* sunos.c (sunos_read_dynamic_info): Adjust offsets in an NMAGIC
[binutils-gdb.git] / bfd / sunos.c
1 /* BFD backend for SunOS binaries.
2 Copyright (C) 1990, 91, 92, 93, 94, 1995 Free Software Foundation, Inc.
3 Written by Cygnus Support.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #define TARGETNAME "a.out-sunos-big"
22 #define MY(OP) CAT(sunos_big_,OP)
23
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libaout.h"
27
28 /* Static routines defined in this file. */
29
30 static boolean sunos_read_dynamic_info PARAMS ((bfd *));
31 static long sunos_get_dynamic_symtab_upper_bound PARAMS ((bfd *));
32 static boolean sunos_slurp_dynamic_symtab PARAMS ((bfd *));
33 static long sunos_canonicalize_dynamic_symtab PARAMS ((bfd *, asymbol **));
34 static long sunos_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
35 static long sunos_canonicalize_dynamic_reloc
36 PARAMS ((bfd *, arelent **, asymbol **));
37 static struct bfd_hash_entry *sunos_link_hash_newfunc
38 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
39 static struct bfd_link_hash_table *sunos_link_hash_table_create
40 PARAMS ((bfd *));
41 static boolean sunos_create_dynamic_sections
42 PARAMS ((bfd *, struct bfd_link_info *, boolean));
43 static boolean sunos_add_dynamic_symbols
44 PARAMS ((bfd *, struct bfd_link_info *, struct external_nlist **,
45 bfd_size_type *, char **));
46 static boolean sunos_add_one_symbol
47 PARAMS ((struct bfd_link_info *, bfd *, const char *, flagword, asection *,
48 bfd_vma, const char *, boolean, boolean,
49 struct bfd_link_hash_entry **));
50 static boolean sunos_scan_relocs
51 PARAMS ((struct bfd_link_info *, bfd *, asection *, bfd_size_type));
52 static boolean sunos_scan_std_relocs
53 PARAMS ((struct bfd_link_info *, bfd *, asection *,
54 const struct reloc_std_external *, bfd_size_type));
55 static boolean sunos_scan_ext_relocs
56 PARAMS ((struct bfd_link_info *, bfd *, asection *,
57 const struct reloc_ext_external *, bfd_size_type));
58 static boolean sunos_link_dynamic_object
59 PARAMS ((struct bfd_link_info *, bfd *));
60 static boolean sunos_write_dynamic_symbol
61 PARAMS ((bfd *, struct bfd_link_info *, struct aout_link_hash_entry *));
62 static boolean sunos_check_dynamic_reloc
63 PARAMS ((struct bfd_link_info *, bfd *, asection *,
64 struct aout_link_hash_entry *, PTR, bfd_byte *, boolean *,
65 bfd_vma *));
66 static boolean sunos_finish_dynamic_link
67 PARAMS ((bfd *, struct bfd_link_info *));
68
69 #define MY_get_dynamic_symtab_upper_bound sunos_get_dynamic_symtab_upper_bound
70 #define MY_canonicalize_dynamic_symtab sunos_canonicalize_dynamic_symtab
71 #define MY_get_dynamic_reloc_upper_bound sunos_get_dynamic_reloc_upper_bound
72 #define MY_canonicalize_dynamic_reloc sunos_canonicalize_dynamic_reloc
73 #define MY_bfd_link_hash_table_create sunos_link_hash_table_create
74 #define MY_add_dynamic_symbols sunos_add_dynamic_symbols
75 #define MY_add_one_symbol sunos_add_one_symbol
76 #define MY_link_dynamic_object sunos_link_dynamic_object
77 #define MY_write_dynamic_symbol sunos_write_dynamic_symbol
78 #define MY_check_dynamic_reloc sunos_check_dynamic_reloc
79 #define MY_finish_dynamic_link sunos_finish_dynamic_link
80
81 /* Include the usual a.out support. */
82 #include "aoutf1.h"
83
84 /* SunOS shared library support. We store a pointer to this structure
85 in obj_aout_dynamic_info (abfd). */
86
87 struct sunos_dynamic_info
88 {
89 /* Whether we found any dynamic information. */
90 boolean valid;
91 /* Dynamic information. */
92 struct internal_sun4_dynamic_link dyninfo;
93 /* Number of dynamic symbols. */
94 unsigned long dynsym_count;
95 /* Read in nlists for dynamic symbols. */
96 struct external_nlist *dynsym;
97 /* asymbol structures for dynamic symbols. */
98 aout_symbol_type *canonical_dynsym;
99 /* Read in dynamic string table. */
100 char *dynstr;
101 /* Number of dynamic relocs. */
102 unsigned long dynrel_count;
103 /* Read in dynamic relocs. This may be reloc_std_external or
104 reloc_ext_external. */
105 PTR dynrel;
106 /* arelent structures for dynamic relocs. */
107 arelent *canonical_dynrel;
108 };
109
110 /* The hash table of dynamic symbols is composed of two word entries.
111 See include/aout/sun4.h for details. */
112
113 #define HASH_ENTRY_SIZE (2 * BYTES_IN_WORD)
114
115 /* Read in the basic dynamic information. This locates the __DYNAMIC
116 structure and uses it to find the dynamic_link structure. It
117 creates and saves a sunos_dynamic_info structure. If it can't find
118 __DYNAMIC, it sets the valid field of the sunos_dynamic_info
119 structure to false to avoid doing this work again. */
120
121 static boolean
122 sunos_read_dynamic_info (abfd)
123 bfd *abfd;
124 {
125 struct sunos_dynamic_info *info;
126 asection *dynsec;
127 bfd_vma dynoff;
128 struct external_sun4_dynamic dyninfo;
129 unsigned long dynver;
130 struct external_sun4_dynamic_link linkinfo;
131
132 if (obj_aout_dynamic_info (abfd) != (PTR) NULL)
133 return true;
134
135 if ((abfd->flags & DYNAMIC) == 0)
136 {
137 bfd_set_error (bfd_error_invalid_operation);
138 return false;
139 }
140
141 info = ((struct sunos_dynamic_info *)
142 bfd_zalloc (abfd, sizeof (struct sunos_dynamic_info)));
143 if (!info)
144 {
145 bfd_set_error (bfd_error_no_memory);
146 return false;
147 }
148 info->valid = false;
149 info->dynsym = NULL;
150 info->dynstr = NULL;
151 info->canonical_dynsym = NULL;
152 info->dynrel = NULL;
153 info->canonical_dynrel = NULL;
154 obj_aout_dynamic_info (abfd) = (PTR) info;
155
156 /* This code used to look for the __DYNAMIC symbol to locate the dynamic
157 linking information.
158 However this inhibits recovering the dynamic symbols from a
159 stripped object file, so blindly assume that the dynamic linking
160 information is located at the start of the data section.
161 We could verify this assumption later by looking through the dynamic
162 symbols for the __DYNAMIC symbol. */
163 if ((abfd->flags & DYNAMIC) == 0)
164 return true;
165 if (! bfd_get_section_contents (abfd, obj_datasec (abfd), (PTR) &dyninfo,
166 (file_ptr) 0, sizeof dyninfo))
167 return true;
168
169 dynver = GET_WORD (abfd, dyninfo.ld_version);
170 if (dynver != 2 && dynver != 3)
171 return true;
172
173 dynoff = GET_WORD (abfd, dyninfo.ld);
174
175 /* dynoff is a virtual address. It is probably always in the .data
176 section, but this code should work even if it moves. */
177 if (dynoff < bfd_get_section_vma (abfd, obj_datasec (abfd)))
178 dynsec = obj_textsec (abfd);
179 else
180 dynsec = obj_datasec (abfd);
181 dynoff -= bfd_get_section_vma (abfd, dynsec);
182 if (dynoff > bfd_section_size (abfd, dynsec))
183 return true;
184
185 /* This executable appears to be dynamically linked in a way that we
186 can understand. */
187 if (! bfd_get_section_contents (abfd, dynsec, (PTR) &linkinfo, dynoff,
188 (bfd_size_type) sizeof linkinfo))
189 return true;
190
191 /* Swap in the dynamic link information. */
192 info->dyninfo.ld_loaded = GET_WORD (abfd, linkinfo.ld_loaded);
193 info->dyninfo.ld_need = GET_WORD (abfd, linkinfo.ld_need);
194 info->dyninfo.ld_rules = GET_WORD (abfd, linkinfo.ld_rules);
195 info->dyninfo.ld_got = GET_WORD (abfd, linkinfo.ld_got);
196 info->dyninfo.ld_plt = GET_WORD (abfd, linkinfo.ld_plt);
197 info->dyninfo.ld_rel = GET_WORD (abfd, linkinfo.ld_rel);
198 info->dyninfo.ld_hash = GET_WORD (abfd, linkinfo.ld_hash);
199 info->dyninfo.ld_stab = GET_WORD (abfd, linkinfo.ld_stab);
200 info->dyninfo.ld_stab_hash = GET_WORD (abfd, linkinfo.ld_stab_hash);
201 info->dyninfo.ld_buckets = GET_WORD (abfd, linkinfo.ld_buckets);
202 info->dyninfo.ld_symbols = GET_WORD (abfd, linkinfo.ld_symbols);
203 info->dyninfo.ld_symb_size = GET_WORD (abfd, linkinfo.ld_symb_size);
204 info->dyninfo.ld_text = GET_WORD (abfd, linkinfo.ld_text);
205 info->dyninfo.ld_plt_sz = GET_WORD (abfd, linkinfo.ld_plt_sz);
206
207 /* Reportedly the addresses need to be offset by the size of the
208 exec header in an NMAGIC file. */
209 if (adata (abfd).magic == n_magic)
210 {
211 unsigned long exec_bytes_size = adata (abfd).exec_bytes_size;
212
213 info->dyninfo.ld_need += exec_bytes_size;
214 info->dyninfo.ld_rules += exec_bytes_size;
215 info->dyninfo.ld_rel += exec_bytes_size;
216 info->dyninfo.ld_hash += exec_bytes_size;
217 info->dyninfo.ld_stab += exec_bytes_size;
218 info->dyninfo.ld_symbols += exec_bytes_size;
219 }
220
221 /* The only way to get the size of the symbol information appears to
222 be to determine the distance between it and the string table. */
223 info->dynsym_count = ((info->dyninfo.ld_symbols - info->dyninfo.ld_stab)
224 / EXTERNAL_NLIST_SIZE);
225 BFD_ASSERT (info->dynsym_count * EXTERNAL_NLIST_SIZE
226 == (unsigned long) (info->dyninfo.ld_symbols
227 - info->dyninfo.ld_stab));
228
229 /* Similarly, the relocs end at the hash table. */
230 info->dynrel_count = ((info->dyninfo.ld_hash - info->dyninfo.ld_rel)
231 / obj_reloc_entry_size (abfd));
232 BFD_ASSERT (info->dynrel_count * obj_reloc_entry_size (abfd)
233 == (unsigned long) (info->dyninfo.ld_hash
234 - info->dyninfo.ld_rel));
235
236 info->valid = true;
237
238 return true;
239 }
240
241 /* Return the amount of memory required for the dynamic symbols. */
242
243 static long
244 sunos_get_dynamic_symtab_upper_bound (abfd)
245 bfd *abfd;
246 {
247 struct sunos_dynamic_info *info;
248
249 if (! sunos_read_dynamic_info (abfd))
250 return -1;
251
252 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
253 if (! info->valid)
254 {
255 bfd_set_error (bfd_error_no_symbols);
256 return -1;
257 }
258
259 return (info->dynsym_count + 1) * sizeof (asymbol *);
260 }
261
262 /* Read the external dynamic symbols. */
263
264 static boolean
265 sunos_slurp_dynamic_symtab (abfd)
266 bfd *abfd;
267 {
268 struct sunos_dynamic_info *info;
269
270 /* Get the general dynamic information. */
271 if (obj_aout_dynamic_info (abfd) == NULL)
272 {
273 if (! sunos_read_dynamic_info (abfd))
274 return false;
275 }
276
277 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
278 if (! info->valid)
279 {
280 bfd_set_error (bfd_error_no_symbols);
281 return false;
282 }
283
284 /* Get the dynamic nlist structures. */
285 if (info->dynsym == (struct external_nlist *) NULL)
286 {
287 info->dynsym = ((struct external_nlist *)
288 bfd_alloc (abfd,
289 (info->dynsym_count
290 * EXTERNAL_NLIST_SIZE)));
291 if (info->dynsym == NULL && info->dynsym_count != 0)
292 {
293 bfd_set_error (bfd_error_no_memory);
294 return false;
295 }
296 if (bfd_seek (abfd, info->dyninfo.ld_stab, SEEK_SET) != 0
297 || (bfd_read ((PTR) info->dynsym, info->dynsym_count,
298 EXTERNAL_NLIST_SIZE, abfd)
299 != info->dynsym_count * EXTERNAL_NLIST_SIZE))
300 {
301 if (info->dynsym != NULL)
302 {
303 bfd_release (abfd, info->dynsym);
304 info->dynsym = NULL;
305 }
306 return false;
307 }
308 }
309
310 /* Get the dynamic strings. */
311 if (info->dynstr == (char *) NULL)
312 {
313 info->dynstr = (char *) bfd_alloc (abfd, info->dyninfo.ld_symb_size);
314 if (info->dynstr == NULL && info->dyninfo.ld_symb_size != 0)
315 {
316 bfd_set_error (bfd_error_no_memory);
317 return false;
318 }
319 if (bfd_seek (abfd, info->dyninfo.ld_symbols, SEEK_SET) != 0
320 || (bfd_read ((PTR) info->dynstr, 1, info->dyninfo.ld_symb_size,
321 abfd)
322 != info->dyninfo.ld_symb_size))
323 {
324 if (info->dynstr != NULL)
325 {
326 bfd_release (abfd, info->dynstr);
327 info->dynstr = NULL;
328 }
329 return false;
330 }
331 }
332
333 return true;
334 }
335
336 /* Read in the dynamic symbols. */
337
338 static long
339 sunos_canonicalize_dynamic_symtab (abfd, storage)
340 bfd *abfd;
341 asymbol **storage;
342 {
343 struct sunos_dynamic_info *info;
344 unsigned long i;
345
346 if (! sunos_slurp_dynamic_symtab (abfd))
347 return -1;
348
349 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
350
351 #ifdef CHECK_DYNAMIC_HASH
352 /* Check my understanding of the dynamic hash table by making sure
353 that each symbol can be located in the hash table. */
354 {
355 bfd_size_type table_size;
356 bfd_byte *table;
357 bfd_size_type i;
358
359 if (info->dyninfo.ld_buckets > info->dynsym_count)
360 abort ();
361 table_size = info->dyninfo.ld_stab - info->dyninfo.ld_hash;
362 table = (bfd_byte *) malloc (table_size);
363 if (table == NULL && table_size != 0)
364 abort ();
365 if (bfd_seek (abfd, info->dyninfo.ld_hash, SEEK_SET) != 0
366 || bfd_read ((PTR) table, 1, table_size, abfd) != table_size)
367 abort ();
368 for (i = 0; i < info->dynsym_count; i++)
369 {
370 unsigned char *name;
371 unsigned long hash;
372
373 name = ((unsigned char *) info->dynstr
374 + GET_WORD (abfd, info->dynsym[i].e_strx));
375 hash = 0;
376 while (*name != '\0')
377 hash = (hash << 1) + *name++;
378 hash &= 0x7fffffff;
379 hash %= info->dyninfo.ld_buckets;
380 while (GET_WORD (abfd, table + hash * HASH_ENTRY_SIZE) != i)
381 {
382 hash = GET_WORD (abfd,
383 table + hash * HASH_ENTRY_SIZE + BYTES_IN_WORD);
384 if (hash == 0 || hash >= table_size / HASH_ENTRY_SIZE)
385 abort ();
386 }
387 }
388 free (table);
389 }
390 #endif /* CHECK_DYNAMIC_HASH */
391
392 /* Get the asymbol structures corresponding to the dynamic nlist
393 structures. */
394 if (info->canonical_dynsym == (aout_symbol_type *) NULL)
395 {
396 info->canonical_dynsym = ((aout_symbol_type *)
397 bfd_alloc (abfd,
398 (info->dynsym_count
399 * sizeof (aout_symbol_type))));
400 if (info->canonical_dynsym == NULL && info->dynsym_count != 0)
401 {
402 bfd_set_error (bfd_error_no_memory);
403 return -1;
404 }
405
406 if (! aout_32_translate_symbol_table (abfd, info->canonical_dynsym,
407 info->dynsym, info->dynsym_count,
408 info->dynstr,
409 info->dyninfo.ld_symb_size,
410 true))
411 {
412 if (info->canonical_dynsym != NULL)
413 {
414 bfd_release (abfd, info->canonical_dynsym);
415 info->canonical_dynsym = NULL;
416 }
417 return -1;
418 }
419 }
420
421 /* Return pointers to the dynamic asymbol structures. */
422 for (i = 0; i < info->dynsym_count; i++)
423 *storage++ = (asymbol *) (info->canonical_dynsym + i);
424 *storage = NULL;
425
426 return info->dynsym_count;
427 }
428
429 /* Return the amount of memory required for the dynamic relocs. */
430
431 static long
432 sunos_get_dynamic_reloc_upper_bound (abfd)
433 bfd *abfd;
434 {
435 struct sunos_dynamic_info *info;
436
437 if (! sunos_read_dynamic_info (abfd))
438 return -1;
439
440 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
441 if (! info->valid)
442 {
443 bfd_set_error (bfd_error_no_symbols);
444 return -1;
445 }
446
447 return (info->dynrel_count + 1) * sizeof (arelent *);
448 }
449
450 /* Read in the dynamic relocs. */
451
452 static long
453 sunos_canonicalize_dynamic_reloc (abfd, storage, syms)
454 bfd *abfd;
455 arelent **storage;
456 asymbol **syms;
457 {
458 struct sunos_dynamic_info *info;
459 unsigned long i;
460
461 /* Get the general dynamic information. */
462 if (obj_aout_dynamic_info (abfd) == (PTR) NULL)
463 {
464 if (! sunos_read_dynamic_info (abfd))
465 return -1;
466 }
467
468 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
469 if (! info->valid)
470 {
471 bfd_set_error (bfd_error_no_symbols);
472 return -1;
473 }
474
475 /* Get the dynamic reloc information. */
476 if (info->dynrel == NULL)
477 {
478 info->dynrel = (PTR) bfd_alloc (abfd,
479 (info->dynrel_count
480 * obj_reloc_entry_size (abfd)));
481 if (info->dynrel == NULL && info->dynrel_count != 0)
482 {
483 bfd_set_error (bfd_error_no_memory);
484 return -1;
485 }
486 if (bfd_seek (abfd, info->dyninfo.ld_rel, SEEK_SET) != 0
487 || (bfd_read ((PTR) info->dynrel, info->dynrel_count,
488 obj_reloc_entry_size (abfd), abfd)
489 != info->dynrel_count * obj_reloc_entry_size (abfd)))
490 {
491 if (info->dynrel != NULL)
492 {
493 bfd_release (abfd, info->dynrel);
494 info->dynrel = NULL;
495 }
496 return -1;
497 }
498 }
499
500 /* Get the arelent structures corresponding to the dynamic reloc
501 information. */
502 if (info->canonical_dynrel == (arelent *) NULL)
503 {
504 arelent *to;
505
506 info->canonical_dynrel = ((arelent *)
507 bfd_alloc (abfd,
508 (info->dynrel_count
509 * sizeof (arelent))));
510 if (info->canonical_dynrel == NULL && info->dynrel_count != 0)
511 {
512 bfd_set_error (bfd_error_no_memory);
513 return -1;
514 }
515
516 to = info->canonical_dynrel;
517
518 if (obj_reloc_entry_size (abfd) == RELOC_EXT_SIZE)
519 {
520 register struct reloc_ext_external *p;
521 struct reloc_ext_external *pend;
522
523 p = (struct reloc_ext_external *) info->dynrel;
524 pend = p + info->dynrel_count;
525 for (; p < pend; p++, to++)
526 NAME(aout,swap_ext_reloc_in) (abfd, p, to, syms,
527 info->dynsym_count);
528 }
529 else
530 {
531 register struct reloc_std_external *p;
532 struct reloc_std_external *pend;
533
534 p = (struct reloc_std_external *) info->dynrel;
535 pend = p + info->dynrel_count;
536 for (; p < pend; p++, to++)
537 NAME(aout,swap_std_reloc_in) (abfd, p, to, syms,
538 info->dynsym_count);
539 }
540 }
541
542 /* Return pointers to the dynamic arelent structures. */
543 for (i = 0; i < info->dynrel_count; i++)
544 *storage++ = info->canonical_dynrel + i;
545 *storage = NULL;
546
547 return info->dynrel_count;
548 }
549 \f
550 /* Code to handle linking of SunOS shared libraries. */
551
552 /* A SPARC procedure linkage table entry is 12 bytes. The first entry
553 in the table is a jump which is filled in by the runtime linker.
554 The remaining entries are branches back to the first entry,
555 followed by an index into the relocation table encoded to look like
556 a sethi of %g0. */
557
558 #define SPARC_PLT_ENTRY_SIZE (12)
559
560 static const bfd_byte sparc_plt_first_entry[SPARC_PLT_ENTRY_SIZE] =
561 {
562 /* sethi %hi(0),%g1; address filled in by runtime linker. */
563 0x3, 0, 0, 0,
564 /* jmp %g1; offset filled in by runtime linker. */
565 0x81, 0xc0, 0x60, 0,
566 /* nop */
567 0x1, 0, 0, 0
568 };
569
570 /* save %sp, -96, %sp */
571 #define SPARC_PLT_ENTRY_WORD0 0x9de3bfa0
572 /* call; address filled in later. */
573 #define SPARC_PLT_ENTRY_WORD1 0x40000000
574 /* sethi; reloc index filled in later. */
575 #define SPARC_PLT_ENTRY_WORD2 0x01000000
576
577 /* This sequence is used when for the jump table entry to a defined
578 symbol in a complete executable. It is used when linking PIC
579 compiled code which is not being put into a shared library. */
580 /* sethi <address to be filled in later>, %g1 */
581 #define SPARC_PLT_PIC_WORD0 0x03000000
582 /* jmp %g1 + <address to be filled in later> */
583 #define SPARC_PLT_PIC_WORD1 0x81c06000
584 /* nop */
585 #define SPARC_PLT_PIC_WORD2 0x01000000
586
587 /* An m68k procedure linkage table entry is 8 bytes. The first entry
588 in the table is a jump which is filled in the by the runtime
589 linker. The remaining entries are branches back to the first
590 entry, followed by a two byte index into the relocation table. */
591
592 #define M68K_PLT_ENTRY_SIZE (8)
593
594 static const bfd_byte m68k_plt_first_entry[M68K_PLT_ENTRY_SIZE] =
595 {
596 /* jmps @# */
597 0x4e, 0xf9,
598 /* Filled in by runtime linker with a magic address. */
599 0, 0, 0, 0,
600 /* Not used? */
601 0, 0
602 };
603
604 /* bsrl */
605 #define M68K_PLT_ENTRY_WORD0 (0x61ff)
606 /* Remaining words filled in later. */
607
608 /* An entry in the SunOS linker hash table. */
609
610 struct sunos_link_hash_entry
611 {
612 struct aout_link_hash_entry root;
613
614 /* If this is a dynamic symbol, this is its index into the dynamic
615 symbol table. This is initialized to -1. As the linker looks at
616 the input files, it changes this to -2 if it will be added to the
617 dynamic symbol table. After all the input files have been seen,
618 the linker will know whether to build a dynamic symbol table; if
619 it does build one, this becomes the index into the table. */
620 long dynindx;
621
622 /* If this is a dynamic symbol, this is the index of the name in the
623 dynamic symbol string table. */
624 long dynstr_index;
625
626 /* The offset into the global offset table used for this symbol. If
627 the symbol does not require a GOT entry, this is 0. */
628 bfd_vma got_offset;
629
630 /* The offset into the procedure linkage table used for this symbol.
631 If the symbol does not require a PLT entry, this is 0. */
632 bfd_vma plt_offset;
633
634 /* Some linker flags. */
635 unsigned char flags;
636 /* Symbol is referenced by a regular object. */
637 #define SUNOS_REF_REGULAR 01
638 /* Symbol is defined by a regular object. */
639 #define SUNOS_DEF_REGULAR 02
640 /* Symbol is referenced by a dynamic object. */
641 #define SUNOS_REF_DYNAMIC 010
642 /* Symbol is defined by a dynamic object. */
643 #define SUNOS_DEF_DYNAMIC 020
644 };
645
646 /* The SunOS linker hash table. */
647
648 struct sunos_link_hash_table
649 {
650 struct aout_link_hash_table root;
651
652 /* The object which holds the dynamic sections. */
653 bfd *dynobj;
654
655 /* Whether we have created the dynamic sections. */
656 boolean dynamic_sections_created;
657
658 /* Whether we need the dynamic sections. */
659 boolean dynamic_sections_needed;
660
661 /* The number of dynamic symbols. */
662 size_t dynsymcount;
663
664 /* The number of buckets in the hash table. */
665 size_t bucketcount;
666 };
667
668 /* Routine to create an entry in an SunOS link hash table. */
669
670 static struct bfd_hash_entry *
671 sunos_link_hash_newfunc (entry, table, string)
672 struct bfd_hash_entry *entry;
673 struct bfd_hash_table *table;
674 const char *string;
675 {
676 struct sunos_link_hash_entry *ret = (struct sunos_link_hash_entry *) entry;
677
678 /* Allocate the structure if it has not already been allocated by a
679 subclass. */
680 if (ret == (struct sunos_link_hash_entry *) NULL)
681 ret = ((struct sunos_link_hash_entry *)
682 bfd_hash_allocate (table, sizeof (struct sunos_link_hash_entry)));
683 if (ret == (struct sunos_link_hash_entry *) NULL)
684 {
685 bfd_set_error (bfd_error_no_memory);
686 return (struct bfd_hash_entry *) ret;
687 }
688
689 /* Call the allocation method of the superclass. */
690 ret = ((struct sunos_link_hash_entry *)
691 NAME(aout,link_hash_newfunc) ((struct bfd_hash_entry *) ret,
692 table, string));
693 if (ret != NULL)
694 {
695 /* Set local fields. */
696 ret->dynindx = -1;
697 ret->dynstr_index = -1;
698 ret->got_offset = 0;
699 ret->plt_offset = 0;
700 ret->flags = 0;
701 }
702
703 return (struct bfd_hash_entry *) ret;
704 }
705
706 /* Create a SunOS link hash table. */
707
708 static struct bfd_link_hash_table *
709 sunos_link_hash_table_create (abfd)
710 bfd *abfd;
711 {
712 struct sunos_link_hash_table *ret;
713
714 ret = ((struct sunos_link_hash_table *)
715 bfd_alloc (abfd, sizeof (struct sunos_link_hash_table)));
716 if (ret == (struct sunos_link_hash_table *) NULL)
717 {
718 bfd_set_error (bfd_error_no_memory);
719 return (struct bfd_link_hash_table *) NULL;
720 }
721 if (! NAME(aout,link_hash_table_init) (&ret->root, abfd,
722 sunos_link_hash_newfunc))
723 {
724 free (ret);
725 return (struct bfd_link_hash_table *) NULL;
726 }
727
728 ret->dynobj = NULL;
729 ret->dynamic_sections_created = false;
730 ret->dynamic_sections_needed = false;
731 ret->dynsymcount = 0;
732 ret->bucketcount = 0;
733
734 return &ret->root.root;
735 }
736
737 /* Look up an entry in an SunOS link hash table. */
738
739 #define sunos_link_hash_lookup(table, string, create, copy, follow) \
740 ((struct sunos_link_hash_entry *) \
741 aout_link_hash_lookup (&(table)->root, (string), (create), (copy),\
742 (follow)))
743
744 /* Traverse a SunOS link hash table. */
745
746 #define sunos_link_hash_traverse(table, func, info) \
747 (aout_link_hash_traverse \
748 (&(table)->root, \
749 (boolean (*) PARAMS ((struct aout_link_hash_entry *, PTR))) (func), \
750 (info)))
751
752 /* Get the SunOS link hash table from the info structure. This is
753 just a cast. */
754
755 #define sunos_hash_table(p) ((struct sunos_link_hash_table *) ((p)->hash))
756
757 static boolean sunos_scan_dynamic_symbol
758 PARAMS ((struct sunos_link_hash_entry *, PTR));
759
760 /* Create the dynamic sections needed if we are linking against a
761 dynamic object, or if we are linking PIC compiled code. ABFD is a
762 bfd we can attach the dynamic sections to. The linker script will
763 look for these special sections names and put them in the right
764 place in the output file. See include/aout/sun4.h for more details
765 of the dynamic linking information. */
766
767 static boolean
768 sunos_create_dynamic_sections (abfd, info, needed)
769 bfd *abfd;
770 struct bfd_link_info *info;
771 boolean needed;
772 {
773 asection *s;
774
775 if (! sunos_hash_table (info)->dynamic_sections_created)
776 {
777 flagword flags;
778
779 sunos_hash_table (info)->dynobj = abfd;
780
781 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY;
782
783 /* The .dynamic section holds the basic dynamic information: the
784 sun4_dynamic structure, the dynamic debugger information, and
785 the sun4_dynamic_link structure. */
786 s = bfd_make_section (abfd, ".dynamic");
787 if (s == NULL
788 || ! bfd_set_section_flags (abfd, s, flags)
789 || ! bfd_set_section_alignment (abfd, s, 2))
790 return false;
791
792 /* The .got section holds the global offset table. The address
793 is put in the ld_got field. */
794 s = bfd_make_section (abfd, ".got");
795 if (s == NULL
796 || ! bfd_set_section_flags (abfd, s, flags)
797 || ! bfd_set_section_alignment (abfd, s, 2))
798 return false;
799
800 /* The .plt section holds the procedure linkage table. The
801 address is put in the ld_plt field. */
802 s = bfd_make_section (abfd, ".plt");
803 if (s == NULL
804 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
805 || ! bfd_set_section_alignment (abfd, s, 2))
806 return false;
807
808 /* The .dynrel section holds the dynamic relocs. The address is
809 put in the ld_rel field. */
810 s = bfd_make_section (abfd, ".dynrel");
811 if (s == NULL
812 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
813 || ! bfd_set_section_alignment (abfd, s, 2))
814 return false;
815
816 /* The .hash section holds the dynamic hash table. The address
817 is put in the ld_hash field. */
818 s = bfd_make_section (abfd, ".hash");
819 if (s == NULL
820 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
821 || ! bfd_set_section_alignment (abfd, s, 2))
822 return false;
823
824 /* The .dynsym section holds the dynamic symbols. The address
825 is put in the ld_stab field. */
826 s = bfd_make_section (abfd, ".dynsym");
827 if (s == NULL
828 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
829 || ! bfd_set_section_alignment (abfd, s, 2))
830 return false;
831
832 /* The .dynstr section holds the dynamic symbol string table.
833 The address is put in the ld_symbols field. */
834 s = bfd_make_section (abfd, ".dynstr");
835 if (s == NULL
836 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
837 || ! bfd_set_section_alignment (abfd, s, 2))
838 return false;
839
840 sunos_hash_table (info)->dynamic_sections_created = true;
841 }
842
843 if (needed && ! sunos_hash_table (info)->dynamic_sections_needed)
844 {
845 bfd *dynobj;
846
847 dynobj = sunos_hash_table (info)->dynobj;
848
849 s = bfd_get_section_by_name (dynobj, ".got");
850 s->_raw_size = BYTES_IN_WORD;
851
852 sunos_hash_table (info)->dynamic_sections_needed = true;
853 }
854
855 return true;
856 }
857
858 /* Add dynamic symbols during a link. This is called by the a.out
859 backend linker when it encounters an object with the DYNAMIC flag
860 set. */
861
862 static boolean
863 sunos_add_dynamic_symbols (abfd, info, symsp, sym_countp, stringsp)
864 bfd *abfd;
865 struct bfd_link_info *info;
866 struct external_nlist **symsp;
867 bfd_size_type *sym_countp;
868 char **stringsp;
869 {
870 asection *s;
871 bfd *dynobj;
872 struct sunos_dynamic_info *dinfo;
873
874 /* We do not want to include the sections in a dynamic object in the
875 output file. We hack by simply clobbering the list of sections
876 in the BFD. This could be handled more cleanly by, say, a new
877 section flag; the existing SEC_NEVER_LOAD flag is not the one we
878 want, because that one still implies that the section takes up
879 space in the output file. */
880 abfd->sections = NULL;
881
882 /* The native linker seems to just ignore dynamic objects when -r is
883 used. */
884 if (info->relocateable)
885 return true;
886
887 /* There's no hope of using a dynamic object which does not exactly
888 match the format of the output file. */
889 if (info->hash->creator != abfd->xvec)
890 {
891 bfd_set_error (bfd_error_invalid_operation);
892 return false;
893 }
894
895 /* Make sure we have all the required information. */
896 if (! sunos_create_dynamic_sections (abfd, info, true))
897 return false;
898
899 /* Make sure we have a .need and a .rules sections. These are only
900 needed if there really is a dynamic object in the link, so they
901 are not added by sunos_create_dynamic_sections. */
902 dynobj = sunos_hash_table (info)->dynobj;
903 if (bfd_get_section_by_name (dynobj, ".need") == NULL)
904 {
905 /* The .need section holds the list of names of shared objets
906 which must be included at runtime. The address of this
907 section is put in the ld_need field. */
908 s = bfd_make_section (dynobj, ".need");
909 if (s == NULL
910 || ! bfd_set_section_flags (dynobj, s,
911 (SEC_ALLOC
912 | SEC_LOAD
913 | SEC_HAS_CONTENTS
914 | SEC_IN_MEMORY
915 | SEC_READONLY))
916 || ! bfd_set_section_alignment (dynobj, s, 2))
917 return false;
918 }
919
920 if (bfd_get_section_by_name (dynobj, ".rules") == NULL)
921 {
922 /* The .rules section holds the path to search for shared
923 objects. The address of this section is put in the ld_rules
924 field. */
925 s = bfd_make_section (dynobj, ".rules");
926 if (s == NULL
927 || ! bfd_set_section_flags (dynobj, s,
928 (SEC_ALLOC
929 | SEC_LOAD
930 | SEC_HAS_CONTENTS
931 | SEC_IN_MEMORY
932 | SEC_READONLY))
933 || ! bfd_set_section_alignment (dynobj, s, 2))
934 return false;
935 }
936
937 /* Pick up the dynamic symbols and return them to the caller. */
938 if (! sunos_slurp_dynamic_symtab (abfd))
939 return false;
940
941 dinfo = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
942 *symsp = dinfo->dynsym;
943 *sym_countp = dinfo->dynsym_count;
944 *stringsp = dinfo->dynstr;
945
946 return true;
947 }
948
949 /* Function to add a single symbol to the linker hash table. This is
950 a wrapper around _bfd_generic_link_add_one_symbol which handles the
951 tweaking needed for dynamic linking support. */
952
953 static boolean
954 sunos_add_one_symbol (info, abfd, name, flags, section, value, string,
955 copy, collect, hashp)
956 struct bfd_link_info *info;
957 bfd *abfd;
958 const char *name;
959 flagword flags;
960 asection *section;
961 bfd_vma value;
962 const char *string;
963 boolean copy;
964 boolean collect;
965 struct bfd_link_hash_entry **hashp;
966 {
967 struct sunos_link_hash_entry *h;
968 int new_flag;
969
970 if (! sunos_hash_table (info)->dynamic_sections_created)
971 {
972 /* We must create the dynamic sections while reading the input
973 files, even though at this point we don't know if any of the
974 sections will be needed. This will ensure that the dynamic
975 sections are mapped to the right output section. It does no
976 harm to create these sections if they are not needed. */
977 if (! sunos_create_dynamic_sections (abfd, info, info->shared))
978 return false;
979 }
980
981 h = sunos_link_hash_lookup (sunos_hash_table (info), name, true, copy,
982 false);
983 if (h == NULL)
984 return false;
985
986 if (hashp != NULL)
987 *hashp = (struct bfd_link_hash_entry *) h;
988
989 /* Treat a common symbol in a dynamic object as defined in the .bss
990 section of the dynamic object. We don't want to allocate space
991 for it in our process image. */
992 if ((abfd->flags & DYNAMIC) != 0
993 && bfd_is_com_section (section))
994 section = obj_bsssec (abfd);
995
996 if (! bfd_is_und_section (section)
997 && h->root.root.type != bfd_link_hash_new
998 && h->root.root.type != bfd_link_hash_undefined
999 && h->root.root.type != bfd_link_hash_defweak)
1000 {
1001 /* We are defining the symbol, and it is already defined. This
1002 is a potential multiple definition error. */
1003 if ((abfd->flags & DYNAMIC) != 0)
1004 {
1005 /* The definition we are adding is from a dynamic object.
1006 We do not want this new definition to override the
1007 existing definition, so we pretend it is just a
1008 reference. */
1009 section = bfd_und_section_ptr;
1010 }
1011 else if ((h->root.root.type == bfd_link_hash_defined
1012 && h->root.root.u.def.section->owner != NULL
1013 && (h->root.root.u.def.section->owner->flags & DYNAMIC) != 0)
1014 || (h->root.root.type == bfd_link_hash_common
1015 && ((h->root.root.u.c.p->section->owner->flags & DYNAMIC)
1016 != 0)))
1017 {
1018 /* The existing definition is from a dynamic object. We
1019 want to override it with the definition we just found.
1020 Clobber the existing definition. */
1021 h->root.root.type = bfd_link_hash_new;
1022 }
1023 }
1024
1025 /* Do the usual procedure for adding a symbol. */
1026 if (! _bfd_generic_link_add_one_symbol (info, abfd, name, flags, section,
1027 value, string, copy, collect,
1028 hashp))
1029 return false;
1030
1031 if (abfd->xvec == info->hash->creator)
1032 {
1033 /* Set a flag in the hash table entry indicating the type of
1034 reference or definition we just found. Keep a count of the
1035 number of dynamic symbols we find. A dynamic symbol is one
1036 which is referenced or defined by both a regular object and a
1037 shared object. */
1038 if ((abfd->flags & DYNAMIC) == 0)
1039 {
1040 if (bfd_is_und_section (section))
1041 new_flag = SUNOS_REF_REGULAR;
1042 else
1043 new_flag = SUNOS_DEF_REGULAR;
1044 }
1045 else
1046 {
1047 if (bfd_is_und_section (section))
1048 new_flag = SUNOS_REF_DYNAMIC;
1049 else
1050 new_flag = SUNOS_DEF_DYNAMIC;
1051 }
1052 h->flags |= new_flag;
1053
1054 if (h->dynindx == -1
1055 && (h->flags & (SUNOS_DEF_REGULAR | SUNOS_REF_REGULAR)) != 0)
1056 {
1057 ++sunos_hash_table (info)->dynsymcount;
1058 h->dynindx = -2;
1059 }
1060 }
1061
1062 return true;
1063 }
1064
1065 /* Record an assignment made to a symbol by a linker script. We need
1066 this in case some dynamic object refers to this symbol. */
1067
1068 boolean
1069 bfd_sunos_record_link_assignment (output_bfd, info, name)
1070 bfd *output_bfd;
1071 struct bfd_link_info *info;
1072 const char *name;
1073 {
1074 struct sunos_link_hash_entry *h;
1075
1076 /* This is called after we have examined all the input objects. If
1077 the symbol does not exist, it merely means that no object refers
1078 to it, and we can just ignore it at this point. */
1079 h = sunos_link_hash_lookup (sunos_hash_table (info), name,
1080 false, false, false);
1081 if (h == NULL)
1082 return true;
1083
1084 h->flags |= SUNOS_DEF_REGULAR;
1085
1086 if (h->dynindx == -1)
1087 {
1088 ++sunos_hash_table (info)->dynsymcount;
1089 h->dynindx = -2;
1090 }
1091
1092 return true;
1093 }
1094
1095 /* Set up the sizes and contents of the dynamic sections created in
1096 sunos_add_dynamic_symbols. This is called by the SunOS linker
1097 emulation before_allocation routine. We must set the sizes of the
1098 sections before the linker sets the addresses of the various
1099 sections. This unfortunately requires reading all the relocs so
1100 that we can work out which ones need to become dynamic relocs. If
1101 info->keep_memory is true, we keep the relocs in memory; otherwise,
1102 we discard them, and will read them again later. */
1103
1104 boolean
1105 bfd_sunos_size_dynamic_sections (output_bfd, info, sdynptr, sneedptr,
1106 srulesptr)
1107 bfd *output_bfd;
1108 struct bfd_link_info *info;
1109 asection **sdynptr;
1110 asection **sneedptr;
1111 asection **srulesptr;
1112 {
1113 bfd *dynobj;
1114 size_t dynsymcount;
1115 struct sunos_link_hash_entry *h;
1116 asection *s;
1117 size_t bucketcount;
1118 size_t hashalloc;
1119 size_t i;
1120 bfd *sub;
1121
1122 *sdynptr = NULL;
1123 *sneedptr = NULL;
1124 *srulesptr = NULL;
1125
1126 /* Look through all the input BFD's and read their relocs. It would
1127 be better if we didn't have to do this, but there is no other way
1128 to determine the number of dynamic relocs we need, and, more
1129 importantly, there is no other way to know which symbols should
1130 get an entry in the procedure linkage table. */
1131 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
1132 {
1133 if ((sub->flags & DYNAMIC) == 0)
1134 {
1135 if (! sunos_scan_relocs (info, sub, obj_textsec (sub),
1136 exec_hdr (sub)->a_trsize)
1137 || ! sunos_scan_relocs (info, sub, obj_datasec (sub),
1138 exec_hdr (sub)->a_drsize))
1139 return false;
1140 }
1141 }
1142
1143 dynobj = sunos_hash_table (info)->dynobj;
1144 dynsymcount = sunos_hash_table (info)->dynsymcount;
1145
1146 /* If there were no dynamic objects in the link, and we don't need
1147 to build a global offset table, there is nothing to do here. */
1148 if (! sunos_hash_table (info)->dynamic_sections_needed)
1149 return true;
1150
1151 /* If __GLOBAL_OFFSET_TABLE_ was mentioned, define it. */
1152 h = sunos_link_hash_lookup (sunos_hash_table (info),
1153 "__GLOBAL_OFFSET_TABLE_", false, false, false);
1154 if (h != NULL && (h->flags & SUNOS_REF_REGULAR) != 0)
1155 {
1156 h->flags |= SUNOS_DEF_REGULAR;
1157 if (h->dynindx == -1)
1158 {
1159 ++sunos_hash_table (info)->dynsymcount;
1160 h->dynindx = -2;
1161 }
1162 h->root.root.type = bfd_link_hash_defined;
1163 h->root.root.u.def.section = bfd_get_section_by_name (dynobj, ".got");
1164 h->root.root.u.def.value = 0;
1165 }
1166
1167 /* The .dynamic section is always the same size. */
1168 s = bfd_get_section_by_name (dynobj, ".dynamic");
1169 BFD_ASSERT (s != NULL);
1170 s->_raw_size = (sizeof (struct external_sun4_dynamic)
1171 + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE
1172 + sizeof (struct external_sun4_dynamic_link));
1173
1174 /* Set the size of the .dynsym and .hash sections. We counted the
1175 number of dynamic symbols as we read the input files. We will
1176 build the dynamic symbol table (.dynsym) and the hash table
1177 (.hash) when we build the final symbol table, because until then
1178 we do not know the correct value to give the symbols. We build
1179 the dynamic symbol string table (.dynstr) in a traversal of the
1180 symbol table using sunos_scan_dynamic_symbol. */
1181 s = bfd_get_section_by_name (dynobj, ".dynsym");
1182 BFD_ASSERT (s != NULL);
1183 s->_raw_size = dynsymcount * sizeof (struct external_nlist);
1184 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
1185 if (s->contents == NULL && s->_raw_size != 0)
1186 {
1187 bfd_set_error (bfd_error_no_memory);
1188 return false;
1189 }
1190
1191 /* The number of buckets is just the number of symbols divided by
1192 four. To compute the final size of the hash table, we must
1193 actually compute the hash table. Normally we need exactly as
1194 many entries in the hash table as there are dynamic symbols, but
1195 if some of the buckets are not used we will need additional
1196 entries. In the worst case, every symbol will hash to the same
1197 bucket, and we will need BUCKETCOUNT - 1 extra entries. */
1198 if (dynsymcount >= 4)
1199 bucketcount = dynsymcount / 4;
1200 else if (dynsymcount > 0)
1201 bucketcount = dynsymcount;
1202 else
1203 bucketcount = 1;
1204 s = bfd_get_section_by_name (dynobj, ".hash");
1205 BFD_ASSERT (s != NULL);
1206 hashalloc = (dynsymcount + bucketcount - 1) * HASH_ENTRY_SIZE;
1207 s->contents = (bfd_byte *) bfd_alloc (dynobj, hashalloc);
1208 if (s->contents == NULL && dynsymcount > 0)
1209 {
1210 bfd_set_error (bfd_error_no_memory);
1211 return false;
1212 }
1213 memset (s->contents, 0, hashalloc);
1214 for (i = 0; i < bucketcount; i++)
1215 PUT_WORD (output_bfd, (bfd_vma) -1, s->contents + i * HASH_ENTRY_SIZE);
1216 s->_raw_size = bucketcount * HASH_ENTRY_SIZE;
1217
1218 sunos_hash_table (info)->bucketcount = bucketcount;
1219
1220 /* Scan all the symbols, place them in the dynamic symbol table, and
1221 build the dynamic hash table. We reuse dynsymcount as a counter
1222 for the number of symbols we have added so far. */
1223 sunos_hash_table (info)->dynsymcount = 0;
1224 sunos_link_hash_traverse (sunos_hash_table (info),
1225 sunos_scan_dynamic_symbol,
1226 (PTR) info);
1227 BFD_ASSERT (sunos_hash_table (info)->dynsymcount == dynsymcount);
1228
1229 /* The SunOS native linker seems to align the total size of the
1230 symbol strings to a multiple of 8. I don't know if this is
1231 important, but it can't hurt much. */
1232 s = bfd_get_section_by_name (dynobj, ".dynstr");
1233 BFD_ASSERT (s != NULL);
1234 if ((s->_raw_size & 7) != 0)
1235 {
1236 bfd_size_type add;
1237 bfd_byte *contents;
1238
1239 add = 8 - (s->_raw_size & 7);
1240 contents = (bfd_byte *) realloc (s->contents,
1241 (size_t) (s->_raw_size + add));
1242 if (contents == NULL)
1243 {
1244 bfd_set_error (bfd_error_no_memory);
1245 return false;
1246 }
1247 memset (contents + s->_raw_size, 0, (size_t) add);
1248 s->contents = contents;
1249 s->_raw_size += add;
1250 }
1251
1252 /* Now that we have worked out the sizes of the procedure linkage
1253 table and the dynamic relocs, allocate storage for them. */
1254 s = bfd_get_section_by_name (dynobj, ".plt");
1255 BFD_ASSERT (s != NULL);
1256 if (s->_raw_size != 0)
1257 {
1258 s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
1259 if (s->contents == NULL)
1260 {
1261 bfd_set_error (bfd_error_no_memory);
1262 return false;
1263 }
1264
1265 /* Fill in the first entry in the table. */
1266 switch (bfd_get_arch (dynobj))
1267 {
1268 case bfd_arch_sparc:
1269 memcpy (s->contents, sparc_plt_first_entry, SPARC_PLT_ENTRY_SIZE);
1270 break;
1271
1272 case bfd_arch_m68k:
1273 memcpy (s->contents, m68k_plt_first_entry, M68K_PLT_ENTRY_SIZE);
1274 break;
1275
1276 default:
1277 abort ();
1278 }
1279 }
1280
1281 s = bfd_get_section_by_name (dynobj, ".dynrel");
1282 if (s->_raw_size != 0)
1283 {
1284 s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
1285 if (s->contents == NULL)
1286 {
1287 bfd_set_error (bfd_error_no_memory);
1288 return false;
1289 }
1290 }
1291 /* We use the reloc_count field to keep track of how many of the
1292 relocs we have output so far. */
1293 s->reloc_count = 0;
1294
1295 /* Make space for the global offset table. */
1296 s = bfd_get_section_by_name (dynobj, ".got");
1297 s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
1298 if (s->contents == NULL)
1299 {
1300 bfd_set_error (bfd_error_no_memory);
1301 return false;
1302 }
1303
1304 *sdynptr = bfd_get_section_by_name (dynobj, ".dynamic");
1305 *sneedptr = bfd_get_section_by_name (dynobj, ".need");
1306 *srulesptr = bfd_get_section_by_name (dynobj, ".rules");
1307
1308 return true;
1309 }
1310
1311 /* Scan the relocs for an input section. */
1312
1313 static boolean
1314 sunos_scan_relocs (info, abfd, sec, rel_size)
1315 struct bfd_link_info *info;
1316 bfd *abfd;
1317 asection *sec;
1318 bfd_size_type rel_size;
1319 {
1320 PTR relocs;
1321 PTR free_relocs = NULL;
1322
1323 if (rel_size == 0)
1324 return true;
1325
1326 if (! info->keep_memory)
1327 relocs = free_relocs = malloc ((size_t) rel_size);
1328 else
1329 {
1330 struct aout_section_data_struct *n;
1331
1332 n = ((struct aout_section_data_struct *)
1333 bfd_alloc (abfd, sizeof (struct aout_section_data_struct)));
1334 if (n == NULL)
1335 relocs = NULL;
1336 else
1337 {
1338 set_aout_section_data (sec, n);
1339 relocs = malloc ((size_t) rel_size);
1340 aout_section_data (sec)->relocs = relocs;
1341 }
1342 }
1343 if (relocs == NULL)
1344 {
1345 bfd_set_error (bfd_error_no_memory);
1346 return false;
1347 }
1348
1349 if (bfd_seek (abfd, sec->rel_filepos, SEEK_SET) != 0
1350 || bfd_read (relocs, 1, rel_size, abfd) != rel_size)
1351 goto error_return;
1352
1353 if (obj_reloc_entry_size (abfd) == RELOC_STD_SIZE)
1354 {
1355 if (! sunos_scan_std_relocs (info, abfd, sec,
1356 (struct reloc_std_external *) relocs,
1357 rel_size))
1358 goto error_return;
1359 }
1360 else
1361 {
1362 if (! sunos_scan_ext_relocs (info, abfd, sec,
1363 (struct reloc_ext_external *) relocs,
1364 rel_size))
1365 goto error_return;
1366 }
1367
1368 if (free_relocs != NULL)
1369 free (free_relocs);
1370
1371 return true;
1372
1373 error_return:
1374 if (free_relocs != NULL)
1375 free (free_relocs);
1376 return false;
1377 }
1378
1379 /* Scan the relocs for an input section using standard relocs. We
1380 need to figure out what to do for each reloc against a dynamic
1381 symbol. If the symbol is in the .text section, an entry is made in
1382 the procedure linkage table. Note that this will do the wrong
1383 thing if the symbol is actually data; I don't think the Sun 3
1384 native linker handles this case correctly either. If the symbol is
1385 not in the .text section, we must preserve the reloc as a dynamic
1386 reloc. FIXME: We should also handle the PIC relocs here by
1387 building global offset table entries. */
1388
1389 static boolean
1390 sunos_scan_std_relocs (info, abfd, sec, relocs, rel_size)
1391 struct bfd_link_info *info;
1392 bfd *abfd;
1393 asection *sec;
1394 const struct reloc_std_external *relocs;
1395 bfd_size_type rel_size;
1396 {
1397 bfd *dynobj;
1398 asection *splt = NULL;
1399 asection *srel = NULL;
1400 struct sunos_link_hash_entry **sym_hashes;
1401 const struct reloc_std_external *rel, *relend;
1402
1403 /* We only know how to handle m68k plt entries. */
1404 if (bfd_get_arch (abfd) != bfd_arch_m68k)
1405 {
1406 bfd_set_error (bfd_error_invalid_target);
1407 return false;
1408 }
1409
1410 dynobj = NULL;
1411
1412 sym_hashes = (struct sunos_link_hash_entry **) obj_aout_sym_hashes (abfd);
1413
1414 relend = relocs + rel_size / RELOC_STD_SIZE;
1415 for (rel = relocs; rel < relend; rel++)
1416 {
1417 int r_index;
1418 struct sunos_link_hash_entry *h;
1419
1420 /* We only want relocs against external symbols. */
1421 if (abfd->xvec->header_byteorder_big_p)
1422 {
1423 if ((rel->r_type[0] & RELOC_STD_BITS_EXTERN_BIG) == 0)
1424 continue;
1425 }
1426 else
1427 {
1428 if ((rel->r_type[0] & RELOC_STD_BITS_EXTERN_LITTLE) == 0)
1429 continue;
1430 }
1431
1432 /* Get the symbol index. */
1433 if (abfd->xvec->header_byteorder_big_p)
1434 r_index = ((rel->r_index[0] << 16)
1435 | (rel->r_index[1] << 8)
1436 | rel->r_index[2]);
1437 else
1438 r_index = ((rel->r_index[2] << 16)
1439 | (rel->r_index[1] << 8)
1440 | rel->r_index[0]);
1441
1442 /* Get the hash table entry. */
1443 h = sym_hashes[r_index];
1444 if (h == NULL)
1445 {
1446 /* This should not normally happen, but it will in any case
1447 be caught in the relocation phase. */
1448 continue;
1449 }
1450
1451 /* At this point common symbols have already been allocated, so
1452 we don't have to worry about them. We need to consider that
1453 we may have already seen this symbol and marked it undefined;
1454 if the symbol is really undefined, then SUNOS_DEF_DYNAMIC
1455 will be zero. */
1456 if (h->root.root.type != bfd_link_hash_defined
1457 && h->root.root.type != bfd_link_hash_defweak
1458 && h->root.root.type != bfd_link_hash_undefined)
1459 continue;
1460
1461 if ((h->flags & SUNOS_DEF_DYNAMIC) == 0
1462 || (h->flags & SUNOS_DEF_REGULAR) != 0)
1463 continue;
1464
1465 if (dynobj == NULL)
1466 {
1467 if (! sunos_create_dynamic_sections (abfd, info, true))
1468 return false;
1469 dynobj = sunos_hash_table (info)->dynobj;
1470 splt = bfd_get_section_by_name (dynobj, ".plt");
1471 srel = bfd_get_section_by_name (dynobj, ".dynrel");
1472 BFD_ASSERT (splt != NULL && srel != NULL);
1473 }
1474
1475 BFD_ASSERT ((h->flags & SUNOS_REF_REGULAR) != 0);
1476 BFD_ASSERT (h->plt_offset != 0
1477 || ((h->root.root.type == bfd_link_hash_defined
1478 || h->root.root.type == bfd_link_hash_defweak)
1479 ? (h->root.root.u.def.section->owner->flags
1480 & DYNAMIC) != 0
1481 : (h->root.root.u.undef.abfd->flags & DYNAMIC) != 0));
1482
1483 /* This reloc is against a symbol defined only by a dynamic
1484 object. */
1485
1486 if (h->root.root.type == bfd_link_hash_undefined)
1487 {
1488 /* Presumably this symbol was marked as being undefined by
1489 an earlier reloc. */
1490 srel->_raw_size += RELOC_STD_SIZE;
1491 }
1492 else if ((h->root.root.u.def.section->flags & SEC_CODE) == 0)
1493 {
1494 bfd *sub;
1495
1496 /* This reloc is not in the .text section. It must be
1497 copied into the dynamic relocs. We mark the symbol as
1498 being undefined. */
1499 srel->_raw_size += RELOC_STD_SIZE;
1500 sub = h->root.root.u.def.section->owner;
1501 h->root.root.type = bfd_link_hash_undefined;
1502 h->root.root.u.undef.abfd = sub;
1503 }
1504 else
1505 {
1506 /* This symbol is in the .text section. We must give it an
1507 entry in the procedure linkage table, if we have not
1508 already done so. We change the definition of the symbol
1509 to the .plt section; this will cause relocs against it to
1510 be handled correctly. */
1511 if (h->plt_offset == 0)
1512 {
1513 if (splt->_raw_size == 0)
1514 splt->_raw_size = M68K_PLT_ENTRY_SIZE;
1515 h->plt_offset = splt->_raw_size;
1516
1517 if ((h->flags & SUNOS_DEF_REGULAR) == 0)
1518 {
1519 h->root.root.u.def.section = splt;
1520 h->root.root.u.def.value = splt->_raw_size;
1521 }
1522
1523 splt->_raw_size += M68K_PLT_ENTRY_SIZE;
1524
1525 /* We may also need a dynamic reloc entry. */
1526 if ((h->flags & SUNOS_DEF_REGULAR) == 0)
1527 srel->_raw_size += RELOC_STD_SIZE;
1528 }
1529 }
1530 }
1531
1532 return true;
1533 }
1534
1535 /* Scan the relocs for an input section using extended relocs. We
1536 need to figure out what to do for each reloc against a dynamic
1537 symbol. If the reloc is a WDISP30, and the symbol is in the .text
1538 section, an entry is made in the procedure linkage table.
1539 Otherwise, we must preserve the reloc as a dynamic reloc. */
1540
1541 static boolean
1542 sunos_scan_ext_relocs (info, abfd, sec, relocs, rel_size)
1543 struct bfd_link_info *info;
1544 bfd *abfd;
1545 asection *sec;
1546 const struct reloc_ext_external *relocs;
1547 bfd_size_type rel_size;
1548 {
1549 bfd *dynobj;
1550 struct sunos_link_hash_entry **sym_hashes;
1551 const struct reloc_ext_external *rel, *relend;
1552 asection *splt = NULL;
1553 asection *sgot = NULL;
1554 asection *srel = NULL;
1555
1556 /* We only know how to handle SPARC plt entries. */
1557 if (bfd_get_arch (abfd) != bfd_arch_sparc)
1558 {
1559 bfd_set_error (bfd_error_invalid_target);
1560 return false;
1561 }
1562
1563 dynobj = NULL;
1564
1565 sym_hashes = (struct sunos_link_hash_entry **) obj_aout_sym_hashes (abfd);
1566
1567 relend = relocs + rel_size / RELOC_EXT_SIZE;
1568 for (rel = relocs; rel < relend; rel++)
1569 {
1570 unsigned int r_index;
1571 int r_extern;
1572 int r_type;
1573 struct sunos_link_hash_entry *h = NULL;
1574
1575 /* Swap in the reloc information. */
1576 if (abfd->xvec->header_byteorder_big_p)
1577 {
1578 r_index = ((rel->r_index[0] << 16)
1579 | (rel->r_index[1] << 8)
1580 | rel->r_index[2]);
1581 r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_BIG));
1582 r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_BIG)
1583 >> RELOC_EXT_BITS_TYPE_SH_BIG);
1584 }
1585 else
1586 {
1587 r_index = ((rel->r_index[2] << 16)
1588 | (rel->r_index[1] << 8)
1589 | rel->r_index[0]);
1590 r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_LITTLE));
1591 r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE)
1592 >> RELOC_EXT_BITS_TYPE_SH_LITTLE);
1593 }
1594
1595 if (r_extern)
1596 {
1597 h = sym_hashes[r_index];
1598 if (h == NULL)
1599 {
1600 /* This should not normally happen, but it will in any
1601 case be caught in the relocation phase. */
1602 continue;
1603 }
1604 }
1605 else
1606 {
1607 if (r_index >= bfd_get_symcount (abfd))
1608 {
1609 /* This is abnormal, but should be caught in the
1610 relocation phase. */
1611 continue;
1612 }
1613 }
1614
1615 /* If this is a base relative reloc, we need to make an entry in
1616 the .got section. */
1617 if (r_type == RELOC_BASE10
1618 || r_type == RELOC_BASE13
1619 || r_type == RELOC_BASE22)
1620 {
1621 if (dynobj == NULL)
1622 {
1623 if (! sunos_create_dynamic_sections (abfd, info, true))
1624 return false;
1625 dynobj = sunos_hash_table (info)->dynobj;
1626 splt = bfd_get_section_by_name (dynobj, ".plt");
1627 sgot = bfd_get_section_by_name (dynobj, ".got");
1628 srel = bfd_get_section_by_name (dynobj, ".dynrel");
1629 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
1630 }
1631
1632 if (r_extern)
1633 {
1634 if (h->got_offset != 0)
1635 continue;
1636
1637 h->got_offset = sgot->_raw_size;
1638 }
1639 else
1640 {
1641 if (adata (abfd).local_got_offsets == NULL)
1642 {
1643 adata (abfd).local_got_offsets =
1644 (bfd_vma *) bfd_zalloc (abfd,
1645 (bfd_get_symcount (abfd)
1646 * sizeof (bfd_vma)));
1647 if (adata (abfd).local_got_offsets == NULL)
1648 {
1649 bfd_set_error (bfd_error_no_memory);
1650 return false;
1651 }
1652 }
1653
1654 if (adata (abfd).local_got_offsets[r_index] != 0)
1655 continue;
1656
1657 adata (abfd).local_got_offsets[r_index] = sgot->_raw_size;
1658 }
1659
1660 sgot->_raw_size += BYTES_IN_WORD;
1661
1662 /* If we are making a shared library, or if the symbol is
1663 defined by a dynamic object, we will need a dynamic reloc
1664 entry. */
1665 if (info->shared
1666 || (h != NULL
1667 && (h->flags & SUNOS_DEF_DYNAMIC) != 0
1668 && (h->flags & SUNOS_DEF_REGULAR) == 0))
1669 srel->_raw_size += RELOC_EXT_SIZE;
1670
1671 continue;
1672 }
1673
1674 /* Otherwise, we are only interested in relocs against symbols
1675 defined in dynamic objects but not in regular objects. We
1676 only need to consider relocs against external symbols. */
1677 if (! r_extern)
1678 continue;
1679
1680 /* At this point common symbols have already been allocated, so
1681 we don't have to worry about them. We need to consider that
1682 we may have already seen this symbol and marked it undefined;
1683 if the symbol is really undefined, then SUNOS_DEF_DYNAMIC
1684 will be zero. */
1685 if (h->root.root.type != bfd_link_hash_defined
1686 && h->root.root.type != bfd_link_hash_defweak
1687 && h->root.root.type != bfd_link_hash_undefined)
1688 continue;
1689
1690 if (r_type != RELOC_JMP_TBL
1691 && ((h->flags & SUNOS_DEF_DYNAMIC) == 0
1692 || (h->flags & SUNOS_DEF_REGULAR) != 0))
1693 continue;
1694
1695 if (strcmp (h->root.root.root.string, "__GLOBAL_OFFSET_TABLE_") == 0)
1696 continue;
1697
1698 if (dynobj == NULL)
1699 {
1700 if (! sunos_create_dynamic_sections (abfd, info, true))
1701 return false;
1702 dynobj = sunos_hash_table (info)->dynobj;
1703 splt = bfd_get_section_by_name (dynobj, ".plt");
1704 sgot = bfd_get_section_by_name (dynobj, ".got");
1705 srel = bfd_get_section_by_name (dynobj, ".dynrel");
1706 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
1707 }
1708
1709 BFD_ASSERT (r_type == RELOC_JMP_TBL
1710 || (h->flags & SUNOS_REF_REGULAR) != 0);
1711 BFD_ASSERT (r_type == RELOC_JMP_TBL
1712 || h->plt_offset != 0
1713 || ((h->root.root.type == bfd_link_hash_defined
1714 || h->root.root.type == bfd_link_hash_defweak)
1715 ? (h->root.root.u.def.section->owner->flags
1716 & DYNAMIC) != 0
1717 : (h->root.root.u.undef.abfd->flags & DYNAMIC) != 0));
1718
1719 /* This reloc is against a symbol defined only by a dynamic
1720 object, or it is a jump table reloc from PIC compiled code. */
1721
1722 if (h->root.root.type == bfd_link_hash_undefined)
1723 {
1724 /* Presumably this symbol was marked as being undefined by
1725 an earlier reloc. */
1726 srel->_raw_size += RELOC_EXT_SIZE;
1727 }
1728 else if ((h->root.root.u.def.section->flags & SEC_CODE) == 0)
1729 {
1730 bfd *sub;
1731
1732 /* This reloc is not in the .text section. It must be
1733 copied into the dynamic relocs. We mark the symbol as
1734 being undefined. */
1735 BFD_ASSERT (r_type != RELOC_JMP_TBL);
1736 srel->_raw_size += RELOC_EXT_SIZE;
1737 sub = h->root.root.u.def.section->owner;
1738 h->root.root.type = bfd_link_hash_undefined;
1739 h->root.root.u.undef.abfd = sub;
1740 }
1741 else
1742 {
1743 /* This symbol is in the .text section. We must give it an
1744 entry in the procedure linkage table, if we have not
1745 already done so. We change the definition of the symbol
1746 to the .plt section; this will cause relocs against it to
1747 be handled correctly. */
1748 if (h->plt_offset == 0)
1749 {
1750 if (splt->_raw_size == 0)
1751 splt->_raw_size = SPARC_PLT_ENTRY_SIZE;
1752 h->plt_offset = splt->_raw_size;
1753
1754 if ((h->flags & SUNOS_DEF_REGULAR) == 0)
1755 {
1756 h->root.root.u.def.section = splt;
1757 h->root.root.u.def.value = splt->_raw_size;
1758 }
1759
1760 splt->_raw_size += SPARC_PLT_ENTRY_SIZE;
1761
1762 /* We will also need a dynamic reloc entry, unless this
1763 is a JMP_TBL reloc produced by linking PIC compiled
1764 code, and we are not making a shared library. */
1765 if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0)
1766 srel->_raw_size += RELOC_EXT_SIZE;
1767 }
1768 }
1769 }
1770
1771 return true;
1772 }
1773
1774 /* Build the hash table of dynamic symbols, and to mark as written all
1775 symbols from dynamic objects which we do not plan to write out. */
1776
1777 static boolean
1778 sunos_scan_dynamic_symbol (h, data)
1779 struct sunos_link_hash_entry *h;
1780 PTR data;
1781 {
1782 struct bfd_link_info *info = (struct bfd_link_info *) data;
1783
1784 /* Set the written flag for symbols we do not want to write out as
1785 part of the regular symbol table. This is all symbols which are
1786 not defined in a regular object file. For some reason symbols
1787 which are referenced by a regular object and defined by a dynamic
1788 object do not seem to show up in the regular symbol table. */
1789 if ((h->flags & SUNOS_DEF_REGULAR) == 0)
1790 h->root.written = true;
1791
1792 /* If this symbol is defined by a dynamic object and referenced by a
1793 regular object, see whether we gave it a reasonable value while
1794 scanning the relocs. */
1795
1796 if ((h->flags & SUNOS_DEF_REGULAR) == 0
1797 && (h->flags & SUNOS_DEF_DYNAMIC) != 0
1798 && (h->flags & SUNOS_REF_REGULAR) != 0)
1799 {
1800 if ((h->root.root.type == bfd_link_hash_defined
1801 || h->root.root.type == bfd_link_hash_defweak)
1802 && ((h->root.root.u.def.section->owner->flags & DYNAMIC) != 0)
1803 && h->root.root.u.def.section->output_section == NULL)
1804 {
1805 bfd *sub;
1806
1807 /* This symbol is currently defined in a dynamic section
1808 which is not being put into the output file. This
1809 implies that there is no reloc against the symbol. I'm
1810 not sure why this case would ever occur. In any case, we
1811 change the symbol to be undefined. */
1812 sub = h->root.root.u.def.section->owner;
1813 h->root.root.type = bfd_link_hash_undefined;
1814 h->root.root.u.undef.abfd = sub;
1815 }
1816 }
1817
1818 /* If this symbol is defined or referenced by a regular file, add it
1819 to the dynamic symbols. */
1820 if ((h->flags & (SUNOS_DEF_REGULAR | SUNOS_REF_REGULAR)) != 0)
1821 {
1822 asection *s;
1823 size_t len;
1824 bfd_byte *contents;
1825 unsigned char *name;
1826 unsigned long hash;
1827 bfd *dynobj;
1828
1829 BFD_ASSERT (h->dynindx == -2);
1830
1831 dynobj = sunos_hash_table (info)->dynobj;
1832
1833 h->dynindx = sunos_hash_table (info)->dynsymcount;
1834 ++sunos_hash_table (info)->dynsymcount;
1835
1836 len = strlen (h->root.root.root.string);
1837
1838 /* We don't bother to construct a BFD hash table for the strings
1839 which are the names of the dynamic symbols. Using a hash
1840 table for the regular symbols is beneficial, because the
1841 regular symbols includes the debugging symbols, which have
1842 long names and are often duplicated in several object files.
1843 There are no debugging symbols in the dynamic symbols. */
1844 s = bfd_get_section_by_name (dynobj, ".dynstr");
1845 BFD_ASSERT (s != NULL);
1846 if (s->contents == NULL)
1847 contents = (bfd_byte *) malloc (len + 1);
1848 else
1849 contents = (bfd_byte *) realloc (s->contents,
1850 (size_t) (s->_raw_size + len + 1));
1851 if (contents == NULL)
1852 {
1853 bfd_set_error (bfd_error_no_memory);
1854 return false;
1855 }
1856 s->contents = contents;
1857
1858 h->dynstr_index = s->_raw_size;
1859 strcpy (contents + s->_raw_size, h->root.root.root.string);
1860 s->_raw_size += len + 1;
1861
1862 /* Add it to the dynamic hash table. */
1863 name = (unsigned char *) h->root.root.root.string;
1864 hash = 0;
1865 while (*name != '\0')
1866 hash = (hash << 1) + *name++;
1867 hash &= 0x7fffffff;
1868 hash %= sunos_hash_table (info)->bucketcount;
1869
1870 s = bfd_get_section_by_name (dynobj, ".hash");
1871 BFD_ASSERT (s != NULL);
1872
1873 if (GET_SWORD (dynobj, s->contents + hash * HASH_ENTRY_SIZE) == -1)
1874 PUT_WORD (dynobj, h->dynindx, s->contents + hash * HASH_ENTRY_SIZE);
1875 else
1876 {
1877 bfd_vma next;
1878
1879 next = GET_WORD (dynobj,
1880 (s->contents
1881 + hash * HASH_ENTRY_SIZE
1882 + BYTES_IN_WORD));
1883 PUT_WORD (dynobj, s->_raw_size / HASH_ENTRY_SIZE,
1884 s->contents + hash * HASH_ENTRY_SIZE + BYTES_IN_WORD);
1885 PUT_WORD (dynobj, h->dynindx, s->contents + s->_raw_size);
1886 PUT_WORD (dynobj, next, s->contents + s->_raw_size + BYTES_IN_WORD);
1887 s->_raw_size += HASH_ENTRY_SIZE;
1888 }
1889 }
1890
1891 return true;
1892 }
1893
1894 /* Link a dynamic object. We actually don't have anything to do at
1895 this point. This entry point exists to prevent the regular linker
1896 code from doing anything with the object. */
1897
1898 /*ARGSUSED*/
1899 static boolean
1900 sunos_link_dynamic_object (info, abfd)
1901 struct bfd_link_info *info;
1902 bfd *abfd;
1903 {
1904 return true;
1905 }
1906
1907 /* Write out a dynamic symbol. This is called by the final traversal
1908 over the symbol table. */
1909
1910 static boolean
1911 sunos_write_dynamic_symbol (output_bfd, info, harg)
1912 bfd *output_bfd;
1913 struct bfd_link_info *info;
1914 struct aout_link_hash_entry *harg;
1915 {
1916 struct sunos_link_hash_entry *h = (struct sunos_link_hash_entry *) harg;
1917 int type;
1918 bfd_vma val;
1919 asection *s;
1920 struct external_nlist *outsym;
1921
1922 if (h->dynindx < 0)
1923 return true;
1924
1925 switch (h->root.root.type)
1926 {
1927 default:
1928 case bfd_link_hash_new:
1929 abort ();
1930 /* Avoid variable not initialized warnings. */
1931 return true;
1932 case bfd_link_hash_undefined:
1933 type = N_UNDF | N_EXT;
1934 val = 0;
1935 break;
1936 case bfd_link_hash_defined:
1937 case bfd_link_hash_defweak:
1938 {
1939 asection *sec;
1940 asection *output_section;
1941
1942 sec = h->root.root.u.def.section;
1943 output_section = sec->output_section;
1944 BFD_ASSERT (bfd_is_abs_section (output_section)
1945 || output_section->owner == output_bfd);
1946 if (h->plt_offset != 0
1947 && (h->flags & SUNOS_DEF_REGULAR) == 0)
1948 {
1949 type = N_UNDF | N_EXT;
1950 val = 0;
1951 }
1952 else
1953 {
1954 if (output_section == obj_textsec (output_bfd))
1955 type = (h->root.root.type == bfd_link_hash_defined
1956 ? N_TEXT
1957 : N_WEAKT);
1958 else if (output_section == obj_datasec (output_bfd))
1959 type = (h->root.root.type == bfd_link_hash_defined
1960 ? N_DATA
1961 : N_WEAKD);
1962 else if (output_section == obj_bsssec (output_bfd))
1963 type = (h->root.root.type == bfd_link_hash_defined
1964 ? N_BSS
1965 : N_WEAKB);
1966 else
1967 type = (h->root.root.type == bfd_link_hash_defined
1968 ? N_ABS
1969 : N_WEAKA);
1970 type |= N_EXT;
1971 val = (h->root.root.u.def.value
1972 + output_section->vma
1973 + sec->output_offset);
1974 }
1975 }
1976 break;
1977 case bfd_link_hash_common:
1978 type = N_UNDF | N_EXT;
1979 val = h->root.root.u.c.size;
1980 break;
1981 case bfd_link_hash_undefweak:
1982 type = N_WEAKU;
1983 val = 0;
1984 break;
1985 case bfd_link_hash_indirect:
1986 case bfd_link_hash_warning:
1987 /* FIXME: Ignore these for now. The circumstances under which
1988 they should be written out are not clear to me. */
1989 return true;
1990 }
1991
1992 s = bfd_get_section_by_name (sunos_hash_table (info)->dynobj, ".dynsym");
1993 BFD_ASSERT (s != NULL);
1994 outsym = ((struct external_nlist *)
1995 (s->contents + h->dynindx * EXTERNAL_NLIST_SIZE));
1996
1997 bfd_h_put_8 (output_bfd, type, outsym->e_type);
1998 bfd_h_put_8 (output_bfd, 0, outsym->e_other);
1999
2000 /* FIXME: The native linker doesn't use 0 for desc. It seems to use
2001 one less than the desc value in the shared library, although that
2002 seems unlikely. */
2003 bfd_h_put_16 (output_bfd, 0, outsym->e_desc);
2004
2005 PUT_WORD (output_bfd, h->dynstr_index, outsym->e_strx);
2006 PUT_WORD (output_bfd, val, outsym->e_value);
2007
2008 /* If this symbol is in the procedure linkage table, fill in the
2009 table entry. */
2010 if (h->plt_offset != 0)
2011 {
2012 bfd *dynobj;
2013 asection *splt;
2014 bfd_byte *p;
2015 asection *s;
2016 bfd_vma r_address;
2017
2018 dynobj = sunos_hash_table (info)->dynobj;
2019 splt = bfd_get_section_by_name (dynobj, ".plt");
2020 p = splt->contents + h->plt_offset;
2021
2022 s = bfd_get_section_by_name (dynobj, ".dynrel");
2023
2024 r_address = (h->root.root.u.def.section->output_section->vma
2025 + h->root.root.u.def.section->output_offset
2026 + h->root.root.u.def.value);
2027
2028 switch (bfd_get_arch (output_bfd))
2029 {
2030 case bfd_arch_sparc:
2031 if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0)
2032 {
2033 bfd_put_32 (output_bfd, SPARC_PLT_ENTRY_WORD0, p);
2034 bfd_put_32 (output_bfd,
2035 (SPARC_PLT_ENTRY_WORD1
2036 + (((- (h->plt_offset + 4) >> 2)
2037 & 0x3fffffff))),
2038 p + 4);
2039 bfd_put_32 (output_bfd, SPARC_PLT_ENTRY_WORD2 + s->reloc_count,
2040 p + 8);
2041 }
2042 else
2043 {
2044 bfd_vma val;
2045
2046 val = (h->root.root.u.def.section->output_section->vma
2047 + h->root.root.u.def.section->output_offset
2048 + h->root.root.u.def.value);
2049 bfd_put_32 (output_bfd,
2050 SPARC_PLT_PIC_WORD0 + ((val >> 10) & 0x3fffff),
2051 p);
2052 bfd_put_32 (output_bfd,
2053 SPARC_PLT_PIC_WORD1 + (val & 0x3ff),
2054 p + 4);
2055 bfd_put_32 (output_bfd, SPARC_PLT_PIC_WORD2, p + 8);
2056 }
2057 break;
2058
2059 case bfd_arch_m68k:
2060 if (! info->shared && (h->flags & SUNOS_DEF_REGULAR) != 0)
2061 abort ();
2062 bfd_put_16 (output_bfd, M68K_PLT_ENTRY_WORD0, p);
2063 bfd_put_32 (output_bfd, (- (h->plt_offset + 2)), p + 2);
2064 bfd_put_16 (output_bfd, s->reloc_count, p + 6);
2065 r_address += 2;
2066 break;
2067
2068 default:
2069 abort ();
2070 }
2071
2072 /* We also need to add a jump table reloc, unless this is the
2073 result of a JMP_TBL reloc from PIC compiled code. */
2074 if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0)
2075 {
2076 p = s->contents + s->reloc_count * obj_reloc_entry_size (output_bfd);
2077 if (obj_reloc_entry_size (output_bfd) == RELOC_STD_SIZE)
2078 {
2079 struct reloc_std_external *srel;
2080
2081 srel = (struct reloc_std_external *) p;
2082 PUT_WORD (output_bfd, r_address, srel->r_address);
2083 if (output_bfd->xvec->header_byteorder_big_p)
2084 {
2085 srel->r_index[0] = h->dynindx >> 16;
2086 srel->r_index[1] = h->dynindx >> 8;
2087 srel->r_index[2] = h->dynindx;
2088 srel->r_type[0] = (RELOC_STD_BITS_EXTERN_BIG
2089 | RELOC_STD_BITS_JMPTABLE_BIG);
2090 }
2091 else
2092 {
2093 srel->r_index[2] = h->dynindx >> 16;
2094 srel->r_index[1] = h->dynindx >> 8;
2095 srel->r_index[0] = h->dynindx;
2096 srel->r_type[0] = (RELOC_STD_BITS_EXTERN_LITTLE
2097 | RELOC_STD_BITS_JMPTABLE_LITTLE);
2098 }
2099 }
2100 else
2101 {
2102 struct reloc_ext_external *erel;
2103
2104 erel = (struct reloc_ext_external *) p;
2105 PUT_WORD (output_bfd, r_address, erel->r_address);
2106 if (output_bfd->xvec->header_byteorder_big_p)
2107 {
2108 erel->r_index[0] = h->dynindx >> 16;
2109 erel->r_index[1] = h->dynindx >> 8;
2110 erel->r_index[2] = h->dynindx;
2111 erel->r_type[0] = (RELOC_EXT_BITS_EXTERN_BIG
2112 | (22 << RELOC_EXT_BITS_TYPE_SH_BIG));
2113 }
2114 else
2115 {
2116 erel->r_index[2] = h->dynindx >> 16;
2117 erel->r_index[1] = h->dynindx >> 8;
2118 erel->r_index[0] = h->dynindx;
2119 erel->r_type[0] = (RELOC_EXT_BITS_EXTERN_LITTLE
2120 | (22 << RELOC_EXT_BITS_TYPE_SH_LITTLE));
2121 }
2122 PUT_WORD (output_bfd, (bfd_vma) 0, erel->r_addend);
2123 }
2124
2125 ++s->reloc_count;
2126 }
2127 }
2128
2129 return true;
2130 }
2131
2132 /* This is called for each reloc against an external symbol. If this
2133 is a reloc which are are going to copy as a dynamic reloc, then
2134 copy it over, and tell the caller to not bother processing this
2135 reloc. */
2136
2137 /*ARGSUSED*/
2138 static boolean
2139 sunos_check_dynamic_reloc (info, input_bfd, input_section, harg, reloc,
2140 contents, skip, relocationp)
2141 struct bfd_link_info *info;
2142 bfd *input_bfd;
2143 asection *input_section;
2144 struct aout_link_hash_entry *harg;
2145 PTR reloc;
2146 bfd_byte *contents;
2147 boolean *skip;
2148 bfd_vma *relocationp;
2149 {
2150 struct sunos_link_hash_entry *h = (struct sunos_link_hash_entry *) harg;
2151 bfd *dynobj;
2152 boolean baserel;
2153 asection *s;
2154 bfd_byte *p;
2155
2156 *skip = false;
2157
2158 dynobj = sunos_hash_table (info)->dynobj;
2159
2160 if (h != NULL && h->plt_offset != 0)
2161 {
2162 asection *splt;
2163
2164 /* Redirect the relocation to the PLT entry. */
2165 splt = bfd_get_section_by_name (dynobj, ".plt");
2166 *relocationp = (splt->output_section->vma
2167 + splt->output_offset
2168 + h->plt_offset);
2169 }
2170
2171 if (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE)
2172 {
2173 struct reloc_std_external *srel;
2174
2175 srel = (struct reloc_std_external *) reloc;
2176 if (input_bfd->xvec->header_byteorder_big_p)
2177 baserel = (0 != (srel->r_type[0] & RELOC_STD_BITS_BASEREL_BIG));
2178 else
2179 baserel = (0 != (srel->r_type[0] & RELOC_STD_BITS_BASEREL_LITTLE));
2180 }
2181 else
2182 {
2183 struct reloc_ext_external *erel;
2184 int r_type;
2185
2186 erel = (struct reloc_ext_external *) reloc;
2187 if (input_bfd->xvec->header_byteorder_big_p)
2188 r_type = ((erel->r_type[0] & RELOC_EXT_BITS_TYPE_BIG)
2189 >> RELOC_EXT_BITS_TYPE_SH_BIG);
2190 else
2191 r_type = ((erel->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE)
2192 >> RELOC_EXT_BITS_TYPE_SH_LITTLE);
2193 baserel = (r_type == RELOC_BASE10
2194 || r_type == RELOC_BASE13
2195 || r_type == RELOC_BASE22);
2196 }
2197
2198 if (baserel)
2199 {
2200 bfd_vma *got_offsetp;
2201 asection *sgot;
2202
2203 if (h != NULL)
2204 got_offsetp = &h->got_offset;
2205 else if (adata (input_bfd).local_got_offsets == NULL)
2206 got_offsetp = NULL;
2207 else
2208 {
2209 struct reloc_std_external *srel;
2210 int r_index;
2211
2212 srel = (struct reloc_std_external *) reloc;
2213 if (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE)
2214 {
2215 if (input_bfd->xvec->header_byteorder_big_p)
2216 r_index = ((srel->r_index[0] << 16)
2217 | (srel->r_index[1] << 8)
2218 | srel->r_index[2]);
2219 else
2220 r_index = ((srel->r_index[2] << 16)
2221 | (srel->r_index[1] << 8)
2222 | srel->r_index[0]);
2223 }
2224 else
2225 {
2226 struct reloc_ext_external *erel;
2227
2228 erel = (struct reloc_ext_external *) reloc;
2229 if (input_bfd->xvec->header_byteorder_big_p)
2230 r_index = ((erel->r_index[0] << 16)
2231 | (erel->r_index[1] << 8)
2232 | erel->r_index[2]);
2233 else
2234 r_index = ((erel->r_index[2] << 16)
2235 | (erel->r_index[1] << 8)
2236 | erel->r_index[0]);
2237 }
2238
2239 got_offsetp = adata (input_bfd).local_got_offsets + r_index;
2240 }
2241
2242 BFD_ASSERT (got_offsetp != NULL && *got_offsetp != 0);
2243
2244 sgot = bfd_get_section_by_name (dynobj, ".got");
2245
2246 /* We set the least significant bit to indicate whether we have
2247 already initialized the GOT entry. */
2248 if ((*got_offsetp & 1) == 0)
2249 {
2250 PUT_WORD (dynobj, *relocationp, sgot->contents + *got_offsetp);
2251
2252 if (h != NULL
2253 && (h->flags & SUNOS_DEF_DYNAMIC) != 0
2254 && (h->flags & SUNOS_DEF_REGULAR) == 0)
2255 {
2256 /* We need to create a GLOB_DAT reloc to tell the
2257 dynamic linker to fill in this entry in the table. */
2258
2259 s = bfd_get_section_by_name (dynobj, ".dynrel");
2260 BFD_ASSERT (s != NULL);
2261
2262 p = (s->contents
2263 + s->reloc_count * obj_reloc_entry_size (dynobj));
2264
2265 if (obj_reloc_entry_size (dynobj) == RELOC_STD_SIZE)
2266 {
2267 struct reloc_std_external *srel;
2268
2269 srel = (struct reloc_std_external *) p;
2270 PUT_WORD (dynobj,
2271 (*got_offsetp
2272 + sgot->output_section->vma
2273 + sgot->output_offset),
2274 srel->r_address);
2275 if (dynobj->xvec->header_byteorder_big_p)
2276 {
2277 srel->r_index[0] = h->dynindx >> 16;
2278 srel->r_index[1] = h->dynindx >> 8;
2279 srel->r_index[2] = h->dynindx;
2280 srel->r_type[0] =
2281 (RELOC_STD_BITS_EXTERN_BIG
2282 | RELOC_STD_BITS_BASEREL_BIG
2283 | RELOC_STD_BITS_RELATIVE_BIG
2284 | (2 << RELOC_STD_BITS_LENGTH_SH_BIG));
2285 }
2286 else
2287 {
2288 srel->r_index[2] = h->dynindx >> 16;
2289 srel->r_index[1] = h->dynindx >> 8;
2290 srel->r_index[0] = h->dynindx;
2291 srel->r_type[0] =
2292 (RELOC_STD_BITS_EXTERN_LITTLE
2293 | RELOC_STD_BITS_BASEREL_LITTLE
2294 | RELOC_STD_BITS_RELATIVE_LITTLE
2295 | (2 << RELOC_STD_BITS_LENGTH_SH_LITTLE));
2296 }
2297 }
2298 else
2299 {
2300 struct reloc_ext_external *erel;
2301
2302 erel = (struct reloc_ext_external *) p;
2303 PUT_WORD (dynobj,
2304 (*got_offsetp
2305 + sgot->output_section->vma
2306 + sgot->output_offset),
2307 erel->r_address);
2308 if (dynobj->xvec->header_byteorder_big_p)
2309 {
2310 erel->r_index[0] = h->dynindx >> 16;
2311 erel->r_index[1] = h->dynindx >> 8;
2312 erel->r_index[2] = h->dynindx;
2313 erel->r_type[0] =
2314 (RELOC_EXT_BITS_EXTERN_BIG
2315 | (RELOC_GLOB_DAT << RELOC_EXT_BITS_TYPE_SH_BIG));
2316 }
2317 else
2318 {
2319 erel->r_index[2] = h->dynindx >> 16;
2320 erel->r_index[1] = h->dynindx >> 8;
2321 erel->r_index[0] = h->dynindx;
2322 erel->r_type[0] =
2323 (RELOC_EXT_BITS_EXTERN_LITTLE
2324 | (RELOC_GLOB_DAT << RELOC_EXT_BITS_TYPE_SH_LITTLE));
2325 }
2326 PUT_WORD (dynobj, 0, erel->r_addend);
2327 }
2328
2329 ++s->reloc_count;
2330 }
2331
2332 *got_offsetp |= 1;
2333 }
2334
2335 *relocationp = sgot->vma + (*got_offsetp &~ 1);
2336
2337 /* There is nothing else to do for a base relative reloc. */
2338 return true;
2339 }
2340
2341 if (! sunos_hash_table (info)->dynamic_sections_needed
2342 || h == NULL
2343 || h->dynindx == -1
2344 || h->root.root.type != bfd_link_hash_undefined
2345 || (h->flags & SUNOS_DEF_REGULAR) != 0
2346 || (h->flags & SUNOS_DEF_DYNAMIC) == 0
2347 || (h->root.root.u.undef.abfd->flags & DYNAMIC) == 0)
2348 return true;
2349
2350 /* It looks like this is a reloc we are supposed to copy. */
2351
2352 s = bfd_get_section_by_name (dynobj, ".dynrel");
2353 BFD_ASSERT (s != NULL);
2354
2355 p = s->contents + s->reloc_count * obj_reloc_entry_size (dynobj);
2356
2357 /* Copy the reloc over. */
2358 memcpy (p, reloc, obj_reloc_entry_size (dynobj));
2359
2360 /* Adjust the address and symbol index. */
2361 if (obj_reloc_entry_size (dynobj) == RELOC_STD_SIZE)
2362 {
2363 struct reloc_std_external *srel;
2364
2365 srel = (struct reloc_std_external *) p;
2366 PUT_WORD (dynobj,
2367 (GET_WORD (dynobj, srel->r_address)
2368 + input_section->output_section->vma
2369 + input_section->output_offset),
2370 srel->r_address);
2371 if (dynobj->xvec->header_byteorder_big_p)
2372 {
2373 srel->r_index[0] = h->dynindx >> 16;
2374 srel->r_index[1] = h->dynindx >> 8;
2375 srel->r_index[2] = h->dynindx;
2376 }
2377 else
2378 {
2379 srel->r_index[2] = h->dynindx >> 16;
2380 srel->r_index[1] = h->dynindx >> 8;
2381 srel->r_index[0] = h->dynindx;
2382 }
2383 }
2384 else
2385 {
2386 struct reloc_ext_external *erel;
2387
2388 erel = (struct reloc_ext_external *) p;
2389 PUT_WORD (dynobj,
2390 (GET_WORD (dynobj, erel->r_address)
2391 + input_section->output_section->vma
2392 + input_section->output_offset),
2393 erel->r_address);
2394 if (dynobj->xvec->header_byteorder_big_p)
2395 {
2396 erel->r_index[0] = h->dynindx >> 16;
2397 erel->r_index[1] = h->dynindx >> 8;
2398 erel->r_index[2] = h->dynindx;
2399 }
2400 else
2401 {
2402 erel->r_index[2] = h->dynindx >> 16;
2403 erel->r_index[1] = h->dynindx >> 8;
2404 erel->r_index[0] = h->dynindx;
2405 }
2406 }
2407
2408 ++s->reloc_count;
2409
2410 *skip = true;
2411
2412 return true;
2413 }
2414
2415 /* Finish up the dynamic linking information. */
2416
2417 static boolean
2418 sunos_finish_dynamic_link (abfd, info)
2419 bfd *abfd;
2420 struct bfd_link_info *info;
2421 {
2422 bfd *dynobj;
2423 asection *o;
2424 asection *s;
2425 asection *sdyn;
2426 struct external_sun4_dynamic esd;
2427 struct external_sun4_dynamic_link esdl;
2428
2429 if (! sunos_hash_table (info)->dynamic_sections_needed)
2430 return true;
2431
2432 dynobj = sunos_hash_table (info)->dynobj;
2433
2434 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2435 BFD_ASSERT (sdyn != NULL);
2436
2437 /* Finish up the .need section. The linker emulation code filled it
2438 in, but with offsets from the start of the section instead of
2439 real addresses. Now that we know the section location, we can
2440 fill in the final values. */
2441 s = bfd_get_section_by_name (dynobj, ".need");
2442 if (s != NULL && s->_raw_size != 0)
2443 {
2444 file_ptr filepos;
2445 bfd_byte *p;
2446
2447 filepos = s->output_section->filepos + s->output_offset;
2448 p = s->contents;
2449 while (1)
2450 {
2451 bfd_vma val;
2452
2453 PUT_WORD (dynobj, GET_WORD (dynobj, p) + filepos, p);
2454 val = GET_WORD (dynobj, p + 12);
2455 if (val == 0)
2456 break;
2457 PUT_WORD (dynobj, val + filepos, p + 12);
2458 p += 16;
2459 }
2460 }
2461
2462 /* The first entry in the .got section is the address of the dynamic
2463 information. */
2464 s = bfd_get_section_by_name (dynobj, ".got");
2465 BFD_ASSERT (s != NULL);
2466 PUT_WORD (dynobj, sdyn->output_section->vma + sdyn->output_offset,
2467 s->contents);
2468
2469 for (o = dynobj->sections; o != NULL; o = o->next)
2470 {
2471 if ((o->flags & SEC_HAS_CONTENTS) != 0
2472 && o->contents != NULL)
2473 {
2474 BFD_ASSERT (o->output_section != NULL
2475 && o->output_section->owner == abfd);
2476 if (! bfd_set_section_contents (abfd, o->output_section,
2477 o->contents, o->output_offset,
2478 o->_raw_size))
2479 return false;
2480 }
2481 }
2482
2483 /* Finish up the dynamic link information. */
2484 PUT_WORD (dynobj, (bfd_vma) 3, esd.ld_version);
2485 PUT_WORD (dynobj,
2486 sdyn->output_section->vma + sdyn->output_offset + sizeof esd,
2487 esd.ldd);
2488 PUT_WORD (dynobj,
2489 (sdyn->output_section->vma
2490 + sdyn->output_offset
2491 + sizeof esd
2492 + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE),
2493 esd.ld);
2494
2495 if (! bfd_set_section_contents (abfd, sdyn->output_section, &esd,
2496 sdyn->output_offset, sizeof esd))
2497 return false;
2498
2499
2500 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_loaded);
2501
2502 s = bfd_get_section_by_name (dynobj, ".need");
2503 if (s == NULL || s->_raw_size == 0)
2504 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_need);
2505 else
2506 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2507 esdl.ld_need);
2508
2509 s = bfd_get_section_by_name (dynobj, ".rules");
2510 if (s == NULL || s->_raw_size == 0)
2511 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_rules);
2512 else
2513 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2514 esdl.ld_rules);
2515
2516 s = bfd_get_section_by_name (dynobj, ".got");
2517 BFD_ASSERT (s != NULL);
2518 PUT_WORD (dynobj, s->output_section->vma + s->output_offset, esdl.ld_got);
2519
2520 s = bfd_get_section_by_name (dynobj, ".plt");
2521 BFD_ASSERT (s != NULL);
2522 PUT_WORD (dynobj, s->output_section->vma + s->output_offset, esdl.ld_plt);
2523 PUT_WORD (dynobj, s->_raw_size, esdl.ld_plt_sz);
2524
2525 s = bfd_get_section_by_name (dynobj, ".dynrel");
2526 BFD_ASSERT (s != NULL);
2527 BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj) == s->_raw_size);
2528 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2529 esdl.ld_rel);
2530
2531 s = bfd_get_section_by_name (dynobj, ".hash");
2532 BFD_ASSERT (s != NULL);
2533 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2534 esdl.ld_hash);
2535
2536 s = bfd_get_section_by_name (dynobj, ".dynsym");
2537 BFD_ASSERT (s != NULL);
2538 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2539 esdl.ld_stab);
2540
2541 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_stab_hash);
2542
2543 PUT_WORD (dynobj, (bfd_vma) sunos_hash_table (info)->bucketcount,
2544 esdl.ld_buckets);
2545
2546 s = bfd_get_section_by_name (dynobj, ".dynstr");
2547 BFD_ASSERT (s != NULL);
2548 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2549 esdl.ld_symbols);
2550 PUT_WORD (dynobj, s->_raw_size, esdl.ld_symb_size);
2551
2552 /* The size of the text area is the size of the .text section
2553 rounded up to a page boundary. FIXME: Should the page size be
2554 conditional on something? */
2555 PUT_WORD (dynobj,
2556 BFD_ALIGN (obj_textsec (abfd)->_raw_size, 0x2000),
2557 esdl.ld_text);
2558
2559 if (! bfd_set_section_contents (abfd, sdyn->output_section, &esdl,
2560 (sdyn->output_offset
2561 + sizeof esd
2562 + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE),
2563 sizeof esdl))
2564 return false;
2565
2566 abfd->flags |= DYNAMIC;
2567
2568 return true;
2569 }