* som (setup_sections): Set SEC_DEBUGGING and the section attributes
[binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
3
4 Contributed by the Center for Software Science at the
5 University of Utah (pa-gdb-bugs@cs.utah.edu).
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23 #include "bfd.h"
24 #include "sysdep.h"
25
26 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)
27
28 #include "libbfd.h"
29 #include "som.h"
30
31 #include <stdio.h>
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/dir.h>
35 #include <signal.h>
36 #include <machine/reg.h>
37 #include <sys/user.h> /* After a.out.h */
38 #include <sys/file.h>
39 #include <errno.h>
40
41 /* Magic not defined in standard HP-UX header files until 8.0 */
42
43 #ifndef CPU_PA_RISC1_0
44 #define CPU_PA_RISC1_0 0x20B
45 #endif /* CPU_PA_RISC1_0 */
46
47 #ifndef CPU_PA_RISC1_1
48 #define CPU_PA_RISC1_1 0x210
49 #endif /* CPU_PA_RISC1_1 */
50
51 #ifndef _PA_RISC1_0_ID
52 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
53 #endif /* _PA_RISC1_0_ID */
54
55 #ifndef _PA_RISC1_1_ID
56 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
57 #endif /* _PA_RISC1_1_ID */
58
59 #ifndef _PA_RISC_MAXID
60 #define _PA_RISC_MAXID 0x2FF
61 #endif /* _PA_RISC_MAXID */
62
63 #ifndef _PA_RISC_ID
64 #define _PA_RISC_ID(__m_num) \
65 (((__m_num) == _PA_RISC1_0_ID) || \
66 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
67 #endif /* _PA_RISC_ID */
68
69 /* Size (in chars) of the temporary buffers used during fixup and string
70 table writes. */
71
72 #define SOM_TMP_BUFSIZE 8192
73
74 /* Size of the hash table in archives. */
75 #define SOM_LST_HASH_SIZE 31
76
77 /* Max number of SOMs to be found in an archive. */
78 #define SOM_LST_MODULE_LIMIT 1024
79
80 /* SOM allows any one of the four previous relocations to be reused
81 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
82 relocations are always a single byte, using a R_PREV_FIXUP instead
83 of some multi-byte relocation makes object files smaller.
84
85 Note one side effect of using a R_PREV_FIXUP is the relocation that
86 is being repeated moves to the front of the queue. */
87 struct reloc_queue
88 {
89 unsigned char *reloc;
90 unsigned int size;
91 } reloc_queue[4];
92
93 /* This fully describes the symbol types which may be attached to
94 an EXPORT or IMPORT directive. Only SOM uses this formation
95 (ELF has no need for it). */
96 typedef enum
97 {
98 SYMBOL_TYPE_UNKNOWN,
99 SYMBOL_TYPE_ABSOLUTE,
100 SYMBOL_TYPE_CODE,
101 SYMBOL_TYPE_DATA,
102 SYMBOL_TYPE_ENTRY,
103 SYMBOL_TYPE_MILLICODE,
104 SYMBOL_TYPE_PLABEL,
105 SYMBOL_TYPE_PRI_PROG,
106 SYMBOL_TYPE_SEC_PROG,
107 } pa_symbol_type;
108
109 struct section_to_type
110 {
111 char *section;
112 char type;
113 };
114
115 /* Assorted symbol information that needs to be derived from the BFD symbol
116 and/or the BFD backend private symbol data. */
117 struct som_misc_symbol_info
118 {
119 unsigned int symbol_type;
120 unsigned int symbol_scope;
121 unsigned int arg_reloc;
122 unsigned int symbol_info;
123 unsigned int symbol_value;
124 };
125
126 /* Forward declarations */
127
128 static boolean som_mkobject PARAMS ((bfd *));
129 static bfd_target * som_object_setup PARAMS ((bfd *,
130 struct header *,
131 struct som_exec_auxhdr *));
132 static asection * make_unique_section PARAMS ((bfd *, CONST char *, int));
133 static boolean setup_sections PARAMS ((bfd *, struct header *));
134 static bfd_target * som_object_p PARAMS ((bfd *));
135 static boolean som_write_object_contents PARAMS ((bfd *));
136 static boolean som_slurp_string_table PARAMS ((bfd *));
137 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
138 static unsigned int som_get_symtab_upper_bound PARAMS ((bfd *));
139 static unsigned int som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
140 arelent **, asymbol **));
141 static unsigned int som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
142 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
143 arelent *, asection *,
144 asymbol **, boolean));
145 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
146 asymbol **, boolean));
147 static unsigned int som_get_symtab PARAMS ((bfd *, asymbol **));
148 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
149 static void som_print_symbol PARAMS ((bfd *, PTR,
150 asymbol *, bfd_print_symbol_type));
151 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
152 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
153 file_ptr, bfd_size_type));
154 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
155 unsigned long));
156 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
157 asymbol **, bfd_vma,
158 CONST char **,
159 CONST char **,
160 unsigned int *));
161 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
162 static asection * som_section_from_subspace_index PARAMS ((bfd *,
163 unsigned int));
164 static int log2 PARAMS ((unsigned int));
165 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
166 asymbol *, PTR,
167 asection *, bfd *,
168 char **));
169 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
170 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
171 struct reloc_queue *));
172 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
173 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
174 struct reloc_queue *));
175 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
176 unsigned int,
177 struct reloc_queue *));
178
179 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
180 unsigned char *, unsigned int *,
181 struct reloc_queue *));
182 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
183 unsigned int *,
184 struct reloc_queue *));
185 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
186 unsigned int *,
187 arelent *, int,
188 struct reloc_queue *));
189 static unsigned long som_count_spaces PARAMS ((bfd *));
190 static unsigned long som_count_subspaces PARAMS ((bfd *));
191 static int compare_syms PARAMS ((asymbol **, asymbol **));
192 static unsigned long som_compute_checksum PARAMS ((bfd *));
193 static boolean som_prep_headers PARAMS ((bfd *));
194 static int som_sizeof_headers PARAMS ((bfd *, boolean));
195 static boolean som_write_headers PARAMS ((bfd *));
196 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
197 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
198 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
199 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
200 unsigned int *));
201 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
202 asymbol **, unsigned int,
203 unsigned *));
204 static boolean som_begin_writing PARAMS ((bfd *));
205 static const reloc_howto_type * som_bfd_reloc_type_lookup
206 PARAMS ((bfd_arch_info_type *, bfd_reloc_code_real_type));
207 static char som_section_type PARAMS ((const char *));
208 static int som_decode_symclass PARAMS ((asymbol *));
209 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
210 symindex *));
211
212 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
213 carsym **syms));
214 static boolean som_slurp_armap PARAMS ((bfd *));
215 static boolean som_write_armap PARAMS ((bfd *));
216 static boolean som_slurp_extended_name_table PARAMS ((bfd *));
217 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
218 struct som_misc_symbol_info *));
219 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
220 unsigned int *));
221 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
222 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
223 unsigned int,
224 struct lst_header));
225
226 /* Map SOM section names to POSIX/BSD single-character symbol types.
227
228 This table includes all the standard subspaces as defined in the
229 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
230 some reason was left out, and sections specific to embedded stabs. */
231
232 static const struct section_to_type stt[] = {
233 {"$TEXT$", 't'},
234 {"$SHLIB_INFO$", 't'},
235 {"$MILLICODE$", 't'},
236 {"$LIT$", 't'},
237 {"$CODE$", 't'},
238 {"$UNWIND_START$", 't'},
239 {"$UNWIND$", 't'},
240 {"$PRIVATE$", 'd'},
241 {"$PLT$", 'd'},
242 {"$SHLIB_DATA$", 'd'},
243 {"$DATA$", 'd'},
244 {"$SHORTDATA$", 'g'},
245 {"$DLT$", 'd'},
246 {"$GLOBAL$", 'g'},
247 {"$SHORTBSS$", 's'},
248 {"$BSS$", 'b'},
249 {"$GDB_STRINGS$", 'N'},
250 {"$GDB_SYMBOLS$", 'N'},
251 {0, 0}
252 };
253
254 /* About the relocation formatting table...
255
256 There are 256 entries in the table, one for each possible
257 relocation opcode available in SOM. We index the table by
258 the relocation opcode. The names and operations are those
259 defined by a.out_800 (4).
260
261 Right now this table is only used to count and perform minimal
262 processing on relocation streams so that they can be internalized
263 into BFD and symbolically printed by utilities. To make actual use
264 of them would be much more difficult, BFD's concept of relocations
265 is far too simple to handle SOM relocations. The basic assumption
266 that a relocation can be completely processed independent of other
267 relocations before an object file is written is invalid for SOM.
268
269 The SOM relocations are meant to be processed as a stream, they
270 specify copying of data from the input section to the output section
271 while possibly modifying the data in some manner. They also can
272 specify that a variable number of zeros or uninitialized data be
273 inserted on in the output segment at the current offset. Some
274 relocations specify that some previous relocation be re-applied at
275 the current location in the input/output sections. And finally a number
276 of relocations have effects on other sections (R_ENTRY, R_EXIT,
277 R_UNWIND_AUX and a variety of others). There isn't even enough room
278 in the BFD relocation data structure to store enough information to
279 perform all the relocations.
280
281 Each entry in the table has three fields.
282
283 The first entry is an index into this "class" of relocations. This
284 index can then be used as a variable within the relocation itself.
285
286 The second field is a format string which actually controls processing
287 of the relocation. It uses a simple postfix machine to do calculations
288 based on variables/constants found in the string and the relocation
289 stream.
290
291 The third field specifys whether or not this relocation may use
292 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
293 stored in the instruction.
294
295 Variables:
296
297 L = input space byte count
298 D = index into class of relocations
299 M = output space byte count
300 N = statement number (unused?)
301 O = stack operation
302 R = parameter relocation bits
303 S = symbol index
304 U = 64 bits of stack unwind and frame size info (we only keep 32 bits)
305 V = a literal constant (usually used in the next relocation)
306 P = a previous relocation
307
308 Lower case letters (starting with 'b') refer to following
309 bytes in the relocation stream. 'b' is the next 1 byte,
310 c is the next 2 bytes, d is the next 3 bytes, etc...
311 This is the variable part of the relocation entries that
312 makes our life a living hell.
313
314 numerical constants are also used in the format string. Note
315 the constants are represented in decimal.
316
317 '+', "*" and "=" represents the obvious postfix operators.
318 '<' represents a left shift.
319
320 Stack Operations:
321
322 Parameter Relocation Bits:
323
324 Unwind Entries:
325
326 Previous Relocations: The index field represents which in the queue
327 of 4 previous fixups should be re-applied.
328
329 Literal Constants: These are generally used to represent addend
330 parts of relocations when these constants are not stored in the
331 fields of the instructions themselves. For example the instruction
332 addil foo-$global$-0x1234 would use an override for "0x1234" rather
333 than storing it into the addil itself. */
334
335 struct fixup_format
336 {
337 int D;
338 char *format;
339 };
340
341 static const struct fixup_format som_fixup_formats[256] =
342 {
343 /* R_NO_RELOCATION */
344 0, "LD1+4*=", /* 0x00 */
345 1, "LD1+4*=", /* 0x01 */
346 2, "LD1+4*=", /* 0x02 */
347 3, "LD1+4*=", /* 0x03 */
348 4, "LD1+4*=", /* 0x04 */
349 5, "LD1+4*=", /* 0x05 */
350 6, "LD1+4*=", /* 0x06 */
351 7, "LD1+4*=", /* 0x07 */
352 8, "LD1+4*=", /* 0x08 */
353 9, "LD1+4*=", /* 0x09 */
354 10, "LD1+4*=", /* 0x0a */
355 11, "LD1+4*=", /* 0x0b */
356 12, "LD1+4*=", /* 0x0c */
357 13, "LD1+4*=", /* 0x0d */
358 14, "LD1+4*=", /* 0x0e */
359 15, "LD1+4*=", /* 0x0f */
360 16, "LD1+4*=", /* 0x10 */
361 17, "LD1+4*=", /* 0x11 */
362 18, "LD1+4*=", /* 0x12 */
363 19, "LD1+4*=", /* 0x13 */
364 20, "LD1+4*=", /* 0x14 */
365 21, "LD1+4*=", /* 0x15 */
366 22, "LD1+4*=", /* 0x16 */
367 23, "LD1+4*=", /* 0x17 */
368 0, "LD8<b+1+4*=", /* 0x18 */
369 1, "LD8<b+1+4*=", /* 0x19 */
370 2, "LD8<b+1+4*=", /* 0x1a */
371 3, "LD8<b+1+4*=", /* 0x1b */
372 0, "LD16<c+1+4*=", /* 0x1c */
373 1, "LD16<c+1+4*=", /* 0x1d */
374 2, "LD16<c+1+4*=", /* 0x1e */
375 0, "Ld1+=", /* 0x1f */
376 /* R_ZEROES */
377 0, "Lb1+4*=", /* 0x20 */
378 1, "Ld1+=", /* 0x21 */
379 /* R_UNINIT */
380 0, "Lb1+4*=", /* 0x22 */
381 1, "Ld1+=", /* 0x23 */
382 /* R_RELOCATION */
383 0, "L4=", /* 0x24 */
384 /* R_DATA_ONE_SYMBOL */
385 0, "L4=Sb=", /* 0x25 */
386 1, "L4=Sd=", /* 0x26 */
387 /* R_DATA_PLEBEL */
388 0, "L4=Sb=", /* 0x27 */
389 1, "L4=Sd=", /* 0x28 */
390 /* R_SPACE_REF */
391 0, "L4=", /* 0x29 */
392 /* R_REPEATED_INIT */
393 0, "L4=Mb1+4*=", /* 0x2a */
394 1, "Lb4*=Mb1+L*=", /* 0x2b */
395 2, "Lb4*=Md1+4*=", /* 0x2c */
396 3, "Ld1+=Me1+=", /* 0x2d */
397 /* R_RESERVED */
398 0, "", /* 0x2e */
399 0, "", /* 0x2f */
400 /* R_PCREL_CALL */
401 0, "L4=RD=Sb=", /* 0x30 */
402 1, "L4=RD=Sb=", /* 0x31 */
403 2, "L4=RD=Sb=", /* 0x32 */
404 3, "L4=RD=Sb=", /* 0x33 */
405 4, "L4=RD=Sb=", /* 0x34 */
406 5, "L4=RD=Sb=", /* 0x35 */
407 6, "L4=RD=Sb=", /* 0x36 */
408 7, "L4=RD=Sb=", /* 0x37 */
409 8, "L4=RD=Sb=", /* 0x38 */
410 9, "L4=RD=Sb=", /* 0x39 */
411 0, "L4=RD8<b+=Sb=",/* 0x3a */
412 1, "L4=RD8<b+=Sb=",/* 0x3b */
413 0, "L4=RD8<b+=Sd=",/* 0x3c */
414 1, "L4=RD8<b+=Sd=",/* 0x3d */
415 /* R_RESERVED */
416 0, "", /* 0x3e */
417 0, "", /* 0x3f */
418 /* R_ABS_CALL */
419 0, "L4=RD=Sb=", /* 0x40 */
420 1, "L4=RD=Sb=", /* 0x41 */
421 2, "L4=RD=Sb=", /* 0x42 */
422 3, "L4=RD=Sb=", /* 0x43 */
423 4, "L4=RD=Sb=", /* 0x44 */
424 5, "L4=RD=Sb=", /* 0x45 */
425 6, "L4=RD=Sb=", /* 0x46 */
426 7, "L4=RD=Sb=", /* 0x47 */
427 8, "L4=RD=Sb=", /* 0x48 */
428 9, "L4=RD=Sb=", /* 0x49 */
429 0, "L4=RD8<b+=Sb=",/* 0x4a */
430 1, "L4=RD8<b+=Sb=",/* 0x4b */
431 0, "L4=RD8<b+=Sd=",/* 0x4c */
432 1, "L4=RD8<b+=Sd=",/* 0x4d */
433 /* R_RESERVED */
434 0, "", /* 0x4e */
435 0, "", /* 0x4f */
436 /* R_DP_RELATIVE */
437 0, "L4=SD=", /* 0x50 */
438 1, "L4=SD=", /* 0x51 */
439 2, "L4=SD=", /* 0x52 */
440 3, "L4=SD=", /* 0x53 */
441 4, "L4=SD=", /* 0x54 */
442 5, "L4=SD=", /* 0x55 */
443 6, "L4=SD=", /* 0x56 */
444 7, "L4=SD=", /* 0x57 */
445 8, "L4=SD=", /* 0x58 */
446 9, "L4=SD=", /* 0x59 */
447 10, "L4=SD=", /* 0x5a */
448 11, "L4=SD=", /* 0x5b */
449 12, "L4=SD=", /* 0x5c */
450 13, "L4=SD=", /* 0x5d */
451 14, "L4=SD=", /* 0x5e */
452 15, "L4=SD=", /* 0x5f */
453 16, "L4=SD=", /* 0x60 */
454 17, "L4=SD=", /* 0x61 */
455 18, "L4=SD=", /* 0x62 */
456 19, "L4=SD=", /* 0x63 */
457 20, "L4=SD=", /* 0x64 */
458 21, "L4=SD=", /* 0x65 */
459 22, "L4=SD=", /* 0x66 */
460 23, "L4=SD=", /* 0x67 */
461 24, "L4=SD=", /* 0x68 */
462 25, "L4=SD=", /* 0x69 */
463 26, "L4=SD=", /* 0x6a */
464 27, "L4=SD=", /* 0x6b */
465 28, "L4=SD=", /* 0x6c */
466 29, "L4=SD=", /* 0x6d */
467 30, "L4=SD=", /* 0x6e */
468 31, "L4=SD=", /* 0x6f */
469 32, "L4=Sb=", /* 0x70 */
470 33, "L4=Sd=", /* 0x71 */
471 /* R_RESERVED */
472 0, "", /* 0x72 */
473 0, "", /* 0x73 */
474 0, "", /* 0x74 */
475 0, "", /* 0x75 */
476 0, "", /* 0x76 */
477 0, "", /* 0x77 */
478 /* R_DLT_REL */
479 0, "L4=Sb=", /* 0x78 */
480 1, "L4=Sd=", /* 0x79 */
481 /* R_RESERVED */
482 0, "", /* 0x7a */
483 0, "", /* 0x7b */
484 0, "", /* 0x7c */
485 0, "", /* 0x7d */
486 0, "", /* 0x7e */
487 0, "", /* 0x7f */
488 /* R_CODE_ONE_SYMBOL */
489 0, "L4=SD=", /* 0x80 */
490 1, "L4=SD=", /* 0x81 */
491 2, "L4=SD=", /* 0x82 */
492 3, "L4=SD=", /* 0x83 */
493 4, "L4=SD=", /* 0x84 */
494 5, "L4=SD=", /* 0x85 */
495 6, "L4=SD=", /* 0x86 */
496 7, "L4=SD=", /* 0x87 */
497 8, "L4=SD=", /* 0x88 */
498 9, "L4=SD=", /* 0x89 */
499 10, "L4=SD=", /* 0x8q */
500 11, "L4=SD=", /* 0x8b */
501 12, "L4=SD=", /* 0x8c */
502 13, "L4=SD=", /* 0x8d */
503 14, "L4=SD=", /* 0x8e */
504 15, "L4=SD=", /* 0x8f */
505 16, "L4=SD=", /* 0x90 */
506 17, "L4=SD=", /* 0x91 */
507 18, "L4=SD=", /* 0x92 */
508 19, "L4=SD=", /* 0x93 */
509 20, "L4=SD=", /* 0x94 */
510 21, "L4=SD=", /* 0x95 */
511 22, "L4=SD=", /* 0x96 */
512 23, "L4=SD=", /* 0x97 */
513 24, "L4=SD=", /* 0x98 */
514 25, "L4=SD=", /* 0x99 */
515 26, "L4=SD=", /* 0x9a */
516 27, "L4=SD=", /* 0x9b */
517 28, "L4=SD=", /* 0x9c */
518 29, "L4=SD=", /* 0x9d */
519 30, "L4=SD=", /* 0x9e */
520 31, "L4=SD=", /* 0x9f */
521 32, "L4=Sb=", /* 0xa0 */
522 33, "L4=Sd=", /* 0xa1 */
523 /* R_RESERVED */
524 0, "", /* 0xa2 */
525 0, "", /* 0xa3 */
526 0, "", /* 0xa4 */
527 0, "", /* 0xa5 */
528 0, "", /* 0xa6 */
529 0, "", /* 0xa7 */
530 0, "", /* 0xa8 */
531 0, "", /* 0xa9 */
532 0, "", /* 0xaa */
533 0, "", /* 0xab */
534 0, "", /* 0xac */
535 0, "", /* 0xad */
536 /* R_MILLI_REL */
537 0, "L4=Sb=", /* 0xae */
538 1, "L4=Sd=", /* 0xaf */
539 /* R_CODE_PLABEL */
540 0, "L4=Sb=", /* 0xb0 */
541 1, "L4=Sd=", /* 0xb1 */
542 /* R_BREAKPOINT */
543 0, "L4=", /* 0xb2 */
544 /* R_ENTRY */
545 0, "Ui=", /* 0xb3 */
546 1, "Uf=", /* 0xb4 */
547 /* R_ALT_ENTRY */
548 0, "", /* 0xb5 */
549 /* R_EXIT */
550 0, "", /* 0xb6 */
551 /* R_BEGIN_TRY */
552 0, "", /* 0xb7 */
553 /* R_END_TRY */
554 0, "R0=", /* 0xb8 */
555 1, "Rb4*=", /* 0xb9 */
556 2, "Rd4*=", /* 0xba */
557 /* R_BEGIN_BRTAB */
558 0, "", /* 0xbb */
559 /* R_END_BRTAB */
560 0, "", /* 0xbc */
561 /* R_STATEMENT */
562 0, "Nb=", /* 0xbd */
563 1, "Nc=", /* 0xbe */
564 2, "Nd=", /* 0xbf */
565 /* R_DATA_EXPR */
566 0, "L4=", /* 0xc0 */
567 /* R_CODE_EXPR */
568 0, "L4=", /* 0xc1 */
569 /* R_FSEL */
570 0, "", /* 0xc2 */
571 /* R_LSEL */
572 0, "", /* 0xc3 */
573 /* R_RSEL */
574 0, "", /* 0xc4 */
575 /* R_N_MODE */
576 0, "", /* 0xc5 */
577 /* R_S_MODE */
578 0, "", /* 0xc6 */
579 /* R_D_MODE */
580 0, "", /* 0xc7 */
581 /* R_R_MODE */
582 0, "", /* 0xc8 */
583 /* R_DATA_OVERRIDE */
584 0, "V0=", /* 0xc9 */
585 1, "Vb=", /* 0xca */
586 2, "Vc=", /* 0xcb */
587 3, "Vd=", /* 0xcc */
588 4, "Ve=", /* 0xcd */
589 /* R_TRANSLATED */
590 0, "", /* 0xce */
591 /* R_RESERVED */
592 0, "", /* 0xcf */
593 /* R_COMP1 */
594 0, "Ob=", /* 0xd0 */
595 /* R_COMP2 */
596 0, "Ob=Sd=", /* 0xd1 */
597 /* R_COMP3 */
598 0, "Ob=Ve=", /* 0xd2 */
599 /* R_PREV_FIXUP */
600 0, "P", /* 0xd3 */
601 1, "P", /* 0xd4 */
602 2, "P", /* 0xd5 */
603 3, "P", /* 0xd6 */
604 /* R_RESERVED */
605 0, "", /* 0xd7 */
606 0, "", /* 0xd8 */
607 0, "", /* 0xd9 */
608 0, "", /* 0xda */
609 0, "", /* 0xdb */
610 0, "", /* 0xdc */
611 0, "", /* 0xdd */
612 0, "", /* 0xde */
613 0, "", /* 0xdf */
614 0, "", /* 0xe0 */
615 0, "", /* 0xe1 */
616 0, "", /* 0xe2 */
617 0, "", /* 0xe3 */
618 0, "", /* 0xe4 */
619 0, "", /* 0xe5 */
620 0, "", /* 0xe6 */
621 0, "", /* 0xe7 */
622 0, "", /* 0xe8 */
623 0, "", /* 0xe9 */
624 0, "", /* 0xea */
625 0, "", /* 0xeb */
626 0, "", /* 0xec */
627 0, "", /* 0xed */
628 0, "", /* 0xee */
629 0, "", /* 0xef */
630 0, "", /* 0xf0 */
631 0, "", /* 0xf1 */
632 0, "", /* 0xf2 */
633 0, "", /* 0xf3 */
634 0, "", /* 0xf4 */
635 0, "", /* 0xf5 */
636 0, "", /* 0xf6 */
637 0, "", /* 0xf7 */
638 0, "", /* 0xf8 */
639 0, "", /* 0xf9 */
640 0, "", /* 0xfa */
641 0, "", /* 0xfb */
642 0, "", /* 0xfc */
643 0, "", /* 0xfd */
644 0, "", /* 0xfe */
645 0, "", /* 0xff */
646 };
647
648 static const int comp1_opcodes[] =
649 {
650 0x00,
651 0x40,
652 0x41,
653 0x42,
654 0x43,
655 0x44,
656 0x45,
657 0x46,
658 0x47,
659 0x48,
660 0x49,
661 0x4a,
662 0x4b,
663 0x60,
664 0x80,
665 0xa0,
666 0xc0,
667 -1
668 };
669
670 static const int comp2_opcodes[] =
671 {
672 0x00,
673 0x80,
674 0x82,
675 0xc0,
676 -1
677 };
678
679 static const int comp3_opcodes[] =
680 {
681 0x00,
682 0x02,
683 -1
684 };
685
686 /* These apparently are not in older versions of hpux reloc.h. */
687 #ifndef R_DLT_REL
688 #define R_DLT_REL 0x78
689 #endif
690
691 #ifndef R_AUX_UNWIND
692 #define R_AUX_UNWIND 0xcf
693 #endif
694
695 #ifndef R_SEC_STMT
696 #define R_SEC_STMT 0xd7
697 #endif
698
699 static reloc_howto_type som_hppa_howto_table[] =
700 {
701 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
702 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
703 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
704 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
705 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
706 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
707 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
708 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
709 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
710 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
711 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
712 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
713 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
714 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
715 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
716 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
717 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
718 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
719 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
720 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
721 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
722 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
723 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
724 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
725 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
726 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
727 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
728 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
729 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
730 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
731 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
732 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
733 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
734 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
735 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
736 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
737 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
738 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
739 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
740 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
741 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
742 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
743 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
744 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
745 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
746 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
747 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
748 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
749 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
750 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
751 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
752 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
753 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
754 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
755 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
756 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
757 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
758 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
759 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
760 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
761 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
762 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
763 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
764 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
765 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
766 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
767 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
768 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
769 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
770 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
771 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
772 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
773 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
774 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
775 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
776 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
777 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
778 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
779 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
780 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
781 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
782 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
783 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
784 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
785 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
786 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
787 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
788 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
789 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
790 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
791 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
792 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
793 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
794 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
795 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
796 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
797 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
798 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
799 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
800 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
801 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
802 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
803 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
804 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
805 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
806 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
807 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
808 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
809 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
810 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
811 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
812 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
813 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
814 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
815 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
816 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
817 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
818 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
819 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
820 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
821 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
822 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
823 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
824 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
825 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
826 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
827 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
828 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
829 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
830 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
831 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
832 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
833 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
834 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
835 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
836 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
837 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
838 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
839 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
840 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
841 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
842 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
843 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
844 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
845 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
846 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
847 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
848 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
849 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
850 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
851 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
852 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
853 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
854 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
855 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
856 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
857 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
858 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
859 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
860 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
861 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
862 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
863 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
864 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
865 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
866 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
867 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
868 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
869 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
870 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
871 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
872 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
873 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
874 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
875 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
876 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
877 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
878 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
879 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
880 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
881 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
882 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
883 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
884 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
885 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
886 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
887 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
888 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
889 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
890 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
891 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
892 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
893 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
894 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
895 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
896 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
897 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
898 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
899 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
900 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
901 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
902 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
903 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
904 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
905 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
906 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
907 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
908 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
909 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
910 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
911 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
912 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
913 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
914 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
915 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
916 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
917 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
918 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
919 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
920 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
921 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
922 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
923 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
924 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
925 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
926 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
927 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
928 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
929 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
930 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
931 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
932 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
933 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
934 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
935 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
936 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
937 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
938 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
939 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
940 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
941 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
942 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
943 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
944 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
945 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
946 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
947 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
948 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
949 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
950 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
951 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
952 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
953 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
954 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
955 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
956 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
957
958
959 /* Initialize the SOM relocation queue. By definition the queue holds
960 the last four multibyte fixups. */
961
962 static void
963 som_initialize_reloc_queue (queue)
964 struct reloc_queue *queue;
965 {
966 queue[0].reloc = NULL;
967 queue[0].size = 0;
968 queue[1].reloc = NULL;
969 queue[1].size = 0;
970 queue[2].reloc = NULL;
971 queue[2].size = 0;
972 queue[3].reloc = NULL;
973 queue[3].size = 0;
974 }
975
976 /* Insert a new relocation into the relocation queue. */
977
978 static void
979 som_reloc_queue_insert (p, size, queue)
980 unsigned char *p;
981 unsigned int size;
982 struct reloc_queue *queue;
983 {
984 queue[3].reloc = queue[2].reloc;
985 queue[3].size = queue[2].size;
986 queue[2].reloc = queue[1].reloc;
987 queue[2].size = queue[1].size;
988 queue[1].reloc = queue[0].reloc;
989 queue[1].size = queue[0].size;
990 queue[0].reloc = p;
991 queue[0].size = size;
992 }
993
994 /* When an entry in the relocation queue is reused, the entry moves
995 to the front of the queue. */
996
997 static void
998 som_reloc_queue_fix (queue, index)
999 struct reloc_queue *queue;
1000 unsigned int index;
1001 {
1002 if (index == 0)
1003 return;
1004
1005 if (index == 1)
1006 {
1007 unsigned char *tmp1 = queue[0].reloc;
1008 unsigned int tmp2 = queue[0].size;
1009 queue[0].reloc = queue[1].reloc;
1010 queue[0].size = queue[1].size;
1011 queue[1].reloc = tmp1;
1012 queue[1].size = tmp2;
1013 return;
1014 }
1015
1016 if (index == 2)
1017 {
1018 unsigned char *tmp1 = queue[0].reloc;
1019 unsigned int tmp2 = queue[0].size;
1020 queue[0].reloc = queue[2].reloc;
1021 queue[0].size = queue[2].size;
1022 queue[2].reloc = queue[1].reloc;
1023 queue[2].size = queue[1].size;
1024 queue[1].reloc = tmp1;
1025 queue[1].size = tmp2;
1026 return;
1027 }
1028
1029 if (index == 3)
1030 {
1031 unsigned char *tmp1 = queue[0].reloc;
1032 unsigned int tmp2 = queue[0].size;
1033 queue[0].reloc = queue[3].reloc;
1034 queue[0].size = queue[3].size;
1035 queue[3].reloc = queue[2].reloc;
1036 queue[3].size = queue[2].size;
1037 queue[2].reloc = queue[1].reloc;
1038 queue[2].size = queue[1].size;
1039 queue[1].reloc = tmp1;
1040 queue[1].size = tmp2;
1041 return;
1042 }
1043 abort();
1044 }
1045
1046 /* Search for a particular relocation in the relocation queue. */
1047
1048 static int
1049 som_reloc_queue_find (p, size, queue)
1050 unsigned char *p;
1051 unsigned int size;
1052 struct reloc_queue *queue;
1053 {
1054 if (queue[0].reloc && !bcmp (p, queue[0].reloc, size)
1055 && size == queue[0].size)
1056 return 0;
1057 if (queue[1].reloc && !bcmp (p, queue[1].reloc, size)
1058 && size == queue[1].size)
1059 return 1;
1060 if (queue[2].reloc && !bcmp (p, queue[2].reloc, size)
1061 && size == queue[2].size)
1062 return 2;
1063 if (queue[3].reloc && !bcmp (p, queue[3].reloc, size)
1064 && size == queue[3].size)
1065 return 3;
1066 return -1;
1067 }
1068
1069 static unsigned char *
1070 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1071 bfd *abfd;
1072 int *subspace_reloc_sizep;
1073 unsigned char *p;
1074 unsigned int size;
1075 struct reloc_queue *queue;
1076 {
1077 int queue_index = som_reloc_queue_find (p, size, queue);
1078
1079 if (queue_index != -1)
1080 {
1081 /* Found this in a previous fixup. Undo the fixup we
1082 just built and use R_PREV_FIXUP instead. We saved
1083 a total of size - 1 bytes in the fixup stream. */
1084 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1085 p += 1;
1086 *subspace_reloc_sizep += 1;
1087 som_reloc_queue_fix (queue, queue_index);
1088 }
1089 else
1090 {
1091 som_reloc_queue_insert (p, size, queue);
1092 *subspace_reloc_sizep += size;
1093 p += size;
1094 }
1095 return p;
1096 }
1097
1098 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1099 bytes without any relocation. Update the size of the subspace
1100 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1101 current pointer into the relocation stream. */
1102
1103 static unsigned char *
1104 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1105 bfd *abfd;
1106 unsigned int skip;
1107 unsigned char *p;
1108 unsigned int *subspace_reloc_sizep;
1109 struct reloc_queue *queue;
1110 {
1111 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1112 then R_PREV_FIXUPs to get the difference down to a
1113 reasonable size. */
1114 if (skip >= 0x1000000)
1115 {
1116 skip -= 0x1000000;
1117 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1118 bfd_put_8 (abfd, 0xff, p + 1);
1119 bfd_put_16 (abfd, 0xffff, p + 2);
1120 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1121 while (skip >= 0x1000000)
1122 {
1123 skip -= 0x1000000;
1124 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1125 p++;
1126 *subspace_reloc_sizep += 1;
1127 /* No need to adjust queue here since we are repeating the
1128 most recent fixup. */
1129 }
1130 }
1131
1132 /* The difference must be less than 0x1000000. Use one
1133 more R_NO_RELOCATION entry to get to the right difference. */
1134 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1135 {
1136 /* Difference can be handled in a simple single-byte
1137 R_NO_RELOCATION entry. */
1138 if (skip <= 0x60)
1139 {
1140 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1141 *subspace_reloc_sizep += 1;
1142 p++;
1143 }
1144 /* Handle it with a two byte R_NO_RELOCATION entry. */
1145 else if (skip <= 0x1000)
1146 {
1147 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1148 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1149 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1150 }
1151 /* Handle it with a three byte R_NO_RELOCATION entry. */
1152 else
1153 {
1154 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1155 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1156 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1157 }
1158 }
1159 /* Ugh. Punt and use a 4 byte entry. */
1160 else if (skip > 0)
1161 {
1162 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1163 bfd_put_8 (abfd, skip >> 16, p + 1);
1164 bfd_put_16 (abfd, skip, p + 2);
1165 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1166 }
1167 return p;
1168 }
1169
1170 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1171 from a BFD relocation. Update the size of the subspace relocation
1172 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1173 into the relocation stream. */
1174
1175 static unsigned char *
1176 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1177 bfd *abfd;
1178 int addend;
1179 unsigned char *p;
1180 unsigned int *subspace_reloc_sizep;
1181 struct reloc_queue *queue;
1182 {
1183 if ((unsigned)(addend) + 0x80 < 0x100)
1184 {
1185 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1186 bfd_put_8 (abfd, addend, p + 1);
1187 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1188 }
1189 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1190 {
1191 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1192 bfd_put_16 (abfd, addend, p + 1);
1193 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1194 }
1195 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1196 {
1197 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1198 bfd_put_8 (abfd, addend >> 16, p + 1);
1199 bfd_put_16 (abfd, addend, p + 2);
1200 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1201 }
1202 else
1203 {
1204 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1205 bfd_put_32 (abfd, addend, p + 1);
1206 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1207 }
1208 return p;
1209 }
1210
1211 /* Handle a single function call relocation. */
1212
1213 static unsigned char *
1214 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1215 bfd *abfd;
1216 unsigned char *p;
1217 unsigned int *subspace_reloc_sizep;
1218 arelent *bfd_reloc;
1219 int sym_num;
1220 struct reloc_queue *queue;
1221 {
1222 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1223 int rtn_bits = arg_bits & 0x3;
1224 int type, done = 0;
1225
1226 /* You'll never believe all this is necessary to handle relocations
1227 for function calls. Having to compute and pack the argument
1228 relocation bits is the real nightmare.
1229
1230 If you're interested in how this works, just forget it. You really
1231 do not want to know about this braindamage. */
1232
1233 /* First see if this can be done with a "simple" relocation. Simple
1234 relocations have a symbol number < 0x100 and have simple encodings
1235 of argument relocations. */
1236
1237 if (sym_num < 0x100)
1238 {
1239 switch (arg_bits)
1240 {
1241 case 0:
1242 case 1:
1243 type = 0;
1244 break;
1245 case 1 << 8:
1246 case 1 << 8 | 1:
1247 type = 1;
1248 break;
1249 case 1 << 8 | 1 << 6:
1250 case 1 << 8 | 1 << 6 | 1:
1251 type = 2;
1252 break;
1253 case 1 << 8 | 1 << 6 | 1 << 4:
1254 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1255 type = 3;
1256 break;
1257 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1258 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1259 type = 4;
1260 break;
1261 default:
1262 /* Not one of the easy encodings. This will have to be
1263 handled by the more complex code below. */
1264 type = -1;
1265 break;
1266 }
1267 if (type != -1)
1268 {
1269 /* Account for the return value too. */
1270 if (rtn_bits)
1271 type += 5;
1272
1273 /* Emit a 2 byte relocation. Then see if it can be handled
1274 with a relocation which is already in the relocation queue. */
1275 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1276 bfd_put_8 (abfd, sym_num, p + 1);
1277 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1278 done = 1;
1279 }
1280 }
1281
1282 /* If this could not be handled with a simple relocation, then do a hard
1283 one. Hard relocations occur if the symbol number was too high or if
1284 the encoding of argument relocation bits is too complex. */
1285 if (! done)
1286 {
1287 /* Don't ask about these magic sequences. I took them straight
1288 from gas-1.36 which took them from the a.out man page. */
1289 type = rtn_bits;
1290 if ((arg_bits >> 6 & 0xf) == 0xe)
1291 type += 9 * 40;
1292 else
1293 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1294 if ((arg_bits >> 2 & 0xf) == 0xe)
1295 type += 9 * 4;
1296 else
1297 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1298
1299 /* Output the first two bytes of the relocation. These describe
1300 the length of the relocation and encoding style. */
1301 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1302 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1303 p);
1304 bfd_put_8 (abfd, type, p + 1);
1305
1306 /* Now output the symbol index and see if this bizarre relocation
1307 just happened to be in the relocation queue. */
1308 if (sym_num < 0x100)
1309 {
1310 bfd_put_8 (abfd, sym_num, p + 2);
1311 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1312 }
1313 else
1314 {
1315 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1316 bfd_put_16 (abfd, sym_num, p + 3);
1317 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1318 }
1319 }
1320 return p;
1321 }
1322
1323
1324 /* Return the logarithm of X, base 2, considering X unsigned.
1325 Abort -1 if X is not a power or two or is zero. */
1326
1327 static int
1328 log2 (x)
1329 unsigned int x;
1330 {
1331 int log = 0;
1332
1333 /* Test for 0 or a power of 2. */
1334 if (x == 0 || x != (x & -x))
1335 return -1;
1336
1337 while ((x >>= 1) != 0)
1338 log++;
1339 return log;
1340 }
1341
1342 static bfd_reloc_status_type
1343 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1344 input_section, output_bfd, error_message)
1345 bfd *abfd;
1346 arelent *reloc_entry;
1347 asymbol *symbol_in;
1348 PTR data;
1349 asection *input_section;
1350 bfd *output_bfd;
1351 char **error_message;
1352 {
1353 if (output_bfd)
1354 {
1355 reloc_entry->address += input_section->output_offset;
1356 return bfd_reloc_ok;
1357 }
1358 return bfd_reloc_ok;
1359 }
1360
1361 /* Given a generic HPPA relocation type, the instruction format,
1362 and a field selector, return one or more appropriate SOM relocations. */
1363
1364 int **
1365 hppa_som_gen_reloc_type (abfd, base_type, format, field)
1366 bfd *abfd;
1367 int base_type;
1368 int format;
1369 enum hppa_reloc_field_selector_type_alt field;
1370 {
1371 int *final_type, **final_types;
1372
1373 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 3);
1374 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1375 if (!final_types || !final_type)
1376 {
1377 bfd_set_error (bfd_error_no_memory);
1378 return NULL;
1379 }
1380
1381 /* The field selector may require additional relocations to be
1382 generated. It's impossible to know at this moment if additional
1383 relocations will be needed, so we make them. The code to actually
1384 write the relocation/fixup stream is responsible for removing
1385 any redundant relocations. */
1386 switch (field)
1387 {
1388 case e_fsel:
1389 case e_psel:
1390 case e_lpsel:
1391 case e_rpsel:
1392 final_types[0] = final_type;
1393 final_types[1] = NULL;
1394 final_types[2] = NULL;
1395 *final_type = base_type;
1396 break;
1397
1398 case e_tsel:
1399 case e_ltsel:
1400 case e_rtsel:
1401 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1402 if (!final_types[0])
1403 {
1404 bfd_set_error (bfd_error_no_memory);
1405 return NULL;
1406 }
1407 if (field == e_tsel)
1408 *final_types[0] = R_FSEL;
1409 else if (field == e_ltsel)
1410 *final_types[0] = R_LSEL;
1411 else
1412 *final_types[0] = R_RSEL;
1413 final_types[1] = final_type;
1414 final_types[2] = NULL;
1415 *final_type = base_type;
1416 break;
1417
1418 case e_lssel:
1419 case e_rssel:
1420 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1421 if (!final_types[0])
1422 {
1423 bfd_set_error (bfd_error_no_memory);
1424 return NULL;
1425 }
1426 *final_types[0] = R_S_MODE;
1427 final_types[1] = final_type;
1428 final_types[2] = NULL;
1429 *final_type = base_type;
1430 break;
1431
1432 case e_lsel:
1433 case e_rsel:
1434 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1435 if (!final_types[0])
1436 {
1437 bfd_set_error (bfd_error_no_memory);
1438 return NULL;
1439 }
1440 *final_types[0] = R_N_MODE;
1441 final_types[1] = final_type;
1442 final_types[2] = NULL;
1443 *final_type = base_type;
1444 break;
1445
1446 case e_ldsel:
1447 case e_rdsel:
1448 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1449 if (!final_types[0])
1450 {
1451 bfd_set_error (bfd_error_no_memory);
1452 return NULL;
1453 }
1454 *final_types[0] = R_D_MODE;
1455 final_types[1] = final_type;
1456 final_types[2] = NULL;
1457 *final_type = base_type;
1458 break;
1459
1460 case e_lrsel:
1461 case e_rrsel:
1462 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1463 if (!final_types[0])
1464 {
1465 bfd_set_error (bfd_error_no_memory);
1466 return NULL;
1467 }
1468 *final_types[0] = R_R_MODE;
1469 final_types[1] = final_type;
1470 final_types[2] = NULL;
1471 *final_type = base_type;
1472 break;
1473 }
1474
1475 switch (base_type)
1476 {
1477 case R_HPPA:
1478 /* PLABELs get their own relocation type. */
1479 if (field == e_psel
1480 || field == e_lpsel
1481 || field == e_rpsel)
1482 {
1483 /* A PLABEL relocation that has a size of 32 bits must
1484 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1485 if (format == 32)
1486 *final_type = R_DATA_PLABEL;
1487 else
1488 *final_type = R_CODE_PLABEL;
1489 }
1490 /* PIC stuff. */
1491 else if (field == e_tsel
1492 || field == e_ltsel
1493 || field == e_rtsel)
1494 *final_type = R_DLT_REL;
1495 /* A relocation in the data space is always a full 32bits. */
1496 else if (format == 32)
1497 *final_type = R_DATA_ONE_SYMBOL;
1498
1499 break;
1500
1501 case R_HPPA_GOTOFF:
1502 /* More PLABEL special cases. */
1503 if (field == e_psel
1504 || field == e_lpsel
1505 || field == e_rpsel)
1506 *final_type = R_DATA_PLABEL;
1507 break;
1508
1509 case R_HPPA_NONE:
1510 case R_HPPA_ABS_CALL:
1511 case R_HPPA_PCREL_CALL:
1512 case R_HPPA_COMPLEX:
1513 case R_HPPA_COMPLEX_PCREL_CALL:
1514 case R_HPPA_COMPLEX_ABS_CALL:
1515 /* Right now we can default all these. */
1516 break;
1517 }
1518 return final_types;
1519 }
1520
1521 /* Return the address of the correct entry in the PA SOM relocation
1522 howto table. */
1523
1524 static const reloc_howto_type *
1525 som_bfd_reloc_type_lookup (arch, code)
1526 bfd_arch_info_type *arch;
1527 bfd_reloc_code_real_type code;
1528 {
1529 if ((int) code < (int) R_NO_RELOCATION + 255)
1530 {
1531 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1532 return &som_hppa_howto_table[(int) code];
1533 }
1534
1535 return (reloc_howto_type *) 0;
1536 }
1537
1538 /* Perform some initialization for an object. Save results of this
1539 initialization in the BFD. */
1540
1541 static bfd_target *
1542 som_object_setup (abfd, file_hdrp, aux_hdrp)
1543 bfd *abfd;
1544 struct header *file_hdrp;
1545 struct som_exec_auxhdr *aux_hdrp;
1546 {
1547 /* som_mkobject will set bfd_error if som_mkobject fails. */
1548 if (som_mkobject (abfd) != true)
1549 return 0;
1550
1551 /* Set BFD flags based on what information is available in the SOM. */
1552 abfd->flags = NO_FLAGS;
1553 if (file_hdrp->symbol_total)
1554 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1555
1556 switch (file_hdrp->a_magic)
1557 {
1558 case DEMAND_MAGIC:
1559 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1560 break;
1561 case SHARE_MAGIC:
1562 abfd->flags |= (WP_TEXT | EXEC_P);
1563 break;
1564 case EXEC_MAGIC:
1565 abfd->flags |= (EXEC_P);
1566 break;
1567 case RELOC_MAGIC:
1568 abfd->flags |= HAS_RELOC;
1569 break;
1570 default:
1571 break;
1572 }
1573
1574 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1575 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 0);
1576 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1577
1578 /* Initialize the saved symbol table and string table to NULL.
1579 Save important offsets and sizes from the SOM header into
1580 the BFD. */
1581 obj_som_stringtab (abfd) = (char *) NULL;
1582 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1583 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1584 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1585 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1586 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
1587
1588 return abfd->xvec;
1589 }
1590
1591 /* Convert all of the space and subspace info into BFD sections. Each space
1592 contains a number of subspaces, which in turn describe the mapping between
1593 regions of the exec file, and the address space that the program runs in.
1594 BFD sections which correspond to spaces will overlap the sections for the
1595 associated subspaces. */
1596
1597 static boolean
1598 setup_sections (abfd, file_hdr)
1599 bfd *abfd;
1600 struct header *file_hdr;
1601 {
1602 char *space_strings;
1603 int space_index;
1604 unsigned int total_subspaces = 0;
1605
1606 /* First, read in space names */
1607
1608 space_strings = malloc (file_hdr->space_strings_size);
1609 if (!space_strings)
1610 {
1611 bfd_set_error (bfd_error_no_memory);
1612 goto error_return;
1613 }
1614
1615 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
1616 goto error_return;
1617 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1618 != file_hdr->space_strings_size)
1619 goto error_return;
1620
1621 /* Loop over all of the space dictionaries, building up sections */
1622 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1623 {
1624 struct space_dictionary_record space;
1625 struct subspace_dictionary_record subspace, save_subspace;
1626 int subspace_index;
1627 asection *space_asect;
1628 char *newname;
1629
1630 /* Read the space dictionary element */
1631 if (bfd_seek (abfd, file_hdr->space_location
1632 + space_index * sizeof space, SEEK_SET) < 0)
1633 goto error_return;
1634 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1635 goto error_return;
1636
1637 /* Setup the space name string */
1638 space.name.n_name = space.name.n_strx + space_strings;
1639
1640 /* Make a section out of it */
1641 newname = bfd_alloc (abfd, strlen (space.name.n_name) + 1);
1642 if (!newname)
1643 goto error_return;
1644 strcpy (newname, space.name.n_name);
1645
1646 space_asect = bfd_make_section_anyway (abfd, newname);
1647 if (!space_asect)
1648 goto error_return;
1649
1650 if (space.is_loadable == 0)
1651 space_asect->flags |= SEC_DEBUGGING;
1652
1653 /* Set up all the attributes for the space. */
1654 bfd_som_set_section_attributes (space_asect, space.is_defined,
1655 space.is_private, space.sort_key,
1656 space.space_number);
1657
1658 /* Now, read in the first subspace for this space */
1659 if (bfd_seek (abfd, file_hdr->subspace_location
1660 + space.subspace_index * sizeof subspace,
1661 SEEK_SET) < 0)
1662 goto error_return;
1663 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1664 goto error_return;
1665 /* Seek back to the start of the subspaces for loop below */
1666 if (bfd_seek (abfd, file_hdr->subspace_location
1667 + space.subspace_index * sizeof subspace,
1668 SEEK_SET) < 0)
1669 goto error_return;
1670
1671 /* Setup the start address and file loc from the first subspace record */
1672 space_asect->vma = subspace.subspace_start;
1673 space_asect->filepos = subspace.file_loc_init_value;
1674 space_asect->alignment_power = log2 (subspace.alignment);
1675 if (space_asect->alignment_power == -1)
1676 goto error_return;
1677
1678 /* Initialize save_subspace so we can reliably determine if this
1679 loop placed any useful values into it. */
1680 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1681
1682 /* Loop over the rest of the subspaces, building up more sections */
1683 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1684 subspace_index++)
1685 {
1686 asection *subspace_asect;
1687
1688 /* Read in the next subspace */
1689 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1690 != sizeof subspace)
1691 goto error_return;
1692
1693 /* Setup the subspace name string */
1694 subspace.name.n_name = subspace.name.n_strx + space_strings;
1695
1696 newname = bfd_alloc (abfd, strlen (subspace.name.n_name) + 1);
1697 if (!newname)
1698 goto error_return;
1699 strcpy (newname, subspace.name.n_name);
1700
1701 /* Make a section out of this subspace */
1702 subspace_asect = bfd_make_section_anyway (abfd, newname);
1703 if (!subspace_asect)
1704 goto error_return;
1705
1706 /* Store private information about the section. */
1707 bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1708 subspace.access_control_bits,
1709 subspace.sort_key,
1710 subspace.quadrant);
1711
1712 /* Keep an easy mapping between subspaces and sections. */
1713 som_section_data (subspace_asect)->subspace_index
1714 = total_subspaces++;
1715
1716 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1717 by the access_control_bits in the subspace header. */
1718 switch (subspace.access_control_bits >> 4)
1719 {
1720 /* Readonly data. */
1721 case 0x0:
1722 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1723 break;
1724
1725 /* Normal data. */
1726 case 0x1:
1727 subspace_asect->flags |= SEC_DATA;
1728 break;
1729
1730 /* Readonly code and the gateways.
1731 Gateways have other attributes which do not map
1732 into anything BFD knows about. */
1733 case 0x2:
1734 case 0x4:
1735 case 0x5:
1736 case 0x6:
1737 case 0x7:
1738 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1739 break;
1740
1741 /* dynamic (writable) code. */
1742 case 0x3:
1743 subspace_asect->flags |= SEC_CODE;
1744 break;
1745 }
1746
1747 if (subspace.dup_common || subspace.is_common)
1748 subspace_asect->flags |= SEC_IS_COMMON;
1749 else if (subspace.subspace_length > 0)
1750 subspace_asect->flags |= SEC_HAS_CONTENTS;
1751
1752 if (subspace.is_loadable)
1753 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1754 else
1755 subspace_asect->flags |= SEC_DEBUGGING;
1756
1757 if (subspace.code_only)
1758 subspace_asect->flags |= SEC_CODE;
1759
1760 /* Both file_loc_init_value and initialization_length will
1761 be zero for a BSS like subspace. */
1762 if (subspace.file_loc_init_value == 0
1763 && subspace.initialization_length == 0)
1764 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD);
1765
1766 /* This subspace has relocations.
1767 The fixup_request_quantity is a byte count for the number of
1768 entries in the relocation stream; it is not the actual number
1769 of relocations in the subspace. */
1770 if (subspace.fixup_request_quantity != 0)
1771 {
1772 subspace_asect->flags |= SEC_RELOC;
1773 subspace_asect->rel_filepos = subspace.fixup_request_index;
1774 som_section_data (subspace_asect)->reloc_size
1775 = subspace.fixup_request_quantity;
1776 /* We can not determine this yet. When we read in the
1777 relocation table the correct value will be filled in. */
1778 subspace_asect->reloc_count = -1;
1779 }
1780
1781 /* Update save_subspace if appropriate. */
1782 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1783 save_subspace = subspace;
1784
1785 subspace_asect->vma = subspace.subspace_start;
1786 subspace_asect->_cooked_size = subspace.subspace_length;
1787 subspace_asect->_raw_size = subspace.subspace_length;
1788 subspace_asect->filepos = subspace.file_loc_init_value;
1789 subspace_asect->alignment_power = log2 (subspace.alignment);
1790 if (subspace_asect->alignment_power == -1)
1791 goto error_return;
1792 }
1793
1794 /* Yow! there is no subspace within the space which actually
1795 has initialized information in it; this should never happen
1796 as far as I know. */
1797 if (!save_subspace.file_loc_init_value)
1798 goto error_return;
1799
1800 /* Setup the sizes for the space section based upon the info in the
1801 last subspace of the space. */
1802 space_asect->_cooked_size = save_subspace.subspace_start
1803 - space_asect->vma + save_subspace.subspace_length;
1804 space_asect->_raw_size = save_subspace.file_loc_init_value
1805 - space_asect->filepos + save_subspace.initialization_length;
1806 }
1807 if (space_strings != NULL)
1808 free (space_strings);
1809 return true;
1810
1811 error_return:
1812 if (space_strings != NULL)
1813 free (space_strings);
1814 return false;
1815 }
1816
1817 /* Read in a SOM object and make it into a BFD. */
1818
1819 static bfd_target *
1820 som_object_p (abfd)
1821 bfd *abfd;
1822 {
1823 struct header file_hdr;
1824 struct som_exec_auxhdr aux_hdr;
1825
1826 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
1827 {
1828 bfd_set_error (bfd_error_system_call);
1829 return 0;
1830 }
1831
1832 if (!_PA_RISC_ID (file_hdr.system_id))
1833 {
1834 bfd_set_error (bfd_error_wrong_format);
1835 return 0;
1836 }
1837
1838 switch (file_hdr.a_magic)
1839 {
1840 case RELOC_MAGIC:
1841 case EXEC_MAGIC:
1842 case SHARE_MAGIC:
1843 case DEMAND_MAGIC:
1844 #ifdef DL_MAGIC
1845 case DL_MAGIC:
1846 #endif
1847 #ifdef SHL_MAGIC
1848 case SHL_MAGIC:
1849 #endif
1850 #ifdef EXECLIBMAGIC
1851 case EXECLIBMAGIC:
1852 #endif
1853 #ifdef SHARED_MAGIC_CNX
1854 case SHARED_MAGIC_CNX:
1855 #endif
1856 break;
1857 default:
1858 bfd_set_error (bfd_error_wrong_format);
1859 return 0;
1860 }
1861
1862 if (file_hdr.version_id != VERSION_ID
1863 && file_hdr.version_id != NEW_VERSION_ID)
1864 {
1865 bfd_set_error (bfd_error_wrong_format);
1866 return 0;
1867 }
1868
1869 /* If the aux_header_size field in the file header is zero, then this
1870 object is an incomplete executable (a .o file). Do not try to read
1871 a non-existant auxiliary header. */
1872 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
1873 if (file_hdr.aux_header_size != 0)
1874 {
1875 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
1876 {
1877 bfd_set_error (bfd_error_wrong_format);
1878 return 0;
1879 }
1880 }
1881
1882 if (!setup_sections (abfd, &file_hdr))
1883 {
1884 /* setup_sections does not bubble up a bfd error code. */
1885 bfd_set_error (bfd_error_bad_value);
1886 return 0;
1887 }
1888
1889 /* This appears to be a valid SOM object. Do some initialization. */
1890 return som_object_setup (abfd, &file_hdr, &aux_hdr);
1891 }
1892
1893 /* Create a SOM object. */
1894
1895 static boolean
1896 som_mkobject (abfd)
1897 bfd *abfd;
1898 {
1899 /* Allocate memory to hold backend information. */
1900 abfd->tdata.som_data = (struct som_data_struct *)
1901 bfd_zalloc (abfd, sizeof (struct som_data_struct));
1902 if (abfd->tdata.som_data == NULL)
1903 {
1904 bfd_set_error (bfd_error_no_memory);
1905 return false;
1906 }
1907 obj_som_file_hdr (abfd)
1908 = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
1909 if (obj_som_file_hdr (abfd) == NULL)
1910
1911 {
1912 bfd_set_error (bfd_error_no_memory);
1913 return false;
1914 }
1915 return true;
1916 }
1917
1918 /* Initialize some information in the file header. This routine makes
1919 not attempt at doing the right thing for a full executable; it
1920 is only meant to handle relocatable objects. */
1921
1922 static boolean
1923 som_prep_headers (abfd)
1924 bfd *abfd;
1925 {
1926 struct header *file_hdr = obj_som_file_hdr (abfd);
1927 asection *section;
1928
1929 /* FIXME. This should really be conditional based on whether or not
1930 PA1.1 instructions/registers have been used. */
1931 file_hdr->system_id = CPU_PA_RISC1_0;
1932
1933 if (abfd->flags & EXEC_P)
1934 {
1935 if (abfd->flags & D_PAGED)
1936 file_hdr->a_magic = DEMAND_MAGIC;
1937 else if (abfd->flags & WP_TEXT)
1938 file_hdr->a_magic = SHARE_MAGIC;
1939 else
1940 file_hdr->a_magic = EXEC_MAGIC;
1941 }
1942 else
1943 file_hdr->a_magic = RELOC_MAGIC;
1944
1945 /* Only new format SOM is supported. */
1946 file_hdr->version_id = NEW_VERSION_ID;
1947
1948 /* These fields are optional, and embedding timestamps is not always
1949 a wise thing to do, it makes comparing objects during a multi-stage
1950 bootstrap difficult. */
1951 file_hdr->file_time.secs = 0;
1952 file_hdr->file_time.nanosecs = 0;
1953
1954 if (abfd->flags & EXEC_P)
1955 abort ();
1956 else
1957 {
1958 file_hdr->entry_space = 0;
1959 file_hdr->entry_subspace = 0;
1960 file_hdr->entry_offset = 0;
1961 }
1962
1963 file_hdr->presumed_dp = 0;
1964
1965 /* Now iterate over the sections translating information from
1966 BFD sections to SOM spaces/subspaces. */
1967
1968 for (section = abfd->sections; section != NULL; section = section->next)
1969 {
1970 /* Ignore anything which has not been marked as a space or
1971 subspace. */
1972 if (som_section_data (section)->is_space == 0
1973
1974 && som_section_data (section)->is_subspace == 0)
1975 continue;
1976
1977 if (som_section_data (section)->is_space)
1978 {
1979 /* Set space attributes. Note most attributes of SOM spaces
1980 are set based on the subspaces it contains. */
1981 som_section_data (section)->space_dict.loader_fix_index = -1;
1982 som_section_data (section)->space_dict.init_pointer_index = -1;
1983 }
1984 else
1985 {
1986 /* Set subspace attributes. Basic stuff is done here, additional
1987 attributes are filled in later as more information becomes
1988 available. */
1989 if (section->flags & SEC_IS_COMMON)
1990 {
1991 som_section_data (section)->subspace_dict.dup_common = 1;
1992 som_section_data (section)->subspace_dict.is_common = 1;
1993 }
1994
1995 if (section->flags & SEC_ALLOC)
1996 som_section_data (section)->subspace_dict.is_loadable = 1;
1997
1998 if (section->flags & SEC_CODE)
1999 som_section_data (section)->subspace_dict.code_only = 1;
2000
2001 som_section_data (section)->subspace_dict.subspace_start =
2002 section->vma;
2003 som_section_data (section)->subspace_dict.subspace_length =
2004 bfd_section_size (abfd, section);
2005 som_section_data (section)->subspace_dict.initialization_length =
2006 bfd_section_size (abfd, section);
2007 som_section_data (section)->subspace_dict.alignment =
2008 1 << section->alignment_power;
2009 }
2010 }
2011 return true;
2012 }
2013
2014 /* Count and return the number of spaces attached to the given BFD. */
2015
2016 static unsigned long
2017 som_count_spaces (abfd)
2018 bfd *abfd;
2019 {
2020 int count = 0;
2021 asection *section;
2022
2023 for (section = abfd->sections; section != NULL; section = section->next)
2024 count += som_section_data (section)->is_space;
2025
2026 return count;
2027 }
2028
2029 /* Count the number of subspaces attached to the given BFD. */
2030
2031 static unsigned long
2032 som_count_subspaces (abfd)
2033 bfd *abfd;
2034 {
2035 int count = 0;
2036 asection *section;
2037
2038 for (section = abfd->sections; section != NULL; section = section->next)
2039 count += som_section_data (section)->is_subspace;
2040
2041 return count;
2042 }
2043
2044 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2045
2046 We desire symbols to be ordered starting with the symbol with the
2047 highest relocation count down to the symbol with the lowest relocation
2048 count. Doing so compacts the relocation stream. */
2049
2050 static int
2051 compare_syms (sym1, sym2)
2052 asymbol **sym1;
2053 asymbol **sym2;
2054
2055 {
2056 unsigned int count1, count2;
2057
2058 /* Get relocation count for each symbol. Note that the count
2059 is stored in the udata pointer for section symbols! */
2060 if ((*sym1)->flags & BSF_SECTION_SYM)
2061 count1 = (int)(*sym1)->udata;
2062 else
2063 count1 = som_symbol_data (*sym1)->reloc_count;
2064
2065 if ((*sym2)->flags & BSF_SECTION_SYM)
2066 count2 = (int)(*sym2)->udata;
2067 else
2068 count2 = som_symbol_data (*sym2)->reloc_count;
2069
2070 /* Return the appropriate value. */
2071 if (count1 < count2)
2072 return 1;
2073 else if (count1 > count2)
2074 return -1;
2075 return 0;
2076 }
2077
2078 /* Perform various work in preparation for emitting the fixup stream. */
2079
2080 static void
2081 som_prep_for_fixups (abfd, syms, num_syms)
2082 bfd *abfd;
2083 asymbol **syms;
2084 unsigned long num_syms;
2085 {
2086 int i;
2087 asection *section;
2088
2089 /* Most SOM relocations involving a symbol have a length which is
2090 dependent on the index of the symbol. So symbols which are
2091 used often in relocations should have a small index. */
2092
2093 /* First initialize the counters for each symbol. */
2094 for (i = 0; i < num_syms; i++)
2095 {
2096 /* Handle a section symbol; these have no pointers back to the
2097 SOM symbol info. So we just use the pointer field (udata)
2098 to hold the relocation count.
2099
2100 FIXME. While we're here set the name of any section symbol
2101 to something which will not screw GDB. How do other formats
2102 deal with this?!? */
2103 if (som_symbol_data (syms[i]) == NULL)
2104 {
2105 syms[i]->flags |= BSF_SECTION_SYM;
2106 syms[i]->name = "L$0\002";
2107 syms[i]->udata = (PTR) 0;
2108 }
2109 else
2110 som_symbol_data (syms[i])->reloc_count = 0;
2111 }
2112
2113 /* Now that the counters are initialized, make a weighted count
2114 of how often a given symbol is used in a relocation. */
2115 for (section = abfd->sections; section != NULL; section = section->next)
2116 {
2117 int i;
2118
2119 /* Does this section have any relocations? */
2120 if (section->reloc_count <= 0)
2121 continue;
2122
2123 /* Walk through each relocation for this section. */
2124 for (i = 1; i < section->reloc_count; i++)
2125 {
2126 arelent *reloc = section->orelocation[i];
2127 int scale;
2128
2129 /* If no symbol, then there is no counter to increase. */
2130 if (reloc->sym_ptr_ptr == NULL)
2131 continue;
2132
2133 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2134 and R_CODE_ONE_SYMBOL relocations to come first. These
2135 two relocations have single byte versions if the symbol
2136 index is very small. */
2137 if (reloc->howto->type == R_DP_RELATIVE
2138 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2139 scale = 2;
2140 else
2141 scale = 1;
2142
2143 /* Handle section symbols by ramming the count in the udata
2144 field. It will not be used and the count is very important
2145 for these symbols. */
2146 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2147 {
2148 (*reloc->sym_ptr_ptr)->udata =
2149 (PTR) ((int) (*reloc->sym_ptr_ptr)->udata + scale);
2150 continue;
2151 }
2152
2153 /* A normal symbol. Increment the count. */
2154 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2155 }
2156 }
2157
2158 /* Now sort the symbols. */
2159 qsort (syms, num_syms, sizeof (asymbol *), compare_syms);
2160
2161 /* Compute the symbol indexes, they will be needed by the relocation
2162 code. */
2163 for (i = 0; i < num_syms; i++)
2164 {
2165 /* A section symbol. Again, there is no pointer to backend symbol
2166 information, so we reuse (abuse) the udata field again. */
2167 if (syms[i]->flags & BSF_SECTION_SYM)
2168 syms[i]->udata = (PTR) i;
2169 else
2170 som_symbol_data (syms[i])->index = i;
2171 }
2172 }
2173
2174 static boolean
2175 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2176 bfd *abfd;
2177 unsigned long current_offset;
2178 unsigned int *total_reloc_sizep;
2179 {
2180 unsigned int i, j;
2181 /* Chunk of memory that we can use as buffer space, then throw
2182 away. */
2183 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2184 unsigned char *p;
2185 unsigned int total_reloc_size = 0;
2186 unsigned int subspace_reloc_size = 0;
2187 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2188 asection *section = abfd->sections;
2189
2190 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2191 p = tmp_space;
2192
2193 /* All the fixups for a particular subspace are emitted in a single
2194 stream. All the subspaces for a particular space are emitted
2195 as a single stream.
2196
2197 So, to get all the locations correct one must iterate through all the
2198 spaces, for each space iterate through its subspaces and output a
2199 fixups stream. */
2200 for (i = 0; i < num_spaces; i++)
2201 {
2202 asection *subsection;
2203
2204 /* Find a space. */
2205 while (som_section_data (section)->is_space == 0)
2206 section = section->next;
2207
2208 /* Now iterate through each of its subspaces. */
2209 for (subsection = abfd->sections;
2210 subsection != NULL;
2211 subsection = subsection->next)
2212 {
2213 int reloc_offset, current_rounding_mode;
2214
2215 /* Find a subspace of this space. */
2216 if (som_section_data (subsection)->is_subspace == 0
2217 || som_section_data (subsection)->containing_space != section)
2218 continue;
2219
2220 /* If this subspace had no relocations, then we're finished
2221 with it. */
2222 if (subsection->reloc_count <= 0)
2223 {
2224 som_section_data (subsection)->subspace_dict.fixup_request_index
2225 = -1;
2226 continue;
2227 }
2228
2229 /* This subspace has some relocations. Put the relocation stream
2230 index into the subspace record. */
2231 som_section_data (subsection)->subspace_dict.fixup_request_index
2232 = total_reloc_size;
2233
2234 /* To make life easier start over with a clean slate for
2235 each subspace. Seek to the start of the relocation stream
2236 for this subspace in preparation for writing out its fixup
2237 stream. */
2238 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) != 0)
2239 {
2240 bfd_set_error (bfd_error_system_call);
2241 return false;
2242 }
2243
2244 /* Buffer space has already been allocated. Just perform some
2245 initialization here. */
2246 p = tmp_space;
2247 subspace_reloc_size = 0;
2248 reloc_offset = 0;
2249 som_initialize_reloc_queue (reloc_queue);
2250 current_rounding_mode = R_N_MODE;
2251
2252 /* Translate each BFD relocation into one or more SOM
2253 relocations. */
2254 for (j = 0; j < subsection->reloc_count; j++)
2255 {
2256 arelent *bfd_reloc = subsection->orelocation[j];
2257 unsigned int skip;
2258 int sym_num;
2259
2260 /* Get the symbol number. Remember it's stored in a
2261 special place for section symbols. */
2262 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2263 sym_num = (int) (*bfd_reloc->sym_ptr_ptr)->udata;
2264 else
2265 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2266
2267 /* If there is not enough room for the next couple relocations,
2268 then dump the current buffer contents now. Also reinitialize
2269 the relocation queue.
2270
2271 No single BFD relocation could ever translate into more
2272 than 100 bytes of SOM relocations (20bytes is probably the
2273 upper limit, but leave lots of space for growth). */
2274 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2275 {
2276 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2277 != p - tmp_space)
2278 {
2279 bfd_set_error (bfd_error_system_call);
2280 return false;
2281 }
2282 p = tmp_space;
2283 som_initialize_reloc_queue (reloc_queue);
2284 }
2285
2286 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2287 skipped. */
2288 skip = bfd_reloc->address - reloc_offset;
2289 p = som_reloc_skip (abfd, skip, p,
2290 &subspace_reloc_size, reloc_queue);
2291
2292 /* Update reloc_offset for the next iteration.
2293
2294 Many relocations do not consume input bytes. They
2295 are markers, or set state necessary to perform some
2296 later relocation. */
2297 switch (bfd_reloc->howto->type)
2298 {
2299 /* This only needs to handle relocations that may be
2300 made by hppa_som_gen_reloc. */
2301 case R_ENTRY:
2302 case R_EXIT:
2303 case R_N_MODE:
2304 case R_S_MODE:
2305 case R_D_MODE:
2306 case R_R_MODE:
2307 case R_FSEL:
2308 case R_LSEL:
2309 case R_RSEL:
2310 reloc_offset = bfd_reloc->address;
2311 break;
2312
2313 default:
2314 reloc_offset = bfd_reloc->address + 4;
2315 break;
2316 }
2317
2318 /* Now the actual relocation we care about. */
2319 switch (bfd_reloc->howto->type)
2320 {
2321 case R_PCREL_CALL:
2322 case R_ABS_CALL:
2323 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2324 bfd_reloc, sym_num, reloc_queue);
2325 break;
2326
2327 case R_CODE_ONE_SYMBOL:
2328 case R_DP_RELATIVE:
2329 /* Account for any addend. */
2330 if (bfd_reloc->addend)
2331 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2332 &subspace_reloc_size, reloc_queue);
2333
2334 if (sym_num < 0x20)
2335 {
2336 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2337 subspace_reloc_size += 1;
2338 p += 1;
2339 }
2340 else if (sym_num < 0x100)
2341 {
2342 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2343 bfd_put_8 (abfd, sym_num, p + 1);
2344 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2345 2, reloc_queue);
2346 }
2347 else if (sym_num < 0x10000000)
2348 {
2349 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2350 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2351 bfd_put_16 (abfd, sym_num, p + 2);
2352 p = try_prev_fixup (abfd, &subspace_reloc_size,
2353 p, 4, reloc_queue);
2354 }
2355 else
2356 abort ();
2357 break;
2358
2359 case R_DATA_ONE_SYMBOL:
2360 case R_DATA_PLABEL:
2361 case R_CODE_PLABEL:
2362 case R_DLT_REL:
2363 /* Account for any addend. */
2364 if (bfd_reloc->addend)
2365 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2366 &subspace_reloc_size, reloc_queue);
2367
2368 if (sym_num < 0x100)
2369 {
2370 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2371 bfd_put_8 (abfd, sym_num, p + 1);
2372 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2373 2, reloc_queue);
2374 }
2375 else if (sym_num < 0x10000000)
2376 {
2377 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2378 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2379 bfd_put_16 (abfd, sym_num, p + 2);
2380 p = try_prev_fixup (abfd, &subspace_reloc_size,
2381 p, 4, reloc_queue);
2382 }
2383 else
2384 abort ();
2385 break;
2386
2387 case R_ENTRY:
2388 {
2389 int *descp
2390 = (int *) som_symbol_data (*bfd_reloc->sym_ptr_ptr)->unwind;
2391 bfd_put_8 (abfd, R_ENTRY, p);
2392 bfd_put_32 (abfd, descp[0], p + 1);
2393 bfd_put_32 (abfd, descp[1], p + 5);
2394 p = try_prev_fixup (abfd, &subspace_reloc_size,
2395 p, 9, reloc_queue);
2396 break;
2397 }
2398
2399 case R_EXIT:
2400 bfd_put_8 (abfd, R_EXIT, p);
2401 subspace_reloc_size += 1;
2402 p += 1;
2403 break;
2404
2405 case R_N_MODE:
2406 case R_S_MODE:
2407 case R_D_MODE:
2408 case R_R_MODE:
2409 /* If this relocation requests the current rounding
2410 mode, then it is redundant. */
2411 if (bfd_reloc->howto->type != current_rounding_mode)
2412 {
2413 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2414 subspace_reloc_size += 1;
2415 p += 1;
2416 current_rounding_mode = bfd_reloc->howto->type;
2417 }
2418 break;
2419
2420 case R_FSEL:
2421 case R_LSEL:
2422 case R_RSEL:
2423 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2424 subspace_reloc_size += 1;
2425 p += 1;
2426 break;
2427
2428 /* Put a "R_RESERVED" relocation in the stream if
2429 we hit something we do not understand. The linker
2430 will complain loudly if this ever happens. */
2431 default:
2432 bfd_put_8 (abfd, 0xff, p);
2433 subspace_reloc_size += 1;
2434 p += 1;
2435 break;
2436 }
2437 }
2438
2439 /* Last BFD relocation for a subspace has been processed.
2440 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2441 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2442 - reloc_offset,
2443 p, &subspace_reloc_size, reloc_queue);
2444
2445 /* Scribble out the relocations. */
2446 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2447 != p - tmp_space)
2448 {
2449 bfd_set_error (bfd_error_system_call);
2450 return false;
2451 }
2452 p = tmp_space;
2453
2454 total_reloc_size += subspace_reloc_size;
2455 som_section_data (subsection)->subspace_dict.fixup_request_quantity
2456 = subspace_reloc_size;
2457 }
2458 section = section->next;
2459 }
2460 *total_reloc_sizep = total_reloc_size;
2461 return true;
2462 }
2463
2464 /* Write out the space/subspace string table. */
2465
2466 static boolean
2467 som_write_space_strings (abfd, current_offset, string_sizep)
2468 bfd *abfd;
2469 unsigned long current_offset;
2470 unsigned int *string_sizep;
2471 {
2472 /* Chunk of memory that we can use as buffer space, then throw
2473 away. */
2474 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2475 unsigned char *p;
2476 unsigned int strings_size = 0;
2477 asection *section;
2478
2479 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2480 p = tmp_space;
2481
2482 /* Seek to the start of the space strings in preparation for writing
2483 them out. */
2484 if (bfd_seek (abfd, current_offset, SEEK_SET) != 0)
2485 {
2486 bfd_set_error (bfd_error_system_call);
2487 return false;
2488 }
2489
2490 /* Walk through all the spaces and subspaces (order is not important)
2491 building up and writing string table entries for their names. */
2492 for (section = abfd->sections; section != NULL; section = section->next)
2493 {
2494 int length;
2495
2496 /* Only work with space/subspaces; avoid any other sections
2497 which might have been made (.text for example). */
2498 if (som_section_data (section)->is_space == 0
2499 && som_section_data (section)->is_subspace == 0)
2500 continue;
2501
2502 /* Get the length of the space/subspace name. */
2503 length = strlen (section->name);
2504
2505 /* If there is not enough room for the next entry, then dump the
2506 current buffer contents now. Each entry will take 4 bytes to
2507 hold the string length + the string itself + null terminator. */
2508 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2509 {
2510 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2511 != p - tmp_space)
2512 {
2513 bfd_set_error (bfd_error_system_call);
2514 return false;
2515 }
2516 /* Reset to beginning of the buffer space. */
2517 p = tmp_space;
2518 }
2519
2520 /* First element in a string table entry is the length of the
2521 string. Alignment issues are already handled. */
2522 bfd_put_32 (abfd, length, p);
2523 p += 4;
2524 strings_size += 4;
2525
2526 /* Record the index in the space/subspace records. */
2527 if (som_section_data (section)->is_space)
2528 som_section_data (section)->space_dict.name.n_strx = strings_size;
2529 else
2530 som_section_data (section)->subspace_dict.name.n_strx = strings_size;
2531
2532 /* Next comes the string itself + a null terminator. */
2533 strcpy (p, section->name);
2534 p += length + 1;
2535 strings_size += length + 1;
2536
2537 /* Always align up to the next word boundary. */
2538 while (strings_size % 4)
2539 {
2540 bfd_put_8 (abfd, 0, p);
2541 p++;
2542 strings_size++;
2543 }
2544 }
2545
2546 /* Done with the space/subspace strings. Write out any information
2547 contained in a partial block. */
2548 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2549 {
2550 bfd_set_error (bfd_error_system_call);
2551 return false;
2552 }
2553 *string_sizep = strings_size;
2554 return true;
2555 }
2556
2557 /* Write out the symbol string table. */
2558
2559 static boolean
2560 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
2561 bfd *abfd;
2562 unsigned long current_offset;
2563 asymbol **syms;
2564 unsigned int num_syms;
2565 unsigned int *string_sizep;
2566 {
2567 unsigned int i;
2568
2569 /* Chunk of memory that we can use as buffer space, then throw
2570 away. */
2571 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2572 unsigned char *p;
2573 unsigned int strings_size = 0;
2574
2575 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2576 p = tmp_space;
2577
2578 /* Seek to the start of the space strings in preparation for writing
2579 them out. */
2580 if (bfd_seek (abfd, current_offset, SEEK_SET) != 0)
2581 {
2582 bfd_set_error (bfd_error_system_call);
2583 return false;
2584 }
2585
2586 for (i = 0; i < num_syms; i++)
2587 {
2588 int length = strlen (syms[i]->name);
2589
2590 /* If there is not enough room for the next entry, then dump the
2591 current buffer contents now. */
2592 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2593 {
2594 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2595 != p - tmp_space)
2596 {
2597 bfd_set_error (bfd_error_system_call);
2598 return false;
2599 }
2600 /* Reset to beginning of the buffer space. */
2601 p = tmp_space;
2602 }
2603
2604 /* First element in a string table entry is the length of the
2605 string. This must always be 4 byte aligned. This is also
2606 an appropriate time to fill in the string index field in the
2607 symbol table entry. */
2608 bfd_put_32 (abfd, length, p);
2609 strings_size += 4;
2610 p += 4;
2611
2612 /* Next comes the string itself + a null terminator. */
2613 strcpy (p, syms[i]->name);
2614
2615 /* ACK. FIXME. */
2616 syms[i]->name = (char *)strings_size;
2617 p += length + 1;
2618 strings_size += length + 1;
2619
2620 /* Always align up to the next word boundary. */
2621 while (strings_size % 4)
2622 {
2623 bfd_put_8 (abfd, 0, p);
2624 strings_size++;
2625 p++;
2626 }
2627 }
2628
2629 /* Scribble out any partial block. */
2630 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2631 {
2632 bfd_set_error (bfd_error_system_call);
2633 return false;
2634 }
2635
2636 *string_sizep = strings_size;
2637 return true;
2638 }
2639
2640 /* Compute variable information to be placed in the SOM headers,
2641 space/subspace dictionaries, relocation streams, etc. Begin
2642 writing parts of the object file. */
2643
2644 static boolean
2645 som_begin_writing (abfd)
2646 bfd *abfd;
2647 {
2648 unsigned long current_offset = 0;
2649 int strings_size = 0;
2650 unsigned int total_reloc_size = 0;
2651 unsigned long num_spaces, num_subspaces, num_syms, i;
2652 asection *section;
2653 asymbol **syms = bfd_get_outsymbols (abfd);
2654 unsigned int total_subspaces = 0;
2655
2656 /* The file header will always be first in an object file,
2657 everything else can be in random locations. To keep things
2658 "simple" BFD will lay out the object file in the manner suggested
2659 by the PRO ABI for PA-RISC Systems. */
2660
2661 /* Before any output can really begin offsets for all the major
2662 portions of the object file must be computed. So, starting
2663 with the initial file header compute (and sometimes write)
2664 each portion of the object file. */
2665
2666 /* Make room for the file header, it's contents are not complete
2667 yet, so it can not be written at this time. */
2668 current_offset += sizeof (struct header);
2669
2670 /* Any auxiliary headers will follow the file header. Right now
2671 we support only the copyright and version headers. */
2672 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
2673 obj_som_file_hdr (abfd)->aux_header_size = 0;
2674 if (obj_som_version_hdr (abfd) != NULL)
2675 {
2676 unsigned int len;
2677
2678 bfd_seek (abfd, current_offset, SEEK_SET);
2679
2680 /* Write the aux_id structure and the string length. */
2681 len = sizeof (struct aux_id) + sizeof (unsigned int);
2682 obj_som_file_hdr (abfd)->aux_header_size += len;
2683 current_offset += len;
2684 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
2685 {
2686 bfd_set_error (bfd_error_system_call);
2687 return false;
2688 }
2689
2690 /* Write the version string. */
2691 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
2692 obj_som_file_hdr (abfd)->aux_header_size += len;
2693 current_offset += len;
2694 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
2695 len, 1, abfd) != len)
2696 {
2697 bfd_set_error (bfd_error_system_call);
2698 return false;
2699 }
2700 }
2701
2702 if (obj_som_copyright_hdr (abfd) != NULL)
2703 {
2704 unsigned int len;
2705
2706 bfd_seek (abfd, current_offset, SEEK_SET);
2707
2708 /* Write the aux_id structure and the string length. */
2709 len = sizeof (struct aux_id) + sizeof (unsigned int);
2710 obj_som_file_hdr (abfd)->aux_header_size += len;
2711 current_offset += len;
2712 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
2713 {
2714 bfd_set_error (bfd_error_system_call);
2715 return false;
2716 }
2717
2718 /* Write the copyright string. */
2719 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
2720 obj_som_file_hdr (abfd)->aux_header_size += len;
2721 current_offset += len;
2722 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
2723 len, 1, abfd) != len)
2724 {
2725 bfd_set_error (bfd_error_system_call);
2726 return false;
2727 }
2728 }
2729
2730 /* Next comes the initialization pointers; we have no initialization
2731 pointers, so current offset does not change. */
2732 obj_som_file_hdr (abfd)->init_array_location = current_offset;
2733 obj_som_file_hdr (abfd)->init_array_total = 0;
2734
2735 /* Next are the space records. These are fixed length records.
2736
2737 Count the number of spaces to determine how much room is needed
2738 in the object file for the space records.
2739
2740 The names of the spaces are stored in a separate string table,
2741 and the index for each space into the string table is computed
2742 below. Therefore, it is not possible to write the space headers
2743 at this time. */
2744 num_spaces = som_count_spaces (abfd);
2745 obj_som_file_hdr (abfd)->space_location = current_offset;
2746 obj_som_file_hdr (abfd)->space_total = num_spaces;
2747 current_offset += num_spaces * sizeof (struct space_dictionary_record);
2748
2749 /* Next are the subspace records. These are fixed length records.
2750
2751 Count the number of subspaes to determine how much room is needed
2752 in the object file for the subspace records.
2753
2754 A variety if fields in the subspace record are still unknown at
2755 this time (index into string table, fixup stream location/size, etc). */
2756 num_subspaces = som_count_subspaces (abfd);
2757 obj_som_file_hdr (abfd)->subspace_location = current_offset;
2758 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
2759 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
2760
2761 /* Next is the string table for the space/subspace names. We will
2762 build and write the string table on the fly. At the same time
2763 we will fill in the space/subspace name index fields. */
2764
2765 /* The string table needs to be aligned on a word boundary. */
2766 if (current_offset % 4)
2767 current_offset += (4 - (current_offset % 4));
2768
2769 /* Mark the offset of the space/subspace string table in the
2770 file header. */
2771 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
2772
2773 /* Scribble out the space strings. */
2774 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
2775 return false;
2776
2777 /* Record total string table size in the header and update the
2778 current offset. */
2779 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
2780 current_offset += strings_size;
2781
2782 /* Next is the symbol table. These are fixed length records.
2783
2784 Count the number of symbols to determine how much room is needed
2785 in the object file for the symbol table.
2786
2787 The names of the symbols are stored in a separate string table,
2788 and the index for each symbol name into the string table is computed
2789 below. Therefore, it is not possible to write the symobl table
2790 at this time. */
2791 num_syms = bfd_get_symcount (abfd);
2792 obj_som_file_hdr (abfd)->symbol_location = current_offset;
2793 obj_som_file_hdr (abfd)->symbol_total = num_syms;
2794 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
2795
2796 /* Do prep work before handling fixups. */
2797 som_prep_for_fixups (abfd, syms, num_syms);
2798
2799 /* Next comes the fixup stream which starts on a word boundary. */
2800 if (current_offset % 4)
2801 current_offset += (4 - (current_offset % 4));
2802 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
2803
2804 /* Write the fixups and update fields in subspace headers which
2805 relate to the fixup stream. */
2806 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
2807 return false;
2808
2809 /* Record the total size of the fixup stream in the file header. */
2810 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
2811 current_offset += total_reloc_size;
2812
2813 /* Next are the symbol strings.
2814 Align them to a word boundary. */
2815 if (current_offset % 4)
2816 current_offset += (4 - (current_offset % 4));
2817 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
2818
2819 /* Scribble out the symbol strings. */
2820 if (som_write_symbol_strings (abfd, current_offset, syms,
2821 num_syms, &strings_size)
2822 == false)
2823 return false;
2824
2825 /* Record total string table size in header and update the
2826 current offset. */
2827 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
2828 current_offset += strings_size;
2829
2830 /* Next is the compiler records. We do not use these. */
2831 obj_som_file_hdr (abfd)->compiler_location = current_offset;
2832 obj_som_file_hdr (abfd)->compiler_total = 0;
2833
2834 /* Now compute the file positions for the loadable subspaces. */
2835
2836 section = abfd->sections;
2837 for (i = 0; i < num_spaces; i++)
2838 {
2839 asection *subsection;
2840
2841 /* Find a space. */
2842 while (som_section_data (section)->is_space == 0)
2843 section = section->next;
2844
2845 /* Now look for all its subspaces. */
2846 for (subsection = abfd->sections;
2847 subsection != NULL;
2848 subsection = subsection->next)
2849 {
2850
2851 if (som_section_data (subsection)->is_subspace == 0
2852 || som_section_data (subsection)->containing_space != section
2853 || (subsection->flags & SEC_ALLOC) == 0)
2854 continue;
2855
2856 som_section_data (subsection)->subspace_index = total_subspaces++;
2857 /* This is real data to be loaded from the file. */
2858 if (subsection->flags & SEC_LOAD)
2859 {
2860 som_section_data (subsection)->subspace_dict.file_loc_init_value
2861 = current_offset;
2862 section->filepos = current_offset;
2863 current_offset += bfd_section_size (abfd, subsection);
2864 }
2865 /* Looks like uninitialized data. */
2866 else
2867 {
2868 som_section_data (subsection)->subspace_dict.file_loc_init_value
2869 = 0;
2870 som_section_data (subsection)->subspace_dict.
2871 initialization_length = 0;
2872 }
2873 }
2874 /* Goto the next section. */
2875 section = section->next;
2876 }
2877
2878 /* Finally compute the file positions for unloadable subspaces. */
2879
2880 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
2881 section = abfd->sections;
2882 for (i = 0; i < num_spaces; i++)
2883 {
2884 asection *subsection;
2885
2886 /* Find a space. */
2887 while (som_section_data (section)->is_space == 0)
2888 section = section->next;
2889
2890 /* Now look for all its subspaces. */
2891 for (subsection = abfd->sections;
2892 subsection != NULL;
2893 subsection = subsection->next)
2894 {
2895
2896 if (som_section_data (subsection)->is_subspace == 0
2897 || som_section_data (subsection)->containing_space != section
2898 || (subsection->flags & SEC_ALLOC) != 0)
2899 continue;
2900
2901 som_section_data (subsection)->subspace_index = total_subspaces++;
2902 /* This is real data to be loaded from the file. */
2903 if ((subsection->flags & SEC_LOAD) == 0)
2904 {
2905 som_section_data (subsection)->subspace_dict.file_loc_init_value
2906 = current_offset;
2907 section->filepos = current_offset;
2908 current_offset += bfd_section_size (abfd, subsection);
2909 }
2910 /* Looks like uninitialized data. */
2911 else
2912 {
2913 som_section_data (subsection)->subspace_dict.file_loc_init_value
2914 = 0;
2915 som_section_data (subsection)->subspace_dict.
2916 initialization_length = bfd_section_size (abfd, subsection);
2917 }
2918 }
2919 /* Goto the next section. */
2920 section = section->next;
2921 }
2922
2923 obj_som_file_hdr (abfd)->unloadable_sp_size
2924 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
2925
2926 /* Loader fixups are not supported in any way shape or form. */
2927 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
2928 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
2929
2930 /* Done. Store the total size of the SOM. */
2931 obj_som_file_hdr (abfd)->som_length = current_offset;
2932 return true;
2933 }
2934
2935 /* Finally, scribble out the various headers to the disk. */
2936
2937 static boolean
2938 som_write_headers (abfd)
2939 bfd *abfd;
2940 {
2941 int num_spaces = som_count_spaces (abfd);
2942 int i;
2943 int subspace_index = 0;
2944 file_ptr location;
2945 asection *section;
2946
2947 /* Subspaces are written first so that we can set up information
2948 about them in their containing spaces as the subspace is written. */
2949
2950 /* Seek to the start of the subspace dictionary records. */
2951 location = obj_som_file_hdr (abfd)->subspace_location;
2952 bfd_seek (abfd, location, SEEK_SET);
2953 section = abfd->sections;
2954 /* Now for each loadable space write out records for its subspaces. */
2955 for (i = 0; i < num_spaces; i++)
2956 {
2957 asection *subsection;
2958
2959 /* Find a space. */
2960 while (som_section_data (section)->is_space == 0)
2961 section = section->next;
2962
2963 /* Now look for all its subspaces. */
2964 for (subsection = abfd->sections;
2965 subsection != NULL;
2966 subsection = subsection->next)
2967 {
2968
2969 /* Skip any section which does not correspond to a space
2970 or subspace. Or does not have SEC_ALLOC set (and therefore
2971 has no real bits on the disk). */
2972 if (som_section_data (subsection)->is_subspace == 0
2973 || som_section_data (subsection)->containing_space != section
2974 || (subsection->flags & SEC_ALLOC) == 0)
2975 continue;
2976
2977 /* If this is the first subspace for this space, then save
2978 the index of the subspace in its containing space. Also
2979 set "is_loadable" in the containing space. */
2980
2981 if (som_section_data (section)->space_dict.subspace_quantity == 0)
2982 {
2983 som_section_data (section)->space_dict.is_loadable = 1;
2984 som_section_data (section)->space_dict.subspace_index
2985 = subspace_index;
2986 }
2987
2988 /* Increment the number of subspaces seen and the number of
2989 subspaces contained within the current space. */
2990 subspace_index++;
2991 som_section_data (section)->space_dict.subspace_quantity++;
2992
2993 /* Mark the index of the current space within the subspace's
2994 dictionary record. */
2995 som_section_data (subsection)->subspace_dict.space_index = i;
2996
2997 /* Dump the current subspace header. */
2998 if (bfd_write ((PTR) &som_section_data (subsection)->subspace_dict,
2999 sizeof (struct subspace_dictionary_record), 1, abfd)
3000 != sizeof (struct subspace_dictionary_record))
3001 {
3002 bfd_set_error (bfd_error_system_call);
3003 return false;
3004 }
3005 }
3006 /* Goto the next section. */
3007 section = section->next;
3008 }
3009
3010 /* Now repeat the process for unloadable subspaces. */
3011 section = abfd->sections;
3012 /* Now for each space write out records for its subspaces. */
3013 for (i = 0; i < num_spaces; i++)
3014 {
3015 asection *subsection;
3016
3017 /* Find a space. */
3018 while (som_section_data (section)->is_space == 0)
3019 section = section->next;
3020
3021 /* Now look for all its subspaces. */
3022 for (subsection = abfd->sections;
3023 subsection != NULL;
3024 subsection = subsection->next)
3025 {
3026
3027 /* Skip any section which does not correspond to a space or
3028 subspace, or which SEC_ALLOC set (and therefore handled
3029 in the loadable spaces/subspaces code above. */
3030
3031 if (som_section_data (subsection)->is_subspace == 0
3032 || som_section_data (subsection)->containing_space != section
3033 || (subsection->flags & SEC_ALLOC) != 0)
3034 continue;
3035
3036 /* If this is the first subspace for this space, then save
3037 the index of the subspace in its containing space. Clear
3038 "is_loadable". */
3039
3040 if (som_section_data (section)->space_dict.subspace_quantity == 0)
3041 {
3042 som_section_data (section)->space_dict.is_loadable = 0;
3043 som_section_data (section)->space_dict.subspace_index
3044 = subspace_index;
3045 }
3046
3047 /* Increment the number of subspaces seen and the number of
3048 subspaces contained within the current space. */
3049 som_section_data (section)->space_dict.subspace_quantity++;
3050 subspace_index++;
3051
3052 /* Mark the index of the current space within the subspace's
3053 dictionary record. */
3054 som_section_data (subsection)->subspace_dict.space_index = i;
3055
3056 /* Dump this subspace header. */
3057 if (bfd_write ((PTR) &som_section_data (subsection)->subspace_dict,
3058 sizeof (struct subspace_dictionary_record), 1, abfd)
3059 != sizeof (struct subspace_dictionary_record))
3060 {
3061 bfd_set_error (bfd_error_system_call);
3062 return false;
3063 }
3064 }
3065 /* Goto the next section. */
3066 section = section->next;
3067 }
3068
3069 /* All the subspace dictiondary records are written, and all the
3070 fields are set up in the space dictionary records.
3071
3072 Seek to the right location and start writing the space
3073 dictionary records. */
3074 location = obj_som_file_hdr (abfd)->space_location;
3075 bfd_seek (abfd, location, SEEK_SET);
3076
3077 section = abfd->sections;
3078 for (i = 0; i < num_spaces; i++)
3079 {
3080
3081 /* Find a space. */
3082 while (som_section_data (section)->is_space == 0)
3083 section = section->next;
3084
3085 /* Dump its header */
3086 if (bfd_write ((PTR) &som_section_data (section)->space_dict,
3087 sizeof (struct space_dictionary_record), 1, abfd)
3088 != sizeof (struct space_dictionary_record))
3089 {
3090 bfd_set_error (bfd_error_system_call);
3091 return false;
3092 }
3093
3094 /* Goto the next section. */
3095 section = section->next;
3096 }
3097
3098 /* Only thing left to do is write out the file header. It is always
3099 at location zero. Seek there and write it. */
3100 bfd_seek (abfd, (file_ptr) 0, SEEK_SET);
3101 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3102 sizeof (struct header), 1, abfd)
3103 != sizeof (struct header))
3104 {
3105 bfd_set_error (bfd_error_system_call);
3106 return false;
3107 }
3108 return true;
3109 }
3110
3111 /* Compute and return the checksum for a SOM file header. */
3112
3113 static unsigned long
3114 som_compute_checksum (abfd)
3115 bfd *abfd;
3116 {
3117 unsigned long checksum, count, i;
3118 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3119
3120 checksum = 0;
3121 count = sizeof (struct header) / sizeof (unsigned long);
3122 for (i = 0; i < count; i++)
3123 checksum ^= *(buffer + i);
3124
3125 return checksum;
3126 }
3127
3128 static void
3129 som_bfd_derive_misc_symbol_info (abfd, sym, info)
3130 bfd *abfd;
3131 asymbol *sym;
3132 struct som_misc_symbol_info *info;
3133 {
3134 /* Initialize. */
3135 memset (info, 0, sizeof (struct som_misc_symbol_info));
3136
3137 /* The HP SOM linker requires detailed type information about
3138 all symbols (including undefined symbols!). Unfortunately,
3139 the type specified in an import/export statement does not
3140 always match what the linker wants. Severe braindamage. */
3141
3142 /* Section symbols will not have a SOM symbol type assigned to
3143 them yet. Assign all section symbols type ST_DATA. */
3144 if (sym->flags & BSF_SECTION_SYM)
3145 info->symbol_type = ST_DATA;
3146 else
3147 {
3148 /* Common symbols must have scope SS_UNSAT and type
3149 ST_STORAGE or the linker will choke. */
3150 if (sym->section == &bfd_com_section)
3151 {
3152 info->symbol_scope = SS_UNSAT;
3153 info->symbol_type = ST_STORAGE;
3154 }
3155
3156 /* It is possible to have a symbol without an associated
3157 type. This happens if the user imported the symbol
3158 without a type and the symbol was never defined
3159 locally. If BSF_FUNCTION is set for this symbol, then
3160 assign it type ST_CODE (the HP linker requires undefined
3161 external functions to have type ST_CODE rather than ST_ENTRY). */
3162 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3163 && sym->section == &bfd_und_section
3164 && sym->flags & BSF_FUNCTION)
3165 info->symbol_type = ST_CODE;
3166
3167 /* Handle function symbols which were defined in this file.
3168 They should have type ST_ENTRY. Also retrieve the argument
3169 relocation bits from the SOM backend information. */
3170 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3171 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3172 && (sym->flags & BSF_FUNCTION))
3173 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3174 && (sym->flags & BSF_FUNCTION)))
3175 {
3176 info->symbol_type = ST_ENTRY;
3177 info->arg_reloc = som_symbol_data (sym)->tc_data.hppa_arg_reloc;
3178 }
3179
3180 /* If the type is unknown at this point, it should be
3181 ST_DATA (functions were handled as special cases above). */
3182 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3183 info->symbol_type = ST_DATA;
3184
3185 /* From now on it's a very simple mapping. */
3186 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3187 info->symbol_type = ST_ABSOLUTE;
3188 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3189 info->symbol_type = ST_CODE;
3190 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3191 info->symbol_type = ST_DATA;
3192 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3193 info->symbol_type = ST_MILLICODE;
3194 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3195 info->symbol_type = ST_PLABEL;
3196 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3197 info->symbol_type = ST_PRI_PROG;
3198 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3199 info->symbol_type = ST_SEC_PROG;
3200 }
3201
3202 /* Now handle the symbol's scope. Exported data which is not
3203 in the common section has scope SS_UNIVERSAL. Note scope
3204 of common symbols was handled earlier! */
3205 if (sym->flags & BSF_EXPORT && sym->section != &bfd_com_section)
3206 info->symbol_scope = SS_UNIVERSAL;
3207 /* Any undefined symbol at this point has a scope SS_UNSAT. */
3208 else if (sym->section == &bfd_und_section)
3209 info->symbol_scope = SS_UNSAT;
3210 /* Anything else which is not in the common section has scope
3211 SS_LOCAL. */
3212 else if (sym->section != &bfd_com_section)
3213 info->symbol_scope = SS_LOCAL;
3214
3215 /* Now set the symbol_info field. It has no real meaning
3216 for undefined or common symbols, but the HP linker will
3217 choke if it's not set to some "reasonable" value. We
3218 use zero as a reasonable value. */
3219 if (sym->section == &bfd_com_section || sym->section == &bfd_und_section
3220 || sym->section == &bfd_abs_section)
3221 info->symbol_info = 0;
3222 /* For all other symbols, the symbol_info field contains the
3223 subspace index of the space this symbol is contained in. */
3224 else
3225 info->symbol_info = som_section_data (sym->section)->subspace_index;
3226
3227 /* Set the symbol's value. */
3228 info->symbol_value = sym->value + sym->section->vma;
3229 }
3230
3231 /* Build and write, in one big chunk, the entire symbol table for
3232 this BFD. */
3233
3234 static boolean
3235 som_build_and_write_symbol_table (abfd)
3236 bfd *abfd;
3237 {
3238 unsigned int num_syms = bfd_get_symcount (abfd);
3239 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3240 asymbol **bfd_syms = bfd_get_outsymbols (abfd);
3241 struct symbol_dictionary_record *som_symtab = NULL;
3242 int i, symtab_size;
3243
3244 /* Compute total symbol table size and allocate a chunk of memory
3245 to hold the symbol table as we build it. */
3246 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3247 som_symtab = (struct symbol_dictionary_record *) malloc (symtab_size);
3248 if (som_symtab == NULL)
3249 {
3250 bfd_set_error (bfd_error_no_memory);
3251 goto error_return;
3252 }
3253 memset (som_symtab, 0, symtab_size);
3254
3255 /* Walk over each symbol. */
3256 for (i = 0; i < num_syms; i++)
3257 {
3258 struct som_misc_symbol_info info;
3259
3260 /* This is really an index into the symbol strings table.
3261 By the time we get here, the index has already been
3262 computed and stored into the name field in the BFD symbol. */
3263 som_symtab[i].name.n_strx = (int) bfd_syms[i]->name;
3264
3265 /* Derive SOM information from the BFD symbol. */
3266 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
3267
3268 /* Now use it. */
3269 som_symtab[i].symbol_type = info.symbol_type;
3270 som_symtab[i].symbol_scope = info.symbol_scope;
3271 som_symtab[i].arg_reloc = info.arg_reloc;
3272 som_symtab[i].symbol_info = info.symbol_info;
3273 som_symtab[i].symbol_value = info.symbol_value;
3274 }
3275
3276 /* Everything is ready, seek to the right location and
3277 scribble out the symbol table. */
3278 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3279 {
3280 bfd_set_error (bfd_error_system_call);
3281 goto error_return;
3282 }
3283
3284 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3285 {
3286 bfd_set_error (bfd_error_system_call);
3287 goto error_return;
3288 }
3289
3290 if (som_symtab != NULL)
3291 free (som_symtab);
3292 return true;
3293 error_return:
3294 if (som_symtab != NULL)
3295 free (som_symtab);
3296 return false;
3297 }
3298
3299 /* Write an object in SOM format. */
3300
3301 static boolean
3302 som_write_object_contents (abfd)
3303 bfd *abfd;
3304 {
3305 if (abfd->output_has_begun == false)
3306 {
3307 /* Set up fixed parts of the file, space, and subspace headers.
3308 Notify the world that output has begun. */
3309 som_prep_headers (abfd);
3310 abfd->output_has_begun = true;
3311 /* Start writing the object file. This include all the string
3312 tables, fixup streams, and other portions of the object file. */
3313 som_begin_writing (abfd);
3314 }
3315
3316 /* Now that the symbol table information is complete, build and
3317 write the symbol table. */
3318 if (som_build_and_write_symbol_table (abfd) == false)
3319 return false;
3320
3321 /* Compute the checksum for the file header just before writing
3322 the header to disk. */
3323 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3324 return (som_write_headers (abfd));
3325 }
3326
3327 \f
3328 /* Read and save the string table associated with the given BFD. */
3329
3330 static boolean
3331 som_slurp_string_table (abfd)
3332 bfd *abfd;
3333 {
3334 char *stringtab;
3335
3336 /* Use the saved version if its available. */
3337 if (obj_som_stringtab (abfd) != NULL)
3338 return true;
3339
3340 /* Allocate and read in the string table. */
3341 stringtab = bfd_zalloc (abfd, obj_som_stringtab_size (abfd));
3342 if (stringtab == NULL)
3343 {
3344 bfd_set_error (bfd_error_no_memory);
3345 return false;
3346 }
3347
3348 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3349 {
3350 bfd_set_error (bfd_error_system_call);
3351 return false;
3352 }
3353
3354 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3355 != obj_som_stringtab_size (abfd))
3356 {
3357 bfd_set_error (bfd_error_system_call);
3358 return false;
3359 }
3360
3361 /* Save our results and return success. */
3362 obj_som_stringtab (abfd) = stringtab;
3363 return true;
3364 }
3365
3366 /* Return the amount of data (in bytes) required to hold the symbol
3367 table for this object. */
3368
3369 static unsigned int
3370 som_get_symtab_upper_bound (abfd)
3371 bfd *abfd;
3372 {
3373 if (!som_slurp_symbol_table (abfd))
3374 return 0;
3375
3376 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
3377 }
3378
3379 /* Convert from a SOM subspace index to a BFD section. */
3380
3381 static asection *
3382 som_section_from_subspace_index (abfd, index)
3383 bfd *abfd;
3384 unsigned int index;
3385 {
3386 asection *section;
3387
3388 for (section = abfd->sections; section != NULL; section = section->next)
3389 if (som_section_data (section)->subspace_index == index)
3390 return section;
3391
3392 /* Should never happen. */
3393 abort();
3394 }
3395
3396 /* Read and save the symbol table associated with the given BFD. */
3397
3398 static unsigned int
3399 som_slurp_symbol_table (abfd)
3400 bfd *abfd;
3401 {
3402 int symbol_count = bfd_get_symcount (abfd);
3403 int symsize = sizeof (struct symbol_dictionary_record);
3404 char *stringtab;
3405 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
3406 som_symbol_type *sym, *symbase;
3407
3408 /* Return saved value if it exists. */
3409 if (obj_som_symtab (abfd) != NULL)
3410 goto successful_return;
3411
3412 /* Special case. This is *not* an error. */
3413 if (symbol_count == 0)
3414 goto successful_return;
3415
3416 if (!som_slurp_string_table (abfd))
3417 goto error_return;
3418
3419 stringtab = obj_som_stringtab (abfd);
3420
3421 symbase = (som_symbol_type *)
3422 bfd_zalloc (abfd, symbol_count * sizeof (som_symbol_type));
3423 if (symbase == NULL)
3424 {
3425 bfd_set_error (bfd_error_no_memory);
3426 goto error_return;
3427 }
3428
3429 /* Read in the external SOM representation. */
3430 buf = malloc (symbol_count * symsize);
3431 if (buf == NULL)
3432 {
3433 bfd_set_error (bfd_error_no_memory);
3434 goto error_return;
3435 }
3436 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
3437 {
3438 bfd_set_error (bfd_error_system_call);
3439 goto error_return;
3440 }
3441 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
3442 != symbol_count * symsize)
3443 {
3444 bfd_set_error (bfd_error_no_symbols);
3445 goto error_return;
3446 }
3447
3448 /* Iterate over all the symbols and internalize them. */
3449 endbufp = buf + symbol_count;
3450 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
3451 {
3452
3453 /* I don't think we care about these. */
3454 if (bufp->symbol_type == ST_SYM_EXT
3455 || bufp->symbol_type == ST_ARG_EXT)
3456 continue;
3457
3458 /* Set some private data we care about. */
3459 if (bufp->symbol_type == ST_NULL)
3460 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3461 else if (bufp->symbol_type == ST_ABSOLUTE)
3462 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
3463 else if (bufp->symbol_type == ST_DATA)
3464 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
3465 else if (bufp->symbol_type == ST_CODE)
3466 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
3467 else if (bufp->symbol_type == ST_PRI_PROG)
3468 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
3469 else if (bufp->symbol_type == ST_SEC_PROG)
3470 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
3471 else if (bufp->symbol_type == ST_ENTRY)
3472 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
3473 else if (bufp->symbol_type == ST_MILLICODE)
3474 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
3475 else if (bufp->symbol_type == ST_PLABEL)
3476 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
3477 else
3478 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3479 som_symbol_data (sym)->tc_data.hppa_arg_reloc = bufp->arg_reloc;
3480
3481 /* Some reasonable defaults. */
3482 sym->symbol.the_bfd = abfd;
3483 sym->symbol.name = bufp->name.n_strx + stringtab;
3484 sym->symbol.value = bufp->symbol_value;
3485 sym->symbol.section = 0;
3486 sym->symbol.flags = 0;
3487
3488 switch (bufp->symbol_type)
3489 {
3490 case ST_ENTRY:
3491 case ST_PRI_PROG:
3492 case ST_SEC_PROG:
3493 case ST_MILLICODE:
3494 sym->symbol.flags |= BSF_FUNCTION;
3495 sym->symbol.value &= ~0x3;
3496 break;
3497
3498 case ST_STUB:
3499 case ST_CODE:
3500 sym->symbol.value &= ~0x3;
3501
3502 default:
3503 break;
3504 }
3505
3506 /* Handle scoping and section information. */
3507 switch (bufp->symbol_scope)
3508 {
3509 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
3510 so the section associated with this symbol can't be known. */
3511 case SS_EXTERNAL:
3512 case SS_UNSAT:
3513 if (bufp->symbol_type != ST_STORAGE)
3514 sym->symbol.section = &bfd_und_section;
3515 else
3516 sym->symbol.section = &bfd_com_section;
3517 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3518 break;
3519
3520 case SS_UNIVERSAL:
3521 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3522 sym->symbol.section
3523 = som_section_from_subspace_index (abfd, bufp->symbol_info);
3524 sym->symbol.value -= sym->symbol.section->vma;
3525 break;
3526
3527 #if 0
3528 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
3529 Sound dumb? It is. */
3530 case SS_GLOBAL:
3531 #endif
3532 case SS_LOCAL:
3533 sym->symbol.flags |= BSF_LOCAL;
3534 sym->symbol.section
3535 = som_section_from_subspace_index (abfd, bufp->symbol_info);
3536 sym->symbol.value -= sym->symbol.section->vma;
3537 break;
3538 }
3539
3540 /* Mark symbols left around by the debugger. */
3541 if (strlen (sym->symbol.name) >= 2
3542 && sym->symbol.name[0] == 'L'
3543 && (sym->symbol.name[1] == '$' || sym->symbol.name[2] == '$'
3544 || sym->symbol.name[3] == '$'))
3545 sym->symbol.flags |= BSF_DEBUGGING;
3546
3547 /* Note increment at bottom of loop, since we skip some symbols
3548 we can not include it as part of the for statement. */
3549 sym++;
3550 }
3551
3552 /* Save our results and return success. */
3553 obj_som_symtab (abfd) = symbase;
3554 successful_return:
3555 if (buf != NULL)
3556 free (buf);
3557 return (true);
3558
3559 error_return:
3560 if (buf != NULL)
3561 free (buf);
3562 return false;
3563 }
3564
3565 /* Canonicalize a SOM symbol table. Return the number of entries
3566 in the symbol table. */
3567
3568 static unsigned int
3569 som_get_symtab (abfd, location)
3570 bfd *abfd;
3571 asymbol **location;
3572 {
3573 int i;
3574 som_symbol_type *symbase;
3575
3576 if (!som_slurp_symbol_table (abfd))
3577 return 0;
3578
3579 i = bfd_get_symcount (abfd);
3580 symbase = obj_som_symtab (abfd);
3581
3582 for (; i > 0; i--, location++, symbase++)
3583 *location = &symbase->symbol;
3584
3585 /* Final null pointer. */
3586 *location = 0;
3587 return (bfd_get_symcount (abfd));
3588 }
3589
3590 /* Make a SOM symbol. There is nothing special to do here. */
3591
3592 static asymbol *
3593 som_make_empty_symbol (abfd)
3594 bfd *abfd;
3595 {
3596 som_symbol_type *new =
3597 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
3598 if (new == NULL)
3599 {
3600 bfd_set_error (bfd_error_no_memory);
3601 return 0;
3602 }
3603 new->symbol.the_bfd = abfd;
3604
3605 return &new->symbol;
3606 }
3607
3608 /* Print symbol information. */
3609
3610 static void
3611 som_print_symbol (ignore_abfd, afile, symbol, how)
3612 bfd *ignore_abfd;
3613 PTR afile;
3614 asymbol *symbol;
3615 bfd_print_symbol_type how;
3616 {
3617 FILE *file = (FILE *) afile;
3618 switch (how)
3619 {
3620 case bfd_print_symbol_name:
3621 fprintf (file, "%s", symbol->name);
3622 break;
3623 case bfd_print_symbol_more:
3624 fprintf (file, "som ");
3625 fprintf_vma (file, symbol->value);
3626 fprintf (file, " %lx", (long) symbol->flags);
3627 break;
3628 case bfd_print_symbol_all:
3629 {
3630 CONST char *section_name;
3631 section_name = symbol->section ? symbol->section->name : "(*none*)";
3632 bfd_print_symbol_vandf ((PTR) file, symbol);
3633 fprintf (file, " %s\t%s", section_name, symbol->name);
3634 break;
3635 }
3636 }
3637 }
3638
3639 /* Count or process variable-length SOM fixup records.
3640
3641 To avoid code duplication we use this code both to compute the number
3642 of relocations requested by a stream, and to internalize the stream.
3643
3644 When computing the number of relocations requested by a stream the
3645 variables rptr, section, and symbols have no meaning.
3646
3647 Return the number of relocations requested by the fixup stream. When
3648 not just counting
3649
3650 This needs at least two or three more passes to get it cleaned up. */
3651
3652 static unsigned int
3653 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
3654 unsigned char *fixup;
3655 unsigned int end;
3656 arelent *internal_relocs;
3657 asection *section;
3658 asymbol **symbols;
3659 boolean just_count;
3660 {
3661 unsigned int op, varname;
3662 unsigned char *end_fixups = &fixup[end];
3663 const struct fixup_format *fp;
3664 char *cp;
3665 unsigned char *save_fixup;
3666 int variables[26], stack[20], c, v, count, prev_fixup, *sp;
3667 const int *subop;
3668 arelent *rptr= internal_relocs;
3669 unsigned int offset = just_count ? 0 : section->vma;
3670
3671 #define var(c) variables[(c) - 'A']
3672 #define push(v) (*sp++ = (v))
3673 #define pop() (*--sp)
3674 #define emptystack() (sp == stack)
3675
3676 som_initialize_reloc_queue (reloc_queue);
3677 memset (variables, 0, sizeof (variables));
3678 memset (stack, 0, sizeof (stack));
3679 count = 0;
3680 prev_fixup = 0;
3681 sp = stack;
3682
3683 while (fixup < end_fixups)
3684 {
3685
3686 /* Save pointer to the start of this fixup. We'll use
3687 it later to determine if it is necessary to put this fixup
3688 on the queue. */
3689 save_fixup = fixup;
3690
3691 /* Get the fixup code and its associated format. */
3692 op = *fixup++;
3693 fp = &som_fixup_formats[op];
3694
3695 /* Handle a request for a previous fixup. */
3696 if (*fp->format == 'P')
3697 {
3698 /* Get pointer to the beginning of the prev fixup, move
3699 the repeated fixup to the head of the queue. */
3700 fixup = reloc_queue[fp->D].reloc;
3701 som_reloc_queue_fix (reloc_queue, fp->D);
3702 prev_fixup = 1;
3703
3704 /* Get the fixup code and its associated format. */
3705 op = *fixup++;
3706 fp = &som_fixup_formats[op];
3707 }
3708
3709 /* If we are not just counting, set some reasonable defaults. */
3710 if (! just_count)
3711 {
3712 rptr->address = offset;
3713 rptr->howto = &som_hppa_howto_table[op];
3714 rptr->addend = 0;
3715 rptr->sym_ptr_ptr = bfd_abs_section.symbol_ptr_ptr;
3716 }
3717
3718 /* Set default input length to 0. Get the opcode class index
3719 into D. */
3720 var ('L') = 0;
3721 var ('D') = fp->D;
3722
3723 /* Get the opcode format. */
3724 cp = fp->format;
3725
3726 /* Process the format string. Parsing happens in two phases,
3727 parse RHS, then assign to LHS. Repeat until no more
3728 characters in the format string. */
3729 while (*cp)
3730 {
3731 /* The variable this pass is going to compute a value for. */
3732 varname = *cp++;
3733
3734 /* Start processing RHS. Continue until a NULL or '=' is found. */
3735 do
3736 {
3737 c = *cp++;
3738
3739 /* If this is a variable, push it on the stack. */
3740 if (isupper (c))
3741 push (var (c));
3742
3743 /* If this is a lower case letter, then it represents
3744 additional data from the fixup stream to be pushed onto
3745 the stack. */
3746 else if (islower (c))
3747 {
3748 for (v = 0; c > 'a'; --c)
3749 v = (v << 8) | *fixup++;
3750 push (v);
3751 }
3752
3753 /* A decimal constant. Push it on the stack. */
3754 else if (isdigit (c))
3755 {
3756 v = c - '0';
3757 while (isdigit (*cp))
3758 v = (v * 10) + (*cp++ - '0');
3759 push (v);
3760 }
3761 else
3762
3763 /* An operator. Pop two two values from the stack and
3764 use them as operands to the given operation. Push
3765 the result of the operation back on the stack. */
3766 switch (c)
3767 {
3768 case '+':
3769 v = pop ();
3770 v += pop ();
3771 push (v);
3772 break;
3773 case '*':
3774 v = pop ();
3775 v *= pop ();
3776 push (v);
3777 break;
3778 case '<':
3779 v = pop ();
3780 v = pop () << v;
3781 push (v);
3782 break;
3783 default:
3784 abort ();
3785 }
3786 }
3787 while (*cp && *cp != '=');
3788
3789 /* Move over the equal operator. */
3790 cp++;
3791
3792 /* Pop the RHS off the stack. */
3793 c = pop ();
3794
3795 /* Perform the assignment. */
3796 var (varname) = c;
3797
3798 /* Handle side effects. and special 'O' stack cases. */
3799 switch (varname)
3800 {
3801 /* Consume some bytes from the input space. */
3802 case 'L':
3803 offset += c;
3804 break;
3805 /* A symbol to use in the relocation. Make a note
3806 of this if we are not just counting. */
3807 case 'S':
3808 if (! just_count)
3809 rptr->sym_ptr_ptr = &symbols[c];
3810 break;
3811 /* Handle the linker expression stack. */
3812 case 'O':
3813 switch (op)
3814 {
3815 case R_COMP1:
3816 subop = comp1_opcodes;
3817 break;
3818 case R_COMP2:
3819 subop = comp2_opcodes;
3820 break;
3821 case R_COMP3:
3822 subop = comp3_opcodes;
3823 break;
3824 default:
3825 abort ();
3826 }
3827 while (*subop <= (unsigned char) c)
3828 ++subop;
3829 --subop;
3830 break;
3831 default:
3832 break;
3833 }
3834 }
3835
3836 /* If we used a previous fixup, clean up after it. */
3837 if (prev_fixup)
3838 {
3839 fixup = save_fixup + 1;
3840 prev_fixup = 0;
3841 }
3842 /* Queue it. */
3843 else if (fixup > save_fixup + 1)
3844 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
3845
3846 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
3847 fixups to BFD. */
3848 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
3849 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
3850 {
3851 /* Done with a single reloction. Loop back to the top. */
3852 if (! just_count)
3853 {
3854 rptr->addend = var ('V');
3855 rptr++;
3856 }
3857 count++;
3858 /* Now that we've handled a "full" relocation, reset
3859 some state. */
3860 memset (variables, 0, sizeof (variables));
3861 memset (stack, 0, sizeof (stack));
3862 }
3863 }
3864 return count;
3865
3866 #undef var
3867 #undef push
3868 #undef pop
3869 #undef emptystack
3870 }
3871
3872 /* Read in the relocs (aka fixups in SOM terms) for a section.
3873
3874 som_get_reloc_upper_bound calls this routine with JUST_COUNT
3875 set to true to indicate it only needs a count of the number
3876 of actual relocations. */
3877
3878 static boolean
3879 som_slurp_reloc_table (abfd, section, symbols, just_count)
3880 bfd *abfd;
3881 asection *section;
3882 asymbol **symbols;
3883 boolean just_count;
3884 {
3885 char *external_relocs;
3886 unsigned int fixup_stream_size;
3887 arelent *internal_relocs;
3888 unsigned int num_relocs;
3889
3890 fixup_stream_size = som_section_data (section)->reloc_size;
3891 /* If there were no relocations, then there is nothing to do. */
3892 if (section->reloc_count == 0)
3893 return true;
3894
3895 /* If reloc_count is -1, then the relocation stream has not been
3896 parsed. We must do so now to know how many relocations exist. */
3897 if (section->reloc_count == -1)
3898 {
3899 external_relocs = (char *) bfd_zalloc (abfd, fixup_stream_size);
3900 if (external_relocs == (char *) NULL)
3901 {
3902 bfd_set_error (bfd_error_no_memory);
3903 return false;
3904 }
3905 /* Read in the external forms. */
3906 if (bfd_seek (abfd,
3907 obj_som_reloc_filepos (abfd) + section->rel_filepos,
3908 SEEK_SET)
3909 != 0)
3910 {
3911 bfd_set_error (bfd_error_system_call);
3912 return false;
3913 }
3914 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
3915 != fixup_stream_size)
3916 {
3917 bfd_set_error (bfd_error_system_call);
3918 return false;
3919 }
3920 /* Let callers know how many relocations found.
3921 also save the relocation stream as we will
3922 need it again. */
3923 section->reloc_count = som_set_reloc_info (external_relocs,
3924 fixup_stream_size,
3925 NULL, NULL, NULL, true);
3926
3927 som_section_data (section)->reloc_stream = external_relocs;
3928 }
3929
3930 /* If the caller only wanted a count, then return now. */
3931 if (just_count)
3932 return true;
3933
3934 num_relocs = section->reloc_count;
3935 external_relocs = som_section_data (section)->reloc_stream;
3936 /* Return saved information about the relocations if it is available. */
3937 if (section->relocation != (arelent *) NULL)
3938 return true;
3939
3940 internal_relocs = (arelent *) bfd_zalloc (abfd,
3941 num_relocs * sizeof (arelent));
3942 if (internal_relocs == (arelent *) NULL)
3943 {
3944 bfd_set_error (bfd_error_no_memory);
3945 return false;
3946 }
3947
3948 /* Process and internalize the relocations. */
3949 som_set_reloc_info (external_relocs, fixup_stream_size,
3950 internal_relocs, section, symbols, false);
3951
3952 /* Save our results and return success. */
3953 section->relocation = internal_relocs;
3954 return (true);
3955 }
3956
3957 /* Return the number of bytes required to store the relocation
3958 information associated with the given section. */
3959
3960 static unsigned int
3961 som_get_reloc_upper_bound (abfd, asect)
3962 bfd *abfd;
3963 sec_ptr asect;
3964 {
3965 /* If section has relocations, then read in the relocation stream
3966 and parse it to determine how many relocations exist. */
3967 if (asect->flags & SEC_RELOC)
3968 {
3969 if (som_slurp_reloc_table (abfd, asect, NULL, true))
3970 return (asect->reloc_count + 1) * sizeof (arelent);
3971 }
3972 /* Either there are no relocations or an error occurred while
3973 reading and parsing the relocation stream. */
3974 return 0;
3975 }
3976
3977 /* Convert relocations from SOM (external) form into BFD internal
3978 form. Return the number of relocations. */
3979
3980 static unsigned int
3981 som_canonicalize_reloc (abfd, section, relptr, symbols)
3982 bfd *abfd;
3983 sec_ptr section;
3984 arelent **relptr;
3985 asymbol **symbols;
3986 {
3987 arelent *tblptr;
3988 int count;
3989
3990 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
3991 return 0;
3992
3993 count = section->reloc_count;
3994 tblptr = section->relocation;
3995 if (tblptr == (arelent *) NULL)
3996 return 0;
3997
3998 while (count--)
3999 *relptr++ = tblptr++;
4000
4001 *relptr = (arelent *) NULL;
4002 return section->reloc_count;
4003 }
4004
4005 extern bfd_target som_vec;
4006
4007 /* A hook to set up object file dependent section information. */
4008
4009 static boolean
4010 som_new_section_hook (abfd, newsect)
4011 bfd *abfd;
4012 asection *newsect;
4013 {
4014 newsect->used_by_bfd =
4015 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
4016 if (!newsect->used_by_bfd)
4017 {
4018 bfd_set_error (bfd_error_no_memory);
4019 return false;
4020 }
4021 newsect->alignment_power = 3;
4022
4023 /* Initialize the subspace_index field to -1 so that it does
4024 not match a subspace with an index of 0. */
4025 som_section_data (newsect)->subspace_index = -1;
4026
4027 /* We allow more than three sections internally */
4028 return true;
4029 }
4030
4031 /* Set backend info for sections which can not be described
4032 in the BFD data structures. */
4033
4034 void
4035 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
4036 asection *section;
4037 int defined;
4038 int private;
4039 unsigned int sort_key;
4040 int spnum;
4041 {
4042 struct space_dictionary_record *space_dict;
4043
4044 som_section_data (section)->is_space = 1;
4045 space_dict = &som_section_data (section)->space_dict;
4046 space_dict->is_defined = defined;
4047 space_dict->is_private = private;
4048 space_dict->sort_key = sort_key;
4049 space_dict->space_number = spnum;
4050 }
4051
4052 /* Set backend info for subsections which can not be described
4053 in the BFD data structures. */
4054
4055 void
4056 bfd_som_set_subsection_attributes (section, container, access,
4057 sort_key, quadrant)
4058 asection *section;
4059 asection *container;
4060 int access;
4061 unsigned int sort_key;
4062 int quadrant;
4063 {
4064 struct subspace_dictionary_record *subspace_dict;
4065 som_section_data (section)->is_subspace = 1;
4066 subspace_dict = &som_section_data (section)->subspace_dict;
4067 subspace_dict->access_control_bits = access;
4068 subspace_dict->sort_key = sort_key;
4069 subspace_dict->quadrant = quadrant;
4070 som_section_data (section)->containing_space = container;
4071 }
4072
4073 /* Set the full SOM symbol type. SOM needs far more symbol information
4074 than any other object file format I'm aware of. It is mandatory
4075 to be able to know if a symbol is an entry point, millicode, data,
4076 code, absolute, storage request, or procedure label. If you get
4077 the symbol type wrong your program will not link. */
4078
4079 void
4080 bfd_som_set_symbol_type (symbol, type)
4081 asymbol *symbol;
4082 unsigned int type;
4083 {
4084 som_symbol_data (symbol)->som_type = type;
4085 }
4086
4087 /* Attach 64bits of unwind information to a symbol (which hopefully
4088 is a function of some kind!). It would be better to keep this
4089 in the R_ENTRY relocation, but there is not enough space. */
4090
4091 void
4092 bfd_som_attach_unwind_info (symbol, unwind_desc)
4093 asymbol *symbol;
4094 char *unwind_desc;
4095 {
4096 som_symbol_data (symbol)->unwind = unwind_desc;
4097 }
4098
4099 /* Attach an auxiliary header to the BFD backend so that it may be
4100 written into the object file. */
4101 boolean
4102 bfd_som_attach_aux_hdr (abfd, type, string)
4103 bfd *abfd;
4104 int type;
4105 char *string;
4106 {
4107 if (type == VERSION_AUX_ID)
4108 {
4109 int len = strlen (string);
4110 int pad = 0;
4111
4112 if (len % 4)
4113 pad = (4 - (len % 4));
4114 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
4115 bfd_zalloc (abfd, sizeof (struct aux_id)
4116 + sizeof (unsigned int) + len + pad);
4117 if (!obj_som_version_hdr (abfd))
4118 {
4119 bfd_set_error (bfd_error_no_memory);
4120 return false;
4121 }
4122 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
4123 obj_som_version_hdr (abfd)->header_id.length = len + pad;
4124 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
4125 obj_som_version_hdr (abfd)->string_length = len;
4126 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
4127 }
4128 else if (type == COPYRIGHT_AUX_ID)
4129 {
4130 int len = strlen (string);
4131 int pad = 0;
4132
4133 if (len % 4)
4134 pad = (4 - (len % 4));
4135 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
4136 bfd_zalloc (abfd, sizeof (struct aux_id)
4137 + sizeof (unsigned int) + len + pad);
4138 if (!obj_som_copyright_hdr (abfd))
4139 {
4140 bfd_set_error (bfd_error_no_error);
4141 return false;
4142 }
4143 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
4144 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
4145 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
4146 obj_som_copyright_hdr (abfd)->string_length = len;
4147 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
4148 }
4149 return true;
4150 }
4151
4152 static boolean
4153 som_set_section_contents (abfd, section, location, offset, count)
4154 bfd *abfd;
4155 sec_ptr section;
4156 PTR location;
4157 file_ptr offset;
4158 bfd_size_type count;
4159 {
4160 if (abfd->output_has_begun == false)
4161 {
4162 /* Set up fixed parts of the file, space, and subspace headers.
4163 Notify the world that output has begun. */
4164 som_prep_headers (abfd);
4165 abfd->output_has_begun = true;
4166 /* Start writing the object file. This include all the string
4167 tables, fixup streams, and other portions of the object file. */
4168 som_begin_writing (abfd);
4169 }
4170
4171 /* Only write subspaces which have "real" contents (eg. the contents
4172 are not generated at run time by the OS). */
4173 if (som_section_data (section)->is_subspace != 1
4174 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4175 return true;
4176
4177 /* Seek to the proper offset within the object file and write the
4178 data. */
4179 offset += som_section_data (section)->subspace_dict.file_loc_init_value;
4180 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
4181 {
4182 bfd_set_error (bfd_error_system_call);
4183 return false;
4184 }
4185
4186 if (bfd_write ((PTR) location, 1, count, abfd) != count)
4187 {
4188 bfd_set_error (bfd_error_system_call);
4189 return false;
4190 }
4191 return true;
4192 }
4193
4194 static boolean
4195 som_set_arch_mach (abfd, arch, machine)
4196 bfd *abfd;
4197 enum bfd_architecture arch;
4198 unsigned long machine;
4199 {
4200 /* Allow any architecture to be supported by the SOM backend */
4201 return bfd_default_set_arch_mach (abfd, arch, machine);
4202 }
4203
4204 static boolean
4205 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4206 functionname_ptr, line_ptr)
4207 bfd *abfd;
4208 asection *section;
4209 asymbol **symbols;
4210 bfd_vma offset;
4211 CONST char **filename_ptr;
4212 CONST char **functionname_ptr;
4213 unsigned int *line_ptr;
4214 {
4215 fprintf (stderr, "som_find_nearest_line unimplemented\n");
4216 fflush (stderr);
4217 abort ();
4218 return (false);
4219 }
4220
4221 static int
4222 som_sizeof_headers (abfd, reloc)
4223 bfd *abfd;
4224 boolean reloc;
4225 {
4226 fprintf (stderr, "som_sizeof_headers unimplemented\n");
4227 fflush (stderr);
4228 abort ();
4229 return (0);
4230 }
4231
4232 /* Return the single-character symbol type corresponding to
4233 SOM section S, or '?' for an unknown SOM section. */
4234
4235 static char
4236 som_section_type (s)
4237 const char *s;
4238 {
4239 const struct section_to_type *t;
4240
4241 for (t = &stt[0]; t->section; t++)
4242 if (!strcmp (s, t->section))
4243 return t->type;
4244 return '?';
4245 }
4246
4247 static int
4248 som_decode_symclass (symbol)
4249 asymbol *symbol;
4250 {
4251 char c;
4252
4253 if (bfd_is_com_section (symbol->section))
4254 return 'C';
4255 if (symbol->section == &bfd_und_section)
4256 return 'U';
4257 if (symbol->section == &bfd_ind_section)
4258 return 'I';
4259 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
4260 return '?';
4261
4262 if (symbol->section == &bfd_abs_section)
4263 c = 'a';
4264 else if (symbol->section)
4265 c = som_section_type (symbol->section->name);
4266 else
4267 return '?';
4268 if (symbol->flags & BSF_GLOBAL)
4269 c = toupper (c);
4270 return c;
4271 }
4272
4273 /* Return information about SOM symbol SYMBOL in RET. */
4274
4275 static void
4276 som_get_symbol_info (ignore_abfd, symbol, ret)
4277 bfd *ignore_abfd;
4278 asymbol *symbol;
4279 symbol_info *ret;
4280 {
4281 ret->type = som_decode_symclass (symbol);
4282 if (ret->type != 'U')
4283 ret->value = symbol->value+symbol->section->vma;
4284 else
4285 ret->value = 0;
4286 ret->name = symbol->name;
4287 }
4288
4289 /* Count the number of symbols in the archive symbol table. Necessary
4290 so that we can allocate space for all the carsyms at once. */
4291
4292 static boolean
4293 som_bfd_count_ar_symbols (abfd, lst_header, count)
4294 bfd *abfd;
4295 struct lst_header *lst_header;
4296 symindex *count;
4297 {
4298 unsigned int i;
4299 unsigned int *hash_table = NULL;
4300 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4301
4302 hash_table =
4303 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4304 if (hash_table == NULL)
4305 {
4306 bfd_set_error (bfd_error_no_memory);
4307 goto error_return;
4308 }
4309
4310 /* Don't forget to initialize the counter! */
4311 *count = 0;
4312
4313 /* Read in the hash table. The has table is an array of 32bit file offsets
4314 which point to the hash chains. */
4315 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4316 != lst_header->hash_size * 4)
4317 {
4318 bfd_set_error (bfd_error_system_call);
4319 goto error_return;
4320 }
4321
4322 /* Walk each chain counting the number of symbols found on that particular
4323 chain. */
4324 for (i = 0; i < lst_header->hash_size; i++)
4325 {
4326 struct lst_symbol_record lst_symbol;
4327
4328 /* An empty chain has zero as it's file offset. */
4329 if (hash_table[i] == 0)
4330 continue;
4331
4332 /* Seek to the first symbol in this hash chain. */
4333 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4334 {
4335 bfd_set_error (bfd_error_system_call);
4336 goto error_return;
4337 }
4338
4339 /* Read in this symbol and update the counter. */
4340 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4341 != sizeof (lst_symbol))
4342 {
4343 bfd_set_error (bfd_error_system_call);
4344 goto error_return;
4345 }
4346 (*count)++;
4347
4348 /* Now iterate through the rest of the symbols on this chain. */
4349 while (lst_symbol.next_entry)
4350 {
4351
4352 /* Seek to the next symbol. */
4353 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4354 < 0)
4355 {
4356 bfd_set_error (bfd_error_system_call);
4357 goto error_return;
4358 }
4359
4360 /* Read the symbol in and update the counter. */
4361 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4362 != sizeof (lst_symbol))
4363 {
4364 bfd_set_error (bfd_error_system_call);
4365 goto error_return;
4366 }
4367 (*count)++;
4368 }
4369 }
4370 if (hash_table != NULL)
4371 free (hash_table);
4372 return true;
4373
4374 error_return:
4375 if (hash_table != NULL)
4376 free (hash_table);
4377 return false;
4378 }
4379
4380 /* Fill in the canonical archive symbols (SYMS) from the archive described
4381 by ABFD and LST_HEADER. */
4382
4383 static boolean
4384 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
4385 bfd *abfd;
4386 struct lst_header *lst_header;
4387 carsym **syms;
4388 {
4389 unsigned int i, len;
4390 carsym *set = syms[0];
4391 unsigned int *hash_table = NULL;
4392 struct som_entry *som_dict = NULL;
4393 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4394
4395 hash_table =
4396 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4397 if (hash_table == NULL)
4398 {
4399 bfd_set_error (bfd_error_no_memory);
4400 goto error_return;
4401 }
4402
4403 som_dict =
4404 (struct som_entry *) malloc (lst_header->module_count
4405 * sizeof (struct som_entry));
4406 if (som_dict == NULL)
4407 {
4408 bfd_set_error (bfd_error_no_memory);
4409 goto error_return;
4410 }
4411
4412 /* Read in the hash table. The has table is an array of 32bit file offsets
4413 which point to the hash chains. */
4414 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4415 != lst_header->hash_size * 4)
4416 {
4417 bfd_set_error (bfd_error_system_call);
4418 goto error_return;
4419 }
4420
4421 /* Seek to and read in the SOM dictionary. We will need this to fill
4422 in the carsym's filepos field. */
4423 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
4424 {
4425 bfd_set_error (bfd_error_system_call);
4426 goto error_return;
4427 }
4428
4429 if (bfd_read ((PTR) som_dict, lst_header->module_count,
4430 sizeof (struct som_entry), abfd)
4431 != lst_header->module_count * sizeof (struct som_entry))
4432 {
4433 bfd_set_error (bfd_error_system_call);
4434 goto error_return;
4435 }
4436
4437 /* Walk each chain filling in the carsyms as we go along. */
4438 for (i = 0; i < lst_header->hash_size; i++)
4439 {
4440 struct lst_symbol_record lst_symbol;
4441
4442 /* An empty chain has zero as it's file offset. */
4443 if (hash_table[i] == 0)
4444 continue;
4445
4446 /* Seek to and read the first symbol on the chain. */
4447 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4448 {
4449 bfd_set_error (bfd_error_system_call);
4450 goto error_return;
4451 }
4452
4453 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4454 != sizeof (lst_symbol))
4455 {
4456 bfd_set_error (bfd_error_system_call);
4457 goto error_return;
4458 }
4459
4460 /* Get the name of the symbol, first get the length which is stored
4461 as a 32bit integer just before the symbol.
4462
4463 One might ask why we don't just read in the entire string table
4464 and index into it. Well, according to the SOM ABI the string
4465 index can point *anywhere* in the archive to save space, so just
4466 using the string table would not be safe. */
4467 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4468 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4469 {
4470 bfd_set_error (bfd_error_system_call);
4471 goto error_return;
4472 }
4473
4474 if (bfd_read (&len, 1, 4, abfd) != 4)
4475 {
4476 bfd_set_error (bfd_error_system_call);
4477 goto error_return;
4478 }
4479
4480 /* Allocate space for the name and null terminate it too. */
4481 set->name = bfd_zalloc (abfd, len + 1);
4482 if (!set->name)
4483 {
4484 bfd_set_error (bfd_error_no_memory);
4485 goto error_return;
4486 }
4487 if (bfd_read (set->name, 1, len, abfd) != len)
4488 {
4489 bfd_set_error (bfd_error_system_call);
4490 goto error_return;
4491 }
4492 set->name[len] = 0;
4493
4494 /* Fill in the file offset. Note that the "location" field points
4495 to the SOM itself, not the ar_hdr in front of it. */
4496 set->file_offset = som_dict[lst_symbol.som_index].location
4497 - sizeof (struct ar_hdr);
4498
4499 /* Go to the next symbol. */
4500 set++;
4501
4502 /* Iterate through the rest of the chain. */
4503 while (lst_symbol.next_entry)
4504 {
4505 /* Seek to the next symbol and read it in. */
4506 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4507 < 0)
4508 {
4509 bfd_set_error (bfd_error_system_call);
4510 goto error_return;
4511 }
4512
4513 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4514 != sizeof (lst_symbol))
4515 {
4516 bfd_set_error (bfd_error_system_call);
4517 goto error_return;
4518 }
4519
4520 /* Seek to the name length & string and read them in. */
4521 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4522 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4523 {
4524 bfd_set_error (bfd_error_system_call);
4525 goto error_return;
4526 }
4527
4528 if (bfd_read (&len, 1, 4, abfd) != 4)
4529 {
4530 bfd_set_error (bfd_error_system_call);
4531 goto error_return;
4532 }
4533
4534 /* Allocate space for the name and null terminate it too. */
4535 set->name = bfd_zalloc (abfd, len + 1);
4536 if (!set->name)
4537 {
4538 bfd_set_error (bfd_error_no_memory);
4539 goto error_return;
4540 }
4541 if (bfd_read (set->name, 1, len, abfd) != len)
4542 {
4543 bfd_set_error (bfd_error_system_call);
4544 goto error_return;
4545 }
4546 set->name[len] = 0;
4547
4548 /* Fill in the file offset. Note that the "location" field points
4549 to the SOM itself, not the ar_hdr in front of it. */
4550 set->file_offset = som_dict[lst_symbol.som_index].location
4551 - sizeof (struct ar_hdr);
4552
4553 /* Go on to the next symbol. */
4554 set++;
4555 }
4556 }
4557 /* If we haven't died by now, then we successfully read the entire
4558 archive symbol table. */
4559 if (hash_table != NULL)
4560 free (hash_table);
4561 if (som_dict != NULL)
4562 free (som_dict);
4563 return true;
4564
4565 error_return:
4566 if (hash_table != NULL)
4567 free (hash_table);
4568 if (som_dict != NULL)
4569 free (som_dict);
4570 return false;
4571 }
4572
4573 /* Read in the LST from the archive. */
4574 static boolean
4575 som_slurp_armap (abfd)
4576 bfd *abfd;
4577 {
4578 struct lst_header lst_header;
4579 struct ar_hdr ar_header;
4580 unsigned int parsed_size;
4581 struct artdata *ardata = bfd_ardata (abfd);
4582 char nextname[17];
4583 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
4584
4585 /* Special cases. */
4586 if (i == 0)
4587 return true;
4588 if (i != 16)
4589 return false;
4590
4591 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
4592 {
4593 bfd_set_error (bfd_error_system_call);
4594 return false;
4595 }
4596
4597 /* For archives without .o files there is no symbol table. */
4598 if (strncmp (nextname, "/ ", 16))
4599 {
4600 bfd_has_map (abfd) = false;
4601 return true;
4602 }
4603
4604 /* Read in and sanity check the archive header. */
4605 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
4606 != sizeof (struct ar_hdr))
4607 {
4608 bfd_set_error (bfd_error_system_call);
4609 return false;
4610 }
4611
4612 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
4613 {
4614 bfd_set_error (bfd_error_malformed_archive);
4615 return false;
4616 }
4617
4618 /* How big is the archive symbol table entry? */
4619 errno = 0;
4620 parsed_size = strtol (ar_header.ar_size, NULL, 10);
4621 if (errno != 0)
4622 {
4623 bfd_set_error (bfd_error_malformed_archive);
4624 return false;
4625 }
4626
4627 /* Save off the file offset of the first real user data. */
4628 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
4629
4630 /* Read in the library symbol table. We'll make heavy use of this
4631 in just a minute. */
4632 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
4633 != sizeof (struct lst_header))
4634 {
4635 bfd_set_error (bfd_error_system_call);
4636 return false;
4637 }
4638
4639 /* Sanity check. */
4640 if (lst_header.a_magic != LIBMAGIC)
4641 {
4642 bfd_set_error (bfd_error_malformed_archive);
4643 return false;
4644 }
4645
4646 /* Count the number of symbols in the library symbol table. */
4647 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
4648 == false)
4649 return false;
4650
4651 /* Get back to the start of the library symbol table. */
4652 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
4653 + sizeof (struct lst_header), SEEK_SET) < 0)
4654 {
4655 bfd_set_error (bfd_error_system_call);
4656 return false;
4657 }
4658
4659 /* Initializae the cache and allocate space for the library symbols. */
4660 ardata->cache = 0;
4661 ardata->symdefs = (carsym *) bfd_alloc (abfd,
4662 (ardata->symdef_count
4663 * sizeof (carsym)));
4664 if (!ardata->symdefs)
4665 {
4666 bfd_set_error (bfd_error_no_memory);
4667 return false;
4668 }
4669
4670 /* Now fill in the canonical archive symbols. */
4671 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
4672 == false)
4673 return false;
4674
4675 /* Notify the generic archive code that we have a symbol map. */
4676 bfd_has_map (abfd) = true;
4677 return true;
4678 }
4679
4680 /* Begin preparing to write a SOM library symbol table.
4681
4682 As part of the prep work we need to determine the number of symbols
4683 and the size of the associated string section. */
4684
4685 static boolean
4686 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
4687 bfd *abfd;
4688 unsigned int *num_syms, *stringsize;
4689 {
4690 bfd *curr_bfd = abfd->archive_head;
4691
4692 /* Some initialization. */
4693 *num_syms = 0;
4694 *stringsize = 0;
4695
4696 /* Iterate over each BFD within this archive. */
4697 while (curr_bfd != NULL)
4698 {
4699 unsigned int curr_count, i;
4700 som_symbol_type *sym;
4701
4702 /* Make sure the symbol table has been read, then snag a pointer
4703 to it. It's a little slimey to grab the symbols via obj_som_symtab,
4704 but doing so avoids allocating lots of extra memory. */
4705 if (som_slurp_symbol_table (curr_bfd) == false)
4706 return false;
4707
4708 sym = obj_som_symtab (curr_bfd);
4709 curr_count = bfd_get_symcount (curr_bfd);
4710
4711 /* Examine each symbol to determine if it belongs in the
4712 library symbol table. */
4713 for (i = 0; i < curr_count; i++, sym++)
4714 {
4715 struct som_misc_symbol_info info;
4716
4717 /* Derive SOM information from the BFD symbol. */
4718 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
4719
4720 /* Should we include this symbol? */
4721 if (info.symbol_type == ST_NULL
4722 || info.symbol_type == ST_SYM_EXT
4723 || info.symbol_type == ST_ARG_EXT)
4724 continue;
4725
4726 /* Only global symbols and unsatisfied commons. */
4727 if (info.symbol_scope != SS_UNIVERSAL
4728 && info.symbol_type != ST_STORAGE)
4729 continue;
4730
4731 /* Do no include undefined symbols. */
4732 if (sym->symbol.section == &bfd_und_section)
4733 continue;
4734
4735 /* Bump the various counters, being careful to honor
4736 alignment considerations in the string table. */
4737 (*num_syms)++;
4738 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
4739 while (*stringsize % 4)
4740 (*stringsize)++;
4741 }
4742
4743 curr_bfd = curr_bfd->next;
4744 }
4745 return true;
4746 }
4747
4748 /* Hash a symbol name based on the hashing algorithm presented in the
4749 SOM ABI. */
4750 static unsigned int
4751 som_bfd_ar_symbol_hash (symbol)
4752 asymbol *symbol;
4753 {
4754 unsigned int len = strlen (symbol->name);
4755
4756 /* Names with length 1 are special. */
4757 if (len == 1)
4758 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
4759
4760 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
4761 | (symbol->name[len-2] << 8) | symbol->name[len-1];
4762 }
4763
4764 /* Do the bulk of the work required to write the SOM library
4765 symbol table. */
4766
4767 static boolean
4768 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst)
4769 bfd *abfd;
4770 unsigned int nsyms, string_size;
4771 struct lst_header lst;
4772 {
4773 file_ptr lst_filepos;
4774 char *strings = NULL, *p;
4775 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
4776 bfd *curr_bfd = abfd->archive_head;
4777 unsigned int *hash_table = NULL;
4778 struct som_entry *som_dict = NULL;
4779 struct lst_symbol_record **last_hash_entry = NULL;
4780 unsigned int curr_som_offset, som_index;
4781
4782 hash_table =
4783 (unsigned int *) malloc (lst.hash_size * sizeof (unsigned int));
4784 if (hash_table == NULL)
4785 {
4786 bfd_set_error (bfd_error_no_memory);
4787 goto error_return;
4788 }
4789 som_dict =
4790 (struct som_entry *) malloc (lst.module_count
4791 * sizeof (struct som_entry));
4792 if (som_dict == NULL)
4793 {
4794 bfd_set_error (bfd_error_no_memory);
4795 goto error_return;
4796 }
4797
4798 last_hash_entry =
4799 ((struct lst_symbol_record **)
4800 malloc (lst.hash_size * sizeof (struct lst_symbol_record *)));
4801 if (last_hash_entry == NULL)
4802 {
4803 bfd_set_error (bfd_error_no_memory);
4804 goto error_return;
4805 }
4806
4807 /* Lots of fields are file positions relative to the start
4808 of the lst record. So save its location. */
4809 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4810
4811 /* Some initialization. */
4812 memset (hash_table, 0, 4 * lst.hash_size);
4813 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
4814 memset (last_hash_entry, 0,
4815 lst.hash_size * sizeof (struct lst_symbol_record *));
4816
4817 /* Symbols have som_index fields, so we have to keep track of the
4818 index of each SOM in the archive.
4819
4820 The SOM dictionary has (among other things) the absolute file
4821 position for the SOM which a particular dictionary entry
4822 describes. We have to compute that information as we iterate
4823 through the SOMs/symbols. */
4824 som_index = 0;
4825 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
4826
4827 /* FIXME should be done with buffers just like everything else... */
4828 lst_syms = malloc (nsyms * sizeof (struct lst_symbol_record));
4829 if (lst_syms == NULL)
4830 {
4831 bfd_set_error (bfd_error_no_memory);
4832 goto error_return;
4833 }
4834 strings = malloc (string_size);
4835 if (strings == NULL)
4836 {
4837 bfd_set_error (bfd_error_no_memory);
4838 goto error_return;
4839 }
4840
4841 p = strings;
4842 curr_lst_sym = lst_syms;
4843
4844
4845 while (curr_bfd != NULL)
4846 {
4847 unsigned int curr_count, i;
4848 som_symbol_type *sym;
4849
4850 /* Make sure the symbol table has been read, then snag a pointer
4851 to it. It's a little slimey to grab the symbols via obj_som_symtab,
4852 but doing so avoids allocating lots of extra memory. */
4853 if (som_slurp_symbol_table (curr_bfd) == false)
4854 goto error_return;
4855
4856 sym = obj_som_symtab (curr_bfd);
4857 curr_count = bfd_get_symcount (curr_bfd);
4858
4859 for (i = 0; i < curr_count; i++, sym++)
4860 {
4861 struct som_misc_symbol_info info;
4862
4863 /* Derive SOM information from the BFD symbol. */
4864 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
4865
4866 /* Should we include this symbol? */
4867 if (info.symbol_type == ST_NULL
4868 || info.symbol_type == ST_SYM_EXT
4869 || info.symbol_type == ST_ARG_EXT)
4870 continue;
4871
4872 /* Only global symbols and unsatisfied commons. */
4873 if (info.symbol_scope != SS_UNIVERSAL
4874 && info.symbol_type != ST_STORAGE)
4875 continue;
4876
4877 /* Do no include undefined symbols. */
4878 if (sym->symbol.section == &bfd_und_section)
4879 continue;
4880
4881 /* If this is the first symbol from this SOM, then update
4882 the SOM dictionary too. */
4883 if (som_dict[som_index].location == 0)
4884 {
4885 som_dict[som_index].location = curr_som_offset;
4886 som_dict[som_index].length = arelt_size (curr_bfd);
4887 }
4888
4889 /* Fill in the lst symbol record. */
4890 curr_lst_sym->hidden = 0;
4891 curr_lst_sym->secondary_def = 0;
4892 curr_lst_sym->symbol_type = info.symbol_type;
4893 curr_lst_sym->symbol_scope = info.symbol_scope;
4894 curr_lst_sym->check_level = 0;
4895 curr_lst_sym->must_qualify = 0;
4896 curr_lst_sym->initially_frozen = 0;
4897 curr_lst_sym->memory_resident = 0;
4898 curr_lst_sym->is_common = (sym->symbol.section == &bfd_com_section);
4899 curr_lst_sym->dup_common = 0;
4900 curr_lst_sym->xleast = 0;
4901 curr_lst_sym->arg_reloc = info.arg_reloc;
4902 curr_lst_sym->name.n_strx = p - strings + 4;
4903 curr_lst_sym->qualifier_name.n_strx = 0;
4904 curr_lst_sym->symbol_info = info.symbol_info;
4905 curr_lst_sym->symbol_value = info.symbol_value;
4906 curr_lst_sym->symbol_descriptor = 0;
4907 curr_lst_sym->reserved = 0;
4908 curr_lst_sym->som_index = som_index;
4909 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
4910 curr_lst_sym->next_entry = 0;
4911
4912 /* Insert into the hash table. */
4913 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
4914 {
4915 struct lst_symbol_record *tmp;
4916
4917 /* There is already something at the head of this hash chain,
4918 so tack this symbol onto the end of the chain. */
4919 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
4920 tmp->next_entry
4921 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
4922 + lst.hash_size * 4
4923 + lst.module_count * sizeof (struct som_entry)
4924 + sizeof (struct lst_header);
4925 }
4926 else
4927 {
4928 /* First entry in this hash chain. */
4929 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
4930 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
4931 + lst.hash_size * 4
4932 + lst.module_count * sizeof (struct som_entry)
4933 + sizeof (struct lst_header);
4934 }
4935
4936 /* Keep track of the last symbol we added to this chain so we can
4937 easily update its next_entry pointer. */
4938 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
4939 = curr_lst_sym;
4940
4941
4942 /* Update the string table. */
4943 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
4944 p += 4;
4945 strcpy (p, sym->symbol.name);
4946 p += strlen (sym->symbol.name) + 1;
4947 while ((int)p % 4)
4948 {
4949 bfd_put_8 (abfd, 0, p);
4950 p++;
4951 }
4952
4953 /* Head to the next symbol. */
4954 curr_lst_sym++;
4955 }
4956
4957 /* Keep track of where each SOM will finally reside; then look
4958 at the next BFD. */
4959 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
4960 curr_bfd = curr_bfd->next;
4961 som_index++;
4962 }
4963
4964 /* Now scribble out the hash table. */
4965 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
4966 != lst.hash_size * 4)
4967 {
4968 bfd_set_error (bfd_error_system_call);
4969 goto error_return;
4970 }
4971
4972 /* Then the SOM dictionary. */
4973 if (bfd_write ((PTR) som_dict, lst.module_count,
4974 sizeof (struct som_entry), abfd)
4975 != lst.module_count * sizeof (struct som_entry))
4976 {
4977 bfd_set_error (bfd_error_system_call);
4978 goto error_return;
4979 }
4980
4981 /* The library symbols. */
4982 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
4983 != nsyms * sizeof (struct lst_symbol_record))
4984 {
4985 bfd_set_error (bfd_error_system_call);
4986 goto error_return;
4987 }
4988
4989 /* And finally the strings. */
4990 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
4991 {
4992 bfd_set_error (bfd_error_system_call);
4993 goto error_return;
4994 }
4995
4996 if (hash_table != NULL)
4997 free (hash_table);
4998 if (som_dict != NULL)
4999 free (som_dict);
5000 if (last_hash_entry != NULL)
5001 free (last_hash_entry);
5002 if (lst_syms != NULL)
5003 free (lst_syms);
5004 if (strings != NULL)
5005 free (strings);
5006 return true;
5007
5008 error_return:
5009 if (hash_table != NULL)
5010 free (hash_table);
5011 if (som_dict != NULL)
5012 free (som_dict);
5013 if (last_hash_entry != NULL)
5014 free (last_hash_entry);
5015 if (lst_syms != NULL)
5016 free (lst_syms);
5017 if (strings != NULL)
5018 free (strings);
5019
5020 return false;
5021 }
5022
5023 /* Write out the LST for the archive.
5024
5025 You'll never believe this is really how armaps are handled in SOM... */
5026
5027 static boolean
5028 som_write_armap (abfd)
5029 bfd *abfd;
5030 {
5031 bfd *curr_bfd;
5032 struct stat statbuf;
5033 unsigned int i, lst_size, nsyms, stringsize;
5034 struct ar_hdr hdr;
5035 struct lst_header lst;
5036 int *p;
5037
5038 /* We'll use this for the archive's date and mode later. */
5039 if (stat (abfd->filename, &statbuf) != 0)
5040 {
5041 bfd_set_error (bfd_error_system_call);
5042 return false;
5043 }
5044 /* Fudge factor. */
5045 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
5046
5047 /* Account for the lst header first. */
5048 lst_size = sizeof (struct lst_header);
5049
5050 /* Start building the LST header. */
5051 lst.system_id = HP9000S800_ID;
5052 lst.a_magic = LIBMAGIC;
5053 lst.version_id = VERSION_ID;
5054 lst.file_time.secs = 0;
5055 lst.file_time.nanosecs = 0;
5056
5057 lst.hash_loc = lst_size;
5058 lst.hash_size = SOM_LST_HASH_SIZE;
5059
5060 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
5061 lst_size += 4 * SOM_LST_HASH_SIZE;
5062
5063 /* We need to count the number of SOMs in this archive. */
5064 curr_bfd = abfd->archive_head;
5065 lst.module_count = 0;
5066 while (curr_bfd != NULL)
5067 {
5068 lst.module_count++;
5069 curr_bfd = curr_bfd->next;
5070 }
5071 lst.module_limit = lst.module_count;
5072 lst.dir_loc = lst_size;
5073 lst_size += sizeof (struct som_entry) * lst.module_count;
5074
5075 /* We don't support import/export tables, auxiliary headers,
5076 or free lists yet. Make the linker work a little harder
5077 to make our life easier. */
5078
5079 lst.export_loc = 0;
5080 lst.export_count = 0;
5081 lst.import_loc = 0;
5082 lst.aux_loc = 0;
5083 lst.aux_size = 0;
5084
5085 /* Count how many symbols we will have on the hash chains and the
5086 size of the associated string table. */
5087 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
5088 return false;
5089
5090 lst_size += sizeof (struct lst_symbol_record) * nsyms;
5091
5092 /* For the string table. One day we might actually use this info
5093 to avoid small seeks/reads when reading archives. */
5094 lst.string_loc = lst_size;
5095 lst.string_size = stringsize;
5096 lst_size += stringsize;
5097
5098 /* SOM ABI says this must be zero. */
5099 lst.free_list = 0;
5100
5101 lst.file_end = lst_size;
5102
5103 /* Compute the checksum. Must happen after the entire lst header
5104 has filled in. */
5105 p = (int *)&lst;
5106 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
5107 lst.checksum ^= *p++;
5108
5109 sprintf (hdr.ar_name, "/ ");
5110 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
5111 sprintf (hdr.ar_uid, "%d", getuid ());
5112 sprintf (hdr.ar_gid, "%d", getgid ());
5113 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
5114 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
5115 hdr.ar_fmag[0] = '`';
5116 hdr.ar_fmag[1] = '\012';
5117
5118 /* Turn any nulls into spaces. */
5119 for (i = 0; i < sizeof (struct ar_hdr); i++)
5120 if (((char *) (&hdr))[i] == '\0')
5121 (((char *) (&hdr))[i]) = ' ';
5122
5123 /* Scribble out the ar header. */
5124 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
5125 != sizeof (struct ar_hdr))
5126 {
5127 bfd_set_error (bfd_error_system_call);
5128 return false;
5129 }
5130
5131 /* Now scribble out the lst header. */
5132 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
5133 != sizeof (struct lst_header))
5134 {
5135 bfd_set_error (bfd_error_system_call);
5136 return false;
5137 }
5138
5139 /* Build and write the armap. */
5140 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst) == false)
5141 return false;
5142
5143 /* Done. */
5144 return true;
5145 }
5146
5147 /* Apparently the extened names are never used, even though they appear
5148 in the SOM ABI. Hmmm. */
5149 static boolean
5150 som_slurp_extended_name_table (abfd)
5151 bfd *abfd;
5152 {
5153 bfd_ardata (abfd)->extended_names = NULL;
5154 return true;
5155 }
5156
5157 /* End of miscellaneous support functions. */
5158
5159 #define som_bfd_debug_info_start bfd_void
5160 #define som_bfd_debug_info_end bfd_void
5161 #define som_bfd_debug_info_accumulate (PROTO(void,(*),(bfd*, struct sec *))) bfd_void
5162
5163 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
5164 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
5165 #define som_truncate_arname bfd_bsd_truncate_arname
5166
5167 #define som_get_lineno (struct lineno_cache_entry *(*)())bfd_nullvoidptr
5168 #define som_close_and_cleanup bfd_generic_close_and_cleanup
5169 #define som_get_section_contents bfd_generic_get_section_contents
5170
5171 #define som_bfd_get_relocated_section_contents \
5172 bfd_generic_get_relocated_section_contents
5173 #define som_bfd_relax_section bfd_generic_relax_section
5174 #define som_bfd_make_debug_symbol \
5175 ((asymbol *(*) PARAMS ((bfd *, void *, unsigned long))) bfd_nullvoidptr)
5176 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
5177 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
5178 #define som_bfd_final_link _bfd_generic_final_link
5179
5180 /* Core file support is in the hpux-core backend. */
5181 #define som_core_file_failing_command _bfd_dummy_core_file_failing_command
5182 #define som_core_file_failing_signal _bfd_dummy_core_file_failing_signal
5183 #define som_core_file_matches_executable_p _bfd_dummy_core_file_matches_executable_p
5184
5185 bfd_target som_vec =
5186 {
5187 "som", /* name */
5188 bfd_target_som_flavour,
5189 true, /* target byte order */
5190 true, /* target headers byte order */
5191 (HAS_RELOC | EXEC_P | /* object flags */
5192 HAS_LINENO | HAS_DEBUG |
5193 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
5194 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
5195 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
5196
5197 /* leading_symbol_char: is the first char of a user symbol
5198 predictable, and if so what is it */
5199 0,
5200 '/', /* ar_pad_char */
5201 16, /* ar_max_namelen */
5202 3, /* minimum alignment */
5203 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5204 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5205 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
5206 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5207 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5208 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
5209 {_bfd_dummy_target,
5210 som_object_p, /* bfd_check_format */
5211 bfd_generic_archive_p,
5212 _bfd_dummy_target
5213 },
5214 {
5215 bfd_false,
5216 som_mkobject,
5217 _bfd_generic_mkarchive,
5218 bfd_false
5219 },
5220 {
5221 bfd_false,
5222 som_write_object_contents,
5223 _bfd_write_archive_contents,
5224 bfd_false,
5225 },
5226 #undef som
5227 JUMP_TABLE (som),
5228 (PTR) 0
5229 };
5230
5231 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */