* som.c (som_get_symtab_upper_bound): Use "sizeof (asymbol *)"
[binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
3
4 Contributed by the Center for Software Science at the
5 University of Utah (pa-gdb-bugs@cs.utah.edu).
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23 #include "bfd.h"
24 #include "sysdep.h"
25
26 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)
27
28 #include "libbfd.h"
29 #include "som.h"
30 #include "libhppa.h"
31
32 #include <stdio.h>
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/dir.h>
36 #include <signal.h>
37 #include <machine/reg.h>
38 #include <sys/user.h> /* After a.out.h */
39 #include <sys/file.h>
40 #include <errno.h>
41
42 /* Magic not defined in standard HP-UX header files until 8.0 */
43
44 #ifndef CPU_PA_RISC1_0
45 #define CPU_PA_RISC1_0 0x20B
46 #endif /* CPU_PA_RISC1_0 */
47
48 #ifndef CPU_PA_RISC1_1
49 #define CPU_PA_RISC1_1 0x210
50 #endif /* CPU_PA_RISC1_1 */
51
52 #ifndef _PA_RISC1_0_ID
53 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
54 #endif /* _PA_RISC1_0_ID */
55
56 #ifndef _PA_RISC1_1_ID
57 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
58 #endif /* _PA_RISC1_1_ID */
59
60 #ifndef _PA_RISC_MAXID
61 #define _PA_RISC_MAXID 0x2FF
62 #endif /* _PA_RISC_MAXID */
63
64 #ifndef _PA_RISC_ID
65 #define _PA_RISC_ID(__m_num) \
66 (((__m_num) == _PA_RISC1_0_ID) || \
67 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
68 #endif /* _PA_RISC_ID */
69
70 /* Size (in chars) of the temporary buffers used during fixup and string
71 table writes. */
72
73 #define SOM_TMP_BUFSIZE 8192
74
75 /* Size of the hash table in archives. */
76 #define SOM_LST_HASH_SIZE 31
77
78 /* Max number of SOMs to be found in an archive. */
79 #define SOM_LST_MODULE_LIMIT 1024
80
81 /* SOM allows any one of the four previous relocations to be reused
82 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
83 relocations are always a single byte, using a R_PREV_FIXUP instead
84 of some multi-byte relocation makes object files smaller.
85
86 Note one side effect of using a R_PREV_FIXUP is the relocation that
87 is being repeated moves to the front of the queue. */
88 struct reloc_queue
89 {
90 unsigned char *reloc;
91 unsigned int size;
92 } reloc_queue[4];
93
94 /* This fully describes the symbol types which may be attached to
95 an EXPORT or IMPORT directive. Only SOM uses this formation
96 (ELF has no need for it). */
97 typedef enum
98 {
99 SYMBOL_TYPE_UNKNOWN,
100 SYMBOL_TYPE_ABSOLUTE,
101 SYMBOL_TYPE_CODE,
102 SYMBOL_TYPE_DATA,
103 SYMBOL_TYPE_ENTRY,
104 SYMBOL_TYPE_MILLICODE,
105 SYMBOL_TYPE_PLABEL,
106 SYMBOL_TYPE_PRI_PROG,
107 SYMBOL_TYPE_SEC_PROG,
108 } pa_symbol_type;
109
110 struct section_to_type
111 {
112 char *section;
113 char type;
114 };
115
116 /* Assorted symbol information that needs to be derived from the BFD symbol
117 and/or the BFD backend private symbol data. */
118 struct som_misc_symbol_info
119 {
120 unsigned int symbol_type;
121 unsigned int symbol_scope;
122 unsigned int arg_reloc;
123 unsigned int symbol_info;
124 unsigned int symbol_value;
125 };
126
127 /* Forward declarations */
128
129 static boolean som_mkobject PARAMS ((bfd *));
130 static bfd_target * som_object_setup PARAMS ((bfd *,
131 struct header *,
132 struct som_exec_auxhdr *));
133 static asection * make_unique_section PARAMS ((bfd *, CONST char *, int));
134 static boolean setup_sections PARAMS ((bfd *, struct header *));
135 static bfd_target * som_object_p PARAMS ((bfd *));
136 static boolean som_write_object_contents PARAMS ((bfd *));
137 static boolean som_slurp_string_table PARAMS ((bfd *));
138 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
139 static unsigned int som_get_symtab_upper_bound PARAMS ((bfd *));
140 static unsigned int som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
141 arelent **, asymbol **));
142 static unsigned int som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
143 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
144 arelent *, asection *,
145 asymbol **, boolean));
146 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
147 asymbol **, boolean));
148 static unsigned int som_get_symtab PARAMS ((bfd *, asymbol **));
149 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
150 static void som_print_symbol PARAMS ((bfd *, PTR,
151 asymbol *, bfd_print_symbol_type));
152 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
153 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
154 file_ptr, bfd_size_type));
155 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
156 unsigned long));
157 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
158 asymbol **, bfd_vma,
159 CONST char **,
160 CONST char **,
161 unsigned int *));
162 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
163 static asection * som_section_from_subspace_index PARAMS ((bfd *,
164 unsigned int));
165 static int log2 PARAMS ((unsigned int));
166 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
167 asymbol *, PTR,
168 asection *, bfd *,
169 char **));
170 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
171 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
172 struct reloc_queue *));
173 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
174 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
175 struct reloc_queue *));
176 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
177 unsigned int,
178 struct reloc_queue *));
179
180 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
181 unsigned char *, unsigned int *,
182 struct reloc_queue *));
183 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
184 unsigned int *,
185 struct reloc_queue *));
186 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
187 unsigned int *,
188 arelent *, int,
189 struct reloc_queue *));
190 static unsigned long som_count_spaces PARAMS ((bfd *));
191 static unsigned long som_count_subspaces PARAMS ((bfd *));
192 static int compare_syms PARAMS ((asymbol **, asymbol **));
193 static unsigned long som_compute_checksum PARAMS ((bfd *));
194 static boolean som_prep_headers PARAMS ((bfd *));
195 static int som_sizeof_headers PARAMS ((bfd *, boolean));
196 static boolean som_write_headers PARAMS ((bfd *));
197 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
198 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
199 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
200 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
201 unsigned int *));
202 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
203 asymbol **, unsigned int,
204 unsigned *));
205 static boolean som_begin_writing PARAMS ((bfd *));
206 static const reloc_howto_type * som_bfd_reloc_type_lookup
207 PARAMS ((bfd_arch_info_type *, bfd_reloc_code_real_type));
208 static char som_section_type PARAMS ((const char *));
209 static int som_decode_symclass PARAMS ((asymbol *));
210 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
211 symindex *));
212
213 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
214 carsym **syms));
215 static boolean som_slurp_armap PARAMS ((bfd *));
216 static boolean som_write_armap PARAMS ((bfd *));
217 static boolean som_slurp_extended_name_table PARAMS ((bfd *));
218 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
219 struct som_misc_symbol_info *));
220 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
221 unsigned int *));
222 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
223 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
224 unsigned int,
225 struct lst_header));
226
227 /* Map SOM section names to POSIX/BSD single-character symbol types.
228
229 This table includes all the standard subspaces as defined in the
230 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
231 some reason was left out, and sections specific to embedded stabs. */
232
233 static const struct section_to_type stt[] = {
234 {"$TEXT$", 't'},
235 {"$SHLIB_INFO$", 't'},
236 {"$MILLICODE$", 't'},
237 {"$LIT$", 't'},
238 {"$CODE$", 't'},
239 {"$UNWIND_START$", 't'},
240 {"$UNWIND$", 't'},
241 {"$PRIVATE$", 'd'},
242 {"$PLT$", 'd'},
243 {"$SHLIB_DATA$", 'd'},
244 {"$DATA$", 'd'},
245 {"$SHORTDATA$", 'g'},
246 {"$DLT$", 'd'},
247 {"$GLOBAL$", 'g'},
248 {"$SHORTBSS$", 's'},
249 {"$BSS$", 'b'},
250 {"$GDB_STRINGS$", 'N'},
251 {"$GDB_SYMBOLS$", 'N'},
252 {0, 0}
253 };
254
255 /* About the relocation formatting table...
256
257 There are 256 entries in the table, one for each possible
258 relocation opcode available in SOM. We index the table by
259 the relocation opcode. The names and operations are those
260 defined by a.out_800 (4).
261
262 Right now this table is only used to count and perform minimal
263 processing on relocation streams so that they can be internalized
264 into BFD and symbolically printed by utilities. To make actual use
265 of them would be much more difficult, BFD's concept of relocations
266 is far too simple to handle SOM relocations. The basic assumption
267 that a relocation can be completely processed independent of other
268 relocations before an object file is written is invalid for SOM.
269
270 The SOM relocations are meant to be processed as a stream, they
271 specify copying of data from the input section to the output section
272 while possibly modifying the data in some manner. They also can
273 specify that a variable number of zeros or uninitialized data be
274 inserted on in the output segment at the current offset. Some
275 relocations specify that some previous relocation be re-applied at
276 the current location in the input/output sections. And finally a number
277 of relocations have effects on other sections (R_ENTRY, R_EXIT,
278 R_UNWIND_AUX and a variety of others). There isn't even enough room
279 in the BFD relocation data structure to store enough information to
280 perform all the relocations.
281
282 Each entry in the table has three fields.
283
284 The first entry is an index into this "class" of relocations. This
285 index can then be used as a variable within the relocation itself.
286
287 The second field is a format string which actually controls processing
288 of the relocation. It uses a simple postfix machine to do calculations
289 based on variables/constants found in the string and the relocation
290 stream.
291
292 The third field specifys whether or not this relocation may use
293 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
294 stored in the instruction.
295
296 Variables:
297
298 L = input space byte count
299 D = index into class of relocations
300 M = output space byte count
301 N = statement number (unused?)
302 O = stack operation
303 R = parameter relocation bits
304 S = symbol index
305 U = 64 bits of stack unwind and frame size info (we only keep 32 bits)
306 V = a literal constant (usually used in the next relocation)
307 P = a previous relocation
308
309 Lower case letters (starting with 'b') refer to following
310 bytes in the relocation stream. 'b' is the next 1 byte,
311 c is the next 2 bytes, d is the next 3 bytes, etc...
312 This is the variable part of the relocation entries that
313 makes our life a living hell.
314
315 numerical constants are also used in the format string. Note
316 the constants are represented in decimal.
317
318 '+', "*" and "=" represents the obvious postfix operators.
319 '<' represents a left shift.
320
321 Stack Operations:
322
323 Parameter Relocation Bits:
324
325 Unwind Entries:
326
327 Previous Relocations: The index field represents which in the queue
328 of 4 previous fixups should be re-applied.
329
330 Literal Constants: These are generally used to represent addend
331 parts of relocations when these constants are not stored in the
332 fields of the instructions themselves. For example the instruction
333 addil foo-$global$-0x1234 would use an override for "0x1234" rather
334 than storing it into the addil itself. */
335
336 struct fixup_format
337 {
338 int D;
339 char *format;
340 };
341
342 static const struct fixup_format som_fixup_formats[256] =
343 {
344 /* R_NO_RELOCATION */
345 0, "LD1+4*=", /* 0x00 */
346 1, "LD1+4*=", /* 0x01 */
347 2, "LD1+4*=", /* 0x02 */
348 3, "LD1+4*=", /* 0x03 */
349 4, "LD1+4*=", /* 0x04 */
350 5, "LD1+4*=", /* 0x05 */
351 6, "LD1+4*=", /* 0x06 */
352 7, "LD1+4*=", /* 0x07 */
353 8, "LD1+4*=", /* 0x08 */
354 9, "LD1+4*=", /* 0x09 */
355 10, "LD1+4*=", /* 0x0a */
356 11, "LD1+4*=", /* 0x0b */
357 12, "LD1+4*=", /* 0x0c */
358 13, "LD1+4*=", /* 0x0d */
359 14, "LD1+4*=", /* 0x0e */
360 15, "LD1+4*=", /* 0x0f */
361 16, "LD1+4*=", /* 0x10 */
362 17, "LD1+4*=", /* 0x11 */
363 18, "LD1+4*=", /* 0x12 */
364 19, "LD1+4*=", /* 0x13 */
365 20, "LD1+4*=", /* 0x14 */
366 21, "LD1+4*=", /* 0x15 */
367 22, "LD1+4*=", /* 0x16 */
368 23, "LD1+4*=", /* 0x17 */
369 0, "LD8<b+1+4*=", /* 0x18 */
370 1, "LD8<b+1+4*=", /* 0x19 */
371 2, "LD8<b+1+4*=", /* 0x1a */
372 3, "LD8<b+1+4*=", /* 0x1b */
373 0, "LD16<c+1+4*=", /* 0x1c */
374 1, "LD16<c+1+4*=", /* 0x1d */
375 2, "LD16<c+1+4*=", /* 0x1e */
376 0, "Ld1+=", /* 0x1f */
377 /* R_ZEROES */
378 0, "Lb1+4*=", /* 0x20 */
379 1, "Ld1+=", /* 0x21 */
380 /* R_UNINIT */
381 0, "Lb1+4*=", /* 0x22 */
382 1, "Ld1+=", /* 0x23 */
383 /* R_RELOCATION */
384 0, "L4=", /* 0x24 */
385 /* R_DATA_ONE_SYMBOL */
386 0, "L4=Sb=", /* 0x25 */
387 1, "L4=Sd=", /* 0x26 */
388 /* R_DATA_PLEBEL */
389 0, "L4=Sb=", /* 0x27 */
390 1, "L4=Sd=", /* 0x28 */
391 /* R_SPACE_REF */
392 0, "L4=", /* 0x29 */
393 /* R_REPEATED_INIT */
394 0, "L4=Mb1+4*=", /* 0x2a */
395 1, "Lb4*=Mb1+L*=", /* 0x2b */
396 2, "Lb4*=Md1+4*=", /* 0x2c */
397 3, "Ld1+=Me1+=", /* 0x2d */
398 /* R_RESERVED */
399 0, "", /* 0x2e */
400 0, "", /* 0x2f */
401 /* R_PCREL_CALL */
402 0, "L4=RD=Sb=", /* 0x30 */
403 1, "L4=RD=Sb=", /* 0x31 */
404 2, "L4=RD=Sb=", /* 0x32 */
405 3, "L4=RD=Sb=", /* 0x33 */
406 4, "L4=RD=Sb=", /* 0x34 */
407 5, "L4=RD=Sb=", /* 0x35 */
408 6, "L4=RD=Sb=", /* 0x36 */
409 7, "L4=RD=Sb=", /* 0x37 */
410 8, "L4=RD=Sb=", /* 0x38 */
411 9, "L4=RD=Sb=", /* 0x39 */
412 0, "L4=RD8<b+=Sb=",/* 0x3a */
413 1, "L4=RD8<b+=Sb=",/* 0x3b */
414 0, "L4=RD8<b+=Sd=",/* 0x3c */
415 1, "L4=RD8<b+=Sd=",/* 0x3d */
416 /* R_RESERVED */
417 0, "", /* 0x3e */
418 0, "", /* 0x3f */
419 /* R_ABS_CALL */
420 0, "L4=RD=Sb=", /* 0x40 */
421 1, "L4=RD=Sb=", /* 0x41 */
422 2, "L4=RD=Sb=", /* 0x42 */
423 3, "L4=RD=Sb=", /* 0x43 */
424 4, "L4=RD=Sb=", /* 0x44 */
425 5, "L4=RD=Sb=", /* 0x45 */
426 6, "L4=RD=Sb=", /* 0x46 */
427 7, "L4=RD=Sb=", /* 0x47 */
428 8, "L4=RD=Sb=", /* 0x48 */
429 9, "L4=RD=Sb=", /* 0x49 */
430 0, "L4=RD8<b+=Sb=",/* 0x4a */
431 1, "L4=RD8<b+=Sb=",/* 0x4b */
432 0, "L4=RD8<b+=Sd=",/* 0x4c */
433 1, "L4=RD8<b+=Sd=",/* 0x4d */
434 /* R_RESERVED */
435 0, "", /* 0x4e */
436 0, "", /* 0x4f */
437 /* R_DP_RELATIVE */
438 0, "L4=SD=", /* 0x50 */
439 1, "L4=SD=", /* 0x51 */
440 2, "L4=SD=", /* 0x52 */
441 3, "L4=SD=", /* 0x53 */
442 4, "L4=SD=", /* 0x54 */
443 5, "L4=SD=", /* 0x55 */
444 6, "L4=SD=", /* 0x56 */
445 7, "L4=SD=", /* 0x57 */
446 8, "L4=SD=", /* 0x58 */
447 9, "L4=SD=", /* 0x59 */
448 10, "L4=SD=", /* 0x5a */
449 11, "L4=SD=", /* 0x5b */
450 12, "L4=SD=", /* 0x5c */
451 13, "L4=SD=", /* 0x5d */
452 14, "L4=SD=", /* 0x5e */
453 15, "L4=SD=", /* 0x5f */
454 16, "L4=SD=", /* 0x60 */
455 17, "L4=SD=", /* 0x61 */
456 18, "L4=SD=", /* 0x62 */
457 19, "L4=SD=", /* 0x63 */
458 20, "L4=SD=", /* 0x64 */
459 21, "L4=SD=", /* 0x65 */
460 22, "L4=SD=", /* 0x66 */
461 23, "L4=SD=", /* 0x67 */
462 24, "L4=SD=", /* 0x68 */
463 25, "L4=SD=", /* 0x69 */
464 26, "L4=SD=", /* 0x6a */
465 27, "L4=SD=", /* 0x6b */
466 28, "L4=SD=", /* 0x6c */
467 29, "L4=SD=", /* 0x6d */
468 30, "L4=SD=", /* 0x6e */
469 31, "L4=SD=", /* 0x6f */
470 32, "L4=Sb=", /* 0x70 */
471 33, "L4=Sd=", /* 0x71 */
472 /* R_RESERVED */
473 0, "", /* 0x72 */
474 0, "", /* 0x73 */
475 0, "", /* 0x74 */
476 0, "", /* 0x75 */
477 0, "", /* 0x76 */
478 0, "", /* 0x77 */
479 /* R_DLT_REL */
480 0, "L4=Sb=", /* 0x78 */
481 1, "L4=Sd=", /* 0x79 */
482 /* R_RESERVED */
483 0, "", /* 0x7a */
484 0, "", /* 0x7b */
485 0, "", /* 0x7c */
486 0, "", /* 0x7d */
487 0, "", /* 0x7e */
488 0, "", /* 0x7f */
489 /* R_CODE_ONE_SYMBOL */
490 0, "L4=SD=", /* 0x80 */
491 1, "L4=SD=", /* 0x81 */
492 2, "L4=SD=", /* 0x82 */
493 3, "L4=SD=", /* 0x83 */
494 4, "L4=SD=", /* 0x84 */
495 5, "L4=SD=", /* 0x85 */
496 6, "L4=SD=", /* 0x86 */
497 7, "L4=SD=", /* 0x87 */
498 8, "L4=SD=", /* 0x88 */
499 9, "L4=SD=", /* 0x89 */
500 10, "L4=SD=", /* 0x8q */
501 11, "L4=SD=", /* 0x8b */
502 12, "L4=SD=", /* 0x8c */
503 13, "L4=SD=", /* 0x8d */
504 14, "L4=SD=", /* 0x8e */
505 15, "L4=SD=", /* 0x8f */
506 16, "L4=SD=", /* 0x90 */
507 17, "L4=SD=", /* 0x91 */
508 18, "L4=SD=", /* 0x92 */
509 19, "L4=SD=", /* 0x93 */
510 20, "L4=SD=", /* 0x94 */
511 21, "L4=SD=", /* 0x95 */
512 22, "L4=SD=", /* 0x96 */
513 23, "L4=SD=", /* 0x97 */
514 24, "L4=SD=", /* 0x98 */
515 25, "L4=SD=", /* 0x99 */
516 26, "L4=SD=", /* 0x9a */
517 27, "L4=SD=", /* 0x9b */
518 28, "L4=SD=", /* 0x9c */
519 29, "L4=SD=", /* 0x9d */
520 30, "L4=SD=", /* 0x9e */
521 31, "L4=SD=", /* 0x9f */
522 32, "L4=Sb=", /* 0xa0 */
523 33, "L4=Sd=", /* 0xa1 */
524 /* R_RESERVED */
525 0, "", /* 0xa2 */
526 0, "", /* 0xa3 */
527 0, "", /* 0xa4 */
528 0, "", /* 0xa5 */
529 0, "", /* 0xa6 */
530 0, "", /* 0xa7 */
531 0, "", /* 0xa8 */
532 0, "", /* 0xa9 */
533 0, "", /* 0xaa */
534 0, "", /* 0xab */
535 0, "", /* 0xac */
536 0, "", /* 0xad */
537 /* R_MILLI_REL */
538 0, "L4=Sb=", /* 0xae */
539 1, "L4=Sd=", /* 0xaf */
540 /* R_CODE_PLABEL */
541 0, "L4=Sb=", /* 0xb0 */
542 1, "L4=Sd=", /* 0xb1 */
543 /* R_BREAKPOINT */
544 0, "L4=", /* 0xb2 */
545 /* R_ENTRY */
546 0, "Ui=", /* 0xb3 */
547 1, "Uf=", /* 0xb4 */
548 /* R_ALT_ENTRY */
549 0, "", /* 0xb5 */
550 /* R_EXIT */
551 0, "", /* 0xb6 */
552 /* R_BEGIN_TRY */
553 0, "", /* 0xb7 */
554 /* R_END_TRY */
555 0, "R0=", /* 0xb8 */
556 1, "Rb4*=", /* 0xb9 */
557 2, "Rd4*=", /* 0xba */
558 /* R_BEGIN_BRTAB */
559 0, "", /* 0xbb */
560 /* R_END_BRTAB */
561 0, "", /* 0xbc */
562 /* R_STATEMENT */
563 0, "Nb=", /* 0xbd */
564 1, "Nc=", /* 0xbe */
565 2, "Nd=", /* 0xbf */
566 /* R_DATA_EXPR */
567 0, "L4=", /* 0xc0 */
568 /* R_CODE_EXPR */
569 0, "L4=", /* 0xc1 */
570 /* R_FSEL */
571 0, "", /* 0xc2 */
572 /* R_LSEL */
573 0, "", /* 0xc3 */
574 /* R_RSEL */
575 0, "", /* 0xc4 */
576 /* R_N_MODE */
577 0, "", /* 0xc5 */
578 /* R_S_MODE */
579 0, "", /* 0xc6 */
580 /* R_D_MODE */
581 0, "", /* 0xc7 */
582 /* R_R_MODE */
583 0, "", /* 0xc8 */
584 /* R_DATA_OVERRIDE */
585 0, "V0=", /* 0xc9 */
586 1, "Vb=", /* 0xca */
587 2, "Vc=", /* 0xcb */
588 3, "Vd=", /* 0xcc */
589 4, "Ve=", /* 0xcd */
590 /* R_TRANSLATED */
591 0, "", /* 0xce */
592 /* R_RESERVED */
593 0, "", /* 0xcf */
594 /* R_COMP1 */
595 0, "Ob=", /* 0xd0 */
596 /* R_COMP2 */
597 0, "Ob=Sd=", /* 0xd1 */
598 /* R_COMP3 */
599 0, "Ob=Ve=", /* 0xd2 */
600 /* R_PREV_FIXUP */
601 0, "P", /* 0xd3 */
602 1, "P", /* 0xd4 */
603 2, "P", /* 0xd5 */
604 3, "P", /* 0xd6 */
605 /* R_RESERVED */
606 0, "", /* 0xd7 */
607 0, "", /* 0xd8 */
608 0, "", /* 0xd9 */
609 0, "", /* 0xda */
610 0, "", /* 0xdb */
611 0, "", /* 0xdc */
612 0, "", /* 0xdd */
613 0, "", /* 0xde */
614 0, "", /* 0xdf */
615 0, "", /* 0xe0 */
616 0, "", /* 0xe1 */
617 0, "", /* 0xe2 */
618 0, "", /* 0xe3 */
619 0, "", /* 0xe4 */
620 0, "", /* 0xe5 */
621 0, "", /* 0xe6 */
622 0, "", /* 0xe7 */
623 0, "", /* 0xe8 */
624 0, "", /* 0xe9 */
625 0, "", /* 0xea */
626 0, "", /* 0xeb */
627 0, "", /* 0xec */
628 0, "", /* 0xed */
629 0, "", /* 0xee */
630 0, "", /* 0xef */
631 0, "", /* 0xf0 */
632 0, "", /* 0xf1 */
633 0, "", /* 0xf2 */
634 0, "", /* 0xf3 */
635 0, "", /* 0xf4 */
636 0, "", /* 0xf5 */
637 0, "", /* 0xf6 */
638 0, "", /* 0xf7 */
639 0, "", /* 0xf8 */
640 0, "", /* 0xf9 */
641 0, "", /* 0xfa */
642 0, "", /* 0xfb */
643 0, "", /* 0xfc */
644 0, "", /* 0xfd */
645 0, "", /* 0xfe */
646 0, "", /* 0xff */
647 };
648
649 static const int comp1_opcodes[] =
650 {
651 0x00,
652 0x40,
653 0x41,
654 0x42,
655 0x43,
656 0x44,
657 0x45,
658 0x46,
659 0x47,
660 0x48,
661 0x49,
662 0x4a,
663 0x4b,
664 0x60,
665 0x80,
666 0xa0,
667 0xc0,
668 -1
669 };
670
671 static const int comp2_opcodes[] =
672 {
673 0x00,
674 0x80,
675 0x82,
676 0xc0,
677 -1
678 };
679
680 static const int comp3_opcodes[] =
681 {
682 0x00,
683 0x02,
684 -1
685 };
686
687 /* These apparently are not in older versions of hpux reloc.h. */
688 #ifndef R_DLT_REL
689 #define R_DLT_REL 0x78
690 #endif
691
692 #ifndef R_AUX_UNWIND
693 #define R_AUX_UNWIND 0xcf
694 #endif
695
696 #ifndef R_SEC_STMT
697 #define R_SEC_STMT 0xd7
698 #endif
699
700 static reloc_howto_type som_hppa_howto_table[] =
701 {
702 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
703 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
704 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
705 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
706 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
707 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
708 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
709 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
710 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
711 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
712 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
713 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
714 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
715 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
716 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
717 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
718 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
719 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
720 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
721 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
722 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
723 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
724 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
725 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
726 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
727 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
728 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
729 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
730 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
731 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
732 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
733 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
734 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
735 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
736 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
737 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
738 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
739 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
740 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
741 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
742 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
743 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
744 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
745 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
746 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
747 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
748 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
749 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
750 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
751 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
752 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
753 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
754 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
755 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
756 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
757 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
758 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
759 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
760 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
761 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
762 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
763 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
764 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
765 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
766 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
767 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
768 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
769 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
770 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
771 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
772 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
773 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
774 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
775 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
776 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
777 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
778 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
779 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
780 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
781 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
782 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
783 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
784 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
785 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
786 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
787 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
788 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
789 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
790 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
791 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
792 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
793 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
794 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
795 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
796 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
797 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
798 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
799 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
800 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
801 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
802 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
803 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
804 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
805 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
806 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
807 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
808 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
809 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
810 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
811 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
812 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
813 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
814 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
815 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
816 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
817 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
818 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
819 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
820 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
821 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
822 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
823 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
824 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
825 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
826 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
827 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
828 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
829 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
830 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
831 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
832 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
833 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
834 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
835 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
836 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
837 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
838 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
839 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
840 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
841 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
842 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
843 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
844 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
845 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
846 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
847 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
848 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
849 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
850 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
851 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
852 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
853 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
854 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
855 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
856 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
857 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
858 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
859 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
860 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
861 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
862 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
863 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
864 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
865 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
866 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
867 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
868 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
869 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
870 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
871 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
872 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
873 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
874 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
875 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
876 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
877 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
878 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
879 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
880 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
881 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
882 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
883 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
884 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
885 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
886 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
887 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
888 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
889 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
890 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
891 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
892 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
893 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
894 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
895 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
896 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
897 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
898 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
899 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
900 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
901 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
902 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
903 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
904 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
905 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
906 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
907 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
908 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
909 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
910 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
911 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
912 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
913 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
914 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
915 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
916 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
917 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
918 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
919 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
920 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
921 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
922 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
923 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
924 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
925 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
926 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
927 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
928 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
929 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
930 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
931 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
932 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
933 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
934 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
935 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
936 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
937 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
938 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
939 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
940 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
941 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
942 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
943 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
944 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
945 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
946 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
947 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
948 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
949 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
950 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
951 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
952 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
953 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
954 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
955 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
956 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
957 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
958
959
960 /* Initialize the SOM relocation queue. By definition the queue holds
961 the last four multibyte fixups. */
962
963 static void
964 som_initialize_reloc_queue (queue)
965 struct reloc_queue *queue;
966 {
967 queue[0].reloc = NULL;
968 queue[0].size = 0;
969 queue[1].reloc = NULL;
970 queue[1].size = 0;
971 queue[2].reloc = NULL;
972 queue[2].size = 0;
973 queue[3].reloc = NULL;
974 queue[3].size = 0;
975 }
976
977 /* Insert a new relocation into the relocation queue. */
978
979 static void
980 som_reloc_queue_insert (p, size, queue)
981 unsigned char *p;
982 unsigned int size;
983 struct reloc_queue *queue;
984 {
985 queue[3].reloc = queue[2].reloc;
986 queue[3].size = queue[2].size;
987 queue[2].reloc = queue[1].reloc;
988 queue[2].size = queue[1].size;
989 queue[1].reloc = queue[0].reloc;
990 queue[1].size = queue[0].size;
991 queue[0].reloc = p;
992 queue[0].size = size;
993 }
994
995 /* When an entry in the relocation queue is reused, the entry moves
996 to the front of the queue. */
997
998 static void
999 som_reloc_queue_fix (queue, index)
1000 struct reloc_queue *queue;
1001 unsigned int index;
1002 {
1003 if (index == 0)
1004 return;
1005
1006 if (index == 1)
1007 {
1008 unsigned char *tmp1 = queue[0].reloc;
1009 unsigned int tmp2 = queue[0].size;
1010 queue[0].reloc = queue[1].reloc;
1011 queue[0].size = queue[1].size;
1012 queue[1].reloc = tmp1;
1013 queue[1].size = tmp2;
1014 return;
1015 }
1016
1017 if (index == 2)
1018 {
1019 unsigned char *tmp1 = queue[0].reloc;
1020 unsigned int tmp2 = queue[0].size;
1021 queue[0].reloc = queue[2].reloc;
1022 queue[0].size = queue[2].size;
1023 queue[2].reloc = queue[1].reloc;
1024 queue[2].size = queue[1].size;
1025 queue[1].reloc = tmp1;
1026 queue[1].size = tmp2;
1027 return;
1028 }
1029
1030 if (index == 3)
1031 {
1032 unsigned char *tmp1 = queue[0].reloc;
1033 unsigned int tmp2 = queue[0].size;
1034 queue[0].reloc = queue[3].reloc;
1035 queue[0].size = queue[3].size;
1036 queue[3].reloc = queue[2].reloc;
1037 queue[3].size = queue[2].size;
1038 queue[2].reloc = queue[1].reloc;
1039 queue[2].size = queue[1].size;
1040 queue[1].reloc = tmp1;
1041 queue[1].size = tmp2;
1042 return;
1043 }
1044 abort();
1045 }
1046
1047 /* Search for a particular relocation in the relocation queue. */
1048
1049 static int
1050 som_reloc_queue_find (p, size, queue)
1051 unsigned char *p;
1052 unsigned int size;
1053 struct reloc_queue *queue;
1054 {
1055 if (queue[0].reloc && !bcmp (p, queue[0].reloc, size)
1056 && size == queue[0].size)
1057 return 0;
1058 if (queue[1].reloc && !bcmp (p, queue[1].reloc, size)
1059 && size == queue[1].size)
1060 return 1;
1061 if (queue[2].reloc && !bcmp (p, queue[2].reloc, size)
1062 && size == queue[2].size)
1063 return 2;
1064 if (queue[3].reloc && !bcmp (p, queue[3].reloc, size)
1065 && size == queue[3].size)
1066 return 3;
1067 return -1;
1068 }
1069
1070 static unsigned char *
1071 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1072 bfd *abfd;
1073 int *subspace_reloc_sizep;
1074 unsigned char *p;
1075 unsigned int size;
1076 struct reloc_queue *queue;
1077 {
1078 int queue_index = som_reloc_queue_find (p, size, queue);
1079
1080 if (queue_index != -1)
1081 {
1082 /* Found this in a previous fixup. Undo the fixup we
1083 just built and use R_PREV_FIXUP instead. We saved
1084 a total of size - 1 bytes in the fixup stream. */
1085 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1086 p += 1;
1087 *subspace_reloc_sizep += 1;
1088 som_reloc_queue_fix (queue, queue_index);
1089 }
1090 else
1091 {
1092 som_reloc_queue_insert (p, size, queue);
1093 *subspace_reloc_sizep += size;
1094 p += size;
1095 }
1096 return p;
1097 }
1098
1099 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1100 bytes without any relocation. Update the size of the subspace
1101 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1102 current pointer into the relocation stream. */
1103
1104 static unsigned char *
1105 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1106 bfd *abfd;
1107 unsigned int skip;
1108 unsigned char *p;
1109 unsigned int *subspace_reloc_sizep;
1110 struct reloc_queue *queue;
1111 {
1112 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1113 then R_PREV_FIXUPs to get the difference down to a
1114 reasonable size. */
1115 if (skip >= 0x1000000)
1116 {
1117 skip -= 0x1000000;
1118 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1119 bfd_put_8 (abfd, 0xff, p + 1);
1120 bfd_put_16 (abfd, 0xffff, p + 2);
1121 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1122 while (skip >= 0x1000000)
1123 {
1124 skip -= 0x1000000;
1125 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1126 p++;
1127 *subspace_reloc_sizep += 1;
1128 /* No need to adjust queue here since we are repeating the
1129 most recent fixup. */
1130 }
1131 }
1132
1133 /* The difference must be less than 0x1000000. Use one
1134 more R_NO_RELOCATION entry to get to the right difference. */
1135 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1136 {
1137 /* Difference can be handled in a simple single-byte
1138 R_NO_RELOCATION entry. */
1139 if (skip <= 0x60)
1140 {
1141 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1142 *subspace_reloc_sizep += 1;
1143 p++;
1144 }
1145 /* Handle it with a two byte R_NO_RELOCATION entry. */
1146 else if (skip <= 0x1000)
1147 {
1148 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1149 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1150 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1151 }
1152 /* Handle it with a three byte R_NO_RELOCATION entry. */
1153 else
1154 {
1155 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1156 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1157 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1158 }
1159 }
1160 /* Ugh. Punt and use a 4 byte entry. */
1161 else if (skip > 0)
1162 {
1163 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1164 bfd_put_8 (abfd, skip >> 16, p + 1);
1165 bfd_put_16 (abfd, skip, p + 2);
1166 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1167 }
1168 return p;
1169 }
1170
1171 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1172 from a BFD relocation. Update the size of the subspace relocation
1173 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1174 into the relocation stream. */
1175
1176 static unsigned char *
1177 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1178 bfd *abfd;
1179 int addend;
1180 unsigned char *p;
1181 unsigned int *subspace_reloc_sizep;
1182 struct reloc_queue *queue;
1183 {
1184 if ((unsigned)(addend) + 0x80 < 0x100)
1185 {
1186 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1187 bfd_put_8 (abfd, addend, p + 1);
1188 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1189 }
1190 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1191 {
1192 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1193 bfd_put_16 (abfd, addend, p + 1);
1194 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1195 }
1196 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1197 {
1198 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1199 bfd_put_8 (abfd, addend >> 16, p + 1);
1200 bfd_put_16 (abfd, addend, p + 2);
1201 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1202 }
1203 else
1204 {
1205 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1206 bfd_put_32 (abfd, addend, p + 1);
1207 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1208 }
1209 return p;
1210 }
1211
1212 /* Handle a single function call relocation. */
1213
1214 static unsigned char *
1215 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1216 bfd *abfd;
1217 unsigned char *p;
1218 unsigned int *subspace_reloc_sizep;
1219 arelent *bfd_reloc;
1220 int sym_num;
1221 struct reloc_queue *queue;
1222 {
1223 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1224 int rtn_bits = arg_bits & 0x3;
1225 int type, done = 0;
1226
1227 /* You'll never believe all this is necessary to handle relocations
1228 for function calls. Having to compute and pack the argument
1229 relocation bits is the real nightmare.
1230
1231 If you're interested in how this works, just forget it. You really
1232 do not want to know about this braindamage. */
1233
1234 /* First see if this can be done with a "simple" relocation. Simple
1235 relocations have a symbol number < 0x100 and have simple encodings
1236 of argument relocations. */
1237
1238 if (sym_num < 0x100)
1239 {
1240 switch (arg_bits)
1241 {
1242 case 0:
1243 case 1:
1244 type = 0;
1245 break;
1246 case 1 << 8:
1247 case 1 << 8 | 1:
1248 type = 1;
1249 break;
1250 case 1 << 8 | 1 << 6:
1251 case 1 << 8 | 1 << 6 | 1:
1252 type = 2;
1253 break;
1254 case 1 << 8 | 1 << 6 | 1 << 4:
1255 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1256 type = 3;
1257 break;
1258 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1259 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1260 type = 4;
1261 break;
1262 default:
1263 /* Not one of the easy encodings. This will have to be
1264 handled by the more complex code below. */
1265 type = -1;
1266 break;
1267 }
1268 if (type != -1)
1269 {
1270 /* Account for the return value too. */
1271 if (rtn_bits)
1272 type += 5;
1273
1274 /* Emit a 2 byte relocation. Then see if it can be handled
1275 with a relocation which is already in the relocation queue. */
1276 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1277 bfd_put_8 (abfd, sym_num, p + 1);
1278 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1279 done = 1;
1280 }
1281 }
1282
1283 /* If this could not be handled with a simple relocation, then do a hard
1284 one. Hard relocations occur if the symbol number was too high or if
1285 the encoding of argument relocation bits is too complex. */
1286 if (! done)
1287 {
1288 /* Don't ask about these magic sequences. I took them straight
1289 from gas-1.36 which took them from the a.out man page. */
1290 type = rtn_bits;
1291 if ((arg_bits >> 6 & 0xf) == 0xe)
1292 type += 9 * 40;
1293 else
1294 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1295 if ((arg_bits >> 2 & 0xf) == 0xe)
1296 type += 9 * 4;
1297 else
1298 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1299
1300 /* Output the first two bytes of the relocation. These describe
1301 the length of the relocation and encoding style. */
1302 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1303 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1304 p);
1305 bfd_put_8 (abfd, type, p + 1);
1306
1307 /* Now output the symbol index and see if this bizarre relocation
1308 just happened to be in the relocation queue. */
1309 if (sym_num < 0x100)
1310 {
1311 bfd_put_8 (abfd, sym_num, p + 2);
1312 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1313 }
1314 else
1315 {
1316 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1317 bfd_put_16 (abfd, sym_num, p + 3);
1318 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1319 }
1320 }
1321 return p;
1322 }
1323
1324
1325 /* Return the logarithm of X, base 2, considering X unsigned.
1326 Abort if X is not a power of two -- this should never happen (FIXME:
1327 It will happen on corrupt executables. GDB should give an error, not
1328 a coredump, in that case). */
1329
1330 static int
1331 log2 (x)
1332 unsigned int x;
1333 {
1334 int log = 0;
1335
1336 /* Test for 0 or a power of 2. */
1337 if (x == 0 || x != (x & -x))
1338 abort();
1339
1340 while ((x >>= 1) != 0)
1341 log++;
1342 return log;
1343 }
1344
1345 static bfd_reloc_status_type
1346 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1347 input_section, output_bfd, error_message)
1348 bfd *abfd;
1349 arelent *reloc_entry;
1350 asymbol *symbol_in;
1351 PTR data;
1352 asection *input_section;
1353 bfd *output_bfd;
1354 char **error_message;
1355 {
1356 if (output_bfd)
1357 {
1358 reloc_entry->address += input_section->output_offset;
1359 return bfd_reloc_ok;
1360 }
1361 return bfd_reloc_ok;
1362 }
1363
1364 /* Given a generic HPPA relocation type, the instruction format,
1365 and a field selector, return one or more appropriate SOM relocations. */
1366
1367 int **
1368 hppa_som_gen_reloc_type (abfd, base_type, format, field)
1369 bfd *abfd;
1370 int base_type;
1371 int format;
1372 enum hppa_reloc_field_selector_type field;
1373 {
1374 int *final_type, **final_types;
1375
1376 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 3);
1377 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1378 if (!final_types || !final_type)
1379 {
1380 bfd_set_error (bfd_error_no_memory);
1381 return NULL;
1382 }
1383
1384 /* The field selector may require additional relocations to be
1385 generated. It's impossible to know at this moment if additional
1386 relocations will be needed, so we make them. The code to actually
1387 write the relocation/fixup stream is responsible for removing
1388 any redundant relocations. */
1389 switch (field)
1390 {
1391 case e_fsel:
1392 case e_psel:
1393 case e_lpsel:
1394 case e_rpsel:
1395 final_types[0] = final_type;
1396 final_types[1] = NULL;
1397 final_types[2] = NULL;
1398 *final_type = base_type;
1399 break;
1400
1401 case e_tsel:
1402 case e_ltsel:
1403 case e_rtsel:
1404 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1405 if (!final_types[0])
1406 {
1407 bfd_set_error (bfd_error_no_memory);
1408 return NULL;
1409 }
1410 if (field == e_tsel)
1411 *final_types[0] = R_FSEL;
1412 else if (field == e_ltsel)
1413 *final_types[0] = R_LSEL;
1414 else
1415 *final_types[0] = R_RSEL;
1416 final_types[1] = final_type;
1417 final_types[2] = NULL;
1418 *final_type = base_type;
1419 break;
1420
1421 case e_lssel:
1422 case e_rssel:
1423 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1424 if (!final_types[0])
1425 {
1426 bfd_set_error (bfd_error_no_memory);
1427 return NULL;
1428 }
1429 *final_types[0] = R_S_MODE;
1430 final_types[1] = final_type;
1431 final_types[2] = NULL;
1432 *final_type = base_type;
1433 break;
1434
1435 case e_lsel:
1436 case e_rsel:
1437 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1438 if (!final_types[0])
1439 {
1440 bfd_set_error (bfd_error_no_memory);
1441 return NULL;
1442 }
1443 *final_types[0] = R_N_MODE;
1444 final_types[1] = final_type;
1445 final_types[2] = NULL;
1446 *final_type = base_type;
1447 break;
1448
1449 case e_ldsel:
1450 case e_rdsel:
1451 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1452 if (!final_types[0])
1453 {
1454 bfd_set_error (bfd_error_no_memory);
1455 return NULL;
1456 }
1457 *final_types[0] = R_D_MODE;
1458 final_types[1] = final_type;
1459 final_types[2] = NULL;
1460 *final_type = base_type;
1461 break;
1462
1463 case e_lrsel:
1464 case e_rrsel:
1465 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1466 if (!final_types[0])
1467 {
1468 bfd_set_error (bfd_error_no_memory);
1469 return NULL;
1470 }
1471 *final_types[0] = R_R_MODE;
1472 final_types[1] = final_type;
1473 final_types[2] = NULL;
1474 *final_type = base_type;
1475 break;
1476 }
1477
1478 switch (base_type)
1479 {
1480 case R_HPPA:
1481 /* PLABELs get their own relocation type. */
1482 if (field == e_psel
1483 || field == e_lpsel
1484 || field == e_rpsel)
1485 {
1486 /* A PLABEL relocation that has a size of 32 bits must
1487 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1488 if (format == 32)
1489 *final_type = R_DATA_PLABEL;
1490 else
1491 *final_type = R_CODE_PLABEL;
1492 }
1493 /* PIC stuff. */
1494 else if (field == e_tsel
1495 || field == e_ltsel
1496 || field == e_rtsel)
1497 *final_type = R_DLT_REL;
1498 /* A relocation in the data space is always a full 32bits. */
1499 else if (format == 32)
1500 *final_type = R_DATA_ONE_SYMBOL;
1501
1502 break;
1503
1504 case R_HPPA_GOTOFF:
1505 /* More PLABEL special cases. */
1506 if (field == e_psel
1507 || field == e_lpsel
1508 || field == e_rpsel)
1509 *final_type = R_DATA_PLABEL;
1510 break;
1511
1512 case R_HPPA_NONE:
1513 case R_HPPA_ABS_CALL:
1514 case R_HPPA_PCREL_CALL:
1515 case R_HPPA_COMPLEX:
1516 case R_HPPA_COMPLEX_PCREL_CALL:
1517 case R_HPPA_COMPLEX_ABS_CALL:
1518 /* Right now we can default all these. */
1519 break;
1520 }
1521 return final_types;
1522 }
1523
1524 /* Return the address of the correct entry in the PA SOM relocation
1525 howto table. */
1526
1527 static const reloc_howto_type *
1528 som_bfd_reloc_type_lookup (arch, code)
1529 bfd_arch_info_type *arch;
1530 bfd_reloc_code_real_type code;
1531 {
1532 if ((int) code < (int) R_NO_RELOCATION + 255)
1533 {
1534 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1535 return &som_hppa_howto_table[(int) code];
1536 }
1537
1538 return (reloc_howto_type *) 0;
1539 }
1540
1541 /* Perform some initialization for an object. Save results of this
1542 initialization in the BFD. */
1543
1544 static bfd_target *
1545 som_object_setup (abfd, file_hdrp, aux_hdrp)
1546 bfd *abfd;
1547 struct header *file_hdrp;
1548 struct som_exec_auxhdr *aux_hdrp;
1549 {
1550 /* som_mkobject will set bfd_error if som_mkobject fails. */
1551 if (som_mkobject (abfd) != true)
1552 return 0;
1553
1554 /* Set BFD flags based on what information is available in the SOM. */
1555 abfd->flags = NO_FLAGS;
1556 if (! file_hdrp->entry_offset)
1557 abfd->flags |= HAS_RELOC;
1558 else
1559 abfd->flags |= EXEC_P;
1560 if (file_hdrp->symbol_total)
1561 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1562
1563 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1564 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 0);
1565 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1566
1567 /* Initialize the saved symbol table and string table to NULL.
1568 Save important offsets and sizes from the SOM header into
1569 the BFD. */
1570 obj_som_stringtab (abfd) = (char *) NULL;
1571 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1572 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1573 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1574 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1575 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
1576
1577 return abfd->xvec;
1578 }
1579
1580 /* Create a new BFD section for NAME. If NAME already exists, then create a
1581 new unique name, with NAME as the prefix. This exists because SOM .o files
1582 may have more than one $CODE$ subspace. */
1583
1584 static asection *
1585 make_unique_section (abfd, name, num)
1586 bfd *abfd;
1587 CONST char *name;
1588 int num;
1589 {
1590 asection *sect;
1591 char *newname;
1592 char altname[100];
1593
1594 sect = bfd_make_section (abfd, name);
1595 while (!sect)
1596 {
1597 sprintf (altname, "%s-%d", name, num++);
1598 sect = bfd_make_section (abfd, altname);
1599 }
1600
1601 newname = bfd_alloc (abfd, strlen (sect->name) + 1);
1602 if (!newname)
1603 {
1604 bfd_set_error (bfd_error_no_memory);
1605 return NULL;
1606 }
1607 strcpy (newname, sect->name);
1608
1609 sect->name = newname;
1610 return sect;
1611 }
1612
1613 /* Convert all of the space and subspace info into BFD sections. Each space
1614 contains a number of subspaces, which in turn describe the mapping between
1615 regions of the exec file, and the address space that the program runs in.
1616 BFD sections which correspond to spaces will overlap the sections for the
1617 associated subspaces. */
1618
1619 static boolean
1620 setup_sections (abfd, file_hdr)
1621 bfd *abfd;
1622 struct header *file_hdr;
1623 {
1624 char *space_strings;
1625 int space_index;
1626 unsigned int total_subspaces = 0;
1627
1628 /* First, read in space names */
1629
1630 space_strings = alloca (file_hdr->space_strings_size);
1631 if (!space_strings)
1632 return false;
1633
1634 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
1635 return false;
1636 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1637 != file_hdr->space_strings_size)
1638 return false;
1639
1640 /* Loop over all of the space dictionaries, building up sections */
1641 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1642 {
1643 struct space_dictionary_record space;
1644 struct subspace_dictionary_record subspace, save_subspace;
1645 int subspace_index;
1646 asection *space_asect;
1647
1648 /* Read the space dictionary element */
1649 if (bfd_seek (abfd, file_hdr->space_location
1650 + space_index * sizeof space, SEEK_SET) < 0)
1651 return false;
1652 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1653 return false;
1654
1655 /* Setup the space name string */
1656 space.name.n_name = space.name.n_strx + space_strings;
1657
1658 /* Make a section out of it */
1659 space_asect = make_unique_section (abfd, space.name.n_name, space_index);
1660 if (!space_asect)
1661 return false;
1662
1663 /* Now, read in the first subspace for this space */
1664 if (bfd_seek (abfd, file_hdr->subspace_location
1665 + space.subspace_index * sizeof subspace,
1666 SEEK_SET) < 0)
1667 return false;
1668 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1669 return false;
1670 /* Seek back to the start of the subspaces for loop below */
1671 if (bfd_seek (abfd, file_hdr->subspace_location
1672 + space.subspace_index * sizeof subspace,
1673 SEEK_SET) < 0)
1674 return false;
1675
1676 /* Setup the start address and file loc from the first subspace record */
1677 space_asect->vma = subspace.subspace_start;
1678 space_asect->filepos = subspace.file_loc_init_value;
1679 space_asect->alignment_power = log2 (subspace.alignment);
1680
1681 /* Initialize save_subspace so we can reliably determine if this
1682 loop placed any useful values into it. */
1683 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1684
1685 /* Loop over the rest of the subspaces, building up more sections */
1686 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1687 subspace_index++)
1688 {
1689 asection *subspace_asect;
1690
1691 /* Read in the next subspace */
1692 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1693 != sizeof subspace)
1694 return false;
1695
1696 /* Setup the subspace name string */
1697 subspace.name.n_name = subspace.name.n_strx + space_strings;
1698
1699 /* Make a section out of this subspace */
1700 subspace_asect = make_unique_section (abfd, subspace.name.n_name,
1701 space.subspace_index + subspace_index);
1702
1703 if (!subspace_asect)
1704 return false;
1705
1706 /* Keep an easy mapping between subspaces and sections. */
1707 som_section_data (subspace_asect)->subspace_index
1708 = total_subspaces++;
1709
1710 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1711 by the access_control_bits in the subspace header. */
1712 switch (subspace.access_control_bits >> 4)
1713 {
1714 /* Readonly data. */
1715 case 0x0:
1716 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1717 break;
1718
1719 /* Normal data. */
1720 case 0x1:
1721 subspace_asect->flags |= SEC_DATA;
1722 break;
1723
1724 /* Readonly code and the gateways.
1725 Gateways have other attributes which do not map
1726 into anything BFD knows about. */
1727 case 0x2:
1728 case 0x4:
1729 case 0x5:
1730 case 0x6:
1731 case 0x7:
1732 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1733 break;
1734
1735 /* dynamic (writable) code. */
1736 case 0x3:
1737 subspace_asect->flags |= SEC_CODE;
1738 break;
1739 }
1740
1741 if (subspace.dup_common || subspace.is_common)
1742 subspace_asect->flags |= SEC_IS_COMMON;
1743 else if (subspace.subspace_length > 0)
1744 subspace_asect->flags |= SEC_HAS_CONTENTS;
1745 if (subspace.is_loadable)
1746 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1747 if (subspace.code_only)
1748 subspace_asect->flags |= SEC_CODE;
1749
1750 /* Both file_loc_init_value and initialization_length will
1751 be zero for a BSS like subspace. */
1752 if (subspace.file_loc_init_value == 0
1753 && subspace.initialization_length == 0)
1754 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD);
1755
1756 /* This subspace has relocations.
1757 The fixup_request_quantity is a byte count for the number of
1758 entries in the relocation stream; it is not the actual number
1759 of relocations in the subspace. */
1760 if (subspace.fixup_request_quantity != 0)
1761 {
1762 subspace_asect->flags |= SEC_RELOC;
1763 subspace_asect->rel_filepos = subspace.fixup_request_index;
1764 som_section_data (subspace_asect)->reloc_size
1765 = subspace.fixup_request_quantity;
1766 /* We can not determine this yet. When we read in the
1767 relocation table the correct value will be filled in. */
1768 subspace_asect->reloc_count = -1;
1769 }
1770
1771 /* Update save_subspace if appropriate. */
1772 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1773 save_subspace = subspace;
1774
1775 subspace_asect->vma = subspace.subspace_start;
1776 subspace_asect->_cooked_size = subspace.subspace_length;
1777 subspace_asect->_raw_size = subspace.subspace_length;
1778 subspace_asect->alignment_power = log2 (subspace.alignment);
1779 subspace_asect->filepos = subspace.file_loc_init_value;
1780 }
1781
1782 /* Yow! there is no subspace within the space which actually
1783 has initialized information in it; this should never happen
1784 as far as I know. */
1785 if (!save_subspace.file_loc_init_value)
1786 abort ();
1787
1788 /* Setup the sizes for the space section based upon the info in the
1789 last subspace of the space. */
1790 space_asect->_cooked_size = save_subspace.subspace_start
1791 - space_asect->vma + save_subspace.subspace_length;
1792 space_asect->_raw_size = save_subspace.file_loc_init_value
1793 - space_asect->filepos + save_subspace.initialization_length;
1794 }
1795 return true;
1796 }
1797
1798 /* Read in a SOM object and make it into a BFD. */
1799
1800 static bfd_target *
1801 som_object_p (abfd)
1802 bfd *abfd;
1803 {
1804 struct header file_hdr;
1805 struct som_exec_auxhdr aux_hdr;
1806
1807 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
1808 {
1809 bfd_set_error (bfd_error_system_call);
1810 return 0;
1811 }
1812
1813 if (!_PA_RISC_ID (file_hdr.system_id))
1814 {
1815 bfd_set_error (bfd_error_wrong_format);
1816 return 0;
1817 }
1818
1819 switch (file_hdr.a_magic)
1820 {
1821 case RELOC_MAGIC:
1822 case EXEC_MAGIC:
1823 case SHARE_MAGIC:
1824 case DEMAND_MAGIC:
1825 #ifdef DL_MAGIC
1826 case DL_MAGIC:
1827 #endif
1828 #ifdef SHL_MAGIC
1829 case SHL_MAGIC:
1830 #endif
1831 #ifdef EXECLIBMAGIC
1832 case EXECLIBMAGIC:
1833 #endif
1834 #ifdef SHARED_MAGIC_CNX
1835 case SHARED_MAGIC_CNX:
1836 #endif
1837 break;
1838 default:
1839 bfd_set_error (bfd_error_wrong_format);
1840 return 0;
1841 }
1842
1843 if (file_hdr.version_id != VERSION_ID
1844 && file_hdr.version_id != NEW_VERSION_ID)
1845 {
1846 bfd_set_error (bfd_error_wrong_format);
1847 return 0;
1848 }
1849
1850 /* If the aux_header_size field in the file header is zero, then this
1851 object is an incomplete executable (a .o file). Do not try to read
1852 a non-existant auxiliary header. */
1853 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
1854 if (file_hdr.aux_header_size != 0)
1855 {
1856 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
1857 {
1858 bfd_set_error (bfd_error_wrong_format);
1859 return 0;
1860 }
1861 }
1862
1863 if (!setup_sections (abfd, &file_hdr))
1864 {
1865 /* setup_sections does not bubble up a bfd error code. */
1866 bfd_set_error (bfd_error_bad_value);
1867 return 0;
1868 }
1869
1870 /* This appears to be a valid SOM object. Do some initialization. */
1871 return som_object_setup (abfd, &file_hdr, &aux_hdr);
1872 }
1873
1874 /* Create a SOM object. */
1875
1876 static boolean
1877 som_mkobject (abfd)
1878 bfd *abfd;
1879 {
1880 /* Allocate memory to hold backend information. */
1881 abfd->tdata.som_data = (struct som_data_struct *)
1882 bfd_zalloc (abfd, sizeof (struct som_data_struct));
1883 if (abfd->tdata.som_data == NULL)
1884 {
1885 bfd_set_error (bfd_error_no_memory);
1886 return false;
1887 }
1888 obj_som_file_hdr (abfd)
1889 = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
1890 if (obj_som_file_hdr (abfd) == NULL)
1891
1892 {
1893 bfd_set_error (bfd_error_no_memory);
1894 return false;
1895 }
1896 return true;
1897 }
1898
1899 /* Initialize some information in the file header. This routine makes
1900 not attempt at doing the right thing for a full executable; it
1901 is only meant to handle relocatable objects. */
1902
1903 static boolean
1904 som_prep_headers (abfd)
1905 bfd *abfd;
1906 {
1907 struct header *file_hdr = obj_som_file_hdr (abfd);
1908 asection *section;
1909
1910 /* FIXME. This should really be conditional based on whether or not
1911 PA1.1 instructions/registers have been used. */
1912 file_hdr->system_id = CPU_PA_RISC1_0;
1913
1914 /* FIXME. Only correct for building relocatable objects. */
1915 if (abfd->flags & EXEC_P)
1916 abort ();
1917 else
1918 file_hdr->a_magic = RELOC_MAGIC;
1919
1920 /* Only new format SOM is supported. */
1921 file_hdr->version_id = NEW_VERSION_ID;
1922
1923 /* These fields are optional, and embedding timestamps is not always
1924 a wise thing to do, it makes comparing objects during a multi-stage
1925 bootstrap difficult. */
1926 file_hdr->file_time.secs = 0;
1927 file_hdr->file_time.nanosecs = 0;
1928
1929 if (abfd->flags & EXEC_P)
1930 abort ();
1931 else
1932 {
1933 file_hdr->entry_space = 0;
1934 file_hdr->entry_subspace = 0;
1935 file_hdr->entry_offset = 0;
1936 }
1937
1938 file_hdr->presumed_dp = 0;
1939
1940 /* Now iterate over the sections translating information from
1941 BFD sections to SOM spaces/subspaces. */
1942
1943 for (section = abfd->sections; section != NULL; section = section->next)
1944 {
1945 /* Ignore anything which has not been marked as a space or
1946 subspace. */
1947 if (som_section_data (section)->is_space == 0
1948
1949 && som_section_data (section)->is_subspace == 0)
1950 continue;
1951
1952 if (som_section_data (section)->is_space)
1953 {
1954 /* Set space attributes. Note most attributes of SOM spaces
1955 are set based on the subspaces it contains. */
1956 som_section_data (section)->space_dict.loader_fix_index = -1;
1957 som_section_data (section)->space_dict.init_pointer_index = -1;
1958 }
1959 else
1960 {
1961 /* Set subspace attributes. Basic stuff is done here, additional
1962 attributes are filled in later as more information becomes
1963 available. */
1964 if (section->flags & SEC_IS_COMMON)
1965 {
1966 som_section_data (section)->subspace_dict.dup_common = 1;
1967 som_section_data (section)->subspace_dict.is_common = 1;
1968 }
1969
1970 if (section->flags & SEC_ALLOC)
1971 som_section_data (section)->subspace_dict.is_loadable = 1;
1972
1973 if (section->flags & SEC_CODE)
1974 som_section_data (section)->subspace_dict.code_only = 1;
1975
1976 som_section_data (section)->subspace_dict.subspace_start =
1977 section->vma;
1978 som_section_data (section)->subspace_dict.subspace_length =
1979 bfd_section_size (abfd, section);
1980 som_section_data (section)->subspace_dict.initialization_length =
1981 bfd_section_size (abfd, section);
1982 som_section_data (section)->subspace_dict.alignment =
1983 1 << section->alignment_power;
1984 }
1985 }
1986 return true;
1987 }
1988
1989 /* Count and return the number of spaces attached to the given BFD. */
1990
1991 static unsigned long
1992 som_count_spaces (abfd)
1993 bfd *abfd;
1994 {
1995 int count = 0;
1996 asection *section;
1997
1998 for (section = abfd->sections; section != NULL; section = section->next)
1999 count += som_section_data (section)->is_space;
2000
2001 return count;
2002 }
2003
2004 /* Count the number of subspaces attached to the given BFD. */
2005
2006 static unsigned long
2007 som_count_subspaces (abfd)
2008 bfd *abfd;
2009 {
2010 int count = 0;
2011 asection *section;
2012
2013 for (section = abfd->sections; section != NULL; section = section->next)
2014 count += som_section_data (section)->is_subspace;
2015
2016 return count;
2017 }
2018
2019 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2020
2021 We desire symbols to be ordered starting with the symbol with the
2022 highest relocation count down to the symbol with the lowest relocation
2023 count. Doing so compacts the relocation stream. */
2024
2025 static int
2026 compare_syms (sym1, sym2)
2027 asymbol **sym1;
2028 asymbol **sym2;
2029
2030 {
2031 unsigned int count1, count2;
2032
2033 /* Get relocation count for each symbol. Note that the count
2034 is stored in the udata pointer for section symbols! */
2035 if ((*sym1)->flags & BSF_SECTION_SYM)
2036 count1 = (int)(*sym1)->udata;
2037 else
2038 count1 = som_symbol_data (*sym1)->reloc_count;
2039
2040 if ((*sym2)->flags & BSF_SECTION_SYM)
2041 count2 = (int)(*sym2)->udata;
2042 else
2043 count2 = som_symbol_data (*sym2)->reloc_count;
2044
2045 /* Return the appropriate value. */
2046 if (count1 < count2)
2047 return 1;
2048 else if (count1 > count2)
2049 return -1;
2050 return 0;
2051 }
2052
2053 /* Perform various work in preparation for emitting the fixup stream. */
2054
2055 static void
2056 som_prep_for_fixups (abfd, syms, num_syms)
2057 bfd *abfd;
2058 asymbol **syms;
2059 unsigned long num_syms;
2060 {
2061 int i;
2062 asection *section;
2063
2064 /* Most SOM relocations involving a symbol have a length which is
2065 dependent on the index of the symbol. So symbols which are
2066 used often in relocations should have a small index. */
2067
2068 /* First initialize the counters for each symbol. */
2069 for (i = 0; i < num_syms; i++)
2070 {
2071 /* Handle a section symbol; these have no pointers back to the
2072 SOM symbol info. So we just use the pointer field (udata)
2073 to hold the relocation count.
2074
2075 FIXME. While we're here set the name of any section symbol
2076 to something which will not screw GDB. How do other formats
2077 deal with this?!? */
2078 if (som_symbol_data (syms[i]) == NULL)
2079 {
2080 syms[i]->flags |= BSF_SECTION_SYM;
2081 syms[i]->name = "L$0\002";
2082 syms[i]->udata = (PTR) 0;
2083 }
2084 else
2085 som_symbol_data (syms[i])->reloc_count = 0;
2086 }
2087
2088 /* Now that the counters are initialized, make a weighted count
2089 of how often a given symbol is used in a relocation. */
2090 for (section = abfd->sections; section != NULL; section = section->next)
2091 {
2092 int i;
2093
2094 /* Does this section have any relocations? */
2095 if (section->reloc_count <= 0)
2096 continue;
2097
2098 /* Walk through each relocation for this section. */
2099 for (i = 1; i < section->reloc_count; i++)
2100 {
2101 arelent *reloc = section->orelocation[i];
2102 int scale;
2103
2104 /* If no symbol, then there is no counter to increase. */
2105 if (reloc->sym_ptr_ptr == NULL)
2106 continue;
2107
2108 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2109 and R_CODE_ONE_SYMBOL relocations to come first. These
2110 two relocations have single byte versions if the symbol
2111 index is very small. */
2112 if (reloc->howto->type == R_DP_RELATIVE
2113 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2114 scale = 2;
2115 else
2116 scale = 1;
2117
2118 /* Handle section symbols by ramming the count in the udata
2119 field. It will not be used and the count is very important
2120 for these symbols. */
2121 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2122 {
2123 (*reloc->sym_ptr_ptr)->udata =
2124 (PTR) ((int) (*reloc->sym_ptr_ptr)->udata + scale);
2125 continue;
2126 }
2127
2128 /* A normal symbol. Increment the count. */
2129 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2130 }
2131 }
2132
2133 /* Now sort the symbols. */
2134 qsort (syms, num_syms, sizeof (asymbol *), compare_syms);
2135
2136 /* Compute the symbol indexes, they will be needed by the relocation
2137 code. */
2138 for (i = 0; i < num_syms; i++)
2139 {
2140 /* A section symbol. Again, there is no pointer to backend symbol
2141 information, so we reuse (abuse) the udata field again. */
2142 if (syms[i]->flags & BSF_SECTION_SYM)
2143 syms[i]->udata = (PTR) i;
2144 else
2145 som_symbol_data (syms[i])->index = i;
2146 }
2147 }
2148
2149 static boolean
2150 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2151 bfd *abfd;
2152 unsigned long current_offset;
2153 unsigned int *total_reloc_sizep;
2154 {
2155 unsigned int i, j;
2156 unsigned char *tmp_space, *p;
2157 unsigned int total_reloc_size = 0;
2158 unsigned int subspace_reloc_size = 0;
2159 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2160 asection *section = abfd->sections;
2161
2162 /* Get a chunk of memory that we can use as buffer space, then throw
2163 away. */
2164 tmp_space = alloca (SOM_TMP_BUFSIZE);
2165 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2166 p = tmp_space;
2167
2168 /* All the fixups for a particular subspace are emitted in a single
2169 stream. All the subspaces for a particular space are emitted
2170 as a single stream.
2171
2172 So, to get all the locations correct one must iterate through all the
2173 spaces, for each space iterate through its subspaces and output a
2174 fixups stream. */
2175 for (i = 0; i < num_spaces; i++)
2176 {
2177 asection *subsection;
2178
2179 /* Find a space. */
2180 while (som_section_data (section)->is_space == 0)
2181 section = section->next;
2182
2183 /* Now iterate through each of its subspaces. */
2184 for (subsection = abfd->sections;
2185 subsection != NULL;
2186 subsection = subsection->next)
2187 {
2188 int reloc_offset, current_rounding_mode;
2189
2190 /* Find a subspace of this space. */
2191 if (som_section_data (subsection)->is_subspace == 0
2192 || som_section_data (subsection)->containing_space != section)
2193 continue;
2194
2195 /* If this subspace had no relocations, then we're finished
2196 with it. */
2197 if (subsection->reloc_count <= 0)
2198 {
2199 som_section_data (subsection)->subspace_dict.fixup_request_index
2200 = -1;
2201 continue;
2202 }
2203
2204 /* This subspace has some relocations. Put the relocation stream
2205 index into the subspace record. */
2206 som_section_data (subsection)->subspace_dict.fixup_request_index
2207 = total_reloc_size;
2208
2209 /* To make life easier start over with a clean slate for
2210 each subspace. Seek to the start of the relocation stream
2211 for this subspace in preparation for writing out its fixup
2212 stream. */
2213 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) != 0)
2214 {
2215 bfd_set_error (bfd_error_system_call);
2216 return false;
2217 }
2218
2219 /* Buffer space has already been allocated. Just perform some
2220 initialization here. */
2221 p = tmp_space;
2222 subspace_reloc_size = 0;
2223 reloc_offset = 0;
2224 som_initialize_reloc_queue (reloc_queue);
2225 current_rounding_mode = R_N_MODE;
2226
2227 /* Translate each BFD relocation into one or more SOM
2228 relocations. */
2229 for (j = 0; j < subsection->reloc_count; j++)
2230 {
2231 arelent *bfd_reloc = subsection->orelocation[j];
2232 unsigned int skip;
2233 int sym_num;
2234
2235 /* Get the symbol number. Remember it's stored in a
2236 special place for section symbols. */
2237 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2238 sym_num = (int) (*bfd_reloc->sym_ptr_ptr)->udata;
2239 else
2240 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2241
2242 /* If there is not enough room for the next couple relocations,
2243 then dump the current buffer contents now. Also reinitialize
2244 the relocation queue.
2245
2246 No single BFD relocation could ever translate into more
2247 than 100 bytes of SOM relocations (20bytes is probably the
2248 upper limit, but leave lots of space for growth). */
2249 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2250 {
2251 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2252 != p - tmp_space)
2253 {
2254 bfd_set_error (bfd_error_system_call);
2255 return false;
2256 }
2257 p = tmp_space;
2258 som_initialize_reloc_queue (reloc_queue);
2259 }
2260
2261 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2262 skipped. */
2263 skip = bfd_reloc->address - reloc_offset;
2264 p = som_reloc_skip (abfd, skip, p,
2265 &subspace_reloc_size, reloc_queue);
2266
2267 /* Update reloc_offset for the next iteration.
2268
2269 Many relocations do not consume input bytes. They
2270 are markers, or set state necessary to perform some
2271 later relocation. */
2272 switch (bfd_reloc->howto->type)
2273 {
2274 /* This only needs to handle relocations that may be
2275 made by hppa_som_gen_reloc. */
2276 case R_ENTRY:
2277 case R_EXIT:
2278 case R_N_MODE:
2279 case R_S_MODE:
2280 case R_D_MODE:
2281 case R_R_MODE:
2282 case R_FSEL:
2283 case R_LSEL:
2284 case R_RSEL:
2285 reloc_offset = bfd_reloc->address;
2286 break;
2287
2288 default:
2289 reloc_offset = bfd_reloc->address + 4;
2290 break;
2291 }
2292
2293 /* Now the actual relocation we care about. */
2294 switch (bfd_reloc->howto->type)
2295 {
2296 case R_PCREL_CALL:
2297 case R_ABS_CALL:
2298 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2299 bfd_reloc, sym_num, reloc_queue);
2300 break;
2301
2302 case R_CODE_ONE_SYMBOL:
2303 case R_DP_RELATIVE:
2304 /* Account for any addend. */
2305 if (bfd_reloc->addend)
2306 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2307 &subspace_reloc_size, reloc_queue);
2308
2309 if (sym_num < 0x20)
2310 {
2311 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2312 subspace_reloc_size += 1;
2313 p += 1;
2314 }
2315 else if (sym_num < 0x100)
2316 {
2317 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2318 bfd_put_8 (abfd, sym_num, p + 1);
2319 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2320 2, reloc_queue);
2321 }
2322 else if (sym_num < 0x10000000)
2323 {
2324 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2325 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2326 bfd_put_16 (abfd, sym_num, p + 2);
2327 p = try_prev_fixup (abfd, &subspace_reloc_size,
2328 p, 4, reloc_queue);
2329 }
2330 else
2331 abort ();
2332 break;
2333
2334 case R_DATA_ONE_SYMBOL:
2335 case R_DATA_PLABEL:
2336 case R_CODE_PLABEL:
2337 case R_DLT_REL:
2338 /* Account for any addend. */
2339 if (bfd_reloc->addend)
2340 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2341 &subspace_reloc_size, reloc_queue);
2342
2343 if (sym_num < 0x100)
2344 {
2345 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2346 bfd_put_8 (abfd, sym_num, p + 1);
2347 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2348 2, reloc_queue);
2349 }
2350 else if (sym_num < 0x10000000)
2351 {
2352 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2353 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2354 bfd_put_16 (abfd, sym_num, p + 2);
2355 p = try_prev_fixup (abfd, &subspace_reloc_size,
2356 p, 4, reloc_queue);
2357 }
2358 else
2359 abort ();
2360 break;
2361
2362 case R_ENTRY:
2363 {
2364 int *descp
2365 = (int *) som_symbol_data (*bfd_reloc->sym_ptr_ptr)->unwind;
2366 bfd_put_8 (abfd, R_ENTRY, p);
2367 bfd_put_32 (abfd, descp[0], p + 1);
2368 bfd_put_32 (abfd, descp[1], p + 5);
2369 p = try_prev_fixup (abfd, &subspace_reloc_size,
2370 p, 9, reloc_queue);
2371 break;
2372 }
2373
2374 case R_EXIT:
2375 bfd_put_8 (abfd, R_EXIT, p);
2376 subspace_reloc_size += 1;
2377 p += 1;
2378 break;
2379
2380 case R_N_MODE:
2381 case R_S_MODE:
2382 case R_D_MODE:
2383 case R_R_MODE:
2384 /* If this relocation requests the current rounding
2385 mode, then it is redundant. */
2386 if (bfd_reloc->howto->type != current_rounding_mode)
2387 {
2388 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2389 subspace_reloc_size += 1;
2390 p += 1;
2391 current_rounding_mode = bfd_reloc->howto->type;
2392 }
2393 break;
2394
2395 case R_FSEL:
2396 case R_LSEL:
2397 case R_RSEL:
2398 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2399 subspace_reloc_size += 1;
2400 p += 1;
2401 break;
2402
2403 /* Put a "R_RESERVED" relocation in the stream if
2404 we hit something we do not understand. The linker
2405 will complain loudly if this ever happens. */
2406 default:
2407 bfd_put_8 (abfd, 0xff, p);
2408 subspace_reloc_size += 1;
2409 p += 1;
2410 break;
2411 }
2412 }
2413
2414 /* Last BFD relocation for a subspace has been processed.
2415 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2416 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2417 - reloc_offset,
2418 p, &subspace_reloc_size, reloc_queue);
2419
2420 /* Scribble out the relocations. */
2421 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2422 != p - tmp_space)
2423 {
2424 bfd_set_error (bfd_error_system_call);
2425 return false;
2426 }
2427 p = tmp_space;
2428
2429 total_reloc_size += subspace_reloc_size;
2430 som_section_data (subsection)->subspace_dict.fixup_request_quantity
2431 = subspace_reloc_size;
2432 }
2433 section = section->next;
2434 }
2435 *total_reloc_sizep = total_reloc_size;
2436 return true;
2437 }
2438
2439 /* Write out the space/subspace string table. */
2440
2441 static boolean
2442 som_write_space_strings (abfd, current_offset, string_sizep)
2443 bfd *abfd;
2444 unsigned long current_offset;
2445 unsigned int *string_sizep;
2446 {
2447 unsigned char *tmp_space, *p;
2448 unsigned int strings_size = 0;
2449 asection *section;
2450
2451 /* Get a chunk of memory that we can use as buffer space, then throw
2452 away. */
2453 tmp_space = alloca (SOM_TMP_BUFSIZE);
2454 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2455 p = tmp_space;
2456
2457 /* Seek to the start of the space strings in preparation for writing
2458 them out. */
2459 if (bfd_seek (abfd, current_offset, SEEK_SET) != 0)
2460 {
2461 bfd_set_error (bfd_error_system_call);
2462 return false;
2463 }
2464
2465 /* Walk through all the spaces and subspaces (order is not important)
2466 building up and writing string table entries for their names. */
2467 for (section = abfd->sections; section != NULL; section = section->next)
2468 {
2469 int length;
2470
2471 /* Only work with space/subspaces; avoid any other sections
2472 which might have been made (.text for example). */
2473 if (som_section_data (section)->is_space == 0
2474 && som_section_data (section)->is_subspace == 0)
2475 continue;
2476
2477 /* Get the length of the space/subspace name. */
2478 length = strlen (section->name);
2479
2480 /* If there is not enough room for the next entry, then dump the
2481 current buffer contents now. Each entry will take 4 bytes to
2482 hold the string length + the string itself + null terminator. */
2483 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2484 {
2485 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2486 != p - tmp_space)
2487 {
2488 bfd_set_error (bfd_error_system_call);
2489 return false;
2490 }
2491 /* Reset to beginning of the buffer space. */
2492 p = tmp_space;
2493 }
2494
2495 /* First element in a string table entry is the length of the
2496 string. Alignment issues are already handled. */
2497 bfd_put_32 (abfd, length, p);
2498 p += 4;
2499 strings_size += 4;
2500
2501 /* Record the index in the space/subspace records. */
2502 if (som_section_data (section)->is_space)
2503 som_section_data (section)->space_dict.name.n_strx = strings_size;
2504 else
2505 som_section_data (section)->subspace_dict.name.n_strx = strings_size;
2506
2507 /* Next comes the string itself + a null terminator. */
2508 strcpy (p, section->name);
2509 p += length + 1;
2510 strings_size += length + 1;
2511
2512 /* Always align up to the next word boundary. */
2513 while (strings_size % 4)
2514 {
2515 bfd_put_8 (abfd, 0, p);
2516 p++;
2517 strings_size++;
2518 }
2519 }
2520
2521 /* Done with the space/subspace strings. Write out any information
2522 contained in a partial block. */
2523 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd) != p - tmp_space)
2524 {
2525 bfd_set_error (bfd_error_system_call);
2526 return false;
2527 }
2528 *string_sizep = strings_size;
2529 return true;
2530 }
2531
2532 /* Write out the symbol string table. */
2533
2534 static boolean
2535 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
2536 bfd *abfd;
2537 unsigned long current_offset;
2538 asymbol **syms;
2539 unsigned int num_syms;
2540 unsigned int *string_sizep;
2541 {
2542 unsigned int i;
2543 unsigned char *tmp_space, *p;
2544 unsigned int strings_size = 0;
2545
2546 /* Get a chunk of memory that we can use as buffer space, then throw
2547 away. */
2548 tmp_space = alloca (SOM_TMP_BUFSIZE);
2549 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2550 p = tmp_space;
2551
2552 /* Seek to the start of the space strings in preparation for writing
2553 them out. */
2554 if (bfd_seek (abfd, current_offset, SEEK_SET) != 0)
2555 {
2556 bfd_set_error (bfd_error_system_call);
2557 return false;
2558 }
2559
2560 for (i = 0; i < num_syms; i++)
2561 {
2562 int length = strlen (syms[i]->name);
2563
2564 /* If there is not enough room for the next entry, then dump the
2565 current buffer contents now. */
2566 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2567 {
2568 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2569 != p - tmp_space)
2570 {
2571 bfd_set_error (bfd_error_system_call);
2572 return false;
2573 }
2574 /* Reset to beginning of the buffer space. */
2575 p = tmp_space;
2576 }
2577
2578 /* First element in a string table entry is the length of the
2579 string. This must always be 4 byte aligned. This is also
2580 an appropriate time to fill in the string index field in the
2581 symbol table entry. */
2582 bfd_put_32 (abfd, length, p);
2583 strings_size += 4;
2584 p += 4;
2585
2586 /* Next comes the string itself + a null terminator. */
2587 strcpy (p, syms[i]->name);
2588
2589 /* ACK. FIXME. */
2590 syms[i]->name = (char *)strings_size;
2591 p += length + 1;
2592 strings_size += length + 1;
2593
2594 /* Always align up to the next word boundary. */
2595 while (strings_size % 4)
2596 {
2597 bfd_put_8 (abfd, 0, p);
2598 strings_size++;
2599 p++;
2600 }
2601 }
2602
2603 /* Scribble out any partial block. */
2604 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd) != p - tmp_space)
2605 {
2606 bfd_set_error (bfd_error_system_call);
2607 return false;
2608 }
2609
2610 *string_sizep = strings_size;
2611 return true;
2612 }
2613
2614 /* Compute variable information to be placed in the SOM headers,
2615 space/subspace dictionaries, relocation streams, etc. Begin
2616 writing parts of the object file. */
2617
2618 static boolean
2619 som_begin_writing (abfd)
2620 bfd *abfd;
2621 {
2622 unsigned long current_offset = 0;
2623 int strings_size = 0;
2624 unsigned int total_reloc_size = 0;
2625 unsigned long num_spaces, num_subspaces, num_syms, i;
2626 asection *section;
2627 asymbol **syms = bfd_get_outsymbols (abfd);
2628 unsigned int total_subspaces = 0;
2629
2630 /* The file header will always be first in an object file,
2631 everything else can be in random locations. To keep things
2632 "simple" BFD will lay out the object file in the manner suggested
2633 by the PRO ABI for PA-RISC Systems. */
2634
2635 /* Before any output can really begin offsets for all the major
2636 portions of the object file must be computed. So, starting
2637 with the initial file header compute (and sometimes write)
2638 each portion of the object file. */
2639
2640 /* Make room for the file header, it's contents are not complete
2641 yet, so it can not be written at this time. */
2642 current_offset += sizeof (struct header);
2643
2644 /* Any auxiliary headers will follow the file header. Right now
2645 we support only the copyright and version headers. */
2646 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
2647 obj_som_file_hdr (abfd)->aux_header_size = 0;
2648 if (obj_som_version_hdr (abfd) != NULL)
2649 {
2650 unsigned int len;
2651
2652 bfd_seek (abfd, current_offset, SEEK_SET);
2653
2654 /* Write the aux_id structure and the string length. */
2655 len = sizeof (struct aux_id) + sizeof (unsigned int);
2656 obj_som_file_hdr (abfd)->aux_header_size += len;
2657 current_offset += len;
2658 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
2659 {
2660 bfd_set_error (bfd_error_system_call);
2661 return false;
2662 }
2663
2664 /* Write the version string. */
2665 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
2666 obj_som_file_hdr (abfd)->aux_header_size += len;
2667 current_offset += len;
2668 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
2669 len, 1, abfd) != len)
2670 {
2671 bfd_set_error (bfd_error_system_call);
2672 return false;
2673 }
2674 }
2675
2676 if (obj_som_copyright_hdr (abfd) != NULL)
2677 {
2678 unsigned int len;
2679
2680 bfd_seek (abfd, current_offset, SEEK_SET);
2681
2682 /* Write the aux_id structure and the string length. */
2683 len = sizeof (struct aux_id) + sizeof (unsigned int);
2684 obj_som_file_hdr (abfd)->aux_header_size += len;
2685 current_offset += len;
2686 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
2687 {
2688 bfd_set_error (bfd_error_system_call);
2689 return false;
2690 }
2691
2692 /* Write the copyright string. */
2693 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
2694 obj_som_file_hdr (abfd)->aux_header_size += len;
2695 current_offset += len;
2696 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
2697 len, 1, abfd) != len)
2698 {
2699 bfd_set_error (bfd_error_system_call);
2700 return false;
2701 }
2702 }
2703
2704 /* Next comes the initialization pointers; we have no initialization
2705 pointers, so current offset does not change. */
2706 obj_som_file_hdr (abfd)->init_array_location = current_offset;
2707 obj_som_file_hdr (abfd)->init_array_total = 0;
2708
2709 /* Next are the space records. These are fixed length records.
2710
2711 Count the number of spaces to determine how much room is needed
2712 in the object file for the space records.
2713
2714 The names of the spaces are stored in a separate string table,
2715 and the index for each space into the string table is computed
2716 below. Therefore, it is not possible to write the space headers
2717 at this time. */
2718 num_spaces = som_count_spaces (abfd);
2719 obj_som_file_hdr (abfd)->space_location = current_offset;
2720 obj_som_file_hdr (abfd)->space_total = num_spaces;
2721 current_offset += num_spaces * sizeof (struct space_dictionary_record);
2722
2723 /* Next are the subspace records. These are fixed length records.
2724
2725 Count the number of subspaes to determine how much room is needed
2726 in the object file for the subspace records.
2727
2728 A variety if fields in the subspace record are still unknown at
2729 this time (index into string table, fixup stream location/size, etc). */
2730 num_subspaces = som_count_subspaces (abfd);
2731 obj_som_file_hdr (abfd)->subspace_location = current_offset;
2732 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
2733 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
2734
2735 /* Next is the string table for the space/subspace names. We will
2736 build and write the string table on the fly. At the same time
2737 we will fill in the space/subspace name index fields. */
2738
2739 /* The string table needs to be aligned on a word boundary. */
2740 if (current_offset % 4)
2741 current_offset += (4 - (current_offset % 4));
2742
2743 /* Mark the offset of the space/subspace string table in the
2744 file header. */
2745 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
2746
2747 /* Scribble out the space strings. */
2748 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
2749 return false;
2750
2751 /* Record total string table size in the header and update the
2752 current offset. */
2753 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
2754 current_offset += strings_size;
2755
2756 /* Next is the symbol table. These are fixed length records.
2757
2758 Count the number of symbols to determine how much room is needed
2759 in the object file for the symbol table.
2760
2761 The names of the symbols are stored in a separate string table,
2762 and the index for each symbol name into the string table is computed
2763 below. Therefore, it is not possible to write the symobl table
2764 at this time. */
2765 num_syms = bfd_get_symcount (abfd);
2766 obj_som_file_hdr (abfd)->symbol_location = current_offset;
2767 obj_som_file_hdr (abfd)->symbol_total = num_syms;
2768 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
2769
2770 /* Do prep work before handling fixups. */
2771 som_prep_for_fixups (abfd, syms, num_syms);
2772
2773 /* Next comes the fixup stream which starts on a word boundary. */
2774 if (current_offset % 4)
2775 current_offset += (4 - (current_offset % 4));
2776 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
2777
2778 /* Write the fixups and update fields in subspace headers which
2779 relate to the fixup stream. */
2780 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
2781 return false;
2782
2783 /* Record the total size of the fixup stream in the file header. */
2784 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
2785 current_offset += total_reloc_size;
2786
2787 /* Next are the symbol strings.
2788 Align them to a word boundary. */
2789 if (current_offset % 4)
2790 current_offset += (4 - (current_offset % 4));
2791 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
2792
2793 /* Scribble out the symbol strings. */
2794 if (som_write_symbol_strings (abfd, current_offset, syms,
2795 num_syms, &strings_size)
2796 == false)
2797 return false;
2798
2799 /* Record total string table size in header and update the
2800 current offset. */
2801 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
2802 current_offset += strings_size;
2803
2804 /* Next is the compiler records. We do not use these. */
2805 obj_som_file_hdr (abfd)->compiler_location = current_offset;
2806 obj_som_file_hdr (abfd)->compiler_total = 0;
2807
2808 /* Now compute the file positions for the loadable subspaces. */
2809
2810 section = abfd->sections;
2811 for (i = 0; i < num_spaces; i++)
2812 {
2813 asection *subsection;
2814
2815 /* Find a space. */
2816 while (som_section_data (section)->is_space == 0)
2817 section = section->next;
2818
2819 /* Now look for all its subspaces. */
2820 for (subsection = abfd->sections;
2821 subsection != NULL;
2822 subsection = subsection->next)
2823 {
2824
2825 if (som_section_data (subsection)->is_subspace == 0
2826 || som_section_data (subsection)->containing_space != section
2827 || (subsection->flags & SEC_ALLOC) == 0)
2828 continue;
2829
2830 som_section_data (subsection)->subspace_index = total_subspaces++;
2831 /* This is real data to be loaded from the file. */
2832 if (subsection->flags & SEC_LOAD)
2833 {
2834 som_section_data (subsection)->subspace_dict.file_loc_init_value
2835 = current_offset;
2836 section->filepos = current_offset;
2837 current_offset += bfd_section_size (abfd, subsection);
2838 }
2839 /* Looks like uninitialized data. */
2840 else
2841 {
2842 som_section_data (subsection)->subspace_dict.file_loc_init_value
2843 = 0;
2844 som_section_data (subsection)->subspace_dict.
2845 initialization_length = 0;
2846 }
2847 }
2848 /* Goto the next section. */
2849 section = section->next;
2850 }
2851
2852 /* Finally compute the file positions for unloadable subspaces. */
2853
2854 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
2855 section = abfd->sections;
2856 for (i = 0; i < num_spaces; i++)
2857 {
2858 asection *subsection;
2859
2860 /* Find a space. */
2861 while (som_section_data (section)->is_space == 0)
2862 section = section->next;
2863
2864 /* Now look for all its subspaces. */
2865 for (subsection = abfd->sections;
2866 subsection != NULL;
2867 subsection = subsection->next)
2868 {
2869
2870 if (som_section_data (subsection)->is_subspace == 0
2871 || som_section_data (subsection)->containing_space != section
2872 || (subsection->flags & SEC_ALLOC) != 0)
2873 continue;
2874
2875 som_section_data (subsection)->subspace_index = total_subspaces++;
2876 /* This is real data to be loaded from the file. */
2877 if ((subsection->flags & SEC_LOAD) == 0)
2878 {
2879 som_section_data (subsection)->subspace_dict.file_loc_init_value
2880 = current_offset;
2881 section->filepos = current_offset;
2882 current_offset += bfd_section_size (abfd, subsection);
2883 }
2884 /* Looks like uninitialized data. */
2885 else
2886 {
2887 som_section_data (subsection)->subspace_dict.file_loc_init_value
2888 = 0;
2889 som_section_data (subsection)->subspace_dict.
2890 initialization_length = bfd_section_size (abfd, subsection);
2891 }
2892 }
2893 /* Goto the next section. */
2894 section = section->next;
2895 }
2896
2897 obj_som_file_hdr (abfd)->unloadable_sp_size
2898 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
2899
2900 /* Loader fixups are not supported in any way shape or form. */
2901 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
2902 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
2903
2904 /* Done. Store the total size of the SOM. */
2905 obj_som_file_hdr (abfd)->som_length = current_offset;
2906 return true;
2907 }
2908
2909 /* Finally, scribble out the various headers to the disk. */
2910
2911 static boolean
2912 som_write_headers (abfd)
2913 bfd *abfd;
2914 {
2915 int num_spaces = som_count_spaces (abfd);
2916 int i;
2917 int subspace_index = 0;
2918 file_ptr location;
2919 asection *section;
2920
2921 /* Subspaces are written first so that we can set up information
2922 about them in their containing spaces as the subspace is written. */
2923
2924 /* Seek to the start of the subspace dictionary records. */
2925 location = obj_som_file_hdr (abfd)->subspace_location;
2926 bfd_seek (abfd, location, SEEK_SET);
2927 section = abfd->sections;
2928 /* Now for each loadable space write out records for its subspaces. */
2929 for (i = 0; i < num_spaces; i++)
2930 {
2931 asection *subsection;
2932
2933 /* Find a space. */
2934 while (som_section_data (section)->is_space == 0)
2935 section = section->next;
2936
2937 /* Now look for all its subspaces. */
2938 for (subsection = abfd->sections;
2939 subsection != NULL;
2940 subsection = subsection->next)
2941 {
2942
2943 /* Skip any section which does not correspond to a space
2944 or subspace. Or does not have SEC_ALLOC set (and therefore
2945 has no real bits on the disk). */
2946 if (som_section_data (subsection)->is_subspace == 0
2947 || som_section_data (subsection)->containing_space != section
2948 || (subsection->flags & SEC_ALLOC) == 0)
2949 continue;
2950
2951 /* If this is the first subspace for this space, then save
2952 the index of the subspace in its containing space. Also
2953 set "is_loadable" in the containing space. */
2954
2955 if (som_section_data (section)->space_dict.subspace_quantity == 0)
2956 {
2957 som_section_data (section)->space_dict.is_loadable = 1;
2958 som_section_data (section)->space_dict.subspace_index
2959 = subspace_index;
2960 }
2961
2962 /* Increment the number of subspaces seen and the number of
2963 subspaces contained within the current space. */
2964 subspace_index++;
2965 som_section_data (section)->space_dict.subspace_quantity++;
2966
2967 /* Mark the index of the current space within the subspace's
2968 dictionary record. */
2969 som_section_data (subsection)->subspace_dict.space_index = i;
2970
2971 /* Dump the current subspace header. */
2972 if (bfd_write ((PTR) &som_section_data (subsection)->subspace_dict,
2973 sizeof (struct subspace_dictionary_record), 1, abfd)
2974 != sizeof (struct subspace_dictionary_record))
2975 {
2976 bfd_set_error (bfd_error_system_call);
2977 return false;
2978 }
2979 }
2980 /* Goto the next section. */
2981 section = section->next;
2982 }
2983
2984 /* Now repeat the process for unloadable subspaces. */
2985 section = abfd->sections;
2986 /* Now for each space write out records for its subspaces. */
2987 for (i = 0; i < num_spaces; i++)
2988 {
2989 asection *subsection;
2990
2991 /* Find a space. */
2992 while (som_section_data (section)->is_space == 0)
2993 section = section->next;
2994
2995 /* Now look for all its subspaces. */
2996 for (subsection = abfd->sections;
2997 subsection != NULL;
2998 subsection = subsection->next)
2999 {
3000
3001 /* Skip any section which does not correspond to a space or
3002 subspace, or which SEC_ALLOC set (and therefore handled
3003 in the loadable spaces/subspaces code above. */
3004
3005 if (som_section_data (subsection)->is_subspace == 0
3006 || som_section_data (subsection)->containing_space != section
3007 || (subsection->flags & SEC_ALLOC) != 0)
3008 continue;
3009
3010 /* If this is the first subspace for this space, then save
3011 the index of the subspace in its containing space. Clear
3012 "is_loadable". */
3013
3014 if (som_section_data (section)->space_dict.subspace_quantity == 0)
3015 {
3016 som_section_data (section)->space_dict.is_loadable = 0;
3017 som_section_data (section)->space_dict.subspace_index
3018 = subspace_index;
3019 }
3020
3021 /* Increment the number of subspaces seen and the number of
3022 subspaces contained within the current space. */
3023 som_section_data (section)->space_dict.subspace_quantity++;
3024 subspace_index++;
3025
3026 /* Mark the index of the current space within the subspace's
3027 dictionary record. */
3028 som_section_data (subsection)->subspace_dict.space_index = i;
3029
3030 /* Dump this subspace header. */
3031 if (bfd_write ((PTR) &som_section_data (subsection)->subspace_dict,
3032 sizeof (struct subspace_dictionary_record), 1, abfd)
3033 != sizeof (struct subspace_dictionary_record))
3034 {
3035 bfd_set_error (bfd_error_system_call);
3036 return false;
3037 }
3038 }
3039 /* Goto the next section. */
3040 section = section->next;
3041 }
3042
3043 /* All the subspace dictiondary records are written, and all the
3044 fields are set up in the space dictionary records.
3045
3046 Seek to the right location and start writing the space
3047 dictionary records. */
3048 location = obj_som_file_hdr (abfd)->space_location;
3049 bfd_seek (abfd, location, SEEK_SET);
3050
3051 section = abfd->sections;
3052 for (i = 0; i < num_spaces; i++)
3053 {
3054
3055 /* Find a space. */
3056 while (som_section_data (section)->is_space == 0)
3057 section = section->next;
3058
3059 /* Dump its header */
3060 if (bfd_write ((PTR) &som_section_data (section)->space_dict,
3061 sizeof (struct space_dictionary_record), 1, abfd)
3062 != sizeof (struct space_dictionary_record))
3063 {
3064 bfd_set_error (bfd_error_system_call);
3065 return false;
3066 }
3067
3068 /* Goto the next section. */
3069 section = section->next;
3070 }
3071
3072 /* Only thing left to do is write out the file header. It is always
3073 at location zero. Seek there and write it. */
3074 bfd_seek (abfd, (file_ptr) 0, SEEK_SET);
3075 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3076 sizeof (struct header), 1, abfd)
3077 != sizeof (struct header))
3078 {
3079 bfd_set_error (bfd_error_system_call);
3080 return false;
3081 }
3082 return true;
3083 }
3084
3085 /* Compute and return the checksum for a SOM file header. */
3086
3087 static unsigned long
3088 som_compute_checksum (abfd)
3089 bfd *abfd;
3090 {
3091 unsigned long checksum, count, i;
3092 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3093
3094 checksum = 0;
3095 count = sizeof (struct header) / sizeof (unsigned long);
3096 for (i = 0; i < count; i++)
3097 checksum ^= *(buffer + i);
3098
3099 return checksum;
3100 }
3101
3102 static void
3103 som_bfd_derive_misc_symbol_info (abfd, sym, info)
3104 bfd *abfd;
3105 asymbol *sym;
3106 struct som_misc_symbol_info *info;
3107 {
3108 /* Initialize. */
3109 memset (info, 0, sizeof (struct som_misc_symbol_info));
3110
3111 /* The HP SOM linker requires detailed type information about
3112 all symbols (including undefined symbols!). Unfortunately,
3113 the type specified in an import/export statement does not
3114 always match what the linker wants. Severe braindamage. */
3115
3116 /* Section symbols will not have a SOM symbol type assigned to
3117 them yet. Assign all section symbols type ST_DATA. */
3118 if (sym->flags & BSF_SECTION_SYM)
3119 info->symbol_type = ST_DATA;
3120 else
3121 {
3122 /* Common symbols must have scope SS_UNSAT and type
3123 ST_STORAGE or the linker will choke. */
3124 if (sym->section == &bfd_com_section)
3125 {
3126 info->symbol_scope = SS_UNSAT;
3127 info->symbol_type = ST_STORAGE;
3128 }
3129
3130 /* It is possible to have a symbol without an associated
3131 type. This happens if the user imported the symbol
3132 without a type and the symbol was never defined
3133 locally. If BSF_FUNCTION is set for this symbol, then
3134 assign it type ST_CODE (the HP linker requires undefined
3135 external functions to have type ST_CODE rather than ST_ENTRY). */
3136 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3137 && sym->section == &bfd_und_section
3138 && sym->flags & BSF_FUNCTION)
3139 info->symbol_type = ST_CODE;
3140
3141 /* Handle function symbols which were defined in this file.
3142 They should have type ST_ENTRY. Also retrieve the argument
3143 relocation bits from the SOM backend information. */
3144 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3145 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3146 && (sym->flags & BSF_FUNCTION))
3147 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3148 && (sym->flags & BSF_FUNCTION)))
3149 {
3150 info->symbol_type = ST_ENTRY;
3151 info->arg_reloc = som_symbol_data (sym)->tc_data.hppa_arg_reloc;
3152 }
3153
3154 /* If the type is unknown at this point, it should be
3155 ST_DATA (functions were handled as special cases above). */
3156 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3157 info->symbol_type = ST_DATA;
3158
3159 /* From now on it's a very simple mapping. */
3160 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3161 info->symbol_type = ST_ABSOLUTE;
3162 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3163 info->symbol_type = ST_CODE;
3164 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3165 info->symbol_type = ST_DATA;
3166 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3167 info->symbol_type = ST_MILLICODE;
3168 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3169 info->symbol_type = ST_PLABEL;
3170 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3171 info->symbol_type = ST_PRI_PROG;
3172 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3173 info->symbol_type = ST_SEC_PROG;
3174 }
3175
3176 /* Now handle the symbol's scope. Exported data which is not
3177 in the common section has scope SS_UNIVERSAL. Note scope
3178 of common symbols was handled earlier! */
3179 if (sym->flags & BSF_EXPORT && sym->section != &bfd_com_section)
3180 info->symbol_scope = SS_UNIVERSAL;
3181 /* Any undefined symbol at this point has a scope SS_UNSAT. */
3182 else if (sym->section == &bfd_und_section)
3183 info->symbol_scope = SS_UNSAT;
3184 /* Anything else which is not in the common section has scope
3185 SS_LOCAL. */
3186 else if (sym->section != &bfd_com_section)
3187 info->symbol_scope = SS_LOCAL;
3188
3189 /* Now set the symbol_info field. It has no real meaning
3190 for undefined or common symbols, but the HP linker will
3191 choke if it's not set to some "reasonable" value. We
3192 use zero as a reasonable value. */
3193 if (sym->section == &bfd_com_section || sym->section == &bfd_und_section
3194 || sym->section == &bfd_abs_section)
3195 info->symbol_info = 0;
3196 /* For all other symbols, the symbol_info field contains the
3197 subspace index of the space this symbol is contained in. */
3198 else
3199 info->symbol_info = som_section_data (sym->section)->subspace_index;
3200
3201 /* Set the symbol's value. */
3202 info->symbol_value = sym->value + sym->section->vma;
3203 }
3204
3205 /* Build and write, in one big chunk, the entire symbol table for
3206 this BFD. */
3207
3208 static boolean
3209 som_build_and_write_symbol_table (abfd)
3210 bfd *abfd;
3211 {
3212 unsigned int num_syms = bfd_get_symcount (abfd);
3213 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3214 asymbol **bfd_syms = bfd_get_outsymbols (abfd);
3215 struct symbol_dictionary_record *som_symtab;
3216 int i, symtab_size;
3217
3218 /* Compute total symbol table size and allocate a chunk of memory
3219 to hold the symbol table as we build it. */
3220 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3221 som_symtab = (struct symbol_dictionary_record *) alloca (symtab_size);
3222 memset (som_symtab, 0, symtab_size);
3223
3224 /* Walk over each symbol. */
3225 for (i = 0; i < num_syms; i++)
3226 {
3227 struct som_misc_symbol_info info;
3228
3229 /* This is really an index into the symbol strings table.
3230 By the time we get here, the index has already been
3231 computed and stored into the name field in the BFD symbol. */
3232 som_symtab[i].name.n_strx = (int) bfd_syms[i]->name;
3233
3234 /* Derive SOM information from the BFD symbol. */
3235 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
3236
3237 /* Now use it. */
3238 som_symtab[i].symbol_type = info.symbol_type;
3239 som_symtab[i].symbol_scope = info.symbol_scope;
3240 som_symtab[i].arg_reloc = info.arg_reloc;
3241 som_symtab[i].symbol_info = info.symbol_info;
3242 som_symtab[i].symbol_value = info.symbol_value;
3243 }
3244
3245 /* Everything is ready, seek to the right location and
3246 scribble out the symbol table. */
3247 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3248 {
3249 bfd_set_error (bfd_error_system_call);
3250 return false;
3251 }
3252
3253 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3254 {
3255 bfd_set_error (bfd_error_system_call);
3256 return false;
3257 }
3258 return true;
3259 }
3260
3261 /* Write an object in SOM format. */
3262
3263 static boolean
3264 som_write_object_contents (abfd)
3265 bfd *abfd;
3266 {
3267 if (abfd->output_has_begun == false)
3268 {
3269 /* Set up fixed parts of the file, space, and subspace headers.
3270 Notify the world that output has begun. */
3271 som_prep_headers (abfd);
3272 abfd->output_has_begun = true;
3273 /* Start writing the object file. This include all the string
3274 tables, fixup streams, and other portions of the object file. */
3275 som_begin_writing (abfd);
3276 }
3277
3278 /* Now that the symbol table information is complete, build and
3279 write the symbol table. */
3280 if (som_build_and_write_symbol_table (abfd) == false)
3281 return false;
3282
3283 /* Compute the checksum for the file header just before writing
3284 the header to disk. */
3285 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3286 return (som_write_headers (abfd));
3287 }
3288
3289 \f
3290 /* Read and save the string table associated with the given BFD. */
3291
3292 static boolean
3293 som_slurp_string_table (abfd)
3294 bfd *abfd;
3295 {
3296 char *stringtab;
3297
3298 /* Use the saved version if its available. */
3299 if (obj_som_stringtab (abfd) != NULL)
3300 return true;
3301
3302 /* Allocate and read in the string table. */
3303 stringtab = bfd_zalloc (abfd, obj_som_stringtab_size (abfd));
3304 if (stringtab == NULL)
3305 {
3306 bfd_set_error (bfd_error_no_memory);
3307 return false;
3308 }
3309
3310 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3311 {
3312 bfd_set_error (bfd_error_system_call);
3313 return false;
3314 }
3315
3316 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3317 != obj_som_stringtab_size (abfd))
3318 {
3319 bfd_set_error (bfd_error_system_call);
3320 return false;
3321 }
3322
3323 /* Save our results and return success. */
3324 obj_som_stringtab (abfd) = stringtab;
3325 return true;
3326 }
3327
3328 /* Return the amount of data (in bytes) required to hold the symbol
3329 table for this object. */
3330
3331 static unsigned int
3332 som_get_symtab_upper_bound (abfd)
3333 bfd *abfd;
3334 {
3335 if (!som_slurp_symbol_table (abfd))
3336 return 0;
3337
3338 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
3339 }
3340
3341 /* Convert from a SOM subspace index to a BFD section. */
3342
3343 static asection *
3344 som_section_from_subspace_index (abfd, index)
3345 bfd *abfd;
3346 unsigned int index;
3347 {
3348 asection *section;
3349
3350 for (section = abfd->sections; section != NULL; section = section->next)
3351 if (som_section_data (section)->subspace_index == index)
3352 return section;
3353
3354 /* Should never happen. */
3355 abort();
3356 }
3357
3358 /* Read and save the symbol table associated with the given BFD. */
3359
3360 static unsigned int
3361 som_slurp_symbol_table (abfd)
3362 bfd *abfd;
3363 {
3364 int symbol_count = bfd_get_symcount (abfd);
3365 int symsize = sizeof (struct symbol_dictionary_record);
3366 char *stringtab;
3367 struct symbol_dictionary_record *buf, *bufp, *endbufp;
3368 som_symbol_type *sym, *symbase;
3369
3370 /* Return saved value if it exists. */
3371 if (obj_som_symtab (abfd) != NULL)
3372 return true;
3373
3374 /* Special case. This is *not* an error. */
3375 if (symbol_count == 0)
3376 return true;
3377
3378 if (!som_slurp_string_table (abfd))
3379 return false;
3380
3381 stringtab = obj_som_stringtab (abfd);
3382
3383 symbase = (som_symbol_type *)
3384 bfd_zalloc (abfd, symbol_count * sizeof (som_symbol_type));
3385 if (symbase == NULL)
3386 {
3387 bfd_set_error (bfd_error_no_memory);
3388 return false;
3389 }
3390
3391 /* Read in the external SOM representation. */
3392 buf = alloca (symbol_count * symsize);
3393 if (buf == NULL)
3394 {
3395 bfd_set_error (bfd_error_no_memory);
3396 return false;
3397 }
3398 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
3399 {
3400 bfd_set_error (bfd_error_system_call);
3401 return false;
3402 }
3403 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
3404 != symbol_count * symsize)
3405 {
3406 bfd_set_error (bfd_error_no_symbols);
3407 return (false);
3408 }
3409
3410 /* Iterate over all the symbols and internalize them. */
3411 endbufp = buf + symbol_count;
3412 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
3413 {
3414
3415 /* I don't think we care about these. */
3416 if (bufp->symbol_type == ST_SYM_EXT
3417 || bufp->symbol_type == ST_ARG_EXT)
3418 continue;
3419
3420 /* Set some private data we care about. */
3421 if (bufp->symbol_type == ST_NULL)
3422 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3423 else if (bufp->symbol_type == ST_ABSOLUTE)
3424 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
3425 else if (bufp->symbol_type == ST_DATA)
3426 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
3427 else if (bufp->symbol_type == ST_CODE)
3428 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
3429 else if (bufp->symbol_type == ST_PRI_PROG)
3430 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
3431 else if (bufp->symbol_type == ST_SEC_PROG)
3432 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
3433 else if (bufp->symbol_type == ST_ENTRY)
3434 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
3435 else if (bufp->symbol_type == ST_MILLICODE)
3436 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
3437 else if (bufp->symbol_type == ST_PLABEL)
3438 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
3439 else
3440 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3441 som_symbol_data (sym)->tc_data.hppa_arg_reloc = bufp->arg_reloc;
3442
3443 /* Some reasonable defaults. */
3444 sym->symbol.the_bfd = abfd;
3445 sym->symbol.name = bufp->name.n_strx + stringtab;
3446 sym->symbol.value = bufp->symbol_value;
3447 sym->symbol.section = 0;
3448 sym->symbol.flags = 0;
3449
3450 switch (bufp->symbol_type)
3451 {
3452 case ST_ENTRY:
3453 case ST_PRI_PROG:
3454 case ST_SEC_PROG:
3455 case ST_MILLICODE:
3456 sym->symbol.flags |= BSF_FUNCTION;
3457 sym->symbol.value &= ~0x3;
3458 break;
3459
3460 case ST_STUB:
3461 case ST_CODE:
3462 sym->symbol.value &= ~0x3;
3463
3464 default:
3465 break;
3466 }
3467
3468 /* Handle scoping and section information. */
3469 switch (bufp->symbol_scope)
3470 {
3471 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
3472 so the section associated with this symbol can't be known. */
3473 case SS_EXTERNAL:
3474 case SS_UNSAT:
3475 if (bufp->symbol_type != ST_STORAGE)
3476 sym->symbol.section = &bfd_und_section;
3477 else
3478 sym->symbol.section = &bfd_com_section;
3479 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3480 break;
3481
3482 case SS_UNIVERSAL:
3483 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3484 sym->symbol.section
3485 = som_section_from_subspace_index (abfd, bufp->symbol_info);
3486 sym->symbol.value -= sym->symbol.section->vma;
3487 break;
3488
3489 #if 0
3490 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
3491 Sound dumb? It is. */
3492 case SS_GLOBAL:
3493 #endif
3494 case SS_LOCAL:
3495 sym->symbol.flags |= BSF_LOCAL;
3496 sym->symbol.section
3497 = som_section_from_subspace_index (abfd, bufp->symbol_info);
3498 sym->symbol.value -= sym->symbol.section->vma;
3499 break;
3500 }
3501
3502 /* Mark symbols left around by the debugger. */
3503 if (strlen (sym->symbol.name) >= 2
3504 && sym->symbol.name[0] == 'L'
3505 && (sym->symbol.name[1] == '$' || sym->symbol.name[2] == '$'
3506 || sym->symbol.name[3] == '$'))
3507 sym->symbol.flags |= BSF_DEBUGGING;
3508
3509 /* Note increment at bottom of loop, since we skip some symbols
3510 we can not include it as part of the for statement. */
3511 sym++;
3512 }
3513
3514 /* Save our results and return success. */
3515 obj_som_symtab (abfd) = symbase;
3516 return (true);
3517 }
3518
3519 /* Canonicalize a SOM symbol table. Return the number of entries
3520 in the symbol table. */
3521
3522 static unsigned int
3523 som_get_symtab (abfd, location)
3524 bfd *abfd;
3525 asymbol **location;
3526 {
3527 int i;
3528 som_symbol_type *symbase;
3529
3530 if (!som_slurp_symbol_table (abfd))
3531 return 0;
3532
3533 i = bfd_get_symcount (abfd);
3534 symbase = obj_som_symtab (abfd);
3535
3536 for (; i > 0; i--, location++, symbase++)
3537 *location = &symbase->symbol;
3538
3539 /* Final null pointer. */
3540 *location = 0;
3541 return (bfd_get_symcount (abfd));
3542 }
3543
3544 /* Make a SOM symbol. There is nothing special to do here. */
3545
3546 static asymbol *
3547 som_make_empty_symbol (abfd)
3548 bfd *abfd;
3549 {
3550 som_symbol_type *new =
3551 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
3552 if (new == NULL)
3553 {
3554 bfd_set_error (bfd_error_no_memory);
3555 return 0;
3556 }
3557 new->symbol.the_bfd = abfd;
3558
3559 return &new->symbol;
3560 }
3561
3562 /* Print symbol information. */
3563
3564 static void
3565 som_print_symbol (ignore_abfd, afile, symbol, how)
3566 bfd *ignore_abfd;
3567 PTR afile;
3568 asymbol *symbol;
3569 bfd_print_symbol_type how;
3570 {
3571 FILE *file = (FILE *) afile;
3572 switch (how)
3573 {
3574 case bfd_print_symbol_name:
3575 fprintf (file, "%s", symbol->name);
3576 break;
3577 case bfd_print_symbol_more:
3578 fprintf (file, "som ");
3579 fprintf_vma (file, symbol->value);
3580 fprintf (file, " %lx", (long) symbol->flags);
3581 break;
3582 case bfd_print_symbol_all:
3583 {
3584 CONST char *section_name;
3585 section_name = symbol->section ? symbol->section->name : "(*none*)";
3586 bfd_print_symbol_vandf ((PTR) file, symbol);
3587 fprintf (file, " %s\t%s", section_name, symbol->name);
3588 break;
3589 }
3590 }
3591 }
3592
3593 /* Count or process variable-length SOM fixup records.
3594
3595 To avoid code duplication we use this code both to compute the number
3596 of relocations requested by a stream, and to internalize the stream.
3597
3598 When computing the number of relocations requested by a stream the
3599 variables rptr, section, and symbols have no meaning.
3600
3601 Return the number of relocations requested by the fixup stream. When
3602 not just counting
3603
3604 This needs at least two or three more passes to get it cleaned up. */
3605
3606 static unsigned int
3607 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
3608 unsigned char *fixup;
3609 unsigned int end;
3610 arelent *internal_relocs;
3611 asection *section;
3612 asymbol **symbols;
3613 boolean just_count;
3614 {
3615 unsigned int op, varname;
3616 unsigned char *end_fixups = &fixup[end];
3617 const struct fixup_format *fp;
3618 char *cp;
3619 unsigned char *save_fixup;
3620 int variables[26], stack[20], c, v, count, prev_fixup, *sp;
3621 const int *subop;
3622 arelent *rptr= internal_relocs;
3623 unsigned int offset = just_count ? 0 : section->vma;
3624
3625 #define var(c) variables[(c) - 'A']
3626 #define push(v) (*sp++ = (v))
3627 #define pop() (*--sp)
3628 #define emptystack() (sp == stack)
3629
3630 som_initialize_reloc_queue (reloc_queue);
3631 memset (variables, 0, sizeof (variables));
3632 memset (stack, 0, sizeof (stack));
3633 count = 0;
3634 prev_fixup = 0;
3635 sp = stack;
3636
3637 while (fixup < end_fixups)
3638 {
3639
3640 /* Save pointer to the start of this fixup. We'll use
3641 it later to determine if it is necessary to put this fixup
3642 on the queue. */
3643 save_fixup = fixup;
3644
3645 /* Get the fixup code and its associated format. */
3646 op = *fixup++;
3647 fp = &som_fixup_formats[op];
3648
3649 /* Handle a request for a previous fixup. */
3650 if (*fp->format == 'P')
3651 {
3652 /* Get pointer to the beginning of the prev fixup, move
3653 the repeated fixup to the head of the queue. */
3654 fixup = reloc_queue[fp->D].reloc;
3655 som_reloc_queue_fix (reloc_queue, fp->D);
3656 prev_fixup = 1;
3657
3658 /* Get the fixup code and its associated format. */
3659 op = *fixup++;
3660 fp = &som_fixup_formats[op];
3661 }
3662
3663 /* If we are not just counting, set some reasonable defaults. */
3664 if (! just_count)
3665 {
3666 rptr->address = offset;
3667 rptr->howto = &som_hppa_howto_table[op];
3668 rptr->addend = 0;
3669 rptr->sym_ptr_ptr = bfd_abs_section.symbol_ptr_ptr;
3670 }
3671
3672 /* Set default input length to 0. Get the opcode class index
3673 into D. */
3674 var ('L') = 0;
3675 var ('D') = fp->D;
3676
3677 /* Get the opcode format. */
3678 cp = fp->format;
3679
3680 /* Process the format string. Parsing happens in two phases,
3681 parse RHS, then assign to LHS. Repeat until no more
3682 characters in the format string. */
3683 while (*cp)
3684 {
3685 /* The variable this pass is going to compute a value for. */
3686 varname = *cp++;
3687
3688 /* Start processing RHS. Continue until a NULL or '=' is found. */
3689 do
3690 {
3691 c = *cp++;
3692
3693 /* If this is a variable, push it on the stack. */
3694 if (isupper (c))
3695 push (var (c));
3696
3697 /* If this is a lower case letter, then it represents
3698 additional data from the fixup stream to be pushed onto
3699 the stack. */
3700 else if (islower (c))
3701 {
3702 for (v = 0; c > 'a'; --c)
3703 v = (v << 8) | *fixup++;
3704 push (v);
3705 }
3706
3707 /* A decimal constant. Push it on the stack. */
3708 else if (isdigit (c))
3709 {
3710 v = c - '0';
3711 while (isdigit (*cp))
3712 v = (v * 10) + (*cp++ - '0');
3713 push (v);
3714 }
3715 else
3716
3717 /* An operator. Pop two two values from the stack and
3718 use them as operands to the given operation. Push
3719 the result of the operation back on the stack. */
3720 switch (c)
3721 {
3722 case '+':
3723 v = pop ();
3724 v += pop ();
3725 push (v);
3726 break;
3727 case '*':
3728 v = pop ();
3729 v *= pop ();
3730 push (v);
3731 break;
3732 case '<':
3733 v = pop ();
3734 v = pop () << v;
3735 push (v);
3736 break;
3737 default:
3738 abort ();
3739 }
3740 }
3741 while (*cp && *cp != '=');
3742
3743 /* Move over the equal operator. */
3744 cp++;
3745
3746 /* Pop the RHS off the stack. */
3747 c = pop ();
3748
3749 /* Perform the assignment. */
3750 var (varname) = c;
3751
3752 /* Handle side effects. and special 'O' stack cases. */
3753 switch (varname)
3754 {
3755 /* Consume some bytes from the input space. */
3756 case 'L':
3757 offset += c;
3758 break;
3759 /* A symbol to use in the relocation. Make a note
3760 of this if we are not just counting. */
3761 case 'S':
3762 if (! just_count)
3763 rptr->sym_ptr_ptr = &symbols[c];
3764 break;
3765 /* Handle the linker expression stack. */
3766 case 'O':
3767 switch (op)
3768 {
3769 case R_COMP1:
3770 subop = comp1_opcodes;
3771 break;
3772 case R_COMP2:
3773 subop = comp2_opcodes;
3774 break;
3775 case R_COMP3:
3776 subop = comp3_opcodes;
3777 break;
3778 default:
3779 abort ();
3780 }
3781 while (*subop <= (unsigned char) c)
3782 ++subop;
3783 --subop;
3784 break;
3785 default:
3786 break;
3787 }
3788 }
3789
3790 /* If we used a previous fixup, clean up after it. */
3791 if (prev_fixup)
3792 {
3793 fixup = save_fixup + 1;
3794 prev_fixup = 0;
3795 }
3796 /* Queue it. */
3797 else if (fixup > save_fixup + 1)
3798 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
3799
3800 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
3801 fixups to BFD. */
3802 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
3803 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
3804 {
3805 /* Done with a single reloction. Loop back to the top. */
3806 if (! just_count)
3807 {
3808 rptr->addend = var ('V');
3809 rptr++;
3810 }
3811 count++;
3812 /* Now that we've handled a "full" relocation, reset
3813 some state. */
3814 memset (variables, 0, sizeof (variables));
3815 memset (stack, 0, sizeof (stack));
3816 }
3817 }
3818 return count;
3819
3820 #undef var
3821 #undef push
3822 #undef pop
3823 #undef emptystack
3824 }
3825
3826 /* Read in the relocs (aka fixups in SOM terms) for a section.
3827
3828 som_get_reloc_upper_bound calls this routine with JUST_COUNT
3829 set to true to indicate it only needs a count of the number
3830 of actual relocations. */
3831
3832 static boolean
3833 som_slurp_reloc_table (abfd, section, symbols, just_count)
3834 bfd *abfd;
3835 asection *section;
3836 asymbol **symbols;
3837 boolean just_count;
3838 {
3839 char *external_relocs;
3840 unsigned int fixup_stream_size;
3841 arelent *internal_relocs;
3842 unsigned int num_relocs;
3843
3844 fixup_stream_size = som_section_data (section)->reloc_size;
3845 /* If there were no relocations, then there is nothing to do. */
3846 if (section->reloc_count == 0)
3847 return true;
3848
3849 /* If reloc_count is -1, then the relocation stream has not been
3850 parsed. We must do so now to know how many relocations exist. */
3851 if (section->reloc_count == -1)
3852 {
3853 external_relocs = (char *) bfd_zalloc (abfd, fixup_stream_size);
3854 if (external_relocs == (char *) NULL)
3855 {
3856 bfd_set_error (bfd_error_no_memory);
3857 return false;
3858 }
3859 /* Read in the external forms. */
3860 if (bfd_seek (abfd,
3861 obj_som_reloc_filepos (abfd) + section->rel_filepos,
3862 SEEK_SET)
3863 != 0)
3864 {
3865 bfd_set_error (bfd_error_system_call);
3866 return false;
3867 }
3868 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
3869 != fixup_stream_size)
3870 {
3871 bfd_set_error (bfd_error_system_call);
3872 return false;
3873 }
3874 /* Let callers know how many relocations found.
3875 also save the relocation stream as we will
3876 need it again. */
3877 section->reloc_count = som_set_reloc_info (external_relocs,
3878 fixup_stream_size,
3879 NULL, NULL, NULL, true);
3880
3881 som_section_data (section)->reloc_stream = external_relocs;
3882 }
3883
3884 /* If the caller only wanted a count, then return now. */
3885 if (just_count)
3886 return true;
3887
3888 num_relocs = section->reloc_count;
3889 external_relocs = som_section_data (section)->reloc_stream;
3890 /* Return saved information about the relocations if it is available. */
3891 if (section->relocation != (arelent *) NULL)
3892 return true;
3893
3894 internal_relocs = (arelent *) bfd_zalloc (abfd,
3895 num_relocs * sizeof (arelent));
3896 if (internal_relocs == (arelent *) NULL)
3897 {
3898 bfd_set_error (bfd_error_no_memory);
3899 return false;
3900 }
3901
3902 /* Process and internalize the relocations. */
3903 som_set_reloc_info (external_relocs, fixup_stream_size,
3904 internal_relocs, section, symbols, false);
3905
3906 /* Save our results and return success. */
3907 section->relocation = internal_relocs;
3908 return (true);
3909 }
3910
3911 /* Return the number of bytes required to store the relocation
3912 information associated with the given section. */
3913
3914 static unsigned int
3915 som_get_reloc_upper_bound (abfd, asect)
3916 bfd *abfd;
3917 sec_ptr asect;
3918 {
3919 /* If section has relocations, then read in the relocation stream
3920 and parse it to determine how many relocations exist. */
3921 if (asect->flags & SEC_RELOC)
3922 {
3923 if (som_slurp_reloc_table (abfd, asect, NULL, true))
3924 return (asect->reloc_count + 1) * sizeof (arelent);
3925 }
3926 /* Either there are no relocations or an error occurred while
3927 reading and parsing the relocation stream. */
3928 return 0;
3929 }
3930
3931 /* Convert relocations from SOM (external) form into BFD internal
3932 form. Return the number of relocations. */
3933
3934 static unsigned int
3935 som_canonicalize_reloc (abfd, section, relptr, symbols)
3936 bfd *abfd;
3937 sec_ptr section;
3938 arelent **relptr;
3939 asymbol **symbols;
3940 {
3941 arelent *tblptr;
3942 int count;
3943
3944 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
3945 return 0;
3946
3947 count = section->reloc_count;
3948 tblptr = section->relocation;
3949 if (tblptr == (arelent *) NULL)
3950 return 0;
3951
3952 while (count--)
3953 *relptr++ = tblptr++;
3954
3955 *relptr = (arelent *) NULL;
3956 return section->reloc_count;
3957 }
3958
3959 extern bfd_target som_vec;
3960
3961 /* A hook to set up object file dependent section information. */
3962
3963 static boolean
3964 som_new_section_hook (abfd, newsect)
3965 bfd *abfd;
3966 asection *newsect;
3967 {
3968 newsect->used_by_bfd =
3969 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
3970 if (!newsect->used_by_bfd)
3971 {
3972 bfd_set_error (bfd_error_no_memory);
3973 return false;
3974 }
3975 newsect->alignment_power = 3;
3976
3977 /* Initialize the subspace_index field to -1 so that it does
3978 not match a subspace with an index of 0. */
3979 som_section_data (newsect)->subspace_index = -1;
3980
3981 /* We allow more than three sections internally */
3982 return true;
3983 }
3984
3985 /* Set backend info for sections which can not be described
3986 in the BFD data structures. */
3987
3988 void
3989 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
3990 asection *section;
3991 int defined;
3992 int private;
3993 unsigned char sort_key;
3994 int spnum;
3995 {
3996 struct space_dictionary_record *space_dict;
3997
3998 som_section_data (section)->is_space = 1;
3999 space_dict = &som_section_data (section)->space_dict;
4000 space_dict->is_defined = defined;
4001 space_dict->is_private = private;
4002 space_dict->sort_key = sort_key;
4003 space_dict->space_number = spnum;
4004 }
4005
4006 /* Set backend info for subsections which can not be described
4007 in the BFD data structures. */
4008
4009 void
4010 bfd_som_set_subsection_attributes (section, container, access,
4011 sort_key, quadrant)
4012 asection *section;
4013 asection *container;
4014 int access;
4015 unsigned int sort_key;
4016 int quadrant;
4017 {
4018 struct subspace_dictionary_record *subspace_dict;
4019 som_section_data (section)->is_subspace = 1;
4020 subspace_dict = &som_section_data (section)->subspace_dict;
4021 subspace_dict->access_control_bits = access;
4022 subspace_dict->sort_key = sort_key;
4023 subspace_dict->quadrant = quadrant;
4024 som_section_data (section)->containing_space = container;
4025 }
4026
4027 /* Set the full SOM symbol type. SOM needs far more symbol information
4028 than any other object file format I'm aware of. It is mandatory
4029 to be able to know if a symbol is an entry point, millicode, data,
4030 code, absolute, storage request, or procedure label. If you get
4031 the symbol type wrong your program will not link. */
4032
4033 void
4034 bfd_som_set_symbol_type (symbol, type)
4035 asymbol *symbol;
4036 unsigned int type;
4037 {
4038 som_symbol_data (symbol)->som_type = type;
4039 }
4040
4041 /* Attach 64bits of unwind information to a symbol (which hopefully
4042 is a function of some kind!). It would be better to keep this
4043 in the R_ENTRY relocation, but there is not enough space. */
4044
4045 void
4046 bfd_som_attach_unwind_info (symbol, unwind_desc)
4047 asymbol *symbol;
4048 char *unwind_desc;
4049 {
4050 som_symbol_data (symbol)->unwind = unwind_desc;
4051 }
4052
4053 /* Attach an auxiliary header to the BFD backend so that it may be
4054 written into the object file. */
4055 void
4056 bfd_som_attach_aux_hdr (abfd, type, string)
4057 bfd *abfd;
4058 int type;
4059 char *string;
4060 {
4061 if (type == VERSION_AUX_ID)
4062 {
4063 int len = strlen (string);
4064 int pad = 0;
4065
4066 if (len % 4)
4067 pad = (4 - (len % 4));
4068 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
4069 bfd_zalloc (abfd, sizeof (struct aux_id)
4070 + sizeof (unsigned int) + len + pad);
4071 if (!obj_som_version_hdr (abfd))
4072 {
4073 bfd_set_error (bfd_error_no_memory);
4074 abort(); /* FIXME */
4075 }
4076 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
4077 obj_som_version_hdr (abfd)->header_id.length = len + pad;
4078 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
4079 obj_som_version_hdr (abfd)->string_length = len;
4080 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
4081 }
4082 else if (type == COPYRIGHT_AUX_ID)
4083 {
4084 int len = strlen (string);
4085 int pad = 0;
4086
4087 if (len % 4)
4088 pad = (4 - (len % 4));
4089 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
4090 bfd_zalloc (abfd, sizeof (struct aux_id)
4091 + sizeof (unsigned int) + len + pad);
4092 if (!obj_som_copyright_hdr (abfd))
4093 {
4094 bfd_set_error (bfd_error_no_error);
4095 abort(); /* FIXME */
4096 }
4097 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
4098 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
4099 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
4100 obj_som_copyright_hdr (abfd)->string_length = len;
4101 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
4102 }
4103 else
4104 abort ();
4105 }
4106
4107 static boolean
4108 som_set_section_contents (abfd, section, location, offset, count)
4109 bfd *abfd;
4110 sec_ptr section;
4111 PTR location;
4112 file_ptr offset;
4113 bfd_size_type count;
4114 {
4115 if (abfd->output_has_begun == false)
4116 {
4117 /* Set up fixed parts of the file, space, and subspace headers.
4118 Notify the world that output has begun. */
4119 som_prep_headers (abfd);
4120 abfd->output_has_begun = true;
4121 /* Start writing the object file. This include all the string
4122 tables, fixup streams, and other portions of the object file. */
4123 som_begin_writing (abfd);
4124 }
4125
4126 /* Only write subspaces which have "real" contents (eg. the contents
4127 are not generated at run time by the OS). */
4128 if (som_section_data (section)->is_subspace != 1
4129 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4130 return true;
4131
4132 /* Seek to the proper offset within the object file and write the
4133 data. */
4134 offset += som_section_data (section)->subspace_dict.file_loc_init_value;
4135 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
4136 {
4137 bfd_set_error (bfd_error_system_call);
4138 return false;
4139 }
4140
4141 if (bfd_write ((PTR) location, 1, count, abfd) != count)
4142 {
4143 bfd_set_error (bfd_error_system_call);
4144 return false;
4145 }
4146 return true;
4147 }
4148
4149 static boolean
4150 som_set_arch_mach (abfd, arch, machine)
4151 bfd *abfd;
4152 enum bfd_architecture arch;
4153 unsigned long machine;
4154 {
4155 /* Allow any architecture to be supported by the SOM backend */
4156 return bfd_default_set_arch_mach (abfd, arch, machine);
4157 }
4158
4159 static boolean
4160 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4161 functionname_ptr, line_ptr)
4162 bfd *abfd;
4163 asection *section;
4164 asymbol **symbols;
4165 bfd_vma offset;
4166 CONST char **filename_ptr;
4167 CONST char **functionname_ptr;
4168 unsigned int *line_ptr;
4169 {
4170 fprintf (stderr, "som_find_nearest_line unimplemented\n");
4171 fflush (stderr);
4172 abort ();
4173 return (false);
4174 }
4175
4176 static int
4177 som_sizeof_headers (abfd, reloc)
4178 bfd *abfd;
4179 boolean reloc;
4180 {
4181 fprintf (stderr, "som_sizeof_headers unimplemented\n");
4182 fflush (stderr);
4183 abort ();
4184 return (0);
4185 }
4186
4187 /* Return the single-character symbol type corresponding to
4188 SOM section S, or '?' for an unknown SOM section. */
4189
4190 static char
4191 som_section_type (s)
4192 const char *s;
4193 {
4194 const struct section_to_type *t;
4195
4196 for (t = &stt[0]; t->section; t++)
4197 if (!strcmp (s, t->section))
4198 return t->type;
4199 return '?';
4200 }
4201
4202 static int
4203 som_decode_symclass (symbol)
4204 asymbol *symbol;
4205 {
4206 char c;
4207
4208 if (bfd_is_com_section (symbol->section))
4209 return 'C';
4210 if (symbol->section == &bfd_und_section)
4211 return 'U';
4212 if (symbol->section == &bfd_ind_section)
4213 return 'I';
4214 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
4215 return '?';
4216
4217 if (symbol->section == &bfd_abs_section)
4218 c = 'a';
4219 else if (symbol->section)
4220 c = som_section_type (symbol->section->name);
4221 else
4222 return '?';
4223 if (symbol->flags & BSF_GLOBAL)
4224 c = toupper (c);
4225 return c;
4226 }
4227
4228 /* Return information about SOM symbol SYMBOL in RET. */
4229
4230 static void
4231 som_get_symbol_info (ignore_abfd, symbol, ret)
4232 bfd *ignore_abfd;
4233 asymbol *symbol;
4234 symbol_info *ret;
4235 {
4236 ret->type = som_decode_symclass (symbol);
4237 if (ret->type != 'U')
4238 ret->value = symbol->value+symbol->section->vma;
4239 else
4240 ret->value = 0;
4241 ret->name = symbol->name;
4242 }
4243
4244 /* Count the number of symbols in the archive symbol table. Necessary
4245 so that we can allocate space for all the carsyms at once. */
4246
4247 static boolean
4248 som_bfd_count_ar_symbols (abfd, lst_header, count)
4249 bfd *abfd;
4250 struct lst_header *lst_header;
4251 symindex *count;
4252 {
4253 unsigned int i;
4254 unsigned int *hash_table =
4255 (unsigned int *) alloca (lst_header->hash_size * sizeof (unsigned int));
4256 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4257
4258 /* Don't forget to initialize the counter! */
4259 *count = 0;
4260
4261 /* Read in the hash table. The has table is an array of 32bit file offsets
4262 which point to the hash chains. */
4263 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4264 != lst_header->hash_size * 4)
4265 {
4266 bfd_set_error (bfd_error_system_call);
4267 return false;
4268 }
4269
4270 /* Walk each chain counting the number of symbols found on that particular
4271 chain. */
4272 for (i = 0; i < lst_header->hash_size; i++)
4273 {
4274 struct lst_symbol_record lst_symbol;
4275
4276 /* An empty chain has zero as it's file offset. */
4277 if (hash_table[i] == 0)
4278 continue;
4279
4280 /* Seek to the first symbol in this hash chain. */
4281 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4282 {
4283 bfd_set_error (bfd_error_system_call);
4284 return false;
4285 }
4286
4287 /* Read in this symbol and update the counter. */
4288 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4289 != sizeof (lst_symbol))
4290 {
4291 bfd_set_error (bfd_error_system_call);
4292 return false;
4293 }
4294 (*count)++;
4295
4296 /* Now iterate through the rest of the symbols on this chain. */
4297 while (lst_symbol.next_entry)
4298 {
4299
4300 /* Seek to the next symbol. */
4301 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4302 < 0)
4303 {
4304 bfd_set_error (bfd_error_system_call);
4305 return false;
4306 }
4307
4308 /* Read the symbol in and update the counter. */
4309 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4310 != sizeof (lst_symbol))
4311 {
4312 bfd_set_error (bfd_error_system_call);
4313 return false;
4314 }
4315 (*count)++;
4316 }
4317 }
4318 return true;
4319 }
4320
4321 /* Fill in the canonical archive symbols (SYMS) from the archive described
4322 by ABFD and LST_HEADER. */
4323
4324 static boolean
4325 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
4326 bfd *abfd;
4327 struct lst_header *lst_header;
4328 carsym **syms;
4329 {
4330 unsigned int i, len;
4331 carsym *set = syms[0];
4332 unsigned int *hash_table =
4333 (unsigned int *) alloca (lst_header->hash_size * sizeof (unsigned int));
4334 struct som_entry *som_dict =
4335 (struct som_entry *) alloca (lst_header->module_count
4336 * sizeof (struct som_entry));
4337 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4338
4339 /* Read in the hash table. The has table is an array of 32bit file offsets
4340 which point to the hash chains. */
4341 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4342 != lst_header->hash_size * 4)
4343 {
4344 bfd_set_error (bfd_error_system_call);
4345 return false;
4346 }
4347
4348 /* Seek to and read in the SOM dictionary. We will need this to fill
4349 in the carsym's filepos field. */
4350 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
4351 {
4352 bfd_set_error (bfd_error_system_call);
4353 return false;
4354 }
4355
4356 if (bfd_read ((PTR) som_dict, lst_header->module_count,
4357 sizeof (struct som_entry), abfd)
4358 != lst_header->module_count * sizeof (struct som_entry))
4359 {
4360 bfd_set_error (bfd_error_system_call);
4361 return false;
4362 }
4363
4364 /* Walk each chain filling in the carsyms as we go along. */
4365 for (i = 0; i < lst_header->hash_size; i++)
4366 {
4367 struct lst_symbol_record lst_symbol;
4368
4369 /* An empty chain has zero as it's file offset. */
4370 if (hash_table[i] == 0)
4371 continue;
4372
4373 /* Seek to and read the first symbol on the chain. */
4374 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4375 {
4376 bfd_set_error (bfd_error_system_call);
4377 return false;
4378 }
4379
4380 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4381 != sizeof (lst_symbol))
4382 {
4383 bfd_set_error (bfd_error_system_call);
4384 return false;
4385 }
4386
4387 /* Get the name of the symbol, first get the length which is stored
4388 as a 32bit integer just before the symbol.
4389
4390 One might ask why we don't just read in the entire string table
4391 and index into it. Well, according to the SOM ABI the string
4392 index can point *anywhere* in the archive to save space, so just
4393 using the string table would not be safe. */
4394 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4395 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4396 {
4397 bfd_set_error (bfd_error_system_call);
4398 return false;
4399 }
4400
4401 if (bfd_read (&len, 1, 4, abfd) != 4)
4402 {
4403 bfd_set_error (bfd_error_system_call);
4404 return false;
4405 }
4406
4407 /* Allocate space for the name and null terminate it too. */
4408 set->name = bfd_zalloc (abfd, len + 1);
4409 if (!set->name)
4410 {
4411 bfd_set_error (bfd_error_no_memory);
4412 return false;
4413 }
4414 if (bfd_read (set->name, 1, len, abfd) != len)
4415 {
4416 bfd_set_error (bfd_error_system_call);
4417 return false;
4418 }
4419 set->name[len] = 0;
4420
4421 /* Fill in the file offset. Note that the "location" field points
4422 to the SOM itself, not the ar_hdr in front of it. */
4423 set->file_offset = som_dict[lst_symbol.som_index].location
4424 - sizeof (struct ar_hdr);
4425
4426 /* Go to the next symbol. */
4427 set++;
4428
4429 /* Iterate through the rest of the chain. */
4430 while (lst_symbol.next_entry)
4431 {
4432 /* Seek to the next symbol and read it in. */
4433 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4434 < 0)
4435 {
4436 bfd_set_error (bfd_error_system_call);
4437 return false;
4438 }
4439
4440 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4441 != sizeof (lst_symbol))
4442 {
4443 bfd_set_error (bfd_error_system_call);
4444 return false;
4445 }
4446
4447 /* Seek to the name length & string and read them in. */
4448 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4449 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4450 {
4451 bfd_set_error (bfd_error_system_call);
4452 return false;
4453 }
4454
4455 if (bfd_read (&len, 1, 4, abfd) != 4)
4456 {
4457 bfd_set_error (bfd_error_system_call);
4458 return false;
4459 }
4460
4461 /* Allocate space for the name and null terminate it too. */
4462 set->name = bfd_zalloc (abfd, len + 1);
4463 if (!set->name)
4464 {
4465 bfd_set_error (bfd_error_no_memory);
4466 return false;
4467 }
4468 if (bfd_read (set->name, 1, len, abfd) != len)
4469 {
4470 bfd_set_error (bfd_error_system_call);
4471 return false;
4472 }
4473 set->name[len] = 0;
4474
4475 /* Fill in the file offset. Note that the "location" field points
4476 to the SOM itself, not the ar_hdr in front of it. */
4477 set->file_offset = som_dict[lst_symbol.som_index].location
4478 - sizeof (struct ar_hdr);
4479
4480 /* Go on to the next symbol. */
4481 set++;
4482 }
4483 }
4484 /* If we haven't died by now, then we successfully read the entire
4485 archive symbol table. */
4486 return true;
4487 }
4488
4489 /* Read in the LST from the archive. */
4490 static boolean
4491 som_slurp_armap (abfd)
4492 bfd *abfd;
4493 {
4494 struct lst_header lst_header;
4495 struct ar_hdr ar_header;
4496 unsigned int parsed_size;
4497 struct artdata *ardata = bfd_ardata (abfd);
4498 char nextname[17];
4499 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
4500
4501 /* Special cases. */
4502 if (i == 0)
4503 return true;
4504 if (i != 16)
4505 return false;
4506
4507 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
4508 {
4509 bfd_set_error (bfd_error_system_call);
4510 return false;
4511 }
4512
4513 /* For archives without .o files there is no symbol table. */
4514 if (strncmp (nextname, "/ ", 16))
4515 {
4516 bfd_has_map (abfd) = false;
4517 return true;
4518 }
4519
4520 /* Read in and sanity check the archive header. */
4521 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
4522 != sizeof (struct ar_hdr))
4523 {
4524 bfd_set_error (bfd_error_system_call);
4525 return false;
4526 }
4527
4528 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
4529 {
4530 bfd_set_error (bfd_error_malformed_archive);
4531 return NULL;
4532 }
4533
4534 /* How big is the archive symbol table entry? */
4535 errno = 0;
4536 parsed_size = strtol (ar_header.ar_size, NULL, 10);
4537 if (errno != 0)
4538 {
4539 bfd_set_error (bfd_error_malformed_archive);
4540 return NULL;
4541 }
4542
4543 /* Save off the file offset of the first real user data. */
4544 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
4545
4546 /* Read in the library symbol table. We'll make heavy use of this
4547 in just a minute. */
4548 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
4549 != sizeof (struct lst_header))
4550 {
4551 bfd_set_error (bfd_error_system_call);
4552 return false;
4553 }
4554
4555 /* Sanity check. */
4556 if (lst_header.a_magic != LIBMAGIC)
4557 {
4558 bfd_set_error (bfd_error_malformed_archive);
4559 return NULL;
4560 }
4561
4562 /* Count the number of symbols in the library symbol table. */
4563 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
4564 == false)
4565 return false;
4566
4567 /* Get back to the start of the library symbol table. */
4568 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
4569 + sizeof (struct lst_header), SEEK_SET) < 0)
4570 {
4571 bfd_set_error (bfd_error_system_call);
4572 return false;
4573 }
4574
4575 /* Initializae the cache and allocate space for the library symbols. */
4576 ardata->cache = 0;
4577 ardata->symdefs = (carsym *) bfd_alloc (abfd,
4578 (ardata->symdef_count
4579 * sizeof (carsym)));
4580 if (!ardata->symdefs)
4581 {
4582 bfd_set_error (bfd_error_no_memory);
4583 return false;
4584 }
4585
4586 /* Now fill in the canonical archive symbols. */
4587 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
4588 == false)
4589 return false;
4590
4591 /* Notify the generic archive code that we have a symbol map. */
4592 bfd_has_map (abfd) = true;
4593 return true;
4594 }
4595
4596 /* Begin preparing to write a SOM library symbol table.
4597
4598 As part of the prep work we need to determine the number of symbols
4599 and the size of the associated string section. */
4600
4601 static boolean
4602 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
4603 bfd *abfd;
4604 unsigned int *num_syms, *stringsize;
4605 {
4606 bfd *curr_bfd = abfd->archive_head;
4607
4608 /* Some initialization. */
4609 *num_syms = 0;
4610 *stringsize = 0;
4611
4612 /* Iterate over each BFD within this archive. */
4613 while (curr_bfd != NULL)
4614 {
4615 unsigned int curr_count, i;
4616 som_symbol_type *sym;
4617
4618 /* Make sure the symbol table has been read, then snag a pointer
4619 to it. It's a little slimey to grab the symbols via obj_som_symtab,
4620 but doing so avoids allocating lots of extra memory. */
4621 if (som_slurp_symbol_table (curr_bfd) == false)
4622 return false;
4623
4624 sym = obj_som_symtab (curr_bfd);
4625 curr_count = bfd_get_symcount (curr_bfd);
4626
4627 /* Examine each symbol to determine if it belongs in the
4628 library symbol table. */
4629 for (i = 0; i < curr_count; i++, sym++)
4630 {
4631 struct som_misc_symbol_info info;
4632
4633 /* Derive SOM information from the BFD symbol. */
4634 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
4635
4636 /* Should we include this symbol? */
4637 if (info.symbol_type == ST_NULL
4638 || info.symbol_type == ST_SYM_EXT
4639 || info.symbol_type == ST_ARG_EXT)
4640 continue;
4641
4642 /* Only global symbols and unsatisfied commons. */
4643 if (info.symbol_scope != SS_UNIVERSAL
4644 && info.symbol_type != ST_STORAGE)
4645 continue;
4646
4647 /* Do no include undefined symbols. */
4648 if (sym->symbol.section == &bfd_und_section)
4649 continue;
4650
4651 /* Bump the various counters, being careful to honor
4652 alignment considerations in the string table. */
4653 (*num_syms)++;
4654 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
4655 while (*stringsize % 4)
4656 (*stringsize)++;
4657 }
4658
4659 curr_bfd = curr_bfd->next;
4660 }
4661 return true;
4662 }
4663
4664 /* Hash a symbol name based on the hashing algorithm presented in the
4665 SOM ABI. */
4666 static unsigned int
4667 som_bfd_ar_symbol_hash (symbol)
4668 asymbol *symbol;
4669 {
4670 unsigned int len = strlen (symbol->name);
4671
4672 /* Names with length 1 are special. */
4673 if (len == 1)
4674 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
4675
4676 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
4677 | (symbol->name[len-2] << 8) | symbol->name[len-1];
4678 }
4679
4680 /* Do the bulk of the work required to write the SOM library
4681 symbol table. */
4682
4683 static boolean
4684 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst)
4685 bfd *abfd;
4686 unsigned int nsyms, string_size;
4687 struct lst_header lst;
4688 {
4689 file_ptr lst_filepos;
4690 char *strings, *p;
4691 struct lst_symbol_record *lst_syms, *curr_lst_sym;
4692 bfd *curr_bfd = abfd->archive_head;
4693 unsigned int *hash_table =
4694 (unsigned int *) alloca (lst.hash_size * sizeof (unsigned int));
4695 struct som_entry *som_dict =
4696 (struct som_entry *) alloca (lst.module_count
4697 * sizeof (struct som_entry));
4698 struct lst_symbol_record **last_hash_entry =
4699 ((struct lst_symbol_record **)
4700 alloca (lst.hash_size * sizeof (struct lst_symbol_record *)));
4701 unsigned int curr_som_offset, som_index;
4702
4703 /* Lots of fields are file positions relative to the start
4704 of the lst record. So save its location. */
4705 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4706
4707 /* Some initialization. */
4708 memset (hash_table, 0, 4 * lst.hash_size);
4709 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
4710 memset (last_hash_entry, 0,
4711 lst.hash_size * sizeof (struct lst_symbol_record *));
4712
4713 /* Symbols have som_index fields, so we have to keep track of the
4714 index of each SOM in the archive.
4715
4716 The SOM dictionary has (among other things) the absolute file
4717 position for the SOM which a particular dictionary entry
4718 describes. We have to compute that information as we iterate
4719 through the SOMs/symbols. */
4720 som_index = 0;
4721 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
4722
4723 /* FIXME should be done with buffers just like everything else... */
4724 lst_syms = alloca (nsyms * sizeof (struct lst_symbol_record));
4725 strings = alloca (string_size);
4726 p = strings;
4727 curr_lst_sym = lst_syms;
4728
4729
4730 while (curr_bfd != NULL)
4731 {
4732 unsigned int curr_count, i;
4733 som_symbol_type *sym;
4734
4735 /* Make sure the symbol table has been read, then snag a pointer
4736 to it. It's a little slimey to grab the symbols via obj_som_symtab,
4737 but doing so avoids allocating lots of extra memory. */
4738 if (som_slurp_symbol_table (curr_bfd) == false)
4739 return false;
4740
4741 sym = obj_som_symtab (curr_bfd);
4742 curr_count = bfd_get_symcount (curr_bfd);
4743
4744 for (i = 0; i < curr_count; i++, sym++)
4745 {
4746 struct som_misc_symbol_info info;
4747
4748 /* Derive SOM information from the BFD symbol. */
4749 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
4750
4751 /* Should we include this symbol? */
4752 if (info.symbol_type == ST_NULL
4753 || info.symbol_type == ST_SYM_EXT
4754 || info.symbol_type == ST_ARG_EXT)
4755 continue;
4756
4757 /* Only global symbols and unsatisfied commons. */
4758 if (info.symbol_scope != SS_UNIVERSAL
4759 && info.symbol_type != ST_STORAGE)
4760 continue;
4761
4762 /* Do no include undefined symbols. */
4763 if (sym->symbol.section == &bfd_und_section)
4764 continue;
4765
4766 /* If this is the first symbol from this SOM, then update
4767 the SOM dictionary too. */
4768 if (som_dict[som_index].location == 0)
4769 {
4770 som_dict[som_index].location = curr_som_offset;
4771 som_dict[som_index].length = arelt_size (curr_bfd);
4772 }
4773
4774 /* Fill in the lst symbol record. */
4775 curr_lst_sym->hidden = 0;
4776 curr_lst_sym->secondary_def = 0;
4777 curr_lst_sym->symbol_type = info.symbol_type;
4778 curr_lst_sym->symbol_scope = info.symbol_scope;
4779 curr_lst_sym->check_level = 0;
4780 curr_lst_sym->must_qualify = 0;
4781 curr_lst_sym->initially_frozen = 0;
4782 curr_lst_sym->memory_resident = 0;
4783 curr_lst_sym->is_common = (sym->symbol.section == &bfd_com_section);
4784 curr_lst_sym->dup_common = 0;
4785 curr_lst_sym->xleast = 0;
4786 curr_lst_sym->arg_reloc = info.arg_reloc;
4787 curr_lst_sym->name.n_strx = p - strings + 4;
4788 curr_lst_sym->qualifier_name.n_strx = 0;
4789 curr_lst_sym->symbol_info = info.symbol_info;
4790 curr_lst_sym->symbol_value = info.symbol_value;
4791 curr_lst_sym->symbol_descriptor = 0;
4792 curr_lst_sym->reserved = 0;
4793 curr_lst_sym->som_index = som_index;
4794 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
4795 curr_lst_sym->next_entry = 0;
4796
4797 /* Insert into the hash table. */
4798 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
4799 {
4800 struct lst_symbol_record *tmp;
4801
4802 /* There is already something at the head of this hash chain,
4803 so tack this symbol onto the end of the chain. */
4804 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
4805 tmp->next_entry
4806 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
4807 + lst.hash_size * 4
4808 + lst.module_count * sizeof (struct som_entry)
4809 + sizeof (struct lst_header);
4810 }
4811 else
4812 {
4813 /* First entry in this hash chain. */
4814 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
4815 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
4816 + lst.hash_size * 4
4817 + lst.module_count * sizeof (struct som_entry)
4818 + sizeof (struct lst_header);
4819 }
4820
4821 /* Keep track of the last symbol we added to this chain so we can
4822 easily update its next_entry pointer. */
4823 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
4824 = curr_lst_sym;
4825
4826
4827 /* Update the string table. */
4828 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
4829 p += 4;
4830 strcpy (p, sym->symbol.name);
4831 p += strlen (sym->symbol.name) + 1;
4832 while ((int)p % 4)
4833 {
4834 bfd_put_8 (abfd, 0, p);
4835 p++;
4836 }
4837
4838 /* Head to the next symbol. */
4839 curr_lst_sym++;
4840 }
4841
4842 /* Keep track of where each SOM will finally reside; then look
4843 at the next BFD. */
4844 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
4845 curr_bfd = curr_bfd->next;
4846 som_index++;
4847 }
4848
4849 /* Now scribble out the hash table. */
4850 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
4851 != lst.hash_size * 4)
4852 {
4853 bfd_set_error (bfd_error_system_call);
4854 return false;
4855 }
4856
4857 /* Then the SOM dictionary. */
4858 if (bfd_write ((PTR) som_dict, lst.module_count,
4859 sizeof (struct som_entry), abfd)
4860 != lst.module_count * sizeof (struct som_entry))
4861 {
4862 bfd_set_error (bfd_error_system_call);
4863 return false;
4864 }
4865
4866 /* The library symbols. */
4867 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
4868 != nsyms * sizeof (struct lst_symbol_record))
4869 {
4870 bfd_set_error (bfd_error_system_call);
4871 return false;
4872 }
4873
4874 /* And finally the strings. */
4875 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
4876 {
4877 bfd_set_error (bfd_error_system_call);
4878 return false;
4879 }
4880
4881 return true;
4882 }
4883
4884 /* Write out the LST for the archive.
4885
4886 You'll never believe this is really how armaps are handled in SOM... */
4887
4888 static boolean
4889 som_write_armap (abfd)
4890 bfd *abfd;
4891 {
4892 bfd *curr_bfd;
4893 struct stat statbuf;
4894 unsigned int i, lst_size, nsyms, stringsize;
4895 struct ar_hdr hdr;
4896 struct lst_header lst;
4897 int *p;
4898
4899 /* We'll use this for the archive's date and mode later. */
4900 if (stat (abfd->filename, &statbuf) != 0)
4901 {
4902 bfd_set_error (bfd_error_system_call);
4903 return false;
4904 }
4905 /* Fudge factor. */
4906 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
4907
4908 /* Account for the lst header first. */
4909 lst_size = sizeof (struct lst_header);
4910
4911 /* Start building the LST header. */
4912 lst.system_id = HP9000S800_ID;
4913 lst.a_magic = LIBMAGIC;
4914 lst.version_id = VERSION_ID;
4915 lst.file_time.secs = 0;
4916 lst.file_time.nanosecs = 0;
4917
4918 lst.hash_loc = lst_size;
4919 lst.hash_size = SOM_LST_HASH_SIZE;
4920
4921 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
4922 lst_size += 4 * SOM_LST_HASH_SIZE;
4923
4924 /* We need to count the number of SOMs in this archive. */
4925 curr_bfd = abfd->archive_head;
4926 lst.module_count = 0;
4927 while (curr_bfd != NULL)
4928 {
4929 lst.module_count++;
4930 curr_bfd = curr_bfd->next;
4931 }
4932 lst.module_limit = lst.module_count;
4933 lst.dir_loc = lst_size;
4934 lst_size += sizeof (struct som_entry) * lst.module_count;
4935
4936 /* We don't support import/export tables, auxiliary headers,
4937 or free lists yet. Make the linker work a little harder
4938 to make our life easier. */
4939
4940 lst.export_loc = 0;
4941 lst.export_count = 0;
4942 lst.import_loc = 0;
4943 lst.aux_loc = 0;
4944 lst.aux_size = 0;
4945
4946 /* Count how many symbols we will have on the hash chains and the
4947 size of the associated string table. */
4948 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
4949 return false;
4950
4951 lst_size += sizeof (struct lst_symbol_record) * nsyms;
4952
4953 /* For the string table. One day we might actually use this info
4954 to avoid small seeks/reads when reading archives. */
4955 lst.string_loc = lst_size;
4956 lst.string_size = stringsize;
4957 lst_size += stringsize;
4958
4959 /* SOM ABI says this must be zero. */
4960 lst.free_list = 0;
4961
4962 lst.file_end = lst_size;
4963
4964 /* Compute the checksum. Must happen after the entire lst header
4965 has filled in. */
4966 p = (int *)&lst;
4967 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
4968 lst.checksum ^= *p++;
4969
4970 sprintf (hdr.ar_name, "/ ");
4971 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
4972 sprintf (hdr.ar_uid, "%d", getuid ());
4973 sprintf (hdr.ar_gid, "%d", getgid ());
4974 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
4975 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
4976 hdr.ar_fmag[0] = '`';
4977 hdr.ar_fmag[1] = '\012';
4978
4979 /* Turn any nulls into spaces. */
4980 for (i = 0; i < sizeof (struct ar_hdr); i++)
4981 if (((char *) (&hdr))[i] == '\0')
4982 (((char *) (&hdr))[i]) = ' ';
4983
4984 /* Scribble out the ar header. */
4985 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
4986 != sizeof (struct ar_hdr))
4987 {
4988 bfd_set_error (bfd_error_system_call);
4989 return false;
4990 }
4991
4992 /* Now scribble out the lst header. */
4993 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
4994 != sizeof (struct lst_header))
4995 {
4996 bfd_set_error (bfd_error_system_call);
4997 return false;
4998 }
4999
5000 /* Build and write the armap. */
5001 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst) == false)
5002 return false;
5003
5004 /* Done. */
5005 return true;
5006 }
5007
5008 /* Apparently the extened names are never used, even though they appear
5009 in the SOM ABI. Hmmm. */
5010 static boolean
5011 som_slurp_extended_name_table (abfd)
5012 bfd *abfd;
5013 {
5014 bfd_ardata (abfd)->extended_names = NULL;
5015 return true;
5016 }
5017
5018 /* End of miscellaneous support functions. */
5019
5020 #define som_bfd_debug_info_start bfd_void
5021 #define som_bfd_debug_info_end bfd_void
5022 #define som_bfd_debug_info_accumulate (PROTO(void,(*),(bfd*, struct sec *))) bfd_void
5023
5024 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
5025 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
5026 #define som_truncate_arname bfd_bsd_truncate_arname
5027
5028 #define som_get_lineno (struct lineno_cache_entry *(*)())bfd_nullvoidptr
5029 #define som_close_and_cleanup bfd_generic_close_and_cleanup
5030 #define som_get_section_contents bfd_generic_get_section_contents
5031
5032 #define som_bfd_get_relocated_section_contents \
5033 bfd_generic_get_relocated_section_contents
5034 #define som_bfd_relax_section bfd_generic_relax_section
5035 #define som_bfd_make_debug_symbol \
5036 ((asymbol *(*) PARAMS ((bfd *, void *, unsigned long))) bfd_nullvoidptr)
5037 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
5038 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
5039 #define som_bfd_final_link _bfd_generic_final_link
5040
5041 /* Core file support is in the hpux-core backend. */
5042 #define som_core_file_failing_command _bfd_dummy_core_file_failing_command
5043 #define som_core_file_failing_signal _bfd_dummy_core_file_failing_signal
5044 #define som_core_file_matches_executable_p _bfd_dummy_core_file_matches_executable_p
5045
5046 bfd_target som_vec =
5047 {
5048 "som", /* name */
5049 bfd_target_som_flavour,
5050 true, /* target byte order */
5051 true, /* target headers byte order */
5052 (HAS_RELOC | EXEC_P | /* object flags */
5053 HAS_LINENO | HAS_DEBUG |
5054 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
5055 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
5056 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
5057
5058 /* leading_symbol_char: is the first char of a user symbol
5059 predictable, and if so what is it */
5060 0,
5061 '/', /* ar_pad_char */
5062 16, /* ar_max_namelen */
5063 3, /* minimum alignment */
5064 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5065 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5066 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
5067 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5068 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5069 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
5070 {_bfd_dummy_target,
5071 som_object_p, /* bfd_check_format */
5072 bfd_generic_archive_p,
5073 _bfd_dummy_target
5074 },
5075 {
5076 bfd_false,
5077 som_mkobject,
5078 _bfd_generic_mkarchive,
5079 bfd_false
5080 },
5081 {
5082 bfd_false,
5083 som_write_object_contents,
5084 _bfd_write_archive_contents,
5085 bfd_false,
5086 },
5087 #undef som
5088 JUMP_TABLE (som),
5089 (PTR) 0
5090 };
5091
5092 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */