* som.c (bfd_section_from_som_symbol): Renamed from
[binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
3
4 Contributed by the Center for Software Science at the
5 University of Utah (pa-gdb-bugs@cs.utah.edu).
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23 #include "bfd.h"
24 #include "sysdep.h"
25
26 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)
27
28 #include "libbfd.h"
29 #include "som.h"
30
31 #include <stdio.h>
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/dir.h>
35 #include <signal.h>
36 #include <machine/reg.h>
37 #include <sys/user.h> /* After a.out.h */
38 #include <sys/file.h>
39 #include <errno.h>
40
41 /* Magic not defined in standard HP-UX header files until 8.0 */
42
43 #ifndef CPU_PA_RISC1_0
44 #define CPU_PA_RISC1_0 0x20B
45 #endif /* CPU_PA_RISC1_0 */
46
47 #ifndef CPU_PA_RISC1_1
48 #define CPU_PA_RISC1_1 0x210
49 #endif /* CPU_PA_RISC1_1 */
50
51 #ifndef _PA_RISC1_0_ID
52 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
53 #endif /* _PA_RISC1_0_ID */
54
55 #ifndef _PA_RISC1_1_ID
56 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
57 #endif /* _PA_RISC1_1_ID */
58
59 #ifndef _PA_RISC_MAXID
60 #define _PA_RISC_MAXID 0x2FF
61 #endif /* _PA_RISC_MAXID */
62
63 #ifndef _PA_RISC_ID
64 #define _PA_RISC_ID(__m_num) \
65 (((__m_num) == _PA_RISC1_0_ID) || \
66 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
67 #endif /* _PA_RISC_ID */
68
69 /* Size (in chars) of the temporary buffers used during fixup and string
70 table writes. */
71
72 #define SOM_TMP_BUFSIZE 8192
73
74 /* Size of the hash table in archives. */
75 #define SOM_LST_HASH_SIZE 31
76
77 /* Max number of SOMs to be found in an archive. */
78 #define SOM_LST_MODULE_LIMIT 1024
79
80 /* Generic alignment macro. */
81 #define SOM_ALIGN(val, alignment) \
82 (((val) + (alignment) - 1) & ~((alignment) - 1))
83
84 /* SOM allows any one of the four previous relocations to be reused
85 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
86 relocations are always a single byte, using a R_PREV_FIXUP instead
87 of some multi-byte relocation makes object files smaller.
88
89 Note one side effect of using a R_PREV_FIXUP is the relocation that
90 is being repeated moves to the front of the queue. */
91 struct reloc_queue
92 {
93 unsigned char *reloc;
94 unsigned int size;
95 } reloc_queue[4];
96
97 /* This fully describes the symbol types which may be attached to
98 an EXPORT or IMPORT directive. Only SOM uses this formation
99 (ELF has no need for it). */
100 typedef enum
101 {
102 SYMBOL_TYPE_UNKNOWN,
103 SYMBOL_TYPE_ABSOLUTE,
104 SYMBOL_TYPE_CODE,
105 SYMBOL_TYPE_DATA,
106 SYMBOL_TYPE_ENTRY,
107 SYMBOL_TYPE_MILLICODE,
108 SYMBOL_TYPE_PLABEL,
109 SYMBOL_TYPE_PRI_PROG,
110 SYMBOL_TYPE_SEC_PROG,
111 } pa_symbol_type;
112
113 struct section_to_type
114 {
115 char *section;
116 char type;
117 };
118
119 /* Assorted symbol information that needs to be derived from the BFD symbol
120 and/or the BFD backend private symbol data. */
121 struct som_misc_symbol_info
122 {
123 unsigned int symbol_type;
124 unsigned int symbol_scope;
125 unsigned int arg_reloc;
126 unsigned int symbol_info;
127 unsigned int symbol_value;
128 };
129
130 /* Forward declarations */
131
132 static boolean som_mkobject PARAMS ((bfd *));
133 static bfd_target * som_object_setup PARAMS ((bfd *,
134 struct header *,
135 struct som_exec_auxhdr *));
136 static boolean setup_sections PARAMS ((bfd *, struct header *));
137 static bfd_target * som_object_p PARAMS ((bfd *));
138 static boolean som_write_object_contents PARAMS ((bfd *));
139 static boolean som_slurp_string_table PARAMS ((bfd *));
140 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
141 static unsigned int som_get_symtab_upper_bound PARAMS ((bfd *));
142 static unsigned int som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
143 arelent **, asymbol **));
144 static unsigned int som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
145 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
146 arelent *, asection *,
147 asymbol **, boolean));
148 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
149 asymbol **, boolean));
150 static unsigned int som_get_symtab PARAMS ((bfd *, asymbol **));
151 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
152 static void som_print_symbol PARAMS ((bfd *, PTR,
153 asymbol *, bfd_print_symbol_type));
154 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
155 static boolean som_bfd_copy_private_section_data PARAMS ((bfd *, asection *,
156 bfd *, asection *));
157 static boolean som_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
158 static boolean som_bfd_is_local_label PARAMS ((bfd *, asymbol *));
159 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
160 file_ptr, bfd_size_type));
161 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
162 unsigned long));
163 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
164 asymbol **, bfd_vma,
165 CONST char **,
166 CONST char **,
167 unsigned int *));
168 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
169 static asection * bfd_section_from_som_symbol PARAMS ((bfd *,
170 struct symbol_dictionary_record *));
171 static int log2 PARAMS ((unsigned int));
172 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
173 asymbol *, PTR,
174 asection *, bfd *,
175 char **));
176 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
177 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
178 struct reloc_queue *));
179 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
180 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
181 struct reloc_queue *));
182 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
183 unsigned int,
184 struct reloc_queue *));
185
186 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
187 unsigned char *, unsigned int *,
188 struct reloc_queue *));
189 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
190 unsigned int *,
191 struct reloc_queue *));
192 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
193 unsigned int *,
194 arelent *, int,
195 struct reloc_queue *));
196 static unsigned long som_count_spaces PARAMS ((bfd *));
197 static unsigned long som_count_subspaces PARAMS ((bfd *));
198 static int compare_syms PARAMS ((asymbol **, asymbol **));
199 static unsigned long som_compute_checksum PARAMS ((bfd *));
200 static boolean som_prep_headers PARAMS ((bfd *));
201 static int som_sizeof_headers PARAMS ((bfd *, boolean));
202 static boolean som_write_headers PARAMS ((bfd *));
203 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
204 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
205 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
206 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
207 unsigned int *));
208 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
209 asymbol **, unsigned int,
210 unsigned *));
211 static boolean som_begin_writing PARAMS ((bfd *));
212 static const reloc_howto_type * som_bfd_reloc_type_lookup
213 PARAMS ((bfd_arch_info_type *, bfd_reloc_code_real_type));
214 static char som_section_type PARAMS ((const char *));
215 static int som_decode_symclass PARAMS ((asymbol *));
216 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
217 symindex *));
218
219 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
220 carsym **syms));
221 static boolean som_slurp_armap PARAMS ((bfd *));
222 static boolean som_write_armap PARAMS ((bfd *));
223 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
224 struct som_misc_symbol_info *));
225 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
226 unsigned int *));
227 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
228 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
229 unsigned int,
230 struct lst_header));
231 static CONST char *normalize PARAMS ((CONST char *file));
232 static boolean som_is_space PARAMS ((asection *));
233 static boolean som_is_subspace PARAMS ((asection *));
234 static boolean som_is_container PARAMS ((asection *, asection *));
235
236 /* Map SOM section names to POSIX/BSD single-character symbol types.
237
238 This table includes all the standard subspaces as defined in the
239 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
240 some reason was left out, and sections specific to embedded stabs. */
241
242 static const struct section_to_type stt[] = {
243 {"$TEXT$", 't'},
244 {"$SHLIB_INFO$", 't'},
245 {"$MILLICODE$", 't'},
246 {"$LIT$", 't'},
247 {"$CODE$", 't'},
248 {"$UNWIND_START$", 't'},
249 {"$UNWIND$", 't'},
250 {"$PRIVATE$", 'd'},
251 {"$PLT$", 'd'},
252 {"$SHLIB_DATA$", 'd'},
253 {"$DATA$", 'd'},
254 {"$SHORTDATA$", 'g'},
255 {"$DLT$", 'd'},
256 {"$GLOBAL$", 'g'},
257 {"$SHORTBSS$", 's'},
258 {"$BSS$", 'b'},
259 {"$GDB_STRINGS$", 'N'},
260 {"$GDB_SYMBOLS$", 'N'},
261 {0, 0}
262 };
263
264 /* About the relocation formatting table...
265
266 There are 256 entries in the table, one for each possible
267 relocation opcode available in SOM. We index the table by
268 the relocation opcode. The names and operations are those
269 defined by a.out_800 (4).
270
271 Right now this table is only used to count and perform minimal
272 processing on relocation streams so that they can be internalized
273 into BFD and symbolically printed by utilities. To make actual use
274 of them would be much more difficult, BFD's concept of relocations
275 is far too simple to handle SOM relocations. The basic assumption
276 that a relocation can be completely processed independent of other
277 relocations before an object file is written is invalid for SOM.
278
279 The SOM relocations are meant to be processed as a stream, they
280 specify copying of data from the input section to the output section
281 while possibly modifying the data in some manner. They also can
282 specify that a variable number of zeros or uninitialized data be
283 inserted on in the output segment at the current offset. Some
284 relocations specify that some previous relocation be re-applied at
285 the current location in the input/output sections. And finally a number
286 of relocations have effects on other sections (R_ENTRY, R_EXIT,
287 R_UNWIND_AUX and a variety of others). There isn't even enough room
288 in the BFD relocation data structure to store enough information to
289 perform all the relocations.
290
291 Each entry in the table has three fields.
292
293 The first entry is an index into this "class" of relocations. This
294 index can then be used as a variable within the relocation itself.
295
296 The second field is a format string which actually controls processing
297 of the relocation. It uses a simple postfix machine to do calculations
298 based on variables/constants found in the string and the relocation
299 stream.
300
301 The third field specifys whether or not this relocation may use
302 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
303 stored in the instruction.
304
305 Variables:
306
307 L = input space byte count
308 D = index into class of relocations
309 M = output space byte count
310 N = statement number (unused?)
311 O = stack operation
312 R = parameter relocation bits
313 S = symbol index
314 U = 64 bits of stack unwind and frame size info (we only keep 32 bits)
315 V = a literal constant (usually used in the next relocation)
316 P = a previous relocation
317
318 Lower case letters (starting with 'b') refer to following
319 bytes in the relocation stream. 'b' is the next 1 byte,
320 c is the next 2 bytes, d is the next 3 bytes, etc...
321 This is the variable part of the relocation entries that
322 makes our life a living hell.
323
324 numerical constants are also used in the format string. Note
325 the constants are represented in decimal.
326
327 '+', "*" and "=" represents the obvious postfix operators.
328 '<' represents a left shift.
329
330 Stack Operations:
331
332 Parameter Relocation Bits:
333
334 Unwind Entries:
335
336 Previous Relocations: The index field represents which in the queue
337 of 4 previous fixups should be re-applied.
338
339 Literal Constants: These are generally used to represent addend
340 parts of relocations when these constants are not stored in the
341 fields of the instructions themselves. For example the instruction
342 addil foo-$global$-0x1234 would use an override for "0x1234" rather
343 than storing it into the addil itself. */
344
345 struct fixup_format
346 {
347 int D;
348 char *format;
349 };
350
351 static const struct fixup_format som_fixup_formats[256] =
352 {
353 /* R_NO_RELOCATION */
354 0, "LD1+4*=", /* 0x00 */
355 1, "LD1+4*=", /* 0x01 */
356 2, "LD1+4*=", /* 0x02 */
357 3, "LD1+4*=", /* 0x03 */
358 4, "LD1+4*=", /* 0x04 */
359 5, "LD1+4*=", /* 0x05 */
360 6, "LD1+4*=", /* 0x06 */
361 7, "LD1+4*=", /* 0x07 */
362 8, "LD1+4*=", /* 0x08 */
363 9, "LD1+4*=", /* 0x09 */
364 10, "LD1+4*=", /* 0x0a */
365 11, "LD1+4*=", /* 0x0b */
366 12, "LD1+4*=", /* 0x0c */
367 13, "LD1+4*=", /* 0x0d */
368 14, "LD1+4*=", /* 0x0e */
369 15, "LD1+4*=", /* 0x0f */
370 16, "LD1+4*=", /* 0x10 */
371 17, "LD1+4*=", /* 0x11 */
372 18, "LD1+4*=", /* 0x12 */
373 19, "LD1+4*=", /* 0x13 */
374 20, "LD1+4*=", /* 0x14 */
375 21, "LD1+4*=", /* 0x15 */
376 22, "LD1+4*=", /* 0x16 */
377 23, "LD1+4*=", /* 0x17 */
378 0, "LD8<b+1+4*=", /* 0x18 */
379 1, "LD8<b+1+4*=", /* 0x19 */
380 2, "LD8<b+1+4*=", /* 0x1a */
381 3, "LD8<b+1+4*=", /* 0x1b */
382 0, "LD16<c+1+4*=", /* 0x1c */
383 1, "LD16<c+1+4*=", /* 0x1d */
384 2, "LD16<c+1+4*=", /* 0x1e */
385 0, "Ld1+=", /* 0x1f */
386 /* R_ZEROES */
387 0, "Lb1+4*=", /* 0x20 */
388 1, "Ld1+=", /* 0x21 */
389 /* R_UNINIT */
390 0, "Lb1+4*=", /* 0x22 */
391 1, "Ld1+=", /* 0x23 */
392 /* R_RELOCATION */
393 0, "L4=", /* 0x24 */
394 /* R_DATA_ONE_SYMBOL */
395 0, "L4=Sb=", /* 0x25 */
396 1, "L4=Sd=", /* 0x26 */
397 /* R_DATA_PLEBEL */
398 0, "L4=Sb=", /* 0x27 */
399 1, "L4=Sd=", /* 0x28 */
400 /* R_SPACE_REF */
401 0, "L4=", /* 0x29 */
402 /* R_REPEATED_INIT */
403 0, "L4=Mb1+4*=", /* 0x2a */
404 1, "Lb4*=Mb1+L*=", /* 0x2b */
405 2, "Lb4*=Md1+4*=", /* 0x2c */
406 3, "Ld1+=Me1+=", /* 0x2d */
407 /* R_RESERVED */
408 0, "", /* 0x2e */
409 0, "", /* 0x2f */
410 /* R_PCREL_CALL */
411 0, "L4=RD=Sb=", /* 0x30 */
412 1, "L4=RD=Sb=", /* 0x31 */
413 2, "L4=RD=Sb=", /* 0x32 */
414 3, "L4=RD=Sb=", /* 0x33 */
415 4, "L4=RD=Sb=", /* 0x34 */
416 5, "L4=RD=Sb=", /* 0x35 */
417 6, "L4=RD=Sb=", /* 0x36 */
418 7, "L4=RD=Sb=", /* 0x37 */
419 8, "L4=RD=Sb=", /* 0x38 */
420 9, "L4=RD=Sb=", /* 0x39 */
421 0, "L4=RD8<b+=Sb=",/* 0x3a */
422 1, "L4=RD8<b+=Sb=",/* 0x3b */
423 0, "L4=RD8<b+=Sd=",/* 0x3c */
424 1, "L4=RD8<b+=Sd=",/* 0x3d */
425 /* R_RESERVED */
426 0, "", /* 0x3e */
427 0, "", /* 0x3f */
428 /* R_ABS_CALL */
429 0, "L4=RD=Sb=", /* 0x40 */
430 1, "L4=RD=Sb=", /* 0x41 */
431 2, "L4=RD=Sb=", /* 0x42 */
432 3, "L4=RD=Sb=", /* 0x43 */
433 4, "L4=RD=Sb=", /* 0x44 */
434 5, "L4=RD=Sb=", /* 0x45 */
435 6, "L4=RD=Sb=", /* 0x46 */
436 7, "L4=RD=Sb=", /* 0x47 */
437 8, "L4=RD=Sb=", /* 0x48 */
438 9, "L4=RD=Sb=", /* 0x49 */
439 0, "L4=RD8<b+=Sb=",/* 0x4a */
440 1, "L4=RD8<b+=Sb=",/* 0x4b */
441 0, "L4=RD8<b+=Sd=",/* 0x4c */
442 1, "L4=RD8<b+=Sd=",/* 0x4d */
443 /* R_RESERVED */
444 0, "", /* 0x4e */
445 0, "", /* 0x4f */
446 /* R_DP_RELATIVE */
447 0, "L4=SD=", /* 0x50 */
448 1, "L4=SD=", /* 0x51 */
449 2, "L4=SD=", /* 0x52 */
450 3, "L4=SD=", /* 0x53 */
451 4, "L4=SD=", /* 0x54 */
452 5, "L4=SD=", /* 0x55 */
453 6, "L4=SD=", /* 0x56 */
454 7, "L4=SD=", /* 0x57 */
455 8, "L4=SD=", /* 0x58 */
456 9, "L4=SD=", /* 0x59 */
457 10, "L4=SD=", /* 0x5a */
458 11, "L4=SD=", /* 0x5b */
459 12, "L4=SD=", /* 0x5c */
460 13, "L4=SD=", /* 0x5d */
461 14, "L4=SD=", /* 0x5e */
462 15, "L4=SD=", /* 0x5f */
463 16, "L4=SD=", /* 0x60 */
464 17, "L4=SD=", /* 0x61 */
465 18, "L4=SD=", /* 0x62 */
466 19, "L4=SD=", /* 0x63 */
467 20, "L4=SD=", /* 0x64 */
468 21, "L4=SD=", /* 0x65 */
469 22, "L4=SD=", /* 0x66 */
470 23, "L4=SD=", /* 0x67 */
471 24, "L4=SD=", /* 0x68 */
472 25, "L4=SD=", /* 0x69 */
473 26, "L4=SD=", /* 0x6a */
474 27, "L4=SD=", /* 0x6b */
475 28, "L4=SD=", /* 0x6c */
476 29, "L4=SD=", /* 0x6d */
477 30, "L4=SD=", /* 0x6e */
478 31, "L4=SD=", /* 0x6f */
479 32, "L4=Sb=", /* 0x70 */
480 33, "L4=Sd=", /* 0x71 */
481 /* R_RESERVED */
482 0, "", /* 0x72 */
483 0, "", /* 0x73 */
484 0, "", /* 0x74 */
485 0, "", /* 0x75 */
486 0, "", /* 0x76 */
487 0, "", /* 0x77 */
488 /* R_DLT_REL */
489 0, "L4=Sb=", /* 0x78 */
490 1, "L4=Sd=", /* 0x79 */
491 /* R_RESERVED */
492 0, "", /* 0x7a */
493 0, "", /* 0x7b */
494 0, "", /* 0x7c */
495 0, "", /* 0x7d */
496 0, "", /* 0x7e */
497 0, "", /* 0x7f */
498 /* R_CODE_ONE_SYMBOL */
499 0, "L4=SD=", /* 0x80 */
500 1, "L4=SD=", /* 0x81 */
501 2, "L4=SD=", /* 0x82 */
502 3, "L4=SD=", /* 0x83 */
503 4, "L4=SD=", /* 0x84 */
504 5, "L4=SD=", /* 0x85 */
505 6, "L4=SD=", /* 0x86 */
506 7, "L4=SD=", /* 0x87 */
507 8, "L4=SD=", /* 0x88 */
508 9, "L4=SD=", /* 0x89 */
509 10, "L4=SD=", /* 0x8q */
510 11, "L4=SD=", /* 0x8b */
511 12, "L4=SD=", /* 0x8c */
512 13, "L4=SD=", /* 0x8d */
513 14, "L4=SD=", /* 0x8e */
514 15, "L4=SD=", /* 0x8f */
515 16, "L4=SD=", /* 0x90 */
516 17, "L4=SD=", /* 0x91 */
517 18, "L4=SD=", /* 0x92 */
518 19, "L4=SD=", /* 0x93 */
519 20, "L4=SD=", /* 0x94 */
520 21, "L4=SD=", /* 0x95 */
521 22, "L4=SD=", /* 0x96 */
522 23, "L4=SD=", /* 0x97 */
523 24, "L4=SD=", /* 0x98 */
524 25, "L4=SD=", /* 0x99 */
525 26, "L4=SD=", /* 0x9a */
526 27, "L4=SD=", /* 0x9b */
527 28, "L4=SD=", /* 0x9c */
528 29, "L4=SD=", /* 0x9d */
529 30, "L4=SD=", /* 0x9e */
530 31, "L4=SD=", /* 0x9f */
531 32, "L4=Sb=", /* 0xa0 */
532 33, "L4=Sd=", /* 0xa1 */
533 /* R_RESERVED */
534 0, "", /* 0xa2 */
535 0, "", /* 0xa3 */
536 0, "", /* 0xa4 */
537 0, "", /* 0xa5 */
538 0, "", /* 0xa6 */
539 0, "", /* 0xa7 */
540 0, "", /* 0xa8 */
541 0, "", /* 0xa9 */
542 0, "", /* 0xaa */
543 0, "", /* 0xab */
544 0, "", /* 0xac */
545 0, "", /* 0xad */
546 /* R_MILLI_REL */
547 0, "L4=Sb=", /* 0xae */
548 1, "L4=Sd=", /* 0xaf */
549 /* R_CODE_PLABEL */
550 0, "L4=Sb=", /* 0xb0 */
551 1, "L4=Sd=", /* 0xb1 */
552 /* R_BREAKPOINT */
553 0, "L4=", /* 0xb2 */
554 /* R_ENTRY */
555 0, "Ui=", /* 0xb3 */
556 1, "Uf=", /* 0xb4 */
557 /* R_ALT_ENTRY */
558 0, "", /* 0xb5 */
559 /* R_EXIT */
560 0, "", /* 0xb6 */
561 /* R_BEGIN_TRY */
562 0, "", /* 0xb7 */
563 /* R_END_TRY */
564 0, "R0=", /* 0xb8 */
565 1, "Rb4*=", /* 0xb9 */
566 2, "Rd4*=", /* 0xba */
567 /* R_BEGIN_BRTAB */
568 0, "", /* 0xbb */
569 /* R_END_BRTAB */
570 0, "", /* 0xbc */
571 /* R_STATEMENT */
572 0, "Nb=", /* 0xbd */
573 1, "Nc=", /* 0xbe */
574 2, "Nd=", /* 0xbf */
575 /* R_DATA_EXPR */
576 0, "L4=", /* 0xc0 */
577 /* R_CODE_EXPR */
578 0, "L4=", /* 0xc1 */
579 /* R_FSEL */
580 0, "", /* 0xc2 */
581 /* R_LSEL */
582 0, "", /* 0xc3 */
583 /* R_RSEL */
584 0, "", /* 0xc4 */
585 /* R_N_MODE */
586 0, "", /* 0xc5 */
587 /* R_S_MODE */
588 0, "", /* 0xc6 */
589 /* R_D_MODE */
590 0, "", /* 0xc7 */
591 /* R_R_MODE */
592 0, "", /* 0xc8 */
593 /* R_DATA_OVERRIDE */
594 0, "V0=", /* 0xc9 */
595 1, "Vb=", /* 0xca */
596 2, "Vc=", /* 0xcb */
597 3, "Vd=", /* 0xcc */
598 4, "Ve=", /* 0xcd */
599 /* R_TRANSLATED */
600 0, "", /* 0xce */
601 /* R_RESERVED */
602 0, "", /* 0xcf */
603 /* R_COMP1 */
604 0, "Ob=", /* 0xd0 */
605 /* R_COMP2 */
606 0, "Ob=Sd=", /* 0xd1 */
607 /* R_COMP3 */
608 0, "Ob=Ve=", /* 0xd2 */
609 /* R_PREV_FIXUP */
610 0, "P", /* 0xd3 */
611 1, "P", /* 0xd4 */
612 2, "P", /* 0xd5 */
613 3, "P", /* 0xd6 */
614 /* R_RESERVED */
615 0, "", /* 0xd7 */
616 0, "", /* 0xd8 */
617 0, "", /* 0xd9 */
618 0, "", /* 0xda */
619 0, "", /* 0xdb */
620 0, "", /* 0xdc */
621 0, "", /* 0xdd */
622 0, "", /* 0xde */
623 0, "", /* 0xdf */
624 0, "", /* 0xe0 */
625 0, "", /* 0xe1 */
626 0, "", /* 0xe2 */
627 0, "", /* 0xe3 */
628 0, "", /* 0xe4 */
629 0, "", /* 0xe5 */
630 0, "", /* 0xe6 */
631 0, "", /* 0xe7 */
632 0, "", /* 0xe8 */
633 0, "", /* 0xe9 */
634 0, "", /* 0xea */
635 0, "", /* 0xeb */
636 0, "", /* 0xec */
637 0, "", /* 0xed */
638 0, "", /* 0xee */
639 0, "", /* 0xef */
640 0, "", /* 0xf0 */
641 0, "", /* 0xf1 */
642 0, "", /* 0xf2 */
643 0, "", /* 0xf3 */
644 0, "", /* 0xf4 */
645 0, "", /* 0xf5 */
646 0, "", /* 0xf6 */
647 0, "", /* 0xf7 */
648 0, "", /* 0xf8 */
649 0, "", /* 0xf9 */
650 0, "", /* 0xfa */
651 0, "", /* 0xfb */
652 0, "", /* 0xfc */
653 0, "", /* 0xfd */
654 0, "", /* 0xfe */
655 0, "", /* 0xff */
656 };
657
658 static const int comp1_opcodes[] =
659 {
660 0x00,
661 0x40,
662 0x41,
663 0x42,
664 0x43,
665 0x44,
666 0x45,
667 0x46,
668 0x47,
669 0x48,
670 0x49,
671 0x4a,
672 0x4b,
673 0x60,
674 0x80,
675 0xa0,
676 0xc0,
677 -1
678 };
679
680 static const int comp2_opcodes[] =
681 {
682 0x00,
683 0x80,
684 0x82,
685 0xc0,
686 -1
687 };
688
689 static const int comp3_opcodes[] =
690 {
691 0x00,
692 0x02,
693 -1
694 };
695
696 /* These apparently are not in older versions of hpux reloc.h. */
697 #ifndef R_DLT_REL
698 #define R_DLT_REL 0x78
699 #endif
700
701 #ifndef R_AUX_UNWIND
702 #define R_AUX_UNWIND 0xcf
703 #endif
704
705 #ifndef R_SEC_STMT
706 #define R_SEC_STMT 0xd7
707 #endif
708
709 static reloc_howto_type som_hppa_howto_table[] =
710 {
711 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
712 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
713 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
714 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
715 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
716 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
717 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
718 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
719 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
720 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
721 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
722 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
723 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
724 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
725 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
726 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
727 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
728 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
729 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
730 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
731 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
732 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
733 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
734 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
735 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
736 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
737 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
738 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
739 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
740 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
741 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
742 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
743 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
744 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
745 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
746 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
747 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
748 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
749 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
750 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
751 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
752 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
753 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
754 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
755 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
756 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
757 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
758 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
759 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
760 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
761 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
762 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
763 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
764 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
765 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
766 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
767 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
768 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
769 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
770 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
771 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
772 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
773 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
774 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
775 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
776 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
777 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
778 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
779 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
780 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
781 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
782 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
783 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
784 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
785 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
786 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
787 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
788 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
789 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
790 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
791 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
792 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
793 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
794 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
795 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
796 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
797 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
798 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
799 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
800 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
801 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
802 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
803 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
804 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
805 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
806 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
807 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
808 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
809 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
810 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
811 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
812 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
813 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
814 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
815 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
816 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
817 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
818 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
819 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
820 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
821 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
822 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
823 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
824 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
825 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
826 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
827 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
828 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
829 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
830 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
831 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
832 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
833 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
834 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
835 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
836 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
837 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
838 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
839 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
840 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
841 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
842 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
843 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
844 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
845 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
846 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
847 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
848 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
849 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
850 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
851 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
852 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
853 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
854 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
855 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
856 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
857 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
858 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
859 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
860 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
861 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
862 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
863 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
864 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
865 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
866 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
867 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
868 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
869 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
870 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
871 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
872 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
873 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
874 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
875 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
876 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
877 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
878 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
879 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
880 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
881 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
882 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
883 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
884 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
885 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
886 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
887 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
888 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
889 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
890 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
891 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
892 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
893 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
894 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
895 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
896 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
897 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
898 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
899 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
900 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
901 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
902 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
903 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
904 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
905 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
906 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
907 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
908 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
909 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
910 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
911 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
912 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
913 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
914 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
915 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
916 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
917 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
918 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
919 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
920 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
921 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
922 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
923 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
924 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
925 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
926 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
927 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
928 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
929 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
930 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
931 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
932 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
933 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
934 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
935 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
936 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
937 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
938 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
939 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
940 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
941 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
942 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
943 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
944 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
945 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
946 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
947 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
948 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
949 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
950 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
951 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
952 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
953 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
954 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
955 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
956 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
957 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
958 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
959 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
960 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
961 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
962 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
963 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
964 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
965 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
966 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
967
968 /* Initialize the SOM relocation queue. By definition the queue holds
969 the last four multibyte fixups. */
970
971 static void
972 som_initialize_reloc_queue (queue)
973 struct reloc_queue *queue;
974 {
975 queue[0].reloc = NULL;
976 queue[0].size = 0;
977 queue[1].reloc = NULL;
978 queue[1].size = 0;
979 queue[2].reloc = NULL;
980 queue[2].size = 0;
981 queue[3].reloc = NULL;
982 queue[3].size = 0;
983 }
984
985 /* Insert a new relocation into the relocation queue. */
986
987 static void
988 som_reloc_queue_insert (p, size, queue)
989 unsigned char *p;
990 unsigned int size;
991 struct reloc_queue *queue;
992 {
993 queue[3].reloc = queue[2].reloc;
994 queue[3].size = queue[2].size;
995 queue[2].reloc = queue[1].reloc;
996 queue[2].size = queue[1].size;
997 queue[1].reloc = queue[0].reloc;
998 queue[1].size = queue[0].size;
999 queue[0].reloc = p;
1000 queue[0].size = size;
1001 }
1002
1003 /* When an entry in the relocation queue is reused, the entry moves
1004 to the front of the queue. */
1005
1006 static void
1007 som_reloc_queue_fix (queue, index)
1008 struct reloc_queue *queue;
1009 unsigned int index;
1010 {
1011 if (index == 0)
1012 return;
1013
1014 if (index == 1)
1015 {
1016 unsigned char *tmp1 = queue[0].reloc;
1017 unsigned int tmp2 = queue[0].size;
1018 queue[0].reloc = queue[1].reloc;
1019 queue[0].size = queue[1].size;
1020 queue[1].reloc = tmp1;
1021 queue[1].size = tmp2;
1022 return;
1023 }
1024
1025 if (index == 2)
1026 {
1027 unsigned char *tmp1 = queue[0].reloc;
1028 unsigned int tmp2 = queue[0].size;
1029 queue[0].reloc = queue[2].reloc;
1030 queue[0].size = queue[2].size;
1031 queue[2].reloc = queue[1].reloc;
1032 queue[2].size = queue[1].size;
1033 queue[1].reloc = tmp1;
1034 queue[1].size = tmp2;
1035 return;
1036 }
1037
1038 if (index == 3)
1039 {
1040 unsigned char *tmp1 = queue[0].reloc;
1041 unsigned int tmp2 = queue[0].size;
1042 queue[0].reloc = queue[3].reloc;
1043 queue[0].size = queue[3].size;
1044 queue[3].reloc = queue[2].reloc;
1045 queue[3].size = queue[2].size;
1046 queue[2].reloc = queue[1].reloc;
1047 queue[2].size = queue[1].size;
1048 queue[1].reloc = tmp1;
1049 queue[1].size = tmp2;
1050 return;
1051 }
1052 abort();
1053 }
1054
1055 /* Search for a particular relocation in the relocation queue. */
1056
1057 static int
1058 som_reloc_queue_find (p, size, queue)
1059 unsigned char *p;
1060 unsigned int size;
1061 struct reloc_queue *queue;
1062 {
1063 if (queue[0].reloc && !bcmp (p, queue[0].reloc, size)
1064 && size == queue[0].size)
1065 return 0;
1066 if (queue[1].reloc && !bcmp (p, queue[1].reloc, size)
1067 && size == queue[1].size)
1068 return 1;
1069 if (queue[2].reloc && !bcmp (p, queue[2].reloc, size)
1070 && size == queue[2].size)
1071 return 2;
1072 if (queue[3].reloc && !bcmp (p, queue[3].reloc, size)
1073 && size == queue[3].size)
1074 return 3;
1075 return -1;
1076 }
1077
1078 static unsigned char *
1079 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1080 bfd *abfd;
1081 int *subspace_reloc_sizep;
1082 unsigned char *p;
1083 unsigned int size;
1084 struct reloc_queue *queue;
1085 {
1086 int queue_index = som_reloc_queue_find (p, size, queue);
1087
1088 if (queue_index != -1)
1089 {
1090 /* Found this in a previous fixup. Undo the fixup we
1091 just built and use R_PREV_FIXUP instead. We saved
1092 a total of size - 1 bytes in the fixup stream. */
1093 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1094 p += 1;
1095 *subspace_reloc_sizep += 1;
1096 som_reloc_queue_fix (queue, queue_index);
1097 }
1098 else
1099 {
1100 som_reloc_queue_insert (p, size, queue);
1101 *subspace_reloc_sizep += size;
1102 p += size;
1103 }
1104 return p;
1105 }
1106
1107 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1108 bytes without any relocation. Update the size of the subspace
1109 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1110 current pointer into the relocation stream. */
1111
1112 static unsigned char *
1113 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1114 bfd *abfd;
1115 unsigned int skip;
1116 unsigned char *p;
1117 unsigned int *subspace_reloc_sizep;
1118 struct reloc_queue *queue;
1119 {
1120 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1121 then R_PREV_FIXUPs to get the difference down to a
1122 reasonable size. */
1123 if (skip >= 0x1000000)
1124 {
1125 skip -= 0x1000000;
1126 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1127 bfd_put_8 (abfd, 0xff, p + 1);
1128 bfd_put_16 (abfd, 0xffff, p + 2);
1129 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1130 while (skip >= 0x1000000)
1131 {
1132 skip -= 0x1000000;
1133 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1134 p++;
1135 *subspace_reloc_sizep += 1;
1136 /* No need to adjust queue here since we are repeating the
1137 most recent fixup. */
1138 }
1139 }
1140
1141 /* The difference must be less than 0x1000000. Use one
1142 more R_NO_RELOCATION entry to get to the right difference. */
1143 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1144 {
1145 /* Difference can be handled in a simple single-byte
1146 R_NO_RELOCATION entry. */
1147 if (skip <= 0x60)
1148 {
1149 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1150 *subspace_reloc_sizep += 1;
1151 p++;
1152 }
1153 /* Handle it with a two byte R_NO_RELOCATION entry. */
1154 else if (skip <= 0x1000)
1155 {
1156 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1157 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1158 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1159 }
1160 /* Handle it with a three byte R_NO_RELOCATION entry. */
1161 else
1162 {
1163 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1164 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1165 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1166 }
1167 }
1168 /* Ugh. Punt and use a 4 byte entry. */
1169 else if (skip > 0)
1170 {
1171 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1172 bfd_put_8 (abfd, skip >> 16, p + 1);
1173 bfd_put_16 (abfd, skip, p + 2);
1174 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1175 }
1176 return p;
1177 }
1178
1179 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1180 from a BFD relocation. Update the size of the subspace relocation
1181 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1182 into the relocation stream. */
1183
1184 static unsigned char *
1185 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1186 bfd *abfd;
1187 int addend;
1188 unsigned char *p;
1189 unsigned int *subspace_reloc_sizep;
1190 struct reloc_queue *queue;
1191 {
1192 if ((unsigned)(addend) + 0x80 < 0x100)
1193 {
1194 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1195 bfd_put_8 (abfd, addend, p + 1);
1196 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1197 }
1198 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1199 {
1200 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1201 bfd_put_16 (abfd, addend, p + 1);
1202 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1203 }
1204 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1205 {
1206 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1207 bfd_put_8 (abfd, addend >> 16, p + 1);
1208 bfd_put_16 (abfd, addend, p + 2);
1209 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1210 }
1211 else
1212 {
1213 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1214 bfd_put_32 (abfd, addend, p + 1);
1215 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1216 }
1217 return p;
1218 }
1219
1220 /* Handle a single function call relocation. */
1221
1222 static unsigned char *
1223 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1224 bfd *abfd;
1225 unsigned char *p;
1226 unsigned int *subspace_reloc_sizep;
1227 arelent *bfd_reloc;
1228 int sym_num;
1229 struct reloc_queue *queue;
1230 {
1231 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1232 int rtn_bits = arg_bits & 0x3;
1233 int type, done = 0;
1234
1235 /* You'll never believe all this is necessary to handle relocations
1236 for function calls. Having to compute and pack the argument
1237 relocation bits is the real nightmare.
1238
1239 If you're interested in how this works, just forget it. You really
1240 do not want to know about this braindamage. */
1241
1242 /* First see if this can be done with a "simple" relocation. Simple
1243 relocations have a symbol number < 0x100 and have simple encodings
1244 of argument relocations. */
1245
1246 if (sym_num < 0x100)
1247 {
1248 switch (arg_bits)
1249 {
1250 case 0:
1251 case 1:
1252 type = 0;
1253 break;
1254 case 1 << 8:
1255 case 1 << 8 | 1:
1256 type = 1;
1257 break;
1258 case 1 << 8 | 1 << 6:
1259 case 1 << 8 | 1 << 6 | 1:
1260 type = 2;
1261 break;
1262 case 1 << 8 | 1 << 6 | 1 << 4:
1263 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1264 type = 3;
1265 break;
1266 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1267 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1268 type = 4;
1269 break;
1270 default:
1271 /* Not one of the easy encodings. This will have to be
1272 handled by the more complex code below. */
1273 type = -1;
1274 break;
1275 }
1276 if (type != -1)
1277 {
1278 /* Account for the return value too. */
1279 if (rtn_bits)
1280 type += 5;
1281
1282 /* Emit a 2 byte relocation. Then see if it can be handled
1283 with a relocation which is already in the relocation queue. */
1284 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1285 bfd_put_8 (abfd, sym_num, p + 1);
1286 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1287 done = 1;
1288 }
1289 }
1290
1291 /* If this could not be handled with a simple relocation, then do a hard
1292 one. Hard relocations occur if the symbol number was too high or if
1293 the encoding of argument relocation bits is too complex. */
1294 if (! done)
1295 {
1296 /* Don't ask about these magic sequences. I took them straight
1297 from gas-1.36 which took them from the a.out man page. */
1298 type = rtn_bits;
1299 if ((arg_bits >> 6 & 0xf) == 0xe)
1300 type += 9 * 40;
1301 else
1302 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1303 if ((arg_bits >> 2 & 0xf) == 0xe)
1304 type += 9 * 4;
1305 else
1306 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1307
1308 /* Output the first two bytes of the relocation. These describe
1309 the length of the relocation and encoding style. */
1310 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1311 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1312 p);
1313 bfd_put_8 (abfd, type, p + 1);
1314
1315 /* Now output the symbol index and see if this bizarre relocation
1316 just happened to be in the relocation queue. */
1317 if (sym_num < 0x100)
1318 {
1319 bfd_put_8 (abfd, sym_num, p + 2);
1320 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1321 }
1322 else
1323 {
1324 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1325 bfd_put_16 (abfd, sym_num, p + 3);
1326 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1327 }
1328 }
1329 return p;
1330 }
1331
1332
1333 /* Return the logarithm of X, base 2, considering X unsigned.
1334 Abort -1 if X is not a power or two or is zero. */
1335
1336 static int
1337 log2 (x)
1338 unsigned int x;
1339 {
1340 int log = 0;
1341
1342 /* Test for 0 or a power of 2. */
1343 if (x == 0 || x != (x & -x))
1344 return -1;
1345
1346 while ((x >>= 1) != 0)
1347 log++;
1348 return log;
1349 }
1350
1351 static bfd_reloc_status_type
1352 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1353 input_section, output_bfd, error_message)
1354 bfd *abfd;
1355 arelent *reloc_entry;
1356 asymbol *symbol_in;
1357 PTR data;
1358 asection *input_section;
1359 bfd *output_bfd;
1360 char **error_message;
1361 {
1362 if (output_bfd)
1363 {
1364 reloc_entry->address += input_section->output_offset;
1365 return bfd_reloc_ok;
1366 }
1367 return bfd_reloc_ok;
1368 }
1369
1370 /* Given a generic HPPA relocation type, the instruction format,
1371 and a field selector, return one or more appropriate SOM relocations. */
1372
1373 int **
1374 hppa_som_gen_reloc_type (abfd, base_type, format, field)
1375 bfd *abfd;
1376 int base_type;
1377 int format;
1378 enum hppa_reloc_field_selector_type_alt field;
1379 {
1380 int *final_type, **final_types;
1381
1382 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 3);
1383 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1384 if (!final_types || !final_type)
1385 {
1386 bfd_set_error (bfd_error_no_memory);
1387 return NULL;
1388 }
1389
1390 /* The field selector may require additional relocations to be
1391 generated. It's impossible to know at this moment if additional
1392 relocations will be needed, so we make them. The code to actually
1393 write the relocation/fixup stream is responsible for removing
1394 any redundant relocations. */
1395 switch (field)
1396 {
1397 case e_fsel:
1398 case e_psel:
1399 case e_lpsel:
1400 case e_rpsel:
1401 final_types[0] = final_type;
1402 final_types[1] = NULL;
1403 final_types[2] = NULL;
1404 *final_type = base_type;
1405 break;
1406
1407 case e_tsel:
1408 case e_ltsel:
1409 case e_rtsel:
1410 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1411 if (!final_types[0])
1412 {
1413 bfd_set_error (bfd_error_no_memory);
1414 return NULL;
1415 }
1416 if (field == e_tsel)
1417 *final_types[0] = R_FSEL;
1418 else if (field == e_ltsel)
1419 *final_types[0] = R_LSEL;
1420 else
1421 *final_types[0] = R_RSEL;
1422 final_types[1] = final_type;
1423 final_types[2] = NULL;
1424 *final_type = base_type;
1425 break;
1426
1427 case e_lssel:
1428 case e_rssel:
1429 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1430 if (!final_types[0])
1431 {
1432 bfd_set_error (bfd_error_no_memory);
1433 return NULL;
1434 }
1435 *final_types[0] = R_S_MODE;
1436 final_types[1] = final_type;
1437 final_types[2] = NULL;
1438 *final_type = base_type;
1439 break;
1440
1441 case e_lsel:
1442 case e_rsel:
1443 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1444 if (!final_types[0])
1445 {
1446 bfd_set_error (bfd_error_no_memory);
1447 return NULL;
1448 }
1449 *final_types[0] = R_N_MODE;
1450 final_types[1] = final_type;
1451 final_types[2] = NULL;
1452 *final_type = base_type;
1453 break;
1454
1455 case e_ldsel:
1456 case e_rdsel:
1457 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1458 if (!final_types[0])
1459 {
1460 bfd_set_error (bfd_error_no_memory);
1461 return NULL;
1462 }
1463 *final_types[0] = R_D_MODE;
1464 final_types[1] = final_type;
1465 final_types[2] = NULL;
1466 *final_type = base_type;
1467 break;
1468
1469 case e_lrsel:
1470 case e_rrsel:
1471 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1472 if (!final_types[0])
1473 {
1474 bfd_set_error (bfd_error_no_memory);
1475 return NULL;
1476 }
1477 *final_types[0] = R_R_MODE;
1478 final_types[1] = final_type;
1479 final_types[2] = NULL;
1480 *final_type = base_type;
1481 break;
1482 }
1483
1484 switch (base_type)
1485 {
1486 case R_HPPA:
1487 /* PLABELs get their own relocation type. */
1488 if (field == e_psel
1489 || field == e_lpsel
1490 || field == e_rpsel)
1491 {
1492 /* A PLABEL relocation that has a size of 32 bits must
1493 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1494 if (format == 32)
1495 *final_type = R_DATA_PLABEL;
1496 else
1497 *final_type = R_CODE_PLABEL;
1498 }
1499 /* PIC stuff. */
1500 else if (field == e_tsel
1501 || field == e_ltsel
1502 || field == e_rtsel)
1503 *final_type = R_DLT_REL;
1504 /* A relocation in the data space is always a full 32bits. */
1505 else if (format == 32)
1506 *final_type = R_DATA_ONE_SYMBOL;
1507
1508 break;
1509
1510 case R_HPPA_GOTOFF:
1511 /* More PLABEL special cases. */
1512 if (field == e_psel
1513 || field == e_lpsel
1514 || field == e_rpsel)
1515 *final_type = R_DATA_PLABEL;
1516 break;
1517
1518 case R_HPPA_NONE:
1519 case R_HPPA_ABS_CALL:
1520 case R_HPPA_PCREL_CALL:
1521 case R_HPPA_COMPLEX:
1522 case R_HPPA_COMPLEX_PCREL_CALL:
1523 case R_HPPA_COMPLEX_ABS_CALL:
1524 /* Right now we can default all these. */
1525 break;
1526 }
1527 return final_types;
1528 }
1529
1530 /* Return the address of the correct entry in the PA SOM relocation
1531 howto table. */
1532
1533 static const reloc_howto_type *
1534 som_bfd_reloc_type_lookup (arch, code)
1535 bfd_arch_info_type *arch;
1536 bfd_reloc_code_real_type code;
1537 {
1538 if ((int) code < (int) R_NO_RELOCATION + 255)
1539 {
1540 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1541 return &som_hppa_howto_table[(int) code];
1542 }
1543
1544 return (reloc_howto_type *) 0;
1545 }
1546
1547 /* Perform some initialization for an object. Save results of this
1548 initialization in the BFD. */
1549
1550 static bfd_target *
1551 som_object_setup (abfd, file_hdrp, aux_hdrp)
1552 bfd *abfd;
1553 struct header *file_hdrp;
1554 struct som_exec_auxhdr *aux_hdrp;
1555 {
1556 /* som_mkobject will set bfd_error if som_mkobject fails. */
1557 if (som_mkobject (abfd) != true)
1558 return 0;
1559
1560 /* Set BFD flags based on what information is available in the SOM. */
1561 abfd->flags = NO_FLAGS;
1562 if (file_hdrp->symbol_total)
1563 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1564
1565 switch (file_hdrp->a_magic)
1566 {
1567 case DEMAND_MAGIC:
1568 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1569 break;
1570 case SHARE_MAGIC:
1571 abfd->flags |= (WP_TEXT | EXEC_P);
1572 break;
1573 case EXEC_MAGIC:
1574 abfd->flags |= (EXEC_P);
1575 break;
1576 case RELOC_MAGIC:
1577 abfd->flags |= HAS_RELOC;
1578 break;
1579 default:
1580 break;
1581 }
1582
1583 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1584 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 0);
1585 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1586
1587 /* Initialize the saved symbol table and string table to NULL.
1588 Save important offsets and sizes from the SOM header into
1589 the BFD. */
1590 obj_som_stringtab (abfd) = (char *) NULL;
1591 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1592 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1593 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1594 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1595 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
1596
1597 obj_som_exec_data (abfd) = (struct som_exec_data *)
1598 bfd_zalloc (abfd, sizeof (struct som_exec_data ));
1599 if (obj_som_exec_data (abfd) == NULL)
1600 {
1601 bfd_set_error (bfd_error_no_memory);
1602 return NULL;
1603 }
1604
1605 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1606 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1607 return abfd->xvec;
1608 }
1609
1610 /* Convert all of the space and subspace info into BFD sections. Each space
1611 contains a number of subspaces, which in turn describe the mapping between
1612 regions of the exec file, and the address space that the program runs in.
1613 BFD sections which correspond to spaces will overlap the sections for the
1614 associated subspaces. */
1615
1616 static boolean
1617 setup_sections (abfd, file_hdr)
1618 bfd *abfd;
1619 struct header *file_hdr;
1620 {
1621 char *space_strings;
1622 int space_index;
1623 unsigned int total_subspaces = 0;
1624
1625 /* First, read in space names */
1626
1627 space_strings = malloc (file_hdr->space_strings_size);
1628 if (!space_strings && file_hdr->space_strings_size != 0)
1629 {
1630 bfd_set_error (bfd_error_no_memory);
1631 goto error_return;
1632 }
1633
1634 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
1635 goto error_return;
1636 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1637 != file_hdr->space_strings_size)
1638 goto error_return;
1639
1640 /* Loop over all of the space dictionaries, building up sections */
1641 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1642 {
1643 struct space_dictionary_record space;
1644 struct subspace_dictionary_record subspace, save_subspace;
1645 int subspace_index;
1646 asection *space_asect;
1647 char *newname;
1648
1649 /* Read the space dictionary element */
1650 if (bfd_seek (abfd, file_hdr->space_location
1651 + space_index * sizeof space, SEEK_SET) < 0)
1652 goto error_return;
1653 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1654 goto error_return;
1655
1656 /* Setup the space name string */
1657 space.name.n_name = space.name.n_strx + space_strings;
1658
1659 /* Make a section out of it */
1660 newname = bfd_alloc (abfd, strlen (space.name.n_name) + 1);
1661 if (!newname)
1662 goto error_return;
1663 strcpy (newname, space.name.n_name);
1664
1665 space_asect = bfd_make_section_anyway (abfd, newname);
1666 if (!space_asect)
1667 goto error_return;
1668
1669 if (space.is_loadable == 0)
1670 space_asect->flags |= SEC_DEBUGGING;
1671
1672 /* Set up all the attributes for the space. */
1673 if (bfd_som_set_section_attributes (space_asect, space.is_defined,
1674 space.is_private, space.sort_key,
1675 space.space_number) == false)
1676 goto error_return;
1677
1678 /* Now, read in the first subspace for this space */
1679 if (bfd_seek (abfd, file_hdr->subspace_location
1680 + space.subspace_index * sizeof subspace,
1681 SEEK_SET) < 0)
1682 goto error_return;
1683 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1684 goto error_return;
1685 /* Seek back to the start of the subspaces for loop below */
1686 if (bfd_seek (abfd, file_hdr->subspace_location
1687 + space.subspace_index * sizeof subspace,
1688 SEEK_SET) < 0)
1689 goto error_return;
1690
1691 /* Setup the start address and file loc from the first subspace record */
1692 space_asect->vma = subspace.subspace_start;
1693 space_asect->filepos = subspace.file_loc_init_value;
1694 space_asect->alignment_power = log2 (subspace.alignment);
1695 if (space_asect->alignment_power == -1)
1696 goto error_return;
1697
1698 /* Initialize save_subspace so we can reliably determine if this
1699 loop placed any useful values into it. */
1700 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1701
1702 /* Loop over the rest of the subspaces, building up more sections */
1703 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1704 subspace_index++)
1705 {
1706 asection *subspace_asect;
1707
1708 /* Read in the next subspace */
1709 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1710 != sizeof subspace)
1711 goto error_return;
1712
1713 /* Setup the subspace name string */
1714 subspace.name.n_name = subspace.name.n_strx + space_strings;
1715
1716 newname = bfd_alloc (abfd, strlen (subspace.name.n_name) + 1);
1717 if (!newname)
1718 goto error_return;
1719 strcpy (newname, subspace.name.n_name);
1720
1721 /* Make a section out of this subspace */
1722 subspace_asect = bfd_make_section_anyway (abfd, newname);
1723 if (!subspace_asect)
1724 goto error_return;
1725
1726 /* Store private information about the section. */
1727 if (bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1728 subspace.access_control_bits,
1729 subspace.sort_key,
1730 subspace.quadrant) == false)
1731 goto error_return;
1732
1733 /* Keep an easy mapping between subspaces and sections. */
1734 subspace_asect->target_index = total_subspaces++;
1735
1736 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1737 by the access_control_bits in the subspace header. */
1738 switch (subspace.access_control_bits >> 4)
1739 {
1740 /* Readonly data. */
1741 case 0x0:
1742 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1743 break;
1744
1745 /* Normal data. */
1746 case 0x1:
1747 subspace_asect->flags |= SEC_DATA;
1748 break;
1749
1750 /* Readonly code and the gateways.
1751 Gateways have other attributes which do not map
1752 into anything BFD knows about. */
1753 case 0x2:
1754 case 0x4:
1755 case 0x5:
1756 case 0x6:
1757 case 0x7:
1758 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1759 break;
1760
1761 /* dynamic (writable) code. */
1762 case 0x3:
1763 subspace_asect->flags |= SEC_CODE;
1764 break;
1765 }
1766
1767 if (subspace.dup_common || subspace.is_common)
1768 subspace_asect->flags |= SEC_IS_COMMON;
1769 else if (subspace.subspace_length > 0)
1770 subspace_asect->flags |= SEC_HAS_CONTENTS;
1771
1772 if (subspace.is_loadable)
1773 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1774 else
1775 subspace_asect->flags |= SEC_DEBUGGING;
1776
1777 if (subspace.code_only)
1778 subspace_asect->flags |= SEC_CODE;
1779
1780 /* Both file_loc_init_value and initialization_length will
1781 be zero for a BSS like subspace. */
1782 if (subspace.file_loc_init_value == 0
1783 && subspace.initialization_length == 0)
1784 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD);
1785
1786 /* This subspace has relocations.
1787 The fixup_request_quantity is a byte count for the number of
1788 entries in the relocation stream; it is not the actual number
1789 of relocations in the subspace. */
1790 if (subspace.fixup_request_quantity != 0)
1791 {
1792 subspace_asect->flags |= SEC_RELOC;
1793 subspace_asect->rel_filepos = subspace.fixup_request_index;
1794 som_section_data (subspace_asect)->reloc_size
1795 = subspace.fixup_request_quantity;
1796 /* We can not determine this yet. When we read in the
1797 relocation table the correct value will be filled in. */
1798 subspace_asect->reloc_count = -1;
1799 }
1800
1801 /* Update save_subspace if appropriate. */
1802 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1803 save_subspace = subspace;
1804
1805 subspace_asect->vma = subspace.subspace_start;
1806 subspace_asect->_cooked_size = subspace.subspace_length;
1807 subspace_asect->_raw_size = subspace.subspace_length;
1808 subspace_asect->filepos = subspace.file_loc_init_value;
1809 subspace_asect->alignment_power = log2 (subspace.alignment);
1810 if (subspace_asect->alignment_power == -1)
1811 goto error_return;
1812 }
1813
1814 /* Yow! there is no subspace within the space which actually
1815 has initialized information in it; this should never happen
1816 as far as I know. */
1817 if (!save_subspace.file_loc_init_value)
1818 goto error_return;
1819
1820 /* Setup the sizes for the space section based upon the info in the
1821 last subspace of the space. */
1822 space_asect->_cooked_size = save_subspace.subspace_start
1823 - space_asect->vma + save_subspace.subspace_length;
1824 space_asect->_raw_size = save_subspace.file_loc_init_value
1825 - space_asect->filepos + save_subspace.initialization_length;
1826 }
1827 if (space_strings != NULL)
1828 free (space_strings);
1829 return true;
1830
1831 error_return:
1832 if (space_strings != NULL)
1833 free (space_strings);
1834 return false;
1835 }
1836
1837 /* Read in a SOM object and make it into a BFD. */
1838
1839 static bfd_target *
1840 som_object_p (abfd)
1841 bfd *abfd;
1842 {
1843 struct header file_hdr;
1844 struct som_exec_auxhdr aux_hdr;
1845
1846 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
1847 {
1848 bfd_set_error (bfd_error_system_call);
1849 return 0;
1850 }
1851
1852 if (!_PA_RISC_ID (file_hdr.system_id))
1853 {
1854 bfd_set_error (bfd_error_wrong_format);
1855 return 0;
1856 }
1857
1858 switch (file_hdr.a_magic)
1859 {
1860 case RELOC_MAGIC:
1861 case EXEC_MAGIC:
1862 case SHARE_MAGIC:
1863 case DEMAND_MAGIC:
1864 #ifdef DL_MAGIC
1865 case DL_MAGIC:
1866 #endif
1867 #ifdef SHL_MAGIC
1868 case SHL_MAGIC:
1869 #endif
1870 #ifdef EXECLIBMAGIC
1871 case EXECLIBMAGIC:
1872 #endif
1873 #ifdef SHARED_MAGIC_CNX
1874 case SHARED_MAGIC_CNX:
1875 #endif
1876 break;
1877 default:
1878 bfd_set_error (bfd_error_wrong_format);
1879 return 0;
1880 }
1881
1882 if (file_hdr.version_id != VERSION_ID
1883 && file_hdr.version_id != NEW_VERSION_ID)
1884 {
1885 bfd_set_error (bfd_error_wrong_format);
1886 return 0;
1887 }
1888
1889 /* If the aux_header_size field in the file header is zero, then this
1890 object is an incomplete executable (a .o file). Do not try to read
1891 a non-existant auxiliary header. */
1892 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
1893 if (file_hdr.aux_header_size != 0)
1894 {
1895 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
1896 {
1897 bfd_set_error (bfd_error_wrong_format);
1898 return 0;
1899 }
1900 }
1901
1902 if (!setup_sections (abfd, &file_hdr))
1903 {
1904 /* setup_sections does not bubble up a bfd error code. */
1905 bfd_set_error (bfd_error_bad_value);
1906 return 0;
1907 }
1908
1909 /* This appears to be a valid SOM object. Do some initialization. */
1910 return som_object_setup (abfd, &file_hdr, &aux_hdr);
1911 }
1912
1913 /* Create a SOM object. */
1914
1915 static boolean
1916 som_mkobject (abfd)
1917 bfd *abfd;
1918 {
1919 /* Allocate memory to hold backend information. */
1920 abfd->tdata.som_data = (struct som_data_struct *)
1921 bfd_zalloc (abfd, sizeof (struct som_data_struct));
1922 if (abfd->tdata.som_data == NULL)
1923 {
1924 bfd_set_error (bfd_error_no_memory);
1925 return false;
1926 }
1927 return true;
1928 }
1929
1930 /* Initialize some information in the file header. This routine makes
1931 not attempt at doing the right thing for a full executable; it
1932 is only meant to handle relocatable objects. */
1933
1934 static boolean
1935 som_prep_headers (abfd)
1936 bfd *abfd;
1937 {
1938 struct header *file_hdr;
1939 asection *section;
1940
1941 /* Make and attach a file header to the BFD. */
1942 file_hdr = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
1943 if (file_hdr == NULL)
1944
1945 {
1946 bfd_set_error (bfd_error_no_memory);
1947 return false;
1948 }
1949 obj_som_file_hdr (abfd) = file_hdr;
1950
1951 /* FIXME. This should really be conditional based on whether or not
1952 PA1.1 instructions/registers have been used. */
1953 if (abfd->flags & EXEC_P)
1954 file_hdr->system_id = obj_som_exec_data (abfd)->system_id;
1955 else
1956 file_hdr->system_id = CPU_PA_RISC1_0;
1957
1958 if (abfd->flags & EXEC_P)
1959 {
1960 if (abfd->flags & D_PAGED)
1961 file_hdr->a_magic = DEMAND_MAGIC;
1962 else if (abfd->flags & WP_TEXT)
1963 file_hdr->a_magic = SHARE_MAGIC;
1964 else
1965 file_hdr->a_magic = EXEC_MAGIC;
1966 }
1967 else
1968 file_hdr->a_magic = RELOC_MAGIC;
1969
1970 /* Only new format SOM is supported. */
1971 file_hdr->version_id = NEW_VERSION_ID;
1972
1973 /* These fields are optional, and embedding timestamps is not always
1974 a wise thing to do, it makes comparing objects during a multi-stage
1975 bootstrap difficult. */
1976 file_hdr->file_time.secs = 0;
1977 file_hdr->file_time.nanosecs = 0;
1978
1979 file_hdr->entry_space = 0;
1980 file_hdr->entry_subspace = 0;
1981 file_hdr->entry_offset = 0;
1982 file_hdr->presumed_dp = 0;
1983
1984 /* Now iterate over the sections translating information from
1985 BFD sections to SOM spaces/subspaces. */
1986
1987 for (section = abfd->sections; section != NULL; section = section->next)
1988 {
1989 /* Ignore anything which has not been marked as a space or
1990 subspace. */
1991 if (!som_is_space (section) && !som_is_subspace (section))
1992 continue;
1993
1994 if (som_is_space (section))
1995 {
1996 /* Allocate space for the space dictionary. */
1997 som_section_data (section)->space_dict
1998 = (struct space_dictionary_record *)
1999 bfd_zalloc (abfd, sizeof (struct space_dictionary_record));
2000 if (som_section_data (section)->space_dict == NULL)
2001 {
2002 bfd_set_error (bfd_error_no_memory);
2003 return false;
2004 }
2005 /* Set space attributes. Note most attributes of SOM spaces
2006 are set based on the subspaces it contains. */
2007 som_section_data (section)->space_dict->loader_fix_index = -1;
2008 som_section_data (section)->space_dict->init_pointer_index = -1;
2009
2010 /* Set more attributes that were stuffed away in private data. */
2011 som_section_data (section)->space_dict->sort_key =
2012 som_section_data (section)->copy_data->sort_key;
2013 som_section_data (section)->space_dict->is_defined =
2014 som_section_data (section)->copy_data->is_defined;
2015 som_section_data (section)->space_dict->is_private =
2016 som_section_data (section)->copy_data->is_private;
2017 som_section_data (section)->space_dict->space_number =
2018 section->target_index;
2019 }
2020 else
2021 {
2022 /* Allocate space for the subspace dictionary. */
2023 som_section_data (section)->subspace_dict
2024 = (struct subspace_dictionary_record *)
2025 bfd_zalloc (abfd, sizeof (struct subspace_dictionary_record));
2026 if (som_section_data (section)->subspace_dict == NULL)
2027 {
2028 bfd_set_error (bfd_error_no_memory);
2029 return false;
2030 }
2031
2032 /* Set subspace attributes. Basic stuff is done here, additional
2033 attributes are filled in later as more information becomes
2034 available. */
2035 if (section->flags & SEC_IS_COMMON)
2036 {
2037 som_section_data (section)->subspace_dict->dup_common = 1;
2038 som_section_data (section)->subspace_dict->is_common = 1;
2039 }
2040
2041 if (section->flags & SEC_ALLOC)
2042 som_section_data (section)->subspace_dict->is_loadable = 1;
2043
2044 if (section->flags & SEC_CODE)
2045 som_section_data (section)->subspace_dict->code_only = 1;
2046
2047 som_section_data (section)->subspace_dict->subspace_start =
2048 section->vma;
2049 som_section_data (section)->subspace_dict->subspace_length =
2050 bfd_section_size (abfd, section);
2051 som_section_data (section)->subspace_dict->initialization_length =
2052 bfd_section_size (abfd, section);
2053 som_section_data (section)->subspace_dict->alignment =
2054 1 << section->alignment_power;
2055
2056 /* Set more attributes that were stuffed away in private data. */
2057 som_section_data (section)->subspace_dict->sort_key =
2058 som_section_data (section)->copy_data->sort_key;
2059 som_section_data (section)->subspace_dict->access_control_bits =
2060 som_section_data (section)->copy_data->access_control_bits;
2061 som_section_data (section)->subspace_dict->quadrant =
2062 som_section_data (section)->copy_data->quadrant;
2063 }
2064 }
2065 return true;
2066 }
2067
2068 /* Return true if the given section is a SOM space, false otherwise. */
2069
2070 static boolean
2071 som_is_space (section)
2072 asection *section;
2073 {
2074 /* If no copy data is available, then it's neither a space nor a
2075 subspace. */
2076 if (som_section_data (section)->copy_data == NULL)
2077 return false;
2078
2079 /* If the containing space isn't the same as the given section,
2080 then this isn't a space. */
2081 if (som_section_data (section)->copy_data->container != section)
2082 return false;
2083
2084 /* OK. Must be a space. */
2085 return true;
2086 }
2087
2088 /* Return true if the given section is a SOM subspace, false otherwise. */
2089
2090 static boolean
2091 som_is_subspace (section)
2092 asection *section;
2093 {
2094 /* If no copy data is available, then it's neither a space nor a
2095 subspace. */
2096 if (som_section_data (section)->copy_data == NULL)
2097 return false;
2098
2099 /* If the containing space is the same as the given section,
2100 then this isn't a subspace. */
2101 if (som_section_data (section)->copy_data->container == section)
2102 return false;
2103
2104 /* OK. Must be a subspace. */
2105 return true;
2106 }
2107
2108 /* Return true if the given space containins the given subspace. It
2109 is safe to assume space really is a space, and subspace really
2110 is a subspace. */
2111
2112 static boolean
2113 som_is_container (space, subspace)
2114 asection *space, *subspace;
2115 {
2116 return som_section_data (subspace)->copy_data->container == space;
2117 }
2118
2119 /* Count and return the number of spaces attached to the given BFD. */
2120
2121 static unsigned long
2122 som_count_spaces (abfd)
2123 bfd *abfd;
2124 {
2125 int count = 0;
2126 asection *section;
2127
2128 for (section = abfd->sections; section != NULL; section = section->next)
2129 count += som_is_space (section);
2130
2131 return count;
2132 }
2133
2134 /* Count the number of subspaces attached to the given BFD. */
2135
2136 static unsigned long
2137 som_count_subspaces (abfd)
2138 bfd *abfd;
2139 {
2140 int count = 0;
2141 asection *section;
2142
2143 for (section = abfd->sections; section != NULL; section = section->next)
2144 count += som_is_subspace (section);
2145
2146 return count;
2147 }
2148
2149 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2150
2151 We desire symbols to be ordered starting with the symbol with the
2152 highest relocation count down to the symbol with the lowest relocation
2153 count. Doing so compacts the relocation stream. */
2154
2155 static int
2156 compare_syms (sym1, sym2)
2157 asymbol **sym1;
2158 asymbol **sym2;
2159
2160 {
2161 unsigned int count1, count2;
2162
2163 /* Get relocation count for each symbol. Note that the count
2164 is stored in the udata pointer for section symbols! */
2165 if ((*sym1)->flags & BSF_SECTION_SYM)
2166 count1 = (int)(*sym1)->udata;
2167 else
2168 count1 = som_symbol_data (*sym1)->reloc_count;
2169
2170 if ((*sym2)->flags & BSF_SECTION_SYM)
2171 count2 = (int)(*sym2)->udata;
2172 else
2173 count2 = som_symbol_data (*sym2)->reloc_count;
2174
2175 /* Return the appropriate value. */
2176 if (count1 < count2)
2177 return 1;
2178 else if (count1 > count2)
2179 return -1;
2180 return 0;
2181 }
2182
2183 /* Perform various work in preparation for emitting the fixup stream. */
2184
2185 static void
2186 som_prep_for_fixups (abfd, syms, num_syms)
2187 bfd *abfd;
2188 asymbol **syms;
2189 unsigned long num_syms;
2190 {
2191 int i;
2192 asection *section;
2193
2194 /* Most SOM relocations involving a symbol have a length which is
2195 dependent on the index of the symbol. So symbols which are
2196 used often in relocations should have a small index. */
2197
2198 /* First initialize the counters for each symbol. */
2199 for (i = 0; i < num_syms; i++)
2200 {
2201 /* Handle a section symbol; these have no pointers back to the
2202 SOM symbol info. So we just use the pointer field (udata)
2203 to hold the relocation count. */
2204 if (som_symbol_data (syms[i]) == NULL
2205 || syms[i]->flags & BSF_SECTION_SYM)
2206 {
2207 syms[i]->flags |= BSF_SECTION_SYM;
2208 syms[i]->udata = (PTR) 0;
2209 }
2210 else
2211 som_symbol_data (syms[i])->reloc_count = 0;
2212 }
2213
2214 /* Now that the counters are initialized, make a weighted count
2215 of how often a given symbol is used in a relocation. */
2216 for (section = abfd->sections; section != NULL; section = section->next)
2217 {
2218 int i;
2219
2220 /* Does this section have any relocations? */
2221 if (section->reloc_count <= 0)
2222 continue;
2223
2224 /* Walk through each relocation for this section. */
2225 for (i = 1; i < section->reloc_count; i++)
2226 {
2227 arelent *reloc = section->orelocation[i];
2228 int scale;
2229
2230 /* A relocation against a symbol in the *ABS* section really
2231 does not have a symbol. Likewise if the symbol isn't associated
2232 with any section. */
2233 if (reloc->sym_ptr_ptr == NULL
2234 || (*reloc->sym_ptr_ptr)->section == &bfd_abs_section)
2235 continue;
2236
2237 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2238 and R_CODE_ONE_SYMBOL relocations to come first. These
2239 two relocations have single byte versions if the symbol
2240 index is very small. */
2241 if (reloc->howto->type == R_DP_RELATIVE
2242 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2243 scale = 2;
2244 else
2245 scale = 1;
2246
2247 /* Handle section symbols by ramming the count in the udata
2248 field. It will not be used and the count is very important
2249 for these symbols. */
2250 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2251 {
2252 (*reloc->sym_ptr_ptr)->udata =
2253 (PTR) ((int) (*reloc->sym_ptr_ptr)->udata + scale);
2254 continue;
2255 }
2256
2257 /* A normal symbol. Increment the count. */
2258 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2259 }
2260 }
2261
2262 /* Now sort the symbols. */
2263 qsort (syms, num_syms, sizeof (asymbol *), compare_syms);
2264
2265 /* Compute the symbol indexes, they will be needed by the relocation
2266 code. */
2267 for (i = 0; i < num_syms; i++)
2268 {
2269 /* A section symbol. Again, there is no pointer to backend symbol
2270 information, so we reuse (abuse) the udata field again. */
2271 if (syms[i]->flags & BSF_SECTION_SYM)
2272 syms[i]->udata = (PTR) i;
2273 else
2274 som_symbol_data (syms[i])->index = i;
2275 }
2276 }
2277
2278 static boolean
2279 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2280 bfd *abfd;
2281 unsigned long current_offset;
2282 unsigned int *total_reloc_sizep;
2283 {
2284 unsigned int i, j;
2285 /* Chunk of memory that we can use as buffer space, then throw
2286 away. */
2287 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2288 unsigned char *p;
2289 unsigned int total_reloc_size = 0;
2290 unsigned int subspace_reloc_size = 0;
2291 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2292 asection *section = abfd->sections;
2293
2294 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2295 p = tmp_space;
2296
2297 /* All the fixups for a particular subspace are emitted in a single
2298 stream. All the subspaces for a particular space are emitted
2299 as a single stream.
2300
2301 So, to get all the locations correct one must iterate through all the
2302 spaces, for each space iterate through its subspaces and output a
2303 fixups stream. */
2304 for (i = 0; i < num_spaces; i++)
2305 {
2306 asection *subsection;
2307
2308 /* Find a space. */
2309 while (!som_is_space (section))
2310 section = section->next;
2311
2312 /* Now iterate through each of its subspaces. */
2313 for (subsection = abfd->sections;
2314 subsection != NULL;
2315 subsection = subsection->next)
2316 {
2317 int reloc_offset, current_rounding_mode;
2318
2319 /* Find a subspace of this space. */
2320 if (!som_is_subspace (subsection)
2321 || !som_is_container (section, subsection))
2322 continue;
2323
2324 /* If this subspace had no relocations, then we're finished
2325 with it. */
2326 if (subsection->reloc_count <= 0)
2327 {
2328 som_section_data (subsection)->subspace_dict->fixup_request_index
2329 = -1;
2330 continue;
2331 }
2332
2333 /* This subspace has some relocations. Put the relocation stream
2334 index into the subspace record. */
2335 som_section_data (subsection)->subspace_dict->fixup_request_index
2336 = total_reloc_size;
2337
2338 /* To make life easier start over with a clean slate for
2339 each subspace. Seek to the start of the relocation stream
2340 for this subspace in preparation for writing out its fixup
2341 stream. */
2342 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) != 0)
2343 {
2344 bfd_set_error (bfd_error_system_call);
2345 return false;
2346 }
2347
2348 /* Buffer space has already been allocated. Just perform some
2349 initialization here. */
2350 p = tmp_space;
2351 subspace_reloc_size = 0;
2352 reloc_offset = 0;
2353 som_initialize_reloc_queue (reloc_queue);
2354 current_rounding_mode = R_N_MODE;
2355
2356 /* Translate each BFD relocation into one or more SOM
2357 relocations. */
2358 for (j = 0; j < subsection->reloc_count; j++)
2359 {
2360 arelent *bfd_reloc = subsection->orelocation[j];
2361 unsigned int skip;
2362 int sym_num;
2363
2364 /* Get the symbol number. Remember it's stored in a
2365 special place for section symbols. */
2366 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2367 sym_num = (int) (*bfd_reloc->sym_ptr_ptr)->udata;
2368 else
2369 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2370
2371 /* If there is not enough room for the next couple relocations,
2372 then dump the current buffer contents now. Also reinitialize
2373 the relocation queue.
2374
2375 No single BFD relocation could ever translate into more
2376 than 100 bytes of SOM relocations (20bytes is probably the
2377 upper limit, but leave lots of space for growth). */
2378 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2379 {
2380 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2381 != p - tmp_space)
2382 {
2383 bfd_set_error (bfd_error_system_call);
2384 return false;
2385 }
2386 p = tmp_space;
2387 som_initialize_reloc_queue (reloc_queue);
2388 }
2389
2390 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2391 skipped. */
2392 skip = bfd_reloc->address - reloc_offset;
2393 p = som_reloc_skip (abfd, skip, p,
2394 &subspace_reloc_size, reloc_queue);
2395
2396 /* Update reloc_offset for the next iteration.
2397
2398 Many relocations do not consume input bytes. They
2399 are markers, or set state necessary to perform some
2400 later relocation. */
2401 switch (bfd_reloc->howto->type)
2402 {
2403 /* This only needs to handle relocations that may be
2404 made by hppa_som_gen_reloc. */
2405 case R_ENTRY:
2406 case R_EXIT:
2407 case R_N_MODE:
2408 case R_S_MODE:
2409 case R_D_MODE:
2410 case R_R_MODE:
2411 case R_FSEL:
2412 case R_LSEL:
2413 case R_RSEL:
2414 reloc_offset = bfd_reloc->address;
2415 break;
2416
2417 default:
2418 reloc_offset = bfd_reloc->address + 4;
2419 break;
2420 }
2421
2422 /* Now the actual relocation we care about. */
2423 switch (bfd_reloc->howto->type)
2424 {
2425 case R_PCREL_CALL:
2426 case R_ABS_CALL:
2427 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2428 bfd_reloc, sym_num, reloc_queue);
2429 break;
2430
2431 case R_CODE_ONE_SYMBOL:
2432 case R_DP_RELATIVE:
2433 /* Account for any addend. */
2434 if (bfd_reloc->addend)
2435 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2436 &subspace_reloc_size, reloc_queue);
2437
2438 if (sym_num < 0x20)
2439 {
2440 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2441 subspace_reloc_size += 1;
2442 p += 1;
2443 }
2444 else if (sym_num < 0x100)
2445 {
2446 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2447 bfd_put_8 (abfd, sym_num, p + 1);
2448 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2449 2, reloc_queue);
2450 }
2451 else if (sym_num < 0x10000000)
2452 {
2453 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2454 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2455 bfd_put_16 (abfd, sym_num, p + 2);
2456 p = try_prev_fixup (abfd, &subspace_reloc_size,
2457 p, 4, reloc_queue);
2458 }
2459 else
2460 abort ();
2461 break;
2462
2463 case R_DATA_ONE_SYMBOL:
2464 case R_DATA_PLABEL:
2465 case R_CODE_PLABEL:
2466 case R_DLT_REL:
2467 /* Account for any addend. */
2468 if (bfd_reloc->addend)
2469 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2470 &subspace_reloc_size, reloc_queue);
2471
2472 if (sym_num < 0x100)
2473 {
2474 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2475 bfd_put_8 (abfd, sym_num, p + 1);
2476 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2477 2, reloc_queue);
2478 }
2479 else if (sym_num < 0x10000000)
2480 {
2481 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2482 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2483 bfd_put_16 (abfd, sym_num, p + 2);
2484 p = try_prev_fixup (abfd, &subspace_reloc_size,
2485 p, 4, reloc_queue);
2486 }
2487 else
2488 abort ();
2489 break;
2490
2491 case R_ENTRY:
2492 {
2493 int *descp
2494 = (int *) som_symbol_data (*bfd_reloc->sym_ptr_ptr)->unwind;
2495 bfd_put_8 (abfd, R_ENTRY, p);
2496 bfd_put_32 (abfd, descp[0], p + 1);
2497 bfd_put_32 (abfd, descp[1], p + 5);
2498 p = try_prev_fixup (abfd, &subspace_reloc_size,
2499 p, 9, reloc_queue);
2500 break;
2501 }
2502
2503 case R_EXIT:
2504 bfd_put_8 (abfd, R_EXIT, p);
2505 subspace_reloc_size += 1;
2506 p += 1;
2507 break;
2508
2509 case R_N_MODE:
2510 case R_S_MODE:
2511 case R_D_MODE:
2512 case R_R_MODE:
2513 /* If this relocation requests the current rounding
2514 mode, then it is redundant. */
2515 if (bfd_reloc->howto->type != current_rounding_mode)
2516 {
2517 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2518 subspace_reloc_size += 1;
2519 p += 1;
2520 current_rounding_mode = bfd_reloc->howto->type;
2521 }
2522 break;
2523
2524 case R_FSEL:
2525 case R_LSEL:
2526 case R_RSEL:
2527 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2528 subspace_reloc_size += 1;
2529 p += 1;
2530 break;
2531
2532 /* Put a "R_RESERVED" relocation in the stream if
2533 we hit something we do not understand. The linker
2534 will complain loudly if this ever happens. */
2535 default:
2536 bfd_put_8 (abfd, 0xff, p);
2537 subspace_reloc_size += 1;
2538 p += 1;
2539 break;
2540 }
2541 }
2542
2543 /* Last BFD relocation for a subspace has been processed.
2544 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2545 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2546 - reloc_offset,
2547 p, &subspace_reloc_size, reloc_queue);
2548
2549 /* Scribble out the relocations. */
2550 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2551 != p - tmp_space)
2552 {
2553 bfd_set_error (bfd_error_system_call);
2554 return false;
2555 }
2556 p = tmp_space;
2557
2558 total_reloc_size += subspace_reloc_size;
2559 som_section_data (subsection)->subspace_dict->fixup_request_quantity
2560 = subspace_reloc_size;
2561 }
2562 section = section->next;
2563 }
2564 *total_reloc_sizep = total_reloc_size;
2565 return true;
2566 }
2567
2568 /* Write out the space/subspace string table. */
2569
2570 static boolean
2571 som_write_space_strings (abfd, current_offset, string_sizep)
2572 bfd *abfd;
2573 unsigned long current_offset;
2574 unsigned int *string_sizep;
2575 {
2576 /* Chunk of memory that we can use as buffer space, then throw
2577 away. */
2578 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2579 unsigned char *p;
2580 unsigned int strings_size = 0;
2581 asection *section;
2582
2583 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2584 p = tmp_space;
2585
2586 /* Seek to the start of the space strings in preparation for writing
2587 them out. */
2588 if (bfd_seek (abfd, current_offset, SEEK_SET) != 0)
2589 {
2590 bfd_set_error (bfd_error_system_call);
2591 return false;
2592 }
2593
2594 /* Walk through all the spaces and subspaces (order is not important)
2595 building up and writing string table entries for their names. */
2596 for (section = abfd->sections; section != NULL; section = section->next)
2597 {
2598 int length;
2599
2600 /* Only work with space/subspaces; avoid any other sections
2601 which might have been made (.text for example). */
2602 if (!som_is_space (section) && !som_is_subspace (section))
2603 continue;
2604
2605 /* Get the length of the space/subspace name. */
2606 length = strlen (section->name);
2607
2608 /* If there is not enough room for the next entry, then dump the
2609 current buffer contents now. Each entry will take 4 bytes to
2610 hold the string length + the string itself + null terminator. */
2611 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2612 {
2613 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2614 != p - tmp_space)
2615 {
2616 bfd_set_error (bfd_error_system_call);
2617 return false;
2618 }
2619 /* Reset to beginning of the buffer space. */
2620 p = tmp_space;
2621 }
2622
2623 /* First element in a string table entry is the length of the
2624 string. Alignment issues are already handled. */
2625 bfd_put_32 (abfd, length, p);
2626 p += 4;
2627 strings_size += 4;
2628
2629 /* Record the index in the space/subspace records. */
2630 if (som_is_space (section))
2631 som_section_data (section)->space_dict->name.n_strx = strings_size;
2632 else
2633 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
2634
2635 /* Next comes the string itself + a null terminator. */
2636 strcpy (p, section->name);
2637 p += length + 1;
2638 strings_size += length + 1;
2639
2640 /* Always align up to the next word boundary. */
2641 while (strings_size % 4)
2642 {
2643 bfd_put_8 (abfd, 0, p);
2644 p++;
2645 strings_size++;
2646 }
2647 }
2648
2649 /* Done with the space/subspace strings. Write out any information
2650 contained in a partial block. */
2651 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2652 {
2653 bfd_set_error (bfd_error_system_call);
2654 return false;
2655 }
2656 *string_sizep = strings_size;
2657 return true;
2658 }
2659
2660 /* Write out the symbol string table. */
2661
2662 static boolean
2663 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
2664 bfd *abfd;
2665 unsigned long current_offset;
2666 asymbol **syms;
2667 unsigned int num_syms;
2668 unsigned int *string_sizep;
2669 {
2670 unsigned int i;
2671
2672 /* Chunk of memory that we can use as buffer space, then throw
2673 away. */
2674 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2675 unsigned char *p;
2676 unsigned int strings_size = 0;
2677
2678 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2679 p = tmp_space;
2680
2681 /* Seek to the start of the space strings in preparation for writing
2682 them out. */
2683 if (bfd_seek (abfd, current_offset, SEEK_SET) != 0)
2684 {
2685 bfd_set_error (bfd_error_system_call);
2686 return false;
2687 }
2688
2689 for (i = 0; i < num_syms; i++)
2690 {
2691 int length = strlen (syms[i]->name);
2692
2693 /* If there is not enough room for the next entry, then dump the
2694 current buffer contents now. */
2695 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2696 {
2697 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2698 != p - tmp_space)
2699 {
2700 bfd_set_error (bfd_error_system_call);
2701 return false;
2702 }
2703 /* Reset to beginning of the buffer space. */
2704 p = tmp_space;
2705 }
2706
2707 /* First element in a string table entry is the length of the
2708 string. This must always be 4 byte aligned. This is also
2709 an appropriate time to fill in the string index field in the
2710 symbol table entry. */
2711 bfd_put_32 (abfd, length, p);
2712 strings_size += 4;
2713 p += 4;
2714
2715 /* Next comes the string itself + a null terminator. */
2716 strcpy (p, syms[i]->name);
2717
2718 /* ACK. FIXME. */
2719 syms[i]->name = (char *)strings_size;
2720 p += length + 1;
2721 strings_size += length + 1;
2722
2723 /* Always align up to the next word boundary. */
2724 while (strings_size % 4)
2725 {
2726 bfd_put_8 (abfd, 0, p);
2727 strings_size++;
2728 p++;
2729 }
2730 }
2731
2732 /* Scribble out any partial block. */
2733 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2734 {
2735 bfd_set_error (bfd_error_system_call);
2736 return false;
2737 }
2738
2739 *string_sizep = strings_size;
2740 return true;
2741 }
2742
2743 /* Compute variable information to be placed in the SOM headers,
2744 space/subspace dictionaries, relocation streams, etc. Begin
2745 writing parts of the object file. */
2746
2747 static boolean
2748 som_begin_writing (abfd)
2749 bfd *abfd;
2750 {
2751 unsigned long current_offset = 0;
2752 int strings_size = 0;
2753 unsigned int total_reloc_size = 0;
2754 unsigned long num_spaces, num_subspaces, num_syms, i;
2755 asection *section;
2756 asymbol **syms = bfd_get_outsymbols (abfd);
2757 unsigned int total_subspaces = 0;
2758 struct som_exec_auxhdr exec_header;
2759
2760 /* The file header will always be first in an object file,
2761 everything else can be in random locations. To keep things
2762 "simple" BFD will lay out the object file in the manner suggested
2763 by the PRO ABI for PA-RISC Systems. */
2764
2765 /* Before any output can really begin offsets for all the major
2766 portions of the object file must be computed. So, starting
2767 with the initial file header compute (and sometimes write)
2768 each portion of the object file. */
2769
2770 /* Make room for the file header, it's contents are not complete
2771 yet, so it can not be written at this time. */
2772 current_offset += sizeof (struct header);
2773
2774 /* Any auxiliary headers will follow the file header. Right now
2775 we support only the copyright and version headers. */
2776 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
2777 obj_som_file_hdr (abfd)->aux_header_size = 0;
2778 if (abfd->flags & EXEC_P)
2779 {
2780 /* Parts of the exec header will be filled in later, so
2781 delay writing the header itself. Fill in the defaults,
2782 and write it later. */
2783 current_offset += sizeof (exec_header);
2784 obj_som_file_hdr (abfd)->aux_header_size += sizeof (exec_header);
2785 memset (&exec_header, 0, sizeof (exec_header));
2786 exec_header.som_auxhdr.type = HPUX_AUX_ID;
2787 exec_header.som_auxhdr.length = 40;
2788 }
2789 if (obj_som_version_hdr (abfd) != NULL)
2790 {
2791 unsigned int len;
2792
2793 bfd_seek (abfd, current_offset, SEEK_SET);
2794
2795 /* Write the aux_id structure and the string length. */
2796 len = sizeof (struct aux_id) + sizeof (unsigned int);
2797 obj_som_file_hdr (abfd)->aux_header_size += len;
2798 current_offset += len;
2799 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
2800 {
2801 bfd_set_error (bfd_error_system_call);
2802 return false;
2803 }
2804
2805 /* Write the version string. */
2806 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
2807 obj_som_file_hdr (abfd)->aux_header_size += len;
2808 current_offset += len;
2809 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
2810 len, 1, abfd) != len)
2811 {
2812 bfd_set_error (bfd_error_system_call);
2813 return false;
2814 }
2815 }
2816
2817 if (obj_som_copyright_hdr (abfd) != NULL)
2818 {
2819 unsigned int len;
2820
2821 bfd_seek (abfd, current_offset, SEEK_SET);
2822
2823 /* Write the aux_id structure and the string length. */
2824 len = sizeof (struct aux_id) + sizeof (unsigned int);
2825 obj_som_file_hdr (abfd)->aux_header_size += len;
2826 current_offset += len;
2827 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
2828 {
2829 bfd_set_error (bfd_error_system_call);
2830 return false;
2831 }
2832
2833 /* Write the copyright string. */
2834 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
2835 obj_som_file_hdr (abfd)->aux_header_size += len;
2836 current_offset += len;
2837 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
2838 len, 1, abfd) != len)
2839 {
2840 bfd_set_error (bfd_error_system_call);
2841 return false;
2842 }
2843 }
2844
2845 /* Next comes the initialization pointers; we have no initialization
2846 pointers, so current offset does not change. */
2847 obj_som_file_hdr (abfd)->init_array_location = current_offset;
2848 obj_som_file_hdr (abfd)->init_array_total = 0;
2849
2850 /* Next are the space records. These are fixed length records.
2851
2852 Count the number of spaces to determine how much room is needed
2853 in the object file for the space records.
2854
2855 The names of the spaces are stored in a separate string table,
2856 and the index for each space into the string table is computed
2857 below. Therefore, it is not possible to write the space headers
2858 at this time. */
2859 num_spaces = som_count_spaces (abfd);
2860 obj_som_file_hdr (abfd)->space_location = current_offset;
2861 obj_som_file_hdr (abfd)->space_total = num_spaces;
2862 current_offset += num_spaces * sizeof (struct space_dictionary_record);
2863
2864 /* Next are the subspace records. These are fixed length records.
2865
2866 Count the number of subspaes to determine how much room is needed
2867 in the object file for the subspace records.
2868
2869 A variety if fields in the subspace record are still unknown at
2870 this time (index into string table, fixup stream location/size, etc). */
2871 num_subspaces = som_count_subspaces (abfd);
2872 obj_som_file_hdr (abfd)->subspace_location = current_offset;
2873 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
2874 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
2875
2876 /* Next is the string table for the space/subspace names. We will
2877 build and write the string table on the fly. At the same time
2878 we will fill in the space/subspace name index fields. */
2879
2880 /* The string table needs to be aligned on a word boundary. */
2881 if (current_offset % 4)
2882 current_offset += (4 - (current_offset % 4));
2883
2884 /* Mark the offset of the space/subspace string table in the
2885 file header. */
2886 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
2887
2888 /* Scribble out the space strings. */
2889 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
2890 return false;
2891
2892 /* Record total string table size in the header and update the
2893 current offset. */
2894 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
2895 current_offset += strings_size;
2896
2897 /* Next is the symbol table. These are fixed length records.
2898
2899 Count the number of symbols to determine how much room is needed
2900 in the object file for the symbol table.
2901
2902 The names of the symbols are stored in a separate string table,
2903 and the index for each symbol name into the string table is computed
2904 below. Therefore, it is not possible to write the symobl table
2905 at this time. */
2906 num_syms = bfd_get_symcount (abfd);
2907 obj_som_file_hdr (abfd)->symbol_location = current_offset;
2908 obj_som_file_hdr (abfd)->symbol_total = num_syms;
2909 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
2910
2911 /* Do prep work before handling fixups. */
2912 som_prep_for_fixups (abfd, syms, num_syms);
2913
2914 /* Next comes the fixup stream which starts on a word boundary. */
2915 if (current_offset % 4)
2916 current_offset += (4 - (current_offset % 4));
2917 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
2918
2919 /* Write the fixups and update fields in subspace headers which
2920 relate to the fixup stream. */
2921 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
2922 return false;
2923
2924 /* Record the total size of the fixup stream in the file header. */
2925 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
2926 current_offset += total_reloc_size;
2927
2928 /* Next are the symbol strings.
2929 Align them to a word boundary. */
2930 if (current_offset % 4)
2931 current_offset += (4 - (current_offset % 4));
2932 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
2933
2934 /* Scribble out the symbol strings. */
2935 if (som_write_symbol_strings (abfd, current_offset, syms,
2936 num_syms, &strings_size)
2937 == false)
2938 return false;
2939
2940 /* Record total string table size in header and update the
2941 current offset. */
2942 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
2943 current_offset += strings_size;
2944
2945 /* Next is the compiler records. We do not use these. */
2946 obj_som_file_hdr (abfd)->compiler_location = current_offset;
2947 obj_som_file_hdr (abfd)->compiler_total = 0;
2948
2949 /* Now compute the file positions for the loadable subspaces, taking
2950 care to make sure everything stays properly aligned. */
2951
2952 section = abfd->sections;
2953 for (i = 0; i < num_spaces; i++)
2954 {
2955 asection *subsection;
2956 int first_subspace;
2957
2958 /* Find a space. */
2959 while (!som_is_space (section))
2960 section = section->next;
2961
2962 first_subspace = 1;
2963 /* Now look for all its subspaces. */
2964 for (subsection = abfd->sections;
2965 subsection != NULL;
2966 subsection = subsection->next)
2967 {
2968
2969 if (!som_is_subspace (subsection)
2970 || !som_is_container (section, subsection)
2971 || (subsection->flags & SEC_ALLOC) == 0)
2972 continue;
2973
2974 /* If this is the first subspace in the space, and we are
2975 building an executable, then take care to make sure all
2976 the alignments are correct and update the exec header. */
2977 if (first_subspace
2978 && (abfd->flags & EXEC_P))
2979 {
2980 /* Demand paged executables have each space aligned to a
2981 page boundary. Sharable executables (write-protected
2982 text) have just the private (aka data & bss) space aligned
2983 to a page boundary. Ugh. Not true for HPUX.
2984
2985 The HPUX kernel requires the text to always be page aligned
2986 within the file regardless of the executable's type. */
2987 if (abfd->flags & D_PAGED
2988 || (subsection->flags & SEC_CODE)
2989 || ((abfd->flags & WP_TEXT)
2990 && (subsection->flags & SEC_DATA)))
2991 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
2992
2993 /* Update the exec header. */
2994 if (subsection->flags & SEC_CODE && exec_header.exec_tfile == 0)
2995 {
2996 exec_header.exec_tmem = section->vma;
2997 exec_header.exec_tfile = current_offset;
2998 }
2999 if (subsection->flags & SEC_DATA && exec_header.exec_dfile == 0)
3000 {
3001 exec_header.exec_dmem = section->vma;
3002 exec_header.exec_dfile = current_offset;
3003 }
3004
3005 /* Only do this for the first subspace within each space. */
3006 first_subspace = 0;
3007 }
3008 else if (abfd->flags & EXEC_P)
3009 {
3010 /* Have to keep proper alignments for the subspaces
3011 in executables too! */
3012 if (subsection->flags & SEC_CODE)
3013 {
3014 unsigned tmp = exec_header.exec_tsize;
3015
3016 tmp = SOM_ALIGN (tmp, 1 << subsection->alignment_power);
3017 current_offset += (tmp - exec_header.exec_tsize);
3018 exec_header.exec_tsize = tmp;
3019 }
3020 else
3021 {
3022 unsigned tmp = exec_header.exec_dsize;
3023
3024 tmp = SOM_ALIGN (tmp, 1 << subsection->alignment_power);
3025 current_offset += (tmp - exec_header.exec_dsize);
3026 exec_header.exec_dsize = tmp;
3027 }
3028 }
3029
3030 subsection->target_index = total_subspaces++;
3031 /* This is real data to be loaded from the file. */
3032 if (subsection->flags & SEC_LOAD)
3033 {
3034 /* Update the size of the code & data. */
3035 if (abfd->flags & EXEC_P
3036 && subsection->flags & SEC_CODE)
3037 exec_header.exec_tsize += subsection->_cooked_size;
3038 else if (abfd->flags & EXEC_P
3039 && subsection->flags & SEC_DATA)
3040 exec_header.exec_dsize += subsection->_cooked_size;
3041 som_section_data (subsection)->subspace_dict->file_loc_init_value
3042 = current_offset;
3043 section->filepos = current_offset;
3044 current_offset += bfd_section_size (abfd, subsection);
3045 }
3046 /* Looks like uninitialized data. */
3047 else
3048 {
3049 /* Update the size of the bss section. */
3050 if (abfd->flags & EXEC_P)
3051 exec_header.exec_bsize += subsection->_cooked_size;
3052
3053 som_section_data (subsection)->subspace_dict->file_loc_init_value
3054 = 0;
3055 som_section_data (subsection)->subspace_dict->
3056 initialization_length = 0;
3057 }
3058 }
3059 /* Goto the next section. */
3060 section = section->next;
3061 }
3062
3063 /* Finally compute the file positions for unloadable subspaces.
3064 If building an executable, start the unloadable stuff on its
3065 own page. */
3066
3067 if (abfd->flags & EXEC_P)
3068 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3069
3070 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3071 section = abfd->sections;
3072 for (i = 0; i < num_spaces; i++)
3073 {
3074 asection *subsection;
3075
3076 /* Find a space. */
3077 while (!som_is_space (section))
3078 section = section->next;
3079
3080 if (abfd->flags & EXEC_P)
3081 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3082
3083 /* Now look for all its subspaces. */
3084 for (subsection = abfd->sections;
3085 subsection != NULL;
3086 subsection = subsection->next)
3087 {
3088
3089 if (!som_is_subspace (subsection)
3090 || !som_is_container (section, subsection)
3091 || (subsection->flags & SEC_ALLOC) != 0)
3092 continue;
3093
3094 subsection->target_index = total_subspaces;
3095 /* This is real data to be loaded from the file. */
3096 if ((subsection->flags & SEC_LOAD) == 0)
3097 {
3098 som_section_data (subsection)->subspace_dict->file_loc_init_value
3099 = current_offset;
3100 section->filepos = current_offset;
3101 current_offset += bfd_section_size (abfd, subsection);
3102 }
3103 /* Looks like uninitialized data. */
3104 else
3105 {
3106 som_section_data (subsection)->subspace_dict->file_loc_init_value
3107 = 0;
3108 som_section_data (subsection)->subspace_dict->
3109 initialization_length = bfd_section_size (abfd, subsection);
3110 }
3111 }
3112 /* Goto the next section. */
3113 section = section->next;
3114 }
3115
3116 /* If building an executable, then make sure to seek to and write
3117 one byte at the end of the file to make sure any necessary
3118 zeros are filled in. Ugh. */
3119 if (abfd->flags & EXEC_P)
3120 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3121 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
3122 {
3123 bfd_set_error (bfd_error_system_call);
3124 return false;
3125 }
3126 if (bfd_write ((PTR) "", 1, 1, abfd) != 1)
3127 {
3128 bfd_set_error (bfd_error_system_call);
3129 return false;
3130 }
3131
3132 obj_som_file_hdr (abfd)->unloadable_sp_size
3133 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3134
3135 /* Loader fixups are not supported in any way shape or form. */
3136 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3137 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3138
3139 /* Done. Store the total size of the SOM. */
3140 obj_som_file_hdr (abfd)->som_length = current_offset;
3141
3142 /* Now write the exec header. */
3143 if (abfd->flags & EXEC_P)
3144 {
3145 long tmp;
3146
3147 exec_header.exec_entry = bfd_get_start_address (abfd);
3148 exec_header.exec_flags = obj_som_exec_data (abfd)->exec_flags;
3149
3150 /* Oh joys. Ram some of the BSS data into the DATA section
3151 to be compatable with how the hp linker makes objects
3152 (saves memory space). */
3153 tmp = exec_header.exec_dsize;
3154 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3155 exec_header.exec_bsize -= (tmp - exec_header.exec_dsize);
3156 if (exec_header.exec_bsize < 0)
3157 exec_header.exec_bsize = 0;
3158 exec_header.exec_dsize = tmp;
3159
3160 bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location, SEEK_SET);
3161
3162 if (bfd_write ((PTR) &exec_header, AUX_HDR_SIZE, 1, abfd)
3163 != AUX_HDR_SIZE)
3164 {
3165 bfd_set_error (bfd_error_system_call);
3166 return false;
3167 }
3168 }
3169 return true;
3170 }
3171
3172 /* Finally, scribble out the various headers to the disk. */
3173
3174 static boolean
3175 som_write_headers (abfd)
3176 bfd *abfd;
3177 {
3178 int num_spaces = som_count_spaces (abfd);
3179 int i;
3180 int subspace_index = 0;
3181 file_ptr location;
3182 asection *section;
3183
3184 /* Subspaces are written first so that we can set up information
3185 about them in their containing spaces as the subspace is written. */
3186
3187 /* Seek to the start of the subspace dictionary records. */
3188 location = obj_som_file_hdr (abfd)->subspace_location;
3189 bfd_seek (abfd, location, SEEK_SET);
3190 section = abfd->sections;
3191 /* Now for each loadable space write out records for its subspaces. */
3192 for (i = 0; i < num_spaces; i++)
3193 {
3194 asection *subsection;
3195
3196 /* Find a space. */
3197 while (!som_is_space (section))
3198 section = section->next;
3199
3200 /* Now look for all its subspaces. */
3201 for (subsection = abfd->sections;
3202 subsection != NULL;
3203 subsection = subsection->next)
3204 {
3205
3206 /* Skip any section which does not correspond to a space
3207 or subspace. Or does not have SEC_ALLOC set (and therefore
3208 has no real bits on the disk). */
3209 if (!som_is_subspace (subsection)
3210 || !som_is_container (section, subsection)
3211 || (subsection->flags & SEC_ALLOC) == 0)
3212 continue;
3213
3214 /* If this is the first subspace for this space, then save
3215 the index of the subspace in its containing space. Also
3216 set "is_loadable" in the containing space. */
3217
3218 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3219 {
3220 som_section_data (section)->space_dict->is_loadable = 1;
3221 som_section_data (section)->space_dict->subspace_index
3222 = subspace_index;
3223 }
3224
3225 /* Increment the number of subspaces seen and the number of
3226 subspaces contained within the current space. */
3227 subspace_index++;
3228 som_section_data (section)->space_dict->subspace_quantity++;
3229
3230 /* Mark the index of the current space within the subspace's
3231 dictionary record. */
3232 som_section_data (subsection)->subspace_dict->space_index = i;
3233
3234 /* Dump the current subspace header. */
3235 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3236 sizeof (struct subspace_dictionary_record), 1, abfd)
3237 != sizeof (struct subspace_dictionary_record))
3238 {
3239 bfd_set_error (bfd_error_system_call);
3240 return false;
3241 }
3242 }
3243 /* Goto the next section. */
3244 section = section->next;
3245 }
3246
3247 /* Now repeat the process for unloadable subspaces. */
3248 section = abfd->sections;
3249 /* Now for each space write out records for its subspaces. */
3250 for (i = 0; i < num_spaces; i++)
3251 {
3252 asection *subsection;
3253
3254 /* Find a space. */
3255 while (!som_is_space (section))
3256 section = section->next;
3257
3258 /* Now look for all its subspaces. */
3259 for (subsection = abfd->sections;
3260 subsection != NULL;
3261 subsection = subsection->next)
3262 {
3263
3264 /* Skip any section which does not correspond to a space or
3265 subspace, or which SEC_ALLOC set (and therefore handled
3266 in the loadable spaces/subspaces code above. */
3267
3268 if (!som_is_subspace (subsection)
3269 || !som_is_container (section, subsection)
3270 || (subsection->flags & SEC_ALLOC) != 0)
3271 continue;
3272
3273 /* If this is the first subspace for this space, then save
3274 the index of the subspace in its containing space. Clear
3275 "is_loadable". */
3276
3277 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3278 {
3279 som_section_data (section)->space_dict->is_loadable = 0;
3280 som_section_data (section)->space_dict->subspace_index
3281 = subspace_index;
3282 }
3283
3284 /* Increment the number of subspaces seen and the number of
3285 subspaces contained within the current space. */
3286 som_section_data (section)->space_dict->subspace_quantity++;
3287 subspace_index++;
3288
3289 /* Mark the index of the current space within the subspace's
3290 dictionary record. */
3291 som_section_data (subsection)->subspace_dict->space_index = i;
3292
3293 /* Dump this subspace header. */
3294 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3295 sizeof (struct subspace_dictionary_record), 1, abfd)
3296 != sizeof (struct subspace_dictionary_record))
3297 {
3298 bfd_set_error (bfd_error_system_call);
3299 return false;
3300 }
3301 }
3302 /* Goto the next section. */
3303 section = section->next;
3304 }
3305
3306 /* All the subspace dictiondary records are written, and all the
3307 fields are set up in the space dictionary records.
3308
3309 Seek to the right location and start writing the space
3310 dictionary records. */
3311 location = obj_som_file_hdr (abfd)->space_location;
3312 bfd_seek (abfd, location, SEEK_SET);
3313
3314 section = abfd->sections;
3315 for (i = 0; i < num_spaces; i++)
3316 {
3317
3318 /* Find a space. */
3319 while (!som_is_space (section))
3320 section = section->next;
3321
3322 /* Dump its header */
3323 if (bfd_write ((PTR) som_section_data (section)->space_dict,
3324 sizeof (struct space_dictionary_record), 1, abfd)
3325 != sizeof (struct space_dictionary_record))
3326 {
3327 bfd_set_error (bfd_error_system_call);
3328 return false;
3329 }
3330
3331 /* Goto the next section. */
3332 section = section->next;
3333 }
3334
3335 /* Only thing left to do is write out the file header. It is always
3336 at location zero. Seek there and write it. */
3337 bfd_seek (abfd, (file_ptr) 0, SEEK_SET);
3338 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3339 sizeof (struct header), 1, abfd)
3340 != sizeof (struct header))
3341 {
3342 bfd_set_error (bfd_error_system_call);
3343 return false;
3344 }
3345 return true;
3346 }
3347
3348 /* Compute and return the checksum for a SOM file header. */
3349
3350 static unsigned long
3351 som_compute_checksum (abfd)
3352 bfd *abfd;
3353 {
3354 unsigned long checksum, count, i;
3355 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3356
3357 checksum = 0;
3358 count = sizeof (struct header) / sizeof (unsigned long);
3359 for (i = 0; i < count; i++)
3360 checksum ^= *(buffer + i);
3361
3362 return checksum;
3363 }
3364
3365 static void
3366 som_bfd_derive_misc_symbol_info (abfd, sym, info)
3367 bfd *abfd;
3368 asymbol *sym;
3369 struct som_misc_symbol_info *info;
3370 {
3371 /* Initialize. */
3372 memset (info, 0, sizeof (struct som_misc_symbol_info));
3373
3374 /* The HP SOM linker requires detailed type information about
3375 all symbols (including undefined symbols!). Unfortunately,
3376 the type specified in an import/export statement does not
3377 always match what the linker wants. Severe braindamage. */
3378
3379 /* Section symbols will not have a SOM symbol type assigned to
3380 them yet. Assign all section symbols type ST_DATA. */
3381 if (sym->flags & BSF_SECTION_SYM)
3382 info->symbol_type = ST_DATA;
3383 else
3384 {
3385 /* Common symbols must have scope SS_UNSAT and type
3386 ST_STORAGE or the linker will choke. */
3387 if (sym->section == &bfd_com_section)
3388 {
3389 info->symbol_scope = SS_UNSAT;
3390 info->symbol_type = ST_STORAGE;
3391 }
3392
3393 /* It is possible to have a symbol without an associated
3394 type. This happens if the user imported the symbol
3395 without a type and the symbol was never defined
3396 locally. If BSF_FUNCTION is set for this symbol, then
3397 assign it type ST_CODE (the HP linker requires undefined
3398 external functions to have type ST_CODE rather than ST_ENTRY). */
3399 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3400 && sym->section == &bfd_und_section
3401 && sym->flags & BSF_FUNCTION)
3402 info->symbol_type = ST_CODE;
3403
3404 /* Handle function symbols which were defined in this file.
3405 They should have type ST_ENTRY. Also retrieve the argument
3406 relocation bits from the SOM backend information. */
3407 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3408 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3409 && (sym->flags & BSF_FUNCTION))
3410 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3411 && (sym->flags & BSF_FUNCTION)))
3412 {
3413 info->symbol_type = ST_ENTRY;
3414 info->arg_reloc = som_symbol_data (sym)->tc_data.hppa_arg_reloc;
3415 }
3416
3417 /* If the type is unknown at this point, it should be
3418 ST_DATA (functions were handled as special cases above). */
3419 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3420 info->symbol_type = ST_DATA;
3421
3422 /* From now on it's a very simple mapping. */
3423 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3424 info->symbol_type = ST_ABSOLUTE;
3425 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3426 info->symbol_type = ST_CODE;
3427 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3428 info->symbol_type = ST_DATA;
3429 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3430 info->symbol_type = ST_MILLICODE;
3431 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3432 info->symbol_type = ST_PLABEL;
3433 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3434 info->symbol_type = ST_PRI_PROG;
3435 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3436 info->symbol_type = ST_SEC_PROG;
3437 }
3438
3439 /* Now handle the symbol's scope. Exported data which is not
3440 in the common section has scope SS_UNIVERSAL. Note scope
3441 of common symbols was handled earlier! */
3442 if (sym->flags & BSF_EXPORT && sym->section != &bfd_com_section)
3443 info->symbol_scope = SS_UNIVERSAL;
3444 /* Any undefined symbol at this point has a scope SS_UNSAT. */
3445 else if (sym->section == &bfd_und_section)
3446 info->symbol_scope = SS_UNSAT;
3447 /* Anything else which is not in the common section has scope
3448 SS_LOCAL. */
3449 else if (sym->section != &bfd_com_section)
3450 info->symbol_scope = SS_LOCAL;
3451
3452 /* Now set the symbol_info field. It has no real meaning
3453 for undefined or common symbols, but the HP linker will
3454 choke if it's not set to some "reasonable" value. We
3455 use zero as a reasonable value. */
3456 if (sym->section == &bfd_com_section || sym->section == &bfd_und_section
3457 || sym->section == &bfd_abs_section)
3458 info->symbol_info = 0;
3459 /* For all other symbols, the symbol_info field contains the
3460 subspace index of the space this symbol is contained in. */
3461 else
3462 info->symbol_info = sym->section->target_index;
3463
3464 /* Set the symbol's value. */
3465 info->symbol_value = sym->value + sym->section->vma;
3466 }
3467
3468 /* Build and write, in one big chunk, the entire symbol table for
3469 this BFD. */
3470
3471 static boolean
3472 som_build_and_write_symbol_table (abfd)
3473 bfd *abfd;
3474 {
3475 unsigned int num_syms = bfd_get_symcount (abfd);
3476 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3477 asymbol **bfd_syms = bfd_get_outsymbols (abfd);
3478 struct symbol_dictionary_record *som_symtab = NULL;
3479 int i, symtab_size;
3480
3481 /* Compute total symbol table size and allocate a chunk of memory
3482 to hold the symbol table as we build it. */
3483 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3484 som_symtab = (struct symbol_dictionary_record *) malloc (symtab_size);
3485 if (som_symtab == NULL && symtab_size != 0)
3486 {
3487 bfd_set_error (bfd_error_no_memory);
3488 goto error_return;
3489 }
3490 memset (som_symtab, 0, symtab_size);
3491
3492 /* Walk over each symbol. */
3493 for (i = 0; i < num_syms; i++)
3494 {
3495 struct som_misc_symbol_info info;
3496
3497 /* This is really an index into the symbol strings table.
3498 By the time we get here, the index has already been
3499 computed and stored into the name field in the BFD symbol. */
3500 som_symtab[i].name.n_strx = (int) bfd_syms[i]->name;
3501
3502 /* Derive SOM information from the BFD symbol. */
3503 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
3504
3505 /* Now use it. */
3506 som_symtab[i].symbol_type = info.symbol_type;
3507 som_symtab[i].symbol_scope = info.symbol_scope;
3508 som_symtab[i].arg_reloc = info.arg_reloc;
3509 som_symtab[i].symbol_info = info.symbol_info;
3510 som_symtab[i].symbol_value = info.symbol_value;
3511 }
3512
3513 /* Everything is ready, seek to the right location and
3514 scribble out the symbol table. */
3515 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3516 {
3517 bfd_set_error (bfd_error_system_call);
3518 goto error_return;
3519 }
3520
3521 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3522 {
3523 bfd_set_error (bfd_error_system_call);
3524 goto error_return;
3525 }
3526
3527 if (som_symtab != NULL)
3528 free (som_symtab);
3529 return true;
3530 error_return:
3531 if (som_symtab != NULL)
3532 free (som_symtab);
3533 return false;
3534 }
3535
3536 /* Write an object in SOM format. */
3537
3538 static boolean
3539 som_write_object_contents (abfd)
3540 bfd *abfd;
3541 {
3542 if (abfd->output_has_begun == false)
3543 {
3544 /* Set up fixed parts of the file, space, and subspace headers.
3545 Notify the world that output has begun. */
3546 som_prep_headers (abfd);
3547 abfd->output_has_begun = true;
3548 /* Start writing the object file. This include all the string
3549 tables, fixup streams, and other portions of the object file. */
3550 som_begin_writing (abfd);
3551 }
3552
3553 /* Now that the symbol table information is complete, build and
3554 write the symbol table. */
3555 if (som_build_and_write_symbol_table (abfd) == false)
3556 return false;
3557
3558 /* Compute the checksum for the file header just before writing
3559 the header to disk. */
3560 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3561 return (som_write_headers (abfd));
3562 }
3563
3564 \f
3565 /* Read and save the string table associated with the given BFD. */
3566
3567 static boolean
3568 som_slurp_string_table (abfd)
3569 bfd *abfd;
3570 {
3571 char *stringtab;
3572
3573 /* Use the saved version if its available. */
3574 if (obj_som_stringtab (abfd) != NULL)
3575 return true;
3576
3577 /* Allocate and read in the string table. */
3578 stringtab = bfd_zalloc (abfd, obj_som_stringtab_size (abfd));
3579 if (stringtab == NULL)
3580 {
3581 bfd_set_error (bfd_error_no_memory);
3582 return false;
3583 }
3584
3585 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3586 {
3587 bfd_set_error (bfd_error_system_call);
3588 return false;
3589 }
3590
3591 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3592 != obj_som_stringtab_size (abfd))
3593 {
3594 bfd_set_error (bfd_error_system_call);
3595 return false;
3596 }
3597
3598 /* Save our results and return success. */
3599 obj_som_stringtab (abfd) = stringtab;
3600 return true;
3601 }
3602
3603 /* Return the amount of data (in bytes) required to hold the symbol
3604 table for this object. */
3605
3606 static unsigned int
3607 som_get_symtab_upper_bound (abfd)
3608 bfd *abfd;
3609 {
3610 if (!som_slurp_symbol_table (abfd))
3611 return 0;
3612
3613 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
3614 }
3615
3616 /* Convert from a SOM subspace index to a BFD section. */
3617
3618 static asection *
3619 bfd_section_from_som_symbol (abfd, symbol)
3620 bfd *abfd;
3621 struct symbol_dictionary_record *symbol;
3622 {
3623 asection *section;
3624
3625 /* The meaning of the symbol_info field changes for executables. So
3626 only use the quick symbol_info mapping for incomplete objects. */
3627 if ((abfd->flags & EXEC_P) == 0)
3628 {
3629 unsigned int index = symbol->symbol_info;
3630 for (section = abfd->sections; section != NULL; section = section->next)
3631 if (section->target_index == index)
3632 return section;
3633
3634 /* Should never happen. */
3635 abort();
3636 }
3637 else
3638 {
3639 unsigned int value = symbol->symbol_value;
3640 unsigned int found = 0;
3641
3642 /* For executables we will have to use the symbol's address and
3643 find out what section would contain that address. Yuk. */
3644 for (section = abfd->sections; section; section = section->next)
3645 {
3646 if (value >= section->vma
3647 && value <= section->vma + section->_cooked_size)
3648 return section;
3649 }
3650
3651 /* Should never happen. */
3652 abort ();
3653 }
3654 }
3655
3656 /* Read and save the symbol table associated with the given BFD. */
3657
3658 static unsigned int
3659 som_slurp_symbol_table (abfd)
3660 bfd *abfd;
3661 {
3662 int symbol_count = bfd_get_symcount (abfd);
3663 int symsize = sizeof (struct symbol_dictionary_record);
3664 char *stringtab;
3665 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
3666 som_symbol_type *sym, *symbase;
3667
3668 /* Return saved value if it exists. */
3669 if (obj_som_symtab (abfd) != NULL)
3670 goto successful_return;
3671
3672 /* Special case. This is *not* an error. */
3673 if (symbol_count == 0)
3674 goto successful_return;
3675
3676 if (!som_slurp_string_table (abfd))
3677 goto error_return;
3678
3679 stringtab = obj_som_stringtab (abfd);
3680
3681 symbase = (som_symbol_type *)
3682 bfd_zalloc (abfd, symbol_count * sizeof (som_symbol_type));
3683 if (symbase == NULL)
3684 {
3685 bfd_set_error (bfd_error_no_memory);
3686 goto error_return;
3687 }
3688
3689 /* Read in the external SOM representation. */
3690 buf = malloc (symbol_count * symsize);
3691 if (buf == NULL && symbol_count * symsize != 0)
3692 {
3693 bfd_set_error (bfd_error_no_memory);
3694 goto error_return;
3695 }
3696 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
3697 {
3698 bfd_set_error (bfd_error_system_call);
3699 goto error_return;
3700 }
3701 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
3702 != symbol_count * symsize)
3703 {
3704 bfd_set_error (bfd_error_no_symbols);
3705 goto error_return;
3706 }
3707
3708 /* Iterate over all the symbols and internalize them. */
3709 endbufp = buf + symbol_count;
3710 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
3711 {
3712
3713 /* I don't think we care about these. */
3714 if (bufp->symbol_type == ST_SYM_EXT
3715 || bufp->symbol_type == ST_ARG_EXT)
3716 continue;
3717
3718 /* Set some private data we care about. */
3719 if (bufp->symbol_type == ST_NULL)
3720 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3721 else if (bufp->symbol_type == ST_ABSOLUTE)
3722 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
3723 else if (bufp->symbol_type == ST_DATA)
3724 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
3725 else if (bufp->symbol_type == ST_CODE)
3726 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
3727 else if (bufp->symbol_type == ST_PRI_PROG)
3728 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
3729 else if (bufp->symbol_type == ST_SEC_PROG)
3730 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
3731 else if (bufp->symbol_type == ST_ENTRY)
3732 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
3733 else if (bufp->symbol_type == ST_MILLICODE)
3734 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
3735 else if (bufp->symbol_type == ST_PLABEL)
3736 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
3737 else
3738 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3739 som_symbol_data (sym)->tc_data.hppa_arg_reloc = bufp->arg_reloc;
3740
3741 /* Some reasonable defaults. */
3742 sym->symbol.the_bfd = abfd;
3743 sym->symbol.name = bufp->name.n_strx + stringtab;
3744 sym->symbol.value = bufp->symbol_value;
3745 sym->symbol.section = 0;
3746 sym->symbol.flags = 0;
3747
3748 switch (bufp->symbol_type)
3749 {
3750 case ST_ENTRY:
3751 case ST_PRI_PROG:
3752 case ST_SEC_PROG:
3753 case ST_MILLICODE:
3754 sym->symbol.flags |= BSF_FUNCTION;
3755 sym->symbol.value &= ~0x3;
3756 break;
3757
3758 case ST_STUB:
3759 case ST_CODE:
3760 sym->symbol.value &= ~0x3;
3761
3762 default:
3763 break;
3764 }
3765
3766 /* Handle scoping and section information. */
3767 switch (bufp->symbol_scope)
3768 {
3769 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
3770 so the section associated with this symbol can't be known. */
3771 case SS_EXTERNAL:
3772 if (bufp->symbol_type != ST_STORAGE)
3773 sym->symbol.section = &bfd_und_section;
3774 else
3775 sym->symbol.section = &bfd_com_section;
3776 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3777 break;
3778
3779 case SS_UNSAT:
3780 if (bufp->symbol_type != ST_STORAGE)
3781 sym->symbol.section = &bfd_und_section;
3782 else
3783 sym->symbol.section = &bfd_com_section;
3784 break;
3785
3786 case SS_UNIVERSAL:
3787 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3788 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3789 sym->symbol.value -= sym->symbol.section->vma;
3790 break;
3791
3792 #if 0
3793 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
3794 Sound dumb? It is. */
3795 case SS_GLOBAL:
3796 #endif
3797 case SS_LOCAL:
3798 sym->symbol.flags |= BSF_LOCAL;
3799 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3800 sym->symbol.value -= sym->symbol.section->vma;
3801 break;
3802 }
3803
3804 /* Mark section symbols and symbols used by the debugger. */
3805 if (sym->symbol.name[0] == '$'
3806 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$')
3807 sym->symbol.flags |= BSF_SECTION_SYM;
3808 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
3809 {
3810 sym->symbol.flags |= BSF_SECTION_SYM;
3811 sym->symbol.name = sym->symbol.section->name;
3812 }
3813 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
3814 sym->symbol.flags |= BSF_DEBUGGING;
3815
3816 /* Note increment at bottom of loop, since we skip some symbols
3817 we can not include it as part of the for statement. */
3818 sym++;
3819 }
3820
3821 /* Save our results and return success. */
3822 obj_som_symtab (abfd) = symbase;
3823 successful_return:
3824 if (buf != NULL)
3825 free (buf);
3826 return (true);
3827
3828 error_return:
3829 if (buf != NULL)
3830 free (buf);
3831 return false;
3832 }
3833
3834 /* Canonicalize a SOM symbol table. Return the number of entries
3835 in the symbol table. */
3836
3837 static unsigned int
3838 som_get_symtab (abfd, location)
3839 bfd *abfd;
3840 asymbol **location;
3841 {
3842 int i;
3843 som_symbol_type *symbase;
3844
3845 if (!som_slurp_symbol_table (abfd))
3846 return 0;
3847
3848 i = bfd_get_symcount (abfd);
3849 symbase = obj_som_symtab (abfd);
3850
3851 for (; i > 0; i--, location++, symbase++)
3852 *location = &symbase->symbol;
3853
3854 /* Final null pointer. */
3855 *location = 0;
3856 return (bfd_get_symcount (abfd));
3857 }
3858
3859 /* Make a SOM symbol. There is nothing special to do here. */
3860
3861 static asymbol *
3862 som_make_empty_symbol (abfd)
3863 bfd *abfd;
3864 {
3865 som_symbol_type *new =
3866 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
3867 if (new == NULL)
3868 {
3869 bfd_set_error (bfd_error_no_memory);
3870 return 0;
3871 }
3872 new->symbol.the_bfd = abfd;
3873
3874 return &new->symbol;
3875 }
3876
3877 /* Print symbol information. */
3878
3879 static void
3880 som_print_symbol (ignore_abfd, afile, symbol, how)
3881 bfd *ignore_abfd;
3882 PTR afile;
3883 asymbol *symbol;
3884 bfd_print_symbol_type how;
3885 {
3886 FILE *file = (FILE *) afile;
3887 switch (how)
3888 {
3889 case bfd_print_symbol_name:
3890 fprintf (file, "%s", symbol->name);
3891 break;
3892 case bfd_print_symbol_more:
3893 fprintf (file, "som ");
3894 fprintf_vma (file, symbol->value);
3895 fprintf (file, " %lx", (long) symbol->flags);
3896 break;
3897 case bfd_print_symbol_all:
3898 {
3899 CONST char *section_name;
3900 section_name = symbol->section ? symbol->section->name : "(*none*)";
3901 bfd_print_symbol_vandf ((PTR) file, symbol);
3902 fprintf (file, " %s\t%s", section_name, symbol->name);
3903 break;
3904 }
3905 }
3906 }
3907
3908 static boolean
3909 som_bfd_is_local_label (abfd, sym)
3910 bfd *abfd;
3911 asymbol *sym;
3912 {
3913 return (sym->name[0] == 'L' && sym->name[1] == '$');
3914 }
3915
3916 /* Count or process variable-length SOM fixup records.
3917
3918 To avoid code duplication we use this code both to compute the number
3919 of relocations requested by a stream, and to internalize the stream.
3920
3921 When computing the number of relocations requested by a stream the
3922 variables rptr, section, and symbols have no meaning.
3923
3924 Return the number of relocations requested by the fixup stream. When
3925 not just counting
3926
3927 This needs at least two or three more passes to get it cleaned up. */
3928
3929 static unsigned int
3930 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
3931 unsigned char *fixup;
3932 unsigned int end;
3933 arelent *internal_relocs;
3934 asection *section;
3935 asymbol **symbols;
3936 boolean just_count;
3937 {
3938 unsigned int op, varname;
3939 unsigned char *end_fixups = &fixup[end];
3940 const struct fixup_format *fp;
3941 char *cp;
3942 unsigned char *save_fixup;
3943 int variables[26], stack[20], c, v, count, prev_fixup, *sp;
3944 const int *subop;
3945 arelent *rptr= internal_relocs;
3946 unsigned int offset = just_count ? 0 : section->vma;
3947
3948 #define var(c) variables[(c) - 'A']
3949 #define push(v) (*sp++ = (v))
3950 #define pop() (*--sp)
3951 #define emptystack() (sp == stack)
3952
3953 som_initialize_reloc_queue (reloc_queue);
3954 memset (variables, 0, sizeof (variables));
3955 memset (stack, 0, sizeof (stack));
3956 count = 0;
3957 prev_fixup = 0;
3958 sp = stack;
3959
3960 while (fixup < end_fixups)
3961 {
3962
3963 /* Save pointer to the start of this fixup. We'll use
3964 it later to determine if it is necessary to put this fixup
3965 on the queue. */
3966 save_fixup = fixup;
3967
3968 /* Get the fixup code and its associated format. */
3969 op = *fixup++;
3970 fp = &som_fixup_formats[op];
3971
3972 /* Handle a request for a previous fixup. */
3973 if (*fp->format == 'P')
3974 {
3975 /* Get pointer to the beginning of the prev fixup, move
3976 the repeated fixup to the head of the queue. */
3977 fixup = reloc_queue[fp->D].reloc;
3978 som_reloc_queue_fix (reloc_queue, fp->D);
3979 prev_fixup = 1;
3980
3981 /* Get the fixup code and its associated format. */
3982 op = *fixup++;
3983 fp = &som_fixup_formats[op];
3984 }
3985
3986 /* If we are not just counting, set some reasonable defaults. */
3987 if (! just_count)
3988 {
3989 rptr->address = offset;
3990 rptr->howto = &som_hppa_howto_table[op];
3991 rptr->addend = 0;
3992 rptr->sym_ptr_ptr = bfd_abs_section.symbol_ptr_ptr;
3993 }
3994
3995 /* Set default input length to 0. Get the opcode class index
3996 into D. */
3997 var ('L') = 0;
3998 var ('D') = fp->D;
3999
4000 /* Get the opcode format. */
4001 cp = fp->format;
4002
4003 /* Process the format string. Parsing happens in two phases,
4004 parse RHS, then assign to LHS. Repeat until no more
4005 characters in the format string. */
4006 while (*cp)
4007 {
4008 /* The variable this pass is going to compute a value for. */
4009 varname = *cp++;
4010
4011 /* Start processing RHS. Continue until a NULL or '=' is found. */
4012 do
4013 {
4014 c = *cp++;
4015
4016 /* If this is a variable, push it on the stack. */
4017 if (isupper (c))
4018 push (var (c));
4019
4020 /* If this is a lower case letter, then it represents
4021 additional data from the fixup stream to be pushed onto
4022 the stack. */
4023 else if (islower (c))
4024 {
4025 for (v = 0; c > 'a'; --c)
4026 v = (v << 8) | *fixup++;
4027 push (v);
4028 }
4029
4030 /* A decimal constant. Push it on the stack. */
4031 else if (isdigit (c))
4032 {
4033 v = c - '0';
4034 while (isdigit (*cp))
4035 v = (v * 10) + (*cp++ - '0');
4036 push (v);
4037 }
4038 else
4039
4040 /* An operator. Pop two two values from the stack and
4041 use them as operands to the given operation. Push
4042 the result of the operation back on the stack. */
4043 switch (c)
4044 {
4045 case '+':
4046 v = pop ();
4047 v += pop ();
4048 push (v);
4049 break;
4050 case '*':
4051 v = pop ();
4052 v *= pop ();
4053 push (v);
4054 break;
4055 case '<':
4056 v = pop ();
4057 v = pop () << v;
4058 push (v);
4059 break;
4060 default:
4061 abort ();
4062 }
4063 }
4064 while (*cp && *cp != '=');
4065
4066 /* Move over the equal operator. */
4067 cp++;
4068
4069 /* Pop the RHS off the stack. */
4070 c = pop ();
4071
4072 /* Perform the assignment. */
4073 var (varname) = c;
4074
4075 /* Handle side effects. and special 'O' stack cases. */
4076 switch (varname)
4077 {
4078 /* Consume some bytes from the input space. */
4079 case 'L':
4080 offset += c;
4081 break;
4082 /* A symbol to use in the relocation. Make a note
4083 of this if we are not just counting. */
4084 case 'S':
4085 if (! just_count)
4086 rptr->sym_ptr_ptr = &symbols[c];
4087 break;
4088 /* Handle the linker expression stack. */
4089 case 'O':
4090 switch (op)
4091 {
4092 case R_COMP1:
4093 subop = comp1_opcodes;
4094 break;
4095 case R_COMP2:
4096 subop = comp2_opcodes;
4097 break;
4098 case R_COMP3:
4099 subop = comp3_opcodes;
4100 break;
4101 default:
4102 abort ();
4103 }
4104 while (*subop <= (unsigned char) c)
4105 ++subop;
4106 --subop;
4107 break;
4108 default:
4109 break;
4110 }
4111 }
4112
4113 /* If we used a previous fixup, clean up after it. */
4114 if (prev_fixup)
4115 {
4116 fixup = save_fixup + 1;
4117 prev_fixup = 0;
4118 }
4119 /* Queue it. */
4120 else if (fixup > save_fixup + 1)
4121 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4122
4123 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4124 fixups to BFD. */
4125 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4126 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4127 {
4128 /* Done with a single reloction. Loop back to the top. */
4129 if (! just_count)
4130 {
4131 rptr->addend = var ('V');
4132 rptr++;
4133 }
4134 count++;
4135 /* Now that we've handled a "full" relocation, reset
4136 some state. */
4137 memset (variables, 0, sizeof (variables));
4138 memset (stack, 0, sizeof (stack));
4139 }
4140 }
4141 return count;
4142
4143 #undef var
4144 #undef push
4145 #undef pop
4146 #undef emptystack
4147 }
4148
4149 /* Read in the relocs (aka fixups in SOM terms) for a section.
4150
4151 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4152 set to true to indicate it only needs a count of the number
4153 of actual relocations. */
4154
4155 static boolean
4156 som_slurp_reloc_table (abfd, section, symbols, just_count)
4157 bfd *abfd;
4158 asection *section;
4159 asymbol **symbols;
4160 boolean just_count;
4161 {
4162 char *external_relocs;
4163 unsigned int fixup_stream_size;
4164 arelent *internal_relocs;
4165 unsigned int num_relocs;
4166
4167 fixup_stream_size = som_section_data (section)->reloc_size;
4168 /* If there were no relocations, then there is nothing to do. */
4169 if (section->reloc_count == 0)
4170 return true;
4171
4172 /* If reloc_count is -1, then the relocation stream has not been
4173 parsed. We must do so now to know how many relocations exist. */
4174 if (section->reloc_count == -1)
4175 {
4176 external_relocs = (char *) bfd_zalloc (abfd, fixup_stream_size);
4177 if (external_relocs == (char *) NULL)
4178 {
4179 bfd_set_error (bfd_error_no_memory);
4180 return false;
4181 }
4182 /* Read in the external forms. */
4183 if (bfd_seek (abfd,
4184 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4185 SEEK_SET)
4186 != 0)
4187 {
4188 bfd_set_error (bfd_error_system_call);
4189 return false;
4190 }
4191 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
4192 != fixup_stream_size)
4193 {
4194 bfd_set_error (bfd_error_system_call);
4195 return false;
4196 }
4197 /* Let callers know how many relocations found.
4198 also save the relocation stream as we will
4199 need it again. */
4200 section->reloc_count = som_set_reloc_info (external_relocs,
4201 fixup_stream_size,
4202 NULL, NULL, NULL, true);
4203
4204 som_section_data (section)->reloc_stream = external_relocs;
4205 }
4206
4207 /* If the caller only wanted a count, then return now. */
4208 if (just_count)
4209 return true;
4210
4211 num_relocs = section->reloc_count;
4212 external_relocs = som_section_data (section)->reloc_stream;
4213 /* Return saved information about the relocations if it is available. */
4214 if (section->relocation != (arelent *) NULL)
4215 return true;
4216
4217 internal_relocs = (arelent *) bfd_zalloc (abfd,
4218 num_relocs * sizeof (arelent));
4219 if (internal_relocs == (arelent *) NULL)
4220 {
4221 bfd_set_error (bfd_error_no_memory);
4222 return false;
4223 }
4224
4225 /* Process and internalize the relocations. */
4226 som_set_reloc_info (external_relocs, fixup_stream_size,
4227 internal_relocs, section, symbols, false);
4228
4229 /* Save our results and return success. */
4230 section->relocation = internal_relocs;
4231 return (true);
4232 }
4233
4234 /* Return the number of bytes required to store the relocation
4235 information associated with the given section. */
4236
4237 static unsigned int
4238 som_get_reloc_upper_bound (abfd, asect)
4239 bfd *abfd;
4240 sec_ptr asect;
4241 {
4242 /* If section has relocations, then read in the relocation stream
4243 and parse it to determine how many relocations exist. */
4244 if (asect->flags & SEC_RELOC)
4245 {
4246 if (som_slurp_reloc_table (abfd, asect, NULL, true))
4247 return (asect->reloc_count + 1) * sizeof (arelent);
4248 }
4249 /* Either there are no relocations or an error occurred while
4250 reading and parsing the relocation stream. */
4251 return 0;
4252 }
4253
4254 /* Convert relocations from SOM (external) form into BFD internal
4255 form. Return the number of relocations. */
4256
4257 static unsigned int
4258 som_canonicalize_reloc (abfd, section, relptr, symbols)
4259 bfd *abfd;
4260 sec_ptr section;
4261 arelent **relptr;
4262 asymbol **symbols;
4263 {
4264 arelent *tblptr;
4265 int count;
4266
4267 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
4268 return 0;
4269
4270 count = section->reloc_count;
4271 tblptr = section->relocation;
4272 if (tblptr == (arelent *) NULL)
4273 return 0;
4274
4275 while (count--)
4276 *relptr++ = tblptr++;
4277
4278 *relptr = (arelent *) NULL;
4279 return section->reloc_count;
4280 }
4281
4282 extern bfd_target som_vec;
4283
4284 /* A hook to set up object file dependent section information. */
4285
4286 static boolean
4287 som_new_section_hook (abfd, newsect)
4288 bfd *abfd;
4289 asection *newsect;
4290 {
4291 newsect->used_by_bfd =
4292 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
4293 if (!newsect->used_by_bfd)
4294 {
4295 bfd_set_error (bfd_error_no_memory);
4296 return false;
4297 }
4298 newsect->alignment_power = 3;
4299
4300 /* We allow more than three sections internally */
4301 return true;
4302 }
4303
4304 /* Copy any private info we understand from the input section
4305 to the output section. */
4306 static boolean
4307 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
4308 bfd *ibfd;
4309 asection *isection;
4310 bfd *obfd;
4311 asection *osection;
4312 {
4313 /* One day we may try to grok other private data. */
4314 if (ibfd->xvec->flavour != bfd_target_som_flavour
4315 || obfd->xvec->flavour != bfd_target_som_flavour
4316 || (!som_is_space (isection) && !som_is_subspace (isection)))
4317 return false;
4318
4319 som_section_data (osection)->copy_data
4320 = (struct som_copyable_section_data_struct *)
4321 bfd_zalloc (obfd, sizeof (struct som_copyable_section_data_struct));
4322 if (som_section_data (osection)->copy_data == NULL)
4323 {
4324 bfd_set_error (bfd_error_no_memory);
4325 return false;
4326 }
4327
4328 memcpy (som_section_data (osection)->copy_data,
4329 som_section_data (isection)->copy_data,
4330 sizeof (struct som_copyable_section_data_struct));
4331
4332 /* Reparent if necessary. */
4333 if (som_section_data (osection)->copy_data->container)
4334 som_section_data (osection)->copy_data->container =
4335 som_section_data (osection)->copy_data->container->output_section;
4336
4337 return true;
4338 }
4339
4340 /* Copy any private info we understand from the input bfd
4341 to the output bfd. */
4342
4343 static boolean
4344 som_bfd_copy_private_bfd_data (ibfd, obfd)
4345 bfd *ibfd, *obfd;
4346 {
4347 /* One day we may try to grok other private data. */
4348 if (ibfd->xvec->flavour != bfd_target_som_flavour
4349 || obfd->xvec->flavour != bfd_target_som_flavour)
4350 return false;
4351
4352 /* Allocate some memory to hold the data we need. */
4353 obj_som_exec_data (obfd) = (struct som_exec_data *)
4354 bfd_zalloc (obfd, sizeof (struct som_exec_data));
4355 if (obj_som_exec_data (obfd) == NULL)
4356 {
4357 bfd_set_error (bfd_error_no_memory);
4358 return false;
4359 }
4360
4361 /* Now copy the data. */
4362 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
4363 sizeof (struct som_exec_data));
4364
4365 return true;
4366 }
4367
4368 /* Set backend info for sections which can not be described
4369 in the BFD data structures. */
4370
4371 boolean
4372 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
4373 asection *section;
4374 int defined;
4375 int private;
4376 unsigned int sort_key;
4377 int spnum;
4378 {
4379 /* Allocate memory to hold the magic information. */
4380 if (som_section_data (section)->copy_data == NULL)
4381 {
4382 som_section_data (section)->copy_data
4383 = (struct som_copyable_section_data_struct *)
4384 bfd_zalloc (section->owner,
4385 sizeof (struct som_copyable_section_data_struct));
4386 if (som_section_data (section)->copy_data == NULL)
4387 {
4388 bfd_set_error (bfd_error_no_memory);
4389 return false;
4390 }
4391 }
4392 som_section_data (section)->copy_data->sort_key = sort_key;
4393 som_section_data (section)->copy_data->is_defined = defined;
4394 som_section_data (section)->copy_data->is_private = private;
4395 som_section_data (section)->copy_data->container = section;
4396 section->target_index = spnum;
4397 return true;
4398 }
4399
4400 /* Set backend info for subsections which can not be described
4401 in the BFD data structures. */
4402
4403 boolean
4404 bfd_som_set_subsection_attributes (section, container, access,
4405 sort_key, quadrant)
4406 asection *section;
4407 asection *container;
4408 int access;
4409 unsigned int sort_key;
4410 int quadrant;
4411 {
4412 /* Allocate memory to hold the magic information. */
4413 if (som_section_data (section)->copy_data == NULL)
4414 {
4415 som_section_data (section)->copy_data
4416 = (struct som_copyable_section_data_struct *)
4417 bfd_zalloc (section->owner,
4418 sizeof (struct som_copyable_section_data_struct));
4419 if (som_section_data (section)->copy_data == NULL)
4420 {
4421 bfd_set_error (bfd_error_no_memory);
4422 return false;
4423 }
4424 }
4425 som_section_data (section)->copy_data->sort_key = sort_key;
4426 som_section_data (section)->copy_data->access_control_bits = access;
4427 som_section_data (section)->copy_data->quadrant = quadrant;
4428 som_section_data (section)->copy_data->container = container;
4429 return true;
4430 }
4431
4432 /* Set the full SOM symbol type. SOM needs far more symbol information
4433 than any other object file format I'm aware of. It is mandatory
4434 to be able to know if a symbol is an entry point, millicode, data,
4435 code, absolute, storage request, or procedure label. If you get
4436 the symbol type wrong your program will not link. */
4437
4438 void
4439 bfd_som_set_symbol_type (symbol, type)
4440 asymbol *symbol;
4441 unsigned int type;
4442 {
4443 som_symbol_data (symbol)->som_type = type;
4444 }
4445
4446 /* Attach 64bits of unwind information to a symbol (which hopefully
4447 is a function of some kind!). It would be better to keep this
4448 in the R_ENTRY relocation, but there is not enough space. */
4449
4450 void
4451 bfd_som_attach_unwind_info (symbol, unwind_desc)
4452 asymbol *symbol;
4453 char *unwind_desc;
4454 {
4455 som_symbol_data (symbol)->unwind = unwind_desc;
4456 }
4457
4458 /* Attach an auxiliary header to the BFD backend so that it may be
4459 written into the object file. */
4460 boolean
4461 bfd_som_attach_aux_hdr (abfd, type, string)
4462 bfd *abfd;
4463 int type;
4464 char *string;
4465 {
4466 if (type == VERSION_AUX_ID)
4467 {
4468 int len = strlen (string);
4469 int pad = 0;
4470
4471 if (len % 4)
4472 pad = (4 - (len % 4));
4473 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
4474 bfd_zalloc (abfd, sizeof (struct aux_id)
4475 + sizeof (unsigned int) + len + pad);
4476 if (!obj_som_version_hdr (abfd))
4477 {
4478 bfd_set_error (bfd_error_no_memory);
4479 return false;
4480 }
4481 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
4482 obj_som_version_hdr (abfd)->header_id.length = len + pad;
4483 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
4484 obj_som_version_hdr (abfd)->string_length = len;
4485 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
4486 }
4487 else if (type == COPYRIGHT_AUX_ID)
4488 {
4489 int len = strlen (string);
4490 int pad = 0;
4491
4492 if (len % 4)
4493 pad = (4 - (len % 4));
4494 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
4495 bfd_zalloc (abfd, sizeof (struct aux_id)
4496 + sizeof (unsigned int) + len + pad);
4497 if (!obj_som_copyright_hdr (abfd))
4498 {
4499 bfd_set_error (bfd_error_no_error);
4500 return false;
4501 }
4502 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
4503 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
4504 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
4505 obj_som_copyright_hdr (abfd)->string_length = len;
4506 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
4507 }
4508 return true;
4509 }
4510
4511 static boolean
4512 som_set_section_contents (abfd, section, location, offset, count)
4513 bfd *abfd;
4514 sec_ptr section;
4515 PTR location;
4516 file_ptr offset;
4517 bfd_size_type count;
4518 {
4519 if (abfd->output_has_begun == false)
4520 {
4521 /* Set up fixed parts of the file, space, and subspace headers.
4522 Notify the world that output has begun. */
4523 som_prep_headers (abfd);
4524 abfd->output_has_begun = true;
4525 /* Start writing the object file. This include all the string
4526 tables, fixup streams, and other portions of the object file. */
4527 som_begin_writing (abfd);
4528 }
4529
4530 /* Only write subspaces which have "real" contents (eg. the contents
4531 are not generated at run time by the OS). */
4532 if (!som_is_subspace (section)
4533 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4534 return true;
4535
4536 /* Seek to the proper offset within the object file and write the
4537 data. */
4538 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
4539 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
4540 {
4541 bfd_set_error (bfd_error_system_call);
4542 return false;
4543 }
4544
4545 if (bfd_write ((PTR) location, 1, count, abfd) != count)
4546 {
4547 bfd_set_error (bfd_error_system_call);
4548 return false;
4549 }
4550 return true;
4551 }
4552
4553 static boolean
4554 som_set_arch_mach (abfd, arch, machine)
4555 bfd *abfd;
4556 enum bfd_architecture arch;
4557 unsigned long machine;
4558 {
4559 /* Allow any architecture to be supported by the SOM backend */
4560 return bfd_default_set_arch_mach (abfd, arch, machine);
4561 }
4562
4563 static boolean
4564 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4565 functionname_ptr, line_ptr)
4566 bfd *abfd;
4567 asection *section;
4568 asymbol **symbols;
4569 bfd_vma offset;
4570 CONST char **filename_ptr;
4571 CONST char **functionname_ptr;
4572 unsigned int *line_ptr;
4573 {
4574 fprintf (stderr, "som_find_nearest_line unimplemented\n");
4575 fflush (stderr);
4576 abort ();
4577 return (false);
4578 }
4579
4580 static int
4581 som_sizeof_headers (abfd, reloc)
4582 bfd *abfd;
4583 boolean reloc;
4584 {
4585 fprintf (stderr, "som_sizeof_headers unimplemented\n");
4586 fflush (stderr);
4587 abort ();
4588 return (0);
4589 }
4590
4591 /* Return the single-character symbol type corresponding to
4592 SOM section S, or '?' for an unknown SOM section. */
4593
4594 static char
4595 som_section_type (s)
4596 const char *s;
4597 {
4598 const struct section_to_type *t;
4599
4600 for (t = &stt[0]; t->section; t++)
4601 if (!strcmp (s, t->section))
4602 return t->type;
4603 return '?';
4604 }
4605
4606 static int
4607 som_decode_symclass (symbol)
4608 asymbol *symbol;
4609 {
4610 char c;
4611
4612 if (bfd_is_com_section (symbol->section))
4613 return 'C';
4614 if (symbol->section == &bfd_und_section)
4615 return 'U';
4616 if (symbol->section == &bfd_ind_section)
4617 return 'I';
4618 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
4619 return '?';
4620
4621 if (symbol->section == &bfd_abs_section)
4622 c = 'a';
4623 else if (symbol->section)
4624 c = som_section_type (symbol->section->name);
4625 else
4626 return '?';
4627 if (symbol->flags & BSF_GLOBAL)
4628 c = toupper (c);
4629 return c;
4630 }
4631
4632 /* Return information about SOM symbol SYMBOL in RET. */
4633
4634 static void
4635 som_get_symbol_info (ignore_abfd, symbol, ret)
4636 bfd *ignore_abfd;
4637 asymbol *symbol;
4638 symbol_info *ret;
4639 {
4640 ret->type = som_decode_symclass (symbol);
4641 if (ret->type != 'U')
4642 ret->value = symbol->value+symbol->section->vma;
4643 else
4644 ret->value = 0;
4645 ret->name = symbol->name;
4646 }
4647
4648 /* Count the number of symbols in the archive symbol table. Necessary
4649 so that we can allocate space for all the carsyms at once. */
4650
4651 static boolean
4652 som_bfd_count_ar_symbols (abfd, lst_header, count)
4653 bfd *abfd;
4654 struct lst_header *lst_header;
4655 symindex *count;
4656 {
4657 unsigned int i;
4658 unsigned int *hash_table = NULL;
4659 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4660
4661 hash_table =
4662 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4663 if (hash_table == NULL && lst_header->hash_size != 0)
4664 {
4665 bfd_set_error (bfd_error_no_memory);
4666 goto error_return;
4667 }
4668
4669 /* Don't forget to initialize the counter! */
4670 *count = 0;
4671
4672 /* Read in the hash table. The has table is an array of 32bit file offsets
4673 which point to the hash chains. */
4674 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4675 != lst_header->hash_size * 4)
4676 {
4677 bfd_set_error (bfd_error_system_call);
4678 goto error_return;
4679 }
4680
4681 /* Walk each chain counting the number of symbols found on that particular
4682 chain. */
4683 for (i = 0; i < lst_header->hash_size; i++)
4684 {
4685 struct lst_symbol_record lst_symbol;
4686
4687 /* An empty chain has zero as it's file offset. */
4688 if (hash_table[i] == 0)
4689 continue;
4690
4691 /* Seek to the first symbol in this hash chain. */
4692 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4693 {
4694 bfd_set_error (bfd_error_system_call);
4695 goto error_return;
4696 }
4697
4698 /* Read in this symbol and update the counter. */
4699 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4700 != sizeof (lst_symbol))
4701 {
4702 bfd_set_error (bfd_error_system_call);
4703 goto error_return;
4704 }
4705 (*count)++;
4706
4707 /* Now iterate through the rest of the symbols on this chain. */
4708 while (lst_symbol.next_entry)
4709 {
4710
4711 /* Seek to the next symbol. */
4712 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4713 < 0)
4714 {
4715 bfd_set_error (bfd_error_system_call);
4716 goto error_return;
4717 }
4718
4719 /* Read the symbol in and update the counter. */
4720 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4721 != sizeof (lst_symbol))
4722 {
4723 bfd_set_error (bfd_error_system_call);
4724 goto error_return;
4725 }
4726 (*count)++;
4727 }
4728 }
4729 if (hash_table != NULL)
4730 free (hash_table);
4731 return true;
4732
4733 error_return:
4734 if (hash_table != NULL)
4735 free (hash_table);
4736 return false;
4737 }
4738
4739 /* Fill in the canonical archive symbols (SYMS) from the archive described
4740 by ABFD and LST_HEADER. */
4741
4742 static boolean
4743 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
4744 bfd *abfd;
4745 struct lst_header *lst_header;
4746 carsym **syms;
4747 {
4748 unsigned int i, len;
4749 carsym *set = syms[0];
4750 unsigned int *hash_table = NULL;
4751 struct som_entry *som_dict = NULL;
4752 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4753
4754 hash_table =
4755 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4756 if (hash_table == NULL && lst_header->hash_size != 0)
4757 {
4758 bfd_set_error (bfd_error_no_memory);
4759 goto error_return;
4760 }
4761
4762 som_dict =
4763 (struct som_entry *) malloc (lst_header->module_count
4764 * sizeof (struct som_entry));
4765 if (som_dict == NULL && lst_header->module_count != 0)
4766 {
4767 bfd_set_error (bfd_error_no_memory);
4768 goto error_return;
4769 }
4770
4771 /* Read in the hash table. The has table is an array of 32bit file offsets
4772 which point to the hash chains. */
4773 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4774 != lst_header->hash_size * 4)
4775 {
4776 bfd_set_error (bfd_error_system_call);
4777 goto error_return;
4778 }
4779
4780 /* Seek to and read in the SOM dictionary. We will need this to fill
4781 in the carsym's filepos field. */
4782 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
4783 {
4784 bfd_set_error (bfd_error_system_call);
4785 goto error_return;
4786 }
4787
4788 if (bfd_read ((PTR) som_dict, lst_header->module_count,
4789 sizeof (struct som_entry), abfd)
4790 != lst_header->module_count * sizeof (struct som_entry))
4791 {
4792 bfd_set_error (bfd_error_system_call);
4793 goto error_return;
4794 }
4795
4796 /* Walk each chain filling in the carsyms as we go along. */
4797 for (i = 0; i < lst_header->hash_size; i++)
4798 {
4799 struct lst_symbol_record lst_symbol;
4800
4801 /* An empty chain has zero as it's file offset. */
4802 if (hash_table[i] == 0)
4803 continue;
4804
4805 /* Seek to and read the first symbol on the chain. */
4806 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4807 {
4808 bfd_set_error (bfd_error_system_call);
4809 goto error_return;
4810 }
4811
4812 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4813 != sizeof (lst_symbol))
4814 {
4815 bfd_set_error (bfd_error_system_call);
4816 goto error_return;
4817 }
4818
4819 /* Get the name of the symbol, first get the length which is stored
4820 as a 32bit integer just before the symbol.
4821
4822 One might ask why we don't just read in the entire string table
4823 and index into it. Well, according to the SOM ABI the string
4824 index can point *anywhere* in the archive to save space, so just
4825 using the string table would not be safe. */
4826 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4827 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4828 {
4829 bfd_set_error (bfd_error_system_call);
4830 goto error_return;
4831 }
4832
4833 if (bfd_read (&len, 1, 4, abfd) != 4)
4834 {
4835 bfd_set_error (bfd_error_system_call);
4836 goto error_return;
4837 }
4838
4839 /* Allocate space for the name and null terminate it too. */
4840 set->name = bfd_zalloc (abfd, len + 1);
4841 if (!set->name)
4842 {
4843 bfd_set_error (bfd_error_no_memory);
4844 goto error_return;
4845 }
4846 if (bfd_read (set->name, 1, len, abfd) != len)
4847 {
4848 bfd_set_error (bfd_error_system_call);
4849 goto error_return;
4850 }
4851 set->name[len] = 0;
4852
4853 /* Fill in the file offset. Note that the "location" field points
4854 to the SOM itself, not the ar_hdr in front of it. */
4855 set->file_offset = som_dict[lst_symbol.som_index].location
4856 - sizeof (struct ar_hdr);
4857
4858 /* Go to the next symbol. */
4859 set++;
4860
4861 /* Iterate through the rest of the chain. */
4862 while (lst_symbol.next_entry)
4863 {
4864 /* Seek to the next symbol and read it in. */
4865 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4866 < 0)
4867 {
4868 bfd_set_error (bfd_error_system_call);
4869 goto error_return;
4870 }
4871
4872 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4873 != sizeof (lst_symbol))
4874 {
4875 bfd_set_error (bfd_error_system_call);
4876 goto error_return;
4877 }
4878
4879 /* Seek to the name length & string and read them in. */
4880 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4881 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4882 {
4883 bfd_set_error (bfd_error_system_call);
4884 goto error_return;
4885 }
4886
4887 if (bfd_read (&len, 1, 4, abfd) != 4)
4888 {
4889 bfd_set_error (bfd_error_system_call);
4890 goto error_return;
4891 }
4892
4893 /* Allocate space for the name and null terminate it too. */
4894 set->name = bfd_zalloc (abfd, len + 1);
4895 if (!set->name)
4896 {
4897 bfd_set_error (bfd_error_no_memory);
4898 goto error_return;
4899 }
4900 if (bfd_read (set->name, 1, len, abfd) != len)
4901 {
4902 bfd_set_error (bfd_error_system_call);
4903 goto error_return;
4904 }
4905 set->name[len] = 0;
4906
4907 /* Fill in the file offset. Note that the "location" field points
4908 to the SOM itself, not the ar_hdr in front of it. */
4909 set->file_offset = som_dict[lst_symbol.som_index].location
4910 - sizeof (struct ar_hdr);
4911
4912 /* Go on to the next symbol. */
4913 set++;
4914 }
4915 }
4916 /* If we haven't died by now, then we successfully read the entire
4917 archive symbol table. */
4918 if (hash_table != NULL)
4919 free (hash_table);
4920 if (som_dict != NULL)
4921 free (som_dict);
4922 return true;
4923
4924 error_return:
4925 if (hash_table != NULL)
4926 free (hash_table);
4927 if (som_dict != NULL)
4928 free (som_dict);
4929 return false;
4930 }
4931
4932 /* Read in the LST from the archive. */
4933 static boolean
4934 som_slurp_armap (abfd)
4935 bfd *abfd;
4936 {
4937 struct lst_header lst_header;
4938 struct ar_hdr ar_header;
4939 unsigned int parsed_size;
4940 struct artdata *ardata = bfd_ardata (abfd);
4941 char nextname[17];
4942 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
4943
4944 /* Special cases. */
4945 if (i == 0)
4946 return true;
4947 if (i != 16)
4948 return false;
4949
4950 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
4951 {
4952 bfd_set_error (bfd_error_system_call);
4953 return false;
4954 }
4955
4956 /* For archives without .o files there is no symbol table. */
4957 if (strncmp (nextname, "/ ", 16))
4958 {
4959 bfd_has_map (abfd) = false;
4960 return true;
4961 }
4962
4963 /* Read in and sanity check the archive header. */
4964 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
4965 != sizeof (struct ar_hdr))
4966 {
4967 bfd_set_error (bfd_error_system_call);
4968 return false;
4969 }
4970
4971 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
4972 {
4973 bfd_set_error (bfd_error_malformed_archive);
4974 return false;
4975 }
4976
4977 /* How big is the archive symbol table entry? */
4978 errno = 0;
4979 parsed_size = strtol (ar_header.ar_size, NULL, 10);
4980 if (errno != 0)
4981 {
4982 bfd_set_error (bfd_error_malformed_archive);
4983 return false;
4984 }
4985
4986 /* Save off the file offset of the first real user data. */
4987 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
4988
4989 /* Read in the library symbol table. We'll make heavy use of this
4990 in just a minute. */
4991 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
4992 != sizeof (struct lst_header))
4993 {
4994 bfd_set_error (bfd_error_system_call);
4995 return false;
4996 }
4997
4998 /* Sanity check. */
4999 if (lst_header.a_magic != LIBMAGIC)
5000 {
5001 bfd_set_error (bfd_error_malformed_archive);
5002 return false;
5003 }
5004
5005 /* Count the number of symbols in the library symbol table. */
5006 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
5007 == false)
5008 return false;
5009
5010 /* Get back to the start of the library symbol table. */
5011 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
5012 + sizeof (struct lst_header), SEEK_SET) < 0)
5013 {
5014 bfd_set_error (bfd_error_system_call);
5015 return false;
5016 }
5017
5018 /* Initializae the cache and allocate space for the library symbols. */
5019 ardata->cache = 0;
5020 ardata->symdefs = (carsym *) bfd_alloc (abfd,
5021 (ardata->symdef_count
5022 * sizeof (carsym)));
5023 if (!ardata->symdefs)
5024 {
5025 bfd_set_error (bfd_error_no_memory);
5026 return false;
5027 }
5028
5029 /* Now fill in the canonical archive symbols. */
5030 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
5031 == false)
5032 return false;
5033
5034 /* Seek back to the "first" file in the archive. Note the "first"
5035 file may be the extended name table. */
5036 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) < 0)
5037 {
5038 bfd_set_error (bfd_error_system_call);
5039 return false;
5040 }
5041
5042 /* Notify the generic archive code that we have a symbol map. */
5043 bfd_has_map (abfd) = true;
5044 return true;
5045 }
5046
5047 /* Begin preparing to write a SOM library symbol table.
5048
5049 As part of the prep work we need to determine the number of symbols
5050 and the size of the associated string section. */
5051
5052 static boolean
5053 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
5054 bfd *abfd;
5055 unsigned int *num_syms, *stringsize;
5056 {
5057 bfd *curr_bfd = abfd->archive_head;
5058
5059 /* Some initialization. */
5060 *num_syms = 0;
5061 *stringsize = 0;
5062
5063 /* Iterate over each BFD within this archive. */
5064 while (curr_bfd != NULL)
5065 {
5066 unsigned int curr_count, i;
5067 som_symbol_type *sym;
5068
5069 /* Make sure the symbol table has been read, then snag a pointer
5070 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5071 but doing so avoids allocating lots of extra memory. */
5072 if (som_slurp_symbol_table (curr_bfd) == false)
5073 return false;
5074
5075 sym = obj_som_symtab (curr_bfd);
5076 curr_count = bfd_get_symcount (curr_bfd);
5077
5078 /* Examine each symbol to determine if it belongs in the
5079 library symbol table. */
5080 for (i = 0; i < curr_count; i++, sym++)
5081 {
5082 struct som_misc_symbol_info info;
5083
5084 /* Derive SOM information from the BFD symbol. */
5085 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5086
5087 /* Should we include this symbol? */
5088 if (info.symbol_type == ST_NULL
5089 || info.symbol_type == ST_SYM_EXT
5090 || info.symbol_type == ST_ARG_EXT)
5091 continue;
5092
5093 /* Only global symbols and unsatisfied commons. */
5094 if (info.symbol_scope != SS_UNIVERSAL
5095 && info.symbol_type != ST_STORAGE)
5096 continue;
5097
5098 /* Do no include undefined symbols. */
5099 if (sym->symbol.section == &bfd_und_section)
5100 continue;
5101
5102 /* Bump the various counters, being careful to honor
5103 alignment considerations in the string table. */
5104 (*num_syms)++;
5105 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5106 while (*stringsize % 4)
5107 (*stringsize)++;
5108 }
5109
5110 curr_bfd = curr_bfd->next;
5111 }
5112 return true;
5113 }
5114
5115 /* Hash a symbol name based on the hashing algorithm presented in the
5116 SOM ABI. */
5117 static unsigned int
5118 som_bfd_ar_symbol_hash (symbol)
5119 asymbol *symbol;
5120 {
5121 unsigned int len = strlen (symbol->name);
5122
5123 /* Names with length 1 are special. */
5124 if (len == 1)
5125 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5126
5127 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5128 | (symbol->name[len-2] << 8) | symbol->name[len-1];
5129 }
5130
5131 static CONST char *
5132 normalize (file)
5133 CONST char *file;
5134 {
5135 CONST char *filename = strrchr (file, '/');
5136
5137 if (filename != NULL)
5138 filename++;
5139 else
5140 filename = file;
5141 return filename;
5142 }
5143
5144 /* Do the bulk of the work required to write the SOM library
5145 symbol table. */
5146
5147 static boolean
5148 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst)
5149 bfd *abfd;
5150 unsigned int nsyms, string_size;
5151 struct lst_header lst;
5152 {
5153 file_ptr lst_filepos;
5154 char *strings = NULL, *p;
5155 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5156 bfd *curr_bfd;
5157 unsigned int *hash_table = NULL;
5158 struct som_entry *som_dict = NULL;
5159 struct lst_symbol_record **last_hash_entry = NULL;
5160 unsigned int curr_som_offset, som_index, extended_name_length = 0;
5161 unsigned int maxname = abfd->xvec->ar_max_namelen;
5162
5163 hash_table =
5164 (unsigned int *) malloc (lst.hash_size * sizeof (unsigned int));
5165 if (hash_table == NULL && lst.hash_size != 0)
5166 {
5167 bfd_set_error (bfd_error_no_memory);
5168 goto error_return;
5169 }
5170 som_dict =
5171 (struct som_entry *) malloc (lst.module_count
5172 * sizeof (struct som_entry));
5173 if (som_dict == NULL && lst.module_count != 0)
5174 {
5175 bfd_set_error (bfd_error_no_memory);
5176 goto error_return;
5177 }
5178
5179 last_hash_entry =
5180 ((struct lst_symbol_record **)
5181 malloc (lst.hash_size * sizeof (struct lst_symbol_record *)));
5182 if (last_hash_entry == NULL && lst.hash_size != 0)
5183 {
5184 bfd_set_error (bfd_error_no_memory);
5185 goto error_return;
5186 }
5187
5188 /* Lots of fields are file positions relative to the start
5189 of the lst record. So save its location. */
5190 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5191
5192 /* Some initialization. */
5193 memset (hash_table, 0, 4 * lst.hash_size);
5194 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
5195 memset (last_hash_entry, 0,
5196 lst.hash_size * sizeof (struct lst_symbol_record *));
5197
5198 /* Symbols have som_index fields, so we have to keep track of the
5199 index of each SOM in the archive.
5200
5201 The SOM dictionary has (among other things) the absolute file
5202 position for the SOM which a particular dictionary entry
5203 describes. We have to compute that information as we iterate
5204 through the SOMs/symbols. */
5205 som_index = 0;
5206 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5207
5208 /* Yow! We have to know the size of the extended name table
5209 too. */
5210 for (curr_bfd = abfd->archive_head;
5211 curr_bfd != NULL;
5212 curr_bfd = curr_bfd->next)
5213 {
5214 CONST char *normal = normalize (curr_bfd->filename);
5215 unsigned int thislen;
5216
5217 if (!normal)
5218 {
5219 bfd_set_error (bfd_error_no_memory);
5220 return false;
5221 }
5222 thislen = strlen (normal);
5223 if (thislen > maxname)
5224 extended_name_length += thislen + 1;
5225 }
5226
5227 /* Make room for the archive header and the contents of the
5228 extended string table. */
5229 if (extended_name_length)
5230 curr_som_offset += extended_name_length + sizeof (struct ar_hdr);
5231
5232 /* Make sure we're properly aligned. */
5233 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5234
5235 /* FIXME should be done with buffers just like everything else... */
5236 lst_syms = malloc (nsyms * sizeof (struct lst_symbol_record));
5237 if (lst_syms == NULL && nsyms != 0)
5238 {
5239 bfd_set_error (bfd_error_no_memory);
5240 goto error_return;
5241 }
5242 strings = malloc (string_size);
5243 if (strings == NULL && string_size != 0)
5244 {
5245 bfd_set_error (bfd_error_no_memory);
5246 goto error_return;
5247 }
5248
5249 p = strings;
5250 curr_lst_sym = lst_syms;
5251
5252 curr_bfd = abfd->archive_head;
5253 while (curr_bfd != NULL)
5254 {
5255 unsigned int curr_count, i;
5256 som_symbol_type *sym;
5257
5258 /* Make sure the symbol table has been read, then snag a pointer
5259 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5260 but doing so avoids allocating lots of extra memory. */
5261 if (som_slurp_symbol_table (curr_bfd) == false)
5262 goto error_return;
5263
5264 sym = obj_som_symtab (curr_bfd);
5265 curr_count = bfd_get_symcount (curr_bfd);
5266
5267 for (i = 0; i < curr_count; i++, sym++)
5268 {
5269 struct som_misc_symbol_info info;
5270
5271 /* Derive SOM information from the BFD symbol. */
5272 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5273
5274 /* Should we include this symbol? */
5275 if (info.symbol_type == ST_NULL
5276 || info.symbol_type == ST_SYM_EXT
5277 || info.symbol_type == ST_ARG_EXT)
5278 continue;
5279
5280 /* Only global symbols and unsatisfied commons. */
5281 if (info.symbol_scope != SS_UNIVERSAL
5282 && info.symbol_type != ST_STORAGE)
5283 continue;
5284
5285 /* Do no include undefined symbols. */
5286 if (sym->symbol.section == &bfd_und_section)
5287 continue;
5288
5289 /* If this is the first symbol from this SOM, then update
5290 the SOM dictionary too. */
5291 if (som_dict[som_index].location == 0)
5292 {
5293 som_dict[som_index].location = curr_som_offset;
5294 som_dict[som_index].length = arelt_size (curr_bfd);
5295 }
5296
5297 /* Fill in the lst symbol record. */
5298 curr_lst_sym->hidden = 0;
5299 curr_lst_sym->secondary_def = 0;
5300 curr_lst_sym->symbol_type = info.symbol_type;
5301 curr_lst_sym->symbol_scope = info.symbol_scope;
5302 curr_lst_sym->check_level = 0;
5303 curr_lst_sym->must_qualify = 0;
5304 curr_lst_sym->initially_frozen = 0;
5305 curr_lst_sym->memory_resident = 0;
5306 curr_lst_sym->is_common = (sym->symbol.section == &bfd_com_section);
5307 curr_lst_sym->dup_common = 0;
5308 curr_lst_sym->xleast = 0;
5309 curr_lst_sym->arg_reloc = info.arg_reloc;
5310 curr_lst_sym->name.n_strx = p - strings + 4;
5311 curr_lst_sym->qualifier_name.n_strx = 0;
5312 curr_lst_sym->symbol_info = info.symbol_info;
5313 curr_lst_sym->symbol_value = info.symbol_value;
5314 curr_lst_sym->symbol_descriptor = 0;
5315 curr_lst_sym->reserved = 0;
5316 curr_lst_sym->som_index = som_index;
5317 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
5318 curr_lst_sym->next_entry = 0;
5319
5320 /* Insert into the hash table. */
5321 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
5322 {
5323 struct lst_symbol_record *tmp;
5324
5325 /* There is already something at the head of this hash chain,
5326 so tack this symbol onto the end of the chain. */
5327 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
5328 tmp->next_entry
5329 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5330 + lst.hash_size * 4
5331 + lst.module_count * sizeof (struct som_entry)
5332 + sizeof (struct lst_header);
5333 }
5334 else
5335 {
5336 /* First entry in this hash chain. */
5337 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
5338 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5339 + lst.hash_size * 4
5340 + lst.module_count * sizeof (struct som_entry)
5341 + sizeof (struct lst_header);
5342 }
5343
5344 /* Keep track of the last symbol we added to this chain so we can
5345 easily update its next_entry pointer. */
5346 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
5347 = curr_lst_sym;
5348
5349
5350 /* Update the string table. */
5351 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
5352 p += 4;
5353 strcpy (p, sym->symbol.name);
5354 p += strlen (sym->symbol.name) + 1;
5355 while ((int)p % 4)
5356 {
5357 bfd_put_8 (abfd, 0, p);
5358 p++;
5359 }
5360
5361 /* Head to the next symbol. */
5362 curr_lst_sym++;
5363 }
5364
5365 /* Keep track of where each SOM will finally reside; then look
5366 at the next BFD. */
5367 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
5368 curr_bfd = curr_bfd->next;
5369 som_index++;
5370 }
5371
5372 /* Now scribble out the hash table. */
5373 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
5374 != lst.hash_size * 4)
5375 {
5376 bfd_set_error (bfd_error_system_call);
5377 goto error_return;
5378 }
5379
5380 /* Then the SOM dictionary. */
5381 if (bfd_write ((PTR) som_dict, lst.module_count,
5382 sizeof (struct som_entry), abfd)
5383 != lst.module_count * sizeof (struct som_entry))
5384 {
5385 bfd_set_error (bfd_error_system_call);
5386 goto error_return;
5387 }
5388
5389 /* The library symbols. */
5390 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
5391 != nsyms * sizeof (struct lst_symbol_record))
5392 {
5393 bfd_set_error (bfd_error_system_call);
5394 goto error_return;
5395 }
5396
5397 /* And finally the strings. */
5398 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
5399 {
5400 bfd_set_error (bfd_error_system_call);
5401 goto error_return;
5402 }
5403
5404 if (hash_table != NULL)
5405 free (hash_table);
5406 if (som_dict != NULL)
5407 free (som_dict);
5408 if (last_hash_entry != NULL)
5409 free (last_hash_entry);
5410 if (lst_syms != NULL)
5411 free (lst_syms);
5412 if (strings != NULL)
5413 free (strings);
5414 return true;
5415
5416 error_return:
5417 if (hash_table != NULL)
5418 free (hash_table);
5419 if (som_dict != NULL)
5420 free (som_dict);
5421 if (last_hash_entry != NULL)
5422 free (last_hash_entry);
5423 if (lst_syms != NULL)
5424 free (lst_syms);
5425 if (strings != NULL)
5426 free (strings);
5427
5428 return false;
5429 }
5430
5431 /* Write out the LST for the archive.
5432
5433 You'll never believe this is really how armaps are handled in SOM... */
5434
5435 static boolean
5436 som_write_armap (abfd)
5437 bfd *abfd;
5438 {
5439 bfd *curr_bfd;
5440 struct stat statbuf;
5441 unsigned int i, lst_size, nsyms, stringsize;
5442 struct ar_hdr hdr;
5443 struct lst_header lst;
5444 int *p;
5445
5446 /* We'll use this for the archive's date and mode later. */
5447 if (stat (abfd->filename, &statbuf) != 0)
5448 {
5449 bfd_set_error (bfd_error_system_call);
5450 return false;
5451 }
5452 /* Fudge factor. */
5453 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
5454
5455 /* Account for the lst header first. */
5456 lst_size = sizeof (struct lst_header);
5457
5458 /* Start building the LST header. */
5459 lst.system_id = HP9000S800_ID;
5460 lst.a_magic = LIBMAGIC;
5461 lst.version_id = VERSION_ID;
5462 lst.file_time.secs = 0;
5463 lst.file_time.nanosecs = 0;
5464
5465 lst.hash_loc = lst_size;
5466 lst.hash_size = SOM_LST_HASH_SIZE;
5467
5468 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
5469 lst_size += 4 * SOM_LST_HASH_SIZE;
5470
5471 /* We need to count the number of SOMs in this archive. */
5472 curr_bfd = abfd->archive_head;
5473 lst.module_count = 0;
5474 while (curr_bfd != NULL)
5475 {
5476 lst.module_count++;
5477 curr_bfd = curr_bfd->next;
5478 }
5479 lst.module_limit = lst.module_count;
5480 lst.dir_loc = lst_size;
5481 lst_size += sizeof (struct som_entry) * lst.module_count;
5482
5483 /* We don't support import/export tables, auxiliary headers,
5484 or free lists yet. Make the linker work a little harder
5485 to make our life easier. */
5486
5487 lst.export_loc = 0;
5488 lst.export_count = 0;
5489 lst.import_loc = 0;
5490 lst.aux_loc = 0;
5491 lst.aux_size = 0;
5492
5493 /* Count how many symbols we will have on the hash chains and the
5494 size of the associated string table. */
5495 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
5496 return false;
5497
5498 lst_size += sizeof (struct lst_symbol_record) * nsyms;
5499
5500 /* For the string table. One day we might actually use this info
5501 to avoid small seeks/reads when reading archives. */
5502 lst.string_loc = lst_size;
5503 lst.string_size = stringsize;
5504 lst_size += stringsize;
5505
5506 /* SOM ABI says this must be zero. */
5507 lst.free_list = 0;
5508 lst.file_end = lst_size;
5509
5510 /* Compute the checksum. Must happen after the entire lst header
5511 has filled in. */
5512 p = (int *)&lst;
5513 lst.checksum = 0;
5514 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
5515 lst.checksum ^= *p++;
5516
5517 sprintf (hdr.ar_name, "/ ");
5518 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
5519 sprintf (hdr.ar_uid, "%d", getuid ());
5520 sprintf (hdr.ar_gid, "%d", getgid ());
5521 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
5522 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
5523 hdr.ar_fmag[0] = '`';
5524 hdr.ar_fmag[1] = '\012';
5525
5526 /* Turn any nulls into spaces. */
5527 for (i = 0; i < sizeof (struct ar_hdr); i++)
5528 if (((char *) (&hdr))[i] == '\0')
5529 (((char *) (&hdr))[i]) = ' ';
5530
5531 /* Scribble out the ar header. */
5532 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
5533 != sizeof (struct ar_hdr))
5534 {
5535 bfd_set_error (bfd_error_system_call);
5536 return false;
5537 }
5538
5539 /* Now scribble out the lst header. */
5540 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
5541 != sizeof (struct lst_header))
5542 {
5543 bfd_set_error (bfd_error_system_call);
5544 return false;
5545 }
5546
5547 /* Build and write the armap. */
5548 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst) == false)
5549 return false;
5550
5551 /* Done. */
5552 return true;
5553 }
5554
5555 /* End of miscellaneous support functions. */
5556
5557 #define som_bfd_debug_info_start bfd_void
5558 #define som_bfd_debug_info_end bfd_void
5559 #define som_bfd_debug_info_accumulate (PROTO(void,(*),(bfd*, struct sec *))) bfd_void
5560
5561 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
5562 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
5563 #define som_truncate_arname bfd_bsd_truncate_arname
5564 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
5565
5566 #define som_get_lineno (struct lineno_cache_entry *(*)())bfd_nullvoidptr
5567 #define som_close_and_cleanup bfd_generic_close_and_cleanup
5568 #define som_get_section_contents bfd_generic_get_section_contents
5569
5570 #define som_bfd_get_relocated_section_contents \
5571 bfd_generic_get_relocated_section_contents
5572 #define som_bfd_relax_section bfd_generic_relax_section
5573 #define som_bfd_make_debug_symbol \
5574 ((asymbol *(*) PARAMS ((bfd *, void *, unsigned long))) bfd_nullvoidptr)
5575 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
5576 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
5577 #define som_bfd_final_link _bfd_generic_final_link
5578
5579 /* Core file support is in the hpux-core backend. */
5580 #define som_core_file_failing_command _bfd_dummy_core_file_failing_command
5581 #define som_core_file_failing_signal _bfd_dummy_core_file_failing_signal
5582 #define som_core_file_matches_executable_p _bfd_dummy_core_file_matches_executable_p
5583
5584 bfd_target som_vec =
5585 {
5586 "som", /* name */
5587 bfd_target_som_flavour,
5588 true, /* target byte order */
5589 true, /* target headers byte order */
5590 (HAS_RELOC | EXEC_P | /* object flags */
5591 HAS_LINENO | HAS_DEBUG |
5592 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
5593 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
5594 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
5595
5596 /* leading_symbol_char: is the first char of a user symbol
5597 predictable, and if so what is it */
5598 0,
5599 '/', /* ar_pad_char */
5600 14, /* ar_max_namelen */
5601 3, /* minimum alignment */
5602 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5603 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5604 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
5605 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5606 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5607 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
5608 {_bfd_dummy_target,
5609 som_object_p, /* bfd_check_format */
5610 bfd_generic_archive_p,
5611 _bfd_dummy_target
5612 },
5613 {
5614 bfd_false,
5615 som_mkobject,
5616 _bfd_generic_mkarchive,
5617 bfd_false
5618 },
5619 {
5620 bfd_false,
5621 som_write_object_contents,
5622 _bfd_write_archive_contents,
5623 bfd_false,
5624 },
5625 #undef som
5626 JUMP_TABLE (som),
5627 (PTR) 0
5628 };
5629
5630 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */