* sunos.c (sunos_slurp_dynamic_symtab): New static function,
[binutils-gdb.git] / bfd / sunos.c
1 /* BFD backend for SunOS binaries.
2 Copyright (C) 1990, 91, 92, 93, 94, 1995 Free Software Foundation, Inc.
3 Written by Cygnus Support.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #define TARGETNAME "a.out-sunos-big"
22 #define MY(OP) CAT(sunos_big_,OP)
23
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libaout.h"
27
28 /* Static routines defined in this file. */
29
30 static boolean sunos_read_dynamic_info PARAMS ((bfd *));
31 static long sunos_get_dynamic_symtab_upper_bound PARAMS ((bfd *));
32 static boolean sunos_slurp_dynamic_symtab PARAMS ((bfd *));
33 static long sunos_canonicalize_dynamic_symtab PARAMS ((bfd *, asymbol **));
34 static long sunos_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
35 static long sunos_canonicalize_dynamic_reloc
36 PARAMS ((bfd *, arelent **, asymbol **));
37 static struct bfd_hash_entry *sunos_link_hash_newfunc
38 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
39 static struct bfd_link_hash_table *sunos_link_hash_table_create
40 PARAMS ((bfd *));
41 static boolean sunos_create_dynamic_sections
42 PARAMS ((bfd *, struct bfd_link_info *, boolean));
43 static boolean sunos_add_dynamic_symbols
44 PARAMS ((bfd *, struct bfd_link_info *, struct external_nlist **,
45 bfd_size_type *, char **));
46 static boolean sunos_add_one_symbol
47 PARAMS ((struct bfd_link_info *, bfd *, const char *, flagword, asection *,
48 bfd_vma, const char *, boolean, boolean,
49 struct bfd_link_hash_entry **));
50 static boolean sunos_scan_relocs
51 PARAMS ((struct bfd_link_info *, bfd *, asection *, bfd_size_type));
52 static boolean sunos_scan_std_relocs
53 PARAMS ((struct bfd_link_info *, bfd *, asection *,
54 const struct reloc_std_external *, bfd_size_type));
55 static boolean sunos_scan_ext_relocs
56 PARAMS ((struct bfd_link_info *, bfd *, asection *,
57 const struct reloc_ext_external *, bfd_size_type));
58 static boolean sunos_link_dynamic_object
59 PARAMS ((struct bfd_link_info *, bfd *));
60 static boolean sunos_write_dynamic_symbol
61 PARAMS ((bfd *, struct bfd_link_info *, struct aout_link_hash_entry *));
62 static boolean sunos_check_dynamic_reloc
63 PARAMS ((struct bfd_link_info *, bfd *, asection *,
64 struct aout_link_hash_entry *, PTR, bfd_byte *, boolean *,
65 bfd_vma *));
66 static boolean sunos_finish_dynamic_link
67 PARAMS ((bfd *, struct bfd_link_info *));
68
69 #define MY_get_dynamic_symtab_upper_bound sunos_get_dynamic_symtab_upper_bound
70 #define MY_canonicalize_dynamic_symtab sunos_canonicalize_dynamic_symtab
71 #define MY_get_dynamic_reloc_upper_bound sunos_get_dynamic_reloc_upper_bound
72 #define MY_canonicalize_dynamic_reloc sunos_canonicalize_dynamic_reloc
73 #define MY_bfd_link_hash_table_create sunos_link_hash_table_create
74 #define MY_add_dynamic_symbols sunos_add_dynamic_symbols
75 #define MY_add_one_symbol sunos_add_one_symbol
76 #define MY_link_dynamic_object sunos_link_dynamic_object
77 #define MY_write_dynamic_symbol sunos_write_dynamic_symbol
78 #define MY_check_dynamic_reloc sunos_check_dynamic_reloc
79 #define MY_finish_dynamic_link sunos_finish_dynamic_link
80
81 /* Include the usual a.out support. */
82 #include "aoutf1.h"
83
84 /* SunOS shared library support. We store a pointer to this structure
85 in obj_aout_dynamic_info (abfd). */
86
87 struct sunos_dynamic_info
88 {
89 /* Whether we found any dynamic information. */
90 boolean valid;
91 /* Dynamic information. */
92 struct internal_sun4_dynamic_link dyninfo;
93 /* Number of dynamic symbols. */
94 unsigned long dynsym_count;
95 /* Read in nlists for dynamic symbols. */
96 struct external_nlist *dynsym;
97 /* asymbol structures for dynamic symbols. */
98 aout_symbol_type *canonical_dynsym;
99 /* Read in dynamic string table. */
100 char *dynstr;
101 /* Number of dynamic relocs. */
102 unsigned long dynrel_count;
103 /* Read in dynamic relocs. This may be reloc_std_external or
104 reloc_ext_external. */
105 PTR dynrel;
106 /* arelent structures for dynamic relocs. */
107 arelent *canonical_dynrel;
108 };
109
110 /* The hash table of dynamic symbols is composed of two word entries.
111 See include/aout/sun4.h for details. */
112
113 #define HASH_ENTRY_SIZE (2 * BYTES_IN_WORD)
114
115 /* Read in the basic dynamic information. This locates the __DYNAMIC
116 structure and uses it to find the dynamic_link structure. It
117 creates and saves a sunos_dynamic_info structure. If it can't find
118 __DYNAMIC, it sets the valid field of the sunos_dynamic_info
119 structure to false to avoid doing this work again. */
120
121 static boolean
122 sunos_read_dynamic_info (abfd)
123 bfd *abfd;
124 {
125 struct sunos_dynamic_info *info;
126 asection *dynsec;
127 bfd_vma dynoff;
128 struct external_sun4_dynamic dyninfo;
129 unsigned long dynver;
130 struct external_sun4_dynamic_link linkinfo;
131
132 if (obj_aout_dynamic_info (abfd) != (PTR) NULL)
133 return true;
134
135 if ((abfd->flags & DYNAMIC) == 0)
136 {
137 bfd_set_error (bfd_error_invalid_operation);
138 return false;
139 }
140
141 info = ((struct sunos_dynamic_info *)
142 bfd_zalloc (abfd, sizeof (struct sunos_dynamic_info)));
143 if (!info)
144 {
145 bfd_set_error (bfd_error_no_memory);
146 return false;
147 }
148 info->valid = false;
149 info->dynsym = NULL;
150 info->dynstr = NULL;
151 info->canonical_dynsym = NULL;
152 info->dynrel = NULL;
153 info->canonical_dynrel = NULL;
154 obj_aout_dynamic_info (abfd) = (PTR) info;
155
156 /* This code used to look for the __DYNAMIC symbol to locate the dynamic
157 linking information.
158 However this inhibits recovering the dynamic symbols from a
159 stripped object file, so blindly assume that the dynamic linking
160 information is located at the start of the data section.
161 We could verify this assumption later by looking through the dynamic
162 symbols for the __DYNAMIC symbol. */
163 if ((abfd->flags & DYNAMIC) == 0)
164 return true;
165 if (! bfd_get_section_contents (abfd, obj_datasec (abfd), (PTR) &dyninfo,
166 (file_ptr) 0, sizeof dyninfo))
167 return true;
168
169 dynver = GET_WORD (abfd, dyninfo.ld_version);
170 if (dynver != 2 && dynver != 3)
171 return true;
172
173 dynoff = GET_WORD (abfd, dyninfo.ld);
174
175 /* dynoff is a virtual address. It is probably always in the .data
176 section, but this code should work even if it moves. */
177 if (dynoff < bfd_get_section_vma (abfd, obj_datasec (abfd)))
178 dynsec = obj_textsec (abfd);
179 else
180 dynsec = obj_datasec (abfd);
181 dynoff -= bfd_get_section_vma (abfd, dynsec);
182 if (dynoff > bfd_section_size (abfd, dynsec))
183 return true;
184
185 /* This executable appears to be dynamically linked in a way that we
186 can understand. */
187 if (! bfd_get_section_contents (abfd, dynsec, (PTR) &linkinfo, dynoff,
188 (bfd_size_type) sizeof linkinfo))
189 return true;
190
191 /* Swap in the dynamic link information. */
192 info->dyninfo.ld_loaded = GET_WORD (abfd, linkinfo.ld_loaded);
193 info->dyninfo.ld_need = GET_WORD (abfd, linkinfo.ld_need);
194 info->dyninfo.ld_rules = GET_WORD (abfd, linkinfo.ld_rules);
195 info->dyninfo.ld_got = GET_WORD (abfd, linkinfo.ld_got);
196 info->dyninfo.ld_plt = GET_WORD (abfd, linkinfo.ld_plt);
197 info->dyninfo.ld_rel = GET_WORD (abfd, linkinfo.ld_rel);
198 info->dyninfo.ld_hash = GET_WORD (abfd, linkinfo.ld_hash);
199 info->dyninfo.ld_stab = GET_WORD (abfd, linkinfo.ld_stab);
200 info->dyninfo.ld_stab_hash = GET_WORD (abfd, linkinfo.ld_stab_hash);
201 info->dyninfo.ld_buckets = GET_WORD (abfd, linkinfo.ld_buckets);
202 info->dyninfo.ld_symbols = GET_WORD (abfd, linkinfo.ld_symbols);
203 info->dyninfo.ld_symb_size = GET_WORD (abfd, linkinfo.ld_symb_size);
204 info->dyninfo.ld_text = GET_WORD (abfd, linkinfo.ld_text);
205 info->dyninfo.ld_plt_sz = GET_WORD (abfd, linkinfo.ld_plt_sz);
206
207 /* The only way to get the size of the symbol information appears to
208 be to determine the distance between it and the string table. */
209 info->dynsym_count = ((info->dyninfo.ld_symbols - info->dyninfo.ld_stab)
210 / EXTERNAL_NLIST_SIZE);
211 BFD_ASSERT (info->dynsym_count * EXTERNAL_NLIST_SIZE
212 == (unsigned long) (info->dyninfo.ld_symbols
213 - info->dyninfo.ld_stab));
214
215 /* Similarly, the relocs end at the hash table. */
216 info->dynrel_count = ((info->dyninfo.ld_hash - info->dyninfo.ld_rel)
217 / obj_reloc_entry_size (abfd));
218 BFD_ASSERT (info->dynrel_count * obj_reloc_entry_size (abfd)
219 == (unsigned long) (info->dyninfo.ld_hash
220 - info->dyninfo.ld_rel));
221
222 info->valid = true;
223
224 return true;
225 }
226
227 /* Return the amount of memory required for the dynamic symbols. */
228
229 static long
230 sunos_get_dynamic_symtab_upper_bound (abfd)
231 bfd *abfd;
232 {
233 struct sunos_dynamic_info *info;
234
235 if (! sunos_read_dynamic_info (abfd))
236 return -1;
237
238 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
239 if (! info->valid)
240 {
241 bfd_set_error (bfd_error_no_symbols);
242 return -1;
243 }
244
245 return (info->dynsym_count + 1) * sizeof (asymbol *);
246 }
247
248 /* Read the external dynamic symbols. */
249
250 static boolean
251 sunos_slurp_dynamic_symtab (abfd)
252 bfd *abfd;
253 {
254 struct sunos_dynamic_info *info;
255
256 /* Get the general dynamic information. */
257 if (obj_aout_dynamic_info (abfd) == NULL)
258 {
259 if (! sunos_read_dynamic_info (abfd))
260 return false;
261 }
262
263 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
264 if (! info->valid)
265 {
266 bfd_set_error (bfd_error_no_symbols);
267 return false;
268 }
269
270 /* Get the dynamic nlist structures. */
271 if (info->dynsym == (struct external_nlist *) NULL)
272 {
273 info->dynsym = ((struct external_nlist *)
274 bfd_alloc (abfd,
275 (info->dynsym_count
276 * EXTERNAL_NLIST_SIZE)));
277 if (info->dynsym == NULL && info->dynsym_count != 0)
278 {
279 bfd_set_error (bfd_error_no_memory);
280 return false;
281 }
282 if (bfd_seek (abfd, info->dyninfo.ld_stab, SEEK_SET) != 0
283 || (bfd_read ((PTR) info->dynsym, info->dynsym_count,
284 EXTERNAL_NLIST_SIZE, abfd)
285 != info->dynsym_count * EXTERNAL_NLIST_SIZE))
286 {
287 if (info->dynsym != NULL)
288 {
289 bfd_release (abfd, info->dynsym);
290 info->dynsym = NULL;
291 }
292 return false;
293 }
294 }
295
296 /* Get the dynamic strings. */
297 if (info->dynstr == (char *) NULL)
298 {
299 info->dynstr = (char *) bfd_alloc (abfd, info->dyninfo.ld_symb_size);
300 if (info->dynstr == NULL && info->dyninfo.ld_symb_size != 0)
301 {
302 bfd_set_error (bfd_error_no_memory);
303 return false;
304 }
305 if (bfd_seek (abfd, info->dyninfo.ld_symbols, SEEK_SET) != 0
306 || (bfd_read ((PTR) info->dynstr, 1, info->dyninfo.ld_symb_size,
307 abfd)
308 != info->dyninfo.ld_symb_size))
309 {
310 if (info->dynstr != NULL)
311 {
312 bfd_release (abfd, info->dynstr);
313 info->dynstr = NULL;
314 }
315 return false;
316 }
317 }
318
319 return true;
320 }
321
322 /* Read in the dynamic symbols. */
323
324 static long
325 sunos_canonicalize_dynamic_symtab (abfd, storage)
326 bfd *abfd;
327 asymbol **storage;
328 {
329 struct sunos_dynamic_info *info;
330 unsigned long i;
331
332 if (! sunos_slurp_dynamic_symtab (abfd))
333 return -1;
334
335 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
336
337 #ifdef CHECK_DYNAMIC_HASH
338 /* Check my understanding of the dynamic hash table by making sure
339 that each symbol can be located in the hash table. */
340 {
341 bfd_size_type table_size;
342 bfd_byte *table;
343 bfd_size_type i;
344
345 if (info->dyninfo.ld_buckets > info->dynsym_count)
346 abort ();
347 table_size = info->dyninfo.ld_stab - info->dyninfo.ld_hash;
348 table = (bfd_byte *) malloc (table_size);
349 if (table == NULL && table_size != 0)
350 abort ();
351 if (bfd_seek (abfd, info->dyninfo.ld_hash, SEEK_SET) != 0
352 || bfd_read ((PTR) table, 1, table_size, abfd) != table_size)
353 abort ();
354 for (i = 0; i < info->dynsym_count; i++)
355 {
356 unsigned char *name;
357 unsigned long hash;
358
359 name = ((unsigned char *) info->dynstr
360 + GET_WORD (abfd, info->dynsym[i].e_strx));
361 hash = 0;
362 while (*name != '\0')
363 hash = (hash << 1) + *name++;
364 hash &= 0x7fffffff;
365 hash %= info->dyninfo.ld_buckets;
366 while (GET_WORD (abfd, table + hash * HASH_ENTRY_SIZE) != i)
367 {
368 hash = GET_WORD (abfd,
369 table + hash * HASH_ENTRY_SIZE + BYTES_IN_WORD);
370 if (hash == 0 || hash >= table_size / HASH_ENTRY_SIZE)
371 abort ();
372 }
373 }
374 free (table);
375 }
376 #endif /* CHECK_DYNAMIC_HASH */
377
378 /* Get the asymbol structures corresponding to the dynamic nlist
379 structures. */
380 if (info->canonical_dynsym == (aout_symbol_type *) NULL)
381 {
382 info->canonical_dynsym = ((aout_symbol_type *)
383 bfd_alloc (abfd,
384 (info->dynsym_count
385 * sizeof (aout_symbol_type))));
386 if (info->canonical_dynsym == NULL && info->dynsym_count != 0)
387 {
388 bfd_set_error (bfd_error_no_memory);
389 return -1;
390 }
391
392 if (! aout_32_translate_symbol_table (abfd, info->canonical_dynsym,
393 info->dynsym, info->dynsym_count,
394 info->dynstr,
395 info->dyninfo.ld_symb_size,
396 true))
397 {
398 if (info->canonical_dynsym != NULL)
399 {
400 bfd_release (abfd, info->canonical_dynsym);
401 info->canonical_dynsym = NULL;
402 }
403 return -1;
404 }
405 }
406
407 /* Return pointers to the dynamic asymbol structures. */
408 for (i = 0; i < info->dynsym_count; i++)
409 *storage++ = (asymbol *) (info->canonical_dynsym + i);
410 *storage = NULL;
411
412 return info->dynsym_count;
413 }
414
415 /* Return the amount of memory required for the dynamic relocs. */
416
417 static long
418 sunos_get_dynamic_reloc_upper_bound (abfd)
419 bfd *abfd;
420 {
421 struct sunos_dynamic_info *info;
422
423 if (! sunos_read_dynamic_info (abfd))
424 return -1;
425
426 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
427 if (! info->valid)
428 {
429 bfd_set_error (bfd_error_no_symbols);
430 return -1;
431 }
432
433 return (info->dynrel_count + 1) * sizeof (arelent *);
434 }
435
436 /* Read in the dynamic relocs. */
437
438 static long
439 sunos_canonicalize_dynamic_reloc (abfd, storage, syms)
440 bfd *abfd;
441 arelent **storage;
442 asymbol **syms;
443 {
444 struct sunos_dynamic_info *info;
445 unsigned long i;
446
447 /* Get the general dynamic information. */
448 if (obj_aout_dynamic_info (abfd) == (PTR) NULL)
449 {
450 if (! sunos_read_dynamic_info (abfd))
451 return -1;
452 }
453
454 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
455 if (! info->valid)
456 {
457 bfd_set_error (bfd_error_no_symbols);
458 return -1;
459 }
460
461 /* Get the dynamic reloc information. */
462 if (info->dynrel == NULL)
463 {
464 info->dynrel = (PTR) bfd_alloc (abfd,
465 (info->dynrel_count
466 * obj_reloc_entry_size (abfd)));
467 if (info->dynrel == NULL && info->dynrel_count != 0)
468 {
469 bfd_set_error (bfd_error_no_memory);
470 return -1;
471 }
472 if (bfd_seek (abfd, info->dyninfo.ld_rel, SEEK_SET) != 0
473 || (bfd_read ((PTR) info->dynrel, info->dynrel_count,
474 obj_reloc_entry_size (abfd), abfd)
475 != info->dynrel_count * obj_reloc_entry_size (abfd)))
476 {
477 if (info->dynrel != NULL)
478 {
479 bfd_release (abfd, info->dynrel);
480 info->dynrel = NULL;
481 }
482 return -1;
483 }
484 }
485
486 /* Get the arelent structures corresponding to the dynamic reloc
487 information. */
488 if (info->canonical_dynrel == (arelent *) NULL)
489 {
490 arelent *to;
491
492 info->canonical_dynrel = ((arelent *)
493 bfd_alloc (abfd,
494 (info->dynrel_count
495 * sizeof (arelent))));
496 if (info->canonical_dynrel == NULL && info->dynrel_count != 0)
497 {
498 bfd_set_error (bfd_error_no_memory);
499 return -1;
500 }
501
502 to = info->canonical_dynrel;
503
504 if (obj_reloc_entry_size (abfd) == RELOC_EXT_SIZE)
505 {
506 register struct reloc_ext_external *p;
507 struct reloc_ext_external *pend;
508
509 p = (struct reloc_ext_external *) info->dynrel;
510 pend = p + info->dynrel_count;
511 for (; p < pend; p++, to++)
512 NAME(aout,swap_ext_reloc_in) (abfd, p, to, syms,
513 info->dynsym_count);
514 }
515 else
516 {
517 register struct reloc_std_external *p;
518 struct reloc_std_external *pend;
519
520 p = (struct reloc_std_external *) info->dynrel;
521 pend = p + info->dynrel_count;
522 for (; p < pend; p++, to++)
523 NAME(aout,swap_std_reloc_in) (abfd, p, to, syms,
524 info->dynsym_count);
525 }
526 }
527
528 /* Return pointers to the dynamic arelent structures. */
529 for (i = 0; i < info->dynrel_count; i++)
530 *storage++ = info->canonical_dynrel + i;
531 *storage = NULL;
532
533 return info->dynrel_count;
534 }
535 \f
536 /* Code to handle linking of SunOS shared libraries. */
537
538 /* A SPARC procedure linkage table entry is 12 bytes. The first entry
539 in the table is a jump which is filled in by the runtime linker.
540 The remaining entries are branches back to the first entry,
541 followed by an index into the relocation table encoded to look like
542 a sethi of %g0. */
543
544 #define SPARC_PLT_ENTRY_SIZE (12)
545
546 static const bfd_byte sparc_plt_first_entry[SPARC_PLT_ENTRY_SIZE] =
547 {
548 /* sethi %hi(0),%g1; address filled in by runtime linker. */
549 0x3, 0, 0, 0,
550 /* jmp %g1; offset filled in by runtime linker. */
551 0x81, 0xc0, 0x60, 0,
552 /* nop */
553 0x1, 0, 0, 0
554 };
555
556 /* save %sp, -96, %sp */
557 #define SPARC_PLT_ENTRY_WORD0 0x9de3bfa0
558 /* call; address filled in later. */
559 #define SPARC_PLT_ENTRY_WORD1 0x40000000
560 /* sethi; reloc index filled in later. */
561 #define SPARC_PLT_ENTRY_WORD2 0x01000000
562
563 /* This sequence is used when for the jump table entry to a defined
564 symbol in a complete executable. It is used when linking PIC
565 compiled code which is not being put into a shared library. */
566 /* sethi <address to be filled in later>, %g1 */
567 #define SPARC_PLT_PIC_WORD0 0x03000000
568 /* jmp %g1 + <address to be filled in later> */
569 #define SPARC_PLT_PIC_WORD1 0x81c06000
570 /* nop */
571 #define SPARC_PLT_PIC_WORD2 0x01000000
572
573 /* An m68k procedure linkage table entry is 8 bytes. The first entry
574 in the table is a jump which is filled in the by the runtime
575 linker. The remaining entries are branches back to the first
576 entry, followed by a two byte index into the relocation table. */
577
578 #define M68K_PLT_ENTRY_SIZE (8)
579
580 static const bfd_byte m68k_plt_first_entry[M68K_PLT_ENTRY_SIZE] =
581 {
582 /* jmps @# */
583 0x4e, 0xf9,
584 /* Filled in by runtime linker with a magic address. */
585 0, 0, 0, 0,
586 /* Not used? */
587 0, 0
588 };
589
590 /* bsrl */
591 #define M68K_PLT_ENTRY_WORD0 (0x61ff)
592 /* Remaining words filled in later. */
593
594 /* An entry in the SunOS linker hash table. */
595
596 struct sunos_link_hash_entry
597 {
598 struct aout_link_hash_entry root;
599
600 /* If this is a dynamic symbol, this is its index into the dynamic
601 symbol table. This is initialized to -1. As the linker looks at
602 the input files, it changes this to -2 if it will be added to the
603 dynamic symbol table. After all the input files have been seen,
604 the linker will know whether to build a dynamic symbol table; if
605 it does build one, this becomes the index into the table. */
606 long dynindx;
607
608 /* If this is a dynamic symbol, this is the index of the name in the
609 dynamic symbol string table. */
610 long dynstr_index;
611
612 /* The offset into the global offset table used for this symbol. If
613 the symbol does not require a GOT entry, this is 0. */
614 bfd_vma got_offset;
615
616 /* The offset into the procedure linkage table used for this symbol.
617 If the symbol does not require a PLT entry, this is 0. */
618 bfd_vma plt_offset;
619
620 /* Some linker flags. */
621 unsigned char flags;
622 /* Symbol is referenced by a regular object. */
623 #define SUNOS_REF_REGULAR 01
624 /* Symbol is defined by a regular object. */
625 #define SUNOS_DEF_REGULAR 02
626 /* Symbol is referenced by a dynamic object. */
627 #define SUNOS_REF_DYNAMIC 010
628 /* Symbol is defined by a dynamic object. */
629 #define SUNOS_DEF_DYNAMIC 020
630 };
631
632 /* The SunOS linker hash table. */
633
634 struct sunos_link_hash_table
635 {
636 struct aout_link_hash_table root;
637
638 /* The object which holds the dynamic sections. */
639 bfd *dynobj;
640
641 /* Whether we have created the dynamic sections. */
642 boolean dynamic_sections_created;
643
644 /* Whether we need the dynamic sections. */
645 boolean dynamic_sections_needed;
646
647 /* The number of dynamic symbols. */
648 size_t dynsymcount;
649
650 /* The number of buckets in the hash table. */
651 size_t bucketcount;
652 };
653
654 /* Routine to create an entry in an SunOS link hash table. */
655
656 static struct bfd_hash_entry *
657 sunos_link_hash_newfunc (entry, table, string)
658 struct bfd_hash_entry *entry;
659 struct bfd_hash_table *table;
660 const char *string;
661 {
662 struct sunos_link_hash_entry *ret = (struct sunos_link_hash_entry *) entry;
663
664 /* Allocate the structure if it has not already been allocated by a
665 subclass. */
666 if (ret == (struct sunos_link_hash_entry *) NULL)
667 ret = ((struct sunos_link_hash_entry *)
668 bfd_hash_allocate (table, sizeof (struct sunos_link_hash_entry)));
669 if (ret == (struct sunos_link_hash_entry *) NULL)
670 {
671 bfd_set_error (bfd_error_no_memory);
672 return (struct bfd_hash_entry *) ret;
673 }
674
675 /* Call the allocation method of the superclass. */
676 ret = ((struct sunos_link_hash_entry *)
677 NAME(aout,link_hash_newfunc) ((struct bfd_hash_entry *) ret,
678 table, string));
679 if (ret != NULL)
680 {
681 /* Set local fields. */
682 ret->dynindx = -1;
683 ret->dynstr_index = -1;
684 ret->got_offset = 0;
685 ret->plt_offset = 0;
686 ret->flags = 0;
687 }
688
689 return (struct bfd_hash_entry *) ret;
690 }
691
692 /* Create a SunOS link hash table. */
693
694 static struct bfd_link_hash_table *
695 sunos_link_hash_table_create (abfd)
696 bfd *abfd;
697 {
698 struct sunos_link_hash_table *ret;
699
700 ret = ((struct sunos_link_hash_table *)
701 bfd_alloc (abfd, sizeof (struct sunos_link_hash_table)));
702 if (ret == (struct sunos_link_hash_table *) NULL)
703 {
704 bfd_set_error (bfd_error_no_memory);
705 return (struct bfd_link_hash_table *) NULL;
706 }
707 if (! NAME(aout,link_hash_table_init) (&ret->root, abfd,
708 sunos_link_hash_newfunc))
709 {
710 free (ret);
711 return (struct bfd_link_hash_table *) NULL;
712 }
713
714 ret->dynobj = NULL;
715 ret->dynamic_sections_created = false;
716 ret->dynamic_sections_needed = false;
717 ret->dynsymcount = 0;
718 ret->bucketcount = 0;
719
720 return &ret->root.root;
721 }
722
723 /* Look up an entry in an SunOS link hash table. */
724
725 #define sunos_link_hash_lookup(table, string, create, copy, follow) \
726 ((struct sunos_link_hash_entry *) \
727 aout_link_hash_lookup (&(table)->root, (string), (create), (copy),\
728 (follow)))
729
730 /* Traverse a SunOS link hash table. */
731
732 #define sunos_link_hash_traverse(table, func, info) \
733 (aout_link_hash_traverse \
734 (&(table)->root, \
735 (boolean (*) PARAMS ((struct aout_link_hash_entry *, PTR))) (func), \
736 (info)))
737
738 /* Get the SunOS link hash table from the info structure. This is
739 just a cast. */
740
741 #define sunos_hash_table(p) ((struct sunos_link_hash_table *) ((p)->hash))
742
743 static boolean sunos_scan_dynamic_symbol
744 PARAMS ((struct sunos_link_hash_entry *, PTR));
745
746 /* Create the dynamic sections needed if we are linking against a
747 dynamic object, or if we are linking PIC compiled code. ABFD is a
748 bfd we can attach the dynamic sections to. The linker script will
749 look for these special sections names and put them in the right
750 place in the output file. See include/aout/sun4.h for more details
751 of the dynamic linking information. */
752
753 static boolean
754 sunos_create_dynamic_sections (abfd, info, needed)
755 bfd *abfd;
756 struct bfd_link_info *info;
757 boolean needed;
758 {
759 asection *s;
760
761 if (! sunos_hash_table (info)->dynamic_sections_created)
762 {
763 flagword flags;
764
765 sunos_hash_table (info)->dynobj = abfd;
766
767 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY;
768
769 /* The .dynamic section holds the basic dynamic information: the
770 sun4_dynamic structure, the dynamic debugger information, and
771 the sun4_dynamic_link structure. */
772 s = bfd_make_section (abfd, ".dynamic");
773 if (s == NULL
774 || ! bfd_set_section_flags (abfd, s, flags)
775 || ! bfd_set_section_alignment (abfd, s, 2))
776 return false;
777
778 /* The .got section holds the global offset table. The address
779 is put in the ld_got field. */
780 s = bfd_make_section (abfd, ".got");
781 if (s == NULL
782 || ! bfd_set_section_flags (abfd, s, flags)
783 || ! bfd_set_section_alignment (abfd, s, 2))
784 return false;
785
786 /* The .plt section holds the procedure linkage table. The
787 address is put in the ld_plt field. */
788 s = bfd_make_section (abfd, ".plt");
789 if (s == NULL
790 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
791 || ! bfd_set_section_alignment (abfd, s, 2))
792 return false;
793
794 /* The .dynrel section holds the dynamic relocs. The address is
795 put in the ld_rel field. */
796 s = bfd_make_section (abfd, ".dynrel");
797 if (s == NULL
798 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
799 || ! bfd_set_section_alignment (abfd, s, 2))
800 return false;
801
802 /* The .hash section holds the dynamic hash table. The address
803 is put in the ld_hash field. */
804 s = bfd_make_section (abfd, ".hash");
805 if (s == NULL
806 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
807 || ! bfd_set_section_alignment (abfd, s, 2))
808 return false;
809
810 /* The .dynsym section holds the dynamic symbols. The address
811 is put in the ld_stab field. */
812 s = bfd_make_section (abfd, ".dynsym");
813 if (s == NULL
814 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
815 || ! bfd_set_section_alignment (abfd, s, 2))
816 return false;
817
818 /* The .dynstr section holds the dynamic symbol string table.
819 The address is put in the ld_symbols field. */
820 s = bfd_make_section (abfd, ".dynstr");
821 if (s == NULL
822 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
823 || ! bfd_set_section_alignment (abfd, s, 2))
824 return false;
825
826 sunos_hash_table (info)->dynamic_sections_created = true;
827 }
828
829 if (needed && ! sunos_hash_table (info)->dynamic_sections_needed)
830 {
831 bfd *dynobj;
832
833 dynobj = sunos_hash_table (info)->dynobj;
834
835 s = bfd_get_section_by_name (dynobj, ".got");
836 s->_raw_size = BYTES_IN_WORD;
837
838 sunos_hash_table (info)->dynamic_sections_needed = true;
839 }
840
841 return true;
842 }
843
844 /* Add dynamic symbols during a link. This is called by the a.out
845 backend linker when it encounters an object with the DYNAMIC flag
846 set. */
847
848 static boolean
849 sunos_add_dynamic_symbols (abfd, info, symsp, sym_countp, stringsp)
850 bfd *abfd;
851 struct bfd_link_info *info;
852 struct external_nlist **symsp;
853 bfd_size_type *sym_countp;
854 char **stringsp;
855 {
856 asection *s;
857 bfd *dynobj;
858 struct sunos_dynamic_info *dinfo;
859
860 /* We do not want to include the sections in a dynamic object in the
861 output file. We hack by simply clobbering the list of sections
862 in the BFD. This could be handled more cleanly by, say, a new
863 section flag; the existing SEC_NEVER_LOAD flag is not the one we
864 want, because that one still implies that the section takes up
865 space in the output file. */
866 abfd->sections = NULL;
867
868 /* The native linker seems to just ignore dynamic objects when -r is
869 used. */
870 if (info->relocateable)
871 return true;
872
873 /* There's no hope of using a dynamic object which does not exactly
874 match the format of the output file. */
875 if (info->hash->creator != abfd->xvec)
876 {
877 bfd_set_error (bfd_error_invalid_operation);
878 return false;
879 }
880
881 /* Make sure we have all the required information. */
882 if (! sunos_create_dynamic_sections (abfd, info, true))
883 return false;
884
885 /* Make sure we have a .need and a .rules sections. These are only
886 needed if there really is a dynamic object in the link, so they
887 are not added by sunos_create_dynamic_sections. */
888 dynobj = sunos_hash_table (info)->dynobj;
889 if (bfd_get_section_by_name (dynobj, ".need") == NULL)
890 {
891 /* The .need section holds the list of names of shared objets
892 which must be included at runtime. The address of this
893 section is put in the ld_need field. */
894 s = bfd_make_section (dynobj, ".need");
895 if (s == NULL
896 || ! bfd_set_section_flags (dynobj, s,
897 (SEC_ALLOC
898 | SEC_LOAD
899 | SEC_HAS_CONTENTS
900 | SEC_IN_MEMORY
901 | SEC_READONLY))
902 || ! bfd_set_section_alignment (dynobj, s, 2))
903 return false;
904 }
905
906 if (bfd_get_section_by_name (dynobj, ".rules") == NULL)
907 {
908 /* The .rules section holds the path to search for shared
909 objects. The address of this section is put in the ld_rules
910 field. */
911 s = bfd_make_section (dynobj, ".rules");
912 if (s == NULL
913 || ! bfd_set_section_flags (dynobj, s,
914 (SEC_ALLOC
915 | SEC_LOAD
916 | SEC_HAS_CONTENTS
917 | SEC_IN_MEMORY
918 | SEC_READONLY))
919 || ! bfd_set_section_alignment (dynobj, s, 2))
920 return false;
921 }
922
923 /* Pick up the dynamic symbols and return them to the caller. */
924 if (! sunos_slurp_dynamic_symtab (abfd))
925 return false;
926
927 dinfo = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
928 *symsp = dinfo->dynsym;
929 *sym_countp = dinfo->dynsym_count;
930 *stringsp = dinfo->dynstr;
931
932 return true;
933 }
934
935 /* Function to add a single symbol to the linker hash table. This is
936 a wrapper around _bfd_generic_link_add_one_symbol which handles the
937 tweaking needed for dynamic linking support. */
938
939 static boolean
940 sunos_add_one_symbol (info, abfd, name, flags, section, value, string,
941 copy, collect, hashp)
942 struct bfd_link_info *info;
943 bfd *abfd;
944 const char *name;
945 flagword flags;
946 asection *section;
947 bfd_vma value;
948 const char *string;
949 boolean copy;
950 boolean collect;
951 struct bfd_link_hash_entry **hashp;
952 {
953 struct sunos_link_hash_entry *h;
954 int new_flag;
955
956 if (! sunos_hash_table (info)->dynamic_sections_created)
957 {
958 /* We must create the dynamic sections while reading the input
959 files, even though at this point we don't know if any of the
960 sections will be needed. This will ensure that the dynamic
961 sections are mapped to the right output section. It does no
962 harm to create these sections if they are not needed. */
963 if (! sunos_create_dynamic_sections (abfd, info, info->shared))
964 return false;
965 }
966
967 h = sunos_link_hash_lookup (sunos_hash_table (info), name, true, copy,
968 false);
969 if (h == NULL)
970 return false;
971
972 if (hashp != NULL)
973 *hashp = (struct bfd_link_hash_entry *) h;
974
975 /* Treat a common symbol in a dynamic object as defined in the .bss
976 section of the dynamic object. We don't want to allocate space
977 for it in our process image. */
978 if ((abfd->flags & DYNAMIC) != 0
979 && bfd_is_com_section (section))
980 section = obj_bsssec (abfd);
981
982 if (! bfd_is_und_section (section)
983 && h->root.root.type != bfd_link_hash_new
984 && h->root.root.type != bfd_link_hash_undefined
985 && h->root.root.type != bfd_link_hash_defweak)
986 {
987 /* We are defining the symbol, and it is already defined. This
988 is a potential multiple definition error. */
989 if ((abfd->flags & DYNAMIC) != 0)
990 {
991 /* The definition we are adding is from a dynamic object.
992 We do not want this new definition to override the
993 existing definition, so we pretend it is just a
994 reference. */
995 section = bfd_und_section_ptr;
996 }
997 else if ((h->root.root.type == bfd_link_hash_defined
998 && h->root.root.u.def.section->owner != NULL
999 && (h->root.root.u.def.section->owner->flags & DYNAMIC) != 0)
1000 || (h->root.root.type == bfd_link_hash_common
1001 && ((h->root.root.u.c.p->section->owner->flags & DYNAMIC)
1002 != 0)))
1003 {
1004 /* The existing definition is from a dynamic object. We
1005 want to override it with the definition we just found.
1006 Clobber the existing definition. */
1007 h->root.root.type = bfd_link_hash_new;
1008 }
1009 }
1010
1011 /* Do the usual procedure for adding a symbol. */
1012 if (! _bfd_generic_link_add_one_symbol (info, abfd, name, flags, section,
1013 value, string, copy, collect,
1014 hashp))
1015 return false;
1016
1017 if (abfd->xvec == info->hash->creator)
1018 {
1019 /* Set a flag in the hash table entry indicating the type of
1020 reference or definition we just found. Keep a count of the
1021 number of dynamic symbols we find. A dynamic symbol is one
1022 which is referenced or defined by both a regular object and a
1023 shared object. */
1024 if ((abfd->flags & DYNAMIC) == 0)
1025 {
1026 if (bfd_is_und_section (section))
1027 new_flag = SUNOS_REF_REGULAR;
1028 else
1029 new_flag = SUNOS_DEF_REGULAR;
1030 }
1031 else
1032 {
1033 if (bfd_is_und_section (section))
1034 new_flag = SUNOS_REF_DYNAMIC;
1035 else
1036 new_flag = SUNOS_DEF_DYNAMIC;
1037 }
1038 h->flags |= new_flag;
1039
1040 if (h->dynindx == -1
1041 && (h->flags & (SUNOS_DEF_REGULAR | SUNOS_REF_REGULAR)) != 0)
1042 {
1043 ++sunos_hash_table (info)->dynsymcount;
1044 h->dynindx = -2;
1045 }
1046 }
1047
1048 return true;
1049 }
1050
1051 /* Record an assignment made to a symbol by a linker script. We need
1052 this in case some dynamic object refers to this symbol. */
1053
1054 boolean
1055 bfd_sunos_record_link_assignment (output_bfd, info, name)
1056 bfd *output_bfd;
1057 struct bfd_link_info *info;
1058 const char *name;
1059 {
1060 struct sunos_link_hash_entry *h;
1061
1062 /* This is called after we have examined all the input objects. If
1063 the symbol does not exist, it merely means that no object refers
1064 to it, and we can just ignore it at this point. */
1065 h = sunos_link_hash_lookup (sunos_hash_table (info), name,
1066 false, false, false);
1067 if (h == NULL)
1068 return true;
1069
1070 h->flags |= SUNOS_DEF_REGULAR;
1071
1072 if (h->dynindx == -1)
1073 {
1074 ++sunos_hash_table (info)->dynsymcount;
1075 h->dynindx = -2;
1076 }
1077
1078 return true;
1079 }
1080
1081 /* Set up the sizes and contents of the dynamic sections created in
1082 sunos_add_dynamic_symbols. This is called by the SunOS linker
1083 emulation before_allocation routine. We must set the sizes of the
1084 sections before the linker sets the addresses of the various
1085 sections. This unfortunately requires reading all the relocs so
1086 that we can work out which ones need to become dynamic relocs. If
1087 info->keep_memory is true, we keep the relocs in memory; otherwise,
1088 we discard them, and will read them again later. */
1089
1090 boolean
1091 bfd_sunos_size_dynamic_sections (output_bfd, info, sdynptr, sneedptr,
1092 srulesptr)
1093 bfd *output_bfd;
1094 struct bfd_link_info *info;
1095 asection **sdynptr;
1096 asection **sneedptr;
1097 asection **srulesptr;
1098 {
1099 bfd *dynobj;
1100 size_t dynsymcount;
1101 struct sunos_link_hash_entry *h;
1102 asection *s;
1103 size_t bucketcount;
1104 size_t hashalloc;
1105 size_t i;
1106 bfd *sub;
1107
1108 *sdynptr = NULL;
1109 *sneedptr = NULL;
1110 *srulesptr = NULL;
1111
1112 /* Look through all the input BFD's and read their relocs. It would
1113 be better if we didn't have to do this, but there is no other way
1114 to determine the number of dynamic relocs we need, and, more
1115 importantly, there is no other way to know which symbols should
1116 get an entry in the procedure linkage table. */
1117 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
1118 {
1119 if ((sub->flags & DYNAMIC) == 0)
1120 {
1121 if (! sunos_scan_relocs (info, sub, obj_textsec (sub),
1122 exec_hdr (sub)->a_trsize)
1123 || ! sunos_scan_relocs (info, sub, obj_datasec (sub),
1124 exec_hdr (sub)->a_drsize))
1125 return false;
1126 }
1127 }
1128
1129 dynobj = sunos_hash_table (info)->dynobj;
1130 dynsymcount = sunos_hash_table (info)->dynsymcount;
1131
1132 /* If there were no dynamic objects in the link, and we don't need
1133 to build a global offset table, there is nothing to do here. */
1134 if (! sunos_hash_table (info)->dynamic_sections_needed)
1135 return true;
1136
1137 /* If __GLOBAL_OFFSET_TABLE_ was mentioned, define it. */
1138 h = sunos_link_hash_lookup (sunos_hash_table (info),
1139 "__GLOBAL_OFFSET_TABLE_", false, false, false);
1140 if (h != NULL && (h->flags & SUNOS_REF_REGULAR) != 0)
1141 {
1142 h->flags |= SUNOS_DEF_REGULAR;
1143 if (h->dynindx == -1)
1144 {
1145 ++sunos_hash_table (info)->dynsymcount;
1146 h->dynindx = -2;
1147 }
1148 h->root.root.type = bfd_link_hash_defined;
1149 h->root.root.u.def.section = bfd_get_section_by_name (dynobj, ".got");
1150 h->root.root.u.def.value = 0;
1151 }
1152
1153 /* The .dynamic section is always the same size. */
1154 s = bfd_get_section_by_name (dynobj, ".dynamic");
1155 BFD_ASSERT (s != NULL);
1156 s->_raw_size = (sizeof (struct external_sun4_dynamic)
1157 + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE
1158 + sizeof (struct external_sun4_dynamic_link));
1159
1160 /* Set the size of the .dynsym and .hash sections. We counted the
1161 number of dynamic symbols as we read the input files. We will
1162 build the dynamic symbol table (.dynsym) and the hash table
1163 (.hash) when we build the final symbol table, because until then
1164 we do not know the correct value to give the symbols. We build
1165 the dynamic symbol string table (.dynstr) in a traversal of the
1166 symbol table using sunos_scan_dynamic_symbol. */
1167 s = bfd_get_section_by_name (dynobj, ".dynsym");
1168 BFD_ASSERT (s != NULL);
1169 s->_raw_size = dynsymcount * sizeof (struct external_nlist);
1170 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
1171 if (s->contents == NULL && s->_raw_size != 0)
1172 {
1173 bfd_set_error (bfd_error_no_memory);
1174 return false;
1175 }
1176
1177 /* The number of buckets is just the number of symbols divided by
1178 four. To compute the final size of the hash table, we must
1179 actually compute the hash table. Normally we need exactly as
1180 many entries in the hash table as there are dynamic symbols, but
1181 if some of the buckets are not used we will need additional
1182 entries. In the worst case, every symbol will hash to the same
1183 bucket, and we will need BUCKETCOUNT - 1 extra entries. */
1184 if (dynsymcount >= 4)
1185 bucketcount = dynsymcount / 4;
1186 else if (dynsymcount > 0)
1187 bucketcount = dynsymcount;
1188 else
1189 bucketcount = 1;
1190 s = bfd_get_section_by_name (dynobj, ".hash");
1191 BFD_ASSERT (s != NULL);
1192 hashalloc = (dynsymcount + bucketcount - 1) * HASH_ENTRY_SIZE;
1193 s->contents = (bfd_byte *) bfd_alloc (dynobj, hashalloc);
1194 if (s->contents == NULL && dynsymcount > 0)
1195 {
1196 bfd_set_error (bfd_error_no_memory);
1197 return false;
1198 }
1199 memset (s->contents, 0, hashalloc);
1200 for (i = 0; i < bucketcount; i++)
1201 PUT_WORD (output_bfd, (bfd_vma) -1, s->contents + i * HASH_ENTRY_SIZE);
1202 s->_raw_size = bucketcount * HASH_ENTRY_SIZE;
1203
1204 sunos_hash_table (info)->bucketcount = bucketcount;
1205
1206 /* Scan all the symbols, place them in the dynamic symbol table, and
1207 build the dynamic hash table. We reuse dynsymcount as a counter
1208 for the number of symbols we have added so far. */
1209 sunos_hash_table (info)->dynsymcount = 0;
1210 sunos_link_hash_traverse (sunos_hash_table (info),
1211 sunos_scan_dynamic_symbol,
1212 (PTR) info);
1213 BFD_ASSERT (sunos_hash_table (info)->dynsymcount == dynsymcount);
1214
1215 /* The SunOS native linker seems to align the total size of the
1216 symbol strings to a multiple of 8. I don't know if this is
1217 important, but it can't hurt much. */
1218 s = bfd_get_section_by_name (dynobj, ".dynstr");
1219 BFD_ASSERT (s != NULL);
1220 if ((s->_raw_size & 7) != 0)
1221 {
1222 bfd_size_type add;
1223 bfd_byte *contents;
1224
1225 add = 8 - (s->_raw_size & 7);
1226 contents = (bfd_byte *) realloc (s->contents,
1227 (size_t) (s->_raw_size + add));
1228 if (contents == NULL)
1229 {
1230 bfd_set_error (bfd_error_no_memory);
1231 return false;
1232 }
1233 memset (contents + s->_raw_size, 0, (size_t) add);
1234 s->contents = contents;
1235 s->_raw_size += add;
1236 }
1237
1238 /* Now that we have worked out the sizes of the procedure linkage
1239 table and the dynamic relocs, allocate storage for them. */
1240 s = bfd_get_section_by_name (dynobj, ".plt");
1241 BFD_ASSERT (s != NULL);
1242 if (s->_raw_size != 0)
1243 {
1244 s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
1245 if (s->contents == NULL)
1246 {
1247 bfd_set_error (bfd_error_no_memory);
1248 return false;
1249 }
1250
1251 /* Fill in the first entry in the table. */
1252 switch (bfd_get_arch (dynobj))
1253 {
1254 case bfd_arch_sparc:
1255 memcpy (s->contents, sparc_plt_first_entry, SPARC_PLT_ENTRY_SIZE);
1256 break;
1257
1258 case bfd_arch_m68k:
1259 memcpy (s->contents, m68k_plt_first_entry, M68K_PLT_ENTRY_SIZE);
1260 break;
1261
1262 default:
1263 abort ();
1264 }
1265 }
1266
1267 s = bfd_get_section_by_name (dynobj, ".dynrel");
1268 if (s->_raw_size != 0)
1269 {
1270 s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
1271 if (s->contents == NULL)
1272 {
1273 bfd_set_error (bfd_error_no_memory);
1274 return false;
1275 }
1276 }
1277 /* We use the reloc_count field to keep track of how many of the
1278 relocs we have output so far. */
1279 s->reloc_count = 0;
1280
1281 /* Make space for the global offset table. */
1282 s = bfd_get_section_by_name (dynobj, ".got");
1283 s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
1284 if (s->contents == NULL)
1285 {
1286 bfd_set_error (bfd_error_no_memory);
1287 return false;
1288 }
1289
1290 *sdynptr = bfd_get_section_by_name (dynobj, ".dynamic");
1291 *sneedptr = bfd_get_section_by_name (dynobj, ".need");
1292 *srulesptr = bfd_get_section_by_name (dynobj, ".rules");
1293
1294 return true;
1295 }
1296
1297 /* Scan the relocs for an input section. */
1298
1299 static boolean
1300 sunos_scan_relocs (info, abfd, sec, rel_size)
1301 struct bfd_link_info *info;
1302 bfd *abfd;
1303 asection *sec;
1304 bfd_size_type rel_size;
1305 {
1306 PTR relocs;
1307 PTR free_relocs = NULL;
1308
1309 if (rel_size == 0)
1310 return true;
1311
1312 if (! info->keep_memory)
1313 relocs = free_relocs = malloc ((size_t) rel_size);
1314 else
1315 {
1316 struct aout_section_data_struct *n;
1317
1318 n = ((struct aout_section_data_struct *)
1319 bfd_alloc (abfd, sizeof (struct aout_section_data_struct)));
1320 if (n == NULL)
1321 relocs = NULL;
1322 else
1323 {
1324 set_aout_section_data (sec, n);
1325 relocs = malloc ((size_t) rel_size);
1326 aout_section_data (sec)->relocs = relocs;
1327 }
1328 }
1329 if (relocs == NULL)
1330 {
1331 bfd_set_error (bfd_error_no_memory);
1332 return false;
1333 }
1334
1335 if (bfd_seek (abfd, sec->rel_filepos, SEEK_SET) != 0
1336 || bfd_read (relocs, 1, rel_size, abfd) != rel_size)
1337 goto error_return;
1338
1339 if (obj_reloc_entry_size (abfd) == RELOC_STD_SIZE)
1340 {
1341 if (! sunos_scan_std_relocs (info, abfd, sec,
1342 (struct reloc_std_external *) relocs,
1343 rel_size))
1344 goto error_return;
1345 }
1346 else
1347 {
1348 if (! sunos_scan_ext_relocs (info, abfd, sec,
1349 (struct reloc_ext_external *) relocs,
1350 rel_size))
1351 goto error_return;
1352 }
1353
1354 if (free_relocs != NULL)
1355 free (free_relocs);
1356
1357 return true;
1358
1359 error_return:
1360 if (free_relocs != NULL)
1361 free (free_relocs);
1362 return false;
1363 }
1364
1365 /* Scan the relocs for an input section using standard relocs. We
1366 need to figure out what to do for each reloc against a dynamic
1367 symbol. If the symbol is in the .text section, an entry is made in
1368 the procedure linkage table. Note that this will do the wrong
1369 thing if the symbol is actually data; I don't think the Sun 3
1370 native linker handles this case correctly either. If the symbol is
1371 not in the .text section, we must preserve the reloc as a dynamic
1372 reloc. FIXME: We should also handle the PIC relocs here by
1373 building global offset table entries. */
1374
1375 static boolean
1376 sunos_scan_std_relocs (info, abfd, sec, relocs, rel_size)
1377 struct bfd_link_info *info;
1378 bfd *abfd;
1379 asection *sec;
1380 const struct reloc_std_external *relocs;
1381 bfd_size_type rel_size;
1382 {
1383 bfd *dynobj;
1384 asection *splt = NULL;
1385 asection *srel = NULL;
1386 struct sunos_link_hash_entry **sym_hashes;
1387 const struct reloc_std_external *rel, *relend;
1388
1389 /* We only know how to handle m68k plt entries. */
1390 if (bfd_get_arch (abfd) != bfd_arch_m68k)
1391 {
1392 bfd_set_error (bfd_error_invalid_target);
1393 return false;
1394 }
1395
1396 dynobj = NULL;
1397
1398 sym_hashes = (struct sunos_link_hash_entry **) obj_aout_sym_hashes (abfd);
1399
1400 relend = relocs + rel_size / RELOC_STD_SIZE;
1401 for (rel = relocs; rel < relend; rel++)
1402 {
1403 int r_index;
1404 struct sunos_link_hash_entry *h;
1405
1406 /* We only want relocs against external symbols. */
1407 if (abfd->xvec->header_byteorder_big_p)
1408 {
1409 if ((rel->r_type[0] & RELOC_STD_BITS_EXTERN_BIG) == 0)
1410 continue;
1411 }
1412 else
1413 {
1414 if ((rel->r_type[0] & RELOC_STD_BITS_EXTERN_LITTLE) == 0)
1415 continue;
1416 }
1417
1418 /* Get the symbol index. */
1419 if (abfd->xvec->header_byteorder_big_p)
1420 r_index = ((rel->r_index[0] << 16)
1421 | (rel->r_index[1] << 8)
1422 | rel->r_index[2]);
1423 else
1424 r_index = ((rel->r_index[2] << 16)
1425 | (rel->r_index[1] << 8)
1426 | rel->r_index[0]);
1427
1428 /* Get the hash table entry. */
1429 h = sym_hashes[r_index];
1430 if (h == NULL)
1431 {
1432 /* This should not normally happen, but it will in any case
1433 be caught in the relocation phase. */
1434 continue;
1435 }
1436
1437 /* At this point common symbols have already been allocated, so
1438 we don't have to worry about them. We need to consider that
1439 we may have already seen this symbol and marked it undefined;
1440 if the symbol is really undefined, then SUNOS_DEF_DYNAMIC
1441 will be zero. */
1442 if (h->root.root.type != bfd_link_hash_defined
1443 && h->root.root.type != bfd_link_hash_defweak
1444 && h->root.root.type != bfd_link_hash_undefined)
1445 continue;
1446
1447 if ((h->flags & SUNOS_DEF_DYNAMIC) == 0
1448 || (h->flags & SUNOS_DEF_REGULAR) != 0)
1449 continue;
1450
1451 if (dynobj == NULL)
1452 {
1453 if (! sunos_create_dynamic_sections (abfd, info, true))
1454 return false;
1455 dynobj = sunos_hash_table (info)->dynobj;
1456 splt = bfd_get_section_by_name (dynobj, ".plt");
1457 srel = bfd_get_section_by_name (dynobj, ".dynrel");
1458 BFD_ASSERT (splt != NULL && srel != NULL);
1459 }
1460
1461 BFD_ASSERT ((h->flags & SUNOS_REF_REGULAR) != 0);
1462 BFD_ASSERT (h->plt_offset != 0
1463 || ((h->root.root.type == bfd_link_hash_defined
1464 || h->root.root.type == bfd_link_hash_defweak)
1465 ? (h->root.root.u.def.section->owner->flags
1466 & DYNAMIC) != 0
1467 : (h->root.root.u.undef.abfd->flags & DYNAMIC) != 0));
1468
1469 /* This reloc is against a symbol defined only by a dynamic
1470 object. */
1471
1472 if (h->root.root.type == bfd_link_hash_undefined)
1473 {
1474 /* Presumably this symbol was marked as being undefined by
1475 an earlier reloc. */
1476 srel->_raw_size += RELOC_STD_SIZE;
1477 }
1478 else if ((h->root.root.u.def.section->flags & SEC_CODE) == 0)
1479 {
1480 bfd *sub;
1481
1482 /* This reloc is not in the .text section. It must be
1483 copied into the dynamic relocs. We mark the symbol as
1484 being undefined. */
1485 srel->_raw_size += RELOC_STD_SIZE;
1486 sub = h->root.root.u.def.section->owner;
1487 h->root.root.type = bfd_link_hash_undefined;
1488 h->root.root.u.undef.abfd = sub;
1489 }
1490 else
1491 {
1492 /* This symbol is in the .text section. We must give it an
1493 entry in the procedure linkage table, if we have not
1494 already done so. We change the definition of the symbol
1495 to the .plt section; this will cause relocs against it to
1496 be handled correctly. */
1497 if (h->plt_offset == 0)
1498 {
1499 if (splt->_raw_size == 0)
1500 splt->_raw_size = M68K_PLT_ENTRY_SIZE;
1501 h->plt_offset = splt->_raw_size;
1502
1503 if ((h->flags & SUNOS_DEF_REGULAR) == 0)
1504 {
1505 h->root.root.u.def.section = splt;
1506 h->root.root.u.def.value = splt->_raw_size;
1507 }
1508
1509 splt->_raw_size += M68K_PLT_ENTRY_SIZE;
1510
1511 /* We may also need a dynamic reloc entry. */
1512 if ((h->flags & SUNOS_DEF_REGULAR) == 0)
1513 srel->_raw_size += RELOC_STD_SIZE;
1514 }
1515 }
1516 }
1517
1518 return true;
1519 }
1520
1521 /* Scan the relocs for an input section using extended relocs. We
1522 need to figure out what to do for each reloc against a dynamic
1523 symbol. If the reloc is a WDISP30, and the symbol is in the .text
1524 section, an entry is made in the procedure linkage table.
1525 Otherwise, we must preserve the reloc as a dynamic reloc. */
1526
1527 static boolean
1528 sunos_scan_ext_relocs (info, abfd, sec, relocs, rel_size)
1529 struct bfd_link_info *info;
1530 bfd *abfd;
1531 asection *sec;
1532 const struct reloc_ext_external *relocs;
1533 bfd_size_type rel_size;
1534 {
1535 bfd *dynobj;
1536 struct sunos_link_hash_entry **sym_hashes;
1537 const struct reloc_ext_external *rel, *relend;
1538 asection *splt = NULL;
1539 asection *sgot = NULL;
1540 asection *srel = NULL;
1541
1542 /* We only know how to handle SPARC plt entries. */
1543 if (bfd_get_arch (abfd) != bfd_arch_sparc)
1544 {
1545 bfd_set_error (bfd_error_invalid_target);
1546 return false;
1547 }
1548
1549 dynobj = NULL;
1550
1551 sym_hashes = (struct sunos_link_hash_entry **) obj_aout_sym_hashes (abfd);
1552
1553 relend = relocs + rel_size / RELOC_EXT_SIZE;
1554 for (rel = relocs; rel < relend; rel++)
1555 {
1556 unsigned int r_index;
1557 int r_extern;
1558 int r_type;
1559 struct sunos_link_hash_entry *h = NULL;
1560
1561 /* Swap in the reloc information. */
1562 if (abfd->xvec->header_byteorder_big_p)
1563 {
1564 r_index = ((rel->r_index[0] << 16)
1565 | (rel->r_index[1] << 8)
1566 | rel->r_index[2]);
1567 r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_BIG));
1568 r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_BIG)
1569 >> RELOC_EXT_BITS_TYPE_SH_BIG);
1570 }
1571 else
1572 {
1573 r_index = ((rel->r_index[2] << 16)
1574 | (rel->r_index[1] << 8)
1575 | rel->r_index[0]);
1576 r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_LITTLE));
1577 r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE)
1578 >> RELOC_EXT_BITS_TYPE_SH_LITTLE);
1579 }
1580
1581 if (r_extern)
1582 {
1583 h = sym_hashes[r_index];
1584 if (h == NULL)
1585 {
1586 /* This should not normally happen, but it will in any
1587 case be caught in the relocation phase. */
1588 continue;
1589 }
1590 }
1591 else
1592 {
1593 if (r_index >= bfd_get_symcount (abfd))
1594 {
1595 /* This is abnormal, but should be caught in the
1596 relocation phase. */
1597 continue;
1598 }
1599 }
1600
1601 /* If this is a base relative reloc, we need to make an entry in
1602 the .got section. */
1603 if (r_type == RELOC_BASE10
1604 || r_type == RELOC_BASE13
1605 || r_type == RELOC_BASE22)
1606 {
1607 if (dynobj == NULL)
1608 {
1609 if (! sunos_create_dynamic_sections (abfd, info, true))
1610 return false;
1611 dynobj = sunos_hash_table (info)->dynobj;
1612 splt = bfd_get_section_by_name (dynobj, ".plt");
1613 sgot = bfd_get_section_by_name (dynobj, ".got");
1614 srel = bfd_get_section_by_name (dynobj, ".dynrel");
1615 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
1616 }
1617
1618 if (r_extern)
1619 {
1620 if (h->got_offset != 0)
1621 continue;
1622
1623 h->got_offset = sgot->_raw_size;
1624 }
1625 else
1626 {
1627 if (adata (abfd).local_got_offsets == NULL)
1628 {
1629 adata (abfd).local_got_offsets =
1630 (bfd_vma *) bfd_zalloc (abfd,
1631 (bfd_get_symcount (abfd)
1632 * sizeof (bfd_vma)));
1633 if (adata (abfd).local_got_offsets == NULL)
1634 {
1635 bfd_set_error (bfd_error_no_memory);
1636 return false;
1637 }
1638 }
1639
1640 if (adata (abfd).local_got_offsets[r_index] != 0)
1641 continue;
1642
1643 adata (abfd).local_got_offsets[r_index] = sgot->_raw_size;
1644 }
1645
1646 sgot->_raw_size += BYTES_IN_WORD;
1647
1648 /* If we are making a shared library, or if the symbol is
1649 defined by a dynamic object, we will need a dynamic reloc
1650 entry. */
1651 if (info->shared
1652 || (h != NULL
1653 && (h->flags & SUNOS_DEF_DYNAMIC) != 0
1654 && (h->flags & SUNOS_DEF_REGULAR) == 0))
1655 srel->_raw_size += RELOC_EXT_SIZE;
1656
1657 continue;
1658 }
1659
1660 /* Otherwise, we are only interested in relocs against symbols
1661 defined in dynamic objects but not in regular objects. We
1662 only need to consider relocs against external symbols. */
1663 if (! r_extern)
1664 continue;
1665
1666 /* At this point common symbols have already been allocated, so
1667 we don't have to worry about them. We need to consider that
1668 we may have already seen this symbol and marked it undefined;
1669 if the symbol is really undefined, then SUNOS_DEF_DYNAMIC
1670 will be zero. */
1671 if (h->root.root.type != bfd_link_hash_defined
1672 && h->root.root.type != bfd_link_hash_defweak
1673 && h->root.root.type != bfd_link_hash_undefined)
1674 continue;
1675
1676 if (r_type != RELOC_JMP_TBL
1677 && ((h->flags & SUNOS_DEF_DYNAMIC) == 0
1678 || (h->flags & SUNOS_DEF_REGULAR) != 0))
1679 continue;
1680
1681 if (strcmp (h->root.root.root.string, "__GLOBAL_OFFSET_TABLE_") == 0)
1682 continue;
1683
1684 if (dynobj == NULL)
1685 {
1686 if (! sunos_create_dynamic_sections (abfd, info, true))
1687 return false;
1688 dynobj = sunos_hash_table (info)->dynobj;
1689 splt = bfd_get_section_by_name (dynobj, ".plt");
1690 sgot = bfd_get_section_by_name (dynobj, ".got");
1691 srel = bfd_get_section_by_name (dynobj, ".dynrel");
1692 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
1693 }
1694
1695 BFD_ASSERT (r_type == RELOC_JMP_TBL
1696 || (h->flags & SUNOS_REF_REGULAR) != 0);
1697 BFD_ASSERT (r_type == RELOC_JMP_TBL
1698 || h->plt_offset != 0
1699 || ((h->root.root.type == bfd_link_hash_defined
1700 || h->root.root.type == bfd_link_hash_defweak)
1701 ? (h->root.root.u.def.section->owner->flags
1702 & DYNAMIC) != 0
1703 : (h->root.root.u.undef.abfd->flags & DYNAMIC) != 0));
1704
1705 /* This reloc is against a symbol defined only by a dynamic
1706 object, or it is a jump table reloc from PIC compiled code. */
1707
1708 if (h->root.root.type == bfd_link_hash_undefined)
1709 {
1710 /* Presumably this symbol was marked as being undefined by
1711 an earlier reloc. */
1712 srel->_raw_size += RELOC_EXT_SIZE;
1713 }
1714 else if ((h->root.root.u.def.section->flags & SEC_CODE) == 0)
1715 {
1716 bfd *sub;
1717
1718 /* This reloc is not in the .text section. It must be
1719 copied into the dynamic relocs. We mark the symbol as
1720 being undefined. */
1721 BFD_ASSERT (r_type != RELOC_JMP_TBL);
1722 srel->_raw_size += RELOC_EXT_SIZE;
1723 sub = h->root.root.u.def.section->owner;
1724 h->root.root.type = bfd_link_hash_undefined;
1725 h->root.root.u.undef.abfd = sub;
1726 }
1727 else
1728 {
1729 /* This symbol is in the .text section. We must give it an
1730 entry in the procedure linkage table, if we have not
1731 already done so. We change the definition of the symbol
1732 to the .plt section; this will cause relocs against it to
1733 be handled correctly. */
1734 if (h->plt_offset == 0)
1735 {
1736 if (splt->_raw_size == 0)
1737 splt->_raw_size = SPARC_PLT_ENTRY_SIZE;
1738 h->plt_offset = splt->_raw_size;
1739
1740 if ((h->flags & SUNOS_DEF_REGULAR) == 0)
1741 {
1742 h->root.root.u.def.section = splt;
1743 h->root.root.u.def.value = splt->_raw_size;
1744 }
1745
1746 splt->_raw_size += SPARC_PLT_ENTRY_SIZE;
1747
1748 /* We will also need a dynamic reloc entry, unless this
1749 is a JMP_TBL reloc produced by linking PIC compiled
1750 code, and we are not making a shared library. */
1751 if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0)
1752 srel->_raw_size += RELOC_EXT_SIZE;
1753 }
1754 }
1755 }
1756
1757 return true;
1758 }
1759
1760 /* Build the hash table of dynamic symbols, and to mark as written all
1761 symbols from dynamic objects which we do not plan to write out. */
1762
1763 static boolean
1764 sunos_scan_dynamic_symbol (h, data)
1765 struct sunos_link_hash_entry *h;
1766 PTR data;
1767 {
1768 struct bfd_link_info *info = (struct bfd_link_info *) data;
1769
1770 /* Set the written flag for symbols we do not want to write out as
1771 part of the regular symbol table. This is all symbols which are
1772 not defined in a regular object file. For some reason symbols
1773 which are referenced by a regular object and defined by a dynamic
1774 object do not seem to show up in the regular symbol table. */
1775 if ((h->flags & SUNOS_DEF_REGULAR) == 0)
1776 h->root.written = true;
1777
1778 /* If this symbol is defined by a dynamic object and referenced by a
1779 regular object, see whether we gave it a reasonable value while
1780 scanning the relocs. */
1781
1782 if ((h->flags & SUNOS_DEF_REGULAR) == 0
1783 && (h->flags & SUNOS_DEF_DYNAMIC) != 0
1784 && (h->flags & SUNOS_REF_REGULAR) != 0)
1785 {
1786 if ((h->root.root.type == bfd_link_hash_defined
1787 || h->root.root.type == bfd_link_hash_defweak)
1788 && ((h->root.root.u.def.section->owner->flags & DYNAMIC) != 0)
1789 && h->root.root.u.def.section->output_section == NULL)
1790 {
1791 bfd *sub;
1792
1793 /* This symbol is currently defined in a dynamic section
1794 which is not being put into the output file. This
1795 implies that there is no reloc against the symbol. I'm
1796 not sure why this case would ever occur. In any case, we
1797 change the symbol to be undefined. */
1798 sub = h->root.root.u.def.section->owner;
1799 h->root.root.type = bfd_link_hash_undefined;
1800 h->root.root.u.undef.abfd = sub;
1801 }
1802 }
1803
1804 /* If this symbol is defined or referenced by a regular file, add it
1805 to the dynamic symbols. */
1806 if ((h->flags & (SUNOS_DEF_REGULAR | SUNOS_REF_REGULAR)) != 0)
1807 {
1808 asection *s;
1809 size_t len;
1810 bfd_byte *contents;
1811 unsigned char *name;
1812 unsigned long hash;
1813 bfd *dynobj;
1814
1815 BFD_ASSERT (h->dynindx == -2);
1816
1817 dynobj = sunos_hash_table (info)->dynobj;
1818
1819 h->dynindx = sunos_hash_table (info)->dynsymcount;
1820 ++sunos_hash_table (info)->dynsymcount;
1821
1822 len = strlen (h->root.root.root.string);
1823
1824 /* We don't bother to construct a BFD hash table for the strings
1825 which are the names of the dynamic symbols. Using a hash
1826 table for the regular symbols is beneficial, because the
1827 regular symbols includes the debugging symbols, which have
1828 long names and are often duplicated in several object files.
1829 There are no debugging symbols in the dynamic symbols. */
1830 s = bfd_get_section_by_name (dynobj, ".dynstr");
1831 BFD_ASSERT (s != NULL);
1832 if (s->contents == NULL)
1833 contents = (bfd_byte *) malloc (len + 1);
1834 else
1835 contents = (bfd_byte *) realloc (s->contents,
1836 (size_t) (s->_raw_size + len + 1));
1837 if (contents == NULL)
1838 {
1839 bfd_set_error (bfd_error_no_memory);
1840 return false;
1841 }
1842 s->contents = contents;
1843
1844 h->dynstr_index = s->_raw_size;
1845 strcpy (contents + s->_raw_size, h->root.root.root.string);
1846 s->_raw_size += len + 1;
1847
1848 /* Add it to the dynamic hash table. */
1849 name = (unsigned char *) h->root.root.root.string;
1850 hash = 0;
1851 while (*name != '\0')
1852 hash = (hash << 1) + *name++;
1853 hash &= 0x7fffffff;
1854 hash %= sunos_hash_table (info)->bucketcount;
1855
1856 s = bfd_get_section_by_name (dynobj, ".hash");
1857 BFD_ASSERT (s != NULL);
1858
1859 if (GET_SWORD (dynobj, s->contents + hash * HASH_ENTRY_SIZE) == -1)
1860 PUT_WORD (dynobj, h->dynindx, s->contents + hash * HASH_ENTRY_SIZE);
1861 else
1862 {
1863 bfd_vma next;
1864
1865 next = GET_WORD (dynobj,
1866 (s->contents
1867 + hash * HASH_ENTRY_SIZE
1868 + BYTES_IN_WORD));
1869 PUT_WORD (dynobj, s->_raw_size / HASH_ENTRY_SIZE,
1870 s->contents + hash * HASH_ENTRY_SIZE + BYTES_IN_WORD);
1871 PUT_WORD (dynobj, h->dynindx, s->contents + s->_raw_size);
1872 PUT_WORD (dynobj, next, s->contents + s->_raw_size + BYTES_IN_WORD);
1873 s->_raw_size += HASH_ENTRY_SIZE;
1874 }
1875 }
1876
1877 return true;
1878 }
1879
1880 /* Link a dynamic object. We actually don't have anything to do at
1881 this point. This entry point exists to prevent the regular linker
1882 code from doing anything with the object. */
1883
1884 /*ARGSUSED*/
1885 static boolean
1886 sunos_link_dynamic_object (info, abfd)
1887 struct bfd_link_info *info;
1888 bfd *abfd;
1889 {
1890 return true;
1891 }
1892
1893 /* Write out a dynamic symbol. This is called by the final traversal
1894 over the symbol table. */
1895
1896 static boolean
1897 sunos_write_dynamic_symbol (output_bfd, info, harg)
1898 bfd *output_bfd;
1899 struct bfd_link_info *info;
1900 struct aout_link_hash_entry *harg;
1901 {
1902 struct sunos_link_hash_entry *h = (struct sunos_link_hash_entry *) harg;
1903 int type;
1904 bfd_vma val;
1905 asection *s;
1906 struct external_nlist *outsym;
1907
1908 if (h->dynindx < 0)
1909 return true;
1910
1911 switch (h->root.root.type)
1912 {
1913 default:
1914 case bfd_link_hash_new:
1915 abort ();
1916 /* Avoid variable not initialized warnings. */
1917 return true;
1918 case bfd_link_hash_undefined:
1919 type = N_UNDF | N_EXT;
1920 val = 0;
1921 break;
1922 case bfd_link_hash_defined:
1923 case bfd_link_hash_defweak:
1924 {
1925 asection *sec;
1926 asection *output_section;
1927
1928 sec = h->root.root.u.def.section;
1929 output_section = sec->output_section;
1930 BFD_ASSERT (bfd_is_abs_section (output_section)
1931 || output_section->owner == output_bfd);
1932 if (h->plt_offset != 0
1933 && (h->flags & SUNOS_DEF_REGULAR) == 0)
1934 {
1935 type = N_UNDF | N_EXT;
1936 val = 0;
1937 }
1938 else
1939 {
1940 if (output_section == obj_textsec (output_bfd))
1941 type = (h->root.root.type == bfd_link_hash_defined
1942 ? N_TEXT
1943 : N_WEAKT);
1944 else if (output_section == obj_datasec (output_bfd))
1945 type = (h->root.root.type == bfd_link_hash_defined
1946 ? N_DATA
1947 : N_WEAKD);
1948 else if (output_section == obj_bsssec (output_bfd))
1949 type = (h->root.root.type == bfd_link_hash_defined
1950 ? N_BSS
1951 : N_WEAKB);
1952 else
1953 type = (h->root.root.type == bfd_link_hash_defined
1954 ? N_ABS
1955 : N_WEAKA);
1956 type |= N_EXT;
1957 val = (h->root.root.u.def.value
1958 + output_section->vma
1959 + sec->output_offset);
1960 }
1961 }
1962 break;
1963 case bfd_link_hash_common:
1964 type = N_UNDF | N_EXT;
1965 val = h->root.root.u.c.size;
1966 break;
1967 case bfd_link_hash_undefweak:
1968 type = N_WEAKU;
1969 val = 0;
1970 break;
1971 case bfd_link_hash_indirect:
1972 case bfd_link_hash_warning:
1973 /* FIXME: Ignore these for now. The circumstances under which
1974 they should be written out are not clear to me. */
1975 return true;
1976 }
1977
1978 s = bfd_get_section_by_name (sunos_hash_table (info)->dynobj, ".dynsym");
1979 BFD_ASSERT (s != NULL);
1980 outsym = ((struct external_nlist *)
1981 (s->contents + h->dynindx * EXTERNAL_NLIST_SIZE));
1982
1983 bfd_h_put_8 (output_bfd, type, outsym->e_type);
1984 bfd_h_put_8 (output_bfd, 0, outsym->e_other);
1985
1986 /* FIXME: The native linker doesn't use 0 for desc. It seems to use
1987 one less than the desc value in the shared library, although that
1988 seems unlikely. */
1989 bfd_h_put_16 (output_bfd, 0, outsym->e_desc);
1990
1991 PUT_WORD (output_bfd, h->dynstr_index, outsym->e_strx);
1992 PUT_WORD (output_bfd, val, outsym->e_value);
1993
1994 /* If this symbol is in the procedure linkage table, fill in the
1995 table entry. */
1996 if (h->plt_offset != 0)
1997 {
1998 bfd *dynobj;
1999 asection *splt;
2000 bfd_byte *p;
2001 asection *s;
2002 bfd_vma r_address;
2003
2004 dynobj = sunos_hash_table (info)->dynobj;
2005 splt = bfd_get_section_by_name (dynobj, ".plt");
2006 p = splt->contents + h->plt_offset;
2007
2008 s = bfd_get_section_by_name (dynobj, ".dynrel");
2009
2010 r_address = (h->root.root.u.def.section->output_section->vma
2011 + h->root.root.u.def.section->output_offset
2012 + h->root.root.u.def.value);
2013
2014 switch (bfd_get_arch (output_bfd))
2015 {
2016 case bfd_arch_sparc:
2017 if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0)
2018 {
2019 bfd_put_32 (output_bfd, SPARC_PLT_ENTRY_WORD0, p);
2020 bfd_put_32 (output_bfd,
2021 (SPARC_PLT_ENTRY_WORD1
2022 + (((- (h->plt_offset + 4) >> 2)
2023 & 0x3fffffff))),
2024 p + 4);
2025 bfd_put_32 (output_bfd, SPARC_PLT_ENTRY_WORD2 + s->reloc_count,
2026 p + 8);
2027 }
2028 else
2029 {
2030 bfd_vma val;
2031
2032 val = (h->root.root.u.def.section->output_section->vma
2033 + h->root.root.u.def.section->output_offset
2034 + h->root.root.u.def.value);
2035 bfd_put_32 (output_bfd,
2036 SPARC_PLT_PIC_WORD0 + ((val >> 10) & 0x3fffff),
2037 p);
2038 bfd_put_32 (output_bfd,
2039 SPARC_PLT_PIC_WORD1 + (val & 0x3ff),
2040 p + 4);
2041 bfd_put_32 (output_bfd, SPARC_PLT_PIC_WORD2, p + 8);
2042 }
2043 break;
2044
2045 case bfd_arch_m68k:
2046 if (! info->shared && (h->flags & SUNOS_DEF_REGULAR) != 0)
2047 abort ();
2048 bfd_put_16 (output_bfd, M68K_PLT_ENTRY_WORD0, p);
2049 bfd_put_32 (output_bfd, (- (h->plt_offset + 2)), p + 2);
2050 bfd_put_16 (output_bfd, s->reloc_count, p + 6);
2051 r_address += 2;
2052 break;
2053
2054 default:
2055 abort ();
2056 }
2057
2058 /* We also need to add a jump table reloc, unless this is the
2059 result of a JMP_TBL reloc from PIC compiled code. */
2060 if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0)
2061 {
2062 p = s->contents + s->reloc_count * obj_reloc_entry_size (output_bfd);
2063 if (obj_reloc_entry_size (output_bfd) == RELOC_STD_SIZE)
2064 {
2065 struct reloc_std_external *srel;
2066
2067 srel = (struct reloc_std_external *) p;
2068 PUT_WORD (output_bfd, r_address, srel->r_address);
2069 if (output_bfd->xvec->header_byteorder_big_p)
2070 {
2071 srel->r_index[0] = h->dynindx >> 16;
2072 srel->r_index[1] = h->dynindx >> 8;
2073 srel->r_index[2] = h->dynindx;
2074 srel->r_type[0] = (RELOC_STD_BITS_EXTERN_BIG
2075 | RELOC_STD_BITS_JMPTABLE_BIG);
2076 }
2077 else
2078 {
2079 srel->r_index[2] = h->dynindx >> 16;
2080 srel->r_index[1] = h->dynindx >> 8;
2081 srel->r_index[0] = h->dynindx;
2082 srel->r_type[0] = (RELOC_STD_BITS_EXTERN_LITTLE
2083 | RELOC_STD_BITS_JMPTABLE_LITTLE);
2084 }
2085 }
2086 else
2087 {
2088 struct reloc_ext_external *erel;
2089
2090 erel = (struct reloc_ext_external *) p;
2091 PUT_WORD (output_bfd, r_address, erel->r_address);
2092 if (output_bfd->xvec->header_byteorder_big_p)
2093 {
2094 erel->r_index[0] = h->dynindx >> 16;
2095 erel->r_index[1] = h->dynindx >> 8;
2096 erel->r_index[2] = h->dynindx;
2097 erel->r_type[0] = (RELOC_EXT_BITS_EXTERN_BIG
2098 | (22 << RELOC_EXT_BITS_TYPE_SH_BIG));
2099 }
2100 else
2101 {
2102 erel->r_index[2] = h->dynindx >> 16;
2103 erel->r_index[1] = h->dynindx >> 8;
2104 erel->r_index[0] = h->dynindx;
2105 erel->r_type[0] = (RELOC_EXT_BITS_EXTERN_LITTLE
2106 | (22 << RELOC_EXT_BITS_TYPE_SH_LITTLE));
2107 }
2108 PUT_WORD (output_bfd, (bfd_vma) 0, erel->r_addend);
2109 }
2110
2111 ++s->reloc_count;
2112 }
2113 }
2114
2115 return true;
2116 }
2117
2118 /* This is called for each reloc against an external symbol. If this
2119 is a reloc which are are going to copy as a dynamic reloc, then
2120 copy it over, and tell the caller to not bother processing this
2121 reloc. */
2122
2123 /*ARGSUSED*/
2124 static boolean
2125 sunos_check_dynamic_reloc (info, input_bfd, input_section, harg, reloc,
2126 contents, skip, relocationp)
2127 struct bfd_link_info *info;
2128 bfd *input_bfd;
2129 asection *input_section;
2130 struct aout_link_hash_entry *harg;
2131 PTR reloc;
2132 bfd_byte *contents;
2133 boolean *skip;
2134 bfd_vma *relocationp;
2135 {
2136 struct sunos_link_hash_entry *h = (struct sunos_link_hash_entry *) harg;
2137 bfd *dynobj;
2138 boolean baserel;
2139 asection *s;
2140 bfd_byte *p;
2141
2142 *skip = false;
2143
2144 dynobj = sunos_hash_table (info)->dynobj;
2145
2146 if (h != NULL && h->plt_offset != 0)
2147 {
2148 asection *splt;
2149
2150 /* Redirect the relocation to the PLT entry. */
2151 splt = bfd_get_section_by_name (dynobj, ".plt");
2152 *relocationp = (splt->output_section->vma
2153 + splt->output_offset
2154 + h->plt_offset);
2155 }
2156
2157 if (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE)
2158 {
2159 struct reloc_std_external *srel;
2160
2161 srel = (struct reloc_std_external *) reloc;
2162 if (input_bfd->xvec->header_byteorder_big_p)
2163 baserel = (0 != (srel->r_type[0] & RELOC_STD_BITS_BASEREL_BIG));
2164 else
2165 baserel = (0 != (srel->r_type[0] & RELOC_STD_BITS_BASEREL_LITTLE));
2166 }
2167 else
2168 {
2169 struct reloc_ext_external *erel;
2170 int r_type;
2171
2172 erel = (struct reloc_ext_external *) reloc;
2173 if (input_bfd->xvec->header_byteorder_big_p)
2174 r_type = ((erel->r_type[0] & RELOC_EXT_BITS_TYPE_BIG)
2175 >> RELOC_EXT_BITS_TYPE_SH_BIG);
2176 else
2177 r_type = ((erel->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE)
2178 >> RELOC_EXT_BITS_TYPE_SH_LITTLE);
2179 baserel = (r_type == RELOC_BASE10
2180 || r_type == RELOC_BASE13
2181 || r_type == RELOC_BASE22);
2182 }
2183
2184 if (baserel)
2185 {
2186 bfd_vma *got_offsetp;
2187 asection *sgot;
2188
2189 if (h != NULL)
2190 got_offsetp = &h->got_offset;
2191 else if (adata (input_bfd).local_got_offsets == NULL)
2192 got_offsetp = NULL;
2193 else
2194 {
2195 struct reloc_std_external *srel;
2196 int r_index;
2197
2198 srel = (struct reloc_std_external *) reloc;
2199 if (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE)
2200 {
2201 if (input_bfd->xvec->header_byteorder_big_p)
2202 r_index = ((srel->r_index[0] << 16)
2203 | (srel->r_index[1] << 8)
2204 | srel->r_index[2]);
2205 else
2206 r_index = ((srel->r_index[2] << 16)
2207 | (srel->r_index[1] << 8)
2208 | srel->r_index[0]);
2209 }
2210 else
2211 {
2212 struct reloc_ext_external *erel;
2213
2214 erel = (struct reloc_ext_external *) reloc;
2215 if (input_bfd->xvec->header_byteorder_big_p)
2216 r_index = ((erel->r_index[0] << 16)
2217 | (erel->r_index[1] << 8)
2218 | erel->r_index[2]);
2219 else
2220 r_index = ((erel->r_index[2] << 16)
2221 | (erel->r_index[1] << 8)
2222 | erel->r_index[0]);
2223 }
2224
2225 got_offsetp = adata (input_bfd).local_got_offsets + r_index;
2226 }
2227
2228 BFD_ASSERT (got_offsetp != NULL && *got_offsetp != 0);
2229
2230 sgot = bfd_get_section_by_name (dynobj, ".got");
2231
2232 /* We set the least significant bit to indicate whether we have
2233 already initialized the GOT entry. */
2234 if ((*got_offsetp & 1) == 0)
2235 {
2236 PUT_WORD (dynobj, *relocationp, sgot->contents + *got_offsetp);
2237
2238 if (h != NULL
2239 && (h->flags & SUNOS_DEF_DYNAMIC) != 0
2240 && (h->flags & SUNOS_DEF_REGULAR) == 0)
2241 {
2242 /* We need to create a GLOB_DAT reloc to tell the
2243 dynamic linker to fill in this entry in the table. */
2244
2245 s = bfd_get_section_by_name (dynobj, ".dynrel");
2246 BFD_ASSERT (s != NULL);
2247
2248 p = (s->contents
2249 + s->reloc_count * obj_reloc_entry_size (dynobj));
2250
2251 if (obj_reloc_entry_size (dynobj) == RELOC_STD_SIZE)
2252 {
2253 struct reloc_std_external *srel;
2254
2255 srel = (struct reloc_std_external *) p;
2256 PUT_WORD (dynobj,
2257 (*got_offsetp
2258 + sgot->output_section->vma
2259 + sgot->output_offset),
2260 srel->r_address);
2261 if (dynobj->xvec->header_byteorder_big_p)
2262 {
2263 srel->r_index[0] = h->dynindx >> 16;
2264 srel->r_index[1] = h->dynindx >> 8;
2265 srel->r_index[2] = h->dynindx;
2266 srel->r_type[0] =
2267 (RELOC_STD_BITS_EXTERN_BIG
2268 | RELOC_STD_BITS_BASEREL_BIG
2269 | RELOC_STD_BITS_RELATIVE_BIG
2270 | (2 << RELOC_STD_BITS_LENGTH_SH_BIG));
2271 }
2272 else
2273 {
2274 srel->r_index[2] = h->dynindx >> 16;
2275 srel->r_index[1] = h->dynindx >> 8;
2276 srel->r_index[0] = h->dynindx;
2277 srel->r_type[0] =
2278 (RELOC_STD_BITS_EXTERN_LITTLE
2279 | RELOC_STD_BITS_BASEREL_LITTLE
2280 | RELOC_STD_BITS_RELATIVE_LITTLE
2281 | (2 << RELOC_STD_BITS_LENGTH_SH_LITTLE));
2282 }
2283 }
2284 else
2285 {
2286 struct reloc_ext_external *erel;
2287
2288 erel = (struct reloc_ext_external *) p;
2289 PUT_WORD (dynobj,
2290 (*got_offsetp
2291 + sgot->output_section->vma
2292 + sgot->output_offset),
2293 erel->r_address);
2294 if (dynobj->xvec->header_byteorder_big_p)
2295 {
2296 erel->r_index[0] = h->dynindx >> 16;
2297 erel->r_index[1] = h->dynindx >> 8;
2298 erel->r_index[2] = h->dynindx;
2299 erel->r_type[0] =
2300 (RELOC_EXT_BITS_EXTERN_BIG
2301 | (RELOC_GLOB_DAT << RELOC_EXT_BITS_TYPE_SH_BIG));
2302 }
2303 else
2304 {
2305 erel->r_index[2] = h->dynindx >> 16;
2306 erel->r_index[1] = h->dynindx >> 8;
2307 erel->r_index[0] = h->dynindx;
2308 erel->r_type[0] =
2309 (RELOC_EXT_BITS_EXTERN_LITTLE
2310 | (RELOC_GLOB_DAT << RELOC_EXT_BITS_TYPE_SH_LITTLE));
2311 }
2312 PUT_WORD (dynobj, 0, erel->r_addend);
2313 }
2314
2315 ++s->reloc_count;
2316 }
2317
2318 *got_offsetp |= 1;
2319 }
2320
2321 *relocationp = sgot->vma + (*got_offsetp &~ 1);
2322
2323 /* There is nothing else to do for a base relative reloc. */
2324 return true;
2325 }
2326
2327 if (! sunos_hash_table (info)->dynamic_sections_needed
2328 || h == NULL
2329 || h->dynindx == -1
2330 || h->root.root.type != bfd_link_hash_undefined
2331 || (h->flags & SUNOS_DEF_REGULAR) != 0
2332 || (h->flags & SUNOS_DEF_DYNAMIC) == 0
2333 || (h->root.root.u.undef.abfd->flags & DYNAMIC) == 0)
2334 return true;
2335
2336 /* It looks like this is a reloc we are supposed to copy. */
2337
2338 s = bfd_get_section_by_name (dynobj, ".dynrel");
2339 BFD_ASSERT (s != NULL);
2340
2341 p = s->contents + s->reloc_count * obj_reloc_entry_size (dynobj);
2342
2343 /* Copy the reloc over. */
2344 memcpy (p, reloc, obj_reloc_entry_size (dynobj));
2345
2346 /* Adjust the address and symbol index. */
2347 if (obj_reloc_entry_size (dynobj) == RELOC_STD_SIZE)
2348 {
2349 struct reloc_std_external *srel;
2350
2351 srel = (struct reloc_std_external *) p;
2352 PUT_WORD (dynobj,
2353 (GET_WORD (dynobj, srel->r_address)
2354 + input_section->output_section->vma
2355 + input_section->output_offset),
2356 srel->r_address);
2357 if (dynobj->xvec->header_byteorder_big_p)
2358 {
2359 srel->r_index[0] = h->dynindx >> 16;
2360 srel->r_index[1] = h->dynindx >> 8;
2361 srel->r_index[2] = h->dynindx;
2362 }
2363 else
2364 {
2365 srel->r_index[2] = h->dynindx >> 16;
2366 srel->r_index[1] = h->dynindx >> 8;
2367 srel->r_index[0] = h->dynindx;
2368 }
2369 }
2370 else
2371 {
2372 struct reloc_ext_external *erel;
2373
2374 erel = (struct reloc_ext_external *) p;
2375 PUT_WORD (dynobj,
2376 (GET_WORD (dynobj, erel->r_address)
2377 + input_section->output_section->vma
2378 + input_section->output_offset),
2379 erel->r_address);
2380 if (dynobj->xvec->header_byteorder_big_p)
2381 {
2382 erel->r_index[0] = h->dynindx >> 16;
2383 erel->r_index[1] = h->dynindx >> 8;
2384 erel->r_index[2] = h->dynindx;
2385 }
2386 else
2387 {
2388 erel->r_index[2] = h->dynindx >> 16;
2389 erel->r_index[1] = h->dynindx >> 8;
2390 erel->r_index[0] = h->dynindx;
2391 }
2392 }
2393
2394 ++s->reloc_count;
2395
2396 *skip = true;
2397
2398 return true;
2399 }
2400
2401 /* Finish up the dynamic linking information. */
2402
2403 static boolean
2404 sunos_finish_dynamic_link (abfd, info)
2405 bfd *abfd;
2406 struct bfd_link_info *info;
2407 {
2408 bfd *dynobj;
2409 asection *o;
2410 asection *s;
2411 asection *sdyn;
2412 struct external_sun4_dynamic esd;
2413 struct external_sun4_dynamic_link esdl;
2414
2415 if (! sunos_hash_table (info)->dynamic_sections_needed)
2416 return true;
2417
2418 dynobj = sunos_hash_table (info)->dynobj;
2419
2420 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2421 BFD_ASSERT (sdyn != NULL);
2422
2423 /* Finish up the .need section. The linker emulation code filled it
2424 in, but with offsets from the start of the section instead of
2425 real addresses. Now that we know the section location, we can
2426 fill in the final values. */
2427 s = bfd_get_section_by_name (dynobj, ".need");
2428 if (s != NULL && s->_raw_size != 0)
2429 {
2430 file_ptr filepos;
2431 bfd_byte *p;
2432
2433 filepos = s->output_section->filepos + s->output_offset;
2434 p = s->contents;
2435 while (1)
2436 {
2437 bfd_vma val;
2438
2439 PUT_WORD (dynobj, GET_WORD (dynobj, p) + filepos, p);
2440 val = GET_WORD (dynobj, p + 12);
2441 if (val == 0)
2442 break;
2443 PUT_WORD (dynobj, val + filepos, p + 12);
2444 p += 16;
2445 }
2446 }
2447
2448 /* The first entry in the .got section is the address of the dynamic
2449 information. */
2450 s = bfd_get_section_by_name (dynobj, ".got");
2451 BFD_ASSERT (s != NULL);
2452 PUT_WORD (dynobj, sdyn->output_section->vma + sdyn->output_offset,
2453 s->contents);
2454
2455 for (o = dynobj->sections; o != NULL; o = o->next)
2456 {
2457 if ((o->flags & SEC_HAS_CONTENTS) != 0
2458 && o->contents != NULL)
2459 {
2460 BFD_ASSERT (o->output_section != NULL
2461 && o->output_section->owner == abfd);
2462 if (! bfd_set_section_contents (abfd, o->output_section,
2463 o->contents, o->output_offset,
2464 o->_raw_size))
2465 return false;
2466 }
2467 }
2468
2469 /* Finish up the dynamic link information. */
2470 PUT_WORD (dynobj, (bfd_vma) 3, esd.ld_version);
2471 PUT_WORD (dynobj,
2472 sdyn->output_section->vma + sdyn->output_offset + sizeof esd,
2473 esd.ldd);
2474 PUT_WORD (dynobj,
2475 (sdyn->output_section->vma
2476 + sdyn->output_offset
2477 + sizeof esd
2478 + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE),
2479 esd.ld);
2480
2481 if (! bfd_set_section_contents (abfd, sdyn->output_section, &esd,
2482 sdyn->output_offset, sizeof esd))
2483 return false;
2484
2485
2486 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_loaded);
2487
2488 s = bfd_get_section_by_name (dynobj, ".need");
2489 if (s == NULL || s->_raw_size == 0)
2490 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_need);
2491 else
2492 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2493 esdl.ld_need);
2494
2495 s = bfd_get_section_by_name (dynobj, ".rules");
2496 if (s == NULL || s->_raw_size == 0)
2497 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_rules);
2498 else
2499 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2500 esdl.ld_rules);
2501
2502 s = bfd_get_section_by_name (dynobj, ".got");
2503 BFD_ASSERT (s != NULL);
2504 PUT_WORD (dynobj, s->output_section->vma + s->output_offset, esdl.ld_got);
2505
2506 s = bfd_get_section_by_name (dynobj, ".plt");
2507 BFD_ASSERT (s != NULL);
2508 PUT_WORD (dynobj, s->output_section->vma + s->output_offset, esdl.ld_plt);
2509 PUT_WORD (dynobj, s->_raw_size, esdl.ld_plt_sz);
2510
2511 s = bfd_get_section_by_name (dynobj, ".dynrel");
2512 BFD_ASSERT (s != NULL);
2513 BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj) == s->_raw_size);
2514 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2515 esdl.ld_rel);
2516
2517 s = bfd_get_section_by_name (dynobj, ".hash");
2518 BFD_ASSERT (s != NULL);
2519 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2520 esdl.ld_hash);
2521
2522 s = bfd_get_section_by_name (dynobj, ".dynsym");
2523 BFD_ASSERT (s != NULL);
2524 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2525 esdl.ld_stab);
2526
2527 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_stab_hash);
2528
2529 PUT_WORD (dynobj, (bfd_vma) sunos_hash_table (info)->bucketcount,
2530 esdl.ld_buckets);
2531
2532 s = bfd_get_section_by_name (dynobj, ".dynstr");
2533 BFD_ASSERT (s != NULL);
2534 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2535 esdl.ld_symbols);
2536 PUT_WORD (dynobj, s->_raw_size, esdl.ld_symb_size);
2537
2538 /* The size of the text area is the size of the .text section
2539 rounded up to a page boundary. FIXME: Should the page size be
2540 conditional on something? */
2541 PUT_WORD (dynobj,
2542 BFD_ALIGN (obj_textsec (abfd)->_raw_size, 0x2000),
2543 esdl.ld_text);
2544
2545 if (! bfd_set_section_contents (abfd, sdyn->output_section, &esdl,
2546 (sdyn->output_offset
2547 + sizeof esd
2548 + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE),
2549 sizeof esdl))
2550 return false;
2551
2552 abfd->flags |= DYNAMIC;
2553
2554 return true;
2555 }