* som.c (som_bfd_free_cached_info): Add missing PARAMS decl.
[binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
3
4 Contributed by the Center for Software Science at the
5 University of Utah (pa-gdb-bugs@cs.utah.edu).
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23 #include "bfd.h"
24 #include "sysdep.h"
25
26 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)
27
28 #include "libbfd.h"
29 #include "som.h"
30
31 #include <stdio.h>
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/dir.h>
35 #include <signal.h>
36 #include <machine/reg.h>
37 #include <sys/user.h> /* After a.out.h */
38 #include <sys/file.h>
39 #include <errno.h>
40
41 /* Magic not defined in standard HP-UX header files until 8.0 */
42
43 #ifndef CPU_PA_RISC1_0
44 #define CPU_PA_RISC1_0 0x20B
45 #endif /* CPU_PA_RISC1_0 */
46
47 #ifndef CPU_PA_RISC1_1
48 #define CPU_PA_RISC1_1 0x210
49 #endif /* CPU_PA_RISC1_1 */
50
51 #ifndef _PA_RISC1_0_ID
52 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
53 #endif /* _PA_RISC1_0_ID */
54
55 #ifndef _PA_RISC1_1_ID
56 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
57 #endif /* _PA_RISC1_1_ID */
58
59 #ifndef _PA_RISC_MAXID
60 #define _PA_RISC_MAXID 0x2FF
61 #endif /* _PA_RISC_MAXID */
62
63 #ifndef _PA_RISC_ID
64 #define _PA_RISC_ID(__m_num) \
65 (((__m_num) == _PA_RISC1_0_ID) || \
66 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
67 #endif /* _PA_RISC_ID */
68
69 /* Size (in chars) of the temporary buffers used during fixup and string
70 table writes. */
71
72 #define SOM_TMP_BUFSIZE 8192
73
74 /* Size of the hash table in archives. */
75 #define SOM_LST_HASH_SIZE 31
76
77 /* Max number of SOMs to be found in an archive. */
78 #define SOM_LST_MODULE_LIMIT 1024
79
80 /* Generic alignment macro. */
81 #define SOM_ALIGN(val, alignment) \
82 (((val) + (alignment) - 1) & ~((alignment) - 1))
83
84 /* SOM allows any one of the four previous relocations to be reused
85 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
86 relocations are always a single byte, using a R_PREV_FIXUP instead
87 of some multi-byte relocation makes object files smaller.
88
89 Note one side effect of using a R_PREV_FIXUP is the relocation that
90 is being repeated moves to the front of the queue. */
91 struct reloc_queue
92 {
93 unsigned char *reloc;
94 unsigned int size;
95 } reloc_queue[4];
96
97 /* This fully describes the symbol types which may be attached to
98 an EXPORT or IMPORT directive. Only SOM uses this formation
99 (ELF has no need for it). */
100 typedef enum
101 {
102 SYMBOL_TYPE_UNKNOWN,
103 SYMBOL_TYPE_ABSOLUTE,
104 SYMBOL_TYPE_CODE,
105 SYMBOL_TYPE_DATA,
106 SYMBOL_TYPE_ENTRY,
107 SYMBOL_TYPE_MILLICODE,
108 SYMBOL_TYPE_PLABEL,
109 SYMBOL_TYPE_PRI_PROG,
110 SYMBOL_TYPE_SEC_PROG,
111 } pa_symbol_type;
112
113 struct section_to_type
114 {
115 char *section;
116 char type;
117 };
118
119 /* Assorted symbol information that needs to be derived from the BFD symbol
120 and/or the BFD backend private symbol data. */
121 struct som_misc_symbol_info
122 {
123 unsigned int symbol_type;
124 unsigned int symbol_scope;
125 unsigned int arg_reloc;
126 unsigned int symbol_info;
127 unsigned int symbol_value;
128 };
129
130 /* Forward declarations */
131
132 static boolean som_mkobject PARAMS ((bfd *));
133 static bfd_target * som_object_setup PARAMS ((bfd *,
134 struct header *,
135 struct som_exec_auxhdr *));
136 static boolean setup_sections PARAMS ((bfd *, struct header *));
137 static bfd_target * som_object_p PARAMS ((bfd *));
138 static boolean som_write_object_contents PARAMS ((bfd *));
139 static boolean som_slurp_string_table PARAMS ((bfd *));
140 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
141 static long som_get_symtab_upper_bound PARAMS ((bfd *));
142 static long som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
143 arelent **, asymbol **));
144 static long som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
145 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
146 arelent *, asection *,
147 asymbol **, boolean));
148 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
149 asymbol **, boolean));
150 static long som_get_symtab PARAMS ((bfd *, asymbol **));
151 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
152 static void som_print_symbol PARAMS ((bfd *, PTR,
153 asymbol *, bfd_print_symbol_type));
154 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
155 static boolean som_bfd_copy_private_section_data PARAMS ((bfd *, asection *,
156 bfd *, asection *));
157 static boolean som_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
158 static boolean som_bfd_is_local_label PARAMS ((bfd *, asymbol *));
159 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
160 file_ptr, bfd_size_type));
161 static boolean som_get_section_contents PARAMS ((bfd *, sec_ptr, PTR,
162 file_ptr, bfd_size_type));
163 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
164 unsigned long));
165 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
166 asymbol **, bfd_vma,
167 CONST char **,
168 CONST char **,
169 unsigned int *));
170 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
171 static asection * bfd_section_from_som_symbol PARAMS ((bfd *,
172 struct symbol_dictionary_record *));
173 static int log2 PARAMS ((unsigned int));
174 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
175 asymbol *, PTR,
176 asection *, bfd *,
177 char **));
178 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
179 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
180 struct reloc_queue *));
181 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
182 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
183 struct reloc_queue *));
184 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
185 unsigned int,
186 struct reloc_queue *));
187
188 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
189 unsigned char *, unsigned int *,
190 struct reloc_queue *));
191 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
192 unsigned int *,
193 struct reloc_queue *));
194 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
195 unsigned int *,
196 arelent *, int,
197 struct reloc_queue *));
198 static unsigned long som_count_spaces PARAMS ((bfd *));
199 static unsigned long som_count_subspaces PARAMS ((bfd *));
200 static int compare_syms PARAMS ((asymbol **, asymbol **));
201 static unsigned long som_compute_checksum PARAMS ((bfd *));
202 static boolean som_prep_headers PARAMS ((bfd *));
203 static int som_sizeof_headers PARAMS ((bfd *, boolean));
204 static boolean som_write_headers PARAMS ((bfd *));
205 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
206 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
207 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
208 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
209 unsigned int *));
210 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
211 asymbol **, unsigned int,
212 unsigned *));
213 static boolean som_begin_writing PARAMS ((bfd *));
214 static const reloc_howto_type * som_bfd_reloc_type_lookup
215 PARAMS ((bfd_arch_info_type *, bfd_reloc_code_real_type));
216 static char som_section_type PARAMS ((const char *));
217 static int som_decode_symclass PARAMS ((asymbol *));
218 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
219 symindex *));
220
221 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
222 carsym **syms));
223 static boolean som_slurp_armap PARAMS ((bfd *));
224 static boolean som_write_armap PARAMS ((bfd *));
225 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
226 struct som_misc_symbol_info *));
227 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
228 unsigned int *));
229 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
230 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
231 unsigned int,
232 struct lst_header));
233 static CONST char *normalize PARAMS ((CONST char *file));
234 static boolean som_is_space PARAMS ((asection *));
235 static boolean som_is_subspace PARAMS ((asection *));
236 static boolean som_is_container PARAMS ((asection *, asection *));
237 static boolean som_bfd_free_cached_info PARAMS ((bfd *));
238
239 /* Map SOM section names to POSIX/BSD single-character symbol types.
240
241 This table includes all the standard subspaces as defined in the
242 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
243 some reason was left out, and sections specific to embedded stabs. */
244
245 static const struct section_to_type stt[] = {
246 {"$TEXT$", 't'},
247 {"$SHLIB_INFO$", 't'},
248 {"$MILLICODE$", 't'},
249 {"$LIT$", 't'},
250 {"$CODE$", 't'},
251 {"$UNWIND_START$", 't'},
252 {"$UNWIND$", 't'},
253 {"$PRIVATE$", 'd'},
254 {"$PLT$", 'd'},
255 {"$SHLIB_DATA$", 'd'},
256 {"$DATA$", 'd'},
257 {"$SHORTDATA$", 'g'},
258 {"$DLT$", 'd'},
259 {"$GLOBAL$", 'g'},
260 {"$SHORTBSS$", 's'},
261 {"$BSS$", 'b'},
262 {"$GDB_STRINGS$", 'N'},
263 {"$GDB_SYMBOLS$", 'N'},
264 {0, 0}
265 };
266
267 /* About the relocation formatting table...
268
269 There are 256 entries in the table, one for each possible
270 relocation opcode available in SOM. We index the table by
271 the relocation opcode. The names and operations are those
272 defined by a.out_800 (4).
273
274 Right now this table is only used to count and perform minimal
275 processing on relocation streams so that they can be internalized
276 into BFD and symbolically printed by utilities. To make actual use
277 of them would be much more difficult, BFD's concept of relocations
278 is far too simple to handle SOM relocations. The basic assumption
279 that a relocation can be completely processed independent of other
280 relocations before an object file is written is invalid for SOM.
281
282 The SOM relocations are meant to be processed as a stream, they
283 specify copying of data from the input section to the output section
284 while possibly modifying the data in some manner. They also can
285 specify that a variable number of zeros or uninitialized data be
286 inserted on in the output segment at the current offset. Some
287 relocations specify that some previous relocation be re-applied at
288 the current location in the input/output sections. And finally a number
289 of relocations have effects on other sections (R_ENTRY, R_EXIT,
290 R_UNWIND_AUX and a variety of others). There isn't even enough room
291 in the BFD relocation data structure to store enough information to
292 perform all the relocations.
293
294 Each entry in the table has three fields.
295
296 The first entry is an index into this "class" of relocations. This
297 index can then be used as a variable within the relocation itself.
298
299 The second field is a format string which actually controls processing
300 of the relocation. It uses a simple postfix machine to do calculations
301 based on variables/constants found in the string and the relocation
302 stream.
303
304 The third field specifys whether or not this relocation may use
305 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
306 stored in the instruction.
307
308 Variables:
309
310 L = input space byte count
311 D = index into class of relocations
312 M = output space byte count
313 N = statement number (unused?)
314 O = stack operation
315 R = parameter relocation bits
316 S = symbol index
317 U = 64 bits of stack unwind and frame size info (we only keep 32 bits)
318 V = a literal constant (usually used in the next relocation)
319 P = a previous relocation
320
321 Lower case letters (starting with 'b') refer to following
322 bytes in the relocation stream. 'b' is the next 1 byte,
323 c is the next 2 bytes, d is the next 3 bytes, etc...
324 This is the variable part of the relocation entries that
325 makes our life a living hell.
326
327 numerical constants are also used in the format string. Note
328 the constants are represented in decimal.
329
330 '+', "*" and "=" represents the obvious postfix operators.
331 '<' represents a left shift.
332
333 Stack Operations:
334
335 Parameter Relocation Bits:
336
337 Unwind Entries:
338
339 Previous Relocations: The index field represents which in the queue
340 of 4 previous fixups should be re-applied.
341
342 Literal Constants: These are generally used to represent addend
343 parts of relocations when these constants are not stored in the
344 fields of the instructions themselves. For example the instruction
345 addil foo-$global$-0x1234 would use an override for "0x1234" rather
346 than storing it into the addil itself. */
347
348 struct fixup_format
349 {
350 int D;
351 char *format;
352 };
353
354 static const struct fixup_format som_fixup_formats[256] =
355 {
356 /* R_NO_RELOCATION */
357 0, "LD1+4*=", /* 0x00 */
358 1, "LD1+4*=", /* 0x01 */
359 2, "LD1+4*=", /* 0x02 */
360 3, "LD1+4*=", /* 0x03 */
361 4, "LD1+4*=", /* 0x04 */
362 5, "LD1+4*=", /* 0x05 */
363 6, "LD1+4*=", /* 0x06 */
364 7, "LD1+4*=", /* 0x07 */
365 8, "LD1+4*=", /* 0x08 */
366 9, "LD1+4*=", /* 0x09 */
367 10, "LD1+4*=", /* 0x0a */
368 11, "LD1+4*=", /* 0x0b */
369 12, "LD1+4*=", /* 0x0c */
370 13, "LD1+4*=", /* 0x0d */
371 14, "LD1+4*=", /* 0x0e */
372 15, "LD1+4*=", /* 0x0f */
373 16, "LD1+4*=", /* 0x10 */
374 17, "LD1+4*=", /* 0x11 */
375 18, "LD1+4*=", /* 0x12 */
376 19, "LD1+4*=", /* 0x13 */
377 20, "LD1+4*=", /* 0x14 */
378 21, "LD1+4*=", /* 0x15 */
379 22, "LD1+4*=", /* 0x16 */
380 23, "LD1+4*=", /* 0x17 */
381 0, "LD8<b+1+4*=", /* 0x18 */
382 1, "LD8<b+1+4*=", /* 0x19 */
383 2, "LD8<b+1+4*=", /* 0x1a */
384 3, "LD8<b+1+4*=", /* 0x1b */
385 0, "LD16<c+1+4*=", /* 0x1c */
386 1, "LD16<c+1+4*=", /* 0x1d */
387 2, "LD16<c+1+4*=", /* 0x1e */
388 0, "Ld1+=", /* 0x1f */
389 /* R_ZEROES */
390 0, "Lb1+4*=", /* 0x20 */
391 1, "Ld1+=", /* 0x21 */
392 /* R_UNINIT */
393 0, "Lb1+4*=", /* 0x22 */
394 1, "Ld1+=", /* 0x23 */
395 /* R_RELOCATION */
396 0, "L4=", /* 0x24 */
397 /* R_DATA_ONE_SYMBOL */
398 0, "L4=Sb=", /* 0x25 */
399 1, "L4=Sd=", /* 0x26 */
400 /* R_DATA_PLEBEL */
401 0, "L4=Sb=", /* 0x27 */
402 1, "L4=Sd=", /* 0x28 */
403 /* R_SPACE_REF */
404 0, "L4=", /* 0x29 */
405 /* R_REPEATED_INIT */
406 0, "L4=Mb1+4*=", /* 0x2a */
407 1, "Lb4*=Mb1+L*=", /* 0x2b */
408 2, "Lb4*=Md1+4*=", /* 0x2c */
409 3, "Ld1+=Me1+=", /* 0x2d */
410 /* R_RESERVED */
411 0, "", /* 0x2e */
412 0, "", /* 0x2f */
413 /* R_PCREL_CALL */
414 0, "L4=RD=Sb=", /* 0x30 */
415 1, "L4=RD=Sb=", /* 0x31 */
416 2, "L4=RD=Sb=", /* 0x32 */
417 3, "L4=RD=Sb=", /* 0x33 */
418 4, "L4=RD=Sb=", /* 0x34 */
419 5, "L4=RD=Sb=", /* 0x35 */
420 6, "L4=RD=Sb=", /* 0x36 */
421 7, "L4=RD=Sb=", /* 0x37 */
422 8, "L4=RD=Sb=", /* 0x38 */
423 9, "L4=RD=Sb=", /* 0x39 */
424 0, "L4=RD8<b+=Sb=",/* 0x3a */
425 1, "L4=RD8<b+=Sb=",/* 0x3b */
426 0, "L4=RD8<b+=Sd=",/* 0x3c */
427 1, "L4=RD8<b+=Sd=",/* 0x3d */
428 /* R_RESERVED */
429 0, "", /* 0x3e */
430 0, "", /* 0x3f */
431 /* R_ABS_CALL */
432 0, "L4=RD=Sb=", /* 0x40 */
433 1, "L4=RD=Sb=", /* 0x41 */
434 2, "L4=RD=Sb=", /* 0x42 */
435 3, "L4=RD=Sb=", /* 0x43 */
436 4, "L4=RD=Sb=", /* 0x44 */
437 5, "L4=RD=Sb=", /* 0x45 */
438 6, "L4=RD=Sb=", /* 0x46 */
439 7, "L4=RD=Sb=", /* 0x47 */
440 8, "L4=RD=Sb=", /* 0x48 */
441 9, "L4=RD=Sb=", /* 0x49 */
442 0, "L4=RD8<b+=Sb=",/* 0x4a */
443 1, "L4=RD8<b+=Sb=",/* 0x4b */
444 0, "L4=RD8<b+=Sd=",/* 0x4c */
445 1, "L4=RD8<b+=Sd=",/* 0x4d */
446 /* R_RESERVED */
447 0, "", /* 0x4e */
448 0, "", /* 0x4f */
449 /* R_DP_RELATIVE */
450 0, "L4=SD=", /* 0x50 */
451 1, "L4=SD=", /* 0x51 */
452 2, "L4=SD=", /* 0x52 */
453 3, "L4=SD=", /* 0x53 */
454 4, "L4=SD=", /* 0x54 */
455 5, "L4=SD=", /* 0x55 */
456 6, "L4=SD=", /* 0x56 */
457 7, "L4=SD=", /* 0x57 */
458 8, "L4=SD=", /* 0x58 */
459 9, "L4=SD=", /* 0x59 */
460 10, "L4=SD=", /* 0x5a */
461 11, "L4=SD=", /* 0x5b */
462 12, "L4=SD=", /* 0x5c */
463 13, "L4=SD=", /* 0x5d */
464 14, "L4=SD=", /* 0x5e */
465 15, "L4=SD=", /* 0x5f */
466 16, "L4=SD=", /* 0x60 */
467 17, "L4=SD=", /* 0x61 */
468 18, "L4=SD=", /* 0x62 */
469 19, "L4=SD=", /* 0x63 */
470 20, "L4=SD=", /* 0x64 */
471 21, "L4=SD=", /* 0x65 */
472 22, "L4=SD=", /* 0x66 */
473 23, "L4=SD=", /* 0x67 */
474 24, "L4=SD=", /* 0x68 */
475 25, "L4=SD=", /* 0x69 */
476 26, "L4=SD=", /* 0x6a */
477 27, "L4=SD=", /* 0x6b */
478 28, "L4=SD=", /* 0x6c */
479 29, "L4=SD=", /* 0x6d */
480 30, "L4=SD=", /* 0x6e */
481 31, "L4=SD=", /* 0x6f */
482 32, "L4=Sb=", /* 0x70 */
483 33, "L4=Sd=", /* 0x71 */
484 /* R_RESERVED */
485 0, "", /* 0x72 */
486 0, "", /* 0x73 */
487 0, "", /* 0x74 */
488 0, "", /* 0x75 */
489 0, "", /* 0x76 */
490 0, "", /* 0x77 */
491 /* R_DLT_REL */
492 0, "L4=Sb=", /* 0x78 */
493 1, "L4=Sd=", /* 0x79 */
494 /* R_RESERVED */
495 0, "", /* 0x7a */
496 0, "", /* 0x7b */
497 0, "", /* 0x7c */
498 0, "", /* 0x7d */
499 0, "", /* 0x7e */
500 0, "", /* 0x7f */
501 /* R_CODE_ONE_SYMBOL */
502 0, "L4=SD=", /* 0x80 */
503 1, "L4=SD=", /* 0x81 */
504 2, "L4=SD=", /* 0x82 */
505 3, "L4=SD=", /* 0x83 */
506 4, "L4=SD=", /* 0x84 */
507 5, "L4=SD=", /* 0x85 */
508 6, "L4=SD=", /* 0x86 */
509 7, "L4=SD=", /* 0x87 */
510 8, "L4=SD=", /* 0x88 */
511 9, "L4=SD=", /* 0x89 */
512 10, "L4=SD=", /* 0x8q */
513 11, "L4=SD=", /* 0x8b */
514 12, "L4=SD=", /* 0x8c */
515 13, "L4=SD=", /* 0x8d */
516 14, "L4=SD=", /* 0x8e */
517 15, "L4=SD=", /* 0x8f */
518 16, "L4=SD=", /* 0x90 */
519 17, "L4=SD=", /* 0x91 */
520 18, "L4=SD=", /* 0x92 */
521 19, "L4=SD=", /* 0x93 */
522 20, "L4=SD=", /* 0x94 */
523 21, "L4=SD=", /* 0x95 */
524 22, "L4=SD=", /* 0x96 */
525 23, "L4=SD=", /* 0x97 */
526 24, "L4=SD=", /* 0x98 */
527 25, "L4=SD=", /* 0x99 */
528 26, "L4=SD=", /* 0x9a */
529 27, "L4=SD=", /* 0x9b */
530 28, "L4=SD=", /* 0x9c */
531 29, "L4=SD=", /* 0x9d */
532 30, "L4=SD=", /* 0x9e */
533 31, "L4=SD=", /* 0x9f */
534 32, "L4=Sb=", /* 0xa0 */
535 33, "L4=Sd=", /* 0xa1 */
536 /* R_RESERVED */
537 0, "", /* 0xa2 */
538 0, "", /* 0xa3 */
539 0, "", /* 0xa4 */
540 0, "", /* 0xa5 */
541 0, "", /* 0xa6 */
542 0, "", /* 0xa7 */
543 0, "", /* 0xa8 */
544 0, "", /* 0xa9 */
545 0, "", /* 0xaa */
546 0, "", /* 0xab */
547 0, "", /* 0xac */
548 0, "", /* 0xad */
549 /* R_MILLI_REL */
550 0, "L4=Sb=", /* 0xae */
551 1, "L4=Sd=", /* 0xaf */
552 /* R_CODE_PLABEL */
553 0, "L4=Sb=", /* 0xb0 */
554 1, "L4=Sd=", /* 0xb1 */
555 /* R_BREAKPOINT */
556 0, "L4=", /* 0xb2 */
557 /* R_ENTRY */
558 0, "Ui=", /* 0xb3 */
559 1, "Uf=", /* 0xb4 */
560 /* R_ALT_ENTRY */
561 0, "", /* 0xb5 */
562 /* R_EXIT */
563 0, "", /* 0xb6 */
564 /* R_BEGIN_TRY */
565 0, "", /* 0xb7 */
566 /* R_END_TRY */
567 0, "R0=", /* 0xb8 */
568 1, "Rb4*=", /* 0xb9 */
569 2, "Rd4*=", /* 0xba */
570 /* R_BEGIN_BRTAB */
571 0, "", /* 0xbb */
572 /* R_END_BRTAB */
573 0, "", /* 0xbc */
574 /* R_STATEMENT */
575 0, "Nb=", /* 0xbd */
576 1, "Nc=", /* 0xbe */
577 2, "Nd=", /* 0xbf */
578 /* R_DATA_EXPR */
579 0, "L4=", /* 0xc0 */
580 /* R_CODE_EXPR */
581 0, "L4=", /* 0xc1 */
582 /* R_FSEL */
583 0, "", /* 0xc2 */
584 /* R_LSEL */
585 0, "", /* 0xc3 */
586 /* R_RSEL */
587 0, "", /* 0xc4 */
588 /* R_N_MODE */
589 0, "", /* 0xc5 */
590 /* R_S_MODE */
591 0, "", /* 0xc6 */
592 /* R_D_MODE */
593 0, "", /* 0xc7 */
594 /* R_R_MODE */
595 0, "", /* 0xc8 */
596 /* R_DATA_OVERRIDE */
597 0, "V0=", /* 0xc9 */
598 1, "Vb=", /* 0xca */
599 2, "Vc=", /* 0xcb */
600 3, "Vd=", /* 0xcc */
601 4, "Ve=", /* 0xcd */
602 /* R_TRANSLATED */
603 0, "", /* 0xce */
604 /* R_RESERVED */
605 0, "", /* 0xcf */
606 /* R_COMP1 */
607 0, "Ob=", /* 0xd0 */
608 /* R_COMP2 */
609 0, "Ob=Sd=", /* 0xd1 */
610 /* R_COMP3 */
611 0, "Ob=Ve=", /* 0xd2 */
612 /* R_PREV_FIXUP */
613 0, "P", /* 0xd3 */
614 1, "P", /* 0xd4 */
615 2, "P", /* 0xd5 */
616 3, "P", /* 0xd6 */
617 /* R_RESERVED */
618 0, "", /* 0xd7 */
619 0, "", /* 0xd8 */
620 0, "", /* 0xd9 */
621 0, "", /* 0xda */
622 0, "", /* 0xdb */
623 0, "", /* 0xdc */
624 0, "", /* 0xdd */
625 0, "", /* 0xde */
626 0, "", /* 0xdf */
627 0, "", /* 0xe0 */
628 0, "", /* 0xe1 */
629 0, "", /* 0xe2 */
630 0, "", /* 0xe3 */
631 0, "", /* 0xe4 */
632 0, "", /* 0xe5 */
633 0, "", /* 0xe6 */
634 0, "", /* 0xe7 */
635 0, "", /* 0xe8 */
636 0, "", /* 0xe9 */
637 0, "", /* 0xea */
638 0, "", /* 0xeb */
639 0, "", /* 0xec */
640 0, "", /* 0xed */
641 0, "", /* 0xee */
642 0, "", /* 0xef */
643 0, "", /* 0xf0 */
644 0, "", /* 0xf1 */
645 0, "", /* 0xf2 */
646 0, "", /* 0xf3 */
647 0, "", /* 0xf4 */
648 0, "", /* 0xf5 */
649 0, "", /* 0xf6 */
650 0, "", /* 0xf7 */
651 0, "", /* 0xf8 */
652 0, "", /* 0xf9 */
653 0, "", /* 0xfa */
654 0, "", /* 0xfb */
655 0, "", /* 0xfc */
656 0, "", /* 0xfd */
657 0, "", /* 0xfe */
658 0, "", /* 0xff */
659 };
660
661 static const int comp1_opcodes[] =
662 {
663 0x00,
664 0x40,
665 0x41,
666 0x42,
667 0x43,
668 0x44,
669 0x45,
670 0x46,
671 0x47,
672 0x48,
673 0x49,
674 0x4a,
675 0x4b,
676 0x60,
677 0x80,
678 0xa0,
679 0xc0,
680 -1
681 };
682
683 static const int comp2_opcodes[] =
684 {
685 0x00,
686 0x80,
687 0x82,
688 0xc0,
689 -1
690 };
691
692 static const int comp3_opcodes[] =
693 {
694 0x00,
695 0x02,
696 -1
697 };
698
699 /* These apparently are not in older versions of hpux reloc.h. */
700 #ifndef R_DLT_REL
701 #define R_DLT_REL 0x78
702 #endif
703
704 #ifndef R_AUX_UNWIND
705 #define R_AUX_UNWIND 0xcf
706 #endif
707
708 #ifndef R_SEC_STMT
709 #define R_SEC_STMT 0xd7
710 #endif
711
712 static reloc_howto_type som_hppa_howto_table[] =
713 {
714 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
715 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
716 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
717 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
718 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
719 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
720 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
721 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
722 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
723 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
724 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
725 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
726 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
727 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
728 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
729 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
730 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
731 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
732 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
733 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
734 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
735 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
736 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
737 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
738 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
739 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
740 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
741 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
742 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
743 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
744 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
745 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
746 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
747 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
748 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
749 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
750 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
751 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
752 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
753 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
754 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
755 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
756 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
757 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
758 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
759 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
760 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
761 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
762 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
763 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
764 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
765 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
766 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
767 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
768 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
769 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
770 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
771 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
772 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
773 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
774 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
775 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
776 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
777 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
778 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
779 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
780 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
781 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
782 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
783 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
784 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
785 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
786 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
787 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
788 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
789 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
790 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
791 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
792 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
793 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
794 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
795 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
796 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
797 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
798 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
799 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
800 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
801 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
802 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
803 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
804 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
805 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
806 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
807 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
808 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
809 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
810 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
811 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
812 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
813 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
814 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
815 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
816 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
817 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
818 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
819 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
820 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
821 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
822 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
823 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
824 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
825 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
826 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
827 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
828 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
829 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
830 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
831 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
832 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
833 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
834 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
835 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
836 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
837 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
838 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
839 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
840 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
841 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
842 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
843 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
844 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
845 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
846 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
847 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
848 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
849 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
850 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
851 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
852 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
853 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
854 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
855 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
856 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
857 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
858 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
859 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
860 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
861 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
862 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
863 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
864 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
865 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
866 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
867 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
868 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
869 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
870 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
871 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
872 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
873 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
874 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
875 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
876 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
877 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
878 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
879 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
880 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
881 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
882 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
883 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
884 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
885 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
886 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
887 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
888 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
889 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
890 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
891 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
892 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
893 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
894 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
895 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
896 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
897 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
898 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
899 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
900 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
901 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
902 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
903 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
904 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
905 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
906 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
907 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
908 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
909 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
910 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
911 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
912 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
913 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
914 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
915 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
916 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
917 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
918 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
919 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
920 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
921 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
922 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
923 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
924 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
925 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
926 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
927 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
928 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
929 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
930 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
931 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
932 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
933 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
934 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
935 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
936 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
937 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
938 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
939 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
940 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
941 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
942 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
943 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
944 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
945 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
946 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
947 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
948 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
949 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
950 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
951 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
952 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
953 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
954 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
955 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
956 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
957 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
958 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
959 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
960 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
961 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
962 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
963 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
964 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
965 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
966 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
967 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
968 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
969 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
970
971 /* Initialize the SOM relocation queue. By definition the queue holds
972 the last four multibyte fixups. */
973
974 static void
975 som_initialize_reloc_queue (queue)
976 struct reloc_queue *queue;
977 {
978 queue[0].reloc = NULL;
979 queue[0].size = 0;
980 queue[1].reloc = NULL;
981 queue[1].size = 0;
982 queue[2].reloc = NULL;
983 queue[2].size = 0;
984 queue[3].reloc = NULL;
985 queue[3].size = 0;
986 }
987
988 /* Insert a new relocation into the relocation queue. */
989
990 static void
991 som_reloc_queue_insert (p, size, queue)
992 unsigned char *p;
993 unsigned int size;
994 struct reloc_queue *queue;
995 {
996 queue[3].reloc = queue[2].reloc;
997 queue[3].size = queue[2].size;
998 queue[2].reloc = queue[1].reloc;
999 queue[2].size = queue[1].size;
1000 queue[1].reloc = queue[0].reloc;
1001 queue[1].size = queue[0].size;
1002 queue[0].reloc = p;
1003 queue[0].size = size;
1004 }
1005
1006 /* When an entry in the relocation queue is reused, the entry moves
1007 to the front of the queue. */
1008
1009 static void
1010 som_reloc_queue_fix (queue, index)
1011 struct reloc_queue *queue;
1012 unsigned int index;
1013 {
1014 if (index == 0)
1015 return;
1016
1017 if (index == 1)
1018 {
1019 unsigned char *tmp1 = queue[0].reloc;
1020 unsigned int tmp2 = queue[0].size;
1021 queue[0].reloc = queue[1].reloc;
1022 queue[0].size = queue[1].size;
1023 queue[1].reloc = tmp1;
1024 queue[1].size = tmp2;
1025 return;
1026 }
1027
1028 if (index == 2)
1029 {
1030 unsigned char *tmp1 = queue[0].reloc;
1031 unsigned int tmp2 = queue[0].size;
1032 queue[0].reloc = queue[2].reloc;
1033 queue[0].size = queue[2].size;
1034 queue[2].reloc = queue[1].reloc;
1035 queue[2].size = queue[1].size;
1036 queue[1].reloc = tmp1;
1037 queue[1].size = tmp2;
1038 return;
1039 }
1040
1041 if (index == 3)
1042 {
1043 unsigned char *tmp1 = queue[0].reloc;
1044 unsigned int tmp2 = queue[0].size;
1045 queue[0].reloc = queue[3].reloc;
1046 queue[0].size = queue[3].size;
1047 queue[3].reloc = queue[2].reloc;
1048 queue[3].size = queue[2].size;
1049 queue[2].reloc = queue[1].reloc;
1050 queue[2].size = queue[1].size;
1051 queue[1].reloc = tmp1;
1052 queue[1].size = tmp2;
1053 return;
1054 }
1055 abort();
1056 }
1057
1058 /* Search for a particular relocation in the relocation queue. */
1059
1060 static int
1061 som_reloc_queue_find (p, size, queue)
1062 unsigned char *p;
1063 unsigned int size;
1064 struct reloc_queue *queue;
1065 {
1066 if (queue[0].reloc && !bcmp (p, queue[0].reloc, size)
1067 && size == queue[0].size)
1068 return 0;
1069 if (queue[1].reloc && !bcmp (p, queue[1].reloc, size)
1070 && size == queue[1].size)
1071 return 1;
1072 if (queue[2].reloc && !bcmp (p, queue[2].reloc, size)
1073 && size == queue[2].size)
1074 return 2;
1075 if (queue[3].reloc && !bcmp (p, queue[3].reloc, size)
1076 && size == queue[3].size)
1077 return 3;
1078 return -1;
1079 }
1080
1081 static unsigned char *
1082 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1083 bfd *abfd;
1084 int *subspace_reloc_sizep;
1085 unsigned char *p;
1086 unsigned int size;
1087 struct reloc_queue *queue;
1088 {
1089 int queue_index = som_reloc_queue_find (p, size, queue);
1090
1091 if (queue_index != -1)
1092 {
1093 /* Found this in a previous fixup. Undo the fixup we
1094 just built and use R_PREV_FIXUP instead. We saved
1095 a total of size - 1 bytes in the fixup stream. */
1096 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1097 p += 1;
1098 *subspace_reloc_sizep += 1;
1099 som_reloc_queue_fix (queue, queue_index);
1100 }
1101 else
1102 {
1103 som_reloc_queue_insert (p, size, queue);
1104 *subspace_reloc_sizep += size;
1105 p += size;
1106 }
1107 return p;
1108 }
1109
1110 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1111 bytes without any relocation. Update the size of the subspace
1112 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1113 current pointer into the relocation stream. */
1114
1115 static unsigned char *
1116 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1117 bfd *abfd;
1118 unsigned int skip;
1119 unsigned char *p;
1120 unsigned int *subspace_reloc_sizep;
1121 struct reloc_queue *queue;
1122 {
1123 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1124 then R_PREV_FIXUPs to get the difference down to a
1125 reasonable size. */
1126 if (skip >= 0x1000000)
1127 {
1128 skip -= 0x1000000;
1129 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1130 bfd_put_8 (abfd, 0xff, p + 1);
1131 bfd_put_16 (abfd, 0xffff, p + 2);
1132 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1133 while (skip >= 0x1000000)
1134 {
1135 skip -= 0x1000000;
1136 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1137 p++;
1138 *subspace_reloc_sizep += 1;
1139 /* No need to adjust queue here since we are repeating the
1140 most recent fixup. */
1141 }
1142 }
1143
1144 /* The difference must be less than 0x1000000. Use one
1145 more R_NO_RELOCATION entry to get to the right difference. */
1146 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1147 {
1148 /* Difference can be handled in a simple single-byte
1149 R_NO_RELOCATION entry. */
1150 if (skip <= 0x60)
1151 {
1152 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1153 *subspace_reloc_sizep += 1;
1154 p++;
1155 }
1156 /* Handle it with a two byte R_NO_RELOCATION entry. */
1157 else if (skip <= 0x1000)
1158 {
1159 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1160 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1161 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1162 }
1163 /* Handle it with a three byte R_NO_RELOCATION entry. */
1164 else
1165 {
1166 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1167 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1168 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1169 }
1170 }
1171 /* Ugh. Punt and use a 4 byte entry. */
1172 else if (skip > 0)
1173 {
1174 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1175 bfd_put_8 (abfd, skip >> 16, p + 1);
1176 bfd_put_16 (abfd, skip, p + 2);
1177 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1178 }
1179 return p;
1180 }
1181
1182 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1183 from a BFD relocation. Update the size of the subspace relocation
1184 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1185 into the relocation stream. */
1186
1187 static unsigned char *
1188 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1189 bfd *abfd;
1190 int addend;
1191 unsigned char *p;
1192 unsigned int *subspace_reloc_sizep;
1193 struct reloc_queue *queue;
1194 {
1195 if ((unsigned)(addend) + 0x80 < 0x100)
1196 {
1197 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1198 bfd_put_8 (abfd, addend, p + 1);
1199 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1200 }
1201 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1202 {
1203 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1204 bfd_put_16 (abfd, addend, p + 1);
1205 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1206 }
1207 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1208 {
1209 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1210 bfd_put_8 (abfd, addend >> 16, p + 1);
1211 bfd_put_16 (abfd, addend, p + 2);
1212 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1213 }
1214 else
1215 {
1216 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1217 bfd_put_32 (abfd, addend, p + 1);
1218 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1219 }
1220 return p;
1221 }
1222
1223 /* Handle a single function call relocation. */
1224
1225 static unsigned char *
1226 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1227 bfd *abfd;
1228 unsigned char *p;
1229 unsigned int *subspace_reloc_sizep;
1230 arelent *bfd_reloc;
1231 int sym_num;
1232 struct reloc_queue *queue;
1233 {
1234 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1235 int rtn_bits = arg_bits & 0x3;
1236 int type, done = 0;
1237
1238 /* You'll never believe all this is necessary to handle relocations
1239 for function calls. Having to compute and pack the argument
1240 relocation bits is the real nightmare.
1241
1242 If you're interested in how this works, just forget it. You really
1243 do not want to know about this braindamage. */
1244
1245 /* First see if this can be done with a "simple" relocation. Simple
1246 relocations have a symbol number < 0x100 and have simple encodings
1247 of argument relocations. */
1248
1249 if (sym_num < 0x100)
1250 {
1251 switch (arg_bits)
1252 {
1253 case 0:
1254 case 1:
1255 type = 0;
1256 break;
1257 case 1 << 8:
1258 case 1 << 8 | 1:
1259 type = 1;
1260 break;
1261 case 1 << 8 | 1 << 6:
1262 case 1 << 8 | 1 << 6 | 1:
1263 type = 2;
1264 break;
1265 case 1 << 8 | 1 << 6 | 1 << 4:
1266 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1267 type = 3;
1268 break;
1269 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1270 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1271 type = 4;
1272 break;
1273 default:
1274 /* Not one of the easy encodings. This will have to be
1275 handled by the more complex code below. */
1276 type = -1;
1277 break;
1278 }
1279 if (type != -1)
1280 {
1281 /* Account for the return value too. */
1282 if (rtn_bits)
1283 type += 5;
1284
1285 /* Emit a 2 byte relocation. Then see if it can be handled
1286 with a relocation which is already in the relocation queue. */
1287 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1288 bfd_put_8 (abfd, sym_num, p + 1);
1289 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1290 done = 1;
1291 }
1292 }
1293
1294 /* If this could not be handled with a simple relocation, then do a hard
1295 one. Hard relocations occur if the symbol number was too high or if
1296 the encoding of argument relocation bits is too complex. */
1297 if (! done)
1298 {
1299 /* Don't ask about these magic sequences. I took them straight
1300 from gas-1.36 which took them from the a.out man page. */
1301 type = rtn_bits;
1302 if ((arg_bits >> 6 & 0xf) == 0xe)
1303 type += 9 * 40;
1304 else
1305 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1306 if ((arg_bits >> 2 & 0xf) == 0xe)
1307 type += 9 * 4;
1308 else
1309 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1310
1311 /* Output the first two bytes of the relocation. These describe
1312 the length of the relocation and encoding style. */
1313 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1314 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1315 p);
1316 bfd_put_8 (abfd, type, p + 1);
1317
1318 /* Now output the symbol index and see if this bizarre relocation
1319 just happened to be in the relocation queue. */
1320 if (sym_num < 0x100)
1321 {
1322 bfd_put_8 (abfd, sym_num, p + 2);
1323 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1324 }
1325 else
1326 {
1327 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1328 bfd_put_16 (abfd, sym_num, p + 3);
1329 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1330 }
1331 }
1332 return p;
1333 }
1334
1335
1336 /* Return the logarithm of X, base 2, considering X unsigned.
1337 Abort -1 if X is not a power or two or is zero. */
1338
1339 static int
1340 log2 (x)
1341 unsigned int x;
1342 {
1343 int log = 0;
1344
1345 /* Test for 0 or a power of 2. */
1346 if (x == 0 || x != (x & -x))
1347 return -1;
1348
1349 while ((x >>= 1) != 0)
1350 log++;
1351 return log;
1352 }
1353
1354 static bfd_reloc_status_type
1355 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1356 input_section, output_bfd, error_message)
1357 bfd *abfd;
1358 arelent *reloc_entry;
1359 asymbol *symbol_in;
1360 PTR data;
1361 asection *input_section;
1362 bfd *output_bfd;
1363 char **error_message;
1364 {
1365 if (output_bfd)
1366 {
1367 reloc_entry->address += input_section->output_offset;
1368 return bfd_reloc_ok;
1369 }
1370 return bfd_reloc_ok;
1371 }
1372
1373 /* Given a generic HPPA relocation type, the instruction format,
1374 and a field selector, return one or more appropriate SOM relocations. */
1375
1376 int **
1377 hppa_som_gen_reloc_type (abfd, base_type, format, field)
1378 bfd *abfd;
1379 int base_type;
1380 int format;
1381 enum hppa_reloc_field_selector_type_alt field;
1382 {
1383 int *final_type, **final_types;
1384
1385 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 3);
1386 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1387 if (!final_types || !final_type)
1388 {
1389 bfd_set_error (bfd_error_no_memory);
1390 return NULL;
1391 }
1392
1393 /* The field selector may require additional relocations to be
1394 generated. It's impossible to know at this moment if additional
1395 relocations will be needed, so we make them. The code to actually
1396 write the relocation/fixup stream is responsible for removing
1397 any redundant relocations. */
1398 switch (field)
1399 {
1400 case e_fsel:
1401 case e_psel:
1402 case e_lpsel:
1403 case e_rpsel:
1404 final_types[0] = final_type;
1405 final_types[1] = NULL;
1406 final_types[2] = NULL;
1407 *final_type = base_type;
1408 break;
1409
1410 case e_tsel:
1411 case e_ltsel:
1412 case e_rtsel:
1413 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1414 if (!final_types[0])
1415 {
1416 bfd_set_error (bfd_error_no_memory);
1417 return NULL;
1418 }
1419 if (field == e_tsel)
1420 *final_types[0] = R_FSEL;
1421 else if (field == e_ltsel)
1422 *final_types[0] = R_LSEL;
1423 else
1424 *final_types[0] = R_RSEL;
1425 final_types[1] = final_type;
1426 final_types[2] = NULL;
1427 *final_type = base_type;
1428 break;
1429
1430 case e_lssel:
1431 case e_rssel:
1432 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1433 if (!final_types[0])
1434 {
1435 bfd_set_error (bfd_error_no_memory);
1436 return NULL;
1437 }
1438 *final_types[0] = R_S_MODE;
1439 final_types[1] = final_type;
1440 final_types[2] = NULL;
1441 *final_type = base_type;
1442 break;
1443
1444 case e_lsel:
1445 case e_rsel:
1446 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1447 if (!final_types[0])
1448 {
1449 bfd_set_error (bfd_error_no_memory);
1450 return NULL;
1451 }
1452 *final_types[0] = R_N_MODE;
1453 final_types[1] = final_type;
1454 final_types[2] = NULL;
1455 *final_type = base_type;
1456 break;
1457
1458 case e_ldsel:
1459 case e_rdsel:
1460 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1461 if (!final_types[0])
1462 {
1463 bfd_set_error (bfd_error_no_memory);
1464 return NULL;
1465 }
1466 *final_types[0] = R_D_MODE;
1467 final_types[1] = final_type;
1468 final_types[2] = NULL;
1469 *final_type = base_type;
1470 break;
1471
1472 case e_lrsel:
1473 case e_rrsel:
1474 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1475 if (!final_types[0])
1476 {
1477 bfd_set_error (bfd_error_no_memory);
1478 return NULL;
1479 }
1480 *final_types[0] = R_R_MODE;
1481 final_types[1] = final_type;
1482 final_types[2] = NULL;
1483 *final_type = base_type;
1484 break;
1485 }
1486
1487 switch (base_type)
1488 {
1489 case R_HPPA:
1490 /* PLABELs get their own relocation type. */
1491 if (field == e_psel
1492 || field == e_lpsel
1493 || field == e_rpsel)
1494 {
1495 /* A PLABEL relocation that has a size of 32 bits must
1496 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1497 if (format == 32)
1498 *final_type = R_DATA_PLABEL;
1499 else
1500 *final_type = R_CODE_PLABEL;
1501 }
1502 /* PIC stuff. */
1503 else if (field == e_tsel
1504 || field == e_ltsel
1505 || field == e_rtsel)
1506 *final_type = R_DLT_REL;
1507 /* A relocation in the data space is always a full 32bits. */
1508 else if (format == 32)
1509 *final_type = R_DATA_ONE_SYMBOL;
1510
1511 break;
1512
1513 case R_HPPA_GOTOFF:
1514 /* More PLABEL special cases. */
1515 if (field == e_psel
1516 || field == e_lpsel
1517 || field == e_rpsel)
1518 *final_type = R_DATA_PLABEL;
1519 break;
1520
1521 case R_HPPA_NONE:
1522 case R_HPPA_ABS_CALL:
1523 case R_HPPA_PCREL_CALL:
1524 case R_HPPA_COMPLEX:
1525 case R_HPPA_COMPLEX_PCREL_CALL:
1526 case R_HPPA_COMPLEX_ABS_CALL:
1527 /* Right now we can default all these. */
1528 break;
1529 }
1530 return final_types;
1531 }
1532
1533 /* Return the address of the correct entry in the PA SOM relocation
1534 howto table. */
1535
1536 static const reloc_howto_type *
1537 som_bfd_reloc_type_lookup (arch, code)
1538 bfd_arch_info_type *arch;
1539 bfd_reloc_code_real_type code;
1540 {
1541 if ((int) code < (int) R_NO_RELOCATION + 255)
1542 {
1543 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1544 return &som_hppa_howto_table[(int) code];
1545 }
1546
1547 return (reloc_howto_type *) 0;
1548 }
1549
1550 /* Perform some initialization for an object. Save results of this
1551 initialization in the BFD. */
1552
1553 static bfd_target *
1554 som_object_setup (abfd, file_hdrp, aux_hdrp)
1555 bfd *abfd;
1556 struct header *file_hdrp;
1557 struct som_exec_auxhdr *aux_hdrp;
1558 {
1559 /* som_mkobject will set bfd_error if som_mkobject fails. */
1560 if (som_mkobject (abfd) != true)
1561 return 0;
1562
1563 /* Set BFD flags based on what information is available in the SOM. */
1564 abfd->flags = NO_FLAGS;
1565 if (file_hdrp->symbol_total)
1566 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1567
1568 switch (file_hdrp->a_magic)
1569 {
1570 case DEMAND_MAGIC:
1571 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1572 break;
1573 case SHARE_MAGIC:
1574 abfd->flags |= (WP_TEXT | EXEC_P);
1575 break;
1576 case EXEC_MAGIC:
1577 abfd->flags |= (EXEC_P);
1578 break;
1579 case RELOC_MAGIC:
1580 abfd->flags |= HAS_RELOC;
1581 break;
1582 default:
1583 break;
1584 }
1585
1586 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1587 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 0);
1588 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1589
1590 /* Initialize the saved symbol table and string table to NULL.
1591 Save important offsets and sizes from the SOM header into
1592 the BFD. */
1593 obj_som_stringtab (abfd) = (char *) NULL;
1594 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1595 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1596 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1597 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1598 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
1599
1600 obj_som_exec_data (abfd) = (struct som_exec_data *)
1601 bfd_zalloc (abfd, sizeof (struct som_exec_data ));
1602 if (obj_som_exec_data (abfd) == NULL)
1603 {
1604 bfd_set_error (bfd_error_no_memory);
1605 return NULL;
1606 }
1607
1608 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1609 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1610 return abfd->xvec;
1611 }
1612
1613 /* Convert all of the space and subspace info into BFD sections. Each space
1614 contains a number of subspaces, which in turn describe the mapping between
1615 regions of the exec file, and the address space that the program runs in.
1616 BFD sections which correspond to spaces will overlap the sections for the
1617 associated subspaces. */
1618
1619 static boolean
1620 setup_sections (abfd, file_hdr)
1621 bfd *abfd;
1622 struct header *file_hdr;
1623 {
1624 char *space_strings;
1625 int space_index;
1626 unsigned int total_subspaces = 0;
1627
1628 /* First, read in space names */
1629
1630 space_strings = malloc (file_hdr->space_strings_size);
1631 if (!space_strings && file_hdr->space_strings_size != 0)
1632 {
1633 bfd_set_error (bfd_error_no_memory);
1634 goto error_return;
1635 }
1636
1637 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
1638 goto error_return;
1639 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1640 != file_hdr->space_strings_size)
1641 goto error_return;
1642
1643 /* Loop over all of the space dictionaries, building up sections */
1644 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1645 {
1646 struct space_dictionary_record space;
1647 struct subspace_dictionary_record subspace, save_subspace;
1648 int subspace_index;
1649 asection *space_asect;
1650 char *newname;
1651
1652 /* Read the space dictionary element */
1653 if (bfd_seek (abfd, file_hdr->space_location
1654 + space_index * sizeof space, SEEK_SET) < 0)
1655 goto error_return;
1656 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1657 goto error_return;
1658
1659 /* Setup the space name string */
1660 space.name.n_name = space.name.n_strx + space_strings;
1661
1662 /* Make a section out of it */
1663 newname = bfd_alloc (abfd, strlen (space.name.n_name) + 1);
1664 if (!newname)
1665 goto error_return;
1666 strcpy (newname, space.name.n_name);
1667
1668 space_asect = bfd_make_section_anyway (abfd, newname);
1669 if (!space_asect)
1670 goto error_return;
1671
1672 if (space.is_loadable == 0)
1673 space_asect->flags |= SEC_DEBUGGING;
1674
1675 /* Set up all the attributes for the space. */
1676 if (bfd_som_set_section_attributes (space_asect, space.is_defined,
1677 space.is_private, space.sort_key,
1678 space.space_number) == false)
1679 goto error_return;
1680
1681 /* Now, read in the first subspace for this space */
1682 if (bfd_seek (abfd, file_hdr->subspace_location
1683 + space.subspace_index * sizeof subspace,
1684 SEEK_SET) < 0)
1685 goto error_return;
1686 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1687 goto error_return;
1688 /* Seek back to the start of the subspaces for loop below */
1689 if (bfd_seek (abfd, file_hdr->subspace_location
1690 + space.subspace_index * sizeof subspace,
1691 SEEK_SET) < 0)
1692 goto error_return;
1693
1694 /* Setup the start address and file loc from the first subspace record */
1695 space_asect->vma = subspace.subspace_start;
1696 space_asect->filepos = subspace.file_loc_init_value;
1697 space_asect->alignment_power = log2 (subspace.alignment);
1698 if (space_asect->alignment_power == -1)
1699 goto error_return;
1700
1701 /* Initialize save_subspace so we can reliably determine if this
1702 loop placed any useful values into it. */
1703 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1704
1705 /* Loop over the rest of the subspaces, building up more sections */
1706 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1707 subspace_index++)
1708 {
1709 asection *subspace_asect;
1710
1711 /* Read in the next subspace */
1712 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1713 != sizeof subspace)
1714 goto error_return;
1715
1716 /* Setup the subspace name string */
1717 subspace.name.n_name = subspace.name.n_strx + space_strings;
1718
1719 newname = bfd_alloc (abfd, strlen (subspace.name.n_name) + 1);
1720 if (!newname)
1721 goto error_return;
1722 strcpy (newname, subspace.name.n_name);
1723
1724 /* Make a section out of this subspace */
1725 subspace_asect = bfd_make_section_anyway (abfd, newname);
1726 if (!subspace_asect)
1727 goto error_return;
1728
1729 /* Store private information about the section. */
1730 if (bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1731 subspace.access_control_bits,
1732 subspace.sort_key,
1733 subspace.quadrant) == false)
1734 goto error_return;
1735
1736 /* Keep an easy mapping between subspaces and sections. */
1737 subspace_asect->target_index = total_subspaces++;
1738
1739 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1740 by the access_control_bits in the subspace header. */
1741 switch (subspace.access_control_bits >> 4)
1742 {
1743 /* Readonly data. */
1744 case 0x0:
1745 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1746 break;
1747
1748 /* Normal data. */
1749 case 0x1:
1750 subspace_asect->flags |= SEC_DATA;
1751 break;
1752
1753 /* Readonly code and the gateways.
1754 Gateways have other attributes which do not map
1755 into anything BFD knows about. */
1756 case 0x2:
1757 case 0x4:
1758 case 0x5:
1759 case 0x6:
1760 case 0x7:
1761 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1762 break;
1763
1764 /* dynamic (writable) code. */
1765 case 0x3:
1766 subspace_asect->flags |= SEC_CODE;
1767 break;
1768 }
1769
1770 if (subspace.dup_common || subspace.is_common)
1771 subspace_asect->flags |= SEC_IS_COMMON;
1772 else if (subspace.subspace_length > 0)
1773 subspace_asect->flags |= SEC_HAS_CONTENTS;
1774
1775 if (subspace.is_loadable)
1776 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1777 else
1778 subspace_asect->flags |= SEC_DEBUGGING;
1779
1780 if (subspace.code_only)
1781 subspace_asect->flags |= SEC_CODE;
1782
1783 /* Both file_loc_init_value and initialization_length will
1784 be zero for a BSS like subspace. */
1785 if (subspace.file_loc_init_value == 0
1786 && subspace.initialization_length == 0)
1787 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD);
1788
1789 /* This subspace has relocations.
1790 The fixup_request_quantity is a byte count for the number of
1791 entries in the relocation stream; it is not the actual number
1792 of relocations in the subspace. */
1793 if (subspace.fixup_request_quantity != 0)
1794 {
1795 subspace_asect->flags |= SEC_RELOC;
1796 subspace_asect->rel_filepos = subspace.fixup_request_index;
1797 som_section_data (subspace_asect)->reloc_size
1798 = subspace.fixup_request_quantity;
1799 /* We can not determine this yet. When we read in the
1800 relocation table the correct value will be filled in. */
1801 subspace_asect->reloc_count = -1;
1802 }
1803
1804 /* Update save_subspace if appropriate. */
1805 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1806 save_subspace = subspace;
1807
1808 subspace_asect->vma = subspace.subspace_start;
1809 subspace_asect->_cooked_size = subspace.subspace_length;
1810 subspace_asect->_raw_size = subspace.subspace_length;
1811 subspace_asect->filepos = subspace.file_loc_init_value;
1812 subspace_asect->alignment_power = log2 (subspace.alignment);
1813 if (subspace_asect->alignment_power == -1)
1814 goto error_return;
1815 }
1816
1817 /* Yow! there is no subspace within the space which actually
1818 has initialized information in it; this should never happen
1819 as far as I know. */
1820 if (!save_subspace.file_loc_init_value)
1821 goto error_return;
1822
1823 /* Setup the sizes for the space section based upon the info in the
1824 last subspace of the space. */
1825 space_asect->_cooked_size = save_subspace.subspace_start
1826 - space_asect->vma + save_subspace.subspace_length;
1827 space_asect->_raw_size = save_subspace.file_loc_init_value
1828 - space_asect->filepos + save_subspace.initialization_length;
1829 }
1830 if (space_strings != NULL)
1831 free (space_strings);
1832 return true;
1833
1834 error_return:
1835 if (space_strings != NULL)
1836 free (space_strings);
1837 return false;
1838 }
1839
1840 /* Read in a SOM object and make it into a BFD. */
1841
1842 static bfd_target *
1843 som_object_p (abfd)
1844 bfd *abfd;
1845 {
1846 struct header file_hdr;
1847 struct som_exec_auxhdr aux_hdr;
1848
1849 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
1850 {
1851 if (bfd_get_error () != bfd_error_system_call)
1852 bfd_set_error (bfd_error_wrong_format);
1853 return 0;
1854 }
1855
1856 if (!_PA_RISC_ID (file_hdr.system_id))
1857 {
1858 bfd_set_error (bfd_error_wrong_format);
1859 return 0;
1860 }
1861
1862 switch (file_hdr.a_magic)
1863 {
1864 case RELOC_MAGIC:
1865 case EXEC_MAGIC:
1866 case SHARE_MAGIC:
1867 case DEMAND_MAGIC:
1868 #ifdef DL_MAGIC
1869 case DL_MAGIC:
1870 #endif
1871 #ifdef SHL_MAGIC
1872 case SHL_MAGIC:
1873 #endif
1874 #ifdef EXECLIBMAGIC
1875 case EXECLIBMAGIC:
1876 #endif
1877 #ifdef SHARED_MAGIC_CNX
1878 case SHARED_MAGIC_CNX:
1879 #endif
1880 break;
1881 default:
1882 bfd_set_error (bfd_error_wrong_format);
1883 return 0;
1884 }
1885
1886 if (file_hdr.version_id != VERSION_ID
1887 && file_hdr.version_id != NEW_VERSION_ID)
1888 {
1889 bfd_set_error (bfd_error_wrong_format);
1890 return 0;
1891 }
1892
1893 /* If the aux_header_size field in the file header is zero, then this
1894 object is an incomplete executable (a .o file). Do not try to read
1895 a non-existant auxiliary header. */
1896 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
1897 if (file_hdr.aux_header_size != 0)
1898 {
1899 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
1900 {
1901 if (bfd_get_error () != bfd_error_system_call)
1902 bfd_set_error (bfd_error_wrong_format);
1903 return 0;
1904 }
1905 }
1906
1907 if (!setup_sections (abfd, &file_hdr))
1908 {
1909 /* setup_sections does not bubble up a bfd error code. */
1910 bfd_set_error (bfd_error_bad_value);
1911 return 0;
1912 }
1913
1914 /* This appears to be a valid SOM object. Do some initialization. */
1915 return som_object_setup (abfd, &file_hdr, &aux_hdr);
1916 }
1917
1918 /* Create a SOM object. */
1919
1920 static boolean
1921 som_mkobject (abfd)
1922 bfd *abfd;
1923 {
1924 /* Allocate memory to hold backend information. */
1925 abfd->tdata.som_data = (struct som_data_struct *)
1926 bfd_zalloc (abfd, sizeof (struct som_data_struct));
1927 if (abfd->tdata.som_data == NULL)
1928 {
1929 bfd_set_error (bfd_error_no_memory);
1930 return false;
1931 }
1932 return true;
1933 }
1934
1935 /* Initialize some information in the file header. This routine makes
1936 not attempt at doing the right thing for a full executable; it
1937 is only meant to handle relocatable objects. */
1938
1939 static boolean
1940 som_prep_headers (abfd)
1941 bfd *abfd;
1942 {
1943 struct header *file_hdr;
1944 asection *section;
1945
1946 /* Make and attach a file header to the BFD. */
1947 file_hdr = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
1948 if (file_hdr == NULL)
1949
1950 {
1951 bfd_set_error (bfd_error_no_memory);
1952 return false;
1953 }
1954 obj_som_file_hdr (abfd) = file_hdr;
1955
1956 /* FIXME. This should really be conditional based on whether or not
1957 PA1.1 instructions/registers have been used. */
1958 if (abfd->flags & EXEC_P)
1959 file_hdr->system_id = obj_som_exec_data (abfd)->system_id;
1960 else
1961 file_hdr->system_id = CPU_PA_RISC1_0;
1962
1963 if (abfd->flags & EXEC_P)
1964 {
1965 if (abfd->flags & D_PAGED)
1966 file_hdr->a_magic = DEMAND_MAGIC;
1967 else if (abfd->flags & WP_TEXT)
1968 file_hdr->a_magic = SHARE_MAGIC;
1969 else
1970 file_hdr->a_magic = EXEC_MAGIC;
1971 }
1972 else
1973 file_hdr->a_magic = RELOC_MAGIC;
1974
1975 /* Only new format SOM is supported. */
1976 file_hdr->version_id = NEW_VERSION_ID;
1977
1978 /* These fields are optional, and embedding timestamps is not always
1979 a wise thing to do, it makes comparing objects during a multi-stage
1980 bootstrap difficult. */
1981 file_hdr->file_time.secs = 0;
1982 file_hdr->file_time.nanosecs = 0;
1983
1984 file_hdr->entry_space = 0;
1985 file_hdr->entry_subspace = 0;
1986 file_hdr->entry_offset = 0;
1987 file_hdr->presumed_dp = 0;
1988
1989 /* Now iterate over the sections translating information from
1990 BFD sections to SOM spaces/subspaces. */
1991
1992 for (section = abfd->sections; section != NULL; section = section->next)
1993 {
1994 /* Ignore anything which has not been marked as a space or
1995 subspace. */
1996 if (!som_is_space (section) && !som_is_subspace (section))
1997 continue;
1998
1999 if (som_is_space (section))
2000 {
2001 /* Allocate space for the space dictionary. */
2002 som_section_data (section)->space_dict
2003 = (struct space_dictionary_record *)
2004 bfd_zalloc (abfd, sizeof (struct space_dictionary_record));
2005 if (som_section_data (section)->space_dict == NULL)
2006 {
2007 bfd_set_error (bfd_error_no_memory);
2008 return false;
2009 }
2010 /* Set space attributes. Note most attributes of SOM spaces
2011 are set based on the subspaces it contains. */
2012 som_section_data (section)->space_dict->loader_fix_index = -1;
2013 som_section_data (section)->space_dict->init_pointer_index = -1;
2014
2015 /* Set more attributes that were stuffed away in private data. */
2016 som_section_data (section)->space_dict->sort_key =
2017 som_section_data (section)->copy_data->sort_key;
2018 som_section_data (section)->space_dict->is_defined =
2019 som_section_data (section)->copy_data->is_defined;
2020 som_section_data (section)->space_dict->is_private =
2021 som_section_data (section)->copy_data->is_private;
2022 som_section_data (section)->space_dict->space_number =
2023 section->target_index;
2024 }
2025 else
2026 {
2027 /* Allocate space for the subspace dictionary. */
2028 som_section_data (section)->subspace_dict
2029 = (struct subspace_dictionary_record *)
2030 bfd_zalloc (abfd, sizeof (struct subspace_dictionary_record));
2031 if (som_section_data (section)->subspace_dict == NULL)
2032 {
2033 bfd_set_error (bfd_error_no_memory);
2034 return false;
2035 }
2036
2037 /* Set subspace attributes. Basic stuff is done here, additional
2038 attributes are filled in later as more information becomes
2039 available. */
2040 if (section->flags & SEC_IS_COMMON)
2041 {
2042 som_section_data (section)->subspace_dict->dup_common = 1;
2043 som_section_data (section)->subspace_dict->is_common = 1;
2044 }
2045
2046 if (section->flags & SEC_ALLOC)
2047 som_section_data (section)->subspace_dict->is_loadable = 1;
2048
2049 if (section->flags & SEC_CODE)
2050 som_section_data (section)->subspace_dict->code_only = 1;
2051
2052 som_section_data (section)->subspace_dict->subspace_start =
2053 section->vma;
2054 som_section_data (section)->subspace_dict->subspace_length =
2055 bfd_section_size (abfd, section);
2056 som_section_data (section)->subspace_dict->initialization_length =
2057 bfd_section_size (abfd, section);
2058 som_section_data (section)->subspace_dict->alignment =
2059 1 << section->alignment_power;
2060
2061 /* Set more attributes that were stuffed away in private data. */
2062 som_section_data (section)->subspace_dict->sort_key =
2063 som_section_data (section)->copy_data->sort_key;
2064 som_section_data (section)->subspace_dict->access_control_bits =
2065 som_section_data (section)->copy_data->access_control_bits;
2066 som_section_data (section)->subspace_dict->quadrant =
2067 som_section_data (section)->copy_data->quadrant;
2068 }
2069 }
2070 return true;
2071 }
2072
2073 /* Return true if the given section is a SOM space, false otherwise. */
2074
2075 static boolean
2076 som_is_space (section)
2077 asection *section;
2078 {
2079 /* If no copy data is available, then it's neither a space nor a
2080 subspace. */
2081 if (som_section_data (section)->copy_data == NULL)
2082 return false;
2083
2084 /* If the containing space isn't the same as the given section,
2085 then this isn't a space. */
2086 if (som_section_data (section)->copy_data->container != section)
2087 return false;
2088
2089 /* OK. Must be a space. */
2090 return true;
2091 }
2092
2093 /* Return true if the given section is a SOM subspace, false otherwise. */
2094
2095 static boolean
2096 som_is_subspace (section)
2097 asection *section;
2098 {
2099 /* If no copy data is available, then it's neither a space nor a
2100 subspace. */
2101 if (som_section_data (section)->copy_data == NULL)
2102 return false;
2103
2104 /* If the containing space is the same as the given section,
2105 then this isn't a subspace. */
2106 if (som_section_data (section)->copy_data->container == section)
2107 return false;
2108
2109 /* OK. Must be a subspace. */
2110 return true;
2111 }
2112
2113 /* Return true if the given space containins the given subspace. It
2114 is safe to assume space really is a space, and subspace really
2115 is a subspace. */
2116
2117 static boolean
2118 som_is_container (space, subspace)
2119 asection *space, *subspace;
2120 {
2121 return som_section_data (subspace)->copy_data->container == space;
2122 }
2123
2124 /* Count and return the number of spaces attached to the given BFD. */
2125
2126 static unsigned long
2127 som_count_spaces (abfd)
2128 bfd *abfd;
2129 {
2130 int count = 0;
2131 asection *section;
2132
2133 for (section = abfd->sections; section != NULL; section = section->next)
2134 count += som_is_space (section);
2135
2136 return count;
2137 }
2138
2139 /* Count the number of subspaces attached to the given BFD. */
2140
2141 static unsigned long
2142 som_count_subspaces (abfd)
2143 bfd *abfd;
2144 {
2145 int count = 0;
2146 asection *section;
2147
2148 for (section = abfd->sections; section != NULL; section = section->next)
2149 count += som_is_subspace (section);
2150
2151 return count;
2152 }
2153
2154 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2155
2156 We desire symbols to be ordered starting with the symbol with the
2157 highest relocation count down to the symbol with the lowest relocation
2158 count. Doing so compacts the relocation stream. */
2159
2160 static int
2161 compare_syms (sym1, sym2)
2162 asymbol **sym1;
2163 asymbol **sym2;
2164
2165 {
2166 unsigned int count1, count2;
2167
2168 /* Get relocation count for each symbol. Note that the count
2169 is stored in the udata pointer for section symbols! */
2170 if ((*sym1)->flags & BSF_SECTION_SYM)
2171 count1 = (int)(*sym1)->udata;
2172 else
2173 count1 = som_symbol_data (*sym1)->reloc_count;
2174
2175 if ((*sym2)->flags & BSF_SECTION_SYM)
2176 count2 = (int)(*sym2)->udata;
2177 else
2178 count2 = som_symbol_data (*sym2)->reloc_count;
2179
2180 /* Return the appropriate value. */
2181 if (count1 < count2)
2182 return 1;
2183 else if (count1 > count2)
2184 return -1;
2185 return 0;
2186 }
2187
2188 /* Perform various work in preparation for emitting the fixup stream. */
2189
2190 static void
2191 som_prep_for_fixups (abfd, syms, num_syms)
2192 bfd *abfd;
2193 asymbol **syms;
2194 unsigned long num_syms;
2195 {
2196 int i;
2197 asection *section;
2198
2199 /* Most SOM relocations involving a symbol have a length which is
2200 dependent on the index of the symbol. So symbols which are
2201 used often in relocations should have a small index. */
2202
2203 /* First initialize the counters for each symbol. */
2204 for (i = 0; i < num_syms; i++)
2205 {
2206 /* Handle a section symbol; these have no pointers back to the
2207 SOM symbol info. So we just use the pointer field (udata)
2208 to hold the relocation count. */
2209 if (som_symbol_data (syms[i]) == NULL
2210 || syms[i]->flags & BSF_SECTION_SYM)
2211 {
2212 syms[i]->flags |= BSF_SECTION_SYM;
2213 syms[i]->udata = (PTR) 0;
2214 }
2215 else
2216 som_symbol_data (syms[i])->reloc_count = 0;
2217 }
2218
2219 /* Now that the counters are initialized, make a weighted count
2220 of how often a given symbol is used in a relocation. */
2221 for (section = abfd->sections; section != NULL; section = section->next)
2222 {
2223 int i;
2224
2225 /* Does this section have any relocations? */
2226 if (section->reloc_count <= 0)
2227 continue;
2228
2229 /* Walk through each relocation for this section. */
2230 for (i = 1; i < section->reloc_count; i++)
2231 {
2232 arelent *reloc = section->orelocation[i];
2233 int scale;
2234
2235 /* A relocation against a symbol in the *ABS* section really
2236 does not have a symbol. Likewise if the symbol isn't associated
2237 with any section. */
2238 if (reloc->sym_ptr_ptr == NULL
2239 || (*reloc->sym_ptr_ptr)->section == &bfd_abs_section)
2240 continue;
2241
2242 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2243 and R_CODE_ONE_SYMBOL relocations to come first. These
2244 two relocations have single byte versions if the symbol
2245 index is very small. */
2246 if (reloc->howto->type == R_DP_RELATIVE
2247 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2248 scale = 2;
2249 else
2250 scale = 1;
2251
2252 /* Handle section symbols by ramming the count in the udata
2253 field. It will not be used and the count is very important
2254 for these symbols. */
2255 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2256 {
2257 (*reloc->sym_ptr_ptr)->udata =
2258 (PTR) ((int) (*reloc->sym_ptr_ptr)->udata + scale);
2259 continue;
2260 }
2261
2262 /* A normal symbol. Increment the count. */
2263 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2264 }
2265 }
2266
2267 /* Now sort the symbols. */
2268 qsort (syms, num_syms, sizeof (asymbol *), compare_syms);
2269
2270 /* Compute the symbol indexes, they will be needed by the relocation
2271 code. */
2272 for (i = 0; i < num_syms; i++)
2273 {
2274 /* A section symbol. Again, there is no pointer to backend symbol
2275 information, so we reuse (abuse) the udata field again. */
2276 if (syms[i]->flags & BSF_SECTION_SYM)
2277 syms[i]->udata = (PTR) i;
2278 else
2279 som_symbol_data (syms[i])->index = i;
2280 }
2281 }
2282
2283 static boolean
2284 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2285 bfd *abfd;
2286 unsigned long current_offset;
2287 unsigned int *total_reloc_sizep;
2288 {
2289 unsigned int i, j;
2290 /* Chunk of memory that we can use as buffer space, then throw
2291 away. */
2292 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2293 unsigned char *p;
2294 unsigned int total_reloc_size = 0;
2295 unsigned int subspace_reloc_size = 0;
2296 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2297 asection *section = abfd->sections;
2298
2299 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2300 p = tmp_space;
2301
2302 /* All the fixups for a particular subspace are emitted in a single
2303 stream. All the subspaces for a particular space are emitted
2304 as a single stream.
2305
2306 So, to get all the locations correct one must iterate through all the
2307 spaces, for each space iterate through its subspaces and output a
2308 fixups stream. */
2309 for (i = 0; i < num_spaces; i++)
2310 {
2311 asection *subsection;
2312
2313 /* Find a space. */
2314 while (!som_is_space (section))
2315 section = section->next;
2316
2317 /* Now iterate through each of its subspaces. */
2318 for (subsection = abfd->sections;
2319 subsection != NULL;
2320 subsection = subsection->next)
2321 {
2322 int reloc_offset, current_rounding_mode;
2323
2324 /* Find a subspace of this space. */
2325 if (!som_is_subspace (subsection)
2326 || !som_is_container (section, subsection))
2327 continue;
2328
2329 /* If this subspace had no relocations, then we're finished
2330 with it. */
2331 if (subsection->reloc_count <= 0)
2332 {
2333 som_section_data (subsection)->subspace_dict->fixup_request_index
2334 = -1;
2335 continue;
2336 }
2337
2338 /* This subspace has some relocations. Put the relocation stream
2339 index into the subspace record. */
2340 som_section_data (subsection)->subspace_dict->fixup_request_index
2341 = total_reloc_size;
2342
2343 /* To make life easier start over with a clean slate for
2344 each subspace. Seek to the start of the relocation stream
2345 for this subspace in preparation for writing out its fixup
2346 stream. */
2347 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) < 0)
2348 return false;
2349
2350 /* Buffer space has already been allocated. Just perform some
2351 initialization here. */
2352 p = tmp_space;
2353 subspace_reloc_size = 0;
2354 reloc_offset = 0;
2355 som_initialize_reloc_queue (reloc_queue);
2356 current_rounding_mode = R_N_MODE;
2357
2358 /* Translate each BFD relocation into one or more SOM
2359 relocations. */
2360 for (j = 0; j < subsection->reloc_count; j++)
2361 {
2362 arelent *bfd_reloc = subsection->orelocation[j];
2363 unsigned int skip;
2364 int sym_num;
2365
2366 /* Get the symbol number. Remember it's stored in a
2367 special place for section symbols. */
2368 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2369 sym_num = (int) (*bfd_reloc->sym_ptr_ptr)->udata;
2370 else
2371 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2372
2373 /* If there is not enough room for the next couple relocations,
2374 then dump the current buffer contents now. Also reinitialize
2375 the relocation queue.
2376
2377 No single BFD relocation could ever translate into more
2378 than 100 bytes of SOM relocations (20bytes is probably the
2379 upper limit, but leave lots of space for growth). */
2380 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2381 {
2382 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2383 != p - tmp_space)
2384 return false;
2385
2386 p = tmp_space;
2387 som_initialize_reloc_queue (reloc_queue);
2388 }
2389
2390 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2391 skipped. */
2392 skip = bfd_reloc->address - reloc_offset;
2393 p = som_reloc_skip (abfd, skip, p,
2394 &subspace_reloc_size, reloc_queue);
2395
2396 /* Update reloc_offset for the next iteration.
2397
2398 Many relocations do not consume input bytes. They
2399 are markers, or set state necessary to perform some
2400 later relocation. */
2401 switch (bfd_reloc->howto->type)
2402 {
2403 /* This only needs to handle relocations that may be
2404 made by hppa_som_gen_reloc. */
2405 case R_ENTRY:
2406 case R_EXIT:
2407 case R_N_MODE:
2408 case R_S_MODE:
2409 case R_D_MODE:
2410 case R_R_MODE:
2411 case R_FSEL:
2412 case R_LSEL:
2413 case R_RSEL:
2414 reloc_offset = bfd_reloc->address;
2415 break;
2416
2417 default:
2418 reloc_offset = bfd_reloc->address + 4;
2419 break;
2420 }
2421
2422 /* Now the actual relocation we care about. */
2423 switch (bfd_reloc->howto->type)
2424 {
2425 case R_PCREL_CALL:
2426 case R_ABS_CALL:
2427 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2428 bfd_reloc, sym_num, reloc_queue);
2429 break;
2430
2431 case R_CODE_ONE_SYMBOL:
2432 case R_DP_RELATIVE:
2433 /* Account for any addend. */
2434 if (bfd_reloc->addend)
2435 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2436 &subspace_reloc_size, reloc_queue);
2437
2438 if (sym_num < 0x20)
2439 {
2440 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2441 subspace_reloc_size += 1;
2442 p += 1;
2443 }
2444 else if (sym_num < 0x100)
2445 {
2446 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2447 bfd_put_8 (abfd, sym_num, p + 1);
2448 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2449 2, reloc_queue);
2450 }
2451 else if (sym_num < 0x10000000)
2452 {
2453 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2454 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2455 bfd_put_16 (abfd, sym_num, p + 2);
2456 p = try_prev_fixup (abfd, &subspace_reloc_size,
2457 p, 4, reloc_queue);
2458 }
2459 else
2460 abort ();
2461 break;
2462
2463 case R_DATA_ONE_SYMBOL:
2464 case R_DATA_PLABEL:
2465 case R_CODE_PLABEL:
2466 case R_DLT_REL:
2467 /* Account for any addend. */
2468 if (bfd_reloc->addend)
2469 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2470 &subspace_reloc_size, reloc_queue);
2471
2472 if (sym_num < 0x100)
2473 {
2474 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2475 bfd_put_8 (abfd, sym_num, p + 1);
2476 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2477 2, reloc_queue);
2478 }
2479 else if (sym_num < 0x10000000)
2480 {
2481 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2482 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2483 bfd_put_16 (abfd, sym_num, p + 2);
2484 p = try_prev_fixup (abfd, &subspace_reloc_size,
2485 p, 4, reloc_queue);
2486 }
2487 else
2488 abort ();
2489 break;
2490
2491 case R_ENTRY:
2492 {
2493 int *descp
2494 = (int *) som_symbol_data (*bfd_reloc->sym_ptr_ptr)->unwind;
2495 bfd_put_8 (abfd, R_ENTRY, p);
2496 bfd_put_32 (abfd, descp[0], p + 1);
2497 bfd_put_32 (abfd, descp[1], p + 5);
2498 p = try_prev_fixup (abfd, &subspace_reloc_size,
2499 p, 9, reloc_queue);
2500 break;
2501 }
2502
2503 case R_EXIT:
2504 bfd_put_8 (abfd, R_EXIT, p);
2505 subspace_reloc_size += 1;
2506 p += 1;
2507 break;
2508
2509 case R_N_MODE:
2510 case R_S_MODE:
2511 case R_D_MODE:
2512 case R_R_MODE:
2513 /* If this relocation requests the current rounding
2514 mode, then it is redundant. */
2515 if (bfd_reloc->howto->type != current_rounding_mode)
2516 {
2517 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2518 subspace_reloc_size += 1;
2519 p += 1;
2520 current_rounding_mode = bfd_reloc->howto->type;
2521 }
2522 break;
2523
2524 case R_FSEL:
2525 case R_LSEL:
2526 case R_RSEL:
2527 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2528 subspace_reloc_size += 1;
2529 p += 1;
2530 break;
2531
2532 /* Put a "R_RESERVED" relocation in the stream if
2533 we hit something we do not understand. The linker
2534 will complain loudly if this ever happens. */
2535 default:
2536 bfd_put_8 (abfd, 0xff, p);
2537 subspace_reloc_size += 1;
2538 p += 1;
2539 break;
2540 }
2541 }
2542
2543 /* Last BFD relocation for a subspace has been processed.
2544 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2545 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2546 - reloc_offset,
2547 p, &subspace_reloc_size, reloc_queue);
2548
2549 /* Scribble out the relocations. */
2550 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2551 != p - tmp_space)
2552 return false;
2553 p = tmp_space;
2554
2555 total_reloc_size += subspace_reloc_size;
2556 som_section_data (subsection)->subspace_dict->fixup_request_quantity
2557 = subspace_reloc_size;
2558 }
2559 section = section->next;
2560 }
2561 *total_reloc_sizep = total_reloc_size;
2562 return true;
2563 }
2564
2565 /* Write out the space/subspace string table. */
2566
2567 static boolean
2568 som_write_space_strings (abfd, current_offset, string_sizep)
2569 bfd *abfd;
2570 unsigned long current_offset;
2571 unsigned int *string_sizep;
2572 {
2573 /* Chunk of memory that we can use as buffer space, then throw
2574 away. */
2575 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2576 unsigned char *p;
2577 unsigned int strings_size = 0;
2578 asection *section;
2579
2580 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2581 p = tmp_space;
2582
2583 /* Seek to the start of the space strings in preparation for writing
2584 them out. */
2585 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2586 return false;
2587
2588 /* Walk through all the spaces and subspaces (order is not important)
2589 building up and writing string table entries for their names. */
2590 for (section = abfd->sections; section != NULL; section = section->next)
2591 {
2592 int length;
2593
2594 /* Only work with space/subspaces; avoid any other sections
2595 which might have been made (.text for example). */
2596 if (!som_is_space (section) && !som_is_subspace (section))
2597 continue;
2598
2599 /* Get the length of the space/subspace name. */
2600 length = strlen (section->name);
2601
2602 /* If there is not enough room for the next entry, then dump the
2603 current buffer contents now. Each entry will take 4 bytes to
2604 hold the string length + the string itself + null terminator. */
2605 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2606 {
2607 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2608 != p - tmp_space)
2609 return false;
2610 /* Reset to beginning of the buffer space. */
2611 p = tmp_space;
2612 }
2613
2614 /* First element in a string table entry is the length of the
2615 string. Alignment issues are already handled. */
2616 bfd_put_32 (abfd, length, p);
2617 p += 4;
2618 strings_size += 4;
2619
2620 /* Record the index in the space/subspace records. */
2621 if (som_is_space (section))
2622 som_section_data (section)->space_dict->name.n_strx = strings_size;
2623 else
2624 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
2625
2626 /* Next comes the string itself + a null terminator. */
2627 strcpy (p, section->name);
2628 p += length + 1;
2629 strings_size += length + 1;
2630
2631 /* Always align up to the next word boundary. */
2632 while (strings_size % 4)
2633 {
2634 bfd_put_8 (abfd, 0, p);
2635 p++;
2636 strings_size++;
2637 }
2638 }
2639
2640 /* Done with the space/subspace strings. Write out any information
2641 contained in a partial block. */
2642 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2643 return false;
2644 *string_sizep = strings_size;
2645 return true;
2646 }
2647
2648 /* Write out the symbol string table. */
2649
2650 static boolean
2651 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
2652 bfd *abfd;
2653 unsigned long current_offset;
2654 asymbol **syms;
2655 unsigned int num_syms;
2656 unsigned int *string_sizep;
2657 {
2658 unsigned int i;
2659
2660 /* Chunk of memory that we can use as buffer space, then throw
2661 away. */
2662 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2663 unsigned char *p;
2664 unsigned int strings_size = 0;
2665
2666 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2667 p = tmp_space;
2668
2669 /* Seek to the start of the space strings in preparation for writing
2670 them out. */
2671 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2672 return false;
2673
2674 for (i = 0; i < num_syms; i++)
2675 {
2676 int length = strlen (syms[i]->name);
2677
2678 /* If there is not enough room for the next entry, then dump the
2679 current buffer contents now. */
2680 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2681 {
2682 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2683 != p - tmp_space)
2684 return false;
2685 /* Reset to beginning of the buffer space. */
2686 p = tmp_space;
2687 }
2688
2689 /* First element in a string table entry is the length of the
2690 string. This must always be 4 byte aligned. This is also
2691 an appropriate time to fill in the string index field in the
2692 symbol table entry. */
2693 bfd_put_32 (abfd, length, p);
2694 strings_size += 4;
2695 p += 4;
2696
2697 /* Next comes the string itself + a null terminator. */
2698 strcpy (p, syms[i]->name);
2699
2700 /* ACK. FIXME. */
2701 syms[i]->name = (char *)strings_size;
2702 p += length + 1;
2703 strings_size += length + 1;
2704
2705 /* Always align up to the next word boundary. */
2706 while (strings_size % 4)
2707 {
2708 bfd_put_8 (abfd, 0, p);
2709 strings_size++;
2710 p++;
2711 }
2712 }
2713
2714 /* Scribble out any partial block. */
2715 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2716 return false;
2717
2718 *string_sizep = strings_size;
2719 return true;
2720 }
2721
2722 /* Compute variable information to be placed in the SOM headers,
2723 space/subspace dictionaries, relocation streams, etc. Begin
2724 writing parts of the object file. */
2725
2726 static boolean
2727 som_begin_writing (abfd)
2728 bfd *abfd;
2729 {
2730 unsigned long current_offset = 0;
2731 int strings_size = 0;
2732 unsigned int total_reloc_size = 0;
2733 unsigned long num_spaces, num_subspaces, num_syms, i;
2734 asection *section;
2735 asymbol **syms = bfd_get_outsymbols (abfd);
2736 unsigned int total_subspaces = 0;
2737 struct som_exec_auxhdr exec_header;
2738
2739 /* The file header will always be first in an object file,
2740 everything else can be in random locations. To keep things
2741 "simple" BFD will lay out the object file in the manner suggested
2742 by the PRO ABI for PA-RISC Systems. */
2743
2744 /* Before any output can really begin offsets for all the major
2745 portions of the object file must be computed. So, starting
2746 with the initial file header compute (and sometimes write)
2747 each portion of the object file. */
2748
2749 /* Make room for the file header, it's contents are not complete
2750 yet, so it can not be written at this time. */
2751 current_offset += sizeof (struct header);
2752
2753 /* Any auxiliary headers will follow the file header. Right now
2754 we support only the copyright and version headers. */
2755 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
2756 obj_som_file_hdr (abfd)->aux_header_size = 0;
2757 if (abfd->flags & EXEC_P)
2758 {
2759 /* Parts of the exec header will be filled in later, so
2760 delay writing the header itself. Fill in the defaults,
2761 and write it later. */
2762 current_offset += sizeof (exec_header);
2763 obj_som_file_hdr (abfd)->aux_header_size += sizeof (exec_header);
2764 memset (&exec_header, 0, sizeof (exec_header));
2765 exec_header.som_auxhdr.type = HPUX_AUX_ID;
2766 exec_header.som_auxhdr.length = 40;
2767 }
2768 if (obj_som_version_hdr (abfd) != NULL)
2769 {
2770 unsigned int len;
2771
2772 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2773 return false;
2774
2775 /* Write the aux_id structure and the string length. */
2776 len = sizeof (struct aux_id) + sizeof (unsigned int);
2777 obj_som_file_hdr (abfd)->aux_header_size += len;
2778 current_offset += len;
2779 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
2780 return false;
2781
2782 /* Write the version string. */
2783 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
2784 obj_som_file_hdr (abfd)->aux_header_size += len;
2785 current_offset += len;
2786 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
2787 len, 1, abfd) != len)
2788 return false;
2789 }
2790
2791 if (obj_som_copyright_hdr (abfd) != NULL)
2792 {
2793 unsigned int len;
2794
2795 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2796 return false;
2797
2798 /* Write the aux_id structure and the string length. */
2799 len = sizeof (struct aux_id) + sizeof (unsigned int);
2800 obj_som_file_hdr (abfd)->aux_header_size += len;
2801 current_offset += len;
2802 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
2803 return false;
2804
2805 /* Write the copyright string. */
2806 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
2807 obj_som_file_hdr (abfd)->aux_header_size += len;
2808 current_offset += len;
2809 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
2810 len, 1, abfd) != len)
2811 return false;
2812 }
2813
2814 /* Next comes the initialization pointers; we have no initialization
2815 pointers, so current offset does not change. */
2816 obj_som_file_hdr (abfd)->init_array_location = current_offset;
2817 obj_som_file_hdr (abfd)->init_array_total = 0;
2818
2819 /* Next are the space records. These are fixed length records.
2820
2821 Count the number of spaces to determine how much room is needed
2822 in the object file for the space records.
2823
2824 The names of the spaces are stored in a separate string table,
2825 and the index for each space into the string table is computed
2826 below. Therefore, it is not possible to write the space headers
2827 at this time. */
2828 num_spaces = som_count_spaces (abfd);
2829 obj_som_file_hdr (abfd)->space_location = current_offset;
2830 obj_som_file_hdr (abfd)->space_total = num_spaces;
2831 current_offset += num_spaces * sizeof (struct space_dictionary_record);
2832
2833 /* Next are the subspace records. These are fixed length records.
2834
2835 Count the number of subspaes to determine how much room is needed
2836 in the object file for the subspace records.
2837
2838 A variety if fields in the subspace record are still unknown at
2839 this time (index into string table, fixup stream location/size, etc). */
2840 num_subspaces = som_count_subspaces (abfd);
2841 obj_som_file_hdr (abfd)->subspace_location = current_offset;
2842 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
2843 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
2844
2845 /* Next is the string table for the space/subspace names. We will
2846 build and write the string table on the fly. At the same time
2847 we will fill in the space/subspace name index fields. */
2848
2849 /* The string table needs to be aligned on a word boundary. */
2850 if (current_offset % 4)
2851 current_offset += (4 - (current_offset % 4));
2852
2853 /* Mark the offset of the space/subspace string table in the
2854 file header. */
2855 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
2856
2857 /* Scribble out the space strings. */
2858 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
2859 return false;
2860
2861 /* Record total string table size in the header and update the
2862 current offset. */
2863 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
2864 current_offset += strings_size;
2865
2866 /* Next is the symbol table. These are fixed length records.
2867
2868 Count the number of symbols to determine how much room is needed
2869 in the object file for the symbol table.
2870
2871 The names of the symbols are stored in a separate string table,
2872 and the index for each symbol name into the string table is computed
2873 below. Therefore, it is not possible to write the symobl table
2874 at this time. */
2875 num_syms = bfd_get_symcount (abfd);
2876 obj_som_file_hdr (abfd)->symbol_location = current_offset;
2877 obj_som_file_hdr (abfd)->symbol_total = num_syms;
2878 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
2879
2880 /* Do prep work before handling fixups. */
2881 som_prep_for_fixups (abfd, syms, num_syms);
2882
2883 /* Next comes the fixup stream which starts on a word boundary. */
2884 if (current_offset % 4)
2885 current_offset += (4 - (current_offset % 4));
2886 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
2887
2888 /* Write the fixups and update fields in subspace headers which
2889 relate to the fixup stream. */
2890 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
2891 return false;
2892
2893 /* Record the total size of the fixup stream in the file header. */
2894 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
2895 current_offset += total_reloc_size;
2896
2897 /* Next are the symbol strings.
2898 Align them to a word boundary. */
2899 if (current_offset % 4)
2900 current_offset += (4 - (current_offset % 4));
2901 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
2902
2903 /* Scribble out the symbol strings. */
2904 if (som_write_symbol_strings (abfd, current_offset, syms,
2905 num_syms, &strings_size)
2906 == false)
2907 return false;
2908
2909 /* Record total string table size in header and update the
2910 current offset. */
2911 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
2912 current_offset += strings_size;
2913
2914 /* Next is the compiler records. We do not use these. */
2915 obj_som_file_hdr (abfd)->compiler_location = current_offset;
2916 obj_som_file_hdr (abfd)->compiler_total = 0;
2917
2918 /* Now compute the file positions for the loadable subspaces, taking
2919 care to make sure everything stays properly aligned. */
2920
2921 section = abfd->sections;
2922 for (i = 0; i < num_spaces; i++)
2923 {
2924 asection *subsection;
2925 int first_subspace;
2926 unsigned int subspace_offset = 0;
2927
2928 /* Find a space. */
2929 while (!som_is_space (section))
2930 section = section->next;
2931
2932 first_subspace = 1;
2933 /* Now look for all its subspaces. */
2934 for (subsection = abfd->sections;
2935 subsection != NULL;
2936 subsection = subsection->next)
2937 {
2938
2939 if (!som_is_subspace (subsection)
2940 || !som_is_container (section, subsection)
2941 || (subsection->flags & SEC_ALLOC) == 0)
2942 continue;
2943
2944 /* If this is the first subspace in the space, and we are
2945 building an executable, then take care to make sure all
2946 the alignments are correct and update the exec header. */
2947 if (first_subspace
2948 && (abfd->flags & EXEC_P))
2949 {
2950 /* Demand paged executables have each space aligned to a
2951 page boundary. Sharable executables (write-protected
2952 text) have just the private (aka data & bss) space aligned
2953 to a page boundary. Ugh. Not true for HPUX.
2954
2955 The HPUX kernel requires the text to always be page aligned
2956 within the file regardless of the executable's type. */
2957 if (abfd->flags & D_PAGED
2958 || (subsection->flags & SEC_CODE)
2959 || ((abfd->flags & WP_TEXT)
2960 && (subsection->flags & SEC_DATA)))
2961 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
2962
2963 /* Update the exec header. */
2964 if (subsection->flags & SEC_CODE && exec_header.exec_tfile == 0)
2965 {
2966 exec_header.exec_tmem = section->vma;
2967 exec_header.exec_tfile = current_offset;
2968 }
2969 if (subsection->flags & SEC_DATA && exec_header.exec_dfile == 0)
2970 {
2971 exec_header.exec_dmem = section->vma;
2972 exec_header.exec_dfile = current_offset;
2973 }
2974
2975 /* Keep track of exactly where we are within a particular
2976 space. This is necessary as the braindamaged HPUX
2977 loader will create holes between subspaces *and*
2978 subspace alignments are *NOT* preserved. What a crock. */
2979 subspace_offset = subsection->vma;
2980
2981 /* Only do this for the first subspace within each space. */
2982 first_subspace = 0;
2983 }
2984 else if (abfd->flags & EXEC_P)
2985 {
2986 /* The braindamaged HPUX loader may have created a hole
2987 between two subspaces. It is *not* sufficient to use
2988 the alignment specifications within the subspaces to
2989 account for these holes -- I've run into at least one
2990 case where the loader left one code subspace unaligned
2991 in a final executable.
2992
2993 To combat this we keep a current offset within each space,
2994 and use the subspace vma fields to detect and preserve
2995 holes. What a crock!
2996
2997 ps. This is not necessary for unloadable space/subspaces. */
2998 current_offset += subsection->vma - subspace_offset;
2999 if (subsection->flags & SEC_CODE)
3000 exec_header.exec_tsize += subsection->vma - subspace_offset;
3001 else
3002 exec_header.exec_dsize += subsection->vma - subspace_offset;
3003 subspace_offset += subsection->vma - subspace_offset;
3004 }
3005
3006
3007 subsection->target_index = total_subspaces++;
3008 /* This is real data to be loaded from the file. */
3009 if (subsection->flags & SEC_LOAD)
3010 {
3011 /* Update the size of the code & data. */
3012 if (abfd->flags & EXEC_P
3013 && subsection->flags & SEC_CODE)
3014 exec_header.exec_tsize += subsection->_cooked_size;
3015 else if (abfd->flags & EXEC_P
3016 && subsection->flags & SEC_DATA)
3017 exec_header.exec_dsize += subsection->_cooked_size;
3018 som_section_data (subsection)->subspace_dict->file_loc_init_value
3019 = current_offset;
3020 subsection->filepos = current_offset;
3021 current_offset += bfd_section_size (abfd, subsection);
3022 subspace_offset += bfd_section_size (abfd, subsection);
3023 }
3024 /* Looks like uninitialized data. */
3025 else
3026 {
3027 /* Update the size of the bss section. */
3028 if (abfd->flags & EXEC_P)
3029 exec_header.exec_bsize += subsection->_cooked_size;
3030
3031 som_section_data (subsection)->subspace_dict->file_loc_init_value
3032 = 0;
3033 som_section_data (subsection)->subspace_dict->
3034 initialization_length = 0;
3035 }
3036 }
3037 /* Goto the next section. */
3038 section = section->next;
3039 }
3040
3041 /* Finally compute the file positions for unloadable subspaces.
3042 If building an executable, start the unloadable stuff on its
3043 own page. */
3044
3045 if (abfd->flags & EXEC_P)
3046 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3047
3048 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3049 section = abfd->sections;
3050 for (i = 0; i < num_spaces; i++)
3051 {
3052 asection *subsection;
3053
3054 /* Find a space. */
3055 while (!som_is_space (section))
3056 section = section->next;
3057
3058 if (abfd->flags & EXEC_P)
3059 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3060
3061 /* Now look for all its subspaces. */
3062 for (subsection = abfd->sections;
3063 subsection != NULL;
3064 subsection = subsection->next)
3065 {
3066
3067 if (!som_is_subspace (subsection)
3068 || !som_is_container (section, subsection)
3069 || (subsection->flags & SEC_ALLOC) != 0)
3070 continue;
3071
3072 subsection->target_index = total_subspaces;
3073 /* This is real data to be loaded from the file. */
3074 if ((subsection->flags & SEC_LOAD) == 0)
3075 {
3076 som_section_data (subsection)->subspace_dict->file_loc_init_value
3077 = current_offset;
3078 subsection->filepos = current_offset;
3079 current_offset += bfd_section_size (abfd, subsection);
3080 }
3081 /* Looks like uninitialized data. */
3082 else
3083 {
3084 som_section_data (subsection)->subspace_dict->file_loc_init_value
3085 = 0;
3086 som_section_data (subsection)->subspace_dict->
3087 initialization_length = bfd_section_size (abfd, subsection);
3088 }
3089 }
3090 /* Goto the next section. */
3091 section = section->next;
3092 }
3093
3094 /* If building an executable, then make sure to seek to and write
3095 one byte at the end of the file to make sure any necessary
3096 zeros are filled in. Ugh. */
3097 if (abfd->flags & EXEC_P)
3098 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3099 if (bfd_seek (abfd, current_offset - 1, SEEK_SET) < 0)
3100 return false;
3101 if (bfd_write ((PTR) "", 1, 1, abfd) != 1)
3102 return false;
3103
3104 obj_som_file_hdr (abfd)->unloadable_sp_size
3105 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3106
3107 /* Loader fixups are not supported in any way shape or form. */
3108 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3109 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3110
3111 /* Done. Store the total size of the SOM. */
3112 obj_som_file_hdr (abfd)->som_length = current_offset;
3113
3114 /* Now write the exec header. */
3115 if (abfd->flags & EXEC_P)
3116 {
3117 long tmp;
3118
3119 exec_header.exec_entry = bfd_get_start_address (abfd);
3120 exec_header.exec_flags = obj_som_exec_data (abfd)->exec_flags;
3121
3122 /* Oh joys. Ram some of the BSS data into the DATA section
3123 to be compatable with how the hp linker makes objects
3124 (saves memory space). */
3125 tmp = exec_header.exec_dsize;
3126 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3127 exec_header.exec_bsize -= (tmp - exec_header.exec_dsize);
3128 if (exec_header.exec_bsize < 0)
3129 exec_header.exec_bsize = 0;
3130 exec_header.exec_dsize = tmp;
3131
3132 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
3133 SEEK_SET) < 0)
3134 return false;
3135
3136 if (bfd_write ((PTR) &exec_header, AUX_HDR_SIZE, 1, abfd)
3137 != AUX_HDR_SIZE)
3138 return false;
3139 }
3140 return true;
3141 }
3142
3143 /* Finally, scribble out the various headers to the disk. */
3144
3145 static boolean
3146 som_write_headers (abfd)
3147 bfd *abfd;
3148 {
3149 int num_spaces = som_count_spaces (abfd);
3150 int i;
3151 int subspace_index = 0;
3152 file_ptr location;
3153 asection *section;
3154
3155 /* Subspaces are written first so that we can set up information
3156 about them in their containing spaces as the subspace is written. */
3157
3158 /* Seek to the start of the subspace dictionary records. */
3159 location = obj_som_file_hdr (abfd)->subspace_location;
3160 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3161 return false;
3162
3163 section = abfd->sections;
3164 /* Now for each loadable space write out records for its subspaces. */
3165 for (i = 0; i < num_spaces; i++)
3166 {
3167 asection *subsection;
3168
3169 /* Find a space. */
3170 while (!som_is_space (section))
3171 section = section->next;
3172
3173 /* Now look for all its subspaces. */
3174 for (subsection = abfd->sections;
3175 subsection != NULL;
3176 subsection = subsection->next)
3177 {
3178
3179 /* Skip any section which does not correspond to a space
3180 or subspace. Or does not have SEC_ALLOC set (and therefore
3181 has no real bits on the disk). */
3182 if (!som_is_subspace (subsection)
3183 || !som_is_container (section, subsection)
3184 || (subsection->flags & SEC_ALLOC) == 0)
3185 continue;
3186
3187 /* If this is the first subspace for this space, then save
3188 the index of the subspace in its containing space. Also
3189 set "is_loadable" in the containing space. */
3190
3191 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3192 {
3193 som_section_data (section)->space_dict->is_loadable = 1;
3194 som_section_data (section)->space_dict->subspace_index
3195 = subspace_index;
3196 }
3197
3198 /* Increment the number of subspaces seen and the number of
3199 subspaces contained within the current space. */
3200 subspace_index++;
3201 som_section_data (section)->space_dict->subspace_quantity++;
3202
3203 /* Mark the index of the current space within the subspace's
3204 dictionary record. */
3205 som_section_data (subsection)->subspace_dict->space_index = i;
3206
3207 /* Dump the current subspace header. */
3208 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3209 sizeof (struct subspace_dictionary_record), 1, abfd)
3210 != sizeof (struct subspace_dictionary_record))
3211 return false;
3212 }
3213 /* Goto the next section. */
3214 section = section->next;
3215 }
3216
3217 /* Now repeat the process for unloadable subspaces. */
3218 section = abfd->sections;
3219 /* Now for each space write out records for its subspaces. */
3220 for (i = 0; i < num_spaces; i++)
3221 {
3222 asection *subsection;
3223
3224 /* Find a space. */
3225 while (!som_is_space (section))
3226 section = section->next;
3227
3228 /* Now look for all its subspaces. */
3229 for (subsection = abfd->sections;
3230 subsection != NULL;
3231 subsection = subsection->next)
3232 {
3233
3234 /* Skip any section which does not correspond to a space or
3235 subspace, or which SEC_ALLOC set (and therefore handled
3236 in the loadable spaces/subspaces code above). */
3237
3238 if (!som_is_subspace (subsection)
3239 || !som_is_container (section, subsection)
3240 || (subsection->flags & SEC_ALLOC) != 0)
3241 continue;
3242
3243 /* If this is the first subspace for this space, then save
3244 the index of the subspace in its containing space. Clear
3245 "is_loadable". */
3246
3247 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3248 {
3249 som_section_data (section)->space_dict->is_loadable = 0;
3250 som_section_data (section)->space_dict->subspace_index
3251 = subspace_index;
3252 }
3253
3254 /* Increment the number of subspaces seen and the number of
3255 subspaces contained within the current space. */
3256 som_section_data (section)->space_dict->subspace_quantity++;
3257 subspace_index++;
3258
3259 /* Mark the index of the current space within the subspace's
3260 dictionary record. */
3261 som_section_data (subsection)->subspace_dict->space_index = i;
3262
3263 /* Dump this subspace header. */
3264 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3265 sizeof (struct subspace_dictionary_record), 1, abfd)
3266 != sizeof (struct subspace_dictionary_record))
3267 return false;
3268 }
3269 /* Goto the next section. */
3270 section = section->next;
3271 }
3272
3273 /* All the subspace dictiondary records are written, and all the
3274 fields are set up in the space dictionary records.
3275
3276 Seek to the right location and start writing the space
3277 dictionary records. */
3278 location = obj_som_file_hdr (abfd)->space_location;
3279 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3280 return false;
3281
3282 section = abfd->sections;
3283 for (i = 0; i < num_spaces; i++)
3284 {
3285
3286 /* Find a space. */
3287 while (!som_is_space (section))
3288 section = section->next;
3289
3290 /* Dump its header */
3291 if (bfd_write ((PTR) som_section_data (section)->space_dict,
3292 sizeof (struct space_dictionary_record), 1, abfd)
3293 != sizeof (struct space_dictionary_record))
3294 return false;
3295
3296 /* Goto the next section. */
3297 section = section->next;
3298 }
3299
3300 /* Only thing left to do is write out the file header. It is always
3301 at location zero. Seek there and write it. */
3302 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0)
3303 return false;
3304 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3305 sizeof (struct header), 1, abfd)
3306 != sizeof (struct header))
3307 return false;
3308 return true;
3309 }
3310
3311 /* Compute and return the checksum for a SOM file header. */
3312
3313 static unsigned long
3314 som_compute_checksum (abfd)
3315 bfd *abfd;
3316 {
3317 unsigned long checksum, count, i;
3318 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3319
3320 checksum = 0;
3321 count = sizeof (struct header) / sizeof (unsigned long);
3322 for (i = 0; i < count; i++)
3323 checksum ^= *(buffer + i);
3324
3325 return checksum;
3326 }
3327
3328 static void
3329 som_bfd_derive_misc_symbol_info (abfd, sym, info)
3330 bfd *abfd;
3331 asymbol *sym;
3332 struct som_misc_symbol_info *info;
3333 {
3334 /* Initialize. */
3335 memset (info, 0, sizeof (struct som_misc_symbol_info));
3336
3337 /* The HP SOM linker requires detailed type information about
3338 all symbols (including undefined symbols!). Unfortunately,
3339 the type specified in an import/export statement does not
3340 always match what the linker wants. Severe braindamage. */
3341
3342 /* Section symbols will not have a SOM symbol type assigned to
3343 them yet. Assign all section symbols type ST_DATA. */
3344 if (sym->flags & BSF_SECTION_SYM)
3345 info->symbol_type = ST_DATA;
3346 else
3347 {
3348 /* Common symbols must have scope SS_UNSAT and type
3349 ST_STORAGE or the linker will choke. */
3350 if (sym->section == &bfd_com_section)
3351 {
3352 info->symbol_scope = SS_UNSAT;
3353 info->symbol_type = ST_STORAGE;
3354 }
3355
3356 /* It is possible to have a symbol without an associated
3357 type. This happens if the user imported the symbol
3358 without a type and the symbol was never defined
3359 locally. If BSF_FUNCTION is set for this symbol, then
3360 assign it type ST_CODE (the HP linker requires undefined
3361 external functions to have type ST_CODE rather than ST_ENTRY). */
3362 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3363 && sym->section == &bfd_und_section
3364 && sym->flags & BSF_FUNCTION)
3365 info->symbol_type = ST_CODE;
3366
3367 /* Handle function symbols which were defined in this file.
3368 They should have type ST_ENTRY. Also retrieve the argument
3369 relocation bits from the SOM backend information. */
3370 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3371 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3372 && (sym->flags & BSF_FUNCTION))
3373 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3374 && (sym->flags & BSF_FUNCTION)))
3375 {
3376 info->symbol_type = ST_ENTRY;
3377 info->arg_reloc = som_symbol_data (sym)->tc_data.hppa_arg_reloc;
3378 }
3379
3380 /* If the type is unknown at this point, it should be
3381 ST_DATA (functions were handled as special cases above). */
3382 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3383 info->symbol_type = ST_DATA;
3384
3385 /* From now on it's a very simple mapping. */
3386 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3387 info->symbol_type = ST_ABSOLUTE;
3388 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3389 info->symbol_type = ST_CODE;
3390 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3391 info->symbol_type = ST_DATA;
3392 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3393 info->symbol_type = ST_MILLICODE;
3394 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3395 info->symbol_type = ST_PLABEL;
3396 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3397 info->symbol_type = ST_PRI_PROG;
3398 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3399 info->symbol_type = ST_SEC_PROG;
3400 }
3401
3402 /* Now handle the symbol's scope. Exported data which is not
3403 in the common section has scope SS_UNIVERSAL. Note scope
3404 of common symbols was handled earlier! */
3405 if (sym->flags & BSF_EXPORT && sym->section != &bfd_com_section)
3406 info->symbol_scope = SS_UNIVERSAL;
3407 /* Any undefined symbol at this point has a scope SS_UNSAT. */
3408 else if (sym->section == &bfd_und_section)
3409 info->symbol_scope = SS_UNSAT;
3410 /* Anything else which is not in the common section has scope
3411 SS_LOCAL. */
3412 else if (sym->section != &bfd_com_section)
3413 info->symbol_scope = SS_LOCAL;
3414
3415 /* Now set the symbol_info field. It has no real meaning
3416 for undefined or common symbols, but the HP linker will
3417 choke if it's not set to some "reasonable" value. We
3418 use zero as a reasonable value. */
3419 if (sym->section == &bfd_com_section || sym->section == &bfd_und_section
3420 || sym->section == &bfd_abs_section)
3421 info->symbol_info = 0;
3422 /* For all other symbols, the symbol_info field contains the
3423 subspace index of the space this symbol is contained in. */
3424 else
3425 info->symbol_info = sym->section->target_index;
3426
3427 /* Set the symbol's value. */
3428 info->symbol_value = sym->value + sym->section->vma;
3429 }
3430
3431 /* Build and write, in one big chunk, the entire symbol table for
3432 this BFD. */
3433
3434 static boolean
3435 som_build_and_write_symbol_table (abfd)
3436 bfd *abfd;
3437 {
3438 unsigned int num_syms = bfd_get_symcount (abfd);
3439 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3440 asymbol **bfd_syms = bfd_get_outsymbols (abfd);
3441 struct symbol_dictionary_record *som_symtab = NULL;
3442 int i, symtab_size;
3443
3444 /* Compute total symbol table size and allocate a chunk of memory
3445 to hold the symbol table as we build it. */
3446 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3447 som_symtab = (struct symbol_dictionary_record *) malloc (symtab_size);
3448 if (som_symtab == NULL && symtab_size != 0)
3449 {
3450 bfd_set_error (bfd_error_no_memory);
3451 goto error_return;
3452 }
3453 memset (som_symtab, 0, symtab_size);
3454
3455 /* Walk over each symbol. */
3456 for (i = 0; i < num_syms; i++)
3457 {
3458 struct som_misc_symbol_info info;
3459
3460 /* This is really an index into the symbol strings table.
3461 By the time we get here, the index has already been
3462 computed and stored into the name field in the BFD symbol. */
3463 som_symtab[i].name.n_strx = (int) bfd_syms[i]->name;
3464
3465 /* Derive SOM information from the BFD symbol. */
3466 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
3467
3468 /* Now use it. */
3469 som_symtab[i].symbol_type = info.symbol_type;
3470 som_symtab[i].symbol_scope = info.symbol_scope;
3471 som_symtab[i].arg_reloc = info.arg_reloc;
3472 som_symtab[i].symbol_info = info.symbol_info;
3473 som_symtab[i].symbol_value = info.symbol_value;
3474 }
3475
3476 /* Everything is ready, seek to the right location and
3477 scribble out the symbol table. */
3478 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3479 return false;
3480
3481 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3482 goto error_return;
3483
3484 if (som_symtab != NULL)
3485 free (som_symtab);
3486 return true;
3487 error_return:
3488 if (som_symtab != NULL)
3489 free (som_symtab);
3490 return false;
3491 }
3492
3493 /* Write an object in SOM format. */
3494
3495 static boolean
3496 som_write_object_contents (abfd)
3497 bfd *abfd;
3498 {
3499 if (abfd->output_has_begun == false)
3500 {
3501 /* Set up fixed parts of the file, space, and subspace headers.
3502 Notify the world that output has begun. */
3503 som_prep_headers (abfd);
3504 abfd->output_has_begun = true;
3505 /* Start writing the object file. This include all the string
3506 tables, fixup streams, and other portions of the object file. */
3507 som_begin_writing (abfd);
3508 }
3509
3510 /* Now that the symbol table information is complete, build and
3511 write the symbol table. */
3512 if (som_build_and_write_symbol_table (abfd) == false)
3513 return false;
3514
3515 /* Compute the checksum for the file header just before writing
3516 the header to disk. */
3517 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3518 return (som_write_headers (abfd));
3519 }
3520
3521 \f
3522 /* Read and save the string table associated with the given BFD. */
3523
3524 static boolean
3525 som_slurp_string_table (abfd)
3526 bfd *abfd;
3527 {
3528 char *stringtab;
3529
3530 /* Use the saved version if its available. */
3531 if (obj_som_stringtab (abfd) != NULL)
3532 return true;
3533
3534 /* I don't think this can currently happen, and I'm not sure it should
3535 really be an error, but it's better than getting unpredictable results
3536 from the host's malloc when passed a size of zero. */
3537 if (obj_som_stringtab_size (abfd) == 0)
3538 {
3539 bfd_set_error (bfd_error_no_symbols);
3540 return false;
3541 }
3542
3543 /* Allocate and read in the string table. */
3544 stringtab = malloc (obj_som_stringtab_size (abfd));
3545 if (stringtab == NULL)
3546 {
3547 bfd_set_error (bfd_error_no_memory);
3548 return false;
3549 }
3550
3551 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3552 return false;
3553
3554 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3555 != obj_som_stringtab_size (abfd))
3556 return false;
3557
3558 /* Save our results and return success. */
3559 obj_som_stringtab (abfd) = stringtab;
3560 return true;
3561 }
3562
3563 /* Return the amount of data (in bytes) required to hold the symbol
3564 table for this object. */
3565
3566 static long
3567 som_get_symtab_upper_bound (abfd)
3568 bfd *abfd;
3569 {
3570 if (!som_slurp_symbol_table (abfd))
3571 return -1;
3572
3573 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
3574 }
3575
3576 /* Convert from a SOM subspace index to a BFD section. */
3577
3578 static asection *
3579 bfd_section_from_som_symbol (abfd, symbol)
3580 bfd *abfd;
3581 struct symbol_dictionary_record *symbol;
3582 {
3583 asection *section;
3584
3585 /* The meaning of the symbol_info field changes for functions
3586 within executables. So only use the quick symbol_info mapping for
3587 incomplete objects and non-function symbols in executables. */
3588 if ((abfd->flags & EXEC_P) == 0
3589 || (symbol->symbol_type != ST_ENTRY
3590 && symbol->symbol_type != ST_PRI_PROG
3591 && symbol->symbol_type != ST_SEC_PROG
3592 && symbol->symbol_type != ST_MILLICODE))
3593 {
3594 unsigned int index = symbol->symbol_info;
3595 for (section = abfd->sections; section != NULL; section = section->next)
3596 if (section->target_index == index)
3597 return section;
3598
3599 /* Should never happen. */
3600 abort();
3601 }
3602 else
3603 {
3604 unsigned int value = symbol->symbol_value;
3605 unsigned int found = 0;
3606
3607 /* For executables we will have to use the symbol's address and
3608 find out what section would contain that address. Yuk. */
3609 for (section = abfd->sections; section; section = section->next)
3610 {
3611 if (value >= section->vma
3612 && value <= section->vma + section->_cooked_size)
3613 return section;
3614 }
3615
3616 /* Should never happen. */
3617 abort ();
3618 }
3619 }
3620
3621 /* Read and save the symbol table associated with the given BFD. */
3622
3623 static unsigned int
3624 som_slurp_symbol_table (abfd)
3625 bfd *abfd;
3626 {
3627 int symbol_count = bfd_get_symcount (abfd);
3628 int symsize = sizeof (struct symbol_dictionary_record);
3629 char *stringtab;
3630 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
3631 som_symbol_type *sym, *symbase;
3632
3633 /* Return saved value if it exists. */
3634 if (obj_som_symtab (abfd) != NULL)
3635 goto successful_return;
3636
3637 /* Special case. This is *not* an error. */
3638 if (symbol_count == 0)
3639 goto successful_return;
3640
3641 if (!som_slurp_string_table (abfd))
3642 goto error_return;
3643
3644 stringtab = obj_som_stringtab (abfd);
3645
3646 symbase = (som_symbol_type *)
3647 malloc (symbol_count * sizeof (som_symbol_type));
3648 if (symbase == NULL)
3649 {
3650 bfd_set_error (bfd_error_no_memory);
3651 goto error_return;
3652 }
3653
3654 /* Read in the external SOM representation. */
3655 buf = malloc (symbol_count * symsize);
3656 if (buf == NULL && symbol_count * symsize != 0)
3657 {
3658 bfd_set_error (bfd_error_no_memory);
3659 goto error_return;
3660 }
3661 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
3662 goto error_return;
3663 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
3664 != symbol_count * symsize)
3665 goto error_return;
3666
3667 /* Iterate over all the symbols and internalize them. */
3668 endbufp = buf + symbol_count;
3669 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
3670 {
3671
3672 /* I don't think we care about these. */
3673 if (bufp->symbol_type == ST_SYM_EXT
3674 || bufp->symbol_type == ST_ARG_EXT)
3675 continue;
3676
3677 /* Set some private data we care about. */
3678 if (bufp->symbol_type == ST_NULL)
3679 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3680 else if (bufp->symbol_type == ST_ABSOLUTE)
3681 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
3682 else if (bufp->symbol_type == ST_DATA)
3683 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
3684 else if (bufp->symbol_type == ST_CODE)
3685 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
3686 else if (bufp->symbol_type == ST_PRI_PROG)
3687 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
3688 else if (bufp->symbol_type == ST_SEC_PROG)
3689 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
3690 else if (bufp->symbol_type == ST_ENTRY)
3691 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
3692 else if (bufp->symbol_type == ST_MILLICODE)
3693 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
3694 else if (bufp->symbol_type == ST_PLABEL)
3695 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
3696 else
3697 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3698 som_symbol_data (sym)->tc_data.hppa_arg_reloc = bufp->arg_reloc;
3699
3700 /* Some reasonable defaults. */
3701 sym->symbol.the_bfd = abfd;
3702 sym->symbol.name = bufp->name.n_strx + stringtab;
3703 sym->symbol.value = bufp->symbol_value;
3704 sym->symbol.section = 0;
3705 sym->symbol.flags = 0;
3706
3707 switch (bufp->symbol_type)
3708 {
3709 case ST_ENTRY:
3710 case ST_PRI_PROG:
3711 case ST_SEC_PROG:
3712 case ST_MILLICODE:
3713 sym->symbol.flags |= BSF_FUNCTION;
3714 sym->symbol.value &= ~0x3;
3715 break;
3716
3717 case ST_STUB:
3718 case ST_CODE:
3719 sym->symbol.value &= ~0x3;
3720
3721 default:
3722 break;
3723 }
3724
3725 /* Handle scoping and section information. */
3726 switch (bufp->symbol_scope)
3727 {
3728 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
3729 so the section associated with this symbol can't be known. */
3730 case SS_EXTERNAL:
3731 if (bufp->symbol_type != ST_STORAGE)
3732 sym->symbol.section = &bfd_und_section;
3733 else
3734 sym->symbol.section = &bfd_com_section;
3735 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3736 break;
3737
3738 case SS_UNSAT:
3739 if (bufp->symbol_type != ST_STORAGE)
3740 sym->symbol.section = &bfd_und_section;
3741 else
3742 sym->symbol.section = &bfd_com_section;
3743 break;
3744
3745 case SS_UNIVERSAL:
3746 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3747 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3748 sym->symbol.value -= sym->symbol.section->vma;
3749 break;
3750
3751 #if 0
3752 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
3753 Sound dumb? It is. */
3754 case SS_GLOBAL:
3755 #endif
3756 case SS_LOCAL:
3757 sym->symbol.flags |= BSF_LOCAL;
3758 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3759 sym->symbol.value -= sym->symbol.section->vma;
3760 break;
3761 }
3762
3763 /* Mark section symbols and symbols used by the debugger. */
3764 if (sym->symbol.name[0] == '$'
3765 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$')
3766 sym->symbol.flags |= BSF_SECTION_SYM;
3767 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
3768 {
3769 sym->symbol.flags |= BSF_SECTION_SYM;
3770 sym->symbol.name = sym->symbol.section->name;
3771 }
3772 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
3773 sym->symbol.flags |= BSF_DEBUGGING;
3774
3775 /* Note increment at bottom of loop, since we skip some symbols
3776 we can not include it as part of the for statement. */
3777 sym++;
3778 }
3779
3780 /* Save our results and return success. */
3781 obj_som_symtab (abfd) = symbase;
3782 successful_return:
3783 if (buf != NULL)
3784 free (buf);
3785 return (true);
3786
3787 error_return:
3788 if (buf != NULL)
3789 free (buf);
3790 return false;
3791 }
3792
3793 /* Canonicalize a SOM symbol table. Return the number of entries
3794 in the symbol table. */
3795
3796 static long
3797 som_get_symtab (abfd, location)
3798 bfd *abfd;
3799 asymbol **location;
3800 {
3801 int i;
3802 som_symbol_type *symbase;
3803
3804 if (!som_slurp_symbol_table (abfd))
3805 return -1;
3806
3807 i = bfd_get_symcount (abfd);
3808 symbase = obj_som_symtab (abfd);
3809
3810 for (; i > 0; i--, location++, symbase++)
3811 *location = &symbase->symbol;
3812
3813 /* Final null pointer. */
3814 *location = 0;
3815 return (bfd_get_symcount (abfd));
3816 }
3817
3818 /* Make a SOM symbol. There is nothing special to do here. */
3819
3820 static asymbol *
3821 som_make_empty_symbol (abfd)
3822 bfd *abfd;
3823 {
3824 som_symbol_type *new =
3825 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
3826 if (new == NULL)
3827 {
3828 bfd_set_error (bfd_error_no_memory);
3829 return 0;
3830 }
3831 new->symbol.the_bfd = abfd;
3832
3833 return &new->symbol;
3834 }
3835
3836 /* Print symbol information. */
3837
3838 static void
3839 som_print_symbol (ignore_abfd, afile, symbol, how)
3840 bfd *ignore_abfd;
3841 PTR afile;
3842 asymbol *symbol;
3843 bfd_print_symbol_type how;
3844 {
3845 FILE *file = (FILE *) afile;
3846 switch (how)
3847 {
3848 case bfd_print_symbol_name:
3849 fprintf (file, "%s", symbol->name);
3850 break;
3851 case bfd_print_symbol_more:
3852 fprintf (file, "som ");
3853 fprintf_vma (file, symbol->value);
3854 fprintf (file, " %lx", (long) symbol->flags);
3855 break;
3856 case bfd_print_symbol_all:
3857 {
3858 CONST char *section_name;
3859 section_name = symbol->section ? symbol->section->name : "(*none*)";
3860 bfd_print_symbol_vandf ((PTR) file, symbol);
3861 fprintf (file, " %s\t%s", section_name, symbol->name);
3862 break;
3863 }
3864 }
3865 }
3866
3867 static boolean
3868 som_bfd_is_local_label (abfd, sym)
3869 bfd *abfd;
3870 asymbol *sym;
3871 {
3872 return (sym->name[0] == 'L' && sym->name[1] == '$');
3873 }
3874
3875 /* Count or process variable-length SOM fixup records.
3876
3877 To avoid code duplication we use this code both to compute the number
3878 of relocations requested by a stream, and to internalize the stream.
3879
3880 When computing the number of relocations requested by a stream the
3881 variables rptr, section, and symbols have no meaning.
3882
3883 Return the number of relocations requested by the fixup stream. When
3884 not just counting
3885
3886 This needs at least two or three more passes to get it cleaned up. */
3887
3888 static unsigned int
3889 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
3890 unsigned char *fixup;
3891 unsigned int end;
3892 arelent *internal_relocs;
3893 asection *section;
3894 asymbol **symbols;
3895 boolean just_count;
3896 {
3897 unsigned int op, varname;
3898 unsigned char *end_fixups = &fixup[end];
3899 const struct fixup_format *fp;
3900 char *cp;
3901 unsigned char *save_fixup;
3902 int variables[26], stack[20], c, v, count, prev_fixup, *sp;
3903 const int *subop;
3904 arelent *rptr= internal_relocs;
3905 unsigned int offset = just_count ? 0 : section->vma;
3906
3907 #define var(c) variables[(c) - 'A']
3908 #define push(v) (*sp++ = (v))
3909 #define pop() (*--sp)
3910 #define emptystack() (sp == stack)
3911
3912 som_initialize_reloc_queue (reloc_queue);
3913 memset (variables, 0, sizeof (variables));
3914 memset (stack, 0, sizeof (stack));
3915 count = 0;
3916 prev_fixup = 0;
3917 sp = stack;
3918
3919 while (fixup < end_fixups)
3920 {
3921
3922 /* Save pointer to the start of this fixup. We'll use
3923 it later to determine if it is necessary to put this fixup
3924 on the queue. */
3925 save_fixup = fixup;
3926
3927 /* Get the fixup code and its associated format. */
3928 op = *fixup++;
3929 fp = &som_fixup_formats[op];
3930
3931 /* Handle a request for a previous fixup. */
3932 if (*fp->format == 'P')
3933 {
3934 /* Get pointer to the beginning of the prev fixup, move
3935 the repeated fixup to the head of the queue. */
3936 fixup = reloc_queue[fp->D].reloc;
3937 som_reloc_queue_fix (reloc_queue, fp->D);
3938 prev_fixup = 1;
3939
3940 /* Get the fixup code and its associated format. */
3941 op = *fixup++;
3942 fp = &som_fixup_formats[op];
3943 }
3944
3945 /* If we are not just counting, set some reasonable defaults. */
3946 if (! just_count)
3947 {
3948 rptr->address = offset;
3949 rptr->howto = &som_hppa_howto_table[op];
3950 rptr->addend = 0;
3951 rptr->sym_ptr_ptr = bfd_abs_section.symbol_ptr_ptr;
3952 }
3953
3954 /* Set default input length to 0. Get the opcode class index
3955 into D. */
3956 var ('L') = 0;
3957 var ('D') = fp->D;
3958
3959 /* Get the opcode format. */
3960 cp = fp->format;
3961
3962 /* Process the format string. Parsing happens in two phases,
3963 parse RHS, then assign to LHS. Repeat until no more
3964 characters in the format string. */
3965 while (*cp)
3966 {
3967 /* The variable this pass is going to compute a value for. */
3968 varname = *cp++;
3969
3970 /* Start processing RHS. Continue until a NULL or '=' is found. */
3971 do
3972 {
3973 c = *cp++;
3974
3975 /* If this is a variable, push it on the stack. */
3976 if (isupper (c))
3977 push (var (c));
3978
3979 /* If this is a lower case letter, then it represents
3980 additional data from the fixup stream to be pushed onto
3981 the stack. */
3982 else if (islower (c))
3983 {
3984 for (v = 0; c > 'a'; --c)
3985 v = (v << 8) | *fixup++;
3986 push (v);
3987 }
3988
3989 /* A decimal constant. Push it on the stack. */
3990 else if (isdigit (c))
3991 {
3992 v = c - '0';
3993 while (isdigit (*cp))
3994 v = (v * 10) + (*cp++ - '0');
3995 push (v);
3996 }
3997 else
3998
3999 /* An operator. Pop two two values from the stack and
4000 use them as operands to the given operation. Push
4001 the result of the operation back on the stack. */
4002 switch (c)
4003 {
4004 case '+':
4005 v = pop ();
4006 v += pop ();
4007 push (v);
4008 break;
4009 case '*':
4010 v = pop ();
4011 v *= pop ();
4012 push (v);
4013 break;
4014 case '<':
4015 v = pop ();
4016 v = pop () << v;
4017 push (v);
4018 break;
4019 default:
4020 abort ();
4021 }
4022 }
4023 while (*cp && *cp != '=');
4024
4025 /* Move over the equal operator. */
4026 cp++;
4027
4028 /* Pop the RHS off the stack. */
4029 c = pop ();
4030
4031 /* Perform the assignment. */
4032 var (varname) = c;
4033
4034 /* Handle side effects. and special 'O' stack cases. */
4035 switch (varname)
4036 {
4037 /* Consume some bytes from the input space. */
4038 case 'L':
4039 offset += c;
4040 break;
4041 /* A symbol to use in the relocation. Make a note
4042 of this if we are not just counting. */
4043 case 'S':
4044 if (! just_count)
4045 rptr->sym_ptr_ptr = &symbols[c];
4046 break;
4047 /* Handle the linker expression stack. */
4048 case 'O':
4049 switch (op)
4050 {
4051 case R_COMP1:
4052 subop = comp1_opcodes;
4053 break;
4054 case R_COMP2:
4055 subop = comp2_opcodes;
4056 break;
4057 case R_COMP3:
4058 subop = comp3_opcodes;
4059 break;
4060 default:
4061 abort ();
4062 }
4063 while (*subop <= (unsigned char) c)
4064 ++subop;
4065 --subop;
4066 break;
4067 default:
4068 break;
4069 }
4070 }
4071
4072 /* If we used a previous fixup, clean up after it. */
4073 if (prev_fixup)
4074 {
4075 fixup = save_fixup + 1;
4076 prev_fixup = 0;
4077 }
4078 /* Queue it. */
4079 else if (fixup > save_fixup + 1)
4080 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4081
4082 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4083 fixups to BFD. */
4084 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4085 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4086 {
4087 /* Done with a single reloction. Loop back to the top. */
4088 if (! just_count)
4089 {
4090 rptr->addend = var ('V');
4091 rptr++;
4092 }
4093 count++;
4094 /* Now that we've handled a "full" relocation, reset
4095 some state. */
4096 memset (variables, 0, sizeof (variables));
4097 memset (stack, 0, sizeof (stack));
4098 }
4099 }
4100 return count;
4101
4102 #undef var
4103 #undef push
4104 #undef pop
4105 #undef emptystack
4106 }
4107
4108 /* Read in the relocs (aka fixups in SOM terms) for a section.
4109
4110 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4111 set to true to indicate it only needs a count of the number
4112 of actual relocations. */
4113
4114 static boolean
4115 som_slurp_reloc_table (abfd, section, symbols, just_count)
4116 bfd *abfd;
4117 asection *section;
4118 asymbol **symbols;
4119 boolean just_count;
4120 {
4121 char *external_relocs;
4122 unsigned int fixup_stream_size;
4123 arelent *internal_relocs;
4124 unsigned int num_relocs;
4125
4126 fixup_stream_size = som_section_data (section)->reloc_size;
4127 /* If there were no relocations, then there is nothing to do. */
4128 if (section->reloc_count == 0)
4129 return true;
4130
4131 /* If reloc_count is -1, then the relocation stream has not been
4132 parsed. We must do so now to know how many relocations exist. */
4133 if (section->reloc_count == -1)
4134 {
4135 external_relocs = (char *) malloc (fixup_stream_size);
4136 if (external_relocs == (char *) NULL)
4137 {
4138 bfd_set_error (bfd_error_no_memory);
4139 return false;
4140 }
4141 /* Read in the external forms. */
4142 if (bfd_seek (abfd,
4143 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4144 SEEK_SET)
4145 != 0)
4146 return false;
4147 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
4148 != fixup_stream_size)
4149 return false;
4150
4151 /* Let callers know how many relocations found.
4152 also save the relocation stream as we will
4153 need it again. */
4154 section->reloc_count = som_set_reloc_info (external_relocs,
4155 fixup_stream_size,
4156 NULL, NULL, NULL, true);
4157
4158 som_section_data (section)->reloc_stream = external_relocs;
4159 }
4160
4161 /* If the caller only wanted a count, then return now. */
4162 if (just_count)
4163 return true;
4164
4165 num_relocs = section->reloc_count;
4166 external_relocs = som_section_data (section)->reloc_stream;
4167 /* Return saved information about the relocations if it is available. */
4168 if (section->relocation != (arelent *) NULL)
4169 return true;
4170
4171 internal_relocs = (arelent *) malloc (num_relocs * sizeof (arelent));
4172 if (internal_relocs == (arelent *) NULL)
4173 {
4174 bfd_set_error (bfd_error_no_memory);
4175 return false;
4176 }
4177
4178 /* Process and internalize the relocations. */
4179 som_set_reloc_info (external_relocs, fixup_stream_size,
4180 internal_relocs, section, symbols, false);
4181
4182 /* Save our results and return success. */
4183 section->relocation = internal_relocs;
4184 return (true);
4185 }
4186
4187 /* Return the number of bytes required to store the relocation
4188 information associated with the given section. */
4189
4190 static long
4191 som_get_reloc_upper_bound (abfd, asect)
4192 bfd *abfd;
4193 sec_ptr asect;
4194 {
4195 /* If section has relocations, then read in the relocation stream
4196 and parse it to determine how many relocations exist. */
4197 if (asect->flags & SEC_RELOC)
4198 {
4199 if (! som_slurp_reloc_table (abfd, asect, NULL, true))
4200 return false;
4201 return (asect->reloc_count + 1) * sizeof (arelent);
4202 }
4203 /* There are no relocations. */
4204 return 0;
4205 }
4206
4207 /* Convert relocations from SOM (external) form into BFD internal
4208 form. Return the number of relocations. */
4209
4210 static long
4211 som_canonicalize_reloc (abfd, section, relptr, symbols)
4212 bfd *abfd;
4213 sec_ptr section;
4214 arelent **relptr;
4215 asymbol **symbols;
4216 {
4217 arelent *tblptr;
4218 int count;
4219
4220 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
4221 return -1;
4222
4223 count = section->reloc_count;
4224 tblptr = section->relocation;
4225
4226 while (count--)
4227 *relptr++ = tblptr++;
4228
4229 *relptr = (arelent *) NULL;
4230 return section->reloc_count;
4231 }
4232
4233 extern bfd_target som_vec;
4234
4235 /* A hook to set up object file dependent section information. */
4236
4237 static boolean
4238 som_new_section_hook (abfd, newsect)
4239 bfd *abfd;
4240 asection *newsect;
4241 {
4242 newsect->used_by_bfd =
4243 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
4244 if (!newsect->used_by_bfd)
4245 {
4246 bfd_set_error (bfd_error_no_memory);
4247 return false;
4248 }
4249 newsect->alignment_power = 3;
4250
4251 /* We allow more than three sections internally */
4252 return true;
4253 }
4254
4255 /* Copy any private info we understand from the input section
4256 to the output section. */
4257 static boolean
4258 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
4259 bfd *ibfd;
4260 asection *isection;
4261 bfd *obfd;
4262 asection *osection;
4263 {
4264 /* One day we may try to grok other private data. */
4265 if (ibfd->xvec->flavour != bfd_target_som_flavour
4266 || obfd->xvec->flavour != bfd_target_som_flavour
4267 || (!som_is_space (isection) && !som_is_subspace (isection)))
4268 return false;
4269
4270 som_section_data (osection)->copy_data
4271 = (struct som_copyable_section_data_struct *)
4272 bfd_zalloc (obfd, sizeof (struct som_copyable_section_data_struct));
4273 if (som_section_data (osection)->copy_data == NULL)
4274 {
4275 bfd_set_error (bfd_error_no_memory);
4276 return false;
4277 }
4278
4279 memcpy (som_section_data (osection)->copy_data,
4280 som_section_data (isection)->copy_data,
4281 sizeof (struct som_copyable_section_data_struct));
4282
4283 /* Reparent if necessary. */
4284 if (som_section_data (osection)->copy_data->container)
4285 som_section_data (osection)->copy_data->container =
4286 som_section_data (osection)->copy_data->container->output_section;
4287
4288 return true;
4289 }
4290
4291 /* Copy any private info we understand from the input bfd
4292 to the output bfd. */
4293
4294 static boolean
4295 som_bfd_copy_private_bfd_data (ibfd, obfd)
4296 bfd *ibfd, *obfd;
4297 {
4298 /* One day we may try to grok other private data. */
4299 if (ibfd->xvec->flavour != bfd_target_som_flavour
4300 || obfd->xvec->flavour != bfd_target_som_flavour)
4301 return false;
4302
4303 /* Allocate some memory to hold the data we need. */
4304 obj_som_exec_data (obfd) = (struct som_exec_data *)
4305 bfd_zalloc (obfd, sizeof (struct som_exec_data));
4306 if (obj_som_exec_data (obfd) == NULL)
4307 {
4308 bfd_set_error (bfd_error_no_memory);
4309 return false;
4310 }
4311
4312 /* Now copy the data. */
4313 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
4314 sizeof (struct som_exec_data));
4315
4316 return true;
4317 }
4318
4319 /* Set backend info for sections which can not be described
4320 in the BFD data structures. */
4321
4322 boolean
4323 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
4324 asection *section;
4325 int defined;
4326 int private;
4327 unsigned int sort_key;
4328 int spnum;
4329 {
4330 /* Allocate memory to hold the magic information. */
4331 if (som_section_data (section)->copy_data == NULL)
4332 {
4333 som_section_data (section)->copy_data
4334 = (struct som_copyable_section_data_struct *)
4335 bfd_zalloc (section->owner,
4336 sizeof (struct som_copyable_section_data_struct));
4337 if (som_section_data (section)->copy_data == NULL)
4338 {
4339 bfd_set_error (bfd_error_no_memory);
4340 return false;
4341 }
4342 }
4343 som_section_data (section)->copy_data->sort_key = sort_key;
4344 som_section_data (section)->copy_data->is_defined = defined;
4345 som_section_data (section)->copy_data->is_private = private;
4346 som_section_data (section)->copy_data->container = section;
4347 section->target_index = spnum;
4348 return true;
4349 }
4350
4351 /* Set backend info for subsections which can not be described
4352 in the BFD data structures. */
4353
4354 boolean
4355 bfd_som_set_subsection_attributes (section, container, access,
4356 sort_key, quadrant)
4357 asection *section;
4358 asection *container;
4359 int access;
4360 unsigned int sort_key;
4361 int quadrant;
4362 {
4363 /* Allocate memory to hold the magic information. */
4364 if (som_section_data (section)->copy_data == NULL)
4365 {
4366 som_section_data (section)->copy_data
4367 = (struct som_copyable_section_data_struct *)
4368 bfd_zalloc (section->owner,
4369 sizeof (struct som_copyable_section_data_struct));
4370 if (som_section_data (section)->copy_data == NULL)
4371 {
4372 bfd_set_error (bfd_error_no_memory);
4373 return false;
4374 }
4375 }
4376 som_section_data (section)->copy_data->sort_key = sort_key;
4377 som_section_data (section)->copy_data->access_control_bits = access;
4378 som_section_data (section)->copy_data->quadrant = quadrant;
4379 som_section_data (section)->copy_data->container = container;
4380 return true;
4381 }
4382
4383 /* Set the full SOM symbol type. SOM needs far more symbol information
4384 than any other object file format I'm aware of. It is mandatory
4385 to be able to know if a symbol is an entry point, millicode, data,
4386 code, absolute, storage request, or procedure label. If you get
4387 the symbol type wrong your program will not link. */
4388
4389 void
4390 bfd_som_set_symbol_type (symbol, type)
4391 asymbol *symbol;
4392 unsigned int type;
4393 {
4394 som_symbol_data (symbol)->som_type = type;
4395 }
4396
4397 /* Attach 64bits of unwind information to a symbol (which hopefully
4398 is a function of some kind!). It would be better to keep this
4399 in the R_ENTRY relocation, but there is not enough space. */
4400
4401 void
4402 bfd_som_attach_unwind_info (symbol, unwind_desc)
4403 asymbol *symbol;
4404 char *unwind_desc;
4405 {
4406 som_symbol_data (symbol)->unwind = unwind_desc;
4407 }
4408
4409 /* Attach an auxiliary header to the BFD backend so that it may be
4410 written into the object file. */
4411 boolean
4412 bfd_som_attach_aux_hdr (abfd, type, string)
4413 bfd *abfd;
4414 int type;
4415 char *string;
4416 {
4417 if (type == VERSION_AUX_ID)
4418 {
4419 int len = strlen (string);
4420 int pad = 0;
4421
4422 if (len % 4)
4423 pad = (4 - (len % 4));
4424 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
4425 bfd_zalloc (abfd, sizeof (struct aux_id)
4426 + sizeof (unsigned int) + len + pad);
4427 if (!obj_som_version_hdr (abfd))
4428 {
4429 bfd_set_error (bfd_error_no_memory);
4430 return false;
4431 }
4432 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
4433 obj_som_version_hdr (abfd)->header_id.length = len + pad;
4434 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
4435 obj_som_version_hdr (abfd)->string_length = len;
4436 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
4437 }
4438 else if (type == COPYRIGHT_AUX_ID)
4439 {
4440 int len = strlen (string);
4441 int pad = 0;
4442
4443 if (len % 4)
4444 pad = (4 - (len % 4));
4445 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
4446 bfd_zalloc (abfd, sizeof (struct aux_id)
4447 + sizeof (unsigned int) + len + pad);
4448 if (!obj_som_copyright_hdr (abfd))
4449 {
4450 bfd_set_error (bfd_error_no_memory);
4451 return false;
4452 }
4453 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
4454 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
4455 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
4456 obj_som_copyright_hdr (abfd)->string_length = len;
4457 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
4458 }
4459 return true;
4460 }
4461
4462 static boolean
4463 som_get_section_contents (abfd, section, location, offset, count)
4464 bfd *abfd;
4465 sec_ptr section;
4466 PTR location;
4467 file_ptr offset;
4468 bfd_size_type count;
4469 {
4470 if (count == 0 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4471 return true;
4472 if ((bfd_size_type)(offset+count) > section->_raw_size
4473 || bfd_seek (abfd, (file_ptr)(section->filepos + offset), SEEK_SET) == -1
4474 || bfd_read (location, (bfd_size_type)1, count, abfd) != count)
4475 return (false); /* on error */
4476 return (true);
4477 }
4478
4479 static boolean
4480 som_set_section_contents (abfd, section, location, offset, count)
4481 bfd *abfd;
4482 sec_ptr section;
4483 PTR location;
4484 file_ptr offset;
4485 bfd_size_type count;
4486 {
4487 if (abfd->output_has_begun == false)
4488 {
4489 /* Set up fixed parts of the file, space, and subspace headers.
4490 Notify the world that output has begun. */
4491 som_prep_headers (abfd);
4492 abfd->output_has_begun = true;
4493 /* Start writing the object file. This include all the string
4494 tables, fixup streams, and other portions of the object file. */
4495 som_begin_writing (abfd);
4496 }
4497
4498 /* Only write subspaces which have "real" contents (eg. the contents
4499 are not generated at run time by the OS). */
4500 if (!som_is_subspace (section)
4501 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4502 return true;
4503
4504 /* Seek to the proper offset within the object file and write the
4505 data. */
4506 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
4507 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
4508 return false;
4509
4510 if (bfd_write ((PTR) location, 1, count, abfd) != count)
4511 return false;
4512 return true;
4513 }
4514
4515 static boolean
4516 som_set_arch_mach (abfd, arch, machine)
4517 bfd *abfd;
4518 enum bfd_architecture arch;
4519 unsigned long machine;
4520 {
4521 /* Allow any architecture to be supported by the SOM backend */
4522 return bfd_default_set_arch_mach (abfd, arch, machine);
4523 }
4524
4525 static boolean
4526 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4527 functionname_ptr, line_ptr)
4528 bfd *abfd;
4529 asection *section;
4530 asymbol **symbols;
4531 bfd_vma offset;
4532 CONST char **filename_ptr;
4533 CONST char **functionname_ptr;
4534 unsigned int *line_ptr;
4535 {
4536 fprintf (stderr, "som_find_nearest_line unimplemented\n");
4537 fflush (stderr);
4538 abort ();
4539 return (false);
4540 }
4541
4542 static int
4543 som_sizeof_headers (abfd, reloc)
4544 bfd *abfd;
4545 boolean reloc;
4546 {
4547 fprintf (stderr, "som_sizeof_headers unimplemented\n");
4548 fflush (stderr);
4549 abort ();
4550 return (0);
4551 }
4552
4553 /* Return the single-character symbol type corresponding to
4554 SOM section S, or '?' for an unknown SOM section. */
4555
4556 static char
4557 som_section_type (s)
4558 const char *s;
4559 {
4560 const struct section_to_type *t;
4561
4562 for (t = &stt[0]; t->section; t++)
4563 if (!strcmp (s, t->section))
4564 return t->type;
4565 return '?';
4566 }
4567
4568 static int
4569 som_decode_symclass (symbol)
4570 asymbol *symbol;
4571 {
4572 char c;
4573
4574 if (bfd_is_com_section (symbol->section))
4575 return 'C';
4576 if (symbol->section == &bfd_und_section)
4577 return 'U';
4578 if (symbol->section == &bfd_ind_section)
4579 return 'I';
4580 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
4581 return '?';
4582
4583 if (symbol->section == &bfd_abs_section)
4584 c = 'a';
4585 else if (symbol->section)
4586 c = som_section_type (symbol->section->name);
4587 else
4588 return '?';
4589 if (symbol->flags & BSF_GLOBAL)
4590 c = toupper (c);
4591 return c;
4592 }
4593
4594 /* Return information about SOM symbol SYMBOL in RET. */
4595
4596 static void
4597 som_get_symbol_info (ignore_abfd, symbol, ret)
4598 bfd *ignore_abfd;
4599 asymbol *symbol;
4600 symbol_info *ret;
4601 {
4602 ret->type = som_decode_symclass (symbol);
4603 if (ret->type != 'U')
4604 ret->value = symbol->value+symbol->section->vma;
4605 else
4606 ret->value = 0;
4607 ret->name = symbol->name;
4608 }
4609
4610 /* Count the number of symbols in the archive symbol table. Necessary
4611 so that we can allocate space for all the carsyms at once. */
4612
4613 static boolean
4614 som_bfd_count_ar_symbols (abfd, lst_header, count)
4615 bfd *abfd;
4616 struct lst_header *lst_header;
4617 symindex *count;
4618 {
4619 unsigned int i;
4620 unsigned int *hash_table = NULL;
4621 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4622
4623 hash_table =
4624 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4625 if (hash_table == NULL && lst_header->hash_size != 0)
4626 {
4627 bfd_set_error (bfd_error_no_memory);
4628 goto error_return;
4629 }
4630
4631 /* Don't forget to initialize the counter! */
4632 *count = 0;
4633
4634 /* Read in the hash table. The has table is an array of 32bit file offsets
4635 which point to the hash chains. */
4636 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4637 != lst_header->hash_size * 4)
4638 goto error_return;
4639
4640 /* Walk each chain counting the number of symbols found on that particular
4641 chain. */
4642 for (i = 0; i < lst_header->hash_size; i++)
4643 {
4644 struct lst_symbol_record lst_symbol;
4645
4646 /* An empty chain has zero as it's file offset. */
4647 if (hash_table[i] == 0)
4648 continue;
4649
4650 /* Seek to the first symbol in this hash chain. */
4651 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4652 goto error_return;
4653
4654 /* Read in this symbol and update the counter. */
4655 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4656 != sizeof (lst_symbol))
4657 goto error_return;
4658
4659 (*count)++;
4660
4661 /* Now iterate through the rest of the symbols on this chain. */
4662 while (lst_symbol.next_entry)
4663 {
4664
4665 /* Seek to the next symbol. */
4666 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4667 < 0)
4668 goto error_return;
4669
4670 /* Read the symbol in and update the counter. */
4671 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4672 != sizeof (lst_symbol))
4673 goto error_return;
4674
4675 (*count)++;
4676 }
4677 }
4678 if (hash_table != NULL)
4679 free (hash_table);
4680 return true;
4681
4682 error_return:
4683 if (hash_table != NULL)
4684 free (hash_table);
4685 return false;
4686 }
4687
4688 /* Fill in the canonical archive symbols (SYMS) from the archive described
4689 by ABFD and LST_HEADER. */
4690
4691 static boolean
4692 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
4693 bfd *abfd;
4694 struct lst_header *lst_header;
4695 carsym **syms;
4696 {
4697 unsigned int i, len;
4698 carsym *set = syms[0];
4699 unsigned int *hash_table = NULL;
4700 struct som_entry *som_dict = NULL;
4701 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4702
4703 hash_table =
4704 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4705 if (hash_table == NULL && lst_header->hash_size != 0)
4706 {
4707 bfd_set_error (bfd_error_no_memory);
4708 goto error_return;
4709 }
4710
4711 som_dict =
4712 (struct som_entry *) malloc (lst_header->module_count
4713 * sizeof (struct som_entry));
4714 if (som_dict == NULL && lst_header->module_count != 0)
4715 {
4716 bfd_set_error (bfd_error_no_memory);
4717 goto error_return;
4718 }
4719
4720 /* Read in the hash table. The has table is an array of 32bit file offsets
4721 which point to the hash chains. */
4722 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4723 != lst_header->hash_size * 4)
4724 goto error_return;
4725
4726 /* Seek to and read in the SOM dictionary. We will need this to fill
4727 in the carsym's filepos field. */
4728 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
4729 goto error_return;
4730
4731 if (bfd_read ((PTR) som_dict, lst_header->module_count,
4732 sizeof (struct som_entry), abfd)
4733 != lst_header->module_count * sizeof (struct som_entry))
4734 goto error_return;
4735
4736 /* Walk each chain filling in the carsyms as we go along. */
4737 for (i = 0; i < lst_header->hash_size; i++)
4738 {
4739 struct lst_symbol_record lst_symbol;
4740
4741 /* An empty chain has zero as it's file offset. */
4742 if (hash_table[i] == 0)
4743 continue;
4744
4745 /* Seek to and read the first symbol on the chain. */
4746 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4747 goto error_return;
4748
4749 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4750 != sizeof (lst_symbol))
4751 goto error_return;
4752
4753 /* Get the name of the symbol, first get the length which is stored
4754 as a 32bit integer just before the symbol.
4755
4756 One might ask why we don't just read in the entire string table
4757 and index into it. Well, according to the SOM ABI the string
4758 index can point *anywhere* in the archive to save space, so just
4759 using the string table would not be safe. */
4760 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4761 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4762 goto error_return;
4763
4764 if (bfd_read (&len, 1, 4, abfd) != 4)
4765 goto error_return;
4766
4767 /* Allocate space for the name and null terminate it too. */
4768 set->name = bfd_zalloc (abfd, len + 1);
4769 if (!set->name)
4770 {
4771 bfd_set_error (bfd_error_no_memory);
4772 goto error_return;
4773 }
4774 if (bfd_read (set->name, 1, len, abfd) != len)
4775 goto error_return;
4776
4777 set->name[len] = 0;
4778
4779 /* Fill in the file offset. Note that the "location" field points
4780 to the SOM itself, not the ar_hdr in front of it. */
4781 set->file_offset = som_dict[lst_symbol.som_index].location
4782 - sizeof (struct ar_hdr);
4783
4784 /* Go to the next symbol. */
4785 set++;
4786
4787 /* Iterate through the rest of the chain. */
4788 while (lst_symbol.next_entry)
4789 {
4790 /* Seek to the next symbol and read it in. */
4791 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET) <0)
4792 goto error_return;
4793
4794 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4795 != sizeof (lst_symbol))
4796 goto error_return;
4797
4798 /* Seek to the name length & string and read them in. */
4799 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4800 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4801 goto error_return;
4802
4803 if (bfd_read (&len, 1, 4, abfd) != 4)
4804 goto error_return;
4805
4806 /* Allocate space for the name and null terminate it too. */
4807 set->name = bfd_zalloc (abfd, len + 1);
4808 if (!set->name)
4809 {
4810 bfd_set_error (bfd_error_no_memory);
4811 goto error_return;
4812 }
4813
4814 if (bfd_read (set->name, 1, len, abfd) != len)
4815 goto error_return;
4816 set->name[len] = 0;
4817
4818 /* Fill in the file offset. Note that the "location" field points
4819 to the SOM itself, not the ar_hdr in front of it. */
4820 set->file_offset = som_dict[lst_symbol.som_index].location
4821 - sizeof (struct ar_hdr);
4822
4823 /* Go on to the next symbol. */
4824 set++;
4825 }
4826 }
4827 /* If we haven't died by now, then we successfully read the entire
4828 archive symbol table. */
4829 if (hash_table != NULL)
4830 free (hash_table);
4831 if (som_dict != NULL)
4832 free (som_dict);
4833 return true;
4834
4835 error_return:
4836 if (hash_table != NULL)
4837 free (hash_table);
4838 if (som_dict != NULL)
4839 free (som_dict);
4840 return false;
4841 }
4842
4843 /* Read in the LST from the archive. */
4844 static boolean
4845 som_slurp_armap (abfd)
4846 bfd *abfd;
4847 {
4848 struct lst_header lst_header;
4849 struct ar_hdr ar_header;
4850 unsigned int parsed_size;
4851 struct artdata *ardata = bfd_ardata (abfd);
4852 char nextname[17];
4853 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
4854
4855 /* Special cases. */
4856 if (i == 0)
4857 return true;
4858 if (i != 16)
4859 return false;
4860
4861 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
4862 return false;
4863
4864 /* For archives without .o files there is no symbol table. */
4865 if (strncmp (nextname, "/ ", 16))
4866 {
4867 bfd_has_map (abfd) = false;
4868 return true;
4869 }
4870
4871 /* Read in and sanity check the archive header. */
4872 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
4873 != sizeof (struct ar_hdr))
4874 return false;
4875
4876 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
4877 {
4878 bfd_set_error (bfd_error_malformed_archive);
4879 return false;
4880 }
4881
4882 /* How big is the archive symbol table entry? */
4883 errno = 0;
4884 parsed_size = strtol (ar_header.ar_size, NULL, 10);
4885 if (errno != 0)
4886 {
4887 bfd_set_error (bfd_error_malformed_archive);
4888 return false;
4889 }
4890
4891 /* Save off the file offset of the first real user data. */
4892 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
4893
4894 /* Read in the library symbol table. We'll make heavy use of this
4895 in just a minute. */
4896 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
4897 != sizeof (struct lst_header))
4898 return false;
4899
4900 /* Sanity check. */
4901 if (lst_header.a_magic != LIBMAGIC)
4902 {
4903 bfd_set_error (bfd_error_malformed_archive);
4904 return false;
4905 }
4906
4907 /* Count the number of symbols in the library symbol table. */
4908 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
4909 == false)
4910 return false;
4911
4912 /* Get back to the start of the library symbol table. */
4913 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
4914 + sizeof (struct lst_header), SEEK_SET) < 0)
4915 return false;
4916
4917 /* Initializae the cache and allocate space for the library symbols. */
4918 ardata->cache = 0;
4919 ardata->symdefs = (carsym *) bfd_alloc (abfd,
4920 (ardata->symdef_count
4921 * sizeof (carsym)));
4922 if (!ardata->symdefs)
4923 {
4924 bfd_set_error (bfd_error_no_memory);
4925 return false;
4926 }
4927
4928 /* Now fill in the canonical archive symbols. */
4929 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
4930 == false)
4931 return false;
4932
4933 /* Seek back to the "first" file in the archive. Note the "first"
4934 file may be the extended name table. */
4935 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) < 0)
4936 return false;
4937
4938 /* Notify the generic archive code that we have a symbol map. */
4939 bfd_has_map (abfd) = true;
4940 return true;
4941 }
4942
4943 /* Begin preparing to write a SOM library symbol table.
4944
4945 As part of the prep work we need to determine the number of symbols
4946 and the size of the associated string section. */
4947
4948 static boolean
4949 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
4950 bfd *abfd;
4951 unsigned int *num_syms, *stringsize;
4952 {
4953 bfd *curr_bfd = abfd->archive_head;
4954
4955 /* Some initialization. */
4956 *num_syms = 0;
4957 *stringsize = 0;
4958
4959 /* Iterate over each BFD within this archive. */
4960 while (curr_bfd != NULL)
4961 {
4962 unsigned int curr_count, i;
4963 som_symbol_type *sym;
4964
4965 /* Don't bother for non-SOM objects. */
4966 if (curr_bfd->format != bfd_object
4967 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
4968 {
4969 curr_bfd = curr_bfd->next;
4970 continue;
4971 }
4972
4973 /* Make sure the symbol table has been read, then snag a pointer
4974 to it. It's a little slimey to grab the symbols via obj_som_symtab,
4975 but doing so avoids allocating lots of extra memory. */
4976 if (som_slurp_symbol_table (curr_bfd) == false)
4977 return false;
4978
4979 sym = obj_som_symtab (curr_bfd);
4980 curr_count = bfd_get_symcount (curr_bfd);
4981
4982 /* Examine each symbol to determine if it belongs in the
4983 library symbol table. */
4984 for (i = 0; i < curr_count; i++, sym++)
4985 {
4986 struct som_misc_symbol_info info;
4987
4988 /* Derive SOM information from the BFD symbol. */
4989 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
4990
4991 /* Should we include this symbol? */
4992 if (info.symbol_type == ST_NULL
4993 || info.symbol_type == ST_SYM_EXT
4994 || info.symbol_type == ST_ARG_EXT)
4995 continue;
4996
4997 /* Only global symbols and unsatisfied commons. */
4998 if (info.symbol_scope != SS_UNIVERSAL
4999 && info.symbol_type != ST_STORAGE)
5000 continue;
5001
5002 /* Do no include undefined symbols. */
5003 if (sym->symbol.section == &bfd_und_section)
5004 continue;
5005
5006 /* Bump the various counters, being careful to honor
5007 alignment considerations in the string table. */
5008 (*num_syms)++;
5009 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5010 while (*stringsize % 4)
5011 (*stringsize)++;
5012 }
5013
5014 curr_bfd = curr_bfd->next;
5015 }
5016 return true;
5017 }
5018
5019 /* Hash a symbol name based on the hashing algorithm presented in the
5020 SOM ABI. */
5021 static unsigned int
5022 som_bfd_ar_symbol_hash (symbol)
5023 asymbol *symbol;
5024 {
5025 unsigned int len = strlen (symbol->name);
5026
5027 /* Names with length 1 are special. */
5028 if (len == 1)
5029 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5030
5031 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5032 | (symbol->name[len-2] << 8) | symbol->name[len-1];
5033 }
5034
5035 static CONST char *
5036 normalize (file)
5037 CONST char *file;
5038 {
5039 CONST char *filename = strrchr (file, '/');
5040
5041 if (filename != NULL)
5042 filename++;
5043 else
5044 filename = file;
5045 return filename;
5046 }
5047
5048 /* Do the bulk of the work required to write the SOM library
5049 symbol table. */
5050
5051 static boolean
5052 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst)
5053 bfd *abfd;
5054 unsigned int nsyms, string_size;
5055 struct lst_header lst;
5056 {
5057 file_ptr lst_filepos;
5058 char *strings = NULL, *p;
5059 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5060 bfd *curr_bfd;
5061 unsigned int *hash_table = NULL;
5062 struct som_entry *som_dict = NULL;
5063 struct lst_symbol_record **last_hash_entry = NULL;
5064 unsigned int curr_som_offset, som_index, extended_name_length = 0;
5065 unsigned int maxname = abfd->xvec->ar_max_namelen;
5066
5067 hash_table =
5068 (unsigned int *) malloc (lst.hash_size * sizeof (unsigned int));
5069 if (hash_table == NULL && lst.hash_size != 0)
5070 {
5071 bfd_set_error (bfd_error_no_memory);
5072 goto error_return;
5073 }
5074 som_dict =
5075 (struct som_entry *) malloc (lst.module_count
5076 * sizeof (struct som_entry));
5077 if (som_dict == NULL && lst.module_count != 0)
5078 {
5079 bfd_set_error (bfd_error_no_memory);
5080 goto error_return;
5081 }
5082
5083 last_hash_entry =
5084 ((struct lst_symbol_record **)
5085 malloc (lst.hash_size * sizeof (struct lst_symbol_record *)));
5086 if (last_hash_entry == NULL && lst.hash_size != 0)
5087 {
5088 bfd_set_error (bfd_error_no_memory);
5089 goto error_return;
5090 }
5091
5092 /* Lots of fields are file positions relative to the start
5093 of the lst record. So save its location. */
5094 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5095
5096 /* Some initialization. */
5097 memset (hash_table, 0, 4 * lst.hash_size);
5098 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
5099 memset (last_hash_entry, 0,
5100 lst.hash_size * sizeof (struct lst_symbol_record *));
5101
5102 /* Symbols have som_index fields, so we have to keep track of the
5103 index of each SOM in the archive.
5104
5105 The SOM dictionary has (among other things) the absolute file
5106 position for the SOM which a particular dictionary entry
5107 describes. We have to compute that information as we iterate
5108 through the SOMs/symbols. */
5109 som_index = 0;
5110 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5111
5112 /* Yow! We have to know the size of the extended name table
5113 too. */
5114 for (curr_bfd = abfd->archive_head;
5115 curr_bfd != NULL;
5116 curr_bfd = curr_bfd->next)
5117 {
5118 CONST char *normal = normalize (curr_bfd->filename);
5119 unsigned int thislen;
5120
5121 if (!normal)
5122 {
5123 bfd_set_error (bfd_error_no_memory);
5124 return false;
5125 }
5126 thislen = strlen (normal);
5127 if (thislen > maxname)
5128 extended_name_length += thislen + 1;
5129 }
5130
5131 /* Make room for the archive header and the contents of the
5132 extended string table. */
5133 if (extended_name_length)
5134 curr_som_offset += extended_name_length + sizeof (struct ar_hdr);
5135
5136 /* Make sure we're properly aligned. */
5137 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5138
5139 /* FIXME should be done with buffers just like everything else... */
5140 lst_syms = malloc (nsyms * sizeof (struct lst_symbol_record));
5141 if (lst_syms == NULL && nsyms != 0)
5142 {
5143 bfd_set_error (bfd_error_no_memory);
5144 goto error_return;
5145 }
5146 strings = malloc (string_size);
5147 if (strings == NULL && string_size != 0)
5148 {
5149 bfd_set_error (bfd_error_no_memory);
5150 goto error_return;
5151 }
5152
5153 p = strings;
5154 curr_lst_sym = lst_syms;
5155
5156 curr_bfd = abfd->archive_head;
5157 while (curr_bfd != NULL)
5158 {
5159 unsigned int curr_count, i;
5160 som_symbol_type *sym;
5161
5162 /* Don't bother for non-SOM objects. */
5163 if (curr_bfd->format != bfd_object
5164 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5165 {
5166 curr_bfd = curr_bfd->next;
5167 continue;
5168 }
5169
5170 /* Make sure the symbol table has been read, then snag a pointer
5171 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5172 but doing so avoids allocating lots of extra memory. */
5173 if (som_slurp_symbol_table (curr_bfd) == false)
5174 goto error_return;
5175
5176 sym = obj_som_symtab (curr_bfd);
5177 curr_count = bfd_get_symcount (curr_bfd);
5178
5179 for (i = 0; i < curr_count; i++, sym++)
5180 {
5181 struct som_misc_symbol_info info;
5182
5183 /* Derive SOM information from the BFD symbol. */
5184 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5185
5186 /* Should we include this symbol? */
5187 if (info.symbol_type == ST_NULL
5188 || info.symbol_type == ST_SYM_EXT
5189 || info.symbol_type == ST_ARG_EXT)
5190 continue;
5191
5192 /* Only global symbols and unsatisfied commons. */
5193 if (info.symbol_scope != SS_UNIVERSAL
5194 && info.symbol_type != ST_STORAGE)
5195 continue;
5196
5197 /* Do no include undefined symbols. */
5198 if (sym->symbol.section == &bfd_und_section)
5199 continue;
5200
5201 /* If this is the first symbol from this SOM, then update
5202 the SOM dictionary too. */
5203 if (som_dict[som_index].location == 0)
5204 {
5205 som_dict[som_index].location = curr_som_offset;
5206 som_dict[som_index].length = arelt_size (curr_bfd);
5207 }
5208
5209 /* Fill in the lst symbol record. */
5210 curr_lst_sym->hidden = 0;
5211 curr_lst_sym->secondary_def = 0;
5212 curr_lst_sym->symbol_type = info.symbol_type;
5213 curr_lst_sym->symbol_scope = info.symbol_scope;
5214 curr_lst_sym->check_level = 0;
5215 curr_lst_sym->must_qualify = 0;
5216 curr_lst_sym->initially_frozen = 0;
5217 curr_lst_sym->memory_resident = 0;
5218 curr_lst_sym->is_common = (sym->symbol.section == &bfd_com_section);
5219 curr_lst_sym->dup_common = 0;
5220 curr_lst_sym->xleast = 0;
5221 curr_lst_sym->arg_reloc = info.arg_reloc;
5222 curr_lst_sym->name.n_strx = p - strings + 4;
5223 curr_lst_sym->qualifier_name.n_strx = 0;
5224 curr_lst_sym->symbol_info = info.symbol_info;
5225 curr_lst_sym->symbol_value = info.symbol_value;
5226 curr_lst_sym->symbol_descriptor = 0;
5227 curr_lst_sym->reserved = 0;
5228 curr_lst_sym->som_index = som_index;
5229 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
5230 curr_lst_sym->next_entry = 0;
5231
5232 /* Insert into the hash table. */
5233 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
5234 {
5235 struct lst_symbol_record *tmp;
5236
5237 /* There is already something at the head of this hash chain,
5238 so tack this symbol onto the end of the chain. */
5239 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
5240 tmp->next_entry
5241 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5242 + lst.hash_size * 4
5243 + lst.module_count * sizeof (struct som_entry)
5244 + sizeof (struct lst_header);
5245 }
5246 else
5247 {
5248 /* First entry in this hash chain. */
5249 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
5250 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5251 + lst.hash_size * 4
5252 + lst.module_count * sizeof (struct som_entry)
5253 + sizeof (struct lst_header);
5254 }
5255
5256 /* Keep track of the last symbol we added to this chain so we can
5257 easily update its next_entry pointer. */
5258 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
5259 = curr_lst_sym;
5260
5261
5262 /* Update the string table. */
5263 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
5264 p += 4;
5265 strcpy (p, sym->symbol.name);
5266 p += strlen (sym->symbol.name) + 1;
5267 while ((int)p % 4)
5268 {
5269 bfd_put_8 (abfd, 0, p);
5270 p++;
5271 }
5272
5273 /* Head to the next symbol. */
5274 curr_lst_sym++;
5275 }
5276
5277 /* Keep track of where each SOM will finally reside; then look
5278 at the next BFD. */
5279 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
5280 curr_bfd = curr_bfd->next;
5281 som_index++;
5282 }
5283
5284 /* Now scribble out the hash table. */
5285 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
5286 != lst.hash_size * 4)
5287 goto error_return;
5288
5289 /* Then the SOM dictionary. */
5290 if (bfd_write ((PTR) som_dict, lst.module_count,
5291 sizeof (struct som_entry), abfd)
5292 != lst.module_count * sizeof (struct som_entry))
5293 goto error_return;
5294
5295 /* The library symbols. */
5296 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
5297 != nsyms * sizeof (struct lst_symbol_record))
5298 goto error_return;
5299
5300 /* And finally the strings. */
5301 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
5302 goto error_return;
5303
5304 if (hash_table != NULL)
5305 free (hash_table);
5306 if (som_dict != NULL)
5307 free (som_dict);
5308 if (last_hash_entry != NULL)
5309 free (last_hash_entry);
5310 if (lst_syms != NULL)
5311 free (lst_syms);
5312 if (strings != NULL)
5313 free (strings);
5314 return true;
5315
5316 error_return:
5317 if (hash_table != NULL)
5318 free (hash_table);
5319 if (som_dict != NULL)
5320 free (som_dict);
5321 if (last_hash_entry != NULL)
5322 free (last_hash_entry);
5323 if (lst_syms != NULL)
5324 free (lst_syms);
5325 if (strings != NULL)
5326 free (strings);
5327
5328 return false;
5329 }
5330
5331 /* Write out the LST for the archive.
5332
5333 You'll never believe this is really how armaps are handled in SOM... */
5334
5335 static boolean
5336 som_write_armap (abfd)
5337 bfd *abfd;
5338 {
5339 bfd *curr_bfd;
5340 struct stat statbuf;
5341 unsigned int i, lst_size, nsyms, stringsize;
5342 struct ar_hdr hdr;
5343 struct lst_header lst;
5344 int *p;
5345
5346 /* We'll use this for the archive's date and mode later. */
5347 if (stat (abfd->filename, &statbuf) != 0)
5348 {
5349 bfd_set_error (bfd_error_system_call);
5350 return false;
5351 }
5352 /* Fudge factor. */
5353 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
5354
5355 /* Account for the lst header first. */
5356 lst_size = sizeof (struct lst_header);
5357
5358 /* Start building the LST header. */
5359 lst.system_id = HP9000S800_ID;
5360 lst.a_magic = LIBMAGIC;
5361 lst.version_id = VERSION_ID;
5362 lst.file_time.secs = 0;
5363 lst.file_time.nanosecs = 0;
5364
5365 lst.hash_loc = lst_size;
5366 lst.hash_size = SOM_LST_HASH_SIZE;
5367
5368 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
5369 lst_size += 4 * SOM_LST_HASH_SIZE;
5370
5371 /* We need to count the number of SOMs in this archive. */
5372 curr_bfd = abfd->archive_head;
5373 lst.module_count = 0;
5374 while (curr_bfd != NULL)
5375 {
5376 /* Only true SOM objects count. */
5377 if (curr_bfd->format == bfd_object
5378 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
5379 lst.module_count++;
5380 curr_bfd = curr_bfd->next;
5381 }
5382 lst.module_limit = lst.module_count;
5383 lst.dir_loc = lst_size;
5384 lst_size += sizeof (struct som_entry) * lst.module_count;
5385
5386 /* We don't support import/export tables, auxiliary headers,
5387 or free lists yet. Make the linker work a little harder
5388 to make our life easier. */
5389
5390 lst.export_loc = 0;
5391 lst.export_count = 0;
5392 lst.import_loc = 0;
5393 lst.aux_loc = 0;
5394 lst.aux_size = 0;
5395
5396 /* Count how many symbols we will have on the hash chains and the
5397 size of the associated string table. */
5398 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
5399 return false;
5400
5401 lst_size += sizeof (struct lst_symbol_record) * nsyms;
5402
5403 /* For the string table. One day we might actually use this info
5404 to avoid small seeks/reads when reading archives. */
5405 lst.string_loc = lst_size;
5406 lst.string_size = stringsize;
5407 lst_size += stringsize;
5408
5409 /* SOM ABI says this must be zero. */
5410 lst.free_list = 0;
5411 lst.file_end = lst_size;
5412
5413 /* Compute the checksum. Must happen after the entire lst header
5414 has filled in. */
5415 p = (int *)&lst;
5416 lst.checksum = 0;
5417 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
5418 lst.checksum ^= *p++;
5419
5420 sprintf (hdr.ar_name, "/ ");
5421 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
5422 sprintf (hdr.ar_uid, "%d", getuid ());
5423 sprintf (hdr.ar_gid, "%d", getgid ());
5424 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
5425 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
5426 hdr.ar_fmag[0] = '`';
5427 hdr.ar_fmag[1] = '\012';
5428
5429 /* Turn any nulls into spaces. */
5430 for (i = 0; i < sizeof (struct ar_hdr); i++)
5431 if (((char *) (&hdr))[i] == '\0')
5432 (((char *) (&hdr))[i]) = ' ';
5433
5434 /* Scribble out the ar header. */
5435 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
5436 != sizeof (struct ar_hdr))
5437 return false;
5438
5439 /* Now scribble out the lst header. */
5440 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
5441 != sizeof (struct lst_header))
5442 return false;
5443
5444 /* Build and write the armap. */
5445 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst) == false)
5446 return false;
5447
5448 /* Done. */
5449 return true;
5450 }
5451
5452 /* Free all information we have cached for this BFD. We can always
5453 read it again later if we need it. */
5454
5455 static boolean
5456 som_bfd_free_cached_info (abfd)
5457 bfd *abfd;
5458 {
5459 asection *o;
5460
5461 if (bfd_get_format (abfd) != bfd_object)
5462 return true;
5463
5464 #define FREE(x) if (x != NULL) { free (x); x = NULL; }
5465 /* Free the native string and symbol tables. */
5466 FREE (obj_som_symtab (abfd));
5467 FREE (obj_som_stringtab (abfd));
5468 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5469 {
5470 /* Free the native relocations. */
5471 o->reloc_count = -1;
5472 FREE (som_section_data (o)->reloc_stream);
5473 /* Free the generic relocations. */
5474 FREE (o->relocation);
5475 }
5476 #undef FREE
5477
5478 return true;
5479 }
5480
5481 /* End of miscellaneous support functions. */
5482
5483 #define som_bfd_debug_info_start bfd_void
5484 #define som_bfd_debug_info_end bfd_void
5485 #define som_bfd_debug_info_accumulate (PROTO(void,(*),(bfd*, struct sec *))) bfd_void
5486
5487 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
5488 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
5489 #define som_truncate_arname bfd_bsd_truncate_arname
5490 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
5491
5492 #define som_get_lineno (struct lineno_cache_entry *(*)())bfd_nullvoidptr
5493 #define som_close_and_cleanup som_bfd_free_cached_info
5494
5495 #define som_bfd_get_relocated_section_contents \
5496 bfd_generic_get_relocated_section_contents
5497 #define som_bfd_relax_section bfd_generic_relax_section
5498 #define som_bfd_make_debug_symbol \
5499 ((asymbol *(*) PARAMS ((bfd *, void *, unsigned long))) bfd_nullvoidptr)
5500 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
5501 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
5502 #define som_bfd_final_link _bfd_generic_final_link
5503
5504 /* Core file support is in the hpux-core backend. */
5505 #define som_core_file_failing_command _bfd_dummy_core_file_failing_command
5506 #define som_core_file_failing_signal _bfd_dummy_core_file_failing_signal
5507 #define som_core_file_matches_executable_p _bfd_dummy_core_file_matches_executable_p
5508
5509 bfd_target som_vec =
5510 {
5511 "som", /* name */
5512 bfd_target_som_flavour,
5513 true, /* target byte order */
5514 true, /* target headers byte order */
5515 (HAS_RELOC | EXEC_P | /* object flags */
5516 HAS_LINENO | HAS_DEBUG |
5517 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
5518 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
5519 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
5520
5521 /* leading_symbol_char: is the first char of a user symbol
5522 predictable, and if so what is it */
5523 0,
5524 '/', /* ar_pad_char */
5525 14, /* ar_max_namelen */
5526 3, /* minimum alignment */
5527 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5528 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5529 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
5530 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5531 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5532 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
5533 {_bfd_dummy_target,
5534 som_object_p, /* bfd_check_format */
5535 bfd_generic_archive_p,
5536 _bfd_dummy_target
5537 },
5538 {
5539 bfd_false,
5540 som_mkobject,
5541 _bfd_generic_mkarchive,
5542 bfd_false
5543 },
5544 {
5545 bfd_false,
5546 som_write_object_contents,
5547 _bfd_write_archive_contents,
5548 bfd_false,
5549 },
5550 #undef som
5551 JUMP_TABLE (som),
5552 (PTR) 0
5553 };
5554
5555 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */