reused
83 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
84 relocations are always a single byte, using a R_PREV_FIXUP instead
85 of some multi-byte relocation makes object files smaller.
86
87 Note one side effect of using a R_PREV_FIXUP is the relocation that
88 is being repeated moves to the front of the queue. */
89 struct reloc_queue
90 {
91 unsigned char *reloc;
92 unsigned int size;
93 } reloc_queue[4];
94
95 /* This fully describes the symbol types which may be attached to
96 an EXPORT or IMPORT directive. Only SOM uses this formation
97 (ELF has no need for it). */
98 typedef enum
99 {
100 SYMBOL_TYPE_UNKNOWN,
101 SYMBOL_TYPE_ABSOLUTE,
102 SYMBOL_TYPE_CODE,
103 SYMBOL_TYPE_DATA,
104 SYMBOL_TYPE_ENTRY,
105 SYMBOL_TYPE_MILLICODE,
106 SYMBOL_TYPE_PLABEL,
107 SYMBOL_TYPE_PRI_PROG,
108 SYMBOL_TYPE_SEC_PROG,
109 } pa_symbol_type;
110
111 struct section_to_type
112 {
113 char *section;
114 char type;
115 };
116
117 /* Assorted symbol information that needs to be derived from the BFD symbol
118 and/or the BFD backend private symbol data. */
119 struct som_misc_symbol_info
120 {
121 unsigned int symbol_type;
122 unsigned int symbol_scope;
123 unsigned int arg_reloc;
124 unsigned int symbol_info;
125 unsigned int symbol_value;
126 };
127
128 /* Forward declarations */
129
130 static boolean som_mkobject PARAMS ((bfd *));
131 static bfd_target * som_object_setup PARAMS ((bfd *,
132 struct header *,
133 struct som_exec_auxhdr *));
134 static boolean setup_sections PARAMS ((bfd *, struct header *));
135 static bfd_target * som_object_p PARAMS ((bfd *));
136 static boolean som_write_object_contents PARAMS ((bfd *));
137 static boolean som_slurp_string_table PARAMS ((bfd *));
138 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
139 static long som_get_symtab_upper_bound PARAMS ((bfd *));
140 static long som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
141 arelent **, asymbol **));
142 static long som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
143 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
144 arelent *, asection *,
145 asymbol **, boolean));
146 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
147 asymbol **, boolean));
148 static long som_get_symtab PARAMS ((bfd *, asymbol **));
149 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
150 static void som_print_symbol PARAMS ((bfd *, PTR,
151 asymbol *, bfd_print_symbol_type));
152 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
153 static boolean som_bfd_copy_private_section_data PARAMS ((bfd *, asection *,
154 bfd *, asection *));
155 static boolean som_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
156 static boolean som_bfd_is_local_label PARAMS ((bfd *, asymbol *));
157 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
158 file_ptr, bfd_size_type));
159 static boolean som_get_section_contents PARAMS ((bfd *, sec_ptr, PTR,
160 file_ptr, bfd_size_type));
161 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
162 unsigned long));
163 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
164 asymbol **, bfd_vma,
165 CONST char **,
166 CONST char **,
167 unsigned int *));
168 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
169 static asection * bfd_section_from_som_symbol PARAMS ((bfd *,
170 struct symbol_dictionary_record *));
171 static int log2 PARAMS ((unsigned int));
172 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
173 asymbol *, PTR,
174 asection *, bfd *,
175 char **));
176 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
177 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
178 struct reloc_queue *));
179 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
180 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
181 struct reloc_queue *));
182 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
183 unsigned int,
184 struct reloc_queue *));
185
186 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
187 unsigned char *, unsigned int *,
188 struct reloc_queue *));
189 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
190 unsigned int *,
191 struct reloc_queue *));
192 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
193 unsigned int *,
194 arelent *, int,
195 struct reloc_queue *));
196 static unsigned long som_count_spaces PARAMS ((bfd *));
197 static unsigned long som_count_subspaces PARAMS ((bfd *));
198 static int compare_syms PARAMS ((const void *, const void *));
199 static unsigned long som_compute_checksum PARAMS ((bfd *));
200 static boolean som_prep_headers PARAMS ((bfd *));
201 static int som_sizeof_headers PARAMS ((bfd *, boolean));
202 static boolean som_write_headers PARAMS ((bfd *));
203 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
204 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
205 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
206 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
207 unsigned int *));
208 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
209 asymbol **, unsigned int,
210 unsigned *));
211 static boolean som_begin_writing PARAMS ((bfd *));
212 static const reloc_howto_type * som_bfd_reloc_type_lookup
213 PARAMS ((bfd *, bfd_reloc_code_real_type));
214 static char som_section_type PARAMS ((const char *));
215 static int som_decode_symclass PARAMS ((asymbol *));
216 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
217 symindex *));
218
219 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
220 carsym **syms));
221 static boolean som_slurp_armap PARAMS ((bfd *));
222 static boolean som_write_armap PARAMS ((bfd *, unsigned int, struct orl *,
223 unsigned int, int));
224 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
225 struct som_misc_symbol_info *));
226 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
227 unsigned int *));
228 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
229 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
230 unsigned int,
231 struct lst_header));
232 static CONST char *normalize PARAMS ((CONST char *file));
233 static boolean som_is_space PARAMS ((asection *));
234 static boolean som_is_subspace PARAMS ((asection *));
235 static boolean som_is_container PARAMS ((asection *, asection *));
236 static boolean som_bfd_free_cached_info PARAMS ((bfd *));
237
238 /* Map SOM section names to POSIX/BSD single-character symbol types.
239
240 This table includes all the standard subspaces as defined in the
241 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
242 some reason was left out, and sections specific to embedded stabs. */
243
244 static const struct section_to_type stt[] = {
245 {"$TEXT$", 't'},
246 {"$SHLIB_INFO$", 't'},
247 {"$MILLICODE$", 't'},
248 {"$LIT$", 't'},
249 {"$CODE$", 't'},
250 {"$UNWIND_START$", 't'},
251 {"$UNWIND$", 't'},
252 {"$PRIVATE$", 'd'},
253 {"$PLT$", 'd'},
254 {"$SHLIB_DATA$", 'd'},
255 {"$DATA$", 'd'},
256 {"$SHORTDATA$", 'g'},
257 {"$DLT$", 'd'},
258 {"$GLOBAL$", 'g'},
259 {"$SHORTBSS$", 's'},
260 {"$BSS$", 'b'},
261 {"$GDB_STRINGS$", 'N'},
262 {"$GDB_SYMBOLS$", 'N'},
263 {0, 0}
264 };
265
266 /* About the relocation formatting table...
267
268 There are 256 entries in the table, one for each possible
269 relocation opcode available in SOM. We index the table by
270 the relocation opcode. The names and operations are those
271 defined by a.out_800 (4).
272
273 Right now this table is only used to count and perform minimal
274 processing on relocation streams so that they can be internalized
275 into BFD and symbolically printed by utilities. To make actual use
276 of them would be much more difficult, BFD's concept of relocations
277 is far too simple to handle SOM relocations. The basic assumption
278 that a relocation can be completely processed independent of other
279 relocations before an object file is written is invalid for SOM.
280
281 The SOM relocations are meant to be processed as a stream, they
282 specify copying of data from the input section to the output section
283 while possibly modifying the data in some manner. They also can
284 specify that a variable number of zeros or uninitialized data be
285 inserted on in the output segment at the current offset. Some
286 relocations specify that some previous relocation be re-applied at
287 the current location in the input/output sections. And finally a number
288 of relocations have effects on other sections (R_ENTRY, R_EXIT,
289 R_UNWIND_AUX and a variety of others). There isn't even enough room
290 in the BFD relocation data structure to store enough information to
291 perform all the relocations.
292
293 Each entry in the table has three fields.
294
295 The first entry is an index into this "class" of relocations. This
296 index can then be used as a variable within the relocation itself.
297
298 The second field is a format string which actually controls processing
299 of the relocation. It uses a simple postfix machine to do calculations
300 based on variables/constants found in the string and the relocation
301 stream.
302
303 The third field specifys whether or not this relocation may use
304 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
305 stored in the instruction.
306
307 Variables:
308
309 L = input space byte count
310 D = index into class of relocations
311 M = output space byte count
312 N = statement number (unused?)
313 O = stack operation
314 R = parameter relocation bits
315 S = symbol index
316 U = 64 bits of stack unwind and frame size info (we only keep 32 bits)
317 V = a literal constant (usually used in the next relocation)
318 P = a previous relocation
319
320 Lower case letters (starting with 'b') refer to following
321 bytes in the relocation stream. 'b' is the next 1 byte,
322 c is the next 2 bytes, d is the next 3 bytes, etc...
323 This is the variable part of the relocation entries that
324 makes our life a living hell.
325
326 numerical constants are also used in the format string. Note
327 the constants are represented in decimal.
328
329 '+', "*" and "=" represents the obvious postfix operators.
330 '<' represents a left shift.
331
332 Stack Operations:
333
334 Parameter Relocation Bits:
335
336 Unwind Entries:
337
338 Previous Relocations: The index field represents which in the queue
339 of 4 previous fixups should be re-applied.
340
341 Literal Constants: These are generally used to represent addend
342 parts of relocations when these constants are not stored in the
343 fields of the instructions themselves. For example the instruction
344 addil foo-$global$-0x1234 would use an override for "0x1234" rather
345 than storing it into the addil itself. */
346
347 struct fixup_format
348 {
349 int D;
350 char *format;
351 };
352
353 static const struct fixup_format som_fixup_formats[256] =
354 {
355 /* R_NO_RELOCATION */
356 0, "LD1+4*=", /* 0x00 */
357 1, "LD1+4*=", /* 0x01 */
358 2, "LD1+4*=", /* 0x02 */
359 3, "LD1+4*=", /* 0x03 */
360 4, "LD1+4*=", /* 0x04 */
361 5, "LD1+4*=", /* 0x05 */
362 6, "LD1+4*=", /* 0x06 */
363 7, "LD1+4*=", /* 0x07 */
364 8, "LD1+4*=", /* 0x08 */
365 9, "LD1+4*=", /* 0x09 */
366 10, "LD1+4*=", /* 0x0a */
367 11, "LD1+4*=", /* 0x0b */
368 12, "LD1+4*=", /* 0x0c */
369 13, "LD1+4*=", /* 0x0d */
370 14, "LD1+4*=", /* 0x0e */
371 15, "LD1+4*=", /* 0x0f */
372 16, "LD1+4*=", /* 0x10 */
373 17, "LD1+4*=", /* 0x11 */
374 18, "LD1+4*=", /* 0x12 */
375 19, "LD1+4*=", /* 0x13 */
376 20, "LD1+4*=", /* 0x14 */
377 21, "LD1+4*=", /* 0x15 */
378 22, "LD1+4*=", /* 0x16 */
379 23, "LD1+4*=", /* 0x17 */
380 0, "LD8<b+1+4*=", /* 0x18 */
381 1, "LD8<b+1+4*=", /* 0x19 */
382 2, "LD8<b+1+4*=", /* 0x1a */
383 3, "LD8<b+1+4*=", /* 0x1b */
384 0, "LD16<c+1+4*=", /* 0x1c */
385 1, "LD16<c+1+4*=", /* 0x1d */
386 2, "LD16<c+1+4*=", /* 0x1e */
387 0, "Ld1+=", /* 0x1f */
388 /* R_ZEROES */
389 0, "Lb1+4*=", /* 0x20 */
390 1, "Ld1+=", /* 0x21 */
391 /* R_UNINIT */
392 0, "Lb1+4*=", /* 0x22 */
393 1, "Ld1+=", /* 0x23 */
394 /* R_RELOCATION */
395 0, "L4=", /* 0x24 */
396 /* R_DATA_ONE_SYMBOL */
397 0, "L4=Sb=", /* 0x25 */
398 1, "L4=Sd=", /* 0x26 */
399 /* R_DATA_PLEBEL */
400 0, "L4=Sb=", /* 0x27 */
401 1, "L4=Sd=", /* 0x28 */
402 /* R_SPACE_REF */
403 0, "L4=", /* 0x29 */
404 /* R_REPEATED_INIT */
405 0, "L4=Mb1+4*=", /* 0x2a */
406 1, "Lb4*=Mb1+L*=", /* 0x2b */
407 2, "Lb4*=Md1+4*=", /* 0x2c */
408 3, "Ld1+=Me1+=", /* 0x2d */
409 /* R_RESERVED */
410 0, "", /* 0x2e */
411 0, "", /* 0x2f */
412 /* R_PCREL_CALL */
413 0, "L4=RD=Sb=", /* 0x30 */
414 1, "L4=RD=Sb=", /* 0x31 */
415 2, "L4=RD=Sb=", /* 0x32 */
416 3, "L4=RD=Sb=", /* 0x33 */
417 4, "L4=RD=Sb=", /* 0x34 */
418 5, "L4=RD=Sb=", /* 0x35 */
419 6, "L4=RD=Sb=", /* 0x36 */
420 7, "L4=RD=Sb=", /* 0x37 */
421 8, "L4=RD=Sb=", /* 0x38 */
422 9, "L4=RD=Sb=", /* 0x39 */
423 0, "L4=RD8<b+=Sb=",/* 0x3a */
424 1, "L4=RD8<b+=Sb=",/* 0x3b */
425 0, "L4=RD8<b+=Sd=",/* 0x3c */
426 1, "L4=RD8<b+=Sd=",/* 0x3d */
427 /* R_RESERVED */
428 0, "", /* 0x3e */
429 0, "", /* 0x3f */
430 /* R_ABS_CALL */
431 0, "L4=RD=Sb=", /* 0x40 */
432 1, "L4=RD=Sb=", /* 0x41 */
433 2, "L4=RD=Sb=", /* 0x42 */
434 3, "L4=RD=Sb=", /* 0x43 */
435 4, "L4=RD=Sb=", /* 0x44 */
436 5, "L4=RD=Sb=", /* 0x45 */
437 6, "L4=RD=Sb=", /* 0x46 */
438 7, "L4=RD=Sb=", /* 0x47 */
439 8, "L4=RD=Sb=", /* 0x48 */
440 9, "L4=RD=Sb=", /* 0x49 */
441 0, "L4=RD8<b+=Sb=",/* 0x4a */
442 1, "L4=RD8<b+=Sb=",/* 0x4b */
443 0, "L4=RD8<b+=Sd=",/* 0x4c */
444 1, "L4=RD8<b+=Sd=",/* 0x4d */
445 /* R_RESERVED */
446 0, "", /* 0x4e */
447 0, "", /* 0x4f */
448 /* R_DP_RELATIVE */
449 0, "L4=SD=", /* 0x50 */
450 1, "L4=SD=", /* 0x51 */
451 2, "L4=SD=", /* 0x52 */
452 3, "L4=SD=", /* 0x53 */
453 4, "L4=SD=", /* 0x54 */
454 5, "L4=SD=", /* 0x55 */
455 6, "L4=SD=", /* 0x56 */
456 7, "L4=SD=", /* 0x57 */
457 8, "L4=SD=", /* 0x58 */
458 9, "L4=SD=", /* 0x59 */
459 10, "L4=SD=", /* 0x5a */
460 11, "L4=SD=", /* 0x5b */
461 12, "L4=SD=", /* 0x5c */
462 13, "L4=SD=", /* 0x5d */
463 14, "L4=SD=", /* 0x5e */
464 15, "L4=SD=", /* 0x5f */
465 16, "L4=SD=", /* 0x60 */
466 17, "L4=SD=", /* 0x61 */
467 18, "L4=SD=", /* 0x62 */
468 19, "L4=SD=", /* 0x63 */
469 20, "L4=SD=", /* 0x64 */
470 21, "L4=SD=", /* 0x65 */
471 22, "L4=SD=", /* 0x66 */
472 23, "L4=SD=", /* 0x67 */
473 24, "L4=SD=", /* 0x68 */
474 25, "L4=SD=", /* 0x69 */
475 26, "L4=SD=", /* 0x6a */
476 27, "L4=SD=", /* 0x6b */
477 28, "L4=SD=", /* 0x6c */
478 29, "L4=SD=", /* 0x6d */
479 30, "L4=SD=", /* 0x6e */
480 31, "L4=SD=", /* 0x6f */
481 32, "L4=Sb=", /* 0x70 */
482 33, "L4=Sd=", /* 0x71 */
483 /* R_RESERVED */
484 0, "", /* 0x72 */
485 0, "", /* 0x73 */
486 0, "", /* 0x74 */
487 0, "", /* 0x75 */
488 0, "", /* 0x76 */
489 0, "", /* 0x77 */
490 /* R_DLT_REL */
491 0, "L4=Sb=", /* 0x78 */
492 1, "L4=Sd=", /* 0x79 */
493 /* R_RESERVED */
494 0, "", /* 0x7a */
495 0, "", /* 0x7b */
496 0, "", /* 0x7c */
497 0, "", /* 0x7d */
498 0, "", /* 0x7e */
499 0, "", /* 0x7f */
500 /* R_CODE_ONE_SYMBOL */
501 0, "L4=SD=", /* 0x80 */
502 1, "L4=SD=", /* 0x81 */
503 2, "L4=SD=", /* 0x82 */
504 3, "L4=SD=", /* 0x83 */
505 4, "L4=SD=", /* 0x84 */
506 5, "L4=SD=", /* 0x85 */
507 6, "L4=SD=", /* 0x86 */
508 7, "L4=SD=", /* 0x87 */
509 8, "L4=SD=", /* 0x88 */
510 9, "L4=SD=", /* 0x89 */
511 10, "L4=SD=", /* 0x8q */
512 11, "L4=SD=", /* 0x8b */
513 12, "L4=SD=", /* 0x8c */
514 13, "L4=SD=", /* 0x8d */
515 14, "L4=SD=", /* 0x8e */
516 15, "L4=SD=", /* 0x8f */
517 16, "L4=SD=", /* 0x90 */
518 17, "L4=SD=", /* 0x91 */
519 18, "L4=SD=", /* 0x92 */
520 19, "L4=SD=", /* 0x93 */
521 20, "L4=SD=", /* 0x94 */
522 21, "L4=SD=", /* 0x95 */
523 22, "L4=SD=", /* 0x96 */
524 23, "L4=SD=", /* 0x97 */
525 24, "L4=SD=", /* 0x98 */
526 25, "L4=SD=", /* 0x99 */
527 26, "L4=SD=", /* 0x9a */
528 27, "L4=SD=", /* 0x9b */
529 28, "L4=SD=", /* 0x9c */
530 29, "L4=SD=", /* 0x9d */
531 30, "L4=SD=", /* 0x9e */
532 31, "L4=SD=", /* 0x9f */
533 32, "L4=Sb=", /* 0xa0 */
534 33, "L4=Sd=", /* 0xa1 */
535 /* R_RESERVED */
536 0, "", /* 0xa2 */
537 0, "", /* 0xa3 */
538 0, "", /* 0xa4 */
539 0, "", /* 0xa5 */
540 0, "", /* 0xa6 */
541 0, "", /* 0xa7 */
542 0, "", /* 0xa8 */
543 0, "", /* 0xa9 */
544 0, "", /* 0xaa */
545 0, "", /* 0xab */
546 0, "", /* 0xac */
547 0, "", /* 0xad */
548 /* R_MILLI_REL */
549 0, "L4=Sb=", /* 0xae */
550 1, "L4=Sd=", /* 0xaf */
551 /* R_CODE_PLABEL */
552 0, "L4=Sb=", /* 0xb0 */
553 1, "L4=Sd=", /* 0xb1 */
554 /* R_BREAKPOINT */
555 0, "L4=", /* 0xb2 */
556 /* R_ENTRY */
557 0, "Ui=", /* 0xb3 */
558 1, "Uf=", /* 0xb4 */
559 /* R_ALT_ENTRY */
560 0, "", /* 0xb5 */
561 /* R_EXIT */
562 0, "", /* 0xb6 */
563 /* R_BEGIN_TRY */
564 0, "", /* 0xb7 */
565 /* R_END_TRY */
566 0, "R0=", /* 0xb8 */
567 1, "Rb4*=", /* 0xb9 */
568 2, "Rd4*=", /* 0xba */
569 /* R_BEGIN_BRTAB */
570 0, "", /* 0xbb */
571 /* R_END_BRTAB */
572 0, "", /* 0xbc */
573 /* R_STATEMENT */
574 0, "Nb=", /* 0xbd */
575 1, "Nc=", /* 0xbe */
576 2, "Nd=", /* 0xbf */
577 /* R_DATA_EXPR */
578 0, "L4=", /* 0xc0 */
579 /* R_CODE_EXPR */
580 0, "L4=", /* 0xc1 */
581 /* R_FSEL */
582 0, "", /* 0xc2 */
583 /* R_LSEL */
584 0, "", /* 0xc3 */
585 /* R_RSEL */
586 0, "", /* 0xc4 */
587 /* R_N_MODE */
588 0, "", /* 0xc5 */
589 /* R_S_MODE */
590 0, "", /* 0xc6 */
591 /* R_D_MODE */
592 0, "", /* 0xc7 */
593 /* R_R_MODE */
594 0, "", /* 0xc8 */
595 /* R_DATA_OVERRIDE */
596 0, "V0=", /* 0xc9 */
597 1, "Vb=", /* 0xca */
598 2, "Vc=", /* 0xcb */
599 3, "Vd=", /* 0xcc */
600 4, "Ve=", /* 0xcd */
601 /* R_TRANSLATED */
602 0, "", /* 0xce */
603 /* R_RESERVED */
604 0, "", /* 0xcf */
605 /* R_COMP1 */
606 0, "Ob=", /* 0xd0 */
607 /* R_COMP2 */
608 0, "Ob=Sd=", /* 0xd1 */
609 /* R_COMP3 */
610 0, "Ob=Ve=", /* 0xd2 */
611 /* R_PREV_FIXUP */
612 0, "P", /* 0xd3 */
613 1, "P", /* 0xd4 */
614 2, "P", /* 0xd5 */
615 3, "P", /* 0xd6 */
616 /* R_RESERVED */
617 0, "", /* 0xd7 */
618 0, "", /* 0xd8 */
619 0, "", /* 0xd9 */
620 0, "", /* 0xda */
621 0, "", /* 0xdb */
622 0, "", /* 0xdc */
623 0, "", /* 0xdd */
624 0, "", /* 0xde */
625 0, "", /* 0xdf */
626 0, "", /* 0xe0 */
627 0, "", /* 0xe1 */
628 0, "", /* 0xe2 */
629 0, "", /* 0xe3 */
630 0, "", /* 0xe4 */
631 0, "", /* 0xe5 */
632 0, "", /* 0xe6 */
633 0, "", /* 0xe7 */
634 0, "", /* 0xe8 */
635 0, "", /* 0xe9 */
636 0, "", /* 0xea */
637 0, "", /* 0xeb */
638 0, "", /* 0xec */
639 0, "", /* 0xed */
640 0, "", /* 0xee */
641 0, "", /* 0xef */
642 0, "", /* 0xf0 */
643 0, "", /* 0xf1 */
644 0, "", /* 0xf2 */
645 0, "", /* 0xf3 */
646 0, "", /* 0xf4 */
647 0, "", /* 0xf5 */
648 0, "", /* 0xf6 */
649 0, "", /* 0xf7 */
650 0, "", /* 0xf8 */
651 0, "", /* 0xf9 */
652 0, "", /* 0xfa */
653 0, "", /* 0xfb */
654 0, "", /* 0xfc */
655 0, "", /* 0xfd */
656 0, "", /* 0xfe */
657 0, "", /* 0xff */
658 };
659
660 static const int comp1_opcodes[] =
661 {
662 0x00,
663 0x40,
664 0x41,
665 0x42,
666 0x43,
667 0x44,
668 0x45,
669 0x46,
670 0x47,
671 0x48,
672 0x49,
673 0x4a,
674 0x4b,
675 0x60,
676 0x80,
677 0xa0,
678 0xc0,
679 -1
680 };
681
682 static const int comp2_opcodes[] =
683 {
684 0x00,
685 0x80,
686 0x82,
687 0xc0,
688 -1
689 };
690
691 static const int comp3_opcodes[] =
692 {
693 0x00,
694 0x02,
695 -1
696 };
697
698 /* These apparently are not in older versions of hpux reloc.h. */
699 #ifndef R_DLT_REL
700 #define R_DLT_REL 0x78
701 #endif
702
703 #ifndef R_AUX_UNWIND
704 #define R_AUX_UNWIND 0xcf
705 #endif
706
707 #ifndef R_SEC_STMT
708 #define R_SEC_STMT 0xd7
709 #endif
710
711 static reloc_howto_type som_hppa_howto_table[] =
712 {
713 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
714 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
715 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
716 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
717 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
718 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
719 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
720 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
721 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
722 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
723 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
724 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
725 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
726 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
727 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
728 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
729 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
730 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
731 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
732 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
733 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
734 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
735 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
736 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
737 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
738 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
739 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
740 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
741 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
742 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
743 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
744 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
745 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
746 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
747 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
748 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
749 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
750 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
751 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
752 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
753 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
754 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
755 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
756 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
757 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
758 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
759 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
760 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
761 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
762 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
763 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
764 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
765 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
766 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
767 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
768 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
769 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
770 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
771 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
772 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
773 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
774 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
775 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
776 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
777 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
778 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
779 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
780 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
781 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
782 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
783 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
784 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
785 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
786 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
787 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
788 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
789 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
790 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
791 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
792 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
793 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
794 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
795 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
796 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
797 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
798 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
799 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
800 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
801 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
802 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
803 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
804 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
805 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
806 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
807 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
808 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
809 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
810 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
811 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
812 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
813 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
814 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
815 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
816 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
817 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
818 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
819 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
820 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
821 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
822 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
823 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
824 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
825 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
826 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
827 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
828 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
829 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
830 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
831 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
832 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
833 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
834 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
835 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
836 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
837 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
838 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
839 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
840 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
841 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
842 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
843 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
844 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
845 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
846 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
847 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
848 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
849 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
850 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
851 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
852 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
853 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
854 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
855 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
856 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
857 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
858 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
859 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
860 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
861 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
862 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
863 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
864 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
865 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
866 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
867 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
868 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
869 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
870 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
871 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
872 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
873 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
874 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
875 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
876 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
877 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
878 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
879 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
880 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
881 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
882 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
883 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
884 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
885 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
886 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
887 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
888 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
889 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
890 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
891 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
892 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
893 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
894 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
895 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
896 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
897 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
898 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
899 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
900 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
901 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
902 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
903 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
904 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
905 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
906 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
907 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
908 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
909 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
910 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
911 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
912 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
913 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
914 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
915 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
916 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
917 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
918 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
919 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
920 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
921 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
922 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
923 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
924 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
925 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
926 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
927 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
928 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
929 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
930 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
931 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
932 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
933 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
934 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
935 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
936 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
937 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
938 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
939 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
940 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
941 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
942 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
943 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
944 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
945 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
946 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
947 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
948 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
949 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
950 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
951 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
952 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
953 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
954 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
955 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
956 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
957 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
958 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
959 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
960 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
961 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
962 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
963 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
964 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
965 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
966 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
967 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
968 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
969
970 /* Initialize the SOM relocation queue. By definition the queue holds
971 the last four multibyte fixups. */
972
973 static void
974 som_initialize_reloc_queue (queue)
975 struct reloc_queue *queue;
976 {
977 queue[0].reloc = NULL;
978 queue[0].size = 0;
979 queue[1].reloc = NULL;
980 queue[1].size = 0;
981 queue[2].reloc = NULL;
982 queue[2].size = 0;
983 queue[3].reloc = NULL;
984 queue[3].size = 0;
985 }
986
987 /* Insert a new relocation into the relocation queue. */
988
989 static void
990 som_reloc_queue_insert (p, size, queue)
991 unsigned char *p;
992 unsigned int size;
993 struct reloc_queue *queue;
994 {
995 queue[3].reloc = queue[2].reloc;
996 queue[3].size = queue[2].size;
997 queue[2].reloc = queue[1].reloc;
998 queue[2].size = queue[1].size;
999 queue[1].reloc = queue[0].reloc;
1000 queue[1].size = queue[0].size;
1001 queue[0].reloc = p;
1002 queue[0].size = size;
1003 }
1004
1005 /* When an entry in the relocation queue is reused, the entry moves
1006 to the front of the queue. */
1007
1008 static void
1009 som_reloc_queue_fix (queue, index)
1010 struct reloc_queue *queue;
1011 unsigned int index;
1012 {
1013 if (index == 0)
1014 return;
1015
1016 if (index == 1)
1017 {
1018 unsigned char *tmp1 = queue[0].reloc;
1019 unsigned int tmp2 = queue[0].size;
1020 queue[0].reloc = queue[1].reloc;
1021 queue[0].size = queue[1].size;
1022 queue[1].reloc = tmp1;
1023 queue[1].size = tmp2;
1024 return;
1025 }
1026
1027 if (index == 2)
1028 {
1029 unsigned char *tmp1 = queue[0].reloc;
1030 unsigned int tmp2 = queue[0].size;
1031 queue[0].reloc = queue[2].reloc;
1032 queue[0].size = queue[2].size;
1033 queue[2].reloc = queue[1].reloc;
1034 queue[2].size = queue[1].size;
1035 queue[1].reloc = tmp1;
1036 queue[1].size = tmp2;
1037 return;
1038 }
1039
1040 if (index == 3)
1041 {
1042 unsigned char *tmp1 = queue[0].reloc;
1043 unsigned int tmp2 = queue[0].size;
1044 queue[0].reloc = queue[3].reloc;
1045 queue[0].size = queue[3].size;
1046 queue[3].reloc = queue[2].reloc;
1047 queue[3].size = queue[2].size;
1048 queue[2].reloc = queue[1].reloc;
1049 queue[2].size = queue[1].size;
1050 queue[1].reloc = tmp1;
1051 queue[1].size = tmp2;
1052 return;
1053 }
1054 abort();
1055 }
1056
1057 /* Search for a particular relocation in the relocation queue. */
1058
1059 static int
1060 som_reloc_queue_find (p, size, queue)
1061 unsigned char *p;
1062 unsigned int size;
1063 struct reloc_queue *queue;
1064 {
1065 if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
1066 && size == queue[0].size)
1067 return 0;
1068 if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
1069 && size == queue[1].size)
1070 return 1;
1071 if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
1072 && size == queue[2].size)
1073 return 2;
1074 if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
1075 && size == queue[3].size)
1076 return 3;
1077 return -1;
1078 }
1079
1080 static unsigned char *
1081 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1082 bfd *abfd;
1083 int *subspace_reloc_sizep;
1084 unsigned char *p;
1085 unsigned int size;
1086 struct reloc_queue *queue;
1087 {
1088 int queue_index = som_reloc_queue_find (p, size, queue);
1089
1090 if (queue_index != -1)
1091 {
1092 /* Found this in a previous fixup. Undo the fixup we
1093 just built and use R_PREV_FIXUP instead. We saved
1094 a total of size - 1 bytes in the fixup stream. */
1095 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1096 p += 1;
1097 *subspace_reloc_sizep += 1;
1098 som_reloc_queue_fix (queue, queue_index);
1099 }
1100 else
1101 {
1102 som_reloc_queue_insert (p, size, queue);
1103 *subspace_reloc_sizep += size;
1104 p += size;
1105 }
1106 return p;
1107 }
1108
1109 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1110 bytes without any relocation. Update the size of the subspace
1111 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1112 current pointer into the relocation stream. */
1113
1114 static unsigned char *
1115 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1116 bfd *abfd;
1117 unsigned int skip;
1118 unsigned char *p;
1119 unsigned int *subspace_reloc_sizep;
1120 struct reloc_queue *queue;
1121 {
1122 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1123 then R_PREV_FIXUPs to get the difference down to a
1124 reasonable size. */
1125 if (skip >= 0x1000000)
1126 {
1127 skip -= 0x1000000;
1128 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1129 bfd_put_8 (abfd, 0xff, p + 1);
1130 bfd_put_16 (abfd, 0xffff, p + 2);
1131 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1132 while (skip >= 0x1000000)
1133 {
1134 skip -= 0x1000000;
1135 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1136 p++;
1137 *subspace_reloc_sizep += 1;
1138 /* No need to adjust queue here since we are repeating the
1139 most recent fixup. */
1140 }
1141 }
1142
1143 /* The difference must be less than 0x1000000. Use one
1144 more R_NO_RELOCATION entry to get to the right difference. */
1145 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1146 {
1147 /* Difference can be handled in a simple single-byte
1148 R_NO_RELOCATION entry. */
1149 if (skip <= 0x60)
1150 {
1151 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1152 *subspace_reloc_sizep += 1;
1153 p++;
1154 }
1155 /* Handle it with a two byte R_NO_RELOCATION entry. */
1156 else if (skip <= 0x1000)
1157 {
1158 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1159 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1160 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1161 }
1162 /* Handle it with a three byte R_NO_RELOCATION entry. */
1163 else
1164 {
1165 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1166 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1167 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1168 }
1169 }
1170 /* Ugh. Punt and use a 4 byte entry. */
1171 else if (skip > 0)
1172 {
1173 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1174 bfd_put_8 (abfd, skip >> 16, p + 1);
1175 bfd_put_16 (abfd, skip, p + 2);
1176 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1177 }
1178 return p;
1179 }
1180
1181 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1182 from a BFD relocation. Update the size of the subspace relocation
1183 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1184 into the relocation stream. */
1185
1186 static unsigned char *
1187 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1188 bfd *abfd;
1189 int addend;
1190 unsigned char *p;
1191 unsigned int *subspace_reloc_sizep;
1192 struct reloc_queue *queue;
1193 {
1194 if ((unsigned)(addend) + 0x80 < 0x100)
1195 {
1196 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1197 bfd_put_8 (abfd, addend, p + 1);
1198 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1199 }
1200 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1201 {
1202 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1203 bfd_put_16 (abfd, addend, p + 1);
1204 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1205 }
1206 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1207 {
1208 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1209 bfd_put_8 (abfd, addend >> 16, p + 1);
1210 bfd_put_16 (abfd, addend, p + 2);
1211 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1212 }
1213 else
1214 {
1215 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1216 bfd_put_32 (abfd, addend, p + 1);
1217 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1218 }
1219 return p;
1220 }
1221
1222 /* Handle a single function call relocation. */
1223
1224 static unsigned char *
1225 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1226 bfd *abfd;
1227 unsigned char *p;
1228 unsigned int *subspace_reloc_sizep;
1229 arelent *bfd_reloc;
1230 int sym_num;
1231 struct reloc_queue *queue;
1232 {
1233 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1234 int rtn_bits = arg_bits & 0x3;
1235 int type, done = 0;
1236
1237 /* You'll never believe all this is necessary to handle relocations
1238 for function calls. Having to compute and pack the argument
1239 relocation bits is the real nightmare.
1240
1241 If you're interested in how this works, just forget it. You really
1242 do not want to know about this braindamage. */
1243
1244 /* First see if this can be done with a "simple" relocation. Simple
1245 relocations have a symbol number < 0x100 and have simple encodings
1246 of argument relocations. */
1247
1248 if (sym_num < 0x100)
1249 {
1250 switch (arg_bits)
1251 {
1252 case 0:
1253 case 1:
1254 type = 0;
1255 break;
1256 case 1 << 8:
1257 case 1 << 8 | 1:
1258 type = 1;
1259 break;
1260 case 1 << 8 | 1 << 6:
1261 case 1 << 8 | 1 << 6 | 1:
1262 type = 2;
1263 break;
1264 case 1 << 8 | 1 << 6 | 1 << 4:
1265 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1266 type = 3;
1267 break;
1268 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1269 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1270 type = 4;
1271 break;
1272 default:
1273 /* Not one of the easy encodings. This will have to be
1274 handled by the more complex code below. */
1275 type = -1;
1276 break;
1277 }
1278 if (type != -1)
1279 {
1280 /* Account for the return value too. */
1281 if (rtn_bits)
1282 type += 5;
1283
1284 /* Emit a 2 byte relocation. Then see if it can be handled
1285 with a relocation which is already in the relocation queue. */
1286 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1287 bfd_put_8 (abfd, sym_num, p + 1);
1288 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1289 done = 1;
1290 }
1291 }
1292
1293 /* If this could not be handled with a simple relocation, then do a hard
1294 one. Hard relocations occur if the symbol number was too high or if
1295 the encoding of argument relocation bits is too complex. */
1296 if (! done)
1297 {
1298 /* Don't ask about these magic sequences. I took them straight
1299 from gas-1.36 which took them from the a.out man page. */
1300 type = rtn_bits;
1301 if ((arg_bits >> 6 & 0xf) == 0xe)
1302 type += 9 * 40;
1303 else
1304 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1305 if ((arg_bits >> 2 & 0xf) == 0xe)
1306 type += 9 * 4;
1307 else
1308 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1309
1310 /* Output the first two bytes of the relocation. These describe
1311 the length of the relocation and encoding style. */
1312 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1313 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1314 p);
1315 bfd_put_8 (abfd, type, p + 1);
1316
1317 /* Now output the symbol index and see if this bizarre relocation
1318 just happened to be in the relocation queue. */
1319 if (sym_num < 0x100)
1320 {
1321 bfd_put_8 (abfd, sym_num, p + 2);
1322 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1323 }
1324 else
1325 {
1326 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1327 bfd_put_16 (abfd, sym_num, p + 3);
1328 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1329 }
1330 }
1331 return p;
1332 }
1333
1334
1335 /* Return the logarithm of X, base 2, considering X unsigned.
1336 Abort -1 if X is not a power or two or is zero. */
1337
1338 static int
1339 log2 (x)
1340 unsigned int x;
1341 {
1342 int log = 0;
1343
1344 /* Test for 0 or a power of 2. */
1345 if (x == 0 || x != (x & -x))
1346 return -1;
1347
1348 while ((x >>= 1) != 0)
1349 log++;
1350 return log;
1351 }
1352
1353 static bfd_reloc_status_type
1354 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1355 input_section, output_bfd, error_message)
1356 bfd *abfd;
1357 arelent *reloc_entry;
1358 asymbol *symbol_in;
1359 PTR data;
1360 asection *input_section;
1361 bfd *output_bfd;
1362 char **error_message;
1363 {
1364 if (output_bfd)
1365 {
1366 reloc_entry->address += input_section->output_offset;
1367 return bfd_reloc_ok;
1368 }
1369 return bfd_reloc_ok;
1370 }
1371
1372 /* Given a generic HPPA relocation type, the instruction format,
1373 and a field selector, return one or more appropriate SOM relocations. */
1374
1375 int **
1376 hppa_som_gen_reloc_type (abfd, base_type, format, field)
1377 bfd *abfd;
1378 int base_type;
1379 int format;
1380 enum hppa_reloc_field_selector_type_alt field;
1381 {
1382 int *final_type, **final_types;
1383
1384 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 3);
1385 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1386 if (!final_types || !final_type)
1387 {
1388 bfd_set_error (bfd_error_no_memory);
1389 return NULL;
1390 }
1391
1392 /* The field selector may require additional relocations to be
1393 generated. It's impossible to know at this moment if additional
1394 relocations will be needed, so we make them. The code to actually
1395 write the relocation/fixup stream is responsible for removing
1396 any redundant relocations. */
1397 switch (field)
1398 {
1399 case e_fsel:
1400 case e_psel:
1401 case e_lpsel:
1402 case e_rpsel:
1403 final_types[0] = final_type;
1404 final_types[1] = NULL;
1405 final_types[2] = NULL;
1406 *final_type = base_type;
1407 break;
1408
1409 case e_tsel:
1410 case e_ltsel:
1411 case e_rtsel:
1412 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1413 if (!final_types[0])
1414 {
1415 bfd_set_error (bfd_error_no_memory);
1416 return NULL;
1417 }
1418 if (field == e_tsel)
1419 *final_types[0] = R_FSEL;
1420 else if (field == e_ltsel)
1421 *final_types[0] = R_LSEL;
1422 else
1423 *final_types[0] = R_RSEL;
1424 final_types[1] = final_type;
1425 final_types[2] = NULL;
1426 *final_type = base_type;
1427 break;
1428
1429 case e_lssel:
1430 case e_rssel:
1431 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1432 if (!final_types[0])
1433 {
1434 bfd_set_error (bfd_error_no_memory);
1435 return NULL;
1436 }
1437 *final_types[0] = R_S_MODE;
1438 final_types[1] = final_type;
1439 final_types[2] = NULL;
1440 *final_type = base_type;
1441 break;
1442
1443 case e_lsel:
1444 case e_rsel:
1445 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1446 if (!final_types[0])
1447 {
1448 bfd_set_error (bfd_error_no_memory);
1449 return NULL;
1450 }
1451 *final_types[0] = R_N_MODE;
1452 final_types[1] = final_type;
1453 final_types[2] = NULL;
1454 *final_type = base_type;
1455 break;
1456
1457 case e_ldsel:
1458 case e_rdsel:
1459 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1460 if (!final_types[0])
1461 {
1462 bfd_set_error (bfd_error_no_memory);
1463 return NULL;
1464 }
1465 *final_types[0] = R_D_MODE;
1466 final_types[1] = final_type;
1467 final_types[2] = NULL;
1468 *final_type = base_type;
1469 break;
1470
1471 case e_lrsel:
1472 case e_rrsel:
1473 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1474 if (!final_types[0])
1475 {
1476 bfd_set_error (bfd_error_no_memory);
1477 return NULL;
1478 }
1479 *final_types[0] = R_R_MODE;
1480 final_types[1] = final_type;
1481 final_types[2] = NULL;
1482 *final_type = base_type;
1483 break;
1484 }
1485
1486 switch (base_type)
1487 {
1488 case R_HPPA:
1489 /* PLABELs get their own relocation type. */
1490 if (field == e_psel
1491 || field == e_lpsel
1492 || field == e_rpsel)
1493 {
1494 /* A PLABEL relocation that has a size of 32 bits must
1495 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1496 if (format == 32)
1497 *final_type = R_DATA_PLABEL;
1498 else
1499 *final_type = R_CODE_PLABEL;
1500 }
1501 /* PIC stuff. */
1502 else if (field == e_tsel
1503 || field == e_ltsel
1504 || field == e_rtsel)
1505 *final_type = R_DLT_REL;
1506 /* A relocation in the data space is always a full 32bits. */
1507 else if (format == 32)
1508 *final_type = R_DATA_ONE_SYMBOL;
1509
1510 break;
1511
1512 case R_HPPA_GOTOFF:
1513 /* More PLABEL special cases. */
1514 if (field == e_psel
1515 || field == e_lpsel
1516 || field == e_rpsel)
1517 *final_type = R_DATA_PLABEL;
1518 break;
1519
1520 case R_HPPA_NONE:
1521 case R_HPPA_ABS_CALL:
1522 case R_HPPA_PCREL_CALL:
1523 /* Right now we can default all these. */
1524 break;
1525 }
1526 return final_types;
1527 }
1528
1529 /* Return the address of the correct entry in the PA SOM relocation
1530 howto table. */
1531
1532 /*ARGSUSED*/
1533 static const reloc_howto_type *
1534 som_bfd_reloc_type_lookup (abfd, code)
1535 bfd *abfd;
1536 bfd_reloc_code_real_type code;
1537 {
1538 if ((int) code < (int) R_NO_RELOCATION + 255)
1539 {
1540 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1541 return &som_hppa_howto_table[(int) code];
1542 }
1543
1544 return (reloc_howto_type *) 0;
1545 }
1546
1547 /* Perform some initialization for an object. Save results of this
1548 initialization in the BFD. */
1549
1550 static bfd_target *
1551 som_object_setup (abfd, file_hdrp, aux_hdrp)
1552 bfd *abfd;
1553 struct header *file_hdrp;
1554 struct som_exec_auxhdr *aux_hdrp;
1555 {
1556 /* som_mkobject will set bfd_error if som_mkobject fails. */
1557 if (som_mkobject (abfd) != true)
1558 return 0;
1559
1560 /* Set BFD flags based on what information is available in the SOM. */
1561 abfd->flags = NO_FLAGS;
1562 if (file_hdrp->symbol_total)
1563 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1564
1565 switch (file_hdrp->a_magic)
1566 {
1567 case DEMAND_MAGIC:
1568 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1569 break;
1570 case SHARE_MAGIC:
1571 abfd->flags |= (WP_TEXT | EXEC_P);
1572 break;
1573 case EXEC_MAGIC:
1574 abfd->flags |= (EXEC_P);
1575 break;
1576 case RELOC_MAGIC:
1577 abfd->flags |= HAS_RELOC;
1578 break;
1579 #ifdef SHL_MAGIC
1580 case SHL_MAGIC:
1581 #endif
1582 #ifdef DL_MAGIC
1583 case DL_MAGIC:
1584 #endif
1585 abfd->flags |= DYNAMIC;
1586 break;
1587
1588 default:
1589 break;
1590 }
1591
1592 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1593 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 0);
1594 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1595
1596 /* Initialize the saved symbol table and string table to NULL.
1597 Save important offsets and sizes from the SOM header into
1598 the BFD. */
1599 obj_som_stringtab (abfd) = (char *) NULL;
1600 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1601 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1602 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1603 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1604 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
1605
1606 obj_som_exec_data (abfd) = (struct som_exec_data *)
1607 bfd_zalloc (abfd, sizeof (struct som_exec_data ));
1608 if (obj_som_exec_data (abfd) == NULL)
1609 {
1610 bfd_set_error (bfd_error_no_memory);
1611 return NULL;
1612 }
1613
1614 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1615 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1616 return abfd->xvec;
1617 }
1618
1619 /* Convert all of the space and subspace info into BFD sections. Each space
1620 contains a number of subspaces, which in turn describe the mapping between
1621 regions of the exec file, and the address space that the program runs in.
1622 BFD sections which correspond to spaces will overlap the sections for the
1623 associated subspaces. */
1624
1625 static boolean
1626 setup_sections (abfd, file_hdr)
1627 bfd *abfd;
1628 struct header *file_hdr;
1629 {
1630 char *space_strings;
1631 int space_index;
1632 unsigned int total_subspaces = 0;
1633
1634 /* First, read in space names */
1635
1636 space_strings = malloc (file_hdr->space_strings_size);
1637 if (!space_strings && file_hdr->space_strings_size != 0)
1638 {
1639 bfd_set_error (bfd_error_no_memory);
1640 goto error_return;
1641 }
1642
1643 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
1644 goto error_return;
1645 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1646 != file_hdr->space_strings_size)
1647 goto error_return;
1648
1649 /* Loop over all of the space dictionaries, building up sections */
1650 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1651 {
1652 struct space_dictionary_record space;
1653 struct subspace_dictionary_record subspace, save_subspace;
1654 int subspace_index;
1655 asection *space_asect;
1656 char *newname;
1657
1658 /* Read the space dictionary element */
1659 if (bfd_seek (abfd, file_hdr->space_location
1660 + space_index * sizeof space, SEEK_SET) < 0)
1661 goto error_return;
1662 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1663 goto error_return;
1664
1665 /* Setup the space name string */
1666 space.name.n_name = space.name.n_strx + space_strings;
1667
1668 /* Make a section out of it */
1669 newname = bfd_alloc (abfd, strlen (space.name.n_name) + 1);
1670 if (!newname)
1671 goto error_return;
1672 strcpy (newname, space.name.n_name);
1673
1674 space_asect = bfd_make_section_anyway (abfd, newname);
1675 if (!space_asect)
1676 goto error_return;
1677
1678 if (space.is_loadable == 0)
1679 space_asect->flags |= SEC_DEBUGGING;
1680
1681 /* Set up all the attributes for the space. */
1682 if (bfd_som_set_section_attributes (space_asect, space.is_defined,
1683 space.is_private, space.sort_key,
1684 space.space_number) == false)
1685 goto error_return;
1686
1687 /* Now, read in the first subspace for this space */
1688 if (bfd_seek (abfd, file_hdr->subspace_location
1689 + space.subspace_index * sizeof subspace,
1690 SEEK_SET) < 0)
1691 goto error_return;
1692 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1693 goto error_return;
1694 /* Seek back to the start of the subspaces for loop below */
1695 if (bfd_seek (abfd, file_hdr->subspace_location
1696 + space.subspace_index * sizeof subspace,
1697 SEEK_SET) < 0)
1698 goto error_return;
1699
1700 /* Setup the start address and file loc from the first subspace record */
1701 space_asect->vma = subspace.subspace_start;
1702 space_asect->filepos = subspace.file_loc_init_value;
1703 space_asect->alignment_power = log2 (subspace.alignment);
1704 if (space_asect->alignment_power == -1)
1705 goto error_return;
1706
1707 /* Initialize save_subspace so we can reliably determine if this
1708 loop placed any useful values into it. */
1709 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1710
1711 /* Loop over the rest of the subspaces, building up more sections */
1712 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1713 subspace_index++)
1714 {
1715 asection *subspace_asect;
1716
1717 /* Read in the next subspace */
1718 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1719 != sizeof subspace)
1720 goto error_return;
1721
1722 /* Setup the subspace name string */
1723 subspace.name.n_name = subspace.name.n_strx + space_strings;
1724
1725 newname = bfd_alloc (abfd, strlen (subspace.name.n_name) + 1);
1726 if (!newname)
1727 goto error_return;
1728 strcpy (newname, subspace.name.n_name);
1729
1730 /* Make a section out of this subspace */
1731 subspace_asect = bfd_make_section_anyway (abfd, newname);
1732 if (!subspace_asect)
1733 goto error_return;
1734
1735 /* Store private information about the section. */
1736 if (bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1737 subspace.access_control_bits,
1738 subspace.sort_key,
1739 subspace.quadrant) == false)
1740 goto error_return;
1741
1742 /* Keep an easy mapping between subspaces and sections. */
1743 subspace_asect->target_index = total_subspaces++;
1744
1745 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1746 by the access_control_bits in the subspace header. */
1747 switch (subspace.access_control_bits >> 4)
1748 {
1749 /* Readonly data. */
1750 case 0x0:
1751 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1752 break;
1753
1754 /* Normal data. */
1755 case 0x1:
1756 subspace_asect->flags |= SEC_DATA;
1757 break;
1758
1759 /* Readonly code and the gateways.
1760 Gateways have other attributes which do not map
1761 into anything BFD knows about. */
1762 case 0x2:
1763 case 0x4:
1764 case 0x5:
1765 case 0x6:
1766 case 0x7:
1767 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1768 break;
1769
1770 /* dynamic (writable) code. */
1771 case 0x3:
1772 subspace_asect->flags |= SEC_CODE;
1773 break;
1774 }
1775
1776 if (subspace.dup_common || subspace.is_common)
1777 subspace_asect->flags |= SEC_IS_COMMON;
1778 else if (subspace.subspace_length > 0)
1779 subspace_asect->flags |= SEC_HAS_CONTENTS;
1780
1781 if (subspace.is_loadable)
1782 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1783 else
1784 subspace_asect->flags |= SEC_DEBUGGING;
1785
1786 if (subspace.code_only)
1787 subspace_asect->flags |= SEC_CODE;
1788
1789 /* Both file_loc_init_value and initialization_length will
1790 be zero for a BSS like subspace. */
1791 if (subspace.file_loc_init_value == 0
1792 && subspace.initialization_length == 0)
1793 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD);
1794
1795 /* This subspace has relocations.
1796 The fixup_request_quantity is a byte count for the number of
1797 entries in the relocation stream; it is not the actual number
1798 of relocations in the subspace. */
1799 if (subspace.fixup_request_quantity != 0)
1800 {
1801 subspace_asect->flags |= SEC_RELOC;
1802 subspace_asect->rel_filepos = subspace.fixup_request_index;
1803 som_section_data (subspace_asect)->reloc_size
1804 = subspace.fixup_request_quantity;
1805 /* We can not determine this yet. When we read in the
1806 relocation table the correct value will be filled in. */
1807 subspace_asect->reloc_count = -1;
1808 }
1809
1810 /* Update save_subspace if appropriate. */
1811 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1812 save_subspace = subspace;
1813
1814 subspace_asect->vma = subspace.subspace_start;
1815 subspace_asect->_cooked_size = subspace.subspace_length;
1816 subspace_asect->_raw_size = subspace.subspace_length;
1817 subspace_asect->filepos = subspace.file_loc_init_value;
1818 subspace_asect->alignment_power = log2 (subspace.alignment);
1819 if (subspace_asect->alignment_power == -1)
1820 goto error_return;
1821 }
1822
1823 /* Yow! there is no subspace within the space which actually
1824 has initialized information in it; this should never happen
1825 as far as I know. */
1826 if (!save_subspace.file_loc_init_value)
1827 goto error_return;
1828
1829 /* Setup the sizes for the space section based upon the info in the
1830 last subspace of the space. */
1831 space_asect->_cooked_size = save_subspace.subspace_start
1832 - space_asect->vma + save_subspace.subspace_length;
1833 space_asect->_raw_size = save_subspace.file_loc_init_value
1834 - space_asect->filepos + save_subspace.initialization_length;
1835 }
1836 if (space_strings != NULL)
1837 free (space_strings);
1838 return true;
1839
1840 error_return:
1841 if (space_strings != NULL)
1842 free (space_strings);
1843 return false;
1844 }
1845
1846 /* Read in a SOM object and make it into a BFD. */
1847
1848 static bfd_target *
1849 som_object_p (abfd)
1850 bfd *abfd;
1851 {
1852 struct header file_hdr;
1853 struct som_exec_auxhdr aux_hdr;
1854
1855 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
1856 {
1857 if (bfd_get_error () != bfd_error_system_call)
1858 bfd_set_error (bfd_error_wrong_format);
1859 return 0;
1860 }
1861
1862 if (!_PA_RISC_ID (file_hdr.system_id))
1863 {
1864 bfd_set_error (bfd_error_wrong_format);
1865 return 0;
1866 }
1867
1868 switch (file_hdr.a_magic)
1869 {
1870 case RELOC_MAGIC:
1871 case EXEC_MAGIC:
1872 case SHARE_MAGIC:
1873 case DEMAND_MAGIC:
1874 #ifdef DL_MAGIC
1875 case DL_MAGIC:
1876 #endif
1877 #ifdef SHL_MAGIC
1878 case SHL_MAGIC:
1879 #endif
1880 #ifdef EXECLIBMAGIC
1881 case EXECLIBMAGIC:
1882 #endif
1883 #ifdef SHARED_MAGIC_CNX
1884 case SHARED_MAGIC_CNX:
1885 #endif
1886 break;
1887 default:
1888 bfd_set_error (bfd_error_wrong_format);
1889 return 0;
1890 }
1891
1892 if (file_hdr.version_id != VERSION_ID
1893 && file_hdr.version_id != NEW_VERSION_ID)
1894 {
1895 bfd_set_error (bfd_error_wrong_format);
1896 return 0;
1897 }
1898
1899 /* If the aux_header_size field in the file header is zero, then this
1900 object is an incomplete executable (a .o file). Do not try to read
1901 a non-existant auxiliary header. */
1902 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
1903 if (file_hdr.aux_header_size != 0)
1904 {
1905 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
1906 {
1907 if (bfd_get_error () != bfd_error_system_call)
1908 bfd_set_error (bfd_error_wrong_format);
1909 return 0;
1910 }
1911 }
1912
1913 if (!setup_sections (abfd, &file_hdr))
1914 {
1915 /* setup_sections does not bubble up a bfd error code. */
1916 bfd_set_error (bfd_error_bad_value);
1917 return 0;
1918 }
1919
1920 /* This appears to be a valid SOM object. Do some initialization. */
1921 return som_object_setup (abfd, &file_hdr, &aux_hdr);
1922 }
1923
1924 /* Create a SOM object. */
1925
1926 static boolean
1927 som_mkobject (abfd)
1928 bfd *abfd;
1929 {
1930 /* Allocate memory to hold backend information. */
1931 abfd->tdata.som_data = (struct som_data_struct *)
1932 bfd_zalloc (abfd, sizeof (struct som_data_struct));
1933 if (abfd->tdata.som_data == NULL)
1934 {
1935 bfd_set_error (bfd_error_no_memory);
1936 return false;
1937 }
1938 return true;
1939 }
1940
1941 /* Initialize some information in the file header. This routine makes
1942 not attempt at doing the right thing for a full executable; it
1943 is only meant to handle relocatable objects. */
1944
1945 static boolean
1946 som_prep_headers (abfd)
1947 bfd *abfd;
1948 {
1949 struct header *file_hdr;
1950 asection *section;
1951
1952 /* Make and attach a file header to the BFD. */
1953 file_hdr = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
1954 if (file_hdr == NULL)
1955
1956 {
1957 bfd_set_error (bfd_error_no_memory);
1958 return false;
1959 }
1960 obj_som_file_hdr (abfd) = file_hdr;
1961
1962 if (abfd->flags & (EXEC_P | DYNAMIC))
1963 {
1964 if (abfd->flags & D_PAGED)
1965 file_hdr->a_magic = DEMAND_MAGIC;
1966 else if (abfd->flags & WP_TEXT)
1967 file_hdr->a_magic = SHARE_MAGIC;
1968 #ifdef SHL_MAGIC
1969 else if (abfd->flags & DYNAMIC)
1970 file_hdr->a_magic = SHL_MAGIC;
1971 #endif
1972 else
1973 file_hdr->a_magic = EXEC_MAGIC;
1974 }
1975 else
1976 file_hdr->a_magic = RELOC_MAGIC;
1977
1978 /* Only new format SOM is supported. */
1979 file_hdr->version_id = NEW_VERSION_ID;
1980
1981 /* These fields are optional, and embedding timestamps is not always
1982 a wise thing to do, it makes comparing objects during a multi-stage
1983 bootstrap difficult. */
1984 file_hdr->file_time.secs = 0;
1985 file_hdr->file_time.nanosecs = 0;
1986
1987 file_hdr->entry_space = 0;
1988 file_hdr->entry_subspace = 0;
1989 file_hdr->entry_offset = 0;
1990 file_hdr->presumed_dp = 0;
1991
1992 /* Now iterate over the sections translating information from
1993 BFD sections to SOM spaces/subspaces. */
1994
1995 for (section = abfd->sections; section != NULL; section = section->next)
1996 {
1997 /* Ignore anything which has not been marked as a space or
1998 subspace. */
1999 if (!som_is_space (section) && !som_is_subspace (section))
2000 continue;
2001
2002 if (som_is_space (section))
2003 {
2004 /* Allocate space for the space dictionary. */
2005 som_section_data (section)->space_dict
2006 = (struct space_dictionary_record *)
2007 bfd_zalloc (abfd, sizeof (struct space_dictionary_record));
2008 if (som_section_data (section)->space_dict == NULL)
2009 {
2010 bfd_set_error (bfd_error_no_memory);
2011 return false;
2012 }
2013 /* Set space attributes. Note most attributes of SOM spaces
2014 are set based on the subspaces it contains. */
2015 som_section_data (section)->space_dict->loader_fix_index = -1;
2016 som_section_data (section)->space_dict->init_pointer_index = -1;
2017
2018 /* Set more attributes that were stuffed away in private data. */
2019 som_section_data (section)->space_dict->sort_key =
2020 som_section_data (section)->copy_data->sort_key;
2021 som_section_data (section)->space_dict->is_defined =
2022 som_section_data (section)->copy_data->is_defined;
2023 som_section_data (section)->space_dict->is_private =
2024 som_section_data (section)->copy_data->is_private;
2025 som_section_data (section)->space_dict->space_number =
2026 som_section_data (section)->copy_data->space_number;
2027 }
2028 else
2029 {
2030 /* Allocate space for the subspace dictionary. */
2031 som_section_data (section)->subspace_dict
2032 = (struct subspace_dictionary_record *)
2033 bfd_zalloc (abfd, sizeof (struct subspace_dictionary_record));
2034 if (som_section_data (section)->subspace_dict == NULL)
2035 {
2036 bfd_set_error (bfd_error_no_memory);
2037 return false;
2038 }
2039
2040 /* Set subspace attributes. Basic stuff is done here, additional
2041 attributes are filled in later as more information becomes
2042 available. */
2043 if (section->flags & SEC_IS_COMMON)
2044 {
2045 som_section_data (section)->subspace_dict->dup_common = 1;
2046 som_section_data (section)->subspace_dict->is_common = 1;
2047 }
2048
2049 if (section->flags & SEC_ALLOC)
2050 som_section_data (section)->subspace_dict->is_loadable = 1;
2051
2052 if (section->flags & SEC_CODE)
2053 som_section_data (section)->subspace_dict->code_only = 1;
2054
2055 som_section_data (section)->subspace_dict->subspace_start =
2056 section->vma;
2057 som_section_data (section)->subspace_dict->subspace_length =
2058 bfd_section_size (abfd, section);
2059 som_section_data (section)->subspace_dict->initialization_length =
2060 bfd_section_size (abfd, section);
2061 som_section_data (section)->subspace_dict->alignment =
2062 1 << section->alignment_power;
2063
2064 /* Set more attributes that were stuffed away in private data. */
2065 som_section_data (section)->subspace_dict->sort_key =
2066 som_section_data (section)->copy_data->sort_key;
2067 som_section_data (section)->subspace_dict->access_control_bits =
2068 som_section_data (section)->copy_data->access_control_bits;
2069 som_section_data (section)->subspace_dict->quadrant =
2070 som_section_data (section)->copy_data->quadrant;
2071 }
2072 }
2073 return true;
2074 }
2075
2076 /* Return true if the given section is a SOM space, false otherwise. */
2077
2078 static boolean
2079 som_is_space (section)
2080 asection *section;
2081 {
2082 /* If no copy data is available, then it's neither a space nor a
2083 subspace. */
2084 if (som_section_data (section)->copy_data == NULL)
2085 return false;
2086
2087 /* If the containing space isn't the same as the given section,
2088 then this isn't a space. */
2089 if (som_section_data (section)->copy_data->container != section)
2090 return false;
2091
2092 /* OK. Must be a space. */
2093 return true;
2094 }
2095
2096 /* Return true if the given section is a SOM subspace, false otherwise. */
2097
2098 static boolean
2099 som_is_subspace (section)
2100 asection *section;
2101 {
2102 /* If no copy data is available, then it's neither a space nor a
2103 subspace. */
2104 if (som_section_data (section)->copy_data == NULL)
2105 return false;
2106
2107 /* If the containing space is the same as the given section,
2108 then this isn't a subspace. */
2109 if (som_section_data (section)->copy_data->container == section)
2110 return false;
2111
2112 /* OK. Must be a subspace. */
2113 return true;
2114 }
2115
2116 /* Return true if the given space containins the given subspace. It
2117 is safe to assume space really is a space, and subspace really
2118 is a subspace. */
2119
2120 static boolean
2121 som_is_container (space, subspace)
2122 asection *space, *subspace;
2123 {
2124 return som_section_data (subspace)->copy_data->container == space;
2125 }
2126
2127 /* Count and return the number of spaces attached to the given BFD. */
2128
2129 static unsigned long
2130 som_count_spaces (abfd)
2131 bfd *abfd;
2132 {
2133 int count = 0;
2134 asection *section;
2135
2136 for (section = abfd->sections; section != NULL; section = section->next)
2137 count += som_is_space (section);
2138
2139 return count;
2140 }
2141
2142 /* Count the number of subspaces attached to the given BFD. */
2143
2144 static unsigned long
2145 som_count_subspaces (abfd)
2146 bfd *abfd;
2147 {
2148 int count = 0;
2149 asection *section;
2150
2151 for (section = abfd->sections; section != NULL; section = section->next)
2152 count += som_is_subspace (section);
2153
2154 return count;
2155 }
2156
2157 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2158
2159 We desire symbols to be ordered starting with the symbol with the
2160 highest relocation count down to the symbol with the lowest relocation
2161 count. Doing so compacts the relocation stream. */
2162
2163 static int
2164 compare_syms (arg1, arg2)
2165 const PTR arg1;
2166 const PTR arg2;
2167
2168 {
2169 asymbol **sym1 = (asymbol **) arg1;
2170 asymbol **sym2 = (asymbol **) arg2;
2171 unsigned int count1, count2;
2172
2173 /* Get relocation count for each symbol. Note that the count
2174 is stored in the udata pointer for section symbols! */
2175 if ((*sym1)->flags & BSF_SECTION_SYM)
2176 count1 = (int)(*sym1)->udata;
2177 else
2178 count1 = som_symbol_data (*sym1)->reloc_count;
2179
2180 if ((*sym2)->flags & BSF_SECTION_SYM)
2181 count2 = (int)(*sym2)->udata;
2182 else
2183 count2 = som_symbol_data (*sym2)->reloc_count;
2184
2185 /* Return the appropriate value. */
2186 if (count1 < count2)
2187 return 1;
2188 else if (count1 > count2)
2189 return -1;
2190 return 0;
2191 }
2192
2193 /* Perform various work in preparation for emitting the fixup stream. */
2194
2195 static void
2196 som_prep_for_fixups (abfd, syms, num_syms)
2197 bfd *abfd;
2198 asymbol **syms;
2199 unsigned long num_syms;
2200 {
2201 int i;
2202 asection *section;
2203
2204 /* Most SOM relocations involving a symbol have a length which is
2205 dependent on the index of the symbol. So symbols which are
2206 used often in relocations should have a small index. */
2207
2208 /* First initialize the counters for each symbol. */
2209 for (i = 0; i < num_syms; i++)
2210 {
2211 /* Handle a section symbol; these have no pointers back to the
2212 SOM symbol info. So we just use the pointer field (udata)
2213 to hold the relocation count. */
2214 if (som_symbol_data (syms[i]) == NULL
2215 || syms[i]->flags & BSF_SECTION_SYM)
2216 {
2217 syms[i]->flags |= BSF_SECTION_SYM;
2218 syms[i]->udata = (PTR) 0;
2219 }
2220 else
2221 som_symbol_data (syms[i])->reloc_count = 0;
2222 }
2223
2224 /* Now that the counters are initialized, make a weighted count
2225 of how often a given symbol is used in a relocation. */
2226 for (section = abfd->sections; section != NULL; section = section->next)
2227 {
2228 int i;
2229
2230 /* Does this section have any relocations? */
2231 if (section->reloc_count <= 0)
2232 continue;
2233
2234 /* Walk through each relocation for this section. */
2235 for (i = 1; i < section->reloc_count; i++)
2236 {
2237 arelent *reloc = section->orelocation[i];
2238 int scale;
2239
2240 /* A relocation against a symbol in the *ABS* section really
2241 does not have a symbol. Likewise if the symbol isn't associated
2242 with any section. */
2243 if (reloc->sym_ptr_ptr == NULL
2244 || (*reloc->sym_ptr_ptr)->section == &bfd_abs_section)
2245 continue;
2246
2247 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2248 and R_CODE_ONE_SYMBOL relocations to come first. These
2249 two relocations have single byte versions if the symbol
2250 index is very small. */
2251 if (reloc->howto->type == R_DP_RELATIVE
2252 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2253 scale = 2;
2254 else
2255 scale = 1;
2256
2257 /* Handle section symbols by ramming the count in the udata
2258 field. It will not be used and the count is very important
2259 for these symbols. */
2260 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2261 {
2262 (*reloc->sym_ptr_ptr)->udata =
2263 (PTR) ((int) (*reloc->sym_ptr_ptr)->udata + scale);
2264 continue;
2265 }
2266
2267 /* A normal symbol. Increment the count. */
2268 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2269 }
2270 }
2271
2272 /* Now sort the symbols. */
2273 qsort (syms, num_syms, sizeof (asymbol *), compare_syms);
2274
2275 /* Compute the symbol indexes, they will be needed by the relocation
2276 code. */
2277 for (i = 0; i < num_syms; i++)
2278 {
2279 /* A section symbol. Again, there is no pointer to backend symbol
2280 information, so we reuse (abuse) the udata field again. */
2281 if (syms[i]->flags & BSF_SECTION_SYM)
2282 syms[i]->udata = (PTR) i;
2283 else
2284 som_symbol_data (syms[i])->index = i;
2285 }
2286 }
2287
2288 static boolean
2289 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2290 bfd *abfd;
2291 unsigned long current_offset;
2292 unsigned int *total_reloc_sizep;
2293 {
2294 unsigned int i, j;
2295 /* Chunk of memory that we can use as buffer space, then throw
2296 away. */
2297 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2298 unsigned char *p;
2299 unsigned int total_reloc_size = 0;
2300 unsigned int subspace_reloc_size = 0;
2301 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2302 asection *section = abfd->sections;
2303
2304 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2305 p = tmp_space;
2306
2307 /* All the fixups for a particular subspace are emitted in a single
2308 stream. All the subspaces for a particular space are emitted
2309 as a single stream.
2310
2311 So, to get all the locations correct one must iterate through all the
2312 spaces, for each space iterate through its subspaces and output a
2313 fixups stream. */
2314 for (i = 0; i < num_spaces; i++)
2315 {
2316 asection *subsection;
2317
2318 /* Find a space. */
2319 while (!som_is_space (section))
2320 section = section->next;
2321
2322 /* Now iterate through each of its subspaces. */
2323 for (subsection = abfd->sections;
2324 subsection != NULL;
2325 subsection = subsection->next)
2326 {
2327 int reloc_offset, current_rounding_mode;
2328
2329 /* Find a subspace of this space. */
2330 if (!som_is_subspace (subsection)
2331 || !som_is_container (section, subsection))
2332 continue;
2333
2334 /* If this subspace does not have real data, then we are
2335 finised with it. */
2336 if ((subsection->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0)
2337 {
2338 som_section_data (subsection)->subspace_dict->fixup_request_index
2339 = -1;
2340 continue;
2341 }
2342
2343 /* This subspace has some relocations. Put the relocation stream
2344 index into the subspace record. */
2345 som_section_data (subsection)->subspace_dict->fixup_request_index
2346 = total_reloc_size;
2347
2348 /* To make life easier start over with a clean slate for
2349 each subspace. Seek to the start of the relocation stream
2350 for this subspace in preparation for writing out its fixup
2351 stream. */
2352 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) < 0)
2353 return false;
2354
2355 /* Buffer space has already been allocated. Just perform some
2356 initialization here. */
2357 p = tmp_space;
2358 subspace_reloc_size = 0;
2359 reloc_offset = 0;
2360 som_initialize_reloc_queue (reloc_queue);
2361 current_rounding_mode = R_N_MODE;
2362
2363 /* Translate each BFD relocation into one or more SOM
2364 relocations. */
2365 for (j = 0; j < subsection->reloc_count; j++)
2366 {
2367 arelent *bfd_reloc = subsection->orelocation[j];
2368 unsigned int skip;
2369 int sym_num;
2370
2371 /* Get the symbol number. Remember it's stored in a
2372 special place for section symbols. */
2373 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2374 sym_num = (int) (*bfd_reloc->sym_ptr_ptr)->udata;
2375 else
2376 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2377
2378 /* If there is not enough room for the next couple relocations,
2379 then dump the current buffer contents now. Also reinitialize
2380 the relocation queue.
2381
2382 No single BFD relocation could ever translate into more
2383 than 100 bytes of SOM relocations (20bytes is probably the
2384 upper limit, but leave lots of space for growth). */
2385 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2386 {
2387 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2388 != p - tmp_space)
2389 return false;
2390
2391 p = tmp_space;
2392 som_initialize_reloc_queue (reloc_queue);
2393 }
2394
2395 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2396 skipped. */
2397 skip = bfd_reloc->address - reloc_offset;
2398 p = som_reloc_skip (abfd, skip, p,
2399 &subspace_reloc_size, reloc_queue);
2400
2401 /* Update reloc_offset for the next iteration.
2402
2403 Many relocations do not consume input bytes. They
2404 are markers, or set state necessary to perform some
2405 later relocation. */
2406 switch (bfd_reloc->howto->type)
2407 {
2408 /* This only needs to handle relocations that may be
2409 made by hppa_som_gen_reloc. */
2410 case R_ENTRY:
2411 case R_EXIT:
2412 case R_N_MODE:
2413 case R_S_MODE:
2414 case R_D_MODE:
2415 case R_R_MODE:
2416 case R_FSEL:
2417 case R_LSEL:
2418 case R_RSEL:
2419 reloc_offset = bfd_reloc->address;
2420 break;
2421
2422 default:
2423 reloc_offset = bfd_reloc->address + 4;
2424 break;
2425 }
2426
2427 /* Now the actual relocation we care about. */
2428 switch (bfd_reloc->howto->type)
2429 {
2430 case R_PCREL_CALL:
2431 case R_ABS_CALL:
2432 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2433 bfd_reloc, sym_num, reloc_queue);
2434 break;
2435
2436 case R_CODE_ONE_SYMBOL:
2437 case R_DP_RELATIVE:
2438 /* Account for any addend. */
2439 if (bfd_reloc->addend)
2440 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2441 &subspace_reloc_size, reloc_queue);
2442
2443 if (sym_num < 0x20)
2444 {
2445 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2446 subspace_reloc_size += 1;
2447 p += 1;
2448 }
2449 else if (sym_num < 0x100)
2450 {
2451 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2452 bfd_put_8 (abfd, sym_num, p + 1);
2453 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2454 2, reloc_queue);
2455 }
2456 else if (sym_num < 0x10000000)
2457 {
2458 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2459 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2460 bfd_put_16 (abfd, sym_num, p + 2);
2461 p = try_prev_fixup (abfd, &subspace_reloc_size,
2462 p, 4, reloc_queue);
2463 }
2464 else
2465 abort ();
2466 break;
2467
2468 case R_DATA_ONE_SYMBOL:
2469 case R_DATA_PLABEL:
2470 case R_CODE_PLABEL:
2471 case R_DLT_REL:
2472 /* Account for any addend. */
2473 if (bfd_reloc->addend)
2474 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2475 &subspace_reloc_size, reloc_queue);
2476
2477 if (sym_num < 0x100)
2478 {
2479 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2480 bfd_put_8 (abfd, sym_num, p + 1);
2481 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2482 2, reloc_queue);
2483 }
2484 else if (sym_num < 0x10000000)
2485 {
2486 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2487 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2488 bfd_put_16 (abfd, sym_num, p + 2);
2489 p = try_prev_fixup (abfd, &subspace_reloc_size,
2490 p, 4, reloc_queue);
2491 }
2492 else
2493 abort ();
2494 break;
2495
2496 case R_ENTRY:
2497 {
2498 int *descp
2499 = (int *) som_symbol_data (*bfd_reloc->sym_ptr_ptr)->unwind;
2500 bfd_put_8 (abfd, R_ENTRY, p);
2501 bfd_put_32 (abfd, descp[0], p + 1);
2502 bfd_put_32 (abfd, descp[1], p + 5);
2503 p = try_prev_fixup (abfd, &subspace_reloc_size,
2504 p, 9, reloc_queue);
2505 break;
2506 }
2507
2508 case R_EXIT:
2509 bfd_put_8 (abfd, R_EXIT, p);
2510 subspace_reloc_size += 1;
2511 p += 1;
2512 break;
2513
2514 case R_N_MODE:
2515 case R_S_MODE:
2516 case R_D_MODE:
2517 case R_R_MODE:
2518 /* If this relocation requests the current rounding
2519 mode, then it is redundant. */
2520 if (bfd_reloc->howto->type != current_rounding_mode)
2521 {
2522 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2523 subspace_reloc_size += 1;
2524 p += 1;
2525 current_rounding_mode = bfd_reloc->howto->type;
2526 }
2527 break;
2528
2529 case R_FSEL:
2530 case R_LSEL:
2531 case R_RSEL:
2532 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2533 subspace_reloc_size += 1;
2534 p += 1;
2535 break;
2536
2537 /* Put a "R_RESERVED" relocation in the stream if
2538 we hit something we do not understand. The linker
2539 will complain loudly if this ever happens. */
2540 default:
2541 bfd_put_8 (abfd, 0xff, p);
2542 subspace_reloc_size += 1;
2543 p += 1;
2544 break;
2545 }
2546 }
2547
2548 /* Last BFD relocation for a subspace has been processed.
2549 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2550 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2551 - reloc_offset,
2552 p, &subspace_reloc_size, reloc_queue);
2553
2554 /* Scribble out the relocations. */
2555 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2556 != p - tmp_space)
2557 return false;
2558 p = tmp_space;
2559
2560 total_reloc_size += subspace_reloc_size;
2561 som_section_data (subsection)->subspace_dict->fixup_request_quantity
2562 = subspace_reloc_size;
2563 }
2564 section = section->next;
2565 }
2566 *total_reloc_sizep = total_reloc_size;
2567 return true;
2568 }
2569
2570 /* Write out the space/subspace string table. */
2571
2572 static boolean
2573 som_write_space_strings (abfd, current_offset, string_sizep)
2574 bfd *abfd;
2575 unsigned long current_offset;
2576 unsigned int *string_sizep;
2577 {
2578 /* Chunk of memory that we can use as buffer space, then throw
2579 away. */
2580 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2581 unsigned char *p;
2582 unsigned int strings_size = 0;
2583 asection *section;
2584
2585 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2586 p = tmp_space;
2587
2588 /* Seek to the start of the space strings in preparation for writing
2589 them out. */
2590 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2591 return false;
2592
2593 /* Walk through all the spaces and subspaces (order is not important)
2594 building up and writing string table entries for their names. */
2595 for (section = abfd->sections; section != NULL; section = section->next)
2596 {
2597 int length;
2598
2599 /* Only work with space/subspaces; avoid any other sections
2600 which might have been made (.text for example). */
2601 if (!som_is_space (section) && !som_is_subspace (section))
2602 continue;
2603
2604 /* Get the length of the space/subspace name. */
2605 length = strlen (section->name);
2606
2607 /* If there is not enough room for the next entry, then dump the
2608 current buffer contents now. Each entry will take 4 bytes to
2609 hold the string length + the string itself + null terminator. */
2610 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2611 {
2612 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2613 != p - tmp_space)
2614 return false;
2615 /* Reset to beginning of the buffer space. */
2616 p = tmp_space;
2617 }
2618
2619 /* First element in a string table entry is the length of the
2620 string. Alignment issues are already handled. */
2621 bfd_put_32 (abfd, length, p);
2622 p += 4;
2623 strings_size += 4;
2624
2625 /* Record the index in the space/subspace records. */
2626 if (som_is_space (section))
2627 som_section_data (section)->space_dict->name.n_strx = strings_size;
2628 else
2629 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
2630
2631 /* Next comes the string itself + a null terminator. */
2632 strcpy (p, section->name);
2633 p += length + 1;
2634 strings_size += length + 1;
2635
2636 /* Always align up to the next word boundary. */
2637 while (strings_size % 4)
2638 {
2639 bfd_put_8 (abfd, 0, p);
2640 p++;
2641 strings_size++;
2642 }
2643 }
2644
2645 /* Done with the space/subspace strings. Write out any information
2646 contained in a partial block. */
2647 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2648 return false;
2649 *string_sizep = strings_size;
2650 return true;
2651 }
2652
2653 /* Write out the symbol string table. */
2654
2655 static boolean
2656 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
2657 bfd *abfd;
2658 unsigned long current_offset;
2659 asymbol **syms;
2660 unsigned int num_syms;
2661 unsigned int *string_sizep;
2662 {
2663 unsigned int i;
2664
2665 /* Chunk of memory that we can use as buffer space, then throw
2666 away. */
2667 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2668 unsigned char *p;
2669 unsigned int strings_size = 0;
2670
2671 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2672 p = tmp_space;
2673
2674 /* Seek to the start of the space strings in preparation for writing
2675 them out. */
2676 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2677 return false;
2678
2679 for (i = 0; i < num_syms; i++)
2680 {
2681 int length = strlen (syms[i]->name);
2682
2683 /* If there is not enough room for the next entry, then dump the
2684 current buffer contents now. */
2685 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2686 {
2687 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2688 != p - tmp_space)
2689 return false;
2690 /* Reset to beginning of the buffer space. */
2691 p = tmp_space;
2692 }
2693
2694 /* First element in a string table entry is the length of the
2695 string. This must always be 4 byte aligned. This is also
2696 an appropriate time to fill in the string index field in the
2697 symbol table entry. */
2698 bfd_put_32 (abfd, length, p);
2699 strings_size += 4;
2700 p += 4;
2701
2702 /* Next comes the string itself + a null terminator. */
2703 strcpy (p, syms[i]->name);
2704
2705 /* ACK. FIXME. */
2706 syms[i]->name = (char *)strings_size;
2707 p += length + 1;
2708 strings_size += length + 1;
2709
2710 /* Always align up to the next word boundary. */
2711 while (strings_size % 4)
2712 {
2713 bfd_put_8 (abfd, 0, p);
2714 strings_size++;
2715 p++;
2716 }
2717 }
2718
2719 /* Scribble out any partial block. */
2720 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2721 return false;
2722
2723 *string_sizep = strings_size;
2724 return true;
2725 }
2726
2727 /* Compute variable information to be placed in the SOM headers,
2728 space/subspace dictionaries, relocation streams, etc. Begin
2729 writing parts of the object file. */
2730
2731 static boolean
2732 som_begin_writing (abfd)
2733 bfd *abfd;
2734 {
2735 unsigned long current_offset = 0;
2736 int strings_size = 0;
2737 unsigned int total_reloc_size = 0;
2738 unsigned long num_spaces, num_subspaces, num_syms, i;
2739 asection *section;
2740 asymbol **syms = bfd_get_outsymbols (abfd);
2741 unsigned int total_subspaces = 0;
2742 struct som_exec_auxhdr exec_header;
2743
2744 /* The file header will always be first in an object file,
2745 everything else can be in random locations. To keep things
2746 "simple" BFD will lay out the object file in the manner suggested
2747 by the PRO ABI for PA-RISC Systems. */
2748
2749 /* Before any output can really begin offsets for all the major
2750 portions of the object file must be computed. So, starting
2751 with the initial file header compute (and sometimes write)
2752 each portion of the object file. */
2753
2754 /* Make room for the file header, it's contents are not complete
2755 yet, so it can not be written at this time. */
2756 current_offset += sizeof (struct header);
2757
2758 /* Any auxiliary headers will follow the file header. Right now
2759 we support only the copyright and version headers. */
2760 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
2761 obj_som_file_hdr (abfd)->aux_header_size = 0;
2762 if (abfd->flags & (EXEC_P | DYNAMIC))
2763 {
2764 /* Parts of the exec header will be filled in later, so
2765 delay writing the header itself. Fill in the defaults,
2766 and write it later. */
2767 current_offset += sizeof (exec_header);
2768 obj_som_file_hdr (abfd)->aux_header_size += sizeof (exec_header);
2769 memset (&exec_header, 0, sizeof (exec_header));
2770 exec_header.som_auxhdr.type = HPUX_AUX_ID;
2771 exec_header.som_auxhdr.length = 40;
2772 }
2773 if (obj_som_version_hdr (abfd) != NULL)
2774 {
2775 unsigned int len;
2776
2777 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2778 return false;
2779
2780 /* Write the aux_id structure and the string length. */
2781 len = sizeof (struct aux_id) + sizeof (unsigned int);
2782 obj_som_file_hdr (abfd)->aux_header_size += len;
2783 current_offset += len;
2784 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
2785 return false;
2786
2787 /* Write the version string. */
2788 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
2789 obj_som_file_hdr (abfd)->aux_header_size += len;
2790 current_offset += len;
2791 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
2792 len, 1, abfd) != len)
2793 return false;
2794 }
2795
2796 if (obj_som_copyright_hdr (abfd) != NULL)
2797 {
2798 unsigned int len;
2799
2800 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2801 return false;
2802
2803 /* Write the aux_id structure and the string length. */
2804 len = sizeof (struct aux_id) + sizeof (unsigned int);
2805 obj_som_file_hdr (abfd)->aux_header_size += len;
2806 current_offset += len;
2807 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
2808 return false;
2809
2810 /* Write the copyright string. */
2811 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
2812 obj_som_file_hdr (abfd)->aux_header_size += len;
2813 current_offset += len;
2814 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
2815 len, 1, abfd) != len)
2816 return false;
2817 }
2818
2819 /* Next comes the initialization pointers; we have no initialization
2820 pointers, so current offset does not change. */
2821 obj_som_file_hdr (abfd)->init_array_location = current_offset;
2822 obj_som_file_hdr (abfd)->init_array_total = 0;
2823
2824 /* Next are the space records. These are fixed length records.
2825
2826 Count the number of spaces to determine how much room is needed
2827 in the object file for the space records.
2828
2829 The names of the spaces are stored in a separate string table,
2830 and the index for each space into the string table is computed
2831 below. Therefore, it is not possible to write the space headers
2832 at this time. */
2833 num_spaces = som_count_spaces (abfd);
2834 obj_som_file_hdr (abfd)->space_location = current_offset;
2835 obj_som_file_hdr (abfd)->space_total = num_spaces;
2836 current_offset += num_spaces * sizeof (struct space_dictionary_record);
2837
2838 /* Next are the subspace records. These are fixed length records.
2839
2840 Count the number of subspaes to determine how much room is needed
2841 in the object file for the subspace records.
2842
2843 A variety if fields in the subspace record are still unknown at
2844 this time (index into string table, fixup stream location/size, etc). */
2845 num_subspaces = som_count_subspaces (abfd);
2846 obj_som_file_hdr (abfd)->subspace_location = current_offset;
2847 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
2848 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
2849
2850 /* Next is the string table for the space/subspace names. We will
2851 build and write the string table on the fly. At the same time
2852 we will fill in the space/subspace name index fields. */
2853
2854 /* The string table needs to be aligned on a word boundary. */
2855 if (current_offset % 4)
2856 current_offset += (4 - (current_offset % 4));
2857
2858 /* Mark the offset of the space/subspace string table in the
2859 file header. */
2860 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
2861
2862 /* Scribble out the space strings. */
2863 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
2864 return false;
2865
2866 /* Record total string table size in the header and update the
2867 current offset. */
2868 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
2869 current_offset += strings_size;
2870
2871 /* Next is the symbol table. These are fixed length records.
2872
2873 Count the number of symbols to determine how much room is needed
2874 in the object file for the symbol table.
2875
2876 The names of the symbols are stored in a separate string table,
2877 and the index for each symbol name into the string table is computed
2878 below. Therefore, it is not possible to write the symobl table
2879 at this time. */
2880 num_syms = bfd_get_symcount (abfd);
2881 obj_som_file_hdr (abfd)->symbol_location = current_offset;
2882 obj_som_file_hdr (abfd)->symbol_total = num_syms;
2883 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
2884
2885 /* Do prep work before handling fixups. */
2886 som_prep_for_fixups (abfd, syms, num_syms);
2887
2888 /* Next comes the fixup stream which starts on a word boundary. */
2889 if (current_offset % 4)
2890 current_offset += (4 - (current_offset % 4));
2891 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
2892
2893 /* Write the fixups and update fields in subspace headers which
2894 relate to the fixup stream. */
2895 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
2896 return false;
2897
2898 /* Record the total size of the fixup stream in the file header. */
2899 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
2900 current_offset += total_reloc_size;
2901
2902 /* Next are the symbol strings.
2903 Align them to a word boundary. */
2904 if (current_offset % 4)
2905 current_offset += (4 - (current_offset % 4));
2906 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
2907
2908 /* Scribble out the symbol strings. */
2909 if (som_write_symbol_strings (abfd, current_offset, syms,
2910 num_syms, &strings_size)
2911 == false)
2912 return false;
2913
2914 /* Record total string table size in header and update the
2915 current offset. */
2916 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
2917 current_offset += strings_size;
2918
2919 /* Next is the compiler records. We do not use these. */
2920 obj_som_file_hdr (abfd)->compiler_location = current_offset;
2921 obj_som_file_hdr (abfd)->compiler_total = 0;
2922
2923 /* Now compute the file positions for the loadable subspaces, taking
2924 care to make sure everything stays properly aligned. */
2925
2926 section = abfd->sections;
2927 for (i = 0; i < num_spaces; i++)
2928 {
2929 asection *subsection;
2930 int first_subspace;
2931 unsigned int subspace_offset = 0;
2932
2933 /* Find a space. */
2934 while (!som_is_space (section))
2935 section = section->next;
2936
2937 first_subspace = 1;
2938 /* Now look for all its subspaces. */
2939 for (subsection = abfd->sections;
2940 subsection != NULL;
2941 subsection = subsection->next)
2942 {
2943
2944 if (!som_is_subspace (subsection)
2945 || !som_is_container (section, subsection)
2946 || (subsection->flags & SEC_ALLOC) == 0)
2947 continue;
2948
2949 /* If this is the first subspace in the space, and we are
2950 building an executable, then take care to make sure all
2951 the alignments are correct and update the exec header. */
2952 if (first_subspace
2953 && (abfd->flags & (EXEC_P | DYNAMIC)))
2954 {
2955 /* Demand paged executables have each space aligned to a
2956 page boundary. Sharable executables (write-protected
2957 text) have just the private (aka data & bss) space aligned
2958 to a page boundary. Ugh. Not true for HPUX.
2959
2960 The HPUX kernel requires the text to always be page aligned
2961 within the file regardless of the executable's type. */
2962 if (abfd->flags & (D_PAGED | DYNAMIC)
2963 || (subsection->flags & SEC_CODE)
2964 || ((abfd->flags & WP_TEXT)
2965 && (subsection->flags & SEC_DATA)))
2966 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
2967
2968 /* Update the exec header. */
2969 if (subsection->flags & SEC_CODE && exec_header.exec_tfile == 0)
2970 {
2971 exec_header.exec_tmem = section->vma;
2972 exec_header.exec_tfile = current_offset;
2973 }
2974 if (subsection->flags & SEC_DATA && exec_header.exec_dfile == 0)
2975 {
2976 exec_header.exec_dmem = section->vma;
2977 exec_header.exec_dfile = current_offset;
2978 }
2979
2980 /* Keep track of exactly where we are within a particular
2981 space. This is necessary as the braindamaged HPUX
2982 loader will create holes between subspaces *and*
2983 subspace alignments are *NOT* preserved. What a crock. */
2984 subspace_offset = subsection->vma;
2985
2986 /* Only do this for the first subspace within each space. */
2987 first_subspace = 0;
2988 }
2989 else if (abfd->flags & (EXEC_P | DYNAMIC))
2990 {
2991 /* The braindamaged HPUX loader may have created a hole
2992 between two subspaces. It is *not* sufficient to use
2993 the alignment specifications within the subspaces to
2994 account for these holes -- I've run into at least one
2995 case where the loader left one code subspace unaligned
2996 in a final executable.
2997
2998 To combat this we keep a current offset within each space,
2999 and use the subspace vma fields to detect and preserve
3000 holes. What a crock!
3001
3002 ps. This is not necessary for unloadable space/subspaces. */
3003 current_offset += subsection->vma - subspace_offset;
3004 if (subsection->flags & SEC_CODE)
3005 exec_header.exec_tsize += subsection->vma - subspace_offset;
3006 else
3007 exec_header.exec_dsize += subsection->vma - subspace_offset;
3008 subspace_offset += subsection->vma - subspace_offset;
3009 }
3010
3011
3012 subsection->target_index = total_subspaces++;
3013 /* This is real data to be loaded from the file. */
3014 if (subsection->flags & SEC_LOAD)
3015 {
3016 /* Update the size of the code & data. */
3017 if (abfd->flags & (EXEC_P | DYNAMIC)
3018 && subsection->flags & SEC_CODE)
3019 exec_header.exec_tsize += subsection->_cooked_size;
3020 else if (abfd->flags & (EXEC_P | DYNAMIC)
3021 && subsection->flags & SEC_DATA)
3022 exec_header.exec_dsize += subsection->_cooked_size;
3023 som_section_data (subsection)->subspace_dict->file_loc_init_value
3024 = current_offset;
3025 subsection->filepos = current_offset;
3026 current_offset += bfd_section_size (abfd, subsection);
3027 subspace_offset += bfd_section_size (abfd, subsection);
3028 }
3029 /* Looks like uninitialized data. */
3030 else
3031 {
3032 /* Update the size of the bss section. */
3033 if (abfd->flags & (EXEC_P | DYNAMIC))
3034 exec_header.exec_bsize += subsection->_cooked_size;
3035
3036 som_section_data (subsection)->subspace_dict->file_loc_init_value
3037 = 0;
3038 som_section_data (subsection)->subspace_dict->
3039 initialization_length = 0;
3040 }
3041 }
3042 /* Goto the next section. */
3043 section = section->next;
3044 }
3045
3046 /* Finally compute the file positions for unloadable subspaces.
3047 If building an executable, start the unloadable stuff on its
3048 own page. */
3049
3050 if (abfd->flags & (EXEC_P | DYNAMIC))
3051 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3052
3053 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3054 section = abfd->sections;
3055 for (i = 0; i < num_spaces; i++)
3056 {
3057 asection *subsection;
3058
3059 /* Find a space. */
3060 while (!som_is_space (section))
3061 section = section->next;
3062
3063 if (abfd->flags & (EXEC_P | DYNAMIC))
3064 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3065
3066 /* Now look for all its subspaces. */
3067 for (subsection = abfd->sections;
3068 subsection != NULL;
3069 subsection = subsection->next)
3070 {
3071
3072 if (!som_is_subspace (subsection)
3073 || !som_is_container (section, subsection)
3074 || (subsection->flags & SEC_ALLOC) != 0)
3075 continue;
3076
3077 subsection->target_index = total_subspaces;
3078 /* This is real data to be loaded from the file. */
3079 if ((subsection->flags & SEC_LOAD) == 0)
3080 {
3081 som_section_data (subsection)->subspace_dict->file_loc_init_value
3082 = current_offset;
3083 subsection->filepos = current_offset;
3084 current_offset += bfd_section_size (abfd, subsection);
3085 }
3086 /* Looks like uninitialized data. */
3087 else
3088 {
3089 som_section_data (subsection)->subspace_dict->file_loc_init_value
3090 = 0;
3091 som_section_data (subsection)->subspace_dict->
3092 initialization_length = bfd_section_size (abfd, subsection);
3093 }
3094 }
3095 /* Goto the next section. */
3096 section = section->next;
3097 }
3098
3099 /* If building an executable, then make sure to seek to and write
3100 one byte at the end of the file to make sure any necessary
3101 zeros are filled in. Ugh. */
3102 if (abfd->flags & (EXEC_P | DYNAMIC))
3103 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3104 if (bfd_seek (abfd, current_offset - 1, SEEK_SET) < 0)
3105 return false;
3106 if (bfd_write ((PTR) "", 1, 1, abfd) != 1)
3107 return false;
3108
3109 obj_som_file_hdr (abfd)->unloadable_sp_size
3110 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3111
3112 /* Loader fixups are not supported in any way shape or form. */
3113 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3114 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3115
3116 /* Done. Store the total size of the SOM. */
3117 obj_som_file_hdr (abfd)->som_length = current_offset;
3118
3119 /* Now write the exec header. */
3120 if (abfd->flags & (EXEC_P | DYNAMIC))
3121 {
3122 long tmp;
3123
3124 exec_header.exec_entry = bfd_get_start_address (abfd);
3125 exec_header.exec_flags = obj_som_exec_data (abfd)->exec_flags;
3126
3127 /* Oh joys. Ram some of the BSS data into the DATA section
3128 to be compatable with how the hp linker makes objects
3129 (saves memory space). */
3130 tmp = exec_header.exec_dsize;
3131 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3132 exec_header.exec_bsize -= (tmp - exec_header.exec_dsize);
3133 if (exec_header.exec_bsize < 0)
3134 exec_header.exec_bsize = 0;
3135 exec_header.exec_dsize = tmp;
3136
3137 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
3138 SEEK_SET) < 0)
3139 return false;
3140
3141 if (bfd_write ((PTR) &exec_header, AUX_HDR_SIZE, 1, abfd)
3142 != AUX_HDR_SIZE)
3143 return false;
3144 }
3145 return true;
3146 }
3147
3148 /* Finally, scribble out the various headers to the disk. */
3149
3150 static boolean
3151 som_write_headers (abfd)
3152 bfd *abfd;
3153 {
3154 int num_spaces = som_count_spaces (abfd);
3155 int i;
3156 int subspace_index = 0;
3157 file_ptr location;
3158 asection *section;
3159
3160 /* Subspaces are written first so that we can set up information
3161 about them in their containing spaces as the subspace is written. */
3162
3163 /* Seek to the start of the subspace dictionary records. */
3164 location = obj_som_file_hdr (abfd)->subspace_location;
3165 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3166 return false;
3167
3168 section = abfd->sections;
3169 /* Now for each loadable space write out records for its subspaces. */
3170 for (i = 0; i < num_spaces; i++)
3171 {
3172 asection *subsection;
3173
3174 /* Find a space. */
3175 while (!som_is_space (section))
3176 section = section->next;
3177
3178 /* Now look for all its subspaces. */
3179 for (subsection = abfd->sections;
3180 subsection != NULL;
3181 subsection = subsection->next)
3182 {
3183
3184 /* Skip any section which does not correspond to a space
3185 or subspace. Or does not have SEC_ALLOC set (and therefore
3186 has no real bits on the disk). */
3187 if (!som_is_subspace (subsection)
3188 || !som_is_container (section, subsection)
3189 || (subsection->flags & SEC_ALLOC) == 0)
3190 continue;
3191
3192 /* If this is the first subspace for this space, then save
3193 the index of the subspace in its containing space. Also
3194 set "is_loadable" in the containing space. */
3195
3196 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3197 {
3198 som_section_data (section)->space_dict->is_loadable = 1;
3199 som_section_data (section)->space_dict->subspace_index
3200 = subspace_index;
3201 }
3202
3203 /* Increment the number of subspaces seen and the number of
3204 subspaces contained within the current space. */
3205 subspace_index++;
3206 som_section_data (section)->space_dict->subspace_quantity++;
3207
3208 /* Mark the index of the current space within the subspace's
3209 dictionary record. */
3210 som_section_data (subsection)->subspace_dict->space_index = i;
3211
3212 /* Dump the current subspace header. */
3213 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3214 sizeof (struct subspace_dictionary_record), 1, abfd)
3215 != sizeof (struct subspace_dictionary_record))
3216 return false;
3217 }
3218 /* Goto the next section. */
3219 section = section->next;
3220 }
3221
3222 /* Now repeat the process for unloadable subspaces. */
3223 section = abfd->sections;
3224 /* Now for each space write out records for its subspaces. */
3225 for (i = 0; i < num_spaces; i++)
3226 {
3227 asection *subsection;
3228
3229 /* Find a space. */
3230 while (!som_is_space (section))
3231 section = section->next;
3232
3233 /* Now look for all its subspaces. */
3234 for (subsection = abfd->sections;
3235 subsection != NULL;
3236 subsection = subsection->next)
3237 {
3238
3239 /* Skip any section which does not correspond to a space or
3240 subspace, or which SEC_ALLOC set (and therefore handled
3241 in the loadable spaces/subspaces code above). */
3242
3243 if (!som_is_subspace (subsection)
3244 || !som_is_container (section, subsection)
3245 || (subsection->flags & SEC_ALLOC) != 0)
3246 continue;
3247
3248 /* If this is the first subspace for this space, then save
3249 the index of the subspace in its containing space. Clear
3250 "is_loadable". */
3251
3252 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3253 {
3254 som_section_data (section)->space_dict->is_loadable = 0;
3255 som_section_data (section)->space_dict->subspace_index
3256 = subspace_index;
3257 }
3258
3259 /* Increment the number of subspaces seen and the number of
3260 subspaces contained within the current space. */
3261 som_section_data (section)->space_dict->subspace_quantity++;
3262 subspace_index++;
3263
3264 /* Mark the index of the current space within the subspace's
3265 dictionary record. */
3266 som_section_data (subsection)->subspace_dict->space_index = i;
3267
3268 /* Dump this subspace header. */
3269 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3270 sizeof (struct subspace_dictionary_record), 1, abfd)
3271 != sizeof (struct subspace_dictionary_record))
3272 return false;
3273 }
3274 /* Goto the next section. */
3275 section = section->next;
3276 }
3277
3278 /* All the subspace dictiondary records are written, and all the
3279 fields are set up in the space dictionary records.
3280
3281 Seek to the right location and start writing the space
3282 dictionary records. */
3283 location = obj_som_file_hdr (abfd)->space_location;
3284 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3285 return false;
3286
3287 section = abfd->sections;
3288 for (i = 0; i < num_spaces; i++)
3289 {
3290
3291 /* Find a space. */
3292 while (!som_is_space (section))
3293 section = section->next;
3294
3295 /* Dump its header */
3296 if (bfd_write ((PTR) som_section_data (section)->space_dict,
3297 sizeof (struct space_dictionary_record), 1, abfd)
3298 != sizeof (struct space_dictionary_record))
3299 return false;
3300
3301 /* Goto the next section. */
3302 section = section->next;
3303 }
3304
3305 /* FIXME. This should really be conditional based on whether or not
3306 PA1.1 instructions/registers have been used.
3307
3308 Setting of the system_id has to happen very late now that copying of
3309 BFD private data happens *after* section contents are set. */
3310 if (abfd->flags & (EXEC_P | DYNAMIC))
3311 obj_som_file_hdr(abfd)->system_id = obj_som_exec_data (abfd)->system_id;
3312 else
3313 obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC1_0;
3314
3315 /* Only thing left to do is write out the file header. It is always
3316 at location zero. Seek there and write it. */
3317 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0)
3318 return false;
3319 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3320 sizeof (struct header), 1, abfd)
3321 != sizeof (struct header))
3322 return false;
3323 return true;
3324 }
3325
3326 /* Compute and return the checksum for a SOM file header. */
3327
3328 static unsigned long
3329 som_compute_checksum (abfd)
3330 bfd *abfd;
3331 {
3332 unsigned long checksum, count, i;
3333 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3334
3335 checksum = 0;
3336 count = sizeof (struct header) / sizeof (unsigned long);
3337 for (i = 0; i < count; i++)
3338 checksum ^= *(buffer + i);
3339
3340 return checksum;
3341 }
3342
3343 static void
3344 som_bfd_derive_misc_symbol_info (abfd, sym, info)
3345 bfd *abfd;
3346 asymbol *sym;
3347 struct som_misc_symbol_info *info;
3348 {
3349 /* Initialize. */
3350 memset (info, 0, sizeof (struct som_misc_symbol_info));
3351
3352 /* The HP SOM linker requires detailed type information about
3353 all symbols (including undefined symbols!). Unfortunately,
3354 the type specified in an import/export statement does not
3355 always match what the linker wants. Severe braindamage. */
3356
3357 /* Section symbols will not have a SOM symbol type assigned to
3358 them yet. Assign all section symbols type ST_DATA. */
3359 if (sym->flags & BSF_SECTION_SYM)
3360 info->symbol_type = ST_DATA;
3361 else
3362 {
3363 /* Common symbols must have scope SS_UNSAT and type
3364 ST_STORAGE or the linker will choke. */
3365 if (sym->section == &bfd_com_section)
3366 {
3367 info->symbol_scope = SS_UNSAT;
3368 info->symbol_type = ST_STORAGE;
3369 }
3370
3371 /* It is possible to have a symbol without an associated
3372 type. This happens if the user imported the symbol
3373 without a type and the symbol was never defined
3374 locally. If BSF_FUNCTION is set for this symbol, then
3375 assign it type ST_CODE (the HP linker requires undefined
3376 external functions to have type ST_CODE rather than ST_ENTRY). */
3377 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3378 && sym->section == &bfd_und_section
3379 && sym->flags & BSF_FUNCTION)
3380 info->symbol_type = ST_CODE;
3381
3382 /* Handle function symbols which were defined in this file.
3383 They should have type ST_ENTRY. Also retrieve the argument
3384 relocation bits from the SOM backend information. */
3385 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3386 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3387 && (sym->flags & BSF_FUNCTION))
3388 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3389 && (sym->flags & BSF_FUNCTION)))
3390 {
3391 info->symbol_type = ST_ENTRY;
3392 info->arg_reloc = som_symbol_data (sym)->tc_data.hppa_arg_reloc;
3393 }
3394
3395 /* If the type is unknown at this point, it should be
3396 ST_DATA (functions were handled as special cases above). */
3397 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3398 info->symbol_type = ST_DATA;
3399
3400 /* From now on it's a very simple mapping. */
3401 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3402 info->symbol_type = ST_ABSOLUTE;
3403 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3404 info->symbol_type = ST_CODE;
3405 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3406 info->symbol_type = ST_DATA;
3407 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3408 info->symbol_type = ST_MILLICODE;
3409 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3410 info->symbol_type = ST_PLABEL;
3411 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3412 info->symbol_type = ST_PRI_PROG;
3413 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3414 info->symbol_type = ST_SEC_PROG;
3415 }
3416
3417 /* Now handle the symbol's scope. Exported data which is not
3418 in the common section has scope SS_UNIVERSAL. Note scope
3419 of common symbols was handled earlier! */
3420 if (sym->flags & BSF_EXPORT && sym->section != &bfd_com_section)
3421 info->symbol_scope = SS_UNIVERSAL;
3422 /* Any undefined symbol at this point has a scope SS_UNSAT. */
3423 else if (sym->section == &bfd_und_section)
3424 info->symbol_scope = SS_UNSAT;
3425 /* Anything else which is not in the common section has scope
3426 SS_LOCAL. */
3427 else if (sym->section != &bfd_com_section)
3428 info->symbol_scope = SS_LOCAL;
3429
3430 /* Now set the symbol_info field. It has no real meaning
3431 for undefined or common symbols, but the HP linker will
3432 choke if it's not set to some "reasonable" value. We
3433 use zero as a reasonable value. */
3434 if (sym->section == &bfd_com_section || sym->section == &bfd_und_section
3435 || sym->section == &bfd_abs_section)
3436 info->symbol_info = 0;
3437 /* For all other symbols, the symbol_info field contains the
3438 subspace index of the space this symbol is contained in. */
3439 else
3440 info->symbol_info = sym->section->target_index;
3441
3442 /* Set the symbol's value. */
3443 info->symbol_value = sym->value + sym->section->vma;
3444 }
3445
3446 /* Build and write, in one big chunk, the entire symbol table for
3447 this BFD. */
3448
3449 static boolean
3450 som_build_and_write_symbol_table (abfd)
3451 bfd *abfd;
3452 {
3453 unsigned int num_syms = bfd_get_symcount (abfd);
3454 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3455 asymbol **bfd_syms = bfd_get_outsymbols (abfd);
3456 struct symbol_dictionary_record *som_symtab = NULL;
3457 int i, symtab_size;
3458
3459 /* Compute total symbol table size and allocate a chunk of memory
3460 to hold the symbol table as we build it. */
3461 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3462 som_symtab = (struct symbol_dictionary_record *) malloc (symtab_size);
3463 if (som_symtab == NULL && symtab_size != 0)
3464 {
3465 bfd_set_error (bfd_error_no_memory);
3466 goto error_return;
3467 }
3468 memset (som_symtab, 0, symtab_size);
3469
3470 /* Walk over each symbol. */
3471 for (i = 0; i < num_syms; i++)
3472 {
3473 struct som_misc_symbol_info info;
3474
3475 /* This is really an index into the symbol strings table.
3476 By the time we get here, the index has already been
3477 computed and stored into the name field in the BFD symbol. */
3478 som_symtab[i].name.n_strx = (int) bfd_syms[i]->name;
3479
3480 /* Derive SOM information from the BFD symbol. */
3481 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
3482
3483 /* Now use it. */
3484 som_symtab[i].symbol_type = info.symbol_type;
3485 som_symtab[i].symbol_scope = info.symbol_scope;
3486 som_symtab[i].arg_reloc = info.arg_reloc;
3487 som_symtab[i].symbol_info = info.symbol_info;
3488 som_symtab[i].symbol_value = info.symbol_value;
3489 }
3490
3491 /* Everything is ready, seek to the right location and
3492 scribble out the symbol table. */
3493 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3494 return false;
3495
3496 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3497 goto error_return;
3498
3499 if (som_symtab != NULL)
3500 free (som_symtab);
3501 return true;
3502 error_return:
3503 if (som_symtab != NULL)
3504 free (som_symtab);
3505 return false;
3506 }
3507
3508 /* Write an object in SOM format. */
3509
3510 static boolean
3511 som_write_object_contents (abfd)
3512 bfd *abfd;
3513 {
3514 if (abfd->output_has_begun == false)
3515 {
3516 /* Set up fixed parts of the file, space, and subspace headers.
3517 Notify the world that output has begun. */
3518 som_prep_headers (abfd);
3519 abfd->output_has_begun = true;
3520 /* Start writing the object file. This include all the string
3521 tables, fixup streams, and other portions of the object file. */
3522 som_begin_writing (abfd);
3523 }
3524
3525 /* Now that the symbol table information is complete, build and
3526 write the symbol table. */
3527 if (som_build_and_write_symbol_table (abfd) == false)
3528 return false;
3529
3530 /* Compute the checksum for the file header just before writing
3531 the header to disk. */
3532 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3533 return (som_write_headers (abfd));
3534 }
3535
3536 \f
3537 /* Read and save the string table associated with the given BFD. */
3538
3539 static boolean
3540 som_slurp_string_table (abfd)
3541 bfd *abfd;
3542 {
3543 char *stringtab;
3544
3545 /* Use the saved version if its available. */
3546 if (obj_som_stringtab (abfd) != NULL)
3547 return true;
3548
3549 /* I don't think this can currently happen, and I'm not sure it should
3550 really be an error, but it's better than getting unpredictable results
3551 from the host's malloc when passed a size of zero. */
3552 if (obj_som_stringtab_size (abfd) == 0)
3553 {
3554 bfd_set_error (bfd_error_no_symbols);
3555 return false;
3556 }
3557
3558 /* Allocate and read in the string table. */
3559 stringtab = malloc (obj_som_stringtab_size (abfd));
3560 if (stringtab == NULL)
3561 {
3562 bfd_set_error (bfd_error_no_memory);
3563 return false;
3564 }
3565
3566 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3567 return false;
3568
3569 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3570 != obj_som_stringtab_size (abfd))
3571 return false;
3572
3573 /* Save our results and return success. */
3574 obj_som_stringtab (abfd) = stringtab;
3575 return true;
3576 }
3577
3578 /* Return the amount of data (in bytes) required to hold the symbol
3579 table for this object. */
3580
3581 static long
3582 som_get_symtab_upper_bound (abfd)
3583 bfd *abfd;
3584 {
3585 if (!som_slurp_symbol_table (abfd))
3586 return -1;
3587
3588 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
3589 }
3590
3591 /* Convert from a SOM subspace index to a BFD section. */
3592
3593 static asection *
3594 bfd_section_from_som_symbol (abfd, symbol)
3595 bfd *abfd;
3596 struct symbol_dictionary_record *symbol;
3597 {
3598 asection *section;
3599
3600 /* The meaning of the symbol_info field changes for functions
3601 within executables. So only use the quick symbol_info mapping for
3602 incomplete objects and non-function symbols in executables. */
3603 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
3604 || (symbol->symbol_type != ST_ENTRY
3605 && symbol->symbol_type != ST_PRI_PROG
3606 && symbol->symbol_type != ST_SEC_PROG
3607 && symbol->symbol_type != ST_MILLICODE))
3608 {
3609 unsigned int index = symbol->symbol_info;
3610 for (section = abfd->sections; section != NULL; section = section->next)
3611 if (section->target_index == index)
3612 return section;
3613
3614 /* Should never happen. */
3615 abort();
3616 }
3617 else
3618 {
3619 unsigned int value = symbol->symbol_value;
3620
3621 /* For executables we will have to use the symbol's address and
3622 find out what section would contain that address. Yuk. */
3623 for (section = abfd->sections; section; section = section->next)
3624 {
3625 if (value >= section->vma
3626 && value <= section->vma + section->_cooked_size)
3627 return section;
3628 }
3629
3630 /* Should never happen. */
3631 abort ();
3632 }
3633 }
3634
3635 /* Read and save the symbol table associated with the given BFD. */
3636
3637 static unsigned int
3638 som_slurp_symbol_table (abfd)
3639 bfd *abfd;
3640 {
3641 int symbol_count = bfd_get_symcount (abfd);
3642 int symsize = sizeof (struct symbol_dictionary_record);
3643 char *stringtab;
3644 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
3645 som_symbol_type *sym, *symbase;
3646
3647 /* Return saved value if it exists. */
3648 if (obj_som_symtab (abfd) != NULL)
3649 goto successful_return;
3650
3651 /* Special case. This is *not* an error. */
3652 if (symbol_count == 0)
3653 goto successful_return;
3654
3655 if (!som_slurp_string_table (abfd))
3656 goto error_return;
3657
3658 stringtab = obj_som_stringtab (abfd);
3659
3660 symbase = (som_symbol_type *)
3661 malloc (symbol_count * sizeof (som_symbol_type));
3662 if (symbase == NULL)
3663 {
3664 bfd_set_error (bfd_error_no_memory);
3665 goto error_return;
3666 }
3667
3668 /* Read in the external SOM representation. */
3669 buf = malloc (symbol_count * symsize);
3670 if (buf == NULL && symbol_count * symsize != 0)
3671 {
3672 bfd_set_error (bfd_error_no_memory);
3673 goto error_return;
3674 }
3675 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
3676 goto error_return;
3677 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
3678 != symbol_count * symsize)
3679 goto error_return;
3680
3681 /* Iterate over all the symbols and internalize them. */
3682 endbufp = buf + symbol_count;
3683 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
3684 {
3685
3686 /* I don't think we care about these. */
3687 if (bufp->symbol_type == ST_SYM_EXT
3688 || bufp->symbol_type == ST_ARG_EXT)
3689 continue;
3690
3691 /* Set some private data we care about. */
3692 if (bufp->symbol_type == ST_NULL)
3693 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3694 else if (bufp->symbol_type == ST_ABSOLUTE)
3695 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
3696 else if (bufp->symbol_type == ST_DATA)
3697 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
3698 else if (bufp->symbol_type == ST_CODE)
3699 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
3700 else if (bufp->symbol_type == ST_PRI_PROG)
3701 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
3702 else if (bufp->symbol_type == ST_SEC_PROG)
3703 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
3704 else if (bufp->symbol_type == ST_ENTRY)
3705 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
3706 else if (bufp->symbol_type == ST_MILLICODE)
3707 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
3708 else if (bufp->symbol_type == ST_PLABEL)
3709 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
3710 else
3711 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3712 som_symbol_data (sym)->tc_data.hppa_arg_reloc = bufp->arg_reloc;
3713
3714 /* Some reasonable defaults. */
3715 sym->symbol.the_bfd = abfd;
3716 sym->symbol.name = bufp->name.n_strx + stringtab;
3717 sym->symbol.value = bufp->symbol_value;
3718 sym->symbol.section = 0;
3719 sym->symbol.flags = 0;
3720
3721 switch (bufp->symbol_type)
3722 {
3723 case ST_ENTRY:
3724 case ST_PRI_PROG:
3725 case ST_SEC_PROG:
3726 case ST_MILLICODE:
3727 sym->symbol.flags |= BSF_FUNCTION;
3728 sym->symbol.value &= ~0x3;
3729 break;
3730
3731 case ST_STUB:
3732 case ST_CODE:
3733 sym->symbol.value &= ~0x3;
3734
3735 default:
3736 break;
3737 }
3738
3739 /* Handle scoping and section information. */
3740 switch (bufp->symbol_scope)
3741 {
3742 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
3743 so the section associated with this symbol can't be known. */
3744 case SS_EXTERNAL:
3745 if (bufp->symbol_type != ST_STORAGE)
3746 sym->symbol.section = &bfd_und_section;
3747 else
3748 sym->symbol.section = &bfd_com_section;
3749 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3750 break;
3751
3752 case SS_UNSAT:
3753 if (bufp->symbol_type != ST_STORAGE)
3754 sym->symbol.section = &bfd_und_section;
3755 else
3756 sym->symbol.section = &bfd_com_section;
3757 break;
3758
3759 case SS_UNIVERSAL:
3760 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3761 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3762 sym->symbol.value -= sym->symbol.section->vma;
3763 break;
3764
3765 #if 0
3766 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
3767 Sound dumb? It is. */
3768 case SS_GLOBAL:
3769 #endif
3770 case SS_LOCAL:
3771 sym->symbol.flags |= BSF_LOCAL;
3772 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3773 sym->symbol.value -= sym->symbol.section->vma;
3774 break;
3775 }
3776
3777 /* Mark section symbols and symbols used by the debugger. */
3778 if (sym->symbol.name[0] == '$'
3779 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$')
3780 sym->symbol.flags |= BSF_SECTION_SYM;
3781 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
3782 {
3783 sym->symbol.flags |= BSF_SECTION_SYM;
3784 sym->symbol.name = sym->symbol.section->name;
3785 }
3786 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
3787 sym->symbol.flags |= BSF_DEBUGGING;
3788
3789 /* Note increment at bottom of loop, since we skip some symbols
3790 we can not include it as part of the for statement. */
3791 sym++;
3792 }
3793
3794 /* Save our results and return success. */
3795 obj_som_symtab (abfd) = symbase;
3796 successful_return:
3797 if (buf != NULL)
3798 free (buf);
3799 return (true);
3800
3801 error_return:
3802 if (buf != NULL)
3803 free (buf);
3804 return false;
3805 }
3806
3807 /* Canonicalize a SOM symbol table. Return the number of entries
3808 in the symbol table. */
3809
3810 static long
3811 som_get_symtab (abfd, location)
3812 bfd *abfd;
3813 asymbol **location;
3814 {
3815 int i;
3816 som_symbol_type *symbase;
3817
3818 if (!som_slurp_symbol_table (abfd))
3819 return -1;
3820
3821 i = bfd_get_symcount (abfd);
3822 symbase = obj_som_symtab (abfd);
3823
3824 for (; i > 0; i--, location++, symbase++)
3825 *location = &symbase->symbol;
3826
3827 /* Final null pointer. */
3828 *location = 0;
3829 return (bfd_get_symcount (abfd));
3830 }
3831
3832 /* Make a SOM symbol. There is nothing special to do here. */
3833
3834 static asymbol *
3835 som_make_empty_symbol (abfd)
3836 bfd *abfd;
3837 {
3838 som_symbol_type *new =
3839 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
3840 if (new == NULL)
3841 {
3842 bfd_set_error (bfd_error_no_memory);
3843 return 0;
3844 }
3845 new->symbol.the_bfd = abfd;
3846
3847 return &new->symbol;
3848 }
3849
3850 /* Print symbol information. */
3851
3852 static void
3853 som_print_symbol (ignore_abfd, afile, symbol, how)
3854 bfd *ignore_abfd;
3855 PTR afile;
3856 asymbol *symbol;
3857 bfd_print_symbol_type how;
3858 {
3859 FILE *file = (FILE *) afile;
3860 switch (how)
3861 {
3862 case bfd_print_symbol_name:
3863 fprintf (file, "%s", symbol->name);
3864 break;
3865 case bfd_print_symbol_more:
3866 fprintf (file, "som ");
3867 fprintf_vma (file, symbol->value);
3868 fprintf (file, " %lx", (long) symbol->flags);
3869 break;
3870 case bfd_print_symbol_all:
3871 {
3872 CONST char *section_name;
3873 section_name = symbol->section ? symbol->section->name : "(*none*)";
3874 bfd_print_symbol_vandf ((PTR) file, symbol);
3875 fprintf (file, " %s\t%s", section_name, symbol->name);
3876 break;
3877 }
3878 }
3879 }
3880
3881 static boolean
3882 som_bfd_is_local_label (abfd, sym)
3883 bfd *abfd;
3884 asymbol *sym;
3885 {
3886 return (sym->name[0] == 'L' && sym->name[1] == '$');
3887 }
3888
3889 /* Count or process variable-length SOM fixup records.
3890
3891 To avoid code duplication we use this code both to compute the number
3892 of relocations requested by a stream, and to internalize the stream.
3893
3894 When computing the number of relocations requested by a stream the
3895 variables rptr, section, and symbols have no meaning.
3896
3897 Return the number of relocations requested by the fixup stream. When
3898 not just counting
3899
3900 This needs at least two or three more passes to get it cleaned up. */
3901
3902 static unsigned int
3903 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
3904 unsigned char *fixup;
3905 unsigned int end;
3906 arelent *internal_relocs;
3907 asection *section;
3908 asymbol **symbols;
3909 boolean just_count;
3910 {
3911 unsigned int op, varname;
3912 unsigned char *end_fixups = &fixup[end];
3913 const struct fixup_format *fp;
3914 char *cp;
3915 unsigned char *save_fixup;
3916 int variables[26], stack[20], c, v, count, prev_fixup, *sp;
3917 const int *subop;
3918 arelent *rptr= internal_relocs;
3919 unsigned int offset = just_count ? 0 : section->vma;
3920
3921 #define var(c) variables[(c) - 'A']
3922 #define push(v) (*sp++ = (v))
3923 #define pop() (*--sp)
3924 #define emptystack() (sp == stack)
3925
3926 som_initialize_reloc_queue (reloc_queue);
3927 memset (variables, 0, sizeof (variables));
3928 memset (stack, 0, sizeof (stack));
3929 count = 0;
3930 prev_fixup = 0;
3931 sp = stack;
3932
3933 while (fixup < end_fixups)
3934 {
3935
3936 /* Save pointer to the start of this fixup. We'll use
3937 it later to determine if it is necessary to put this fixup
3938 on the queue. */
3939 save_fixup = fixup;
3940
3941 /* Get the fixup code and its associated format. */
3942 op = *fixup++;
3943 fp = &som_fixup_formats[op];
3944
3945 /* Handle a request for a previous fixup. */
3946 if (*fp->format == 'P')
3947 {
3948 /* Get pointer to the beginning of the prev fixup, move
3949 the repeated fixup to the head of the queue. */
3950 fixup = reloc_queue[fp->D].reloc;
3951 som_reloc_queue_fix (reloc_queue, fp->D);
3952 prev_fixup = 1;
3953
3954 /* Get the fixup code and its associated format. */
3955 op = *fixup++;
3956 fp = &som_fixup_formats[op];
3957 }
3958
3959 /* If this fixup will be passed to BFD, set some reasonable defaults. */
3960 if (! just_count
3961 && som_hppa_howto_table[op].type != R_NO_RELOCATION
3962 && som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
3963 {
3964 rptr->address = offset;
3965 rptr->howto = &som_hppa_howto_table[op];
3966 rptr->addend = 0;
3967 rptr->sym_ptr_ptr = bfd_abs_section.symbol_ptr_ptr;
3968 }
3969
3970 /* Set default input length to 0. Get the opcode class index
3971 into D. */
3972 var ('L') = 0;
3973 var ('D') = fp->D;
3974
3975 /* Get the opcode format. */
3976 cp = fp->format;
3977
3978 /* Process the format string. Parsing happens in two phases,
3979 parse RHS, then assign to LHS. Repeat until no more
3980 characters in the format string. */
3981 while (*cp)
3982 {
3983 /* The variable this pass is going to compute a value for. */
3984 varname = *cp++;
3985
3986 /* Start processing RHS. Continue until a NULL or '=' is found. */
3987 do
3988 {
3989 c = *cp++;
3990
3991 /* If this is a variable, push it on the stack. */
3992 if (isupper (c))
3993 push (var (c));
3994
3995 /* If this is a lower case letter, then it represents
3996 additional data from the fixup stream to be pushed onto
3997 the stack. */
3998 else if (islower (c))
3999 {
4000 for (v = 0; c > 'a'; --c)
4001 v = (v << 8) | *fixup++;
4002 push (v);
4003 }
4004
4005 /* A decimal constant. Push it on the stack. */
4006 else if (isdigit (c))
4007 {
4008 v = c - '0';
4009 while (isdigit (*cp))
4010 v = (v * 10) + (*cp++ - '0');
4011 push (v);
4012 }
4013 else
4014
4015 /* An operator. Pop two two values from the stack and
4016 use them as operands to the given operation. Push
4017 the result of the operation back on the stack. */
4018 switch (c)
4019 {
4020 case '+':
4021 v = pop ();
4022 v += pop ();
4023 push (v);
4024 break;
4025 case '*':
4026 v = pop ();
4027 v *= pop ();
4028 push (v);
4029 break;
4030 case '<':
4031 v = pop ();
4032 v = pop () << v;
4033 push (v);
4034 break;
4035 default:
4036 abort ();
4037 }
4038 }
4039 while (*cp && *cp != '=');
4040
4041 /* Move over the equal operator. */
4042 cp++;
4043
4044 /* Pop the RHS off the stack. */
4045 c = pop ();
4046
4047 /* Perform the assignment. */
4048 var (varname) = c;
4049
4050 /* Handle side effects. and special 'O' stack cases. */
4051 switch (varname)
4052 {
4053 /* Consume some bytes from the input space. */
4054 case 'L':
4055 offset += c;
4056 break;
4057 /* A symbol to use in the relocation. Make a note
4058 of this if we are not just counting. */
4059 case 'S':
4060 if (! just_count)
4061 rptr->sym_ptr_ptr = &symbols[c];
4062 break;
4063 /* Handle the linker expression stack. */
4064 case 'O':
4065 switch (op)
4066 {
4067 case R_COMP1:
4068 subop = comp1_opcodes;
4069 break;
4070 case R_COMP2:
4071 subop = comp2_opcodes;
4072 break;
4073 case R_COMP3:
4074 subop = comp3_opcodes;
4075 break;
4076 default:
4077 abort ();
4078 }
4079 while (*subop <= (unsigned char) c)
4080 ++subop;
4081 --subop;
4082 break;
4083 default:
4084 break;
4085 }
4086 }
4087
4088 /* If we used a previous fixup, clean up after it. */
4089 if (prev_fixup)
4090 {
4091 fixup = save_fixup + 1;
4092 prev_fixup = 0;
4093 }
4094 /* Queue it. */
4095 else if (fixup > save_fixup + 1)
4096 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4097
4098 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4099 fixups to BFD. */
4100 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4101 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4102 {
4103 /* Done with a single reloction. Loop back to the top. */
4104 if (! just_count)
4105 {
4106 rptr->addend = var ('V');
4107 rptr++;
4108 }
4109 count++;
4110 /* Now that we've handled a "full" relocation, reset
4111 some state. */
4112 memset (variables, 0, sizeof (variables));
4113 memset (stack, 0, sizeof (stack));
4114 }
4115 }
4116 return count;
4117
4118 #undef var
4119 #undef push
4120 #undef pop
4121 #undef emptystack
4122 }
4123
4124 /* Read in the relocs (aka fixups in SOM terms) for a section.
4125
4126 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4127 set to true to indicate it only needs a count of the number
4128 of actual relocations. */
4129
4130 static boolean
4131 som_slurp_reloc_table (abfd, section, symbols, just_count)
4132 bfd *abfd;
4133 asection *section;
4134 asymbol **symbols;
4135 boolean just_count;
4136 {
4137 char *external_relocs;
4138 unsigned int fixup_stream_size;
4139 arelent *internal_relocs;
4140 unsigned int num_relocs;
4141
4142 fixup_stream_size = som_section_data (section)->reloc_size;
4143 /* If there were no relocations, then there is nothing to do. */
4144 if (section->reloc_count == 0)
4145 return true;
4146
4147 /* If reloc_count is -1, then the relocation stream has not been
4148 parsed. We must do so now to know how many relocations exist. */
4149 if (section->reloc_count == -1)
4150 {
4151 external_relocs = (char *) malloc (fixup_stream_size);
4152 if (external_relocs == (char *) NULL)
4153 {
4154 bfd_set_error (bfd_error_no_memory);
4155 return false;
4156 }
4157 /* Read in the external forms. */
4158 if (bfd_seek (abfd,
4159 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4160 SEEK_SET)
4161 != 0)
4162 return false;
4163 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
4164 != fixup_stream_size)
4165 return false;
4166
4167 /* Let callers know how many relocations found.
4168 also save the relocation stream as we will
4169 need it again. */
4170 section->reloc_count = som_set_reloc_info (external_relocs,
4171 fixup_stream_size,
4172 NULL, NULL, NULL, true);
4173
4174 som_section_data (section)->reloc_stream = external_relocs;
4175 }
4176
4177 /* If the caller only wanted a count, then return now. */
4178 if (just_count)
4179 return true;
4180
4181 num_relocs = section->reloc_count;
4182 external_relocs = som_section_data (section)->reloc_stream;
4183 /* Return saved information about the relocations if it is available. */
4184 if (section->relocation != (arelent *) NULL)
4185 return true;
4186
4187 internal_relocs = (arelent *) malloc (num_relocs * sizeof (arelent));
4188 if (internal_relocs == (arelent *) NULL)
4189 {
4190 bfd_set_error (bfd_error_no_memory);
4191 return false;
4192 }
4193
4194 /* Process and internalize the relocations. */
4195 som_set_reloc_info (external_relocs, fixup_stream_size,
4196 internal_relocs, section, symbols, false);
4197
4198 /* Save our results and return success. */
4199 section->relocation = internal_relocs;
4200 return (true);
4201 }
4202
4203 /* Return the number of bytes required to store the relocation
4204 information associated with the given section. */
4205
4206 static long
4207 som_get_reloc_upper_bound (abfd, asect)
4208 bfd *abfd;
4209 sec_ptr asect;
4210 {
4211 /* If section has relocations, then read in the relocation stream
4212 and parse it to determine how many relocations exist. */
4213 if (asect->flags & SEC_RELOC)
4214 {
4215 if (! som_slurp_reloc_table (abfd, asect, NULL, true))
4216 return false;
4217 return (asect->reloc_count + 1) * sizeof (arelent);
4218 }
4219 /* There are no relocations. */
4220 return 0;
4221 }
4222
4223 /* Convert relocations from SOM (external) form into BFD internal
4224 form. Return the number of relocations. */
4225
4226 static long
4227 som_canonicalize_reloc (abfd, section, relptr, symbols)
4228 bfd *abfd;
4229 sec_ptr section;
4230 arelent **relptr;
4231 asymbol **symbols;
4232 {
4233 arelent *tblptr;
4234 int count;
4235
4236 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
4237 return -1;
4238
4239 count = section->reloc_count;
4240 tblptr = section->relocation;
4241
4242 while (count--)
4243 *relptr++ = tblptr++;
4244
4245 *relptr = (arelent *) NULL;
4246 return section->reloc_count;
4247 }
4248
4249 extern bfd_target som_vec;
4250
4251 /* A hook to set up object file dependent section information. */
4252
4253 static boolean
4254 som_new_section_hook (abfd, newsect)
4255 bfd *abfd;
4256 asection *newsect;
4257 {
4258 newsect->used_by_bfd =
4259 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
4260 if (!newsect->used_by_bfd)
4261 {
4262 bfd_set_error (bfd_error_no_memory);
4263 return false;
4264 }
4265 newsect->alignment_power = 3;
4266
4267 /* We allow more than three sections internally */
4268 return true;
4269 }
4270
4271 /* Copy any private info we understand from the input section
4272 to the output section. */
4273 static boolean
4274 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
4275 bfd *ibfd;
4276 asection *isection;
4277 bfd *obfd;
4278 asection *osection;
4279 {
4280 /* One day we may try to grok other private data. */
4281 if (ibfd->xvec->flavour != bfd_target_som_flavour
4282 || obfd->xvec->flavour != bfd_target_som_flavour
4283 || (!som_is_space (isection) && !som_is_subspace (isection)))
4284 return false;
4285
4286 som_section_data (osection)->copy_data
4287 = (struct som_copyable_section_data_struct *)
4288 bfd_zalloc (obfd, sizeof (struct som_copyable_section_data_struct));
4289 if (som_section_data (osection)->copy_data == NULL)
4290 {
4291 bfd_set_error (bfd_error_no_memory);
4292 return false;
4293 }
4294
4295 memcpy (som_section_data (osection)->copy_data,
4296 som_section_data (isection)->copy_data,
4297 sizeof (struct som_copyable_section_data_struct));
4298
4299 /* Reparent if necessary. */
4300 if (som_section_data (osection)->copy_data->container)
4301 som_section_data (osection)->copy_data->container =
4302 som_section_data (osection)->copy_data->container->output_section;
4303
4304 return true;
4305 }
4306
4307 /* Copy any private info we understand from the input bfd
4308 to the output bfd. */
4309
4310 static boolean
4311 som_bfd_copy_private_bfd_data (ibfd, obfd)
4312 bfd *ibfd, *obfd;
4313 {
4314 /* One day we may try to grok other private data. */
4315 if (ibfd->xvec->flavour != bfd_target_som_flavour
4316 || obfd->xvec->flavour != bfd_target_som_flavour)
4317 return false;
4318
4319 /* Allocate some memory to hold the data we need. */
4320 obj_som_exec_data (obfd) = (struct som_exec_data *)
4321 bfd_zalloc (obfd, sizeof (struct som_exec_data));
4322 if (obj_som_exec_data (obfd) == NULL)
4323 {
4324 bfd_set_error (bfd_error_no_memory);
4325 return false;
4326 }
4327
4328 /* Now copy the data. */
4329 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
4330 sizeof (struct som_exec_data));
4331
4332 return true;
4333 }
4334
4335 /* Set backend info for sections which can not be described
4336 in the BFD data structures. */
4337
4338 boolean
4339 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
4340 asection *section;
4341 int defined;
4342 int private;
4343 unsigned int sort_key;
4344 int spnum;
4345 {
4346 /* Allocate memory to hold the magic information. */
4347 if (som_section_data (section)->copy_data == NULL)
4348 {
4349 som_section_data (section)->copy_data
4350 = (struct som_copyable_section_data_struct *)
4351 bfd_zalloc (section->owner,
4352 sizeof (struct som_copyable_section_data_struct));
4353 if (som_section_data (section)->copy_data == NULL)
4354 {
4355 bfd_set_error (bfd_error_no_memory);
4356 return false;
4357 }
4358 }
4359 som_section_data (section)->copy_data->sort_key = sort_key;
4360 som_section_data (section)->copy_data->is_defined = defined;
4361 som_section_data (section)->copy_data->is_private = private;
4362 som_section_data (section)->copy_data->container = section;
4363 som_section_data (section)->copy_data->space_number = spnum;
4364 return true;
4365 }
4366
4367 /* Set backend info for subsections which can not be described
4368 in the BFD data structures. */
4369
4370 boolean
4371 bfd_som_set_subsection_attributes (section, container, access,
4372 sort_key, quadrant)
4373 asection *section;
4374 asection *container;
4375 int access;
4376 unsigned int sort_key;
4377 int quadrant;
4378 {
4379 /* Allocate memory to hold the magic information. */
4380 if (som_section_data (section)->copy_data == NULL)
4381 {
4382 som_section_data (section)->copy_data
4383 = (struct som_copyable_section_data_struct *)
4384 bfd_zalloc (section->owner,
4385 sizeof (struct som_copyable_section_data_struct));
4386 if (som_section_data (section)->copy_data == NULL)
4387 {
4388 bfd_set_error (bfd_error_no_memory);
4389 return false;
4390 }
4391 }
4392 som_section_data (section)->copy_data->sort_key = sort_key;
4393 som_section_data (section)->copy_data->access_control_bits = access;
4394 som_section_data (section)->copy_data->quadrant = quadrant;
4395 som_section_data (section)->copy_data->container = container;
4396 return true;
4397 }
4398
4399 /* Set the full SOM symbol type. SOM needs far more symbol information
4400 than any other object file format I'm aware of. It is mandatory
4401 to be able to know if a symbol is an entry point, millicode, data,
4402 code, absolute, storage request, or procedure label. If you get
4403 the symbol type wrong your program will not link. */
4404
4405 void
4406 bfd_som_set_symbol_type (symbol, type)
4407 asymbol *symbol;
4408 unsigned int type;
4409 {
4410 som_symbol_data (symbol)->som_type = type;
4411 }
4412
4413 /* Attach 64bits of unwind information to a symbol (which hopefully
4414 is a function of some kind!). It would be better to keep this
4415 in the R_ENTRY relocation, but there is not enough space. */
4416
4417 void
4418 bfd_som_attach_unwind_info (symbol, unwind_desc)
4419 asymbol *symbol;
4420 char *unwind_desc;
4421 {
4422 som_symbol_data (symbol)->unwind = unwind_desc;
4423 }
4424
4425 /* Attach an auxiliary header to the BFD backend so that it may be
4426 written into the object file. */
4427 boolean
4428 bfd_som_attach_aux_hdr (abfd, type, string)
4429 bfd *abfd;
4430 int type;
4431 char *string;
4432 {
4433 if (type == VERSION_AUX_ID)
4434 {
4435 int len = strlen (string);
4436 int pad = 0;
4437
4438 if (len % 4)
4439 pad = (4 - (len % 4));
4440 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
4441 bfd_zalloc (abfd, sizeof (struct aux_id)
4442 + sizeof (unsigned int) + len + pad);
4443 if (!obj_som_version_hdr (abfd))
4444 {
4445 bfd_set_error (bfd_error_no_memory);
4446 return false;
4447 }
4448 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
4449 obj_som_version_hdr (abfd)->header_id.length = len + pad;
4450 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
4451 obj_som_version_hdr (abfd)->string_length = len;
4452 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
4453 }
4454 else if (type == COPYRIGHT_AUX_ID)
4455 {
4456 int len = strlen (string);
4457 int pad = 0;
4458
4459 if (len % 4)
4460 pad = (4 - (len % 4));
4461 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
4462 bfd_zalloc (abfd, sizeof (struct aux_id)
4463 + sizeof (unsigned int) + len + pad);
4464 if (!obj_som_copyright_hdr (abfd))
4465 {
4466 bfd_set_error (bfd_error_no_memory);
4467 return false;
4468 }
4469 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
4470 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
4471 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
4472 obj_som_copyright_hdr (abfd)->string_length = len;
4473 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
4474 }
4475 return true;
4476 }
4477
4478 static boolean
4479 som_get_section_contents (abfd, section, location, offset, count)
4480 bfd *abfd;
4481 sec_ptr section;
4482 PTR location;
4483 file_ptr offset;
4484 bfd_size_type count;
4485 {
4486 if (count == 0 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4487 return true;
4488 if ((bfd_size_type)(offset+count) > section->_raw_size
4489 || bfd_seek (abfd, (file_ptr)(section->filepos + offset), SEEK_SET) == -1
4490 || bfd_read (location, (bfd_size_type)1, count, abfd) != count)
4491 return (false); /* on error */
4492 return (true);
4493 }
4494
4495 static boolean
4496 som_set_section_contents (abfd, section, location, offset, count)
4497 bfd *abfd;
4498 sec_ptr section;
4499 PTR location;
4500 file_ptr offset;
4501 bfd_size_type count;
4502 {
4503 if (abfd->output_has_begun == false)
4504 {
4505 /* Set up fixed parts of the file, space, and subspace headers.
4506 Notify the world that output has begun. */
4507 som_prep_headers (abfd);
4508 abfd->output_has_begun = true;
4509 /* Start writing the object file. This include all the string
4510 tables, fixup streams, and other portions of the object file. */
4511 som_begin_writing (abfd);
4512 }
4513
4514 /* Only write subspaces which have "real" contents (eg. the contents
4515 are not generated at run time by the OS). */
4516 if (!som_is_subspace (section)
4517 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4518 return true;
4519
4520 /* Seek to the proper offset within the object file and write the
4521 data. */
4522 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
4523 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
4524 return false;
4525
4526 if (bfd_write ((PTR) location, 1, count, abfd) != count)
4527 return false;
4528 return true;
4529 }
4530
4531 static boolean
4532 som_set_arch_mach (abfd, arch, machine)
4533 bfd *abfd;
4534 enum bfd_architecture arch;
4535 unsigned long machine;
4536 {
4537 /* Allow any architecture to be supported by the SOM backend */
4538 return bfd_default_set_arch_mach (abfd, arch, machine);
4539 }
4540
4541 static boolean
4542 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4543 functionname_ptr, line_ptr)
4544 bfd *abfd;
4545 asection *section;
4546 asymbol **symbols;
4547 bfd_vma offset;
4548 CONST char **filename_ptr;
4549 CONST char **functionname_ptr;
4550 unsigned int *line_ptr;
4551 {
4552 fprintf (stderr, "som_find_nearest_line unimplemented\n");
4553 fflush (stderr);
4554 abort ();
4555 return (false);
4556 }
4557
4558 static int
4559 som_sizeof_headers (abfd, reloc)
4560 bfd *abfd;
4561 boolean reloc;
4562 {
4563 fprintf (stderr, "som_sizeof_headers unimplemented\n");
4564 fflush (stderr);
4565 abort ();
4566 return (0);
4567 }
4568
4569 /* Return the single-character symbol type corresponding to
4570 SOM section S, or '?' for an unknown SOM section. */
4571
4572 static char
4573 som_section_type (s)
4574 const char *s;
4575 {
4576 const struct section_to_type *t;
4577
4578 for (t = &stt[0]; t->section; t++)
4579 if (!strcmp (s, t->section))
4580 return t->type;
4581 return '?';
4582 }
4583
4584 static int
4585 som_decode_symclass (symbol)
4586 asymbol *symbol;
4587 {
4588 char c;
4589
4590 if (bfd_is_com_section (symbol->section))
4591 return 'C';
4592 if (symbol->section == &bfd_und_section)
4593 return 'U';
4594 if (symbol->section == &bfd_ind_section)
4595 return 'I';
4596 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
4597 return '?';
4598
4599 if (symbol->section == &bfd_abs_section)
4600 c = 'a';
4601 else if (symbol->section)
4602 c = som_section_type (symbol->section->name);
4603 else
4604 return '?';
4605 if (symbol->flags & BSF_GLOBAL)
4606 c = toupper (c);
4607 return c;
4608 }
4609
4610 /* Return information about SOM symbol SYMBOL in RET. */
4611
4612 static void
4613 som_get_symbol_info (ignore_abfd, symbol, ret)
4614 bfd *ignore_abfd;
4615 asymbol *symbol;
4616 symbol_info *ret;
4617 {
4618 ret->type = som_decode_symclass (symbol);
4619 if (ret->type != 'U')
4620 ret->value = symbol->value+symbol->section->vma;
4621 else
4622 ret->value = 0;
4623 ret->name = symbol->name;
4624 }
4625
4626 /* Count the number of symbols in the archive symbol table. Necessary
4627 so that we can allocate space for all the carsyms at once. */
4628
4629 static boolean
4630 som_bfd_count_ar_symbols (abfd, lst_header, count)
4631 bfd *abfd;
4632 struct lst_header *lst_header;
4633 symindex *count;
4634 {
4635 unsigned int i;
4636 unsigned int *hash_table = NULL;
4637 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4638
4639 hash_table =
4640 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4641 if (hash_table == NULL && lst_header->hash_size != 0)
4642 {
4643 bfd_set_error (bfd_error_no_memory);
4644 goto error_return;
4645 }
4646
4647 /* Don't forget to initialize the counter! */
4648 *count = 0;
4649
4650 /* Read in the hash table. The has table is an array of 32bit file offsets
4651 which point to the hash chains. */
4652 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4653 != lst_header->hash_size * 4)
4654 goto error_return;
4655
4656 /* Walk each chain counting the number of symbols found on that particular
4657 chain. */
4658 for (i = 0; i < lst_header->hash_size; i++)
4659 {
4660 struct lst_symbol_record lst_symbol;
4661
4662 /* An empty chain has zero as it's file offset. */
4663 if (hash_table[i] == 0)
4664 continue;
4665
4666 /* Seek to the first symbol in this hash chain. */
4667 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4668 goto error_return;
4669
4670 /* Read in this symbol and update the counter. */
4671 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4672 != sizeof (lst_symbol))
4673 goto error_return;
4674
4675 (*count)++;
4676
4677 /* Now iterate through the rest of the symbols on this chain. */
4678 while (lst_symbol.next_entry)
4679 {
4680
4681 /* Seek to the next symbol. */
4682 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4683 < 0)
4684 goto error_return;
4685
4686 /* Read the symbol in and update the counter. */
4687 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4688 != sizeof (lst_symbol))
4689 goto error_return;
4690
4691 (*count)++;
4692 }
4693 }
4694 if (hash_table != NULL)
4695 free (hash_table);
4696 return true;
4697
4698 error_return:
4699 if (hash_table != NULL)
4700 free (hash_table);
4701 return false;
4702 }
4703
4704 /* Fill in the canonical archive symbols (SYMS) from the archive described
4705 by ABFD and LST_HEADER. */
4706
4707 static boolean
4708 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
4709 bfd *abfd;
4710 struct lst_header *lst_header;
4711 carsym **syms;
4712 {
4713 unsigned int i, len;
4714 carsym *set = syms[0];
4715 unsigned int *hash_table = NULL;
4716 struct som_entry *som_dict = NULL;
4717 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4718
4719 hash_table =
4720 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4721 if (hash_table == NULL && lst_header->hash_size != 0)
4722 {
4723 bfd_set_error (bfd_error_no_memory);
4724 goto error_return;
4725 }
4726
4727 som_dict =
4728 (struct som_entry *) malloc (lst_header->module_count
4729 * sizeof (struct som_entry));
4730 if (som_dict == NULL && lst_header->module_count != 0)
4731 {
4732 bfd_set_error (bfd_error_no_memory);
4733 goto error_return;
4734 }
4735
4736 /* Read in the hash table. The has table is an array of 32bit file offsets
4737 which point to the hash chains. */
4738 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4739 != lst_header->hash_size * 4)
4740 goto error_return;
4741
4742 /* Seek to and read in the SOM dictionary. We will need this to fill
4743 in the carsym's filepos field. */
4744 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
4745 goto error_return;
4746
4747 if (bfd_read ((PTR) som_dict, lst_header->module_count,
4748 sizeof (struct som_entry), abfd)
4749 != lst_header->module_count * sizeof (struct som_entry))
4750 goto error_return;
4751
4752 /* Walk each chain filling in the carsyms as we go along. */
4753 for (i = 0; i < lst_header->hash_size; i++)
4754 {
4755 struct lst_symbol_record lst_symbol;
4756
4757 /* An empty chain has zero as it's file offset. */
4758 if (hash_table[i] == 0)
4759 continue;
4760
4761 /* Seek to and read the first symbol on the chain. */
4762 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4763 goto error_return;
4764
4765 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4766 != sizeof (lst_symbol))
4767 goto error_return;
4768
4769 /* Get the name of the symbol, first get the length which is stored
4770 as a 32bit integer just before the symbol.
4771
4772 One might ask why we don't just read in the entire string table
4773 and index into it. Well, according to the SOM ABI the string
4774 index can point *anywhere* in the archive to save space, so just
4775 using the string table would not be safe. */
4776 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4777 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4778 goto error_return;
4779
4780 if (bfd_read (&len, 1, 4, abfd) != 4)
4781 goto error_return;
4782
4783 /* Allocate space for the name and null terminate it too. */
4784 set->name = bfd_zalloc (abfd, len + 1);
4785 if (!set->name)
4786 {
4787 bfd_set_error (bfd_error_no_memory);
4788 goto error_return;
4789 }
4790 if (bfd_read (set->name, 1, len, abfd) != len)
4791 goto error_return;
4792
4793 set->name[len] = 0;
4794
4795 /* Fill in the file offset. Note that the "location" field points
4796 to the SOM itself, not the ar_hdr in front of it. */
4797 set->file_offset = som_dict[lst_symbol.som_index].location
4798 - sizeof (struct ar_hdr);
4799
4800 /* Go to the next symbol. */
4801 set++;
4802
4803 /* Iterate through the rest of the chain. */
4804 while (lst_symbol.next_entry)
4805 {
4806 /* Seek to the next symbol and read it in. */
4807 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET) <0)
4808 goto error_return;
4809
4810 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4811 != sizeof (lst_symbol))
4812 goto error_return;
4813
4814 /* Seek to the name length & string and read them in. */
4815 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4816 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4817 goto error_return;
4818
4819 if (bfd_read (&len, 1, 4, abfd) != 4)
4820 goto error_return;
4821
4822 /* Allocate space for the name and null terminate it too. */
4823 set->name = bfd_zalloc (abfd, len + 1);
4824 if (!set->name)
4825 {
4826 bfd_set_error (bfd_error_no_memory);
4827 goto error_return;
4828 }
4829
4830 if (bfd_read (set->name, 1, len, abfd) != len)
4831 goto error_return;
4832 set->name[len] = 0;
4833
4834 /* Fill in the file offset. Note that the "location" field points
4835 to the SOM itself, not the ar_hdr in front of it. */
4836 set->file_offset = som_dict[lst_symbol.som_index].location
4837 - sizeof (struct ar_hdr);
4838
4839 /* Go on to the next symbol. */
4840 set++;
4841 }
4842 }
4843 /* If we haven't died by now, then we successfully read the entire
4844 archive symbol table. */
4845 if (hash_table != NULL)
4846 free (hash_table);
4847 if (som_dict != NULL)
4848 free (som_dict);
4849 return true;
4850
4851 error_return:
4852 if (hash_table != NULL)
4853 free (hash_table);
4854 if (som_dict != NULL)
4855 free (som_dict);
4856 return false;
4857 }
4858
4859 /* Read in the LST from the archive. */
4860 static boolean
4861 som_slurp_armap (abfd)
4862 bfd *abfd;
4863 {
4864 struct lst_header lst_header;
4865 struct ar_hdr ar_header;
4866 unsigned int parsed_size;
4867 struct artdata *ardata = bfd_ardata (abfd);
4868 char nextname[17];
4869 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
4870
4871 /* Special cases. */
4872 if (i == 0)
4873 return true;
4874 if (i != 16)
4875 return false;
4876
4877 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
4878 return false;
4879
4880 /* For archives without .o files there is no symbol table. */
4881 if (strncmp (nextname, "/ ", 16))
4882 {
4883 bfd_has_map (abfd) = false;
4884 return true;
4885 }
4886
4887 /* Read in and sanity check the archive header. */
4888 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
4889 != sizeof (struct ar_hdr))
4890 return false;
4891
4892 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
4893 {
4894 bfd_set_error (bfd_error_malformed_archive);
4895 return false;
4896 }
4897
4898 /* How big is the archive symbol table entry? */
4899 errno = 0;
4900 parsed_size = strtol (ar_header.ar_size, NULL, 10);
4901 if (errno != 0)
4902 {
4903 bfd_set_error (bfd_error_malformed_archive);
4904 return false;
4905 }
4906
4907 /* Save off the file offset of the first real user data. */
4908 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
4909
4910 /* Read in the library symbol table. We'll make heavy use of this
4911 in just a minute. */
4912 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
4913 != sizeof (struct lst_header))
4914 return false;
4915
4916 /* Sanity check. */
4917 if (lst_header.a_magic != LIBMAGIC)
4918 {
4919 bfd_set_error (bfd_error_malformed_archive);
4920 return false;
4921 }
4922
4923 /* Count the number of symbols in the library symbol table. */
4924 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
4925 == false)
4926 return false;
4927
4928 /* Get back to the start of the library symbol table. */
4929 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
4930 + sizeof (struct lst_header), SEEK_SET) < 0)
4931 return false;
4932
4933 /* Initializae the cache and allocate space for the library symbols. */
4934 ardata->cache = 0;
4935 ardata->symdefs = (carsym *) bfd_alloc (abfd,
4936 (ardata->symdef_count
4937 * sizeof (carsym)));
4938 if (!ardata->symdefs)
4939 {
4940 bfd_set_error (bfd_error_no_memory);
4941 return false;
4942 }
4943
4944 /* Now fill in the canonical archive symbols. */
4945 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
4946 == false)
4947 return false;
4948
4949 /* Seek back to the "first" file in the archive. Note the "first"
4950 file may be the extended name table. */
4951 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) < 0)
4952 return false;
4953
4954 /* Notify the generic archive code that we have a symbol map. */
4955 bfd_has_map (abfd) = true;
4956 return true;
4957 }
4958
4959 /* Begin preparing to write a SOM library symbol table.
4960
4961 As part of the prep work we need to determine the number of symbols
4962 and the size of the associated string section. */
4963
4964 static boolean
4965 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
4966 bfd *abfd;
4967 unsigned int *num_syms, *stringsize;
4968 {
4969 bfd *curr_bfd = abfd->archive_head;
4970
4971 /* Some initialization. */
4972 *num_syms = 0;
4973 *stringsize = 0;
4974
4975 /* Iterate over each BFD within this archive. */
4976 while (curr_bfd != NULL)
4977 {
4978 unsigned int curr_count, i;
4979 som_symbol_type *sym;
4980
4981 /* Don't bother for non-SOM objects. */
4982 if (curr_bfd->format != bfd_object
4983 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
4984 {
4985 curr_bfd = curr_bfd->next;
4986 continue;
4987 }
4988
4989 /* Make sure the symbol table has been read, then snag a pointer
4990 to it. It's a little slimey to grab the symbols via obj_som_symtab,
4991 but doing so avoids allocating lots of extra memory. */
4992 if (som_slurp_symbol_table (curr_bfd) == false)
4993 return false;
4994
4995 sym = obj_som_symtab (curr_bfd);
4996 curr_count = bfd_get_symcount (curr_bfd);
4997
4998 /* Examine each symbol to determine if it belongs in the
4999 library symbol table. */
5000 for (i = 0; i < curr_count; i++, sym++)
5001 {
5002 struct som_misc_symbol_info info;
5003
5004 /* Derive SOM information from the BFD symbol. */
5005 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5006
5007 /* Should we include this symbol? */
5008 if (info.symbol_type == ST_NULL
5009 || info.symbol_type == ST_SYM_EXT
5010 || info.symbol_type == ST_ARG_EXT)
5011 continue;
5012
5013 /* Only global symbols and unsatisfied commons. */
5014 if (info.symbol_scope != SS_UNIVERSAL
5015 && info.symbol_type != ST_STORAGE)
5016 continue;
5017
5018 /* Do no include undefined symbols. */
5019 if (sym->symbol.section == &bfd_und_section)
5020 continue;
5021
5022 /* Bump the various counters, being careful to honor
5023 alignment considerations in the string table. */
5024 (*num_syms)++;
5025 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5026 while (*stringsize % 4)
5027 (*stringsize)++;
5028 }
5029
5030 curr_bfd = curr_bfd->next;
5031 }
5032 return true;
5033 }
5034
5035 /* Hash a symbol name based on the hashing algorithm presented in the
5036 SOM ABI. */
5037 static unsigned int
5038 som_bfd_ar_symbol_hash (symbol)
5039 asymbol *symbol;
5040 {
5041 unsigned int len = strlen (symbol->name);
5042
5043 /* Names with length 1 are special. */
5044 if (len == 1)
5045 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5046
5047 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5048 | (symbol->name[len-2] << 8) | symbol->name[len-1];
5049 }
5050
5051 static CONST char *
5052 normalize (file)
5053 CONST char *file;
5054 {
5055 CONST char *filename = strrchr (file, '/');
5056
5057 if (filename != NULL)
5058 filename++;
5059 else
5060 filename = file;
5061 return filename;
5062 }
5063
5064 /* Do the bulk of the work required to write the SOM library
5065 symbol table. */
5066
5067 static boolean
5068 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst)
5069 bfd *abfd;
5070 unsigned int nsyms, string_size;
5071 struct lst_header lst;
5072 {
5073 file_ptr lst_filepos;
5074 char *strings = NULL, *p;
5075 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5076 bfd *curr_bfd;
5077 unsigned int *hash_table = NULL;
5078 struct som_entry *som_dict = NULL;
5079 struct lst_symbol_record **last_hash_entry = NULL;
5080 unsigned int curr_som_offset, som_index, extended_name_length = 0;
5081 unsigned int maxname = abfd->xvec->ar_max_namelen;
5082
5083 hash_table =
5084 (unsigned int *) malloc (lst.hash_size * sizeof (unsigned int));
5085 if (hash_table == NULL && lst.hash_size != 0)
5086 {
5087 bfd_set_error (bfd_error_no_memory);
5088 goto error_return;
5089 }
5090 som_dict =
5091 (struct som_entry *) malloc (lst.module_count
5092 * sizeof (struct som_entry));
5093 if (som_dict == NULL && lst.module_count != 0)
5094 {
5095 bfd_set_error (bfd_error_no_memory);
5096 goto error_return;
5097 }
5098
5099 last_hash_entry =
5100 ((struct lst_symbol_record **)
5101 malloc (lst.hash_size * sizeof (struct lst_symbol_record *)));
5102 if (last_hash_entry == NULL && lst.hash_size != 0)
5103 {
5104 bfd_set_error (bfd_error_no_memory);
5105 goto error_return;
5106 }
5107
5108 /* Lots of fields are file positions relative to the start
5109 of the lst record. So save its location. */
5110 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5111
5112 /* Some initialization. */
5113 memset (hash_table, 0, 4 * lst.hash_size);
5114 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
5115 memset (last_hash_entry, 0,
5116 lst.hash_size * sizeof (struct lst_symbol_record *));
5117
5118 /* Symbols have som_index fields, so we have to keep track of the
5119 index of each SOM in the archive.
5120
5121 The SOM dictionary has (among other things) the absolute file
5122 position for the SOM which a particular dictionary entry
5123 describes. We have to compute that information as we iterate
5124 through the SOMs/symbols. */
5125 som_index = 0;
5126 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5127
5128 /* Yow! We have to know the size of the extended name table
5129 too. */
5130 for (curr_bfd = abfd->archive_head;
5131 curr_bfd != NULL;
5132 curr_bfd = curr_bfd->next)
5133 {
5134 CONST char *normal = normalize (curr_bfd->filename);
5135 unsigned int thislen;
5136
5137 if (!normal)
5138 {
5139 bfd_set_error (bfd_error_no_memory);
5140 return false;
5141 }
5142 thislen = strlen (normal);
5143 if (thislen > maxname)
5144 extended_name_length += thislen + 1;
5145 }
5146
5147 /* Make room for the archive header and the contents of the
5148 extended string table. */
5149 if (extended_name_length)
5150 curr_som_offset += extended_name_length + sizeof (struct ar_hdr);
5151
5152 /* Make sure we're properly aligned. */
5153 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5154
5155 /* FIXME should be done with buffers just like everything else... */
5156 lst_syms = malloc (nsyms * sizeof (struct lst_symbol_record));
5157 if (lst_syms == NULL && nsyms != 0)
5158 {
5159 bfd_set_error (bfd_error_no_memory);
5160 goto error_return;
5161 }
5162 strings = malloc (string_size);
5163 if (strings == NULL && string_size != 0)
5164 {
5165 bfd_set_error (bfd_error_no_memory);
5166 goto error_return;
5167 }
5168
5169 p = strings;
5170 curr_lst_sym = lst_syms;
5171
5172 curr_bfd = abfd->archive_head;
5173 while (curr_bfd != NULL)
5174 {
5175 unsigned int curr_count, i;
5176 som_symbol_type *sym;
5177
5178 /* Don't bother for non-SOM objects. */
5179 if (curr_bfd->format != bfd_object
5180 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5181 {
5182 curr_bfd = curr_bfd->next;
5183 continue;
5184 }
5185
5186 /* Make sure the symbol table has been read, then snag a pointer
5187 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5188 but doing so avoids allocating lots of extra memory. */
5189 if (som_slurp_symbol_table (curr_bfd) == false)
5190 goto error_return;
5191
5192 sym = obj_som_symtab (curr_bfd);
5193 curr_count = bfd_get_symcount (curr_bfd);
5194
5195 for (i = 0; i < curr_count; i++, sym++)
5196 {
5197 struct som_misc_symbol_info info;
5198
5199 /* Derive SOM information from the BFD symbol. */
5200 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5201
5202 /* Should we include this symbol? */
5203 if (info.symbol_type == ST_NULL
5204 || info.symbol_type == ST_SYM_EXT
5205 || info.symbol_type == ST_ARG_EXT)
5206 continue;
5207
5208 /* Only global symbols and unsatisfied commons. */
5209 if (info.symbol_scope != SS_UNIVERSAL
5210 && info.symbol_type != ST_STORAGE)
5211 continue;
5212
5213 /* Do no include undefined symbols. */
5214 if (sym->symbol.section == &bfd_und_section)
5215 continue;
5216
5217 /* If this is the first symbol from this SOM, then update
5218 the SOM dictionary too. */
5219 if (som_dict[som_index].location == 0)
5220 {
5221 som_dict[som_index].location = curr_som_offset;
5222 som_dict[som_index].length = arelt_size (curr_bfd);
5223 }
5224
5225 /* Fill in the lst symbol record. */
5226 curr_lst_sym->hidden = 0;
5227 curr_lst_sym->secondary_def = 0;
5228 curr_lst_sym->symbol_type = info.symbol_type;
5229 curr_lst_sym->symbol_scope = info.symbol_scope;
5230 curr_lst_sym->check_level = 0;
5231 curr_lst_sym->must_qualify = 0;
5232 curr_lst_sym->initially_frozen = 0;
5233 curr_lst_sym->memory_resident = 0;
5234 curr_lst_sym->is_common = (sym->symbol.section == &bfd_com_section);
5235 curr_lst_sym->dup_common = 0;
5236 curr_lst_sym->xleast = 0;
5237 curr_lst_sym->arg_reloc = info.arg_reloc;
5238 curr_lst_sym->name.n_strx = p - strings + 4;
5239 curr_lst_sym->qualifier_name.n_strx = 0;
5240 curr_lst_sym->symbol_info = info.symbol_info;
5241 curr_lst_sym->symbol_value = info.symbol_value;
5242 curr_lst_sym->symbol_descriptor = 0;
5243 curr_lst_sym->reserved = 0;
5244 curr_lst_sym->som_index = som_index;
5245 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
5246 curr_lst_sym->next_entry = 0;
5247
5248 /* Insert into the hash table. */
5249 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
5250 {
5251 struct lst_symbol_record *tmp;
5252
5253 /* There is already something at the head of this hash chain,
5254 so tack this symbol onto the end of the chain. */
5255 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
5256 tmp->next_entry
5257 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5258 + lst.hash_size * 4
5259 + lst.module_count * sizeof (struct som_entry)
5260 + sizeof (struct lst_header);
5261 }
5262 else
5263 {
5264 /* First entry in this hash chain. */
5265 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
5266 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5267 + lst.hash_size * 4
5268 + lst.module_count * sizeof (struct som_entry)
5269 + sizeof (struct lst_header);
5270 }
5271
5272 /* Keep track of the last symbol we added to this chain so we can
5273 easily update its next_entry pointer. */
5274 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
5275 = curr_lst_sym;
5276
5277
5278 /* Update the string table. */
5279 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
5280 p += 4;
5281 strcpy (p, sym->symbol.name);
5282 p += strlen (sym->symbol.name) + 1;
5283 while ((int)p % 4)
5284 {
5285 bfd_put_8 (abfd, 0, p);
5286 p++;
5287 }
5288
5289 /* Head to the next symbol. */
5290 curr_lst_sym++;
5291 }
5292
5293 /* Keep track of where each SOM will finally reside; then look
5294 at the next BFD. */
5295 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
5296 curr_bfd = curr_bfd->next;
5297 som_index++;
5298 }
5299
5300 /* Now scribble out the hash table. */
5301 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
5302 != lst.hash_size * 4)
5303 goto error_return;
5304
5305 /* Then the SOM dictionary. */
5306 if (bfd_write ((PTR) som_dict, lst.module_count,
5307 sizeof (struct som_entry), abfd)
5308 != lst.module_count * sizeof (struct som_entry))
5309 goto error_return;
5310
5311 /* The library symbols. */
5312 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
5313 != nsyms * sizeof (struct lst_symbol_record))
5314 goto error_return;
5315
5316 /* And finally the strings. */
5317 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
5318 goto error_return;
5319
5320 if (hash_table != NULL)
5321 free (hash_table);
5322 if (som_dict != NULL)
5323 free (som_dict);
5324 if (last_hash_entry != NULL)
5325 free (last_hash_entry);
5326 if (lst_syms != NULL)
5327 free (lst_syms);
5328 if (strings != NULL)
5329 free (strings);
5330 return true;
5331
5332 error_return:
5333 if (hash_table != NULL)
5334 free (hash_table);
5335 if (som_dict != NULL)
5336 free (som_dict);
5337 if (last_hash_entry != NULL)
5338 free (last_hash_entry);
5339 if (lst_syms != NULL)
5340 free (lst_syms);
5341 if (strings != NULL)
5342 free (strings);
5343
5344 return false;
5345 }
5346
5347 /* Write out the LST for the archive.
5348
5349 You'll never believe this is really how armaps are handled in SOM... */
5350
5351 /*ARGSUSED*/
5352 static boolean
5353 som_write_armap (abfd, elength, map, orl_count, stridx)
5354 bfd *abfd;
5355 unsigned int elength;
5356 struct orl *map;
5357 unsigned int orl_count;
5358 int stridx;
5359 {
5360 bfd *curr_bfd;
5361 struct stat statbuf;
5362 unsigned int i, lst_size, nsyms, stringsize;
5363 struct ar_hdr hdr;
5364 struct lst_header lst;
5365 int *p;
5366
5367 /* We'll use this for the archive's date and mode later. */
5368 if (stat (abfd->filename, &statbuf) != 0)
5369 {
5370 bfd_set_error (bfd_error_system_call);
5371 return false;
5372 }
5373 /* Fudge factor. */
5374 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
5375
5376 /* Account for the lst header first. */
5377 lst_size = sizeof (struct lst_header);
5378
5379 /* Start building the LST header. */
5380 lst.system_id = HP9000S800_ID;
5381 lst.a_magic = LIBMAGIC;
5382 lst.version_id = VERSION_ID;
5383 lst.file_time.secs = 0;
5384 lst.file_time.nanosecs = 0;
5385
5386 lst.hash_loc = lst_size;
5387 lst.hash_size = SOM_LST_HASH_SIZE;
5388
5389 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
5390 lst_size += 4 * SOM_LST_HASH_SIZE;
5391
5392 /* We need to count the number of SOMs in this archive. */
5393 curr_bfd = abfd->archive_head;
5394 lst.module_count = 0;
5395 while (curr_bfd != NULL)
5396 {
5397 /* Only true SOM objects count. */
5398 if (curr_bfd->format == bfd_object
5399 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
5400 lst.module_count++;
5401 curr_bfd = curr_bfd->next;
5402 }
5403 lst.module_limit = lst.module_count;
5404 lst.dir_loc = lst_size;
5405 lst_size += sizeof (struct som_entry) * lst.module_count;
5406
5407 /* We don't support import/export tables, auxiliary headers,
5408 or free lists yet. Make the linker work a little harder
5409 to make our life easier. */
5410
5411 lst.export_loc = 0;
5412 lst.export_count = 0;
5413 lst.import_loc = 0;
5414 lst.aux_loc = 0;
5415 lst.aux_size = 0;
5416
5417 /* Count how many symbols we will have on the hash chains and the
5418 size of the associated string table. */
5419 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
5420 return false;
5421
5422 lst_size += sizeof (struct lst_symbol_record) * nsyms;
5423
5424 /* For the string table. One day we might actually use this info
5425 to avoid small seeks/reads when reading archives. */
5426 lst.string_loc = lst_size;
5427 lst.string_size = stringsize;
5428 lst_size += stringsize;
5429
5430 /* SOM ABI says this must be zero. */
5431 lst.free_list = 0;
5432 lst.file_end = lst_size;
5433
5434 /* Compute the checksum. Must happen after the entire lst header
5435 has filled in. */
5436 p = (int *)&lst;
5437 lst.checksum = 0;
5438 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
5439 lst.checksum ^= *p++;
5440
5441 sprintf (hdr.ar_name, "/ ");
5442 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
5443 sprintf (hdr.ar_uid, "%ld", (long) getuid ());
5444 sprintf (hdr.ar_gid, "%ld", (long) getgid ());
5445 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
5446 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
5447 hdr.ar_fmag[0] = '`';
5448 hdr.ar_fmag[1] = '\012';
5449
5450 /* Turn any nulls into spaces. */
5451 for (i = 0; i < sizeof (struct ar_hdr); i++)
5452 if (((char *) (&hdr))[i] == '\0')
5453 (((char *) (&hdr))[i]) = ' ';
5454
5455 /* Scribble out the ar header. */
5456 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
5457 != sizeof (struct ar_hdr))
5458 return false;
5459
5460 /* Now scribble out the lst header. */
5461 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
5462 != sizeof (struct lst_header))
5463 return false;
5464
5465 /* Build and write the armap. */
5466 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst) == false)
5467 return false;
5468
5469 /* Done. */
5470 return true;
5471 }
5472
5473 /* Free all information we have cached for this BFD. We can always
5474 read it again later if we need it. */
5475
5476 static boolean
5477 som_bfd_free_cached_info (abfd)
5478 bfd *abfd;
5479 {
5480 asection *o;
5481
5482 if (bfd_get_format (abfd) != bfd_object)
5483 return true;
5484
5485 #define FREE(x) if (x != NULL) { free (x); x = NULL; }
5486 /* Free the native string and symbol tables. */
5487 FREE (obj_som_symtab (abfd));
5488 FREE (obj_som_stringtab (abfd));
5489 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5490 {
5491 /* Free the native relocations. */
5492 o->reloc_count = -1;
5493 FREE (som_section_data (o)->reloc_stream);
5494 /* Free the generic relocations. */
5495 FREE (o->relocation);
5496 }
5497 #undef FREE
5498
5499 return true;
5500 }
5501
5502 /* End of miscellaneous support functions. */
5503
5504 #define som_close_and_cleanup som_bfd_free_cached_info
5505
5506 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
5507 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
5508 #define som_truncate_arname bfd_bsd_truncate_arname
5509 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
5510
5511 #define som_get_lineno _bfd_nosymbols_get_lineno
5512 #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
5513
5514 #define som_bfd_get_relocated_section_contents \
5515 bfd_generic_get_relocated_section_contents
5516 #define som_bfd_relax_section bfd_generic_relax_section
5517 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
5518 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
5519 #define som_bfd_final_link _bfd_generic_final_link
5520
5521 bfd_target som_vec =
5522 {
5523 "som", /* name */
5524 bfd_target_som_flavour,
5525 true, /* target byte order */
5526 true, /* target headers byte order */
5527 (HAS_RELOC | EXEC_P | /* object flags */
5528 HAS_LINENO | HAS_DEBUG |
5529 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
5530 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
5531 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
5532
5533 /* leading_symbol_char: is the first char of a user symbol
5534 predictable, and if so what is it */
5535 0,
5536 '/', /* ar_pad_char */
5537 14, /* ar_max_namelen */
5538 3, /* minimum alignment */
5539 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5540 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5541 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
5542 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5543 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5544 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
5545 {_bfd_dummy_target,
5546 som_object_p, /* bfd_check_format */
5547 bfd_generic_archive_p,
5548 _bfd_dummy_target
5549 },
5550 {
5551 bfd_false,
5552 som_mkobject,
5553 _bfd_generic_mkarchive,
5554 bfd_false
5555 },
5556 {
5557 bfd_false,
5558 som_write_object_contents,
5559 _bfd_write_archive_contents,
5560 bfd_false,
5561 },
5562 #undef som
5563
5564 BFD_JUMP_TABLE_GENERIC (som),
5565 BFD_JUMP_TABLE_COPY (som),
5566 BFD_JUMP_TABLE_CORE (_bfd_nocore),
5567 BFD_JUMP_TABLE_ARCHIVE (som),
5568 BFD_JUMP_TABLE_SYMBOLS (som),
5569 BFD_JUMP_TABLE_RELOCS (som),
5570 BFD_JUMP_TABLE_WRITE (som),
5571 BFD_JUMP_TABLE_LINK (som),
5572 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
5573
5574 (PTR) 0
5575 };
5576
5577 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */