* som.c (bfd_section_from_som_symbol): Only return sections which
[binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
3
4 Contributed by the Center for Software Science at the
5 University of Utah (pa-gdb-bugs@cs.utah.edu).
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23 #include "bfd.h"
24 #include "sysdep.h"
25
26 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)
27
28 #include "libbfd.h"
29 #include "som.h"
30
31 #include <stdio.h>
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <signal.h>
35 #include <machine/reg.h>
36 #include <sys/file.h>
37 #include <errno.h>
38
39 /* Magic not defined in standard HP-UX header files until 8.0 */
40
41 #ifndef CPU_PA_RISC1_0
42 #define CPU_PA_RISC1_0 0x20B
43 #endif /* CPU_PA_RISC1_0 */
44
45 #ifndef CPU_PA_RISC1_1
46 #define CPU_PA_RISC1_1 0x210
47 #endif /* CPU_PA_RISC1_1 */
48
49 #ifndef _PA_RISC1_0_ID
50 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
51 #endif /* _PA_RISC1_0_ID */
52
53 #ifndef _PA_RISC1_1_ID
54 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
55 #endif /* _PA_RISC1_1_ID */
56
57 #ifndef _PA_RISC_MAXID
58 #define _PA_RISC_MAXID 0x2FF
59 #endif /* _PA_RISC_MAXID */
60
61 #ifndef _PA_RISC_ID
62 #define _PA_RISC_ID(__m_num) \
63 (((__m_num) == _PA_RISC1_0_ID) || \
64 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
65 #endif /* _PA_RISC_ID */
66
67
68 /* HIUX in it's infinite stupidity changed the names for several "well
69 known" constants. Work around such braindamage. Try the HPUX version
70 first, then the HIUX version, and finally provide a default. */
71 #ifdef HPUX_AUX_ID
72 #define EXEC_AUX_ID HPUX_AUX_ID
73 #endif
74
75 #if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID)
76 #define EXEC_AUX_ID HIUX_AUX_ID
77 #endif
78
79 #ifndef EXEC_AUX_ID
80 #define EXEC_AUX_ID 0
81 #endif
82
83 /* Size (in chars) of the temporary buffers used during fixup and string
84 table writes. */
85
86 #define SOM_TMP_BUFSIZE 8192
87
88 /* Size of the hash table in archives. */
89 #define SOM_LST_HASH_SIZE 31
90
91 /* Max number of SOMs to be found in an archive. */
92 #define SOM_LST_MODULE_LIMIT 1024
93
94 /* Generic alignment macro. */
95 #define SOM_ALIGN(val, alignment) \
96 (((val) + (alignment) - 1) & ~((alignment) - 1))
97
98 /* SOM allows any one of the four previous relocations to be reused
99 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
100 relocations are always a single byte, using a R_PREV_FIXUP instead
101 of some multi-byte relocation makes object files smaller.
102
103 Note one side effect of using a R_PREV_FIXUP is the relocation that
104 is being repeated moves to the front of the queue. */
105 struct reloc_queue
106 {
107 unsigned char *reloc;
108 unsigned int size;
109 } reloc_queue[4];
110
111 /* This fully describes the symbol types which may be attached to
112 an EXPORT or IMPORT directive. Only SOM uses this formation
113 (ELF has no need for it). */
114 typedef enum
115 {
116 SYMBOL_TYPE_UNKNOWN,
117 SYMBOL_TYPE_ABSOLUTE,
118 SYMBOL_TYPE_CODE,
119 SYMBOL_TYPE_DATA,
120 SYMBOL_TYPE_ENTRY,
121 SYMBOL_TYPE_MILLICODE,
122 SYMBOL_TYPE_PLABEL,
123 SYMBOL_TYPE_PRI_PROG,
124 SYMBOL_TYPE_SEC_PROG,
125 } pa_symbol_type;
126
127 struct section_to_type
128 {
129 char *section;
130 char type;
131 };
132
133 /* Assorted symbol information that needs to be derived from the BFD symbol
134 and/or the BFD backend private symbol data. */
135 struct som_misc_symbol_info
136 {
137 unsigned int symbol_type;
138 unsigned int symbol_scope;
139 unsigned int arg_reloc;
140 unsigned int symbol_info;
141 unsigned int symbol_value;
142 };
143
144 /* Forward declarations */
145
146 static boolean som_mkobject PARAMS ((bfd *));
147 static const bfd_target * som_object_setup PARAMS ((bfd *,
148 struct header *,
149 struct som_exec_auxhdr *));
150 static boolean setup_sections PARAMS ((bfd *, struct header *));
151 static const bfd_target * som_object_p PARAMS ((bfd *));
152 static boolean som_write_object_contents PARAMS ((bfd *));
153 static boolean som_slurp_string_table PARAMS ((bfd *));
154 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
155 static long som_get_symtab_upper_bound PARAMS ((bfd *));
156 static long som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
157 arelent **, asymbol **));
158 static long som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
159 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
160 arelent *, asection *,
161 asymbol **, boolean));
162 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
163 asymbol **, boolean));
164 static long som_get_symtab PARAMS ((bfd *, asymbol **));
165 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
166 static void som_print_symbol PARAMS ((bfd *, PTR,
167 asymbol *, bfd_print_symbol_type));
168 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
169 static boolean som_bfd_copy_private_section_data PARAMS ((bfd *, asection *,
170 bfd *, asection *));
171 static boolean som_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
172 static boolean som_bfd_is_local_label PARAMS ((bfd *, asymbol *));
173 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
174 file_ptr, bfd_size_type));
175 static boolean som_get_section_contents PARAMS ((bfd *, sec_ptr, PTR,
176 file_ptr, bfd_size_type));
177 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
178 unsigned long));
179 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
180 asymbol **, bfd_vma,
181 CONST char **,
182 CONST char **,
183 unsigned int *));
184 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
185 static asection * bfd_section_from_som_symbol PARAMS ((bfd *,
186 struct symbol_dictionary_record *));
187 static int log2 PARAMS ((unsigned int));
188 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
189 asymbol *, PTR,
190 asection *, bfd *,
191 char **));
192 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
193 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
194 struct reloc_queue *));
195 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
196 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
197 struct reloc_queue *));
198 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
199 unsigned int,
200 struct reloc_queue *));
201
202 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
203 unsigned char *, unsigned int *,
204 struct reloc_queue *));
205 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
206 unsigned int *,
207 struct reloc_queue *));
208 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
209 unsigned int *,
210 arelent *, int,
211 struct reloc_queue *));
212 static unsigned long som_count_spaces PARAMS ((bfd *));
213 static unsigned long som_count_subspaces PARAMS ((bfd *));
214 static int compare_syms PARAMS ((const void *, const void *));
215 static unsigned long som_compute_checksum PARAMS ((bfd *));
216 static boolean som_prep_headers PARAMS ((bfd *));
217 static int som_sizeof_headers PARAMS ((bfd *, boolean));
218 static boolean som_write_headers PARAMS ((bfd *));
219 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
220 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
221 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
222 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
223 unsigned int *));
224 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
225 asymbol **, unsigned int,
226 unsigned *));
227 static boolean som_begin_writing PARAMS ((bfd *));
228 static const reloc_howto_type * som_bfd_reloc_type_lookup
229 PARAMS ((bfd *, bfd_reloc_code_real_type));
230 static char som_section_type PARAMS ((const char *));
231 static int som_decode_symclass PARAMS ((asymbol *));
232 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
233 symindex *));
234
235 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
236 carsym **syms));
237 static boolean som_slurp_armap PARAMS ((bfd *));
238 static boolean som_write_armap PARAMS ((bfd *, unsigned int, struct orl *,
239 unsigned int, int));
240 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
241 struct som_misc_symbol_info *));
242 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
243 unsigned int *));
244 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
245 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
246 unsigned int,
247 struct lst_header));
248 static CONST char *normalize PARAMS ((CONST char *file));
249 static boolean som_is_space PARAMS ((asection *));
250 static boolean som_is_subspace PARAMS ((asection *));
251 static boolean som_is_container PARAMS ((asection *, asection *));
252 static boolean som_bfd_free_cached_info PARAMS ((bfd *));
253
254 /* Map SOM section names to POSIX/BSD single-character symbol types.
255
256 This table includes all the standard subspaces as defined in the
257 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
258 some reason was left out, and sections specific to embedded stabs. */
259
260 static const struct section_to_type stt[] = {
261 {"$TEXT$", 't'},
262 {"$SHLIB_INFO$", 't'},
263 {"$MILLICODE$", 't'},
264 {"$LIT$", 't'},
265 {"$CODE$", 't'},
266 {"$UNWIND_START$", 't'},
267 {"$UNWIND$", 't'},
268 {"$PRIVATE$", 'd'},
269 {"$PLT$", 'd'},
270 {"$SHLIB_DATA$", 'd'},
271 {"$DATA$", 'd'},
272 {"$SHORTDATA$", 'g'},
273 {"$DLT$", 'd'},
274 {"$GLOBAL$", 'g'},
275 {"$SHORTBSS$", 's'},
276 {"$BSS$", 'b'},
277 {"$GDB_STRINGS$", 'N'},
278 {"$GDB_SYMBOLS$", 'N'},
279 {0, 0}
280 };
281
282 /* About the relocation formatting table...
283
284 There are 256 entries in the table, one for each possible
285 relocation opcode available in SOM. We index the table by
286 the relocation opcode. The names and operations are those
287 defined by a.out_800 (4).
288
289 Right now this table is only used to count and perform minimal
290 processing on relocation streams so that they can be internalized
291 into BFD and symbolically printed by utilities. To make actual use
292 of them would be much more difficult, BFD's concept of relocations
293 is far too simple to handle SOM relocations. The basic assumption
294 that a relocation can be completely processed independent of other
295 relocations before an object file is written is invalid for SOM.
296
297 The SOM relocations are meant to be processed as a stream, they
298 specify copying of data from the input section to the output section
299 while possibly modifying the data in some manner. They also can
300 specify that a variable number of zeros or uninitialized data be
301 inserted on in the output segment at the current offset. Some
302 relocations specify that some previous relocation be re-applied at
303 the current location in the input/output sections. And finally a number
304 of relocations have effects on other sections (R_ENTRY, R_EXIT,
305 R_UNWIND_AUX and a variety of others). There isn't even enough room
306 in the BFD relocation data structure to store enough information to
307 perform all the relocations.
308
309 Each entry in the table has three fields.
310
311 The first entry is an index into this "class" of relocations. This
312 index can then be used as a variable within the relocation itself.
313
314 The second field is a format string which actually controls processing
315 of the relocation. It uses a simple postfix machine to do calculations
316 based on variables/constants found in the string and the relocation
317 stream.
318
319 The third field specifys whether or not this relocation may use
320 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
321 stored in the instruction.
322
323 Variables:
324
325 L = input space byte count
326 D = index into class of relocations
327 M = output space byte count
328 N = statement number (unused?)
329 O = stack operation
330 R = parameter relocation bits
331 S = symbol index
332 T = first 32 bits of stack unwind information
333 U = second 32 bits of stack unwind information
334 V = a literal constant (usually used in the next relocation)
335 P = a previous relocation
336
337 Lower case letters (starting with 'b') refer to following
338 bytes in the relocation stream. 'b' is the next 1 byte,
339 c is the next 2 bytes, d is the next 3 bytes, etc...
340 This is the variable part of the relocation entries that
341 makes our life a living hell.
342
343 numerical constants are also used in the format string. Note
344 the constants are represented in decimal.
345
346 '+', "*" and "=" represents the obvious postfix operators.
347 '<' represents a left shift.
348
349 Stack Operations:
350
351 Parameter Relocation Bits:
352
353 Unwind Entries:
354
355 Previous Relocations: The index field represents which in the queue
356 of 4 previous fixups should be re-applied.
357
358 Literal Constants: These are generally used to represent addend
359 parts of relocations when these constants are not stored in the
360 fields of the instructions themselves. For example the instruction
361 addil foo-$global$-0x1234 would use an override for "0x1234" rather
362 than storing it into the addil itself. */
363
364 struct fixup_format
365 {
366 int D;
367 char *format;
368 };
369
370 static const struct fixup_format som_fixup_formats[256] =
371 {
372 /* R_NO_RELOCATION */
373 0, "LD1+4*=", /* 0x00 */
374 1, "LD1+4*=", /* 0x01 */
375 2, "LD1+4*=", /* 0x02 */
376 3, "LD1+4*=", /* 0x03 */
377 4, "LD1+4*=", /* 0x04 */
378 5, "LD1+4*=", /* 0x05 */
379 6, "LD1+4*=", /* 0x06 */
380 7, "LD1+4*=", /* 0x07 */
381 8, "LD1+4*=", /* 0x08 */
382 9, "LD1+4*=", /* 0x09 */
383 10, "LD1+4*=", /* 0x0a */
384 11, "LD1+4*=", /* 0x0b */
385 12, "LD1+4*=", /* 0x0c */
386 13, "LD1+4*=", /* 0x0d */
387 14, "LD1+4*=", /* 0x0e */
388 15, "LD1+4*=", /* 0x0f */
389 16, "LD1+4*=", /* 0x10 */
390 17, "LD1+4*=", /* 0x11 */
391 18, "LD1+4*=", /* 0x12 */
392 19, "LD1+4*=", /* 0x13 */
393 20, "LD1+4*=", /* 0x14 */
394 21, "LD1+4*=", /* 0x15 */
395 22, "LD1+4*=", /* 0x16 */
396 23, "LD1+4*=", /* 0x17 */
397 0, "LD8<b+1+4*=", /* 0x18 */
398 1, "LD8<b+1+4*=", /* 0x19 */
399 2, "LD8<b+1+4*=", /* 0x1a */
400 3, "LD8<b+1+4*=", /* 0x1b */
401 0, "LD16<c+1+4*=", /* 0x1c */
402 1, "LD16<c+1+4*=", /* 0x1d */
403 2, "LD16<c+1+4*=", /* 0x1e */
404 0, "Ld1+=", /* 0x1f */
405 /* R_ZEROES */
406 0, "Lb1+4*=", /* 0x20 */
407 1, "Ld1+=", /* 0x21 */
408 /* R_UNINIT */
409 0, "Lb1+4*=", /* 0x22 */
410 1, "Ld1+=", /* 0x23 */
411 /* R_RELOCATION */
412 0, "L4=", /* 0x24 */
413 /* R_DATA_ONE_SYMBOL */
414 0, "L4=Sb=", /* 0x25 */
415 1, "L4=Sd=", /* 0x26 */
416 /* R_DATA_PLEBEL */
417 0, "L4=Sb=", /* 0x27 */
418 1, "L4=Sd=", /* 0x28 */
419 /* R_SPACE_REF */
420 0, "L4=", /* 0x29 */
421 /* R_REPEATED_INIT */
422 0, "L4=Mb1+4*=", /* 0x2a */
423 1, "Lb4*=Mb1+L*=", /* 0x2b */
424 2, "Lb4*=Md1+4*=", /* 0x2c */
425 3, "Ld1+=Me1+=", /* 0x2d */
426 /* R_RESERVED */
427 0, "", /* 0x2e */
428 0, "", /* 0x2f */
429 /* R_PCREL_CALL */
430 0, "L4=RD=Sb=", /* 0x30 */
431 1, "L4=RD=Sb=", /* 0x31 */
432 2, "L4=RD=Sb=", /* 0x32 */
433 3, "L4=RD=Sb=", /* 0x33 */
434 4, "L4=RD=Sb=", /* 0x34 */
435 5, "L4=RD=Sb=", /* 0x35 */
436 6, "L4=RD=Sb=", /* 0x36 */
437 7, "L4=RD=Sb=", /* 0x37 */
438 8, "L4=RD=Sb=", /* 0x38 */
439 9, "L4=RD=Sb=", /* 0x39 */
440 0, "L4=RD8<b+=Sb=",/* 0x3a */
441 1, "L4=RD8<b+=Sb=",/* 0x3b */
442 0, "L4=RD8<b+=Sd=",/* 0x3c */
443 1, "L4=RD8<b+=Sd=",/* 0x3d */
444 /* R_RESERVED */
445 0, "", /* 0x3e */
446 0, "", /* 0x3f */
447 /* R_ABS_CALL */
448 0, "L4=RD=Sb=", /* 0x40 */
449 1, "L4=RD=Sb=", /* 0x41 */
450 2, "L4=RD=Sb=", /* 0x42 */
451 3, "L4=RD=Sb=", /* 0x43 */
452 4, "L4=RD=Sb=", /* 0x44 */
453 5, "L4=RD=Sb=", /* 0x45 */
454 6, "L4=RD=Sb=", /* 0x46 */
455 7, "L4=RD=Sb=", /* 0x47 */
456 8, "L4=RD=Sb=", /* 0x48 */
457 9, "L4=RD=Sb=", /* 0x49 */
458 0, "L4=RD8<b+=Sb=",/* 0x4a */
459 1, "L4=RD8<b+=Sb=",/* 0x4b */
460 0, "L4=RD8<b+=Sd=",/* 0x4c */
461 1, "L4=RD8<b+=Sd=",/* 0x4d */
462 /* R_RESERVED */
463 0, "", /* 0x4e */
464 0, "", /* 0x4f */
465 /* R_DP_RELATIVE */
466 0, "L4=SD=", /* 0x50 */
467 1, "L4=SD=", /* 0x51 */
468 2, "L4=SD=", /* 0x52 */
469 3, "L4=SD=", /* 0x53 */
470 4, "L4=SD=", /* 0x54 */
471 5, "L4=SD=", /* 0x55 */
472 6, "L4=SD=", /* 0x56 */
473 7, "L4=SD=", /* 0x57 */
474 8, "L4=SD=", /* 0x58 */
475 9, "L4=SD=", /* 0x59 */
476 10, "L4=SD=", /* 0x5a */
477 11, "L4=SD=", /* 0x5b */
478 12, "L4=SD=", /* 0x5c */
479 13, "L4=SD=", /* 0x5d */
480 14, "L4=SD=", /* 0x5e */
481 15, "L4=SD=", /* 0x5f */
482 16, "L4=SD=", /* 0x60 */
483 17, "L4=SD=", /* 0x61 */
484 18, "L4=SD=", /* 0x62 */
485 19, "L4=SD=", /* 0x63 */
486 20, "L4=SD=", /* 0x64 */
487 21, "L4=SD=", /* 0x65 */
488 22, "L4=SD=", /* 0x66 */
489 23, "L4=SD=", /* 0x67 */
490 24, "L4=SD=", /* 0x68 */
491 25, "L4=SD=", /* 0x69 */
492 26, "L4=SD=", /* 0x6a */
493 27, "L4=SD=", /* 0x6b */
494 28, "L4=SD=", /* 0x6c */
495 29, "L4=SD=", /* 0x6d */
496 30, "L4=SD=", /* 0x6e */
497 31, "L4=SD=", /* 0x6f */
498 32, "L4=Sb=", /* 0x70 */
499 33, "L4=Sd=", /* 0x71 */
500 /* R_RESERVED */
501 0, "", /* 0x72 */
502 0, "", /* 0x73 */
503 0, "", /* 0x74 */
504 0, "", /* 0x75 */
505 0, "", /* 0x76 */
506 0, "", /* 0x77 */
507 /* R_DLT_REL */
508 0, "L4=Sb=", /* 0x78 */
509 1, "L4=Sd=", /* 0x79 */
510 /* R_RESERVED */
511 0, "", /* 0x7a */
512 0, "", /* 0x7b */
513 0, "", /* 0x7c */
514 0, "", /* 0x7d */
515 0, "", /* 0x7e */
516 0, "", /* 0x7f */
517 /* R_CODE_ONE_SYMBOL */
518 0, "L4=SD=", /* 0x80 */
519 1, "L4=SD=", /* 0x81 */
520 2, "L4=SD=", /* 0x82 */
521 3, "L4=SD=", /* 0x83 */
522 4, "L4=SD=", /* 0x84 */
523 5, "L4=SD=", /* 0x85 */
524 6, "L4=SD=", /* 0x86 */
525 7, "L4=SD=", /* 0x87 */
526 8, "L4=SD=", /* 0x88 */
527 9, "L4=SD=", /* 0x89 */
528 10, "L4=SD=", /* 0x8q */
529 11, "L4=SD=", /* 0x8b */
530 12, "L4=SD=", /* 0x8c */
531 13, "L4=SD=", /* 0x8d */
532 14, "L4=SD=", /* 0x8e */
533 15, "L4=SD=", /* 0x8f */
534 16, "L4=SD=", /* 0x90 */
535 17, "L4=SD=", /* 0x91 */
536 18, "L4=SD=", /* 0x92 */
537 19, "L4=SD=", /* 0x93 */
538 20, "L4=SD=", /* 0x94 */
539 21, "L4=SD=", /* 0x95 */
540 22, "L4=SD=", /* 0x96 */
541 23, "L4=SD=", /* 0x97 */
542 24, "L4=SD=", /* 0x98 */
543 25, "L4=SD=", /* 0x99 */
544 26, "L4=SD=", /* 0x9a */
545 27, "L4=SD=", /* 0x9b */
546 28, "L4=SD=", /* 0x9c */
547 29, "L4=SD=", /* 0x9d */
548 30, "L4=SD=", /* 0x9e */
549 31, "L4=SD=", /* 0x9f */
550 32, "L4=Sb=", /* 0xa0 */
551 33, "L4=Sd=", /* 0xa1 */
552 /* R_RESERVED */
553 0, "", /* 0xa2 */
554 0, "", /* 0xa3 */
555 0, "", /* 0xa4 */
556 0, "", /* 0xa5 */
557 0, "", /* 0xa6 */
558 0, "", /* 0xa7 */
559 0, "", /* 0xa8 */
560 0, "", /* 0xa9 */
561 0, "", /* 0xaa */
562 0, "", /* 0xab */
563 0, "", /* 0xac */
564 0, "", /* 0xad */
565 /* R_MILLI_REL */
566 0, "L4=Sb=", /* 0xae */
567 1, "L4=Sd=", /* 0xaf */
568 /* R_CODE_PLABEL */
569 0, "L4=Sb=", /* 0xb0 */
570 1, "L4=Sd=", /* 0xb1 */
571 /* R_BREAKPOINT */
572 0, "L4=", /* 0xb2 */
573 /* R_ENTRY */
574 0, "Te=Ue=", /* 0xb3 */
575 1, "Uf=", /* 0xb4 */
576 /* R_ALT_ENTRY */
577 0, "", /* 0xb5 */
578 /* R_EXIT */
579 0, "", /* 0xb6 */
580 /* R_BEGIN_TRY */
581 0, "", /* 0xb7 */
582 /* R_END_TRY */
583 0, "R0=", /* 0xb8 */
584 1, "Rb4*=", /* 0xb9 */
585 2, "Rd4*=", /* 0xba */
586 /* R_BEGIN_BRTAB */
587 0, "", /* 0xbb */
588 /* R_END_BRTAB */
589 0, "", /* 0xbc */
590 /* R_STATEMENT */
591 0, "Nb=", /* 0xbd */
592 1, "Nc=", /* 0xbe */
593 2, "Nd=", /* 0xbf */
594 /* R_DATA_EXPR */
595 0, "L4=", /* 0xc0 */
596 /* R_CODE_EXPR */
597 0, "L4=", /* 0xc1 */
598 /* R_FSEL */
599 0, "", /* 0xc2 */
600 /* R_LSEL */
601 0, "", /* 0xc3 */
602 /* R_RSEL */
603 0, "", /* 0xc4 */
604 /* R_N_MODE */
605 0, "", /* 0xc5 */
606 /* R_S_MODE */
607 0, "", /* 0xc6 */
608 /* R_D_MODE */
609 0, "", /* 0xc7 */
610 /* R_R_MODE */
611 0, "", /* 0xc8 */
612 /* R_DATA_OVERRIDE */
613 0, "V0=", /* 0xc9 */
614 1, "Vb=", /* 0xca */
615 2, "Vc=", /* 0xcb */
616 3, "Vd=", /* 0xcc */
617 4, "Ve=", /* 0xcd */
618 /* R_TRANSLATED */
619 0, "", /* 0xce */
620 /* R_RESERVED */
621 0, "", /* 0xcf */
622 /* R_COMP1 */
623 0, "Ob=", /* 0xd0 */
624 /* R_COMP2 */
625 0, "Ob=Sd=", /* 0xd1 */
626 /* R_COMP3 */
627 0, "Ob=Ve=", /* 0xd2 */
628 /* R_PREV_FIXUP */
629 0, "P", /* 0xd3 */
630 1, "P", /* 0xd4 */
631 2, "P", /* 0xd5 */
632 3, "P", /* 0xd6 */
633 /* R_RESERVED */
634 0, "", /* 0xd7 */
635 0, "", /* 0xd8 */
636 0, "", /* 0xd9 */
637 0, "", /* 0xda */
638 0, "", /* 0xdb */
639 0, "", /* 0xdc */
640 0, "", /* 0xdd */
641 0, "", /* 0xde */
642 0, "", /* 0xdf */
643 0, "", /* 0xe0 */
644 0, "", /* 0xe1 */
645 0, "", /* 0xe2 */
646 0, "", /* 0xe3 */
647 0, "", /* 0xe4 */
648 0, "", /* 0xe5 */
649 0, "", /* 0xe6 */
650 0, "", /* 0xe7 */
651 0, "", /* 0xe8 */
652 0, "", /* 0xe9 */
653 0, "", /* 0xea */
654 0, "", /* 0xeb */
655 0, "", /* 0xec */
656 0, "", /* 0xed */
657 0, "", /* 0xee */
658 0, "", /* 0xef */
659 0, "", /* 0xf0 */
660 0, "", /* 0xf1 */
661 0, "", /* 0xf2 */
662 0, "", /* 0xf3 */
663 0, "", /* 0xf4 */
664 0, "", /* 0xf5 */
665 0, "", /* 0xf6 */
666 0, "", /* 0xf7 */
667 0, "", /* 0xf8 */
668 0, "", /* 0xf9 */
669 0, "", /* 0xfa */
670 0, "", /* 0xfb */
671 0, "", /* 0xfc */
672 0, "", /* 0xfd */
673 0, "", /* 0xfe */
674 0, "", /* 0xff */
675 };
676
677 static const int comp1_opcodes[] =
678 {
679 0x00,
680 0x40,
681 0x41,
682 0x42,
683 0x43,
684 0x44,
685 0x45,
686 0x46,
687 0x47,
688 0x48,
689 0x49,
690 0x4a,
691 0x4b,
692 0x60,
693 0x80,
694 0xa0,
695 0xc0,
696 -1
697 };
698
699 static const int comp2_opcodes[] =
700 {
701 0x00,
702 0x80,
703 0x82,
704 0xc0,
705 -1
706 };
707
708 static const int comp3_opcodes[] =
709 {
710 0x00,
711 0x02,
712 -1
713 };
714
715 /* These apparently are not in older versions of hpux reloc.h. */
716 #ifndef R_DLT_REL
717 #define R_DLT_REL 0x78
718 #endif
719
720 #ifndef R_AUX_UNWIND
721 #define R_AUX_UNWIND 0xcf
722 #endif
723
724 #ifndef R_SEC_STMT
725 #define R_SEC_STMT 0xd7
726 #endif
727
728 static reloc_howto_type som_hppa_howto_table[] =
729 {
730 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
731 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
732 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
733 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
734 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
735 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
736 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
737 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
738 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
739 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
740 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
741 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
742 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
743 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
744 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
745 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
746 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
747 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
748 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
749 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
750 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
751 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
752 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
753 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
754 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
755 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
756 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
757 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
758 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
759 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
760 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
761 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
762 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
763 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
764 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
765 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
766 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
767 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
768 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
769 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
770 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
771 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
772 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
773 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
774 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
775 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
776 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
777 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
778 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
779 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
780 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
781 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
782 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
783 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
784 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
785 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
786 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
787 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
788 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
789 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
790 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
791 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
792 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
793 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
794 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
795 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
796 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
797 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
798 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
799 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
800 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
801 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
802 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
803 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
804 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
805 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
806 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
807 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
808 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
809 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
810 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
811 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
812 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
813 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
814 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
815 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
816 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
817 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
818 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
819 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
820 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
821 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
822 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
823 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
824 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
825 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
826 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
827 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
828 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
829 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
830 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
831 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
832 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
833 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
834 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
835 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
836 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
837 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
838 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
839 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
840 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
841 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
842 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
843 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
844 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
845 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
846 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
847 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
848 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
849 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
850 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
851 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
852 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
853 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
854 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
855 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
856 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
857 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
858 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
859 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
860 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
861 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
862 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
863 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
864 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
865 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
866 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
867 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
868 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
869 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
870 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
871 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
872 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
873 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
874 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
875 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
876 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
877 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
878 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
879 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
880 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
881 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
882 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
883 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
884 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
885 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
886 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
887 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
888 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
889 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
890 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
891 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
892 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
893 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
894 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
895 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
896 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
897 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
898 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
899 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
900 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
901 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
902 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
903 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
904 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
905 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
906 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
907 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
908 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
909 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
910 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
911 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
912 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
913 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
914 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
915 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
916 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
917 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
918 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
919 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
920 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
921 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
922 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
923 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
924 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
925 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
926 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
927 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
928 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
929 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
930 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
931 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
932 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
933 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
934 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
935 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
936 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
937 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
938 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
939 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
940 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
941 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
942 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
943 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
944 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
945 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
946 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
947 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
948 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
949 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
950 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
951 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
952 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
953 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
954 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
955 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
956 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
957 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
958 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
959 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
960 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
961 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
962 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
963 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
964 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
965 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
966 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
967 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
968 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
969 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
970 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
971 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
972 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
973 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
974 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
975 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
976 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
977 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
978 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
979 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
980 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
981 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
982 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
983 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
984 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
985 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
986
987 /* Initialize the SOM relocation queue. By definition the queue holds
988 the last four multibyte fixups. */
989
990 static void
991 som_initialize_reloc_queue (queue)
992 struct reloc_queue *queue;
993 {
994 queue[0].reloc = NULL;
995 queue[0].size = 0;
996 queue[1].reloc = NULL;
997 queue[1].size = 0;
998 queue[2].reloc = NULL;
999 queue[2].size = 0;
1000 queue[3].reloc = NULL;
1001 queue[3].size = 0;
1002 }
1003
1004 /* Insert a new relocation into the relocation queue. */
1005
1006 static void
1007 som_reloc_queue_insert (p, size, queue)
1008 unsigned char *p;
1009 unsigned int size;
1010 struct reloc_queue *queue;
1011 {
1012 queue[3].reloc = queue[2].reloc;
1013 queue[3].size = queue[2].size;
1014 queue[2].reloc = queue[1].reloc;
1015 queue[2].size = queue[1].size;
1016 queue[1].reloc = queue[0].reloc;
1017 queue[1].size = queue[0].size;
1018 queue[0].reloc = p;
1019 queue[0].size = size;
1020 }
1021
1022 /* When an entry in the relocation queue is reused, the entry moves
1023 to the front of the queue. */
1024
1025 static void
1026 som_reloc_queue_fix (queue, index)
1027 struct reloc_queue *queue;
1028 unsigned int index;
1029 {
1030 if (index == 0)
1031 return;
1032
1033 if (index == 1)
1034 {
1035 unsigned char *tmp1 = queue[0].reloc;
1036 unsigned int tmp2 = queue[0].size;
1037 queue[0].reloc = queue[1].reloc;
1038 queue[0].size = queue[1].size;
1039 queue[1].reloc = tmp1;
1040 queue[1].size = tmp2;
1041 return;
1042 }
1043
1044 if (index == 2)
1045 {
1046 unsigned char *tmp1 = queue[0].reloc;
1047 unsigned int tmp2 = queue[0].size;
1048 queue[0].reloc = queue[2].reloc;
1049 queue[0].size = queue[2].size;
1050 queue[2].reloc = queue[1].reloc;
1051 queue[2].size = queue[1].size;
1052 queue[1].reloc = tmp1;
1053 queue[1].size = tmp2;
1054 return;
1055 }
1056
1057 if (index == 3)
1058 {
1059 unsigned char *tmp1 = queue[0].reloc;
1060 unsigned int tmp2 = queue[0].size;
1061 queue[0].reloc = queue[3].reloc;
1062 queue[0].size = queue[3].size;
1063 queue[3].reloc = queue[2].reloc;
1064 queue[3].size = queue[2].size;
1065 queue[2].reloc = queue[1].reloc;
1066 queue[2].size = queue[1].size;
1067 queue[1].reloc = tmp1;
1068 queue[1].size = tmp2;
1069 return;
1070 }
1071 abort();
1072 }
1073
1074 /* Search for a particular relocation in the relocation queue. */
1075
1076 static int
1077 som_reloc_queue_find (p, size, queue)
1078 unsigned char *p;
1079 unsigned int size;
1080 struct reloc_queue *queue;
1081 {
1082 if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
1083 && size == queue[0].size)
1084 return 0;
1085 if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
1086 && size == queue[1].size)
1087 return 1;
1088 if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
1089 && size == queue[2].size)
1090 return 2;
1091 if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
1092 && size == queue[3].size)
1093 return 3;
1094 return -1;
1095 }
1096
1097 static unsigned char *
1098 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1099 bfd *abfd;
1100 int *subspace_reloc_sizep;
1101 unsigned char *p;
1102 unsigned int size;
1103 struct reloc_queue *queue;
1104 {
1105 int queue_index = som_reloc_queue_find (p, size, queue);
1106
1107 if (queue_index != -1)
1108 {
1109 /* Found this in a previous fixup. Undo the fixup we
1110 just built and use R_PREV_FIXUP instead. We saved
1111 a total of size - 1 bytes in the fixup stream. */
1112 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1113 p += 1;
1114 *subspace_reloc_sizep += 1;
1115 som_reloc_queue_fix (queue, queue_index);
1116 }
1117 else
1118 {
1119 som_reloc_queue_insert (p, size, queue);
1120 *subspace_reloc_sizep += size;
1121 p += size;
1122 }
1123 return p;
1124 }
1125
1126 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1127 bytes without any relocation. Update the size of the subspace
1128 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1129 current pointer into the relocation stream. */
1130
1131 static unsigned char *
1132 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1133 bfd *abfd;
1134 unsigned int skip;
1135 unsigned char *p;
1136 unsigned int *subspace_reloc_sizep;
1137 struct reloc_queue *queue;
1138 {
1139 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1140 then R_PREV_FIXUPs to get the difference down to a
1141 reasonable size. */
1142 if (skip >= 0x1000000)
1143 {
1144 skip -= 0x1000000;
1145 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1146 bfd_put_8 (abfd, 0xff, p + 1);
1147 bfd_put_16 (abfd, 0xffff, p + 2);
1148 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1149 while (skip >= 0x1000000)
1150 {
1151 skip -= 0x1000000;
1152 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1153 p++;
1154 *subspace_reloc_sizep += 1;
1155 /* No need to adjust queue here since we are repeating the
1156 most recent fixup. */
1157 }
1158 }
1159
1160 /* The difference must be less than 0x1000000. Use one
1161 more R_NO_RELOCATION entry to get to the right difference. */
1162 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1163 {
1164 /* Difference can be handled in a simple single-byte
1165 R_NO_RELOCATION entry. */
1166 if (skip <= 0x60)
1167 {
1168 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1169 *subspace_reloc_sizep += 1;
1170 p++;
1171 }
1172 /* Handle it with a two byte R_NO_RELOCATION entry. */
1173 else if (skip <= 0x1000)
1174 {
1175 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1176 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1177 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1178 }
1179 /* Handle it with a three byte R_NO_RELOCATION entry. */
1180 else
1181 {
1182 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1183 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1184 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1185 }
1186 }
1187 /* Ugh. Punt and use a 4 byte entry. */
1188 else if (skip > 0)
1189 {
1190 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1191 bfd_put_8 (abfd, (skip - 1) >> 16, p + 1);
1192 bfd_put_16 (abfd, skip - 1, p + 2);
1193 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1194 }
1195 return p;
1196 }
1197
1198 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1199 from a BFD relocation. Update the size of the subspace relocation
1200 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1201 into the relocation stream. */
1202
1203 static unsigned char *
1204 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1205 bfd *abfd;
1206 int addend;
1207 unsigned char *p;
1208 unsigned int *subspace_reloc_sizep;
1209 struct reloc_queue *queue;
1210 {
1211 if ((unsigned)(addend) + 0x80 < 0x100)
1212 {
1213 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1214 bfd_put_8 (abfd, addend, p + 1);
1215 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1216 }
1217 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1218 {
1219 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1220 bfd_put_16 (abfd, addend, p + 1);
1221 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1222 }
1223 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1224 {
1225 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1226 bfd_put_8 (abfd, addend >> 16, p + 1);
1227 bfd_put_16 (abfd, addend, p + 2);
1228 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1229 }
1230 else
1231 {
1232 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1233 bfd_put_32 (abfd, addend, p + 1);
1234 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1235 }
1236 return p;
1237 }
1238
1239 /* Handle a single function call relocation. */
1240
1241 static unsigned char *
1242 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1243 bfd *abfd;
1244 unsigned char *p;
1245 unsigned int *subspace_reloc_sizep;
1246 arelent *bfd_reloc;
1247 int sym_num;
1248 struct reloc_queue *queue;
1249 {
1250 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1251 int rtn_bits = arg_bits & 0x3;
1252 int type, done = 0;
1253
1254 /* You'll never believe all this is necessary to handle relocations
1255 for function calls. Having to compute and pack the argument
1256 relocation bits is the real nightmare.
1257
1258 If you're interested in how this works, just forget it. You really
1259 do not want to know about this braindamage. */
1260
1261 /* First see if this can be done with a "simple" relocation. Simple
1262 relocations have a symbol number < 0x100 and have simple encodings
1263 of argument relocations. */
1264
1265 if (sym_num < 0x100)
1266 {
1267 switch (arg_bits)
1268 {
1269 case 0:
1270 case 1:
1271 type = 0;
1272 break;
1273 case 1 << 8:
1274 case 1 << 8 | 1:
1275 type = 1;
1276 break;
1277 case 1 << 8 | 1 << 6:
1278 case 1 << 8 | 1 << 6 | 1:
1279 type = 2;
1280 break;
1281 case 1 << 8 | 1 << 6 | 1 << 4:
1282 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1283 type = 3;
1284 break;
1285 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1286 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1287 type = 4;
1288 break;
1289 default:
1290 /* Not one of the easy encodings. This will have to be
1291 handled by the more complex code below. */
1292 type = -1;
1293 break;
1294 }
1295 if (type != -1)
1296 {
1297 /* Account for the return value too. */
1298 if (rtn_bits)
1299 type += 5;
1300
1301 /* Emit a 2 byte relocation. Then see if it can be handled
1302 with a relocation which is already in the relocation queue. */
1303 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1304 bfd_put_8 (abfd, sym_num, p + 1);
1305 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1306 done = 1;
1307 }
1308 }
1309
1310 /* If this could not be handled with a simple relocation, then do a hard
1311 one. Hard relocations occur if the symbol number was too high or if
1312 the encoding of argument relocation bits is too complex. */
1313 if (! done)
1314 {
1315 /* Don't ask about these magic sequences. I took them straight
1316 from gas-1.36 which took them from the a.out man page. */
1317 type = rtn_bits;
1318 if ((arg_bits >> 6 & 0xf) == 0xe)
1319 type += 9 * 40;
1320 else
1321 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1322 if ((arg_bits >> 2 & 0xf) == 0xe)
1323 type += 9 * 4;
1324 else
1325 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1326
1327 /* Output the first two bytes of the relocation. These describe
1328 the length of the relocation and encoding style. */
1329 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1330 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1331 p);
1332 bfd_put_8 (abfd, type, p + 1);
1333
1334 /* Now output the symbol index and see if this bizarre relocation
1335 just happened to be in the relocation queue. */
1336 if (sym_num < 0x100)
1337 {
1338 bfd_put_8 (abfd, sym_num, p + 2);
1339 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1340 }
1341 else
1342 {
1343 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1344 bfd_put_16 (abfd, sym_num, p + 3);
1345 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1346 }
1347 }
1348 return p;
1349 }
1350
1351
1352 /* Return the logarithm of X, base 2, considering X unsigned.
1353 Abort -1 if X is not a power or two or is zero. */
1354
1355 static int
1356 log2 (x)
1357 unsigned int x;
1358 {
1359 int log = 0;
1360
1361 /* Test for 0 or a power of 2. */
1362 if (x == 0 || x != (x & -x))
1363 return -1;
1364
1365 while ((x >>= 1) != 0)
1366 log++;
1367 return log;
1368 }
1369
1370 static bfd_reloc_status_type
1371 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1372 input_section, output_bfd, error_message)
1373 bfd *abfd;
1374 arelent *reloc_entry;
1375 asymbol *symbol_in;
1376 PTR data;
1377 asection *input_section;
1378 bfd *output_bfd;
1379 char **error_message;
1380 {
1381 if (output_bfd)
1382 {
1383 reloc_entry->address += input_section->output_offset;
1384 return bfd_reloc_ok;
1385 }
1386 return bfd_reloc_ok;
1387 }
1388
1389 /* Given a generic HPPA relocation type, the instruction format,
1390 and a field selector, return one or more appropriate SOM relocations. */
1391
1392 int **
1393 hppa_som_gen_reloc_type (abfd, base_type, format, field)
1394 bfd *abfd;
1395 int base_type;
1396 int format;
1397 enum hppa_reloc_field_selector_type_alt field;
1398 {
1399 int *final_type, **final_types;
1400
1401 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 3);
1402 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1403 if (!final_types || !final_type)
1404 {
1405 bfd_set_error (bfd_error_no_memory);
1406 return NULL;
1407 }
1408
1409 /* The field selector may require additional relocations to be
1410 generated. It's impossible to know at this moment if additional
1411 relocations will be needed, so we make them. The code to actually
1412 write the relocation/fixup stream is responsible for removing
1413 any redundant relocations. */
1414 switch (field)
1415 {
1416 case e_fsel:
1417 case e_psel:
1418 case e_lpsel:
1419 case e_rpsel:
1420 final_types[0] = final_type;
1421 final_types[1] = NULL;
1422 final_types[2] = NULL;
1423 *final_type = base_type;
1424 break;
1425
1426 case e_tsel:
1427 case e_ltsel:
1428 case e_rtsel:
1429 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1430 if (!final_types[0])
1431 {
1432 bfd_set_error (bfd_error_no_memory);
1433 return NULL;
1434 }
1435 if (field == e_tsel)
1436 *final_types[0] = R_FSEL;
1437 else if (field == e_ltsel)
1438 *final_types[0] = R_LSEL;
1439 else
1440 *final_types[0] = R_RSEL;
1441 final_types[1] = final_type;
1442 final_types[2] = NULL;
1443 *final_type = base_type;
1444 break;
1445
1446 case e_lssel:
1447 case e_rssel:
1448 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1449 if (!final_types[0])
1450 {
1451 bfd_set_error (bfd_error_no_memory);
1452 return NULL;
1453 }
1454 *final_types[0] = R_S_MODE;
1455 final_types[1] = final_type;
1456 final_types[2] = NULL;
1457 *final_type = base_type;
1458 break;
1459
1460 case e_lsel:
1461 case e_rsel:
1462 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1463 if (!final_types[0])
1464 {
1465 bfd_set_error (bfd_error_no_memory);
1466 return NULL;
1467 }
1468 *final_types[0] = R_N_MODE;
1469 final_types[1] = final_type;
1470 final_types[2] = NULL;
1471 *final_type = base_type;
1472 break;
1473
1474 case e_ldsel:
1475 case e_rdsel:
1476 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1477 if (!final_types[0])
1478 {
1479 bfd_set_error (bfd_error_no_memory);
1480 return NULL;
1481 }
1482 *final_types[0] = R_D_MODE;
1483 final_types[1] = final_type;
1484 final_types[2] = NULL;
1485 *final_type = base_type;
1486 break;
1487
1488 case e_lrsel:
1489 case e_rrsel:
1490 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1491 if (!final_types[0])
1492 {
1493 bfd_set_error (bfd_error_no_memory);
1494 return NULL;
1495 }
1496 *final_types[0] = R_R_MODE;
1497 final_types[1] = final_type;
1498 final_types[2] = NULL;
1499 *final_type = base_type;
1500 break;
1501 }
1502
1503 switch (base_type)
1504 {
1505 case R_HPPA:
1506 /* PLABELs get their own relocation type. */
1507 if (field == e_psel
1508 || field == e_lpsel
1509 || field == e_rpsel)
1510 {
1511 /* A PLABEL relocation that has a size of 32 bits must
1512 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1513 if (format == 32)
1514 *final_type = R_DATA_PLABEL;
1515 else
1516 *final_type = R_CODE_PLABEL;
1517 }
1518 /* PIC stuff. */
1519 else if (field == e_tsel
1520 || field == e_ltsel
1521 || field == e_rtsel)
1522 *final_type = R_DLT_REL;
1523 /* A relocation in the data space is always a full 32bits. */
1524 else if (format == 32)
1525 *final_type = R_DATA_ONE_SYMBOL;
1526
1527 break;
1528
1529 case R_HPPA_GOTOFF:
1530 /* More PLABEL special cases. */
1531 if (field == e_psel
1532 || field == e_lpsel
1533 || field == e_rpsel)
1534 *final_type = R_DATA_PLABEL;
1535 break;
1536
1537 case R_HPPA_NONE:
1538 case R_HPPA_ABS_CALL:
1539 case R_HPPA_PCREL_CALL:
1540 /* Right now we can default all these. */
1541 break;
1542 }
1543 return final_types;
1544 }
1545
1546 /* Return the address of the correct entry in the PA SOM relocation
1547 howto table. */
1548
1549 /*ARGSUSED*/
1550 static const reloc_howto_type *
1551 som_bfd_reloc_type_lookup (abfd, code)
1552 bfd *abfd;
1553 bfd_reloc_code_real_type code;
1554 {
1555 if ((int) code < (int) R_NO_RELOCATION + 255)
1556 {
1557 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1558 return &som_hppa_howto_table[(int) code];
1559 }
1560
1561 return (reloc_howto_type *) 0;
1562 }
1563
1564 /* Perform some initialization for an object. Save results of this
1565 initialization in the BFD. */
1566
1567 static const bfd_target *
1568 som_object_setup (abfd, file_hdrp, aux_hdrp)
1569 bfd *abfd;
1570 struct header *file_hdrp;
1571 struct som_exec_auxhdr *aux_hdrp;
1572 {
1573 /* som_mkobject will set bfd_error if som_mkobject fails. */
1574 if (som_mkobject (abfd) != true)
1575 return 0;
1576
1577 /* Set BFD flags based on what information is available in the SOM. */
1578 abfd->flags = NO_FLAGS;
1579 if (file_hdrp->symbol_total)
1580 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1581
1582 switch (file_hdrp->a_magic)
1583 {
1584 case DEMAND_MAGIC:
1585 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1586 break;
1587 case SHARE_MAGIC:
1588 abfd->flags |= (WP_TEXT | EXEC_P);
1589 break;
1590 case EXEC_MAGIC:
1591 abfd->flags |= (EXEC_P);
1592 break;
1593 case RELOC_MAGIC:
1594 abfd->flags |= HAS_RELOC;
1595 break;
1596 #ifdef SHL_MAGIC
1597 case SHL_MAGIC:
1598 #endif
1599 #ifdef DL_MAGIC
1600 case DL_MAGIC:
1601 #endif
1602 abfd->flags |= DYNAMIC;
1603 break;
1604
1605 default:
1606 break;
1607 }
1608
1609 /* Allocate space to hold the saved exec header information. */
1610 obj_som_exec_data (abfd) = (struct som_exec_data *)
1611 bfd_zalloc (abfd, sizeof (struct som_exec_data ));
1612 if (obj_som_exec_data (abfd) == NULL)
1613 {
1614 bfd_set_error (bfd_error_no_memory);
1615 return NULL;
1616 }
1617
1618 /* The braindamaged OSF1 linker switched exec_flags and exec_entry!
1619
1620 It seems rather backward that the OSF1 linker which is much
1621 older than any HPUX linker I've got uses a newer SOM version
1622 id... But that's what I've found by experimentation. */
1623 if (file_hdrp->version_id == NEW_VERSION_ID)
1624 {
1625 bfd_get_start_address (abfd) = aux_hdrp->exec_flags;
1626 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_entry;
1627 }
1628 else
1629 {
1630 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1631 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1632 }
1633
1634 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 0);
1635 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1636
1637 /* Initialize the saved symbol table and string table to NULL.
1638 Save important offsets and sizes from the SOM header into
1639 the BFD. */
1640 obj_som_stringtab (abfd) = (char *) NULL;
1641 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1642 obj_som_sorted_syms (abfd) = NULL;
1643 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1644 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1645 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1646 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
1647 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1648
1649 return abfd->xvec;
1650 }
1651
1652 /* Convert all of the space and subspace info into BFD sections. Each space
1653 contains a number of subspaces, which in turn describe the mapping between
1654 regions of the exec file, and the address space that the program runs in.
1655 BFD sections which correspond to spaces will overlap the sections for the
1656 associated subspaces. */
1657
1658 static boolean
1659 setup_sections (abfd, file_hdr)
1660 bfd *abfd;
1661 struct header *file_hdr;
1662 {
1663 char *space_strings;
1664 int space_index;
1665 unsigned int total_subspaces = 0;
1666
1667 /* First, read in space names */
1668
1669 space_strings = malloc (file_hdr->space_strings_size);
1670 if (!space_strings && file_hdr->space_strings_size != 0)
1671 {
1672 bfd_set_error (bfd_error_no_memory);
1673 goto error_return;
1674 }
1675
1676 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
1677 goto error_return;
1678 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1679 != file_hdr->space_strings_size)
1680 goto error_return;
1681
1682 /* Loop over all of the space dictionaries, building up sections */
1683 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1684 {
1685 struct space_dictionary_record space;
1686 struct subspace_dictionary_record subspace, save_subspace;
1687 int subspace_index;
1688 asection *space_asect;
1689 char *newname;
1690
1691 /* Read the space dictionary element */
1692 if (bfd_seek (abfd, file_hdr->space_location
1693 + space_index * sizeof space, SEEK_SET) < 0)
1694 goto error_return;
1695 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1696 goto error_return;
1697
1698 /* Setup the space name string */
1699 space.name.n_name = space.name.n_strx + space_strings;
1700
1701 /* Make a section out of it */
1702 newname = bfd_alloc (abfd, strlen (space.name.n_name) + 1);
1703 if (!newname)
1704 goto error_return;
1705 strcpy (newname, space.name.n_name);
1706
1707 space_asect = bfd_make_section_anyway (abfd, newname);
1708 if (!space_asect)
1709 goto error_return;
1710
1711 if (space.is_loadable == 0)
1712 space_asect->flags |= SEC_DEBUGGING;
1713
1714 /* Set up all the attributes for the space. */
1715 if (bfd_som_set_section_attributes (space_asect, space.is_defined,
1716 space.is_private, space.sort_key,
1717 space.space_number) == false)
1718 goto error_return;
1719
1720 /* Now, read in the first subspace for this space */
1721 if (bfd_seek (abfd, file_hdr->subspace_location
1722 + space.subspace_index * sizeof subspace,
1723 SEEK_SET) < 0)
1724 goto error_return;
1725 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1726 goto error_return;
1727 /* Seek back to the start of the subspaces for loop below */
1728 if (bfd_seek (abfd, file_hdr->subspace_location
1729 + space.subspace_index * sizeof subspace,
1730 SEEK_SET) < 0)
1731 goto error_return;
1732
1733 /* Setup the start address and file loc from the first subspace record */
1734 space_asect->vma = subspace.subspace_start;
1735 space_asect->filepos = subspace.file_loc_init_value;
1736 space_asect->alignment_power = log2 (subspace.alignment);
1737 if (space_asect->alignment_power == -1)
1738 goto error_return;
1739
1740 /* Initialize save_subspace so we can reliably determine if this
1741 loop placed any useful values into it. */
1742 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1743
1744 /* Loop over the rest of the subspaces, building up more sections */
1745 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1746 subspace_index++)
1747 {
1748 asection *subspace_asect;
1749
1750 /* Read in the next subspace */
1751 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1752 != sizeof subspace)
1753 goto error_return;
1754
1755 /* Setup the subspace name string */
1756 subspace.name.n_name = subspace.name.n_strx + space_strings;
1757
1758 newname = bfd_alloc (abfd, strlen (subspace.name.n_name) + 1);
1759 if (!newname)
1760 goto error_return;
1761 strcpy (newname, subspace.name.n_name);
1762
1763 /* Make a section out of this subspace */
1764 subspace_asect = bfd_make_section_anyway (abfd, newname);
1765 if (!subspace_asect)
1766 goto error_return;
1767
1768 /* Store private information about the section. */
1769 if (bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1770 subspace.access_control_bits,
1771 subspace.sort_key,
1772 subspace.quadrant) == false)
1773 goto error_return;
1774
1775 /* Keep an easy mapping between subspaces and sections. */
1776 subspace_asect->target_index = total_subspaces++;
1777
1778 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1779 by the access_control_bits in the subspace header. */
1780 switch (subspace.access_control_bits >> 4)
1781 {
1782 /* Readonly data. */
1783 case 0x0:
1784 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1785 break;
1786
1787 /* Normal data. */
1788 case 0x1:
1789 subspace_asect->flags |= SEC_DATA;
1790 break;
1791
1792 /* Readonly code and the gateways.
1793 Gateways have other attributes which do not map
1794 into anything BFD knows about. */
1795 case 0x2:
1796 case 0x4:
1797 case 0x5:
1798 case 0x6:
1799 case 0x7:
1800 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1801 break;
1802
1803 /* dynamic (writable) code. */
1804 case 0x3:
1805 subspace_asect->flags |= SEC_CODE;
1806 break;
1807 }
1808
1809 if (subspace.dup_common || subspace.is_common)
1810 subspace_asect->flags |= SEC_IS_COMMON;
1811 else if (subspace.subspace_length > 0)
1812 subspace_asect->flags |= SEC_HAS_CONTENTS;
1813
1814 if (subspace.is_loadable)
1815 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1816 else
1817 subspace_asect->flags |= SEC_DEBUGGING;
1818
1819 if (subspace.code_only)
1820 subspace_asect->flags |= SEC_CODE;
1821
1822 /* Both file_loc_init_value and initialization_length will
1823 be zero for a BSS like subspace. */
1824 if (subspace.file_loc_init_value == 0
1825 && subspace.initialization_length == 0)
1826 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD | SEC_HAS_CONTENTS);
1827
1828 /* This subspace has relocations.
1829 The fixup_request_quantity is a byte count for the number of
1830 entries in the relocation stream; it is not the actual number
1831 of relocations in the subspace. */
1832 if (subspace.fixup_request_quantity != 0)
1833 {
1834 subspace_asect->flags |= SEC_RELOC;
1835 subspace_asect->rel_filepos = subspace.fixup_request_index;
1836 som_section_data (subspace_asect)->reloc_size
1837 = subspace.fixup_request_quantity;
1838 /* We can not determine this yet. When we read in the
1839 relocation table the correct value will be filled in. */
1840 subspace_asect->reloc_count = -1;
1841 }
1842
1843 /* Update save_subspace if appropriate. */
1844 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1845 save_subspace = subspace;
1846
1847 subspace_asect->vma = subspace.subspace_start;
1848 subspace_asect->_cooked_size = subspace.subspace_length;
1849 subspace_asect->_raw_size = subspace.subspace_length;
1850 subspace_asect->filepos = subspace.file_loc_init_value;
1851 subspace_asect->alignment_power = log2 (subspace.alignment);
1852 if (subspace_asect->alignment_power == -1)
1853 goto error_return;
1854 }
1855
1856 /* Yow! there is no subspace within the space which actually
1857 has initialized information in it; this should never happen
1858 as far as I know. */
1859 if (!save_subspace.file_loc_init_value)
1860 goto error_return;
1861
1862 /* Setup the sizes for the space section based upon the info in the
1863 last subspace of the space. */
1864 space_asect->_cooked_size = save_subspace.subspace_start
1865 - space_asect->vma + save_subspace.subspace_length;
1866 space_asect->_raw_size = save_subspace.file_loc_init_value
1867 - space_asect->filepos + save_subspace.initialization_length;
1868 }
1869 if (space_strings != NULL)
1870 free (space_strings);
1871 return true;
1872
1873 error_return:
1874 if (space_strings != NULL)
1875 free (space_strings);
1876 return false;
1877 }
1878
1879 /* Read in a SOM object and make it into a BFD. */
1880
1881 static const bfd_target *
1882 som_object_p (abfd)
1883 bfd *abfd;
1884 {
1885 struct header file_hdr;
1886 struct som_exec_auxhdr aux_hdr;
1887
1888 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
1889 {
1890 if (bfd_get_error () != bfd_error_system_call)
1891 bfd_set_error (bfd_error_wrong_format);
1892 return 0;
1893 }
1894
1895 if (!_PA_RISC_ID (file_hdr.system_id))
1896 {
1897 bfd_set_error (bfd_error_wrong_format);
1898 return 0;
1899 }
1900
1901 switch (file_hdr.a_magic)
1902 {
1903 case RELOC_MAGIC:
1904 case EXEC_MAGIC:
1905 case SHARE_MAGIC:
1906 case DEMAND_MAGIC:
1907 #ifdef DL_MAGIC
1908 case DL_MAGIC:
1909 #endif
1910 #ifdef SHL_MAGIC
1911 case SHL_MAGIC:
1912 #endif
1913 #ifdef EXECLIBMAGIC
1914 case EXECLIBMAGIC:
1915 #endif
1916 #ifdef SHARED_MAGIC_CNX
1917 case SHARED_MAGIC_CNX:
1918 #endif
1919 break;
1920 default:
1921 bfd_set_error (bfd_error_wrong_format);
1922 return 0;
1923 }
1924
1925 if (file_hdr.version_id != VERSION_ID
1926 && file_hdr.version_id != NEW_VERSION_ID)
1927 {
1928 bfd_set_error (bfd_error_wrong_format);
1929 return 0;
1930 }
1931
1932 /* If the aux_header_size field in the file header is zero, then this
1933 object is an incomplete executable (a .o file). Do not try to read
1934 a non-existant auxiliary header. */
1935 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
1936 if (file_hdr.aux_header_size != 0)
1937 {
1938 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
1939 {
1940 if (bfd_get_error () != bfd_error_system_call)
1941 bfd_set_error (bfd_error_wrong_format);
1942 return 0;
1943 }
1944 }
1945
1946 if (!setup_sections (abfd, &file_hdr))
1947 {
1948 /* setup_sections does not bubble up a bfd error code. */
1949 bfd_set_error (bfd_error_bad_value);
1950 return 0;
1951 }
1952
1953 /* This appears to be a valid SOM object. Do some initialization. */
1954 return som_object_setup (abfd, &file_hdr, &aux_hdr);
1955 }
1956
1957 /* Create a SOM object. */
1958
1959 static boolean
1960 som_mkobject (abfd)
1961 bfd *abfd;
1962 {
1963 /* Allocate memory to hold backend information. */
1964 abfd->tdata.som_data = (struct som_data_struct *)
1965 bfd_zalloc (abfd, sizeof (struct som_data_struct));
1966 if (abfd->tdata.som_data == NULL)
1967 {
1968 bfd_set_error (bfd_error_no_memory);
1969 return false;
1970 }
1971 return true;
1972 }
1973
1974 /* Initialize some information in the file header. This routine makes
1975 not attempt at doing the right thing for a full executable; it
1976 is only meant to handle relocatable objects. */
1977
1978 static boolean
1979 som_prep_headers (abfd)
1980 bfd *abfd;
1981 {
1982 struct header *file_hdr;
1983 asection *section;
1984
1985 /* Make and attach a file header to the BFD. */
1986 file_hdr = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
1987 if (file_hdr == NULL)
1988
1989 {
1990 bfd_set_error (bfd_error_no_memory);
1991 return false;
1992 }
1993 obj_som_file_hdr (abfd) = file_hdr;
1994
1995 if (abfd->flags & (EXEC_P | DYNAMIC))
1996 {
1997
1998 /* Make and attach an exec header to the BFD. */
1999 obj_som_exec_hdr (abfd) = (struct som_exec_auxhdr *)
2000 bfd_zalloc (abfd, sizeof (struct som_exec_auxhdr));
2001 if (obj_som_exec_hdr (abfd) == NULL)
2002 {
2003 bfd_set_error (bfd_error_no_memory);
2004 return false;
2005 }
2006
2007 if (abfd->flags & D_PAGED)
2008 file_hdr->a_magic = DEMAND_MAGIC;
2009 else if (abfd->flags & WP_TEXT)
2010 file_hdr->a_magic = SHARE_MAGIC;
2011 #ifdef SHL_MAGIC
2012 else if (abfd->flags & DYNAMIC)
2013 file_hdr->a_magic = SHL_MAGIC;
2014 #endif
2015 else
2016 file_hdr->a_magic = EXEC_MAGIC;
2017 }
2018 else
2019 file_hdr->a_magic = RELOC_MAGIC;
2020
2021 /* Only new format SOM is supported. */
2022 file_hdr->version_id = NEW_VERSION_ID;
2023
2024 /* These fields are optional, and embedding timestamps is not always
2025 a wise thing to do, it makes comparing objects during a multi-stage
2026 bootstrap difficult. */
2027 file_hdr->file_time.secs = 0;
2028 file_hdr->file_time.nanosecs = 0;
2029
2030 file_hdr->entry_space = 0;
2031 file_hdr->entry_subspace = 0;
2032 file_hdr->entry_offset = 0;
2033 file_hdr->presumed_dp = 0;
2034
2035 /* Now iterate over the sections translating information from
2036 BFD sections to SOM spaces/subspaces. */
2037
2038 for (section = abfd->sections; section != NULL; section = section->next)
2039 {
2040 /* Ignore anything which has not been marked as a space or
2041 subspace. */
2042 if (!som_is_space (section) && !som_is_subspace (section))
2043 continue;
2044
2045 if (som_is_space (section))
2046 {
2047 /* Allocate space for the space dictionary. */
2048 som_section_data (section)->space_dict
2049 = (struct space_dictionary_record *)
2050 bfd_zalloc (abfd, sizeof (struct space_dictionary_record));
2051 if (som_section_data (section)->space_dict == NULL)
2052 {
2053 bfd_set_error (bfd_error_no_memory);
2054 return false;
2055 }
2056 /* Set space attributes. Note most attributes of SOM spaces
2057 are set based on the subspaces it contains. */
2058 som_section_data (section)->space_dict->loader_fix_index = -1;
2059 som_section_data (section)->space_dict->init_pointer_index = -1;
2060
2061 /* Set more attributes that were stuffed away in private data. */
2062 som_section_data (section)->space_dict->sort_key =
2063 som_section_data (section)->copy_data->sort_key;
2064 som_section_data (section)->space_dict->is_defined =
2065 som_section_data (section)->copy_data->is_defined;
2066 som_section_data (section)->space_dict->is_private =
2067 som_section_data (section)->copy_data->is_private;
2068 som_section_data (section)->space_dict->space_number =
2069 som_section_data (section)->copy_data->space_number;
2070 }
2071 else
2072 {
2073 /* Allocate space for the subspace dictionary. */
2074 som_section_data (section)->subspace_dict
2075 = (struct subspace_dictionary_record *)
2076 bfd_zalloc (abfd, sizeof (struct subspace_dictionary_record));
2077 if (som_section_data (section)->subspace_dict == NULL)
2078 {
2079 bfd_set_error (bfd_error_no_memory);
2080 return false;
2081 }
2082
2083 /* Set subspace attributes. Basic stuff is done here, additional
2084 attributes are filled in later as more information becomes
2085 available. */
2086 if (section->flags & SEC_IS_COMMON)
2087 {
2088 som_section_data (section)->subspace_dict->dup_common = 1;
2089 som_section_data (section)->subspace_dict->is_common = 1;
2090 }
2091
2092 if (section->flags & SEC_ALLOC)
2093 som_section_data (section)->subspace_dict->is_loadable = 1;
2094
2095 if (section->flags & SEC_CODE)
2096 som_section_data (section)->subspace_dict->code_only = 1;
2097
2098 som_section_data (section)->subspace_dict->subspace_start =
2099 section->vma;
2100 som_section_data (section)->subspace_dict->subspace_length =
2101 bfd_section_size (abfd, section);
2102 som_section_data (section)->subspace_dict->initialization_length =
2103 bfd_section_size (abfd, section);
2104 som_section_data (section)->subspace_dict->alignment =
2105 1 << section->alignment_power;
2106
2107 /* Set more attributes that were stuffed away in private data. */
2108 som_section_data (section)->subspace_dict->sort_key =
2109 som_section_data (section)->copy_data->sort_key;
2110 som_section_data (section)->subspace_dict->access_control_bits =
2111 som_section_data (section)->copy_data->access_control_bits;
2112 som_section_data (section)->subspace_dict->quadrant =
2113 som_section_data (section)->copy_data->quadrant;
2114 }
2115 }
2116 return true;
2117 }
2118
2119 /* Return true if the given section is a SOM space, false otherwise. */
2120
2121 static boolean
2122 som_is_space (section)
2123 asection *section;
2124 {
2125 /* If no copy data is available, then it's neither a space nor a
2126 subspace. */
2127 if (som_section_data (section)->copy_data == NULL)
2128 return false;
2129
2130 /* If the containing space isn't the same as the given section,
2131 then this isn't a space. */
2132 if (som_section_data (section)->copy_data->container != section)
2133 return false;
2134
2135 /* OK. Must be a space. */
2136 return true;
2137 }
2138
2139 /* Return true if the given section is a SOM subspace, false otherwise. */
2140
2141 static boolean
2142 som_is_subspace (section)
2143 asection *section;
2144 {
2145 /* If no copy data is available, then it's neither a space nor a
2146 subspace. */
2147 if (som_section_data (section)->copy_data == NULL)
2148 return false;
2149
2150 /* If the containing space is the same as the given section,
2151 then this isn't a subspace. */
2152 if (som_section_data (section)->copy_data->container == section)
2153 return false;
2154
2155 /* OK. Must be a subspace. */
2156 return true;
2157 }
2158
2159 /* Return true if the given space containins the given subspace. It
2160 is safe to assume space really is a space, and subspace really
2161 is a subspace. */
2162
2163 static boolean
2164 som_is_container (space, subspace)
2165 asection *space, *subspace;
2166 {
2167 return som_section_data (subspace)->copy_data->container == space;
2168 }
2169
2170 /* Count and return the number of spaces attached to the given BFD. */
2171
2172 static unsigned long
2173 som_count_spaces (abfd)
2174 bfd *abfd;
2175 {
2176 int count = 0;
2177 asection *section;
2178
2179 for (section = abfd->sections; section != NULL; section = section->next)
2180 count += som_is_space (section);
2181
2182 return count;
2183 }
2184
2185 /* Count the number of subspaces attached to the given BFD. */
2186
2187 static unsigned long
2188 som_count_subspaces (abfd)
2189 bfd *abfd;
2190 {
2191 int count = 0;
2192 asection *section;
2193
2194 for (section = abfd->sections; section != NULL; section = section->next)
2195 count += som_is_subspace (section);
2196
2197 return count;
2198 }
2199
2200 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2201
2202 We desire symbols to be ordered starting with the symbol with the
2203 highest relocation count down to the symbol with the lowest relocation
2204 count. Doing so compacts the relocation stream. */
2205
2206 static int
2207 compare_syms (arg1, arg2)
2208 const PTR arg1;
2209 const PTR arg2;
2210
2211 {
2212 asymbol **sym1 = (asymbol **) arg1;
2213 asymbol **sym2 = (asymbol **) arg2;
2214 unsigned int count1, count2;
2215
2216 /* Get relocation count for each symbol. Note that the count
2217 is stored in the udata pointer for section symbols! */
2218 if ((*sym1)->flags & BSF_SECTION_SYM)
2219 count1 = (*sym1)->udata.i;
2220 else
2221 count1 = som_symbol_data (*sym1)->reloc_count;
2222
2223 if ((*sym2)->flags & BSF_SECTION_SYM)
2224 count2 = (*sym2)->udata.i;
2225 else
2226 count2 = som_symbol_data (*sym2)->reloc_count;
2227
2228 /* Return the appropriate value. */
2229 if (count1 < count2)
2230 return 1;
2231 else if (count1 > count2)
2232 return -1;
2233 return 0;
2234 }
2235
2236 /* Perform various work in preparation for emitting the fixup stream. */
2237
2238 static void
2239 som_prep_for_fixups (abfd, syms, num_syms)
2240 bfd *abfd;
2241 asymbol **syms;
2242 unsigned long num_syms;
2243 {
2244 int i;
2245 asection *section;
2246 asymbol **sorted_syms;
2247
2248 /* Most SOM relocations involving a symbol have a length which is
2249 dependent on the index of the symbol. So symbols which are
2250 used often in relocations should have a small index. */
2251
2252 /* First initialize the counters for each symbol. */
2253 for (i = 0; i < num_syms; i++)
2254 {
2255 /* Handle a section symbol; these have no pointers back to the
2256 SOM symbol info. So we just use the udata field to hold the
2257 relocation count. */
2258 if (som_symbol_data (syms[i]) == NULL
2259 || syms[i]->flags & BSF_SECTION_SYM)
2260 {
2261 syms[i]->flags |= BSF_SECTION_SYM;
2262 syms[i]->udata.i = 0;
2263 }
2264 else
2265 som_symbol_data (syms[i])->reloc_count = 0;
2266 }
2267
2268 /* Now that the counters are initialized, make a weighted count
2269 of how often a given symbol is used in a relocation. */
2270 for (section = abfd->sections; section != NULL; section = section->next)
2271 {
2272 int i;
2273
2274 /* Does this section have any relocations? */
2275 if (section->reloc_count <= 0)
2276 continue;
2277
2278 /* Walk through each relocation for this section. */
2279 for (i = 1; i < section->reloc_count; i++)
2280 {
2281 arelent *reloc = section->orelocation[i];
2282 int scale;
2283
2284 /* A relocation against a symbol in the *ABS* section really
2285 does not have a symbol. Likewise if the symbol isn't associated
2286 with any section. */
2287 if (reloc->sym_ptr_ptr == NULL
2288 || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section))
2289 continue;
2290
2291 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2292 and R_CODE_ONE_SYMBOL relocations to come first. These
2293 two relocations have single byte versions if the symbol
2294 index is very small. */
2295 if (reloc->howto->type == R_DP_RELATIVE
2296 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2297 scale = 2;
2298 else
2299 scale = 1;
2300
2301 /* Handle section symbols by storing the count in the udata
2302 field. It will not be used and the count is very important
2303 for these symbols. */
2304 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2305 {
2306 (*reloc->sym_ptr_ptr)->udata.i =
2307 (*reloc->sym_ptr_ptr)->udata.i + scale;
2308 continue;
2309 }
2310
2311 /* A normal symbol. Increment the count. */
2312 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2313 }
2314 }
2315
2316 /* Sort a copy of the symbol table, rather than the canonical
2317 output symbol table. */
2318 sorted_syms = (asymbol **) bfd_zalloc (abfd, num_syms * sizeof (asymbol *));
2319 memcpy (sorted_syms, syms, num_syms * sizeof (asymbol *));
2320 qsort (sorted_syms, num_syms, sizeof (asymbol *), compare_syms);
2321 obj_som_sorted_syms (abfd) = sorted_syms;
2322
2323 /* Compute the symbol indexes, they will be needed by the relocation
2324 code. */
2325 for (i = 0; i < num_syms; i++)
2326 {
2327 /* A section symbol. Again, there is no pointer to backend symbol
2328 information, so we reuse the udata field again. */
2329 if (sorted_syms[i]->flags & BSF_SECTION_SYM)
2330 sorted_syms[i]->udata.i = i;
2331 else
2332 som_symbol_data (sorted_syms[i])->index = i;
2333 }
2334 }
2335
2336 static boolean
2337 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2338 bfd *abfd;
2339 unsigned long current_offset;
2340 unsigned int *total_reloc_sizep;
2341 {
2342 unsigned int i, j;
2343 /* Chunk of memory that we can use as buffer space, then throw
2344 away. */
2345 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2346 unsigned char *p;
2347 unsigned int total_reloc_size = 0;
2348 unsigned int subspace_reloc_size = 0;
2349 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2350 asection *section = abfd->sections;
2351
2352 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2353 p = tmp_space;
2354
2355 /* All the fixups for a particular subspace are emitted in a single
2356 stream. All the subspaces for a particular space are emitted
2357 as a single stream.
2358
2359 So, to get all the locations correct one must iterate through all the
2360 spaces, for each space iterate through its subspaces and output a
2361 fixups stream. */
2362 for (i = 0; i < num_spaces; i++)
2363 {
2364 asection *subsection;
2365
2366 /* Find a space. */
2367 while (!som_is_space (section))
2368 section = section->next;
2369
2370 /* Now iterate through each of its subspaces. */
2371 for (subsection = abfd->sections;
2372 subsection != NULL;
2373 subsection = subsection->next)
2374 {
2375 int reloc_offset, current_rounding_mode;
2376
2377 /* Find a subspace of this space. */
2378 if (!som_is_subspace (subsection)
2379 || !som_is_container (section, subsection))
2380 continue;
2381
2382 /* If this subspace does not have real data, then we are
2383 finised with it. */
2384 if ((subsection->flags & SEC_HAS_CONTENTS) == 0)
2385 {
2386 som_section_data (subsection)->subspace_dict->fixup_request_index
2387 = -1;
2388 continue;
2389 }
2390
2391 /* This subspace has some relocations. Put the relocation stream
2392 index into the subspace record. */
2393 som_section_data (subsection)->subspace_dict->fixup_request_index
2394 = total_reloc_size;
2395
2396 /* To make life easier start over with a clean slate for
2397 each subspace. Seek to the start of the relocation stream
2398 for this subspace in preparation for writing out its fixup
2399 stream. */
2400 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) < 0)
2401 return false;
2402
2403 /* Buffer space has already been allocated. Just perform some
2404 initialization here. */
2405 p = tmp_space;
2406 subspace_reloc_size = 0;
2407 reloc_offset = 0;
2408 som_initialize_reloc_queue (reloc_queue);
2409 current_rounding_mode = R_N_MODE;
2410
2411 /* Translate each BFD relocation into one or more SOM
2412 relocations. */
2413 for (j = 0; j < subsection->reloc_count; j++)
2414 {
2415 arelent *bfd_reloc = subsection->orelocation[j];
2416 unsigned int skip;
2417 int sym_num;
2418
2419 /* Get the symbol number. Remember it's stored in a
2420 special place for section symbols. */
2421 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2422 sym_num = (*bfd_reloc->sym_ptr_ptr)->udata.i;
2423 else
2424 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2425
2426 /* If there is not enough room for the next couple relocations,
2427 then dump the current buffer contents now. Also reinitialize
2428 the relocation queue.
2429
2430 No single BFD relocation could ever translate into more
2431 than 100 bytes of SOM relocations (20bytes is probably the
2432 upper limit, but leave lots of space for growth). */
2433 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2434 {
2435 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2436 != p - tmp_space)
2437 return false;
2438
2439 p = tmp_space;
2440 som_initialize_reloc_queue (reloc_queue);
2441 }
2442
2443 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2444 skipped. */
2445 skip = bfd_reloc->address - reloc_offset;
2446 p = som_reloc_skip (abfd, skip, p,
2447 &subspace_reloc_size, reloc_queue);
2448
2449 /* Update reloc_offset for the next iteration.
2450
2451 Many relocations do not consume input bytes. They
2452 are markers, or set state necessary to perform some
2453 later relocation. */
2454 switch (bfd_reloc->howto->type)
2455 {
2456 /* This only needs to handle relocations that may be
2457 made by hppa_som_gen_reloc. */
2458 case R_ENTRY:
2459 case R_ALT_ENTRY:
2460 case R_EXIT:
2461 case R_N_MODE:
2462 case R_S_MODE:
2463 case R_D_MODE:
2464 case R_R_MODE:
2465 case R_FSEL:
2466 case R_LSEL:
2467 case R_RSEL:
2468 reloc_offset = bfd_reloc->address;
2469 break;
2470
2471 default:
2472 reloc_offset = bfd_reloc->address + 4;
2473 break;
2474 }
2475
2476 /* Now the actual relocation we care about. */
2477 switch (bfd_reloc->howto->type)
2478 {
2479 case R_PCREL_CALL:
2480 case R_ABS_CALL:
2481 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2482 bfd_reloc, sym_num, reloc_queue);
2483 break;
2484
2485 case R_CODE_ONE_SYMBOL:
2486 case R_DP_RELATIVE:
2487 /* Account for any addend. */
2488 if (bfd_reloc->addend)
2489 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2490 &subspace_reloc_size, reloc_queue);
2491
2492 if (sym_num < 0x20)
2493 {
2494 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2495 subspace_reloc_size += 1;
2496 p += 1;
2497 }
2498 else if (sym_num < 0x100)
2499 {
2500 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2501 bfd_put_8 (abfd, sym_num, p + 1);
2502 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2503 2, reloc_queue);
2504 }
2505 else if (sym_num < 0x10000000)
2506 {
2507 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2508 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2509 bfd_put_16 (abfd, sym_num, p + 2);
2510 p = try_prev_fixup (abfd, &subspace_reloc_size,
2511 p, 4, reloc_queue);
2512 }
2513 else
2514 abort ();
2515 break;
2516
2517 case R_DATA_ONE_SYMBOL:
2518 case R_DATA_PLABEL:
2519 case R_CODE_PLABEL:
2520 case R_DLT_REL:
2521 /* Account for any addend. */
2522 if (bfd_reloc->addend)
2523 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2524 &subspace_reloc_size, reloc_queue);
2525
2526 if (sym_num < 0x100)
2527 {
2528 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2529 bfd_put_8 (abfd, sym_num, p + 1);
2530 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2531 2, reloc_queue);
2532 }
2533 else if (sym_num < 0x10000000)
2534 {
2535 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2536 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2537 bfd_put_16 (abfd, sym_num, p + 2);
2538 p = try_prev_fixup (abfd, &subspace_reloc_size,
2539 p, 4, reloc_queue);
2540 }
2541 else
2542 abort ();
2543 break;
2544
2545 case R_ENTRY:
2546 {
2547 int tmp;
2548 arelent *tmp_reloc = NULL;
2549 bfd_put_8 (abfd, R_ENTRY, p);
2550
2551 /* R_ENTRY relocations have 64 bits of associated
2552 data. Unfortunately the addend field of a bfd
2553 relocation is only 32 bits. So, we split up
2554 the 64bit unwind information and store part in
2555 the R_ENTRY relocation, and the rest in the R_EXIT
2556 relocation. */
2557 bfd_put_32 (abfd, bfd_reloc->addend, p + 1);
2558
2559 /* Find the next R_EXIT relocation. */
2560 for (tmp = j; tmp < subsection->reloc_count; tmp++)
2561 {
2562 tmp_reloc = subsection->orelocation[tmp];
2563 if (tmp_reloc->howto->type == R_EXIT)
2564 break;
2565 }
2566
2567 if (tmp == subsection->reloc_count)
2568 abort ();
2569
2570 bfd_put_32 (abfd, tmp_reloc->addend, p + 5);
2571 p = try_prev_fixup (abfd, &subspace_reloc_size,
2572 p, 9, reloc_queue);
2573 break;
2574 }
2575
2576 case R_N_MODE:
2577 case R_S_MODE:
2578 case R_D_MODE:
2579 case R_R_MODE:
2580 /* If this relocation requests the current rounding
2581 mode, then it is redundant. */
2582 if (bfd_reloc->howto->type != current_rounding_mode)
2583 {
2584 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2585 subspace_reloc_size += 1;
2586 p += 1;
2587 current_rounding_mode = bfd_reloc->howto->type;
2588 }
2589 break;
2590
2591 case R_EXIT:
2592 case R_ALT_ENTRY:
2593 case R_FSEL:
2594 case R_LSEL:
2595 case R_RSEL:
2596 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2597 subspace_reloc_size += 1;
2598 p += 1;
2599 break;
2600
2601 /* Put a "R_RESERVED" relocation in the stream if
2602 we hit something we do not understand. The linker
2603 will complain loudly if this ever happens. */
2604 default:
2605 bfd_put_8 (abfd, 0xff, p);
2606 subspace_reloc_size += 1;
2607 p += 1;
2608 break;
2609 }
2610 }
2611
2612 /* Last BFD relocation for a subspace has been processed.
2613 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2614 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2615 - reloc_offset,
2616 p, &subspace_reloc_size, reloc_queue);
2617
2618 /* Scribble out the relocations. */
2619 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2620 != p - tmp_space)
2621 return false;
2622 p = tmp_space;
2623
2624 total_reloc_size += subspace_reloc_size;
2625 som_section_data (subsection)->subspace_dict->fixup_request_quantity
2626 = subspace_reloc_size;
2627 }
2628 section = section->next;
2629 }
2630 *total_reloc_sizep = total_reloc_size;
2631 return true;
2632 }
2633
2634 /* Write out the space/subspace string table. */
2635
2636 static boolean
2637 som_write_space_strings (abfd, current_offset, string_sizep)
2638 bfd *abfd;
2639 unsigned long current_offset;
2640 unsigned int *string_sizep;
2641 {
2642 /* Chunk of memory that we can use as buffer space, then throw
2643 away. */
2644 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2645 unsigned char *p;
2646 unsigned int strings_size = 0;
2647 asection *section;
2648
2649 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2650 p = tmp_space;
2651
2652 /* Seek to the start of the space strings in preparation for writing
2653 them out. */
2654 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2655 return false;
2656
2657 /* Walk through all the spaces and subspaces (order is not important)
2658 building up and writing string table entries for their names. */
2659 for (section = abfd->sections; section != NULL; section = section->next)
2660 {
2661 int length;
2662
2663 /* Only work with space/subspaces; avoid any other sections
2664 which might have been made (.text for example). */
2665 if (!som_is_space (section) && !som_is_subspace (section))
2666 continue;
2667
2668 /* Get the length of the space/subspace name. */
2669 length = strlen (section->name);
2670
2671 /* If there is not enough room for the next entry, then dump the
2672 current buffer contents now. Each entry will take 4 bytes to
2673 hold the string length + the string itself + null terminator. */
2674 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2675 {
2676 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2677 != p - tmp_space)
2678 return false;
2679 /* Reset to beginning of the buffer space. */
2680 p = tmp_space;
2681 }
2682
2683 /* First element in a string table entry is the length of the
2684 string. Alignment issues are already handled. */
2685 bfd_put_32 (abfd, length, p);
2686 p += 4;
2687 strings_size += 4;
2688
2689 /* Record the index in the space/subspace records. */
2690 if (som_is_space (section))
2691 som_section_data (section)->space_dict->name.n_strx = strings_size;
2692 else
2693 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
2694
2695 /* Next comes the string itself + a null terminator. */
2696 strcpy (p, section->name);
2697 p += length + 1;
2698 strings_size += length + 1;
2699
2700 /* Always align up to the next word boundary. */
2701 while (strings_size % 4)
2702 {
2703 bfd_put_8 (abfd, 0, p);
2704 p++;
2705 strings_size++;
2706 }
2707 }
2708
2709 /* Done with the space/subspace strings. Write out any information
2710 contained in a partial block. */
2711 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2712 return false;
2713 *string_sizep = strings_size;
2714 return true;
2715 }
2716
2717 /* Write out the symbol string table. */
2718
2719 static boolean
2720 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
2721 bfd *abfd;
2722 unsigned long current_offset;
2723 asymbol **syms;
2724 unsigned int num_syms;
2725 unsigned int *string_sizep;
2726 {
2727 unsigned int i;
2728
2729 /* Chunk of memory that we can use as buffer space, then throw
2730 away. */
2731 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2732 unsigned char *p;
2733 unsigned int strings_size = 0;
2734
2735 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2736 p = tmp_space;
2737
2738 /* Seek to the start of the space strings in preparation for writing
2739 them out. */
2740 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2741 return false;
2742
2743 for (i = 0; i < num_syms; i++)
2744 {
2745 int length = strlen (syms[i]->name);
2746
2747 /* If there is not enough room for the next entry, then dump the
2748 current buffer contents now. */
2749 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2750 {
2751 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2752 != p - tmp_space)
2753 return false;
2754 /* Reset to beginning of the buffer space. */
2755 p = tmp_space;
2756 }
2757
2758 /* First element in a string table entry is the length of the
2759 string. This must always be 4 byte aligned. This is also
2760 an appropriate time to fill in the string index field in the
2761 symbol table entry. */
2762 bfd_put_32 (abfd, length, p);
2763 strings_size += 4;
2764 p += 4;
2765
2766 /* Next comes the string itself + a null terminator. */
2767 strcpy (p, syms[i]->name);
2768
2769 som_symbol_data(syms[i])->stringtab_offset = strings_size;
2770 p += length + 1;
2771 strings_size += length + 1;
2772
2773 /* Always align up to the next word boundary. */
2774 while (strings_size % 4)
2775 {
2776 bfd_put_8 (abfd, 0, p);
2777 strings_size++;
2778 p++;
2779 }
2780 }
2781
2782 /* Scribble out any partial block. */
2783 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2784 return false;
2785
2786 *string_sizep = strings_size;
2787 return true;
2788 }
2789
2790 /* Compute variable information to be placed in the SOM headers,
2791 space/subspace dictionaries, relocation streams, etc. Begin
2792 writing parts of the object file. */
2793
2794 static boolean
2795 som_begin_writing (abfd)
2796 bfd *abfd;
2797 {
2798 unsigned long current_offset = 0;
2799 int strings_size = 0;
2800 unsigned int total_reloc_size = 0;
2801 unsigned long num_spaces, num_subspaces, num_syms, i;
2802 asection *section;
2803 asymbol **syms = bfd_get_outsymbols (abfd);
2804 unsigned int total_subspaces = 0;
2805 struct som_exec_auxhdr *exec_header = NULL;
2806
2807 /* The file header will always be first in an object file,
2808 everything else can be in random locations. To keep things
2809 "simple" BFD will lay out the object file in the manner suggested
2810 by the PRO ABI for PA-RISC Systems. */
2811
2812 /* Before any output can really begin offsets for all the major
2813 portions of the object file must be computed. So, starting
2814 with the initial file header compute (and sometimes write)
2815 each portion of the object file. */
2816
2817 /* Make room for the file header, it's contents are not complete
2818 yet, so it can not be written at this time. */
2819 current_offset += sizeof (struct header);
2820
2821 /* Any auxiliary headers will follow the file header. Right now
2822 we support only the copyright and version headers. */
2823 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
2824 obj_som_file_hdr (abfd)->aux_header_size = 0;
2825 if (abfd->flags & (EXEC_P | DYNAMIC))
2826 {
2827 /* Parts of the exec header will be filled in later, so
2828 delay writing the header itself. Fill in the defaults,
2829 and write it later. */
2830 current_offset += sizeof (struct som_exec_auxhdr);
2831 obj_som_file_hdr (abfd)->aux_header_size
2832 += sizeof (struct som_exec_auxhdr);
2833 exec_header = obj_som_exec_hdr (abfd);
2834 exec_header->som_auxhdr.type = EXEC_AUX_ID;
2835 exec_header->som_auxhdr.length = 40;
2836 }
2837 if (obj_som_version_hdr (abfd) != NULL)
2838 {
2839 unsigned int len;
2840
2841 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2842 return false;
2843
2844 /* Write the aux_id structure and the string length. */
2845 len = sizeof (struct aux_id) + sizeof (unsigned int);
2846 obj_som_file_hdr (abfd)->aux_header_size += len;
2847 current_offset += len;
2848 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
2849 return false;
2850
2851 /* Write the version string. */
2852 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
2853 obj_som_file_hdr (abfd)->aux_header_size += len;
2854 current_offset += len;
2855 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
2856 len, 1, abfd) != len)
2857 return false;
2858 }
2859
2860 if (obj_som_copyright_hdr (abfd) != NULL)
2861 {
2862 unsigned int len;
2863
2864 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2865 return false;
2866
2867 /* Write the aux_id structure and the string length. */
2868 len = sizeof (struct aux_id) + sizeof (unsigned int);
2869 obj_som_file_hdr (abfd)->aux_header_size += len;
2870 current_offset += len;
2871 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
2872 return false;
2873
2874 /* Write the copyright string. */
2875 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
2876 obj_som_file_hdr (abfd)->aux_header_size += len;
2877 current_offset += len;
2878 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
2879 len, 1, abfd) != len)
2880 return false;
2881 }
2882
2883 /* Next comes the initialization pointers; we have no initialization
2884 pointers, so current offset does not change. */
2885 obj_som_file_hdr (abfd)->init_array_location = current_offset;
2886 obj_som_file_hdr (abfd)->init_array_total = 0;
2887
2888 /* Next are the space records. These are fixed length records.
2889
2890 Count the number of spaces to determine how much room is needed
2891 in the object file for the space records.
2892
2893 The names of the spaces are stored in a separate string table,
2894 and the index for each space into the string table is computed
2895 below. Therefore, it is not possible to write the space headers
2896 at this time. */
2897 num_spaces = som_count_spaces (abfd);
2898 obj_som_file_hdr (abfd)->space_location = current_offset;
2899 obj_som_file_hdr (abfd)->space_total = num_spaces;
2900 current_offset += num_spaces * sizeof (struct space_dictionary_record);
2901
2902 /* Next are the subspace records. These are fixed length records.
2903
2904 Count the number of subspaes to determine how much room is needed
2905 in the object file for the subspace records.
2906
2907 A variety if fields in the subspace record are still unknown at
2908 this time (index into string table, fixup stream location/size, etc). */
2909 num_subspaces = som_count_subspaces (abfd);
2910 obj_som_file_hdr (abfd)->subspace_location = current_offset;
2911 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
2912 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
2913
2914 /* Next is the string table for the space/subspace names. We will
2915 build and write the string table on the fly. At the same time
2916 we will fill in the space/subspace name index fields. */
2917
2918 /* The string table needs to be aligned on a word boundary. */
2919 if (current_offset % 4)
2920 current_offset += (4 - (current_offset % 4));
2921
2922 /* Mark the offset of the space/subspace string table in the
2923 file header. */
2924 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
2925
2926 /* Scribble out the space strings. */
2927 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
2928 return false;
2929
2930 /* Record total string table size in the header and update the
2931 current offset. */
2932 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
2933 current_offset += strings_size;
2934
2935 /* Next is the symbol table. These are fixed length records.
2936
2937 Count the number of symbols to determine how much room is needed
2938 in the object file for the symbol table.
2939
2940 The names of the symbols are stored in a separate string table,
2941 and the index for each symbol name into the string table is computed
2942 below. Therefore, it is not possible to write the symobl table
2943 at this time. */
2944 num_syms = bfd_get_symcount (abfd);
2945 obj_som_file_hdr (abfd)->symbol_location = current_offset;
2946 obj_som_file_hdr (abfd)->symbol_total = num_syms;
2947 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
2948
2949 /* Do prep work before handling fixups. */
2950 som_prep_for_fixups (abfd, syms, num_syms);
2951
2952 /* Next comes the fixup stream which starts on a word boundary. */
2953 if (current_offset % 4)
2954 current_offset += (4 - (current_offset % 4));
2955 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
2956
2957 /* Write the fixups and update fields in subspace headers which
2958 relate to the fixup stream. */
2959 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
2960 return false;
2961
2962 /* Record the total size of the fixup stream in the file header. */
2963 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
2964 current_offset += total_reloc_size;
2965
2966 /* Next are the symbol strings.
2967 Align them to a word boundary. */
2968 if (current_offset % 4)
2969 current_offset += (4 - (current_offset % 4));
2970 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
2971
2972 /* Scribble out the symbol strings. */
2973 if (som_write_symbol_strings (abfd, current_offset,
2974 obj_som_sorted_syms (abfd),
2975 num_syms, &strings_size)
2976 == false)
2977 return false;
2978
2979 /* Record total string table size in header and update the
2980 current offset. */
2981 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
2982 current_offset += strings_size;
2983
2984 /* Next is the compiler records. We do not use these. */
2985 obj_som_file_hdr (abfd)->compiler_location = current_offset;
2986 obj_som_file_hdr (abfd)->compiler_total = 0;
2987
2988 /* Now compute the file positions for the loadable subspaces, taking
2989 care to make sure everything stays properly aligned. */
2990
2991 section = abfd->sections;
2992 for (i = 0; i < num_spaces; i++)
2993 {
2994 asection *subsection;
2995 int first_subspace;
2996 unsigned int subspace_offset = 0;
2997
2998 /* Find a space. */
2999 while (!som_is_space (section))
3000 section = section->next;
3001
3002 first_subspace = 1;
3003 /* Now look for all its subspaces. */
3004 for (subsection = abfd->sections;
3005 subsection != NULL;
3006 subsection = subsection->next)
3007 {
3008
3009 if (!som_is_subspace (subsection)
3010 || !som_is_container (section, subsection)
3011 || (subsection->flags & SEC_ALLOC) == 0)
3012 continue;
3013
3014 /* If this is the first subspace in the space, and we are
3015 building an executable, then take care to make sure all
3016 the alignments are correct and update the exec header. */
3017 if (first_subspace
3018 && (abfd->flags & (EXEC_P | DYNAMIC)))
3019 {
3020 /* Demand paged executables have each space aligned to a
3021 page boundary. Sharable executables (write-protected
3022 text) have just the private (aka data & bss) space aligned
3023 to a page boundary. Ugh. Not true for HPUX.
3024
3025 The HPUX kernel requires the text to always be page aligned
3026 within the file regardless of the executable's type. */
3027 if (abfd->flags & (D_PAGED | DYNAMIC)
3028 || (subsection->flags & SEC_CODE)
3029 || ((abfd->flags & WP_TEXT)
3030 && (subsection->flags & SEC_DATA)))
3031 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3032
3033 /* Update the exec header. */
3034 if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0)
3035 {
3036 exec_header->exec_tmem = section->vma;
3037 exec_header->exec_tfile = current_offset;
3038 }
3039 if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0)
3040 {
3041 exec_header->exec_dmem = section->vma;
3042 exec_header->exec_dfile = current_offset;
3043 }
3044
3045 /* Keep track of exactly where we are within a particular
3046 space. This is necessary as the braindamaged HPUX
3047 loader will create holes between subspaces *and*
3048 subspace alignments are *NOT* preserved. What a crock. */
3049 subspace_offset = subsection->vma;
3050
3051 /* Only do this for the first subspace within each space. */
3052 first_subspace = 0;
3053 }
3054 else if (abfd->flags & (EXEC_P | DYNAMIC))
3055 {
3056 /* The braindamaged HPUX loader may have created a hole
3057 between two subspaces. It is *not* sufficient to use
3058 the alignment specifications within the subspaces to
3059 account for these holes -- I've run into at least one
3060 case where the loader left one code subspace unaligned
3061 in a final executable.
3062
3063 To combat this we keep a current offset within each space,
3064 and use the subspace vma fields to detect and preserve
3065 holes. What a crock!
3066
3067 ps. This is not necessary for unloadable space/subspaces. */
3068 current_offset += subsection->vma - subspace_offset;
3069 if (subsection->flags & SEC_CODE)
3070 exec_header->exec_tsize += subsection->vma - subspace_offset;
3071 else
3072 exec_header->exec_dsize += subsection->vma - subspace_offset;
3073 subspace_offset += subsection->vma - subspace_offset;
3074 }
3075
3076
3077 subsection->target_index = total_subspaces++;
3078 /* This is real data to be loaded from the file. */
3079 if (subsection->flags & SEC_LOAD)
3080 {
3081 /* Update the size of the code & data. */
3082 if (abfd->flags & (EXEC_P | DYNAMIC)
3083 && subsection->flags & SEC_CODE)
3084 exec_header->exec_tsize += subsection->_cooked_size;
3085 else if (abfd->flags & (EXEC_P | DYNAMIC)
3086 && subsection->flags & SEC_DATA)
3087 exec_header->exec_dsize += subsection->_cooked_size;
3088 som_section_data (subsection)->subspace_dict->file_loc_init_value
3089 = current_offset;
3090 subsection->filepos = current_offset;
3091 current_offset += bfd_section_size (abfd, subsection);
3092 subspace_offset += bfd_section_size (abfd, subsection);
3093 }
3094 /* Looks like uninitialized data. */
3095 else
3096 {
3097 /* Update the size of the bss section. */
3098 if (abfd->flags & (EXEC_P | DYNAMIC))
3099 exec_header->exec_bsize += subsection->_cooked_size;
3100
3101 som_section_data (subsection)->subspace_dict->file_loc_init_value
3102 = 0;
3103 som_section_data (subsection)->subspace_dict->
3104 initialization_length = 0;
3105 }
3106 }
3107 /* Goto the next section. */
3108 section = section->next;
3109 }
3110
3111 /* Finally compute the file positions for unloadable subspaces.
3112 If building an executable, start the unloadable stuff on its
3113 own page. */
3114
3115 if (abfd->flags & (EXEC_P | DYNAMIC))
3116 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3117
3118 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3119 section = abfd->sections;
3120 for (i = 0; i < num_spaces; i++)
3121 {
3122 asection *subsection;
3123
3124 /* Find a space. */
3125 while (!som_is_space (section))
3126 section = section->next;
3127
3128 if (abfd->flags & (EXEC_P | DYNAMIC))
3129 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3130
3131 /* Now look for all its subspaces. */
3132 for (subsection = abfd->sections;
3133 subsection != NULL;
3134 subsection = subsection->next)
3135 {
3136
3137 if (!som_is_subspace (subsection)
3138 || !som_is_container (section, subsection)
3139 || (subsection->flags & SEC_ALLOC) != 0)
3140 continue;
3141
3142 subsection->target_index = total_subspaces++;
3143 /* This is real data to be loaded from the file. */
3144 if ((subsection->flags & SEC_LOAD) == 0)
3145 {
3146 som_section_data (subsection)->subspace_dict->file_loc_init_value
3147 = current_offset;
3148 subsection->filepos = current_offset;
3149 current_offset += bfd_section_size (abfd, subsection);
3150 }
3151 /* Looks like uninitialized data. */
3152 else
3153 {
3154 som_section_data (subsection)->subspace_dict->file_loc_init_value
3155 = 0;
3156 som_section_data (subsection)->subspace_dict->
3157 initialization_length = bfd_section_size (abfd, subsection);
3158 }
3159 }
3160 /* Goto the next section. */
3161 section = section->next;
3162 }
3163
3164 /* If building an executable, then make sure to seek to and write
3165 one byte at the end of the file to make sure any necessary
3166 zeros are filled in. Ugh. */
3167 if (abfd->flags & (EXEC_P | DYNAMIC))
3168 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3169 if (bfd_seek (abfd, current_offset - 1, SEEK_SET) < 0)
3170 return false;
3171 if (bfd_write ((PTR) "", 1, 1, abfd) != 1)
3172 return false;
3173
3174 obj_som_file_hdr (abfd)->unloadable_sp_size
3175 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3176
3177 /* Loader fixups are not supported in any way shape or form. */
3178 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3179 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3180
3181 /* Done. Store the total size of the SOM. */
3182 obj_som_file_hdr (abfd)->som_length = current_offset;
3183
3184 return true;
3185 }
3186
3187 /* Finally, scribble out the various headers to the disk. */
3188
3189 static boolean
3190 som_write_headers (abfd)
3191 bfd *abfd;
3192 {
3193 int num_spaces = som_count_spaces (abfd);
3194 int i;
3195 int subspace_index = 0;
3196 file_ptr location;
3197 asection *section;
3198
3199 /* Subspaces are written first so that we can set up information
3200 about them in their containing spaces as the subspace is written. */
3201
3202 /* Seek to the start of the subspace dictionary records. */
3203 location = obj_som_file_hdr (abfd)->subspace_location;
3204 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3205 return false;
3206
3207 section = abfd->sections;
3208 /* Now for each loadable space write out records for its subspaces. */
3209 for (i = 0; i < num_spaces; i++)
3210 {
3211 asection *subsection;
3212
3213 /* Find a space. */
3214 while (!som_is_space (section))
3215 section = section->next;
3216
3217 /* Now look for all its subspaces. */
3218 for (subsection = abfd->sections;
3219 subsection != NULL;
3220 subsection = subsection->next)
3221 {
3222
3223 /* Skip any section which does not correspond to a space
3224 or subspace. Or does not have SEC_ALLOC set (and therefore
3225 has no real bits on the disk). */
3226 if (!som_is_subspace (subsection)
3227 || !som_is_container (section, subsection)
3228 || (subsection->flags & SEC_ALLOC) == 0)
3229 continue;
3230
3231 /* If this is the first subspace for this space, then save
3232 the index of the subspace in its containing space. Also
3233 set "is_loadable" in the containing space. */
3234
3235 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3236 {
3237 som_section_data (section)->space_dict->is_loadable = 1;
3238 som_section_data (section)->space_dict->subspace_index
3239 = subspace_index;
3240 }
3241
3242 /* Increment the number of subspaces seen and the number of
3243 subspaces contained within the current space. */
3244 subspace_index++;
3245 som_section_data (section)->space_dict->subspace_quantity++;
3246
3247 /* Mark the index of the current space within the subspace's
3248 dictionary record. */
3249 som_section_data (subsection)->subspace_dict->space_index = i;
3250
3251 /* Dump the current subspace header. */
3252 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3253 sizeof (struct subspace_dictionary_record), 1, abfd)
3254 != sizeof (struct subspace_dictionary_record))
3255 return false;
3256 }
3257 /* Goto the next section. */
3258 section = section->next;
3259 }
3260
3261 /* Now repeat the process for unloadable subspaces. */
3262 section = abfd->sections;
3263 /* Now for each space write out records for its subspaces. */
3264 for (i = 0; i < num_spaces; i++)
3265 {
3266 asection *subsection;
3267
3268 /* Find a space. */
3269 while (!som_is_space (section))
3270 section = section->next;
3271
3272 /* Now look for all its subspaces. */
3273 for (subsection = abfd->sections;
3274 subsection != NULL;
3275 subsection = subsection->next)
3276 {
3277
3278 /* Skip any section which does not correspond to a space or
3279 subspace, or which SEC_ALLOC set (and therefore handled
3280 in the loadable spaces/subspaces code above). */
3281
3282 if (!som_is_subspace (subsection)
3283 || !som_is_container (section, subsection)
3284 || (subsection->flags & SEC_ALLOC) != 0)
3285 continue;
3286
3287 /* If this is the first subspace for this space, then save
3288 the index of the subspace in its containing space. Clear
3289 "is_loadable". */
3290
3291 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3292 {
3293 som_section_data (section)->space_dict->is_loadable = 0;
3294 som_section_data (section)->space_dict->subspace_index
3295 = subspace_index;
3296 }
3297
3298 /* Increment the number of subspaces seen and the number of
3299 subspaces contained within the current space. */
3300 som_section_data (section)->space_dict->subspace_quantity++;
3301 subspace_index++;
3302
3303 /* Mark the index of the current space within the subspace's
3304 dictionary record. */
3305 som_section_data (subsection)->subspace_dict->space_index = i;
3306
3307 /* Dump this subspace header. */
3308 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3309 sizeof (struct subspace_dictionary_record), 1, abfd)
3310 != sizeof (struct subspace_dictionary_record))
3311 return false;
3312 }
3313 /* Goto the next section. */
3314 section = section->next;
3315 }
3316
3317 /* All the subspace dictiondary records are written, and all the
3318 fields are set up in the space dictionary records.
3319
3320 Seek to the right location and start writing the space
3321 dictionary records. */
3322 location = obj_som_file_hdr (abfd)->space_location;
3323 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3324 return false;
3325
3326 section = abfd->sections;
3327 for (i = 0; i < num_spaces; i++)
3328 {
3329
3330 /* Find a space. */
3331 while (!som_is_space (section))
3332 section = section->next;
3333
3334 /* Dump its header */
3335 if (bfd_write ((PTR) som_section_data (section)->space_dict,
3336 sizeof (struct space_dictionary_record), 1, abfd)
3337 != sizeof (struct space_dictionary_record))
3338 return false;
3339
3340 /* Goto the next section. */
3341 section = section->next;
3342 }
3343
3344 /* FIXME. This should really be conditional based on whether or not
3345 PA1.1 instructions/registers have been used.
3346
3347 Setting of the system_id has to happen very late now that copying of
3348 BFD private data happens *after* section contents are set. */
3349 if (abfd->flags & (EXEC_P | DYNAMIC))
3350 obj_som_file_hdr(abfd)->system_id = obj_som_exec_data (abfd)->system_id;
3351 else
3352 obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC1_0;
3353
3354 /* Compute the checksum for the file header just before writing
3355 the header to disk. */
3356 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3357
3358 /* Only thing left to do is write out the file header. It is always
3359 at location zero. Seek there and write it. */
3360 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0)
3361 return false;
3362 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3363 sizeof (struct header), 1, abfd)
3364 != sizeof (struct header))
3365 return false;
3366
3367 /* Now write the exec header. */
3368 if (abfd->flags & (EXEC_P | DYNAMIC))
3369 {
3370 long tmp;
3371 struct som_exec_auxhdr *exec_header;
3372
3373 exec_header = obj_som_exec_hdr (abfd);
3374 exec_header->exec_entry = bfd_get_start_address (abfd);
3375 exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags;
3376
3377 /* Oh joys. Ram some of the BSS data into the DATA section
3378 to be compatable with how the hp linker makes objects
3379 (saves memory space). */
3380 tmp = exec_header->exec_dsize;
3381 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3382 exec_header->exec_bsize -= (tmp - exec_header->exec_dsize);
3383 if (exec_header->exec_bsize < 0)
3384 exec_header->exec_bsize = 0;
3385 exec_header->exec_dsize = tmp;
3386
3387 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
3388 SEEK_SET) < 0)
3389 return false;
3390
3391 if (bfd_write ((PTR) exec_header, AUX_HDR_SIZE, 1, abfd)
3392 != AUX_HDR_SIZE)
3393 return false;
3394 }
3395 return true;
3396 }
3397
3398 /* Compute and return the checksum for a SOM file header. */
3399
3400 static unsigned long
3401 som_compute_checksum (abfd)
3402 bfd *abfd;
3403 {
3404 unsigned long checksum, count, i;
3405 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3406
3407 checksum = 0;
3408 count = sizeof (struct header) / sizeof (unsigned long);
3409 for (i = 0; i < count; i++)
3410 checksum ^= *(buffer + i);
3411
3412 return checksum;
3413 }
3414
3415 static void
3416 som_bfd_derive_misc_symbol_info (abfd, sym, info)
3417 bfd *abfd;
3418 asymbol *sym;
3419 struct som_misc_symbol_info *info;
3420 {
3421 /* Initialize. */
3422 memset (info, 0, sizeof (struct som_misc_symbol_info));
3423
3424 /* The HP SOM linker requires detailed type information about
3425 all symbols (including undefined symbols!). Unfortunately,
3426 the type specified in an import/export statement does not
3427 always match what the linker wants. Severe braindamage. */
3428
3429 /* Section symbols will not have a SOM symbol type assigned to
3430 them yet. Assign all section symbols type ST_DATA. */
3431 if (sym->flags & BSF_SECTION_SYM)
3432 info->symbol_type = ST_DATA;
3433 else
3434 {
3435 /* Common symbols must have scope SS_UNSAT and type
3436 ST_STORAGE or the linker will choke. */
3437 if (bfd_is_com_section (sym->section))
3438 {
3439 info->symbol_scope = SS_UNSAT;
3440 info->symbol_type = ST_STORAGE;
3441 }
3442
3443 /* It is possible to have a symbol without an associated
3444 type. This happens if the user imported the symbol
3445 without a type and the symbol was never defined
3446 locally. If BSF_FUNCTION is set for this symbol, then
3447 assign it type ST_CODE (the HP linker requires undefined
3448 external functions to have type ST_CODE rather than ST_ENTRY). */
3449 else if ((som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3450 || som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3451 && bfd_is_und_section (sym->section)
3452 && sym->flags & BSF_FUNCTION)
3453 info->symbol_type = ST_CODE;
3454
3455 /* Handle function symbols which were defined in this file.
3456 They should have type ST_ENTRY. Also retrieve the argument
3457 relocation bits from the SOM backend information. */
3458 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3459 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3460 && (sym->flags & BSF_FUNCTION))
3461 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3462 && (sym->flags & BSF_FUNCTION)))
3463 {
3464 info->symbol_type = ST_ENTRY;
3465 info->arg_reloc = som_symbol_data (sym)->tc_data.hppa_arg_reloc;
3466 }
3467
3468 /* If the type is unknown at this point, it should be ST_DATA or
3469 ST_CODE (function/ST_ENTRY symbols were handled as special
3470 cases above). */
3471 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3472 {
3473 if (sym->section->flags & SEC_CODE)
3474 info->symbol_type = ST_CODE;
3475 else
3476 info->symbol_type = ST_DATA;
3477 }
3478
3479 /* From now on it's a very simple mapping. */
3480 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3481 info->symbol_type = ST_ABSOLUTE;
3482 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3483 info->symbol_type = ST_CODE;
3484 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3485 info->symbol_type = ST_DATA;
3486 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3487 info->symbol_type = ST_MILLICODE;
3488 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3489 info->symbol_type = ST_PLABEL;
3490 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3491 info->symbol_type = ST_PRI_PROG;
3492 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3493 info->symbol_type = ST_SEC_PROG;
3494 }
3495
3496 /* Now handle the symbol's scope. Exported data which is not
3497 in the common section has scope SS_UNIVERSAL. Note scope
3498 of common symbols was handled earlier! */
3499 if (sym->flags & BSF_EXPORT && ! bfd_is_com_section (sym->section))
3500 info->symbol_scope = SS_UNIVERSAL;
3501 /* Any undefined symbol at this point has a scope SS_UNSAT. */
3502 else if (bfd_is_und_section (sym->section))
3503 info->symbol_scope = SS_UNSAT;
3504 /* Anything else which is not in the common section has scope
3505 SS_LOCAL. */
3506 else if (! bfd_is_com_section (sym->section))
3507 info->symbol_scope = SS_LOCAL;
3508
3509 /* Now set the symbol_info field. It has no real meaning
3510 for undefined or common symbols, but the HP linker will
3511 choke if it's not set to some "reasonable" value. We
3512 use zero as a reasonable value. */
3513 if (bfd_is_com_section (sym->section)
3514 || bfd_is_und_section (sym->section)
3515 || bfd_is_abs_section (sym->section))
3516 info->symbol_info = 0;
3517 /* For all other symbols, the symbol_info field contains the
3518 subspace index of the space this symbol is contained in. */
3519 else
3520 info->symbol_info = sym->section->target_index;
3521
3522 /* Set the symbol's value. */
3523 info->symbol_value = sym->value + sym->section->vma;
3524 }
3525
3526 /* Build and write, in one big chunk, the entire symbol table for
3527 this BFD. */
3528
3529 static boolean
3530 som_build_and_write_symbol_table (abfd)
3531 bfd *abfd;
3532 {
3533 unsigned int num_syms = bfd_get_symcount (abfd);
3534 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3535 asymbol **bfd_syms = obj_som_sorted_syms (abfd);
3536 struct symbol_dictionary_record *som_symtab = NULL;
3537 int i, symtab_size;
3538
3539 /* Compute total symbol table size and allocate a chunk of memory
3540 to hold the symbol table as we build it. */
3541 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3542 som_symtab = (struct symbol_dictionary_record *) malloc (symtab_size);
3543 if (som_symtab == NULL && symtab_size != 0)
3544 {
3545 bfd_set_error (bfd_error_no_memory);
3546 goto error_return;
3547 }
3548 memset (som_symtab, 0, symtab_size);
3549
3550 /* Walk over each symbol. */
3551 for (i = 0; i < num_syms; i++)
3552 {
3553 struct som_misc_symbol_info info;
3554
3555 /* This is really an index into the symbol strings table.
3556 By the time we get here, the index has already been
3557 computed and stored into the name field in the BFD symbol. */
3558 som_symtab[i].name.n_strx = som_symbol_data(bfd_syms[i])->stringtab_offset;
3559
3560 /* Derive SOM information from the BFD symbol. */
3561 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
3562
3563 /* Now use it. */
3564 som_symtab[i].symbol_type = info.symbol_type;
3565 som_symtab[i].symbol_scope = info.symbol_scope;
3566 som_symtab[i].arg_reloc = info.arg_reloc;
3567 som_symtab[i].symbol_info = info.symbol_info;
3568 som_symtab[i].symbol_value = info.symbol_value;
3569 }
3570
3571 /* Everything is ready, seek to the right location and
3572 scribble out the symbol table. */
3573 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3574 return false;
3575
3576 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3577 goto error_return;
3578
3579 if (som_symtab != NULL)
3580 free (som_symtab);
3581 return true;
3582 error_return:
3583 if (som_symtab != NULL)
3584 free (som_symtab);
3585 return false;
3586 }
3587
3588 /* Write an object in SOM format. */
3589
3590 static boolean
3591 som_write_object_contents (abfd)
3592 bfd *abfd;
3593 {
3594 if (abfd->output_has_begun == false)
3595 {
3596 /* Set up fixed parts of the file, space, and subspace headers.
3597 Notify the world that output has begun. */
3598 som_prep_headers (abfd);
3599 abfd->output_has_begun = true;
3600 /* Start writing the object file. This include all the string
3601 tables, fixup streams, and other portions of the object file. */
3602 som_begin_writing (abfd);
3603 }
3604
3605 /* Now that the symbol table information is complete, build and
3606 write the symbol table. */
3607 if (som_build_and_write_symbol_table (abfd) == false)
3608 return false;
3609
3610 return (som_write_headers (abfd));
3611 }
3612
3613 \f
3614 /* Read and save the string table associated with the given BFD. */
3615
3616 static boolean
3617 som_slurp_string_table (abfd)
3618 bfd *abfd;
3619 {
3620 char *stringtab;
3621
3622 /* Use the saved version if its available. */
3623 if (obj_som_stringtab (abfd) != NULL)
3624 return true;
3625
3626 /* I don't think this can currently happen, and I'm not sure it should
3627 really be an error, but it's better than getting unpredictable results
3628 from the host's malloc when passed a size of zero. */
3629 if (obj_som_stringtab_size (abfd) == 0)
3630 {
3631 bfd_set_error (bfd_error_no_symbols);
3632 return false;
3633 }
3634
3635 /* Allocate and read in the string table. */
3636 stringtab = malloc (obj_som_stringtab_size (abfd));
3637 if (stringtab == NULL)
3638 {
3639 bfd_set_error (bfd_error_no_memory);
3640 return false;
3641 }
3642
3643 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3644 return false;
3645
3646 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3647 != obj_som_stringtab_size (abfd))
3648 return false;
3649
3650 /* Save our results and return success. */
3651 obj_som_stringtab (abfd) = stringtab;
3652 return true;
3653 }
3654
3655 /* Return the amount of data (in bytes) required to hold the symbol
3656 table for this object. */
3657
3658 static long
3659 som_get_symtab_upper_bound (abfd)
3660 bfd *abfd;
3661 {
3662 if (!som_slurp_symbol_table (abfd))
3663 return -1;
3664
3665 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
3666 }
3667
3668 /* Convert from a SOM subspace index to a BFD section. */
3669
3670 static asection *
3671 bfd_section_from_som_symbol (abfd, symbol)
3672 bfd *abfd;
3673 struct symbol_dictionary_record *symbol;
3674 {
3675 asection *section;
3676
3677 /* The meaning of the symbol_info field changes for functions
3678 within executables. So only use the quick symbol_info mapping for
3679 incomplete objects and non-function symbols in executables. */
3680 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
3681 || (symbol->symbol_type != ST_ENTRY
3682 && symbol->symbol_type != ST_PRI_PROG
3683 && symbol->symbol_type != ST_SEC_PROG
3684 && symbol->symbol_type != ST_MILLICODE))
3685 {
3686 unsigned int index = symbol->symbol_info;
3687 for (section = abfd->sections; section != NULL; section = section->next)
3688 if (section->target_index == index && som_is_subspace (section))
3689 return section;
3690
3691 /* Could be a symbol from an external library (such as an OMOS
3692 shared library). Don't abort. */
3693 return bfd_abs_section_ptr;
3694
3695 }
3696 else
3697 {
3698 unsigned int value = symbol->symbol_value;
3699
3700 /* For executables we will have to use the symbol's address and
3701 find out what section would contain that address. Yuk. */
3702 for (section = abfd->sections; section; section = section->next)
3703 {
3704 if (value >= section->vma
3705 && value <= section->vma + section->_cooked_size
3706 && som_is_subspace (section))
3707 return section;
3708 }
3709
3710 /* Could be a symbol from an external library (such as an OMOS
3711 shared library). Don't abort. */
3712 return bfd_abs_section_ptr;
3713
3714 }
3715 }
3716
3717 /* Read and save the symbol table associated with the given BFD. */
3718
3719 static unsigned int
3720 som_slurp_symbol_table (abfd)
3721 bfd *abfd;
3722 {
3723 int symbol_count = bfd_get_symcount (abfd);
3724 int symsize = sizeof (struct symbol_dictionary_record);
3725 char *stringtab;
3726 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
3727 som_symbol_type *sym, *symbase;
3728
3729 /* Return saved value if it exists. */
3730 if (obj_som_symtab (abfd) != NULL)
3731 goto successful_return;
3732
3733 /* Special case. This is *not* an error. */
3734 if (symbol_count == 0)
3735 goto successful_return;
3736
3737 if (!som_slurp_string_table (abfd))
3738 goto error_return;
3739
3740 stringtab = obj_som_stringtab (abfd);
3741
3742 symbase = (som_symbol_type *)
3743 malloc (symbol_count * sizeof (som_symbol_type));
3744 if (symbase == NULL)
3745 {
3746 bfd_set_error (bfd_error_no_memory);
3747 goto error_return;
3748 }
3749
3750 /* Read in the external SOM representation. */
3751 buf = malloc (symbol_count * symsize);
3752 if (buf == NULL && symbol_count * symsize != 0)
3753 {
3754 bfd_set_error (bfd_error_no_memory);
3755 goto error_return;
3756 }
3757 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
3758 goto error_return;
3759 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
3760 != symbol_count * symsize)
3761 goto error_return;
3762
3763 /* Iterate over all the symbols and internalize them. */
3764 endbufp = buf + symbol_count;
3765 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
3766 {
3767
3768 /* I don't think we care about these. */
3769 if (bufp->symbol_type == ST_SYM_EXT
3770 || bufp->symbol_type == ST_ARG_EXT)
3771 continue;
3772
3773 /* Set some private data we care about. */
3774 if (bufp->symbol_type == ST_NULL)
3775 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3776 else if (bufp->symbol_type == ST_ABSOLUTE)
3777 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
3778 else if (bufp->symbol_type == ST_DATA)
3779 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
3780 else if (bufp->symbol_type == ST_CODE)
3781 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
3782 else if (bufp->symbol_type == ST_PRI_PROG)
3783 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
3784 else if (bufp->symbol_type == ST_SEC_PROG)
3785 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
3786 else if (bufp->symbol_type == ST_ENTRY)
3787 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
3788 else if (bufp->symbol_type == ST_MILLICODE)
3789 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
3790 else if (bufp->symbol_type == ST_PLABEL)
3791 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
3792 else
3793 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3794 som_symbol_data (sym)->tc_data.hppa_arg_reloc = bufp->arg_reloc;
3795
3796 /* Some reasonable defaults. */
3797 sym->symbol.the_bfd = abfd;
3798 sym->symbol.name = bufp->name.n_strx + stringtab;
3799 sym->symbol.value = bufp->symbol_value;
3800 sym->symbol.section = 0;
3801 sym->symbol.flags = 0;
3802
3803 switch (bufp->symbol_type)
3804 {
3805 case ST_ENTRY:
3806 case ST_MILLICODE:
3807 sym->symbol.flags |= BSF_FUNCTION;
3808 sym->symbol.value &= ~0x3;
3809 break;
3810
3811 case ST_STUB:
3812 case ST_CODE:
3813 case ST_PRI_PROG:
3814 case ST_SEC_PROG:
3815 sym->symbol.value &= ~0x3;
3816 /* If the symbol's scope is ST_UNSAT, then these are
3817 undefined function symbols. */
3818 if (bufp->symbol_scope == SS_UNSAT)
3819 sym->symbol.flags |= BSF_FUNCTION;
3820
3821
3822 default:
3823 break;
3824 }
3825
3826 /* Handle scoping and section information. */
3827 switch (bufp->symbol_scope)
3828 {
3829 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
3830 so the section associated with this symbol can't be known. */
3831 case SS_EXTERNAL:
3832 if (bufp->symbol_type != ST_STORAGE)
3833 sym->symbol.section = bfd_und_section_ptr;
3834 else
3835 sym->symbol.section = bfd_com_section_ptr;
3836 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3837 break;
3838
3839 case SS_UNSAT:
3840 if (bufp->symbol_type != ST_STORAGE)
3841 sym->symbol.section = bfd_und_section_ptr;
3842 else
3843 sym->symbol.section = bfd_com_section_ptr;
3844 break;
3845
3846 case SS_UNIVERSAL:
3847 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3848 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3849 sym->symbol.value -= sym->symbol.section->vma;
3850 break;
3851
3852 #if 0
3853 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
3854 Sound dumb? It is. */
3855 case SS_GLOBAL:
3856 #endif
3857 case SS_LOCAL:
3858 sym->symbol.flags |= BSF_LOCAL;
3859 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3860 sym->symbol.value -= sym->symbol.section->vma;
3861 break;
3862 }
3863
3864 /* Mark section symbols and symbols used by the debugger.
3865 Note $START$ is a magic code symbol, NOT a section symbol. */
3866 if (sym->symbol.name[0] == '$'
3867 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$'
3868 && strcmp (sym->symbol.name, "$START$"))
3869 sym->symbol.flags |= BSF_SECTION_SYM;
3870 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
3871 {
3872 sym->symbol.flags |= BSF_SECTION_SYM;
3873 sym->symbol.name = sym->symbol.section->name;
3874 }
3875 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
3876 sym->symbol.flags |= BSF_DEBUGGING;
3877
3878 /* Note increment at bottom of loop, since we skip some symbols
3879 we can not include it as part of the for statement. */
3880 sym++;
3881 }
3882
3883 /* Save our results and return success. */
3884 obj_som_symtab (abfd) = symbase;
3885 successful_return:
3886 if (buf != NULL)
3887 free (buf);
3888 return (true);
3889
3890 error_return:
3891 if (buf != NULL)
3892 free (buf);
3893 return false;
3894 }
3895
3896 /* Canonicalize a SOM symbol table. Return the number of entries
3897 in the symbol table. */
3898
3899 static long
3900 som_get_symtab (abfd, location)
3901 bfd *abfd;
3902 asymbol **location;
3903 {
3904 int i;
3905 som_symbol_type *symbase;
3906
3907 if (!som_slurp_symbol_table (abfd))
3908 return -1;
3909
3910 i = bfd_get_symcount (abfd);
3911 symbase = obj_som_symtab (abfd);
3912
3913 for (; i > 0; i--, location++, symbase++)
3914 *location = &symbase->symbol;
3915
3916 /* Final null pointer. */
3917 *location = 0;
3918 return (bfd_get_symcount (abfd));
3919 }
3920
3921 /* Make a SOM symbol. There is nothing special to do here. */
3922
3923 static asymbol *
3924 som_make_empty_symbol (abfd)
3925 bfd *abfd;
3926 {
3927 som_symbol_type *new =
3928 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
3929 if (new == NULL)
3930 {
3931 bfd_set_error (bfd_error_no_memory);
3932 return 0;
3933 }
3934 new->symbol.the_bfd = abfd;
3935
3936 return &new->symbol;
3937 }
3938
3939 /* Print symbol information. */
3940
3941 static void
3942 som_print_symbol (ignore_abfd, afile, symbol, how)
3943 bfd *ignore_abfd;
3944 PTR afile;
3945 asymbol *symbol;
3946 bfd_print_symbol_type how;
3947 {
3948 FILE *file = (FILE *) afile;
3949 switch (how)
3950 {
3951 case bfd_print_symbol_name:
3952 fprintf (file, "%s", symbol->name);
3953 break;
3954 case bfd_print_symbol_more:
3955 fprintf (file, "som ");
3956 fprintf_vma (file, symbol->value);
3957 fprintf (file, " %lx", (long) symbol->flags);
3958 break;
3959 case bfd_print_symbol_all:
3960 {
3961 CONST char *section_name;
3962 section_name = symbol->section ? symbol->section->name : "(*none*)";
3963 bfd_print_symbol_vandf ((PTR) file, symbol);
3964 fprintf (file, " %s\t%s", section_name, symbol->name);
3965 break;
3966 }
3967 }
3968 }
3969
3970 static boolean
3971 som_bfd_is_local_label (abfd, sym)
3972 bfd *abfd;
3973 asymbol *sym;
3974 {
3975 return (sym->name[0] == 'L' && sym->name[1] == '$');
3976 }
3977
3978 /* Count or process variable-length SOM fixup records.
3979
3980 To avoid code duplication we use this code both to compute the number
3981 of relocations requested by a stream, and to internalize the stream.
3982
3983 When computing the number of relocations requested by a stream the
3984 variables rptr, section, and symbols have no meaning.
3985
3986 Return the number of relocations requested by the fixup stream. When
3987 not just counting
3988
3989 This needs at least two or three more passes to get it cleaned up. */
3990
3991 static unsigned int
3992 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
3993 unsigned char *fixup;
3994 unsigned int end;
3995 arelent *internal_relocs;
3996 asection *section;
3997 asymbol **symbols;
3998 boolean just_count;
3999 {
4000 unsigned int op, varname;
4001 unsigned char *end_fixups = &fixup[end];
4002 const struct fixup_format *fp;
4003 char *cp;
4004 unsigned char *save_fixup;
4005 int variables[26], stack[20], c, v, count, prev_fixup, *sp, saved_unwind_bits;
4006 const int *subop;
4007 arelent *rptr= internal_relocs;
4008 unsigned int offset = 0;
4009
4010 #define var(c) variables[(c) - 'A']
4011 #define push(v) (*sp++ = (v))
4012 #define pop() (*--sp)
4013 #define emptystack() (sp == stack)
4014
4015 som_initialize_reloc_queue (reloc_queue);
4016 memset (variables, 0, sizeof (variables));
4017 memset (stack, 0, sizeof (stack));
4018 count = 0;
4019 prev_fixup = 0;
4020 saved_unwind_bits = 0;
4021 sp = stack;
4022
4023 while (fixup < end_fixups)
4024 {
4025
4026 /* Save pointer to the start of this fixup. We'll use
4027 it later to determine if it is necessary to put this fixup
4028 on the queue. */
4029 save_fixup = fixup;
4030
4031 /* Get the fixup code and its associated format. */
4032 op = *fixup++;
4033 fp = &som_fixup_formats[op];
4034
4035 /* Handle a request for a previous fixup. */
4036 if (*fp->format == 'P')
4037 {
4038 /* Get pointer to the beginning of the prev fixup, move
4039 the repeated fixup to the head of the queue. */
4040 fixup = reloc_queue[fp->D].reloc;
4041 som_reloc_queue_fix (reloc_queue, fp->D);
4042 prev_fixup = 1;
4043
4044 /* Get the fixup code and its associated format. */
4045 op = *fixup++;
4046 fp = &som_fixup_formats[op];
4047 }
4048
4049 /* If this fixup will be passed to BFD, set some reasonable defaults. */
4050 if (! just_count
4051 && som_hppa_howto_table[op].type != R_NO_RELOCATION
4052 && som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
4053 {
4054 rptr->address = offset;
4055 rptr->howto = &som_hppa_howto_table[op];
4056 rptr->addend = 0;
4057 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
4058 }
4059
4060 /* Set default input length to 0. Get the opcode class index
4061 into D. */
4062 var ('L') = 0;
4063 var ('D') = fp->D;
4064 var ('U') = saved_unwind_bits;
4065
4066 /* Get the opcode format. */
4067 cp = fp->format;
4068
4069 /* Process the format string. Parsing happens in two phases,
4070 parse RHS, then assign to LHS. Repeat until no more
4071 characters in the format string. */
4072 while (*cp)
4073 {
4074 /* The variable this pass is going to compute a value for. */
4075 varname = *cp++;
4076
4077 /* Start processing RHS. Continue until a NULL or '=' is found. */
4078 do
4079 {
4080 c = *cp++;
4081
4082 /* If this is a variable, push it on the stack. */
4083 if (isupper (c))
4084 push (var (c));
4085
4086 /* If this is a lower case letter, then it represents
4087 additional data from the fixup stream to be pushed onto
4088 the stack. */
4089 else if (islower (c))
4090 {
4091 for (v = 0; c > 'a'; --c)
4092 v = (v << 8) | *fixup++;
4093 push (v);
4094 }
4095
4096 /* A decimal constant. Push it on the stack. */
4097 else if (isdigit (c))
4098 {
4099 v = c - '0';
4100 while (isdigit (*cp))
4101 v = (v * 10) + (*cp++ - '0');
4102 push (v);
4103 }
4104 else
4105
4106 /* An operator. Pop two two values from the stack and
4107 use them as operands to the given operation. Push
4108 the result of the operation back on the stack. */
4109 switch (c)
4110 {
4111 case '+':
4112 v = pop ();
4113 v += pop ();
4114 push (v);
4115 break;
4116 case '*':
4117 v = pop ();
4118 v *= pop ();
4119 push (v);
4120 break;
4121 case '<':
4122 v = pop ();
4123 v = pop () << v;
4124 push (v);
4125 break;
4126 default:
4127 abort ();
4128 }
4129 }
4130 while (*cp && *cp != '=');
4131
4132 /* Move over the equal operator. */
4133 cp++;
4134
4135 /* Pop the RHS off the stack. */
4136 c = pop ();
4137
4138 /* Perform the assignment. */
4139 var (varname) = c;
4140
4141 /* Handle side effects. and special 'O' stack cases. */
4142 switch (varname)
4143 {
4144 /* Consume some bytes from the input space. */
4145 case 'L':
4146 offset += c;
4147 break;
4148 /* A symbol to use in the relocation. Make a note
4149 of this if we are not just counting. */
4150 case 'S':
4151 if (! just_count)
4152 rptr->sym_ptr_ptr = &symbols[c];
4153 break;
4154 /* Handle the linker expression stack. */
4155 case 'O':
4156 switch (op)
4157 {
4158 case R_COMP1:
4159 subop = comp1_opcodes;
4160 break;
4161 case R_COMP2:
4162 subop = comp2_opcodes;
4163 break;
4164 case R_COMP3:
4165 subop = comp3_opcodes;
4166 break;
4167 default:
4168 abort ();
4169 }
4170 while (*subop <= (unsigned char) c)
4171 ++subop;
4172 --subop;
4173 break;
4174 /* The lower 32unwind bits must be persistent. */
4175 case 'U':
4176 saved_unwind_bits = var ('U');
4177 break;
4178
4179 default:
4180 break;
4181 }
4182 }
4183
4184 /* If we used a previous fixup, clean up after it. */
4185 if (prev_fixup)
4186 {
4187 fixup = save_fixup + 1;
4188 prev_fixup = 0;
4189 }
4190 /* Queue it. */
4191 else if (fixup > save_fixup + 1)
4192 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4193
4194 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4195 fixups to BFD. */
4196 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4197 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4198 {
4199 /* Done with a single reloction. Loop back to the top. */
4200 if (! just_count)
4201 {
4202 if (som_hppa_howto_table[op].type == R_ENTRY)
4203 rptr->addend = var ('T');
4204 else if (som_hppa_howto_table[op].type == R_EXIT)
4205 rptr->addend = var ('U');
4206 else
4207 rptr->addend = var ('V');
4208 rptr++;
4209 }
4210 count++;
4211 /* Now that we've handled a "full" relocation, reset
4212 some state. */
4213 memset (variables, 0, sizeof (variables));
4214 memset (stack, 0, sizeof (stack));
4215 }
4216 }
4217 return count;
4218
4219 #undef var
4220 #undef push
4221 #undef pop
4222 #undef emptystack
4223 }
4224
4225 /* Read in the relocs (aka fixups in SOM terms) for a section.
4226
4227 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4228 set to true to indicate it only needs a count of the number
4229 of actual relocations. */
4230
4231 static boolean
4232 som_slurp_reloc_table (abfd, section, symbols, just_count)
4233 bfd *abfd;
4234 asection *section;
4235 asymbol **symbols;
4236 boolean just_count;
4237 {
4238 char *external_relocs;
4239 unsigned int fixup_stream_size;
4240 arelent *internal_relocs;
4241 unsigned int num_relocs;
4242
4243 fixup_stream_size = som_section_data (section)->reloc_size;
4244 /* If there were no relocations, then there is nothing to do. */
4245 if (section->reloc_count == 0)
4246 return true;
4247
4248 /* If reloc_count is -1, then the relocation stream has not been
4249 parsed. We must do so now to know how many relocations exist. */
4250 if (section->reloc_count == -1)
4251 {
4252 external_relocs = (char *) malloc (fixup_stream_size);
4253 if (external_relocs == (char *) NULL)
4254 {
4255 bfd_set_error (bfd_error_no_memory);
4256 return false;
4257 }
4258 /* Read in the external forms. */
4259 if (bfd_seek (abfd,
4260 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4261 SEEK_SET)
4262 != 0)
4263 return false;
4264 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
4265 != fixup_stream_size)
4266 return false;
4267
4268 /* Let callers know how many relocations found.
4269 also save the relocation stream as we will
4270 need it again. */
4271 section->reloc_count = som_set_reloc_info (external_relocs,
4272 fixup_stream_size,
4273 NULL, NULL, NULL, true);
4274
4275 som_section_data (section)->reloc_stream = external_relocs;
4276 }
4277
4278 /* If the caller only wanted a count, then return now. */
4279 if (just_count)
4280 return true;
4281
4282 num_relocs = section->reloc_count;
4283 external_relocs = som_section_data (section)->reloc_stream;
4284 /* Return saved information about the relocations if it is available. */
4285 if (section->relocation != (arelent *) NULL)
4286 return true;
4287
4288 internal_relocs = (arelent *) malloc (num_relocs * sizeof (arelent));
4289 if (internal_relocs == (arelent *) NULL)
4290 {
4291 bfd_set_error (bfd_error_no_memory);
4292 return false;
4293 }
4294
4295 /* Process and internalize the relocations. */
4296 som_set_reloc_info (external_relocs, fixup_stream_size,
4297 internal_relocs, section, symbols, false);
4298
4299 /* Save our results and return success. */
4300 section->relocation = internal_relocs;
4301 return (true);
4302 }
4303
4304 /* Return the number of bytes required to store the relocation
4305 information associated with the given section. */
4306
4307 static long
4308 som_get_reloc_upper_bound (abfd, asect)
4309 bfd *abfd;
4310 sec_ptr asect;
4311 {
4312 /* If section has relocations, then read in the relocation stream
4313 and parse it to determine how many relocations exist. */
4314 if (asect->flags & SEC_RELOC)
4315 {
4316 if (! som_slurp_reloc_table (abfd, asect, NULL, true))
4317 return false;
4318 return (asect->reloc_count + 1) * sizeof (arelent);
4319 }
4320 /* There are no relocations. */
4321 return 0;
4322 }
4323
4324 /* Convert relocations from SOM (external) form into BFD internal
4325 form. Return the number of relocations. */
4326
4327 static long
4328 som_canonicalize_reloc (abfd, section, relptr, symbols)
4329 bfd *abfd;
4330 sec_ptr section;
4331 arelent **relptr;
4332 asymbol **symbols;
4333 {
4334 arelent *tblptr;
4335 int count;
4336
4337 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
4338 return -1;
4339
4340 count = section->reloc_count;
4341 tblptr = section->relocation;
4342
4343 while (count--)
4344 *relptr++ = tblptr++;
4345
4346 *relptr = (arelent *) NULL;
4347 return section->reloc_count;
4348 }
4349
4350 extern const bfd_target som_vec;
4351
4352 /* A hook to set up object file dependent section information. */
4353
4354 static boolean
4355 som_new_section_hook (abfd, newsect)
4356 bfd *abfd;
4357 asection *newsect;
4358 {
4359 newsect->used_by_bfd =
4360 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
4361 if (!newsect->used_by_bfd)
4362 {
4363 bfd_set_error (bfd_error_no_memory);
4364 return false;
4365 }
4366 newsect->alignment_power = 3;
4367
4368 /* We allow more than three sections internally */
4369 return true;
4370 }
4371
4372 /* Copy any private info we understand from the input section
4373 to the output section. */
4374 static boolean
4375 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
4376 bfd *ibfd;
4377 asection *isection;
4378 bfd *obfd;
4379 asection *osection;
4380 {
4381 /* One day we may try to grok other private data. */
4382 if (ibfd->xvec->flavour != bfd_target_som_flavour
4383 || obfd->xvec->flavour != bfd_target_som_flavour
4384 || (!som_is_space (isection) && !som_is_subspace (isection)))
4385 return false;
4386
4387 som_section_data (osection)->copy_data
4388 = (struct som_copyable_section_data_struct *)
4389 bfd_zalloc (obfd, sizeof (struct som_copyable_section_data_struct));
4390 if (som_section_data (osection)->copy_data == NULL)
4391 {
4392 bfd_set_error (bfd_error_no_memory);
4393 return false;
4394 }
4395
4396 memcpy (som_section_data (osection)->copy_data,
4397 som_section_data (isection)->copy_data,
4398 sizeof (struct som_copyable_section_data_struct));
4399
4400 /* Reparent if necessary. */
4401 if (som_section_data (osection)->copy_data->container)
4402 som_section_data (osection)->copy_data->container =
4403 som_section_data (osection)->copy_data->container->output_section;
4404
4405 return true;
4406 }
4407
4408 /* Copy any private info we understand from the input bfd
4409 to the output bfd. */
4410
4411 static boolean
4412 som_bfd_copy_private_bfd_data (ibfd, obfd)
4413 bfd *ibfd, *obfd;
4414 {
4415 /* One day we may try to grok other private data. */
4416 if (ibfd->xvec->flavour != bfd_target_som_flavour
4417 || obfd->xvec->flavour != bfd_target_som_flavour)
4418 return false;
4419
4420 /* Allocate some memory to hold the data we need. */
4421 obj_som_exec_data (obfd) = (struct som_exec_data *)
4422 bfd_zalloc (obfd, sizeof (struct som_exec_data));
4423 if (obj_som_exec_data (obfd) == NULL)
4424 {
4425 bfd_set_error (bfd_error_no_memory);
4426 return false;
4427 }
4428
4429 /* Now copy the data. */
4430 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
4431 sizeof (struct som_exec_data));
4432
4433 return true;
4434 }
4435
4436 /* Set backend info for sections which can not be described
4437 in the BFD data structures. */
4438
4439 boolean
4440 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
4441 asection *section;
4442 int defined;
4443 int private;
4444 unsigned int sort_key;
4445 int spnum;
4446 {
4447 /* Allocate memory to hold the magic information. */
4448 if (som_section_data (section)->copy_data == NULL)
4449 {
4450 som_section_data (section)->copy_data
4451 = (struct som_copyable_section_data_struct *)
4452 bfd_zalloc (section->owner,
4453 sizeof (struct som_copyable_section_data_struct));
4454 if (som_section_data (section)->copy_data == NULL)
4455 {
4456 bfd_set_error (bfd_error_no_memory);
4457 return false;
4458 }
4459 }
4460 som_section_data (section)->copy_data->sort_key = sort_key;
4461 som_section_data (section)->copy_data->is_defined = defined;
4462 som_section_data (section)->copy_data->is_private = private;
4463 som_section_data (section)->copy_data->container = section;
4464 som_section_data (section)->copy_data->space_number = spnum;
4465 return true;
4466 }
4467
4468 /* Set backend info for subsections which can not be described
4469 in the BFD data structures. */
4470
4471 boolean
4472 bfd_som_set_subsection_attributes (section, container, access,
4473 sort_key, quadrant)
4474 asection *section;
4475 asection *container;
4476 int access;
4477 unsigned int sort_key;
4478 int quadrant;
4479 {
4480 /* Allocate memory to hold the magic information. */
4481 if (som_section_data (section)->copy_data == NULL)
4482 {
4483 som_section_data (section)->copy_data
4484 = (struct som_copyable_section_data_struct *)
4485 bfd_zalloc (section->owner,
4486 sizeof (struct som_copyable_section_data_struct));
4487 if (som_section_data (section)->copy_data == NULL)
4488 {
4489 bfd_set_error (bfd_error_no_memory);
4490 return false;
4491 }
4492 }
4493 som_section_data (section)->copy_data->sort_key = sort_key;
4494 som_section_data (section)->copy_data->access_control_bits = access;
4495 som_section_data (section)->copy_data->quadrant = quadrant;
4496 som_section_data (section)->copy_data->container = container;
4497 return true;
4498 }
4499
4500 /* Set the full SOM symbol type. SOM needs far more symbol information
4501 than any other object file format I'm aware of. It is mandatory
4502 to be able to know if a symbol is an entry point, millicode, data,
4503 code, absolute, storage request, or procedure label. If you get
4504 the symbol type wrong your program will not link. */
4505
4506 void
4507 bfd_som_set_symbol_type (symbol, type)
4508 asymbol *symbol;
4509 unsigned int type;
4510 {
4511 som_symbol_data (symbol)->som_type = type;
4512 }
4513
4514 /* Attach an auxiliary header to the BFD backend so that it may be
4515 written into the object file. */
4516 boolean
4517 bfd_som_attach_aux_hdr (abfd, type, string)
4518 bfd *abfd;
4519 int type;
4520 char *string;
4521 {
4522 if (type == VERSION_AUX_ID)
4523 {
4524 int len = strlen (string);
4525 int pad = 0;
4526
4527 if (len % 4)
4528 pad = (4 - (len % 4));
4529 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
4530 bfd_zalloc (abfd, sizeof (struct aux_id)
4531 + sizeof (unsigned int) + len + pad);
4532 if (!obj_som_version_hdr (abfd))
4533 {
4534 bfd_set_error (bfd_error_no_memory);
4535 return false;
4536 }
4537 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
4538 obj_som_version_hdr (abfd)->header_id.length = len + pad;
4539 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
4540 obj_som_version_hdr (abfd)->string_length = len;
4541 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
4542 }
4543 else if (type == COPYRIGHT_AUX_ID)
4544 {
4545 int len = strlen (string);
4546 int pad = 0;
4547
4548 if (len % 4)
4549 pad = (4 - (len % 4));
4550 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
4551 bfd_zalloc (abfd, sizeof (struct aux_id)
4552 + sizeof (unsigned int) + len + pad);
4553 if (!obj_som_copyright_hdr (abfd))
4554 {
4555 bfd_set_error (bfd_error_no_memory);
4556 return false;
4557 }
4558 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
4559 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
4560 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
4561 obj_som_copyright_hdr (abfd)->string_length = len;
4562 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
4563 }
4564 return true;
4565 }
4566
4567 static boolean
4568 som_get_section_contents (abfd, section, location, offset, count)
4569 bfd *abfd;
4570 sec_ptr section;
4571 PTR location;
4572 file_ptr offset;
4573 bfd_size_type count;
4574 {
4575 if (count == 0 || ((section->flags & SEC_HAS_CONTENTS) == 0))
4576 return true;
4577 if ((bfd_size_type)(offset+count) > section->_raw_size
4578 || bfd_seek (abfd, (file_ptr)(section->filepos + offset), SEEK_SET) == -1
4579 || bfd_read (location, (bfd_size_type)1, count, abfd) != count)
4580 return (false); /* on error */
4581 return (true);
4582 }
4583
4584 static boolean
4585 som_set_section_contents (abfd, section, location, offset, count)
4586 bfd *abfd;
4587 sec_ptr section;
4588 PTR location;
4589 file_ptr offset;
4590 bfd_size_type count;
4591 {
4592 if (abfd->output_has_begun == false)
4593 {
4594 /* Set up fixed parts of the file, space, and subspace headers.
4595 Notify the world that output has begun. */
4596 som_prep_headers (abfd);
4597 abfd->output_has_begun = true;
4598 /* Start writing the object file. This include all the string
4599 tables, fixup streams, and other portions of the object file. */
4600 som_begin_writing (abfd);
4601 }
4602
4603 /* Only write subspaces which have "real" contents (eg. the contents
4604 are not generated at run time by the OS). */
4605 if (!som_is_subspace (section)
4606 || ((section->flags & SEC_HAS_CONTENTS) == 0))
4607 return true;
4608
4609 /* Seek to the proper offset within the object file and write the
4610 data. */
4611 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
4612 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
4613 return false;
4614
4615 if (bfd_write ((PTR) location, 1, count, abfd) != count)
4616 return false;
4617 return true;
4618 }
4619
4620 static boolean
4621 som_set_arch_mach (abfd, arch, machine)
4622 bfd *abfd;
4623 enum bfd_architecture arch;
4624 unsigned long machine;
4625 {
4626 /* Allow any architecture to be supported by the SOM backend */
4627 return bfd_default_set_arch_mach (abfd, arch, machine);
4628 }
4629
4630 static boolean
4631 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4632 functionname_ptr, line_ptr)
4633 bfd *abfd;
4634 asection *section;
4635 asymbol **symbols;
4636 bfd_vma offset;
4637 CONST char **filename_ptr;
4638 CONST char **functionname_ptr;
4639 unsigned int *line_ptr;
4640 {
4641 fprintf (stderr, "som_find_nearest_line unimplemented\n");
4642 fflush (stderr);
4643 abort ();
4644 return (false);
4645 }
4646
4647 static int
4648 som_sizeof_headers (abfd, reloc)
4649 bfd *abfd;
4650 boolean reloc;
4651 {
4652 fprintf (stderr, "som_sizeof_headers unimplemented\n");
4653 fflush (stderr);
4654 abort ();
4655 return (0);
4656 }
4657
4658 /* Return the single-character symbol type corresponding to
4659 SOM section S, or '?' for an unknown SOM section. */
4660
4661 static char
4662 som_section_type (s)
4663 const char *s;
4664 {
4665 const struct section_to_type *t;
4666
4667 for (t = &stt[0]; t->section; t++)
4668 if (!strcmp (s, t->section))
4669 return t->type;
4670 return '?';
4671 }
4672
4673 static int
4674 som_decode_symclass (symbol)
4675 asymbol *symbol;
4676 {
4677 char c;
4678
4679 if (bfd_is_com_section (symbol->section))
4680 return 'C';
4681 if (bfd_is_und_section (symbol->section))
4682 return 'U';
4683 if (bfd_is_ind_section (symbol->section))
4684 return 'I';
4685 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
4686 return '?';
4687
4688 if (bfd_is_abs_section (symbol->section))
4689 c = 'a';
4690 else if (symbol->section)
4691 c = som_section_type (symbol->section->name);
4692 else
4693 return '?';
4694 if (symbol->flags & BSF_GLOBAL)
4695 c = toupper (c);
4696 return c;
4697 }
4698
4699 /* Return information about SOM symbol SYMBOL in RET. */
4700
4701 static void
4702 som_get_symbol_info (ignore_abfd, symbol, ret)
4703 bfd *ignore_abfd;
4704 asymbol *symbol;
4705 symbol_info *ret;
4706 {
4707 ret->type = som_decode_symclass (symbol);
4708 if (ret->type != 'U')
4709 ret->value = symbol->value+symbol->section->vma;
4710 else
4711 ret->value = 0;
4712 ret->name = symbol->name;
4713 }
4714
4715 /* Count the number of symbols in the archive symbol table. Necessary
4716 so that we can allocate space for all the carsyms at once. */
4717
4718 static boolean
4719 som_bfd_count_ar_symbols (abfd, lst_header, count)
4720 bfd *abfd;
4721 struct lst_header *lst_header;
4722 symindex *count;
4723 {
4724 unsigned int i;
4725 unsigned int *hash_table = NULL;
4726 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4727
4728 hash_table =
4729 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4730 if (hash_table == NULL && lst_header->hash_size != 0)
4731 {
4732 bfd_set_error (bfd_error_no_memory);
4733 goto error_return;
4734 }
4735
4736 /* Don't forget to initialize the counter! */
4737 *count = 0;
4738
4739 /* Read in the hash table. The has table is an array of 32bit file offsets
4740 which point to the hash chains. */
4741 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4742 != lst_header->hash_size * 4)
4743 goto error_return;
4744
4745 /* Walk each chain counting the number of symbols found on that particular
4746 chain. */
4747 for (i = 0; i < lst_header->hash_size; i++)
4748 {
4749 struct lst_symbol_record lst_symbol;
4750
4751 /* An empty chain has zero as it's file offset. */
4752 if (hash_table[i] == 0)
4753 continue;
4754
4755 /* Seek to the first symbol in this hash chain. */
4756 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4757 goto error_return;
4758
4759 /* Read in this symbol and update the counter. */
4760 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4761 != sizeof (lst_symbol))
4762 goto error_return;
4763
4764 (*count)++;
4765
4766 /* Now iterate through the rest of the symbols on this chain. */
4767 while (lst_symbol.next_entry)
4768 {
4769
4770 /* Seek to the next symbol. */
4771 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4772 < 0)
4773 goto error_return;
4774
4775 /* Read the symbol in and update the counter. */
4776 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4777 != sizeof (lst_symbol))
4778 goto error_return;
4779
4780 (*count)++;
4781 }
4782 }
4783 if (hash_table != NULL)
4784 free (hash_table);
4785 return true;
4786
4787 error_return:
4788 if (hash_table != NULL)
4789 free (hash_table);
4790 return false;
4791 }
4792
4793 /* Fill in the canonical archive symbols (SYMS) from the archive described
4794 by ABFD and LST_HEADER. */
4795
4796 static boolean
4797 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
4798 bfd *abfd;
4799 struct lst_header *lst_header;
4800 carsym **syms;
4801 {
4802 unsigned int i, len;
4803 carsym *set = syms[0];
4804 unsigned int *hash_table = NULL;
4805 struct som_entry *som_dict = NULL;
4806 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4807
4808 hash_table =
4809 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4810 if (hash_table == NULL && lst_header->hash_size != 0)
4811 {
4812 bfd_set_error (bfd_error_no_memory);
4813 goto error_return;
4814 }
4815
4816 som_dict =
4817 (struct som_entry *) malloc (lst_header->module_count
4818 * sizeof (struct som_entry));
4819 if (som_dict == NULL && lst_header->module_count != 0)
4820 {
4821 bfd_set_error (bfd_error_no_memory);
4822 goto error_return;
4823 }
4824
4825 /* Read in the hash table. The has table is an array of 32bit file offsets
4826 which point to the hash chains. */
4827 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4828 != lst_header->hash_size * 4)
4829 goto error_return;
4830
4831 /* Seek to and read in the SOM dictionary. We will need this to fill
4832 in the carsym's filepos field. */
4833 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
4834 goto error_return;
4835
4836 if (bfd_read ((PTR) som_dict, lst_header->module_count,
4837 sizeof (struct som_entry), abfd)
4838 != lst_header->module_count * sizeof (struct som_entry))
4839 goto error_return;
4840
4841 /* Walk each chain filling in the carsyms as we go along. */
4842 for (i = 0; i < lst_header->hash_size; i++)
4843 {
4844 struct lst_symbol_record lst_symbol;
4845
4846 /* An empty chain has zero as it's file offset. */
4847 if (hash_table[i] == 0)
4848 continue;
4849
4850 /* Seek to and read the first symbol on the chain. */
4851 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4852 goto error_return;
4853
4854 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4855 != sizeof (lst_symbol))
4856 goto error_return;
4857
4858 /* Get the name of the symbol, first get the length which is stored
4859 as a 32bit integer just before the symbol.
4860
4861 One might ask why we don't just read in the entire string table
4862 and index into it. Well, according to the SOM ABI the string
4863 index can point *anywhere* in the archive to save space, so just
4864 using the string table would not be safe. */
4865 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4866 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4867 goto error_return;
4868
4869 if (bfd_read (&len, 1, 4, abfd) != 4)
4870 goto error_return;
4871
4872 /* Allocate space for the name and null terminate it too. */
4873 set->name = bfd_zalloc (abfd, len + 1);
4874 if (!set->name)
4875 {
4876 bfd_set_error (bfd_error_no_memory);
4877 goto error_return;
4878 }
4879 if (bfd_read (set->name, 1, len, abfd) != len)
4880 goto error_return;
4881
4882 set->name[len] = 0;
4883
4884 /* Fill in the file offset. Note that the "location" field points
4885 to the SOM itself, not the ar_hdr in front of it. */
4886 set->file_offset = som_dict[lst_symbol.som_index].location
4887 - sizeof (struct ar_hdr);
4888
4889 /* Go to the next symbol. */
4890 set++;
4891
4892 /* Iterate through the rest of the chain. */
4893 while (lst_symbol.next_entry)
4894 {
4895 /* Seek to the next symbol and read it in. */
4896 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET) <0)
4897 goto error_return;
4898
4899 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4900 != sizeof (lst_symbol))
4901 goto error_return;
4902
4903 /* Seek to the name length & string and read them in. */
4904 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4905 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4906 goto error_return;
4907
4908 if (bfd_read (&len, 1, 4, abfd) != 4)
4909 goto error_return;
4910
4911 /* Allocate space for the name and null terminate it too. */
4912 set->name = bfd_zalloc (abfd, len + 1);
4913 if (!set->name)
4914 {
4915 bfd_set_error (bfd_error_no_memory);
4916 goto error_return;
4917 }
4918
4919 if (bfd_read (set->name, 1, len, abfd) != len)
4920 goto error_return;
4921 set->name[len] = 0;
4922
4923 /* Fill in the file offset. Note that the "location" field points
4924 to the SOM itself, not the ar_hdr in front of it. */
4925 set->file_offset = som_dict[lst_symbol.som_index].location
4926 - sizeof (struct ar_hdr);
4927
4928 /* Go on to the next symbol. */
4929 set++;
4930 }
4931 }
4932 /* If we haven't died by now, then we successfully read the entire
4933 archive symbol table. */
4934 if (hash_table != NULL)
4935 free (hash_table);
4936 if (som_dict != NULL)
4937 free (som_dict);
4938 return true;
4939
4940 error_return:
4941 if (hash_table != NULL)
4942 free (hash_table);
4943 if (som_dict != NULL)
4944 free (som_dict);
4945 return false;
4946 }
4947
4948 /* Read in the LST from the archive. */
4949 static boolean
4950 som_slurp_armap (abfd)
4951 bfd *abfd;
4952 {
4953 struct lst_header lst_header;
4954 struct ar_hdr ar_header;
4955 unsigned int parsed_size;
4956 struct artdata *ardata = bfd_ardata (abfd);
4957 char nextname[17];
4958 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
4959
4960 /* Special cases. */
4961 if (i == 0)
4962 return true;
4963 if (i != 16)
4964 return false;
4965
4966 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
4967 return false;
4968
4969 /* For archives without .o files there is no symbol table. */
4970 if (strncmp (nextname, "/ ", 16))
4971 {
4972 bfd_has_map (abfd) = false;
4973 return true;
4974 }
4975
4976 /* Read in and sanity check the archive header. */
4977 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
4978 != sizeof (struct ar_hdr))
4979 return false;
4980
4981 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
4982 {
4983 bfd_set_error (bfd_error_malformed_archive);
4984 return false;
4985 }
4986
4987 /* How big is the archive symbol table entry? */
4988 errno = 0;
4989 parsed_size = strtol (ar_header.ar_size, NULL, 10);
4990 if (errno != 0)
4991 {
4992 bfd_set_error (bfd_error_malformed_archive);
4993 return false;
4994 }
4995
4996 /* Save off the file offset of the first real user data. */
4997 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
4998
4999 /* Read in the library symbol table. We'll make heavy use of this
5000 in just a minute. */
5001 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
5002 != sizeof (struct lst_header))
5003 return false;
5004
5005 /* Sanity check. */
5006 if (lst_header.a_magic != LIBMAGIC)
5007 {
5008 bfd_set_error (bfd_error_malformed_archive);
5009 return false;
5010 }
5011
5012 /* Count the number of symbols in the library symbol table. */
5013 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
5014 == false)
5015 return false;
5016
5017 /* Get back to the start of the library symbol table. */
5018 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
5019 + sizeof (struct lst_header), SEEK_SET) < 0)
5020 return false;
5021
5022 /* Initializae the cache and allocate space for the library symbols. */
5023 ardata->cache = 0;
5024 ardata->symdefs = (carsym *) bfd_alloc (abfd,
5025 (ardata->symdef_count
5026 * sizeof (carsym)));
5027 if (!ardata->symdefs)
5028 {
5029 bfd_set_error (bfd_error_no_memory);
5030 return false;
5031 }
5032
5033 /* Now fill in the canonical archive symbols. */
5034 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
5035 == false)
5036 return false;
5037
5038 /* Seek back to the "first" file in the archive. Note the "first"
5039 file may be the extended name table. */
5040 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) < 0)
5041 return false;
5042
5043 /* Notify the generic archive code that we have a symbol map. */
5044 bfd_has_map (abfd) = true;
5045 return true;
5046 }
5047
5048 /* Begin preparing to write a SOM library symbol table.
5049
5050 As part of the prep work we need to determine the number of symbols
5051 and the size of the associated string section. */
5052
5053 static boolean
5054 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
5055 bfd *abfd;
5056 unsigned int *num_syms, *stringsize;
5057 {
5058 bfd *curr_bfd = abfd->archive_head;
5059
5060 /* Some initialization. */
5061 *num_syms = 0;
5062 *stringsize = 0;
5063
5064 /* Iterate over each BFD within this archive. */
5065 while (curr_bfd != NULL)
5066 {
5067 unsigned int curr_count, i;
5068 som_symbol_type *sym;
5069
5070 /* Don't bother for non-SOM objects. */
5071 if (curr_bfd->format != bfd_object
5072 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5073 {
5074 curr_bfd = curr_bfd->next;
5075 continue;
5076 }
5077
5078 /* Make sure the symbol table has been read, then snag a pointer
5079 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5080 but doing so avoids allocating lots of extra memory. */
5081 if (som_slurp_symbol_table (curr_bfd) == false)
5082 return false;
5083
5084 sym = obj_som_symtab (curr_bfd);
5085 curr_count = bfd_get_symcount (curr_bfd);
5086
5087 /* Examine each symbol to determine if it belongs in the
5088 library symbol table. */
5089 for (i = 0; i < curr_count; i++, sym++)
5090 {
5091 struct som_misc_symbol_info info;
5092
5093 /* Derive SOM information from the BFD symbol. */
5094 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5095
5096 /* Should we include this symbol? */
5097 if (info.symbol_type == ST_NULL
5098 || info.symbol_type == ST_SYM_EXT
5099 || info.symbol_type == ST_ARG_EXT)
5100 continue;
5101
5102 /* Only global symbols and unsatisfied commons. */
5103 if (info.symbol_scope != SS_UNIVERSAL
5104 && info.symbol_type != ST_STORAGE)
5105 continue;
5106
5107 /* Do no include undefined symbols. */
5108 if (bfd_is_und_section (sym->symbol.section))
5109 continue;
5110
5111 /* Bump the various counters, being careful to honor
5112 alignment considerations in the string table. */
5113 (*num_syms)++;
5114 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5115 while (*stringsize % 4)
5116 (*stringsize)++;
5117 }
5118
5119 curr_bfd = curr_bfd->next;
5120 }
5121 return true;
5122 }
5123
5124 /* Hash a symbol name based on the hashing algorithm presented in the
5125 SOM ABI. */
5126 static unsigned int
5127 som_bfd_ar_symbol_hash (symbol)
5128 asymbol *symbol;
5129 {
5130 unsigned int len = strlen (symbol->name);
5131
5132 /* Names with length 1 are special. */
5133 if (len == 1)
5134 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5135
5136 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5137 | (symbol->name[len-2] << 8) | symbol->name[len-1];
5138 }
5139
5140 static CONST char *
5141 normalize (file)
5142 CONST char *file;
5143 {
5144 CONST char *filename = strrchr (file, '/');
5145
5146 if (filename != NULL)
5147 filename++;
5148 else
5149 filename = file;
5150 return filename;
5151 }
5152
5153 /* Do the bulk of the work required to write the SOM library
5154 symbol table. */
5155
5156 static boolean
5157 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst)
5158 bfd *abfd;
5159 unsigned int nsyms, string_size;
5160 struct lst_header lst;
5161 {
5162 file_ptr lst_filepos;
5163 char *strings = NULL, *p;
5164 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5165 bfd *curr_bfd;
5166 unsigned int *hash_table = NULL;
5167 struct som_entry *som_dict = NULL;
5168 struct lst_symbol_record **last_hash_entry = NULL;
5169 unsigned int curr_som_offset, som_index, extended_name_length = 0;
5170 unsigned int maxname = abfd->xvec->ar_max_namelen;
5171
5172 hash_table =
5173 (unsigned int *) malloc (lst.hash_size * sizeof (unsigned int));
5174 if (hash_table == NULL && lst.hash_size != 0)
5175 {
5176 bfd_set_error (bfd_error_no_memory);
5177 goto error_return;
5178 }
5179 som_dict =
5180 (struct som_entry *) malloc (lst.module_count
5181 * sizeof (struct som_entry));
5182 if (som_dict == NULL && lst.module_count != 0)
5183 {
5184 bfd_set_error (bfd_error_no_memory);
5185 goto error_return;
5186 }
5187
5188 last_hash_entry =
5189 ((struct lst_symbol_record **)
5190 malloc (lst.hash_size * sizeof (struct lst_symbol_record *)));
5191 if (last_hash_entry == NULL && lst.hash_size != 0)
5192 {
5193 bfd_set_error (bfd_error_no_memory);
5194 goto error_return;
5195 }
5196
5197 /* Lots of fields are file positions relative to the start
5198 of the lst record. So save its location. */
5199 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5200
5201 /* Some initialization. */
5202 memset (hash_table, 0, 4 * lst.hash_size);
5203 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
5204 memset (last_hash_entry, 0,
5205 lst.hash_size * sizeof (struct lst_symbol_record *));
5206
5207 /* Symbols have som_index fields, so we have to keep track of the
5208 index of each SOM in the archive.
5209
5210 The SOM dictionary has (among other things) the absolute file
5211 position for the SOM which a particular dictionary entry
5212 describes. We have to compute that information as we iterate
5213 through the SOMs/symbols. */
5214 som_index = 0;
5215 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5216
5217 /* Yow! We have to know the size of the extended name table
5218 too. */
5219 for (curr_bfd = abfd->archive_head;
5220 curr_bfd != NULL;
5221 curr_bfd = curr_bfd->next)
5222 {
5223 CONST char *normal = normalize (curr_bfd->filename);
5224 unsigned int thislen;
5225
5226 if (!normal)
5227 {
5228 bfd_set_error (bfd_error_no_memory);
5229 return false;
5230 }
5231 thislen = strlen (normal);
5232 if (thislen > maxname)
5233 extended_name_length += thislen + 1;
5234 }
5235
5236 /* Make room for the archive header and the contents of the
5237 extended string table. */
5238 if (extended_name_length)
5239 curr_som_offset += extended_name_length + sizeof (struct ar_hdr);
5240
5241 /* Make sure we're properly aligned. */
5242 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5243
5244 /* FIXME should be done with buffers just like everything else... */
5245 lst_syms = malloc (nsyms * sizeof (struct lst_symbol_record));
5246 if (lst_syms == NULL && nsyms != 0)
5247 {
5248 bfd_set_error (bfd_error_no_memory);
5249 goto error_return;
5250 }
5251 strings = malloc (string_size);
5252 if (strings == NULL && string_size != 0)
5253 {
5254 bfd_set_error (bfd_error_no_memory);
5255 goto error_return;
5256 }
5257
5258 p = strings;
5259 curr_lst_sym = lst_syms;
5260
5261 curr_bfd = abfd->archive_head;
5262 while (curr_bfd != NULL)
5263 {
5264 unsigned int curr_count, i;
5265 som_symbol_type *sym;
5266
5267 /* Don't bother for non-SOM objects. */
5268 if (curr_bfd->format != bfd_object
5269 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5270 {
5271 curr_bfd = curr_bfd->next;
5272 continue;
5273 }
5274
5275 /* Make sure the symbol table has been read, then snag a pointer
5276 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5277 but doing so avoids allocating lots of extra memory. */
5278 if (som_slurp_symbol_table (curr_bfd) == false)
5279 goto error_return;
5280
5281 sym = obj_som_symtab (curr_bfd);
5282 curr_count = bfd_get_symcount (curr_bfd);
5283
5284 for (i = 0; i < curr_count; i++, sym++)
5285 {
5286 struct som_misc_symbol_info info;
5287
5288 /* Derive SOM information from the BFD symbol. */
5289 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5290
5291 /* Should we include this symbol? */
5292 if (info.symbol_type == ST_NULL
5293 || info.symbol_type == ST_SYM_EXT
5294 || info.symbol_type == ST_ARG_EXT)
5295 continue;
5296
5297 /* Only global symbols and unsatisfied commons. */
5298 if (info.symbol_scope != SS_UNIVERSAL
5299 && info.symbol_type != ST_STORAGE)
5300 continue;
5301
5302 /* Do no include undefined symbols. */
5303 if (bfd_is_und_section (sym->symbol.section))
5304 continue;
5305
5306 /* If this is the first symbol from this SOM, then update
5307 the SOM dictionary too. */
5308 if (som_dict[som_index].location == 0)
5309 {
5310 som_dict[som_index].location = curr_som_offset;
5311 som_dict[som_index].length = arelt_size (curr_bfd);
5312 }
5313
5314 /* Fill in the lst symbol record. */
5315 curr_lst_sym->hidden = 0;
5316 curr_lst_sym->secondary_def = 0;
5317 curr_lst_sym->symbol_type = info.symbol_type;
5318 curr_lst_sym->symbol_scope = info.symbol_scope;
5319 curr_lst_sym->check_level = 0;
5320 curr_lst_sym->must_qualify = 0;
5321 curr_lst_sym->initially_frozen = 0;
5322 curr_lst_sym->memory_resident = 0;
5323 curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section);
5324 curr_lst_sym->dup_common = 0;
5325 curr_lst_sym->xleast = 0;
5326 curr_lst_sym->arg_reloc = info.arg_reloc;
5327 curr_lst_sym->name.n_strx = p - strings + 4;
5328 curr_lst_sym->qualifier_name.n_strx = 0;
5329 curr_lst_sym->symbol_info = info.symbol_info;
5330 curr_lst_sym->symbol_value = info.symbol_value;
5331 curr_lst_sym->symbol_descriptor = 0;
5332 curr_lst_sym->reserved = 0;
5333 curr_lst_sym->som_index = som_index;
5334 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
5335 curr_lst_sym->next_entry = 0;
5336
5337 /* Insert into the hash table. */
5338 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
5339 {
5340 struct lst_symbol_record *tmp;
5341
5342 /* There is already something at the head of this hash chain,
5343 so tack this symbol onto the end of the chain. */
5344 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
5345 tmp->next_entry
5346 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5347 + lst.hash_size * 4
5348 + lst.module_count * sizeof (struct som_entry)
5349 + sizeof (struct lst_header);
5350 }
5351 else
5352 {
5353 /* First entry in this hash chain. */
5354 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
5355 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5356 + lst.hash_size * 4
5357 + lst.module_count * sizeof (struct som_entry)
5358 + sizeof (struct lst_header);
5359 }
5360
5361 /* Keep track of the last symbol we added to this chain so we can
5362 easily update its next_entry pointer. */
5363 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
5364 = curr_lst_sym;
5365
5366
5367 /* Update the string table. */
5368 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
5369 p += 4;
5370 strcpy (p, sym->symbol.name);
5371 p += strlen (sym->symbol.name) + 1;
5372 while ((int)p % 4)
5373 {
5374 bfd_put_8 (abfd, 0, p);
5375 p++;
5376 }
5377
5378 /* Head to the next symbol. */
5379 curr_lst_sym++;
5380 }
5381
5382 /* Keep track of where each SOM will finally reside; then look
5383 at the next BFD. */
5384 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
5385 curr_bfd = curr_bfd->next;
5386 som_index++;
5387 }
5388
5389 /* Now scribble out the hash table. */
5390 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
5391 != lst.hash_size * 4)
5392 goto error_return;
5393
5394 /* Then the SOM dictionary. */
5395 if (bfd_write ((PTR) som_dict, lst.module_count,
5396 sizeof (struct som_entry), abfd)
5397 != lst.module_count * sizeof (struct som_entry))
5398 goto error_return;
5399
5400 /* The library symbols. */
5401 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
5402 != nsyms * sizeof (struct lst_symbol_record))
5403 goto error_return;
5404
5405 /* And finally the strings. */
5406 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
5407 goto error_return;
5408
5409 if (hash_table != NULL)
5410 free (hash_table);
5411 if (som_dict != NULL)
5412 free (som_dict);
5413 if (last_hash_entry != NULL)
5414 free (last_hash_entry);
5415 if (lst_syms != NULL)
5416 free (lst_syms);
5417 if (strings != NULL)
5418 free (strings);
5419 return true;
5420
5421 error_return:
5422 if (hash_table != NULL)
5423 free (hash_table);
5424 if (som_dict != NULL)
5425 free (som_dict);
5426 if (last_hash_entry != NULL)
5427 free (last_hash_entry);
5428 if (lst_syms != NULL)
5429 free (lst_syms);
5430 if (strings != NULL)
5431 free (strings);
5432
5433 return false;
5434 }
5435
5436 /* SOM almost uses the SVR4 style extended name support, but not
5437 quite. */
5438
5439 static boolean
5440 som_construct_extended_name_table (abfd, tabloc, tablen, name)
5441 bfd *abfd;
5442 char **tabloc;
5443 bfd_size_type *tablen;
5444 const char **name;
5445 {
5446 *name = "//";
5447 return _bfd_construct_extended_name_table (abfd, false, tabloc, tablen);
5448 }
5449
5450 /* Write out the LST for the archive.
5451
5452 You'll never believe this is really how armaps are handled in SOM... */
5453
5454 /*ARGSUSED*/
5455 static boolean
5456 som_write_armap (abfd, elength, map, orl_count, stridx)
5457 bfd *abfd;
5458 unsigned int elength;
5459 struct orl *map;
5460 unsigned int orl_count;
5461 int stridx;
5462 {
5463 bfd *curr_bfd;
5464 struct stat statbuf;
5465 unsigned int i, lst_size, nsyms, stringsize;
5466 struct ar_hdr hdr;
5467 struct lst_header lst;
5468 int *p;
5469
5470 /* We'll use this for the archive's date and mode later. */
5471 if (stat (abfd->filename, &statbuf) != 0)
5472 {
5473 bfd_set_error (bfd_error_system_call);
5474 return false;
5475 }
5476 /* Fudge factor. */
5477 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
5478
5479 /* Account for the lst header first. */
5480 lst_size = sizeof (struct lst_header);
5481
5482 /* Start building the LST header. */
5483 lst.system_id = CPU_PA_RISC1_0;
5484 lst.a_magic = LIBMAGIC;
5485 lst.version_id = VERSION_ID;
5486 lst.file_time.secs = 0;
5487 lst.file_time.nanosecs = 0;
5488
5489 lst.hash_loc = lst_size;
5490 lst.hash_size = SOM_LST_HASH_SIZE;
5491
5492 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
5493 lst_size += 4 * SOM_LST_HASH_SIZE;
5494
5495 /* We need to count the number of SOMs in this archive. */
5496 curr_bfd = abfd->archive_head;
5497 lst.module_count = 0;
5498 while (curr_bfd != NULL)
5499 {
5500 /* Only true SOM objects count. */
5501 if (curr_bfd->format == bfd_object
5502 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
5503 lst.module_count++;
5504 curr_bfd = curr_bfd->next;
5505 }
5506 lst.module_limit = lst.module_count;
5507 lst.dir_loc = lst_size;
5508 lst_size += sizeof (struct som_entry) * lst.module_count;
5509
5510 /* We don't support import/export tables, auxiliary headers,
5511 or free lists yet. Make the linker work a little harder
5512 to make our life easier. */
5513
5514 lst.export_loc = 0;
5515 lst.export_count = 0;
5516 lst.import_loc = 0;
5517 lst.aux_loc = 0;
5518 lst.aux_size = 0;
5519
5520 /* Count how many symbols we will have on the hash chains and the
5521 size of the associated string table. */
5522 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
5523 return false;
5524
5525 lst_size += sizeof (struct lst_symbol_record) * nsyms;
5526
5527 /* For the string table. One day we might actually use this info
5528 to avoid small seeks/reads when reading archives. */
5529 lst.string_loc = lst_size;
5530 lst.string_size = stringsize;
5531 lst_size += stringsize;
5532
5533 /* SOM ABI says this must be zero. */
5534 lst.free_list = 0;
5535 lst.file_end = lst_size;
5536
5537 /* Compute the checksum. Must happen after the entire lst header
5538 has filled in. */
5539 p = (int *)&lst;
5540 lst.checksum = 0;
5541 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
5542 lst.checksum ^= *p++;
5543
5544 sprintf (hdr.ar_name, "/ ");
5545 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
5546 sprintf (hdr.ar_uid, "%ld", (long) getuid ());
5547 sprintf (hdr.ar_gid, "%ld", (long) getgid ());
5548 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
5549 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
5550 hdr.ar_fmag[0] = '`';
5551 hdr.ar_fmag[1] = '\012';
5552
5553 /* Turn any nulls into spaces. */
5554 for (i = 0; i < sizeof (struct ar_hdr); i++)
5555 if (((char *) (&hdr))[i] == '\0')
5556 (((char *) (&hdr))[i]) = ' ';
5557
5558 /* Scribble out the ar header. */
5559 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
5560 != sizeof (struct ar_hdr))
5561 return false;
5562
5563 /* Now scribble out the lst header. */
5564 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
5565 != sizeof (struct lst_header))
5566 return false;
5567
5568 /* Build and write the armap. */
5569 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst) == false)
5570 return false;
5571
5572 /* Done. */
5573 return true;
5574 }
5575
5576 /* Free all information we have cached for this BFD. We can always
5577 read it again later if we need it. */
5578
5579 static boolean
5580 som_bfd_free_cached_info (abfd)
5581 bfd *abfd;
5582 {
5583 asection *o;
5584
5585 if (bfd_get_format (abfd) != bfd_object)
5586 return true;
5587
5588 #define FREE(x) if (x != NULL) { free (x); x = NULL; }
5589 /* Free the native string and symbol tables. */
5590 FREE (obj_som_symtab (abfd));
5591 FREE (obj_som_stringtab (abfd));
5592 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5593 {
5594 /* Free the native relocations. */
5595 o->reloc_count = -1;
5596 FREE (som_section_data (o)->reloc_stream);
5597 /* Free the generic relocations. */
5598 FREE (o->relocation);
5599 }
5600 #undef FREE
5601
5602 return true;
5603 }
5604
5605 /* End of miscellaneous support functions. */
5606
5607 #define som_close_and_cleanup som_bfd_free_cached_info
5608
5609 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
5610 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
5611 #define som_truncate_arname bfd_bsd_truncate_arname
5612 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
5613 #define som_update_armap_timestamp bfd_true
5614
5615 #define som_get_lineno _bfd_nosymbols_get_lineno
5616 #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
5617
5618 #define som_bfd_get_relocated_section_contents \
5619 bfd_generic_get_relocated_section_contents
5620 #define som_bfd_relax_section bfd_generic_relax_section
5621 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
5622 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
5623 #define som_bfd_final_link _bfd_generic_final_link
5624
5625 const bfd_target som_vec =
5626 {
5627 "som", /* name */
5628 bfd_target_som_flavour,
5629 true, /* target byte order */
5630 true, /* target headers byte order */
5631 (HAS_RELOC | EXEC_P | /* object flags */
5632 HAS_LINENO | HAS_DEBUG |
5633 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
5634 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
5635 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
5636
5637 /* leading_symbol_char: is the first char of a user symbol
5638 predictable, and if so what is it */
5639 0,
5640 '/', /* ar_pad_char */
5641 14, /* ar_max_namelen */
5642 3, /* minimum alignment */
5643 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5644 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5645 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
5646 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5647 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5648 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
5649 {_bfd_dummy_target,
5650 som_object_p, /* bfd_check_format */
5651 bfd_generic_archive_p,
5652 _bfd_dummy_target
5653 },
5654 {
5655 bfd_false,
5656 som_mkobject,
5657 _bfd_generic_mkarchive,
5658 bfd_false
5659 },
5660 {
5661 bfd_false,
5662 som_write_object_contents,
5663 _bfd_write_archive_contents,
5664 bfd_false,
5665 },
5666 #undef som
5667
5668 BFD_JUMP_TABLE_GENERIC (som),
5669 BFD_JUMP_TABLE_COPY (som),
5670 BFD_JUMP_TABLE_CORE (_bfd_nocore),
5671 BFD_JUMP_TABLE_ARCHIVE (som),
5672 BFD_JUMP_TABLE_SYMBOLS (som),
5673 BFD_JUMP_TABLE_RELOCS (som),
5674 BFD_JUMP_TABLE_WRITE (som),
5675 BFD_JUMP_TABLE_LINK (som),
5676 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
5677
5678 (PTR) 0
5679 };
5680
5681 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */