* som.c (som_write_fixups, case R_ENTRY): Handle case where no
[binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
3
4 Contributed by the Center for Software Science at the
5 University of Utah (pa-gdb-bugs@cs.utah.edu).
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23 #include "bfd.h"
24 #include "sysdep.h"
25
26 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)
27
28 #include "libbfd.h"
29 #include "som.h"
30
31 #include <stdio.h>
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <signal.h>
35 #include <machine/reg.h>
36 #include <sys/file.h>
37 #include <errno.h>
38
39 /* Magic not defined in standard HP-UX header files until 8.0 */
40
41 #ifndef CPU_PA_RISC1_0
42 #define CPU_PA_RISC1_0 0x20B
43 #endif /* CPU_PA_RISC1_0 */
44
45 #ifndef CPU_PA_RISC1_1
46 #define CPU_PA_RISC1_1 0x210
47 #endif /* CPU_PA_RISC1_1 */
48
49 #ifndef _PA_RISC1_0_ID
50 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
51 #endif /* _PA_RISC1_0_ID */
52
53 #ifndef _PA_RISC1_1_ID
54 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
55 #endif /* _PA_RISC1_1_ID */
56
57 #ifndef _PA_RISC_MAXID
58 #define _PA_RISC_MAXID 0x2FF
59 #endif /* _PA_RISC_MAXID */
60
61 #ifndef _PA_RISC_ID
62 #define _PA_RISC_ID(__m_num) \
63 (((__m_num) == _PA_RISC1_0_ID) || \
64 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
65 #endif /* _PA_RISC_ID */
66
67
68 /* HIUX in it's infinite stupidity changed the names for several "well
69 known" constants. Work around such braindamage. Try the HPUX version
70 first, then the HIUX version, and finally provide a default. */
71 #ifdef HPUX_AUX_ID
72 #define EXEC_AUX_ID HPUX_AUX_ID
73 #endif
74
75 #if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID)
76 #define EXEC_AUX_ID HIUX_AUX_ID
77 #endif
78
79 #ifndef EXEC_AUX_ID
80 #define EXEC_AUX_ID 0
81 #endif
82
83 /* Size (in chars) of the temporary buffers used during fixup and string
84 table writes. */
85
86 #define SOM_TMP_BUFSIZE 8192
87
88 /* Size of the hash table in archives. */
89 #define SOM_LST_HASH_SIZE 31
90
91 /* Max number of SOMs to be found in an archive. */
92 #define SOM_LST_MODULE_LIMIT 1024
93
94 /* Generic alignment macro. */
95 #define SOM_ALIGN(val, alignment) \
96 (((val) + (alignment) - 1) & ~((alignment) - 1))
97
98 /* SOM allows any one of the four previous relocations to be reused
99 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
100 relocations are always a single byte, using a R_PREV_FIXUP instead
101 of some multi-byte relocation makes object files smaller.
102
103 Note one side effect of using a R_PREV_FIXUP is the relocation that
104 is being repeated moves to the front of the queue. */
105 struct reloc_queue
106 {
107 unsigned char *reloc;
108 unsigned int size;
109 } reloc_queue[4];
110
111 /* This fully describes the symbol types which may be attached to
112 an EXPORT or IMPORT directive. Only SOM uses this formation
113 (ELF has no need for it). */
114 typedef enum
115 {
116 SYMBOL_TYPE_UNKNOWN,
117 SYMBOL_TYPE_ABSOLUTE,
118 SYMBOL_TYPE_CODE,
119 SYMBOL_TYPE_DATA,
120 SYMBOL_TYPE_ENTRY,
121 SYMBOL_TYPE_MILLICODE,
122 SYMBOL_TYPE_PLABEL,
123 SYMBOL_TYPE_PRI_PROG,
124 SYMBOL_TYPE_SEC_PROG,
125 } pa_symbol_type;
126
127 struct section_to_type
128 {
129 char *section;
130 char type;
131 };
132
133 /* Assorted symbol information that needs to be derived from the BFD symbol
134 and/or the BFD backend private symbol data. */
135 struct som_misc_symbol_info
136 {
137 unsigned int symbol_type;
138 unsigned int symbol_scope;
139 unsigned int arg_reloc;
140 unsigned int symbol_info;
141 unsigned int symbol_value;
142 };
143
144 /* Forward declarations */
145
146 static boolean som_mkobject PARAMS ((bfd *));
147 static const bfd_target * som_object_setup PARAMS ((bfd *,
148 struct header *,
149 struct som_exec_auxhdr *));
150 static boolean setup_sections PARAMS ((bfd *, struct header *));
151 static const bfd_target * som_object_p PARAMS ((bfd *));
152 static boolean som_write_object_contents PARAMS ((bfd *));
153 static boolean som_slurp_string_table PARAMS ((bfd *));
154 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
155 static long som_get_symtab_upper_bound PARAMS ((bfd *));
156 static long som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
157 arelent **, asymbol **));
158 static long som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
159 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
160 arelent *, asection *,
161 asymbol **, boolean));
162 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
163 asymbol **, boolean));
164 static long som_get_symtab PARAMS ((bfd *, asymbol **));
165 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
166 static void som_print_symbol PARAMS ((bfd *, PTR,
167 asymbol *, bfd_print_symbol_type));
168 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
169 static boolean som_bfd_copy_private_section_data PARAMS ((bfd *, asection *,
170 bfd *, asection *));
171 static boolean som_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
172 static boolean som_bfd_is_local_label PARAMS ((bfd *, asymbol *));
173 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
174 file_ptr, bfd_size_type));
175 static boolean som_get_section_contents PARAMS ((bfd *, sec_ptr, PTR,
176 file_ptr, bfd_size_type));
177 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
178 unsigned long));
179 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
180 asymbol **, bfd_vma,
181 CONST char **,
182 CONST char **,
183 unsigned int *));
184 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
185 static asection * bfd_section_from_som_symbol PARAMS ((bfd *,
186 struct symbol_dictionary_record *));
187 static int log2 PARAMS ((unsigned int));
188 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
189 asymbol *, PTR,
190 asection *, bfd *,
191 char **));
192 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
193 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
194 struct reloc_queue *));
195 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
196 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
197 struct reloc_queue *));
198 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
199 unsigned int,
200 struct reloc_queue *));
201
202 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
203 unsigned char *, unsigned int *,
204 struct reloc_queue *));
205 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
206 unsigned int *,
207 struct reloc_queue *));
208 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
209 unsigned int *,
210 arelent *, int,
211 struct reloc_queue *));
212 static unsigned long som_count_spaces PARAMS ((bfd *));
213 static unsigned long som_count_subspaces PARAMS ((bfd *));
214 static int compare_syms PARAMS ((const void *, const void *));
215 static unsigned long som_compute_checksum PARAMS ((bfd *));
216 static boolean som_prep_headers PARAMS ((bfd *));
217 static int som_sizeof_headers PARAMS ((bfd *, boolean));
218 static boolean som_write_headers PARAMS ((bfd *));
219 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
220 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
221 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
222 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
223 unsigned int *));
224 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
225 asymbol **, unsigned int,
226 unsigned *));
227 static boolean som_begin_writing PARAMS ((bfd *));
228 static const reloc_howto_type * som_bfd_reloc_type_lookup
229 PARAMS ((bfd *, bfd_reloc_code_real_type));
230 static char som_section_type PARAMS ((const char *));
231 static int som_decode_symclass PARAMS ((asymbol *));
232 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
233 symindex *));
234
235 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
236 carsym **syms));
237 static boolean som_slurp_armap PARAMS ((bfd *));
238 static boolean som_write_armap PARAMS ((bfd *, unsigned int, struct orl *,
239 unsigned int, int));
240 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
241 struct som_misc_symbol_info *));
242 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
243 unsigned int *));
244 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
245 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
246 unsigned int,
247 struct lst_header));
248 static CONST char *normalize PARAMS ((CONST char *file));
249 static boolean som_is_space PARAMS ((asection *));
250 static boolean som_is_subspace PARAMS ((asection *));
251 static boolean som_is_container PARAMS ((asection *, asection *));
252 static boolean som_bfd_free_cached_info PARAMS ((bfd *));
253
254 /* Map SOM section names to POSIX/BSD single-character symbol types.
255
256 This table includes all the standard subspaces as defined in the
257 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
258 some reason was left out, and sections specific to embedded stabs. */
259
260 static const struct section_to_type stt[] = {
261 {"$TEXT$", 't'},
262 {"$SHLIB_INFO$", 't'},
263 {"$MILLICODE$", 't'},
264 {"$LIT$", 't'},
265 {"$CODE$", 't'},
266 {"$UNWIND_START$", 't'},
267 {"$UNWIND$", 't'},
268 {"$PRIVATE$", 'd'},
269 {"$PLT$", 'd'},
270 {"$SHLIB_DATA$", 'd'},
271 {"$DATA$", 'd'},
272 {"$SHORTDATA$", 'g'},
273 {"$DLT$", 'd'},
274 {"$GLOBAL$", 'g'},
275 {"$SHORTBSS$", 's'},
276 {"$BSS$", 'b'},
277 {"$GDB_STRINGS$", 'N'},
278 {"$GDB_SYMBOLS$", 'N'},
279 {0, 0}
280 };
281
282 /* About the relocation formatting table...
283
284 There are 256 entries in the table, one for each possible
285 relocation opcode available in SOM. We index the table by
286 the relocation opcode. The names and operations are those
287 defined by a.out_800 (4).
288
289 Right now this table is only used to count and perform minimal
290 processing on relocation streams so that they can be internalized
291 into BFD and symbolically printed by utilities. To make actual use
292 of them would be much more difficult, BFD's concept of relocations
293 is far too simple to handle SOM relocations. The basic assumption
294 that a relocation can be completely processed independent of other
295 relocations before an object file is written is invalid for SOM.
296
297 The SOM relocations are meant to be processed as a stream, they
298 specify copying of data from the input section to the output section
299 while possibly modifying the data in some manner. They also can
300 specify that a variable number of zeros or uninitialized data be
301 inserted on in the output segment at the current offset. Some
302 relocations specify that some previous relocation be re-applied at
303 the current location in the input/output sections. And finally a number
304 of relocations have effects on other sections (R_ENTRY, R_EXIT,
305 R_UNWIND_AUX and a variety of others). There isn't even enough room
306 in the BFD relocation data structure to store enough information to
307 perform all the relocations.
308
309 Each entry in the table has three fields.
310
311 The first entry is an index into this "class" of relocations. This
312 index can then be used as a variable within the relocation itself.
313
314 The second field is a format string which actually controls processing
315 of the relocation. It uses a simple postfix machine to do calculations
316 based on variables/constants found in the string and the relocation
317 stream.
318
319 The third field specifys whether or not this relocation may use
320 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
321 stored in the instruction.
322
323 Variables:
324
325 L = input space byte count
326 D = index into class of relocations
327 M = output space byte count
328 N = statement number (unused?)
329 O = stack operation
330 R = parameter relocation bits
331 S = symbol index
332 U = 64 bits of stack unwind and frame size info (we only keep 32 bits)
333 V = a literal constant (usually used in the next relocation)
334 P = a previous relocation
335
336 Lower case letters (starting with 'b') refer to following
337 bytes in the relocation stream. 'b' is the next 1 byte,
338 c is the next 2 bytes, d is the next 3 bytes, etc...
339 This is the variable part of the relocation entries that
340 makes our life a living hell.
341
342 numerical constants are also used in the format string. Note
343 the constants are represented in decimal.
344
345 '+', "*" and "=" represents the obvious postfix operators.
346 '<' represents a left shift.
347
348 Stack Operations:
349
350 Parameter Relocation Bits:
351
352 Unwind Entries:
353
354 Previous Relocations: The index field represents which in the queue
355 of 4 previous fixups should be re-applied.
356
357 Literal Constants: These are generally used to represent addend
358 parts of relocations when these constants are not stored in the
359 fields of the instructions themselves. For example the instruction
360 addil foo-$global$-0x1234 would use an override for "0x1234" rather
361 than storing it into the addil itself. */
362
363 struct fixup_format
364 {
365 int D;
366 char *format;
367 };
368
369 static const struct fixup_format som_fixup_formats[256] =
370 {
371 /* R_NO_RELOCATION */
372 0, "LD1+4*=", /* 0x00 */
373 1, "LD1+4*=", /* 0x01 */
374 2, "LD1+4*=", /* 0x02 */
375 3, "LD1+4*=", /* 0x03 */
376 4, "LD1+4*=", /* 0x04 */
377 5, "LD1+4*=", /* 0x05 */
378 6, "LD1+4*=", /* 0x06 */
379 7, "LD1+4*=", /* 0x07 */
380 8, "LD1+4*=", /* 0x08 */
381 9, "LD1+4*=", /* 0x09 */
382 10, "LD1+4*=", /* 0x0a */
383 11, "LD1+4*=", /* 0x0b */
384 12, "LD1+4*=", /* 0x0c */
385 13, "LD1+4*=", /* 0x0d */
386 14, "LD1+4*=", /* 0x0e */
387 15, "LD1+4*=", /* 0x0f */
388 16, "LD1+4*=", /* 0x10 */
389 17, "LD1+4*=", /* 0x11 */
390 18, "LD1+4*=", /* 0x12 */
391 19, "LD1+4*=", /* 0x13 */
392 20, "LD1+4*=", /* 0x14 */
393 21, "LD1+4*=", /* 0x15 */
394 22, "LD1+4*=", /* 0x16 */
395 23, "LD1+4*=", /* 0x17 */
396 0, "LD8<b+1+4*=", /* 0x18 */
397 1, "LD8<b+1+4*=", /* 0x19 */
398 2, "LD8<b+1+4*=", /* 0x1a */
399 3, "LD8<b+1+4*=", /* 0x1b */
400 0, "LD16<c+1+4*=", /* 0x1c */
401 1, "LD16<c+1+4*=", /* 0x1d */
402 2, "LD16<c+1+4*=", /* 0x1e */
403 0, "Ld1+=", /* 0x1f */
404 /* R_ZEROES */
405 0, "Lb1+4*=", /* 0x20 */
406 1, "Ld1+=", /* 0x21 */
407 /* R_UNINIT */
408 0, "Lb1+4*=", /* 0x22 */
409 1, "Ld1+=", /* 0x23 */
410 /* R_RELOCATION */
411 0, "L4=", /* 0x24 */
412 /* R_DATA_ONE_SYMBOL */
413 0, "L4=Sb=", /* 0x25 */
414 1, "L4=Sd=", /* 0x26 */
415 /* R_DATA_PLEBEL */
416 0, "L4=Sb=", /* 0x27 */
417 1, "L4=Sd=", /* 0x28 */
418 /* R_SPACE_REF */
419 0, "L4=", /* 0x29 */
420 /* R_REPEATED_INIT */
421 0, "L4=Mb1+4*=", /* 0x2a */
422 1, "Lb4*=Mb1+L*=", /* 0x2b */
423 2, "Lb4*=Md1+4*=", /* 0x2c */
424 3, "Ld1+=Me1+=", /* 0x2d */
425 /* R_RESERVED */
426 0, "", /* 0x2e */
427 0, "", /* 0x2f */
428 /* R_PCREL_CALL */
429 0, "L4=RD=Sb=", /* 0x30 */
430 1, "L4=RD=Sb=", /* 0x31 */
431 2, "L4=RD=Sb=", /* 0x32 */
432 3, "L4=RD=Sb=", /* 0x33 */
433 4, "L4=RD=Sb=", /* 0x34 */
434 5, "L4=RD=Sb=", /* 0x35 */
435 6, "L4=RD=Sb=", /* 0x36 */
436 7, "L4=RD=Sb=", /* 0x37 */
437 8, "L4=RD=Sb=", /* 0x38 */
438 9, "L4=RD=Sb=", /* 0x39 */
439 0, "L4=RD8<b+=Sb=",/* 0x3a */
440 1, "L4=RD8<b+=Sb=",/* 0x3b */
441 0, "L4=RD8<b+=Sd=",/* 0x3c */
442 1, "L4=RD8<b+=Sd=",/* 0x3d */
443 /* R_RESERVED */
444 0, "", /* 0x3e */
445 0, "", /* 0x3f */
446 /* R_ABS_CALL */
447 0, "L4=RD=Sb=", /* 0x40 */
448 1, "L4=RD=Sb=", /* 0x41 */
449 2, "L4=RD=Sb=", /* 0x42 */
450 3, "L4=RD=Sb=", /* 0x43 */
451 4, "L4=RD=Sb=", /* 0x44 */
452 5, "L4=RD=Sb=", /* 0x45 */
453 6, "L4=RD=Sb=", /* 0x46 */
454 7, "L4=RD=Sb=", /* 0x47 */
455 8, "L4=RD=Sb=", /* 0x48 */
456 9, "L4=RD=Sb=", /* 0x49 */
457 0, "L4=RD8<b+=Sb=",/* 0x4a */
458 1, "L4=RD8<b+=Sb=",/* 0x4b */
459 0, "L4=RD8<b+=Sd=",/* 0x4c */
460 1, "L4=RD8<b+=Sd=",/* 0x4d */
461 /* R_RESERVED */
462 0, "", /* 0x4e */
463 0, "", /* 0x4f */
464 /* R_DP_RELATIVE */
465 0, "L4=SD=", /* 0x50 */
466 1, "L4=SD=", /* 0x51 */
467 2, "L4=SD=", /* 0x52 */
468 3, "L4=SD=", /* 0x53 */
469 4, "L4=SD=", /* 0x54 */
470 5, "L4=SD=", /* 0x55 */
471 6, "L4=SD=", /* 0x56 */
472 7, "L4=SD=", /* 0x57 */
473 8, "L4=SD=", /* 0x58 */
474 9, "L4=SD=", /* 0x59 */
475 10, "L4=SD=", /* 0x5a */
476 11, "L4=SD=", /* 0x5b */
477 12, "L4=SD=", /* 0x5c */
478 13, "L4=SD=", /* 0x5d */
479 14, "L4=SD=", /* 0x5e */
480 15, "L4=SD=", /* 0x5f */
481 16, "L4=SD=", /* 0x60 */
482 17, "L4=SD=", /* 0x61 */
483 18, "L4=SD=", /* 0x62 */
484 19, "L4=SD=", /* 0x63 */
485 20, "L4=SD=", /* 0x64 */
486 21, "L4=SD=", /* 0x65 */
487 22, "L4=SD=", /* 0x66 */
488 23, "L4=SD=", /* 0x67 */
489 24, "L4=SD=", /* 0x68 */
490 25, "L4=SD=", /* 0x69 */
491 26, "L4=SD=", /* 0x6a */
492 27, "L4=SD=", /* 0x6b */
493 28, "L4=SD=", /* 0x6c */
494 29, "L4=SD=", /* 0x6d */
495 30, "L4=SD=", /* 0x6e */
496 31, "L4=SD=", /* 0x6f */
497 32, "L4=Sb=", /* 0x70 */
498 33, "L4=Sd=", /* 0x71 */
499 /* R_RESERVED */
500 0, "", /* 0x72 */
501 0, "", /* 0x73 */
502 0, "", /* 0x74 */
503 0, "", /* 0x75 */
504 0, "", /* 0x76 */
505 0, "", /* 0x77 */
506 /* R_DLT_REL */
507 0, "L4=Sb=", /* 0x78 */
508 1, "L4=Sd=", /* 0x79 */
509 /* R_RESERVED */
510 0, "", /* 0x7a */
511 0, "", /* 0x7b */
512 0, "", /* 0x7c */
513 0, "", /* 0x7d */
514 0, "", /* 0x7e */
515 0, "", /* 0x7f */
516 /* R_CODE_ONE_SYMBOL */
517 0, "L4=SD=", /* 0x80 */
518 1, "L4=SD=", /* 0x81 */
519 2, "L4=SD=", /* 0x82 */
520 3, "L4=SD=", /* 0x83 */
521 4, "L4=SD=", /* 0x84 */
522 5, "L4=SD=", /* 0x85 */
523 6, "L4=SD=", /* 0x86 */
524 7, "L4=SD=", /* 0x87 */
525 8, "L4=SD=", /* 0x88 */
526 9, "L4=SD=", /* 0x89 */
527 10, "L4=SD=", /* 0x8q */
528 11, "L4=SD=", /* 0x8b */
529 12, "L4=SD=", /* 0x8c */
530 13, "L4=SD=", /* 0x8d */
531 14, "L4=SD=", /* 0x8e */
532 15, "L4=SD=", /* 0x8f */
533 16, "L4=SD=", /* 0x90 */
534 17, "L4=SD=", /* 0x91 */
535 18, "L4=SD=", /* 0x92 */
536 19, "L4=SD=", /* 0x93 */
537 20, "L4=SD=", /* 0x94 */
538 21, "L4=SD=", /* 0x95 */
539 22, "L4=SD=", /* 0x96 */
540 23, "L4=SD=", /* 0x97 */
541 24, "L4=SD=", /* 0x98 */
542 25, "L4=SD=", /* 0x99 */
543 26, "L4=SD=", /* 0x9a */
544 27, "L4=SD=", /* 0x9b */
545 28, "L4=SD=", /* 0x9c */
546 29, "L4=SD=", /* 0x9d */
547 30, "L4=SD=", /* 0x9e */
548 31, "L4=SD=", /* 0x9f */
549 32, "L4=Sb=", /* 0xa0 */
550 33, "L4=Sd=", /* 0xa1 */
551 /* R_RESERVED */
552 0, "", /* 0xa2 */
553 0, "", /* 0xa3 */
554 0, "", /* 0xa4 */
555 0, "", /* 0xa5 */
556 0, "", /* 0xa6 */
557 0, "", /* 0xa7 */
558 0, "", /* 0xa8 */
559 0, "", /* 0xa9 */
560 0, "", /* 0xaa */
561 0, "", /* 0xab */
562 0, "", /* 0xac */
563 0, "", /* 0xad */
564 /* R_MILLI_REL */
565 0, "L4=Sb=", /* 0xae */
566 1, "L4=Sd=", /* 0xaf */
567 /* R_CODE_PLABEL */
568 0, "L4=Sb=", /* 0xb0 */
569 1, "L4=Sd=", /* 0xb1 */
570 /* R_BREAKPOINT */
571 0, "L4=", /* 0xb2 */
572 /* R_ENTRY */
573 0, "Ui=", /* 0xb3 */
574 1, "Uf=", /* 0xb4 */
575 /* R_ALT_ENTRY */
576 0, "", /* 0xb5 */
577 /* R_EXIT */
578 0, "", /* 0xb6 */
579 /* R_BEGIN_TRY */
580 0, "", /* 0xb7 */
581 /* R_END_TRY */
582 0, "R0=", /* 0xb8 */
583 1, "Rb4*=", /* 0xb9 */
584 2, "Rd4*=", /* 0xba */
585 /* R_BEGIN_BRTAB */
586 0, "", /* 0xbb */
587 /* R_END_BRTAB */
588 0, "", /* 0xbc */
589 /* R_STATEMENT */
590 0, "Nb=", /* 0xbd */
591 1, "Nc=", /* 0xbe */
592 2, "Nd=", /* 0xbf */
593 /* R_DATA_EXPR */
594 0, "L4=", /* 0xc0 */
595 /* R_CODE_EXPR */
596 0, "L4=", /* 0xc1 */
597 /* R_FSEL */
598 0, "", /* 0xc2 */
599 /* R_LSEL */
600 0, "", /* 0xc3 */
601 /* R_RSEL */
602 0, "", /* 0xc4 */
603 /* R_N_MODE */
604 0, "", /* 0xc5 */
605 /* R_S_MODE */
606 0, "", /* 0xc6 */
607 /* R_D_MODE */
608 0, "", /* 0xc7 */
609 /* R_R_MODE */
610 0, "", /* 0xc8 */
611 /* R_DATA_OVERRIDE */
612 0, "V0=", /* 0xc9 */
613 1, "Vb=", /* 0xca */
614 2, "Vc=", /* 0xcb */
615 3, "Vd=", /* 0xcc */
616 4, "Ve=", /* 0xcd */
617 /* R_TRANSLATED */
618 0, "", /* 0xce */
619 /* R_RESERVED */
620 0, "", /* 0xcf */
621 /* R_COMP1 */
622 0, "Ob=", /* 0xd0 */
623 /* R_COMP2 */
624 0, "Ob=Sd=", /* 0xd1 */
625 /* R_COMP3 */
626 0, "Ob=Ve=", /* 0xd2 */
627 /* R_PREV_FIXUP */
628 0, "P", /* 0xd3 */
629 1, "P", /* 0xd4 */
630 2, "P", /* 0xd5 */
631 3, "P", /* 0xd6 */
632 /* R_RESERVED */
633 0, "", /* 0xd7 */
634 0, "", /* 0xd8 */
635 0, "", /* 0xd9 */
636 0, "", /* 0xda */
637 0, "", /* 0xdb */
638 0, "", /* 0xdc */
639 0, "", /* 0xdd */
640 0, "", /* 0xde */
641 0, "", /* 0xdf */
642 0, "", /* 0xe0 */
643 0, "", /* 0xe1 */
644 0, "", /* 0xe2 */
645 0, "", /* 0xe3 */
646 0, "", /* 0xe4 */
647 0, "", /* 0xe5 */
648 0, "", /* 0xe6 */
649 0, "", /* 0xe7 */
650 0, "", /* 0xe8 */
651 0, "", /* 0xe9 */
652 0, "", /* 0xea */
653 0, "", /* 0xeb */
654 0, "", /* 0xec */
655 0, "", /* 0xed */
656 0, "", /* 0xee */
657 0, "", /* 0xef */
658 0, "", /* 0xf0 */
659 0, "", /* 0xf1 */
660 0, "", /* 0xf2 */
661 0, "", /* 0xf3 */
662 0, "", /* 0xf4 */
663 0, "", /* 0xf5 */
664 0, "", /* 0xf6 */
665 0, "", /* 0xf7 */
666 0, "", /* 0xf8 */
667 0, "", /* 0xf9 */
668 0, "", /* 0xfa */
669 0, "", /* 0xfb */
670 0, "", /* 0xfc */
671 0, "", /* 0xfd */
672 0, "", /* 0xfe */
673 0, "", /* 0xff */
674 };
675
676 static const int comp1_opcodes[] =
677 {
678 0x00,
679 0x40,
680 0x41,
681 0x42,
682 0x43,
683 0x44,
684 0x45,
685 0x46,
686 0x47,
687 0x48,
688 0x49,
689 0x4a,
690 0x4b,
691 0x60,
692 0x80,
693 0xa0,
694 0xc0,
695 -1
696 };
697
698 static const int comp2_opcodes[] =
699 {
700 0x00,
701 0x80,
702 0x82,
703 0xc0,
704 -1
705 };
706
707 static const int comp3_opcodes[] =
708 {
709 0x00,
710 0x02,
711 -1
712 };
713
714 /* These apparently are not in older versions of hpux reloc.h. */
715 #ifndef R_DLT_REL
716 #define R_DLT_REL 0x78
717 #endif
718
719 #ifndef R_AUX_UNWIND
720 #define R_AUX_UNWIND 0xcf
721 #endif
722
723 #ifndef R_SEC_STMT
724 #define R_SEC_STMT 0xd7
725 #endif
726
727 static reloc_howto_type som_hppa_howto_table[] =
728 {
729 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
730 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
731 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
732 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
733 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
734 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
735 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
736 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
737 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
738 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
739 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
740 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
741 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
742 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
743 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
744 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
745 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
746 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
747 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
748 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
749 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
750 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
751 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
752 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
753 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
754 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
755 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
756 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
757 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
758 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
759 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
760 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
761 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
762 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
763 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
764 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
765 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
766 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
767 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
768 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
769 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
770 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
771 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
772 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
773 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
774 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
775 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
776 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
777 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
778 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
779 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
780 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
781 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
782 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
783 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
784 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
785 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
786 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
787 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
788 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
789 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
790 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
791 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
792 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
793 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
794 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
795 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
796 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
797 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
798 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
799 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
800 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
801 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
802 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
803 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
804 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
805 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
806 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
807 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
808 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
809 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
810 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
811 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
812 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
813 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
814 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
815 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
816 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
817 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
818 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
819 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
820 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
821 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
822 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
823 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
824 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
825 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
826 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
827 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
828 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
829 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
830 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
831 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
832 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
833 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
834 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
835 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
836 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
837 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
838 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
839 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
840 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
841 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
842 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
843 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
844 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
845 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
846 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
847 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
848 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
849 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
850 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
851 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
852 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
853 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
854 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
855 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
856 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
857 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
858 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
859 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
860 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
861 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
862 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
863 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
864 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
865 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
866 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
867 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
868 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
869 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
870 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
871 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
872 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
873 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
874 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
875 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
876 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
877 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
878 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
879 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
880 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
881 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
882 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
883 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
884 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
885 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
886 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
887 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
888 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
889 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
890 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
891 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
892 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
893 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
894 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
895 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
896 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
897 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
898 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
899 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
900 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
901 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
902 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
903 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
904 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
905 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
906 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
907 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
908 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
909 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
910 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
911 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
912 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
913 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
914 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
915 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
916 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
917 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
918 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
919 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
920 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
921 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
922 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
923 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
924 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
925 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
926 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
927 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
928 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
929 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
930 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
931 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
932 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
933 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
934 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
935 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
936 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
937 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
938 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
939 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
940 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
941 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
942 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
943 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
944 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
945 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
946 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
947 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
948 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
949 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
950 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
951 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
952 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
953 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
954 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
955 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
956 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
957 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
958 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
959 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
960 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
961 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
962 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
963 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
964 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
965 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
966 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
967 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
968 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
969 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
970 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
971 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
972 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
973 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
974 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
975 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
976 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
977 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
978 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
979 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
980 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
981 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
982 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
983 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
984 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
985
986 /* Initialize the SOM relocation queue. By definition the queue holds
987 the last four multibyte fixups. */
988
989 static void
990 som_initialize_reloc_queue (queue)
991 struct reloc_queue *queue;
992 {
993 queue[0].reloc = NULL;
994 queue[0].size = 0;
995 queue[1].reloc = NULL;
996 queue[1].size = 0;
997 queue[2].reloc = NULL;
998 queue[2].size = 0;
999 queue[3].reloc = NULL;
1000 queue[3].size = 0;
1001 }
1002
1003 /* Insert a new relocation into the relocation queue. */
1004
1005 static void
1006 som_reloc_queue_insert (p, size, queue)
1007 unsigned char *p;
1008 unsigned int size;
1009 struct reloc_queue *queue;
1010 {
1011 queue[3].reloc = queue[2].reloc;
1012 queue[3].size = queue[2].size;
1013 queue[2].reloc = queue[1].reloc;
1014 queue[2].size = queue[1].size;
1015 queue[1].reloc = queue[0].reloc;
1016 queue[1].size = queue[0].size;
1017 queue[0].reloc = p;
1018 queue[0].size = size;
1019 }
1020
1021 /* When an entry in the relocation queue is reused, the entry moves
1022 to the front of the queue. */
1023
1024 static void
1025 som_reloc_queue_fix (queue, index)
1026 struct reloc_queue *queue;
1027 unsigned int index;
1028 {
1029 if (index == 0)
1030 return;
1031
1032 if (index == 1)
1033 {
1034 unsigned char *tmp1 = queue[0].reloc;
1035 unsigned int tmp2 = queue[0].size;
1036 queue[0].reloc = queue[1].reloc;
1037 queue[0].size = queue[1].size;
1038 queue[1].reloc = tmp1;
1039 queue[1].size = tmp2;
1040 return;
1041 }
1042
1043 if (index == 2)
1044 {
1045 unsigned char *tmp1 = queue[0].reloc;
1046 unsigned int tmp2 = queue[0].size;
1047 queue[0].reloc = queue[2].reloc;
1048 queue[0].size = queue[2].size;
1049 queue[2].reloc = queue[1].reloc;
1050 queue[2].size = queue[1].size;
1051 queue[1].reloc = tmp1;
1052 queue[1].size = tmp2;
1053 return;
1054 }
1055
1056 if (index == 3)
1057 {
1058 unsigned char *tmp1 = queue[0].reloc;
1059 unsigned int tmp2 = queue[0].size;
1060 queue[0].reloc = queue[3].reloc;
1061 queue[0].size = queue[3].size;
1062 queue[3].reloc = queue[2].reloc;
1063 queue[3].size = queue[2].size;
1064 queue[2].reloc = queue[1].reloc;
1065 queue[2].size = queue[1].size;
1066 queue[1].reloc = tmp1;
1067 queue[1].size = tmp2;
1068 return;
1069 }
1070 abort();
1071 }
1072
1073 /* Search for a particular relocation in the relocation queue. */
1074
1075 static int
1076 som_reloc_queue_find (p, size, queue)
1077 unsigned char *p;
1078 unsigned int size;
1079 struct reloc_queue *queue;
1080 {
1081 if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
1082 && size == queue[0].size)
1083 return 0;
1084 if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
1085 && size == queue[1].size)
1086 return 1;
1087 if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
1088 && size == queue[2].size)
1089 return 2;
1090 if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
1091 && size == queue[3].size)
1092 return 3;
1093 return -1;
1094 }
1095
1096 static unsigned char *
1097 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1098 bfd *abfd;
1099 int *subspace_reloc_sizep;
1100 unsigned char *p;
1101 unsigned int size;
1102 struct reloc_queue *queue;
1103 {
1104 int queue_index = som_reloc_queue_find (p, size, queue);
1105
1106 if (queue_index != -1)
1107 {
1108 /* Found this in a previous fixup. Undo the fixup we
1109 just built and use R_PREV_FIXUP instead. We saved
1110 a total of size - 1 bytes in the fixup stream. */
1111 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1112 p += 1;
1113 *subspace_reloc_sizep += 1;
1114 som_reloc_queue_fix (queue, queue_index);
1115 }
1116 else
1117 {
1118 som_reloc_queue_insert (p, size, queue);
1119 *subspace_reloc_sizep += size;
1120 p += size;
1121 }
1122 return p;
1123 }
1124
1125 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1126 bytes without any relocation. Update the size of the subspace
1127 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1128 current pointer into the relocation stream. */
1129
1130 static unsigned char *
1131 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1132 bfd *abfd;
1133 unsigned int skip;
1134 unsigned char *p;
1135 unsigned int *subspace_reloc_sizep;
1136 struct reloc_queue *queue;
1137 {
1138 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1139 then R_PREV_FIXUPs to get the difference down to a
1140 reasonable size. */
1141 if (skip >= 0x1000000)
1142 {
1143 skip -= 0x1000000;
1144 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1145 bfd_put_8 (abfd, 0xff, p + 1);
1146 bfd_put_16 (abfd, 0xffff, p + 2);
1147 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1148 while (skip >= 0x1000000)
1149 {
1150 skip -= 0x1000000;
1151 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1152 p++;
1153 *subspace_reloc_sizep += 1;
1154 /* No need to adjust queue here since we are repeating the
1155 most recent fixup. */
1156 }
1157 }
1158
1159 /* The difference must be less than 0x1000000. Use one
1160 more R_NO_RELOCATION entry to get to the right difference. */
1161 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1162 {
1163 /* Difference can be handled in a simple single-byte
1164 R_NO_RELOCATION entry. */
1165 if (skip <= 0x60)
1166 {
1167 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1168 *subspace_reloc_sizep += 1;
1169 p++;
1170 }
1171 /* Handle it with a two byte R_NO_RELOCATION entry. */
1172 else if (skip <= 0x1000)
1173 {
1174 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1175 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1176 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1177 }
1178 /* Handle it with a three byte R_NO_RELOCATION entry. */
1179 else
1180 {
1181 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1182 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1183 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1184 }
1185 }
1186 /* Ugh. Punt and use a 4 byte entry. */
1187 else if (skip > 0)
1188 {
1189 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1190 bfd_put_8 (abfd, skip >> 16, p + 1);
1191 bfd_put_16 (abfd, skip, p + 2);
1192 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1193 }
1194 return p;
1195 }
1196
1197 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1198 from a BFD relocation. Update the size of the subspace relocation
1199 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1200 into the relocation stream. */
1201
1202 static unsigned char *
1203 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1204 bfd *abfd;
1205 int addend;
1206 unsigned char *p;
1207 unsigned int *subspace_reloc_sizep;
1208 struct reloc_queue *queue;
1209 {
1210 if ((unsigned)(addend) + 0x80 < 0x100)
1211 {
1212 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1213 bfd_put_8 (abfd, addend, p + 1);
1214 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1215 }
1216 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1217 {
1218 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1219 bfd_put_16 (abfd, addend, p + 1);
1220 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1221 }
1222 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1223 {
1224 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1225 bfd_put_8 (abfd, addend >> 16, p + 1);
1226 bfd_put_16 (abfd, addend, p + 2);
1227 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1228 }
1229 else
1230 {
1231 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1232 bfd_put_32 (abfd, addend, p + 1);
1233 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1234 }
1235 return p;
1236 }
1237
1238 /* Handle a single function call relocation. */
1239
1240 static unsigned char *
1241 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1242 bfd *abfd;
1243 unsigned char *p;
1244 unsigned int *subspace_reloc_sizep;
1245 arelent *bfd_reloc;
1246 int sym_num;
1247 struct reloc_queue *queue;
1248 {
1249 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1250 int rtn_bits = arg_bits & 0x3;
1251 int type, done = 0;
1252
1253 /* You'll never believe all this is necessary to handle relocations
1254 for function calls. Having to compute and pack the argument
1255 relocation bits is the real nightmare.
1256
1257 If you're interested in how this works, just forget it. You really
1258 do not want to know about this braindamage. */
1259
1260 /* First see if this can be done with a "simple" relocation. Simple
1261 relocations have a symbol number < 0x100 and have simple encodings
1262 of argument relocations. */
1263
1264 if (sym_num < 0x100)
1265 {
1266 switch (arg_bits)
1267 {
1268 case 0:
1269 case 1:
1270 type = 0;
1271 break;
1272 case 1 << 8:
1273 case 1 << 8 | 1:
1274 type = 1;
1275 break;
1276 case 1 << 8 | 1 << 6:
1277 case 1 << 8 | 1 << 6 | 1:
1278 type = 2;
1279 break;
1280 case 1 << 8 | 1 << 6 | 1 << 4:
1281 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1282 type = 3;
1283 break;
1284 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1285 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1286 type = 4;
1287 break;
1288 default:
1289 /* Not one of the easy encodings. This will have to be
1290 handled by the more complex code below. */
1291 type = -1;
1292 break;
1293 }
1294 if (type != -1)
1295 {
1296 /* Account for the return value too. */
1297 if (rtn_bits)
1298 type += 5;
1299
1300 /* Emit a 2 byte relocation. Then see if it can be handled
1301 with a relocation which is already in the relocation queue. */
1302 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1303 bfd_put_8 (abfd, sym_num, p + 1);
1304 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1305 done = 1;
1306 }
1307 }
1308
1309 /* If this could not be handled with a simple relocation, then do a hard
1310 one. Hard relocations occur if the symbol number was too high or if
1311 the encoding of argument relocation bits is too complex. */
1312 if (! done)
1313 {
1314 /* Don't ask about these magic sequences. I took them straight
1315 from gas-1.36 which took them from the a.out man page. */
1316 type = rtn_bits;
1317 if ((arg_bits >> 6 & 0xf) == 0xe)
1318 type += 9 * 40;
1319 else
1320 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1321 if ((arg_bits >> 2 & 0xf) == 0xe)
1322 type += 9 * 4;
1323 else
1324 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1325
1326 /* Output the first two bytes of the relocation. These describe
1327 the length of the relocation and encoding style. */
1328 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1329 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1330 p);
1331 bfd_put_8 (abfd, type, p + 1);
1332
1333 /* Now output the symbol index and see if this bizarre relocation
1334 just happened to be in the relocation queue. */
1335 if (sym_num < 0x100)
1336 {
1337 bfd_put_8 (abfd, sym_num, p + 2);
1338 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1339 }
1340 else
1341 {
1342 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1343 bfd_put_16 (abfd, sym_num, p + 3);
1344 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1345 }
1346 }
1347 return p;
1348 }
1349
1350
1351 /* Return the logarithm of X, base 2, considering X unsigned.
1352 Abort -1 if X is not a power or two or is zero. */
1353
1354 static int
1355 log2 (x)
1356 unsigned int x;
1357 {
1358 int log = 0;
1359
1360 /* Test for 0 or a power of 2. */
1361 if (x == 0 || x != (x & -x))
1362 return -1;
1363
1364 while ((x >>= 1) != 0)
1365 log++;
1366 return log;
1367 }
1368
1369 static bfd_reloc_status_type
1370 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1371 input_section, output_bfd, error_message)
1372 bfd *abfd;
1373 arelent *reloc_entry;
1374 asymbol *symbol_in;
1375 PTR data;
1376 asection *input_section;
1377 bfd *output_bfd;
1378 char **error_message;
1379 {
1380 if (output_bfd)
1381 {
1382 reloc_entry->address += input_section->output_offset;
1383 return bfd_reloc_ok;
1384 }
1385 return bfd_reloc_ok;
1386 }
1387
1388 /* Given a generic HPPA relocation type, the instruction format,
1389 and a field selector, return one or more appropriate SOM relocations. */
1390
1391 int **
1392 hppa_som_gen_reloc_type (abfd, base_type, format, field)
1393 bfd *abfd;
1394 int base_type;
1395 int format;
1396 enum hppa_reloc_field_selector_type_alt field;
1397 {
1398 int *final_type, **final_types;
1399
1400 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 3);
1401 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1402 if (!final_types || !final_type)
1403 {
1404 bfd_set_error (bfd_error_no_memory);
1405 return NULL;
1406 }
1407
1408 /* The field selector may require additional relocations to be
1409 generated. It's impossible to know at this moment if additional
1410 relocations will be needed, so we make them. The code to actually
1411 write the relocation/fixup stream is responsible for removing
1412 any redundant relocations. */
1413 switch (field)
1414 {
1415 case e_fsel:
1416 case e_psel:
1417 case e_lpsel:
1418 case e_rpsel:
1419 final_types[0] = final_type;
1420 final_types[1] = NULL;
1421 final_types[2] = NULL;
1422 *final_type = base_type;
1423 break;
1424
1425 case e_tsel:
1426 case e_ltsel:
1427 case e_rtsel:
1428 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1429 if (!final_types[0])
1430 {
1431 bfd_set_error (bfd_error_no_memory);
1432 return NULL;
1433 }
1434 if (field == e_tsel)
1435 *final_types[0] = R_FSEL;
1436 else if (field == e_ltsel)
1437 *final_types[0] = R_LSEL;
1438 else
1439 *final_types[0] = R_RSEL;
1440 final_types[1] = final_type;
1441 final_types[2] = NULL;
1442 *final_type = base_type;
1443 break;
1444
1445 case e_lssel:
1446 case e_rssel:
1447 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1448 if (!final_types[0])
1449 {
1450 bfd_set_error (bfd_error_no_memory);
1451 return NULL;
1452 }
1453 *final_types[0] = R_S_MODE;
1454 final_types[1] = final_type;
1455 final_types[2] = NULL;
1456 *final_type = base_type;
1457 break;
1458
1459 case e_lsel:
1460 case e_rsel:
1461 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1462 if (!final_types[0])
1463 {
1464 bfd_set_error (bfd_error_no_memory);
1465 return NULL;
1466 }
1467 *final_types[0] = R_N_MODE;
1468 final_types[1] = final_type;
1469 final_types[2] = NULL;
1470 *final_type = base_type;
1471 break;
1472
1473 case e_ldsel:
1474 case e_rdsel:
1475 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1476 if (!final_types[0])
1477 {
1478 bfd_set_error (bfd_error_no_memory);
1479 return NULL;
1480 }
1481 *final_types[0] = R_D_MODE;
1482 final_types[1] = final_type;
1483 final_types[2] = NULL;
1484 *final_type = base_type;
1485 break;
1486
1487 case e_lrsel:
1488 case e_rrsel:
1489 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1490 if (!final_types[0])
1491 {
1492 bfd_set_error (bfd_error_no_memory);
1493 return NULL;
1494 }
1495 *final_types[0] = R_R_MODE;
1496 final_types[1] = final_type;
1497 final_types[2] = NULL;
1498 *final_type = base_type;
1499 break;
1500 }
1501
1502 switch (base_type)
1503 {
1504 case R_HPPA:
1505 /* PLABELs get their own relocation type. */
1506 if (field == e_psel
1507 || field == e_lpsel
1508 || field == e_rpsel)
1509 {
1510 /* A PLABEL relocation that has a size of 32 bits must
1511 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1512 if (format == 32)
1513 *final_type = R_DATA_PLABEL;
1514 else
1515 *final_type = R_CODE_PLABEL;
1516 }
1517 /* PIC stuff. */
1518 else if (field == e_tsel
1519 || field == e_ltsel
1520 || field == e_rtsel)
1521 *final_type = R_DLT_REL;
1522 /* A relocation in the data space is always a full 32bits. */
1523 else if (format == 32)
1524 *final_type = R_DATA_ONE_SYMBOL;
1525
1526 break;
1527
1528 case R_HPPA_GOTOFF:
1529 /* More PLABEL special cases. */
1530 if (field == e_psel
1531 || field == e_lpsel
1532 || field == e_rpsel)
1533 *final_type = R_DATA_PLABEL;
1534 break;
1535
1536 case R_HPPA_NONE:
1537 case R_HPPA_ABS_CALL:
1538 case R_HPPA_PCREL_CALL:
1539 /* Right now we can default all these. */
1540 break;
1541 }
1542 return final_types;
1543 }
1544
1545 /* Return the address of the correct entry in the PA SOM relocation
1546 howto table. */
1547
1548 /*ARGSUSED*/
1549 static const reloc_howto_type *
1550 som_bfd_reloc_type_lookup (abfd, code)
1551 bfd *abfd;
1552 bfd_reloc_code_real_type code;
1553 {
1554 if ((int) code < (int) R_NO_RELOCATION + 255)
1555 {
1556 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1557 return &som_hppa_howto_table[(int) code];
1558 }
1559
1560 return (reloc_howto_type *) 0;
1561 }
1562
1563 /* Perform some initialization for an object. Save results of this
1564 initialization in the BFD. */
1565
1566 static const bfd_target *
1567 som_object_setup (abfd, file_hdrp, aux_hdrp)
1568 bfd *abfd;
1569 struct header *file_hdrp;
1570 struct som_exec_auxhdr *aux_hdrp;
1571 {
1572 /* som_mkobject will set bfd_error if som_mkobject fails. */
1573 if (som_mkobject (abfd) != true)
1574 return 0;
1575
1576 /* Set BFD flags based on what information is available in the SOM. */
1577 abfd->flags = NO_FLAGS;
1578 if (file_hdrp->symbol_total)
1579 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1580
1581 switch (file_hdrp->a_magic)
1582 {
1583 case DEMAND_MAGIC:
1584 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1585 break;
1586 case SHARE_MAGIC:
1587 abfd->flags |= (WP_TEXT | EXEC_P);
1588 break;
1589 case EXEC_MAGIC:
1590 abfd->flags |= (EXEC_P);
1591 break;
1592 case RELOC_MAGIC:
1593 abfd->flags |= HAS_RELOC;
1594 break;
1595 #ifdef SHL_MAGIC
1596 case SHL_MAGIC:
1597 #endif
1598 #ifdef DL_MAGIC
1599 case DL_MAGIC:
1600 #endif
1601 abfd->flags |= DYNAMIC;
1602 break;
1603
1604 default:
1605 break;
1606 }
1607
1608 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1609 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 0);
1610 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1611
1612 /* Initialize the saved symbol table and string table to NULL.
1613 Save important offsets and sizes from the SOM header into
1614 the BFD. */
1615 obj_som_stringtab (abfd) = (char *) NULL;
1616 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1617 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1618 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1619 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1620 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
1621
1622 obj_som_exec_data (abfd) = (struct som_exec_data *)
1623 bfd_zalloc (abfd, sizeof (struct som_exec_data ));
1624 if (obj_som_exec_data (abfd) == NULL)
1625 {
1626 bfd_set_error (bfd_error_no_memory);
1627 return NULL;
1628 }
1629
1630 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1631 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1632 return abfd->xvec;
1633 }
1634
1635 /* Convert all of the space and subspace info into BFD sections. Each space
1636 contains a number of subspaces, which in turn describe the mapping between
1637 regions of the exec file, and the address space that the program runs in.
1638 BFD sections which correspond to spaces will overlap the sections for the
1639 associated subspaces. */
1640
1641 static boolean
1642 setup_sections (abfd, file_hdr)
1643 bfd *abfd;
1644 struct header *file_hdr;
1645 {
1646 char *space_strings;
1647 int space_index;
1648 unsigned int total_subspaces = 0;
1649
1650 /* First, read in space names */
1651
1652 space_strings = malloc (file_hdr->space_strings_size);
1653 if (!space_strings && file_hdr->space_strings_size != 0)
1654 {
1655 bfd_set_error (bfd_error_no_memory);
1656 goto error_return;
1657 }
1658
1659 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
1660 goto error_return;
1661 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1662 != file_hdr->space_strings_size)
1663 goto error_return;
1664
1665 /* Loop over all of the space dictionaries, building up sections */
1666 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1667 {
1668 struct space_dictionary_record space;
1669 struct subspace_dictionary_record subspace, save_subspace;
1670 int subspace_index;
1671 asection *space_asect;
1672 char *newname;
1673
1674 /* Read the space dictionary element */
1675 if (bfd_seek (abfd, file_hdr->space_location
1676 + space_index * sizeof space, SEEK_SET) < 0)
1677 goto error_return;
1678 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1679 goto error_return;
1680
1681 /* Setup the space name string */
1682 space.name.n_name = space.name.n_strx + space_strings;
1683
1684 /* Make a section out of it */
1685 newname = bfd_alloc (abfd, strlen (space.name.n_name) + 1);
1686 if (!newname)
1687 goto error_return;
1688 strcpy (newname, space.name.n_name);
1689
1690 space_asect = bfd_make_section_anyway (abfd, newname);
1691 if (!space_asect)
1692 goto error_return;
1693
1694 if (space.is_loadable == 0)
1695 space_asect->flags |= SEC_DEBUGGING;
1696
1697 /* Set up all the attributes for the space. */
1698 if (bfd_som_set_section_attributes (space_asect, space.is_defined,
1699 space.is_private, space.sort_key,
1700 space.space_number) == false)
1701 goto error_return;
1702
1703 /* Now, read in the first subspace for this space */
1704 if (bfd_seek (abfd, file_hdr->subspace_location
1705 + space.subspace_index * sizeof subspace,
1706 SEEK_SET) < 0)
1707 goto error_return;
1708 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1709 goto error_return;
1710 /* Seek back to the start of the subspaces for loop below */
1711 if (bfd_seek (abfd, file_hdr->subspace_location
1712 + space.subspace_index * sizeof subspace,
1713 SEEK_SET) < 0)
1714 goto error_return;
1715
1716 /* Setup the start address and file loc from the first subspace record */
1717 space_asect->vma = subspace.subspace_start;
1718 space_asect->filepos = subspace.file_loc_init_value;
1719 space_asect->alignment_power = log2 (subspace.alignment);
1720 if (space_asect->alignment_power == -1)
1721 goto error_return;
1722
1723 /* Initialize save_subspace so we can reliably determine if this
1724 loop placed any useful values into it. */
1725 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1726
1727 /* Loop over the rest of the subspaces, building up more sections */
1728 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1729 subspace_index++)
1730 {
1731 asection *subspace_asect;
1732
1733 /* Read in the next subspace */
1734 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1735 != sizeof subspace)
1736 goto error_return;
1737
1738 /* Setup the subspace name string */
1739 subspace.name.n_name = subspace.name.n_strx + space_strings;
1740
1741 newname = bfd_alloc (abfd, strlen (subspace.name.n_name) + 1);
1742 if (!newname)
1743 goto error_return;
1744 strcpy (newname, subspace.name.n_name);
1745
1746 /* Make a section out of this subspace */
1747 subspace_asect = bfd_make_section_anyway (abfd, newname);
1748 if (!subspace_asect)
1749 goto error_return;
1750
1751 /* Store private information about the section. */
1752 if (bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1753 subspace.access_control_bits,
1754 subspace.sort_key,
1755 subspace.quadrant) == false)
1756 goto error_return;
1757
1758 /* Keep an easy mapping between subspaces and sections. */
1759 subspace_asect->target_index = total_subspaces++;
1760
1761 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1762 by the access_control_bits in the subspace header. */
1763 switch (subspace.access_control_bits >> 4)
1764 {
1765 /* Readonly data. */
1766 case 0x0:
1767 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1768 break;
1769
1770 /* Normal data. */
1771 case 0x1:
1772 subspace_asect->flags |= SEC_DATA;
1773 break;
1774
1775 /* Readonly code and the gateways.
1776 Gateways have other attributes which do not map
1777 into anything BFD knows about. */
1778 case 0x2:
1779 case 0x4:
1780 case 0x5:
1781 case 0x6:
1782 case 0x7:
1783 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1784 break;
1785
1786 /* dynamic (writable) code. */
1787 case 0x3:
1788 subspace_asect->flags |= SEC_CODE;
1789 break;
1790 }
1791
1792 if (subspace.dup_common || subspace.is_common)
1793 subspace_asect->flags |= SEC_IS_COMMON;
1794 else if (subspace.subspace_length > 0)
1795 subspace_asect->flags |= SEC_HAS_CONTENTS;
1796
1797 if (subspace.is_loadable)
1798 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1799 else
1800 subspace_asect->flags |= SEC_DEBUGGING;
1801
1802 if (subspace.code_only)
1803 subspace_asect->flags |= SEC_CODE;
1804
1805 /* Both file_loc_init_value and initialization_length will
1806 be zero for a BSS like subspace. */
1807 if (subspace.file_loc_init_value == 0
1808 && subspace.initialization_length == 0)
1809 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD);
1810
1811 /* This subspace has relocations.
1812 The fixup_request_quantity is a byte count for the number of
1813 entries in the relocation stream; it is not the actual number
1814 of relocations in the subspace. */
1815 if (subspace.fixup_request_quantity != 0)
1816 {
1817 subspace_asect->flags |= SEC_RELOC;
1818 subspace_asect->rel_filepos = subspace.fixup_request_index;
1819 som_section_data (subspace_asect)->reloc_size
1820 = subspace.fixup_request_quantity;
1821 /* We can not determine this yet. When we read in the
1822 relocation table the correct value will be filled in. */
1823 subspace_asect->reloc_count = -1;
1824 }
1825
1826 /* Update save_subspace if appropriate. */
1827 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1828 save_subspace = subspace;
1829
1830 subspace_asect->vma = subspace.subspace_start;
1831 subspace_asect->_cooked_size = subspace.subspace_length;
1832 subspace_asect->_raw_size = subspace.subspace_length;
1833 subspace_asect->filepos = subspace.file_loc_init_value;
1834 subspace_asect->alignment_power = log2 (subspace.alignment);
1835 if (subspace_asect->alignment_power == -1)
1836 goto error_return;
1837 }
1838
1839 /* Yow! there is no subspace within the space which actually
1840 has initialized information in it; this should never happen
1841 as far as I know. */
1842 if (!save_subspace.file_loc_init_value)
1843 goto error_return;
1844
1845 /* Setup the sizes for the space section based upon the info in the
1846 last subspace of the space. */
1847 space_asect->_cooked_size = save_subspace.subspace_start
1848 - space_asect->vma + save_subspace.subspace_length;
1849 space_asect->_raw_size = save_subspace.file_loc_init_value
1850 - space_asect->filepos + save_subspace.initialization_length;
1851 }
1852 if (space_strings != NULL)
1853 free (space_strings);
1854 return true;
1855
1856 error_return:
1857 if (space_strings != NULL)
1858 free (space_strings);
1859 return false;
1860 }
1861
1862 /* Read in a SOM object and make it into a BFD. */
1863
1864 static const bfd_target *
1865 som_object_p (abfd)
1866 bfd *abfd;
1867 {
1868 struct header file_hdr;
1869 struct som_exec_auxhdr aux_hdr;
1870
1871 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
1872 {
1873 if (bfd_get_error () != bfd_error_system_call)
1874 bfd_set_error (bfd_error_wrong_format);
1875 return 0;
1876 }
1877
1878 if (!_PA_RISC_ID (file_hdr.system_id))
1879 {
1880 bfd_set_error (bfd_error_wrong_format);
1881 return 0;
1882 }
1883
1884 switch (file_hdr.a_magic)
1885 {
1886 case RELOC_MAGIC:
1887 case EXEC_MAGIC:
1888 case SHARE_MAGIC:
1889 case DEMAND_MAGIC:
1890 #ifdef DL_MAGIC
1891 case DL_MAGIC:
1892 #endif
1893 #ifdef SHL_MAGIC
1894 case SHL_MAGIC:
1895 #endif
1896 #ifdef EXECLIBMAGIC
1897 case EXECLIBMAGIC:
1898 #endif
1899 #ifdef SHARED_MAGIC_CNX
1900 case SHARED_MAGIC_CNX:
1901 #endif
1902 break;
1903 default:
1904 bfd_set_error (bfd_error_wrong_format);
1905 return 0;
1906 }
1907
1908 if (file_hdr.version_id != VERSION_ID
1909 && file_hdr.version_id != NEW_VERSION_ID)
1910 {
1911 bfd_set_error (bfd_error_wrong_format);
1912 return 0;
1913 }
1914
1915 /* If the aux_header_size field in the file header is zero, then this
1916 object is an incomplete executable (a .o file). Do not try to read
1917 a non-existant auxiliary header. */
1918 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
1919 if (file_hdr.aux_header_size != 0)
1920 {
1921 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
1922 {
1923 if (bfd_get_error () != bfd_error_system_call)
1924 bfd_set_error (bfd_error_wrong_format);
1925 return 0;
1926 }
1927 }
1928
1929 if (!setup_sections (abfd, &file_hdr))
1930 {
1931 /* setup_sections does not bubble up a bfd error code. */
1932 bfd_set_error (bfd_error_bad_value);
1933 return 0;
1934 }
1935
1936 /* This appears to be a valid SOM object. Do some initialization. */
1937 return som_object_setup (abfd, &file_hdr, &aux_hdr);
1938 }
1939
1940 /* Create a SOM object. */
1941
1942 static boolean
1943 som_mkobject (abfd)
1944 bfd *abfd;
1945 {
1946 /* Allocate memory to hold backend information. */
1947 abfd->tdata.som_data = (struct som_data_struct *)
1948 bfd_zalloc (abfd, sizeof (struct som_data_struct));
1949 if (abfd->tdata.som_data == NULL)
1950 {
1951 bfd_set_error (bfd_error_no_memory);
1952 return false;
1953 }
1954 return true;
1955 }
1956
1957 /* Initialize some information in the file header. This routine makes
1958 not attempt at doing the right thing for a full executable; it
1959 is only meant to handle relocatable objects. */
1960
1961 static boolean
1962 som_prep_headers (abfd)
1963 bfd *abfd;
1964 {
1965 struct header *file_hdr;
1966 asection *section;
1967
1968 /* Make and attach a file header to the BFD. */
1969 file_hdr = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
1970 if (file_hdr == NULL)
1971
1972 {
1973 bfd_set_error (bfd_error_no_memory);
1974 return false;
1975 }
1976 obj_som_file_hdr (abfd) = file_hdr;
1977
1978 if (abfd->flags & (EXEC_P | DYNAMIC))
1979 {
1980
1981 /* Make and attach an exec header to the BFD. */
1982 obj_som_exec_hdr (abfd) = (struct som_exec_auxhdr *)
1983 bfd_zalloc (abfd, sizeof (struct som_exec_auxhdr));
1984 if (obj_som_exec_hdr (abfd) == NULL)
1985 {
1986 bfd_set_error (bfd_error_no_memory);
1987 return false;
1988 }
1989
1990 if (abfd->flags & D_PAGED)
1991 file_hdr->a_magic = DEMAND_MAGIC;
1992 else if (abfd->flags & WP_TEXT)
1993 file_hdr->a_magic = SHARE_MAGIC;
1994 #ifdef SHL_MAGIC
1995 else if (abfd->flags & DYNAMIC)
1996 file_hdr->a_magic = SHL_MAGIC;
1997 #endif
1998 else
1999 file_hdr->a_magic = EXEC_MAGIC;
2000 }
2001 else
2002 file_hdr->a_magic = RELOC_MAGIC;
2003
2004 /* Only new format SOM is supported. */
2005 file_hdr->version_id = NEW_VERSION_ID;
2006
2007 /* These fields are optional, and embedding timestamps is not always
2008 a wise thing to do, it makes comparing objects during a multi-stage
2009 bootstrap difficult. */
2010 file_hdr->file_time.secs = 0;
2011 file_hdr->file_time.nanosecs = 0;
2012
2013 file_hdr->entry_space = 0;
2014 file_hdr->entry_subspace = 0;
2015 file_hdr->entry_offset = 0;
2016 file_hdr->presumed_dp = 0;
2017
2018 /* Now iterate over the sections translating information from
2019 BFD sections to SOM spaces/subspaces. */
2020
2021 for (section = abfd->sections; section != NULL; section = section->next)
2022 {
2023 /* Ignore anything which has not been marked as a space or
2024 subspace. */
2025 if (!som_is_space (section) && !som_is_subspace (section))
2026 continue;
2027
2028 if (som_is_space (section))
2029 {
2030 /* Allocate space for the space dictionary. */
2031 som_section_data (section)->space_dict
2032 = (struct space_dictionary_record *)
2033 bfd_zalloc (abfd, sizeof (struct space_dictionary_record));
2034 if (som_section_data (section)->space_dict == NULL)
2035 {
2036 bfd_set_error (bfd_error_no_memory);
2037 return false;
2038 }
2039 /* Set space attributes. Note most attributes of SOM spaces
2040 are set based on the subspaces it contains. */
2041 som_section_data (section)->space_dict->loader_fix_index = -1;
2042 som_section_data (section)->space_dict->init_pointer_index = -1;
2043
2044 /* Set more attributes that were stuffed away in private data. */
2045 som_section_data (section)->space_dict->sort_key =
2046 som_section_data (section)->copy_data->sort_key;
2047 som_section_data (section)->space_dict->is_defined =
2048 som_section_data (section)->copy_data->is_defined;
2049 som_section_data (section)->space_dict->is_private =
2050 som_section_data (section)->copy_data->is_private;
2051 som_section_data (section)->space_dict->space_number =
2052 som_section_data (section)->copy_data->space_number;
2053 }
2054 else
2055 {
2056 /* Allocate space for the subspace dictionary. */
2057 som_section_data (section)->subspace_dict
2058 = (struct subspace_dictionary_record *)
2059 bfd_zalloc (abfd, sizeof (struct subspace_dictionary_record));
2060 if (som_section_data (section)->subspace_dict == NULL)
2061 {
2062 bfd_set_error (bfd_error_no_memory);
2063 return false;
2064 }
2065
2066 /* Set subspace attributes. Basic stuff is done here, additional
2067 attributes are filled in later as more information becomes
2068 available. */
2069 if (section->flags & SEC_IS_COMMON)
2070 {
2071 som_section_data (section)->subspace_dict->dup_common = 1;
2072 som_section_data (section)->subspace_dict->is_common = 1;
2073 }
2074
2075 if (section->flags & SEC_ALLOC)
2076 som_section_data (section)->subspace_dict->is_loadable = 1;
2077
2078 if (section->flags & SEC_CODE)
2079 som_section_data (section)->subspace_dict->code_only = 1;
2080
2081 som_section_data (section)->subspace_dict->subspace_start =
2082 section->vma;
2083 som_section_data (section)->subspace_dict->subspace_length =
2084 bfd_section_size (abfd, section);
2085 som_section_data (section)->subspace_dict->initialization_length =
2086 bfd_section_size (abfd, section);
2087 som_section_data (section)->subspace_dict->alignment =
2088 1 << section->alignment_power;
2089
2090 /* Set more attributes that were stuffed away in private data. */
2091 som_section_data (section)->subspace_dict->sort_key =
2092 som_section_data (section)->copy_data->sort_key;
2093 som_section_data (section)->subspace_dict->access_control_bits =
2094 som_section_data (section)->copy_data->access_control_bits;
2095 som_section_data (section)->subspace_dict->quadrant =
2096 som_section_data (section)->copy_data->quadrant;
2097 }
2098 }
2099 return true;
2100 }
2101
2102 /* Return true if the given section is a SOM space, false otherwise. */
2103
2104 static boolean
2105 som_is_space (section)
2106 asection *section;
2107 {
2108 /* If no copy data is available, then it's neither a space nor a
2109 subspace. */
2110 if (som_section_data (section)->copy_data == NULL)
2111 return false;
2112
2113 /* If the containing space isn't the same as the given section,
2114 then this isn't a space. */
2115 if (som_section_data (section)->copy_data->container != section)
2116 return false;
2117
2118 /* OK. Must be a space. */
2119 return true;
2120 }
2121
2122 /* Return true if the given section is a SOM subspace, false otherwise. */
2123
2124 static boolean
2125 som_is_subspace (section)
2126 asection *section;
2127 {
2128 /* If no copy data is available, then it's neither a space nor a
2129 subspace. */
2130 if (som_section_data (section)->copy_data == NULL)
2131 return false;
2132
2133 /* If the containing space is the same as the given section,
2134 then this isn't a subspace. */
2135 if (som_section_data (section)->copy_data->container == section)
2136 return false;
2137
2138 /* OK. Must be a subspace. */
2139 return true;
2140 }
2141
2142 /* Return true if the given space containins the given subspace. It
2143 is safe to assume space really is a space, and subspace really
2144 is a subspace. */
2145
2146 static boolean
2147 som_is_container (space, subspace)
2148 asection *space, *subspace;
2149 {
2150 return som_section_data (subspace)->copy_data->container == space;
2151 }
2152
2153 /* Count and return the number of spaces attached to the given BFD. */
2154
2155 static unsigned long
2156 som_count_spaces (abfd)
2157 bfd *abfd;
2158 {
2159 int count = 0;
2160 asection *section;
2161
2162 for (section = abfd->sections; section != NULL; section = section->next)
2163 count += som_is_space (section);
2164
2165 return count;
2166 }
2167
2168 /* Count the number of subspaces attached to the given BFD. */
2169
2170 static unsigned long
2171 som_count_subspaces (abfd)
2172 bfd *abfd;
2173 {
2174 int count = 0;
2175 asection *section;
2176
2177 for (section = abfd->sections; section != NULL; section = section->next)
2178 count += som_is_subspace (section);
2179
2180 return count;
2181 }
2182
2183 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2184
2185 We desire symbols to be ordered starting with the symbol with the
2186 highest relocation count down to the symbol with the lowest relocation
2187 count. Doing so compacts the relocation stream. */
2188
2189 static int
2190 compare_syms (arg1, arg2)
2191 const PTR arg1;
2192 const PTR arg2;
2193
2194 {
2195 asymbol **sym1 = (asymbol **) arg1;
2196 asymbol **sym2 = (asymbol **) arg2;
2197 unsigned int count1, count2;
2198
2199 /* Get relocation count for each symbol. Note that the count
2200 is stored in the udata pointer for section symbols! */
2201 if ((*sym1)->flags & BSF_SECTION_SYM)
2202 count1 = (int)(*sym1)->udata;
2203 else
2204 count1 = som_symbol_data (*sym1)->reloc_count;
2205
2206 if ((*sym2)->flags & BSF_SECTION_SYM)
2207 count2 = (int)(*sym2)->udata;
2208 else
2209 count2 = som_symbol_data (*sym2)->reloc_count;
2210
2211 /* Return the appropriate value. */
2212 if (count1 < count2)
2213 return 1;
2214 else if (count1 > count2)
2215 return -1;
2216 return 0;
2217 }
2218
2219 /* Perform various work in preparation for emitting the fixup stream. */
2220
2221 static void
2222 som_prep_for_fixups (abfd, syms, num_syms)
2223 bfd *abfd;
2224 asymbol **syms;
2225 unsigned long num_syms;
2226 {
2227 int i;
2228 asection *section;
2229
2230 /* Most SOM relocations involving a symbol have a length which is
2231 dependent on the index of the symbol. So symbols which are
2232 used often in relocations should have a small index. */
2233
2234 /* First initialize the counters for each symbol. */
2235 for (i = 0; i < num_syms; i++)
2236 {
2237 /* Handle a section symbol; these have no pointers back to the
2238 SOM symbol info. So we just use the pointer field (udata)
2239 to hold the relocation count. */
2240 if (som_symbol_data (syms[i]) == NULL
2241 || syms[i]->flags & BSF_SECTION_SYM)
2242 {
2243 syms[i]->flags |= BSF_SECTION_SYM;
2244 syms[i]->udata = (PTR) 0;
2245 }
2246 else
2247 som_symbol_data (syms[i])->reloc_count = 0;
2248 }
2249
2250 /* Now that the counters are initialized, make a weighted count
2251 of how often a given symbol is used in a relocation. */
2252 for (section = abfd->sections; section != NULL; section = section->next)
2253 {
2254 int i;
2255
2256 /* Does this section have any relocations? */
2257 if (section->reloc_count <= 0)
2258 continue;
2259
2260 /* Walk through each relocation for this section. */
2261 for (i = 1; i < section->reloc_count; i++)
2262 {
2263 arelent *reloc = section->orelocation[i];
2264 int scale;
2265
2266 /* A relocation against a symbol in the *ABS* section really
2267 does not have a symbol. Likewise if the symbol isn't associated
2268 with any section. */
2269 if (reloc->sym_ptr_ptr == NULL
2270 || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section))
2271 continue;
2272
2273 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2274 and R_CODE_ONE_SYMBOL relocations to come first. These
2275 two relocations have single byte versions if the symbol
2276 index is very small. */
2277 if (reloc->howto->type == R_DP_RELATIVE
2278 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2279 scale = 2;
2280 else
2281 scale = 1;
2282
2283 /* Handle section symbols by ramming the count in the udata
2284 field. It will not be used and the count is very important
2285 for these symbols. */
2286 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2287 {
2288 (*reloc->sym_ptr_ptr)->udata =
2289 (PTR) ((int) (*reloc->sym_ptr_ptr)->udata + scale);
2290 continue;
2291 }
2292
2293 /* A normal symbol. Increment the count. */
2294 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2295 }
2296 }
2297
2298 /* Now sort the symbols. */
2299 qsort (syms, num_syms, sizeof (asymbol *), compare_syms);
2300
2301 /* Compute the symbol indexes, they will be needed by the relocation
2302 code. */
2303 for (i = 0; i < num_syms; i++)
2304 {
2305 /* A section symbol. Again, there is no pointer to backend symbol
2306 information, so we reuse (abuse) the udata field again. */
2307 if (syms[i]->flags & BSF_SECTION_SYM)
2308 syms[i]->udata = (PTR) i;
2309 else
2310 som_symbol_data (syms[i])->index = i;
2311 }
2312 }
2313
2314 static boolean
2315 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2316 bfd *abfd;
2317 unsigned long current_offset;
2318 unsigned int *total_reloc_sizep;
2319 {
2320 unsigned int i, j;
2321 /* Chunk of memory that we can use as buffer space, then throw
2322 away. */
2323 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2324 unsigned char *p;
2325 unsigned int total_reloc_size = 0;
2326 unsigned int subspace_reloc_size = 0;
2327 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2328 asection *section = abfd->sections;
2329
2330 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2331 p = tmp_space;
2332
2333 /* All the fixups for a particular subspace are emitted in a single
2334 stream. All the subspaces for a particular space are emitted
2335 as a single stream.
2336
2337 So, to get all the locations correct one must iterate through all the
2338 spaces, for each space iterate through its subspaces and output a
2339 fixups stream. */
2340 for (i = 0; i < num_spaces; i++)
2341 {
2342 asection *subsection;
2343
2344 /* Find a space. */
2345 while (!som_is_space (section))
2346 section = section->next;
2347
2348 /* Now iterate through each of its subspaces. */
2349 for (subsection = abfd->sections;
2350 subsection != NULL;
2351 subsection = subsection->next)
2352 {
2353 int reloc_offset, current_rounding_mode;
2354
2355 /* Find a subspace of this space. */
2356 if (!som_is_subspace (subsection)
2357 || !som_is_container (section, subsection))
2358 continue;
2359
2360 /* If this subspace does not have real data, then we are
2361 finised with it. */
2362 if ((subsection->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0)
2363 {
2364 som_section_data (subsection)->subspace_dict->fixup_request_index
2365 = -1;
2366 continue;
2367 }
2368
2369 /* This subspace has some relocations. Put the relocation stream
2370 index into the subspace record. */
2371 som_section_data (subsection)->subspace_dict->fixup_request_index
2372 = total_reloc_size;
2373
2374 /* To make life easier start over with a clean slate for
2375 each subspace. Seek to the start of the relocation stream
2376 for this subspace in preparation for writing out its fixup
2377 stream. */
2378 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) < 0)
2379 return false;
2380
2381 /* Buffer space has already been allocated. Just perform some
2382 initialization here. */
2383 p = tmp_space;
2384 subspace_reloc_size = 0;
2385 reloc_offset = 0;
2386 som_initialize_reloc_queue (reloc_queue);
2387 current_rounding_mode = R_N_MODE;
2388
2389 /* Translate each BFD relocation into one or more SOM
2390 relocations. */
2391 for (j = 0; j < subsection->reloc_count; j++)
2392 {
2393 arelent *bfd_reloc = subsection->orelocation[j];
2394 unsigned int skip;
2395 int sym_num;
2396
2397 /* Get the symbol number. Remember it's stored in a
2398 special place for section symbols. */
2399 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2400 sym_num = (int) (*bfd_reloc->sym_ptr_ptr)->udata;
2401 else
2402 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2403
2404 /* If there is not enough room for the next couple relocations,
2405 then dump the current buffer contents now. Also reinitialize
2406 the relocation queue.
2407
2408 No single BFD relocation could ever translate into more
2409 than 100 bytes of SOM relocations (20bytes is probably the
2410 upper limit, but leave lots of space for growth). */
2411 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2412 {
2413 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2414 != p - tmp_space)
2415 return false;
2416
2417 p = tmp_space;
2418 som_initialize_reloc_queue (reloc_queue);
2419 }
2420
2421 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2422 skipped. */
2423 skip = bfd_reloc->address - reloc_offset;
2424 p = som_reloc_skip (abfd, skip, p,
2425 &subspace_reloc_size, reloc_queue);
2426
2427 /* Update reloc_offset for the next iteration.
2428
2429 Many relocations do not consume input bytes. They
2430 are markers, or set state necessary to perform some
2431 later relocation. */
2432 switch (bfd_reloc->howto->type)
2433 {
2434 /* This only needs to handle relocations that may be
2435 made by hppa_som_gen_reloc. */
2436 case R_ENTRY:
2437 case R_EXIT:
2438 case R_N_MODE:
2439 case R_S_MODE:
2440 case R_D_MODE:
2441 case R_R_MODE:
2442 case R_FSEL:
2443 case R_LSEL:
2444 case R_RSEL:
2445 reloc_offset = bfd_reloc->address;
2446 break;
2447
2448 default:
2449 reloc_offset = bfd_reloc->address + 4;
2450 break;
2451 }
2452
2453 /* Now the actual relocation we care about. */
2454 switch (bfd_reloc->howto->type)
2455 {
2456 case R_PCREL_CALL:
2457 case R_ABS_CALL:
2458 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2459 bfd_reloc, sym_num, reloc_queue);
2460 break;
2461
2462 case R_CODE_ONE_SYMBOL:
2463 case R_DP_RELATIVE:
2464 /* Account for any addend. */
2465 if (bfd_reloc->addend)
2466 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2467 &subspace_reloc_size, reloc_queue);
2468
2469 if (sym_num < 0x20)
2470 {
2471 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2472 subspace_reloc_size += 1;
2473 p += 1;
2474 }
2475 else if (sym_num < 0x100)
2476 {
2477 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2478 bfd_put_8 (abfd, sym_num, p + 1);
2479 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2480 2, reloc_queue);
2481 }
2482 else if (sym_num < 0x10000000)
2483 {
2484 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2485 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2486 bfd_put_16 (abfd, sym_num, p + 2);
2487 p = try_prev_fixup (abfd, &subspace_reloc_size,
2488 p, 4, reloc_queue);
2489 }
2490 else
2491 abort ();
2492 break;
2493
2494 case R_DATA_ONE_SYMBOL:
2495 case R_DATA_PLABEL:
2496 case R_CODE_PLABEL:
2497 case R_DLT_REL:
2498 /* Account for any addend. */
2499 if (bfd_reloc->addend)
2500 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2501 &subspace_reloc_size, reloc_queue);
2502
2503 if (sym_num < 0x100)
2504 {
2505 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2506 bfd_put_8 (abfd, sym_num, p + 1);
2507 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2508 2, reloc_queue);
2509 }
2510 else if (sym_num < 0x10000000)
2511 {
2512 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2513 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2514 bfd_put_16 (abfd, sym_num, p + 2);
2515 p = try_prev_fixup (abfd, &subspace_reloc_size,
2516 p, 4, reloc_queue);
2517 }
2518 else
2519 abort ();
2520 break;
2521
2522 case R_ENTRY:
2523 {
2524 int *descp = (int *)
2525 som_symbol_data (*bfd_reloc->sym_ptr_ptr)->unwind;
2526 bfd_put_8 (abfd, R_ENTRY, p);
2527
2528 /* FIXME: We should set the sym_ptr for the R_ENTRY
2529 reloc to point to the appropriate function symbol,
2530 and attach unwind bits to the function symbol as
2531 we canonicalize the relocs. Doing so would ensure
2532 descp would always point to something useful. */
2533 if (descp)
2534 {
2535 bfd_put_32 (abfd, descp[0], p + 1);
2536 bfd_put_32 (abfd, descp[1], p + 5);
2537 }
2538 else
2539 {
2540 bfd_put_32 (abfd, 0, p + 1);
2541 bfd_put_32 (abfd, 0, p + 5);
2542 }
2543 p = try_prev_fixup (abfd, &subspace_reloc_size,
2544 p, 9, reloc_queue);
2545 break;
2546 }
2547
2548 case R_EXIT:
2549 bfd_put_8 (abfd, R_EXIT, p);
2550 subspace_reloc_size += 1;
2551 p += 1;
2552 break;
2553
2554 case R_N_MODE:
2555 case R_S_MODE:
2556 case R_D_MODE:
2557 case R_R_MODE:
2558 /* If this relocation requests the current rounding
2559 mode, then it is redundant. */
2560 if (bfd_reloc->howto->type != current_rounding_mode)
2561 {
2562 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2563 subspace_reloc_size += 1;
2564 p += 1;
2565 current_rounding_mode = bfd_reloc->howto->type;
2566 }
2567 break;
2568
2569 case R_FSEL:
2570 case R_LSEL:
2571 case R_RSEL:
2572 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2573 subspace_reloc_size += 1;
2574 p += 1;
2575 break;
2576
2577 /* Put a "R_RESERVED" relocation in the stream if
2578 we hit something we do not understand. The linker
2579 will complain loudly if this ever happens. */
2580 default:
2581 bfd_put_8 (abfd, 0xff, p);
2582 subspace_reloc_size += 1;
2583 p += 1;
2584 break;
2585 }
2586 }
2587
2588 /* Last BFD relocation for a subspace has been processed.
2589 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2590 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2591 - reloc_offset,
2592 p, &subspace_reloc_size, reloc_queue);
2593
2594 /* Scribble out the relocations. */
2595 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2596 != p - tmp_space)
2597 return false;
2598 p = tmp_space;
2599
2600 total_reloc_size += subspace_reloc_size;
2601 som_section_data (subsection)->subspace_dict->fixup_request_quantity
2602 = subspace_reloc_size;
2603 }
2604 section = section->next;
2605 }
2606 *total_reloc_sizep = total_reloc_size;
2607 return true;
2608 }
2609
2610 /* Write out the space/subspace string table. */
2611
2612 static boolean
2613 som_write_space_strings (abfd, current_offset, string_sizep)
2614 bfd *abfd;
2615 unsigned long current_offset;
2616 unsigned int *string_sizep;
2617 {
2618 /* Chunk of memory that we can use as buffer space, then throw
2619 away. */
2620 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2621 unsigned char *p;
2622 unsigned int strings_size = 0;
2623 asection *section;
2624
2625 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2626 p = tmp_space;
2627
2628 /* Seek to the start of the space strings in preparation for writing
2629 them out. */
2630 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2631 return false;
2632
2633 /* Walk through all the spaces and subspaces (order is not important)
2634 building up and writing string table entries for their names. */
2635 for (section = abfd->sections; section != NULL; section = section->next)
2636 {
2637 int length;
2638
2639 /* Only work with space/subspaces; avoid any other sections
2640 which might have been made (.text for example). */
2641 if (!som_is_space (section) && !som_is_subspace (section))
2642 continue;
2643
2644 /* Get the length of the space/subspace name. */
2645 length = strlen (section->name);
2646
2647 /* If there is not enough room for the next entry, then dump the
2648 current buffer contents now. Each entry will take 4 bytes to
2649 hold the string length + the string itself + null terminator. */
2650 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2651 {
2652 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2653 != p - tmp_space)
2654 return false;
2655 /* Reset to beginning of the buffer space. */
2656 p = tmp_space;
2657 }
2658
2659 /* First element in a string table entry is the length of the
2660 string. Alignment issues are already handled. */
2661 bfd_put_32 (abfd, length, p);
2662 p += 4;
2663 strings_size += 4;
2664
2665 /* Record the index in the space/subspace records. */
2666 if (som_is_space (section))
2667 som_section_data (section)->space_dict->name.n_strx = strings_size;
2668 else
2669 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
2670
2671 /* Next comes the string itself + a null terminator. */
2672 strcpy (p, section->name);
2673 p += length + 1;
2674 strings_size += length + 1;
2675
2676 /* Always align up to the next word boundary. */
2677 while (strings_size % 4)
2678 {
2679 bfd_put_8 (abfd, 0, p);
2680 p++;
2681 strings_size++;
2682 }
2683 }
2684
2685 /* Done with the space/subspace strings. Write out any information
2686 contained in a partial block. */
2687 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2688 return false;
2689 *string_sizep = strings_size;
2690 return true;
2691 }
2692
2693 /* Write out the symbol string table. */
2694
2695 static boolean
2696 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
2697 bfd *abfd;
2698 unsigned long current_offset;
2699 asymbol **syms;
2700 unsigned int num_syms;
2701 unsigned int *string_sizep;
2702 {
2703 unsigned int i;
2704
2705 /* Chunk of memory that we can use as buffer space, then throw
2706 away. */
2707 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2708 unsigned char *p;
2709 unsigned int strings_size = 0;
2710
2711 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2712 p = tmp_space;
2713
2714 /* Seek to the start of the space strings in preparation for writing
2715 them out. */
2716 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2717 return false;
2718
2719 for (i = 0; i < num_syms; i++)
2720 {
2721 int length = strlen (syms[i]->name);
2722
2723 /* If there is not enough room for the next entry, then dump the
2724 current buffer contents now. */
2725 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2726 {
2727 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2728 != p - tmp_space)
2729 return false;
2730 /* Reset to beginning of the buffer space. */
2731 p = tmp_space;
2732 }
2733
2734 /* First element in a string table entry is the length of the
2735 string. This must always be 4 byte aligned. This is also
2736 an appropriate time to fill in the string index field in the
2737 symbol table entry. */
2738 bfd_put_32 (abfd, length, p);
2739 strings_size += 4;
2740 p += 4;
2741
2742 /* Next comes the string itself + a null terminator. */
2743 strcpy (p, syms[i]->name);
2744
2745 /* ACK. FIXME. */
2746 syms[i]->name = (char *)strings_size;
2747 p += length + 1;
2748 strings_size += length + 1;
2749
2750 /* Always align up to the next word boundary. */
2751 while (strings_size % 4)
2752 {
2753 bfd_put_8 (abfd, 0, p);
2754 strings_size++;
2755 p++;
2756 }
2757 }
2758
2759 /* Scribble out any partial block. */
2760 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2761 return false;
2762
2763 *string_sizep = strings_size;
2764 return true;
2765 }
2766
2767 /* Compute variable information to be placed in the SOM headers,
2768 space/subspace dictionaries, relocation streams, etc. Begin
2769 writing parts of the object file. */
2770
2771 static boolean
2772 som_begin_writing (abfd)
2773 bfd *abfd;
2774 {
2775 unsigned long current_offset = 0;
2776 int strings_size = 0;
2777 unsigned int total_reloc_size = 0;
2778 unsigned long num_spaces, num_subspaces, num_syms, i;
2779 asection *section;
2780 asymbol **syms = bfd_get_outsymbols (abfd);
2781 unsigned int total_subspaces = 0;
2782 struct som_exec_auxhdr *exec_header;
2783
2784 /* The file header will always be first in an object file,
2785 everything else can be in random locations. To keep things
2786 "simple" BFD will lay out the object file in the manner suggested
2787 by the PRO ABI for PA-RISC Systems. */
2788
2789 /* Before any output can really begin offsets for all the major
2790 portions of the object file must be computed. So, starting
2791 with the initial file header compute (and sometimes write)
2792 each portion of the object file. */
2793
2794 /* Make room for the file header, it's contents are not complete
2795 yet, so it can not be written at this time. */
2796 current_offset += sizeof (struct header);
2797
2798 /* Any auxiliary headers will follow the file header. Right now
2799 we support only the copyright and version headers. */
2800 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
2801 obj_som_file_hdr (abfd)->aux_header_size = 0;
2802 if (abfd->flags & (EXEC_P | DYNAMIC))
2803 {
2804 /* Parts of the exec header will be filled in later, so
2805 delay writing the header itself. Fill in the defaults,
2806 and write it later. */
2807 current_offset += sizeof (struct som_exec_auxhdr);
2808 obj_som_file_hdr (abfd)->aux_header_size
2809 += sizeof (struct som_exec_auxhdr);
2810 exec_header = obj_som_exec_hdr (abfd);
2811 exec_header->som_auxhdr.type = EXEC_AUX_ID;
2812 exec_header->som_auxhdr.length = 40;
2813 }
2814 if (obj_som_version_hdr (abfd) != NULL)
2815 {
2816 unsigned int len;
2817
2818 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2819 return false;
2820
2821 /* Write the aux_id structure and the string length. */
2822 len = sizeof (struct aux_id) + sizeof (unsigned int);
2823 obj_som_file_hdr (abfd)->aux_header_size += len;
2824 current_offset += len;
2825 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
2826 return false;
2827
2828 /* Write the version string. */
2829 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
2830 obj_som_file_hdr (abfd)->aux_header_size += len;
2831 current_offset += len;
2832 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
2833 len, 1, abfd) != len)
2834 return false;
2835 }
2836
2837 if (obj_som_copyright_hdr (abfd) != NULL)
2838 {
2839 unsigned int len;
2840
2841 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2842 return false;
2843
2844 /* Write the aux_id structure and the string length. */
2845 len = sizeof (struct aux_id) + sizeof (unsigned int);
2846 obj_som_file_hdr (abfd)->aux_header_size += len;
2847 current_offset += len;
2848 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
2849 return false;
2850
2851 /* Write the copyright string. */
2852 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
2853 obj_som_file_hdr (abfd)->aux_header_size += len;
2854 current_offset += len;
2855 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
2856 len, 1, abfd) != len)
2857 return false;
2858 }
2859
2860 /* Next comes the initialization pointers; we have no initialization
2861 pointers, so current offset does not change. */
2862 obj_som_file_hdr (abfd)->init_array_location = current_offset;
2863 obj_som_file_hdr (abfd)->init_array_total = 0;
2864
2865 /* Next are the space records. These are fixed length records.
2866
2867 Count the number of spaces to determine how much room is needed
2868 in the object file for the space records.
2869
2870 The names of the spaces are stored in a separate string table,
2871 and the index for each space into the string table is computed
2872 below. Therefore, it is not possible to write the space headers
2873 at this time. */
2874 num_spaces = som_count_spaces (abfd);
2875 obj_som_file_hdr (abfd)->space_location = current_offset;
2876 obj_som_file_hdr (abfd)->space_total = num_spaces;
2877 current_offset += num_spaces * sizeof (struct space_dictionary_record);
2878
2879 /* Next are the subspace records. These are fixed length records.
2880
2881 Count the number of subspaes to determine how much room is needed
2882 in the object file for the subspace records.
2883
2884 A variety if fields in the subspace record are still unknown at
2885 this time (index into string table, fixup stream location/size, etc). */
2886 num_subspaces = som_count_subspaces (abfd);
2887 obj_som_file_hdr (abfd)->subspace_location = current_offset;
2888 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
2889 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
2890
2891 /* Next is the string table for the space/subspace names. We will
2892 build and write the string table on the fly. At the same time
2893 we will fill in the space/subspace name index fields. */
2894
2895 /* The string table needs to be aligned on a word boundary. */
2896 if (current_offset % 4)
2897 current_offset += (4 - (current_offset % 4));
2898
2899 /* Mark the offset of the space/subspace string table in the
2900 file header. */
2901 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
2902
2903 /* Scribble out the space strings. */
2904 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
2905 return false;
2906
2907 /* Record total string table size in the header and update the
2908 current offset. */
2909 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
2910 current_offset += strings_size;
2911
2912 /* Next is the symbol table. These are fixed length records.
2913
2914 Count the number of symbols to determine how much room is needed
2915 in the object file for the symbol table.
2916
2917 The names of the symbols are stored in a separate string table,
2918 and the index for each symbol name into the string table is computed
2919 below. Therefore, it is not possible to write the symobl table
2920 at this time. */
2921 num_syms = bfd_get_symcount (abfd);
2922 obj_som_file_hdr (abfd)->symbol_location = current_offset;
2923 obj_som_file_hdr (abfd)->symbol_total = num_syms;
2924 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
2925
2926 /* Do prep work before handling fixups. */
2927 som_prep_for_fixups (abfd, syms, num_syms);
2928
2929 /* Next comes the fixup stream which starts on a word boundary. */
2930 if (current_offset % 4)
2931 current_offset += (4 - (current_offset % 4));
2932 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
2933
2934 /* Write the fixups and update fields in subspace headers which
2935 relate to the fixup stream. */
2936 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
2937 return false;
2938
2939 /* Record the total size of the fixup stream in the file header. */
2940 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
2941 current_offset += total_reloc_size;
2942
2943 /* Next are the symbol strings.
2944 Align them to a word boundary. */
2945 if (current_offset % 4)
2946 current_offset += (4 - (current_offset % 4));
2947 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
2948
2949 /* Scribble out the symbol strings. */
2950 if (som_write_symbol_strings (abfd, current_offset, syms,
2951 num_syms, &strings_size)
2952 == false)
2953 return false;
2954
2955 /* Record total string table size in header and update the
2956 current offset. */
2957 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
2958 current_offset += strings_size;
2959
2960 /* Next is the compiler records. We do not use these. */
2961 obj_som_file_hdr (abfd)->compiler_location = current_offset;
2962 obj_som_file_hdr (abfd)->compiler_total = 0;
2963
2964 /* Now compute the file positions for the loadable subspaces, taking
2965 care to make sure everything stays properly aligned. */
2966
2967 section = abfd->sections;
2968 for (i = 0; i < num_spaces; i++)
2969 {
2970 asection *subsection;
2971 int first_subspace;
2972 unsigned int subspace_offset = 0;
2973
2974 /* Find a space. */
2975 while (!som_is_space (section))
2976 section = section->next;
2977
2978 first_subspace = 1;
2979 /* Now look for all its subspaces. */
2980 for (subsection = abfd->sections;
2981 subsection != NULL;
2982 subsection = subsection->next)
2983 {
2984
2985 if (!som_is_subspace (subsection)
2986 || !som_is_container (section, subsection)
2987 || (subsection->flags & SEC_ALLOC) == 0)
2988 continue;
2989
2990 /* If this is the first subspace in the space, and we are
2991 building an executable, then take care to make sure all
2992 the alignments are correct and update the exec header. */
2993 if (first_subspace
2994 && (abfd->flags & (EXEC_P | DYNAMIC)))
2995 {
2996 /* Demand paged executables have each space aligned to a
2997 page boundary. Sharable executables (write-protected
2998 text) have just the private (aka data & bss) space aligned
2999 to a page boundary. Ugh. Not true for HPUX.
3000
3001 The HPUX kernel requires the text to always be page aligned
3002 within the file regardless of the executable's type. */
3003 if (abfd->flags & (D_PAGED | DYNAMIC)
3004 || (subsection->flags & SEC_CODE)
3005 || ((abfd->flags & WP_TEXT)
3006 && (subsection->flags & SEC_DATA)))
3007 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3008
3009 /* Update the exec header. */
3010 if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0)
3011 {
3012 exec_header->exec_tmem = section->vma;
3013 exec_header->exec_tfile = current_offset;
3014 }
3015 if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0)
3016 {
3017 exec_header->exec_dmem = section->vma;
3018 exec_header->exec_dfile = current_offset;
3019 }
3020
3021 /* Keep track of exactly where we are within a particular
3022 space. This is necessary as the braindamaged HPUX
3023 loader will create holes between subspaces *and*
3024 subspace alignments are *NOT* preserved. What a crock. */
3025 subspace_offset = subsection->vma;
3026
3027 /* Only do this for the first subspace within each space. */
3028 first_subspace = 0;
3029 }
3030 else if (abfd->flags & (EXEC_P | DYNAMIC))
3031 {
3032 /* The braindamaged HPUX loader may have created a hole
3033 between two subspaces. It is *not* sufficient to use
3034 the alignment specifications within the subspaces to
3035 account for these holes -- I've run into at least one
3036 case where the loader left one code subspace unaligned
3037 in a final executable.
3038
3039 To combat this we keep a current offset within each space,
3040 and use the subspace vma fields to detect and preserve
3041 holes. What a crock!
3042
3043 ps. This is not necessary for unloadable space/subspaces. */
3044 current_offset += subsection->vma - subspace_offset;
3045 if (subsection->flags & SEC_CODE)
3046 exec_header->exec_tsize += subsection->vma - subspace_offset;
3047 else
3048 exec_header->exec_dsize += subsection->vma - subspace_offset;
3049 subspace_offset += subsection->vma - subspace_offset;
3050 }
3051
3052
3053 subsection->target_index = total_subspaces++;
3054 /* This is real data to be loaded from the file. */
3055 if (subsection->flags & SEC_LOAD)
3056 {
3057 /* Update the size of the code & data. */
3058 if (abfd->flags & (EXEC_P | DYNAMIC)
3059 && subsection->flags & SEC_CODE)
3060 exec_header->exec_tsize += subsection->_cooked_size;
3061 else if (abfd->flags & (EXEC_P | DYNAMIC)
3062 && subsection->flags & SEC_DATA)
3063 exec_header->exec_dsize += subsection->_cooked_size;
3064 som_section_data (subsection)->subspace_dict->file_loc_init_value
3065 = current_offset;
3066 subsection->filepos = current_offset;
3067 current_offset += bfd_section_size (abfd, subsection);
3068 subspace_offset += bfd_section_size (abfd, subsection);
3069 }
3070 /* Looks like uninitialized data. */
3071 else
3072 {
3073 /* Update the size of the bss section. */
3074 if (abfd->flags & (EXEC_P | DYNAMIC))
3075 exec_header->exec_bsize += subsection->_cooked_size;
3076
3077 som_section_data (subsection)->subspace_dict->file_loc_init_value
3078 = 0;
3079 som_section_data (subsection)->subspace_dict->
3080 initialization_length = 0;
3081 }
3082 }
3083 /* Goto the next section. */
3084 section = section->next;
3085 }
3086
3087 /* Finally compute the file positions for unloadable subspaces.
3088 If building an executable, start the unloadable stuff on its
3089 own page. */
3090
3091 if (abfd->flags & (EXEC_P | DYNAMIC))
3092 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3093
3094 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3095 section = abfd->sections;
3096 for (i = 0; i < num_spaces; i++)
3097 {
3098 asection *subsection;
3099
3100 /* Find a space. */
3101 while (!som_is_space (section))
3102 section = section->next;
3103
3104 if (abfd->flags & (EXEC_P | DYNAMIC))
3105 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3106
3107 /* Now look for all its subspaces. */
3108 for (subsection = abfd->sections;
3109 subsection != NULL;
3110 subsection = subsection->next)
3111 {
3112
3113 if (!som_is_subspace (subsection)
3114 || !som_is_container (section, subsection)
3115 || (subsection->flags & SEC_ALLOC) != 0)
3116 continue;
3117
3118 subsection->target_index = total_subspaces;
3119 /* This is real data to be loaded from the file. */
3120 if ((subsection->flags & SEC_LOAD) == 0)
3121 {
3122 som_section_data (subsection)->subspace_dict->file_loc_init_value
3123 = current_offset;
3124 subsection->filepos = current_offset;
3125 current_offset += bfd_section_size (abfd, subsection);
3126 }
3127 /* Looks like uninitialized data. */
3128 else
3129 {
3130 som_section_data (subsection)->subspace_dict->file_loc_init_value
3131 = 0;
3132 som_section_data (subsection)->subspace_dict->
3133 initialization_length = bfd_section_size (abfd, subsection);
3134 }
3135 }
3136 /* Goto the next section. */
3137 section = section->next;
3138 }
3139
3140 /* If building an executable, then make sure to seek to and write
3141 one byte at the end of the file to make sure any necessary
3142 zeros are filled in. Ugh. */
3143 if (abfd->flags & (EXEC_P | DYNAMIC))
3144 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3145 if (bfd_seek (abfd, current_offset - 1, SEEK_SET) < 0)
3146 return false;
3147 if (bfd_write ((PTR) "", 1, 1, abfd) != 1)
3148 return false;
3149
3150 obj_som_file_hdr (abfd)->unloadable_sp_size
3151 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3152
3153 /* Loader fixups are not supported in any way shape or form. */
3154 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3155 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3156
3157 /* Done. Store the total size of the SOM. */
3158 obj_som_file_hdr (abfd)->som_length = current_offset;
3159
3160 return true;
3161 }
3162
3163 /* Finally, scribble out the various headers to the disk. */
3164
3165 static boolean
3166 som_write_headers (abfd)
3167 bfd *abfd;
3168 {
3169 int num_spaces = som_count_spaces (abfd);
3170 int i;
3171 int subspace_index = 0;
3172 file_ptr location;
3173 asection *section;
3174
3175 /* Subspaces are written first so that we can set up information
3176 about them in their containing spaces as the subspace is written. */
3177
3178 /* Seek to the start of the subspace dictionary records. */
3179 location = obj_som_file_hdr (abfd)->subspace_location;
3180 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3181 return false;
3182
3183 section = abfd->sections;
3184 /* Now for each loadable space write out records for its subspaces. */
3185 for (i = 0; i < num_spaces; i++)
3186 {
3187 asection *subsection;
3188
3189 /* Find a space. */
3190 while (!som_is_space (section))
3191 section = section->next;
3192
3193 /* Now look for all its subspaces. */
3194 for (subsection = abfd->sections;
3195 subsection != NULL;
3196 subsection = subsection->next)
3197 {
3198
3199 /* Skip any section which does not correspond to a space
3200 or subspace. Or does not have SEC_ALLOC set (and therefore
3201 has no real bits on the disk). */
3202 if (!som_is_subspace (subsection)
3203 || !som_is_container (section, subsection)
3204 || (subsection->flags & SEC_ALLOC) == 0)
3205 continue;
3206
3207 /* If this is the first subspace for this space, then save
3208 the index of the subspace in its containing space. Also
3209 set "is_loadable" in the containing space. */
3210
3211 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3212 {
3213 som_section_data (section)->space_dict->is_loadable = 1;
3214 som_section_data (section)->space_dict->subspace_index
3215 = subspace_index;
3216 }
3217
3218 /* Increment the number of subspaces seen and the number of
3219 subspaces contained within the current space. */
3220 subspace_index++;
3221 som_section_data (section)->space_dict->subspace_quantity++;
3222
3223 /* Mark the index of the current space within the subspace's
3224 dictionary record. */
3225 som_section_data (subsection)->subspace_dict->space_index = i;
3226
3227 /* Dump the current subspace header. */
3228 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3229 sizeof (struct subspace_dictionary_record), 1, abfd)
3230 != sizeof (struct subspace_dictionary_record))
3231 return false;
3232 }
3233 /* Goto the next section. */
3234 section = section->next;
3235 }
3236
3237 /* Now repeat the process for unloadable subspaces. */
3238 section = abfd->sections;
3239 /* Now for each space write out records for its subspaces. */
3240 for (i = 0; i < num_spaces; i++)
3241 {
3242 asection *subsection;
3243
3244 /* Find a space. */
3245 while (!som_is_space (section))
3246 section = section->next;
3247
3248 /* Now look for all its subspaces. */
3249 for (subsection = abfd->sections;
3250 subsection != NULL;
3251 subsection = subsection->next)
3252 {
3253
3254 /* Skip any section which does not correspond to a space or
3255 subspace, or which SEC_ALLOC set (and therefore handled
3256 in the loadable spaces/subspaces code above). */
3257
3258 if (!som_is_subspace (subsection)
3259 || !som_is_container (section, subsection)
3260 || (subsection->flags & SEC_ALLOC) != 0)
3261 continue;
3262
3263 /* If this is the first subspace for this space, then save
3264 the index of the subspace in its containing space. Clear
3265 "is_loadable". */
3266
3267 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3268 {
3269 som_section_data (section)->space_dict->is_loadable = 0;
3270 som_section_data (section)->space_dict->subspace_index
3271 = subspace_index;
3272 }
3273
3274 /* Increment the number of subspaces seen and the number of
3275 subspaces contained within the current space. */
3276 som_section_data (section)->space_dict->subspace_quantity++;
3277 subspace_index++;
3278
3279 /* Mark the index of the current space within the subspace's
3280 dictionary record. */
3281 som_section_data (subsection)->subspace_dict->space_index = i;
3282
3283 /* Dump this subspace header. */
3284 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3285 sizeof (struct subspace_dictionary_record), 1, abfd)
3286 != sizeof (struct subspace_dictionary_record))
3287 return false;
3288 }
3289 /* Goto the next section. */
3290 section = section->next;
3291 }
3292
3293 /* All the subspace dictiondary records are written, and all the
3294 fields are set up in the space dictionary records.
3295
3296 Seek to the right location and start writing the space
3297 dictionary records. */
3298 location = obj_som_file_hdr (abfd)->space_location;
3299 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3300 return false;
3301
3302 section = abfd->sections;
3303 for (i = 0; i < num_spaces; i++)
3304 {
3305
3306 /* Find a space. */
3307 while (!som_is_space (section))
3308 section = section->next;
3309
3310 /* Dump its header */
3311 if (bfd_write ((PTR) som_section_data (section)->space_dict,
3312 sizeof (struct space_dictionary_record), 1, abfd)
3313 != sizeof (struct space_dictionary_record))
3314 return false;
3315
3316 /* Goto the next section. */
3317 section = section->next;
3318 }
3319
3320 /* FIXME. This should really be conditional based on whether or not
3321 PA1.1 instructions/registers have been used.
3322
3323 Setting of the system_id has to happen very late now that copying of
3324 BFD private data happens *after* section contents are set. */
3325 if (abfd->flags & (EXEC_P | DYNAMIC))
3326 obj_som_file_hdr(abfd)->system_id = obj_som_exec_data (abfd)->system_id;
3327 else
3328 obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC1_0;
3329
3330 /* Compute the checksum for the file header just before writing
3331 the header to disk. */
3332 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3333
3334 /* Only thing left to do is write out the file header. It is always
3335 at location zero. Seek there and write it. */
3336 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0)
3337 return false;
3338 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3339 sizeof (struct header), 1, abfd)
3340 != sizeof (struct header))
3341 return false;
3342
3343 /* Now write the exec header. */
3344 if (abfd->flags & (EXEC_P | DYNAMIC))
3345 {
3346 long tmp;
3347 struct som_exec_auxhdr *exec_header;
3348
3349 exec_header = obj_som_exec_hdr (abfd);
3350 exec_header->exec_entry = bfd_get_start_address (abfd);
3351 exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags;
3352
3353 /* Oh joys. Ram some of the BSS data into the DATA section
3354 to be compatable with how the hp linker makes objects
3355 (saves memory space). */
3356 tmp = exec_header->exec_dsize;
3357 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3358 exec_header->exec_bsize -= (tmp - exec_header->exec_dsize);
3359 if (exec_header->exec_bsize < 0)
3360 exec_header->exec_bsize = 0;
3361 exec_header->exec_dsize = tmp;
3362
3363 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
3364 SEEK_SET) < 0)
3365 return false;
3366
3367 if (bfd_write ((PTR) exec_header, AUX_HDR_SIZE, 1, abfd)
3368 != AUX_HDR_SIZE)
3369 return false;
3370 }
3371 return true;
3372 }
3373
3374 /* Compute and return the checksum for a SOM file header. */
3375
3376 static unsigned long
3377 som_compute_checksum (abfd)
3378 bfd *abfd;
3379 {
3380 unsigned long checksum, count, i;
3381 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3382
3383 checksum = 0;
3384 count = sizeof (struct header) / sizeof (unsigned long);
3385 for (i = 0; i < count; i++)
3386 checksum ^= *(buffer + i);
3387
3388 return checksum;
3389 }
3390
3391 static void
3392 som_bfd_derive_misc_symbol_info (abfd, sym, info)
3393 bfd *abfd;
3394 asymbol *sym;
3395 struct som_misc_symbol_info *info;
3396 {
3397 /* Initialize. */
3398 memset (info, 0, sizeof (struct som_misc_symbol_info));
3399
3400 /* The HP SOM linker requires detailed type information about
3401 all symbols (including undefined symbols!). Unfortunately,
3402 the type specified in an import/export statement does not
3403 always match what the linker wants. Severe braindamage. */
3404
3405 /* Section symbols will not have a SOM symbol type assigned to
3406 them yet. Assign all section symbols type ST_DATA. */
3407 if (sym->flags & BSF_SECTION_SYM)
3408 info->symbol_type = ST_DATA;
3409 else
3410 {
3411 /* Common symbols must have scope SS_UNSAT and type
3412 ST_STORAGE or the linker will choke. */
3413 if (bfd_is_com_section (sym->section))
3414 {
3415 info->symbol_scope = SS_UNSAT;
3416 info->symbol_type = ST_STORAGE;
3417 }
3418
3419 /* It is possible to have a symbol without an associated
3420 type. This happens if the user imported the symbol
3421 without a type and the symbol was never defined
3422 locally. If BSF_FUNCTION is set for this symbol, then
3423 assign it type ST_CODE (the HP linker requires undefined
3424 external functions to have type ST_CODE rather than ST_ENTRY). */
3425 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3426 && bfd_is_und_section (sym->section)
3427 && sym->flags & BSF_FUNCTION)
3428 info->symbol_type = ST_CODE;
3429
3430 /* Handle function symbols which were defined in this file.
3431 They should have type ST_ENTRY. Also retrieve the argument
3432 relocation bits from the SOM backend information. */
3433 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3434 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3435 && (sym->flags & BSF_FUNCTION))
3436 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3437 && (sym->flags & BSF_FUNCTION)))
3438 {
3439 info->symbol_type = ST_ENTRY;
3440 info->arg_reloc = som_symbol_data (sym)->tc_data.hppa_arg_reloc;
3441 }
3442
3443 /* If the type is unknown at this point, it should be
3444 ST_DATA (functions were handled as special cases above). */
3445 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3446 info->symbol_type = ST_DATA;
3447
3448 /* From now on it's a very simple mapping. */
3449 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3450 info->symbol_type = ST_ABSOLUTE;
3451 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3452 info->symbol_type = ST_CODE;
3453 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3454 info->symbol_type = ST_DATA;
3455 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3456 info->symbol_type = ST_MILLICODE;
3457 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3458 info->symbol_type = ST_PLABEL;
3459 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3460 info->symbol_type = ST_PRI_PROG;
3461 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3462 info->symbol_type = ST_SEC_PROG;
3463 }
3464
3465 /* Now handle the symbol's scope. Exported data which is not
3466 in the common section has scope SS_UNIVERSAL. Note scope
3467 of common symbols was handled earlier! */
3468 if (sym->flags & BSF_EXPORT && ! bfd_is_com_section (sym->section))
3469 info->symbol_scope = SS_UNIVERSAL;
3470 /* Any undefined symbol at this point has a scope SS_UNSAT. */
3471 else if (bfd_is_und_section (sym->section))
3472 info->symbol_scope = SS_UNSAT;
3473 /* Anything else which is not in the common section has scope
3474 SS_LOCAL. */
3475 else if (! bfd_is_com_section (sym->section))
3476 info->symbol_scope = SS_LOCAL;
3477
3478 /* Now set the symbol_info field. It has no real meaning
3479 for undefined or common symbols, but the HP linker will
3480 choke if it's not set to some "reasonable" value. We
3481 use zero as a reasonable value. */
3482 if (bfd_is_com_section (sym->section)
3483 || bfd_is_und_section (sym->section)
3484 || bfd_is_abs_section (sym->section))
3485 info->symbol_info = 0;
3486 /* For all other symbols, the symbol_info field contains the
3487 subspace index of the space this symbol is contained in. */
3488 else
3489 info->symbol_info = sym->section->target_index;
3490
3491 /* Set the symbol's value. */
3492 info->symbol_value = sym->value + sym->section->vma;
3493 }
3494
3495 /* Build and write, in one big chunk, the entire symbol table for
3496 this BFD. */
3497
3498 static boolean
3499 som_build_and_write_symbol_table (abfd)
3500 bfd *abfd;
3501 {
3502 unsigned int num_syms = bfd_get_symcount (abfd);
3503 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3504 asymbol **bfd_syms = bfd_get_outsymbols (abfd);
3505 struct symbol_dictionary_record *som_symtab = NULL;
3506 int i, symtab_size;
3507
3508 /* Compute total symbol table size and allocate a chunk of memory
3509 to hold the symbol table as we build it. */
3510 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3511 som_symtab = (struct symbol_dictionary_record *) malloc (symtab_size);
3512 if (som_symtab == NULL && symtab_size != 0)
3513 {
3514 bfd_set_error (bfd_error_no_memory);
3515 goto error_return;
3516 }
3517 memset (som_symtab, 0, symtab_size);
3518
3519 /* Walk over each symbol. */
3520 for (i = 0; i < num_syms; i++)
3521 {
3522 struct som_misc_symbol_info info;
3523
3524 /* This is really an index into the symbol strings table.
3525 By the time we get here, the index has already been
3526 computed and stored into the name field in the BFD symbol. */
3527 som_symtab[i].name.n_strx = (int) bfd_syms[i]->name;
3528
3529 /* Derive SOM information from the BFD symbol. */
3530 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
3531
3532 /* Now use it. */
3533 som_symtab[i].symbol_type = info.symbol_type;
3534 som_symtab[i].symbol_scope = info.symbol_scope;
3535 som_symtab[i].arg_reloc = info.arg_reloc;
3536 som_symtab[i].symbol_info = info.symbol_info;
3537 som_symtab[i].symbol_value = info.symbol_value;
3538 }
3539
3540 /* Everything is ready, seek to the right location and
3541 scribble out the symbol table. */
3542 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3543 return false;
3544
3545 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3546 goto error_return;
3547
3548 if (som_symtab != NULL)
3549 free (som_symtab);
3550 return true;
3551 error_return:
3552 if (som_symtab != NULL)
3553 free (som_symtab);
3554 return false;
3555 }
3556
3557 /* Write an object in SOM format. */
3558
3559 static boolean
3560 som_write_object_contents (abfd)
3561 bfd *abfd;
3562 {
3563 if (abfd->output_has_begun == false)
3564 {
3565 /* Set up fixed parts of the file, space, and subspace headers.
3566 Notify the world that output has begun. */
3567 som_prep_headers (abfd);
3568 abfd->output_has_begun = true;
3569 /* Start writing the object file. This include all the string
3570 tables, fixup streams, and other portions of the object file. */
3571 som_begin_writing (abfd);
3572 }
3573
3574 /* Now that the symbol table information is complete, build and
3575 write the symbol table. */
3576 if (som_build_and_write_symbol_table (abfd) == false)
3577 return false;
3578
3579 return (som_write_headers (abfd));
3580 }
3581
3582 \f
3583 /* Read and save the string table associated with the given BFD. */
3584
3585 static boolean
3586 som_slurp_string_table (abfd)
3587 bfd *abfd;
3588 {
3589 char *stringtab;
3590
3591 /* Use the saved version if its available. */
3592 if (obj_som_stringtab (abfd) != NULL)
3593 return true;
3594
3595 /* I don't think this can currently happen, and I'm not sure it should
3596 really be an error, but it's better than getting unpredictable results
3597 from the host's malloc when passed a size of zero. */
3598 if (obj_som_stringtab_size (abfd) == 0)
3599 {
3600 bfd_set_error (bfd_error_no_symbols);
3601 return false;
3602 }
3603
3604 /* Allocate and read in the string table. */
3605 stringtab = malloc (obj_som_stringtab_size (abfd));
3606 if (stringtab == NULL)
3607 {
3608 bfd_set_error (bfd_error_no_memory);
3609 return false;
3610 }
3611
3612 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3613 return false;
3614
3615 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3616 != obj_som_stringtab_size (abfd))
3617 return false;
3618
3619 /* Save our results and return success. */
3620 obj_som_stringtab (abfd) = stringtab;
3621 return true;
3622 }
3623
3624 /* Return the amount of data (in bytes) required to hold the symbol
3625 table for this object. */
3626
3627 static long
3628 som_get_symtab_upper_bound (abfd)
3629 bfd *abfd;
3630 {
3631 if (!som_slurp_symbol_table (abfd))
3632 return -1;
3633
3634 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
3635 }
3636
3637 /* Convert from a SOM subspace index to a BFD section. */
3638
3639 static asection *
3640 bfd_section_from_som_symbol (abfd, symbol)
3641 bfd *abfd;
3642 struct symbol_dictionary_record *symbol;
3643 {
3644 asection *section;
3645
3646 /* The meaning of the symbol_info field changes for functions
3647 within executables. So only use the quick symbol_info mapping for
3648 incomplete objects and non-function symbols in executables. */
3649 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
3650 || (symbol->symbol_type != ST_ENTRY
3651 && symbol->symbol_type != ST_PRI_PROG
3652 && symbol->symbol_type != ST_SEC_PROG
3653 && symbol->symbol_type != ST_MILLICODE))
3654 {
3655 unsigned int index = symbol->symbol_info;
3656 for (section = abfd->sections; section != NULL; section = section->next)
3657 if (section->target_index == index)
3658 return section;
3659
3660 /* Should never happen. */
3661 abort();
3662 }
3663 else
3664 {
3665 unsigned int value = symbol->symbol_value;
3666
3667 /* For executables we will have to use the symbol's address and
3668 find out what section would contain that address. Yuk. */
3669 for (section = abfd->sections; section; section = section->next)
3670 {
3671 if (value >= section->vma
3672 && value <= section->vma + section->_cooked_size)
3673 return section;
3674 }
3675
3676 /* Should never happen. */
3677 abort ();
3678 }
3679 }
3680
3681 /* Read and save the symbol table associated with the given BFD. */
3682
3683 static unsigned int
3684 som_slurp_symbol_table (abfd)
3685 bfd *abfd;
3686 {
3687 int symbol_count = bfd_get_symcount (abfd);
3688 int symsize = sizeof (struct symbol_dictionary_record);
3689 char *stringtab;
3690 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
3691 som_symbol_type *sym, *symbase;
3692
3693 /* Return saved value if it exists. */
3694 if (obj_som_symtab (abfd) != NULL)
3695 goto successful_return;
3696
3697 /* Special case. This is *not* an error. */
3698 if (symbol_count == 0)
3699 goto successful_return;
3700
3701 if (!som_slurp_string_table (abfd))
3702 goto error_return;
3703
3704 stringtab = obj_som_stringtab (abfd);
3705
3706 symbase = (som_symbol_type *)
3707 malloc (symbol_count * sizeof (som_symbol_type));
3708 if (symbase == NULL)
3709 {
3710 bfd_set_error (bfd_error_no_memory);
3711 goto error_return;
3712 }
3713
3714 /* Read in the external SOM representation. */
3715 buf = malloc (symbol_count * symsize);
3716 if (buf == NULL && symbol_count * symsize != 0)
3717 {
3718 bfd_set_error (bfd_error_no_memory);
3719 goto error_return;
3720 }
3721 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
3722 goto error_return;
3723 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
3724 != symbol_count * symsize)
3725 goto error_return;
3726
3727 /* Iterate over all the symbols and internalize them. */
3728 endbufp = buf + symbol_count;
3729 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
3730 {
3731
3732 /* I don't think we care about these. */
3733 if (bufp->symbol_type == ST_SYM_EXT
3734 || bufp->symbol_type == ST_ARG_EXT)
3735 continue;
3736
3737 /* Set some private data we care about. */
3738 if (bufp->symbol_type == ST_NULL)
3739 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3740 else if (bufp->symbol_type == ST_ABSOLUTE)
3741 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
3742 else if (bufp->symbol_type == ST_DATA)
3743 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
3744 else if (bufp->symbol_type == ST_CODE)
3745 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
3746 else if (bufp->symbol_type == ST_PRI_PROG)
3747 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
3748 else if (bufp->symbol_type == ST_SEC_PROG)
3749 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
3750 else if (bufp->symbol_type == ST_ENTRY)
3751 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
3752 else if (bufp->symbol_type == ST_MILLICODE)
3753 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
3754 else if (bufp->symbol_type == ST_PLABEL)
3755 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
3756 else
3757 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3758 som_symbol_data (sym)->tc_data.hppa_arg_reloc = bufp->arg_reloc;
3759
3760 /* Some reasonable defaults. */
3761 sym->symbol.the_bfd = abfd;
3762 sym->symbol.name = bufp->name.n_strx + stringtab;
3763 sym->symbol.value = bufp->symbol_value;
3764 sym->symbol.section = 0;
3765 sym->symbol.flags = 0;
3766
3767 switch (bufp->symbol_type)
3768 {
3769 case ST_ENTRY:
3770 case ST_PRI_PROG:
3771 case ST_SEC_PROG:
3772 case ST_MILLICODE:
3773 sym->symbol.flags |= BSF_FUNCTION;
3774 sym->symbol.value &= ~0x3;
3775 break;
3776
3777 case ST_STUB:
3778 case ST_CODE:
3779 sym->symbol.value &= ~0x3;
3780
3781 default:
3782 break;
3783 }
3784
3785 /* Handle scoping and section information. */
3786 switch (bufp->symbol_scope)
3787 {
3788 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
3789 so the section associated with this symbol can't be known. */
3790 case SS_EXTERNAL:
3791 if (bufp->symbol_type != ST_STORAGE)
3792 sym->symbol.section = bfd_und_section_ptr;
3793 else
3794 sym->symbol.section = bfd_com_section_ptr;
3795 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3796 break;
3797
3798 case SS_UNSAT:
3799 if (bufp->symbol_type != ST_STORAGE)
3800 sym->symbol.section = bfd_und_section_ptr;
3801 else
3802 sym->symbol.section = bfd_com_section_ptr;
3803 break;
3804
3805 case SS_UNIVERSAL:
3806 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3807 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3808 sym->symbol.value -= sym->symbol.section->vma;
3809 break;
3810
3811 #if 0
3812 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
3813 Sound dumb? It is. */
3814 case SS_GLOBAL:
3815 #endif
3816 case SS_LOCAL:
3817 sym->symbol.flags |= BSF_LOCAL;
3818 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3819 sym->symbol.value -= sym->symbol.section->vma;
3820 break;
3821 }
3822
3823 /* Mark section symbols and symbols used by the debugger. */
3824 if (sym->symbol.name[0] == '$'
3825 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$')
3826 sym->symbol.flags |= BSF_SECTION_SYM;
3827 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
3828 {
3829 sym->symbol.flags |= BSF_SECTION_SYM;
3830 sym->symbol.name = sym->symbol.section->name;
3831 }
3832 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
3833 sym->symbol.flags |= BSF_DEBUGGING;
3834
3835 /* Note increment at bottom of loop, since we skip some symbols
3836 we can not include it as part of the for statement. */
3837 sym++;
3838 }
3839
3840 /* Save our results and return success. */
3841 obj_som_symtab (abfd) = symbase;
3842 successful_return:
3843 if (buf != NULL)
3844 free (buf);
3845 return (true);
3846
3847 error_return:
3848 if (buf != NULL)
3849 free (buf);
3850 return false;
3851 }
3852
3853 /* Canonicalize a SOM symbol table. Return the number of entries
3854 in the symbol table. */
3855
3856 static long
3857 som_get_symtab (abfd, location)
3858 bfd *abfd;
3859 asymbol **location;
3860 {
3861 int i;
3862 som_symbol_type *symbase;
3863
3864 if (!som_slurp_symbol_table (abfd))
3865 return -1;
3866
3867 i = bfd_get_symcount (abfd);
3868 symbase = obj_som_symtab (abfd);
3869
3870 for (; i > 0; i--, location++, symbase++)
3871 *location = &symbase->symbol;
3872
3873 /* Final null pointer. */
3874 *location = 0;
3875 return (bfd_get_symcount (abfd));
3876 }
3877
3878 /* Make a SOM symbol. There is nothing special to do here. */
3879
3880 static asymbol *
3881 som_make_empty_symbol (abfd)
3882 bfd *abfd;
3883 {
3884 som_symbol_type *new =
3885 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
3886 if (new == NULL)
3887 {
3888 bfd_set_error (bfd_error_no_memory);
3889 return 0;
3890 }
3891 new->symbol.the_bfd = abfd;
3892
3893 return &new->symbol;
3894 }
3895
3896 /* Print symbol information. */
3897
3898 static void
3899 som_print_symbol (ignore_abfd, afile, symbol, how)
3900 bfd *ignore_abfd;
3901 PTR afile;
3902 asymbol *symbol;
3903 bfd_print_symbol_type how;
3904 {
3905 FILE *file = (FILE *) afile;
3906 switch (how)
3907 {
3908 case bfd_print_symbol_name:
3909 fprintf (file, "%s", symbol->name);
3910 break;
3911 case bfd_print_symbol_more:
3912 fprintf (file, "som ");
3913 fprintf_vma (file, symbol->value);
3914 fprintf (file, " %lx", (long) symbol->flags);
3915 break;
3916 case bfd_print_symbol_all:
3917 {
3918 CONST char *section_name;
3919 section_name = symbol->section ? symbol->section->name : "(*none*)";
3920 bfd_print_symbol_vandf ((PTR) file, symbol);
3921 fprintf (file, " %s\t%s", section_name, symbol->name);
3922 break;
3923 }
3924 }
3925 }
3926
3927 static boolean
3928 som_bfd_is_local_label (abfd, sym)
3929 bfd *abfd;
3930 asymbol *sym;
3931 {
3932 return (sym->name[0] == 'L' && sym->name[1] == '$');
3933 }
3934
3935 /* Count or process variable-length SOM fixup records.
3936
3937 To avoid code duplication we use this code both to compute the number
3938 of relocations requested by a stream, and to internalize the stream.
3939
3940 When computing the number of relocations requested by a stream the
3941 variables rptr, section, and symbols have no meaning.
3942
3943 Return the number of relocations requested by the fixup stream. When
3944 not just counting
3945
3946 This needs at least two or three more passes to get it cleaned up. */
3947
3948 static unsigned int
3949 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
3950 unsigned char *fixup;
3951 unsigned int end;
3952 arelent *internal_relocs;
3953 asection *section;
3954 asymbol **symbols;
3955 boolean just_count;
3956 {
3957 unsigned int op, varname;
3958 unsigned char *end_fixups = &fixup[end];
3959 const struct fixup_format *fp;
3960 char *cp;
3961 unsigned char *save_fixup;
3962 int variables[26], stack[20], c, v, count, prev_fixup, *sp;
3963 const int *subop;
3964 arelent *rptr= internal_relocs;
3965 unsigned int offset = just_count ? 0 : section->vma;
3966
3967 #define var(c) variables[(c) - 'A']
3968 #define push(v) (*sp++ = (v))
3969 #define pop() (*--sp)
3970 #define emptystack() (sp == stack)
3971
3972 som_initialize_reloc_queue (reloc_queue);
3973 memset (variables, 0, sizeof (variables));
3974 memset (stack, 0, sizeof (stack));
3975 count = 0;
3976 prev_fixup = 0;
3977 sp = stack;
3978
3979 while (fixup < end_fixups)
3980 {
3981
3982 /* Save pointer to the start of this fixup. We'll use
3983 it later to determine if it is necessary to put this fixup
3984 on the queue. */
3985 save_fixup = fixup;
3986
3987 /* Get the fixup code and its associated format. */
3988 op = *fixup++;
3989 fp = &som_fixup_formats[op];
3990
3991 /* Handle a request for a previous fixup. */
3992 if (*fp->format == 'P')
3993 {
3994 /* Get pointer to the beginning of the prev fixup, move
3995 the repeated fixup to the head of the queue. */
3996 fixup = reloc_queue[fp->D].reloc;
3997 som_reloc_queue_fix (reloc_queue, fp->D);
3998 prev_fixup = 1;
3999
4000 /* Get the fixup code and its associated format. */
4001 op = *fixup++;
4002 fp = &som_fixup_formats[op];
4003 }
4004
4005 /* If this fixup will be passed to BFD, set some reasonable defaults. */
4006 if (! just_count
4007 && som_hppa_howto_table[op].type != R_NO_RELOCATION
4008 && som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
4009 {
4010 rptr->address = offset;
4011 rptr->howto = &som_hppa_howto_table[op];
4012 rptr->addend = 0;
4013 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
4014 }
4015
4016 /* Set default input length to 0. Get the opcode class index
4017 into D. */
4018 var ('L') = 0;
4019 var ('D') = fp->D;
4020
4021 /* Get the opcode format. */
4022 cp = fp->format;
4023
4024 /* Process the format string. Parsing happens in two phases,
4025 parse RHS, then assign to LHS. Repeat until no more
4026 characters in the format string. */
4027 while (*cp)
4028 {
4029 /* The variable this pass is going to compute a value for. */
4030 varname = *cp++;
4031
4032 /* Start processing RHS. Continue until a NULL or '=' is found. */
4033 do
4034 {
4035 c = *cp++;
4036
4037 /* If this is a variable, push it on the stack. */
4038 if (isupper (c))
4039 push (var (c));
4040
4041 /* If this is a lower case letter, then it represents
4042 additional data from the fixup stream to be pushed onto
4043 the stack. */
4044 else if (islower (c))
4045 {
4046 for (v = 0; c > 'a'; --c)
4047 v = (v << 8) | *fixup++;
4048 push (v);
4049 }
4050
4051 /* A decimal constant. Push it on the stack. */
4052 else if (isdigit (c))
4053 {
4054 v = c - '0';
4055 while (isdigit (*cp))
4056 v = (v * 10) + (*cp++ - '0');
4057 push (v);
4058 }
4059 else
4060
4061 /* An operator. Pop two two values from the stack and
4062 use them as operands to the given operation. Push
4063 the result of the operation back on the stack. */
4064 switch (c)
4065 {
4066 case '+':
4067 v = pop ();
4068 v += pop ();
4069 push (v);
4070 break;
4071 case '*':
4072 v = pop ();
4073 v *= pop ();
4074 push (v);
4075 break;
4076 case '<':
4077 v = pop ();
4078 v = pop () << v;
4079 push (v);
4080 break;
4081 default:
4082 abort ();
4083 }
4084 }
4085 while (*cp && *cp != '=');
4086
4087 /* Move over the equal operator. */
4088 cp++;
4089
4090 /* Pop the RHS off the stack. */
4091 c = pop ();
4092
4093 /* Perform the assignment. */
4094 var (varname) = c;
4095
4096 /* Handle side effects. and special 'O' stack cases. */
4097 switch (varname)
4098 {
4099 /* Consume some bytes from the input space. */
4100 case 'L':
4101 offset += c;
4102 break;
4103 /* A symbol to use in the relocation. Make a note
4104 of this if we are not just counting. */
4105 case 'S':
4106 if (! just_count)
4107 rptr->sym_ptr_ptr = &symbols[c];
4108 break;
4109 /* Handle the linker expression stack. */
4110 case 'O':
4111 switch (op)
4112 {
4113 case R_COMP1:
4114 subop = comp1_opcodes;
4115 break;
4116 case R_COMP2:
4117 subop = comp2_opcodes;
4118 break;
4119 case R_COMP3:
4120 subop = comp3_opcodes;
4121 break;
4122 default:
4123 abort ();
4124 }
4125 while (*subop <= (unsigned char) c)
4126 ++subop;
4127 --subop;
4128 break;
4129 default:
4130 break;
4131 }
4132 }
4133
4134 /* If we used a previous fixup, clean up after it. */
4135 if (prev_fixup)
4136 {
4137 fixup = save_fixup + 1;
4138 prev_fixup = 0;
4139 }
4140 /* Queue it. */
4141 else if (fixup > save_fixup + 1)
4142 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4143
4144 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4145 fixups to BFD. */
4146 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4147 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4148 {
4149 /* Done with a single reloction. Loop back to the top. */
4150 if (! just_count)
4151 {
4152 rptr->addend = var ('V');
4153 rptr++;
4154 }
4155 count++;
4156 /* Now that we've handled a "full" relocation, reset
4157 some state. */
4158 memset (variables, 0, sizeof (variables));
4159 memset (stack, 0, sizeof (stack));
4160 }
4161 }
4162 return count;
4163
4164 #undef var
4165 #undef push
4166 #undef pop
4167 #undef emptystack
4168 }
4169
4170 /* Read in the relocs (aka fixups in SOM terms) for a section.
4171
4172 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4173 set to true to indicate it only needs a count of the number
4174 of actual relocations. */
4175
4176 static boolean
4177 som_slurp_reloc_table (abfd, section, symbols, just_count)
4178 bfd *abfd;
4179 asection *section;
4180 asymbol **symbols;
4181 boolean just_count;
4182 {
4183 char *external_relocs;
4184 unsigned int fixup_stream_size;
4185 arelent *internal_relocs;
4186 unsigned int num_relocs;
4187
4188 fixup_stream_size = som_section_data (section)->reloc_size;
4189 /* If there were no relocations, then there is nothing to do. */
4190 if (section->reloc_count == 0)
4191 return true;
4192
4193 /* If reloc_count is -1, then the relocation stream has not been
4194 parsed. We must do so now to know how many relocations exist. */
4195 if (section->reloc_count == -1)
4196 {
4197 external_relocs = (char *) malloc (fixup_stream_size);
4198 if (external_relocs == (char *) NULL)
4199 {
4200 bfd_set_error (bfd_error_no_memory);
4201 return false;
4202 }
4203 /* Read in the external forms. */
4204 if (bfd_seek (abfd,
4205 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4206 SEEK_SET)
4207 != 0)
4208 return false;
4209 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
4210 != fixup_stream_size)
4211 return false;
4212
4213 /* Let callers know how many relocations found.
4214 also save the relocation stream as we will
4215 need it again. */
4216 section->reloc_count = som_set_reloc_info (external_relocs,
4217 fixup_stream_size,
4218 NULL, NULL, NULL, true);
4219
4220 som_section_data (section)->reloc_stream = external_relocs;
4221 }
4222
4223 /* If the caller only wanted a count, then return now. */
4224 if (just_count)
4225 return true;
4226
4227 num_relocs = section->reloc_count;
4228 external_relocs = som_section_data (section)->reloc_stream;
4229 /* Return saved information about the relocations if it is available. */
4230 if (section->relocation != (arelent *) NULL)
4231 return true;
4232
4233 internal_relocs = (arelent *) malloc (num_relocs * sizeof (arelent));
4234 if (internal_relocs == (arelent *) NULL)
4235 {
4236 bfd_set_error (bfd_error_no_memory);
4237 return false;
4238 }
4239
4240 /* Process and internalize the relocations. */
4241 som_set_reloc_info (external_relocs, fixup_stream_size,
4242 internal_relocs, section, symbols, false);
4243
4244 /* Save our results and return success. */
4245 section->relocation = internal_relocs;
4246 return (true);
4247 }
4248
4249 /* Return the number of bytes required to store the relocation
4250 information associated with the given section. */
4251
4252 static long
4253 som_get_reloc_upper_bound (abfd, asect)
4254 bfd *abfd;
4255 sec_ptr asect;
4256 {
4257 /* If section has relocations, then read in the relocation stream
4258 and parse it to determine how many relocations exist. */
4259 if (asect->flags & SEC_RELOC)
4260 {
4261 if (! som_slurp_reloc_table (abfd, asect, NULL, true))
4262 return false;
4263 return (asect->reloc_count + 1) * sizeof (arelent);
4264 }
4265 /* There are no relocations. */
4266 return 0;
4267 }
4268
4269 /* Convert relocations from SOM (external) form into BFD internal
4270 form. Return the number of relocations. */
4271
4272 static long
4273 som_canonicalize_reloc (abfd, section, relptr, symbols)
4274 bfd *abfd;
4275 sec_ptr section;
4276 arelent **relptr;
4277 asymbol **symbols;
4278 {
4279 arelent *tblptr;
4280 int count;
4281
4282 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
4283 return -1;
4284
4285 count = section->reloc_count;
4286 tblptr = section->relocation;
4287
4288 while (count--)
4289 *relptr++ = tblptr++;
4290
4291 *relptr = (arelent *) NULL;
4292 return section->reloc_count;
4293 }
4294
4295 extern const bfd_target som_vec;
4296
4297 /* A hook to set up object file dependent section information. */
4298
4299 static boolean
4300 som_new_section_hook (abfd, newsect)
4301 bfd *abfd;
4302 asection *newsect;
4303 {
4304 newsect->used_by_bfd =
4305 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
4306 if (!newsect->used_by_bfd)
4307 {
4308 bfd_set_error (bfd_error_no_memory);
4309 return false;
4310 }
4311 newsect->alignment_power = 3;
4312
4313 /* We allow more than three sections internally */
4314 return true;
4315 }
4316
4317 /* Copy any private info we understand from the input section
4318 to the output section. */
4319 static boolean
4320 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
4321 bfd *ibfd;
4322 asection *isection;
4323 bfd *obfd;
4324 asection *osection;
4325 {
4326 /* One day we may try to grok other private data. */
4327 if (ibfd->xvec->flavour != bfd_target_som_flavour
4328 || obfd->xvec->flavour != bfd_target_som_flavour
4329 || (!som_is_space (isection) && !som_is_subspace (isection)))
4330 return false;
4331
4332 som_section_data (osection)->copy_data
4333 = (struct som_copyable_section_data_struct *)
4334 bfd_zalloc (obfd, sizeof (struct som_copyable_section_data_struct));
4335 if (som_section_data (osection)->copy_data == NULL)
4336 {
4337 bfd_set_error (bfd_error_no_memory);
4338 return false;
4339 }
4340
4341 memcpy (som_section_data (osection)->copy_data,
4342 som_section_data (isection)->copy_data,
4343 sizeof (struct som_copyable_section_data_struct));
4344
4345 /* Reparent if necessary. */
4346 if (som_section_data (osection)->copy_data->container)
4347 som_section_data (osection)->copy_data->container =
4348 som_section_data (osection)->copy_data->container->output_section;
4349
4350 return true;
4351 }
4352
4353 /* Copy any private info we understand from the input bfd
4354 to the output bfd. */
4355
4356 static boolean
4357 som_bfd_copy_private_bfd_data (ibfd, obfd)
4358 bfd *ibfd, *obfd;
4359 {
4360 /* One day we may try to grok other private data. */
4361 if (ibfd->xvec->flavour != bfd_target_som_flavour
4362 || obfd->xvec->flavour != bfd_target_som_flavour)
4363 return false;
4364
4365 /* Allocate some memory to hold the data we need. */
4366 obj_som_exec_data (obfd) = (struct som_exec_data *)
4367 bfd_zalloc (obfd, sizeof (struct som_exec_data));
4368 if (obj_som_exec_data (obfd) == NULL)
4369 {
4370 bfd_set_error (bfd_error_no_memory);
4371 return false;
4372 }
4373
4374 /* Now copy the data. */
4375 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
4376 sizeof (struct som_exec_data));
4377
4378 return true;
4379 }
4380
4381 /* Set backend info for sections which can not be described
4382 in the BFD data structures. */
4383
4384 boolean
4385 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
4386 asection *section;
4387 int defined;
4388 int private;
4389 unsigned int sort_key;
4390 int spnum;
4391 {
4392 /* Allocate memory to hold the magic information. */
4393 if (som_section_data (section)->copy_data == NULL)
4394 {
4395 som_section_data (section)->copy_data
4396 = (struct som_copyable_section_data_struct *)
4397 bfd_zalloc (section->owner,
4398 sizeof (struct som_copyable_section_data_struct));
4399 if (som_section_data (section)->copy_data == NULL)
4400 {
4401 bfd_set_error (bfd_error_no_memory);
4402 return false;
4403 }
4404 }
4405 som_section_data (section)->copy_data->sort_key = sort_key;
4406 som_section_data (section)->copy_data->is_defined = defined;
4407 som_section_data (section)->copy_data->is_private = private;
4408 som_section_data (section)->copy_data->container = section;
4409 som_section_data (section)->copy_data->space_number = spnum;
4410 return true;
4411 }
4412
4413 /* Set backend info for subsections which can not be described
4414 in the BFD data structures. */
4415
4416 boolean
4417 bfd_som_set_subsection_attributes (section, container, access,
4418 sort_key, quadrant)
4419 asection *section;
4420 asection *container;
4421 int access;
4422 unsigned int sort_key;
4423 int quadrant;
4424 {
4425 /* Allocate memory to hold the magic information. */
4426 if (som_section_data (section)->copy_data == NULL)
4427 {
4428 som_section_data (section)->copy_data
4429 = (struct som_copyable_section_data_struct *)
4430 bfd_zalloc (section->owner,
4431 sizeof (struct som_copyable_section_data_struct));
4432 if (som_section_data (section)->copy_data == NULL)
4433 {
4434 bfd_set_error (bfd_error_no_memory);
4435 return false;
4436 }
4437 }
4438 som_section_data (section)->copy_data->sort_key = sort_key;
4439 som_section_data (section)->copy_data->access_control_bits = access;
4440 som_section_data (section)->copy_data->quadrant = quadrant;
4441 som_section_data (section)->copy_data->container = container;
4442 return true;
4443 }
4444
4445 /* Set the full SOM symbol type. SOM needs far more symbol information
4446 than any other object file format I'm aware of. It is mandatory
4447 to be able to know if a symbol is an entry point, millicode, data,
4448 code, absolute, storage request, or procedure label. If you get
4449 the symbol type wrong your program will not link. */
4450
4451 void
4452 bfd_som_set_symbol_type (symbol, type)
4453 asymbol *symbol;
4454 unsigned int type;
4455 {
4456 som_symbol_data (symbol)->som_type = type;
4457 }
4458
4459 /* Attach 64bits of unwind information to a symbol (which hopefully
4460 is a function of some kind!). It would be better to keep this
4461 in the R_ENTRY relocation, but there is not enough space. */
4462
4463 void
4464 bfd_som_attach_unwind_info (symbol, unwind_desc)
4465 asymbol *symbol;
4466 char *unwind_desc;
4467 {
4468 som_symbol_data (symbol)->unwind = unwind_desc;
4469 }
4470
4471 /* Attach an auxiliary header to the BFD backend so that it may be
4472 written into the object file. */
4473 boolean
4474 bfd_som_attach_aux_hdr (abfd, type, string)
4475 bfd *abfd;
4476 int type;
4477 char *string;
4478 {
4479 if (type == VERSION_AUX_ID)
4480 {
4481 int len = strlen (string);
4482 int pad = 0;
4483
4484 if (len % 4)
4485 pad = (4 - (len % 4));
4486 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
4487 bfd_zalloc (abfd, sizeof (struct aux_id)
4488 + sizeof (unsigned int) + len + pad);
4489 if (!obj_som_version_hdr (abfd))
4490 {
4491 bfd_set_error (bfd_error_no_memory);
4492 return false;
4493 }
4494 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
4495 obj_som_version_hdr (abfd)->header_id.length = len + pad;
4496 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
4497 obj_som_version_hdr (abfd)->string_length = len;
4498 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
4499 }
4500 else if (type == COPYRIGHT_AUX_ID)
4501 {
4502 int len = strlen (string);
4503 int pad = 0;
4504
4505 if (len % 4)
4506 pad = (4 - (len % 4));
4507 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
4508 bfd_zalloc (abfd, sizeof (struct aux_id)
4509 + sizeof (unsigned int) + len + pad);
4510 if (!obj_som_copyright_hdr (abfd))
4511 {
4512 bfd_set_error (bfd_error_no_memory);
4513 return false;
4514 }
4515 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
4516 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
4517 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
4518 obj_som_copyright_hdr (abfd)->string_length = len;
4519 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
4520 }
4521 return true;
4522 }
4523
4524 static boolean
4525 som_get_section_contents (abfd, section, location, offset, count)
4526 bfd *abfd;
4527 sec_ptr section;
4528 PTR location;
4529 file_ptr offset;
4530 bfd_size_type count;
4531 {
4532 if (count == 0 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4533 return true;
4534 if ((bfd_size_type)(offset+count) > section->_raw_size
4535 || bfd_seek (abfd, (file_ptr)(section->filepos + offset), SEEK_SET) == -1
4536 || bfd_read (location, (bfd_size_type)1, count, abfd) != count)
4537 return (false); /* on error */
4538 return (true);
4539 }
4540
4541 static boolean
4542 som_set_section_contents (abfd, section, location, offset, count)
4543 bfd *abfd;
4544 sec_ptr section;
4545 PTR location;
4546 file_ptr offset;
4547 bfd_size_type count;
4548 {
4549 if (abfd->output_has_begun == false)
4550 {
4551 /* Set up fixed parts of the file, space, and subspace headers.
4552 Notify the world that output has begun. */
4553 som_prep_headers (abfd);
4554 abfd->output_has_begun = true;
4555 /* Start writing the object file. This include all the string
4556 tables, fixup streams, and other portions of the object file. */
4557 som_begin_writing (abfd);
4558 }
4559
4560 /* Only write subspaces which have "real" contents (eg. the contents
4561 are not generated at run time by the OS). */
4562 if (!som_is_subspace (section)
4563 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4564 return true;
4565
4566 /* Seek to the proper offset within the object file and write the
4567 data. */
4568 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
4569 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
4570 return false;
4571
4572 if (bfd_write ((PTR) location, 1, count, abfd) != count)
4573 return false;
4574 return true;
4575 }
4576
4577 static boolean
4578 som_set_arch_mach (abfd, arch, machine)
4579 bfd *abfd;
4580 enum bfd_architecture arch;
4581 unsigned long machine;
4582 {
4583 /* Allow any architecture to be supported by the SOM backend */
4584 return bfd_default_set_arch_mach (abfd, arch, machine);
4585 }
4586
4587 static boolean
4588 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4589 functionname_ptr, line_ptr)
4590 bfd *abfd;
4591 asection *section;
4592 asymbol **symbols;
4593 bfd_vma offset;
4594 CONST char **filename_ptr;
4595 CONST char **functionname_ptr;
4596 unsigned int *line_ptr;
4597 {
4598 fprintf (stderr, "som_find_nearest_line unimplemented\n");
4599 fflush (stderr);
4600 abort ();
4601 return (false);
4602 }
4603
4604 static int
4605 som_sizeof_headers (abfd, reloc)
4606 bfd *abfd;
4607 boolean reloc;
4608 {
4609 fprintf (stderr, "som_sizeof_headers unimplemented\n");
4610 fflush (stderr);
4611 abort ();
4612 return (0);
4613 }
4614
4615 /* Return the single-character symbol type corresponding to
4616 SOM section S, or '?' for an unknown SOM section. */
4617
4618 static char
4619 som_section_type (s)
4620 const char *s;
4621 {
4622 const struct section_to_type *t;
4623
4624 for (t = &stt[0]; t->section; t++)
4625 if (!strcmp (s, t->section))
4626 return t->type;
4627 return '?';
4628 }
4629
4630 static int
4631 som_decode_symclass (symbol)
4632 asymbol *symbol;
4633 {
4634 char c;
4635
4636 if (bfd_is_com_section (symbol->section))
4637 return 'C';
4638 if (bfd_is_und_section (symbol->section))
4639 return 'U';
4640 if (bfd_is_ind_section (symbol->section))
4641 return 'I';
4642 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
4643 return '?';
4644
4645 if (bfd_is_abs_section (symbol->section))
4646 c = 'a';
4647 else if (symbol->section)
4648 c = som_section_type (symbol->section->name);
4649 else
4650 return '?';
4651 if (symbol->flags & BSF_GLOBAL)
4652 c = toupper (c);
4653 return c;
4654 }
4655
4656 /* Return information about SOM symbol SYMBOL in RET. */
4657
4658 static void
4659 som_get_symbol_info (ignore_abfd, symbol, ret)
4660 bfd *ignore_abfd;
4661 asymbol *symbol;
4662 symbol_info *ret;
4663 {
4664 ret->type = som_decode_symclass (symbol);
4665 if (ret->type != 'U')
4666 ret->value = symbol->value+symbol->section->vma;
4667 else
4668 ret->value = 0;
4669 ret->name = symbol->name;
4670 }
4671
4672 /* Count the number of symbols in the archive symbol table. Necessary
4673 so that we can allocate space for all the carsyms at once. */
4674
4675 static boolean
4676 som_bfd_count_ar_symbols (abfd, lst_header, count)
4677 bfd *abfd;
4678 struct lst_header *lst_header;
4679 symindex *count;
4680 {
4681 unsigned int i;
4682 unsigned int *hash_table = NULL;
4683 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4684
4685 hash_table =
4686 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4687 if (hash_table == NULL && lst_header->hash_size != 0)
4688 {
4689 bfd_set_error (bfd_error_no_memory);
4690 goto error_return;
4691 }
4692
4693 /* Don't forget to initialize the counter! */
4694 *count = 0;
4695
4696 /* Read in the hash table. The has table is an array of 32bit file offsets
4697 which point to the hash chains. */
4698 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4699 != lst_header->hash_size * 4)
4700 goto error_return;
4701
4702 /* Walk each chain counting the number of symbols found on that particular
4703 chain. */
4704 for (i = 0; i < lst_header->hash_size; i++)
4705 {
4706 struct lst_symbol_record lst_symbol;
4707
4708 /* An empty chain has zero as it's file offset. */
4709 if (hash_table[i] == 0)
4710 continue;
4711
4712 /* Seek to the first symbol in this hash chain. */
4713 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4714 goto error_return;
4715
4716 /* Read in this symbol and update the counter. */
4717 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4718 != sizeof (lst_symbol))
4719 goto error_return;
4720
4721 (*count)++;
4722
4723 /* Now iterate through the rest of the symbols on this chain. */
4724 while (lst_symbol.next_entry)
4725 {
4726
4727 /* Seek to the next symbol. */
4728 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4729 < 0)
4730 goto error_return;
4731
4732 /* Read the symbol in and update the counter. */
4733 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4734 != sizeof (lst_symbol))
4735 goto error_return;
4736
4737 (*count)++;
4738 }
4739 }
4740 if (hash_table != NULL)
4741 free (hash_table);
4742 return true;
4743
4744 error_return:
4745 if (hash_table != NULL)
4746 free (hash_table);
4747 return false;
4748 }
4749
4750 /* Fill in the canonical archive symbols (SYMS) from the archive described
4751 by ABFD and LST_HEADER. */
4752
4753 static boolean
4754 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
4755 bfd *abfd;
4756 struct lst_header *lst_header;
4757 carsym **syms;
4758 {
4759 unsigned int i, len;
4760 carsym *set = syms[0];
4761 unsigned int *hash_table = NULL;
4762 struct som_entry *som_dict = NULL;
4763 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4764
4765 hash_table =
4766 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4767 if (hash_table == NULL && lst_header->hash_size != 0)
4768 {
4769 bfd_set_error (bfd_error_no_memory);
4770 goto error_return;
4771 }
4772
4773 som_dict =
4774 (struct som_entry *) malloc (lst_header->module_count
4775 * sizeof (struct som_entry));
4776 if (som_dict == NULL && lst_header->module_count != 0)
4777 {
4778 bfd_set_error (bfd_error_no_memory);
4779 goto error_return;
4780 }
4781
4782 /* Read in the hash table. The has table is an array of 32bit file offsets
4783 which point to the hash chains. */
4784 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4785 != lst_header->hash_size * 4)
4786 goto error_return;
4787
4788 /* Seek to and read in the SOM dictionary. We will need this to fill
4789 in the carsym's filepos field. */
4790 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
4791 goto error_return;
4792
4793 if (bfd_read ((PTR) som_dict, lst_header->module_count,
4794 sizeof (struct som_entry), abfd)
4795 != lst_header->module_count * sizeof (struct som_entry))
4796 goto error_return;
4797
4798 /* Walk each chain filling in the carsyms as we go along. */
4799 for (i = 0; i < lst_header->hash_size; i++)
4800 {
4801 struct lst_symbol_record lst_symbol;
4802
4803 /* An empty chain has zero as it's file offset. */
4804 if (hash_table[i] == 0)
4805 continue;
4806
4807 /* Seek to and read the first symbol on the chain. */
4808 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4809 goto error_return;
4810
4811 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4812 != sizeof (lst_symbol))
4813 goto error_return;
4814
4815 /* Get the name of the symbol, first get the length which is stored
4816 as a 32bit integer just before the symbol.
4817
4818 One might ask why we don't just read in the entire string table
4819 and index into it. Well, according to the SOM ABI the string
4820 index can point *anywhere* in the archive to save space, so just
4821 using the string table would not be safe. */
4822 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4823 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4824 goto error_return;
4825
4826 if (bfd_read (&len, 1, 4, abfd) != 4)
4827 goto error_return;
4828
4829 /* Allocate space for the name and null terminate it too. */
4830 set->name = bfd_zalloc (abfd, len + 1);
4831 if (!set->name)
4832 {
4833 bfd_set_error (bfd_error_no_memory);
4834 goto error_return;
4835 }
4836 if (bfd_read (set->name, 1, len, abfd) != len)
4837 goto error_return;
4838
4839 set->name[len] = 0;
4840
4841 /* Fill in the file offset. Note that the "location" field points
4842 to the SOM itself, not the ar_hdr in front of it. */
4843 set->file_offset = som_dict[lst_symbol.som_index].location
4844 - sizeof (struct ar_hdr);
4845
4846 /* Go to the next symbol. */
4847 set++;
4848
4849 /* Iterate through the rest of the chain. */
4850 while (lst_symbol.next_entry)
4851 {
4852 /* Seek to the next symbol and read it in. */
4853 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET) <0)
4854 goto error_return;
4855
4856 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4857 != sizeof (lst_symbol))
4858 goto error_return;
4859
4860 /* Seek to the name length & string and read them in. */
4861 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4862 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4863 goto error_return;
4864
4865 if (bfd_read (&len, 1, 4, abfd) != 4)
4866 goto error_return;
4867
4868 /* Allocate space for the name and null terminate it too. */
4869 set->name = bfd_zalloc (abfd, len + 1);
4870 if (!set->name)
4871 {
4872 bfd_set_error (bfd_error_no_memory);
4873 goto error_return;
4874 }
4875
4876 if (bfd_read (set->name, 1, len, abfd) != len)
4877 goto error_return;
4878 set->name[len] = 0;
4879
4880 /* Fill in the file offset. Note that the "location" field points
4881 to the SOM itself, not the ar_hdr in front of it. */
4882 set->file_offset = som_dict[lst_symbol.som_index].location
4883 - sizeof (struct ar_hdr);
4884
4885 /* Go on to the next symbol. */
4886 set++;
4887 }
4888 }
4889 /* If we haven't died by now, then we successfully read the entire
4890 archive symbol table. */
4891 if (hash_table != NULL)
4892 free (hash_table);
4893 if (som_dict != NULL)
4894 free (som_dict);
4895 return true;
4896
4897 error_return:
4898 if (hash_table != NULL)
4899 free (hash_table);
4900 if (som_dict != NULL)
4901 free (som_dict);
4902 return false;
4903 }
4904
4905 /* Read in the LST from the archive. */
4906 static boolean
4907 som_slurp_armap (abfd)
4908 bfd *abfd;
4909 {
4910 struct lst_header lst_header;
4911 struct ar_hdr ar_header;
4912 unsigned int parsed_size;
4913 struct artdata *ardata = bfd_ardata (abfd);
4914 char nextname[17];
4915 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
4916
4917 /* Special cases. */
4918 if (i == 0)
4919 return true;
4920 if (i != 16)
4921 return false;
4922
4923 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
4924 return false;
4925
4926 /* For archives without .o files there is no symbol table. */
4927 if (strncmp (nextname, "/ ", 16))
4928 {
4929 bfd_has_map (abfd) = false;
4930 return true;
4931 }
4932
4933 /* Read in and sanity check the archive header. */
4934 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
4935 != sizeof (struct ar_hdr))
4936 return false;
4937
4938 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
4939 {
4940 bfd_set_error (bfd_error_malformed_archive);
4941 return false;
4942 }
4943
4944 /* How big is the archive symbol table entry? */
4945 errno = 0;
4946 parsed_size = strtol (ar_header.ar_size, NULL, 10);
4947 if (errno != 0)
4948 {
4949 bfd_set_error (bfd_error_malformed_archive);
4950 return false;
4951 }
4952
4953 /* Save off the file offset of the first real user data. */
4954 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
4955
4956 /* Read in the library symbol table. We'll make heavy use of this
4957 in just a minute. */
4958 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
4959 != sizeof (struct lst_header))
4960 return false;
4961
4962 /* Sanity check. */
4963 if (lst_header.a_magic != LIBMAGIC)
4964 {
4965 bfd_set_error (bfd_error_malformed_archive);
4966 return false;
4967 }
4968
4969 /* Count the number of symbols in the library symbol table. */
4970 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
4971 == false)
4972 return false;
4973
4974 /* Get back to the start of the library symbol table. */
4975 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
4976 + sizeof (struct lst_header), SEEK_SET) < 0)
4977 return false;
4978
4979 /* Initializae the cache and allocate space for the library symbols. */
4980 ardata->cache = 0;
4981 ardata->symdefs = (carsym *) bfd_alloc (abfd,
4982 (ardata->symdef_count
4983 * sizeof (carsym)));
4984 if (!ardata->symdefs)
4985 {
4986 bfd_set_error (bfd_error_no_memory);
4987 return false;
4988 }
4989
4990 /* Now fill in the canonical archive symbols. */
4991 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
4992 == false)
4993 return false;
4994
4995 /* Seek back to the "first" file in the archive. Note the "first"
4996 file may be the extended name table. */
4997 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) < 0)
4998 return false;
4999
5000 /* Notify the generic archive code that we have a symbol map. */
5001 bfd_has_map (abfd) = true;
5002 return true;
5003 }
5004
5005 /* Begin preparing to write a SOM library symbol table.
5006
5007 As part of the prep work we need to determine the number of symbols
5008 and the size of the associated string section. */
5009
5010 static boolean
5011 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
5012 bfd *abfd;
5013 unsigned int *num_syms, *stringsize;
5014 {
5015 bfd *curr_bfd = abfd->archive_head;
5016
5017 /* Some initialization. */
5018 *num_syms = 0;
5019 *stringsize = 0;
5020
5021 /* Iterate over each BFD within this archive. */
5022 while (curr_bfd != NULL)
5023 {
5024 unsigned int curr_count, i;
5025 som_symbol_type *sym;
5026
5027 /* Don't bother for non-SOM objects. */
5028 if (curr_bfd->format != bfd_object
5029 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5030 {
5031 curr_bfd = curr_bfd->next;
5032 continue;
5033 }
5034
5035 /* Make sure the symbol table has been read, then snag a pointer
5036 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5037 but doing so avoids allocating lots of extra memory. */
5038 if (som_slurp_symbol_table (curr_bfd) == false)
5039 return false;
5040
5041 sym = obj_som_symtab (curr_bfd);
5042 curr_count = bfd_get_symcount (curr_bfd);
5043
5044 /* Examine each symbol to determine if it belongs in the
5045 library symbol table. */
5046 for (i = 0; i < curr_count; i++, sym++)
5047 {
5048 struct som_misc_symbol_info info;
5049
5050 /* Derive SOM information from the BFD symbol. */
5051 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5052
5053 /* Should we include this symbol? */
5054 if (info.symbol_type == ST_NULL
5055 || info.symbol_type == ST_SYM_EXT
5056 || info.symbol_type == ST_ARG_EXT)
5057 continue;
5058
5059 /* Only global symbols and unsatisfied commons. */
5060 if (info.symbol_scope != SS_UNIVERSAL
5061 && info.symbol_type != ST_STORAGE)
5062 continue;
5063
5064 /* Do no include undefined symbols. */
5065 if (bfd_is_und_section (sym->symbol.section))
5066 continue;
5067
5068 /* Bump the various counters, being careful to honor
5069 alignment considerations in the string table. */
5070 (*num_syms)++;
5071 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5072 while (*stringsize % 4)
5073 (*stringsize)++;
5074 }
5075
5076 curr_bfd = curr_bfd->next;
5077 }
5078 return true;
5079 }
5080
5081 /* Hash a symbol name based on the hashing algorithm presented in the
5082 SOM ABI. */
5083 static unsigned int
5084 som_bfd_ar_symbol_hash (symbol)
5085 asymbol *symbol;
5086 {
5087 unsigned int len = strlen (symbol->name);
5088
5089 /* Names with length 1 are special. */
5090 if (len == 1)
5091 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5092
5093 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5094 | (symbol->name[len-2] << 8) | symbol->name[len-1];
5095 }
5096
5097 static CONST char *
5098 normalize (file)
5099 CONST char *file;
5100 {
5101 CONST char *filename = strrchr (file, '/');
5102
5103 if (filename != NULL)
5104 filename++;
5105 else
5106 filename = file;
5107 return filename;
5108 }
5109
5110 /* Do the bulk of the work required to write the SOM library
5111 symbol table. */
5112
5113 static boolean
5114 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst)
5115 bfd *abfd;
5116 unsigned int nsyms, string_size;
5117 struct lst_header lst;
5118 {
5119 file_ptr lst_filepos;
5120 char *strings = NULL, *p;
5121 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5122 bfd *curr_bfd;
5123 unsigned int *hash_table = NULL;
5124 struct som_entry *som_dict = NULL;
5125 struct lst_symbol_record **last_hash_entry = NULL;
5126 unsigned int curr_som_offset, som_index, extended_name_length = 0;
5127 unsigned int maxname = abfd->xvec->ar_max_namelen;
5128
5129 hash_table =
5130 (unsigned int *) malloc (lst.hash_size * sizeof (unsigned int));
5131 if (hash_table == NULL && lst.hash_size != 0)
5132 {
5133 bfd_set_error (bfd_error_no_memory);
5134 goto error_return;
5135 }
5136 som_dict =
5137 (struct som_entry *) malloc (lst.module_count
5138 * sizeof (struct som_entry));
5139 if (som_dict == NULL && lst.module_count != 0)
5140 {
5141 bfd_set_error (bfd_error_no_memory);
5142 goto error_return;
5143 }
5144
5145 last_hash_entry =
5146 ((struct lst_symbol_record **)
5147 malloc (lst.hash_size * sizeof (struct lst_symbol_record *)));
5148 if (last_hash_entry == NULL && lst.hash_size != 0)
5149 {
5150 bfd_set_error (bfd_error_no_memory);
5151 goto error_return;
5152 }
5153
5154 /* Lots of fields are file positions relative to the start
5155 of the lst record. So save its location. */
5156 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5157
5158 /* Some initialization. */
5159 memset (hash_table, 0, 4 * lst.hash_size);
5160 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
5161 memset (last_hash_entry, 0,
5162 lst.hash_size * sizeof (struct lst_symbol_record *));
5163
5164 /* Symbols have som_index fields, so we have to keep track of the
5165 index of each SOM in the archive.
5166
5167 The SOM dictionary has (among other things) the absolute file
5168 position for the SOM which a particular dictionary entry
5169 describes. We have to compute that information as we iterate
5170 through the SOMs/symbols. */
5171 som_index = 0;
5172 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5173
5174 /* Yow! We have to know the size of the extended name table
5175 too. */
5176 for (curr_bfd = abfd->archive_head;
5177 curr_bfd != NULL;
5178 curr_bfd = curr_bfd->next)
5179 {
5180 CONST char *normal = normalize (curr_bfd->filename);
5181 unsigned int thislen;
5182
5183 if (!normal)
5184 {
5185 bfd_set_error (bfd_error_no_memory);
5186 return false;
5187 }
5188 thislen = strlen (normal);
5189 if (thislen > maxname)
5190 extended_name_length += thislen + 1;
5191 }
5192
5193 /* Make room for the archive header and the contents of the
5194 extended string table. */
5195 if (extended_name_length)
5196 curr_som_offset += extended_name_length + sizeof (struct ar_hdr);
5197
5198 /* Make sure we're properly aligned. */
5199 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5200
5201 /* FIXME should be done with buffers just like everything else... */
5202 lst_syms = malloc (nsyms * sizeof (struct lst_symbol_record));
5203 if (lst_syms == NULL && nsyms != 0)
5204 {
5205 bfd_set_error (bfd_error_no_memory);
5206 goto error_return;
5207 }
5208 strings = malloc (string_size);
5209 if (strings == NULL && string_size != 0)
5210 {
5211 bfd_set_error (bfd_error_no_memory);
5212 goto error_return;
5213 }
5214
5215 p = strings;
5216 curr_lst_sym = lst_syms;
5217
5218 curr_bfd = abfd->archive_head;
5219 while (curr_bfd != NULL)
5220 {
5221 unsigned int curr_count, i;
5222 som_symbol_type *sym;
5223
5224 /* Don't bother for non-SOM objects. */
5225 if (curr_bfd->format != bfd_object
5226 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5227 {
5228 curr_bfd = curr_bfd->next;
5229 continue;
5230 }
5231
5232 /* Make sure the symbol table has been read, then snag a pointer
5233 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5234 but doing so avoids allocating lots of extra memory. */
5235 if (som_slurp_symbol_table (curr_bfd) == false)
5236 goto error_return;
5237
5238 sym = obj_som_symtab (curr_bfd);
5239 curr_count = bfd_get_symcount (curr_bfd);
5240
5241 for (i = 0; i < curr_count; i++, sym++)
5242 {
5243 struct som_misc_symbol_info info;
5244
5245 /* Derive SOM information from the BFD symbol. */
5246 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5247
5248 /* Should we include this symbol? */
5249 if (info.symbol_type == ST_NULL
5250 || info.symbol_type == ST_SYM_EXT
5251 || info.symbol_type == ST_ARG_EXT)
5252 continue;
5253
5254 /* Only global symbols and unsatisfied commons. */
5255 if (info.symbol_scope != SS_UNIVERSAL
5256 && info.symbol_type != ST_STORAGE)
5257 continue;
5258
5259 /* Do no include undefined symbols. */
5260 if (bfd_is_und_section (sym->symbol.section))
5261 continue;
5262
5263 /* If this is the first symbol from this SOM, then update
5264 the SOM dictionary too. */
5265 if (som_dict[som_index].location == 0)
5266 {
5267 som_dict[som_index].location = curr_som_offset;
5268 som_dict[som_index].length = arelt_size (curr_bfd);
5269 }
5270
5271 /* Fill in the lst symbol record. */
5272 curr_lst_sym->hidden = 0;
5273 curr_lst_sym->secondary_def = 0;
5274 curr_lst_sym->symbol_type = info.symbol_type;
5275 curr_lst_sym->symbol_scope = info.symbol_scope;
5276 curr_lst_sym->check_level = 0;
5277 curr_lst_sym->must_qualify = 0;
5278 curr_lst_sym->initially_frozen = 0;
5279 curr_lst_sym->memory_resident = 0;
5280 curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section);
5281 curr_lst_sym->dup_common = 0;
5282 curr_lst_sym->xleast = 0;
5283 curr_lst_sym->arg_reloc = info.arg_reloc;
5284 curr_lst_sym->name.n_strx = p - strings + 4;
5285 curr_lst_sym->qualifier_name.n_strx = 0;
5286 curr_lst_sym->symbol_info = info.symbol_info;
5287 curr_lst_sym->symbol_value = info.symbol_value;
5288 curr_lst_sym->symbol_descriptor = 0;
5289 curr_lst_sym->reserved = 0;
5290 curr_lst_sym->som_index = som_index;
5291 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
5292 curr_lst_sym->next_entry = 0;
5293
5294 /* Insert into the hash table. */
5295 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
5296 {
5297 struct lst_symbol_record *tmp;
5298
5299 /* There is already something at the head of this hash chain,
5300 so tack this symbol onto the end of the chain. */
5301 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
5302 tmp->next_entry
5303 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5304 + lst.hash_size * 4
5305 + lst.module_count * sizeof (struct som_entry)
5306 + sizeof (struct lst_header);
5307 }
5308 else
5309 {
5310 /* First entry in this hash chain. */
5311 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
5312 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5313 + lst.hash_size * 4
5314 + lst.module_count * sizeof (struct som_entry)
5315 + sizeof (struct lst_header);
5316 }
5317
5318 /* Keep track of the last symbol we added to this chain so we can
5319 easily update its next_entry pointer. */
5320 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
5321 = curr_lst_sym;
5322
5323
5324 /* Update the string table. */
5325 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
5326 p += 4;
5327 strcpy (p, sym->symbol.name);
5328 p += strlen (sym->symbol.name) + 1;
5329 while ((int)p % 4)
5330 {
5331 bfd_put_8 (abfd, 0, p);
5332 p++;
5333 }
5334
5335 /* Head to the next symbol. */
5336 curr_lst_sym++;
5337 }
5338
5339 /* Keep track of where each SOM will finally reside; then look
5340 at the next BFD. */
5341 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
5342 curr_bfd = curr_bfd->next;
5343 som_index++;
5344 }
5345
5346 /* Now scribble out the hash table. */
5347 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
5348 != lst.hash_size * 4)
5349 goto error_return;
5350
5351 /* Then the SOM dictionary. */
5352 if (bfd_write ((PTR) som_dict, lst.module_count,
5353 sizeof (struct som_entry), abfd)
5354 != lst.module_count * sizeof (struct som_entry))
5355 goto error_return;
5356
5357 /* The library symbols. */
5358 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
5359 != nsyms * sizeof (struct lst_symbol_record))
5360 goto error_return;
5361
5362 /* And finally the strings. */
5363 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
5364 goto error_return;
5365
5366 if (hash_table != NULL)
5367 free (hash_table);
5368 if (som_dict != NULL)
5369 free (som_dict);
5370 if (last_hash_entry != NULL)
5371 free (last_hash_entry);
5372 if (lst_syms != NULL)
5373 free (lst_syms);
5374 if (strings != NULL)
5375 free (strings);
5376 return true;
5377
5378 error_return:
5379 if (hash_table != NULL)
5380 free (hash_table);
5381 if (som_dict != NULL)
5382 free (som_dict);
5383 if (last_hash_entry != NULL)
5384 free (last_hash_entry);
5385 if (lst_syms != NULL)
5386 free (lst_syms);
5387 if (strings != NULL)
5388 free (strings);
5389
5390 return false;
5391 }
5392
5393 /* Write out the LST for the archive.
5394
5395 You'll never believe this is really how armaps are handled in SOM... */
5396
5397 /*ARGSUSED*/
5398 static boolean
5399 som_write_armap (abfd, elength, map, orl_count, stridx)
5400 bfd *abfd;
5401 unsigned int elength;
5402 struct orl *map;
5403 unsigned int orl_count;
5404 int stridx;
5405 {
5406 bfd *curr_bfd;
5407 struct stat statbuf;
5408 unsigned int i, lst_size, nsyms, stringsize;
5409 struct ar_hdr hdr;
5410 struct lst_header lst;
5411 int *p;
5412
5413 /* We'll use this for the archive's date and mode later. */
5414 if (stat (abfd->filename, &statbuf) != 0)
5415 {
5416 bfd_set_error (bfd_error_system_call);
5417 return false;
5418 }
5419 /* Fudge factor. */
5420 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
5421
5422 /* Account for the lst header first. */
5423 lst_size = sizeof (struct lst_header);
5424
5425 /* Start building the LST header. */
5426 lst.system_id = CPU_PA_RISC1_0;
5427 lst.a_magic = LIBMAGIC;
5428 lst.version_id = VERSION_ID;
5429 lst.file_time.secs = 0;
5430 lst.file_time.nanosecs = 0;
5431
5432 lst.hash_loc = lst_size;
5433 lst.hash_size = SOM_LST_HASH_SIZE;
5434
5435 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
5436 lst_size += 4 * SOM_LST_HASH_SIZE;
5437
5438 /* We need to count the number of SOMs in this archive. */
5439 curr_bfd = abfd->archive_head;
5440 lst.module_count = 0;
5441 while (curr_bfd != NULL)
5442 {
5443 /* Only true SOM objects count. */
5444 if (curr_bfd->format == bfd_object
5445 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
5446 lst.module_count++;
5447 curr_bfd = curr_bfd->next;
5448 }
5449 lst.module_limit = lst.module_count;
5450 lst.dir_loc = lst_size;
5451 lst_size += sizeof (struct som_entry) * lst.module_count;
5452
5453 /* We don't support import/export tables, auxiliary headers,
5454 or free lists yet. Make the linker work a little harder
5455 to make our life easier. */
5456
5457 lst.export_loc = 0;
5458 lst.export_count = 0;
5459 lst.import_loc = 0;
5460 lst.aux_loc = 0;
5461 lst.aux_size = 0;
5462
5463 /* Count how many symbols we will have on the hash chains and the
5464 size of the associated string table. */
5465 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
5466 return false;
5467
5468 lst_size += sizeof (struct lst_symbol_record) * nsyms;
5469
5470 /* For the string table. One day we might actually use this info
5471 to avoid small seeks/reads when reading archives. */
5472 lst.string_loc = lst_size;
5473 lst.string_size = stringsize;
5474 lst_size += stringsize;
5475
5476 /* SOM ABI says this must be zero. */
5477 lst.free_list = 0;
5478 lst.file_end = lst_size;
5479
5480 /* Compute the checksum. Must happen after the entire lst header
5481 has filled in. */
5482 p = (int *)&lst;
5483 lst.checksum = 0;
5484 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
5485 lst.checksum ^= *p++;
5486
5487 sprintf (hdr.ar_name, "/ ");
5488 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
5489 sprintf (hdr.ar_uid, "%ld", (long) getuid ());
5490 sprintf (hdr.ar_gid, "%ld", (long) getgid ());
5491 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
5492 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
5493 hdr.ar_fmag[0] = '`';
5494 hdr.ar_fmag[1] = '\012';
5495
5496 /* Turn any nulls into spaces. */
5497 for (i = 0; i < sizeof (struct ar_hdr); i++)
5498 if (((char *) (&hdr))[i] == '\0')
5499 (((char *) (&hdr))[i]) = ' ';
5500
5501 /* Scribble out the ar header. */
5502 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
5503 != sizeof (struct ar_hdr))
5504 return false;
5505
5506 /* Now scribble out the lst header. */
5507 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
5508 != sizeof (struct lst_header))
5509 return false;
5510
5511 /* Build and write the armap. */
5512 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst) == false)
5513 return false;
5514
5515 /* Done. */
5516 return true;
5517 }
5518
5519 /* Free all information we have cached for this BFD. We can always
5520 read it again later if we need it. */
5521
5522 static boolean
5523 som_bfd_free_cached_info (abfd)
5524 bfd *abfd;
5525 {
5526 asection *o;
5527
5528 if (bfd_get_format (abfd) != bfd_object)
5529 return true;
5530
5531 #define FREE(x) if (x != NULL) { free (x); x = NULL; }
5532 /* Free the native string and symbol tables. */
5533 FREE (obj_som_symtab (abfd));
5534 FREE (obj_som_stringtab (abfd));
5535 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5536 {
5537 /* Free the native relocations. */
5538 o->reloc_count = -1;
5539 FREE (som_section_data (o)->reloc_stream);
5540 /* Free the generic relocations. */
5541 FREE (o->relocation);
5542 }
5543 #undef FREE
5544
5545 return true;
5546 }
5547
5548 /* End of miscellaneous support functions. */
5549
5550 #define som_close_and_cleanup som_bfd_free_cached_info
5551
5552 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
5553 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
5554 #define som_truncate_arname bfd_bsd_truncate_arname
5555 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
5556 #define som_update_armap_timestamp bfd_true
5557
5558 #define som_get_lineno _bfd_nosymbols_get_lineno
5559 #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
5560
5561 #define som_bfd_get_relocated_section_contents \
5562 bfd_generic_get_relocated_section_contents
5563 #define som_bfd_relax_section bfd_generic_relax_section
5564 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
5565 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
5566 #define som_bfd_final_link _bfd_generic_final_link
5567
5568 const bfd_target som_vec =
5569 {
5570 "som", /* name */
5571 bfd_target_som_flavour,
5572 true, /* target byte order */
5573 true, /* target headers byte order */
5574 (HAS_RELOC | EXEC_P | /* object flags */
5575 HAS_LINENO | HAS_DEBUG |
5576 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
5577 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
5578 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
5579
5580 /* leading_symbol_char: is the first char of a user symbol
5581 predictable, and if so what is it */
5582 0,
5583 '/', /* ar_pad_char */
5584 14, /* ar_max_namelen */
5585 3, /* minimum alignment */
5586 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5587 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5588 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
5589 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5590 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5591 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
5592 {_bfd_dummy_target,
5593 som_object_p, /* bfd_check_format */
5594 bfd_generic_archive_p,
5595 _bfd_dummy_target
5596 },
5597 {
5598 bfd_false,
5599 som_mkobject,
5600 _bfd_generic_mkarchive,
5601 bfd_false
5602 },
5603 {
5604 bfd_false,
5605 som_write_object_contents,
5606 _bfd_write_archive_contents,
5607 bfd_false,
5608 },
5609 #undef som
5610
5611 BFD_JUMP_TABLE_GENERIC (som),
5612 BFD_JUMP_TABLE_COPY (som),
5613 BFD_JUMP_TABLE_CORE (_bfd_nocore),
5614 BFD_JUMP_TABLE_ARCHIVE (som),
5615 BFD_JUMP_TABLE_SYMBOLS (som),
5616 BFD_JUMP_TABLE_RELOCS (som),
5617 BFD_JUMP_TABLE_WRITE (som),
5618 BFD_JUMP_TABLE_LINK (som),
5619 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
5620
5621 (PTR) 0
5622 };
5623
5624 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */