* som.c (som_reloc_skip): Correct off-by-one error for 4-byte
[binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
3
4 Contributed by the Center for Software Science at the
5 University of Utah (pa-gdb-bugs@cs.utah.edu).
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23 #include "bfd.h"
24 #include "sysdep.h"
25
26 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)
27
28 #include "libbfd.h"
29 #include "som.h"
30
31 #include <stdio.h>
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <signal.h>
35 #include <machine/reg.h>
36 #include <sys/file.h>
37 #include <errno.h>
38
39 /* Magic not defined in standard HP-UX header files until 8.0 */
40
41 #ifndef CPU_PA_RISC1_0
42 #define CPU_PA_RISC1_0 0x20B
43 #endif /* CPU_PA_RISC1_0 */
44
45 #ifndef CPU_PA_RISC1_1
46 #define CPU_PA_RISC1_1 0x210
47 #endif /* CPU_PA_RISC1_1 */
48
49 #ifndef _PA_RISC1_0_ID
50 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
51 #endif /* _PA_RISC1_0_ID */
52
53 #ifndef _PA_RISC1_1_ID
54 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
55 #endif /* _PA_RISC1_1_ID */
56
57 #ifndef _PA_RISC_MAXID
58 #define _PA_RISC_MAXID 0x2FF
59 #endif /* _PA_RISC_MAXID */
60
61 #ifndef _PA_RISC_ID
62 #define _PA_RISC_ID(__m_num) \
63 (((__m_num) == _PA_RISC1_0_ID) || \
64 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
65 #endif /* _PA_RISC_ID */
66
67
68 /* HIUX in it's infinite stupidity changed the names for several "well
69 known" constants. Work around such braindamage. Try the HPUX version
70 first, then the HIUX version, and finally provide a default. */
71 #ifdef HPUX_AUX_ID
72 #define EXEC_AUX_ID HPUX_AUX_ID
73 #endif
74
75 #if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID)
76 #define EXEC_AUX_ID HIUX_AUX_ID
77 #endif
78
79 #ifndef EXEC_AUX_ID
80 #define EXEC_AUX_ID 0
81 #endif
82
83 /* Size (in chars) of the temporary buffers used during fixup and string
84 table writes. */
85
86 #define SOM_TMP_BUFSIZE 8192
87
88 /* Size of the hash table in archives. */
89 #define SOM_LST_HASH_SIZE 31
90
91 /* Max number of SOMs to be found in an archive. */
92 #define SOM_LST_MODULE_LIMIT 1024
93
94 /* Generic alignment macro. */
95 #define SOM_ALIGN(val, alignment) \
96 (((val) + (alignment) - 1) & ~((alignment) - 1))
97
98 /* SOM allows any one of the four previous relocations to be reused
99 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
100 relocations are always a single byte, using a R_PREV_FIXUP instead
101 of some multi-byte relocation makes object files smaller.
102
103 Note one side effect of using a R_PREV_FIXUP is the relocation that
104 is being repeated moves to the front of the queue. */
105 struct reloc_queue
106 {
107 unsigned char *reloc;
108 unsigned int size;
109 } reloc_queue[4];
110
111 /* This fully describes the symbol types which may be attached to
112 an EXPORT or IMPORT directive. Only SOM uses this formation
113 (ELF has no need for it). */
114 typedef enum
115 {
116 SYMBOL_TYPE_UNKNOWN,
117 SYMBOL_TYPE_ABSOLUTE,
118 SYMBOL_TYPE_CODE,
119 SYMBOL_TYPE_DATA,
120 SYMBOL_TYPE_ENTRY,
121 SYMBOL_TYPE_MILLICODE,
122 SYMBOL_TYPE_PLABEL,
123 SYMBOL_TYPE_PRI_PROG,
124 SYMBOL_TYPE_SEC_PROG,
125 } pa_symbol_type;
126
127 struct section_to_type
128 {
129 char *section;
130 char type;
131 };
132
133 /* Assorted symbol information that needs to be derived from the BFD symbol
134 and/or the BFD backend private symbol data. */
135 struct som_misc_symbol_info
136 {
137 unsigned int symbol_type;
138 unsigned int symbol_scope;
139 unsigned int arg_reloc;
140 unsigned int symbol_info;
141 unsigned int symbol_value;
142 };
143
144 /* Forward declarations */
145
146 static boolean som_mkobject PARAMS ((bfd *));
147 static const bfd_target * som_object_setup PARAMS ((bfd *,
148 struct header *,
149 struct som_exec_auxhdr *));
150 static boolean setup_sections PARAMS ((bfd *, struct header *));
151 static const bfd_target * som_object_p PARAMS ((bfd *));
152 static boolean som_write_object_contents PARAMS ((bfd *));
153 static boolean som_slurp_string_table PARAMS ((bfd *));
154 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
155 static long som_get_symtab_upper_bound PARAMS ((bfd *));
156 static long som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
157 arelent **, asymbol **));
158 static long som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
159 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
160 arelent *, asection *,
161 asymbol **, boolean));
162 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
163 asymbol **, boolean));
164 static long som_get_symtab PARAMS ((bfd *, asymbol **));
165 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
166 static void som_print_symbol PARAMS ((bfd *, PTR,
167 asymbol *, bfd_print_symbol_type));
168 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
169 static boolean som_bfd_copy_private_section_data PARAMS ((bfd *, asection *,
170 bfd *, asection *));
171 static boolean som_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
172 static boolean som_bfd_is_local_label PARAMS ((bfd *, asymbol *));
173 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
174 file_ptr, bfd_size_type));
175 static boolean som_get_section_contents PARAMS ((bfd *, sec_ptr, PTR,
176 file_ptr, bfd_size_type));
177 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
178 unsigned long));
179 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
180 asymbol **, bfd_vma,
181 CONST char **,
182 CONST char **,
183 unsigned int *));
184 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
185 static asection * bfd_section_from_som_symbol PARAMS ((bfd *,
186 struct symbol_dictionary_record *));
187 static int log2 PARAMS ((unsigned int));
188 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
189 asymbol *, PTR,
190 asection *, bfd *,
191 char **));
192 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
193 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
194 struct reloc_queue *));
195 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
196 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
197 struct reloc_queue *));
198 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
199 unsigned int,
200 struct reloc_queue *));
201
202 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
203 unsigned char *, unsigned int *,
204 struct reloc_queue *));
205 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
206 unsigned int *,
207 struct reloc_queue *));
208 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
209 unsigned int *,
210 arelent *, int,
211 struct reloc_queue *));
212 static unsigned long som_count_spaces PARAMS ((bfd *));
213 static unsigned long som_count_subspaces PARAMS ((bfd *));
214 static int compare_syms PARAMS ((const void *, const void *));
215 static unsigned long som_compute_checksum PARAMS ((bfd *));
216 static boolean som_prep_headers PARAMS ((bfd *));
217 static int som_sizeof_headers PARAMS ((bfd *, boolean));
218 static boolean som_write_headers PARAMS ((bfd *));
219 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
220 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
221 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
222 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
223 unsigned int *));
224 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
225 asymbol **, unsigned int,
226 unsigned *));
227 static boolean som_begin_writing PARAMS ((bfd *));
228 static const reloc_howto_type * som_bfd_reloc_type_lookup
229 PARAMS ((bfd *, bfd_reloc_code_real_type));
230 static char som_section_type PARAMS ((const char *));
231 static int som_decode_symclass PARAMS ((asymbol *));
232 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
233 symindex *));
234
235 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
236 carsym **syms));
237 static boolean som_slurp_armap PARAMS ((bfd *));
238 static boolean som_write_armap PARAMS ((bfd *, unsigned int, struct orl *,
239 unsigned int, int));
240 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
241 struct som_misc_symbol_info *));
242 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
243 unsigned int *));
244 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
245 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
246 unsigned int,
247 struct lst_header));
248 static CONST char *normalize PARAMS ((CONST char *file));
249 static boolean som_is_space PARAMS ((asection *));
250 static boolean som_is_subspace PARAMS ((asection *));
251 static boolean som_is_container PARAMS ((asection *, asection *));
252 static boolean som_bfd_free_cached_info PARAMS ((bfd *));
253
254 /* Map SOM section names to POSIX/BSD single-character symbol types.
255
256 This table includes all the standard subspaces as defined in the
257 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
258 some reason was left out, and sections specific to embedded stabs. */
259
260 static const struct section_to_type stt[] = {
261 {"$TEXT$", 't'},
262 {"$SHLIB_INFO$", 't'},
263 {"$MILLICODE$", 't'},
264 {"$LIT$", 't'},
265 {"$CODE$", 't'},
266 {"$UNWIND_START$", 't'},
267 {"$UNWIND$", 't'},
268 {"$PRIVATE$", 'd'},
269 {"$PLT$", 'd'},
270 {"$SHLIB_DATA$", 'd'},
271 {"$DATA$", 'd'},
272 {"$SHORTDATA$", 'g'},
273 {"$DLT$", 'd'},
274 {"$GLOBAL$", 'g'},
275 {"$SHORTBSS$", 's'},
276 {"$BSS$", 'b'},
277 {"$GDB_STRINGS$", 'N'},
278 {"$GDB_SYMBOLS$", 'N'},
279 {0, 0}
280 };
281
282 /* About the relocation formatting table...
283
284 There are 256 entries in the table, one for each possible
285 relocation opcode available in SOM. We index the table by
286 the relocation opcode. The names and operations are those
287 defined by a.out_800 (4).
288
289 Right now this table is only used to count and perform minimal
290 processing on relocation streams so that they can be internalized
291 into BFD and symbolically printed by utilities. To make actual use
292 of them would be much more difficult, BFD's concept of relocations
293 is far too simple to handle SOM relocations. The basic assumption
294 that a relocation can be completely processed independent of other
295 relocations before an object file is written is invalid for SOM.
296
297 The SOM relocations are meant to be processed as a stream, they
298 specify copying of data from the input section to the output section
299 while possibly modifying the data in some manner. They also can
300 specify that a variable number of zeros or uninitialized data be
301 inserted on in the output segment at the current offset. Some
302 relocations specify that some previous relocation be re-applied at
303 the current location in the input/output sections. And finally a number
304 of relocations have effects on other sections (R_ENTRY, R_EXIT,
305 R_UNWIND_AUX and a variety of others). There isn't even enough room
306 in the BFD relocation data structure to store enough information to
307 perform all the relocations.
308
309 Each entry in the table has three fields.
310
311 The first entry is an index into this "class" of relocations. This
312 index can then be used as a variable within the relocation itself.
313
314 The second field is a format string which actually controls processing
315 of the relocation. It uses a simple postfix machine to do calculations
316 based on variables/constants found in the string and the relocation
317 stream.
318
319 The third field specifys whether or not this relocation may use
320 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
321 stored in the instruction.
322
323 Variables:
324
325 L = input space byte count
326 D = index into class of relocations
327 M = output space byte count
328 N = statement number (unused?)
329 O = stack operation
330 R = parameter relocation bits
331 S = symbol index
332 U = 64 bits of stack unwind and frame size info (we only keep 32 bits)
333 V = a literal constant (usually used in the next relocation)
334 P = a previous relocation
335
336 Lower case letters (starting with 'b') refer to following
337 bytes in the relocation stream. 'b' is the next 1 byte,
338 c is the next 2 bytes, d is the next 3 bytes, etc...
339 This is the variable part of the relocation entries that
340 makes our life a living hell.
341
342 numerical constants are also used in the format string. Note
343 the constants are represented in decimal.
344
345 '+', "*" and "=" represents the obvious postfix operators.
346 '<' represents a left shift.
347
348 Stack Operations:
349
350 Parameter Relocation Bits:
351
352 Unwind Entries:
353
354 Previous Relocations: The index field represents which in the queue
355 of 4 previous fixups should be re-applied.
356
357 Literal Constants: These are generally used to represent addend
358 parts of relocations when these constants are not stored in the
359 fields of the instructions themselves. For example the instruction
360 addil foo-$global$-0x1234 would use an override for "0x1234" rather
361 than storing it into the addil itself. */
362
363 struct fixup_format
364 {
365 int D;
366 char *format;
367 };
368
369 static const struct fixup_format som_fixup_formats[256] =
370 {
371 /* R_NO_RELOCATION */
372 0, "LD1+4*=", /* 0x00 */
373 1, "LD1+4*=", /* 0x01 */
374 2, "LD1+4*=", /* 0x02 */
375 3, "LD1+4*=", /* 0x03 */
376 4, "LD1+4*=", /* 0x04 */
377 5, "LD1+4*=", /* 0x05 */
378 6, "LD1+4*=", /* 0x06 */
379 7, "LD1+4*=", /* 0x07 */
380 8, "LD1+4*=", /* 0x08 */
381 9, "LD1+4*=", /* 0x09 */
382 10, "LD1+4*=", /* 0x0a */
383 11, "LD1+4*=", /* 0x0b */
384 12, "LD1+4*=", /* 0x0c */
385 13, "LD1+4*=", /* 0x0d */
386 14, "LD1+4*=", /* 0x0e */
387 15, "LD1+4*=", /* 0x0f */
388 16, "LD1+4*=", /* 0x10 */
389 17, "LD1+4*=", /* 0x11 */
390 18, "LD1+4*=", /* 0x12 */
391 19, "LD1+4*=", /* 0x13 */
392 20, "LD1+4*=", /* 0x14 */
393 21, "LD1+4*=", /* 0x15 */
394 22, "LD1+4*=", /* 0x16 */
395 23, "LD1+4*=", /* 0x17 */
396 0, "LD8<b+1+4*=", /* 0x18 */
397 1, "LD8<b+1+4*=", /* 0x19 */
398 2, "LD8<b+1+4*=", /* 0x1a */
399 3, "LD8<b+1+4*=", /* 0x1b */
400 0, "LD16<c+1+4*=", /* 0x1c */
401 1, "LD16<c+1+4*=", /* 0x1d */
402 2, "LD16<c+1+4*=", /* 0x1e */
403 0, "Ld1+=", /* 0x1f */
404 /* R_ZEROES */
405 0, "Lb1+4*=", /* 0x20 */
406 1, "Ld1+=", /* 0x21 */
407 /* R_UNINIT */
408 0, "Lb1+4*=", /* 0x22 */
409 1, "Ld1+=", /* 0x23 */
410 /* R_RELOCATION */
411 0, "L4=", /* 0x24 */
412 /* R_DATA_ONE_SYMBOL */
413 0, "L4=Sb=", /* 0x25 */
414 1, "L4=Sd=", /* 0x26 */
415 /* R_DATA_PLEBEL */
416 0, "L4=Sb=", /* 0x27 */
417 1, "L4=Sd=", /* 0x28 */
418 /* R_SPACE_REF */
419 0, "L4=", /* 0x29 */
420 /* R_REPEATED_INIT */
421 0, "L4=Mb1+4*=", /* 0x2a */
422 1, "Lb4*=Mb1+L*=", /* 0x2b */
423 2, "Lb4*=Md1+4*=", /* 0x2c */
424 3, "Ld1+=Me1+=", /* 0x2d */
425 /* R_RESERVED */
426 0, "", /* 0x2e */
427 0, "", /* 0x2f */
428 /* R_PCREL_CALL */
429 0, "L4=RD=Sb=", /* 0x30 */
430 1, "L4=RD=Sb=", /* 0x31 */
431 2, "L4=RD=Sb=", /* 0x32 */
432 3, "L4=RD=Sb=", /* 0x33 */
433 4, "L4=RD=Sb=", /* 0x34 */
434 5, "L4=RD=Sb=", /* 0x35 */
435 6, "L4=RD=Sb=", /* 0x36 */
436 7, "L4=RD=Sb=", /* 0x37 */
437 8, "L4=RD=Sb=", /* 0x38 */
438 9, "L4=RD=Sb=", /* 0x39 */
439 0, "L4=RD8<b+=Sb=",/* 0x3a */
440 1, "L4=RD8<b+=Sb=",/* 0x3b */
441 0, "L4=RD8<b+=Sd=",/* 0x3c */
442 1, "L4=RD8<b+=Sd=",/* 0x3d */
443 /* R_RESERVED */
444 0, "", /* 0x3e */
445 0, "", /* 0x3f */
446 /* R_ABS_CALL */
447 0, "L4=RD=Sb=", /* 0x40 */
448 1, "L4=RD=Sb=", /* 0x41 */
449 2, "L4=RD=Sb=", /* 0x42 */
450 3, "L4=RD=Sb=", /* 0x43 */
451 4, "L4=RD=Sb=", /* 0x44 */
452 5, "L4=RD=Sb=", /* 0x45 */
453 6, "L4=RD=Sb=", /* 0x46 */
454 7, "L4=RD=Sb=", /* 0x47 */
455 8, "L4=RD=Sb=", /* 0x48 */
456 9, "L4=RD=Sb=", /* 0x49 */
457 0, "L4=RD8<b+=Sb=",/* 0x4a */
458 1, "L4=RD8<b+=Sb=",/* 0x4b */
459 0, "L4=RD8<b+=Sd=",/* 0x4c */
460 1, "L4=RD8<b+=Sd=",/* 0x4d */
461 /* R_RESERVED */
462 0, "", /* 0x4e */
463 0, "", /* 0x4f */
464 /* R_DP_RELATIVE */
465 0, "L4=SD=", /* 0x50 */
466 1, "L4=SD=", /* 0x51 */
467 2, "L4=SD=", /* 0x52 */
468 3, "L4=SD=", /* 0x53 */
469 4, "L4=SD=", /* 0x54 */
470 5, "L4=SD=", /* 0x55 */
471 6, "L4=SD=", /* 0x56 */
472 7, "L4=SD=", /* 0x57 */
473 8, "L4=SD=", /* 0x58 */
474 9, "L4=SD=", /* 0x59 */
475 10, "L4=SD=", /* 0x5a */
476 11, "L4=SD=", /* 0x5b */
477 12, "L4=SD=", /* 0x5c */
478 13, "L4=SD=", /* 0x5d */
479 14, "L4=SD=", /* 0x5e */
480 15, "L4=SD=", /* 0x5f */
481 16, "L4=SD=", /* 0x60 */
482 17, "L4=SD=", /* 0x61 */
483 18, "L4=SD=", /* 0x62 */
484 19, "L4=SD=", /* 0x63 */
485 20, "L4=SD=", /* 0x64 */
486 21, "L4=SD=", /* 0x65 */
487 22, "L4=SD=", /* 0x66 */
488 23, "L4=SD=", /* 0x67 */
489 24, "L4=SD=", /* 0x68 */
490 25, "L4=SD=", /* 0x69 */
491 26, "L4=SD=", /* 0x6a */
492 27, "L4=SD=", /* 0x6b */
493 28, "L4=SD=", /* 0x6c */
494 29, "L4=SD=", /* 0x6d */
495 30, "L4=SD=", /* 0x6e */
496 31, "L4=SD=", /* 0x6f */
497 32, "L4=Sb=", /* 0x70 */
498 33, "L4=Sd=", /* 0x71 */
499 /* R_RESERVED */
500 0, "", /* 0x72 */
501 0, "", /* 0x73 */
502 0, "", /* 0x74 */
503 0, "", /* 0x75 */
504 0, "", /* 0x76 */
505 0, "", /* 0x77 */
506 /* R_DLT_REL */
507 0, "L4=Sb=", /* 0x78 */
508 1, "L4=Sd=", /* 0x79 */
509 /* R_RESERVED */
510 0, "", /* 0x7a */
511 0, "", /* 0x7b */
512 0, "", /* 0x7c */
513 0, "", /* 0x7d */
514 0, "", /* 0x7e */
515 0, "", /* 0x7f */
516 /* R_CODE_ONE_SYMBOL */
517 0, "L4=SD=", /* 0x80 */
518 1, "L4=SD=", /* 0x81 */
519 2, "L4=SD=", /* 0x82 */
520 3, "L4=SD=", /* 0x83 */
521 4, "L4=SD=", /* 0x84 */
522 5, "L4=SD=", /* 0x85 */
523 6, "L4=SD=", /* 0x86 */
524 7, "L4=SD=", /* 0x87 */
525 8, "L4=SD=", /* 0x88 */
526 9, "L4=SD=", /* 0x89 */
527 10, "L4=SD=", /* 0x8q */
528 11, "L4=SD=", /* 0x8b */
529 12, "L4=SD=", /* 0x8c */
530 13, "L4=SD=", /* 0x8d */
531 14, "L4=SD=", /* 0x8e */
532 15, "L4=SD=", /* 0x8f */
533 16, "L4=SD=", /* 0x90 */
534 17, "L4=SD=", /* 0x91 */
535 18, "L4=SD=", /* 0x92 */
536 19, "L4=SD=", /* 0x93 */
537 20, "L4=SD=", /* 0x94 */
538 21, "L4=SD=", /* 0x95 */
539 22, "L4=SD=", /* 0x96 */
540 23, "L4=SD=", /* 0x97 */
541 24, "L4=SD=", /* 0x98 */
542 25, "L4=SD=", /* 0x99 */
543 26, "L4=SD=", /* 0x9a */
544 27, "L4=SD=", /* 0x9b */
545 28, "L4=SD=", /* 0x9c */
546 29, "L4=SD=", /* 0x9d */
547 30, "L4=SD=", /* 0x9e */
548 31, "L4=SD=", /* 0x9f */
549 32, "L4=Sb=", /* 0xa0 */
550 33, "L4=Sd=", /* 0xa1 */
551 /* R_RESERVED */
552 0, "", /* 0xa2 */
553 0, "", /* 0xa3 */
554 0, "", /* 0xa4 */
555 0, "", /* 0xa5 */
556 0, "", /* 0xa6 */
557 0, "", /* 0xa7 */
558 0, "", /* 0xa8 */
559 0, "", /* 0xa9 */
560 0, "", /* 0xaa */
561 0, "", /* 0xab */
562 0, "", /* 0xac */
563 0, "", /* 0xad */
564 /* R_MILLI_REL */
565 0, "L4=Sb=", /* 0xae */
566 1, "L4=Sd=", /* 0xaf */
567 /* R_CODE_PLABEL */
568 0, "L4=Sb=", /* 0xb0 */
569 1, "L4=Sd=", /* 0xb1 */
570 /* R_BREAKPOINT */
571 0, "L4=", /* 0xb2 */
572 /* R_ENTRY */
573 0, "Ui=", /* 0xb3 */
574 1, "Uf=", /* 0xb4 */
575 /* R_ALT_ENTRY */
576 0, "", /* 0xb5 */
577 /* R_EXIT */
578 0, "", /* 0xb6 */
579 /* R_BEGIN_TRY */
580 0, "", /* 0xb7 */
581 /* R_END_TRY */
582 0, "R0=", /* 0xb8 */
583 1, "Rb4*=", /* 0xb9 */
584 2, "Rd4*=", /* 0xba */
585 /* R_BEGIN_BRTAB */
586 0, "", /* 0xbb */
587 /* R_END_BRTAB */
588 0, "", /* 0xbc */
589 /* R_STATEMENT */
590 0, "Nb=", /* 0xbd */
591 1, "Nc=", /* 0xbe */
592 2, "Nd=", /* 0xbf */
593 /* R_DATA_EXPR */
594 0, "L4=", /* 0xc0 */
595 /* R_CODE_EXPR */
596 0, "L4=", /* 0xc1 */
597 /* R_FSEL */
598 0, "", /* 0xc2 */
599 /* R_LSEL */
600 0, "", /* 0xc3 */
601 /* R_RSEL */
602 0, "", /* 0xc4 */
603 /* R_N_MODE */
604 0, "", /* 0xc5 */
605 /* R_S_MODE */
606 0, "", /* 0xc6 */
607 /* R_D_MODE */
608 0, "", /* 0xc7 */
609 /* R_R_MODE */
610 0, "", /* 0xc8 */
611 /* R_DATA_OVERRIDE */
612 0, "V0=", /* 0xc9 */
613 1, "Vb=", /* 0xca */
614 2, "Vc=", /* 0xcb */
615 3, "Vd=", /* 0xcc */
616 4, "Ve=", /* 0xcd */
617 /* R_TRANSLATED */
618 0, "", /* 0xce */
619 /* R_RESERVED */
620 0, "", /* 0xcf */
621 /* R_COMP1 */
622 0, "Ob=", /* 0xd0 */
623 /* R_COMP2 */
624 0, "Ob=Sd=", /* 0xd1 */
625 /* R_COMP3 */
626 0, "Ob=Ve=", /* 0xd2 */
627 /* R_PREV_FIXUP */
628 0, "P", /* 0xd3 */
629 1, "P", /* 0xd4 */
630 2, "P", /* 0xd5 */
631 3, "P", /* 0xd6 */
632 /* R_RESERVED */
633 0, "", /* 0xd7 */
634 0, "", /* 0xd8 */
635 0, "", /* 0xd9 */
636 0, "", /* 0xda */
637 0, "", /* 0xdb */
638 0, "", /* 0xdc */
639 0, "", /* 0xdd */
640 0, "", /* 0xde */
641 0, "", /* 0xdf */
642 0, "", /* 0xe0 */
643 0, "", /* 0xe1 */
644 0, "", /* 0xe2 */
645 0, "", /* 0xe3 */
646 0, "", /* 0xe4 */
647 0, "", /* 0xe5 */
648 0, "", /* 0xe6 */
649 0, "", /* 0xe7 */
650 0, "", /* 0xe8 */
651 0, "", /* 0xe9 */
652 0, "", /* 0xea */
653 0, "", /* 0xeb */
654 0, "", /* 0xec */
655 0, "", /* 0xed */
656 0, "", /* 0xee */
657 0, "", /* 0xef */
658 0, "", /* 0xf0 */
659 0, "", /* 0xf1 */
660 0, "", /* 0xf2 */
661 0, "", /* 0xf3 */
662 0, "", /* 0xf4 */
663 0, "", /* 0xf5 */
664 0, "", /* 0xf6 */
665 0, "", /* 0xf7 */
666 0, "", /* 0xf8 */
667 0, "", /* 0xf9 */
668 0, "", /* 0xfa */
669 0, "", /* 0xfb */
670 0, "", /* 0xfc */
671 0, "", /* 0xfd */
672 0, "", /* 0xfe */
673 0, "", /* 0xff */
674 };
675
676 static const int comp1_opcodes[] =
677 {
678 0x00,
679 0x40,
680 0x41,
681 0x42,
682 0x43,
683 0x44,
684 0x45,
685 0x46,
686 0x47,
687 0x48,
688 0x49,
689 0x4a,
690 0x4b,
691 0x60,
692 0x80,
693 0xa0,
694 0xc0,
695 -1
696 };
697
698 static const int comp2_opcodes[] =
699 {
700 0x00,
701 0x80,
702 0x82,
703 0xc0,
704 -1
705 };
706
707 static const int comp3_opcodes[] =
708 {
709 0x00,
710 0x02,
711 -1
712 };
713
714 /* These apparently are not in older versions of hpux reloc.h. */
715 #ifndef R_DLT_REL
716 #define R_DLT_REL 0x78
717 #endif
718
719 #ifndef R_AUX_UNWIND
720 #define R_AUX_UNWIND 0xcf
721 #endif
722
723 #ifndef R_SEC_STMT
724 #define R_SEC_STMT 0xd7
725 #endif
726
727 static reloc_howto_type som_hppa_howto_table[] =
728 {
729 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
730 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
731 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
732 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
733 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
734 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
735 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
736 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
737 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
738 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
739 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
740 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
741 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
742 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
743 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
744 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
745 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
746 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
747 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
748 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
749 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
750 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
751 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
752 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
753 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
754 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
755 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
756 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
757 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
758 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
759 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
760 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
761 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
762 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
763 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
764 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
765 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
766 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
767 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
768 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
769 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
770 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
771 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
772 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
773 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
774 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
775 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
776 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
777 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
778 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
779 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
780 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
781 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
782 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
783 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
784 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
785 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
786 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
787 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
788 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
789 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
790 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
791 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
792 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
793 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
794 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
795 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
796 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
797 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
798 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
799 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
800 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
801 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
802 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
803 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
804 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
805 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
806 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
807 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
808 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
809 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
810 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
811 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
812 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
813 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
814 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
815 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
816 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
817 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
818 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
819 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
820 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
821 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
822 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
823 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
824 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
825 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
826 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
827 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
828 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
829 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
830 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
831 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
832 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
833 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
834 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
835 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
836 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
837 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
838 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
839 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
840 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
841 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
842 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
843 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
844 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
845 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
846 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
847 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
848 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
849 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
850 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
851 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
852 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
853 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
854 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
855 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
856 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
857 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
858 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
859 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
860 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
861 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
862 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
863 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
864 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
865 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
866 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
867 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
868 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
869 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
870 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
871 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
872 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
873 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
874 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
875 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
876 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
877 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
878 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
879 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
880 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
881 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
882 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
883 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
884 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
885 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
886 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
887 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
888 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
889 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
890 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
891 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
892 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
893 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
894 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
895 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
896 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
897 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
898 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
899 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
900 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
901 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
902 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
903 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
904 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
905 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
906 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
907 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
908 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
909 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
910 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
911 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
912 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
913 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
914 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
915 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
916 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
917 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
918 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
919 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
920 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
921 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
922 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
923 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
924 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
925 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
926 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
927 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
928 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
929 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
930 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
931 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
932 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
933 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
934 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
935 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
936 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
937 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
938 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
939 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
940 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
941 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
942 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
943 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
944 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
945 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
946 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
947 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
948 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
949 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
950 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
951 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
952 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
953 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
954 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
955 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
956 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
957 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
958 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
959 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
960 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
961 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
962 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
963 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
964 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
965 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
966 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
967 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
968 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
969 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
970 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
971 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
972 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
973 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
974 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
975 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
976 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
977 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
978 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
979 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
980 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
981 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
982 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
983 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
984 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
985
986 /* Initialize the SOM relocation queue. By definition the queue holds
987 the last four multibyte fixups. */
988
989 static void
990 som_initialize_reloc_queue (queue)
991 struct reloc_queue *queue;
992 {
993 queue[0].reloc = NULL;
994 queue[0].size = 0;
995 queue[1].reloc = NULL;
996 queue[1].size = 0;
997 queue[2].reloc = NULL;
998 queue[2].size = 0;
999 queue[3].reloc = NULL;
1000 queue[3].size = 0;
1001 }
1002
1003 /* Insert a new relocation into the relocation queue. */
1004
1005 static void
1006 som_reloc_queue_insert (p, size, queue)
1007 unsigned char *p;
1008 unsigned int size;
1009 struct reloc_queue *queue;
1010 {
1011 queue[3].reloc = queue[2].reloc;
1012 queue[3].size = queue[2].size;
1013 queue[2].reloc = queue[1].reloc;
1014 queue[2].size = queue[1].size;
1015 queue[1].reloc = queue[0].reloc;
1016 queue[1].size = queue[0].size;
1017 queue[0].reloc = p;
1018 queue[0].size = size;
1019 }
1020
1021 /* When an entry in the relocation queue is reused, the entry moves
1022 to the front of the queue. */
1023
1024 static void
1025 som_reloc_queue_fix (queue, index)
1026 struct reloc_queue *queue;
1027 unsigned int index;
1028 {
1029 if (index == 0)
1030 return;
1031
1032 if (index == 1)
1033 {
1034 unsigned char *tmp1 = queue[0].reloc;
1035 unsigned int tmp2 = queue[0].size;
1036 queue[0].reloc = queue[1].reloc;
1037 queue[0].size = queue[1].size;
1038 queue[1].reloc = tmp1;
1039 queue[1].size = tmp2;
1040 return;
1041 }
1042
1043 if (index == 2)
1044 {
1045 unsigned char *tmp1 = queue[0].reloc;
1046 unsigned int tmp2 = queue[0].size;
1047 queue[0].reloc = queue[2].reloc;
1048 queue[0].size = queue[2].size;
1049 queue[2].reloc = queue[1].reloc;
1050 queue[2].size = queue[1].size;
1051 queue[1].reloc = tmp1;
1052 queue[1].size = tmp2;
1053 return;
1054 }
1055
1056 if (index == 3)
1057 {
1058 unsigned char *tmp1 = queue[0].reloc;
1059 unsigned int tmp2 = queue[0].size;
1060 queue[0].reloc = queue[3].reloc;
1061 queue[0].size = queue[3].size;
1062 queue[3].reloc = queue[2].reloc;
1063 queue[3].size = queue[2].size;
1064 queue[2].reloc = queue[1].reloc;
1065 queue[2].size = queue[1].size;
1066 queue[1].reloc = tmp1;
1067 queue[1].size = tmp2;
1068 return;
1069 }
1070 abort();
1071 }
1072
1073 /* Search for a particular relocation in the relocation queue. */
1074
1075 static int
1076 som_reloc_queue_find (p, size, queue)
1077 unsigned char *p;
1078 unsigned int size;
1079 struct reloc_queue *queue;
1080 {
1081 if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
1082 && size == queue[0].size)
1083 return 0;
1084 if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
1085 && size == queue[1].size)
1086 return 1;
1087 if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
1088 && size == queue[2].size)
1089 return 2;
1090 if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
1091 && size == queue[3].size)
1092 return 3;
1093 return -1;
1094 }
1095
1096 static unsigned char *
1097 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1098 bfd *abfd;
1099 int *subspace_reloc_sizep;
1100 unsigned char *p;
1101 unsigned int size;
1102 struct reloc_queue *queue;
1103 {
1104 int queue_index = som_reloc_queue_find (p, size, queue);
1105
1106 if (queue_index != -1)
1107 {
1108 /* Found this in a previous fixup. Undo the fixup we
1109 just built and use R_PREV_FIXUP instead. We saved
1110 a total of size - 1 bytes in the fixup stream. */
1111 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1112 p += 1;
1113 *subspace_reloc_sizep += 1;
1114 som_reloc_queue_fix (queue, queue_index);
1115 }
1116 else
1117 {
1118 som_reloc_queue_insert (p, size, queue);
1119 *subspace_reloc_sizep += size;
1120 p += size;
1121 }
1122 return p;
1123 }
1124
1125 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1126 bytes without any relocation. Update the size of the subspace
1127 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1128 current pointer into the relocation stream. */
1129
1130 static unsigned char *
1131 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1132 bfd *abfd;
1133 unsigned int skip;
1134 unsigned char *p;
1135 unsigned int *subspace_reloc_sizep;
1136 struct reloc_queue *queue;
1137 {
1138 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1139 then R_PREV_FIXUPs to get the difference down to a
1140 reasonable size. */
1141 if (skip >= 0x1000000)
1142 {
1143 skip -= 0x1000000;
1144 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1145 bfd_put_8 (abfd, 0xff, p + 1);
1146 bfd_put_16 (abfd, 0xffff, p + 2);
1147 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1148 while (skip >= 0x1000000)
1149 {
1150 skip -= 0x1000000;
1151 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1152 p++;
1153 *subspace_reloc_sizep += 1;
1154 /* No need to adjust queue here since we are repeating the
1155 most recent fixup. */
1156 }
1157 }
1158
1159 /* The difference must be less than 0x1000000. Use one
1160 more R_NO_RELOCATION entry to get to the right difference. */
1161 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1162 {
1163 /* Difference can be handled in a simple single-byte
1164 R_NO_RELOCATION entry. */
1165 if (skip <= 0x60)
1166 {
1167 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1168 *subspace_reloc_sizep += 1;
1169 p++;
1170 }
1171 /* Handle it with a two byte R_NO_RELOCATION entry. */
1172 else if (skip <= 0x1000)
1173 {
1174 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1175 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1176 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1177 }
1178 /* Handle it with a three byte R_NO_RELOCATION entry. */
1179 else
1180 {
1181 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1182 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1183 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1184 }
1185 }
1186 /* Ugh. Punt and use a 4 byte entry. */
1187 else if (skip > 0)
1188 {
1189 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1190 bfd_put_8 (abfd, (skip - 1) >> 16, p + 1);
1191 bfd_put_16 (abfd, skip - 1, p + 2);
1192 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1193 }
1194 return p;
1195 }
1196
1197 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1198 from a BFD relocation. Update the size of the subspace relocation
1199 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1200 into the relocation stream. */
1201
1202 static unsigned char *
1203 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1204 bfd *abfd;
1205 int addend;
1206 unsigned char *p;
1207 unsigned int *subspace_reloc_sizep;
1208 struct reloc_queue *queue;
1209 {
1210 if ((unsigned)(addend) + 0x80 < 0x100)
1211 {
1212 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1213 bfd_put_8 (abfd, addend, p + 1);
1214 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1215 }
1216 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1217 {
1218 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1219 bfd_put_16 (abfd, addend, p + 1);
1220 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1221 }
1222 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1223 {
1224 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1225 bfd_put_8 (abfd, addend >> 16, p + 1);
1226 bfd_put_16 (abfd, addend, p + 2);
1227 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1228 }
1229 else
1230 {
1231 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1232 bfd_put_32 (abfd, addend, p + 1);
1233 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1234 }
1235 return p;
1236 }
1237
1238 /* Handle a single function call relocation. */
1239
1240 static unsigned char *
1241 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1242 bfd *abfd;
1243 unsigned char *p;
1244 unsigned int *subspace_reloc_sizep;
1245 arelent *bfd_reloc;
1246 int sym_num;
1247 struct reloc_queue *queue;
1248 {
1249 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1250 int rtn_bits = arg_bits & 0x3;
1251 int type, done = 0;
1252
1253 /* You'll never believe all this is necessary to handle relocations
1254 for function calls. Having to compute and pack the argument
1255 relocation bits is the real nightmare.
1256
1257 If you're interested in how this works, just forget it. You really
1258 do not want to know about this braindamage. */
1259
1260 /* First see if this can be done with a "simple" relocation. Simple
1261 relocations have a symbol number < 0x100 and have simple encodings
1262 of argument relocations. */
1263
1264 if (sym_num < 0x100)
1265 {
1266 switch (arg_bits)
1267 {
1268 case 0:
1269 case 1:
1270 type = 0;
1271 break;
1272 case 1 << 8:
1273 case 1 << 8 | 1:
1274 type = 1;
1275 break;
1276 case 1 << 8 | 1 << 6:
1277 case 1 << 8 | 1 << 6 | 1:
1278 type = 2;
1279 break;
1280 case 1 << 8 | 1 << 6 | 1 << 4:
1281 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1282 type = 3;
1283 break;
1284 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1285 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1286 type = 4;
1287 break;
1288 default:
1289 /* Not one of the easy encodings. This will have to be
1290 handled by the more complex code below. */
1291 type = -1;
1292 break;
1293 }
1294 if (type != -1)
1295 {
1296 /* Account for the return value too. */
1297 if (rtn_bits)
1298 type += 5;
1299
1300 /* Emit a 2 byte relocation. Then see if it can be handled
1301 with a relocation which is already in the relocation queue. */
1302 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1303 bfd_put_8 (abfd, sym_num, p + 1);
1304 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1305 done = 1;
1306 }
1307 }
1308
1309 /* If this could not be handled with a simple relocation, then do a hard
1310 one. Hard relocations occur if the symbol number was too high or if
1311 the encoding of argument relocation bits is too complex. */
1312 if (! done)
1313 {
1314 /* Don't ask about these magic sequences. I took them straight
1315 from gas-1.36 which took them from the a.out man page. */
1316 type = rtn_bits;
1317 if ((arg_bits >> 6 & 0xf) == 0xe)
1318 type += 9 * 40;
1319 else
1320 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1321 if ((arg_bits >> 2 & 0xf) == 0xe)
1322 type += 9 * 4;
1323 else
1324 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1325
1326 /* Output the first two bytes of the relocation. These describe
1327 the length of the relocation and encoding style. */
1328 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1329 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1330 p);
1331 bfd_put_8 (abfd, type, p + 1);
1332
1333 /* Now output the symbol index and see if this bizarre relocation
1334 just happened to be in the relocation queue. */
1335 if (sym_num < 0x100)
1336 {
1337 bfd_put_8 (abfd, sym_num, p + 2);
1338 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1339 }
1340 else
1341 {
1342 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1343 bfd_put_16 (abfd, sym_num, p + 3);
1344 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1345 }
1346 }
1347 return p;
1348 }
1349
1350
1351 /* Return the logarithm of X, base 2, considering X unsigned.
1352 Abort -1 if X is not a power or two or is zero. */
1353
1354 static int
1355 log2 (x)
1356 unsigned int x;
1357 {
1358 int log = 0;
1359
1360 /* Test for 0 or a power of 2. */
1361 if (x == 0 || x != (x & -x))
1362 return -1;
1363
1364 while ((x >>= 1) != 0)
1365 log++;
1366 return log;
1367 }
1368
1369 static bfd_reloc_status_type
1370 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1371 input_section, output_bfd, error_message)
1372 bfd *abfd;
1373 arelent *reloc_entry;
1374 asymbol *symbol_in;
1375 PTR data;
1376 asection *input_section;
1377 bfd *output_bfd;
1378 char **error_message;
1379 {
1380 if (output_bfd)
1381 {
1382 reloc_entry->address += input_section->output_offset;
1383 return bfd_reloc_ok;
1384 }
1385 return bfd_reloc_ok;
1386 }
1387
1388 /* Given a generic HPPA relocation type, the instruction format,
1389 and a field selector, return one or more appropriate SOM relocations. */
1390
1391 int **
1392 hppa_som_gen_reloc_type (abfd, base_type, format, field)
1393 bfd *abfd;
1394 int base_type;
1395 int format;
1396 enum hppa_reloc_field_selector_type_alt field;
1397 {
1398 int *final_type, **final_types;
1399
1400 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 3);
1401 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1402 if (!final_types || !final_type)
1403 {
1404 bfd_set_error (bfd_error_no_memory);
1405 return NULL;
1406 }
1407
1408 /* The field selector may require additional relocations to be
1409 generated. It's impossible to know at this moment if additional
1410 relocations will be needed, so we make them. The code to actually
1411 write the relocation/fixup stream is responsible for removing
1412 any redundant relocations. */
1413 switch (field)
1414 {
1415 case e_fsel:
1416 case e_psel:
1417 case e_lpsel:
1418 case e_rpsel:
1419 final_types[0] = final_type;
1420 final_types[1] = NULL;
1421 final_types[2] = NULL;
1422 *final_type = base_type;
1423 break;
1424
1425 case e_tsel:
1426 case e_ltsel:
1427 case e_rtsel:
1428 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1429 if (!final_types[0])
1430 {
1431 bfd_set_error (bfd_error_no_memory);
1432 return NULL;
1433 }
1434 if (field == e_tsel)
1435 *final_types[0] = R_FSEL;
1436 else if (field == e_ltsel)
1437 *final_types[0] = R_LSEL;
1438 else
1439 *final_types[0] = R_RSEL;
1440 final_types[1] = final_type;
1441 final_types[2] = NULL;
1442 *final_type = base_type;
1443 break;
1444
1445 case e_lssel:
1446 case e_rssel:
1447 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1448 if (!final_types[0])
1449 {
1450 bfd_set_error (bfd_error_no_memory);
1451 return NULL;
1452 }
1453 *final_types[0] = R_S_MODE;
1454 final_types[1] = final_type;
1455 final_types[2] = NULL;
1456 *final_type = base_type;
1457 break;
1458
1459 case e_lsel:
1460 case e_rsel:
1461 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1462 if (!final_types[0])
1463 {
1464 bfd_set_error (bfd_error_no_memory);
1465 return NULL;
1466 }
1467 *final_types[0] = R_N_MODE;
1468 final_types[1] = final_type;
1469 final_types[2] = NULL;
1470 *final_type = base_type;
1471 break;
1472
1473 case e_ldsel:
1474 case e_rdsel:
1475 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1476 if (!final_types[0])
1477 {
1478 bfd_set_error (bfd_error_no_memory);
1479 return NULL;
1480 }
1481 *final_types[0] = R_D_MODE;
1482 final_types[1] = final_type;
1483 final_types[2] = NULL;
1484 *final_type = base_type;
1485 break;
1486
1487 case e_lrsel:
1488 case e_rrsel:
1489 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1490 if (!final_types[0])
1491 {
1492 bfd_set_error (bfd_error_no_memory);
1493 return NULL;
1494 }
1495 *final_types[0] = R_R_MODE;
1496 final_types[1] = final_type;
1497 final_types[2] = NULL;
1498 *final_type = base_type;
1499 break;
1500 }
1501
1502 switch (base_type)
1503 {
1504 case R_HPPA:
1505 /* PLABELs get their own relocation type. */
1506 if (field == e_psel
1507 || field == e_lpsel
1508 || field == e_rpsel)
1509 {
1510 /* A PLABEL relocation that has a size of 32 bits must
1511 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1512 if (format == 32)
1513 *final_type = R_DATA_PLABEL;
1514 else
1515 *final_type = R_CODE_PLABEL;
1516 }
1517 /* PIC stuff. */
1518 else if (field == e_tsel
1519 || field == e_ltsel
1520 || field == e_rtsel)
1521 *final_type = R_DLT_REL;
1522 /* A relocation in the data space is always a full 32bits. */
1523 else if (format == 32)
1524 *final_type = R_DATA_ONE_SYMBOL;
1525
1526 break;
1527
1528 case R_HPPA_GOTOFF:
1529 /* More PLABEL special cases. */
1530 if (field == e_psel
1531 || field == e_lpsel
1532 || field == e_rpsel)
1533 *final_type = R_DATA_PLABEL;
1534 break;
1535
1536 case R_HPPA_NONE:
1537 case R_HPPA_ABS_CALL:
1538 case R_HPPA_PCREL_CALL:
1539 /* Right now we can default all these. */
1540 break;
1541 }
1542 return final_types;
1543 }
1544
1545 /* Return the address of the correct entry in the PA SOM relocation
1546 howto table. */
1547
1548 /*ARGSUSED*/
1549 static const reloc_howto_type *
1550 som_bfd_reloc_type_lookup (abfd, code)
1551 bfd *abfd;
1552 bfd_reloc_code_real_type code;
1553 {
1554 if ((int) code < (int) R_NO_RELOCATION + 255)
1555 {
1556 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1557 return &som_hppa_howto_table[(int) code];
1558 }
1559
1560 return (reloc_howto_type *) 0;
1561 }
1562
1563 /* Perform some initialization for an object. Save results of this
1564 initialization in the BFD. */
1565
1566 static const bfd_target *
1567 som_object_setup (abfd, file_hdrp, aux_hdrp)
1568 bfd *abfd;
1569 struct header *file_hdrp;
1570 struct som_exec_auxhdr *aux_hdrp;
1571 {
1572 /* som_mkobject will set bfd_error if som_mkobject fails. */
1573 if (som_mkobject (abfd) != true)
1574 return 0;
1575
1576 /* Set BFD flags based on what information is available in the SOM. */
1577 abfd->flags = NO_FLAGS;
1578 if (file_hdrp->symbol_total)
1579 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1580
1581 switch (file_hdrp->a_magic)
1582 {
1583 case DEMAND_MAGIC:
1584 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1585 break;
1586 case SHARE_MAGIC:
1587 abfd->flags |= (WP_TEXT | EXEC_P);
1588 break;
1589 case EXEC_MAGIC:
1590 abfd->flags |= (EXEC_P);
1591 break;
1592 case RELOC_MAGIC:
1593 abfd->flags |= HAS_RELOC;
1594 break;
1595 #ifdef SHL_MAGIC
1596 case SHL_MAGIC:
1597 #endif
1598 #ifdef DL_MAGIC
1599 case DL_MAGIC:
1600 #endif
1601 abfd->flags |= DYNAMIC;
1602 break;
1603
1604 default:
1605 break;
1606 }
1607
1608 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1609 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 0);
1610 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1611
1612 /* Initialize the saved symbol table and string table to NULL.
1613 Save important offsets and sizes from the SOM header into
1614 the BFD. */
1615 obj_som_stringtab (abfd) = (char *) NULL;
1616 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1617 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1618 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1619 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1620 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
1621
1622 obj_som_exec_data (abfd) = (struct som_exec_data *)
1623 bfd_zalloc (abfd, sizeof (struct som_exec_data ));
1624 if (obj_som_exec_data (abfd) == NULL)
1625 {
1626 bfd_set_error (bfd_error_no_memory);
1627 return NULL;
1628 }
1629
1630 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1631 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1632 return abfd->xvec;
1633 }
1634
1635 /* Convert all of the space and subspace info into BFD sections. Each space
1636 contains a number of subspaces, which in turn describe the mapping between
1637 regions of the exec file, and the address space that the program runs in.
1638 BFD sections which correspond to spaces will overlap the sections for the
1639 associated subspaces. */
1640
1641 static boolean
1642 setup_sections (abfd, file_hdr)
1643 bfd *abfd;
1644 struct header *file_hdr;
1645 {
1646 char *space_strings;
1647 int space_index;
1648 unsigned int total_subspaces = 0;
1649
1650 /* First, read in space names */
1651
1652 space_strings = malloc (file_hdr->space_strings_size);
1653 if (!space_strings && file_hdr->space_strings_size != 0)
1654 {
1655 bfd_set_error (bfd_error_no_memory);
1656 goto error_return;
1657 }
1658
1659 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
1660 goto error_return;
1661 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1662 != file_hdr->space_strings_size)
1663 goto error_return;
1664
1665 /* Loop over all of the space dictionaries, building up sections */
1666 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1667 {
1668 struct space_dictionary_record space;
1669 struct subspace_dictionary_record subspace, save_subspace;
1670 int subspace_index;
1671 asection *space_asect;
1672 char *newname;
1673
1674 /* Read the space dictionary element */
1675 if (bfd_seek (abfd, file_hdr->space_location
1676 + space_index * sizeof space, SEEK_SET) < 0)
1677 goto error_return;
1678 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1679 goto error_return;
1680
1681 /* Setup the space name string */
1682 space.name.n_name = space.name.n_strx + space_strings;
1683
1684 /* Make a section out of it */
1685 newname = bfd_alloc (abfd, strlen (space.name.n_name) + 1);
1686 if (!newname)
1687 goto error_return;
1688 strcpy (newname, space.name.n_name);
1689
1690 space_asect = bfd_make_section_anyway (abfd, newname);
1691 if (!space_asect)
1692 goto error_return;
1693
1694 if (space.is_loadable == 0)
1695 space_asect->flags |= SEC_DEBUGGING;
1696
1697 /* Set up all the attributes for the space. */
1698 if (bfd_som_set_section_attributes (space_asect, space.is_defined,
1699 space.is_private, space.sort_key,
1700 space.space_number) == false)
1701 goto error_return;
1702
1703 /* Now, read in the first subspace for this space */
1704 if (bfd_seek (abfd, file_hdr->subspace_location
1705 + space.subspace_index * sizeof subspace,
1706 SEEK_SET) < 0)
1707 goto error_return;
1708 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1709 goto error_return;
1710 /* Seek back to the start of the subspaces for loop below */
1711 if (bfd_seek (abfd, file_hdr->subspace_location
1712 + space.subspace_index * sizeof subspace,
1713 SEEK_SET) < 0)
1714 goto error_return;
1715
1716 /* Setup the start address and file loc from the first subspace record */
1717 space_asect->vma = subspace.subspace_start;
1718 space_asect->filepos = subspace.file_loc_init_value;
1719 space_asect->alignment_power = log2 (subspace.alignment);
1720 if (space_asect->alignment_power == -1)
1721 goto error_return;
1722
1723 /* Initialize save_subspace so we can reliably determine if this
1724 loop placed any useful values into it. */
1725 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1726
1727 /* Loop over the rest of the subspaces, building up more sections */
1728 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1729 subspace_index++)
1730 {
1731 asection *subspace_asect;
1732
1733 /* Read in the next subspace */
1734 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1735 != sizeof subspace)
1736 goto error_return;
1737
1738 /* Setup the subspace name string */
1739 subspace.name.n_name = subspace.name.n_strx + space_strings;
1740
1741 newname = bfd_alloc (abfd, strlen (subspace.name.n_name) + 1);
1742 if (!newname)
1743 goto error_return;
1744 strcpy (newname, subspace.name.n_name);
1745
1746 /* Make a section out of this subspace */
1747 subspace_asect = bfd_make_section_anyway (abfd, newname);
1748 if (!subspace_asect)
1749 goto error_return;
1750
1751 /* Store private information about the section. */
1752 if (bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1753 subspace.access_control_bits,
1754 subspace.sort_key,
1755 subspace.quadrant) == false)
1756 goto error_return;
1757
1758 /* Keep an easy mapping between subspaces and sections. */
1759 subspace_asect->target_index = total_subspaces++;
1760
1761 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1762 by the access_control_bits in the subspace header. */
1763 switch (subspace.access_control_bits >> 4)
1764 {
1765 /* Readonly data. */
1766 case 0x0:
1767 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1768 break;
1769
1770 /* Normal data. */
1771 case 0x1:
1772 subspace_asect->flags |= SEC_DATA;
1773 break;
1774
1775 /* Readonly code and the gateways.
1776 Gateways have other attributes which do not map
1777 into anything BFD knows about. */
1778 case 0x2:
1779 case 0x4:
1780 case 0x5:
1781 case 0x6:
1782 case 0x7:
1783 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1784 break;
1785
1786 /* dynamic (writable) code. */
1787 case 0x3:
1788 subspace_asect->flags |= SEC_CODE;
1789 break;
1790 }
1791
1792 if (subspace.dup_common || subspace.is_common)
1793 subspace_asect->flags |= SEC_IS_COMMON;
1794 else if (subspace.subspace_length > 0)
1795 subspace_asect->flags |= SEC_HAS_CONTENTS;
1796
1797 if (subspace.is_loadable)
1798 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1799 else
1800 subspace_asect->flags |= SEC_DEBUGGING;
1801
1802 if (subspace.code_only)
1803 subspace_asect->flags |= SEC_CODE;
1804
1805 /* Both file_loc_init_value and initialization_length will
1806 be zero for a BSS like subspace. */
1807 if (subspace.file_loc_init_value == 0
1808 && subspace.initialization_length == 0)
1809 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD);
1810
1811 /* This subspace has relocations.
1812 The fixup_request_quantity is a byte count for the number of
1813 entries in the relocation stream; it is not the actual number
1814 of relocations in the subspace. */
1815 if (subspace.fixup_request_quantity != 0)
1816 {
1817 subspace_asect->flags |= SEC_RELOC;
1818 subspace_asect->rel_filepos = subspace.fixup_request_index;
1819 som_section_data (subspace_asect)->reloc_size
1820 = subspace.fixup_request_quantity;
1821 /* We can not determine this yet. When we read in the
1822 relocation table the correct value will be filled in. */
1823 subspace_asect->reloc_count = -1;
1824 }
1825
1826 /* Update save_subspace if appropriate. */
1827 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1828 save_subspace = subspace;
1829
1830 subspace_asect->vma = subspace.subspace_start;
1831 subspace_asect->_cooked_size = subspace.subspace_length;
1832 subspace_asect->_raw_size = subspace.subspace_length;
1833 subspace_asect->filepos = subspace.file_loc_init_value;
1834 subspace_asect->alignment_power = log2 (subspace.alignment);
1835 if (subspace_asect->alignment_power == -1)
1836 goto error_return;
1837 }
1838
1839 /* Yow! there is no subspace within the space which actually
1840 has initialized information in it; this should never happen
1841 as far as I know. */
1842 if (!save_subspace.file_loc_init_value)
1843 goto error_return;
1844
1845 /* Setup the sizes for the space section based upon the info in the
1846 last subspace of the space. */
1847 space_asect->_cooked_size = save_subspace.subspace_start
1848 - space_asect->vma + save_subspace.subspace_length;
1849 space_asect->_raw_size = save_subspace.file_loc_init_value
1850 - space_asect->filepos + save_subspace.initialization_length;
1851 }
1852 if (space_strings != NULL)
1853 free (space_strings);
1854 return true;
1855
1856 error_return:
1857 if (space_strings != NULL)
1858 free (space_strings);
1859 return false;
1860 }
1861
1862 /* Read in a SOM object and make it into a BFD. */
1863
1864 static const bfd_target *
1865 som_object_p (abfd)
1866 bfd *abfd;
1867 {
1868 struct header file_hdr;
1869 struct som_exec_auxhdr aux_hdr;
1870
1871 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
1872 {
1873 if (bfd_get_error () != bfd_error_system_call)
1874 bfd_set_error (bfd_error_wrong_format);
1875 return 0;
1876 }
1877
1878 if (!_PA_RISC_ID (file_hdr.system_id))
1879 {
1880 bfd_set_error (bfd_error_wrong_format);
1881 return 0;
1882 }
1883
1884 switch (file_hdr.a_magic)
1885 {
1886 case RELOC_MAGIC:
1887 case EXEC_MAGIC:
1888 case SHARE_MAGIC:
1889 case DEMAND_MAGIC:
1890 #ifdef DL_MAGIC
1891 case DL_MAGIC:
1892 #endif
1893 #ifdef SHL_MAGIC
1894 case SHL_MAGIC:
1895 #endif
1896 #ifdef EXECLIBMAGIC
1897 case EXECLIBMAGIC:
1898 #endif
1899 #ifdef SHARED_MAGIC_CNX
1900 case SHARED_MAGIC_CNX:
1901 #endif
1902 break;
1903 default:
1904 bfd_set_error (bfd_error_wrong_format);
1905 return 0;
1906 }
1907
1908 if (file_hdr.version_id != VERSION_ID
1909 && file_hdr.version_id != NEW_VERSION_ID)
1910 {
1911 bfd_set_error (bfd_error_wrong_format);
1912 return 0;
1913 }
1914
1915 /* If the aux_header_size field in the file header is zero, then this
1916 object is an incomplete executable (a .o file). Do not try to read
1917 a non-existant auxiliary header. */
1918 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
1919 if (file_hdr.aux_header_size != 0)
1920 {
1921 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
1922 {
1923 if (bfd_get_error () != bfd_error_system_call)
1924 bfd_set_error (bfd_error_wrong_format);
1925 return 0;
1926 }
1927 }
1928
1929 if (!setup_sections (abfd, &file_hdr))
1930 {
1931 /* setup_sections does not bubble up a bfd error code. */
1932 bfd_set_error (bfd_error_bad_value);
1933 return 0;
1934 }
1935
1936 /* This appears to be a valid SOM object. Do some initialization. */
1937 return som_object_setup (abfd, &file_hdr, &aux_hdr);
1938 }
1939
1940 /* Create a SOM object. */
1941
1942 static boolean
1943 som_mkobject (abfd)
1944 bfd *abfd;
1945 {
1946 /* Allocate memory to hold backend information. */
1947 abfd->tdata.som_data = (struct som_data_struct *)
1948 bfd_zalloc (abfd, sizeof (struct som_data_struct));
1949 if (abfd->tdata.som_data == NULL)
1950 {
1951 bfd_set_error (bfd_error_no_memory);
1952 return false;
1953 }
1954 return true;
1955 }
1956
1957 /* Initialize some information in the file header. This routine makes
1958 not attempt at doing the right thing for a full executable; it
1959 is only meant to handle relocatable objects. */
1960
1961 static boolean
1962 som_prep_headers (abfd)
1963 bfd *abfd;
1964 {
1965 struct header *file_hdr;
1966 asection *section;
1967
1968 /* Make and attach a file header to the BFD. */
1969 file_hdr = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
1970 if (file_hdr == NULL)
1971
1972 {
1973 bfd_set_error (bfd_error_no_memory);
1974 return false;
1975 }
1976 obj_som_file_hdr (abfd) = file_hdr;
1977
1978 if (abfd->flags & (EXEC_P | DYNAMIC))
1979 {
1980
1981 /* Make and attach an exec header to the BFD. */
1982 obj_som_exec_hdr (abfd) = (struct som_exec_auxhdr *)
1983 bfd_zalloc (abfd, sizeof (struct som_exec_auxhdr));
1984 if (obj_som_exec_hdr (abfd) == NULL)
1985 {
1986 bfd_set_error (bfd_error_no_memory);
1987 return false;
1988 }
1989
1990 if (abfd->flags & D_PAGED)
1991 file_hdr->a_magic = DEMAND_MAGIC;
1992 else if (abfd->flags & WP_TEXT)
1993 file_hdr->a_magic = SHARE_MAGIC;
1994 #ifdef SHL_MAGIC
1995 else if (abfd->flags & DYNAMIC)
1996 file_hdr->a_magic = SHL_MAGIC;
1997 #endif
1998 else
1999 file_hdr->a_magic = EXEC_MAGIC;
2000 }
2001 else
2002 file_hdr->a_magic = RELOC_MAGIC;
2003
2004 /* Only new format SOM is supported. */
2005 file_hdr->version_id = NEW_VERSION_ID;
2006
2007 /* These fields are optional, and embedding timestamps is not always
2008 a wise thing to do, it makes comparing objects during a multi-stage
2009 bootstrap difficult. */
2010 file_hdr->file_time.secs = 0;
2011 file_hdr->file_time.nanosecs = 0;
2012
2013 file_hdr->entry_space = 0;
2014 file_hdr->entry_subspace = 0;
2015 file_hdr->entry_offset = 0;
2016 file_hdr->presumed_dp = 0;
2017
2018 /* Now iterate over the sections translating information from
2019 BFD sections to SOM spaces/subspaces. */
2020
2021 for (section = abfd->sections; section != NULL; section = section->next)
2022 {
2023 /* Ignore anything which has not been marked as a space or
2024 subspace. */
2025 if (!som_is_space (section) && !som_is_subspace (section))
2026 continue;
2027
2028 if (som_is_space (section))
2029 {
2030 /* Allocate space for the space dictionary. */
2031 som_section_data (section)->space_dict
2032 = (struct space_dictionary_record *)
2033 bfd_zalloc (abfd, sizeof (struct space_dictionary_record));
2034 if (som_section_data (section)->space_dict == NULL)
2035 {
2036 bfd_set_error (bfd_error_no_memory);
2037 return false;
2038 }
2039 /* Set space attributes. Note most attributes of SOM spaces
2040 are set based on the subspaces it contains. */
2041 som_section_data (section)->space_dict->loader_fix_index = -1;
2042 som_section_data (section)->space_dict->init_pointer_index = -1;
2043
2044 /* Set more attributes that were stuffed away in private data. */
2045 som_section_data (section)->space_dict->sort_key =
2046 som_section_data (section)->copy_data->sort_key;
2047 som_section_data (section)->space_dict->is_defined =
2048 som_section_data (section)->copy_data->is_defined;
2049 som_section_data (section)->space_dict->is_private =
2050 som_section_data (section)->copy_data->is_private;
2051 som_section_data (section)->space_dict->space_number =
2052 som_section_data (section)->copy_data->space_number;
2053 }
2054 else
2055 {
2056 /* Allocate space for the subspace dictionary. */
2057 som_section_data (section)->subspace_dict
2058 = (struct subspace_dictionary_record *)
2059 bfd_zalloc (abfd, sizeof (struct subspace_dictionary_record));
2060 if (som_section_data (section)->subspace_dict == NULL)
2061 {
2062 bfd_set_error (bfd_error_no_memory);
2063 return false;
2064 }
2065
2066 /* Set subspace attributes. Basic stuff is done here, additional
2067 attributes are filled in later as more information becomes
2068 available. */
2069 if (section->flags & SEC_IS_COMMON)
2070 {
2071 som_section_data (section)->subspace_dict->dup_common = 1;
2072 som_section_data (section)->subspace_dict->is_common = 1;
2073 }
2074
2075 if (section->flags & SEC_ALLOC)
2076 som_section_data (section)->subspace_dict->is_loadable = 1;
2077
2078 if (section->flags & SEC_CODE)
2079 som_section_data (section)->subspace_dict->code_only = 1;
2080
2081 som_section_data (section)->subspace_dict->subspace_start =
2082 section->vma;
2083 som_section_data (section)->subspace_dict->subspace_length =
2084 bfd_section_size (abfd, section);
2085 som_section_data (section)->subspace_dict->initialization_length =
2086 bfd_section_size (abfd, section);
2087 som_section_data (section)->subspace_dict->alignment =
2088 1 << section->alignment_power;
2089
2090 /* Set more attributes that were stuffed away in private data. */
2091 som_section_data (section)->subspace_dict->sort_key =
2092 som_section_data (section)->copy_data->sort_key;
2093 som_section_data (section)->subspace_dict->access_control_bits =
2094 som_section_data (section)->copy_data->access_control_bits;
2095 som_section_data (section)->subspace_dict->quadrant =
2096 som_section_data (section)->copy_data->quadrant;
2097 }
2098 }
2099 return true;
2100 }
2101
2102 /* Return true if the given section is a SOM space, false otherwise. */
2103
2104 static boolean
2105 som_is_space (section)
2106 asection *section;
2107 {
2108 /* If no copy data is available, then it's neither a space nor a
2109 subspace. */
2110 if (som_section_data (section)->copy_data == NULL)
2111 return false;
2112
2113 /* If the containing space isn't the same as the given section,
2114 then this isn't a space. */
2115 if (som_section_data (section)->copy_data->container != section)
2116 return false;
2117
2118 /* OK. Must be a space. */
2119 return true;
2120 }
2121
2122 /* Return true if the given section is a SOM subspace, false otherwise. */
2123
2124 static boolean
2125 som_is_subspace (section)
2126 asection *section;
2127 {
2128 /* If no copy data is available, then it's neither a space nor a
2129 subspace. */
2130 if (som_section_data (section)->copy_data == NULL)
2131 return false;
2132
2133 /* If the containing space is the same as the given section,
2134 then this isn't a subspace. */
2135 if (som_section_data (section)->copy_data->container == section)
2136 return false;
2137
2138 /* OK. Must be a subspace. */
2139 return true;
2140 }
2141
2142 /* Return true if the given space containins the given subspace. It
2143 is safe to assume space really is a space, and subspace really
2144 is a subspace. */
2145
2146 static boolean
2147 som_is_container (space, subspace)
2148 asection *space, *subspace;
2149 {
2150 return som_section_data (subspace)->copy_data->container == space;
2151 }
2152
2153 /* Count and return the number of spaces attached to the given BFD. */
2154
2155 static unsigned long
2156 som_count_spaces (abfd)
2157 bfd *abfd;
2158 {
2159 int count = 0;
2160 asection *section;
2161
2162 for (section = abfd->sections; section != NULL; section = section->next)
2163 count += som_is_space (section);
2164
2165 return count;
2166 }
2167
2168 /* Count the number of subspaces attached to the given BFD. */
2169
2170 static unsigned long
2171 som_count_subspaces (abfd)
2172 bfd *abfd;
2173 {
2174 int count = 0;
2175 asection *section;
2176
2177 for (section = abfd->sections; section != NULL; section = section->next)
2178 count += som_is_subspace (section);
2179
2180 return count;
2181 }
2182
2183 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2184
2185 We desire symbols to be ordered starting with the symbol with the
2186 highest relocation count down to the symbol with the lowest relocation
2187 count. Doing so compacts the relocation stream. */
2188
2189 static int
2190 compare_syms (arg1, arg2)
2191 const PTR arg1;
2192 const PTR arg2;
2193
2194 {
2195 asymbol **sym1 = (asymbol **) arg1;
2196 asymbol **sym2 = (asymbol **) arg2;
2197 unsigned int count1, count2;
2198
2199 /* Get relocation count for each symbol. Note that the count
2200 is stored in the udata pointer for section symbols! */
2201 if ((*sym1)->flags & BSF_SECTION_SYM)
2202 count1 = (int)(*sym1)->udata;
2203 else
2204 count1 = som_symbol_data (*sym1)->reloc_count;
2205
2206 if ((*sym2)->flags & BSF_SECTION_SYM)
2207 count2 = (int)(*sym2)->udata;
2208 else
2209 count2 = som_symbol_data (*sym2)->reloc_count;
2210
2211 /* Return the appropriate value. */
2212 if (count1 < count2)
2213 return 1;
2214 else if (count1 > count2)
2215 return -1;
2216 return 0;
2217 }
2218
2219 /* Perform various work in preparation for emitting the fixup stream. */
2220
2221 static void
2222 som_prep_for_fixups (abfd, syms, num_syms)
2223 bfd *abfd;
2224 asymbol **syms;
2225 unsigned long num_syms;
2226 {
2227 int i;
2228 asection *section;
2229
2230 /* Most SOM relocations involving a symbol have a length which is
2231 dependent on the index of the symbol. So symbols which are
2232 used often in relocations should have a small index. */
2233
2234 /* First initialize the counters for each symbol. */
2235 for (i = 0; i < num_syms; i++)
2236 {
2237 /* Handle a section symbol; these have no pointers back to the
2238 SOM symbol info. So we just use the pointer field (udata)
2239 to hold the relocation count. */
2240 if (som_symbol_data (syms[i]) == NULL
2241 || syms[i]->flags & BSF_SECTION_SYM)
2242 {
2243 syms[i]->flags |= BSF_SECTION_SYM;
2244 syms[i]->udata = (PTR) 0;
2245 }
2246 else
2247 som_symbol_data (syms[i])->reloc_count = 0;
2248 }
2249
2250 /* Now that the counters are initialized, make a weighted count
2251 of how often a given symbol is used in a relocation. */
2252 for (section = abfd->sections; section != NULL; section = section->next)
2253 {
2254 int i;
2255
2256 /* Does this section have any relocations? */
2257 if (section->reloc_count <= 0)
2258 continue;
2259
2260 /* Walk through each relocation for this section. */
2261 for (i = 1; i < section->reloc_count; i++)
2262 {
2263 arelent *reloc = section->orelocation[i];
2264 int scale;
2265
2266 /* A relocation against a symbol in the *ABS* section really
2267 does not have a symbol. Likewise if the symbol isn't associated
2268 with any section. */
2269 if (reloc->sym_ptr_ptr == NULL
2270 || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section))
2271 continue;
2272
2273 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2274 and R_CODE_ONE_SYMBOL relocations to come first. These
2275 two relocations have single byte versions if the symbol
2276 index is very small. */
2277 if (reloc->howto->type == R_DP_RELATIVE
2278 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2279 scale = 2;
2280 else
2281 scale = 1;
2282
2283 /* Handle section symbols by ramming the count in the udata
2284 field. It will not be used and the count is very important
2285 for these symbols. */
2286 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2287 {
2288 (*reloc->sym_ptr_ptr)->udata =
2289 (PTR) ((int) (*reloc->sym_ptr_ptr)->udata + scale);
2290 continue;
2291 }
2292
2293 /* A normal symbol. Increment the count. */
2294 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2295 }
2296 }
2297
2298 /* Now sort the symbols. */
2299 qsort (syms, num_syms, sizeof (asymbol *), compare_syms);
2300
2301 /* Compute the symbol indexes, they will be needed by the relocation
2302 code. */
2303 for (i = 0; i < num_syms; i++)
2304 {
2305 /* A section symbol. Again, there is no pointer to backend symbol
2306 information, so we reuse (abuse) the udata field again. */
2307 if (syms[i]->flags & BSF_SECTION_SYM)
2308 syms[i]->udata = (PTR) i;
2309 else
2310 som_symbol_data (syms[i])->index = i;
2311 }
2312 }
2313
2314 static boolean
2315 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2316 bfd *abfd;
2317 unsigned long current_offset;
2318 unsigned int *total_reloc_sizep;
2319 {
2320 unsigned int i, j;
2321 /* Chunk of memory that we can use as buffer space, then throw
2322 away. */
2323 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2324 unsigned char *p;
2325 unsigned int total_reloc_size = 0;
2326 unsigned int subspace_reloc_size = 0;
2327 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2328 asection *section = abfd->sections;
2329
2330 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2331 p = tmp_space;
2332
2333 /* All the fixups for a particular subspace are emitted in a single
2334 stream. All the subspaces for a particular space are emitted
2335 as a single stream.
2336
2337 So, to get all the locations correct one must iterate through all the
2338 spaces, for each space iterate through its subspaces and output a
2339 fixups stream. */
2340 for (i = 0; i < num_spaces; i++)
2341 {
2342 asection *subsection;
2343
2344 /* Find a space. */
2345 while (!som_is_space (section))
2346 section = section->next;
2347
2348 /* Now iterate through each of its subspaces. */
2349 for (subsection = abfd->sections;
2350 subsection != NULL;
2351 subsection = subsection->next)
2352 {
2353 int reloc_offset, current_rounding_mode;
2354
2355 /* Find a subspace of this space. */
2356 if (!som_is_subspace (subsection)
2357 || !som_is_container (section, subsection))
2358 continue;
2359
2360 /* If this subspace does not have real data, then we are
2361 finised with it. */
2362 if ((subsection->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0)
2363 {
2364 som_section_data (subsection)->subspace_dict->fixup_request_index
2365 = -1;
2366 continue;
2367 }
2368
2369 /* This subspace has some relocations. Put the relocation stream
2370 index into the subspace record. */
2371 som_section_data (subsection)->subspace_dict->fixup_request_index
2372 = total_reloc_size;
2373
2374 /* To make life easier start over with a clean slate for
2375 each subspace. Seek to the start of the relocation stream
2376 for this subspace in preparation for writing out its fixup
2377 stream. */
2378 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) < 0)
2379 return false;
2380
2381 /* Buffer space has already been allocated. Just perform some
2382 initialization here. */
2383 p = tmp_space;
2384 subspace_reloc_size = 0;
2385 reloc_offset = 0;
2386 som_initialize_reloc_queue (reloc_queue);
2387 current_rounding_mode = R_N_MODE;
2388
2389 /* Translate each BFD relocation into one or more SOM
2390 relocations. */
2391 for (j = 0; j < subsection->reloc_count; j++)
2392 {
2393 arelent *bfd_reloc = subsection->orelocation[j];
2394 unsigned int skip;
2395 int sym_num;
2396
2397 /* Get the symbol number. Remember it's stored in a
2398 special place for section symbols. */
2399 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2400 sym_num = (int) (*bfd_reloc->sym_ptr_ptr)->udata;
2401 else
2402 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2403
2404 /* If there is not enough room for the next couple relocations,
2405 then dump the current buffer contents now. Also reinitialize
2406 the relocation queue.
2407
2408 No single BFD relocation could ever translate into more
2409 than 100 bytes of SOM relocations (20bytes is probably the
2410 upper limit, but leave lots of space for growth). */
2411 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2412 {
2413 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2414 != p - tmp_space)
2415 return false;
2416
2417 p = tmp_space;
2418 som_initialize_reloc_queue (reloc_queue);
2419 }
2420
2421 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2422 skipped. */
2423 skip = bfd_reloc->address - reloc_offset;
2424 p = som_reloc_skip (abfd, skip, p,
2425 &subspace_reloc_size, reloc_queue);
2426
2427 /* Update reloc_offset for the next iteration.
2428
2429 Many relocations do not consume input bytes. They
2430 are markers, or set state necessary to perform some
2431 later relocation. */
2432 switch (bfd_reloc->howto->type)
2433 {
2434 /* This only needs to handle relocations that may be
2435 made by hppa_som_gen_reloc. */
2436 case R_ENTRY:
2437 case R_EXIT:
2438 case R_N_MODE:
2439 case R_S_MODE:
2440 case R_D_MODE:
2441 case R_R_MODE:
2442 case R_FSEL:
2443 case R_LSEL:
2444 case R_RSEL:
2445 reloc_offset = bfd_reloc->address;
2446 break;
2447
2448 default:
2449 reloc_offset = bfd_reloc->address + 4;
2450 break;
2451 }
2452
2453 /* Now the actual relocation we care about. */
2454 switch (bfd_reloc->howto->type)
2455 {
2456 case R_PCREL_CALL:
2457 case R_ABS_CALL:
2458 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2459 bfd_reloc, sym_num, reloc_queue);
2460 break;
2461
2462 case R_CODE_ONE_SYMBOL:
2463 case R_DP_RELATIVE:
2464 /* Account for any addend. */
2465 if (bfd_reloc->addend)
2466 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2467 &subspace_reloc_size, reloc_queue);
2468
2469 if (sym_num < 0x20)
2470 {
2471 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2472 subspace_reloc_size += 1;
2473 p += 1;
2474 }
2475 else if (sym_num < 0x100)
2476 {
2477 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2478 bfd_put_8 (abfd, sym_num, p + 1);
2479 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2480 2, reloc_queue);
2481 }
2482 else if (sym_num < 0x10000000)
2483 {
2484 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2485 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2486 bfd_put_16 (abfd, sym_num, p + 2);
2487 p = try_prev_fixup (abfd, &subspace_reloc_size,
2488 p, 4, reloc_queue);
2489 }
2490 else
2491 abort ();
2492 break;
2493
2494 case R_DATA_ONE_SYMBOL:
2495 case R_DATA_PLABEL:
2496 case R_CODE_PLABEL:
2497 case R_DLT_REL:
2498 /* Account for any addend. */
2499 if (bfd_reloc->addend)
2500 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2501 &subspace_reloc_size, reloc_queue);
2502
2503 if (sym_num < 0x100)
2504 {
2505 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2506 bfd_put_8 (abfd, sym_num, p + 1);
2507 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2508 2, reloc_queue);
2509 }
2510 else if (sym_num < 0x10000000)
2511 {
2512 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2513 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2514 bfd_put_16 (abfd, sym_num, p + 2);
2515 p = try_prev_fixup (abfd, &subspace_reloc_size,
2516 p, 4, reloc_queue);
2517 }
2518 else
2519 abort ();
2520 break;
2521
2522 case R_ENTRY:
2523 {
2524 int *descp = (int *)
2525 som_symbol_data (*bfd_reloc->sym_ptr_ptr)->unwind;
2526 bfd_put_8 (abfd, R_ENTRY, p);
2527
2528 /* FIXME: We should set the sym_ptr for the R_ENTRY
2529 reloc to point to the appropriate function symbol,
2530 and attach unwind bits to the function symbol as
2531 we canonicalize the relocs. Doing so would ensure
2532 descp would always point to something useful. */
2533 if (descp)
2534 {
2535 bfd_put_32 (abfd, descp[0], p + 1);
2536 bfd_put_32 (abfd, descp[1], p + 5);
2537 }
2538 else
2539 {
2540 bfd_put_32 (abfd, 0, p + 1);
2541 bfd_put_32 (abfd, 0, p + 5);
2542 }
2543 p = try_prev_fixup (abfd, &subspace_reloc_size,
2544 p, 9, reloc_queue);
2545 break;
2546 }
2547
2548 case R_EXIT:
2549 bfd_put_8 (abfd, R_EXIT, p);
2550 subspace_reloc_size += 1;
2551 p += 1;
2552 break;
2553
2554 case R_N_MODE:
2555 case R_S_MODE:
2556 case R_D_MODE:
2557 case R_R_MODE:
2558 /* If this relocation requests the current rounding
2559 mode, then it is redundant. */
2560 if (bfd_reloc->howto->type != current_rounding_mode)
2561 {
2562 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2563 subspace_reloc_size += 1;
2564 p += 1;
2565 current_rounding_mode = bfd_reloc->howto->type;
2566 }
2567 break;
2568
2569 case R_FSEL:
2570 case R_LSEL:
2571 case R_RSEL:
2572 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2573 subspace_reloc_size += 1;
2574 p += 1;
2575 break;
2576
2577 /* Put a "R_RESERVED" relocation in the stream if
2578 we hit something we do not understand. The linker
2579 will complain loudly if this ever happens. */
2580 default:
2581 bfd_put_8 (abfd, 0xff, p);
2582 subspace_reloc_size += 1;
2583 p += 1;
2584 break;
2585 }
2586 }
2587
2588 /* Last BFD relocation for a subspace has been processed.
2589 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2590 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2591 - reloc_offset,
2592 p, &subspace_reloc_size, reloc_queue);
2593
2594 /* Scribble out the relocations. */
2595 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2596 != p - tmp_space)
2597 return false;
2598 p = tmp_space;
2599
2600 total_reloc_size += subspace_reloc_size;
2601 som_section_data (subsection)->subspace_dict->fixup_request_quantity
2602 = subspace_reloc_size;
2603 }
2604 section = section->next;
2605 }
2606 *total_reloc_sizep = total_reloc_size;
2607 return true;
2608 }
2609
2610 /* Write out the space/subspace string table. */
2611
2612 static boolean
2613 som_write_space_strings (abfd, current_offset, string_sizep)
2614 bfd *abfd;
2615 unsigned long current_offset;
2616 unsigned int *string_sizep;
2617 {
2618 /* Chunk of memory that we can use as buffer space, then throw
2619 away. */
2620 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2621 unsigned char *p;
2622 unsigned int strings_size = 0;
2623 asection *section;
2624
2625 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2626 p = tmp_space;
2627
2628 /* Seek to the start of the space strings in preparation for writing
2629 them out. */
2630 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2631 return false;
2632
2633 /* Walk through all the spaces and subspaces (order is not important)
2634 building up and writing string table entries for their names. */
2635 for (section = abfd->sections; section != NULL; section = section->next)
2636 {
2637 int length;
2638
2639 /* Only work with space/subspaces; avoid any other sections
2640 which might have been made (.text for example). */
2641 if (!som_is_space (section) && !som_is_subspace (section))
2642 continue;
2643
2644 /* Get the length of the space/subspace name. */
2645 length = strlen (section->name);
2646
2647 /* If there is not enough room for the next entry, then dump the
2648 current buffer contents now. Each entry will take 4 bytes to
2649 hold the string length + the string itself + null terminator. */
2650 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2651 {
2652 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2653 != p - tmp_space)
2654 return false;
2655 /* Reset to beginning of the buffer space. */
2656 p = tmp_space;
2657 }
2658
2659 /* First element in a string table entry is the length of the
2660 string. Alignment issues are already handled. */
2661 bfd_put_32 (abfd, length, p);
2662 p += 4;
2663 strings_size += 4;
2664
2665 /* Record the index in the space/subspace records. */
2666 if (som_is_space (section))
2667 som_section_data (section)->space_dict->name.n_strx = strings_size;
2668 else
2669 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
2670
2671 /* Next comes the string itself + a null terminator. */
2672 strcpy (p, section->name);
2673 p += length + 1;
2674 strings_size += length + 1;
2675
2676 /* Always align up to the next word boundary. */
2677 while (strings_size % 4)
2678 {
2679 bfd_put_8 (abfd, 0, p);
2680 p++;
2681 strings_size++;
2682 }
2683 }
2684
2685 /* Done with the space/subspace strings. Write out any information
2686 contained in a partial block. */
2687 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2688 return false;
2689 *string_sizep = strings_size;
2690 return true;
2691 }
2692
2693 /* Write out the symbol string table. */
2694
2695 static boolean
2696 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
2697 bfd *abfd;
2698 unsigned long current_offset;
2699 asymbol **syms;
2700 unsigned int num_syms;
2701 unsigned int *string_sizep;
2702 {
2703 unsigned int i;
2704
2705 /* Chunk of memory that we can use as buffer space, then throw
2706 away. */
2707 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2708 unsigned char *p;
2709 unsigned int strings_size = 0;
2710
2711 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2712 p = tmp_space;
2713
2714 /* Seek to the start of the space strings in preparation for writing
2715 them out. */
2716 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2717 return false;
2718
2719 for (i = 0; i < num_syms; i++)
2720 {
2721 int length = strlen (syms[i]->name);
2722
2723 /* If there is not enough room for the next entry, then dump the
2724 current buffer contents now. */
2725 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2726 {
2727 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2728 != p - tmp_space)
2729 return false;
2730 /* Reset to beginning of the buffer space. */
2731 p = tmp_space;
2732 }
2733
2734 /* First element in a string table entry is the length of the
2735 string. This must always be 4 byte aligned. This is also
2736 an appropriate time to fill in the string index field in the
2737 symbol table entry. */
2738 bfd_put_32 (abfd, length, p);
2739 strings_size += 4;
2740 p += 4;
2741
2742 /* Next comes the string itself + a null terminator. */
2743 strcpy (p, syms[i]->name);
2744
2745 /* ACK. FIXME. */
2746 syms[i]->name = (char *)strings_size;
2747 p += length + 1;
2748 strings_size += length + 1;
2749
2750 /* Always align up to the next word boundary. */
2751 while (strings_size % 4)
2752 {
2753 bfd_put_8 (abfd, 0, p);
2754 strings_size++;
2755 p++;
2756 }
2757 }
2758
2759 /* Scribble out any partial block. */
2760 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2761 return false;
2762
2763 *string_sizep = strings_size;
2764 return true;
2765 }
2766
2767 /* Compute variable information to be placed in the SOM headers,
2768 space/subspace dictionaries, relocation streams, etc. Begin
2769 writing parts of the object file. */
2770
2771 static boolean
2772 som_begin_writing (abfd)
2773 bfd *abfd;
2774 {
2775 unsigned long current_offset = 0;
2776 int strings_size = 0;
2777 unsigned int total_reloc_size = 0;
2778 unsigned long num_spaces, num_subspaces, num_syms, i;
2779 asection *section;
2780 asymbol **syms = bfd_get_outsymbols (abfd);
2781 unsigned int total_subspaces = 0;
2782 struct som_exec_auxhdr *exec_header;
2783
2784 /* The file header will always be first in an object file,
2785 everything else can be in random locations. To keep things
2786 "simple" BFD will lay out the object file in the manner suggested
2787 by the PRO ABI for PA-RISC Systems. */
2788
2789 /* Before any output can really begin offsets for all the major
2790 portions of the object file must be computed. So, starting
2791 with the initial file header compute (and sometimes write)
2792 each portion of the object file. */
2793
2794 /* Make room for the file header, it's contents are not complete
2795 yet, so it can not be written at this time. */
2796 current_offset += sizeof (struct header);
2797
2798 /* Any auxiliary headers will follow the file header. Right now
2799 we support only the copyright and version headers. */
2800 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
2801 obj_som_file_hdr (abfd)->aux_header_size = 0;
2802 if (abfd->flags & (EXEC_P | DYNAMIC))
2803 {
2804 /* Parts of the exec header will be filled in later, so
2805 delay writing the header itself. Fill in the defaults,
2806 and write it later. */
2807 current_offset += sizeof (struct som_exec_auxhdr);
2808 obj_som_file_hdr (abfd)->aux_header_size
2809 += sizeof (struct som_exec_auxhdr);
2810 exec_header = obj_som_exec_hdr (abfd);
2811 exec_header->som_auxhdr.type = EXEC_AUX_ID;
2812 exec_header->som_auxhdr.length = 40;
2813 }
2814 if (obj_som_version_hdr (abfd) != NULL)
2815 {
2816 unsigned int len;
2817
2818 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2819 return false;
2820
2821 /* Write the aux_id structure and the string length. */
2822 len = sizeof (struct aux_id) + sizeof (unsigned int);
2823 obj_som_file_hdr (abfd)->aux_header_size += len;
2824 current_offset += len;
2825 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
2826 return false;
2827
2828 /* Write the version string. */
2829 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
2830 obj_som_file_hdr (abfd)->aux_header_size += len;
2831 current_offset += len;
2832 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
2833 len, 1, abfd) != len)
2834 return false;
2835 }
2836
2837 if (obj_som_copyright_hdr (abfd) != NULL)
2838 {
2839 unsigned int len;
2840
2841 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2842 return false;
2843
2844 /* Write the aux_id structure and the string length. */
2845 len = sizeof (struct aux_id) + sizeof (unsigned int);
2846 obj_som_file_hdr (abfd)->aux_header_size += len;
2847 current_offset += len;
2848 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
2849 return false;
2850
2851 /* Write the copyright string. */
2852 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
2853 obj_som_file_hdr (abfd)->aux_header_size += len;
2854 current_offset += len;
2855 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
2856 len, 1, abfd) != len)
2857 return false;
2858 }
2859
2860 /* Next comes the initialization pointers; we have no initialization
2861 pointers, so current offset does not change. */
2862 obj_som_file_hdr (abfd)->init_array_location = current_offset;
2863 obj_som_file_hdr (abfd)->init_array_total = 0;
2864
2865 /* Next are the space records. These are fixed length records.
2866
2867 Count the number of spaces to determine how much room is needed
2868 in the object file for the space records.
2869
2870 The names of the spaces are stored in a separate string table,
2871 and the index for each space into the string table is computed
2872 below. Therefore, it is not possible to write the space headers
2873 at this time. */
2874 num_spaces = som_count_spaces (abfd);
2875 obj_som_file_hdr (abfd)->space_location = current_offset;
2876 obj_som_file_hdr (abfd)->space_total = num_spaces;
2877 current_offset += num_spaces * sizeof (struct space_dictionary_record);
2878
2879 /* Next are the subspace records. These are fixed length records.
2880
2881 Count the number of subspaes to determine how much room is needed
2882 in the object file for the subspace records.
2883
2884 A variety if fields in the subspace record are still unknown at
2885 this time (index into string table, fixup stream location/size, etc). */
2886 num_subspaces = som_count_subspaces (abfd);
2887 obj_som_file_hdr (abfd)->subspace_location = current_offset;
2888 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
2889 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
2890
2891 /* Next is the string table for the space/subspace names. We will
2892 build and write the string table on the fly. At the same time
2893 we will fill in the space/subspace name index fields. */
2894
2895 /* The string table needs to be aligned on a word boundary. */
2896 if (current_offset % 4)
2897 current_offset += (4 - (current_offset % 4));
2898
2899 /* Mark the offset of the space/subspace string table in the
2900 file header. */
2901 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
2902
2903 /* Scribble out the space strings. */
2904 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
2905 return false;
2906
2907 /* Record total string table size in the header and update the
2908 current offset. */
2909 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
2910 current_offset += strings_size;
2911
2912 /* Next is the symbol table. These are fixed length records.
2913
2914 Count the number of symbols to determine how much room is needed
2915 in the object file for the symbol table.
2916
2917 The names of the symbols are stored in a separate string table,
2918 and the index for each symbol name into the string table is computed
2919 below. Therefore, it is not possible to write the symobl table
2920 at this time. */
2921 num_syms = bfd_get_symcount (abfd);
2922 obj_som_file_hdr (abfd)->symbol_location = current_offset;
2923 obj_som_file_hdr (abfd)->symbol_total = num_syms;
2924 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
2925
2926 /* Do prep work before handling fixups. */
2927 som_prep_for_fixups (abfd, syms, num_syms);
2928
2929 /* Next comes the fixup stream which starts on a word boundary. */
2930 if (current_offset % 4)
2931 current_offset += (4 - (current_offset % 4));
2932 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
2933
2934 /* Write the fixups and update fields in subspace headers which
2935 relate to the fixup stream. */
2936 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
2937 return false;
2938
2939 /* Record the total size of the fixup stream in the file header. */
2940 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
2941 current_offset += total_reloc_size;
2942
2943 /* Next are the symbol strings.
2944 Align them to a word boundary. */
2945 if (current_offset % 4)
2946 current_offset += (4 - (current_offset % 4));
2947 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
2948
2949 /* Scribble out the symbol strings. */
2950 if (som_write_symbol_strings (abfd, current_offset, syms,
2951 num_syms, &strings_size)
2952 == false)
2953 return false;
2954
2955 /* Record total string table size in header and update the
2956 current offset. */
2957 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
2958 current_offset += strings_size;
2959
2960 /* Next is the compiler records. We do not use these. */
2961 obj_som_file_hdr (abfd)->compiler_location = current_offset;
2962 obj_som_file_hdr (abfd)->compiler_total = 0;
2963
2964 /* Now compute the file positions for the loadable subspaces, taking
2965 care to make sure everything stays properly aligned. */
2966
2967 section = abfd->sections;
2968 for (i = 0; i < num_spaces; i++)
2969 {
2970 asection *subsection;
2971 int first_subspace;
2972 unsigned int subspace_offset = 0;
2973
2974 /* Find a space. */
2975 while (!som_is_space (section))
2976 section = section->next;
2977
2978 first_subspace = 1;
2979 /* Now look for all its subspaces. */
2980 for (subsection = abfd->sections;
2981 subsection != NULL;
2982 subsection = subsection->next)
2983 {
2984
2985 if (!som_is_subspace (subsection)
2986 || !som_is_container (section, subsection)
2987 || (subsection->flags & SEC_ALLOC) == 0)
2988 continue;
2989
2990 /* If this is the first subspace in the space, and we are
2991 building an executable, then take care to make sure all
2992 the alignments are correct and update the exec header. */
2993 if (first_subspace
2994 && (abfd->flags & (EXEC_P | DYNAMIC)))
2995 {
2996 /* Demand paged executables have each space aligned to a
2997 page boundary. Sharable executables (write-protected
2998 text) have just the private (aka data & bss) space aligned
2999 to a page boundary. Ugh. Not true for HPUX.
3000
3001 The HPUX kernel requires the text to always be page aligned
3002 within the file regardless of the executable's type. */
3003 if (abfd->flags & (D_PAGED | DYNAMIC)
3004 || (subsection->flags & SEC_CODE)
3005 || ((abfd->flags & WP_TEXT)
3006 && (subsection->flags & SEC_DATA)))
3007 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3008
3009 /* Update the exec header. */
3010 if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0)
3011 {
3012 exec_header->exec_tmem = section->vma;
3013 exec_header->exec_tfile = current_offset;
3014 }
3015 if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0)
3016 {
3017 exec_header->exec_dmem = section->vma;
3018 exec_header->exec_dfile = current_offset;
3019 }
3020
3021 /* Keep track of exactly where we are within a particular
3022 space. This is necessary as the braindamaged HPUX
3023 loader will create holes between subspaces *and*
3024 subspace alignments are *NOT* preserved. What a crock. */
3025 subspace_offset = subsection->vma;
3026
3027 /* Only do this for the first subspace within each space. */
3028 first_subspace = 0;
3029 }
3030 else if (abfd->flags & (EXEC_P | DYNAMIC))
3031 {
3032 /* The braindamaged HPUX loader may have created a hole
3033 between two subspaces. It is *not* sufficient to use
3034 the alignment specifications within the subspaces to
3035 account for these holes -- I've run into at least one
3036 case where the loader left one code subspace unaligned
3037 in a final executable.
3038
3039 To combat this we keep a current offset within each space,
3040 and use the subspace vma fields to detect and preserve
3041 holes. What a crock!
3042
3043 ps. This is not necessary for unloadable space/subspaces. */
3044 current_offset += subsection->vma - subspace_offset;
3045 if (subsection->flags & SEC_CODE)
3046 exec_header->exec_tsize += subsection->vma - subspace_offset;
3047 else
3048 exec_header->exec_dsize += subsection->vma - subspace_offset;
3049 subspace_offset += subsection->vma - subspace_offset;
3050 }
3051
3052
3053 subsection->target_index = total_subspaces++;
3054 /* This is real data to be loaded from the file. */
3055 if (subsection->flags & SEC_LOAD)
3056 {
3057 /* Update the size of the code & data. */
3058 if (abfd->flags & (EXEC_P | DYNAMIC)
3059 && subsection->flags & SEC_CODE)
3060 exec_header->exec_tsize += subsection->_cooked_size;
3061 else if (abfd->flags & (EXEC_P | DYNAMIC)
3062 && subsection->flags & SEC_DATA)
3063 exec_header->exec_dsize += subsection->_cooked_size;
3064 som_section_data (subsection)->subspace_dict->file_loc_init_value
3065 = current_offset;
3066 subsection->filepos = current_offset;
3067 current_offset += bfd_section_size (abfd, subsection);
3068 subspace_offset += bfd_section_size (abfd, subsection);
3069 }
3070 /* Looks like uninitialized data. */
3071 else
3072 {
3073 /* Update the size of the bss section. */
3074 if (abfd->flags & (EXEC_P | DYNAMIC))
3075 exec_header->exec_bsize += subsection->_cooked_size;
3076
3077 som_section_data (subsection)->subspace_dict->file_loc_init_value
3078 = 0;
3079 som_section_data (subsection)->subspace_dict->
3080 initialization_length = 0;
3081 }
3082 }
3083 /* Goto the next section. */
3084 section = section->next;
3085 }
3086
3087 /* Finally compute the file positions for unloadable subspaces.
3088 If building an executable, start the unloadable stuff on its
3089 own page. */
3090
3091 if (abfd->flags & (EXEC_P | DYNAMIC))
3092 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3093
3094 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3095 section = abfd->sections;
3096 for (i = 0; i < num_spaces; i++)
3097 {
3098 asection *subsection;
3099
3100 /* Find a space. */
3101 while (!som_is_space (section))
3102 section = section->next;
3103
3104 if (abfd->flags & (EXEC_P | DYNAMIC))
3105 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3106
3107 /* Now look for all its subspaces. */
3108 for (subsection = abfd->sections;
3109 subsection != NULL;
3110 subsection = subsection->next)
3111 {
3112
3113 if (!som_is_subspace (subsection)
3114 || !som_is_container (section, subsection)
3115 || (subsection->flags & SEC_ALLOC) != 0)
3116 continue;
3117
3118 subsection->target_index = total_subspaces;
3119 /* This is real data to be loaded from the file. */
3120 if ((subsection->flags & SEC_LOAD) == 0)
3121 {
3122 som_section_data (subsection)->subspace_dict->file_loc_init_value
3123 = current_offset;
3124 subsection->filepos = current_offset;
3125 current_offset += bfd_section_size (abfd, subsection);
3126 }
3127 /* Looks like uninitialized data. */
3128 else
3129 {
3130 som_section_data (subsection)->subspace_dict->file_loc_init_value
3131 = 0;
3132 som_section_data (subsection)->subspace_dict->
3133 initialization_length = bfd_section_size (abfd, subsection);
3134 }
3135 }
3136 /* Goto the next section. */
3137 section = section->next;
3138 }
3139
3140 /* If building an executable, then make sure to seek to and write
3141 one byte at the end of the file to make sure any necessary
3142 zeros are filled in. Ugh. */
3143 if (abfd->flags & (EXEC_P | DYNAMIC))
3144 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3145 if (bfd_seek (abfd, current_offset - 1, SEEK_SET) < 0)
3146 return false;
3147 if (bfd_write ((PTR) "", 1, 1, abfd) != 1)
3148 return false;
3149
3150 obj_som_file_hdr (abfd)->unloadable_sp_size
3151 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3152
3153 /* Loader fixups are not supported in any way shape or form. */
3154 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3155 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3156
3157 /* Done. Store the total size of the SOM. */
3158 obj_som_file_hdr (abfd)->som_length = current_offset;
3159
3160 return true;
3161 }
3162
3163 /* Finally, scribble out the various headers to the disk. */
3164
3165 static boolean
3166 som_write_headers (abfd)
3167 bfd *abfd;
3168 {
3169 int num_spaces = som_count_spaces (abfd);
3170 int i;
3171 int subspace_index = 0;
3172 file_ptr location;
3173 asection *section;
3174
3175 /* Subspaces are written first so that we can set up information
3176 about them in their containing spaces as the subspace is written. */
3177
3178 /* Seek to the start of the subspace dictionary records. */
3179 location = obj_som_file_hdr (abfd)->subspace_location;
3180 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3181 return false;
3182
3183 section = abfd->sections;
3184 /* Now for each loadable space write out records for its subspaces. */
3185 for (i = 0; i < num_spaces; i++)
3186 {
3187 asection *subsection;
3188
3189 /* Find a space. */
3190 while (!som_is_space (section))
3191 section = section->next;
3192
3193 /* Now look for all its subspaces. */
3194 for (subsection = abfd->sections;
3195 subsection != NULL;
3196 subsection = subsection->next)
3197 {
3198
3199 /* Skip any section which does not correspond to a space
3200 or subspace. Or does not have SEC_ALLOC set (and therefore
3201 has no real bits on the disk). */
3202 if (!som_is_subspace (subsection)
3203 || !som_is_container (section, subsection)
3204 || (subsection->flags & SEC_ALLOC) == 0)
3205 continue;
3206
3207 /* If this is the first subspace for this space, then save
3208 the index of the subspace in its containing space. Also
3209 set "is_loadable" in the containing space. */
3210
3211 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3212 {
3213 som_section_data (section)->space_dict->is_loadable = 1;
3214 som_section_data (section)->space_dict->subspace_index
3215 = subspace_index;
3216 }
3217
3218 /* Increment the number of subspaces seen and the number of
3219 subspaces contained within the current space. */
3220 subspace_index++;
3221 som_section_data (section)->space_dict->subspace_quantity++;
3222
3223 /* Mark the index of the current space within the subspace's
3224 dictionary record. */
3225 som_section_data (subsection)->subspace_dict->space_index = i;
3226
3227 /* Dump the current subspace header. */
3228 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3229 sizeof (struct subspace_dictionary_record), 1, abfd)
3230 != sizeof (struct subspace_dictionary_record))
3231 return false;
3232 }
3233 /* Goto the next section. */
3234 section = section->next;
3235 }
3236
3237 /* Now repeat the process for unloadable subspaces. */
3238 section = abfd->sections;
3239 /* Now for each space write out records for its subspaces. */
3240 for (i = 0; i < num_spaces; i++)
3241 {
3242 asection *subsection;
3243
3244 /* Find a space. */
3245 while (!som_is_space (section))
3246 section = section->next;
3247
3248 /* Now look for all its subspaces. */
3249 for (subsection = abfd->sections;
3250 subsection != NULL;
3251 subsection = subsection->next)
3252 {
3253
3254 /* Skip any section which does not correspond to a space or
3255 subspace, or which SEC_ALLOC set (and therefore handled
3256 in the loadable spaces/subspaces code above). */
3257
3258 if (!som_is_subspace (subsection)
3259 || !som_is_container (section, subsection)
3260 || (subsection->flags & SEC_ALLOC) != 0)
3261 continue;
3262
3263 /* If this is the first subspace for this space, then save
3264 the index of the subspace in its containing space. Clear
3265 "is_loadable". */
3266
3267 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3268 {
3269 som_section_data (section)->space_dict->is_loadable = 0;
3270 som_section_data (section)->space_dict->subspace_index
3271 = subspace_index;
3272 }
3273
3274 /* Increment the number of subspaces seen and the number of
3275 subspaces contained within the current space. */
3276 som_section_data (section)->space_dict->subspace_quantity++;
3277 subspace_index++;
3278
3279 /* Mark the index of the current space within the subspace's
3280 dictionary record. */
3281 som_section_data (subsection)->subspace_dict->space_index = i;
3282
3283 /* Dump this subspace header. */
3284 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3285 sizeof (struct subspace_dictionary_record), 1, abfd)
3286 != sizeof (struct subspace_dictionary_record))
3287 return false;
3288 }
3289 /* Goto the next section. */
3290 section = section->next;
3291 }
3292
3293 /* All the subspace dictiondary records are written, and all the
3294 fields are set up in the space dictionary records.
3295
3296 Seek to the right location and start writing the space
3297 dictionary records. */
3298 location = obj_som_file_hdr (abfd)->space_location;
3299 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3300 return false;
3301
3302 section = abfd->sections;
3303 for (i = 0; i < num_spaces; i++)
3304 {
3305
3306 /* Find a space. */
3307 while (!som_is_space (section))
3308 section = section->next;
3309
3310 /* Dump its header */
3311 if (bfd_write ((PTR) som_section_data (section)->space_dict,
3312 sizeof (struct space_dictionary_record), 1, abfd)
3313 != sizeof (struct space_dictionary_record))
3314 return false;
3315
3316 /* Goto the next section. */
3317 section = section->next;
3318 }
3319
3320 /* FIXME. This should really be conditional based on whether or not
3321 PA1.1 instructions/registers have been used.
3322
3323 Setting of the system_id has to happen very late now that copying of
3324 BFD private data happens *after* section contents are set. */
3325 if (abfd->flags & (EXEC_P | DYNAMIC))
3326 obj_som_file_hdr(abfd)->system_id = obj_som_exec_data (abfd)->system_id;
3327 else
3328 obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC1_0;
3329
3330 /* Compute the checksum for the file header just before writing
3331 the header to disk. */
3332 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3333
3334 /* Only thing left to do is write out the file header. It is always
3335 at location zero. Seek there and write it. */
3336 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0)
3337 return false;
3338 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3339 sizeof (struct header), 1, abfd)
3340 != sizeof (struct header))
3341 return false;
3342
3343 /* Now write the exec header. */
3344 if (abfd->flags & (EXEC_P | DYNAMIC))
3345 {
3346 long tmp;
3347 struct som_exec_auxhdr *exec_header;
3348
3349 exec_header = obj_som_exec_hdr (abfd);
3350 exec_header->exec_entry = bfd_get_start_address (abfd);
3351 exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags;
3352
3353 /* Oh joys. Ram some of the BSS data into the DATA section
3354 to be compatable with how the hp linker makes objects
3355 (saves memory space). */
3356 tmp = exec_header->exec_dsize;
3357 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3358 exec_header->exec_bsize -= (tmp - exec_header->exec_dsize);
3359 if (exec_header->exec_bsize < 0)
3360 exec_header->exec_bsize = 0;
3361 exec_header->exec_dsize = tmp;
3362
3363 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
3364 SEEK_SET) < 0)
3365 return false;
3366
3367 if (bfd_write ((PTR) exec_header, AUX_HDR_SIZE, 1, abfd)
3368 != AUX_HDR_SIZE)
3369 return false;
3370 }
3371 return true;
3372 }
3373
3374 /* Compute and return the checksum for a SOM file header. */
3375
3376 static unsigned long
3377 som_compute_checksum (abfd)
3378 bfd *abfd;
3379 {
3380 unsigned long checksum, count, i;
3381 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3382
3383 checksum = 0;
3384 count = sizeof (struct header) / sizeof (unsigned long);
3385 for (i = 0; i < count; i++)
3386 checksum ^= *(buffer + i);
3387
3388 return checksum;
3389 }
3390
3391 static void
3392 som_bfd_derive_misc_symbol_info (abfd, sym, info)
3393 bfd *abfd;
3394 asymbol *sym;
3395 struct som_misc_symbol_info *info;
3396 {
3397 /* Initialize. */
3398 memset (info, 0, sizeof (struct som_misc_symbol_info));
3399
3400 /* The HP SOM linker requires detailed type information about
3401 all symbols (including undefined symbols!). Unfortunately,
3402 the type specified in an import/export statement does not
3403 always match what the linker wants. Severe braindamage. */
3404
3405 /* Section symbols will not have a SOM symbol type assigned to
3406 them yet. Assign all section symbols type ST_DATA. */
3407 if (sym->flags & BSF_SECTION_SYM)
3408 info->symbol_type = ST_DATA;
3409 else
3410 {
3411 /* Common symbols must have scope SS_UNSAT and type
3412 ST_STORAGE or the linker will choke. */
3413 if (bfd_is_com_section (sym->section))
3414 {
3415 info->symbol_scope = SS_UNSAT;
3416 info->symbol_type = ST_STORAGE;
3417 }
3418
3419 /* It is possible to have a symbol without an associated
3420 type. This happens if the user imported the symbol
3421 without a type and the symbol was never defined
3422 locally. If BSF_FUNCTION is set for this symbol, then
3423 assign it type ST_CODE (the HP linker requires undefined
3424 external functions to have type ST_CODE rather than ST_ENTRY). */
3425 else if ((som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3426 || som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3427 && bfd_is_und_section (sym->section)
3428 && sym->flags & BSF_FUNCTION)
3429 info->symbol_type = ST_CODE;
3430
3431 /* Handle function symbols which were defined in this file.
3432 They should have type ST_ENTRY. Also retrieve the argument
3433 relocation bits from the SOM backend information. */
3434 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3435 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3436 && (sym->flags & BSF_FUNCTION))
3437 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3438 && (sym->flags & BSF_FUNCTION)))
3439 {
3440 info->symbol_type = ST_ENTRY;
3441 info->arg_reloc = som_symbol_data (sym)->tc_data.hppa_arg_reloc;
3442 }
3443
3444 /* If the type is unknown at this point, it should be ST_DATA or
3445 ST_CODE (function/ST_ENTRY symbols were handled as special
3446 cases above). */
3447 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3448 {
3449 if (sym->section->flags & SEC_CODE)
3450 info->symbol_type = ST_CODE;
3451 else
3452 info->symbol_type = ST_DATA;
3453 }
3454
3455 /* From now on it's a very simple mapping. */
3456 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3457 info->symbol_type = ST_ABSOLUTE;
3458 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3459 info->symbol_type = ST_CODE;
3460 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3461 info->symbol_type = ST_DATA;
3462 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3463 info->symbol_type = ST_MILLICODE;
3464 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3465 info->symbol_type = ST_PLABEL;
3466 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3467 info->symbol_type = ST_PRI_PROG;
3468 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3469 info->symbol_type = ST_SEC_PROG;
3470 }
3471
3472 /* Now handle the symbol's scope. Exported data which is not
3473 in the common section has scope SS_UNIVERSAL. Note scope
3474 of common symbols was handled earlier! */
3475 if (sym->flags & BSF_EXPORT && ! bfd_is_com_section (sym->section))
3476 info->symbol_scope = SS_UNIVERSAL;
3477 /* Any undefined symbol at this point has a scope SS_UNSAT. */
3478 else if (bfd_is_und_section (sym->section))
3479 info->symbol_scope = SS_UNSAT;
3480 /* Anything else which is not in the common section has scope
3481 SS_LOCAL. */
3482 else if (! bfd_is_com_section (sym->section))
3483 info->symbol_scope = SS_LOCAL;
3484
3485 /* Now set the symbol_info field. It has no real meaning
3486 for undefined or common symbols, but the HP linker will
3487 choke if it's not set to some "reasonable" value. We
3488 use zero as a reasonable value. */
3489 if (bfd_is_com_section (sym->section)
3490 || bfd_is_und_section (sym->section)
3491 || bfd_is_abs_section (sym->section))
3492 info->symbol_info = 0;
3493 /* For all other symbols, the symbol_info field contains the
3494 subspace index of the space this symbol is contained in. */
3495 else
3496 info->symbol_info = sym->section->target_index;
3497
3498 /* Set the symbol's value. */
3499 info->symbol_value = sym->value + sym->section->vma;
3500 }
3501
3502 /* Build and write, in one big chunk, the entire symbol table for
3503 this BFD. */
3504
3505 static boolean
3506 som_build_and_write_symbol_table (abfd)
3507 bfd *abfd;
3508 {
3509 unsigned int num_syms = bfd_get_symcount (abfd);
3510 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3511 asymbol **bfd_syms = bfd_get_outsymbols (abfd);
3512 struct symbol_dictionary_record *som_symtab = NULL;
3513 int i, symtab_size;
3514
3515 /* Compute total symbol table size and allocate a chunk of memory
3516 to hold the symbol table as we build it. */
3517 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3518 som_symtab = (struct symbol_dictionary_record *) malloc (symtab_size);
3519 if (som_symtab == NULL && symtab_size != 0)
3520 {
3521 bfd_set_error (bfd_error_no_memory);
3522 goto error_return;
3523 }
3524 memset (som_symtab, 0, symtab_size);
3525
3526 /* Walk over each symbol. */
3527 for (i = 0; i < num_syms; i++)
3528 {
3529 struct som_misc_symbol_info info;
3530
3531 /* This is really an index into the symbol strings table.
3532 By the time we get here, the index has already been
3533 computed and stored into the name field in the BFD symbol. */
3534 som_symtab[i].name.n_strx = (int) bfd_syms[i]->name;
3535
3536 /* Derive SOM information from the BFD symbol. */
3537 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
3538
3539 /* Now use it. */
3540 som_symtab[i].symbol_type = info.symbol_type;
3541 som_symtab[i].symbol_scope = info.symbol_scope;
3542 som_symtab[i].arg_reloc = info.arg_reloc;
3543 som_symtab[i].symbol_info = info.symbol_info;
3544 som_symtab[i].symbol_value = info.symbol_value;
3545 }
3546
3547 /* Everything is ready, seek to the right location and
3548 scribble out the symbol table. */
3549 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3550 return false;
3551
3552 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3553 goto error_return;
3554
3555 if (som_symtab != NULL)
3556 free (som_symtab);
3557 return true;
3558 error_return:
3559 if (som_symtab != NULL)
3560 free (som_symtab);
3561 return false;
3562 }
3563
3564 /* Write an object in SOM format. */
3565
3566 static boolean
3567 som_write_object_contents (abfd)
3568 bfd *abfd;
3569 {
3570 if (abfd->output_has_begun == false)
3571 {
3572 /* Set up fixed parts of the file, space, and subspace headers.
3573 Notify the world that output has begun. */
3574 som_prep_headers (abfd);
3575 abfd->output_has_begun = true;
3576 /* Start writing the object file. This include all the string
3577 tables, fixup streams, and other portions of the object file. */
3578 som_begin_writing (abfd);
3579 }
3580
3581 /* Now that the symbol table information is complete, build and
3582 write the symbol table. */
3583 if (som_build_and_write_symbol_table (abfd) == false)
3584 return false;
3585
3586 return (som_write_headers (abfd));
3587 }
3588
3589 \f
3590 /* Read and save the string table associated with the given BFD. */
3591
3592 static boolean
3593 som_slurp_string_table (abfd)
3594 bfd *abfd;
3595 {
3596 char *stringtab;
3597
3598 /* Use the saved version if its available. */
3599 if (obj_som_stringtab (abfd) != NULL)
3600 return true;
3601
3602 /* I don't think this can currently happen, and I'm not sure it should
3603 really be an error, but it's better than getting unpredictable results
3604 from the host's malloc when passed a size of zero. */
3605 if (obj_som_stringtab_size (abfd) == 0)
3606 {
3607 bfd_set_error (bfd_error_no_symbols);
3608 return false;
3609 }
3610
3611 /* Allocate and read in the string table. */
3612 stringtab = malloc (obj_som_stringtab_size (abfd));
3613 if (stringtab == NULL)
3614 {
3615 bfd_set_error (bfd_error_no_memory);
3616 return false;
3617 }
3618
3619 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3620 return false;
3621
3622 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3623 != obj_som_stringtab_size (abfd))
3624 return false;
3625
3626 /* Save our results and return success. */
3627 obj_som_stringtab (abfd) = stringtab;
3628 return true;
3629 }
3630
3631 /* Return the amount of data (in bytes) required to hold the symbol
3632 table for this object. */
3633
3634 static long
3635 som_get_symtab_upper_bound (abfd)
3636 bfd *abfd;
3637 {
3638 if (!som_slurp_symbol_table (abfd))
3639 return -1;
3640
3641 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
3642 }
3643
3644 /* Convert from a SOM subspace index to a BFD section. */
3645
3646 static asection *
3647 bfd_section_from_som_symbol (abfd, symbol)
3648 bfd *abfd;
3649 struct symbol_dictionary_record *symbol;
3650 {
3651 asection *section;
3652
3653 /* The meaning of the symbol_info field changes for functions
3654 within executables. So only use the quick symbol_info mapping for
3655 incomplete objects and non-function symbols in executables. */
3656 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
3657 || (symbol->symbol_type != ST_ENTRY
3658 && symbol->symbol_type != ST_PRI_PROG
3659 && symbol->symbol_type != ST_SEC_PROG
3660 && symbol->symbol_type != ST_MILLICODE))
3661 {
3662 unsigned int index = symbol->symbol_info;
3663 for (section = abfd->sections; section != NULL; section = section->next)
3664 if (section->target_index == index)
3665 return section;
3666
3667 /* Could be a symbol from an external library (such as an OMOS
3668 shared library). Don't abort. */
3669 return &bfd_abs_section;
3670
3671 }
3672 else
3673 {
3674 unsigned int value = symbol->symbol_value;
3675
3676 /* For executables we will have to use the symbol's address and
3677 find out what section would contain that address. Yuk. */
3678 for (section = abfd->sections; section; section = section->next)
3679 {
3680 if (value >= section->vma
3681 && value <= section->vma + section->_cooked_size)
3682 return section;
3683 }
3684
3685 /* Could be a symbol from an external library (such as an OMOS
3686 shared library). Don't abort. */
3687 return &bfd_abs_section;
3688
3689 }
3690 }
3691
3692 /* Read and save the symbol table associated with the given BFD. */
3693
3694 static unsigned int
3695 som_slurp_symbol_table (abfd)
3696 bfd *abfd;
3697 {
3698 int symbol_count = bfd_get_symcount (abfd);
3699 int symsize = sizeof (struct symbol_dictionary_record);
3700 char *stringtab;
3701 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
3702 som_symbol_type *sym, *symbase;
3703
3704 /* Return saved value if it exists. */
3705 if (obj_som_symtab (abfd) != NULL)
3706 goto successful_return;
3707
3708 /* Special case. This is *not* an error. */
3709 if (symbol_count == 0)
3710 goto successful_return;
3711
3712 if (!som_slurp_string_table (abfd))
3713 goto error_return;
3714
3715 stringtab = obj_som_stringtab (abfd);
3716
3717 symbase = (som_symbol_type *)
3718 malloc (symbol_count * sizeof (som_symbol_type));
3719 if (symbase == NULL)
3720 {
3721 bfd_set_error (bfd_error_no_memory);
3722 goto error_return;
3723 }
3724
3725 /* Read in the external SOM representation. */
3726 buf = malloc (symbol_count * symsize);
3727 if (buf == NULL && symbol_count * symsize != 0)
3728 {
3729 bfd_set_error (bfd_error_no_memory);
3730 goto error_return;
3731 }
3732 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
3733 goto error_return;
3734 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
3735 != symbol_count * symsize)
3736 goto error_return;
3737
3738 /* Iterate over all the symbols and internalize them. */
3739 endbufp = buf + symbol_count;
3740 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
3741 {
3742
3743 /* I don't think we care about these. */
3744 if (bufp->symbol_type == ST_SYM_EXT
3745 || bufp->symbol_type == ST_ARG_EXT)
3746 continue;
3747
3748 /* Set some private data we care about. */
3749 if (bufp->symbol_type == ST_NULL)
3750 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3751 else if (bufp->symbol_type == ST_ABSOLUTE)
3752 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
3753 else if (bufp->symbol_type == ST_DATA)
3754 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
3755 else if (bufp->symbol_type == ST_CODE)
3756 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
3757 else if (bufp->symbol_type == ST_PRI_PROG)
3758 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
3759 else if (bufp->symbol_type == ST_SEC_PROG)
3760 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
3761 else if (bufp->symbol_type == ST_ENTRY)
3762 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
3763 else if (bufp->symbol_type == ST_MILLICODE)
3764 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
3765 else if (bufp->symbol_type == ST_PLABEL)
3766 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
3767 else
3768 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3769 som_symbol_data (sym)->tc_data.hppa_arg_reloc = bufp->arg_reloc;
3770
3771 /* Some reasonable defaults. */
3772 sym->symbol.the_bfd = abfd;
3773 sym->symbol.name = bufp->name.n_strx + stringtab;
3774 sym->symbol.value = bufp->symbol_value;
3775 sym->symbol.section = 0;
3776 sym->symbol.flags = 0;
3777
3778 switch (bufp->symbol_type)
3779 {
3780 case ST_ENTRY:
3781 case ST_MILLICODE:
3782 sym->symbol.flags |= BSF_FUNCTION;
3783 sym->symbol.value &= ~0x3;
3784 break;
3785
3786 case ST_STUB:
3787 case ST_CODE:
3788 case ST_PRI_PROG:
3789 case ST_SEC_PROG:
3790 sym->symbol.value &= ~0x3;
3791 /* If the symbol's scope is ST_UNSAT, then these are
3792 undefined function symbols. */
3793 if (bufp->symbol_scope == SS_UNSAT)
3794 sym->symbol.flags |= BSF_FUNCTION;
3795
3796
3797 default:
3798 break;
3799 }
3800
3801 /* Handle scoping and section information. */
3802 switch (bufp->symbol_scope)
3803 {
3804 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
3805 so the section associated with this symbol can't be known. */
3806 case SS_EXTERNAL:
3807 if (bufp->symbol_type != ST_STORAGE)
3808 sym->symbol.section = bfd_und_section_ptr;
3809 else
3810 sym->symbol.section = bfd_com_section_ptr;
3811 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3812 break;
3813
3814 case SS_UNSAT:
3815 if (bufp->symbol_type != ST_STORAGE)
3816 sym->symbol.section = bfd_und_section_ptr;
3817 else
3818 sym->symbol.section = bfd_com_section_ptr;
3819 break;
3820
3821 case SS_UNIVERSAL:
3822 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3823 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3824 sym->symbol.value -= sym->symbol.section->vma;
3825 break;
3826
3827 #if 0
3828 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
3829 Sound dumb? It is. */
3830 case SS_GLOBAL:
3831 #endif
3832 case SS_LOCAL:
3833 sym->symbol.flags |= BSF_LOCAL;
3834 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3835 sym->symbol.value -= sym->symbol.section->vma;
3836 break;
3837 }
3838
3839 /* Mark section symbols and symbols used by the debugger.
3840 Note $START$ is a magic code symbol, NOT a section symbol. */
3841 if (sym->symbol.name[0] == '$'
3842 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$'
3843 && strcmp (sym->symbol.name, "$START$"))
3844 sym->symbol.flags |= BSF_SECTION_SYM;
3845 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
3846 {
3847 sym->symbol.flags |= BSF_SECTION_SYM;
3848 sym->symbol.name = sym->symbol.section->name;
3849 }
3850 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
3851 sym->symbol.flags |= BSF_DEBUGGING;
3852
3853 /* Note increment at bottom of loop, since we skip some symbols
3854 we can not include it as part of the for statement. */
3855 sym++;
3856 }
3857
3858 /* Save our results and return success. */
3859 obj_som_symtab (abfd) = symbase;
3860 successful_return:
3861 if (buf != NULL)
3862 free (buf);
3863 return (true);
3864
3865 error_return:
3866 if (buf != NULL)
3867 free (buf);
3868 return false;
3869 }
3870
3871 /* Canonicalize a SOM symbol table. Return the number of entries
3872 in the symbol table. */
3873
3874 static long
3875 som_get_symtab (abfd, location)
3876 bfd *abfd;
3877 asymbol **location;
3878 {
3879 int i;
3880 som_symbol_type *symbase;
3881
3882 if (!som_slurp_symbol_table (abfd))
3883 return -1;
3884
3885 i = bfd_get_symcount (abfd);
3886 symbase = obj_som_symtab (abfd);
3887
3888 for (; i > 0; i--, location++, symbase++)
3889 *location = &symbase->symbol;
3890
3891 /* Final null pointer. */
3892 *location = 0;
3893 return (bfd_get_symcount (abfd));
3894 }
3895
3896 /* Make a SOM symbol. There is nothing special to do here. */
3897
3898 static asymbol *
3899 som_make_empty_symbol (abfd)
3900 bfd *abfd;
3901 {
3902 som_symbol_type *new =
3903 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
3904 if (new == NULL)
3905 {
3906 bfd_set_error (bfd_error_no_memory);
3907 return 0;
3908 }
3909 new->symbol.the_bfd = abfd;
3910
3911 return &new->symbol;
3912 }
3913
3914 /* Print symbol information. */
3915
3916 static void
3917 som_print_symbol (ignore_abfd, afile, symbol, how)
3918 bfd *ignore_abfd;
3919 PTR afile;
3920 asymbol *symbol;
3921 bfd_print_symbol_type how;
3922 {
3923 FILE *file = (FILE *) afile;
3924 switch (how)
3925 {
3926 case bfd_print_symbol_name:
3927 fprintf (file, "%s", symbol->name);
3928 break;
3929 case bfd_print_symbol_more:
3930 fprintf (file, "som ");
3931 fprintf_vma (file, symbol->value);
3932 fprintf (file, " %lx", (long) symbol->flags);
3933 break;
3934 case bfd_print_symbol_all:
3935 {
3936 CONST char *section_name;
3937 section_name = symbol->section ? symbol->section->name : "(*none*)";
3938 bfd_print_symbol_vandf ((PTR) file, symbol);
3939 fprintf (file, " %s\t%s", section_name, symbol->name);
3940 break;
3941 }
3942 }
3943 }
3944
3945 static boolean
3946 som_bfd_is_local_label (abfd, sym)
3947 bfd *abfd;
3948 asymbol *sym;
3949 {
3950 return (sym->name[0] == 'L' && sym->name[1] == '$');
3951 }
3952
3953 /* Count or process variable-length SOM fixup records.
3954
3955 To avoid code duplication we use this code both to compute the number
3956 of relocations requested by a stream, and to internalize the stream.
3957
3958 When computing the number of relocations requested by a stream the
3959 variables rptr, section, and symbols have no meaning.
3960
3961 Return the number of relocations requested by the fixup stream. When
3962 not just counting
3963
3964 This needs at least two or three more passes to get it cleaned up. */
3965
3966 static unsigned int
3967 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
3968 unsigned char *fixup;
3969 unsigned int end;
3970 arelent *internal_relocs;
3971 asection *section;
3972 asymbol **symbols;
3973 boolean just_count;
3974 {
3975 unsigned int op, varname;
3976 unsigned char *end_fixups = &fixup[end];
3977 const struct fixup_format *fp;
3978 char *cp;
3979 unsigned char *save_fixup;
3980 int variables[26], stack[20], c, v, count, prev_fixup, *sp;
3981 const int *subop;
3982 arelent *rptr= internal_relocs;
3983 unsigned int offset = 0;
3984
3985 #define var(c) variables[(c) - 'A']
3986 #define push(v) (*sp++ = (v))
3987 #define pop() (*--sp)
3988 #define emptystack() (sp == stack)
3989
3990 som_initialize_reloc_queue (reloc_queue);
3991 memset (variables, 0, sizeof (variables));
3992 memset (stack, 0, sizeof (stack));
3993 count = 0;
3994 prev_fixup = 0;
3995 sp = stack;
3996
3997 while (fixup < end_fixups)
3998 {
3999
4000 /* Save pointer to the start of this fixup. We'll use
4001 it later to determine if it is necessary to put this fixup
4002 on the queue. */
4003 save_fixup = fixup;
4004
4005 /* Get the fixup code and its associated format. */
4006 op = *fixup++;
4007 fp = &som_fixup_formats[op];
4008
4009 /* Handle a request for a previous fixup. */
4010 if (*fp->format == 'P')
4011 {
4012 /* Get pointer to the beginning of the prev fixup, move
4013 the repeated fixup to the head of the queue. */
4014 fixup = reloc_queue[fp->D].reloc;
4015 som_reloc_queue_fix (reloc_queue, fp->D);
4016 prev_fixup = 1;
4017
4018 /* Get the fixup code and its associated format. */
4019 op = *fixup++;
4020 fp = &som_fixup_formats[op];
4021 }
4022
4023 /* If this fixup will be passed to BFD, set some reasonable defaults. */
4024 if (! just_count
4025 && som_hppa_howto_table[op].type != R_NO_RELOCATION
4026 && som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
4027 {
4028 rptr->address = offset;
4029 rptr->howto = &som_hppa_howto_table[op];
4030 rptr->addend = 0;
4031 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
4032 }
4033
4034 /* Set default input length to 0. Get the opcode class index
4035 into D. */
4036 var ('L') = 0;
4037 var ('D') = fp->D;
4038
4039 /* Get the opcode format. */
4040 cp = fp->format;
4041
4042 /* Process the format string. Parsing happens in two phases,
4043 parse RHS, then assign to LHS. Repeat until no more
4044 characters in the format string. */
4045 while (*cp)
4046 {
4047 /* The variable this pass is going to compute a value for. */
4048 varname = *cp++;
4049
4050 /* Start processing RHS. Continue until a NULL or '=' is found. */
4051 do
4052 {
4053 c = *cp++;
4054
4055 /* If this is a variable, push it on the stack. */
4056 if (isupper (c))
4057 push (var (c));
4058
4059 /* If this is a lower case letter, then it represents
4060 additional data from the fixup stream to be pushed onto
4061 the stack. */
4062 else if (islower (c))
4063 {
4064 for (v = 0; c > 'a'; --c)
4065 v = (v << 8) | *fixup++;
4066 push (v);
4067 }
4068
4069 /* A decimal constant. Push it on the stack. */
4070 else if (isdigit (c))
4071 {
4072 v = c - '0';
4073 while (isdigit (*cp))
4074 v = (v * 10) + (*cp++ - '0');
4075 push (v);
4076 }
4077 else
4078
4079 /* An operator. Pop two two values from the stack and
4080 use them as operands to the given operation. Push
4081 the result of the operation back on the stack. */
4082 switch (c)
4083 {
4084 case '+':
4085 v = pop ();
4086 v += pop ();
4087 push (v);
4088 break;
4089 case '*':
4090 v = pop ();
4091 v *= pop ();
4092 push (v);
4093 break;
4094 case '<':
4095 v = pop ();
4096 v = pop () << v;
4097 push (v);
4098 break;
4099 default:
4100 abort ();
4101 }
4102 }
4103 while (*cp && *cp != '=');
4104
4105 /* Move over the equal operator. */
4106 cp++;
4107
4108 /* Pop the RHS off the stack. */
4109 c = pop ();
4110
4111 /* Perform the assignment. */
4112 var (varname) = c;
4113
4114 /* Handle side effects. and special 'O' stack cases. */
4115 switch (varname)
4116 {
4117 /* Consume some bytes from the input space. */
4118 case 'L':
4119 offset += c;
4120 break;
4121 /* A symbol to use in the relocation. Make a note
4122 of this if we are not just counting. */
4123 case 'S':
4124 if (! just_count)
4125 rptr->sym_ptr_ptr = &symbols[c];
4126 break;
4127 /* Handle the linker expression stack. */
4128 case 'O':
4129 switch (op)
4130 {
4131 case R_COMP1:
4132 subop = comp1_opcodes;
4133 break;
4134 case R_COMP2:
4135 subop = comp2_opcodes;
4136 break;
4137 case R_COMP3:
4138 subop = comp3_opcodes;
4139 break;
4140 default:
4141 abort ();
4142 }
4143 while (*subop <= (unsigned char) c)
4144 ++subop;
4145 --subop;
4146 break;
4147 default:
4148 break;
4149 }
4150 }
4151
4152 /* If we used a previous fixup, clean up after it. */
4153 if (prev_fixup)
4154 {
4155 fixup = save_fixup + 1;
4156 prev_fixup = 0;
4157 }
4158 /* Queue it. */
4159 else if (fixup > save_fixup + 1)
4160 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4161
4162 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4163 fixups to BFD. */
4164 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4165 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4166 {
4167 /* Done with a single reloction. Loop back to the top. */
4168 if (! just_count)
4169 {
4170 rptr->addend = var ('V');
4171 rptr++;
4172 }
4173 count++;
4174 /* Now that we've handled a "full" relocation, reset
4175 some state. */
4176 memset (variables, 0, sizeof (variables));
4177 memset (stack, 0, sizeof (stack));
4178 }
4179 }
4180 return count;
4181
4182 #undef var
4183 #undef push
4184 #undef pop
4185 #undef emptystack
4186 }
4187
4188 /* Read in the relocs (aka fixups in SOM terms) for a section.
4189
4190 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4191 set to true to indicate it only needs a count of the number
4192 of actual relocations. */
4193
4194 static boolean
4195 som_slurp_reloc_table (abfd, section, symbols, just_count)
4196 bfd *abfd;
4197 asection *section;
4198 asymbol **symbols;
4199 boolean just_count;
4200 {
4201 char *external_relocs;
4202 unsigned int fixup_stream_size;
4203 arelent *internal_relocs;
4204 unsigned int num_relocs;
4205
4206 fixup_stream_size = som_section_data (section)->reloc_size;
4207 /* If there were no relocations, then there is nothing to do. */
4208 if (section->reloc_count == 0)
4209 return true;
4210
4211 /* If reloc_count is -1, then the relocation stream has not been
4212 parsed. We must do so now to know how many relocations exist. */
4213 if (section->reloc_count == -1)
4214 {
4215 external_relocs = (char *) malloc (fixup_stream_size);
4216 if (external_relocs == (char *) NULL)
4217 {
4218 bfd_set_error (bfd_error_no_memory);
4219 return false;
4220 }
4221 /* Read in the external forms. */
4222 if (bfd_seek (abfd,
4223 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4224 SEEK_SET)
4225 != 0)
4226 return false;
4227 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
4228 != fixup_stream_size)
4229 return false;
4230
4231 /* Let callers know how many relocations found.
4232 also save the relocation stream as we will
4233 need it again. */
4234 section->reloc_count = som_set_reloc_info (external_relocs,
4235 fixup_stream_size,
4236 NULL, NULL, NULL, true);
4237
4238 som_section_data (section)->reloc_stream = external_relocs;
4239 }
4240
4241 /* If the caller only wanted a count, then return now. */
4242 if (just_count)
4243 return true;
4244
4245 num_relocs = section->reloc_count;
4246 external_relocs = som_section_data (section)->reloc_stream;
4247 /* Return saved information about the relocations if it is available. */
4248 if (section->relocation != (arelent *) NULL)
4249 return true;
4250
4251 internal_relocs = (arelent *) malloc (num_relocs * sizeof (arelent));
4252 if (internal_relocs == (arelent *) NULL)
4253 {
4254 bfd_set_error (bfd_error_no_memory);
4255 return false;
4256 }
4257
4258 /* Process and internalize the relocations. */
4259 som_set_reloc_info (external_relocs, fixup_stream_size,
4260 internal_relocs, section, symbols, false);
4261
4262 /* Save our results and return success. */
4263 section->relocation = internal_relocs;
4264 return (true);
4265 }
4266
4267 /* Return the number of bytes required to store the relocation
4268 information associated with the given section. */
4269
4270 static long
4271 som_get_reloc_upper_bound (abfd, asect)
4272 bfd *abfd;
4273 sec_ptr asect;
4274 {
4275 /* If section has relocations, then read in the relocation stream
4276 and parse it to determine how many relocations exist. */
4277 if (asect->flags & SEC_RELOC)
4278 {
4279 if (! som_slurp_reloc_table (abfd, asect, NULL, true))
4280 return false;
4281 return (asect->reloc_count + 1) * sizeof (arelent);
4282 }
4283 /* There are no relocations. */
4284 return 0;
4285 }
4286
4287 /* Convert relocations from SOM (external) form into BFD internal
4288 form. Return the number of relocations. */
4289
4290 static long
4291 som_canonicalize_reloc (abfd, section, relptr, symbols)
4292 bfd *abfd;
4293 sec_ptr section;
4294 arelent **relptr;
4295 asymbol **symbols;
4296 {
4297 arelent *tblptr;
4298 int count;
4299
4300 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
4301 return -1;
4302
4303 count = section->reloc_count;
4304 tblptr = section->relocation;
4305
4306 while (count--)
4307 *relptr++ = tblptr++;
4308
4309 *relptr = (arelent *) NULL;
4310 return section->reloc_count;
4311 }
4312
4313 extern const bfd_target som_vec;
4314
4315 /* A hook to set up object file dependent section information. */
4316
4317 static boolean
4318 som_new_section_hook (abfd, newsect)
4319 bfd *abfd;
4320 asection *newsect;
4321 {
4322 newsect->used_by_bfd =
4323 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
4324 if (!newsect->used_by_bfd)
4325 {
4326 bfd_set_error (bfd_error_no_memory);
4327 return false;
4328 }
4329 newsect->alignment_power = 3;
4330
4331 /* We allow more than three sections internally */
4332 return true;
4333 }
4334
4335 /* Copy any private info we understand from the input section
4336 to the output section. */
4337 static boolean
4338 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
4339 bfd *ibfd;
4340 asection *isection;
4341 bfd *obfd;
4342 asection *osection;
4343 {
4344 /* One day we may try to grok other private data. */
4345 if (ibfd->xvec->flavour != bfd_target_som_flavour
4346 || obfd->xvec->flavour != bfd_target_som_flavour
4347 || (!som_is_space (isection) && !som_is_subspace (isection)))
4348 return false;
4349
4350 som_section_data (osection)->copy_data
4351 = (struct som_copyable_section_data_struct *)
4352 bfd_zalloc (obfd, sizeof (struct som_copyable_section_data_struct));
4353 if (som_section_data (osection)->copy_data == NULL)
4354 {
4355 bfd_set_error (bfd_error_no_memory);
4356 return false;
4357 }
4358
4359 memcpy (som_section_data (osection)->copy_data,
4360 som_section_data (isection)->copy_data,
4361 sizeof (struct som_copyable_section_data_struct));
4362
4363 /* Reparent if necessary. */
4364 if (som_section_data (osection)->copy_data->container)
4365 som_section_data (osection)->copy_data->container =
4366 som_section_data (osection)->copy_data->container->output_section;
4367
4368 return true;
4369 }
4370
4371 /* Copy any private info we understand from the input bfd
4372 to the output bfd. */
4373
4374 static boolean
4375 som_bfd_copy_private_bfd_data (ibfd, obfd)
4376 bfd *ibfd, *obfd;
4377 {
4378 /* One day we may try to grok other private data. */
4379 if (ibfd->xvec->flavour != bfd_target_som_flavour
4380 || obfd->xvec->flavour != bfd_target_som_flavour)
4381 return false;
4382
4383 /* Allocate some memory to hold the data we need. */
4384 obj_som_exec_data (obfd) = (struct som_exec_data *)
4385 bfd_zalloc (obfd, sizeof (struct som_exec_data));
4386 if (obj_som_exec_data (obfd) == NULL)
4387 {
4388 bfd_set_error (bfd_error_no_memory);
4389 return false;
4390 }
4391
4392 /* Now copy the data. */
4393 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
4394 sizeof (struct som_exec_data));
4395
4396 return true;
4397 }
4398
4399 /* Set backend info for sections which can not be described
4400 in the BFD data structures. */
4401
4402 boolean
4403 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
4404 asection *section;
4405 int defined;
4406 int private;
4407 unsigned int sort_key;
4408 int spnum;
4409 {
4410 /* Allocate memory to hold the magic information. */
4411 if (som_section_data (section)->copy_data == NULL)
4412 {
4413 som_section_data (section)->copy_data
4414 = (struct som_copyable_section_data_struct *)
4415 bfd_zalloc (section->owner,
4416 sizeof (struct som_copyable_section_data_struct));
4417 if (som_section_data (section)->copy_data == NULL)
4418 {
4419 bfd_set_error (bfd_error_no_memory);
4420 return false;
4421 }
4422 }
4423 som_section_data (section)->copy_data->sort_key = sort_key;
4424 som_section_data (section)->copy_data->is_defined = defined;
4425 som_section_data (section)->copy_data->is_private = private;
4426 som_section_data (section)->copy_data->container = section;
4427 som_section_data (section)->copy_data->space_number = spnum;
4428 return true;
4429 }
4430
4431 /* Set backend info for subsections which can not be described
4432 in the BFD data structures. */
4433
4434 boolean
4435 bfd_som_set_subsection_attributes (section, container, access,
4436 sort_key, quadrant)
4437 asection *section;
4438 asection *container;
4439 int access;
4440 unsigned int sort_key;
4441 int quadrant;
4442 {
4443 /* Allocate memory to hold the magic information. */
4444 if (som_section_data (section)->copy_data == NULL)
4445 {
4446 som_section_data (section)->copy_data
4447 = (struct som_copyable_section_data_struct *)
4448 bfd_zalloc (section->owner,
4449 sizeof (struct som_copyable_section_data_struct));
4450 if (som_section_data (section)->copy_data == NULL)
4451 {
4452 bfd_set_error (bfd_error_no_memory);
4453 return false;
4454 }
4455 }
4456 som_section_data (section)->copy_data->sort_key = sort_key;
4457 som_section_data (section)->copy_data->access_control_bits = access;
4458 som_section_data (section)->copy_data->quadrant = quadrant;
4459 som_section_data (section)->copy_data->container = container;
4460 return true;
4461 }
4462
4463 /* Set the full SOM symbol type. SOM needs far more symbol information
4464 than any other object file format I'm aware of. It is mandatory
4465 to be able to know if a symbol is an entry point, millicode, data,
4466 code, absolute, storage request, or procedure label. If you get
4467 the symbol type wrong your program will not link. */
4468
4469 void
4470 bfd_som_set_symbol_type (symbol, type)
4471 asymbol *symbol;
4472 unsigned int type;
4473 {
4474 som_symbol_data (symbol)->som_type = type;
4475 }
4476
4477 /* Attach 64bits of unwind information to a symbol (which hopefully
4478 is a function of some kind!). It would be better to keep this
4479 in the R_ENTRY relocation, but there is not enough space. */
4480
4481 void
4482 bfd_som_attach_unwind_info (symbol, unwind_desc)
4483 asymbol *symbol;
4484 char *unwind_desc;
4485 {
4486 som_symbol_data (symbol)->unwind = unwind_desc;
4487 }
4488
4489 /* Attach an auxiliary header to the BFD backend so that it may be
4490 written into the object file. */
4491 boolean
4492 bfd_som_attach_aux_hdr (abfd, type, string)
4493 bfd *abfd;
4494 int type;
4495 char *string;
4496 {
4497 if (type == VERSION_AUX_ID)
4498 {
4499 int len = strlen (string);
4500 int pad = 0;
4501
4502 if (len % 4)
4503 pad = (4 - (len % 4));
4504 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
4505 bfd_zalloc (abfd, sizeof (struct aux_id)
4506 + sizeof (unsigned int) + len + pad);
4507 if (!obj_som_version_hdr (abfd))
4508 {
4509 bfd_set_error (bfd_error_no_memory);
4510 return false;
4511 }
4512 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
4513 obj_som_version_hdr (abfd)->header_id.length = len + pad;
4514 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
4515 obj_som_version_hdr (abfd)->string_length = len;
4516 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
4517 }
4518 else if (type == COPYRIGHT_AUX_ID)
4519 {
4520 int len = strlen (string);
4521 int pad = 0;
4522
4523 if (len % 4)
4524 pad = (4 - (len % 4));
4525 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
4526 bfd_zalloc (abfd, sizeof (struct aux_id)
4527 + sizeof (unsigned int) + len + pad);
4528 if (!obj_som_copyright_hdr (abfd))
4529 {
4530 bfd_set_error (bfd_error_no_memory);
4531 return false;
4532 }
4533 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
4534 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
4535 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
4536 obj_som_copyright_hdr (abfd)->string_length = len;
4537 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
4538 }
4539 return true;
4540 }
4541
4542 static boolean
4543 som_get_section_contents (abfd, section, location, offset, count)
4544 bfd *abfd;
4545 sec_ptr section;
4546 PTR location;
4547 file_ptr offset;
4548 bfd_size_type count;
4549 {
4550 if (count == 0 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4551 return true;
4552 if ((bfd_size_type)(offset+count) > section->_raw_size
4553 || bfd_seek (abfd, (file_ptr)(section->filepos + offset), SEEK_SET) == -1
4554 || bfd_read (location, (bfd_size_type)1, count, abfd) != count)
4555 return (false); /* on error */
4556 return (true);
4557 }
4558
4559 static boolean
4560 som_set_section_contents (abfd, section, location, offset, count)
4561 bfd *abfd;
4562 sec_ptr section;
4563 PTR location;
4564 file_ptr offset;
4565 bfd_size_type count;
4566 {
4567 if (abfd->output_has_begun == false)
4568 {
4569 /* Set up fixed parts of the file, space, and subspace headers.
4570 Notify the world that output has begun. */
4571 som_prep_headers (abfd);
4572 abfd->output_has_begun = true;
4573 /* Start writing the object file. This include all the string
4574 tables, fixup streams, and other portions of the object file. */
4575 som_begin_writing (abfd);
4576 }
4577
4578 /* Only write subspaces which have "real" contents (eg. the contents
4579 are not generated at run time by the OS). */
4580 if (!som_is_subspace (section)
4581 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4582 return true;
4583
4584 /* Seek to the proper offset within the object file and write the
4585 data. */
4586 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
4587 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
4588 return false;
4589
4590 if (bfd_write ((PTR) location, 1, count, abfd) != count)
4591 return false;
4592 return true;
4593 }
4594
4595 static boolean
4596 som_set_arch_mach (abfd, arch, machine)
4597 bfd *abfd;
4598 enum bfd_architecture arch;
4599 unsigned long machine;
4600 {
4601 /* Allow any architecture to be supported by the SOM backend */
4602 return bfd_default_set_arch_mach (abfd, arch, machine);
4603 }
4604
4605 static boolean
4606 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4607 functionname_ptr, line_ptr)
4608 bfd *abfd;
4609 asection *section;
4610 asymbol **symbols;
4611 bfd_vma offset;
4612 CONST char **filename_ptr;
4613 CONST char **functionname_ptr;
4614 unsigned int *line_ptr;
4615 {
4616 fprintf (stderr, "som_find_nearest_line unimplemented\n");
4617 fflush (stderr);
4618 abort ();
4619 return (false);
4620 }
4621
4622 static int
4623 som_sizeof_headers (abfd, reloc)
4624 bfd *abfd;
4625 boolean reloc;
4626 {
4627 fprintf (stderr, "som_sizeof_headers unimplemented\n");
4628 fflush (stderr);
4629 abort ();
4630 return (0);
4631 }
4632
4633 /* Return the single-character symbol type corresponding to
4634 SOM section S, or '?' for an unknown SOM section. */
4635
4636 static char
4637 som_section_type (s)
4638 const char *s;
4639 {
4640 const struct section_to_type *t;
4641
4642 for (t = &stt[0]; t->section; t++)
4643 if (!strcmp (s, t->section))
4644 return t->type;
4645 return '?';
4646 }
4647
4648 static int
4649 som_decode_symclass (symbol)
4650 asymbol *symbol;
4651 {
4652 char c;
4653
4654 if (bfd_is_com_section (symbol->section))
4655 return 'C';
4656 if (bfd_is_und_section (symbol->section))
4657 return 'U';
4658 if (bfd_is_ind_section (symbol->section))
4659 return 'I';
4660 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
4661 return '?';
4662
4663 if (bfd_is_abs_section (symbol->section))
4664 c = 'a';
4665 else if (symbol->section)
4666 c = som_section_type (symbol->section->name);
4667 else
4668 return '?';
4669 if (symbol->flags & BSF_GLOBAL)
4670 c = toupper (c);
4671 return c;
4672 }
4673
4674 /* Return information about SOM symbol SYMBOL in RET. */
4675
4676 static void
4677 som_get_symbol_info (ignore_abfd, symbol, ret)
4678 bfd *ignore_abfd;
4679 asymbol *symbol;
4680 symbol_info *ret;
4681 {
4682 ret->type = som_decode_symclass (symbol);
4683 if (ret->type != 'U')
4684 ret->value = symbol->value+symbol->section->vma;
4685 else
4686 ret->value = 0;
4687 ret->name = symbol->name;
4688 }
4689
4690 /* Count the number of symbols in the archive symbol table. Necessary
4691 so that we can allocate space for all the carsyms at once. */
4692
4693 static boolean
4694 som_bfd_count_ar_symbols (abfd, lst_header, count)
4695 bfd *abfd;
4696 struct lst_header *lst_header;
4697 symindex *count;
4698 {
4699 unsigned int i;
4700 unsigned int *hash_table = NULL;
4701 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4702
4703 hash_table =
4704 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4705 if (hash_table == NULL && lst_header->hash_size != 0)
4706 {
4707 bfd_set_error (bfd_error_no_memory);
4708 goto error_return;
4709 }
4710
4711 /* Don't forget to initialize the counter! */
4712 *count = 0;
4713
4714 /* Read in the hash table. The has table is an array of 32bit file offsets
4715 which point to the hash chains. */
4716 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4717 != lst_header->hash_size * 4)
4718 goto error_return;
4719
4720 /* Walk each chain counting the number of symbols found on that particular
4721 chain. */
4722 for (i = 0; i < lst_header->hash_size; i++)
4723 {
4724 struct lst_symbol_record lst_symbol;
4725
4726 /* An empty chain has zero as it's file offset. */
4727 if (hash_table[i] == 0)
4728 continue;
4729
4730 /* Seek to the first symbol in this hash chain. */
4731 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4732 goto error_return;
4733
4734 /* Read in this symbol and update the counter. */
4735 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4736 != sizeof (lst_symbol))
4737 goto error_return;
4738
4739 (*count)++;
4740
4741 /* Now iterate through the rest of the symbols on this chain. */
4742 while (lst_symbol.next_entry)
4743 {
4744
4745 /* Seek to the next symbol. */
4746 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4747 < 0)
4748 goto error_return;
4749
4750 /* Read the symbol in and update the counter. */
4751 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4752 != sizeof (lst_symbol))
4753 goto error_return;
4754
4755 (*count)++;
4756 }
4757 }
4758 if (hash_table != NULL)
4759 free (hash_table);
4760 return true;
4761
4762 error_return:
4763 if (hash_table != NULL)
4764 free (hash_table);
4765 return false;
4766 }
4767
4768 /* Fill in the canonical archive symbols (SYMS) from the archive described
4769 by ABFD and LST_HEADER. */
4770
4771 static boolean
4772 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
4773 bfd *abfd;
4774 struct lst_header *lst_header;
4775 carsym **syms;
4776 {
4777 unsigned int i, len;
4778 carsym *set = syms[0];
4779 unsigned int *hash_table = NULL;
4780 struct som_entry *som_dict = NULL;
4781 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4782
4783 hash_table =
4784 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4785 if (hash_table == NULL && lst_header->hash_size != 0)
4786 {
4787 bfd_set_error (bfd_error_no_memory);
4788 goto error_return;
4789 }
4790
4791 som_dict =
4792 (struct som_entry *) malloc (lst_header->module_count
4793 * sizeof (struct som_entry));
4794 if (som_dict == NULL && lst_header->module_count != 0)
4795 {
4796 bfd_set_error (bfd_error_no_memory);
4797 goto error_return;
4798 }
4799
4800 /* Read in the hash table. The has table is an array of 32bit file offsets
4801 which point to the hash chains. */
4802 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4803 != lst_header->hash_size * 4)
4804 goto error_return;
4805
4806 /* Seek to and read in the SOM dictionary. We will need this to fill
4807 in the carsym's filepos field. */
4808 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
4809 goto error_return;
4810
4811 if (bfd_read ((PTR) som_dict, lst_header->module_count,
4812 sizeof (struct som_entry), abfd)
4813 != lst_header->module_count * sizeof (struct som_entry))
4814 goto error_return;
4815
4816 /* Walk each chain filling in the carsyms as we go along. */
4817 for (i = 0; i < lst_header->hash_size; i++)
4818 {
4819 struct lst_symbol_record lst_symbol;
4820
4821 /* An empty chain has zero as it's file offset. */
4822 if (hash_table[i] == 0)
4823 continue;
4824
4825 /* Seek to and read the first symbol on the chain. */
4826 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4827 goto error_return;
4828
4829 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4830 != sizeof (lst_symbol))
4831 goto error_return;
4832
4833 /* Get the name of the symbol, first get the length which is stored
4834 as a 32bit integer just before the symbol.
4835
4836 One might ask why we don't just read in the entire string table
4837 and index into it. Well, according to the SOM ABI the string
4838 index can point *anywhere* in the archive to save space, so just
4839 using the string table would not be safe. */
4840 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4841 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4842 goto error_return;
4843
4844 if (bfd_read (&len, 1, 4, abfd) != 4)
4845 goto error_return;
4846
4847 /* Allocate space for the name and null terminate it too. */
4848 set->name = bfd_zalloc (abfd, len + 1);
4849 if (!set->name)
4850 {
4851 bfd_set_error (bfd_error_no_memory);
4852 goto error_return;
4853 }
4854 if (bfd_read (set->name, 1, len, abfd) != len)
4855 goto error_return;
4856
4857 set->name[len] = 0;
4858
4859 /* Fill in the file offset. Note that the "location" field points
4860 to the SOM itself, not the ar_hdr in front of it. */
4861 set->file_offset = som_dict[lst_symbol.som_index].location
4862 - sizeof (struct ar_hdr);
4863
4864 /* Go to the next symbol. */
4865 set++;
4866
4867 /* Iterate through the rest of the chain. */
4868 while (lst_symbol.next_entry)
4869 {
4870 /* Seek to the next symbol and read it in. */
4871 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET) <0)
4872 goto error_return;
4873
4874 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4875 != sizeof (lst_symbol))
4876 goto error_return;
4877
4878 /* Seek to the name length & string and read them in. */
4879 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4880 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4881 goto error_return;
4882
4883 if (bfd_read (&len, 1, 4, abfd) != 4)
4884 goto error_return;
4885
4886 /* Allocate space for the name and null terminate it too. */
4887 set->name = bfd_zalloc (abfd, len + 1);
4888 if (!set->name)
4889 {
4890 bfd_set_error (bfd_error_no_memory);
4891 goto error_return;
4892 }
4893
4894 if (bfd_read (set->name, 1, len, abfd) != len)
4895 goto error_return;
4896 set->name[len] = 0;
4897
4898 /* Fill in the file offset. Note that the "location" field points
4899 to the SOM itself, not the ar_hdr in front of it. */
4900 set->file_offset = som_dict[lst_symbol.som_index].location
4901 - sizeof (struct ar_hdr);
4902
4903 /* Go on to the next symbol. */
4904 set++;
4905 }
4906 }
4907 /* If we haven't died by now, then we successfully read the entire
4908 archive symbol table. */
4909 if (hash_table != NULL)
4910 free (hash_table);
4911 if (som_dict != NULL)
4912 free (som_dict);
4913 return true;
4914
4915 error_return:
4916 if (hash_table != NULL)
4917 free (hash_table);
4918 if (som_dict != NULL)
4919 free (som_dict);
4920 return false;
4921 }
4922
4923 /* Read in the LST from the archive. */
4924 static boolean
4925 som_slurp_armap (abfd)
4926 bfd *abfd;
4927 {
4928 struct lst_header lst_header;
4929 struct ar_hdr ar_header;
4930 unsigned int parsed_size;
4931 struct artdata *ardata = bfd_ardata (abfd);
4932 char nextname[17];
4933 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
4934
4935 /* Special cases. */
4936 if (i == 0)
4937 return true;
4938 if (i != 16)
4939 return false;
4940
4941 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
4942 return false;
4943
4944 /* For archives without .o files there is no symbol table. */
4945 if (strncmp (nextname, "/ ", 16))
4946 {
4947 bfd_has_map (abfd) = false;
4948 return true;
4949 }
4950
4951 /* Read in and sanity check the archive header. */
4952 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
4953 != sizeof (struct ar_hdr))
4954 return false;
4955
4956 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
4957 {
4958 bfd_set_error (bfd_error_malformed_archive);
4959 return false;
4960 }
4961
4962 /* How big is the archive symbol table entry? */
4963 errno = 0;
4964 parsed_size = strtol (ar_header.ar_size, NULL, 10);
4965 if (errno != 0)
4966 {
4967 bfd_set_error (bfd_error_malformed_archive);
4968 return false;
4969 }
4970
4971 /* Save off the file offset of the first real user data. */
4972 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
4973
4974 /* Read in the library symbol table. We'll make heavy use of this
4975 in just a minute. */
4976 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
4977 != sizeof (struct lst_header))
4978 return false;
4979
4980 /* Sanity check. */
4981 if (lst_header.a_magic != LIBMAGIC)
4982 {
4983 bfd_set_error (bfd_error_malformed_archive);
4984 return false;
4985 }
4986
4987 /* Count the number of symbols in the library symbol table. */
4988 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
4989 == false)
4990 return false;
4991
4992 /* Get back to the start of the library symbol table. */
4993 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
4994 + sizeof (struct lst_header), SEEK_SET) < 0)
4995 return false;
4996
4997 /* Initializae the cache and allocate space for the library symbols. */
4998 ardata->cache = 0;
4999 ardata->symdefs = (carsym *) bfd_alloc (abfd,
5000 (ardata->symdef_count
5001 * sizeof (carsym)));
5002 if (!ardata->symdefs)
5003 {
5004 bfd_set_error (bfd_error_no_memory);
5005 return false;
5006 }
5007
5008 /* Now fill in the canonical archive symbols. */
5009 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
5010 == false)
5011 return false;
5012
5013 /* Seek back to the "first" file in the archive. Note the "first"
5014 file may be the extended name table. */
5015 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) < 0)
5016 return false;
5017
5018 /* Notify the generic archive code that we have a symbol map. */
5019 bfd_has_map (abfd) = true;
5020 return true;
5021 }
5022
5023 /* Begin preparing to write a SOM library symbol table.
5024
5025 As part of the prep work we need to determine the number of symbols
5026 and the size of the associated string section. */
5027
5028 static boolean
5029 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
5030 bfd *abfd;
5031 unsigned int *num_syms, *stringsize;
5032 {
5033 bfd *curr_bfd = abfd->archive_head;
5034
5035 /* Some initialization. */
5036 *num_syms = 0;
5037 *stringsize = 0;
5038
5039 /* Iterate over each BFD within this archive. */
5040 while (curr_bfd != NULL)
5041 {
5042 unsigned int curr_count, i;
5043 som_symbol_type *sym;
5044
5045 /* Don't bother for non-SOM objects. */
5046 if (curr_bfd->format != bfd_object
5047 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5048 {
5049 curr_bfd = curr_bfd->next;
5050 continue;
5051 }
5052
5053 /* Make sure the symbol table has been read, then snag a pointer
5054 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5055 but doing so avoids allocating lots of extra memory. */
5056 if (som_slurp_symbol_table (curr_bfd) == false)
5057 return false;
5058
5059 sym = obj_som_symtab (curr_bfd);
5060 curr_count = bfd_get_symcount (curr_bfd);
5061
5062 /* Examine each symbol to determine if it belongs in the
5063 library symbol table. */
5064 for (i = 0; i < curr_count; i++, sym++)
5065 {
5066 struct som_misc_symbol_info info;
5067
5068 /* Derive SOM information from the BFD symbol. */
5069 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5070
5071 /* Should we include this symbol? */
5072 if (info.symbol_type == ST_NULL
5073 || info.symbol_type == ST_SYM_EXT
5074 || info.symbol_type == ST_ARG_EXT)
5075 continue;
5076
5077 /* Only global symbols and unsatisfied commons. */
5078 if (info.symbol_scope != SS_UNIVERSAL
5079 && info.symbol_type != ST_STORAGE)
5080 continue;
5081
5082 /* Do no include undefined symbols. */
5083 if (bfd_is_und_section (sym->symbol.section))
5084 continue;
5085
5086 /* Bump the various counters, being careful to honor
5087 alignment considerations in the string table. */
5088 (*num_syms)++;
5089 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5090 while (*stringsize % 4)
5091 (*stringsize)++;
5092 }
5093
5094 curr_bfd = curr_bfd->next;
5095 }
5096 return true;
5097 }
5098
5099 /* Hash a symbol name based on the hashing algorithm presented in the
5100 SOM ABI. */
5101 static unsigned int
5102 som_bfd_ar_symbol_hash (symbol)
5103 asymbol *symbol;
5104 {
5105 unsigned int len = strlen (symbol->name);
5106
5107 /* Names with length 1 are special. */
5108 if (len == 1)
5109 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5110
5111 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5112 | (symbol->name[len-2] << 8) | symbol->name[len-1];
5113 }
5114
5115 static CONST char *
5116 normalize (file)
5117 CONST char *file;
5118 {
5119 CONST char *filename = strrchr (file, '/');
5120
5121 if (filename != NULL)
5122 filename++;
5123 else
5124 filename = file;
5125 return filename;
5126 }
5127
5128 /* Do the bulk of the work required to write the SOM library
5129 symbol table. */
5130
5131 static boolean
5132 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst)
5133 bfd *abfd;
5134 unsigned int nsyms, string_size;
5135 struct lst_header lst;
5136 {
5137 file_ptr lst_filepos;
5138 char *strings = NULL, *p;
5139 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5140 bfd *curr_bfd;
5141 unsigned int *hash_table = NULL;
5142 struct som_entry *som_dict = NULL;
5143 struct lst_symbol_record **last_hash_entry = NULL;
5144 unsigned int curr_som_offset, som_index, extended_name_length = 0;
5145 unsigned int maxname = abfd->xvec->ar_max_namelen;
5146
5147 hash_table =
5148 (unsigned int *) malloc (lst.hash_size * sizeof (unsigned int));
5149 if (hash_table == NULL && lst.hash_size != 0)
5150 {
5151 bfd_set_error (bfd_error_no_memory);
5152 goto error_return;
5153 }
5154 som_dict =
5155 (struct som_entry *) malloc (lst.module_count
5156 * sizeof (struct som_entry));
5157 if (som_dict == NULL && lst.module_count != 0)
5158 {
5159 bfd_set_error (bfd_error_no_memory);
5160 goto error_return;
5161 }
5162
5163 last_hash_entry =
5164 ((struct lst_symbol_record **)
5165 malloc (lst.hash_size * sizeof (struct lst_symbol_record *)));
5166 if (last_hash_entry == NULL && lst.hash_size != 0)
5167 {
5168 bfd_set_error (bfd_error_no_memory);
5169 goto error_return;
5170 }
5171
5172 /* Lots of fields are file positions relative to the start
5173 of the lst record. So save its location. */
5174 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5175
5176 /* Some initialization. */
5177 memset (hash_table, 0, 4 * lst.hash_size);
5178 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
5179 memset (last_hash_entry, 0,
5180 lst.hash_size * sizeof (struct lst_symbol_record *));
5181
5182 /* Symbols have som_index fields, so we have to keep track of the
5183 index of each SOM in the archive.
5184
5185 The SOM dictionary has (among other things) the absolute file
5186 position for the SOM which a particular dictionary entry
5187 describes. We have to compute that information as we iterate
5188 through the SOMs/symbols. */
5189 som_index = 0;
5190 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5191
5192 /* Yow! We have to know the size of the extended name table
5193 too. */
5194 for (curr_bfd = abfd->archive_head;
5195 curr_bfd != NULL;
5196 curr_bfd = curr_bfd->next)
5197 {
5198 CONST char *normal = normalize (curr_bfd->filename);
5199 unsigned int thislen;
5200
5201 if (!normal)
5202 {
5203 bfd_set_error (bfd_error_no_memory);
5204 return false;
5205 }
5206 thislen = strlen (normal);
5207 if (thislen > maxname)
5208 extended_name_length += thislen + 1;
5209 }
5210
5211 /* Make room for the archive header and the contents of the
5212 extended string table. */
5213 if (extended_name_length)
5214 curr_som_offset += extended_name_length + sizeof (struct ar_hdr);
5215
5216 /* Make sure we're properly aligned. */
5217 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5218
5219 /* FIXME should be done with buffers just like everything else... */
5220 lst_syms = malloc (nsyms * sizeof (struct lst_symbol_record));
5221 if (lst_syms == NULL && nsyms != 0)
5222 {
5223 bfd_set_error (bfd_error_no_memory);
5224 goto error_return;
5225 }
5226 strings = malloc (string_size);
5227 if (strings == NULL && string_size != 0)
5228 {
5229 bfd_set_error (bfd_error_no_memory);
5230 goto error_return;
5231 }
5232
5233 p = strings;
5234 curr_lst_sym = lst_syms;
5235
5236 curr_bfd = abfd->archive_head;
5237 while (curr_bfd != NULL)
5238 {
5239 unsigned int curr_count, i;
5240 som_symbol_type *sym;
5241
5242 /* Don't bother for non-SOM objects. */
5243 if (curr_bfd->format != bfd_object
5244 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5245 {
5246 curr_bfd = curr_bfd->next;
5247 continue;
5248 }
5249
5250 /* Make sure the symbol table has been read, then snag a pointer
5251 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5252 but doing so avoids allocating lots of extra memory. */
5253 if (som_slurp_symbol_table (curr_bfd) == false)
5254 goto error_return;
5255
5256 sym = obj_som_symtab (curr_bfd);
5257 curr_count = bfd_get_symcount (curr_bfd);
5258
5259 for (i = 0; i < curr_count; i++, sym++)
5260 {
5261 struct som_misc_symbol_info info;
5262
5263 /* Derive SOM information from the BFD symbol. */
5264 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5265
5266 /* Should we include this symbol? */
5267 if (info.symbol_type == ST_NULL
5268 || info.symbol_type == ST_SYM_EXT
5269 || info.symbol_type == ST_ARG_EXT)
5270 continue;
5271
5272 /* Only global symbols and unsatisfied commons. */
5273 if (info.symbol_scope != SS_UNIVERSAL
5274 && info.symbol_type != ST_STORAGE)
5275 continue;
5276
5277 /* Do no include undefined symbols. */
5278 if (bfd_is_und_section (sym->symbol.section))
5279 continue;
5280
5281 /* If this is the first symbol from this SOM, then update
5282 the SOM dictionary too. */
5283 if (som_dict[som_index].location == 0)
5284 {
5285 som_dict[som_index].location = curr_som_offset;
5286 som_dict[som_index].length = arelt_size (curr_bfd);
5287 }
5288
5289 /* Fill in the lst symbol record. */
5290 curr_lst_sym->hidden = 0;
5291 curr_lst_sym->secondary_def = 0;
5292 curr_lst_sym->symbol_type = info.symbol_type;
5293 curr_lst_sym->symbol_scope = info.symbol_scope;
5294 curr_lst_sym->check_level = 0;
5295 curr_lst_sym->must_qualify = 0;
5296 curr_lst_sym->initially_frozen = 0;
5297 curr_lst_sym->memory_resident = 0;
5298 curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section);
5299 curr_lst_sym->dup_common = 0;
5300 curr_lst_sym->xleast = 0;
5301 curr_lst_sym->arg_reloc = info.arg_reloc;
5302 curr_lst_sym->name.n_strx = p - strings + 4;
5303 curr_lst_sym->qualifier_name.n_strx = 0;
5304 curr_lst_sym->symbol_info = info.symbol_info;
5305 curr_lst_sym->symbol_value = info.symbol_value;
5306 curr_lst_sym->symbol_descriptor = 0;
5307 curr_lst_sym->reserved = 0;
5308 curr_lst_sym->som_index = som_index;
5309 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
5310 curr_lst_sym->next_entry = 0;
5311
5312 /* Insert into the hash table. */
5313 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
5314 {
5315 struct lst_symbol_record *tmp;
5316
5317 /* There is already something at the head of this hash chain,
5318 so tack this symbol onto the end of the chain. */
5319 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
5320 tmp->next_entry
5321 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5322 + lst.hash_size * 4
5323 + lst.module_count * sizeof (struct som_entry)
5324 + sizeof (struct lst_header);
5325 }
5326 else
5327 {
5328 /* First entry in this hash chain. */
5329 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
5330 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5331 + lst.hash_size * 4
5332 + lst.module_count * sizeof (struct som_entry)
5333 + sizeof (struct lst_header);
5334 }
5335
5336 /* Keep track of the last symbol we added to this chain so we can
5337 easily update its next_entry pointer. */
5338 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
5339 = curr_lst_sym;
5340
5341
5342 /* Update the string table. */
5343 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
5344 p += 4;
5345 strcpy (p, sym->symbol.name);
5346 p += strlen (sym->symbol.name) + 1;
5347 while ((int)p % 4)
5348 {
5349 bfd_put_8 (abfd, 0, p);
5350 p++;
5351 }
5352
5353 /* Head to the next symbol. */
5354 curr_lst_sym++;
5355 }
5356
5357 /* Keep track of where each SOM will finally reside; then look
5358 at the next BFD. */
5359 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
5360 curr_bfd = curr_bfd->next;
5361 som_index++;
5362 }
5363
5364 /* Now scribble out the hash table. */
5365 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
5366 != lst.hash_size * 4)
5367 goto error_return;
5368
5369 /* Then the SOM dictionary. */
5370 if (bfd_write ((PTR) som_dict, lst.module_count,
5371 sizeof (struct som_entry), abfd)
5372 != lst.module_count * sizeof (struct som_entry))
5373 goto error_return;
5374
5375 /* The library symbols. */
5376 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
5377 != nsyms * sizeof (struct lst_symbol_record))
5378 goto error_return;
5379
5380 /* And finally the strings. */
5381 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
5382 goto error_return;
5383
5384 if (hash_table != NULL)
5385 free (hash_table);
5386 if (som_dict != NULL)
5387 free (som_dict);
5388 if (last_hash_entry != NULL)
5389 free (last_hash_entry);
5390 if (lst_syms != NULL)
5391 free (lst_syms);
5392 if (strings != NULL)
5393 free (strings);
5394 return true;
5395
5396 error_return:
5397 if (hash_table != NULL)
5398 free (hash_table);
5399 if (som_dict != NULL)
5400 free (som_dict);
5401 if (last_hash_entry != NULL)
5402 free (last_hash_entry);
5403 if (lst_syms != NULL)
5404 free (lst_syms);
5405 if (strings != NULL)
5406 free (strings);
5407
5408 return false;
5409 }
5410
5411 /* Write out the LST for the archive.
5412
5413 You'll never believe this is really how armaps are handled in SOM... */
5414
5415 /*ARGSUSED*/
5416 static boolean
5417 som_write_armap (abfd, elength, map, orl_count, stridx)
5418 bfd *abfd;
5419 unsigned int elength;
5420 struct orl *map;
5421 unsigned int orl_count;
5422 int stridx;
5423 {
5424 bfd *curr_bfd;
5425 struct stat statbuf;
5426 unsigned int i, lst_size, nsyms, stringsize;
5427 struct ar_hdr hdr;
5428 struct lst_header lst;
5429 int *p;
5430
5431 /* We'll use this for the archive's date and mode later. */
5432 if (stat (abfd->filename, &statbuf) != 0)
5433 {
5434 bfd_set_error (bfd_error_system_call);
5435 return false;
5436 }
5437 /* Fudge factor. */
5438 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
5439
5440 /* Account for the lst header first. */
5441 lst_size = sizeof (struct lst_header);
5442
5443 /* Start building the LST header. */
5444 lst.system_id = CPU_PA_RISC1_0;
5445 lst.a_magic = LIBMAGIC;
5446 lst.version_id = VERSION_ID;
5447 lst.file_time.secs = 0;
5448 lst.file_time.nanosecs = 0;
5449
5450 lst.hash_loc = lst_size;
5451 lst.hash_size = SOM_LST_HASH_SIZE;
5452
5453 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
5454 lst_size += 4 * SOM_LST_HASH_SIZE;
5455
5456 /* We need to count the number of SOMs in this archive. */
5457 curr_bfd = abfd->archive_head;
5458 lst.module_count = 0;
5459 while (curr_bfd != NULL)
5460 {
5461 /* Only true SOM objects count. */
5462 if (curr_bfd->format == bfd_object
5463 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
5464 lst.module_count++;
5465 curr_bfd = curr_bfd->next;
5466 }
5467 lst.module_limit = lst.module_count;
5468 lst.dir_loc = lst_size;
5469 lst_size += sizeof (struct som_entry) * lst.module_count;
5470
5471 /* We don't support import/export tables, auxiliary headers,
5472 or free lists yet. Make the linker work a little harder
5473 to make our life easier. */
5474
5475 lst.export_loc = 0;
5476 lst.export_count = 0;
5477 lst.import_loc = 0;
5478 lst.aux_loc = 0;
5479 lst.aux_size = 0;
5480
5481 /* Count how many symbols we will have on the hash chains and the
5482 size of the associated string table. */
5483 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
5484 return false;
5485
5486 lst_size += sizeof (struct lst_symbol_record) * nsyms;
5487
5488 /* For the string table. One day we might actually use this info
5489 to avoid small seeks/reads when reading archives. */
5490 lst.string_loc = lst_size;
5491 lst.string_size = stringsize;
5492 lst_size += stringsize;
5493
5494 /* SOM ABI says this must be zero. */
5495 lst.free_list = 0;
5496 lst.file_end = lst_size;
5497
5498 /* Compute the checksum. Must happen after the entire lst header
5499 has filled in. */
5500 p = (int *)&lst;
5501 lst.checksum = 0;
5502 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
5503 lst.checksum ^= *p++;
5504
5505 sprintf (hdr.ar_name, "/ ");
5506 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
5507 sprintf (hdr.ar_uid, "%ld", (long) getuid ());
5508 sprintf (hdr.ar_gid, "%ld", (long) getgid ());
5509 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
5510 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
5511 hdr.ar_fmag[0] = '`';
5512 hdr.ar_fmag[1] = '\012';
5513
5514 /* Turn any nulls into spaces. */
5515 for (i = 0; i < sizeof (struct ar_hdr); i++)
5516 if (((char *) (&hdr))[i] == '\0')
5517 (((char *) (&hdr))[i]) = ' ';
5518
5519 /* Scribble out the ar header. */
5520 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
5521 != sizeof (struct ar_hdr))
5522 return false;
5523
5524 /* Now scribble out the lst header. */
5525 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
5526 != sizeof (struct lst_header))
5527 return false;
5528
5529 /* Build and write the armap. */
5530 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst) == false)
5531 return false;
5532
5533 /* Done. */
5534 return true;
5535 }
5536
5537 /* Free all information we have cached for this BFD. We can always
5538 read it again later if we need it. */
5539
5540 static boolean
5541 som_bfd_free_cached_info (abfd)
5542 bfd *abfd;
5543 {
5544 asection *o;
5545
5546 if (bfd_get_format (abfd) != bfd_object)
5547 return true;
5548
5549 #define FREE(x) if (x != NULL) { free (x); x = NULL; }
5550 /* Free the native string and symbol tables. */
5551 FREE (obj_som_symtab (abfd));
5552 FREE (obj_som_stringtab (abfd));
5553 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5554 {
5555 /* Free the native relocations. */
5556 o->reloc_count = -1;
5557 FREE (som_section_data (o)->reloc_stream);
5558 /* Free the generic relocations. */
5559 FREE (o->relocation);
5560 }
5561 #undef FREE
5562
5563 return true;
5564 }
5565
5566 /* End of miscellaneous support functions. */
5567
5568 #define som_close_and_cleanup som_bfd_free_cached_info
5569
5570 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
5571 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
5572 #define som_truncate_arname bfd_bsd_truncate_arname
5573 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
5574 #define som_update_armap_timestamp bfd_true
5575
5576 #define som_get_lineno _bfd_nosymbols_get_lineno
5577 #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
5578
5579 #define som_bfd_get_relocated_section_contents \
5580 bfd_generic_get_relocated_section_contents
5581 #define som_bfd_relax_section bfd_generic_relax_section
5582 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
5583 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
5584 #define som_bfd_final_link _bfd_generic_final_link
5585
5586 const bfd_target som_vec =
5587 {
5588 "som", /* name */
5589 bfd_target_som_flavour,
5590 true, /* target byte order */
5591 true, /* target headers byte order */
5592 (HAS_RELOC | EXEC_P | /* object flags */
5593 HAS_LINENO | HAS_DEBUG |
5594 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
5595 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
5596 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
5597
5598 /* leading_symbol_char: is the first char of a user symbol
5599 predictable, and if so what is it */
5600 0,
5601 '/', /* ar_pad_char */
5602 14, /* ar_max_namelen */
5603 3, /* minimum alignment */
5604 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5605 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5606 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
5607 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5608 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5609 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
5610 {_bfd_dummy_target,
5611 som_object_p, /* bfd_check_format */
5612 bfd_generic_archive_p,
5613 _bfd_dummy_target
5614 },
5615 {
5616 bfd_false,
5617 som_mkobject,
5618 _bfd_generic_mkarchive,
5619 bfd_false
5620 },
5621 {
5622 bfd_false,
5623 som_write_object_contents,
5624 _bfd_write_archive_contents,
5625 bfd_false,
5626 },
5627 #undef som
5628
5629 BFD_JUMP_TABLE_GENERIC (som),
5630 BFD_JUMP_TABLE_COPY (som),
5631 BFD_JUMP_TABLE_CORE (_bfd_nocore),
5632 BFD_JUMP_TABLE_ARCHIVE (som),
5633 BFD_JUMP_TABLE_SYMBOLS (som),
5634 BFD_JUMP_TABLE_RELOCS (som),
5635 BFD_JUMP_TABLE_WRITE (som),
5636 BFD_JUMP_TABLE_LINK (som),
5637 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
5638
5639 (PTR) 0
5640 };
5641
5642 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */