* sunos.c (sunos_add_one_symbol): Don't change
[binutils-gdb.git] / bfd / sunos.c
1 /* BFD backend for SunOS binaries.
2 Copyright (C) 1990, 91, 92, 93, 94, 1995 Free Software Foundation, Inc.
3 Written by Cygnus Support.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #define TARGETNAME "a.out-sunos-big"
22 #define MY(OP) CAT(sunos_big_,OP)
23
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libaout.h"
27
28 /* Static routines defined in this file. */
29
30 static boolean sunos_read_dynamic_info PARAMS ((bfd *));
31 static long sunos_get_dynamic_symtab_upper_bound PARAMS ((bfd *));
32 static boolean sunos_slurp_dynamic_symtab PARAMS ((bfd *));
33 static long sunos_canonicalize_dynamic_symtab PARAMS ((bfd *, asymbol **));
34 static long sunos_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
35 static long sunos_canonicalize_dynamic_reloc
36 PARAMS ((bfd *, arelent **, asymbol **));
37 static struct bfd_hash_entry *sunos_link_hash_newfunc
38 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
39 static struct bfd_link_hash_table *sunos_link_hash_table_create
40 PARAMS ((bfd *));
41 static boolean sunos_create_dynamic_sections
42 PARAMS ((bfd *, struct bfd_link_info *, boolean));
43 static boolean sunos_add_dynamic_symbols
44 PARAMS ((bfd *, struct bfd_link_info *, struct external_nlist **,
45 bfd_size_type *, char **));
46 static boolean sunos_add_one_symbol
47 PARAMS ((struct bfd_link_info *, bfd *, const char *, flagword, asection *,
48 bfd_vma, const char *, boolean, boolean,
49 struct bfd_link_hash_entry **));
50 static boolean sunos_scan_relocs
51 PARAMS ((struct bfd_link_info *, bfd *, asection *, bfd_size_type));
52 static boolean sunos_scan_std_relocs
53 PARAMS ((struct bfd_link_info *, bfd *, asection *,
54 const struct reloc_std_external *, bfd_size_type));
55 static boolean sunos_scan_ext_relocs
56 PARAMS ((struct bfd_link_info *, bfd *, asection *,
57 const struct reloc_ext_external *, bfd_size_type));
58 static boolean sunos_link_dynamic_object
59 PARAMS ((struct bfd_link_info *, bfd *));
60 static boolean sunos_write_dynamic_symbol
61 PARAMS ((bfd *, struct bfd_link_info *, struct aout_link_hash_entry *));
62 static boolean sunos_check_dynamic_reloc
63 PARAMS ((struct bfd_link_info *, bfd *, asection *,
64 struct aout_link_hash_entry *, PTR, bfd_byte *, boolean *,
65 bfd_vma *));
66 static boolean sunos_finish_dynamic_link
67 PARAMS ((bfd *, struct bfd_link_info *));
68
69 #define MY_get_dynamic_symtab_upper_bound sunos_get_dynamic_symtab_upper_bound
70 #define MY_canonicalize_dynamic_symtab sunos_canonicalize_dynamic_symtab
71 #define MY_get_dynamic_reloc_upper_bound sunos_get_dynamic_reloc_upper_bound
72 #define MY_canonicalize_dynamic_reloc sunos_canonicalize_dynamic_reloc
73 #define MY_bfd_link_hash_table_create sunos_link_hash_table_create
74 #define MY_add_dynamic_symbols sunos_add_dynamic_symbols
75 #define MY_add_one_symbol sunos_add_one_symbol
76 #define MY_link_dynamic_object sunos_link_dynamic_object
77 #define MY_write_dynamic_symbol sunos_write_dynamic_symbol
78 #define MY_check_dynamic_reloc sunos_check_dynamic_reloc
79 #define MY_finish_dynamic_link sunos_finish_dynamic_link
80
81 /* Include the usual a.out support. */
82 #include "aoutf1.h"
83
84 /* SunOS shared library support. We store a pointer to this structure
85 in obj_aout_dynamic_info (abfd). */
86
87 struct sunos_dynamic_info
88 {
89 /* Whether we found any dynamic information. */
90 boolean valid;
91 /* Dynamic information. */
92 struct internal_sun4_dynamic_link dyninfo;
93 /* Number of dynamic symbols. */
94 unsigned long dynsym_count;
95 /* Read in nlists for dynamic symbols. */
96 struct external_nlist *dynsym;
97 /* asymbol structures for dynamic symbols. */
98 aout_symbol_type *canonical_dynsym;
99 /* Read in dynamic string table. */
100 char *dynstr;
101 /* Number of dynamic relocs. */
102 unsigned long dynrel_count;
103 /* Read in dynamic relocs. This may be reloc_std_external or
104 reloc_ext_external. */
105 PTR dynrel;
106 /* arelent structures for dynamic relocs. */
107 arelent *canonical_dynrel;
108 };
109
110 /* The hash table of dynamic symbols is composed of two word entries.
111 See include/aout/sun4.h for details. */
112
113 #define HASH_ENTRY_SIZE (2 * BYTES_IN_WORD)
114
115 /* Read in the basic dynamic information. This locates the __DYNAMIC
116 structure and uses it to find the dynamic_link structure. It
117 creates and saves a sunos_dynamic_info structure. If it can't find
118 __DYNAMIC, it sets the valid field of the sunos_dynamic_info
119 structure to false to avoid doing this work again. */
120
121 static boolean
122 sunos_read_dynamic_info (abfd)
123 bfd *abfd;
124 {
125 struct sunos_dynamic_info *info;
126 asection *dynsec;
127 bfd_vma dynoff;
128 struct external_sun4_dynamic dyninfo;
129 unsigned long dynver;
130 struct external_sun4_dynamic_link linkinfo;
131
132 if (obj_aout_dynamic_info (abfd) != (PTR) NULL)
133 return true;
134
135 if ((abfd->flags & DYNAMIC) == 0)
136 {
137 bfd_set_error (bfd_error_invalid_operation);
138 return false;
139 }
140
141 info = ((struct sunos_dynamic_info *)
142 bfd_zalloc (abfd, sizeof (struct sunos_dynamic_info)));
143 if (!info)
144 {
145 bfd_set_error (bfd_error_no_memory);
146 return false;
147 }
148 info->valid = false;
149 info->dynsym = NULL;
150 info->dynstr = NULL;
151 info->canonical_dynsym = NULL;
152 info->dynrel = NULL;
153 info->canonical_dynrel = NULL;
154 obj_aout_dynamic_info (abfd) = (PTR) info;
155
156 /* This code used to look for the __DYNAMIC symbol to locate the dynamic
157 linking information.
158 However this inhibits recovering the dynamic symbols from a
159 stripped object file, so blindly assume that the dynamic linking
160 information is located at the start of the data section.
161 We could verify this assumption later by looking through the dynamic
162 symbols for the __DYNAMIC symbol. */
163 if ((abfd->flags & DYNAMIC) == 0)
164 return true;
165 if (! bfd_get_section_contents (abfd, obj_datasec (abfd), (PTR) &dyninfo,
166 (file_ptr) 0, sizeof dyninfo))
167 return true;
168
169 dynver = GET_WORD (abfd, dyninfo.ld_version);
170 if (dynver != 2 && dynver != 3)
171 return true;
172
173 dynoff = GET_WORD (abfd, dyninfo.ld);
174
175 /* dynoff is a virtual address. It is probably always in the .data
176 section, but this code should work even if it moves. */
177 if (dynoff < bfd_get_section_vma (abfd, obj_datasec (abfd)))
178 dynsec = obj_textsec (abfd);
179 else
180 dynsec = obj_datasec (abfd);
181 dynoff -= bfd_get_section_vma (abfd, dynsec);
182 if (dynoff > bfd_section_size (abfd, dynsec))
183 return true;
184
185 /* This executable appears to be dynamically linked in a way that we
186 can understand. */
187 if (! bfd_get_section_contents (abfd, dynsec, (PTR) &linkinfo, dynoff,
188 (bfd_size_type) sizeof linkinfo))
189 return true;
190
191 /* Swap in the dynamic link information. */
192 info->dyninfo.ld_loaded = GET_WORD (abfd, linkinfo.ld_loaded);
193 info->dyninfo.ld_need = GET_WORD (abfd, linkinfo.ld_need);
194 info->dyninfo.ld_rules = GET_WORD (abfd, linkinfo.ld_rules);
195 info->dyninfo.ld_got = GET_WORD (abfd, linkinfo.ld_got);
196 info->dyninfo.ld_plt = GET_WORD (abfd, linkinfo.ld_plt);
197 info->dyninfo.ld_rel = GET_WORD (abfd, linkinfo.ld_rel);
198 info->dyninfo.ld_hash = GET_WORD (abfd, linkinfo.ld_hash);
199 info->dyninfo.ld_stab = GET_WORD (abfd, linkinfo.ld_stab);
200 info->dyninfo.ld_stab_hash = GET_WORD (abfd, linkinfo.ld_stab_hash);
201 info->dyninfo.ld_buckets = GET_WORD (abfd, linkinfo.ld_buckets);
202 info->dyninfo.ld_symbols = GET_WORD (abfd, linkinfo.ld_symbols);
203 info->dyninfo.ld_symb_size = GET_WORD (abfd, linkinfo.ld_symb_size);
204 info->dyninfo.ld_text = GET_WORD (abfd, linkinfo.ld_text);
205 info->dyninfo.ld_plt_sz = GET_WORD (abfd, linkinfo.ld_plt_sz);
206
207 /* Reportedly the addresses need to be offset by the size of the
208 exec header in an NMAGIC file. */
209 if (adata (abfd).magic == n_magic)
210 {
211 unsigned long exec_bytes_size = adata (abfd).exec_bytes_size;
212
213 info->dyninfo.ld_need += exec_bytes_size;
214 info->dyninfo.ld_rules += exec_bytes_size;
215 info->dyninfo.ld_rel += exec_bytes_size;
216 info->dyninfo.ld_hash += exec_bytes_size;
217 info->dyninfo.ld_stab += exec_bytes_size;
218 info->dyninfo.ld_symbols += exec_bytes_size;
219 }
220
221 /* The only way to get the size of the symbol information appears to
222 be to determine the distance between it and the string table. */
223 info->dynsym_count = ((info->dyninfo.ld_symbols - info->dyninfo.ld_stab)
224 / EXTERNAL_NLIST_SIZE);
225 BFD_ASSERT (info->dynsym_count * EXTERNAL_NLIST_SIZE
226 == (unsigned long) (info->dyninfo.ld_symbols
227 - info->dyninfo.ld_stab));
228
229 /* Similarly, the relocs end at the hash table. */
230 info->dynrel_count = ((info->dyninfo.ld_hash - info->dyninfo.ld_rel)
231 / obj_reloc_entry_size (abfd));
232 BFD_ASSERT (info->dynrel_count * obj_reloc_entry_size (abfd)
233 == (unsigned long) (info->dyninfo.ld_hash
234 - info->dyninfo.ld_rel));
235
236 info->valid = true;
237
238 return true;
239 }
240
241 /* Return the amount of memory required for the dynamic symbols. */
242
243 static long
244 sunos_get_dynamic_symtab_upper_bound (abfd)
245 bfd *abfd;
246 {
247 struct sunos_dynamic_info *info;
248
249 if (! sunos_read_dynamic_info (abfd))
250 return -1;
251
252 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
253 if (! info->valid)
254 {
255 bfd_set_error (bfd_error_no_symbols);
256 return -1;
257 }
258
259 return (info->dynsym_count + 1) * sizeof (asymbol *);
260 }
261
262 /* Read the external dynamic symbols. */
263
264 static boolean
265 sunos_slurp_dynamic_symtab (abfd)
266 bfd *abfd;
267 {
268 struct sunos_dynamic_info *info;
269
270 /* Get the general dynamic information. */
271 if (obj_aout_dynamic_info (abfd) == NULL)
272 {
273 if (! sunos_read_dynamic_info (abfd))
274 return false;
275 }
276
277 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
278 if (! info->valid)
279 {
280 bfd_set_error (bfd_error_no_symbols);
281 return false;
282 }
283
284 /* Get the dynamic nlist structures. */
285 if (info->dynsym == (struct external_nlist *) NULL)
286 {
287 info->dynsym = ((struct external_nlist *)
288 bfd_alloc (abfd,
289 (info->dynsym_count
290 * EXTERNAL_NLIST_SIZE)));
291 if (info->dynsym == NULL && info->dynsym_count != 0)
292 {
293 bfd_set_error (bfd_error_no_memory);
294 return false;
295 }
296 if (bfd_seek (abfd, info->dyninfo.ld_stab, SEEK_SET) != 0
297 || (bfd_read ((PTR) info->dynsym, info->dynsym_count,
298 EXTERNAL_NLIST_SIZE, abfd)
299 != info->dynsym_count * EXTERNAL_NLIST_SIZE))
300 {
301 if (info->dynsym != NULL)
302 {
303 bfd_release (abfd, info->dynsym);
304 info->dynsym = NULL;
305 }
306 return false;
307 }
308 }
309
310 /* Get the dynamic strings. */
311 if (info->dynstr == (char *) NULL)
312 {
313 info->dynstr = (char *) bfd_alloc (abfd, info->dyninfo.ld_symb_size);
314 if (info->dynstr == NULL && info->dyninfo.ld_symb_size != 0)
315 {
316 bfd_set_error (bfd_error_no_memory);
317 return false;
318 }
319 if (bfd_seek (abfd, info->dyninfo.ld_symbols, SEEK_SET) != 0
320 || (bfd_read ((PTR) info->dynstr, 1, info->dyninfo.ld_symb_size,
321 abfd)
322 != info->dyninfo.ld_symb_size))
323 {
324 if (info->dynstr != NULL)
325 {
326 bfd_release (abfd, info->dynstr);
327 info->dynstr = NULL;
328 }
329 return false;
330 }
331 }
332
333 return true;
334 }
335
336 /* Read in the dynamic symbols. */
337
338 static long
339 sunos_canonicalize_dynamic_symtab (abfd, storage)
340 bfd *abfd;
341 asymbol **storage;
342 {
343 struct sunos_dynamic_info *info;
344 unsigned long i;
345
346 if (! sunos_slurp_dynamic_symtab (abfd))
347 return -1;
348
349 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
350
351 #ifdef CHECK_DYNAMIC_HASH
352 /* Check my understanding of the dynamic hash table by making sure
353 that each symbol can be located in the hash table. */
354 {
355 bfd_size_type table_size;
356 bfd_byte *table;
357 bfd_size_type i;
358
359 if (info->dyninfo.ld_buckets > info->dynsym_count)
360 abort ();
361 table_size = info->dyninfo.ld_stab - info->dyninfo.ld_hash;
362 table = (bfd_byte *) malloc (table_size);
363 if (table == NULL && table_size != 0)
364 abort ();
365 if (bfd_seek (abfd, info->dyninfo.ld_hash, SEEK_SET) != 0
366 || bfd_read ((PTR) table, 1, table_size, abfd) != table_size)
367 abort ();
368 for (i = 0; i < info->dynsym_count; i++)
369 {
370 unsigned char *name;
371 unsigned long hash;
372
373 name = ((unsigned char *) info->dynstr
374 + GET_WORD (abfd, info->dynsym[i].e_strx));
375 hash = 0;
376 while (*name != '\0')
377 hash = (hash << 1) + *name++;
378 hash &= 0x7fffffff;
379 hash %= info->dyninfo.ld_buckets;
380 while (GET_WORD (abfd, table + hash * HASH_ENTRY_SIZE) != i)
381 {
382 hash = GET_WORD (abfd,
383 table + hash * HASH_ENTRY_SIZE + BYTES_IN_WORD);
384 if (hash == 0 || hash >= table_size / HASH_ENTRY_SIZE)
385 abort ();
386 }
387 }
388 free (table);
389 }
390 #endif /* CHECK_DYNAMIC_HASH */
391
392 /* Get the asymbol structures corresponding to the dynamic nlist
393 structures. */
394 if (info->canonical_dynsym == (aout_symbol_type *) NULL)
395 {
396 info->canonical_dynsym = ((aout_symbol_type *)
397 bfd_alloc (abfd,
398 (info->dynsym_count
399 * sizeof (aout_symbol_type))));
400 if (info->canonical_dynsym == NULL && info->dynsym_count != 0)
401 {
402 bfd_set_error (bfd_error_no_memory);
403 return -1;
404 }
405
406 if (! aout_32_translate_symbol_table (abfd, info->canonical_dynsym,
407 info->dynsym, info->dynsym_count,
408 info->dynstr,
409 info->dyninfo.ld_symb_size,
410 true))
411 {
412 if (info->canonical_dynsym != NULL)
413 {
414 bfd_release (abfd, info->canonical_dynsym);
415 info->canonical_dynsym = NULL;
416 }
417 return -1;
418 }
419 }
420
421 /* Return pointers to the dynamic asymbol structures. */
422 for (i = 0; i < info->dynsym_count; i++)
423 *storage++ = (asymbol *) (info->canonical_dynsym + i);
424 *storage = NULL;
425
426 return info->dynsym_count;
427 }
428
429 /* Return the amount of memory required for the dynamic relocs. */
430
431 static long
432 sunos_get_dynamic_reloc_upper_bound (abfd)
433 bfd *abfd;
434 {
435 struct sunos_dynamic_info *info;
436
437 if (! sunos_read_dynamic_info (abfd))
438 return -1;
439
440 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
441 if (! info->valid)
442 {
443 bfd_set_error (bfd_error_no_symbols);
444 return -1;
445 }
446
447 return (info->dynrel_count + 1) * sizeof (arelent *);
448 }
449
450 /* Read in the dynamic relocs. */
451
452 static long
453 sunos_canonicalize_dynamic_reloc (abfd, storage, syms)
454 bfd *abfd;
455 arelent **storage;
456 asymbol **syms;
457 {
458 struct sunos_dynamic_info *info;
459 unsigned long i;
460
461 /* Get the general dynamic information. */
462 if (obj_aout_dynamic_info (abfd) == (PTR) NULL)
463 {
464 if (! sunos_read_dynamic_info (abfd))
465 return -1;
466 }
467
468 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
469 if (! info->valid)
470 {
471 bfd_set_error (bfd_error_no_symbols);
472 return -1;
473 }
474
475 /* Get the dynamic reloc information. */
476 if (info->dynrel == NULL)
477 {
478 info->dynrel = (PTR) bfd_alloc (abfd,
479 (info->dynrel_count
480 * obj_reloc_entry_size (abfd)));
481 if (info->dynrel == NULL && info->dynrel_count != 0)
482 {
483 bfd_set_error (bfd_error_no_memory);
484 return -1;
485 }
486 if (bfd_seek (abfd, info->dyninfo.ld_rel, SEEK_SET) != 0
487 || (bfd_read ((PTR) info->dynrel, info->dynrel_count,
488 obj_reloc_entry_size (abfd), abfd)
489 != info->dynrel_count * obj_reloc_entry_size (abfd)))
490 {
491 if (info->dynrel != NULL)
492 {
493 bfd_release (abfd, info->dynrel);
494 info->dynrel = NULL;
495 }
496 return -1;
497 }
498 }
499
500 /* Get the arelent structures corresponding to the dynamic reloc
501 information. */
502 if (info->canonical_dynrel == (arelent *) NULL)
503 {
504 arelent *to;
505
506 info->canonical_dynrel = ((arelent *)
507 bfd_alloc (abfd,
508 (info->dynrel_count
509 * sizeof (arelent))));
510 if (info->canonical_dynrel == NULL && info->dynrel_count != 0)
511 {
512 bfd_set_error (bfd_error_no_memory);
513 return -1;
514 }
515
516 to = info->canonical_dynrel;
517
518 if (obj_reloc_entry_size (abfd) == RELOC_EXT_SIZE)
519 {
520 register struct reloc_ext_external *p;
521 struct reloc_ext_external *pend;
522
523 p = (struct reloc_ext_external *) info->dynrel;
524 pend = p + info->dynrel_count;
525 for (; p < pend; p++, to++)
526 NAME(aout,swap_ext_reloc_in) (abfd, p, to, syms,
527 info->dynsym_count);
528 }
529 else
530 {
531 register struct reloc_std_external *p;
532 struct reloc_std_external *pend;
533
534 p = (struct reloc_std_external *) info->dynrel;
535 pend = p + info->dynrel_count;
536 for (; p < pend; p++, to++)
537 NAME(aout,swap_std_reloc_in) (abfd, p, to, syms,
538 info->dynsym_count);
539 }
540 }
541
542 /* Return pointers to the dynamic arelent structures. */
543 for (i = 0; i < info->dynrel_count; i++)
544 *storage++ = info->canonical_dynrel + i;
545 *storage = NULL;
546
547 return info->dynrel_count;
548 }
549 \f
550 /* Code to handle linking of SunOS shared libraries. */
551
552 /* A SPARC procedure linkage table entry is 12 bytes. The first entry
553 in the table is a jump which is filled in by the runtime linker.
554 The remaining entries are branches back to the first entry,
555 followed by an index into the relocation table encoded to look like
556 a sethi of %g0. */
557
558 #define SPARC_PLT_ENTRY_SIZE (12)
559
560 static const bfd_byte sparc_plt_first_entry[SPARC_PLT_ENTRY_SIZE] =
561 {
562 /* sethi %hi(0),%g1; address filled in by runtime linker. */
563 0x3, 0, 0, 0,
564 /* jmp %g1; offset filled in by runtime linker. */
565 0x81, 0xc0, 0x60, 0,
566 /* nop */
567 0x1, 0, 0, 0
568 };
569
570 /* save %sp, -96, %sp */
571 #define SPARC_PLT_ENTRY_WORD0 0x9de3bfa0
572 /* call; address filled in later. */
573 #define SPARC_PLT_ENTRY_WORD1 0x40000000
574 /* sethi; reloc index filled in later. */
575 #define SPARC_PLT_ENTRY_WORD2 0x01000000
576
577 /* This sequence is used when for the jump table entry to a defined
578 symbol in a complete executable. It is used when linking PIC
579 compiled code which is not being put into a shared library. */
580 /* sethi <address to be filled in later>, %g1 */
581 #define SPARC_PLT_PIC_WORD0 0x03000000
582 /* jmp %g1 + <address to be filled in later> */
583 #define SPARC_PLT_PIC_WORD1 0x81c06000
584 /* nop */
585 #define SPARC_PLT_PIC_WORD2 0x01000000
586
587 /* An m68k procedure linkage table entry is 8 bytes. The first entry
588 in the table is a jump which is filled in the by the runtime
589 linker. The remaining entries are branches back to the first
590 entry, followed by a two byte index into the relocation table. */
591
592 #define M68K_PLT_ENTRY_SIZE (8)
593
594 static const bfd_byte m68k_plt_first_entry[M68K_PLT_ENTRY_SIZE] =
595 {
596 /* jmps @# */
597 0x4e, 0xf9,
598 /* Filled in by runtime linker with a magic address. */
599 0, 0, 0, 0,
600 /* Not used? */
601 0, 0
602 };
603
604 /* bsrl */
605 #define M68K_PLT_ENTRY_WORD0 (0x61ff)
606 /* Remaining words filled in later. */
607
608 /* An entry in the SunOS linker hash table. */
609
610 struct sunos_link_hash_entry
611 {
612 struct aout_link_hash_entry root;
613
614 /* If this is a dynamic symbol, this is its index into the dynamic
615 symbol table. This is initialized to -1. As the linker looks at
616 the input files, it changes this to -2 if it will be added to the
617 dynamic symbol table. After all the input files have been seen,
618 the linker will know whether to build a dynamic symbol table; if
619 it does build one, this becomes the index into the table. */
620 long dynindx;
621
622 /* If this is a dynamic symbol, this is the index of the name in the
623 dynamic symbol string table. */
624 long dynstr_index;
625
626 /* The offset into the global offset table used for this symbol. If
627 the symbol does not require a GOT entry, this is 0. */
628 bfd_vma got_offset;
629
630 /* The offset into the procedure linkage table used for this symbol.
631 If the symbol does not require a PLT entry, this is 0. */
632 bfd_vma plt_offset;
633
634 /* Some linker flags. */
635 unsigned char flags;
636 /* Symbol is referenced by a regular object. */
637 #define SUNOS_REF_REGULAR 01
638 /* Symbol is defined by a regular object. */
639 #define SUNOS_DEF_REGULAR 02
640 /* Symbol is referenced by a dynamic object. */
641 #define SUNOS_REF_DYNAMIC 010
642 /* Symbol is defined by a dynamic object. */
643 #define SUNOS_DEF_DYNAMIC 020
644 };
645
646 /* The SunOS linker hash table. */
647
648 struct sunos_link_hash_table
649 {
650 struct aout_link_hash_table root;
651
652 /* The object which holds the dynamic sections. */
653 bfd *dynobj;
654
655 /* Whether we have created the dynamic sections. */
656 boolean dynamic_sections_created;
657
658 /* Whether we need the dynamic sections. */
659 boolean dynamic_sections_needed;
660
661 /* The number of dynamic symbols. */
662 size_t dynsymcount;
663
664 /* The number of buckets in the hash table. */
665 size_t bucketcount;
666 };
667
668 /* Routine to create an entry in an SunOS link hash table. */
669
670 static struct bfd_hash_entry *
671 sunos_link_hash_newfunc (entry, table, string)
672 struct bfd_hash_entry *entry;
673 struct bfd_hash_table *table;
674 const char *string;
675 {
676 struct sunos_link_hash_entry *ret = (struct sunos_link_hash_entry *) entry;
677
678 /* Allocate the structure if it has not already been allocated by a
679 subclass. */
680 if (ret == (struct sunos_link_hash_entry *) NULL)
681 ret = ((struct sunos_link_hash_entry *)
682 bfd_hash_allocate (table, sizeof (struct sunos_link_hash_entry)));
683 if (ret == (struct sunos_link_hash_entry *) NULL)
684 {
685 bfd_set_error (bfd_error_no_memory);
686 return (struct bfd_hash_entry *) ret;
687 }
688
689 /* Call the allocation method of the superclass. */
690 ret = ((struct sunos_link_hash_entry *)
691 NAME(aout,link_hash_newfunc) ((struct bfd_hash_entry *) ret,
692 table, string));
693 if (ret != NULL)
694 {
695 /* Set local fields. */
696 ret->dynindx = -1;
697 ret->dynstr_index = -1;
698 ret->got_offset = 0;
699 ret->plt_offset = 0;
700 ret->flags = 0;
701 }
702
703 return (struct bfd_hash_entry *) ret;
704 }
705
706 /* Create a SunOS link hash table. */
707
708 static struct bfd_link_hash_table *
709 sunos_link_hash_table_create (abfd)
710 bfd *abfd;
711 {
712 struct sunos_link_hash_table *ret;
713
714 ret = ((struct sunos_link_hash_table *)
715 bfd_alloc (abfd, sizeof (struct sunos_link_hash_table)));
716 if (ret == (struct sunos_link_hash_table *) NULL)
717 {
718 bfd_set_error (bfd_error_no_memory);
719 return (struct bfd_link_hash_table *) NULL;
720 }
721 if (! NAME(aout,link_hash_table_init) (&ret->root, abfd,
722 sunos_link_hash_newfunc))
723 {
724 free (ret);
725 return (struct bfd_link_hash_table *) NULL;
726 }
727
728 ret->dynobj = NULL;
729 ret->dynamic_sections_created = false;
730 ret->dynamic_sections_needed = false;
731 ret->dynsymcount = 0;
732 ret->bucketcount = 0;
733
734 return &ret->root.root;
735 }
736
737 /* Look up an entry in an SunOS link hash table. */
738
739 #define sunos_link_hash_lookup(table, string, create, copy, follow) \
740 ((struct sunos_link_hash_entry *) \
741 aout_link_hash_lookup (&(table)->root, (string), (create), (copy),\
742 (follow)))
743
744 /* Traverse a SunOS link hash table. */
745
746 #define sunos_link_hash_traverse(table, func, info) \
747 (aout_link_hash_traverse \
748 (&(table)->root, \
749 (boolean (*) PARAMS ((struct aout_link_hash_entry *, PTR))) (func), \
750 (info)))
751
752 /* Get the SunOS link hash table from the info structure. This is
753 just a cast. */
754
755 #define sunos_hash_table(p) ((struct sunos_link_hash_table *) ((p)->hash))
756
757 static boolean sunos_scan_dynamic_symbol
758 PARAMS ((struct sunos_link_hash_entry *, PTR));
759
760 /* Create the dynamic sections needed if we are linking against a
761 dynamic object, or if we are linking PIC compiled code. ABFD is a
762 bfd we can attach the dynamic sections to. The linker script will
763 look for these special sections names and put them in the right
764 place in the output file. See include/aout/sun4.h for more details
765 of the dynamic linking information. */
766
767 static boolean
768 sunos_create_dynamic_sections (abfd, info, needed)
769 bfd *abfd;
770 struct bfd_link_info *info;
771 boolean needed;
772 {
773 asection *s;
774
775 if (! sunos_hash_table (info)->dynamic_sections_created)
776 {
777 flagword flags;
778
779 sunos_hash_table (info)->dynobj = abfd;
780
781 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY;
782
783 /* The .dynamic section holds the basic dynamic information: the
784 sun4_dynamic structure, the dynamic debugger information, and
785 the sun4_dynamic_link structure. */
786 s = bfd_make_section (abfd, ".dynamic");
787 if (s == NULL
788 || ! bfd_set_section_flags (abfd, s, flags)
789 || ! bfd_set_section_alignment (abfd, s, 2))
790 return false;
791
792 /* The .got section holds the global offset table. The address
793 is put in the ld_got field. */
794 s = bfd_make_section (abfd, ".got");
795 if (s == NULL
796 || ! bfd_set_section_flags (abfd, s, flags)
797 || ! bfd_set_section_alignment (abfd, s, 2))
798 return false;
799
800 /* The .plt section holds the procedure linkage table. The
801 address is put in the ld_plt field. */
802 s = bfd_make_section (abfd, ".plt");
803 if (s == NULL
804 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
805 || ! bfd_set_section_alignment (abfd, s, 2))
806 return false;
807
808 /* The .dynrel section holds the dynamic relocs. The address is
809 put in the ld_rel field. */
810 s = bfd_make_section (abfd, ".dynrel");
811 if (s == NULL
812 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
813 || ! bfd_set_section_alignment (abfd, s, 2))
814 return false;
815
816 /* The .hash section holds the dynamic hash table. The address
817 is put in the ld_hash field. */
818 s = bfd_make_section (abfd, ".hash");
819 if (s == NULL
820 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
821 || ! bfd_set_section_alignment (abfd, s, 2))
822 return false;
823
824 /* The .dynsym section holds the dynamic symbols. The address
825 is put in the ld_stab field. */
826 s = bfd_make_section (abfd, ".dynsym");
827 if (s == NULL
828 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
829 || ! bfd_set_section_alignment (abfd, s, 2))
830 return false;
831
832 /* The .dynstr section holds the dynamic symbol string table.
833 The address is put in the ld_symbols field. */
834 s = bfd_make_section (abfd, ".dynstr");
835 if (s == NULL
836 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
837 || ! bfd_set_section_alignment (abfd, s, 2))
838 return false;
839
840 sunos_hash_table (info)->dynamic_sections_created = true;
841 }
842
843 if (needed && ! sunos_hash_table (info)->dynamic_sections_needed)
844 {
845 bfd *dynobj;
846
847 dynobj = sunos_hash_table (info)->dynobj;
848
849 s = bfd_get_section_by_name (dynobj, ".got");
850 s->_raw_size = BYTES_IN_WORD;
851
852 sunos_hash_table (info)->dynamic_sections_needed = true;
853 }
854
855 return true;
856 }
857
858 /* Add dynamic symbols during a link. This is called by the a.out
859 backend linker when it encounters an object with the DYNAMIC flag
860 set. */
861
862 static boolean
863 sunos_add_dynamic_symbols (abfd, info, symsp, sym_countp, stringsp)
864 bfd *abfd;
865 struct bfd_link_info *info;
866 struct external_nlist **symsp;
867 bfd_size_type *sym_countp;
868 char **stringsp;
869 {
870 asection *s;
871 bfd *dynobj;
872 struct sunos_dynamic_info *dinfo;
873
874 /* We do not want to include the sections in a dynamic object in the
875 output file. We hack by simply clobbering the list of sections
876 in the BFD. This could be handled more cleanly by, say, a new
877 section flag; the existing SEC_NEVER_LOAD flag is not the one we
878 want, because that one still implies that the section takes up
879 space in the output file. */
880 abfd->sections = NULL;
881
882 /* The native linker seems to just ignore dynamic objects when -r is
883 used. */
884 if (info->relocateable)
885 return true;
886
887 /* There's no hope of using a dynamic object which does not exactly
888 match the format of the output file. */
889 if (info->hash->creator != abfd->xvec)
890 {
891 bfd_set_error (bfd_error_invalid_operation);
892 return false;
893 }
894
895 /* Make sure we have all the required information. */
896 if (! sunos_create_dynamic_sections (abfd, info, true))
897 return false;
898
899 /* Make sure we have a .need and a .rules sections. These are only
900 needed if there really is a dynamic object in the link, so they
901 are not added by sunos_create_dynamic_sections. */
902 dynobj = sunos_hash_table (info)->dynobj;
903 if (bfd_get_section_by_name (dynobj, ".need") == NULL)
904 {
905 /* The .need section holds the list of names of shared objets
906 which must be included at runtime. The address of this
907 section is put in the ld_need field. */
908 s = bfd_make_section (dynobj, ".need");
909 if (s == NULL
910 || ! bfd_set_section_flags (dynobj, s,
911 (SEC_ALLOC
912 | SEC_LOAD
913 | SEC_HAS_CONTENTS
914 | SEC_IN_MEMORY
915 | SEC_READONLY))
916 || ! bfd_set_section_alignment (dynobj, s, 2))
917 return false;
918 }
919
920 if (bfd_get_section_by_name (dynobj, ".rules") == NULL)
921 {
922 /* The .rules section holds the path to search for shared
923 objects. The address of this section is put in the ld_rules
924 field. */
925 s = bfd_make_section (dynobj, ".rules");
926 if (s == NULL
927 || ! bfd_set_section_flags (dynobj, s,
928 (SEC_ALLOC
929 | SEC_LOAD
930 | SEC_HAS_CONTENTS
931 | SEC_IN_MEMORY
932 | SEC_READONLY))
933 || ! bfd_set_section_alignment (dynobj, s, 2))
934 return false;
935 }
936
937 /* Pick up the dynamic symbols and return them to the caller. */
938 if (! sunos_slurp_dynamic_symtab (abfd))
939 return false;
940
941 dinfo = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
942 *symsp = dinfo->dynsym;
943 *sym_countp = dinfo->dynsym_count;
944 *stringsp = dinfo->dynstr;
945
946 return true;
947 }
948
949 /* Function to add a single symbol to the linker hash table. This is
950 a wrapper around _bfd_generic_link_add_one_symbol which handles the
951 tweaking needed for dynamic linking support. */
952
953 static boolean
954 sunos_add_one_symbol (info, abfd, name, flags, section, value, string,
955 copy, collect, hashp)
956 struct bfd_link_info *info;
957 bfd *abfd;
958 const char *name;
959 flagword flags;
960 asection *section;
961 bfd_vma value;
962 const char *string;
963 boolean copy;
964 boolean collect;
965 struct bfd_link_hash_entry **hashp;
966 {
967 struct sunos_link_hash_entry *h;
968 int new_flag;
969
970 if (! sunos_hash_table (info)->dynamic_sections_created)
971 {
972 /* We must create the dynamic sections while reading the input
973 files, even though at this point we don't know if any of the
974 sections will be needed. This will ensure that the dynamic
975 sections are mapped to the right output section. It does no
976 harm to create these sections if they are not needed. */
977 if (! sunos_create_dynamic_sections (abfd, info, info->shared))
978 return false;
979 }
980
981 h = sunos_link_hash_lookup (sunos_hash_table (info), name, true, copy,
982 false);
983 if (h == NULL)
984 return false;
985
986 if (hashp != NULL)
987 *hashp = (struct bfd_link_hash_entry *) h;
988
989 /* Treat a common symbol in a dynamic object as defined in the .bss
990 section of the dynamic object. We don't want to allocate space
991 for it in our process image. */
992 if ((abfd->flags & DYNAMIC) != 0
993 && bfd_is_com_section (section))
994 section = obj_bsssec (abfd);
995
996 if (! bfd_is_und_section (section)
997 && h->root.root.type != bfd_link_hash_new
998 && h->root.root.type != bfd_link_hash_undefined
999 && h->root.root.type != bfd_link_hash_defweak)
1000 {
1001 /* We are defining the symbol, and it is already defined. This
1002 is a potential multiple definition error. */
1003 if ((abfd->flags & DYNAMIC) != 0)
1004 {
1005 /* The definition we are adding is from a dynamic object.
1006 We do not want this new definition to override the
1007 existing definition, so we pretend it is just a
1008 reference. */
1009 section = bfd_und_section_ptr;
1010 }
1011 else if (h->root.root.type == bfd_link_hash_defined
1012 && h->root.root.u.def.section->owner != NULL
1013 && (h->root.root.u.def.section->owner->flags & DYNAMIC) != 0)
1014 {
1015 /* The existing definition is from a dynamic object. We
1016 want to override it with the definition we just found.
1017 Clobber the existing definition. */
1018 h->root.root.type = bfd_link_hash_new;
1019 }
1020 else if (h->root.root.type == bfd_link_hash_common
1021 && (h->root.root.u.c.p->section->owner->flags & DYNAMIC) != 0)
1022 {
1023 /* The existing definition is from a dynamic object. We
1024 want to override it with the definition we just found.
1025 Clobber the existing definition. We can't set it to new,
1026 because it is on the undefined list. */
1027 h->root.root.type = bfd_link_hash_undefined;
1028 h->root.root.u.undef.abfd = h->root.root.u.c.p->section->owner;
1029 }
1030 }
1031
1032 /* Do the usual procedure for adding a symbol. */
1033 if (! _bfd_generic_link_add_one_symbol (info, abfd, name, flags, section,
1034 value, string, copy, collect,
1035 hashp))
1036 return false;
1037
1038 if (abfd->xvec == info->hash->creator)
1039 {
1040 /* Set a flag in the hash table entry indicating the type of
1041 reference or definition we just found. Keep a count of the
1042 number of dynamic symbols we find. A dynamic symbol is one
1043 which is referenced or defined by both a regular object and a
1044 shared object. */
1045 if ((abfd->flags & DYNAMIC) == 0)
1046 {
1047 if (bfd_is_und_section (section))
1048 new_flag = SUNOS_REF_REGULAR;
1049 else
1050 new_flag = SUNOS_DEF_REGULAR;
1051 }
1052 else
1053 {
1054 if (bfd_is_und_section (section))
1055 new_flag = SUNOS_REF_DYNAMIC;
1056 else
1057 new_flag = SUNOS_DEF_DYNAMIC;
1058 }
1059 h->flags |= new_flag;
1060
1061 if (h->dynindx == -1
1062 && (h->flags & (SUNOS_DEF_REGULAR | SUNOS_REF_REGULAR)) != 0)
1063 {
1064 ++sunos_hash_table (info)->dynsymcount;
1065 h->dynindx = -2;
1066 }
1067 }
1068
1069 return true;
1070 }
1071
1072 /* Record an assignment made to a symbol by a linker script. We need
1073 this in case some dynamic object refers to this symbol. */
1074
1075 boolean
1076 bfd_sunos_record_link_assignment (output_bfd, info, name)
1077 bfd *output_bfd;
1078 struct bfd_link_info *info;
1079 const char *name;
1080 {
1081 struct sunos_link_hash_entry *h;
1082
1083 /* This is called after we have examined all the input objects. If
1084 the symbol does not exist, it merely means that no object refers
1085 to it, and we can just ignore it at this point. */
1086 h = sunos_link_hash_lookup (sunos_hash_table (info), name,
1087 false, false, false);
1088 if (h == NULL)
1089 return true;
1090
1091 /* In a shared library, the __DYNAMIC symbol does not appear in the
1092 dynamic symbol table. */
1093 if (! info->shared || strcmp (name, "__DYNAMIC") != 0)
1094 {
1095 h->flags |= SUNOS_DEF_REGULAR;
1096
1097 if (h->dynindx == -1)
1098 {
1099 ++sunos_hash_table (info)->dynsymcount;
1100 h->dynindx = -2;
1101 }
1102 }
1103
1104 return true;
1105 }
1106
1107 /* Set up the sizes and contents of the dynamic sections created in
1108 sunos_add_dynamic_symbols. This is called by the SunOS linker
1109 emulation before_allocation routine. We must set the sizes of the
1110 sections before the linker sets the addresses of the various
1111 sections. This unfortunately requires reading all the relocs so
1112 that we can work out which ones need to become dynamic relocs. If
1113 info->keep_memory is true, we keep the relocs in memory; otherwise,
1114 we discard them, and will read them again later. */
1115
1116 boolean
1117 bfd_sunos_size_dynamic_sections (output_bfd, info, sdynptr, sneedptr,
1118 srulesptr)
1119 bfd *output_bfd;
1120 struct bfd_link_info *info;
1121 asection **sdynptr;
1122 asection **sneedptr;
1123 asection **srulesptr;
1124 {
1125 bfd *dynobj;
1126 size_t dynsymcount;
1127 struct sunos_link_hash_entry *h;
1128 asection *s;
1129 size_t bucketcount;
1130 size_t hashalloc;
1131 size_t i;
1132 bfd *sub;
1133
1134 *sdynptr = NULL;
1135 *sneedptr = NULL;
1136 *srulesptr = NULL;
1137
1138 /* Look through all the input BFD's and read their relocs. It would
1139 be better if we didn't have to do this, but there is no other way
1140 to determine the number of dynamic relocs we need, and, more
1141 importantly, there is no other way to know which symbols should
1142 get an entry in the procedure linkage table. */
1143 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
1144 {
1145 if ((sub->flags & DYNAMIC) == 0)
1146 {
1147 if (! sunos_scan_relocs (info, sub, obj_textsec (sub),
1148 exec_hdr (sub)->a_trsize)
1149 || ! sunos_scan_relocs (info, sub, obj_datasec (sub),
1150 exec_hdr (sub)->a_drsize))
1151 return false;
1152 }
1153 }
1154
1155 dynobj = sunos_hash_table (info)->dynobj;
1156 dynsymcount = sunos_hash_table (info)->dynsymcount;
1157
1158 /* If there were no dynamic objects in the link, and we don't need
1159 to build a global offset table, there is nothing to do here. */
1160 if (! sunos_hash_table (info)->dynamic_sections_needed)
1161 return true;
1162
1163 /* If __GLOBAL_OFFSET_TABLE_ was mentioned, define it. */
1164 h = sunos_link_hash_lookup (sunos_hash_table (info),
1165 "__GLOBAL_OFFSET_TABLE_", false, false, false);
1166 if (h != NULL && (h->flags & SUNOS_REF_REGULAR) != 0)
1167 {
1168 h->flags |= SUNOS_DEF_REGULAR;
1169 if (h->dynindx == -1)
1170 {
1171 ++sunos_hash_table (info)->dynsymcount;
1172 h->dynindx = -2;
1173 }
1174 h->root.root.type = bfd_link_hash_defined;
1175 h->root.root.u.def.section = bfd_get_section_by_name (dynobj, ".got");
1176 h->root.root.u.def.value = 0;
1177 }
1178
1179 /* The .dynamic section is always the same size. */
1180 s = bfd_get_section_by_name (dynobj, ".dynamic");
1181 BFD_ASSERT (s != NULL);
1182 s->_raw_size = (sizeof (struct external_sun4_dynamic)
1183 + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE
1184 + sizeof (struct external_sun4_dynamic_link));
1185
1186 /* Set the size of the .dynsym and .hash sections. We counted the
1187 number of dynamic symbols as we read the input files. We will
1188 build the dynamic symbol table (.dynsym) and the hash table
1189 (.hash) when we build the final symbol table, because until then
1190 we do not know the correct value to give the symbols. We build
1191 the dynamic symbol string table (.dynstr) in a traversal of the
1192 symbol table using sunos_scan_dynamic_symbol. */
1193 s = bfd_get_section_by_name (dynobj, ".dynsym");
1194 BFD_ASSERT (s != NULL);
1195 s->_raw_size = dynsymcount * sizeof (struct external_nlist);
1196 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
1197 if (s->contents == NULL && s->_raw_size != 0)
1198 {
1199 bfd_set_error (bfd_error_no_memory);
1200 return false;
1201 }
1202
1203 /* The number of buckets is just the number of symbols divided by
1204 four. To compute the final size of the hash table, we must
1205 actually compute the hash table. Normally we need exactly as
1206 many entries in the hash table as there are dynamic symbols, but
1207 if some of the buckets are not used we will need additional
1208 entries. In the worst case, every symbol will hash to the same
1209 bucket, and we will need BUCKETCOUNT - 1 extra entries. */
1210 if (dynsymcount >= 4)
1211 bucketcount = dynsymcount / 4;
1212 else if (dynsymcount > 0)
1213 bucketcount = dynsymcount;
1214 else
1215 bucketcount = 1;
1216 s = bfd_get_section_by_name (dynobj, ".hash");
1217 BFD_ASSERT (s != NULL);
1218 hashalloc = (dynsymcount + bucketcount - 1) * HASH_ENTRY_SIZE;
1219 s->contents = (bfd_byte *) bfd_alloc (dynobj, hashalloc);
1220 if (s->contents == NULL && dynsymcount > 0)
1221 {
1222 bfd_set_error (bfd_error_no_memory);
1223 return false;
1224 }
1225 memset (s->contents, 0, hashalloc);
1226 for (i = 0; i < bucketcount; i++)
1227 PUT_WORD (output_bfd, (bfd_vma) -1, s->contents + i * HASH_ENTRY_SIZE);
1228 s->_raw_size = bucketcount * HASH_ENTRY_SIZE;
1229
1230 sunos_hash_table (info)->bucketcount = bucketcount;
1231
1232 /* Scan all the symbols, place them in the dynamic symbol table, and
1233 build the dynamic hash table. We reuse dynsymcount as a counter
1234 for the number of symbols we have added so far. */
1235 sunos_hash_table (info)->dynsymcount = 0;
1236 sunos_link_hash_traverse (sunos_hash_table (info),
1237 sunos_scan_dynamic_symbol,
1238 (PTR) info);
1239 BFD_ASSERT (sunos_hash_table (info)->dynsymcount == dynsymcount);
1240
1241 /* The SunOS native linker seems to align the total size of the
1242 symbol strings to a multiple of 8. I don't know if this is
1243 important, but it can't hurt much. */
1244 s = bfd_get_section_by_name (dynobj, ".dynstr");
1245 BFD_ASSERT (s != NULL);
1246 if ((s->_raw_size & 7) != 0)
1247 {
1248 bfd_size_type add;
1249 bfd_byte *contents;
1250
1251 add = 8 - (s->_raw_size & 7);
1252 contents = (bfd_byte *) realloc (s->contents,
1253 (size_t) (s->_raw_size + add));
1254 if (contents == NULL)
1255 {
1256 bfd_set_error (bfd_error_no_memory);
1257 return false;
1258 }
1259 memset (contents + s->_raw_size, 0, (size_t) add);
1260 s->contents = contents;
1261 s->_raw_size += add;
1262 }
1263
1264 /* Now that we have worked out the sizes of the procedure linkage
1265 table and the dynamic relocs, allocate storage for them. */
1266 s = bfd_get_section_by_name (dynobj, ".plt");
1267 BFD_ASSERT (s != NULL);
1268 if (s->_raw_size != 0)
1269 {
1270 s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
1271 if (s->contents == NULL)
1272 {
1273 bfd_set_error (bfd_error_no_memory);
1274 return false;
1275 }
1276
1277 /* Fill in the first entry in the table. */
1278 switch (bfd_get_arch (dynobj))
1279 {
1280 case bfd_arch_sparc:
1281 memcpy (s->contents, sparc_plt_first_entry, SPARC_PLT_ENTRY_SIZE);
1282 break;
1283
1284 case bfd_arch_m68k:
1285 memcpy (s->contents, m68k_plt_first_entry, M68K_PLT_ENTRY_SIZE);
1286 break;
1287
1288 default:
1289 abort ();
1290 }
1291 }
1292
1293 s = bfd_get_section_by_name (dynobj, ".dynrel");
1294 if (s->_raw_size != 0)
1295 {
1296 s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
1297 if (s->contents == NULL)
1298 {
1299 bfd_set_error (bfd_error_no_memory);
1300 return false;
1301 }
1302 }
1303 /* We use the reloc_count field to keep track of how many of the
1304 relocs we have output so far. */
1305 s->reloc_count = 0;
1306
1307 /* Make space for the global offset table. */
1308 s = bfd_get_section_by_name (dynobj, ".got");
1309 s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
1310 if (s->contents == NULL)
1311 {
1312 bfd_set_error (bfd_error_no_memory);
1313 return false;
1314 }
1315
1316 *sdynptr = bfd_get_section_by_name (dynobj, ".dynamic");
1317 *sneedptr = bfd_get_section_by_name (dynobj, ".need");
1318 *srulesptr = bfd_get_section_by_name (dynobj, ".rules");
1319
1320 return true;
1321 }
1322
1323 /* Scan the relocs for an input section. */
1324
1325 static boolean
1326 sunos_scan_relocs (info, abfd, sec, rel_size)
1327 struct bfd_link_info *info;
1328 bfd *abfd;
1329 asection *sec;
1330 bfd_size_type rel_size;
1331 {
1332 PTR relocs;
1333 PTR free_relocs = NULL;
1334
1335 if (rel_size == 0)
1336 return true;
1337
1338 if (! info->keep_memory)
1339 relocs = free_relocs = malloc ((size_t) rel_size);
1340 else
1341 {
1342 struct aout_section_data_struct *n;
1343
1344 n = ((struct aout_section_data_struct *)
1345 bfd_alloc (abfd, sizeof (struct aout_section_data_struct)));
1346 if (n == NULL)
1347 relocs = NULL;
1348 else
1349 {
1350 set_aout_section_data (sec, n);
1351 relocs = malloc ((size_t) rel_size);
1352 aout_section_data (sec)->relocs = relocs;
1353 }
1354 }
1355 if (relocs == NULL)
1356 {
1357 bfd_set_error (bfd_error_no_memory);
1358 return false;
1359 }
1360
1361 if (bfd_seek (abfd, sec->rel_filepos, SEEK_SET) != 0
1362 || bfd_read (relocs, 1, rel_size, abfd) != rel_size)
1363 goto error_return;
1364
1365 if (obj_reloc_entry_size (abfd) == RELOC_STD_SIZE)
1366 {
1367 if (! sunos_scan_std_relocs (info, abfd, sec,
1368 (struct reloc_std_external *) relocs,
1369 rel_size))
1370 goto error_return;
1371 }
1372 else
1373 {
1374 if (! sunos_scan_ext_relocs (info, abfd, sec,
1375 (struct reloc_ext_external *) relocs,
1376 rel_size))
1377 goto error_return;
1378 }
1379
1380 if (free_relocs != NULL)
1381 free (free_relocs);
1382
1383 return true;
1384
1385 error_return:
1386 if (free_relocs != NULL)
1387 free (free_relocs);
1388 return false;
1389 }
1390
1391 /* Scan the relocs for an input section using standard relocs. We
1392 need to figure out what to do for each reloc against a dynamic
1393 symbol. If the symbol is in the .text section, an entry is made in
1394 the procedure linkage table. Note that this will do the wrong
1395 thing if the symbol is actually data; I don't think the Sun 3
1396 native linker handles this case correctly either. If the symbol is
1397 not in the .text section, we must preserve the reloc as a dynamic
1398 reloc. FIXME: We should also handle the PIC relocs here by
1399 building global offset table entries. */
1400
1401 static boolean
1402 sunos_scan_std_relocs (info, abfd, sec, relocs, rel_size)
1403 struct bfd_link_info *info;
1404 bfd *abfd;
1405 asection *sec;
1406 const struct reloc_std_external *relocs;
1407 bfd_size_type rel_size;
1408 {
1409 bfd *dynobj;
1410 asection *splt = NULL;
1411 asection *srel = NULL;
1412 struct sunos_link_hash_entry **sym_hashes;
1413 const struct reloc_std_external *rel, *relend;
1414
1415 /* We only know how to handle m68k plt entries. */
1416 if (bfd_get_arch (abfd) != bfd_arch_m68k)
1417 {
1418 bfd_set_error (bfd_error_invalid_target);
1419 return false;
1420 }
1421
1422 dynobj = NULL;
1423
1424 sym_hashes = (struct sunos_link_hash_entry **) obj_aout_sym_hashes (abfd);
1425
1426 relend = relocs + rel_size / RELOC_STD_SIZE;
1427 for (rel = relocs; rel < relend; rel++)
1428 {
1429 int r_index;
1430 struct sunos_link_hash_entry *h;
1431
1432 /* We only want relocs against external symbols. */
1433 if (abfd->xvec->header_byteorder_big_p)
1434 {
1435 if ((rel->r_type[0] & RELOC_STD_BITS_EXTERN_BIG) == 0)
1436 continue;
1437 }
1438 else
1439 {
1440 if ((rel->r_type[0] & RELOC_STD_BITS_EXTERN_LITTLE) == 0)
1441 continue;
1442 }
1443
1444 /* Get the symbol index. */
1445 if (abfd->xvec->header_byteorder_big_p)
1446 r_index = ((rel->r_index[0] << 16)
1447 | (rel->r_index[1] << 8)
1448 | rel->r_index[2]);
1449 else
1450 r_index = ((rel->r_index[2] << 16)
1451 | (rel->r_index[1] << 8)
1452 | rel->r_index[0]);
1453
1454 /* Get the hash table entry. */
1455 h = sym_hashes[r_index];
1456 if (h == NULL)
1457 {
1458 /* This should not normally happen, but it will in any case
1459 be caught in the relocation phase. */
1460 continue;
1461 }
1462
1463 /* At this point common symbols have already been allocated, so
1464 we don't have to worry about them. We need to consider that
1465 we may have already seen this symbol and marked it undefined;
1466 if the symbol is really undefined, then SUNOS_DEF_DYNAMIC
1467 will be zero. */
1468 if (h->root.root.type != bfd_link_hash_defined
1469 && h->root.root.type != bfd_link_hash_defweak
1470 && h->root.root.type != bfd_link_hash_undefined)
1471 continue;
1472
1473 if ((h->flags & SUNOS_DEF_DYNAMIC) == 0
1474 || (h->flags & SUNOS_DEF_REGULAR) != 0)
1475 continue;
1476
1477 if (dynobj == NULL)
1478 {
1479 if (! sunos_create_dynamic_sections (abfd, info, true))
1480 return false;
1481 dynobj = sunos_hash_table (info)->dynobj;
1482 splt = bfd_get_section_by_name (dynobj, ".plt");
1483 srel = bfd_get_section_by_name (dynobj, ".dynrel");
1484 BFD_ASSERT (splt != NULL && srel != NULL);
1485 }
1486
1487 BFD_ASSERT ((h->flags & SUNOS_REF_REGULAR) != 0);
1488 BFD_ASSERT (h->plt_offset != 0
1489 || ((h->root.root.type == bfd_link_hash_defined
1490 || h->root.root.type == bfd_link_hash_defweak)
1491 ? (h->root.root.u.def.section->owner->flags
1492 & DYNAMIC) != 0
1493 : (h->root.root.u.undef.abfd->flags & DYNAMIC) != 0));
1494
1495 /* This reloc is against a symbol defined only by a dynamic
1496 object. */
1497
1498 if (h->root.root.type == bfd_link_hash_undefined)
1499 {
1500 /* Presumably this symbol was marked as being undefined by
1501 an earlier reloc. */
1502 srel->_raw_size += RELOC_STD_SIZE;
1503 }
1504 else if ((h->root.root.u.def.section->flags & SEC_CODE) == 0)
1505 {
1506 bfd *sub;
1507
1508 /* This reloc is not in the .text section. It must be
1509 copied into the dynamic relocs. We mark the symbol as
1510 being undefined. */
1511 srel->_raw_size += RELOC_STD_SIZE;
1512 sub = h->root.root.u.def.section->owner;
1513 h->root.root.type = bfd_link_hash_undefined;
1514 h->root.root.u.undef.abfd = sub;
1515 }
1516 else
1517 {
1518 /* This symbol is in the .text section. We must give it an
1519 entry in the procedure linkage table, if we have not
1520 already done so. We change the definition of the symbol
1521 to the .plt section; this will cause relocs against it to
1522 be handled correctly. */
1523 if (h->plt_offset == 0)
1524 {
1525 if (splt->_raw_size == 0)
1526 splt->_raw_size = M68K_PLT_ENTRY_SIZE;
1527 h->plt_offset = splt->_raw_size;
1528
1529 if ((h->flags & SUNOS_DEF_REGULAR) == 0)
1530 {
1531 h->root.root.u.def.section = splt;
1532 h->root.root.u.def.value = splt->_raw_size;
1533 }
1534
1535 splt->_raw_size += M68K_PLT_ENTRY_SIZE;
1536
1537 /* We may also need a dynamic reloc entry. */
1538 if ((h->flags & SUNOS_DEF_REGULAR) == 0)
1539 srel->_raw_size += RELOC_STD_SIZE;
1540 }
1541 }
1542 }
1543
1544 return true;
1545 }
1546
1547 /* Scan the relocs for an input section using extended relocs. We
1548 need to figure out what to do for each reloc against a dynamic
1549 symbol. If the reloc is a WDISP30, and the symbol is in the .text
1550 section, an entry is made in the procedure linkage table.
1551 Otherwise, we must preserve the reloc as a dynamic reloc. */
1552
1553 static boolean
1554 sunos_scan_ext_relocs (info, abfd, sec, relocs, rel_size)
1555 struct bfd_link_info *info;
1556 bfd *abfd;
1557 asection *sec;
1558 const struct reloc_ext_external *relocs;
1559 bfd_size_type rel_size;
1560 {
1561 bfd *dynobj;
1562 struct sunos_link_hash_entry **sym_hashes;
1563 const struct reloc_ext_external *rel, *relend;
1564 asection *splt = NULL;
1565 asection *sgot = NULL;
1566 asection *srel = NULL;
1567
1568 /* We only know how to handle SPARC plt entries. */
1569 if (bfd_get_arch (abfd) != bfd_arch_sparc)
1570 {
1571 bfd_set_error (bfd_error_invalid_target);
1572 return false;
1573 }
1574
1575 dynobj = NULL;
1576
1577 sym_hashes = (struct sunos_link_hash_entry **) obj_aout_sym_hashes (abfd);
1578
1579 relend = relocs + rel_size / RELOC_EXT_SIZE;
1580 for (rel = relocs; rel < relend; rel++)
1581 {
1582 unsigned int r_index;
1583 int r_extern;
1584 int r_type;
1585 struct sunos_link_hash_entry *h = NULL;
1586
1587 /* Swap in the reloc information. */
1588 if (abfd->xvec->header_byteorder_big_p)
1589 {
1590 r_index = ((rel->r_index[0] << 16)
1591 | (rel->r_index[1] << 8)
1592 | rel->r_index[2]);
1593 r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_BIG));
1594 r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_BIG)
1595 >> RELOC_EXT_BITS_TYPE_SH_BIG);
1596 }
1597 else
1598 {
1599 r_index = ((rel->r_index[2] << 16)
1600 | (rel->r_index[1] << 8)
1601 | rel->r_index[0]);
1602 r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_LITTLE));
1603 r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE)
1604 >> RELOC_EXT_BITS_TYPE_SH_LITTLE);
1605 }
1606
1607 if (r_extern)
1608 {
1609 h = sym_hashes[r_index];
1610 if (h == NULL)
1611 {
1612 /* This should not normally happen, but it will in any
1613 case be caught in the relocation phase. */
1614 continue;
1615 }
1616 }
1617 else
1618 {
1619 if (r_index >= bfd_get_symcount (abfd))
1620 {
1621 /* This is abnormal, but should be caught in the
1622 relocation phase. */
1623 continue;
1624 }
1625 }
1626
1627 /* If this is a base relative reloc, we need to make an entry in
1628 the .got section. */
1629 if (r_type == RELOC_BASE10
1630 || r_type == RELOC_BASE13
1631 || r_type == RELOC_BASE22)
1632 {
1633 if (dynobj == NULL)
1634 {
1635 if (! sunos_create_dynamic_sections (abfd, info, true))
1636 return false;
1637 dynobj = sunos_hash_table (info)->dynobj;
1638 splt = bfd_get_section_by_name (dynobj, ".plt");
1639 sgot = bfd_get_section_by_name (dynobj, ".got");
1640 srel = bfd_get_section_by_name (dynobj, ".dynrel");
1641 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
1642 }
1643
1644 if (r_extern)
1645 {
1646 if (h->got_offset != 0)
1647 continue;
1648
1649 h->got_offset = sgot->_raw_size;
1650 }
1651 else
1652 {
1653 if (adata (abfd).local_got_offsets == NULL)
1654 {
1655 adata (abfd).local_got_offsets =
1656 (bfd_vma *) bfd_zalloc (abfd,
1657 (bfd_get_symcount (abfd)
1658 * sizeof (bfd_vma)));
1659 if (adata (abfd).local_got_offsets == NULL)
1660 {
1661 bfd_set_error (bfd_error_no_memory);
1662 return false;
1663 }
1664 }
1665
1666 if (adata (abfd).local_got_offsets[r_index] != 0)
1667 continue;
1668
1669 adata (abfd).local_got_offsets[r_index] = sgot->_raw_size;
1670 }
1671
1672 sgot->_raw_size += BYTES_IN_WORD;
1673
1674 /* If we are making a shared library, or if the symbol is
1675 defined by a dynamic object, we will need a dynamic reloc
1676 entry. */
1677 if (info->shared
1678 || (h != NULL
1679 && (h->flags & SUNOS_DEF_DYNAMIC) != 0
1680 && (h->flags & SUNOS_DEF_REGULAR) == 0))
1681 srel->_raw_size += RELOC_EXT_SIZE;
1682
1683 continue;
1684 }
1685
1686 /* Otherwise, we are only interested in relocs against symbols
1687 defined in dynamic objects but not in regular objects. We
1688 only need to consider relocs against external symbols. */
1689 if (! r_extern)
1690 {
1691 /* But, if we are creating a shared library, we need to
1692 generate an absolute reloc. */
1693 if (info->shared)
1694 {
1695 if (sec == obj_textsec (abfd))
1696 {
1697 (*_bfd_error_handler)
1698 ("%s: may not have .text section relocs in shared library",
1699 bfd_get_filename (abfd));
1700 bfd_set_error (bfd_error_nonrepresentable_section);
1701 return false;
1702 }
1703
1704 if (dynobj == NULL)
1705 {
1706 if (! sunos_create_dynamic_sections (abfd, info, true))
1707 return false;
1708 dynobj = sunos_hash_table (info)->dynobj;
1709 splt = bfd_get_section_by_name (dynobj, ".plt");
1710 sgot = bfd_get_section_by_name (dynobj, ".got");
1711 srel = bfd_get_section_by_name (dynobj, ".dynrel");
1712 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
1713 }
1714
1715 srel->_raw_size += RELOC_EXT_SIZE;
1716 }
1717
1718 continue;
1719 }
1720
1721 /* At this point common symbols have already been allocated, so
1722 we don't have to worry about them. We need to consider that
1723 we may have already seen this symbol and marked it undefined;
1724 if the symbol is really undefined, then SUNOS_DEF_DYNAMIC
1725 will be zero. */
1726 if (h->root.root.type != bfd_link_hash_defined
1727 && h->root.root.type != bfd_link_hash_defweak
1728 && h->root.root.type != bfd_link_hash_undefined)
1729 continue;
1730
1731 if (r_type != RELOC_JMP_TBL
1732 && ! info->shared
1733 && ((h->flags & SUNOS_DEF_DYNAMIC) == 0
1734 || (h->flags & SUNOS_DEF_REGULAR) != 0))
1735 continue;
1736
1737 if (strcmp (h->root.root.root.string, "__GLOBAL_OFFSET_TABLE_") == 0)
1738 continue;
1739
1740 if (dynobj == NULL)
1741 {
1742 if (! sunos_create_dynamic_sections (abfd, info, true))
1743 return false;
1744 dynobj = sunos_hash_table (info)->dynobj;
1745 splt = bfd_get_section_by_name (dynobj, ".plt");
1746 sgot = bfd_get_section_by_name (dynobj, ".got");
1747 srel = bfd_get_section_by_name (dynobj, ".dynrel");
1748 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
1749 }
1750
1751 BFD_ASSERT (r_type == RELOC_JMP_TBL
1752 || (h->flags & SUNOS_REF_REGULAR) != 0);
1753 BFD_ASSERT (r_type == RELOC_JMP_TBL
1754 || info->shared
1755 || h->plt_offset != 0
1756 || ((h->root.root.type == bfd_link_hash_defined
1757 || h->root.root.type == bfd_link_hash_defweak)
1758 ? (h->root.root.u.def.section->owner->flags
1759 & DYNAMIC) != 0
1760 : (h->root.root.u.undef.abfd->flags & DYNAMIC) != 0));
1761
1762 /* This reloc is against a symbol defined only by a dynamic
1763 object, or it is a jump table reloc from PIC compiled code. */
1764
1765 if (r_type != RELOC_JMP_TBL
1766 && h->root.root.type == bfd_link_hash_undefined)
1767 {
1768 /* Presumably this symbol was marked as being undefined by
1769 an earlier reloc. */
1770 srel->_raw_size += RELOC_EXT_SIZE;
1771 }
1772 else if (r_type != RELOC_JMP_TBL
1773 && (h->root.root.u.def.section->flags & SEC_CODE) == 0)
1774 {
1775 bfd *sub;
1776
1777 /* This reloc is not in the .text section. It must be
1778 copied into the dynamic relocs. We mark the symbol as
1779 being undefined. */
1780 srel->_raw_size += RELOC_EXT_SIZE;
1781 if ((h->flags & SUNOS_DEF_REGULAR) == 0)
1782 {
1783 sub = h->root.root.u.def.section->owner;
1784 h->root.root.type = bfd_link_hash_undefined;
1785 h->root.root.u.undef.abfd = sub;
1786 }
1787 }
1788 else
1789 {
1790 /* This symbol is in the .text section. We must give it an
1791 entry in the procedure linkage table, if we have not
1792 already done so. We change the definition of the symbol
1793 to the .plt section; this will cause relocs against it to
1794 be handled correctly. */
1795 if (h->plt_offset == 0)
1796 {
1797 if (splt->_raw_size == 0)
1798 splt->_raw_size = SPARC_PLT_ENTRY_SIZE;
1799 h->plt_offset = splt->_raw_size;
1800
1801 if ((h->flags & SUNOS_DEF_REGULAR) == 0)
1802 {
1803 if (h->root.root.type == bfd_link_hash_undefined)
1804 h->root.root.type = bfd_link_hash_defined;
1805 h->root.root.u.def.section = splt;
1806 h->root.root.u.def.value = splt->_raw_size;
1807 }
1808
1809 splt->_raw_size += SPARC_PLT_ENTRY_SIZE;
1810
1811 /* We will also need a dynamic reloc entry, unless this
1812 is a JMP_TBL reloc produced by linking PIC compiled
1813 code, and we are not making a shared library. */
1814 if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0)
1815 srel->_raw_size += RELOC_EXT_SIZE;
1816 }
1817
1818 /* If we are creating a shared library, we need to copy over
1819 any reloc other than a jump table reloc. */
1820 if (info->shared && r_type != RELOC_JMP_TBL)
1821 srel->_raw_size += RELOC_EXT_SIZE;
1822 }
1823 }
1824
1825 return true;
1826 }
1827
1828 /* Build the hash table of dynamic symbols, and to mark as written all
1829 symbols from dynamic objects which we do not plan to write out. */
1830
1831 static boolean
1832 sunos_scan_dynamic_symbol (h, data)
1833 struct sunos_link_hash_entry *h;
1834 PTR data;
1835 {
1836 struct bfd_link_info *info = (struct bfd_link_info *) data;
1837
1838 /* Set the written flag for symbols we do not want to write out as
1839 part of the regular symbol table. This is all symbols which are
1840 not defined in a regular object file. For some reason symbols
1841 which are referenced by a regular object and defined by a dynamic
1842 object do not seem to show up in the regular symbol table. */
1843 if ((h->flags & SUNOS_DEF_REGULAR) == 0
1844 && strcmp (h->root.root.root.string, "__DYNAMIC") != 0)
1845 h->root.written = true;
1846
1847 /* If this symbol is defined by a dynamic object and referenced by a
1848 regular object, see whether we gave it a reasonable value while
1849 scanning the relocs. */
1850
1851 if ((h->flags & SUNOS_DEF_REGULAR) == 0
1852 && (h->flags & SUNOS_DEF_DYNAMIC) != 0
1853 && (h->flags & SUNOS_REF_REGULAR) != 0)
1854 {
1855 if ((h->root.root.type == bfd_link_hash_defined
1856 || h->root.root.type == bfd_link_hash_defweak)
1857 && ((h->root.root.u.def.section->owner->flags & DYNAMIC) != 0)
1858 && h->root.root.u.def.section->output_section == NULL)
1859 {
1860 bfd *sub;
1861
1862 /* This symbol is currently defined in a dynamic section
1863 which is not being put into the output file. This
1864 implies that there is no reloc against the symbol. I'm
1865 not sure why this case would ever occur. In any case, we
1866 change the symbol to be undefined. */
1867 sub = h->root.root.u.def.section->owner;
1868 h->root.root.type = bfd_link_hash_undefined;
1869 h->root.root.u.undef.abfd = sub;
1870 }
1871 }
1872
1873 /* If this symbol is defined or referenced by a regular file, add it
1874 to the dynamic symbols. */
1875 if ((h->flags & (SUNOS_DEF_REGULAR | SUNOS_REF_REGULAR)) != 0)
1876 {
1877 asection *s;
1878 size_t len;
1879 bfd_byte *contents;
1880 unsigned char *name;
1881 unsigned long hash;
1882 bfd *dynobj;
1883
1884 BFD_ASSERT (h->dynindx == -2);
1885
1886 dynobj = sunos_hash_table (info)->dynobj;
1887
1888 h->dynindx = sunos_hash_table (info)->dynsymcount;
1889 ++sunos_hash_table (info)->dynsymcount;
1890
1891 len = strlen (h->root.root.root.string);
1892
1893 /* We don't bother to construct a BFD hash table for the strings
1894 which are the names of the dynamic symbols. Using a hash
1895 table for the regular symbols is beneficial, because the
1896 regular symbols includes the debugging symbols, which have
1897 long names and are often duplicated in several object files.
1898 There are no debugging symbols in the dynamic symbols. */
1899 s = bfd_get_section_by_name (dynobj, ".dynstr");
1900 BFD_ASSERT (s != NULL);
1901 if (s->contents == NULL)
1902 contents = (bfd_byte *) malloc (len + 1);
1903 else
1904 contents = (bfd_byte *) realloc (s->contents,
1905 (size_t) (s->_raw_size + len + 1));
1906 if (contents == NULL)
1907 {
1908 bfd_set_error (bfd_error_no_memory);
1909 return false;
1910 }
1911 s->contents = contents;
1912
1913 h->dynstr_index = s->_raw_size;
1914 strcpy (contents + s->_raw_size, h->root.root.root.string);
1915 s->_raw_size += len + 1;
1916
1917 /* Add it to the dynamic hash table. */
1918 name = (unsigned char *) h->root.root.root.string;
1919 hash = 0;
1920 while (*name != '\0')
1921 hash = (hash << 1) + *name++;
1922 hash &= 0x7fffffff;
1923 hash %= sunos_hash_table (info)->bucketcount;
1924
1925 s = bfd_get_section_by_name (dynobj, ".hash");
1926 BFD_ASSERT (s != NULL);
1927
1928 if (GET_SWORD (dynobj, s->contents + hash * HASH_ENTRY_SIZE) == -1)
1929 PUT_WORD (dynobj, h->dynindx, s->contents + hash * HASH_ENTRY_SIZE);
1930 else
1931 {
1932 bfd_vma next;
1933
1934 next = GET_WORD (dynobj,
1935 (s->contents
1936 + hash * HASH_ENTRY_SIZE
1937 + BYTES_IN_WORD));
1938 PUT_WORD (dynobj, s->_raw_size / HASH_ENTRY_SIZE,
1939 s->contents + hash * HASH_ENTRY_SIZE + BYTES_IN_WORD);
1940 PUT_WORD (dynobj, h->dynindx, s->contents + s->_raw_size);
1941 PUT_WORD (dynobj, next, s->contents + s->_raw_size + BYTES_IN_WORD);
1942 s->_raw_size += HASH_ENTRY_SIZE;
1943 }
1944 }
1945
1946 return true;
1947 }
1948
1949 /* Link a dynamic object. We actually don't have anything to do at
1950 this point. This entry point exists to prevent the regular linker
1951 code from doing anything with the object. */
1952
1953 /*ARGSUSED*/
1954 static boolean
1955 sunos_link_dynamic_object (info, abfd)
1956 struct bfd_link_info *info;
1957 bfd *abfd;
1958 {
1959 return true;
1960 }
1961
1962 /* Write out a dynamic symbol. This is called by the final traversal
1963 over the symbol table. */
1964
1965 static boolean
1966 sunos_write_dynamic_symbol (output_bfd, info, harg)
1967 bfd *output_bfd;
1968 struct bfd_link_info *info;
1969 struct aout_link_hash_entry *harg;
1970 {
1971 struct sunos_link_hash_entry *h = (struct sunos_link_hash_entry *) harg;
1972 int type;
1973 bfd_vma val;
1974 asection *s;
1975 struct external_nlist *outsym;
1976
1977 if (h->dynindx < 0)
1978 return true;
1979
1980 switch (h->root.root.type)
1981 {
1982 default:
1983 case bfd_link_hash_new:
1984 abort ();
1985 /* Avoid variable not initialized warnings. */
1986 return true;
1987 case bfd_link_hash_undefined:
1988 type = N_UNDF | N_EXT;
1989 val = 0;
1990 break;
1991 case bfd_link_hash_defined:
1992 case bfd_link_hash_defweak:
1993 {
1994 asection *sec;
1995 asection *output_section;
1996
1997 sec = h->root.root.u.def.section;
1998 output_section = sec->output_section;
1999 BFD_ASSERT (bfd_is_abs_section (output_section)
2000 || output_section->owner == output_bfd);
2001 if (h->plt_offset != 0
2002 && (h->flags & SUNOS_DEF_REGULAR) == 0)
2003 {
2004 type = N_UNDF | N_EXT;
2005 val = 0;
2006 }
2007 else
2008 {
2009 if (output_section == obj_textsec (output_bfd))
2010 type = (h->root.root.type == bfd_link_hash_defined
2011 ? N_TEXT
2012 : N_WEAKT);
2013 else if (output_section == obj_datasec (output_bfd))
2014 type = (h->root.root.type == bfd_link_hash_defined
2015 ? N_DATA
2016 : N_WEAKD);
2017 else if (output_section == obj_bsssec (output_bfd))
2018 type = (h->root.root.type == bfd_link_hash_defined
2019 ? N_BSS
2020 : N_WEAKB);
2021 else
2022 type = (h->root.root.type == bfd_link_hash_defined
2023 ? N_ABS
2024 : N_WEAKA);
2025 type |= N_EXT;
2026 val = (h->root.root.u.def.value
2027 + output_section->vma
2028 + sec->output_offset);
2029 }
2030 }
2031 break;
2032 case bfd_link_hash_common:
2033 type = N_UNDF | N_EXT;
2034 val = h->root.root.u.c.size;
2035 break;
2036 case bfd_link_hash_undefweak:
2037 type = N_WEAKU;
2038 val = 0;
2039 break;
2040 case bfd_link_hash_indirect:
2041 case bfd_link_hash_warning:
2042 /* FIXME: Ignore these for now. The circumstances under which
2043 they should be written out are not clear to me. */
2044 return true;
2045 }
2046
2047 s = bfd_get_section_by_name (sunos_hash_table (info)->dynobj, ".dynsym");
2048 BFD_ASSERT (s != NULL);
2049 outsym = ((struct external_nlist *)
2050 (s->contents + h->dynindx * EXTERNAL_NLIST_SIZE));
2051
2052 bfd_h_put_8 (output_bfd, type, outsym->e_type);
2053 bfd_h_put_8 (output_bfd, 0, outsym->e_other);
2054
2055 /* FIXME: The native linker doesn't use 0 for desc. It seems to use
2056 one less than the desc value in the shared library, although that
2057 seems unlikely. */
2058 bfd_h_put_16 (output_bfd, 0, outsym->e_desc);
2059
2060 PUT_WORD (output_bfd, h->dynstr_index, outsym->e_strx);
2061 PUT_WORD (output_bfd, val, outsym->e_value);
2062
2063 /* If this symbol is in the procedure linkage table, fill in the
2064 table entry. */
2065 if (h->plt_offset != 0)
2066 {
2067 bfd *dynobj;
2068 asection *splt;
2069 bfd_byte *p;
2070 asection *s;
2071 bfd_vma r_address;
2072
2073 dynobj = sunos_hash_table (info)->dynobj;
2074 splt = bfd_get_section_by_name (dynobj, ".plt");
2075 p = splt->contents + h->plt_offset;
2076
2077 s = bfd_get_section_by_name (dynobj, ".dynrel");
2078
2079 r_address = (splt->output_section->vma
2080 + splt->output_offset
2081 + h->plt_offset);
2082
2083 switch (bfd_get_arch (output_bfd))
2084 {
2085 case bfd_arch_sparc:
2086 if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0)
2087 {
2088 bfd_put_32 (output_bfd, SPARC_PLT_ENTRY_WORD0, p);
2089 bfd_put_32 (output_bfd,
2090 (SPARC_PLT_ENTRY_WORD1
2091 + (((- (h->plt_offset + 4) >> 2)
2092 & 0x3fffffff))),
2093 p + 4);
2094 bfd_put_32 (output_bfd, SPARC_PLT_ENTRY_WORD2 + s->reloc_count,
2095 p + 8);
2096 }
2097 else
2098 {
2099 bfd_vma val;
2100
2101 val = (h->root.root.u.def.section->output_section->vma
2102 + h->root.root.u.def.section->output_offset
2103 + h->root.root.u.def.value);
2104 bfd_put_32 (output_bfd,
2105 SPARC_PLT_PIC_WORD0 + ((val >> 10) & 0x3fffff),
2106 p);
2107 bfd_put_32 (output_bfd,
2108 SPARC_PLT_PIC_WORD1 + (val & 0x3ff),
2109 p + 4);
2110 bfd_put_32 (output_bfd, SPARC_PLT_PIC_WORD2, p + 8);
2111 }
2112 break;
2113
2114 case bfd_arch_m68k:
2115 if (! info->shared && (h->flags & SUNOS_DEF_REGULAR) != 0)
2116 abort ();
2117 bfd_put_16 (output_bfd, M68K_PLT_ENTRY_WORD0, p);
2118 bfd_put_32 (output_bfd, (- (h->plt_offset + 2)), p + 2);
2119 bfd_put_16 (output_bfd, s->reloc_count, p + 6);
2120 r_address += 2;
2121 break;
2122
2123 default:
2124 abort ();
2125 }
2126
2127 /* We also need to add a jump table reloc, unless this is the
2128 result of a JMP_TBL reloc from PIC compiled code. */
2129 if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0)
2130 {
2131 BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj)
2132 < s->_raw_size);
2133 p = s->contents + s->reloc_count * obj_reloc_entry_size (output_bfd);
2134 if (obj_reloc_entry_size (output_bfd) == RELOC_STD_SIZE)
2135 {
2136 struct reloc_std_external *srel;
2137
2138 srel = (struct reloc_std_external *) p;
2139 PUT_WORD (output_bfd, r_address, srel->r_address);
2140 if (output_bfd->xvec->header_byteorder_big_p)
2141 {
2142 srel->r_index[0] = h->dynindx >> 16;
2143 srel->r_index[1] = h->dynindx >> 8;
2144 srel->r_index[2] = h->dynindx;
2145 srel->r_type[0] = (RELOC_STD_BITS_EXTERN_BIG
2146 | RELOC_STD_BITS_JMPTABLE_BIG);
2147 }
2148 else
2149 {
2150 srel->r_index[2] = h->dynindx >> 16;
2151 srel->r_index[1] = h->dynindx >> 8;
2152 srel->r_index[0] = h->dynindx;
2153 srel->r_type[0] = (RELOC_STD_BITS_EXTERN_LITTLE
2154 | RELOC_STD_BITS_JMPTABLE_LITTLE);
2155 }
2156 }
2157 else
2158 {
2159 struct reloc_ext_external *erel;
2160
2161 erel = (struct reloc_ext_external *) p;
2162 PUT_WORD (output_bfd, r_address, erel->r_address);
2163 if (output_bfd->xvec->header_byteorder_big_p)
2164 {
2165 erel->r_index[0] = h->dynindx >> 16;
2166 erel->r_index[1] = h->dynindx >> 8;
2167 erel->r_index[2] = h->dynindx;
2168 erel->r_type[0] =
2169 (RELOC_EXT_BITS_EXTERN_BIG
2170 | (RELOC_JMP_SLOT << RELOC_EXT_BITS_TYPE_SH_BIG));
2171 }
2172 else
2173 {
2174 erel->r_index[2] = h->dynindx >> 16;
2175 erel->r_index[1] = h->dynindx >> 8;
2176 erel->r_index[0] = h->dynindx;
2177 erel->r_type[0] =
2178 (RELOC_EXT_BITS_EXTERN_LITTLE
2179 | (RELOC_JMP_SLOT << RELOC_EXT_BITS_TYPE_SH_LITTLE));
2180 }
2181 PUT_WORD (output_bfd, (bfd_vma) 0, erel->r_addend);
2182 }
2183
2184 ++s->reloc_count;
2185 }
2186 }
2187
2188 return true;
2189 }
2190
2191 /* This is called for each reloc against an external symbol. If this
2192 is a reloc which are are going to copy as a dynamic reloc, then
2193 copy it over, and tell the caller to not bother processing this
2194 reloc. */
2195
2196 /*ARGSUSED*/
2197 static boolean
2198 sunos_check_dynamic_reloc (info, input_bfd, input_section, harg, reloc,
2199 contents, skip, relocationp)
2200 struct bfd_link_info *info;
2201 bfd *input_bfd;
2202 asection *input_section;
2203 struct aout_link_hash_entry *harg;
2204 PTR reloc;
2205 bfd_byte *contents;
2206 boolean *skip;
2207 bfd_vma *relocationp;
2208 {
2209 struct sunos_link_hash_entry *h = (struct sunos_link_hash_entry *) harg;
2210 bfd *dynobj;
2211 boolean baserel;
2212 boolean jmptbl;
2213 asection *s;
2214 bfd_byte *p;
2215 long indx;
2216
2217 *skip = false;
2218
2219 dynobj = sunos_hash_table (info)->dynobj;
2220
2221 if (h != NULL && h->plt_offset != 0)
2222 {
2223 asection *splt;
2224
2225 /* Redirect the relocation to the PLT entry. */
2226 splt = bfd_get_section_by_name (dynobj, ".plt");
2227 *relocationp = (splt->output_section->vma
2228 + splt->output_offset
2229 + h->plt_offset);
2230 }
2231
2232 if (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE)
2233 {
2234 struct reloc_std_external *srel;
2235
2236 srel = (struct reloc_std_external *) reloc;
2237 if (input_bfd->xvec->header_byteorder_big_p)
2238 {
2239 baserel = (0 != (srel->r_type[0] & RELOC_STD_BITS_BASEREL_BIG));
2240 jmptbl = (0 != (srel->r_type[0] & RELOC_STD_BITS_JMPTABLE_BIG));
2241 }
2242 else
2243 {
2244 baserel = (0 != (srel->r_type[0] & RELOC_STD_BITS_BASEREL_LITTLE));
2245 jmptbl = (0 != (srel->r_type[0] & RELOC_STD_BITS_JMPTABLE_LITTLE));
2246 }
2247 }
2248 else
2249 {
2250 struct reloc_ext_external *erel;
2251 int r_type;
2252
2253 erel = (struct reloc_ext_external *) reloc;
2254 if (input_bfd->xvec->header_byteorder_big_p)
2255 r_type = ((erel->r_type[0] & RELOC_EXT_BITS_TYPE_BIG)
2256 >> RELOC_EXT_BITS_TYPE_SH_BIG);
2257 else
2258 r_type = ((erel->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE)
2259 >> RELOC_EXT_BITS_TYPE_SH_LITTLE);
2260 baserel = (r_type == RELOC_BASE10
2261 || r_type == RELOC_BASE13
2262 || r_type == RELOC_BASE22);
2263 jmptbl = r_type == RELOC_JMP_TBL;
2264 }
2265
2266 if (baserel)
2267 {
2268 bfd_vma *got_offsetp;
2269 asection *sgot;
2270
2271 if (h != NULL)
2272 got_offsetp = &h->got_offset;
2273 else if (adata (input_bfd).local_got_offsets == NULL)
2274 got_offsetp = NULL;
2275 else
2276 {
2277 struct reloc_std_external *srel;
2278 int r_index;
2279
2280 srel = (struct reloc_std_external *) reloc;
2281 if (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE)
2282 {
2283 if (input_bfd->xvec->header_byteorder_big_p)
2284 r_index = ((srel->r_index[0] << 16)
2285 | (srel->r_index[1] << 8)
2286 | srel->r_index[2]);
2287 else
2288 r_index = ((srel->r_index[2] << 16)
2289 | (srel->r_index[1] << 8)
2290 | srel->r_index[0]);
2291 }
2292 else
2293 {
2294 struct reloc_ext_external *erel;
2295
2296 erel = (struct reloc_ext_external *) reloc;
2297 if (input_bfd->xvec->header_byteorder_big_p)
2298 r_index = ((erel->r_index[0] << 16)
2299 | (erel->r_index[1] << 8)
2300 | erel->r_index[2]);
2301 else
2302 r_index = ((erel->r_index[2] << 16)
2303 | (erel->r_index[1] << 8)
2304 | erel->r_index[0]);
2305 }
2306
2307 got_offsetp = adata (input_bfd).local_got_offsets + r_index;
2308 }
2309
2310 BFD_ASSERT (got_offsetp != NULL && *got_offsetp != 0);
2311
2312 sgot = bfd_get_section_by_name (dynobj, ".got");
2313
2314 /* We set the least significant bit to indicate whether we have
2315 already initialized the GOT entry. */
2316 if ((*got_offsetp & 1) == 0)
2317 {
2318 if (h == NULL
2319 || (! info->shared
2320 && ((h->flags & SUNOS_DEF_DYNAMIC) == 0
2321 || (h->flags & SUNOS_DEF_REGULAR) != 0)))
2322 PUT_WORD (dynobj, *relocationp, sgot->contents + *got_offsetp);
2323 else
2324 PUT_WORD (dynobj, 0, sgot->contents + *got_offsetp);
2325
2326 if (info->shared
2327 || (h != NULL
2328 && (h->flags & SUNOS_DEF_DYNAMIC) != 0
2329 && (h->flags & SUNOS_DEF_REGULAR) == 0))
2330 {
2331 /* We need to create a GLOB_DAT or 32 reloc to tell the
2332 dynamic linker to fill in this entry in the table. */
2333
2334 s = bfd_get_section_by_name (dynobj, ".dynrel");
2335 BFD_ASSERT (s != NULL);
2336 BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj)
2337 < s->_raw_size);
2338
2339 p = (s->contents
2340 + s->reloc_count * obj_reloc_entry_size (dynobj));
2341
2342 if (h != NULL)
2343 indx = h->dynindx;
2344 else
2345 indx = 0;
2346
2347 if (obj_reloc_entry_size (dynobj) == RELOC_STD_SIZE)
2348 {
2349 struct reloc_std_external *srel;
2350
2351 srel = (struct reloc_std_external *) p;
2352 PUT_WORD (dynobj,
2353 (*got_offsetp
2354 + sgot->output_section->vma
2355 + sgot->output_offset),
2356 srel->r_address);
2357 if (dynobj->xvec->header_byteorder_big_p)
2358 {
2359 srel->r_index[0] = indx >> 16;
2360 srel->r_index[1] = indx >> 8;
2361 srel->r_index[2] = indx;
2362 if (h == NULL)
2363 srel->r_type[0] = 2 << RELOC_STD_BITS_LENGTH_SH_BIG;
2364 else
2365 srel->r_type[0] =
2366 (RELOC_STD_BITS_EXTERN_BIG
2367 | RELOC_STD_BITS_BASEREL_BIG
2368 | RELOC_STD_BITS_RELATIVE_BIG
2369 | (2 << RELOC_STD_BITS_LENGTH_SH_BIG));
2370 }
2371 else
2372 {
2373 srel->r_index[2] = indx >> 16;
2374 srel->r_index[1] = indx >> 8;
2375 srel->r_index[0] = indx;
2376 if (h == NULL)
2377 srel->r_type[0] = 2 << RELOC_STD_BITS_LENGTH_SH_LITTLE;
2378 else
2379 srel->r_type[0] =
2380 (RELOC_STD_BITS_EXTERN_LITTLE
2381 | RELOC_STD_BITS_BASEREL_LITTLE
2382 | RELOC_STD_BITS_RELATIVE_LITTLE
2383 | (2 << RELOC_STD_BITS_LENGTH_SH_LITTLE));
2384 }
2385 }
2386 else
2387 {
2388 struct reloc_ext_external *erel;
2389
2390 erel = (struct reloc_ext_external *) p;
2391 PUT_WORD (dynobj,
2392 (*got_offsetp
2393 + sgot->output_section->vma
2394 + sgot->output_offset),
2395 erel->r_address);
2396 if (dynobj->xvec->header_byteorder_big_p)
2397 {
2398 erel->r_index[0] = indx >> 16;
2399 erel->r_index[1] = indx >> 8;
2400 erel->r_index[2] = indx;
2401 if (h == NULL)
2402 erel->r_type[0] =
2403 RELOC_32 << RELOC_EXT_BITS_TYPE_SH_BIG;
2404 else
2405 erel->r_type[0] =
2406 (RELOC_EXT_BITS_EXTERN_BIG
2407 | (RELOC_GLOB_DAT << RELOC_EXT_BITS_TYPE_SH_BIG));
2408 }
2409 else
2410 {
2411 erel->r_index[2] = indx >> 16;
2412 erel->r_index[1] = indx >> 8;
2413 erel->r_index[0] = indx;
2414 if (h == NULL)
2415 erel->r_type[0] =
2416 RELOC_32 << RELOC_EXT_BITS_TYPE_SH_LITTLE;
2417 else
2418 erel->r_type[0] =
2419 (RELOC_EXT_BITS_EXTERN_LITTLE
2420 | (RELOC_GLOB_DAT
2421 << RELOC_EXT_BITS_TYPE_SH_LITTLE));
2422 }
2423 PUT_WORD (dynobj, 0, erel->r_addend);
2424 }
2425
2426 ++s->reloc_count;
2427 }
2428
2429 *got_offsetp |= 1;
2430 }
2431
2432 *relocationp = sgot->vma + (*got_offsetp &~ 1);
2433
2434 /* There is nothing else to do for a base relative reloc. */
2435 return true;
2436 }
2437
2438 if (! sunos_hash_table (info)->dynamic_sections_needed)
2439 return true;
2440 if (! info->shared)
2441 {
2442 if (h == NULL
2443 || h->dynindx == -1
2444 || h->root.root.type != bfd_link_hash_undefined
2445 || (h->flags & SUNOS_DEF_REGULAR) != 0
2446 || (h->flags & SUNOS_DEF_DYNAMIC) == 0
2447 || (h->root.root.u.undef.abfd->flags & DYNAMIC) == 0)
2448 return true;
2449 }
2450 else
2451 {
2452 if (h != NULL
2453 && (h->dynindx == -1
2454 || jmptbl
2455 || strcmp (h->root.root.root.string,
2456 "__GLOBAL_OFFSET_TABLE_") == 0))
2457 return true;
2458 BFD_ASSERT (input_section != obj_textsec (input_bfd));
2459 }
2460
2461 /* It looks like this is a reloc we are supposed to copy. */
2462
2463 s = bfd_get_section_by_name (dynobj, ".dynrel");
2464 BFD_ASSERT (s != NULL);
2465 BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj) < s->_raw_size);
2466
2467 p = s->contents + s->reloc_count * obj_reloc_entry_size (dynobj);
2468
2469 /* Copy the reloc over. */
2470 memcpy (p, reloc, obj_reloc_entry_size (dynobj));
2471
2472 if (h != NULL)
2473 indx = h->dynindx;
2474 else
2475 indx = 0;
2476
2477 /* Adjust the address and symbol index. */
2478 if (obj_reloc_entry_size (dynobj) == RELOC_STD_SIZE)
2479 {
2480 struct reloc_std_external *srel;
2481
2482 srel = (struct reloc_std_external *) p;
2483 PUT_WORD (dynobj,
2484 (GET_WORD (dynobj, srel->r_address)
2485 + input_section->output_section->vma
2486 + input_section->output_offset),
2487 srel->r_address);
2488 if (dynobj->xvec->header_byteorder_big_p)
2489 {
2490 srel->r_index[0] = indx >> 16;
2491 srel->r_index[1] = indx >> 8;
2492 srel->r_index[2] = indx;
2493 }
2494 else
2495 {
2496 srel->r_index[2] = indx >> 16;
2497 srel->r_index[1] = indx >> 8;
2498 srel->r_index[0] = indx;
2499 }
2500 }
2501 else
2502 {
2503 struct reloc_ext_external *erel;
2504
2505 erel = (struct reloc_ext_external *) p;
2506 PUT_WORD (dynobj,
2507 (GET_WORD (dynobj, erel->r_address)
2508 + input_section->output_section->vma
2509 + input_section->output_offset),
2510 erel->r_address);
2511 if (dynobj->xvec->header_byteorder_big_p)
2512 {
2513 erel->r_index[0] = indx >> 16;
2514 erel->r_index[1] = indx >> 8;
2515 erel->r_index[2] = indx;
2516 }
2517 else
2518 {
2519 erel->r_index[2] = indx >> 16;
2520 erel->r_index[1] = indx >> 8;
2521 erel->r_index[0] = indx;
2522 }
2523 }
2524
2525 ++s->reloc_count;
2526
2527 if (h != NULL)
2528 *skip = true;
2529
2530 return true;
2531 }
2532
2533 /* Finish up the dynamic linking information. */
2534
2535 static boolean
2536 sunos_finish_dynamic_link (abfd, info)
2537 bfd *abfd;
2538 struct bfd_link_info *info;
2539 {
2540 bfd *dynobj;
2541 asection *o;
2542 asection *s;
2543 asection *sdyn;
2544 struct external_sun4_dynamic esd;
2545 struct external_sun4_dynamic_link esdl;
2546
2547 if (! sunos_hash_table (info)->dynamic_sections_needed)
2548 return true;
2549
2550 dynobj = sunos_hash_table (info)->dynobj;
2551
2552 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2553 BFD_ASSERT (sdyn != NULL);
2554
2555 /* Finish up the .need section. The linker emulation code filled it
2556 in, but with offsets from the start of the section instead of
2557 real addresses. Now that we know the section location, we can
2558 fill in the final values. */
2559 s = bfd_get_section_by_name (dynobj, ".need");
2560 if (s != NULL && s->_raw_size != 0)
2561 {
2562 file_ptr filepos;
2563 bfd_byte *p;
2564
2565 filepos = s->output_section->filepos + s->output_offset;
2566 p = s->contents;
2567 while (1)
2568 {
2569 bfd_vma val;
2570
2571 PUT_WORD (dynobj, GET_WORD (dynobj, p) + filepos, p);
2572 val = GET_WORD (dynobj, p + 12);
2573 if (val == 0)
2574 break;
2575 PUT_WORD (dynobj, val + filepos, p + 12);
2576 p += 16;
2577 }
2578 }
2579
2580 /* The first entry in the .got section is the address of the
2581 dynamic information, unless this is a shared library. */
2582 s = bfd_get_section_by_name (dynobj, ".got");
2583 BFD_ASSERT (s != NULL);
2584 if (info->shared)
2585 PUT_WORD (dynobj, 0, s->contents);
2586 else
2587 PUT_WORD (dynobj, sdyn->output_section->vma + sdyn->output_offset,
2588 s->contents);
2589
2590 for (o = dynobj->sections; o != NULL; o = o->next)
2591 {
2592 if ((o->flags & SEC_HAS_CONTENTS) != 0
2593 && o->contents != NULL)
2594 {
2595 BFD_ASSERT (o->output_section != NULL
2596 && o->output_section->owner == abfd);
2597 if (! bfd_set_section_contents (abfd, o->output_section,
2598 o->contents, o->output_offset,
2599 o->_raw_size))
2600 return false;
2601 }
2602 }
2603
2604 /* Finish up the dynamic link information. */
2605 PUT_WORD (dynobj, (bfd_vma) 3, esd.ld_version);
2606 PUT_WORD (dynobj,
2607 sdyn->output_section->vma + sdyn->output_offset + sizeof esd,
2608 esd.ldd);
2609 PUT_WORD (dynobj,
2610 (sdyn->output_section->vma
2611 + sdyn->output_offset
2612 + sizeof esd
2613 + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE),
2614 esd.ld);
2615
2616 if (! bfd_set_section_contents (abfd, sdyn->output_section, &esd,
2617 sdyn->output_offset, sizeof esd))
2618 return false;
2619
2620
2621 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_loaded);
2622
2623 s = bfd_get_section_by_name (dynobj, ".need");
2624 if (s == NULL || s->_raw_size == 0)
2625 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_need);
2626 else
2627 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2628 esdl.ld_need);
2629
2630 s = bfd_get_section_by_name (dynobj, ".rules");
2631 if (s == NULL || s->_raw_size == 0)
2632 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_rules);
2633 else
2634 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2635 esdl.ld_rules);
2636
2637 s = bfd_get_section_by_name (dynobj, ".got");
2638 BFD_ASSERT (s != NULL);
2639 PUT_WORD (dynobj, s->output_section->vma + s->output_offset, esdl.ld_got);
2640
2641 s = bfd_get_section_by_name (dynobj, ".plt");
2642 BFD_ASSERT (s != NULL);
2643 PUT_WORD (dynobj, s->output_section->vma + s->output_offset, esdl.ld_plt);
2644 PUT_WORD (dynobj, s->_raw_size, esdl.ld_plt_sz);
2645
2646 s = bfd_get_section_by_name (dynobj, ".dynrel");
2647 BFD_ASSERT (s != NULL);
2648 BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj) == s->_raw_size);
2649 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2650 esdl.ld_rel);
2651
2652 s = bfd_get_section_by_name (dynobj, ".hash");
2653 BFD_ASSERT (s != NULL);
2654 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2655 esdl.ld_hash);
2656
2657 s = bfd_get_section_by_name (dynobj, ".dynsym");
2658 BFD_ASSERT (s != NULL);
2659 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2660 esdl.ld_stab);
2661
2662 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_stab_hash);
2663
2664 PUT_WORD (dynobj, (bfd_vma) sunos_hash_table (info)->bucketcount,
2665 esdl.ld_buckets);
2666
2667 s = bfd_get_section_by_name (dynobj, ".dynstr");
2668 BFD_ASSERT (s != NULL);
2669 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2670 esdl.ld_symbols);
2671 PUT_WORD (dynobj, s->_raw_size, esdl.ld_symb_size);
2672
2673 /* The size of the text area is the size of the .text section
2674 rounded up to a page boundary. FIXME: Should the page size be
2675 conditional on something? */
2676 PUT_WORD (dynobj,
2677 BFD_ALIGN (obj_textsec (abfd)->_raw_size, 0x2000),
2678 esdl.ld_text);
2679
2680 if (! bfd_set_section_contents (abfd, sdyn->output_section, &esdl,
2681 (sdyn->output_offset
2682 + sizeof esd
2683 + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE),
2684 sizeof esdl))
2685 return false;
2686
2687 abfd->flags |= DYNAMIC;
2688
2689 return true;
2690 }