* som.c (som_get_section_contents): New function. Do not try
[binutils-gdb.git] / bfd / som.c
1 /* bfd back-end for HP PA-RISC SOM objects.
2 Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
3
4 Contributed by the Center for Software Science at the
5 University of Utah (pa-gdb-bugs@cs.utah.edu).
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23 #include "bfd.h"
24 #include "sysdep.h"
25
26 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)
27
28 #include "libbfd.h"
29 #include "som.h"
30
31 #include <stdio.h>
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/dir.h>
35 #include <signal.h>
36 #include <machine/reg.h>
37 #include <sys/user.h> /* After a.out.h */
38 #include <sys/file.h>
39 #include <errno.h>
40
41 /* Magic not defined in standard HP-UX header files until 8.0 */
42
43 #ifndef CPU_PA_RISC1_0
44 #define CPU_PA_RISC1_0 0x20B
45 #endif /* CPU_PA_RISC1_0 */
46
47 #ifndef CPU_PA_RISC1_1
48 #define CPU_PA_RISC1_1 0x210
49 #endif /* CPU_PA_RISC1_1 */
50
51 #ifndef _PA_RISC1_0_ID
52 #define _PA_RISC1_0_ID CPU_PA_RISC1_0
53 #endif /* _PA_RISC1_0_ID */
54
55 #ifndef _PA_RISC1_1_ID
56 #define _PA_RISC1_1_ID CPU_PA_RISC1_1
57 #endif /* _PA_RISC1_1_ID */
58
59 #ifndef _PA_RISC_MAXID
60 #define _PA_RISC_MAXID 0x2FF
61 #endif /* _PA_RISC_MAXID */
62
63 #ifndef _PA_RISC_ID
64 #define _PA_RISC_ID(__m_num) \
65 (((__m_num) == _PA_RISC1_0_ID) || \
66 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
67 #endif /* _PA_RISC_ID */
68
69 /* Size (in chars) of the temporary buffers used during fixup and string
70 table writes. */
71
72 #define SOM_TMP_BUFSIZE 8192
73
74 /* Size of the hash table in archives. */
75 #define SOM_LST_HASH_SIZE 31
76
77 /* Max number of SOMs to be found in an archive. */
78 #define SOM_LST_MODULE_LIMIT 1024
79
80 /* Generic alignment macro. */
81 #define SOM_ALIGN(val, alignment) \
82 (((val) + (alignment) - 1) & ~((alignment) - 1))
83
84 /* SOM allows any one of the four previous relocations to be reused
85 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
86 relocations are always a single byte, using a R_PREV_FIXUP instead
87 of some multi-byte relocation makes object files smaller.
88
89 Note one side effect of using a R_PREV_FIXUP is the relocation that
90 is being repeated moves to the front of the queue. */
91 struct reloc_queue
92 {
93 unsigned char *reloc;
94 unsigned int size;
95 } reloc_queue[4];
96
97 /* This fully describes the symbol types which may be attached to
98 an EXPORT or IMPORT directive. Only SOM uses this formation
99 (ELF has no need for it). */
100 typedef enum
101 {
102 SYMBOL_TYPE_UNKNOWN,
103 SYMBOL_TYPE_ABSOLUTE,
104 SYMBOL_TYPE_CODE,
105 SYMBOL_TYPE_DATA,
106 SYMBOL_TYPE_ENTRY,
107 SYMBOL_TYPE_MILLICODE,
108 SYMBOL_TYPE_PLABEL,
109 SYMBOL_TYPE_PRI_PROG,
110 SYMBOL_TYPE_SEC_PROG,
111 } pa_symbol_type;
112
113 struct section_to_type
114 {
115 char *section;
116 char type;
117 };
118
119 /* Assorted symbol information that needs to be derived from the BFD symbol
120 and/or the BFD backend private symbol data. */
121 struct som_misc_symbol_info
122 {
123 unsigned int symbol_type;
124 unsigned int symbol_scope;
125 unsigned int arg_reloc;
126 unsigned int symbol_info;
127 unsigned int symbol_value;
128 };
129
130 /* Forward declarations */
131
132 static boolean som_mkobject PARAMS ((bfd *));
133 static bfd_target * som_object_setup PARAMS ((bfd *,
134 struct header *,
135 struct som_exec_auxhdr *));
136 static boolean setup_sections PARAMS ((bfd *, struct header *));
137 static bfd_target * som_object_p PARAMS ((bfd *));
138 static boolean som_write_object_contents PARAMS ((bfd *));
139 static boolean som_slurp_string_table PARAMS ((bfd *));
140 static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
141 static unsigned int som_get_symtab_upper_bound PARAMS ((bfd *));
142 static unsigned int som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
143 arelent **, asymbol **));
144 static unsigned int som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
145 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
146 arelent *, asection *,
147 asymbol **, boolean));
148 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
149 asymbol **, boolean));
150 static unsigned int som_get_symtab PARAMS ((bfd *, asymbol **));
151 static asymbol * som_make_empty_symbol PARAMS ((bfd *));
152 static void som_print_symbol PARAMS ((bfd *, PTR,
153 asymbol *, bfd_print_symbol_type));
154 static boolean som_new_section_hook PARAMS ((bfd *, asection *));
155 static boolean som_bfd_copy_private_section_data PARAMS ((bfd *, asection *,
156 bfd *, asection *));
157 static boolean som_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
158 static boolean som_bfd_is_local_label PARAMS ((bfd *, asymbol *));
159 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
160 file_ptr, bfd_size_type));
161 static boolean som_get_section_contents PARAMS ((bfd *, sec_ptr, PTR,
162 file_ptr, bfd_size_type));
163 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
164 unsigned long));
165 static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
166 asymbol **, bfd_vma,
167 CONST char **,
168 CONST char **,
169 unsigned int *));
170 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
171 static asection * bfd_section_from_som_symbol PARAMS ((bfd *,
172 struct symbol_dictionary_record *));
173 static int log2 PARAMS ((unsigned int));
174 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
175 asymbol *, PTR,
176 asection *, bfd *,
177 char **));
178 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
179 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
180 struct reloc_queue *));
181 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
182 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
183 struct reloc_queue *));
184 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
185 unsigned int,
186 struct reloc_queue *));
187
188 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
189 unsigned char *, unsigned int *,
190 struct reloc_queue *));
191 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
192 unsigned int *,
193 struct reloc_queue *));
194 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
195 unsigned int *,
196 arelent *, int,
197 struct reloc_queue *));
198 static unsigned long som_count_spaces PARAMS ((bfd *));
199 static unsigned long som_count_subspaces PARAMS ((bfd *));
200 static int compare_syms PARAMS ((asymbol **, asymbol **));
201 static unsigned long som_compute_checksum PARAMS ((bfd *));
202 static boolean som_prep_headers PARAMS ((bfd *));
203 static int som_sizeof_headers PARAMS ((bfd *, boolean));
204 static boolean som_write_headers PARAMS ((bfd *));
205 static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
206 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
207 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
208 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
209 unsigned int *));
210 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
211 asymbol **, unsigned int,
212 unsigned *));
213 static boolean som_begin_writing PARAMS ((bfd *));
214 static const reloc_howto_type * som_bfd_reloc_type_lookup
215 PARAMS ((bfd_arch_info_type *, bfd_reloc_code_real_type));
216 static char som_section_type PARAMS ((const char *));
217 static int som_decode_symclass PARAMS ((asymbol *));
218 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
219 symindex *));
220
221 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
222 carsym **syms));
223 static boolean som_slurp_armap PARAMS ((bfd *));
224 static boolean som_write_armap PARAMS ((bfd *));
225 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
226 struct som_misc_symbol_info *));
227 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
228 unsigned int *));
229 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
230 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
231 unsigned int,
232 struct lst_header));
233 static CONST char *normalize PARAMS ((CONST char *file));
234 static boolean som_is_space PARAMS ((asection *));
235 static boolean som_is_subspace PARAMS ((asection *));
236 static boolean som_is_container PARAMS ((asection *, asection *));
237
238 /* Map SOM section names to POSIX/BSD single-character symbol types.
239
240 This table includes all the standard subspaces as defined in the
241 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
242 some reason was left out, and sections specific to embedded stabs. */
243
244 static const struct section_to_type stt[] = {
245 {"$TEXT$", 't'},
246 {"$SHLIB_INFO$", 't'},
247 {"$MILLICODE$", 't'},
248 {"$LIT$", 't'},
249 {"$CODE$", 't'},
250 {"$UNWIND_START$", 't'},
251 {"$UNWIND$", 't'},
252 {"$PRIVATE$", 'd'},
253 {"$PLT$", 'd'},
254 {"$SHLIB_DATA$", 'd'},
255 {"$DATA$", 'd'},
256 {"$SHORTDATA$", 'g'},
257 {"$DLT$", 'd'},
258 {"$GLOBAL$", 'g'},
259 {"$SHORTBSS$", 's'},
260 {"$BSS$", 'b'},
261 {"$GDB_STRINGS$", 'N'},
262 {"$GDB_SYMBOLS$", 'N'},
263 {0, 0}
264 };
265
266 /* About the relocation formatting table...
267
268 There are 256 entries in the table, one for each possible
269 relocation opcode available in SOM. We index the table by
270 the relocation opcode. The names and operations are those
271 defined by a.out_800 (4).
272
273 Right now this table is only used to count and perform minimal
274 processing on relocation streams so that they can be internalized
275 into BFD and symbolically printed by utilities. To make actual use
276 of them would be much more difficult, BFD's concept of relocations
277 is far too simple to handle SOM relocations. The basic assumption
278 that a relocation can be completely processed independent of other
279 relocations before an object file is written is invalid for SOM.
280
281 The SOM relocations are meant to be processed as a stream, they
282 specify copying of data from the input section to the output section
283 while possibly modifying the data in some manner. They also can
284 specify that a variable number of zeros or uninitialized data be
285 inserted on in the output segment at the current offset. Some
286 relocations specify that some previous relocation be re-applied at
287 the current location in the input/output sections. And finally a number
288 of relocations have effects on other sections (R_ENTRY, R_EXIT,
289 R_UNWIND_AUX and a variety of others). There isn't even enough room
290 in the BFD relocation data structure to store enough information to
291 perform all the relocations.
292
293 Each entry in the table has three fields.
294
295 The first entry is an index into this "class" of relocations. This
296 index can then be used as a variable within the relocation itself.
297
298 The second field is a format string which actually controls processing
299 of the relocation. It uses a simple postfix machine to do calculations
300 based on variables/constants found in the string and the relocation
301 stream.
302
303 The third field specifys whether or not this relocation may use
304 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
305 stored in the instruction.
306
307 Variables:
308
309 L = input space byte count
310 D = index into class of relocations
311 M = output space byte count
312 N = statement number (unused?)
313 O = stack operation
314 R = parameter relocation bits
315 S = symbol index
316 U = 64 bits of stack unwind and frame size info (we only keep 32 bits)
317 V = a literal constant (usually used in the next relocation)
318 P = a previous relocation
319
320 Lower case letters (starting with 'b') refer to following
321 bytes in the relocation stream. 'b' is the next 1 byte,
322 c is the next 2 bytes, d is the next 3 bytes, etc...
323 This is the variable part of the relocation entries that
324 makes our life a living hell.
325
326 numerical constants are also used in the format string. Note
327 the constants are represented in decimal.
328
329 '+', "*" and "=" represents the obvious postfix operators.
330 '<' represents a left shift.
331
332 Stack Operations:
333
334 Parameter Relocation Bits:
335
336 Unwind Entries:
337
338 Previous Relocations: The index field represents which in the queue
339 of 4 previous fixups should be re-applied.
340
341 Literal Constants: These are generally used to represent addend
342 parts of relocations when these constants are not stored in the
343 fields of the instructions themselves. For example the instruction
344 addil foo-$global$-0x1234 would use an override for "0x1234" rather
345 than storing it into the addil itself. */
346
347 struct fixup_format
348 {
349 int D;
350 char *format;
351 };
352
353 static const struct fixup_format som_fixup_formats[256] =
354 {
355 /* R_NO_RELOCATION */
356 0, "LD1+4*=", /* 0x00 */
357 1, "LD1+4*=", /* 0x01 */
358 2, "LD1+4*=", /* 0x02 */
359 3, "LD1+4*=", /* 0x03 */
360 4, "LD1+4*=", /* 0x04 */
361 5, "LD1+4*=", /* 0x05 */
362 6, "LD1+4*=", /* 0x06 */
363 7, "LD1+4*=", /* 0x07 */
364 8, "LD1+4*=", /* 0x08 */
365 9, "LD1+4*=", /* 0x09 */
366 10, "LD1+4*=", /* 0x0a */
367 11, "LD1+4*=", /* 0x0b */
368 12, "LD1+4*=", /* 0x0c */
369 13, "LD1+4*=", /* 0x0d */
370 14, "LD1+4*=", /* 0x0e */
371 15, "LD1+4*=", /* 0x0f */
372 16, "LD1+4*=", /* 0x10 */
373 17, "LD1+4*=", /* 0x11 */
374 18, "LD1+4*=", /* 0x12 */
375 19, "LD1+4*=", /* 0x13 */
376 20, "LD1+4*=", /* 0x14 */
377 21, "LD1+4*=", /* 0x15 */
378 22, "LD1+4*=", /* 0x16 */
379 23, "LD1+4*=", /* 0x17 */
380 0, "LD8<b+1+4*=", /* 0x18 */
381 1, "LD8<b+1+4*=", /* 0x19 */
382 2, "LD8<b+1+4*=", /* 0x1a */
383 3, "LD8<b+1+4*=", /* 0x1b */
384 0, "LD16<c+1+4*=", /* 0x1c */
385 1, "LD16<c+1+4*=", /* 0x1d */
386 2, "LD16<c+1+4*=", /* 0x1e */
387 0, "Ld1+=", /* 0x1f */
388 /* R_ZEROES */
389 0, "Lb1+4*=", /* 0x20 */
390 1, "Ld1+=", /* 0x21 */
391 /* R_UNINIT */
392 0, "Lb1+4*=", /* 0x22 */
393 1, "Ld1+=", /* 0x23 */
394 /* R_RELOCATION */
395 0, "L4=", /* 0x24 */
396 /* R_DATA_ONE_SYMBOL */
397 0, "L4=Sb=", /* 0x25 */
398 1, "L4=Sd=", /* 0x26 */
399 /* R_DATA_PLEBEL */
400 0, "L4=Sb=", /* 0x27 */
401 1, "L4=Sd=", /* 0x28 */
402 /* R_SPACE_REF */
403 0, "L4=", /* 0x29 */
404 /* R_REPEATED_INIT */
405 0, "L4=Mb1+4*=", /* 0x2a */
406 1, "Lb4*=Mb1+L*=", /* 0x2b */
407 2, "Lb4*=Md1+4*=", /* 0x2c */
408 3, "Ld1+=Me1+=", /* 0x2d */
409 /* R_RESERVED */
410 0, "", /* 0x2e */
411 0, "", /* 0x2f */
412 /* R_PCREL_CALL */
413 0, "L4=RD=Sb=", /* 0x30 */
414 1, "L4=RD=Sb=", /* 0x31 */
415 2, "L4=RD=Sb=", /* 0x32 */
416 3, "L4=RD=Sb=", /* 0x33 */
417 4, "L4=RD=Sb=", /* 0x34 */
418 5, "L4=RD=Sb=", /* 0x35 */
419 6, "L4=RD=Sb=", /* 0x36 */
420 7, "L4=RD=Sb=", /* 0x37 */
421 8, "L4=RD=Sb=", /* 0x38 */
422 9, "L4=RD=Sb=", /* 0x39 */
423 0, "L4=RD8<b+=Sb=",/* 0x3a */
424 1, "L4=RD8<b+=Sb=",/* 0x3b */
425 0, "L4=RD8<b+=Sd=",/* 0x3c */
426 1, "L4=RD8<b+=Sd=",/* 0x3d */
427 /* R_RESERVED */
428 0, "", /* 0x3e */
429 0, "", /* 0x3f */
430 /* R_ABS_CALL */
431 0, "L4=RD=Sb=", /* 0x40 */
432 1, "L4=RD=Sb=", /* 0x41 */
433 2, "L4=RD=Sb=", /* 0x42 */
434 3, "L4=RD=Sb=", /* 0x43 */
435 4, "L4=RD=Sb=", /* 0x44 */
436 5, "L4=RD=Sb=", /* 0x45 */
437 6, "L4=RD=Sb=", /* 0x46 */
438 7, "L4=RD=Sb=", /* 0x47 */
439 8, "L4=RD=Sb=", /* 0x48 */
440 9, "L4=RD=Sb=", /* 0x49 */
441 0, "L4=RD8<b+=Sb=",/* 0x4a */
442 1, "L4=RD8<b+=Sb=",/* 0x4b */
443 0, "L4=RD8<b+=Sd=",/* 0x4c */
444 1, "L4=RD8<b+=Sd=",/* 0x4d */
445 /* R_RESERVED */
446 0, "", /* 0x4e */
447 0, "", /* 0x4f */
448 /* R_DP_RELATIVE */
449 0, "L4=SD=", /* 0x50 */
450 1, "L4=SD=", /* 0x51 */
451 2, "L4=SD=", /* 0x52 */
452 3, "L4=SD=", /* 0x53 */
453 4, "L4=SD=", /* 0x54 */
454 5, "L4=SD=", /* 0x55 */
455 6, "L4=SD=", /* 0x56 */
456 7, "L4=SD=", /* 0x57 */
457 8, "L4=SD=", /* 0x58 */
458 9, "L4=SD=", /* 0x59 */
459 10, "L4=SD=", /* 0x5a */
460 11, "L4=SD=", /* 0x5b */
461 12, "L4=SD=", /* 0x5c */
462 13, "L4=SD=", /* 0x5d */
463 14, "L4=SD=", /* 0x5e */
464 15, "L4=SD=", /* 0x5f */
465 16, "L4=SD=", /* 0x60 */
466 17, "L4=SD=", /* 0x61 */
467 18, "L4=SD=", /* 0x62 */
468 19, "L4=SD=", /* 0x63 */
469 20, "L4=SD=", /* 0x64 */
470 21, "L4=SD=", /* 0x65 */
471 22, "L4=SD=", /* 0x66 */
472 23, "L4=SD=", /* 0x67 */
473 24, "L4=SD=", /* 0x68 */
474 25, "L4=SD=", /* 0x69 */
475 26, "L4=SD=", /* 0x6a */
476 27, "L4=SD=", /* 0x6b */
477 28, "L4=SD=", /* 0x6c */
478 29, "L4=SD=", /* 0x6d */
479 30, "L4=SD=", /* 0x6e */
480 31, "L4=SD=", /* 0x6f */
481 32, "L4=Sb=", /* 0x70 */
482 33, "L4=Sd=", /* 0x71 */
483 /* R_RESERVED */
484 0, "", /* 0x72 */
485 0, "", /* 0x73 */
486 0, "", /* 0x74 */
487 0, "", /* 0x75 */
488 0, "", /* 0x76 */
489 0, "", /* 0x77 */
490 /* R_DLT_REL */
491 0, "L4=Sb=", /* 0x78 */
492 1, "L4=Sd=", /* 0x79 */
493 /* R_RESERVED */
494 0, "", /* 0x7a */
495 0, "", /* 0x7b */
496 0, "", /* 0x7c */
497 0, "", /* 0x7d */
498 0, "", /* 0x7e */
499 0, "", /* 0x7f */
500 /* R_CODE_ONE_SYMBOL */
501 0, "L4=SD=", /* 0x80 */
502 1, "L4=SD=", /* 0x81 */
503 2, "L4=SD=", /* 0x82 */
504 3, "L4=SD=", /* 0x83 */
505 4, "L4=SD=", /* 0x84 */
506 5, "L4=SD=", /* 0x85 */
507 6, "L4=SD=", /* 0x86 */
508 7, "L4=SD=", /* 0x87 */
509 8, "L4=SD=", /* 0x88 */
510 9, "L4=SD=", /* 0x89 */
511 10, "L4=SD=", /* 0x8q */
512 11, "L4=SD=", /* 0x8b */
513 12, "L4=SD=", /* 0x8c */
514 13, "L4=SD=", /* 0x8d */
515 14, "L4=SD=", /* 0x8e */
516 15, "L4=SD=", /* 0x8f */
517 16, "L4=SD=", /* 0x90 */
518 17, "L4=SD=", /* 0x91 */
519 18, "L4=SD=", /* 0x92 */
520 19, "L4=SD=", /* 0x93 */
521 20, "L4=SD=", /* 0x94 */
522 21, "L4=SD=", /* 0x95 */
523 22, "L4=SD=", /* 0x96 */
524 23, "L4=SD=", /* 0x97 */
525 24, "L4=SD=", /* 0x98 */
526 25, "L4=SD=", /* 0x99 */
527 26, "L4=SD=", /* 0x9a */
528 27, "L4=SD=", /* 0x9b */
529 28, "L4=SD=", /* 0x9c */
530 29, "L4=SD=", /* 0x9d */
531 30, "L4=SD=", /* 0x9e */
532 31, "L4=SD=", /* 0x9f */
533 32, "L4=Sb=", /* 0xa0 */
534 33, "L4=Sd=", /* 0xa1 */
535 /* R_RESERVED */
536 0, "", /* 0xa2 */
537 0, "", /* 0xa3 */
538 0, "", /* 0xa4 */
539 0, "", /* 0xa5 */
540 0, "", /* 0xa6 */
541 0, "", /* 0xa7 */
542 0, "", /* 0xa8 */
543 0, "", /* 0xa9 */
544 0, "", /* 0xaa */
545 0, "", /* 0xab */
546 0, "", /* 0xac */
547 0, "", /* 0xad */
548 /* R_MILLI_REL */
549 0, "L4=Sb=", /* 0xae */
550 1, "L4=Sd=", /* 0xaf */
551 /* R_CODE_PLABEL */
552 0, "L4=Sb=", /* 0xb0 */
553 1, "L4=Sd=", /* 0xb1 */
554 /* R_BREAKPOINT */
555 0, "L4=", /* 0xb2 */
556 /* R_ENTRY */
557 0, "Ui=", /* 0xb3 */
558 1, "Uf=", /* 0xb4 */
559 /* R_ALT_ENTRY */
560 0, "", /* 0xb5 */
561 /* R_EXIT */
562 0, "", /* 0xb6 */
563 /* R_BEGIN_TRY */
564 0, "", /* 0xb7 */
565 /* R_END_TRY */
566 0, "R0=", /* 0xb8 */
567 1, "Rb4*=", /* 0xb9 */
568 2, "Rd4*=", /* 0xba */
569 /* R_BEGIN_BRTAB */
570 0, "", /* 0xbb */
571 /* R_END_BRTAB */
572 0, "", /* 0xbc */
573 /* R_STATEMENT */
574 0, "Nb=", /* 0xbd */
575 1, "Nc=", /* 0xbe */
576 2, "Nd=", /* 0xbf */
577 /* R_DATA_EXPR */
578 0, "L4=", /* 0xc0 */
579 /* R_CODE_EXPR */
580 0, "L4=", /* 0xc1 */
581 /* R_FSEL */
582 0, "", /* 0xc2 */
583 /* R_LSEL */
584 0, "", /* 0xc3 */
585 /* R_RSEL */
586 0, "", /* 0xc4 */
587 /* R_N_MODE */
588 0, "", /* 0xc5 */
589 /* R_S_MODE */
590 0, "", /* 0xc6 */
591 /* R_D_MODE */
592 0, "", /* 0xc7 */
593 /* R_R_MODE */
594 0, "", /* 0xc8 */
595 /* R_DATA_OVERRIDE */
596 0, "V0=", /* 0xc9 */
597 1, "Vb=", /* 0xca */
598 2, "Vc=", /* 0xcb */
599 3, "Vd=", /* 0xcc */
600 4, "Ve=", /* 0xcd */
601 /* R_TRANSLATED */
602 0, "", /* 0xce */
603 /* R_RESERVED */
604 0, "", /* 0xcf */
605 /* R_COMP1 */
606 0, "Ob=", /* 0xd0 */
607 /* R_COMP2 */
608 0, "Ob=Sd=", /* 0xd1 */
609 /* R_COMP3 */
610 0, "Ob=Ve=", /* 0xd2 */
611 /* R_PREV_FIXUP */
612 0, "P", /* 0xd3 */
613 1, "P", /* 0xd4 */
614 2, "P", /* 0xd5 */
615 3, "P", /* 0xd6 */
616 /* R_RESERVED */
617 0, "", /* 0xd7 */
618 0, "", /* 0xd8 */
619 0, "", /* 0xd9 */
620 0, "", /* 0xda */
621 0, "", /* 0xdb */
622 0, "", /* 0xdc */
623 0, "", /* 0xdd */
624 0, "", /* 0xde */
625 0, "", /* 0xdf */
626 0, "", /* 0xe0 */
627 0, "", /* 0xe1 */
628 0, "", /* 0xe2 */
629 0, "", /* 0xe3 */
630 0, "", /* 0xe4 */
631 0, "", /* 0xe5 */
632 0, "", /* 0xe6 */
633 0, "", /* 0xe7 */
634 0, "", /* 0xe8 */
635 0, "", /* 0xe9 */
636 0, "", /* 0xea */
637 0, "", /* 0xeb */
638 0, "", /* 0xec */
639 0, "", /* 0xed */
640 0, "", /* 0xee */
641 0, "", /* 0xef */
642 0, "", /* 0xf0 */
643 0, "", /* 0xf1 */
644 0, "", /* 0xf2 */
645 0, "", /* 0xf3 */
646 0, "", /* 0xf4 */
647 0, "", /* 0xf5 */
648 0, "", /* 0xf6 */
649 0, "", /* 0xf7 */
650 0, "", /* 0xf8 */
651 0, "", /* 0xf9 */
652 0, "", /* 0xfa */
653 0, "", /* 0xfb */
654 0, "", /* 0xfc */
655 0, "", /* 0xfd */
656 0, "", /* 0xfe */
657 0, "", /* 0xff */
658 };
659
660 static const int comp1_opcodes[] =
661 {
662 0x00,
663 0x40,
664 0x41,
665 0x42,
666 0x43,
667 0x44,
668 0x45,
669 0x46,
670 0x47,
671 0x48,
672 0x49,
673 0x4a,
674 0x4b,
675 0x60,
676 0x80,
677 0xa0,
678 0xc0,
679 -1
680 };
681
682 static const int comp2_opcodes[] =
683 {
684 0x00,
685 0x80,
686 0x82,
687 0xc0,
688 -1
689 };
690
691 static const int comp3_opcodes[] =
692 {
693 0x00,
694 0x02,
695 -1
696 };
697
698 /* These apparently are not in older versions of hpux reloc.h. */
699 #ifndef R_DLT_REL
700 #define R_DLT_REL 0x78
701 #endif
702
703 #ifndef R_AUX_UNWIND
704 #define R_AUX_UNWIND 0xcf
705 #endif
706
707 #ifndef R_SEC_STMT
708 #define R_SEC_STMT 0xd7
709 #endif
710
711 static reloc_howto_type som_hppa_howto_table[] =
712 {
713 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
714 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
715 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
716 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
717 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
718 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
719 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
720 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
721 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
722 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
723 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
724 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
725 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
726 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
727 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
728 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
729 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
730 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
731 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
732 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
733 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
734 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
735 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
736 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
737 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
738 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
739 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
740 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
741 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
742 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
743 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
744 {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
745 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
746 {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
747 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
748 {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
749 {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
750 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
751 {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
752 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
753 {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
754 {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
755 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
756 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
757 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
758 {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
759 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
760 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
761 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
762 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
763 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
764 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
765 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
766 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
767 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
768 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
769 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
770 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
771 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
772 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
773 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
774 {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
775 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
776 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
777 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
778 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
779 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
780 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
781 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
782 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
783 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
784 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
785 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
786 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
787 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
788 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
789 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
790 {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
791 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
792 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
793 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
794 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
795 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
796 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
797 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
798 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
799 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
800 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
801 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
802 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
803 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
804 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
805 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
806 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
807 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
808 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
809 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
810 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
811 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
812 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
813 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
814 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
815 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
816 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
817 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
818 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
819 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
820 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
821 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
822 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
823 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
824 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
825 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
826 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
827 {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
828 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
829 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
830 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
831 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
832 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
833 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
834 {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
835 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
836 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
837 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
838 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
839 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
840 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
841 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
842 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
843 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
844 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
845 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
846 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
847 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
848 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
849 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
850 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
851 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
852 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
853 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
854 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
855 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
856 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
857 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
858 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
859 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
860 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
861 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
862 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
863 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
864 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
865 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
866 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
867 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
868 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
869 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
870 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
871 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
872 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
873 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
874 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
875 {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
876 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
877 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
878 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
879 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
880 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
881 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
882 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
883 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
884 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
885 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
886 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
887 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
888 {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
889 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
890 {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
891 {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
892 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
893 {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
894 {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
895 {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
896 {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
897 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
898 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
899 {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
900 {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
901 {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
902 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
903 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
904 {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
905 {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
906 {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
907 {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
908 {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
909 {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
910 {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
911 {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
912 {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
913 {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
914 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
915 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
916 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
917 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
918 {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
919 {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
920 {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
921 {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
922 {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
923 {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
924 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
925 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
926 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
927 {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
928 {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
929 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
930 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
931 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
932 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
933 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
934 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
935 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
936 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
937 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
938 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
939 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
940 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
941 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
942 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
943 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
944 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
945 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
946 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
947 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
948 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
949 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
950 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
951 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
952 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
953 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
954 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
955 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
956 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
957 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
958 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
959 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
960 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
961 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
962 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
963 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
964 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
965 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
966 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
967 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
968 {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
969
970 /* Initialize the SOM relocation queue. By definition the queue holds
971 the last four multibyte fixups. */
972
973 static void
974 som_initialize_reloc_queue (queue)
975 struct reloc_queue *queue;
976 {
977 queue[0].reloc = NULL;
978 queue[0].size = 0;
979 queue[1].reloc = NULL;
980 queue[1].size = 0;
981 queue[2].reloc = NULL;
982 queue[2].size = 0;
983 queue[3].reloc = NULL;
984 queue[3].size = 0;
985 }
986
987 /* Insert a new relocation into the relocation queue. */
988
989 static void
990 som_reloc_queue_insert (p, size, queue)
991 unsigned char *p;
992 unsigned int size;
993 struct reloc_queue *queue;
994 {
995 queue[3].reloc = queue[2].reloc;
996 queue[3].size = queue[2].size;
997 queue[2].reloc = queue[1].reloc;
998 queue[2].size = queue[1].size;
999 queue[1].reloc = queue[0].reloc;
1000 queue[1].size = queue[0].size;
1001 queue[0].reloc = p;
1002 queue[0].size = size;
1003 }
1004
1005 /* When an entry in the relocation queue is reused, the entry moves
1006 to the front of the queue. */
1007
1008 static void
1009 som_reloc_queue_fix (queue, index)
1010 struct reloc_queue *queue;
1011 unsigned int index;
1012 {
1013 if (index == 0)
1014 return;
1015
1016 if (index == 1)
1017 {
1018 unsigned char *tmp1 = queue[0].reloc;
1019 unsigned int tmp2 = queue[0].size;
1020 queue[0].reloc = queue[1].reloc;
1021 queue[0].size = queue[1].size;
1022 queue[1].reloc = tmp1;
1023 queue[1].size = tmp2;
1024 return;
1025 }
1026
1027 if (index == 2)
1028 {
1029 unsigned char *tmp1 = queue[0].reloc;
1030 unsigned int tmp2 = queue[0].size;
1031 queue[0].reloc = queue[2].reloc;
1032 queue[0].size = queue[2].size;
1033 queue[2].reloc = queue[1].reloc;
1034 queue[2].size = queue[1].size;
1035 queue[1].reloc = tmp1;
1036 queue[1].size = tmp2;
1037 return;
1038 }
1039
1040 if (index == 3)
1041 {
1042 unsigned char *tmp1 = queue[0].reloc;
1043 unsigned int tmp2 = queue[0].size;
1044 queue[0].reloc = queue[3].reloc;
1045 queue[0].size = queue[3].size;
1046 queue[3].reloc = queue[2].reloc;
1047 queue[3].size = queue[2].size;
1048 queue[2].reloc = queue[1].reloc;
1049 queue[2].size = queue[1].size;
1050 queue[1].reloc = tmp1;
1051 queue[1].size = tmp2;
1052 return;
1053 }
1054 abort();
1055 }
1056
1057 /* Search for a particular relocation in the relocation queue. */
1058
1059 static int
1060 som_reloc_queue_find (p, size, queue)
1061 unsigned char *p;
1062 unsigned int size;
1063 struct reloc_queue *queue;
1064 {
1065 if (queue[0].reloc && !bcmp (p, queue[0].reloc, size)
1066 && size == queue[0].size)
1067 return 0;
1068 if (queue[1].reloc && !bcmp (p, queue[1].reloc, size)
1069 && size == queue[1].size)
1070 return 1;
1071 if (queue[2].reloc && !bcmp (p, queue[2].reloc, size)
1072 && size == queue[2].size)
1073 return 2;
1074 if (queue[3].reloc && !bcmp (p, queue[3].reloc, size)
1075 && size == queue[3].size)
1076 return 3;
1077 return -1;
1078 }
1079
1080 static unsigned char *
1081 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
1082 bfd *abfd;
1083 int *subspace_reloc_sizep;
1084 unsigned char *p;
1085 unsigned int size;
1086 struct reloc_queue *queue;
1087 {
1088 int queue_index = som_reloc_queue_find (p, size, queue);
1089
1090 if (queue_index != -1)
1091 {
1092 /* Found this in a previous fixup. Undo the fixup we
1093 just built and use R_PREV_FIXUP instead. We saved
1094 a total of size - 1 bytes in the fixup stream. */
1095 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1096 p += 1;
1097 *subspace_reloc_sizep += 1;
1098 som_reloc_queue_fix (queue, queue_index);
1099 }
1100 else
1101 {
1102 som_reloc_queue_insert (p, size, queue);
1103 *subspace_reloc_sizep += size;
1104 p += size;
1105 }
1106 return p;
1107 }
1108
1109 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1110 bytes without any relocation. Update the size of the subspace
1111 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1112 current pointer into the relocation stream. */
1113
1114 static unsigned char *
1115 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
1116 bfd *abfd;
1117 unsigned int skip;
1118 unsigned char *p;
1119 unsigned int *subspace_reloc_sizep;
1120 struct reloc_queue *queue;
1121 {
1122 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1123 then R_PREV_FIXUPs to get the difference down to a
1124 reasonable size. */
1125 if (skip >= 0x1000000)
1126 {
1127 skip -= 0x1000000;
1128 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1129 bfd_put_8 (abfd, 0xff, p + 1);
1130 bfd_put_16 (abfd, 0xffff, p + 2);
1131 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1132 while (skip >= 0x1000000)
1133 {
1134 skip -= 0x1000000;
1135 bfd_put_8 (abfd, R_PREV_FIXUP, p);
1136 p++;
1137 *subspace_reloc_sizep += 1;
1138 /* No need to adjust queue here since we are repeating the
1139 most recent fixup. */
1140 }
1141 }
1142
1143 /* The difference must be less than 0x1000000. Use one
1144 more R_NO_RELOCATION entry to get to the right difference. */
1145 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1146 {
1147 /* Difference can be handled in a simple single-byte
1148 R_NO_RELOCATION entry. */
1149 if (skip <= 0x60)
1150 {
1151 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1152 *subspace_reloc_sizep += 1;
1153 p++;
1154 }
1155 /* Handle it with a two byte R_NO_RELOCATION entry. */
1156 else if (skip <= 0x1000)
1157 {
1158 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1159 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1160 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1161 }
1162 /* Handle it with a three byte R_NO_RELOCATION entry. */
1163 else
1164 {
1165 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1166 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
1167 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1168 }
1169 }
1170 /* Ugh. Punt and use a 4 byte entry. */
1171 else if (skip > 0)
1172 {
1173 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1174 bfd_put_8 (abfd, skip >> 16, p + 1);
1175 bfd_put_16 (abfd, skip, p + 2);
1176 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1177 }
1178 return p;
1179 }
1180
1181 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1182 from a BFD relocation. Update the size of the subspace relocation
1183 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1184 into the relocation stream. */
1185
1186 static unsigned char *
1187 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
1188 bfd *abfd;
1189 int addend;
1190 unsigned char *p;
1191 unsigned int *subspace_reloc_sizep;
1192 struct reloc_queue *queue;
1193 {
1194 if ((unsigned)(addend) + 0x80 < 0x100)
1195 {
1196 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1197 bfd_put_8 (abfd, addend, p + 1);
1198 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1199 }
1200 else if ((unsigned) (addend) + 0x8000 < 0x10000)
1201 {
1202 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1203 bfd_put_16 (abfd, addend, p + 1);
1204 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1205 }
1206 else if ((unsigned) (addend) + 0x800000 < 0x1000000)
1207 {
1208 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1209 bfd_put_8 (abfd, addend >> 16, p + 1);
1210 bfd_put_16 (abfd, addend, p + 2);
1211 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1212 }
1213 else
1214 {
1215 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1216 bfd_put_32 (abfd, addend, p + 1);
1217 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1218 }
1219 return p;
1220 }
1221
1222 /* Handle a single function call relocation. */
1223
1224 static unsigned char *
1225 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
1226 bfd *abfd;
1227 unsigned char *p;
1228 unsigned int *subspace_reloc_sizep;
1229 arelent *bfd_reloc;
1230 int sym_num;
1231 struct reloc_queue *queue;
1232 {
1233 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1234 int rtn_bits = arg_bits & 0x3;
1235 int type, done = 0;
1236
1237 /* You'll never believe all this is necessary to handle relocations
1238 for function calls. Having to compute and pack the argument
1239 relocation bits is the real nightmare.
1240
1241 If you're interested in how this works, just forget it. You really
1242 do not want to know about this braindamage. */
1243
1244 /* First see if this can be done with a "simple" relocation. Simple
1245 relocations have a symbol number < 0x100 and have simple encodings
1246 of argument relocations. */
1247
1248 if (sym_num < 0x100)
1249 {
1250 switch (arg_bits)
1251 {
1252 case 0:
1253 case 1:
1254 type = 0;
1255 break;
1256 case 1 << 8:
1257 case 1 << 8 | 1:
1258 type = 1;
1259 break;
1260 case 1 << 8 | 1 << 6:
1261 case 1 << 8 | 1 << 6 | 1:
1262 type = 2;
1263 break;
1264 case 1 << 8 | 1 << 6 | 1 << 4:
1265 case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1266 type = 3;
1267 break;
1268 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1269 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1270 type = 4;
1271 break;
1272 default:
1273 /* Not one of the easy encodings. This will have to be
1274 handled by the more complex code below. */
1275 type = -1;
1276 break;
1277 }
1278 if (type != -1)
1279 {
1280 /* Account for the return value too. */
1281 if (rtn_bits)
1282 type += 5;
1283
1284 /* Emit a 2 byte relocation. Then see if it can be handled
1285 with a relocation which is already in the relocation queue. */
1286 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1287 bfd_put_8 (abfd, sym_num, p + 1);
1288 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1289 done = 1;
1290 }
1291 }
1292
1293 /* If this could not be handled with a simple relocation, then do a hard
1294 one. Hard relocations occur if the symbol number was too high or if
1295 the encoding of argument relocation bits is too complex. */
1296 if (! done)
1297 {
1298 /* Don't ask about these magic sequences. I took them straight
1299 from gas-1.36 which took them from the a.out man page. */
1300 type = rtn_bits;
1301 if ((arg_bits >> 6 & 0xf) == 0xe)
1302 type += 9 * 40;
1303 else
1304 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1305 if ((arg_bits >> 2 & 0xf) == 0xe)
1306 type += 9 * 4;
1307 else
1308 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1309
1310 /* Output the first two bytes of the relocation. These describe
1311 the length of the relocation and encoding style. */
1312 bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1313 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1314 p);
1315 bfd_put_8 (abfd, type, p + 1);
1316
1317 /* Now output the symbol index and see if this bizarre relocation
1318 just happened to be in the relocation queue. */
1319 if (sym_num < 0x100)
1320 {
1321 bfd_put_8 (abfd, sym_num, p + 2);
1322 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1323 }
1324 else
1325 {
1326 bfd_put_8 (abfd, sym_num >> 16, p + 2);
1327 bfd_put_16 (abfd, sym_num, p + 3);
1328 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1329 }
1330 }
1331 return p;
1332 }
1333
1334
1335 /* Return the logarithm of X, base 2, considering X unsigned.
1336 Abort -1 if X is not a power or two or is zero. */
1337
1338 static int
1339 log2 (x)
1340 unsigned int x;
1341 {
1342 int log = 0;
1343
1344 /* Test for 0 or a power of 2. */
1345 if (x == 0 || x != (x & -x))
1346 return -1;
1347
1348 while ((x >>= 1) != 0)
1349 log++;
1350 return log;
1351 }
1352
1353 static bfd_reloc_status_type
1354 hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
1355 input_section, output_bfd, error_message)
1356 bfd *abfd;
1357 arelent *reloc_entry;
1358 asymbol *symbol_in;
1359 PTR data;
1360 asection *input_section;
1361 bfd *output_bfd;
1362 char **error_message;
1363 {
1364 if (output_bfd)
1365 {
1366 reloc_entry->address += input_section->output_offset;
1367 return bfd_reloc_ok;
1368 }
1369 return bfd_reloc_ok;
1370 }
1371
1372 /* Given a generic HPPA relocation type, the instruction format,
1373 and a field selector, return one or more appropriate SOM relocations. */
1374
1375 int **
1376 hppa_som_gen_reloc_type (abfd, base_type, format, field)
1377 bfd *abfd;
1378 int base_type;
1379 int format;
1380 enum hppa_reloc_field_selector_type_alt field;
1381 {
1382 int *final_type, **final_types;
1383
1384 final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 3);
1385 final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1386 if (!final_types || !final_type)
1387 {
1388 bfd_set_error (bfd_error_no_memory);
1389 return NULL;
1390 }
1391
1392 /* The field selector may require additional relocations to be
1393 generated. It's impossible to know at this moment if additional
1394 relocations will be needed, so we make them. The code to actually
1395 write the relocation/fixup stream is responsible for removing
1396 any redundant relocations. */
1397 switch (field)
1398 {
1399 case e_fsel:
1400 case e_psel:
1401 case e_lpsel:
1402 case e_rpsel:
1403 final_types[0] = final_type;
1404 final_types[1] = NULL;
1405 final_types[2] = NULL;
1406 *final_type = base_type;
1407 break;
1408
1409 case e_tsel:
1410 case e_ltsel:
1411 case e_rtsel:
1412 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1413 if (!final_types[0])
1414 {
1415 bfd_set_error (bfd_error_no_memory);
1416 return NULL;
1417 }
1418 if (field == e_tsel)
1419 *final_types[0] = R_FSEL;
1420 else if (field == e_ltsel)
1421 *final_types[0] = R_LSEL;
1422 else
1423 *final_types[0] = R_RSEL;
1424 final_types[1] = final_type;
1425 final_types[2] = NULL;
1426 *final_type = base_type;
1427 break;
1428
1429 case e_lssel:
1430 case e_rssel:
1431 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1432 if (!final_types[0])
1433 {
1434 bfd_set_error (bfd_error_no_memory);
1435 return NULL;
1436 }
1437 *final_types[0] = R_S_MODE;
1438 final_types[1] = final_type;
1439 final_types[2] = NULL;
1440 *final_type = base_type;
1441 break;
1442
1443 case e_lsel:
1444 case e_rsel:
1445 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1446 if (!final_types[0])
1447 {
1448 bfd_set_error (bfd_error_no_memory);
1449 return NULL;
1450 }
1451 *final_types[0] = R_N_MODE;
1452 final_types[1] = final_type;
1453 final_types[2] = NULL;
1454 *final_type = base_type;
1455 break;
1456
1457 case e_ldsel:
1458 case e_rdsel:
1459 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1460 if (!final_types[0])
1461 {
1462 bfd_set_error (bfd_error_no_memory);
1463 return NULL;
1464 }
1465 *final_types[0] = R_D_MODE;
1466 final_types[1] = final_type;
1467 final_types[2] = NULL;
1468 *final_type = base_type;
1469 break;
1470
1471 case e_lrsel:
1472 case e_rrsel:
1473 final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
1474 if (!final_types[0])
1475 {
1476 bfd_set_error (bfd_error_no_memory);
1477 return NULL;
1478 }
1479 *final_types[0] = R_R_MODE;
1480 final_types[1] = final_type;
1481 final_types[2] = NULL;
1482 *final_type = base_type;
1483 break;
1484 }
1485
1486 switch (base_type)
1487 {
1488 case R_HPPA:
1489 /* PLABELs get their own relocation type. */
1490 if (field == e_psel
1491 || field == e_lpsel
1492 || field == e_rpsel)
1493 {
1494 /* A PLABEL relocation that has a size of 32 bits must
1495 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
1496 if (format == 32)
1497 *final_type = R_DATA_PLABEL;
1498 else
1499 *final_type = R_CODE_PLABEL;
1500 }
1501 /* PIC stuff. */
1502 else if (field == e_tsel
1503 || field == e_ltsel
1504 || field == e_rtsel)
1505 *final_type = R_DLT_REL;
1506 /* A relocation in the data space is always a full 32bits. */
1507 else if (format == 32)
1508 *final_type = R_DATA_ONE_SYMBOL;
1509
1510 break;
1511
1512 case R_HPPA_GOTOFF:
1513 /* More PLABEL special cases. */
1514 if (field == e_psel
1515 || field == e_lpsel
1516 || field == e_rpsel)
1517 *final_type = R_DATA_PLABEL;
1518 break;
1519
1520 case R_HPPA_NONE:
1521 case R_HPPA_ABS_CALL:
1522 case R_HPPA_PCREL_CALL:
1523 case R_HPPA_COMPLEX:
1524 case R_HPPA_COMPLEX_PCREL_CALL:
1525 case R_HPPA_COMPLEX_ABS_CALL:
1526 /* Right now we can default all these. */
1527 break;
1528 }
1529 return final_types;
1530 }
1531
1532 /* Return the address of the correct entry in the PA SOM relocation
1533 howto table. */
1534
1535 static const reloc_howto_type *
1536 som_bfd_reloc_type_lookup (arch, code)
1537 bfd_arch_info_type *arch;
1538 bfd_reloc_code_real_type code;
1539 {
1540 if ((int) code < (int) R_NO_RELOCATION + 255)
1541 {
1542 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1543 return &som_hppa_howto_table[(int) code];
1544 }
1545
1546 return (reloc_howto_type *) 0;
1547 }
1548
1549 /* Perform some initialization for an object. Save results of this
1550 initialization in the BFD. */
1551
1552 static bfd_target *
1553 som_object_setup (abfd, file_hdrp, aux_hdrp)
1554 bfd *abfd;
1555 struct header *file_hdrp;
1556 struct som_exec_auxhdr *aux_hdrp;
1557 {
1558 /* som_mkobject will set bfd_error if som_mkobject fails. */
1559 if (som_mkobject (abfd) != true)
1560 return 0;
1561
1562 /* Set BFD flags based on what information is available in the SOM. */
1563 abfd->flags = NO_FLAGS;
1564 if (file_hdrp->symbol_total)
1565 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1566
1567 switch (file_hdrp->a_magic)
1568 {
1569 case DEMAND_MAGIC:
1570 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1571 break;
1572 case SHARE_MAGIC:
1573 abfd->flags |= (WP_TEXT | EXEC_P);
1574 break;
1575 case EXEC_MAGIC:
1576 abfd->flags |= (EXEC_P);
1577 break;
1578 case RELOC_MAGIC:
1579 abfd->flags |= HAS_RELOC;
1580 break;
1581 default:
1582 break;
1583 }
1584
1585 bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
1586 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 0);
1587 bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1588
1589 /* Initialize the saved symbol table and string table to NULL.
1590 Save important offsets and sizes from the SOM header into
1591 the BFD. */
1592 obj_som_stringtab (abfd) = (char *) NULL;
1593 obj_som_symtab (abfd) = (som_symbol_type *) NULL;
1594 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1595 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
1596 obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
1597 obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
1598
1599 obj_som_exec_data (abfd) = (struct som_exec_data *)
1600 bfd_zalloc (abfd, sizeof (struct som_exec_data ));
1601 if (obj_som_exec_data (abfd) == NULL)
1602 {
1603 bfd_set_error (bfd_error_no_memory);
1604 return NULL;
1605 }
1606
1607 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1608 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1609 return abfd->xvec;
1610 }
1611
1612 /* Convert all of the space and subspace info into BFD sections. Each space
1613 contains a number of subspaces, which in turn describe the mapping between
1614 regions of the exec file, and the address space that the program runs in.
1615 BFD sections which correspond to spaces will overlap the sections for the
1616 associated subspaces. */
1617
1618 static boolean
1619 setup_sections (abfd, file_hdr)
1620 bfd *abfd;
1621 struct header *file_hdr;
1622 {
1623 char *space_strings;
1624 int space_index;
1625 unsigned int total_subspaces = 0;
1626
1627 /* First, read in space names */
1628
1629 space_strings = malloc (file_hdr->space_strings_size);
1630 if (!space_strings && file_hdr->space_strings_size != 0)
1631 {
1632 bfd_set_error (bfd_error_no_memory);
1633 goto error_return;
1634 }
1635
1636 if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
1637 goto error_return;
1638 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
1639 != file_hdr->space_strings_size)
1640 goto error_return;
1641
1642 /* Loop over all of the space dictionaries, building up sections */
1643 for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1644 {
1645 struct space_dictionary_record space;
1646 struct subspace_dictionary_record subspace, save_subspace;
1647 int subspace_index;
1648 asection *space_asect;
1649 char *newname;
1650
1651 /* Read the space dictionary element */
1652 if (bfd_seek (abfd, file_hdr->space_location
1653 + space_index * sizeof space, SEEK_SET) < 0)
1654 goto error_return;
1655 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
1656 goto error_return;
1657
1658 /* Setup the space name string */
1659 space.name.n_name = space.name.n_strx + space_strings;
1660
1661 /* Make a section out of it */
1662 newname = bfd_alloc (abfd, strlen (space.name.n_name) + 1);
1663 if (!newname)
1664 goto error_return;
1665 strcpy (newname, space.name.n_name);
1666
1667 space_asect = bfd_make_section_anyway (abfd, newname);
1668 if (!space_asect)
1669 goto error_return;
1670
1671 if (space.is_loadable == 0)
1672 space_asect->flags |= SEC_DEBUGGING;
1673
1674 /* Set up all the attributes for the space. */
1675 if (bfd_som_set_section_attributes (space_asect, space.is_defined,
1676 space.is_private, space.sort_key,
1677 space.space_number) == false)
1678 goto error_return;
1679
1680 /* Now, read in the first subspace for this space */
1681 if (bfd_seek (abfd, file_hdr->subspace_location
1682 + space.subspace_index * sizeof subspace,
1683 SEEK_SET) < 0)
1684 goto error_return;
1685 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
1686 goto error_return;
1687 /* Seek back to the start of the subspaces for loop below */
1688 if (bfd_seek (abfd, file_hdr->subspace_location
1689 + space.subspace_index * sizeof subspace,
1690 SEEK_SET) < 0)
1691 goto error_return;
1692
1693 /* Setup the start address and file loc from the first subspace record */
1694 space_asect->vma = subspace.subspace_start;
1695 space_asect->filepos = subspace.file_loc_init_value;
1696 space_asect->alignment_power = log2 (subspace.alignment);
1697 if (space_asect->alignment_power == -1)
1698 goto error_return;
1699
1700 /* Initialize save_subspace so we can reliably determine if this
1701 loop placed any useful values into it. */
1702 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));
1703
1704 /* Loop over the rest of the subspaces, building up more sections */
1705 for (subspace_index = 0; subspace_index < space.subspace_quantity;
1706 subspace_index++)
1707 {
1708 asection *subspace_asect;
1709
1710 /* Read in the next subspace */
1711 if (bfd_read (&subspace, 1, sizeof subspace, abfd)
1712 != sizeof subspace)
1713 goto error_return;
1714
1715 /* Setup the subspace name string */
1716 subspace.name.n_name = subspace.name.n_strx + space_strings;
1717
1718 newname = bfd_alloc (abfd, strlen (subspace.name.n_name) + 1);
1719 if (!newname)
1720 goto error_return;
1721 strcpy (newname, subspace.name.n_name);
1722
1723 /* Make a section out of this subspace */
1724 subspace_asect = bfd_make_section_anyway (abfd, newname);
1725 if (!subspace_asect)
1726 goto error_return;
1727
1728 /* Store private information about the section. */
1729 if (bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1730 subspace.access_control_bits,
1731 subspace.sort_key,
1732 subspace.quadrant) == false)
1733 goto error_return;
1734
1735 /* Keep an easy mapping between subspaces and sections. */
1736 subspace_asect->target_index = total_subspaces++;
1737
1738 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1739 by the access_control_bits in the subspace header. */
1740 switch (subspace.access_control_bits >> 4)
1741 {
1742 /* Readonly data. */
1743 case 0x0:
1744 subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1745 break;
1746
1747 /* Normal data. */
1748 case 0x1:
1749 subspace_asect->flags |= SEC_DATA;
1750 break;
1751
1752 /* Readonly code and the gateways.
1753 Gateways have other attributes which do not map
1754 into anything BFD knows about. */
1755 case 0x2:
1756 case 0x4:
1757 case 0x5:
1758 case 0x6:
1759 case 0x7:
1760 subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1761 break;
1762
1763 /* dynamic (writable) code. */
1764 case 0x3:
1765 subspace_asect->flags |= SEC_CODE;
1766 break;
1767 }
1768
1769 if (subspace.dup_common || subspace.is_common)
1770 subspace_asect->flags |= SEC_IS_COMMON;
1771 else if (subspace.subspace_length > 0)
1772 subspace_asect->flags |= SEC_HAS_CONTENTS;
1773
1774 if (subspace.is_loadable)
1775 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1776 else
1777 subspace_asect->flags |= SEC_DEBUGGING;
1778
1779 if (subspace.code_only)
1780 subspace_asect->flags |= SEC_CODE;
1781
1782 /* Both file_loc_init_value and initialization_length will
1783 be zero for a BSS like subspace. */
1784 if (subspace.file_loc_init_value == 0
1785 && subspace.initialization_length == 0)
1786 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD);
1787
1788 /* This subspace has relocations.
1789 The fixup_request_quantity is a byte count for the number of
1790 entries in the relocation stream; it is not the actual number
1791 of relocations in the subspace. */
1792 if (subspace.fixup_request_quantity != 0)
1793 {
1794 subspace_asect->flags |= SEC_RELOC;
1795 subspace_asect->rel_filepos = subspace.fixup_request_index;
1796 som_section_data (subspace_asect)->reloc_size
1797 = subspace.fixup_request_quantity;
1798 /* We can not determine this yet. When we read in the
1799 relocation table the correct value will be filled in. */
1800 subspace_asect->reloc_count = -1;
1801 }
1802
1803 /* Update save_subspace if appropriate. */
1804 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1805 save_subspace = subspace;
1806
1807 subspace_asect->vma = subspace.subspace_start;
1808 subspace_asect->_cooked_size = subspace.subspace_length;
1809 subspace_asect->_raw_size = subspace.subspace_length;
1810 subspace_asect->filepos = subspace.file_loc_init_value;
1811 subspace_asect->alignment_power = log2 (subspace.alignment);
1812 if (subspace_asect->alignment_power == -1)
1813 goto error_return;
1814 }
1815
1816 /* Yow! there is no subspace within the space which actually
1817 has initialized information in it; this should never happen
1818 as far as I know. */
1819 if (!save_subspace.file_loc_init_value)
1820 goto error_return;
1821
1822 /* Setup the sizes for the space section based upon the info in the
1823 last subspace of the space. */
1824 space_asect->_cooked_size = save_subspace.subspace_start
1825 - space_asect->vma + save_subspace.subspace_length;
1826 space_asect->_raw_size = save_subspace.file_loc_init_value
1827 - space_asect->filepos + save_subspace.initialization_length;
1828 }
1829 if (space_strings != NULL)
1830 free (space_strings);
1831 return true;
1832
1833 error_return:
1834 if (space_strings != NULL)
1835 free (space_strings);
1836 return false;
1837 }
1838
1839 /* Read in a SOM object and make it into a BFD. */
1840
1841 static bfd_target *
1842 som_object_p (abfd)
1843 bfd *abfd;
1844 {
1845 struct header file_hdr;
1846 struct som_exec_auxhdr aux_hdr;
1847
1848 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
1849 {
1850 if (bfd_get_error () != bfd_error_system_call)
1851 bfd_set_error (bfd_error_wrong_format);
1852 return 0;
1853 }
1854
1855 if (!_PA_RISC_ID (file_hdr.system_id))
1856 {
1857 bfd_set_error (bfd_error_wrong_format);
1858 return 0;
1859 }
1860
1861 switch (file_hdr.a_magic)
1862 {
1863 case RELOC_MAGIC:
1864 case EXEC_MAGIC:
1865 case SHARE_MAGIC:
1866 case DEMAND_MAGIC:
1867 #ifdef DL_MAGIC
1868 case DL_MAGIC:
1869 #endif
1870 #ifdef SHL_MAGIC
1871 case SHL_MAGIC:
1872 #endif
1873 #ifdef EXECLIBMAGIC
1874 case EXECLIBMAGIC:
1875 #endif
1876 #ifdef SHARED_MAGIC_CNX
1877 case SHARED_MAGIC_CNX:
1878 #endif
1879 break;
1880 default:
1881 bfd_set_error (bfd_error_wrong_format);
1882 return 0;
1883 }
1884
1885 if (file_hdr.version_id != VERSION_ID
1886 && file_hdr.version_id != NEW_VERSION_ID)
1887 {
1888 bfd_set_error (bfd_error_wrong_format);
1889 return 0;
1890 }
1891
1892 /* If the aux_header_size field in the file header is zero, then this
1893 object is an incomplete executable (a .o file). Do not try to read
1894 a non-existant auxiliary header. */
1895 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
1896 if (file_hdr.aux_header_size != 0)
1897 {
1898 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
1899 {
1900 if (bfd_get_error () != bfd_error_system_call)
1901 bfd_set_error (bfd_error_wrong_format);
1902 return 0;
1903 }
1904 }
1905
1906 if (!setup_sections (abfd, &file_hdr))
1907 {
1908 /* setup_sections does not bubble up a bfd error code. */
1909 bfd_set_error (bfd_error_bad_value);
1910 return 0;
1911 }
1912
1913 /* This appears to be a valid SOM object. Do some initialization. */
1914 return som_object_setup (abfd, &file_hdr, &aux_hdr);
1915 }
1916
1917 /* Create a SOM object. */
1918
1919 static boolean
1920 som_mkobject (abfd)
1921 bfd *abfd;
1922 {
1923 /* Allocate memory to hold backend information. */
1924 abfd->tdata.som_data = (struct som_data_struct *)
1925 bfd_zalloc (abfd, sizeof (struct som_data_struct));
1926 if (abfd->tdata.som_data == NULL)
1927 {
1928 bfd_set_error (bfd_error_no_memory);
1929 return false;
1930 }
1931 return true;
1932 }
1933
1934 /* Initialize some information in the file header. This routine makes
1935 not attempt at doing the right thing for a full executable; it
1936 is only meant to handle relocatable objects. */
1937
1938 static boolean
1939 som_prep_headers (abfd)
1940 bfd *abfd;
1941 {
1942 struct header *file_hdr;
1943 asection *section;
1944
1945 /* Make and attach a file header to the BFD. */
1946 file_hdr = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
1947 if (file_hdr == NULL)
1948
1949 {
1950 bfd_set_error (bfd_error_no_memory);
1951 return false;
1952 }
1953 obj_som_file_hdr (abfd) = file_hdr;
1954
1955 /* FIXME. This should really be conditional based on whether or not
1956 PA1.1 instructions/registers have been used. */
1957 if (abfd->flags & EXEC_P)
1958 file_hdr->system_id = obj_som_exec_data (abfd)->system_id;
1959 else
1960 file_hdr->system_id = CPU_PA_RISC1_0;
1961
1962 if (abfd->flags & EXEC_P)
1963 {
1964 if (abfd->flags & D_PAGED)
1965 file_hdr->a_magic = DEMAND_MAGIC;
1966 else if (abfd->flags & WP_TEXT)
1967 file_hdr->a_magic = SHARE_MAGIC;
1968 else
1969 file_hdr->a_magic = EXEC_MAGIC;
1970 }
1971 else
1972 file_hdr->a_magic = RELOC_MAGIC;
1973
1974 /* Only new format SOM is supported. */
1975 file_hdr->version_id = NEW_VERSION_ID;
1976
1977 /* These fields are optional, and embedding timestamps is not always
1978 a wise thing to do, it makes comparing objects during a multi-stage
1979 bootstrap difficult. */
1980 file_hdr->file_time.secs = 0;
1981 file_hdr->file_time.nanosecs = 0;
1982
1983 file_hdr->entry_space = 0;
1984 file_hdr->entry_subspace = 0;
1985 file_hdr->entry_offset = 0;
1986 file_hdr->presumed_dp = 0;
1987
1988 /* Now iterate over the sections translating information from
1989 BFD sections to SOM spaces/subspaces. */
1990
1991 for (section = abfd->sections; section != NULL; section = section->next)
1992 {
1993 /* Ignore anything which has not been marked as a space or
1994 subspace. */
1995 if (!som_is_space (section) && !som_is_subspace (section))
1996 continue;
1997
1998 if (som_is_space (section))
1999 {
2000 /* Allocate space for the space dictionary. */
2001 som_section_data (section)->space_dict
2002 = (struct space_dictionary_record *)
2003 bfd_zalloc (abfd, sizeof (struct space_dictionary_record));
2004 if (som_section_data (section)->space_dict == NULL)
2005 {
2006 bfd_set_error (bfd_error_no_memory);
2007 return false;
2008 }
2009 /* Set space attributes. Note most attributes of SOM spaces
2010 are set based on the subspaces it contains. */
2011 som_section_data (section)->space_dict->loader_fix_index = -1;
2012 som_section_data (section)->space_dict->init_pointer_index = -1;
2013
2014 /* Set more attributes that were stuffed away in private data. */
2015 som_section_data (section)->space_dict->sort_key =
2016 som_section_data (section)->copy_data->sort_key;
2017 som_section_data (section)->space_dict->is_defined =
2018 som_section_data (section)->copy_data->is_defined;
2019 som_section_data (section)->space_dict->is_private =
2020 som_section_data (section)->copy_data->is_private;
2021 som_section_data (section)->space_dict->space_number =
2022 section->target_index;
2023 }
2024 else
2025 {
2026 /* Allocate space for the subspace dictionary. */
2027 som_section_data (section)->subspace_dict
2028 = (struct subspace_dictionary_record *)
2029 bfd_zalloc (abfd, sizeof (struct subspace_dictionary_record));
2030 if (som_section_data (section)->subspace_dict == NULL)
2031 {
2032 bfd_set_error (bfd_error_no_memory);
2033 return false;
2034 }
2035
2036 /* Set subspace attributes. Basic stuff is done here, additional
2037 attributes are filled in later as more information becomes
2038 available. */
2039 if (section->flags & SEC_IS_COMMON)
2040 {
2041 som_section_data (section)->subspace_dict->dup_common = 1;
2042 som_section_data (section)->subspace_dict->is_common = 1;
2043 }
2044
2045 if (section->flags & SEC_ALLOC)
2046 som_section_data (section)->subspace_dict->is_loadable = 1;
2047
2048 if (section->flags & SEC_CODE)
2049 som_section_data (section)->subspace_dict->code_only = 1;
2050
2051 som_section_data (section)->subspace_dict->subspace_start =
2052 section->vma;
2053 som_section_data (section)->subspace_dict->subspace_length =
2054 bfd_section_size (abfd, section);
2055 som_section_data (section)->subspace_dict->initialization_length =
2056 bfd_section_size (abfd, section);
2057 som_section_data (section)->subspace_dict->alignment =
2058 1 << section->alignment_power;
2059
2060 /* Set more attributes that were stuffed away in private data. */
2061 som_section_data (section)->subspace_dict->sort_key =
2062 som_section_data (section)->copy_data->sort_key;
2063 som_section_data (section)->subspace_dict->access_control_bits =
2064 som_section_data (section)->copy_data->access_control_bits;
2065 som_section_data (section)->subspace_dict->quadrant =
2066 som_section_data (section)->copy_data->quadrant;
2067 }
2068 }
2069 return true;
2070 }
2071
2072 /* Return true if the given section is a SOM space, false otherwise. */
2073
2074 static boolean
2075 som_is_space (section)
2076 asection *section;
2077 {
2078 /* If no copy data is available, then it's neither a space nor a
2079 subspace. */
2080 if (som_section_data (section)->copy_data == NULL)
2081 return false;
2082
2083 /* If the containing space isn't the same as the given section,
2084 then this isn't a space. */
2085 if (som_section_data (section)->copy_data->container != section)
2086 return false;
2087
2088 /* OK. Must be a space. */
2089 return true;
2090 }
2091
2092 /* Return true if the given section is a SOM subspace, false otherwise. */
2093
2094 static boolean
2095 som_is_subspace (section)
2096 asection *section;
2097 {
2098 /* If no copy data is available, then it's neither a space nor a
2099 subspace. */
2100 if (som_section_data (section)->copy_data == NULL)
2101 return false;
2102
2103 /* If the containing space is the same as the given section,
2104 then this isn't a subspace. */
2105 if (som_section_data (section)->copy_data->container == section)
2106 return false;
2107
2108 /* OK. Must be a subspace. */
2109 return true;
2110 }
2111
2112 /* Return true if the given space containins the given subspace. It
2113 is safe to assume space really is a space, and subspace really
2114 is a subspace. */
2115
2116 static boolean
2117 som_is_container (space, subspace)
2118 asection *space, *subspace;
2119 {
2120 return som_section_data (subspace)->copy_data->container == space;
2121 }
2122
2123 /* Count and return the number of spaces attached to the given BFD. */
2124
2125 static unsigned long
2126 som_count_spaces (abfd)
2127 bfd *abfd;
2128 {
2129 int count = 0;
2130 asection *section;
2131
2132 for (section = abfd->sections; section != NULL; section = section->next)
2133 count += som_is_space (section);
2134
2135 return count;
2136 }
2137
2138 /* Count the number of subspaces attached to the given BFD. */
2139
2140 static unsigned long
2141 som_count_subspaces (abfd)
2142 bfd *abfd;
2143 {
2144 int count = 0;
2145 asection *section;
2146
2147 for (section = abfd->sections; section != NULL; section = section->next)
2148 count += som_is_subspace (section);
2149
2150 return count;
2151 }
2152
2153 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2154
2155 We desire symbols to be ordered starting with the symbol with the
2156 highest relocation count down to the symbol with the lowest relocation
2157 count. Doing so compacts the relocation stream. */
2158
2159 static int
2160 compare_syms (sym1, sym2)
2161 asymbol **sym1;
2162 asymbol **sym2;
2163
2164 {
2165 unsigned int count1, count2;
2166
2167 /* Get relocation count for each symbol. Note that the count
2168 is stored in the udata pointer for section symbols! */
2169 if ((*sym1)->flags & BSF_SECTION_SYM)
2170 count1 = (int)(*sym1)->udata;
2171 else
2172 count1 = som_symbol_data (*sym1)->reloc_count;
2173
2174 if ((*sym2)->flags & BSF_SECTION_SYM)
2175 count2 = (int)(*sym2)->udata;
2176 else
2177 count2 = som_symbol_data (*sym2)->reloc_count;
2178
2179 /* Return the appropriate value. */
2180 if (count1 < count2)
2181 return 1;
2182 else if (count1 > count2)
2183 return -1;
2184 return 0;
2185 }
2186
2187 /* Perform various work in preparation for emitting the fixup stream. */
2188
2189 static void
2190 som_prep_for_fixups (abfd, syms, num_syms)
2191 bfd *abfd;
2192 asymbol **syms;
2193 unsigned long num_syms;
2194 {
2195 int i;
2196 asection *section;
2197
2198 /* Most SOM relocations involving a symbol have a length which is
2199 dependent on the index of the symbol. So symbols which are
2200 used often in relocations should have a small index. */
2201
2202 /* First initialize the counters for each symbol. */
2203 for (i = 0; i < num_syms; i++)
2204 {
2205 /* Handle a section symbol; these have no pointers back to the
2206 SOM symbol info. So we just use the pointer field (udata)
2207 to hold the relocation count. */
2208 if (som_symbol_data (syms[i]) == NULL
2209 || syms[i]->flags & BSF_SECTION_SYM)
2210 {
2211 syms[i]->flags |= BSF_SECTION_SYM;
2212 syms[i]->udata = (PTR) 0;
2213 }
2214 else
2215 som_symbol_data (syms[i])->reloc_count = 0;
2216 }
2217
2218 /* Now that the counters are initialized, make a weighted count
2219 of how often a given symbol is used in a relocation. */
2220 for (section = abfd->sections; section != NULL; section = section->next)
2221 {
2222 int i;
2223
2224 /* Does this section have any relocations? */
2225 if (section->reloc_count <= 0)
2226 continue;
2227
2228 /* Walk through each relocation for this section. */
2229 for (i = 1; i < section->reloc_count; i++)
2230 {
2231 arelent *reloc = section->orelocation[i];
2232 int scale;
2233
2234 /* A relocation against a symbol in the *ABS* section really
2235 does not have a symbol. Likewise if the symbol isn't associated
2236 with any section. */
2237 if (reloc->sym_ptr_ptr == NULL
2238 || (*reloc->sym_ptr_ptr)->section == &bfd_abs_section)
2239 continue;
2240
2241 /* Scaling to encourage symbols involved in R_DP_RELATIVE
2242 and R_CODE_ONE_SYMBOL relocations to come first. These
2243 two relocations have single byte versions if the symbol
2244 index is very small. */
2245 if (reloc->howto->type == R_DP_RELATIVE
2246 || reloc->howto->type == R_CODE_ONE_SYMBOL)
2247 scale = 2;
2248 else
2249 scale = 1;
2250
2251 /* Handle section symbols by ramming the count in the udata
2252 field. It will not be used and the count is very important
2253 for these symbols. */
2254 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2255 {
2256 (*reloc->sym_ptr_ptr)->udata =
2257 (PTR) ((int) (*reloc->sym_ptr_ptr)->udata + scale);
2258 continue;
2259 }
2260
2261 /* A normal symbol. Increment the count. */
2262 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2263 }
2264 }
2265
2266 /* Now sort the symbols. */
2267 qsort (syms, num_syms, sizeof (asymbol *), compare_syms);
2268
2269 /* Compute the symbol indexes, they will be needed by the relocation
2270 code. */
2271 for (i = 0; i < num_syms; i++)
2272 {
2273 /* A section symbol. Again, there is no pointer to backend symbol
2274 information, so we reuse (abuse) the udata field again. */
2275 if (syms[i]->flags & BSF_SECTION_SYM)
2276 syms[i]->udata = (PTR) i;
2277 else
2278 som_symbol_data (syms[i])->index = i;
2279 }
2280 }
2281
2282 static boolean
2283 som_write_fixups (abfd, current_offset, total_reloc_sizep)
2284 bfd *abfd;
2285 unsigned long current_offset;
2286 unsigned int *total_reloc_sizep;
2287 {
2288 unsigned int i, j;
2289 /* Chunk of memory that we can use as buffer space, then throw
2290 away. */
2291 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2292 unsigned char *p;
2293 unsigned int total_reloc_size = 0;
2294 unsigned int subspace_reloc_size = 0;
2295 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2296 asection *section = abfd->sections;
2297
2298 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2299 p = tmp_space;
2300
2301 /* All the fixups for a particular subspace are emitted in a single
2302 stream. All the subspaces for a particular space are emitted
2303 as a single stream.
2304
2305 So, to get all the locations correct one must iterate through all the
2306 spaces, for each space iterate through its subspaces and output a
2307 fixups stream. */
2308 for (i = 0; i < num_spaces; i++)
2309 {
2310 asection *subsection;
2311
2312 /* Find a space. */
2313 while (!som_is_space (section))
2314 section = section->next;
2315
2316 /* Now iterate through each of its subspaces. */
2317 for (subsection = abfd->sections;
2318 subsection != NULL;
2319 subsection = subsection->next)
2320 {
2321 int reloc_offset, current_rounding_mode;
2322
2323 /* Find a subspace of this space. */
2324 if (!som_is_subspace (subsection)
2325 || !som_is_container (section, subsection))
2326 continue;
2327
2328 /* If this subspace had no relocations, then we're finished
2329 with it. */
2330 if (subsection->reloc_count <= 0)
2331 {
2332 som_section_data (subsection)->subspace_dict->fixup_request_index
2333 = -1;
2334 continue;
2335 }
2336
2337 /* This subspace has some relocations. Put the relocation stream
2338 index into the subspace record. */
2339 som_section_data (subsection)->subspace_dict->fixup_request_index
2340 = total_reloc_size;
2341
2342 /* To make life easier start over with a clean slate for
2343 each subspace. Seek to the start of the relocation stream
2344 for this subspace in preparation for writing out its fixup
2345 stream. */
2346 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) < 0)
2347 return false;
2348
2349 /* Buffer space has already been allocated. Just perform some
2350 initialization here. */
2351 p = tmp_space;
2352 subspace_reloc_size = 0;
2353 reloc_offset = 0;
2354 som_initialize_reloc_queue (reloc_queue);
2355 current_rounding_mode = R_N_MODE;
2356
2357 /* Translate each BFD relocation into one or more SOM
2358 relocations. */
2359 for (j = 0; j < subsection->reloc_count; j++)
2360 {
2361 arelent *bfd_reloc = subsection->orelocation[j];
2362 unsigned int skip;
2363 int sym_num;
2364
2365 /* Get the symbol number. Remember it's stored in a
2366 special place for section symbols. */
2367 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2368 sym_num = (int) (*bfd_reloc->sym_ptr_ptr)->udata;
2369 else
2370 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2371
2372 /* If there is not enough room for the next couple relocations,
2373 then dump the current buffer contents now. Also reinitialize
2374 the relocation queue.
2375
2376 No single BFD relocation could ever translate into more
2377 than 100 bytes of SOM relocations (20bytes is probably the
2378 upper limit, but leave lots of space for growth). */
2379 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2380 {
2381 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2382 != p - tmp_space)
2383 return false;
2384
2385 p = tmp_space;
2386 som_initialize_reloc_queue (reloc_queue);
2387 }
2388
2389 /* Emit R_NO_RELOCATION fixups to map any bytes which were
2390 skipped. */
2391 skip = bfd_reloc->address - reloc_offset;
2392 p = som_reloc_skip (abfd, skip, p,
2393 &subspace_reloc_size, reloc_queue);
2394
2395 /* Update reloc_offset for the next iteration.
2396
2397 Many relocations do not consume input bytes. They
2398 are markers, or set state necessary to perform some
2399 later relocation. */
2400 switch (bfd_reloc->howto->type)
2401 {
2402 /* This only needs to handle relocations that may be
2403 made by hppa_som_gen_reloc. */
2404 case R_ENTRY:
2405 case R_EXIT:
2406 case R_N_MODE:
2407 case R_S_MODE:
2408 case R_D_MODE:
2409 case R_R_MODE:
2410 case R_FSEL:
2411 case R_LSEL:
2412 case R_RSEL:
2413 reloc_offset = bfd_reloc->address;
2414 break;
2415
2416 default:
2417 reloc_offset = bfd_reloc->address + 4;
2418 break;
2419 }
2420
2421 /* Now the actual relocation we care about. */
2422 switch (bfd_reloc->howto->type)
2423 {
2424 case R_PCREL_CALL:
2425 case R_ABS_CALL:
2426 p = som_reloc_call (abfd, p, &subspace_reloc_size,
2427 bfd_reloc, sym_num, reloc_queue);
2428 break;
2429
2430 case R_CODE_ONE_SYMBOL:
2431 case R_DP_RELATIVE:
2432 /* Account for any addend. */
2433 if (bfd_reloc->addend)
2434 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2435 &subspace_reloc_size, reloc_queue);
2436
2437 if (sym_num < 0x20)
2438 {
2439 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2440 subspace_reloc_size += 1;
2441 p += 1;
2442 }
2443 else if (sym_num < 0x100)
2444 {
2445 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2446 bfd_put_8 (abfd, sym_num, p + 1);
2447 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2448 2, reloc_queue);
2449 }
2450 else if (sym_num < 0x10000000)
2451 {
2452 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2453 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2454 bfd_put_16 (abfd, sym_num, p + 2);
2455 p = try_prev_fixup (abfd, &subspace_reloc_size,
2456 p, 4, reloc_queue);
2457 }
2458 else
2459 abort ();
2460 break;
2461
2462 case R_DATA_ONE_SYMBOL:
2463 case R_DATA_PLABEL:
2464 case R_CODE_PLABEL:
2465 case R_DLT_REL:
2466 /* Account for any addend. */
2467 if (bfd_reloc->addend)
2468 p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2469 &subspace_reloc_size, reloc_queue);
2470
2471 if (sym_num < 0x100)
2472 {
2473 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2474 bfd_put_8 (abfd, sym_num, p + 1);
2475 p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2476 2, reloc_queue);
2477 }
2478 else if (sym_num < 0x10000000)
2479 {
2480 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2481 bfd_put_8 (abfd, sym_num >> 16, p + 1);
2482 bfd_put_16 (abfd, sym_num, p + 2);
2483 p = try_prev_fixup (abfd, &subspace_reloc_size,
2484 p, 4, reloc_queue);
2485 }
2486 else
2487 abort ();
2488 break;
2489
2490 case R_ENTRY:
2491 {
2492 int *descp
2493 = (int *) som_symbol_data (*bfd_reloc->sym_ptr_ptr)->unwind;
2494 bfd_put_8 (abfd, R_ENTRY, p);
2495 bfd_put_32 (abfd, descp[0], p + 1);
2496 bfd_put_32 (abfd, descp[1], p + 5);
2497 p = try_prev_fixup (abfd, &subspace_reloc_size,
2498 p, 9, reloc_queue);
2499 break;
2500 }
2501
2502 case R_EXIT:
2503 bfd_put_8 (abfd, R_EXIT, p);
2504 subspace_reloc_size += 1;
2505 p += 1;
2506 break;
2507
2508 case R_N_MODE:
2509 case R_S_MODE:
2510 case R_D_MODE:
2511 case R_R_MODE:
2512 /* If this relocation requests the current rounding
2513 mode, then it is redundant. */
2514 if (bfd_reloc->howto->type != current_rounding_mode)
2515 {
2516 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2517 subspace_reloc_size += 1;
2518 p += 1;
2519 current_rounding_mode = bfd_reloc->howto->type;
2520 }
2521 break;
2522
2523 case R_FSEL:
2524 case R_LSEL:
2525 case R_RSEL:
2526 bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2527 subspace_reloc_size += 1;
2528 p += 1;
2529 break;
2530
2531 /* Put a "R_RESERVED" relocation in the stream if
2532 we hit something we do not understand. The linker
2533 will complain loudly if this ever happens. */
2534 default:
2535 bfd_put_8 (abfd, 0xff, p);
2536 subspace_reloc_size += 1;
2537 p += 1;
2538 break;
2539 }
2540 }
2541
2542 /* Last BFD relocation for a subspace has been processed.
2543 Map the rest of the subspace with R_NO_RELOCATION fixups. */
2544 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
2545 - reloc_offset,
2546 p, &subspace_reloc_size, reloc_queue);
2547
2548 /* Scribble out the relocations. */
2549 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
2550 != p - tmp_space)
2551 return false;
2552 p = tmp_space;
2553
2554 total_reloc_size += subspace_reloc_size;
2555 som_section_data (subsection)->subspace_dict->fixup_request_quantity
2556 = subspace_reloc_size;
2557 }
2558 section = section->next;
2559 }
2560 *total_reloc_sizep = total_reloc_size;
2561 return true;
2562 }
2563
2564 /* Write out the space/subspace string table. */
2565
2566 static boolean
2567 som_write_space_strings (abfd, current_offset, string_sizep)
2568 bfd *abfd;
2569 unsigned long current_offset;
2570 unsigned int *string_sizep;
2571 {
2572 /* Chunk of memory that we can use as buffer space, then throw
2573 away. */
2574 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2575 unsigned char *p;
2576 unsigned int strings_size = 0;
2577 asection *section;
2578
2579 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2580 p = tmp_space;
2581
2582 /* Seek to the start of the space strings in preparation for writing
2583 them out. */
2584 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2585 return false;
2586
2587 /* Walk through all the spaces and subspaces (order is not important)
2588 building up and writing string table entries for their names. */
2589 for (section = abfd->sections; section != NULL; section = section->next)
2590 {
2591 int length;
2592
2593 /* Only work with space/subspaces; avoid any other sections
2594 which might have been made (.text for example). */
2595 if (!som_is_space (section) && !som_is_subspace (section))
2596 continue;
2597
2598 /* Get the length of the space/subspace name. */
2599 length = strlen (section->name);
2600
2601 /* If there is not enough room for the next entry, then dump the
2602 current buffer contents now. Each entry will take 4 bytes to
2603 hold the string length + the string itself + null terminator. */
2604 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2605 {
2606 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2607 != p - tmp_space)
2608 return false;
2609 /* Reset to beginning of the buffer space. */
2610 p = tmp_space;
2611 }
2612
2613 /* First element in a string table entry is the length of the
2614 string. Alignment issues are already handled. */
2615 bfd_put_32 (abfd, length, p);
2616 p += 4;
2617 strings_size += 4;
2618
2619 /* Record the index in the space/subspace records. */
2620 if (som_is_space (section))
2621 som_section_data (section)->space_dict->name.n_strx = strings_size;
2622 else
2623 som_section_data (section)->subspace_dict->name.n_strx = strings_size;
2624
2625 /* Next comes the string itself + a null terminator. */
2626 strcpy (p, section->name);
2627 p += length + 1;
2628 strings_size += length + 1;
2629
2630 /* Always align up to the next word boundary. */
2631 while (strings_size % 4)
2632 {
2633 bfd_put_8 (abfd, 0, p);
2634 p++;
2635 strings_size++;
2636 }
2637 }
2638
2639 /* Done with the space/subspace strings. Write out any information
2640 contained in a partial block. */
2641 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2642 return false;
2643 *string_sizep = strings_size;
2644 return true;
2645 }
2646
2647 /* Write out the symbol string table. */
2648
2649 static boolean
2650 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
2651 bfd *abfd;
2652 unsigned long current_offset;
2653 asymbol **syms;
2654 unsigned int num_syms;
2655 unsigned int *string_sizep;
2656 {
2657 unsigned int i;
2658
2659 /* Chunk of memory that we can use as buffer space, then throw
2660 away. */
2661 unsigned char tmp_space[SOM_TMP_BUFSIZE];
2662 unsigned char *p;
2663 unsigned int strings_size = 0;
2664
2665 memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2666 p = tmp_space;
2667
2668 /* Seek to the start of the space strings in preparation for writing
2669 them out. */
2670 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2671 return false;
2672
2673 for (i = 0; i < num_syms; i++)
2674 {
2675 int length = strlen (syms[i]->name);
2676
2677 /* If there is not enough room for the next entry, then dump the
2678 current buffer contents now. */
2679 if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
2680 {
2681 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
2682 != p - tmp_space)
2683 return false;
2684 /* Reset to beginning of the buffer space. */
2685 p = tmp_space;
2686 }
2687
2688 /* First element in a string table entry is the length of the
2689 string. This must always be 4 byte aligned. This is also
2690 an appropriate time to fill in the string index field in the
2691 symbol table entry. */
2692 bfd_put_32 (abfd, length, p);
2693 strings_size += 4;
2694 p += 4;
2695
2696 /* Next comes the string itself + a null terminator. */
2697 strcpy (p, syms[i]->name);
2698
2699 /* ACK. FIXME. */
2700 syms[i]->name = (char *)strings_size;
2701 p += length + 1;
2702 strings_size += length + 1;
2703
2704 /* Always align up to the next word boundary. */
2705 while (strings_size % 4)
2706 {
2707 bfd_put_8 (abfd, 0, p);
2708 strings_size++;
2709 p++;
2710 }
2711 }
2712
2713 /* Scribble out any partial block. */
2714 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
2715 return false;
2716
2717 *string_sizep = strings_size;
2718 return true;
2719 }
2720
2721 /* Compute variable information to be placed in the SOM headers,
2722 space/subspace dictionaries, relocation streams, etc. Begin
2723 writing parts of the object file. */
2724
2725 static boolean
2726 som_begin_writing (abfd)
2727 bfd *abfd;
2728 {
2729 unsigned long current_offset = 0;
2730 int strings_size = 0;
2731 unsigned int total_reloc_size = 0;
2732 unsigned long num_spaces, num_subspaces, num_syms, i;
2733 asection *section;
2734 asymbol **syms = bfd_get_outsymbols (abfd);
2735 unsigned int total_subspaces = 0;
2736 struct som_exec_auxhdr exec_header;
2737
2738 /* The file header will always be first in an object file,
2739 everything else can be in random locations. To keep things
2740 "simple" BFD will lay out the object file in the manner suggested
2741 by the PRO ABI for PA-RISC Systems. */
2742
2743 /* Before any output can really begin offsets for all the major
2744 portions of the object file must be computed. So, starting
2745 with the initial file header compute (and sometimes write)
2746 each portion of the object file. */
2747
2748 /* Make room for the file header, it's contents are not complete
2749 yet, so it can not be written at this time. */
2750 current_offset += sizeof (struct header);
2751
2752 /* Any auxiliary headers will follow the file header. Right now
2753 we support only the copyright and version headers. */
2754 obj_som_file_hdr (abfd)->aux_header_location = current_offset;
2755 obj_som_file_hdr (abfd)->aux_header_size = 0;
2756 if (abfd->flags & EXEC_P)
2757 {
2758 /* Parts of the exec header will be filled in later, so
2759 delay writing the header itself. Fill in the defaults,
2760 and write it later. */
2761 current_offset += sizeof (exec_header);
2762 obj_som_file_hdr (abfd)->aux_header_size += sizeof (exec_header);
2763 memset (&exec_header, 0, sizeof (exec_header));
2764 exec_header.som_auxhdr.type = HPUX_AUX_ID;
2765 exec_header.som_auxhdr.length = 40;
2766 }
2767 if (obj_som_version_hdr (abfd) != NULL)
2768 {
2769 unsigned int len;
2770
2771 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2772 return false;
2773
2774 /* Write the aux_id structure and the string length. */
2775 len = sizeof (struct aux_id) + sizeof (unsigned int);
2776 obj_som_file_hdr (abfd)->aux_header_size += len;
2777 current_offset += len;
2778 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
2779 return false;
2780
2781 /* Write the version string. */
2782 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
2783 obj_som_file_hdr (abfd)->aux_header_size += len;
2784 current_offset += len;
2785 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
2786 len, 1, abfd) != len)
2787 return false;
2788 }
2789
2790 if (obj_som_copyright_hdr (abfd) != NULL)
2791 {
2792 unsigned int len;
2793
2794 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
2795 return false;
2796
2797 /* Write the aux_id structure and the string length. */
2798 len = sizeof (struct aux_id) + sizeof (unsigned int);
2799 obj_som_file_hdr (abfd)->aux_header_size += len;
2800 current_offset += len;
2801 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
2802 return false;
2803
2804 /* Write the copyright string. */
2805 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
2806 obj_som_file_hdr (abfd)->aux_header_size += len;
2807 current_offset += len;
2808 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
2809 len, 1, abfd) != len)
2810 return false;
2811 }
2812
2813 /* Next comes the initialization pointers; we have no initialization
2814 pointers, so current offset does not change. */
2815 obj_som_file_hdr (abfd)->init_array_location = current_offset;
2816 obj_som_file_hdr (abfd)->init_array_total = 0;
2817
2818 /* Next are the space records. These are fixed length records.
2819
2820 Count the number of spaces to determine how much room is needed
2821 in the object file for the space records.
2822
2823 The names of the spaces are stored in a separate string table,
2824 and the index for each space into the string table is computed
2825 below. Therefore, it is not possible to write the space headers
2826 at this time. */
2827 num_spaces = som_count_spaces (abfd);
2828 obj_som_file_hdr (abfd)->space_location = current_offset;
2829 obj_som_file_hdr (abfd)->space_total = num_spaces;
2830 current_offset += num_spaces * sizeof (struct space_dictionary_record);
2831
2832 /* Next are the subspace records. These are fixed length records.
2833
2834 Count the number of subspaes to determine how much room is needed
2835 in the object file for the subspace records.
2836
2837 A variety if fields in the subspace record are still unknown at
2838 this time (index into string table, fixup stream location/size, etc). */
2839 num_subspaces = som_count_subspaces (abfd);
2840 obj_som_file_hdr (abfd)->subspace_location = current_offset;
2841 obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
2842 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
2843
2844 /* Next is the string table for the space/subspace names. We will
2845 build and write the string table on the fly. At the same time
2846 we will fill in the space/subspace name index fields. */
2847
2848 /* The string table needs to be aligned on a word boundary. */
2849 if (current_offset % 4)
2850 current_offset += (4 - (current_offset % 4));
2851
2852 /* Mark the offset of the space/subspace string table in the
2853 file header. */
2854 obj_som_file_hdr (abfd)->space_strings_location = current_offset;
2855
2856 /* Scribble out the space strings. */
2857 if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
2858 return false;
2859
2860 /* Record total string table size in the header and update the
2861 current offset. */
2862 obj_som_file_hdr (abfd)->space_strings_size = strings_size;
2863 current_offset += strings_size;
2864
2865 /* Next is the symbol table. These are fixed length records.
2866
2867 Count the number of symbols to determine how much room is needed
2868 in the object file for the symbol table.
2869
2870 The names of the symbols are stored in a separate string table,
2871 and the index for each symbol name into the string table is computed
2872 below. Therefore, it is not possible to write the symobl table
2873 at this time. */
2874 num_syms = bfd_get_symcount (abfd);
2875 obj_som_file_hdr (abfd)->symbol_location = current_offset;
2876 obj_som_file_hdr (abfd)->symbol_total = num_syms;
2877 current_offset += num_syms * sizeof (struct symbol_dictionary_record);
2878
2879 /* Do prep work before handling fixups. */
2880 som_prep_for_fixups (abfd, syms, num_syms);
2881
2882 /* Next comes the fixup stream which starts on a word boundary. */
2883 if (current_offset % 4)
2884 current_offset += (4 - (current_offset % 4));
2885 obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
2886
2887 /* Write the fixups and update fields in subspace headers which
2888 relate to the fixup stream. */
2889 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
2890 return false;
2891
2892 /* Record the total size of the fixup stream in the file header. */
2893 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
2894 current_offset += total_reloc_size;
2895
2896 /* Next are the symbol strings.
2897 Align them to a word boundary. */
2898 if (current_offset % 4)
2899 current_offset += (4 - (current_offset % 4));
2900 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
2901
2902 /* Scribble out the symbol strings. */
2903 if (som_write_symbol_strings (abfd, current_offset, syms,
2904 num_syms, &strings_size)
2905 == false)
2906 return false;
2907
2908 /* Record total string table size in header and update the
2909 current offset. */
2910 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
2911 current_offset += strings_size;
2912
2913 /* Next is the compiler records. We do not use these. */
2914 obj_som_file_hdr (abfd)->compiler_location = current_offset;
2915 obj_som_file_hdr (abfd)->compiler_total = 0;
2916
2917 /* Now compute the file positions for the loadable subspaces, taking
2918 care to make sure everything stays properly aligned. */
2919
2920 section = abfd->sections;
2921 for (i = 0; i < num_spaces; i++)
2922 {
2923 asection *subsection;
2924 int first_subspace;
2925
2926 /* Find a space. */
2927 while (!som_is_space (section))
2928 section = section->next;
2929
2930 first_subspace = 1;
2931 /* Now look for all its subspaces. */
2932 for (subsection = abfd->sections;
2933 subsection != NULL;
2934 subsection = subsection->next)
2935 {
2936
2937 if (!som_is_subspace (subsection)
2938 || !som_is_container (section, subsection)
2939 || (subsection->flags & SEC_ALLOC) == 0)
2940 continue;
2941
2942 /* If this is the first subspace in the space, and we are
2943 building an executable, then take care to make sure all
2944 the alignments are correct and update the exec header. */
2945 if (first_subspace
2946 && (abfd->flags & EXEC_P))
2947 {
2948 /* Demand paged executables have each space aligned to a
2949 page boundary. Sharable executables (write-protected
2950 text) have just the private (aka data & bss) space aligned
2951 to a page boundary. Ugh. Not true for HPUX.
2952
2953 The HPUX kernel requires the text to always be page aligned
2954 within the file regardless of the executable's type. */
2955 if (abfd->flags & D_PAGED
2956 || (subsection->flags & SEC_CODE)
2957 || ((abfd->flags & WP_TEXT)
2958 && (subsection->flags & SEC_DATA)))
2959 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
2960
2961 /* Update the exec header. */
2962 if (subsection->flags & SEC_CODE && exec_header.exec_tfile == 0)
2963 {
2964 exec_header.exec_tmem = section->vma;
2965 exec_header.exec_tfile = current_offset;
2966 }
2967 if (subsection->flags & SEC_DATA && exec_header.exec_dfile == 0)
2968 {
2969 exec_header.exec_dmem = section->vma;
2970 exec_header.exec_dfile = current_offset;
2971 }
2972
2973 /* Only do this for the first subspace within each space. */
2974 first_subspace = 0;
2975 }
2976 else if (abfd->flags & EXEC_P)
2977 {
2978 /* Have to keep proper alignments for the subspaces
2979 in executables too! */
2980 if (subsection->flags & SEC_CODE)
2981 {
2982 unsigned tmp = exec_header.exec_tsize;
2983
2984 tmp = SOM_ALIGN (tmp, 1 << subsection->alignment_power);
2985 current_offset += (tmp - exec_header.exec_tsize);
2986 exec_header.exec_tsize = tmp;
2987 }
2988 else
2989 {
2990 unsigned tmp = exec_header.exec_dsize;
2991
2992 tmp = SOM_ALIGN (tmp, 1 << subsection->alignment_power);
2993 current_offset += (tmp - exec_header.exec_dsize);
2994 exec_header.exec_dsize = tmp;
2995 }
2996 }
2997
2998 subsection->target_index = total_subspaces++;
2999 /* This is real data to be loaded from the file. */
3000 if (subsection->flags & SEC_LOAD)
3001 {
3002 /* Update the size of the code & data. */
3003 if (abfd->flags & EXEC_P
3004 && subsection->flags & SEC_CODE)
3005 exec_header.exec_tsize += subsection->_cooked_size;
3006 else if (abfd->flags & EXEC_P
3007 && subsection->flags & SEC_DATA)
3008 exec_header.exec_dsize += subsection->_cooked_size;
3009 som_section_data (subsection)->subspace_dict->file_loc_init_value
3010 = current_offset;
3011 section->filepos = current_offset;
3012 current_offset += bfd_section_size (abfd, subsection);
3013 }
3014 /* Looks like uninitialized data. */
3015 else
3016 {
3017 /* Update the size of the bss section. */
3018 if (abfd->flags & EXEC_P)
3019 exec_header.exec_bsize += subsection->_cooked_size;
3020
3021 som_section_data (subsection)->subspace_dict->file_loc_init_value
3022 = 0;
3023 som_section_data (subsection)->subspace_dict->
3024 initialization_length = 0;
3025 }
3026 }
3027 /* Goto the next section. */
3028 section = section->next;
3029 }
3030
3031 /* Finally compute the file positions for unloadable subspaces.
3032 If building an executable, start the unloadable stuff on its
3033 own page. */
3034
3035 if (abfd->flags & EXEC_P)
3036 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3037
3038 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3039 section = abfd->sections;
3040 for (i = 0; i < num_spaces; i++)
3041 {
3042 asection *subsection;
3043
3044 /* Find a space. */
3045 while (!som_is_space (section))
3046 section = section->next;
3047
3048 if (abfd->flags & EXEC_P)
3049 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3050
3051 /* Now look for all its subspaces. */
3052 for (subsection = abfd->sections;
3053 subsection != NULL;
3054 subsection = subsection->next)
3055 {
3056
3057 if (!som_is_subspace (subsection)
3058 || !som_is_container (section, subsection)
3059 || (subsection->flags & SEC_ALLOC) != 0)
3060 continue;
3061
3062 subsection->target_index = total_subspaces;
3063 /* This is real data to be loaded from the file. */
3064 if ((subsection->flags & SEC_LOAD) == 0)
3065 {
3066 som_section_data (subsection)->subspace_dict->file_loc_init_value
3067 = current_offset;
3068 section->filepos = current_offset;
3069 current_offset += bfd_section_size (abfd, subsection);
3070 }
3071 /* Looks like uninitialized data. */
3072 else
3073 {
3074 som_section_data (subsection)->subspace_dict->file_loc_init_value
3075 = 0;
3076 som_section_data (subsection)->subspace_dict->
3077 initialization_length = bfd_section_size (abfd, subsection);
3078 }
3079 }
3080 /* Goto the next section. */
3081 section = section->next;
3082 }
3083
3084 /* If building an executable, then make sure to seek to and write
3085 one byte at the end of the file to make sure any necessary
3086 zeros are filled in. Ugh. */
3087 if (abfd->flags & EXEC_P)
3088 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3089 if (bfd_seek (abfd, current_offset - 1, SEEK_SET) < 0)
3090 return false;
3091 if (bfd_write ((PTR) "", 1, 1, abfd) != 1)
3092 return false;
3093
3094 obj_som_file_hdr (abfd)->unloadable_sp_size
3095 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3096
3097 /* Loader fixups are not supported in any way shape or form. */
3098 obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3099 obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3100
3101 /* Done. Store the total size of the SOM. */
3102 obj_som_file_hdr (abfd)->som_length = current_offset;
3103
3104 /* Now write the exec header. */
3105 if (abfd->flags & EXEC_P)
3106 {
3107 long tmp;
3108
3109 exec_header.exec_entry = bfd_get_start_address (abfd);
3110 exec_header.exec_flags = obj_som_exec_data (abfd)->exec_flags;
3111
3112 /* Oh joys. Ram some of the BSS data into the DATA section
3113 to be compatable with how the hp linker makes objects
3114 (saves memory space). */
3115 tmp = exec_header.exec_dsize;
3116 tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3117 exec_header.exec_bsize -= (tmp - exec_header.exec_dsize);
3118 if (exec_header.exec_bsize < 0)
3119 exec_header.exec_bsize = 0;
3120 exec_header.exec_dsize = tmp;
3121
3122 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
3123 SEEK_SET) < 0)
3124 return false;
3125
3126 if (bfd_write ((PTR) &exec_header, AUX_HDR_SIZE, 1, abfd)
3127 != AUX_HDR_SIZE)
3128 return false;
3129 }
3130 return true;
3131 }
3132
3133 /* Finally, scribble out the various headers to the disk. */
3134
3135 static boolean
3136 som_write_headers (abfd)
3137 bfd *abfd;
3138 {
3139 int num_spaces = som_count_spaces (abfd);
3140 int i;
3141 int subspace_index = 0;
3142 file_ptr location;
3143 asection *section;
3144
3145 /* Subspaces are written first so that we can set up information
3146 about them in their containing spaces as the subspace is written. */
3147
3148 /* Seek to the start of the subspace dictionary records. */
3149 location = obj_som_file_hdr (abfd)->subspace_location;
3150 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3151 return false;
3152
3153 section = abfd->sections;
3154 /* Now for each loadable space write out records for its subspaces. */
3155 for (i = 0; i < num_spaces; i++)
3156 {
3157 asection *subsection;
3158
3159 /* Find a space. */
3160 while (!som_is_space (section))
3161 section = section->next;
3162
3163 /* Now look for all its subspaces. */
3164 for (subsection = abfd->sections;
3165 subsection != NULL;
3166 subsection = subsection->next)
3167 {
3168
3169 /* Skip any section which does not correspond to a space
3170 or subspace. Or does not have SEC_ALLOC set (and therefore
3171 has no real bits on the disk). */
3172 if (!som_is_subspace (subsection)
3173 || !som_is_container (section, subsection)
3174 || (subsection->flags & SEC_ALLOC) == 0)
3175 continue;
3176
3177 /* If this is the first subspace for this space, then save
3178 the index of the subspace in its containing space. Also
3179 set "is_loadable" in the containing space. */
3180
3181 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3182 {
3183 som_section_data (section)->space_dict->is_loadable = 1;
3184 som_section_data (section)->space_dict->subspace_index
3185 = subspace_index;
3186 }
3187
3188 /* Increment the number of subspaces seen and the number of
3189 subspaces contained within the current space. */
3190 subspace_index++;
3191 som_section_data (section)->space_dict->subspace_quantity++;
3192
3193 /* Mark the index of the current space within the subspace's
3194 dictionary record. */
3195 som_section_data (subsection)->subspace_dict->space_index = i;
3196
3197 /* Dump the current subspace header. */
3198 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3199 sizeof (struct subspace_dictionary_record), 1, abfd)
3200 != sizeof (struct subspace_dictionary_record))
3201 return false;
3202 }
3203 /* Goto the next section. */
3204 section = section->next;
3205 }
3206
3207 /* Now repeat the process for unloadable subspaces. */
3208 section = abfd->sections;
3209 /* Now for each space write out records for its subspaces. */
3210 for (i = 0; i < num_spaces; i++)
3211 {
3212 asection *subsection;
3213
3214 /* Find a space. */
3215 while (!som_is_space (section))
3216 section = section->next;
3217
3218 /* Now look for all its subspaces. */
3219 for (subsection = abfd->sections;
3220 subsection != NULL;
3221 subsection = subsection->next)
3222 {
3223
3224 /* Skip any section which does not correspond to a space or
3225 subspace, or which SEC_ALLOC set (and therefore handled
3226 in the loadable spaces/subspaces code above). */
3227
3228 if (!som_is_subspace (subsection)
3229 || !som_is_container (section, subsection)
3230 || (subsection->flags & SEC_ALLOC) != 0)
3231 continue;
3232
3233 /* If this is the first subspace for this space, then save
3234 the index of the subspace in its containing space. Clear
3235 "is_loadable". */
3236
3237 if (som_section_data (section)->space_dict->subspace_quantity == 0)
3238 {
3239 som_section_data (section)->space_dict->is_loadable = 0;
3240 som_section_data (section)->space_dict->subspace_index
3241 = subspace_index;
3242 }
3243
3244 /* Increment the number of subspaces seen and the number of
3245 subspaces contained within the current space. */
3246 som_section_data (section)->space_dict->subspace_quantity++;
3247 subspace_index++;
3248
3249 /* Mark the index of the current space within the subspace's
3250 dictionary record. */
3251 som_section_data (subsection)->subspace_dict->space_index = i;
3252
3253 /* Dump this subspace header. */
3254 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
3255 sizeof (struct subspace_dictionary_record), 1, abfd)
3256 != sizeof (struct subspace_dictionary_record))
3257 return false;
3258 }
3259 /* Goto the next section. */
3260 section = section->next;
3261 }
3262
3263 /* All the subspace dictiondary records are written, and all the
3264 fields are set up in the space dictionary records.
3265
3266 Seek to the right location and start writing the space
3267 dictionary records. */
3268 location = obj_som_file_hdr (abfd)->space_location;
3269 if (bfd_seek (abfd, location, SEEK_SET) < 0)
3270 return false;
3271
3272 section = abfd->sections;
3273 for (i = 0; i < num_spaces; i++)
3274 {
3275
3276 /* Find a space. */
3277 while (!som_is_space (section))
3278 section = section->next;
3279
3280 /* Dump its header */
3281 if (bfd_write ((PTR) som_section_data (section)->space_dict,
3282 sizeof (struct space_dictionary_record), 1, abfd)
3283 != sizeof (struct space_dictionary_record))
3284 return false;
3285
3286 /* Goto the next section. */
3287 section = section->next;
3288 }
3289
3290 /* Only thing left to do is write out the file header. It is always
3291 at location zero. Seek there and write it. */
3292 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0)
3293 return false;
3294 if (bfd_write ((PTR) obj_som_file_hdr (abfd),
3295 sizeof (struct header), 1, abfd)
3296 != sizeof (struct header))
3297 return false;
3298 return true;
3299 }
3300
3301 /* Compute and return the checksum for a SOM file header. */
3302
3303 static unsigned long
3304 som_compute_checksum (abfd)
3305 bfd *abfd;
3306 {
3307 unsigned long checksum, count, i;
3308 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3309
3310 checksum = 0;
3311 count = sizeof (struct header) / sizeof (unsigned long);
3312 for (i = 0; i < count; i++)
3313 checksum ^= *(buffer + i);
3314
3315 return checksum;
3316 }
3317
3318 static void
3319 som_bfd_derive_misc_symbol_info (abfd, sym, info)
3320 bfd *abfd;
3321 asymbol *sym;
3322 struct som_misc_symbol_info *info;
3323 {
3324 /* Initialize. */
3325 memset (info, 0, sizeof (struct som_misc_symbol_info));
3326
3327 /* The HP SOM linker requires detailed type information about
3328 all symbols (including undefined symbols!). Unfortunately,
3329 the type specified in an import/export statement does not
3330 always match what the linker wants. Severe braindamage. */
3331
3332 /* Section symbols will not have a SOM symbol type assigned to
3333 them yet. Assign all section symbols type ST_DATA. */
3334 if (sym->flags & BSF_SECTION_SYM)
3335 info->symbol_type = ST_DATA;
3336 else
3337 {
3338 /* Common symbols must have scope SS_UNSAT and type
3339 ST_STORAGE or the linker will choke. */
3340 if (sym->section == &bfd_com_section)
3341 {
3342 info->symbol_scope = SS_UNSAT;
3343 info->symbol_type = ST_STORAGE;
3344 }
3345
3346 /* It is possible to have a symbol without an associated
3347 type. This happens if the user imported the symbol
3348 without a type and the symbol was never defined
3349 locally. If BSF_FUNCTION is set for this symbol, then
3350 assign it type ST_CODE (the HP linker requires undefined
3351 external functions to have type ST_CODE rather than ST_ENTRY). */
3352 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3353 && sym->section == &bfd_und_section
3354 && sym->flags & BSF_FUNCTION)
3355 info->symbol_type = ST_CODE;
3356
3357 /* Handle function symbols which were defined in this file.
3358 They should have type ST_ENTRY. Also retrieve the argument
3359 relocation bits from the SOM backend information. */
3360 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3361 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3362 && (sym->flags & BSF_FUNCTION))
3363 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3364 && (sym->flags & BSF_FUNCTION)))
3365 {
3366 info->symbol_type = ST_ENTRY;
3367 info->arg_reloc = som_symbol_data (sym)->tc_data.hppa_arg_reloc;
3368 }
3369
3370 /* If the type is unknown at this point, it should be
3371 ST_DATA (functions were handled as special cases above). */
3372 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3373 info->symbol_type = ST_DATA;
3374
3375 /* From now on it's a very simple mapping. */
3376 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3377 info->symbol_type = ST_ABSOLUTE;
3378 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3379 info->symbol_type = ST_CODE;
3380 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3381 info->symbol_type = ST_DATA;
3382 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3383 info->symbol_type = ST_MILLICODE;
3384 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3385 info->symbol_type = ST_PLABEL;
3386 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3387 info->symbol_type = ST_PRI_PROG;
3388 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3389 info->symbol_type = ST_SEC_PROG;
3390 }
3391
3392 /* Now handle the symbol's scope. Exported data which is not
3393 in the common section has scope SS_UNIVERSAL. Note scope
3394 of common symbols was handled earlier! */
3395 if (sym->flags & BSF_EXPORT && sym->section != &bfd_com_section)
3396 info->symbol_scope = SS_UNIVERSAL;
3397 /* Any undefined symbol at this point has a scope SS_UNSAT. */
3398 else if (sym->section == &bfd_und_section)
3399 info->symbol_scope = SS_UNSAT;
3400 /* Anything else which is not in the common section has scope
3401 SS_LOCAL. */
3402 else if (sym->section != &bfd_com_section)
3403 info->symbol_scope = SS_LOCAL;
3404
3405 /* Now set the symbol_info field. It has no real meaning
3406 for undefined or common symbols, but the HP linker will
3407 choke if it's not set to some "reasonable" value. We
3408 use zero as a reasonable value. */
3409 if (sym->section == &bfd_com_section || sym->section == &bfd_und_section
3410 || sym->section == &bfd_abs_section)
3411 info->symbol_info = 0;
3412 /* For all other symbols, the symbol_info field contains the
3413 subspace index of the space this symbol is contained in. */
3414 else
3415 info->symbol_info = sym->section->target_index;
3416
3417 /* Set the symbol's value. */
3418 info->symbol_value = sym->value + sym->section->vma;
3419 }
3420
3421 /* Build and write, in one big chunk, the entire symbol table for
3422 this BFD. */
3423
3424 static boolean
3425 som_build_and_write_symbol_table (abfd)
3426 bfd *abfd;
3427 {
3428 unsigned int num_syms = bfd_get_symcount (abfd);
3429 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
3430 asymbol **bfd_syms = bfd_get_outsymbols (abfd);
3431 struct symbol_dictionary_record *som_symtab = NULL;
3432 int i, symtab_size;
3433
3434 /* Compute total symbol table size and allocate a chunk of memory
3435 to hold the symbol table as we build it. */
3436 symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
3437 som_symtab = (struct symbol_dictionary_record *) malloc (symtab_size);
3438 if (som_symtab == NULL && symtab_size != 0)
3439 {
3440 bfd_set_error (bfd_error_no_memory);
3441 goto error_return;
3442 }
3443 memset (som_symtab, 0, symtab_size);
3444
3445 /* Walk over each symbol. */
3446 for (i = 0; i < num_syms; i++)
3447 {
3448 struct som_misc_symbol_info info;
3449
3450 /* This is really an index into the symbol strings table.
3451 By the time we get here, the index has already been
3452 computed and stored into the name field in the BFD symbol. */
3453 som_symtab[i].name.n_strx = (int) bfd_syms[i]->name;
3454
3455 /* Derive SOM information from the BFD symbol. */
3456 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
3457
3458 /* Now use it. */
3459 som_symtab[i].symbol_type = info.symbol_type;
3460 som_symtab[i].symbol_scope = info.symbol_scope;
3461 som_symtab[i].arg_reloc = info.arg_reloc;
3462 som_symtab[i].symbol_info = info.symbol_info;
3463 som_symtab[i].symbol_value = info.symbol_value;
3464 }
3465
3466 /* Everything is ready, seek to the right location and
3467 scribble out the symbol table. */
3468 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
3469 return false;
3470
3471 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
3472 goto error_return;
3473
3474 if (som_symtab != NULL)
3475 free (som_symtab);
3476 return true;
3477 error_return:
3478 if (som_symtab != NULL)
3479 free (som_symtab);
3480 return false;
3481 }
3482
3483 /* Write an object in SOM format. */
3484
3485 static boolean
3486 som_write_object_contents (abfd)
3487 bfd *abfd;
3488 {
3489 if (abfd->output_has_begun == false)
3490 {
3491 /* Set up fixed parts of the file, space, and subspace headers.
3492 Notify the world that output has begun. */
3493 som_prep_headers (abfd);
3494 abfd->output_has_begun = true;
3495 /* Start writing the object file. This include all the string
3496 tables, fixup streams, and other portions of the object file. */
3497 som_begin_writing (abfd);
3498 }
3499
3500 /* Now that the symbol table information is complete, build and
3501 write the symbol table. */
3502 if (som_build_and_write_symbol_table (abfd) == false)
3503 return false;
3504
3505 /* Compute the checksum for the file header just before writing
3506 the header to disk. */
3507 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3508 return (som_write_headers (abfd));
3509 }
3510
3511 \f
3512 /* Read and save the string table associated with the given BFD. */
3513
3514 static boolean
3515 som_slurp_string_table (abfd)
3516 bfd *abfd;
3517 {
3518 char *stringtab;
3519
3520 /* Use the saved version if its available. */
3521 if (obj_som_stringtab (abfd) != NULL)
3522 return true;
3523
3524 /* Allocate and read in the string table. */
3525 stringtab = bfd_zalloc (abfd, obj_som_stringtab_size (abfd));
3526 if (stringtab == NULL)
3527 {
3528 bfd_set_error (bfd_error_no_memory);
3529 return false;
3530 }
3531
3532 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
3533 return false;
3534
3535 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
3536 != obj_som_stringtab_size (abfd))
3537 return false;
3538
3539 /* Save our results and return success. */
3540 obj_som_stringtab (abfd) = stringtab;
3541 return true;
3542 }
3543
3544 /* Return the amount of data (in bytes) required to hold the symbol
3545 table for this object. */
3546
3547 static unsigned int
3548 som_get_symtab_upper_bound (abfd)
3549 bfd *abfd;
3550 {
3551 if (!som_slurp_symbol_table (abfd))
3552 return 0;
3553
3554 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
3555 }
3556
3557 /* Convert from a SOM subspace index to a BFD section. */
3558
3559 static asection *
3560 bfd_section_from_som_symbol (abfd, symbol)
3561 bfd *abfd;
3562 struct symbol_dictionary_record *symbol;
3563 {
3564 asection *section;
3565
3566 /* The meaning of the symbol_info field changes for functions
3567 within executables. So only use the quick symbol_info mapping for
3568 incomplete objects and non-function symbols in executables. */
3569 if ((abfd->flags & EXEC_P) == 0
3570 || (symbol->symbol_type != ST_ENTRY
3571 && symbol->symbol_type != ST_PRI_PROG
3572 && symbol->symbol_type != ST_SEC_PROG
3573 && symbol->symbol_type != ST_MILLICODE))
3574 {
3575 unsigned int index = symbol->symbol_info;
3576 for (section = abfd->sections; section != NULL; section = section->next)
3577 if (section->target_index == index)
3578 return section;
3579
3580 /* Should never happen. */
3581 abort();
3582 }
3583 else
3584 {
3585 unsigned int value = symbol->symbol_value;
3586 unsigned int found = 0;
3587
3588 /* For executables we will have to use the symbol's address and
3589 find out what section would contain that address. Yuk. */
3590 for (section = abfd->sections; section; section = section->next)
3591 {
3592 if (value >= section->vma
3593 && value <= section->vma + section->_cooked_size)
3594 return section;
3595 }
3596
3597 /* Should never happen. */
3598 abort ();
3599 }
3600 }
3601
3602 /* Read and save the symbol table associated with the given BFD. */
3603
3604 static unsigned int
3605 som_slurp_symbol_table (abfd)
3606 bfd *abfd;
3607 {
3608 int symbol_count = bfd_get_symcount (abfd);
3609 int symsize = sizeof (struct symbol_dictionary_record);
3610 char *stringtab;
3611 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
3612 som_symbol_type *sym, *symbase;
3613
3614 /* Return saved value if it exists. */
3615 if (obj_som_symtab (abfd) != NULL)
3616 goto successful_return;
3617
3618 /* Special case. This is *not* an error. */
3619 if (symbol_count == 0)
3620 goto successful_return;
3621
3622 if (!som_slurp_string_table (abfd))
3623 goto error_return;
3624
3625 stringtab = obj_som_stringtab (abfd);
3626
3627 symbase = (som_symbol_type *)
3628 bfd_zalloc (abfd, symbol_count * sizeof (som_symbol_type));
3629 if (symbase == NULL)
3630 {
3631 bfd_set_error (bfd_error_no_memory);
3632 goto error_return;
3633 }
3634
3635 /* Read in the external SOM representation. */
3636 buf = malloc (symbol_count * symsize);
3637 if (buf == NULL && symbol_count * symsize != 0)
3638 {
3639 bfd_set_error (bfd_error_no_memory);
3640 goto error_return;
3641 }
3642 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
3643 goto error_return;
3644 if (bfd_read (buf, symbol_count * symsize, 1, abfd)
3645 != symbol_count * symsize)
3646 goto error_return;
3647
3648 /* Iterate over all the symbols and internalize them. */
3649 endbufp = buf + symbol_count;
3650 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
3651 {
3652
3653 /* I don't think we care about these. */
3654 if (bufp->symbol_type == ST_SYM_EXT
3655 || bufp->symbol_type == ST_ARG_EXT)
3656 continue;
3657
3658 /* Set some private data we care about. */
3659 if (bufp->symbol_type == ST_NULL)
3660 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3661 else if (bufp->symbol_type == ST_ABSOLUTE)
3662 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
3663 else if (bufp->symbol_type == ST_DATA)
3664 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
3665 else if (bufp->symbol_type == ST_CODE)
3666 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
3667 else if (bufp->symbol_type == ST_PRI_PROG)
3668 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
3669 else if (bufp->symbol_type == ST_SEC_PROG)
3670 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
3671 else if (bufp->symbol_type == ST_ENTRY)
3672 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
3673 else if (bufp->symbol_type == ST_MILLICODE)
3674 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
3675 else if (bufp->symbol_type == ST_PLABEL)
3676 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
3677 else
3678 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
3679 som_symbol_data (sym)->tc_data.hppa_arg_reloc = bufp->arg_reloc;
3680
3681 /* Some reasonable defaults. */
3682 sym->symbol.the_bfd = abfd;
3683 sym->symbol.name = bufp->name.n_strx + stringtab;
3684 sym->symbol.value = bufp->symbol_value;
3685 sym->symbol.section = 0;
3686 sym->symbol.flags = 0;
3687
3688 switch (bufp->symbol_type)
3689 {
3690 case ST_ENTRY:
3691 case ST_PRI_PROG:
3692 case ST_SEC_PROG:
3693 case ST_MILLICODE:
3694 sym->symbol.flags |= BSF_FUNCTION;
3695 sym->symbol.value &= ~0x3;
3696 break;
3697
3698 case ST_STUB:
3699 case ST_CODE:
3700 sym->symbol.value &= ~0x3;
3701
3702 default:
3703 break;
3704 }
3705
3706 /* Handle scoping and section information. */
3707 switch (bufp->symbol_scope)
3708 {
3709 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
3710 so the section associated with this symbol can't be known. */
3711 case SS_EXTERNAL:
3712 if (bufp->symbol_type != ST_STORAGE)
3713 sym->symbol.section = &bfd_und_section;
3714 else
3715 sym->symbol.section = &bfd_com_section;
3716 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3717 break;
3718
3719 case SS_UNSAT:
3720 if (bufp->symbol_type != ST_STORAGE)
3721 sym->symbol.section = &bfd_und_section;
3722 else
3723 sym->symbol.section = &bfd_com_section;
3724 break;
3725
3726 case SS_UNIVERSAL:
3727 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
3728 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3729 sym->symbol.value -= sym->symbol.section->vma;
3730 break;
3731
3732 #if 0
3733 /* SS_GLOBAL and SS_LOCAL are two names for the same thing.
3734 Sound dumb? It is. */
3735 case SS_GLOBAL:
3736 #endif
3737 case SS_LOCAL:
3738 sym->symbol.flags |= BSF_LOCAL;
3739 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
3740 sym->symbol.value -= sym->symbol.section->vma;
3741 break;
3742 }
3743
3744 /* Mark section symbols and symbols used by the debugger. */
3745 if (sym->symbol.name[0] == '$'
3746 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$')
3747 sym->symbol.flags |= BSF_SECTION_SYM;
3748 else if (!strncmp (sym->symbol.name, "L$0\002", 4))
3749 {
3750 sym->symbol.flags |= BSF_SECTION_SYM;
3751 sym->symbol.name = sym->symbol.section->name;
3752 }
3753 else if (!strncmp (sym->symbol.name, "L$0\001", 4))
3754 sym->symbol.flags |= BSF_DEBUGGING;
3755
3756 /* Note increment at bottom of loop, since we skip some symbols
3757 we can not include it as part of the for statement. */
3758 sym++;
3759 }
3760
3761 /* Save our results and return success. */
3762 obj_som_symtab (abfd) = symbase;
3763 successful_return:
3764 if (buf != NULL)
3765 free (buf);
3766 return (true);
3767
3768 error_return:
3769 if (buf != NULL)
3770 free (buf);
3771 return false;
3772 }
3773
3774 /* Canonicalize a SOM symbol table. Return the number of entries
3775 in the symbol table. */
3776
3777 static unsigned int
3778 som_get_symtab (abfd, location)
3779 bfd *abfd;
3780 asymbol **location;
3781 {
3782 int i;
3783 som_symbol_type *symbase;
3784
3785 if (!som_slurp_symbol_table (abfd))
3786 return 0;
3787
3788 i = bfd_get_symcount (abfd);
3789 symbase = obj_som_symtab (abfd);
3790
3791 for (; i > 0; i--, location++, symbase++)
3792 *location = &symbase->symbol;
3793
3794 /* Final null pointer. */
3795 *location = 0;
3796 return (bfd_get_symcount (abfd));
3797 }
3798
3799 /* Make a SOM symbol. There is nothing special to do here. */
3800
3801 static asymbol *
3802 som_make_empty_symbol (abfd)
3803 bfd *abfd;
3804 {
3805 som_symbol_type *new =
3806 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
3807 if (new == NULL)
3808 {
3809 bfd_set_error (bfd_error_no_memory);
3810 return 0;
3811 }
3812 new->symbol.the_bfd = abfd;
3813
3814 return &new->symbol;
3815 }
3816
3817 /* Print symbol information. */
3818
3819 static void
3820 som_print_symbol (ignore_abfd, afile, symbol, how)
3821 bfd *ignore_abfd;
3822 PTR afile;
3823 asymbol *symbol;
3824 bfd_print_symbol_type how;
3825 {
3826 FILE *file = (FILE *) afile;
3827 switch (how)
3828 {
3829 case bfd_print_symbol_name:
3830 fprintf (file, "%s", symbol->name);
3831 break;
3832 case bfd_print_symbol_more:
3833 fprintf (file, "som ");
3834 fprintf_vma (file, symbol->value);
3835 fprintf (file, " %lx", (long) symbol->flags);
3836 break;
3837 case bfd_print_symbol_all:
3838 {
3839 CONST char *section_name;
3840 section_name = symbol->section ? symbol->section->name : "(*none*)";
3841 bfd_print_symbol_vandf ((PTR) file, symbol);
3842 fprintf (file, " %s\t%s", section_name, symbol->name);
3843 break;
3844 }
3845 }
3846 }
3847
3848 static boolean
3849 som_bfd_is_local_label (abfd, sym)
3850 bfd *abfd;
3851 asymbol *sym;
3852 {
3853 return (sym->name[0] == 'L' && sym->name[1] == '$');
3854 }
3855
3856 /* Count or process variable-length SOM fixup records.
3857
3858 To avoid code duplication we use this code both to compute the number
3859 of relocations requested by a stream, and to internalize the stream.
3860
3861 When computing the number of relocations requested by a stream the
3862 variables rptr, section, and symbols have no meaning.
3863
3864 Return the number of relocations requested by the fixup stream. When
3865 not just counting
3866
3867 This needs at least two or three more passes to get it cleaned up. */
3868
3869 static unsigned int
3870 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
3871 unsigned char *fixup;
3872 unsigned int end;
3873 arelent *internal_relocs;
3874 asection *section;
3875 asymbol **symbols;
3876 boolean just_count;
3877 {
3878 unsigned int op, varname;
3879 unsigned char *end_fixups = &fixup[end];
3880 const struct fixup_format *fp;
3881 char *cp;
3882 unsigned char *save_fixup;
3883 int variables[26], stack[20], c, v, count, prev_fixup, *sp;
3884 const int *subop;
3885 arelent *rptr= internal_relocs;
3886 unsigned int offset = just_count ? 0 : section->vma;
3887
3888 #define var(c) variables[(c) - 'A']
3889 #define push(v) (*sp++ = (v))
3890 #define pop() (*--sp)
3891 #define emptystack() (sp == stack)
3892
3893 som_initialize_reloc_queue (reloc_queue);
3894 memset (variables, 0, sizeof (variables));
3895 memset (stack, 0, sizeof (stack));
3896 count = 0;
3897 prev_fixup = 0;
3898 sp = stack;
3899
3900 while (fixup < end_fixups)
3901 {
3902
3903 /* Save pointer to the start of this fixup. We'll use
3904 it later to determine if it is necessary to put this fixup
3905 on the queue. */
3906 save_fixup = fixup;
3907
3908 /* Get the fixup code and its associated format. */
3909 op = *fixup++;
3910 fp = &som_fixup_formats[op];
3911
3912 /* Handle a request for a previous fixup. */
3913 if (*fp->format == 'P')
3914 {
3915 /* Get pointer to the beginning of the prev fixup, move
3916 the repeated fixup to the head of the queue. */
3917 fixup = reloc_queue[fp->D].reloc;
3918 som_reloc_queue_fix (reloc_queue, fp->D);
3919 prev_fixup = 1;
3920
3921 /* Get the fixup code and its associated format. */
3922 op = *fixup++;
3923 fp = &som_fixup_formats[op];
3924 }
3925
3926 /* If we are not just counting, set some reasonable defaults. */
3927 if (! just_count)
3928 {
3929 rptr->address = offset;
3930 rptr->howto = &som_hppa_howto_table[op];
3931 rptr->addend = 0;
3932 rptr->sym_ptr_ptr = bfd_abs_section.symbol_ptr_ptr;
3933 }
3934
3935 /* Set default input length to 0. Get the opcode class index
3936 into D. */
3937 var ('L') = 0;
3938 var ('D') = fp->D;
3939
3940 /* Get the opcode format. */
3941 cp = fp->format;
3942
3943 /* Process the format string. Parsing happens in two phases,
3944 parse RHS, then assign to LHS. Repeat until no more
3945 characters in the format string. */
3946 while (*cp)
3947 {
3948 /* The variable this pass is going to compute a value for. */
3949 varname = *cp++;
3950
3951 /* Start processing RHS. Continue until a NULL or '=' is found. */
3952 do
3953 {
3954 c = *cp++;
3955
3956 /* If this is a variable, push it on the stack. */
3957 if (isupper (c))
3958 push (var (c));
3959
3960 /* If this is a lower case letter, then it represents
3961 additional data from the fixup stream to be pushed onto
3962 the stack. */
3963 else if (islower (c))
3964 {
3965 for (v = 0; c > 'a'; --c)
3966 v = (v << 8) | *fixup++;
3967 push (v);
3968 }
3969
3970 /* A decimal constant. Push it on the stack. */
3971 else if (isdigit (c))
3972 {
3973 v = c - '0';
3974 while (isdigit (*cp))
3975 v = (v * 10) + (*cp++ - '0');
3976 push (v);
3977 }
3978 else
3979
3980 /* An operator. Pop two two values from the stack and
3981 use them as operands to the given operation. Push
3982 the result of the operation back on the stack. */
3983 switch (c)
3984 {
3985 case '+':
3986 v = pop ();
3987 v += pop ();
3988 push (v);
3989 break;
3990 case '*':
3991 v = pop ();
3992 v *= pop ();
3993 push (v);
3994 break;
3995 case '<':
3996 v = pop ();
3997 v = pop () << v;
3998 push (v);
3999 break;
4000 default:
4001 abort ();
4002 }
4003 }
4004 while (*cp && *cp != '=');
4005
4006 /* Move over the equal operator. */
4007 cp++;
4008
4009 /* Pop the RHS off the stack. */
4010 c = pop ();
4011
4012 /* Perform the assignment. */
4013 var (varname) = c;
4014
4015 /* Handle side effects. and special 'O' stack cases. */
4016 switch (varname)
4017 {
4018 /* Consume some bytes from the input space. */
4019 case 'L':
4020 offset += c;
4021 break;
4022 /* A symbol to use in the relocation. Make a note
4023 of this if we are not just counting. */
4024 case 'S':
4025 if (! just_count)
4026 rptr->sym_ptr_ptr = &symbols[c];
4027 break;
4028 /* Handle the linker expression stack. */
4029 case 'O':
4030 switch (op)
4031 {
4032 case R_COMP1:
4033 subop = comp1_opcodes;
4034 break;
4035 case R_COMP2:
4036 subop = comp2_opcodes;
4037 break;
4038 case R_COMP3:
4039 subop = comp3_opcodes;
4040 break;
4041 default:
4042 abort ();
4043 }
4044 while (*subop <= (unsigned char) c)
4045 ++subop;
4046 --subop;
4047 break;
4048 default:
4049 break;
4050 }
4051 }
4052
4053 /* If we used a previous fixup, clean up after it. */
4054 if (prev_fixup)
4055 {
4056 fixup = save_fixup + 1;
4057 prev_fixup = 0;
4058 }
4059 /* Queue it. */
4060 else if (fixup > save_fixup + 1)
4061 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4062
4063 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4064 fixups to BFD. */
4065 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4066 && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4067 {
4068 /* Done with a single reloction. Loop back to the top. */
4069 if (! just_count)
4070 {
4071 rptr->addend = var ('V');
4072 rptr++;
4073 }
4074 count++;
4075 /* Now that we've handled a "full" relocation, reset
4076 some state. */
4077 memset (variables, 0, sizeof (variables));
4078 memset (stack, 0, sizeof (stack));
4079 }
4080 }
4081 return count;
4082
4083 #undef var
4084 #undef push
4085 #undef pop
4086 #undef emptystack
4087 }
4088
4089 /* Read in the relocs (aka fixups in SOM terms) for a section.
4090
4091 som_get_reloc_upper_bound calls this routine with JUST_COUNT
4092 set to true to indicate it only needs a count of the number
4093 of actual relocations. */
4094
4095 static boolean
4096 som_slurp_reloc_table (abfd, section, symbols, just_count)
4097 bfd *abfd;
4098 asection *section;
4099 asymbol **symbols;
4100 boolean just_count;
4101 {
4102 char *external_relocs;
4103 unsigned int fixup_stream_size;
4104 arelent *internal_relocs;
4105 unsigned int num_relocs;
4106
4107 fixup_stream_size = som_section_data (section)->reloc_size;
4108 /* If there were no relocations, then there is nothing to do. */
4109 if (section->reloc_count == 0)
4110 return true;
4111
4112 /* If reloc_count is -1, then the relocation stream has not been
4113 parsed. We must do so now to know how many relocations exist. */
4114 if (section->reloc_count == -1)
4115 {
4116 external_relocs = (char *) bfd_zalloc (abfd, fixup_stream_size);
4117 if (external_relocs == (char *) NULL)
4118 {
4119 bfd_set_error (bfd_error_no_memory);
4120 return false;
4121 }
4122 /* Read in the external forms. */
4123 if (bfd_seek (abfd,
4124 obj_som_reloc_filepos (abfd) + section->rel_filepos,
4125 SEEK_SET)
4126 != 0)
4127 return false;
4128 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
4129 != fixup_stream_size)
4130 return false;
4131
4132 /* Let callers know how many relocations found.
4133 also save the relocation stream as we will
4134 need it again. */
4135 section->reloc_count = som_set_reloc_info (external_relocs,
4136 fixup_stream_size,
4137 NULL, NULL, NULL, true);
4138
4139 som_section_data (section)->reloc_stream = external_relocs;
4140 }
4141
4142 /* If the caller only wanted a count, then return now. */
4143 if (just_count)
4144 return true;
4145
4146 num_relocs = section->reloc_count;
4147 external_relocs = som_section_data (section)->reloc_stream;
4148 /* Return saved information about the relocations if it is available. */
4149 if (section->relocation != (arelent *) NULL)
4150 return true;
4151
4152 internal_relocs = (arelent *) bfd_zalloc (abfd,
4153 num_relocs * sizeof (arelent));
4154 if (internal_relocs == (arelent *) NULL)
4155 {
4156 bfd_set_error (bfd_error_no_memory);
4157 return false;
4158 }
4159
4160 /* Process and internalize the relocations. */
4161 som_set_reloc_info (external_relocs, fixup_stream_size,
4162 internal_relocs, section, symbols, false);
4163
4164 /* Save our results and return success. */
4165 section->relocation = internal_relocs;
4166 return (true);
4167 }
4168
4169 /* Return the number of bytes required to store the relocation
4170 information associated with the given section. */
4171
4172 static unsigned int
4173 som_get_reloc_upper_bound (abfd, asect)
4174 bfd *abfd;
4175 sec_ptr asect;
4176 {
4177 /* If section has relocations, then read in the relocation stream
4178 and parse it to determine how many relocations exist. */
4179 if (asect->flags & SEC_RELOC)
4180 {
4181 if (som_slurp_reloc_table (abfd, asect, NULL, true))
4182 return (asect->reloc_count + 1) * sizeof (arelent);
4183 }
4184 /* Either there are no relocations or an error occurred while
4185 reading and parsing the relocation stream. */
4186 return 0;
4187 }
4188
4189 /* Convert relocations from SOM (external) form into BFD internal
4190 form. Return the number of relocations. */
4191
4192 static unsigned int
4193 som_canonicalize_reloc (abfd, section, relptr, symbols)
4194 bfd *abfd;
4195 sec_ptr section;
4196 arelent **relptr;
4197 asymbol **symbols;
4198 {
4199 arelent *tblptr;
4200 int count;
4201
4202 if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
4203 return 0;
4204
4205 count = section->reloc_count;
4206 tblptr = section->relocation;
4207 if (tblptr == (arelent *) NULL)
4208 return 0;
4209
4210 while (count--)
4211 *relptr++ = tblptr++;
4212
4213 *relptr = (arelent *) NULL;
4214 return section->reloc_count;
4215 }
4216
4217 extern bfd_target som_vec;
4218
4219 /* A hook to set up object file dependent section information. */
4220
4221 static boolean
4222 som_new_section_hook (abfd, newsect)
4223 bfd *abfd;
4224 asection *newsect;
4225 {
4226 newsect->used_by_bfd =
4227 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
4228 if (!newsect->used_by_bfd)
4229 {
4230 bfd_set_error (bfd_error_no_memory);
4231 return false;
4232 }
4233 newsect->alignment_power = 3;
4234
4235 /* We allow more than three sections internally */
4236 return true;
4237 }
4238
4239 /* Copy any private info we understand from the input section
4240 to the output section. */
4241 static boolean
4242 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
4243 bfd *ibfd;
4244 asection *isection;
4245 bfd *obfd;
4246 asection *osection;
4247 {
4248 /* One day we may try to grok other private data. */
4249 if (ibfd->xvec->flavour != bfd_target_som_flavour
4250 || obfd->xvec->flavour != bfd_target_som_flavour
4251 || (!som_is_space (isection) && !som_is_subspace (isection)))
4252 return false;
4253
4254 som_section_data (osection)->copy_data
4255 = (struct som_copyable_section_data_struct *)
4256 bfd_zalloc (obfd, sizeof (struct som_copyable_section_data_struct));
4257 if (som_section_data (osection)->copy_data == NULL)
4258 {
4259 bfd_set_error (bfd_error_no_memory);
4260 return false;
4261 }
4262
4263 memcpy (som_section_data (osection)->copy_data,
4264 som_section_data (isection)->copy_data,
4265 sizeof (struct som_copyable_section_data_struct));
4266
4267 /* Reparent if necessary. */
4268 if (som_section_data (osection)->copy_data->container)
4269 som_section_data (osection)->copy_data->container =
4270 som_section_data (osection)->copy_data->container->output_section;
4271
4272 return true;
4273 }
4274
4275 /* Copy any private info we understand from the input bfd
4276 to the output bfd. */
4277
4278 static boolean
4279 som_bfd_copy_private_bfd_data (ibfd, obfd)
4280 bfd *ibfd, *obfd;
4281 {
4282 /* One day we may try to grok other private data. */
4283 if (ibfd->xvec->flavour != bfd_target_som_flavour
4284 || obfd->xvec->flavour != bfd_target_som_flavour)
4285 return false;
4286
4287 /* Allocate some memory to hold the data we need. */
4288 obj_som_exec_data (obfd) = (struct som_exec_data *)
4289 bfd_zalloc (obfd, sizeof (struct som_exec_data));
4290 if (obj_som_exec_data (obfd) == NULL)
4291 {
4292 bfd_set_error (bfd_error_no_memory);
4293 return false;
4294 }
4295
4296 /* Now copy the data. */
4297 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
4298 sizeof (struct som_exec_data));
4299
4300 return true;
4301 }
4302
4303 /* Set backend info for sections which can not be described
4304 in the BFD data structures. */
4305
4306 boolean
4307 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
4308 asection *section;
4309 int defined;
4310 int private;
4311 unsigned int sort_key;
4312 int spnum;
4313 {
4314 /* Allocate memory to hold the magic information. */
4315 if (som_section_data (section)->copy_data == NULL)
4316 {
4317 som_section_data (section)->copy_data
4318 = (struct som_copyable_section_data_struct *)
4319 bfd_zalloc (section->owner,
4320 sizeof (struct som_copyable_section_data_struct));
4321 if (som_section_data (section)->copy_data == NULL)
4322 {
4323 bfd_set_error (bfd_error_no_memory);
4324 return false;
4325 }
4326 }
4327 som_section_data (section)->copy_data->sort_key = sort_key;
4328 som_section_data (section)->copy_data->is_defined = defined;
4329 som_section_data (section)->copy_data->is_private = private;
4330 som_section_data (section)->copy_data->container = section;
4331 section->target_index = spnum;
4332 return true;
4333 }
4334
4335 /* Set backend info for subsections which can not be described
4336 in the BFD data structures. */
4337
4338 boolean
4339 bfd_som_set_subsection_attributes (section, container, access,
4340 sort_key, quadrant)
4341 asection *section;
4342 asection *container;
4343 int access;
4344 unsigned int sort_key;
4345 int quadrant;
4346 {
4347 /* Allocate memory to hold the magic information. */
4348 if (som_section_data (section)->copy_data == NULL)
4349 {
4350 som_section_data (section)->copy_data
4351 = (struct som_copyable_section_data_struct *)
4352 bfd_zalloc (section->owner,
4353 sizeof (struct som_copyable_section_data_struct));
4354 if (som_section_data (section)->copy_data == NULL)
4355 {
4356 bfd_set_error (bfd_error_no_memory);
4357 return false;
4358 }
4359 }
4360 som_section_data (section)->copy_data->sort_key = sort_key;
4361 som_section_data (section)->copy_data->access_control_bits = access;
4362 som_section_data (section)->copy_data->quadrant = quadrant;
4363 som_section_data (section)->copy_data->container = container;
4364 return true;
4365 }
4366
4367 /* Set the full SOM symbol type. SOM needs far more symbol information
4368 than any other object file format I'm aware of. It is mandatory
4369 to be able to know if a symbol is an entry point, millicode, data,
4370 code, absolute, storage request, or procedure label. If you get
4371 the symbol type wrong your program will not link. */
4372
4373 void
4374 bfd_som_set_symbol_type (symbol, type)
4375 asymbol *symbol;
4376 unsigned int type;
4377 {
4378 som_symbol_data (symbol)->som_type = type;
4379 }
4380
4381 /* Attach 64bits of unwind information to a symbol (which hopefully
4382 is a function of some kind!). It would be better to keep this
4383 in the R_ENTRY relocation, but there is not enough space. */
4384
4385 void
4386 bfd_som_attach_unwind_info (symbol, unwind_desc)
4387 asymbol *symbol;
4388 char *unwind_desc;
4389 {
4390 som_symbol_data (symbol)->unwind = unwind_desc;
4391 }
4392
4393 /* Attach an auxiliary header to the BFD backend so that it may be
4394 written into the object file. */
4395 boolean
4396 bfd_som_attach_aux_hdr (abfd, type, string)
4397 bfd *abfd;
4398 int type;
4399 char *string;
4400 {
4401 if (type == VERSION_AUX_ID)
4402 {
4403 int len = strlen (string);
4404 int pad = 0;
4405
4406 if (len % 4)
4407 pad = (4 - (len % 4));
4408 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
4409 bfd_zalloc (abfd, sizeof (struct aux_id)
4410 + sizeof (unsigned int) + len + pad);
4411 if (!obj_som_version_hdr (abfd))
4412 {
4413 bfd_set_error (bfd_error_no_memory);
4414 return false;
4415 }
4416 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
4417 obj_som_version_hdr (abfd)->header_id.length = len + pad;
4418 obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
4419 obj_som_version_hdr (abfd)->string_length = len;
4420 strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
4421 }
4422 else if (type == COPYRIGHT_AUX_ID)
4423 {
4424 int len = strlen (string);
4425 int pad = 0;
4426
4427 if (len % 4)
4428 pad = (4 - (len % 4));
4429 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
4430 bfd_zalloc (abfd, sizeof (struct aux_id)
4431 + sizeof (unsigned int) + len + pad);
4432 if (!obj_som_copyright_hdr (abfd))
4433 {
4434 bfd_set_error (bfd_error_no_memory);
4435 return false;
4436 }
4437 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
4438 obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
4439 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
4440 obj_som_copyright_hdr (abfd)->string_length = len;
4441 strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
4442 }
4443 return true;
4444 }
4445
4446 static boolean
4447 som_get_section_contents (abfd, section, location, offset, count)
4448 bfd *abfd;
4449 sec_ptr section;
4450 PTR location;
4451 file_ptr offset;
4452 bfd_size_type count;
4453 {
4454 if (count == 0 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4455 return true;
4456 if ((bfd_size_type)(offset+count) > section->_raw_size
4457 || bfd_seek (abfd, (file_ptr)(section->filepos + offset), SEEK_SET) == -1
4458 || bfd_read (location, (bfd_size_type)1, count, abfd) != count)
4459 return (false); /* on error */
4460 return (true);
4461 }
4462
4463 static boolean
4464 som_set_section_contents (abfd, section, location, offset, count)
4465 bfd *abfd;
4466 sec_ptr section;
4467 PTR location;
4468 file_ptr offset;
4469 bfd_size_type count;
4470 {
4471 if (abfd->output_has_begun == false)
4472 {
4473 /* Set up fixed parts of the file, space, and subspace headers.
4474 Notify the world that output has begun. */
4475 som_prep_headers (abfd);
4476 abfd->output_has_begun = true;
4477 /* Start writing the object file. This include all the string
4478 tables, fixup streams, and other portions of the object file. */
4479 som_begin_writing (abfd);
4480 }
4481
4482 /* Only write subspaces which have "real" contents (eg. the contents
4483 are not generated at run time by the OS). */
4484 if (!som_is_subspace (section)
4485 || ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
4486 return true;
4487
4488 /* Seek to the proper offset within the object file and write the
4489 data. */
4490 offset += som_section_data (section)->subspace_dict->file_loc_init_value;
4491 if (bfd_seek (abfd, offset, SEEK_SET) == -1)
4492 return false;
4493
4494 if (bfd_write ((PTR) location, 1, count, abfd) != count)
4495 return false;
4496 return true;
4497 }
4498
4499 static boolean
4500 som_set_arch_mach (abfd, arch, machine)
4501 bfd *abfd;
4502 enum bfd_architecture arch;
4503 unsigned long machine;
4504 {
4505 /* Allow any architecture to be supported by the SOM backend */
4506 return bfd_default_set_arch_mach (abfd, arch, machine);
4507 }
4508
4509 static boolean
4510 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
4511 functionname_ptr, line_ptr)
4512 bfd *abfd;
4513 asection *section;
4514 asymbol **symbols;
4515 bfd_vma offset;
4516 CONST char **filename_ptr;
4517 CONST char **functionname_ptr;
4518 unsigned int *line_ptr;
4519 {
4520 fprintf (stderr, "som_find_nearest_line unimplemented\n");
4521 fflush (stderr);
4522 abort ();
4523 return (false);
4524 }
4525
4526 static int
4527 som_sizeof_headers (abfd, reloc)
4528 bfd *abfd;
4529 boolean reloc;
4530 {
4531 fprintf (stderr, "som_sizeof_headers unimplemented\n");
4532 fflush (stderr);
4533 abort ();
4534 return (0);
4535 }
4536
4537 /* Return the single-character symbol type corresponding to
4538 SOM section S, or '?' for an unknown SOM section. */
4539
4540 static char
4541 som_section_type (s)
4542 const char *s;
4543 {
4544 const struct section_to_type *t;
4545
4546 for (t = &stt[0]; t->section; t++)
4547 if (!strcmp (s, t->section))
4548 return t->type;
4549 return '?';
4550 }
4551
4552 static int
4553 som_decode_symclass (symbol)
4554 asymbol *symbol;
4555 {
4556 char c;
4557
4558 if (bfd_is_com_section (symbol->section))
4559 return 'C';
4560 if (symbol->section == &bfd_und_section)
4561 return 'U';
4562 if (symbol->section == &bfd_ind_section)
4563 return 'I';
4564 if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
4565 return '?';
4566
4567 if (symbol->section == &bfd_abs_section)
4568 c = 'a';
4569 else if (symbol->section)
4570 c = som_section_type (symbol->section->name);
4571 else
4572 return '?';
4573 if (symbol->flags & BSF_GLOBAL)
4574 c = toupper (c);
4575 return c;
4576 }
4577
4578 /* Return information about SOM symbol SYMBOL in RET. */
4579
4580 static void
4581 som_get_symbol_info (ignore_abfd, symbol, ret)
4582 bfd *ignore_abfd;
4583 asymbol *symbol;
4584 symbol_info *ret;
4585 {
4586 ret->type = som_decode_symclass (symbol);
4587 if (ret->type != 'U')
4588 ret->value = symbol->value+symbol->section->vma;
4589 else
4590 ret->value = 0;
4591 ret->name = symbol->name;
4592 }
4593
4594 /* Count the number of symbols in the archive symbol table. Necessary
4595 so that we can allocate space for all the carsyms at once. */
4596
4597 static boolean
4598 som_bfd_count_ar_symbols (abfd, lst_header, count)
4599 bfd *abfd;
4600 struct lst_header *lst_header;
4601 symindex *count;
4602 {
4603 unsigned int i;
4604 unsigned int *hash_table = NULL;
4605 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4606
4607 hash_table =
4608 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4609 if (hash_table == NULL && lst_header->hash_size != 0)
4610 {
4611 bfd_set_error (bfd_error_no_memory);
4612 goto error_return;
4613 }
4614
4615 /* Don't forget to initialize the counter! */
4616 *count = 0;
4617
4618 /* Read in the hash table. The has table is an array of 32bit file offsets
4619 which point to the hash chains. */
4620 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4621 != lst_header->hash_size * 4)
4622 goto error_return;
4623
4624 /* Walk each chain counting the number of symbols found on that particular
4625 chain. */
4626 for (i = 0; i < lst_header->hash_size; i++)
4627 {
4628 struct lst_symbol_record lst_symbol;
4629
4630 /* An empty chain has zero as it's file offset. */
4631 if (hash_table[i] == 0)
4632 continue;
4633
4634 /* Seek to the first symbol in this hash chain. */
4635 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4636 goto error_return;
4637
4638 /* Read in this symbol and update the counter. */
4639 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4640 != sizeof (lst_symbol))
4641 goto error_return;
4642
4643 (*count)++;
4644
4645 /* Now iterate through the rest of the symbols on this chain. */
4646 while (lst_symbol.next_entry)
4647 {
4648
4649 /* Seek to the next symbol. */
4650 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
4651 < 0)
4652 goto error_return;
4653
4654 /* Read the symbol in and update the counter. */
4655 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4656 != sizeof (lst_symbol))
4657 goto error_return;
4658
4659 (*count)++;
4660 }
4661 }
4662 if (hash_table != NULL)
4663 free (hash_table);
4664 return true;
4665
4666 error_return:
4667 if (hash_table != NULL)
4668 free (hash_table);
4669 return false;
4670 }
4671
4672 /* Fill in the canonical archive symbols (SYMS) from the archive described
4673 by ABFD and LST_HEADER. */
4674
4675 static boolean
4676 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
4677 bfd *abfd;
4678 struct lst_header *lst_header;
4679 carsym **syms;
4680 {
4681 unsigned int i, len;
4682 carsym *set = syms[0];
4683 unsigned int *hash_table = NULL;
4684 struct som_entry *som_dict = NULL;
4685 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
4686
4687 hash_table =
4688 (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
4689 if (hash_table == NULL && lst_header->hash_size != 0)
4690 {
4691 bfd_set_error (bfd_error_no_memory);
4692 goto error_return;
4693 }
4694
4695 som_dict =
4696 (struct som_entry *) malloc (lst_header->module_count
4697 * sizeof (struct som_entry));
4698 if (som_dict == NULL && lst_header->module_count != 0)
4699 {
4700 bfd_set_error (bfd_error_no_memory);
4701 goto error_return;
4702 }
4703
4704 /* Read in the hash table. The has table is an array of 32bit file offsets
4705 which point to the hash chains. */
4706 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
4707 != lst_header->hash_size * 4)
4708 goto error_return;
4709
4710 /* Seek to and read in the SOM dictionary. We will need this to fill
4711 in the carsym's filepos field. */
4712 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
4713 goto error_return;
4714
4715 if (bfd_read ((PTR) som_dict, lst_header->module_count,
4716 sizeof (struct som_entry), abfd)
4717 != lst_header->module_count * sizeof (struct som_entry))
4718 goto error_return;
4719
4720 /* Walk each chain filling in the carsyms as we go along. */
4721 for (i = 0; i < lst_header->hash_size; i++)
4722 {
4723 struct lst_symbol_record lst_symbol;
4724
4725 /* An empty chain has zero as it's file offset. */
4726 if (hash_table[i] == 0)
4727 continue;
4728
4729 /* Seek to and read the first symbol on the chain. */
4730 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
4731 goto error_return;
4732
4733 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4734 != sizeof (lst_symbol))
4735 goto error_return;
4736
4737 /* Get the name of the symbol, first get the length which is stored
4738 as a 32bit integer just before the symbol.
4739
4740 One might ask why we don't just read in the entire string table
4741 and index into it. Well, according to the SOM ABI the string
4742 index can point *anywhere* in the archive to save space, so just
4743 using the string table would not be safe. */
4744 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4745 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4746 goto error_return;
4747
4748 if (bfd_read (&len, 1, 4, abfd) != 4)
4749 goto error_return;
4750
4751 /* Allocate space for the name and null terminate it too. */
4752 set->name = bfd_zalloc (abfd, len + 1);
4753 if (!set->name)
4754 {
4755 bfd_set_error (bfd_error_no_memory);
4756 goto error_return;
4757 }
4758 if (bfd_read (set->name, 1, len, abfd) != len)
4759 goto error_return;
4760
4761 set->name[len] = 0;
4762
4763 /* Fill in the file offset. Note that the "location" field points
4764 to the SOM itself, not the ar_hdr in front of it. */
4765 set->file_offset = som_dict[lst_symbol.som_index].location
4766 - sizeof (struct ar_hdr);
4767
4768 /* Go to the next symbol. */
4769 set++;
4770
4771 /* Iterate through the rest of the chain. */
4772 while (lst_symbol.next_entry)
4773 {
4774 /* Seek to the next symbol and read it in. */
4775 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET) <0)
4776 goto error_return;
4777
4778 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
4779 != sizeof (lst_symbol))
4780 goto error_return;
4781
4782 /* Seek to the name length & string and read them in. */
4783 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
4784 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
4785 goto error_return;
4786
4787 if (bfd_read (&len, 1, 4, abfd) != 4)
4788 goto error_return;
4789
4790 /* Allocate space for the name and null terminate it too. */
4791 set->name = bfd_zalloc (abfd, len + 1);
4792 if (!set->name)
4793 {
4794 bfd_set_error (bfd_error_no_memory);
4795 goto error_return;
4796 }
4797
4798 if (bfd_read (set->name, 1, len, abfd) != len)
4799 goto error_return;
4800 set->name[len] = 0;
4801
4802 /* Fill in the file offset. Note that the "location" field points
4803 to the SOM itself, not the ar_hdr in front of it. */
4804 set->file_offset = som_dict[lst_symbol.som_index].location
4805 - sizeof (struct ar_hdr);
4806
4807 /* Go on to the next symbol. */
4808 set++;
4809 }
4810 }
4811 /* If we haven't died by now, then we successfully read the entire
4812 archive symbol table. */
4813 if (hash_table != NULL)
4814 free (hash_table);
4815 if (som_dict != NULL)
4816 free (som_dict);
4817 return true;
4818
4819 error_return:
4820 if (hash_table != NULL)
4821 free (hash_table);
4822 if (som_dict != NULL)
4823 free (som_dict);
4824 return false;
4825 }
4826
4827 /* Read in the LST from the archive. */
4828 static boolean
4829 som_slurp_armap (abfd)
4830 bfd *abfd;
4831 {
4832 struct lst_header lst_header;
4833 struct ar_hdr ar_header;
4834 unsigned int parsed_size;
4835 struct artdata *ardata = bfd_ardata (abfd);
4836 char nextname[17];
4837 int i = bfd_read ((PTR) nextname, 1, 16, abfd);
4838
4839 /* Special cases. */
4840 if (i == 0)
4841 return true;
4842 if (i != 16)
4843 return false;
4844
4845 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
4846 return false;
4847
4848 /* For archives without .o files there is no symbol table. */
4849 if (strncmp (nextname, "/ ", 16))
4850 {
4851 bfd_has_map (abfd) = false;
4852 return true;
4853 }
4854
4855 /* Read in and sanity check the archive header. */
4856 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
4857 != sizeof (struct ar_hdr))
4858 return false;
4859
4860 if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
4861 {
4862 bfd_set_error (bfd_error_malformed_archive);
4863 return false;
4864 }
4865
4866 /* How big is the archive symbol table entry? */
4867 errno = 0;
4868 parsed_size = strtol (ar_header.ar_size, NULL, 10);
4869 if (errno != 0)
4870 {
4871 bfd_set_error (bfd_error_malformed_archive);
4872 return false;
4873 }
4874
4875 /* Save off the file offset of the first real user data. */
4876 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
4877
4878 /* Read in the library symbol table. We'll make heavy use of this
4879 in just a minute. */
4880 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
4881 != sizeof (struct lst_header))
4882 return false;
4883
4884 /* Sanity check. */
4885 if (lst_header.a_magic != LIBMAGIC)
4886 {
4887 bfd_set_error (bfd_error_malformed_archive);
4888 return false;
4889 }
4890
4891 /* Count the number of symbols in the library symbol table. */
4892 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
4893 == false)
4894 return false;
4895
4896 /* Get back to the start of the library symbol table. */
4897 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size
4898 + sizeof (struct lst_header), SEEK_SET) < 0)
4899 return false;
4900
4901 /* Initializae the cache and allocate space for the library symbols. */
4902 ardata->cache = 0;
4903 ardata->symdefs = (carsym *) bfd_alloc (abfd,
4904 (ardata->symdef_count
4905 * sizeof (carsym)));
4906 if (!ardata->symdefs)
4907 {
4908 bfd_set_error (bfd_error_no_memory);
4909 return false;
4910 }
4911
4912 /* Now fill in the canonical archive symbols. */
4913 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
4914 == false)
4915 return false;
4916
4917 /* Seek back to the "first" file in the archive. Note the "first"
4918 file may be the extended name table. */
4919 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) < 0)
4920 return false;
4921
4922 /* Notify the generic archive code that we have a symbol map. */
4923 bfd_has_map (abfd) = true;
4924 return true;
4925 }
4926
4927 /* Begin preparing to write a SOM library symbol table.
4928
4929 As part of the prep work we need to determine the number of symbols
4930 and the size of the associated string section. */
4931
4932 static boolean
4933 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
4934 bfd *abfd;
4935 unsigned int *num_syms, *stringsize;
4936 {
4937 bfd *curr_bfd = abfd->archive_head;
4938
4939 /* Some initialization. */
4940 *num_syms = 0;
4941 *stringsize = 0;
4942
4943 /* Iterate over each BFD within this archive. */
4944 while (curr_bfd != NULL)
4945 {
4946 unsigned int curr_count, i;
4947 som_symbol_type *sym;
4948
4949 /* Don't bother for non-SOM objects. */
4950 if (curr_bfd->format != bfd_object
4951 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
4952 {
4953 curr_bfd = curr_bfd->next;
4954 continue;
4955 }
4956
4957 /* Make sure the symbol table has been read, then snag a pointer
4958 to it. It's a little slimey to grab the symbols via obj_som_symtab,
4959 but doing so avoids allocating lots of extra memory. */
4960 if (som_slurp_symbol_table (curr_bfd) == false)
4961 return false;
4962
4963 sym = obj_som_symtab (curr_bfd);
4964 curr_count = bfd_get_symcount (curr_bfd);
4965
4966 /* Examine each symbol to determine if it belongs in the
4967 library symbol table. */
4968 for (i = 0; i < curr_count; i++, sym++)
4969 {
4970 struct som_misc_symbol_info info;
4971
4972 /* Derive SOM information from the BFD symbol. */
4973 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
4974
4975 /* Should we include this symbol? */
4976 if (info.symbol_type == ST_NULL
4977 || info.symbol_type == ST_SYM_EXT
4978 || info.symbol_type == ST_ARG_EXT)
4979 continue;
4980
4981 /* Only global symbols and unsatisfied commons. */
4982 if (info.symbol_scope != SS_UNIVERSAL
4983 && info.symbol_type != ST_STORAGE)
4984 continue;
4985
4986 /* Do no include undefined symbols. */
4987 if (sym->symbol.section == &bfd_und_section)
4988 continue;
4989
4990 /* Bump the various counters, being careful to honor
4991 alignment considerations in the string table. */
4992 (*num_syms)++;
4993 *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
4994 while (*stringsize % 4)
4995 (*stringsize)++;
4996 }
4997
4998 curr_bfd = curr_bfd->next;
4999 }
5000 return true;
5001 }
5002
5003 /* Hash a symbol name based on the hashing algorithm presented in the
5004 SOM ABI. */
5005 static unsigned int
5006 som_bfd_ar_symbol_hash (symbol)
5007 asymbol *symbol;
5008 {
5009 unsigned int len = strlen (symbol->name);
5010
5011 /* Names with length 1 are special. */
5012 if (len == 1)
5013 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5014
5015 return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5016 | (symbol->name[len-2] << 8) | symbol->name[len-1];
5017 }
5018
5019 static CONST char *
5020 normalize (file)
5021 CONST char *file;
5022 {
5023 CONST char *filename = strrchr (file, '/');
5024
5025 if (filename != NULL)
5026 filename++;
5027 else
5028 filename = file;
5029 return filename;
5030 }
5031
5032 /* Do the bulk of the work required to write the SOM library
5033 symbol table. */
5034
5035 static boolean
5036 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst)
5037 bfd *abfd;
5038 unsigned int nsyms, string_size;
5039 struct lst_header lst;
5040 {
5041 file_ptr lst_filepos;
5042 char *strings = NULL, *p;
5043 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5044 bfd *curr_bfd;
5045 unsigned int *hash_table = NULL;
5046 struct som_entry *som_dict = NULL;
5047 struct lst_symbol_record **last_hash_entry = NULL;
5048 unsigned int curr_som_offset, som_index, extended_name_length = 0;
5049 unsigned int maxname = abfd->xvec->ar_max_namelen;
5050
5051 hash_table =
5052 (unsigned int *) malloc (lst.hash_size * sizeof (unsigned int));
5053 if (hash_table == NULL && lst.hash_size != 0)
5054 {
5055 bfd_set_error (bfd_error_no_memory);
5056 goto error_return;
5057 }
5058 som_dict =
5059 (struct som_entry *) malloc (lst.module_count
5060 * sizeof (struct som_entry));
5061 if (som_dict == NULL && lst.module_count != 0)
5062 {
5063 bfd_set_error (bfd_error_no_memory);
5064 goto error_return;
5065 }
5066
5067 last_hash_entry =
5068 ((struct lst_symbol_record **)
5069 malloc (lst.hash_size * sizeof (struct lst_symbol_record *)));
5070 if (last_hash_entry == NULL && lst.hash_size != 0)
5071 {
5072 bfd_set_error (bfd_error_no_memory);
5073 goto error_return;
5074 }
5075
5076 /* Lots of fields are file positions relative to the start
5077 of the lst record. So save its location. */
5078 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5079
5080 /* Some initialization. */
5081 memset (hash_table, 0, 4 * lst.hash_size);
5082 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
5083 memset (last_hash_entry, 0,
5084 lst.hash_size * sizeof (struct lst_symbol_record *));
5085
5086 /* Symbols have som_index fields, so we have to keep track of the
5087 index of each SOM in the archive.
5088
5089 The SOM dictionary has (among other things) the absolute file
5090 position for the SOM which a particular dictionary entry
5091 describes. We have to compute that information as we iterate
5092 through the SOMs/symbols. */
5093 som_index = 0;
5094 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5095
5096 /* Yow! We have to know the size of the extended name table
5097 too. */
5098 for (curr_bfd = abfd->archive_head;
5099 curr_bfd != NULL;
5100 curr_bfd = curr_bfd->next)
5101 {
5102 CONST char *normal = normalize (curr_bfd->filename);
5103 unsigned int thislen;
5104
5105 if (!normal)
5106 {
5107 bfd_set_error (bfd_error_no_memory);
5108 return false;
5109 }
5110 thislen = strlen (normal);
5111 if (thislen > maxname)
5112 extended_name_length += thislen + 1;
5113 }
5114
5115 /* Make room for the archive header and the contents of the
5116 extended string table. */
5117 if (extended_name_length)
5118 curr_som_offset += extended_name_length + sizeof (struct ar_hdr);
5119
5120 /* Make sure we're properly aligned. */
5121 curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5122
5123 /* FIXME should be done with buffers just like everything else... */
5124 lst_syms = malloc (nsyms * sizeof (struct lst_symbol_record));
5125 if (lst_syms == NULL && nsyms != 0)
5126 {
5127 bfd_set_error (bfd_error_no_memory);
5128 goto error_return;
5129 }
5130 strings = malloc (string_size);
5131 if (strings == NULL && string_size != 0)
5132 {
5133 bfd_set_error (bfd_error_no_memory);
5134 goto error_return;
5135 }
5136
5137 p = strings;
5138 curr_lst_sym = lst_syms;
5139
5140 curr_bfd = abfd->archive_head;
5141 while (curr_bfd != NULL)
5142 {
5143 unsigned int curr_count, i;
5144 som_symbol_type *sym;
5145
5146 /* Don't bother for non-SOM objects. */
5147 if (curr_bfd->format != bfd_object
5148 || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5149 {
5150 curr_bfd = curr_bfd->next;
5151 continue;
5152 }
5153
5154 /* Make sure the symbol table has been read, then snag a pointer
5155 to it. It's a little slimey to grab the symbols via obj_som_symtab,
5156 but doing so avoids allocating lots of extra memory. */
5157 if (som_slurp_symbol_table (curr_bfd) == false)
5158 goto error_return;
5159
5160 sym = obj_som_symtab (curr_bfd);
5161 curr_count = bfd_get_symcount (curr_bfd);
5162
5163 for (i = 0; i < curr_count; i++, sym++)
5164 {
5165 struct som_misc_symbol_info info;
5166
5167 /* Derive SOM information from the BFD symbol. */
5168 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5169
5170 /* Should we include this symbol? */
5171 if (info.symbol_type == ST_NULL
5172 || info.symbol_type == ST_SYM_EXT
5173 || info.symbol_type == ST_ARG_EXT)
5174 continue;
5175
5176 /* Only global symbols and unsatisfied commons. */
5177 if (info.symbol_scope != SS_UNIVERSAL
5178 && info.symbol_type != ST_STORAGE)
5179 continue;
5180
5181 /* Do no include undefined symbols. */
5182 if (sym->symbol.section == &bfd_und_section)
5183 continue;
5184
5185 /* If this is the first symbol from this SOM, then update
5186 the SOM dictionary too. */
5187 if (som_dict[som_index].location == 0)
5188 {
5189 som_dict[som_index].location = curr_som_offset;
5190 som_dict[som_index].length = arelt_size (curr_bfd);
5191 }
5192
5193 /* Fill in the lst symbol record. */
5194 curr_lst_sym->hidden = 0;
5195 curr_lst_sym->secondary_def = 0;
5196 curr_lst_sym->symbol_type = info.symbol_type;
5197 curr_lst_sym->symbol_scope = info.symbol_scope;
5198 curr_lst_sym->check_level = 0;
5199 curr_lst_sym->must_qualify = 0;
5200 curr_lst_sym->initially_frozen = 0;
5201 curr_lst_sym->memory_resident = 0;
5202 curr_lst_sym->is_common = (sym->symbol.section == &bfd_com_section);
5203 curr_lst_sym->dup_common = 0;
5204 curr_lst_sym->xleast = 0;
5205 curr_lst_sym->arg_reloc = info.arg_reloc;
5206 curr_lst_sym->name.n_strx = p - strings + 4;
5207 curr_lst_sym->qualifier_name.n_strx = 0;
5208 curr_lst_sym->symbol_info = info.symbol_info;
5209 curr_lst_sym->symbol_value = info.symbol_value;
5210 curr_lst_sym->symbol_descriptor = 0;
5211 curr_lst_sym->reserved = 0;
5212 curr_lst_sym->som_index = som_index;
5213 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
5214 curr_lst_sym->next_entry = 0;
5215
5216 /* Insert into the hash table. */
5217 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
5218 {
5219 struct lst_symbol_record *tmp;
5220
5221 /* There is already something at the head of this hash chain,
5222 so tack this symbol onto the end of the chain. */
5223 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
5224 tmp->next_entry
5225 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5226 + lst.hash_size * 4
5227 + lst.module_count * sizeof (struct som_entry)
5228 + sizeof (struct lst_header);
5229 }
5230 else
5231 {
5232 /* First entry in this hash chain. */
5233 hash_table[curr_lst_sym->symbol_key % lst.hash_size]
5234 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5235 + lst.hash_size * 4
5236 + lst.module_count * sizeof (struct som_entry)
5237 + sizeof (struct lst_header);
5238 }
5239
5240 /* Keep track of the last symbol we added to this chain so we can
5241 easily update its next_entry pointer. */
5242 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
5243 = curr_lst_sym;
5244
5245
5246 /* Update the string table. */
5247 bfd_put_32 (abfd, strlen (sym->symbol.name), p);
5248 p += 4;
5249 strcpy (p, sym->symbol.name);
5250 p += strlen (sym->symbol.name) + 1;
5251 while ((int)p % 4)
5252 {
5253 bfd_put_8 (abfd, 0, p);
5254 p++;
5255 }
5256
5257 /* Head to the next symbol. */
5258 curr_lst_sym++;
5259 }
5260
5261 /* Keep track of where each SOM will finally reside; then look
5262 at the next BFD. */
5263 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
5264 curr_bfd = curr_bfd->next;
5265 som_index++;
5266 }
5267
5268 /* Now scribble out the hash table. */
5269 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
5270 != lst.hash_size * 4)
5271 goto error_return;
5272
5273 /* Then the SOM dictionary. */
5274 if (bfd_write ((PTR) som_dict, lst.module_count,
5275 sizeof (struct som_entry), abfd)
5276 != lst.module_count * sizeof (struct som_entry))
5277 goto error_return;
5278
5279 /* The library symbols. */
5280 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
5281 != nsyms * sizeof (struct lst_symbol_record))
5282 goto error_return;
5283
5284 /* And finally the strings. */
5285 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
5286 goto error_return;
5287
5288 if (hash_table != NULL)
5289 free (hash_table);
5290 if (som_dict != NULL)
5291 free (som_dict);
5292 if (last_hash_entry != NULL)
5293 free (last_hash_entry);
5294 if (lst_syms != NULL)
5295 free (lst_syms);
5296 if (strings != NULL)
5297 free (strings);
5298 return true;
5299
5300 error_return:
5301 if (hash_table != NULL)
5302 free (hash_table);
5303 if (som_dict != NULL)
5304 free (som_dict);
5305 if (last_hash_entry != NULL)
5306 free (last_hash_entry);
5307 if (lst_syms != NULL)
5308 free (lst_syms);
5309 if (strings != NULL)
5310 free (strings);
5311
5312 return false;
5313 }
5314
5315 /* Write out the LST for the archive.
5316
5317 You'll never believe this is really how armaps are handled in SOM... */
5318
5319 static boolean
5320 som_write_armap (abfd)
5321 bfd *abfd;
5322 {
5323 bfd *curr_bfd;
5324 struct stat statbuf;
5325 unsigned int i, lst_size, nsyms, stringsize;
5326 struct ar_hdr hdr;
5327 struct lst_header lst;
5328 int *p;
5329
5330 /* We'll use this for the archive's date and mode later. */
5331 if (stat (abfd->filename, &statbuf) != 0)
5332 {
5333 bfd_set_error (bfd_error_system_call);
5334 return false;
5335 }
5336 /* Fudge factor. */
5337 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
5338
5339 /* Account for the lst header first. */
5340 lst_size = sizeof (struct lst_header);
5341
5342 /* Start building the LST header. */
5343 lst.system_id = HP9000S800_ID;
5344 lst.a_magic = LIBMAGIC;
5345 lst.version_id = VERSION_ID;
5346 lst.file_time.secs = 0;
5347 lst.file_time.nanosecs = 0;
5348
5349 lst.hash_loc = lst_size;
5350 lst.hash_size = SOM_LST_HASH_SIZE;
5351
5352 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
5353 lst_size += 4 * SOM_LST_HASH_SIZE;
5354
5355 /* We need to count the number of SOMs in this archive. */
5356 curr_bfd = abfd->archive_head;
5357 lst.module_count = 0;
5358 while (curr_bfd != NULL)
5359 {
5360 /* Only true SOM objects count. */
5361 if (curr_bfd->format == bfd_object
5362 && curr_bfd->xvec->flavour == bfd_target_som_flavour)
5363 lst.module_count++;
5364 curr_bfd = curr_bfd->next;
5365 }
5366 lst.module_limit = lst.module_count;
5367 lst.dir_loc = lst_size;
5368 lst_size += sizeof (struct som_entry) * lst.module_count;
5369
5370 /* We don't support import/export tables, auxiliary headers,
5371 or free lists yet. Make the linker work a little harder
5372 to make our life easier. */
5373
5374 lst.export_loc = 0;
5375 lst.export_count = 0;
5376 lst.import_loc = 0;
5377 lst.aux_loc = 0;
5378 lst.aux_size = 0;
5379
5380 /* Count how many symbols we will have on the hash chains and the
5381 size of the associated string table. */
5382 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
5383 return false;
5384
5385 lst_size += sizeof (struct lst_symbol_record) * nsyms;
5386
5387 /* For the string table. One day we might actually use this info
5388 to avoid small seeks/reads when reading archives. */
5389 lst.string_loc = lst_size;
5390 lst.string_size = stringsize;
5391 lst_size += stringsize;
5392
5393 /* SOM ABI says this must be zero. */
5394 lst.free_list = 0;
5395 lst.file_end = lst_size;
5396
5397 /* Compute the checksum. Must happen after the entire lst header
5398 has filled in. */
5399 p = (int *)&lst;
5400 lst.checksum = 0;
5401 for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
5402 lst.checksum ^= *p++;
5403
5404 sprintf (hdr.ar_name, "/ ");
5405 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
5406 sprintf (hdr.ar_uid, "%d", getuid ());
5407 sprintf (hdr.ar_gid, "%d", getgid ());
5408 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
5409 sprintf (hdr.ar_size, "%-10d", (int) lst_size);
5410 hdr.ar_fmag[0] = '`';
5411 hdr.ar_fmag[1] = '\012';
5412
5413 /* Turn any nulls into spaces. */
5414 for (i = 0; i < sizeof (struct ar_hdr); i++)
5415 if (((char *) (&hdr))[i] == '\0')
5416 (((char *) (&hdr))[i]) = ' ';
5417
5418 /* Scribble out the ar header. */
5419 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
5420 != sizeof (struct ar_hdr))
5421 return false;
5422
5423 /* Now scribble out the lst header. */
5424 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
5425 != sizeof (struct lst_header))
5426 return false;
5427
5428 /* Build and write the armap. */
5429 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst) == false)
5430 return false;
5431
5432 /* Done. */
5433 return true;
5434 }
5435
5436 /* End of miscellaneous support functions. */
5437
5438 #define som_bfd_debug_info_start bfd_void
5439 #define som_bfd_debug_info_end bfd_void
5440 #define som_bfd_debug_info_accumulate (PROTO(void,(*),(bfd*, struct sec *))) bfd_void
5441
5442 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file
5443 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
5444 #define som_truncate_arname bfd_bsd_truncate_arname
5445 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table
5446
5447 #define som_get_lineno (struct lineno_cache_entry *(*)())bfd_nullvoidptr
5448 #define som_close_and_cleanup bfd_generic_close_and_cleanup
5449
5450 #define som_bfd_get_relocated_section_contents \
5451 bfd_generic_get_relocated_section_contents
5452 #define som_bfd_relax_section bfd_generic_relax_section
5453 #define som_bfd_make_debug_symbol \
5454 ((asymbol *(*) PARAMS ((bfd *, void *, unsigned long))) bfd_nullvoidptr)
5455 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
5456 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
5457 #define som_bfd_final_link _bfd_generic_final_link
5458
5459 /* Core file support is in the hpux-core backend. */
5460 #define som_core_file_failing_command _bfd_dummy_core_file_failing_command
5461 #define som_core_file_failing_signal _bfd_dummy_core_file_failing_signal
5462 #define som_core_file_matches_executable_p _bfd_dummy_core_file_matches_executable_p
5463
5464 bfd_target som_vec =
5465 {
5466 "som", /* name */
5467 bfd_target_som_flavour,
5468 true, /* target byte order */
5469 true, /* target headers byte order */
5470 (HAS_RELOC | EXEC_P | /* object flags */
5471 HAS_LINENO | HAS_DEBUG |
5472 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
5473 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
5474 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
5475
5476 /* leading_symbol_char: is the first char of a user symbol
5477 predictable, and if so what is it */
5478 0,
5479 '/', /* ar_pad_char */
5480 14, /* ar_max_namelen */
5481 3, /* minimum alignment */
5482 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5483 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5484 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
5485 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
5486 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
5487 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
5488 {_bfd_dummy_target,
5489 som_object_p, /* bfd_check_format */
5490 bfd_generic_archive_p,
5491 _bfd_dummy_target
5492 },
5493 {
5494 bfd_false,
5495 som_mkobject,
5496 _bfd_generic_mkarchive,
5497 bfd_false
5498 },
5499 {
5500 bfd_false,
5501 som_write_object_contents,
5502 _bfd_write_archive_contents,
5503 bfd_false,
5504 },
5505 #undef som
5506 JUMP_TABLE (som),
5507 (PTR) 0
5508 };
5509
5510 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */