* elf.c (bfd_elf_set_dt_needed_name): Don't do anything if the
[binutils-gdb.git] / bfd / sunos.c
1 /* BFD backend for SunOS binaries.
2 Copyright (C) 1990, 91, 92, 93, 94, 1995 Free Software Foundation, Inc.
3 Written by Cygnus Support.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #define TARGETNAME "a.out-sunos-big"
22 #define MY(OP) CAT(sunos_big_,OP)
23
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libaout.h"
27
28 /* Static routines defined in this file. */
29
30 static boolean sunos_read_dynamic_info PARAMS ((bfd *));
31 static long sunos_get_dynamic_symtab_upper_bound PARAMS ((bfd *));
32 static boolean sunos_slurp_dynamic_symtab PARAMS ((bfd *));
33 static long sunos_canonicalize_dynamic_symtab PARAMS ((bfd *, asymbol **));
34 static long sunos_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
35 static long sunos_canonicalize_dynamic_reloc
36 PARAMS ((bfd *, arelent **, asymbol **));
37 static struct bfd_hash_entry *sunos_link_hash_newfunc
38 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
39 static struct bfd_link_hash_table *sunos_link_hash_table_create
40 PARAMS ((bfd *));
41 static boolean sunos_create_dynamic_sections
42 PARAMS ((bfd *, struct bfd_link_info *, boolean));
43 static boolean sunos_add_dynamic_symbols
44 PARAMS ((bfd *, struct bfd_link_info *, struct external_nlist **,
45 bfd_size_type *, char **));
46 static boolean sunos_add_one_symbol
47 PARAMS ((struct bfd_link_info *, bfd *, const char *, flagword, asection *,
48 bfd_vma, const char *, boolean, boolean,
49 struct bfd_link_hash_entry **));
50 static boolean sunos_scan_relocs
51 PARAMS ((struct bfd_link_info *, bfd *, asection *, bfd_size_type));
52 static boolean sunos_scan_std_relocs
53 PARAMS ((struct bfd_link_info *, bfd *, asection *,
54 const struct reloc_std_external *, bfd_size_type));
55 static boolean sunos_scan_ext_relocs
56 PARAMS ((struct bfd_link_info *, bfd *, asection *,
57 const struct reloc_ext_external *, bfd_size_type));
58 static boolean sunos_link_dynamic_object
59 PARAMS ((struct bfd_link_info *, bfd *));
60 static boolean sunos_write_dynamic_symbol
61 PARAMS ((bfd *, struct bfd_link_info *, struct aout_link_hash_entry *));
62 static boolean sunos_check_dynamic_reloc
63 PARAMS ((struct bfd_link_info *, bfd *, asection *,
64 struct aout_link_hash_entry *, PTR, bfd_byte *, boolean *,
65 bfd_vma *));
66 static boolean sunos_finish_dynamic_link
67 PARAMS ((bfd *, struct bfd_link_info *));
68
69 #define MY_get_dynamic_symtab_upper_bound sunos_get_dynamic_symtab_upper_bound
70 #define MY_canonicalize_dynamic_symtab sunos_canonicalize_dynamic_symtab
71 #define MY_get_dynamic_reloc_upper_bound sunos_get_dynamic_reloc_upper_bound
72 #define MY_canonicalize_dynamic_reloc sunos_canonicalize_dynamic_reloc
73 #define MY_bfd_link_hash_table_create sunos_link_hash_table_create
74 #define MY_add_dynamic_symbols sunos_add_dynamic_symbols
75 #define MY_add_one_symbol sunos_add_one_symbol
76 #define MY_link_dynamic_object sunos_link_dynamic_object
77 #define MY_write_dynamic_symbol sunos_write_dynamic_symbol
78 #define MY_check_dynamic_reloc sunos_check_dynamic_reloc
79 #define MY_finish_dynamic_link sunos_finish_dynamic_link
80
81 /* Include the usual a.out support. */
82 #include "aoutf1.h"
83
84 /* SunOS shared library support. We store a pointer to this structure
85 in obj_aout_dynamic_info (abfd). */
86
87 struct sunos_dynamic_info
88 {
89 /* Whether we found any dynamic information. */
90 boolean valid;
91 /* Dynamic information. */
92 struct internal_sun4_dynamic_link dyninfo;
93 /* Number of dynamic symbols. */
94 unsigned long dynsym_count;
95 /* Read in nlists for dynamic symbols. */
96 struct external_nlist *dynsym;
97 /* asymbol structures for dynamic symbols. */
98 aout_symbol_type *canonical_dynsym;
99 /* Read in dynamic string table. */
100 char *dynstr;
101 /* Number of dynamic relocs. */
102 unsigned long dynrel_count;
103 /* Read in dynamic relocs. This may be reloc_std_external or
104 reloc_ext_external. */
105 PTR dynrel;
106 /* arelent structures for dynamic relocs. */
107 arelent *canonical_dynrel;
108 };
109
110 /* The hash table of dynamic symbols is composed of two word entries.
111 See include/aout/sun4.h for details. */
112
113 #define HASH_ENTRY_SIZE (2 * BYTES_IN_WORD)
114
115 /* Read in the basic dynamic information. This locates the __DYNAMIC
116 structure and uses it to find the dynamic_link structure. It
117 creates and saves a sunos_dynamic_info structure. If it can't find
118 __DYNAMIC, it sets the valid field of the sunos_dynamic_info
119 structure to false to avoid doing this work again. */
120
121 static boolean
122 sunos_read_dynamic_info (abfd)
123 bfd *abfd;
124 {
125 struct sunos_dynamic_info *info;
126 asection *dynsec;
127 bfd_vma dynoff;
128 struct external_sun4_dynamic dyninfo;
129 unsigned long dynver;
130 struct external_sun4_dynamic_link linkinfo;
131
132 if (obj_aout_dynamic_info (abfd) != (PTR) NULL)
133 return true;
134
135 if ((abfd->flags & DYNAMIC) == 0)
136 {
137 bfd_set_error (bfd_error_invalid_operation);
138 return false;
139 }
140
141 info = ((struct sunos_dynamic_info *)
142 bfd_zalloc (abfd, sizeof (struct sunos_dynamic_info)));
143 if (!info)
144 {
145 bfd_set_error (bfd_error_no_memory);
146 return false;
147 }
148 info->valid = false;
149 info->dynsym = NULL;
150 info->dynstr = NULL;
151 info->canonical_dynsym = NULL;
152 info->dynrel = NULL;
153 info->canonical_dynrel = NULL;
154 obj_aout_dynamic_info (abfd) = (PTR) info;
155
156 /* This code used to look for the __DYNAMIC symbol to locate the dynamic
157 linking information.
158 However this inhibits recovering the dynamic symbols from a
159 stripped object file, so blindly assume that the dynamic linking
160 information is located at the start of the data section.
161 We could verify this assumption later by looking through the dynamic
162 symbols for the __DYNAMIC symbol. */
163 if ((abfd->flags & DYNAMIC) == 0)
164 return true;
165 if (! bfd_get_section_contents (abfd, obj_datasec (abfd), (PTR) &dyninfo,
166 (file_ptr) 0, sizeof dyninfo))
167 return true;
168
169 dynver = GET_WORD (abfd, dyninfo.ld_version);
170 if (dynver != 2 && dynver != 3)
171 return true;
172
173 dynoff = GET_WORD (abfd, dyninfo.ld);
174
175 /* dynoff is a virtual address. It is probably always in the .data
176 section, but this code should work even if it moves. */
177 if (dynoff < bfd_get_section_vma (abfd, obj_datasec (abfd)))
178 dynsec = obj_textsec (abfd);
179 else
180 dynsec = obj_datasec (abfd);
181 dynoff -= bfd_get_section_vma (abfd, dynsec);
182 if (dynoff > bfd_section_size (abfd, dynsec))
183 return true;
184
185 /* This executable appears to be dynamically linked in a way that we
186 can understand. */
187 if (! bfd_get_section_contents (abfd, dynsec, (PTR) &linkinfo, dynoff,
188 (bfd_size_type) sizeof linkinfo))
189 return true;
190
191 /* Swap in the dynamic link information. */
192 info->dyninfo.ld_loaded = GET_WORD (abfd, linkinfo.ld_loaded);
193 info->dyninfo.ld_need = GET_WORD (abfd, linkinfo.ld_need);
194 info->dyninfo.ld_rules = GET_WORD (abfd, linkinfo.ld_rules);
195 info->dyninfo.ld_got = GET_WORD (abfd, linkinfo.ld_got);
196 info->dyninfo.ld_plt = GET_WORD (abfd, linkinfo.ld_plt);
197 info->dyninfo.ld_rel = GET_WORD (abfd, linkinfo.ld_rel);
198 info->dyninfo.ld_hash = GET_WORD (abfd, linkinfo.ld_hash);
199 info->dyninfo.ld_stab = GET_WORD (abfd, linkinfo.ld_stab);
200 info->dyninfo.ld_stab_hash = GET_WORD (abfd, linkinfo.ld_stab_hash);
201 info->dyninfo.ld_buckets = GET_WORD (abfd, linkinfo.ld_buckets);
202 info->dyninfo.ld_symbols = GET_WORD (abfd, linkinfo.ld_symbols);
203 info->dyninfo.ld_symb_size = GET_WORD (abfd, linkinfo.ld_symb_size);
204 info->dyninfo.ld_text = GET_WORD (abfd, linkinfo.ld_text);
205 info->dyninfo.ld_plt_sz = GET_WORD (abfd, linkinfo.ld_plt_sz);
206
207 /* Reportedly the addresses need to be offset by the size of the
208 exec header in an NMAGIC file. */
209 if (adata (abfd).magic == n_magic)
210 {
211 unsigned long exec_bytes_size = adata (abfd).exec_bytes_size;
212
213 info->dyninfo.ld_need += exec_bytes_size;
214 info->dyninfo.ld_rules += exec_bytes_size;
215 info->dyninfo.ld_rel += exec_bytes_size;
216 info->dyninfo.ld_hash += exec_bytes_size;
217 info->dyninfo.ld_stab += exec_bytes_size;
218 info->dyninfo.ld_symbols += exec_bytes_size;
219 }
220
221 /* The only way to get the size of the symbol information appears to
222 be to determine the distance between it and the string table. */
223 info->dynsym_count = ((info->dyninfo.ld_symbols - info->dyninfo.ld_stab)
224 / EXTERNAL_NLIST_SIZE);
225 BFD_ASSERT (info->dynsym_count * EXTERNAL_NLIST_SIZE
226 == (unsigned long) (info->dyninfo.ld_symbols
227 - info->dyninfo.ld_stab));
228
229 /* Similarly, the relocs end at the hash table. */
230 info->dynrel_count = ((info->dyninfo.ld_hash - info->dyninfo.ld_rel)
231 / obj_reloc_entry_size (abfd));
232 BFD_ASSERT (info->dynrel_count * obj_reloc_entry_size (abfd)
233 == (unsigned long) (info->dyninfo.ld_hash
234 - info->dyninfo.ld_rel));
235
236 info->valid = true;
237
238 return true;
239 }
240
241 /* Return the amount of memory required for the dynamic symbols. */
242
243 static long
244 sunos_get_dynamic_symtab_upper_bound (abfd)
245 bfd *abfd;
246 {
247 struct sunos_dynamic_info *info;
248
249 if (! sunos_read_dynamic_info (abfd))
250 return -1;
251
252 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
253 if (! info->valid)
254 {
255 bfd_set_error (bfd_error_no_symbols);
256 return -1;
257 }
258
259 return (info->dynsym_count + 1) * sizeof (asymbol *);
260 }
261
262 /* Read the external dynamic symbols. */
263
264 static boolean
265 sunos_slurp_dynamic_symtab (abfd)
266 bfd *abfd;
267 {
268 struct sunos_dynamic_info *info;
269
270 /* Get the general dynamic information. */
271 if (obj_aout_dynamic_info (abfd) == NULL)
272 {
273 if (! sunos_read_dynamic_info (abfd))
274 return false;
275 }
276
277 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
278 if (! info->valid)
279 {
280 bfd_set_error (bfd_error_no_symbols);
281 return false;
282 }
283
284 /* Get the dynamic nlist structures. */
285 if (info->dynsym == (struct external_nlist *) NULL)
286 {
287 info->dynsym = ((struct external_nlist *)
288 bfd_alloc (abfd,
289 (info->dynsym_count
290 * EXTERNAL_NLIST_SIZE)));
291 if (info->dynsym == NULL && info->dynsym_count != 0)
292 {
293 bfd_set_error (bfd_error_no_memory);
294 return false;
295 }
296 if (bfd_seek (abfd, info->dyninfo.ld_stab, SEEK_SET) != 0
297 || (bfd_read ((PTR) info->dynsym, info->dynsym_count,
298 EXTERNAL_NLIST_SIZE, abfd)
299 != info->dynsym_count * EXTERNAL_NLIST_SIZE))
300 {
301 if (info->dynsym != NULL)
302 {
303 bfd_release (abfd, info->dynsym);
304 info->dynsym = NULL;
305 }
306 return false;
307 }
308 }
309
310 /* Get the dynamic strings. */
311 if (info->dynstr == (char *) NULL)
312 {
313 info->dynstr = (char *) bfd_alloc (abfd, info->dyninfo.ld_symb_size);
314 if (info->dynstr == NULL && info->dyninfo.ld_symb_size != 0)
315 {
316 bfd_set_error (bfd_error_no_memory);
317 return false;
318 }
319 if (bfd_seek (abfd, info->dyninfo.ld_symbols, SEEK_SET) != 0
320 || (bfd_read ((PTR) info->dynstr, 1, info->dyninfo.ld_symb_size,
321 abfd)
322 != info->dyninfo.ld_symb_size))
323 {
324 if (info->dynstr != NULL)
325 {
326 bfd_release (abfd, info->dynstr);
327 info->dynstr = NULL;
328 }
329 return false;
330 }
331 }
332
333 return true;
334 }
335
336 /* Read in the dynamic symbols. */
337
338 static long
339 sunos_canonicalize_dynamic_symtab (abfd, storage)
340 bfd *abfd;
341 asymbol **storage;
342 {
343 struct sunos_dynamic_info *info;
344 unsigned long i;
345
346 if (! sunos_slurp_dynamic_symtab (abfd))
347 return -1;
348
349 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
350
351 #ifdef CHECK_DYNAMIC_HASH
352 /* Check my understanding of the dynamic hash table by making sure
353 that each symbol can be located in the hash table. */
354 {
355 bfd_size_type table_size;
356 bfd_byte *table;
357 bfd_size_type i;
358
359 if (info->dyninfo.ld_buckets > info->dynsym_count)
360 abort ();
361 table_size = info->dyninfo.ld_stab - info->dyninfo.ld_hash;
362 table = (bfd_byte *) malloc (table_size);
363 if (table == NULL && table_size != 0)
364 abort ();
365 if (bfd_seek (abfd, info->dyninfo.ld_hash, SEEK_SET) != 0
366 || bfd_read ((PTR) table, 1, table_size, abfd) != table_size)
367 abort ();
368 for (i = 0; i < info->dynsym_count; i++)
369 {
370 unsigned char *name;
371 unsigned long hash;
372
373 name = ((unsigned char *) info->dynstr
374 + GET_WORD (abfd, info->dynsym[i].e_strx));
375 hash = 0;
376 while (*name != '\0')
377 hash = (hash << 1) + *name++;
378 hash &= 0x7fffffff;
379 hash %= info->dyninfo.ld_buckets;
380 while (GET_WORD (abfd, table + hash * HASH_ENTRY_SIZE) != i)
381 {
382 hash = GET_WORD (abfd,
383 table + hash * HASH_ENTRY_SIZE + BYTES_IN_WORD);
384 if (hash == 0 || hash >= table_size / HASH_ENTRY_SIZE)
385 abort ();
386 }
387 }
388 free (table);
389 }
390 #endif /* CHECK_DYNAMIC_HASH */
391
392 /* Get the asymbol structures corresponding to the dynamic nlist
393 structures. */
394 if (info->canonical_dynsym == (aout_symbol_type *) NULL)
395 {
396 info->canonical_dynsym = ((aout_symbol_type *)
397 bfd_alloc (abfd,
398 (info->dynsym_count
399 * sizeof (aout_symbol_type))));
400 if (info->canonical_dynsym == NULL && info->dynsym_count != 0)
401 {
402 bfd_set_error (bfd_error_no_memory);
403 return -1;
404 }
405
406 if (! aout_32_translate_symbol_table (abfd, info->canonical_dynsym,
407 info->dynsym, info->dynsym_count,
408 info->dynstr,
409 info->dyninfo.ld_symb_size,
410 true))
411 {
412 if (info->canonical_dynsym != NULL)
413 {
414 bfd_release (abfd, info->canonical_dynsym);
415 info->canonical_dynsym = NULL;
416 }
417 return -1;
418 }
419 }
420
421 /* Return pointers to the dynamic asymbol structures. */
422 for (i = 0; i < info->dynsym_count; i++)
423 *storage++ = (asymbol *) (info->canonical_dynsym + i);
424 *storage = NULL;
425
426 return info->dynsym_count;
427 }
428
429 /* Return the amount of memory required for the dynamic relocs. */
430
431 static long
432 sunos_get_dynamic_reloc_upper_bound (abfd)
433 bfd *abfd;
434 {
435 struct sunos_dynamic_info *info;
436
437 if (! sunos_read_dynamic_info (abfd))
438 return -1;
439
440 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
441 if (! info->valid)
442 {
443 bfd_set_error (bfd_error_no_symbols);
444 return -1;
445 }
446
447 return (info->dynrel_count + 1) * sizeof (arelent *);
448 }
449
450 /* Read in the dynamic relocs. */
451
452 static long
453 sunos_canonicalize_dynamic_reloc (abfd, storage, syms)
454 bfd *abfd;
455 arelent **storage;
456 asymbol **syms;
457 {
458 struct sunos_dynamic_info *info;
459 unsigned long i;
460
461 /* Get the general dynamic information. */
462 if (obj_aout_dynamic_info (abfd) == (PTR) NULL)
463 {
464 if (! sunos_read_dynamic_info (abfd))
465 return -1;
466 }
467
468 info = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
469 if (! info->valid)
470 {
471 bfd_set_error (bfd_error_no_symbols);
472 return -1;
473 }
474
475 /* Get the dynamic reloc information. */
476 if (info->dynrel == NULL)
477 {
478 info->dynrel = (PTR) bfd_alloc (abfd,
479 (info->dynrel_count
480 * obj_reloc_entry_size (abfd)));
481 if (info->dynrel == NULL && info->dynrel_count != 0)
482 {
483 bfd_set_error (bfd_error_no_memory);
484 return -1;
485 }
486 if (bfd_seek (abfd, info->dyninfo.ld_rel, SEEK_SET) != 0
487 || (bfd_read ((PTR) info->dynrel, info->dynrel_count,
488 obj_reloc_entry_size (abfd), abfd)
489 != info->dynrel_count * obj_reloc_entry_size (abfd)))
490 {
491 if (info->dynrel != NULL)
492 {
493 bfd_release (abfd, info->dynrel);
494 info->dynrel = NULL;
495 }
496 return -1;
497 }
498 }
499
500 /* Get the arelent structures corresponding to the dynamic reloc
501 information. */
502 if (info->canonical_dynrel == (arelent *) NULL)
503 {
504 arelent *to;
505
506 info->canonical_dynrel = ((arelent *)
507 bfd_alloc (abfd,
508 (info->dynrel_count
509 * sizeof (arelent))));
510 if (info->canonical_dynrel == NULL && info->dynrel_count != 0)
511 {
512 bfd_set_error (bfd_error_no_memory);
513 return -1;
514 }
515
516 to = info->canonical_dynrel;
517
518 if (obj_reloc_entry_size (abfd) == RELOC_EXT_SIZE)
519 {
520 register struct reloc_ext_external *p;
521 struct reloc_ext_external *pend;
522
523 p = (struct reloc_ext_external *) info->dynrel;
524 pend = p + info->dynrel_count;
525 for (; p < pend; p++, to++)
526 NAME(aout,swap_ext_reloc_in) (abfd, p, to, syms,
527 info->dynsym_count);
528 }
529 else
530 {
531 register struct reloc_std_external *p;
532 struct reloc_std_external *pend;
533
534 p = (struct reloc_std_external *) info->dynrel;
535 pend = p + info->dynrel_count;
536 for (; p < pend; p++, to++)
537 NAME(aout,swap_std_reloc_in) (abfd, p, to, syms,
538 info->dynsym_count);
539 }
540 }
541
542 /* Return pointers to the dynamic arelent structures. */
543 for (i = 0; i < info->dynrel_count; i++)
544 *storage++ = info->canonical_dynrel + i;
545 *storage = NULL;
546
547 return info->dynrel_count;
548 }
549 \f
550 /* Code to handle linking of SunOS shared libraries. */
551
552 /* A SPARC procedure linkage table entry is 12 bytes. The first entry
553 in the table is a jump which is filled in by the runtime linker.
554 The remaining entries are branches back to the first entry,
555 followed by an index into the relocation table encoded to look like
556 a sethi of %g0. */
557
558 #define SPARC_PLT_ENTRY_SIZE (12)
559
560 static const bfd_byte sparc_plt_first_entry[SPARC_PLT_ENTRY_SIZE] =
561 {
562 /* sethi %hi(0),%g1; address filled in by runtime linker. */
563 0x3, 0, 0, 0,
564 /* jmp %g1; offset filled in by runtime linker. */
565 0x81, 0xc0, 0x60, 0,
566 /* nop */
567 0x1, 0, 0, 0
568 };
569
570 /* save %sp, -96, %sp */
571 #define SPARC_PLT_ENTRY_WORD0 0x9de3bfa0
572 /* call; address filled in later. */
573 #define SPARC_PLT_ENTRY_WORD1 0x40000000
574 /* sethi; reloc index filled in later. */
575 #define SPARC_PLT_ENTRY_WORD2 0x01000000
576
577 /* This sequence is used when for the jump table entry to a defined
578 symbol in a complete executable. It is used when linking PIC
579 compiled code which is not being put into a shared library. */
580 /* sethi <address to be filled in later>, %g1 */
581 #define SPARC_PLT_PIC_WORD0 0x03000000
582 /* jmp %g1 + <address to be filled in later> */
583 #define SPARC_PLT_PIC_WORD1 0x81c06000
584 /* nop */
585 #define SPARC_PLT_PIC_WORD2 0x01000000
586
587 /* An m68k procedure linkage table entry is 8 bytes. The first entry
588 in the table is a jump which is filled in the by the runtime
589 linker. The remaining entries are branches back to the first
590 entry, followed by a two byte index into the relocation table. */
591
592 #define M68K_PLT_ENTRY_SIZE (8)
593
594 static const bfd_byte m68k_plt_first_entry[M68K_PLT_ENTRY_SIZE] =
595 {
596 /* jmps @# */
597 0x4e, 0xf9,
598 /* Filled in by runtime linker with a magic address. */
599 0, 0, 0, 0,
600 /* Not used? */
601 0, 0
602 };
603
604 /* bsrl */
605 #define M68K_PLT_ENTRY_WORD0 (0x61ff)
606 /* Remaining words filled in later. */
607
608 /* An entry in the SunOS linker hash table. */
609
610 struct sunos_link_hash_entry
611 {
612 struct aout_link_hash_entry root;
613
614 /* If this is a dynamic symbol, this is its index into the dynamic
615 symbol table. This is initialized to -1. As the linker looks at
616 the input files, it changes this to -2 if it will be added to the
617 dynamic symbol table. After all the input files have been seen,
618 the linker will know whether to build a dynamic symbol table; if
619 it does build one, this becomes the index into the table. */
620 long dynindx;
621
622 /* If this is a dynamic symbol, this is the index of the name in the
623 dynamic symbol string table. */
624 long dynstr_index;
625
626 /* The offset into the global offset table used for this symbol. If
627 the symbol does not require a GOT entry, this is 0. */
628 bfd_vma got_offset;
629
630 /* The offset into the procedure linkage table used for this symbol.
631 If the symbol does not require a PLT entry, this is 0. */
632 bfd_vma plt_offset;
633
634 /* Some linker flags. */
635 unsigned char flags;
636 /* Symbol is referenced by a regular object. */
637 #define SUNOS_REF_REGULAR 01
638 /* Symbol is defined by a regular object. */
639 #define SUNOS_DEF_REGULAR 02
640 /* Symbol is referenced by a dynamic object. */
641 #define SUNOS_REF_DYNAMIC 010
642 /* Symbol is defined by a dynamic object. */
643 #define SUNOS_DEF_DYNAMIC 020
644 };
645
646 /* The SunOS linker hash table. */
647
648 struct sunos_link_hash_table
649 {
650 struct aout_link_hash_table root;
651
652 /* The object which holds the dynamic sections. */
653 bfd *dynobj;
654
655 /* Whether we have created the dynamic sections. */
656 boolean dynamic_sections_created;
657
658 /* Whether we need the dynamic sections. */
659 boolean dynamic_sections_needed;
660
661 /* The number of dynamic symbols. */
662 size_t dynsymcount;
663
664 /* The number of buckets in the hash table. */
665 size_t bucketcount;
666
667 /* The list of dynamic objects needed by dynamic objects included in
668 the link. */
669 struct bfd_link_needed_list *needed;
670 };
671
672 /* Routine to create an entry in an SunOS link hash table. */
673
674 static struct bfd_hash_entry *
675 sunos_link_hash_newfunc (entry, table, string)
676 struct bfd_hash_entry *entry;
677 struct bfd_hash_table *table;
678 const char *string;
679 {
680 struct sunos_link_hash_entry *ret = (struct sunos_link_hash_entry *) entry;
681
682 /* Allocate the structure if it has not already been allocated by a
683 subclass. */
684 if (ret == (struct sunos_link_hash_entry *) NULL)
685 ret = ((struct sunos_link_hash_entry *)
686 bfd_hash_allocate (table, sizeof (struct sunos_link_hash_entry)));
687 if (ret == (struct sunos_link_hash_entry *) NULL)
688 {
689 bfd_set_error (bfd_error_no_memory);
690 return (struct bfd_hash_entry *) ret;
691 }
692
693 /* Call the allocation method of the superclass. */
694 ret = ((struct sunos_link_hash_entry *)
695 NAME(aout,link_hash_newfunc) ((struct bfd_hash_entry *) ret,
696 table, string));
697 if (ret != NULL)
698 {
699 /* Set local fields. */
700 ret->dynindx = -1;
701 ret->dynstr_index = -1;
702 ret->got_offset = 0;
703 ret->plt_offset = 0;
704 ret->flags = 0;
705 }
706
707 return (struct bfd_hash_entry *) ret;
708 }
709
710 /* Create a SunOS link hash table. */
711
712 static struct bfd_link_hash_table *
713 sunos_link_hash_table_create (abfd)
714 bfd *abfd;
715 {
716 struct sunos_link_hash_table *ret;
717
718 ret = ((struct sunos_link_hash_table *)
719 bfd_alloc (abfd, sizeof (struct sunos_link_hash_table)));
720 if (ret == (struct sunos_link_hash_table *) NULL)
721 {
722 bfd_set_error (bfd_error_no_memory);
723 return (struct bfd_link_hash_table *) NULL;
724 }
725 if (! NAME(aout,link_hash_table_init) (&ret->root, abfd,
726 sunos_link_hash_newfunc))
727 {
728 bfd_release (abfd, ret);
729 return (struct bfd_link_hash_table *) NULL;
730 }
731
732 ret->dynobj = NULL;
733 ret->dynamic_sections_created = false;
734 ret->dynamic_sections_needed = false;
735 ret->dynsymcount = 0;
736 ret->bucketcount = 0;
737 ret->needed = NULL;
738
739 return &ret->root.root;
740 }
741
742 /* Look up an entry in an SunOS link hash table. */
743
744 #define sunos_link_hash_lookup(table, string, create, copy, follow) \
745 ((struct sunos_link_hash_entry *) \
746 aout_link_hash_lookup (&(table)->root, (string), (create), (copy),\
747 (follow)))
748
749 /* Traverse a SunOS link hash table. */
750
751 #define sunos_link_hash_traverse(table, func, info) \
752 (aout_link_hash_traverse \
753 (&(table)->root, \
754 (boolean (*) PARAMS ((struct aout_link_hash_entry *, PTR))) (func), \
755 (info)))
756
757 /* Get the SunOS link hash table from the info structure. This is
758 just a cast. */
759
760 #define sunos_hash_table(p) ((struct sunos_link_hash_table *) ((p)->hash))
761
762 static boolean sunos_scan_dynamic_symbol
763 PARAMS ((struct sunos_link_hash_entry *, PTR));
764
765 /* Create the dynamic sections needed if we are linking against a
766 dynamic object, or if we are linking PIC compiled code. ABFD is a
767 bfd we can attach the dynamic sections to. The linker script will
768 look for these special sections names and put them in the right
769 place in the output file. See include/aout/sun4.h for more details
770 of the dynamic linking information. */
771
772 static boolean
773 sunos_create_dynamic_sections (abfd, info, needed)
774 bfd *abfd;
775 struct bfd_link_info *info;
776 boolean needed;
777 {
778 asection *s;
779
780 if (! sunos_hash_table (info)->dynamic_sections_created)
781 {
782 flagword flags;
783
784 sunos_hash_table (info)->dynobj = abfd;
785
786 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY;
787
788 /* The .dynamic section holds the basic dynamic information: the
789 sun4_dynamic structure, the dynamic debugger information, and
790 the sun4_dynamic_link structure. */
791 s = bfd_make_section (abfd, ".dynamic");
792 if (s == NULL
793 || ! bfd_set_section_flags (abfd, s, flags)
794 || ! bfd_set_section_alignment (abfd, s, 2))
795 return false;
796
797 /* The .got section holds the global offset table. The address
798 is put in the ld_got field. */
799 s = bfd_make_section (abfd, ".got");
800 if (s == NULL
801 || ! bfd_set_section_flags (abfd, s, flags)
802 || ! bfd_set_section_alignment (abfd, s, 2))
803 return false;
804
805 /* The .plt section holds the procedure linkage table. The
806 address is put in the ld_plt field. */
807 s = bfd_make_section (abfd, ".plt");
808 if (s == NULL
809 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
810 || ! bfd_set_section_alignment (abfd, s, 2))
811 return false;
812
813 /* The .dynrel section holds the dynamic relocs. The address is
814 put in the ld_rel field. */
815 s = bfd_make_section (abfd, ".dynrel");
816 if (s == NULL
817 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
818 || ! bfd_set_section_alignment (abfd, s, 2))
819 return false;
820
821 /* The .hash section holds the dynamic hash table. The address
822 is put in the ld_hash field. */
823 s = bfd_make_section (abfd, ".hash");
824 if (s == NULL
825 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
826 || ! bfd_set_section_alignment (abfd, s, 2))
827 return false;
828
829 /* The .dynsym section holds the dynamic symbols. The address
830 is put in the ld_stab field. */
831 s = bfd_make_section (abfd, ".dynsym");
832 if (s == NULL
833 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
834 || ! bfd_set_section_alignment (abfd, s, 2))
835 return false;
836
837 /* The .dynstr section holds the dynamic symbol string table.
838 The address is put in the ld_symbols field. */
839 s = bfd_make_section (abfd, ".dynstr");
840 if (s == NULL
841 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
842 || ! bfd_set_section_alignment (abfd, s, 2))
843 return false;
844
845 sunos_hash_table (info)->dynamic_sections_created = true;
846 }
847
848 if (needed && ! sunos_hash_table (info)->dynamic_sections_needed)
849 {
850 bfd *dynobj;
851
852 dynobj = sunos_hash_table (info)->dynobj;
853
854 s = bfd_get_section_by_name (dynobj, ".got");
855 s->_raw_size = BYTES_IN_WORD;
856
857 sunos_hash_table (info)->dynamic_sections_needed = true;
858 }
859
860 return true;
861 }
862
863 /* Add dynamic symbols during a link. This is called by the a.out
864 backend linker when it encounters an object with the DYNAMIC flag
865 set. */
866
867 static boolean
868 sunos_add_dynamic_symbols (abfd, info, symsp, sym_countp, stringsp)
869 bfd *abfd;
870 struct bfd_link_info *info;
871 struct external_nlist **symsp;
872 bfd_size_type *sym_countp;
873 char **stringsp;
874 {
875 asection *s;
876 bfd *dynobj;
877 struct sunos_dynamic_info *dinfo;
878 unsigned long need;
879
880 /* We do not want to include the sections in a dynamic object in the
881 output file. We hack by simply clobbering the list of sections
882 in the BFD. This could be handled more cleanly by, say, a new
883 section flag; the existing SEC_NEVER_LOAD flag is not the one we
884 want, because that one still implies that the section takes up
885 space in the output file. */
886 abfd->sections = NULL;
887
888 /* The native linker seems to just ignore dynamic objects when -r is
889 used. */
890 if (info->relocateable)
891 return true;
892
893 /* There's no hope of using a dynamic object which does not exactly
894 match the format of the output file. */
895 if (info->hash->creator != abfd->xvec)
896 {
897 bfd_set_error (bfd_error_invalid_operation);
898 return false;
899 }
900
901 /* Make sure we have all the required information. */
902 if (! sunos_create_dynamic_sections (abfd, info, true))
903 return false;
904
905 /* Make sure we have a .need and a .rules sections. These are only
906 needed if there really is a dynamic object in the link, so they
907 are not added by sunos_create_dynamic_sections. */
908 dynobj = sunos_hash_table (info)->dynobj;
909 if (bfd_get_section_by_name (dynobj, ".need") == NULL)
910 {
911 /* The .need section holds the list of names of shared objets
912 which must be included at runtime. The address of this
913 section is put in the ld_need field. */
914 s = bfd_make_section (dynobj, ".need");
915 if (s == NULL
916 || ! bfd_set_section_flags (dynobj, s,
917 (SEC_ALLOC
918 | SEC_LOAD
919 | SEC_HAS_CONTENTS
920 | SEC_IN_MEMORY
921 | SEC_READONLY))
922 || ! bfd_set_section_alignment (dynobj, s, 2))
923 return false;
924 }
925
926 if (bfd_get_section_by_name (dynobj, ".rules") == NULL)
927 {
928 /* The .rules section holds the path to search for shared
929 objects. The address of this section is put in the ld_rules
930 field. */
931 s = bfd_make_section (dynobj, ".rules");
932 if (s == NULL
933 || ! bfd_set_section_flags (dynobj, s,
934 (SEC_ALLOC
935 | SEC_LOAD
936 | SEC_HAS_CONTENTS
937 | SEC_IN_MEMORY
938 | SEC_READONLY))
939 || ! bfd_set_section_alignment (dynobj, s, 2))
940 return false;
941 }
942
943 /* Pick up the dynamic symbols and return them to the caller. */
944 if (! sunos_slurp_dynamic_symtab (abfd))
945 return false;
946
947 dinfo = (struct sunos_dynamic_info *) obj_aout_dynamic_info (abfd);
948 *symsp = dinfo->dynsym;
949 *sym_countp = dinfo->dynsym_count;
950 *stringsp = dinfo->dynstr;
951
952 /* Record information about any other objects needed by this one. */
953 need = dinfo->dyninfo.ld_need;
954 while (need != 0)
955 {
956 bfd_byte buf[16];
957 unsigned long name, flags;
958 unsigned short major_vno, minor_vno;
959 struct bfd_link_needed_list *needed, **pp;
960 bfd_byte b;
961
962 if (bfd_seek (abfd, need, SEEK_SET) != 0
963 || bfd_read (buf, 1, 16, abfd) != 16)
964 return false;
965
966 /* For the format of an ld_need entry, see aout/sun4.h. We
967 should probably define structs for this manipulation. */
968
969 name = bfd_get_32 (abfd, buf);
970 flags = bfd_get_32 (abfd, buf + 4);
971 major_vno = bfd_get_16 (abfd, buf + 8);
972 minor_vno = bfd_get_16 (abfd, buf + 10);
973 need = bfd_get_32 (abfd, buf + 12);
974
975 needed = (struct bfd_link_needed_list *) bfd_alloc (abfd, sizeof (struct bfd_link_needed_list));
976 if (needed == NULL)
977 {
978 bfd_set_error (bfd_error_no_memory);
979 return false;
980 }
981 needed->by = abfd;
982
983 /* We return the name as [-l]name[.maj][.min]. */
984
985 if ((flags & 0x80000000) != 0)
986 bfd_alloc_grow (abfd, "-l", 2);
987 if (bfd_seek (abfd, name, SEEK_SET) != 0)
988 return false;
989 do
990 {
991 if (bfd_read (&b, 1, 1, abfd) != 1)
992 return false;
993 bfd_alloc_grow (abfd, &b, 1);
994 }
995 while (b != '\0');
996 if (major_vno != 0)
997 {
998 char verbuf[30];
999
1000 sprintf (verbuf, ".%d", major_vno);
1001 bfd_alloc_grow (abfd, verbuf, strlen (verbuf));
1002 if (minor_vno != 0)
1003 {
1004 sprintf (verbuf, ".%d", minor_vno);
1005 bfd_alloc_grow (abfd, verbuf, strlen (verbuf));
1006 }
1007 }
1008 needed->name = bfd_alloc_finish (abfd);
1009 if (needed->name == NULL)
1010 {
1011 bfd_set_error (bfd_error_no_memory);
1012 return false;
1013 }
1014
1015 needed->next = NULL;
1016
1017 for (pp = &sunos_hash_table (info)->needed;
1018 *pp != NULL;
1019 pp = &(*pp)->next)
1020 ;
1021 *pp = needed;
1022 }
1023
1024 return true;
1025 }
1026
1027 /* Function to add a single symbol to the linker hash table. This is
1028 a wrapper around _bfd_generic_link_add_one_symbol which handles the
1029 tweaking needed for dynamic linking support. */
1030
1031 static boolean
1032 sunos_add_one_symbol (info, abfd, name, flags, section, value, string,
1033 copy, collect, hashp)
1034 struct bfd_link_info *info;
1035 bfd *abfd;
1036 const char *name;
1037 flagword flags;
1038 asection *section;
1039 bfd_vma value;
1040 const char *string;
1041 boolean copy;
1042 boolean collect;
1043 struct bfd_link_hash_entry **hashp;
1044 {
1045 struct sunos_link_hash_entry *h;
1046 int new_flag;
1047
1048 if (! sunos_hash_table (info)->dynamic_sections_created)
1049 {
1050 /* We must create the dynamic sections while reading the input
1051 files, even though at this point we don't know if any of the
1052 sections will be needed. This will ensure that the dynamic
1053 sections are mapped to the right output section. It does no
1054 harm to create these sections if they are not needed. */
1055 if (! sunos_create_dynamic_sections (abfd, info, false))
1056 return false;
1057 }
1058
1059 h = sunos_link_hash_lookup (sunos_hash_table (info), name, true, copy,
1060 false);
1061 if (h == NULL)
1062 return false;
1063
1064 if (hashp != NULL)
1065 *hashp = (struct bfd_link_hash_entry *) h;
1066
1067 /* Treat a common symbol in a dynamic object as defined in the .bss
1068 section of the dynamic object. We don't want to allocate space
1069 for it in our process image. */
1070 if ((abfd->flags & DYNAMIC) != 0
1071 && bfd_is_com_section (section))
1072 section = obj_bsssec (abfd);
1073
1074 if (! bfd_is_und_section (section)
1075 && h->root.root.type != bfd_link_hash_new
1076 && h->root.root.type != bfd_link_hash_undefined
1077 && h->root.root.type != bfd_link_hash_defweak)
1078 {
1079 /* We are defining the symbol, and it is already defined. This
1080 is a potential multiple definition error. */
1081 if ((abfd->flags & DYNAMIC) != 0)
1082 {
1083 /* The definition we are adding is from a dynamic object.
1084 We do not want this new definition to override the
1085 existing definition, so we pretend it is just a
1086 reference. */
1087 section = bfd_und_section_ptr;
1088 }
1089 else if (h->root.root.type == bfd_link_hash_defined
1090 && h->root.root.u.def.section->owner != NULL
1091 && (h->root.root.u.def.section->owner->flags & DYNAMIC) != 0)
1092 {
1093 /* The existing definition is from a dynamic object. We
1094 want to override it with the definition we just found.
1095 Clobber the existing definition. */
1096 h->root.root.type = bfd_link_hash_new;
1097 }
1098 else if (h->root.root.type == bfd_link_hash_common
1099 && (h->root.root.u.c.p->section->owner->flags & DYNAMIC) != 0)
1100 {
1101 /* The existing definition is from a dynamic object. We
1102 want to override it with the definition we just found.
1103 Clobber the existing definition. We can't set it to new,
1104 because it is on the undefined list. */
1105 h->root.root.type = bfd_link_hash_undefined;
1106 h->root.root.u.undef.abfd = h->root.root.u.c.p->section->owner;
1107 }
1108 }
1109
1110 /* Do the usual procedure for adding a symbol. */
1111 if (! _bfd_generic_link_add_one_symbol (info, abfd, name, flags, section,
1112 value, string, copy, collect,
1113 hashp))
1114 return false;
1115
1116 if (abfd->xvec == info->hash->creator)
1117 {
1118 /* Set a flag in the hash table entry indicating the type of
1119 reference or definition we just found. Keep a count of the
1120 number of dynamic symbols we find. A dynamic symbol is one
1121 which is referenced or defined by both a regular object and a
1122 shared object. */
1123 if ((abfd->flags & DYNAMIC) == 0)
1124 {
1125 if (bfd_is_und_section (section))
1126 new_flag = SUNOS_REF_REGULAR;
1127 else
1128 new_flag = SUNOS_DEF_REGULAR;
1129 }
1130 else
1131 {
1132 if (bfd_is_und_section (section))
1133 new_flag = SUNOS_REF_DYNAMIC;
1134 else
1135 new_flag = SUNOS_DEF_DYNAMIC;
1136 }
1137 h->flags |= new_flag;
1138
1139 if (h->dynindx == -1
1140 && (h->flags & (SUNOS_DEF_REGULAR | SUNOS_REF_REGULAR)) != 0)
1141 {
1142 ++sunos_hash_table (info)->dynsymcount;
1143 h->dynindx = -2;
1144 }
1145 }
1146
1147 return true;
1148 }
1149
1150 /* Return the list of objects needed by BFD. */
1151
1152 /*ARGSUSED*/
1153 struct bfd_link_needed_list *
1154 bfd_sunos_get_needed_list (abfd, info)
1155 bfd *abfd;
1156 struct bfd_link_info *info;
1157 {
1158 if (info->hash->creator != &MY(xvec))
1159 return NULL;
1160 return sunos_hash_table (info)->needed;
1161 }
1162
1163 /* Record an assignment made to a symbol by a linker script. We need
1164 this in case some dynamic object refers to this symbol. */
1165
1166 boolean
1167 bfd_sunos_record_link_assignment (output_bfd, info, name)
1168 bfd *output_bfd;
1169 struct bfd_link_info *info;
1170 const char *name;
1171 {
1172 struct sunos_link_hash_entry *h;
1173
1174 if (output_bfd->xvec != &MY(vec))
1175 return true;
1176
1177 /* This is called after we have examined all the input objects. If
1178 the symbol does not exist, it merely means that no object refers
1179 to it, and we can just ignore it at this point. */
1180 h = sunos_link_hash_lookup (sunos_hash_table (info), name,
1181 false, false, false);
1182 if (h == NULL)
1183 return true;
1184
1185 /* In a shared library, the __DYNAMIC symbol does not appear in the
1186 dynamic symbol table. */
1187 if (! info->shared || strcmp (name, "__DYNAMIC") != 0)
1188 {
1189 h->flags |= SUNOS_DEF_REGULAR;
1190
1191 if (h->dynindx == -1)
1192 {
1193 ++sunos_hash_table (info)->dynsymcount;
1194 h->dynindx = -2;
1195 }
1196 }
1197
1198 return true;
1199 }
1200
1201 /* Set up the sizes and contents of the dynamic sections created in
1202 sunos_add_dynamic_symbols. This is called by the SunOS linker
1203 emulation before_allocation routine. We must set the sizes of the
1204 sections before the linker sets the addresses of the various
1205 sections. This unfortunately requires reading all the relocs so
1206 that we can work out which ones need to become dynamic relocs. If
1207 info->keep_memory is true, we keep the relocs in memory; otherwise,
1208 we discard them, and will read them again later. */
1209
1210 boolean
1211 bfd_sunos_size_dynamic_sections (output_bfd, info, sdynptr, sneedptr,
1212 srulesptr)
1213 bfd *output_bfd;
1214 struct bfd_link_info *info;
1215 asection **sdynptr;
1216 asection **sneedptr;
1217 asection **srulesptr;
1218 {
1219 bfd *dynobj;
1220 size_t dynsymcount;
1221 struct sunos_link_hash_entry *h;
1222 asection *s;
1223 size_t bucketcount;
1224 size_t hashalloc;
1225 size_t i;
1226 bfd *sub;
1227
1228 *sdynptr = NULL;
1229 *sneedptr = NULL;
1230 *srulesptr = NULL;
1231
1232 if (output_bfd->xvec != &MY(vec))
1233 return true;
1234
1235 /* Look through all the input BFD's and read their relocs. It would
1236 be better if we didn't have to do this, but there is no other way
1237 to determine the number of dynamic relocs we need, and, more
1238 importantly, there is no other way to know which symbols should
1239 get an entry in the procedure linkage table. */
1240 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
1241 {
1242 if ((sub->flags & DYNAMIC) == 0
1243 && sub->xvec == output_bfd->xvec)
1244 {
1245 if (! sunos_scan_relocs (info, sub, obj_textsec (sub),
1246 exec_hdr (sub)->a_trsize)
1247 || ! sunos_scan_relocs (info, sub, obj_datasec (sub),
1248 exec_hdr (sub)->a_drsize))
1249 return false;
1250 }
1251 }
1252
1253 dynobj = sunos_hash_table (info)->dynobj;
1254 dynsymcount = sunos_hash_table (info)->dynsymcount;
1255
1256 /* If there were no dynamic objects in the link, and we don't need
1257 to build a global offset table, there is nothing to do here. */
1258 if (! sunos_hash_table (info)->dynamic_sections_needed)
1259 return true;
1260
1261 /* If __GLOBAL_OFFSET_TABLE_ was mentioned, define it. */
1262 h = sunos_link_hash_lookup (sunos_hash_table (info),
1263 "__GLOBAL_OFFSET_TABLE_", false, false, false);
1264 if (h != NULL && (h->flags & SUNOS_REF_REGULAR) != 0)
1265 {
1266 h->flags |= SUNOS_DEF_REGULAR;
1267 if (h->dynindx == -1)
1268 {
1269 ++sunos_hash_table (info)->dynsymcount;
1270 h->dynindx = -2;
1271 }
1272 h->root.root.type = bfd_link_hash_defined;
1273 h->root.root.u.def.section = bfd_get_section_by_name (dynobj, ".got");
1274 h->root.root.u.def.value = 0;
1275 }
1276
1277 /* The .dynamic section is always the same size. */
1278 s = bfd_get_section_by_name (dynobj, ".dynamic");
1279 BFD_ASSERT (s != NULL);
1280 s->_raw_size = (sizeof (struct external_sun4_dynamic)
1281 + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE
1282 + sizeof (struct external_sun4_dynamic_link));
1283
1284 /* Set the size of the .dynsym and .hash sections. We counted the
1285 number of dynamic symbols as we read the input files. We will
1286 build the dynamic symbol table (.dynsym) and the hash table
1287 (.hash) when we build the final symbol table, because until then
1288 we do not know the correct value to give the symbols. We build
1289 the dynamic symbol string table (.dynstr) in a traversal of the
1290 symbol table using sunos_scan_dynamic_symbol. */
1291 s = bfd_get_section_by_name (dynobj, ".dynsym");
1292 BFD_ASSERT (s != NULL);
1293 s->_raw_size = dynsymcount * sizeof (struct external_nlist);
1294 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
1295 if (s->contents == NULL && s->_raw_size != 0)
1296 {
1297 bfd_set_error (bfd_error_no_memory);
1298 return false;
1299 }
1300
1301 /* The number of buckets is just the number of symbols divided by
1302 four. To compute the final size of the hash table, we must
1303 actually compute the hash table. Normally we need exactly as
1304 many entries in the hash table as there are dynamic symbols, but
1305 if some of the buckets are not used we will need additional
1306 entries. In the worst case, every symbol will hash to the same
1307 bucket, and we will need BUCKETCOUNT - 1 extra entries. */
1308 if (dynsymcount >= 4)
1309 bucketcount = dynsymcount / 4;
1310 else if (dynsymcount > 0)
1311 bucketcount = dynsymcount;
1312 else
1313 bucketcount = 1;
1314 s = bfd_get_section_by_name (dynobj, ".hash");
1315 BFD_ASSERT (s != NULL);
1316 hashalloc = (dynsymcount + bucketcount - 1) * HASH_ENTRY_SIZE;
1317 s->contents = (bfd_byte *) bfd_alloc (dynobj, hashalloc);
1318 if (s->contents == NULL && dynsymcount > 0)
1319 {
1320 bfd_set_error (bfd_error_no_memory);
1321 return false;
1322 }
1323 memset (s->contents, 0, hashalloc);
1324 for (i = 0; i < bucketcount; i++)
1325 PUT_WORD (output_bfd, (bfd_vma) -1, s->contents + i * HASH_ENTRY_SIZE);
1326 s->_raw_size = bucketcount * HASH_ENTRY_SIZE;
1327
1328 sunos_hash_table (info)->bucketcount = bucketcount;
1329
1330 /* Scan all the symbols, place them in the dynamic symbol table, and
1331 build the dynamic hash table. We reuse dynsymcount as a counter
1332 for the number of symbols we have added so far. */
1333 sunos_hash_table (info)->dynsymcount = 0;
1334 sunos_link_hash_traverse (sunos_hash_table (info),
1335 sunos_scan_dynamic_symbol,
1336 (PTR) info);
1337 BFD_ASSERT (sunos_hash_table (info)->dynsymcount == dynsymcount);
1338
1339 /* The SunOS native linker seems to align the total size of the
1340 symbol strings to a multiple of 8. I don't know if this is
1341 important, but it can't hurt much. */
1342 s = bfd_get_section_by_name (dynobj, ".dynstr");
1343 BFD_ASSERT (s != NULL);
1344 if ((s->_raw_size & 7) != 0)
1345 {
1346 bfd_size_type add;
1347 bfd_byte *contents;
1348
1349 add = 8 - (s->_raw_size & 7);
1350 contents = (bfd_byte *) realloc (s->contents,
1351 (size_t) (s->_raw_size + add));
1352 if (contents == NULL)
1353 {
1354 bfd_set_error (bfd_error_no_memory);
1355 return false;
1356 }
1357 memset (contents + s->_raw_size, 0, (size_t) add);
1358 s->contents = contents;
1359 s->_raw_size += add;
1360 }
1361
1362 /* Now that we have worked out the sizes of the procedure linkage
1363 table and the dynamic relocs, allocate storage for them. */
1364 s = bfd_get_section_by_name (dynobj, ".plt");
1365 BFD_ASSERT (s != NULL);
1366 if (s->_raw_size != 0)
1367 {
1368 s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
1369 if (s->contents == NULL)
1370 {
1371 bfd_set_error (bfd_error_no_memory);
1372 return false;
1373 }
1374
1375 /* Fill in the first entry in the table. */
1376 switch (bfd_get_arch (dynobj))
1377 {
1378 case bfd_arch_sparc:
1379 memcpy (s->contents, sparc_plt_first_entry, SPARC_PLT_ENTRY_SIZE);
1380 break;
1381
1382 case bfd_arch_m68k:
1383 memcpy (s->contents, m68k_plt_first_entry, M68K_PLT_ENTRY_SIZE);
1384 break;
1385
1386 default:
1387 abort ();
1388 }
1389 }
1390
1391 s = bfd_get_section_by_name (dynobj, ".dynrel");
1392 if (s->_raw_size != 0)
1393 {
1394 s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
1395 if (s->contents == NULL)
1396 {
1397 bfd_set_error (bfd_error_no_memory);
1398 return false;
1399 }
1400 }
1401 /* We use the reloc_count field to keep track of how many of the
1402 relocs we have output so far. */
1403 s->reloc_count = 0;
1404
1405 /* Make space for the global offset table. */
1406 s = bfd_get_section_by_name (dynobj, ".got");
1407 s->contents = (bfd_byte *) bfd_alloc (dynobj, s->_raw_size);
1408 if (s->contents == NULL)
1409 {
1410 bfd_set_error (bfd_error_no_memory);
1411 return false;
1412 }
1413
1414 *sdynptr = bfd_get_section_by_name (dynobj, ".dynamic");
1415 *sneedptr = bfd_get_section_by_name (dynobj, ".need");
1416 *srulesptr = bfd_get_section_by_name (dynobj, ".rules");
1417
1418 return true;
1419 }
1420
1421 /* Scan the relocs for an input section. */
1422
1423 static boolean
1424 sunos_scan_relocs (info, abfd, sec, rel_size)
1425 struct bfd_link_info *info;
1426 bfd *abfd;
1427 asection *sec;
1428 bfd_size_type rel_size;
1429 {
1430 PTR relocs;
1431 PTR free_relocs = NULL;
1432
1433 if (rel_size == 0)
1434 return true;
1435
1436 if (! info->keep_memory)
1437 relocs = free_relocs = malloc ((size_t) rel_size);
1438 else
1439 {
1440 struct aout_section_data_struct *n;
1441
1442 n = ((struct aout_section_data_struct *)
1443 bfd_alloc (abfd, sizeof (struct aout_section_data_struct)));
1444 if (n == NULL)
1445 relocs = NULL;
1446 else
1447 {
1448 set_aout_section_data (sec, n);
1449 relocs = malloc ((size_t) rel_size);
1450 aout_section_data (sec)->relocs = relocs;
1451 }
1452 }
1453 if (relocs == NULL)
1454 {
1455 bfd_set_error (bfd_error_no_memory);
1456 return false;
1457 }
1458
1459 if (bfd_seek (abfd, sec->rel_filepos, SEEK_SET) != 0
1460 || bfd_read (relocs, 1, rel_size, abfd) != rel_size)
1461 goto error_return;
1462
1463 if (obj_reloc_entry_size (abfd) == RELOC_STD_SIZE)
1464 {
1465 if (! sunos_scan_std_relocs (info, abfd, sec,
1466 (struct reloc_std_external *) relocs,
1467 rel_size))
1468 goto error_return;
1469 }
1470 else
1471 {
1472 if (! sunos_scan_ext_relocs (info, abfd, sec,
1473 (struct reloc_ext_external *) relocs,
1474 rel_size))
1475 goto error_return;
1476 }
1477
1478 if (free_relocs != NULL)
1479 free (free_relocs);
1480
1481 return true;
1482
1483 error_return:
1484 if (free_relocs != NULL)
1485 free (free_relocs);
1486 return false;
1487 }
1488
1489 /* Scan the relocs for an input section using standard relocs. We
1490 need to figure out what to do for each reloc against a dynamic
1491 symbol. If the symbol is in the .text section, an entry is made in
1492 the procedure linkage table. Note that this will do the wrong
1493 thing if the symbol is actually data; I don't think the Sun 3
1494 native linker handles this case correctly either. If the symbol is
1495 not in the .text section, we must preserve the reloc as a dynamic
1496 reloc. FIXME: We should also handle the PIC relocs here by
1497 building global offset table entries. */
1498
1499 static boolean
1500 sunos_scan_std_relocs (info, abfd, sec, relocs, rel_size)
1501 struct bfd_link_info *info;
1502 bfd *abfd;
1503 asection *sec;
1504 const struct reloc_std_external *relocs;
1505 bfd_size_type rel_size;
1506 {
1507 bfd *dynobj;
1508 asection *splt = NULL;
1509 asection *srel = NULL;
1510 struct sunos_link_hash_entry **sym_hashes;
1511 const struct reloc_std_external *rel, *relend;
1512
1513 /* We only know how to handle m68k plt entries. */
1514 if (bfd_get_arch (abfd) != bfd_arch_m68k)
1515 {
1516 bfd_set_error (bfd_error_invalid_target);
1517 return false;
1518 }
1519
1520 dynobj = NULL;
1521
1522 sym_hashes = (struct sunos_link_hash_entry **) obj_aout_sym_hashes (abfd);
1523
1524 relend = relocs + rel_size / RELOC_STD_SIZE;
1525 for (rel = relocs; rel < relend; rel++)
1526 {
1527 int r_index;
1528 struct sunos_link_hash_entry *h;
1529
1530 /* We only want relocs against external symbols. */
1531 if (abfd->xvec->header_byteorder_big_p)
1532 {
1533 if ((rel->r_type[0] & RELOC_STD_BITS_EXTERN_BIG) == 0)
1534 continue;
1535 }
1536 else
1537 {
1538 if ((rel->r_type[0] & RELOC_STD_BITS_EXTERN_LITTLE) == 0)
1539 continue;
1540 }
1541
1542 /* Get the symbol index. */
1543 if (abfd->xvec->header_byteorder_big_p)
1544 r_index = ((rel->r_index[0] << 16)
1545 | (rel->r_index[1] << 8)
1546 | rel->r_index[2]);
1547 else
1548 r_index = ((rel->r_index[2] << 16)
1549 | (rel->r_index[1] << 8)
1550 | rel->r_index[0]);
1551
1552 /* Get the hash table entry. */
1553 h = sym_hashes[r_index];
1554 if (h == NULL)
1555 {
1556 /* This should not normally happen, but it will in any case
1557 be caught in the relocation phase. */
1558 continue;
1559 }
1560
1561 /* At this point common symbols have already been allocated, so
1562 we don't have to worry about them. We need to consider that
1563 we may have already seen this symbol and marked it undefined;
1564 if the symbol is really undefined, then SUNOS_DEF_DYNAMIC
1565 will be zero. */
1566 if (h->root.root.type != bfd_link_hash_defined
1567 && h->root.root.type != bfd_link_hash_defweak
1568 && h->root.root.type != bfd_link_hash_undefined)
1569 continue;
1570
1571 if ((h->flags & SUNOS_DEF_DYNAMIC) == 0
1572 || (h->flags & SUNOS_DEF_REGULAR) != 0)
1573 continue;
1574
1575 if (dynobj == NULL)
1576 {
1577 if (! sunos_create_dynamic_sections (abfd, info, true))
1578 return false;
1579 dynobj = sunos_hash_table (info)->dynobj;
1580 splt = bfd_get_section_by_name (dynobj, ".plt");
1581 srel = bfd_get_section_by_name (dynobj, ".dynrel");
1582 BFD_ASSERT (splt != NULL && srel != NULL);
1583 }
1584
1585 BFD_ASSERT ((h->flags & SUNOS_REF_REGULAR) != 0);
1586 BFD_ASSERT (h->plt_offset != 0
1587 || ((h->root.root.type == bfd_link_hash_defined
1588 || h->root.root.type == bfd_link_hash_defweak)
1589 ? (h->root.root.u.def.section->owner->flags
1590 & DYNAMIC) != 0
1591 : (h->root.root.u.undef.abfd->flags & DYNAMIC) != 0));
1592
1593 /* This reloc is against a symbol defined only by a dynamic
1594 object. */
1595
1596 if (h->root.root.type == bfd_link_hash_undefined)
1597 {
1598 /* Presumably this symbol was marked as being undefined by
1599 an earlier reloc. */
1600 srel->_raw_size += RELOC_STD_SIZE;
1601 }
1602 else if ((h->root.root.u.def.section->flags & SEC_CODE) == 0)
1603 {
1604 bfd *sub;
1605
1606 /* This reloc is not in the .text section. It must be
1607 copied into the dynamic relocs. We mark the symbol as
1608 being undefined. */
1609 srel->_raw_size += RELOC_STD_SIZE;
1610 sub = h->root.root.u.def.section->owner;
1611 h->root.root.type = bfd_link_hash_undefined;
1612 h->root.root.u.undef.abfd = sub;
1613 }
1614 else
1615 {
1616 /* This symbol is in the .text section. We must give it an
1617 entry in the procedure linkage table, if we have not
1618 already done so. We change the definition of the symbol
1619 to the .plt section; this will cause relocs against it to
1620 be handled correctly. */
1621 if (h->plt_offset == 0)
1622 {
1623 if (splt->_raw_size == 0)
1624 splt->_raw_size = M68K_PLT_ENTRY_SIZE;
1625 h->plt_offset = splt->_raw_size;
1626
1627 if ((h->flags & SUNOS_DEF_REGULAR) == 0)
1628 {
1629 h->root.root.u.def.section = splt;
1630 h->root.root.u.def.value = splt->_raw_size;
1631 }
1632
1633 splt->_raw_size += M68K_PLT_ENTRY_SIZE;
1634
1635 /* We may also need a dynamic reloc entry. */
1636 if ((h->flags & SUNOS_DEF_REGULAR) == 0)
1637 srel->_raw_size += RELOC_STD_SIZE;
1638 }
1639 }
1640 }
1641
1642 return true;
1643 }
1644
1645 /* Scan the relocs for an input section using extended relocs. We
1646 need to figure out what to do for each reloc against a dynamic
1647 symbol. If the reloc is a WDISP30, and the symbol is in the .text
1648 section, an entry is made in the procedure linkage table.
1649 Otherwise, we must preserve the reloc as a dynamic reloc. */
1650
1651 static boolean
1652 sunos_scan_ext_relocs (info, abfd, sec, relocs, rel_size)
1653 struct bfd_link_info *info;
1654 bfd *abfd;
1655 asection *sec;
1656 const struct reloc_ext_external *relocs;
1657 bfd_size_type rel_size;
1658 {
1659 bfd *dynobj;
1660 struct sunos_link_hash_entry **sym_hashes;
1661 const struct reloc_ext_external *rel, *relend;
1662 asection *splt = NULL;
1663 asection *sgot = NULL;
1664 asection *srel = NULL;
1665
1666 /* We only know how to handle SPARC plt entries. */
1667 if (bfd_get_arch (abfd) != bfd_arch_sparc)
1668 {
1669 bfd_set_error (bfd_error_invalid_target);
1670 return false;
1671 }
1672
1673 dynobj = NULL;
1674
1675 sym_hashes = (struct sunos_link_hash_entry **) obj_aout_sym_hashes (abfd);
1676
1677 relend = relocs + rel_size / RELOC_EXT_SIZE;
1678 for (rel = relocs; rel < relend; rel++)
1679 {
1680 unsigned int r_index;
1681 int r_extern;
1682 int r_type;
1683 struct sunos_link_hash_entry *h = NULL;
1684
1685 /* Swap in the reloc information. */
1686 if (abfd->xvec->header_byteorder_big_p)
1687 {
1688 r_index = ((rel->r_index[0] << 16)
1689 | (rel->r_index[1] << 8)
1690 | rel->r_index[2]);
1691 r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_BIG));
1692 r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_BIG)
1693 >> RELOC_EXT_BITS_TYPE_SH_BIG);
1694 }
1695 else
1696 {
1697 r_index = ((rel->r_index[2] << 16)
1698 | (rel->r_index[1] << 8)
1699 | rel->r_index[0]);
1700 r_extern = (0 != (rel->r_type[0] & RELOC_EXT_BITS_EXTERN_LITTLE));
1701 r_type = ((rel->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE)
1702 >> RELOC_EXT_BITS_TYPE_SH_LITTLE);
1703 }
1704
1705 if (r_extern)
1706 {
1707 h = sym_hashes[r_index];
1708 if (h == NULL)
1709 {
1710 /* This should not normally happen, but it will in any
1711 case be caught in the relocation phase. */
1712 continue;
1713 }
1714 }
1715
1716 /* If this is a base relative reloc, we need to make an entry in
1717 the .got section. */
1718 if (r_type == RELOC_BASE10
1719 || r_type == RELOC_BASE13
1720 || r_type == RELOC_BASE22)
1721 {
1722 if (dynobj == NULL)
1723 {
1724 if (! sunos_create_dynamic_sections (abfd, info, true))
1725 return false;
1726 dynobj = sunos_hash_table (info)->dynobj;
1727 splt = bfd_get_section_by_name (dynobj, ".plt");
1728 sgot = bfd_get_section_by_name (dynobj, ".got");
1729 srel = bfd_get_section_by_name (dynobj, ".dynrel");
1730 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
1731 }
1732
1733 if (r_extern)
1734 {
1735 if (h->got_offset != 0)
1736 continue;
1737
1738 h->got_offset = sgot->_raw_size;
1739 }
1740 else
1741 {
1742 if (r_index >= bfd_get_symcount (abfd))
1743 {
1744 /* This is abnormal, but should be caught in the
1745 relocation phase. */
1746 continue;
1747 }
1748
1749 if (adata (abfd).local_got_offsets == NULL)
1750 {
1751 adata (abfd).local_got_offsets =
1752 (bfd_vma *) bfd_zalloc (abfd,
1753 (bfd_get_symcount (abfd)
1754 * sizeof (bfd_vma)));
1755 if (adata (abfd).local_got_offsets == NULL)
1756 {
1757 bfd_set_error (bfd_error_no_memory);
1758 return false;
1759 }
1760 }
1761
1762 if (adata (abfd).local_got_offsets[r_index] != 0)
1763 continue;
1764
1765 adata (abfd).local_got_offsets[r_index] = sgot->_raw_size;
1766 }
1767
1768 sgot->_raw_size += BYTES_IN_WORD;
1769
1770 /* If we are making a shared library, or if the symbol is
1771 defined by a dynamic object, we will need a dynamic reloc
1772 entry. */
1773 if (info->shared
1774 || (h != NULL
1775 && (h->flags & SUNOS_DEF_DYNAMIC) != 0
1776 && (h->flags & SUNOS_DEF_REGULAR) == 0))
1777 srel->_raw_size += RELOC_EXT_SIZE;
1778
1779 continue;
1780 }
1781
1782 /* Otherwise, we are only interested in relocs against symbols
1783 defined in dynamic objects but not in regular objects. We
1784 only need to consider relocs against external symbols. */
1785 if (! r_extern)
1786 {
1787 /* But, if we are creating a shared library, we need to
1788 generate an absolute reloc. */
1789 if (info->shared)
1790 {
1791 if (dynobj == NULL)
1792 {
1793 if (! sunos_create_dynamic_sections (abfd, info, true))
1794 return false;
1795 dynobj = sunos_hash_table (info)->dynobj;
1796 splt = bfd_get_section_by_name (dynobj, ".plt");
1797 sgot = bfd_get_section_by_name (dynobj, ".got");
1798 srel = bfd_get_section_by_name (dynobj, ".dynrel");
1799 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
1800 }
1801
1802 srel->_raw_size += RELOC_EXT_SIZE;
1803 }
1804
1805 continue;
1806 }
1807
1808 /* At this point common symbols have already been allocated, so
1809 we don't have to worry about them. We need to consider that
1810 we may have already seen this symbol and marked it undefined;
1811 if the symbol is really undefined, then SUNOS_DEF_DYNAMIC
1812 will be zero. */
1813 if (h->root.root.type != bfd_link_hash_defined
1814 && h->root.root.type != bfd_link_hash_defweak
1815 && h->root.root.type != bfd_link_hash_undefined)
1816 continue;
1817
1818 if (r_type != RELOC_JMP_TBL
1819 && ! info->shared
1820 && ((h->flags & SUNOS_DEF_DYNAMIC) == 0
1821 || (h->flags & SUNOS_DEF_REGULAR) != 0))
1822 continue;
1823
1824 if (strcmp (h->root.root.root.string, "__GLOBAL_OFFSET_TABLE_") == 0)
1825 continue;
1826
1827 if (dynobj == NULL)
1828 {
1829 if (! sunos_create_dynamic_sections (abfd, info, true))
1830 return false;
1831 dynobj = sunos_hash_table (info)->dynobj;
1832 splt = bfd_get_section_by_name (dynobj, ".plt");
1833 sgot = bfd_get_section_by_name (dynobj, ".got");
1834 srel = bfd_get_section_by_name (dynobj, ".dynrel");
1835 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
1836 }
1837
1838 BFD_ASSERT (r_type == RELOC_JMP_TBL
1839 || (h->flags & SUNOS_REF_REGULAR) != 0);
1840 BFD_ASSERT (r_type == RELOC_JMP_TBL
1841 || info->shared
1842 || h->plt_offset != 0
1843 || ((h->root.root.type == bfd_link_hash_defined
1844 || h->root.root.type == bfd_link_hash_defweak)
1845 ? (h->root.root.u.def.section->owner->flags
1846 & DYNAMIC) != 0
1847 : (h->root.root.u.undef.abfd->flags & DYNAMIC) != 0));
1848
1849 /* This reloc is against a symbol defined only by a dynamic
1850 object, or it is a jump table reloc from PIC compiled code. */
1851
1852 if (r_type != RELOC_JMP_TBL
1853 && h->root.root.type == bfd_link_hash_undefined)
1854 {
1855 /* Presumably this symbol was marked as being undefined by
1856 an earlier reloc. */
1857 srel->_raw_size += RELOC_EXT_SIZE;
1858 }
1859 else if (r_type != RELOC_JMP_TBL
1860 && (h->root.root.u.def.section->flags & SEC_CODE) == 0)
1861 {
1862 bfd *sub;
1863
1864 /* This reloc is not in the .text section. It must be
1865 copied into the dynamic relocs. We mark the symbol as
1866 being undefined. */
1867 srel->_raw_size += RELOC_EXT_SIZE;
1868 if ((h->flags & SUNOS_DEF_REGULAR) == 0)
1869 {
1870 sub = h->root.root.u.def.section->owner;
1871 h->root.root.type = bfd_link_hash_undefined;
1872 h->root.root.u.undef.abfd = sub;
1873 }
1874 }
1875 else
1876 {
1877 /* This symbol is in the .text section. We must give it an
1878 entry in the procedure linkage table, if we have not
1879 already done so. We change the definition of the symbol
1880 to the .plt section; this will cause relocs against it to
1881 be handled correctly. */
1882 if (h->plt_offset == 0)
1883 {
1884 if (splt->_raw_size == 0)
1885 splt->_raw_size = SPARC_PLT_ENTRY_SIZE;
1886 h->plt_offset = splt->_raw_size;
1887
1888 if ((h->flags & SUNOS_DEF_REGULAR) == 0)
1889 {
1890 if (h->root.root.type == bfd_link_hash_undefined)
1891 h->root.root.type = bfd_link_hash_defined;
1892 h->root.root.u.def.section = splt;
1893 h->root.root.u.def.value = splt->_raw_size;
1894 }
1895
1896 splt->_raw_size += SPARC_PLT_ENTRY_SIZE;
1897
1898 /* We will also need a dynamic reloc entry, unless this
1899 is a JMP_TBL reloc produced by linking PIC compiled
1900 code, and we are not making a shared library. */
1901 if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0)
1902 srel->_raw_size += RELOC_EXT_SIZE;
1903 }
1904
1905 /* If we are creating a shared library, we need to copy over
1906 any reloc other than a jump table reloc. */
1907 if (info->shared && r_type != RELOC_JMP_TBL)
1908 srel->_raw_size += RELOC_EXT_SIZE;
1909 }
1910 }
1911
1912 return true;
1913 }
1914
1915 /* Build the hash table of dynamic symbols, and to mark as written all
1916 symbols from dynamic objects which we do not plan to write out. */
1917
1918 static boolean
1919 sunos_scan_dynamic_symbol (h, data)
1920 struct sunos_link_hash_entry *h;
1921 PTR data;
1922 {
1923 struct bfd_link_info *info = (struct bfd_link_info *) data;
1924
1925 /* Set the written flag for symbols we do not want to write out as
1926 part of the regular symbol table. This is all symbols which are
1927 not defined in a regular object file. For some reason symbols
1928 which are referenced by a regular object and defined by a dynamic
1929 object do not seem to show up in the regular symbol table. */
1930 if ((h->flags & SUNOS_DEF_REGULAR) == 0
1931 && strcmp (h->root.root.root.string, "__DYNAMIC") != 0)
1932 h->root.written = true;
1933
1934 /* If this symbol is defined by a dynamic object and referenced by a
1935 regular object, see whether we gave it a reasonable value while
1936 scanning the relocs. */
1937
1938 if ((h->flags & SUNOS_DEF_REGULAR) == 0
1939 && (h->flags & SUNOS_DEF_DYNAMIC) != 0
1940 && (h->flags & SUNOS_REF_REGULAR) != 0)
1941 {
1942 if ((h->root.root.type == bfd_link_hash_defined
1943 || h->root.root.type == bfd_link_hash_defweak)
1944 && ((h->root.root.u.def.section->owner->flags & DYNAMIC) != 0)
1945 && h->root.root.u.def.section->output_section == NULL)
1946 {
1947 bfd *sub;
1948
1949 /* This symbol is currently defined in a dynamic section
1950 which is not being put into the output file. This
1951 implies that there is no reloc against the symbol. I'm
1952 not sure why this case would ever occur. In any case, we
1953 change the symbol to be undefined. */
1954 sub = h->root.root.u.def.section->owner;
1955 h->root.root.type = bfd_link_hash_undefined;
1956 h->root.root.u.undef.abfd = sub;
1957 }
1958 }
1959
1960 /* If this symbol is defined or referenced by a regular file, add it
1961 to the dynamic symbols. */
1962 if ((h->flags & (SUNOS_DEF_REGULAR | SUNOS_REF_REGULAR)) != 0)
1963 {
1964 asection *s;
1965 size_t len;
1966 bfd_byte *contents;
1967 unsigned char *name;
1968 unsigned long hash;
1969 bfd *dynobj;
1970
1971 BFD_ASSERT (h->dynindx == -2);
1972
1973 dynobj = sunos_hash_table (info)->dynobj;
1974
1975 h->dynindx = sunos_hash_table (info)->dynsymcount;
1976 ++sunos_hash_table (info)->dynsymcount;
1977
1978 len = strlen (h->root.root.root.string);
1979
1980 /* We don't bother to construct a BFD hash table for the strings
1981 which are the names of the dynamic symbols. Using a hash
1982 table for the regular symbols is beneficial, because the
1983 regular symbols includes the debugging symbols, which have
1984 long names and are often duplicated in several object files.
1985 There are no debugging symbols in the dynamic symbols. */
1986 s = bfd_get_section_by_name (dynobj, ".dynstr");
1987 BFD_ASSERT (s != NULL);
1988 if (s->contents == NULL)
1989 contents = (bfd_byte *) malloc (len + 1);
1990 else
1991 contents = (bfd_byte *) realloc (s->contents,
1992 (size_t) (s->_raw_size + len + 1));
1993 if (contents == NULL)
1994 {
1995 bfd_set_error (bfd_error_no_memory);
1996 return false;
1997 }
1998 s->contents = contents;
1999
2000 h->dynstr_index = s->_raw_size;
2001 strcpy (contents + s->_raw_size, h->root.root.root.string);
2002 s->_raw_size += len + 1;
2003
2004 /* Add it to the dynamic hash table. */
2005 name = (unsigned char *) h->root.root.root.string;
2006 hash = 0;
2007 while (*name != '\0')
2008 hash = (hash << 1) + *name++;
2009 hash &= 0x7fffffff;
2010 hash %= sunos_hash_table (info)->bucketcount;
2011
2012 s = bfd_get_section_by_name (dynobj, ".hash");
2013 BFD_ASSERT (s != NULL);
2014
2015 if (GET_SWORD (dynobj, s->contents + hash * HASH_ENTRY_SIZE) == -1)
2016 PUT_WORD (dynobj, h->dynindx, s->contents + hash * HASH_ENTRY_SIZE);
2017 else
2018 {
2019 bfd_vma next;
2020
2021 next = GET_WORD (dynobj,
2022 (s->contents
2023 + hash * HASH_ENTRY_SIZE
2024 + BYTES_IN_WORD));
2025 PUT_WORD (dynobj, s->_raw_size / HASH_ENTRY_SIZE,
2026 s->contents + hash * HASH_ENTRY_SIZE + BYTES_IN_WORD);
2027 PUT_WORD (dynobj, h->dynindx, s->contents + s->_raw_size);
2028 PUT_WORD (dynobj, next, s->contents + s->_raw_size + BYTES_IN_WORD);
2029 s->_raw_size += HASH_ENTRY_SIZE;
2030 }
2031 }
2032
2033 return true;
2034 }
2035
2036 /* Link a dynamic object. We actually don't have anything to do at
2037 this point. This entry point exists to prevent the regular linker
2038 code from doing anything with the object. */
2039
2040 /*ARGSUSED*/
2041 static boolean
2042 sunos_link_dynamic_object (info, abfd)
2043 struct bfd_link_info *info;
2044 bfd *abfd;
2045 {
2046 return true;
2047 }
2048
2049 /* Write out a dynamic symbol. This is called by the final traversal
2050 over the symbol table. */
2051
2052 static boolean
2053 sunos_write_dynamic_symbol (output_bfd, info, harg)
2054 bfd *output_bfd;
2055 struct bfd_link_info *info;
2056 struct aout_link_hash_entry *harg;
2057 {
2058 struct sunos_link_hash_entry *h = (struct sunos_link_hash_entry *) harg;
2059 int type;
2060 bfd_vma val;
2061 asection *s;
2062 struct external_nlist *outsym;
2063
2064 if (h->dynindx < 0)
2065 return true;
2066
2067 switch (h->root.root.type)
2068 {
2069 default:
2070 case bfd_link_hash_new:
2071 abort ();
2072 /* Avoid variable not initialized warnings. */
2073 return true;
2074 case bfd_link_hash_undefined:
2075 type = N_UNDF | N_EXT;
2076 val = 0;
2077 break;
2078 case bfd_link_hash_defined:
2079 case bfd_link_hash_defweak:
2080 {
2081 asection *sec;
2082 asection *output_section;
2083
2084 sec = h->root.root.u.def.section;
2085 output_section = sec->output_section;
2086 BFD_ASSERT (bfd_is_abs_section (output_section)
2087 || output_section->owner == output_bfd);
2088 if (h->plt_offset != 0
2089 && (h->flags & SUNOS_DEF_REGULAR) == 0)
2090 {
2091 type = N_UNDF | N_EXT;
2092 val = 0;
2093 }
2094 else
2095 {
2096 if (output_section == obj_textsec (output_bfd))
2097 type = (h->root.root.type == bfd_link_hash_defined
2098 ? N_TEXT
2099 : N_WEAKT);
2100 else if (output_section == obj_datasec (output_bfd))
2101 type = (h->root.root.type == bfd_link_hash_defined
2102 ? N_DATA
2103 : N_WEAKD);
2104 else if (output_section == obj_bsssec (output_bfd))
2105 type = (h->root.root.type == bfd_link_hash_defined
2106 ? N_BSS
2107 : N_WEAKB);
2108 else
2109 type = (h->root.root.type == bfd_link_hash_defined
2110 ? N_ABS
2111 : N_WEAKA);
2112 type |= N_EXT;
2113 val = (h->root.root.u.def.value
2114 + output_section->vma
2115 + sec->output_offset);
2116 }
2117 }
2118 break;
2119 case bfd_link_hash_common:
2120 type = N_UNDF | N_EXT;
2121 val = h->root.root.u.c.size;
2122 break;
2123 case bfd_link_hash_undefweak:
2124 type = N_WEAKU;
2125 val = 0;
2126 break;
2127 case bfd_link_hash_indirect:
2128 case bfd_link_hash_warning:
2129 /* FIXME: Ignore these for now. The circumstances under which
2130 they should be written out are not clear to me. */
2131 return true;
2132 }
2133
2134 s = bfd_get_section_by_name (sunos_hash_table (info)->dynobj, ".dynsym");
2135 BFD_ASSERT (s != NULL);
2136 outsym = ((struct external_nlist *)
2137 (s->contents + h->dynindx * EXTERNAL_NLIST_SIZE));
2138
2139 bfd_h_put_8 (output_bfd, type, outsym->e_type);
2140 bfd_h_put_8 (output_bfd, 0, outsym->e_other);
2141
2142 /* FIXME: The native linker doesn't use 0 for desc. It seems to use
2143 one less than the desc value in the shared library, although that
2144 seems unlikely. */
2145 bfd_h_put_16 (output_bfd, 0, outsym->e_desc);
2146
2147 PUT_WORD (output_bfd, h->dynstr_index, outsym->e_strx);
2148 PUT_WORD (output_bfd, val, outsym->e_value);
2149
2150 /* If this symbol is in the procedure linkage table, fill in the
2151 table entry. */
2152 if (h->plt_offset != 0)
2153 {
2154 bfd *dynobj;
2155 asection *splt;
2156 bfd_byte *p;
2157 asection *s;
2158 bfd_vma r_address;
2159
2160 dynobj = sunos_hash_table (info)->dynobj;
2161 splt = bfd_get_section_by_name (dynobj, ".plt");
2162 p = splt->contents + h->plt_offset;
2163
2164 s = bfd_get_section_by_name (dynobj, ".dynrel");
2165
2166 r_address = (splt->output_section->vma
2167 + splt->output_offset
2168 + h->plt_offset);
2169
2170 switch (bfd_get_arch (output_bfd))
2171 {
2172 case bfd_arch_sparc:
2173 if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0)
2174 {
2175 bfd_put_32 (output_bfd, SPARC_PLT_ENTRY_WORD0, p);
2176 bfd_put_32 (output_bfd,
2177 (SPARC_PLT_ENTRY_WORD1
2178 + (((- (h->plt_offset + 4) >> 2)
2179 & 0x3fffffff))),
2180 p + 4);
2181 bfd_put_32 (output_bfd, SPARC_PLT_ENTRY_WORD2 + s->reloc_count,
2182 p + 8);
2183 }
2184 else
2185 {
2186 bfd_vma val;
2187
2188 val = (h->root.root.u.def.section->output_section->vma
2189 + h->root.root.u.def.section->output_offset
2190 + h->root.root.u.def.value);
2191 bfd_put_32 (output_bfd,
2192 SPARC_PLT_PIC_WORD0 + ((val >> 10) & 0x3fffff),
2193 p);
2194 bfd_put_32 (output_bfd,
2195 SPARC_PLT_PIC_WORD1 + (val & 0x3ff),
2196 p + 4);
2197 bfd_put_32 (output_bfd, SPARC_PLT_PIC_WORD2, p + 8);
2198 }
2199 break;
2200
2201 case bfd_arch_m68k:
2202 if (! info->shared && (h->flags & SUNOS_DEF_REGULAR) != 0)
2203 abort ();
2204 bfd_put_16 (output_bfd, M68K_PLT_ENTRY_WORD0, p);
2205 bfd_put_32 (output_bfd, (- (h->plt_offset + 2)), p + 2);
2206 bfd_put_16 (output_bfd, s->reloc_count, p + 6);
2207 r_address += 2;
2208 break;
2209
2210 default:
2211 abort ();
2212 }
2213
2214 /* We also need to add a jump table reloc, unless this is the
2215 result of a JMP_TBL reloc from PIC compiled code. */
2216 if (info->shared || (h->flags & SUNOS_DEF_REGULAR) == 0)
2217 {
2218 BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj)
2219 < s->_raw_size);
2220 p = s->contents + s->reloc_count * obj_reloc_entry_size (output_bfd);
2221 if (obj_reloc_entry_size (output_bfd) == RELOC_STD_SIZE)
2222 {
2223 struct reloc_std_external *srel;
2224
2225 srel = (struct reloc_std_external *) p;
2226 PUT_WORD (output_bfd, r_address, srel->r_address);
2227 if (output_bfd->xvec->header_byteorder_big_p)
2228 {
2229 srel->r_index[0] = h->dynindx >> 16;
2230 srel->r_index[1] = h->dynindx >> 8;
2231 srel->r_index[2] = h->dynindx;
2232 srel->r_type[0] = (RELOC_STD_BITS_EXTERN_BIG
2233 | RELOC_STD_BITS_JMPTABLE_BIG);
2234 }
2235 else
2236 {
2237 srel->r_index[2] = h->dynindx >> 16;
2238 srel->r_index[1] = h->dynindx >> 8;
2239 srel->r_index[0] = h->dynindx;
2240 srel->r_type[0] = (RELOC_STD_BITS_EXTERN_LITTLE
2241 | RELOC_STD_BITS_JMPTABLE_LITTLE);
2242 }
2243 }
2244 else
2245 {
2246 struct reloc_ext_external *erel;
2247
2248 erel = (struct reloc_ext_external *) p;
2249 PUT_WORD (output_bfd, r_address, erel->r_address);
2250 if (output_bfd->xvec->header_byteorder_big_p)
2251 {
2252 erel->r_index[0] = h->dynindx >> 16;
2253 erel->r_index[1] = h->dynindx >> 8;
2254 erel->r_index[2] = h->dynindx;
2255 erel->r_type[0] =
2256 (RELOC_EXT_BITS_EXTERN_BIG
2257 | (RELOC_JMP_SLOT << RELOC_EXT_BITS_TYPE_SH_BIG));
2258 }
2259 else
2260 {
2261 erel->r_index[2] = h->dynindx >> 16;
2262 erel->r_index[1] = h->dynindx >> 8;
2263 erel->r_index[0] = h->dynindx;
2264 erel->r_type[0] =
2265 (RELOC_EXT_BITS_EXTERN_LITTLE
2266 | (RELOC_JMP_SLOT << RELOC_EXT_BITS_TYPE_SH_LITTLE));
2267 }
2268 PUT_WORD (output_bfd, (bfd_vma) 0, erel->r_addend);
2269 }
2270
2271 ++s->reloc_count;
2272 }
2273 }
2274
2275 return true;
2276 }
2277
2278 /* This is called for each reloc against an external symbol. If this
2279 is a reloc which are are going to copy as a dynamic reloc, then
2280 copy it over, and tell the caller to not bother processing this
2281 reloc. */
2282
2283 /*ARGSUSED*/
2284 static boolean
2285 sunos_check_dynamic_reloc (info, input_bfd, input_section, harg, reloc,
2286 contents, skip, relocationp)
2287 struct bfd_link_info *info;
2288 bfd *input_bfd;
2289 asection *input_section;
2290 struct aout_link_hash_entry *harg;
2291 PTR reloc;
2292 bfd_byte *contents;
2293 boolean *skip;
2294 bfd_vma *relocationp;
2295 {
2296 struct sunos_link_hash_entry *h = (struct sunos_link_hash_entry *) harg;
2297 bfd *dynobj;
2298 boolean baserel;
2299 boolean jmptbl;
2300 asection *s;
2301 bfd_byte *p;
2302 long indx;
2303
2304 *skip = false;
2305
2306 dynobj = sunos_hash_table (info)->dynobj;
2307
2308 if (h != NULL && h->plt_offset != 0)
2309 {
2310 asection *splt;
2311
2312 /* Redirect the relocation to the PLT entry. */
2313 splt = bfd_get_section_by_name (dynobj, ".plt");
2314 *relocationp = (splt->output_section->vma
2315 + splt->output_offset
2316 + h->plt_offset);
2317 }
2318
2319 if (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE)
2320 {
2321 struct reloc_std_external *srel;
2322
2323 srel = (struct reloc_std_external *) reloc;
2324 if (input_bfd->xvec->header_byteorder_big_p)
2325 {
2326 baserel = (0 != (srel->r_type[0] & RELOC_STD_BITS_BASEREL_BIG));
2327 jmptbl = (0 != (srel->r_type[0] & RELOC_STD_BITS_JMPTABLE_BIG));
2328 }
2329 else
2330 {
2331 baserel = (0 != (srel->r_type[0] & RELOC_STD_BITS_BASEREL_LITTLE));
2332 jmptbl = (0 != (srel->r_type[0] & RELOC_STD_BITS_JMPTABLE_LITTLE));
2333 }
2334 }
2335 else
2336 {
2337 struct reloc_ext_external *erel;
2338 int r_type;
2339
2340 erel = (struct reloc_ext_external *) reloc;
2341 if (input_bfd->xvec->header_byteorder_big_p)
2342 r_type = ((erel->r_type[0] & RELOC_EXT_BITS_TYPE_BIG)
2343 >> RELOC_EXT_BITS_TYPE_SH_BIG);
2344 else
2345 r_type = ((erel->r_type[0] & RELOC_EXT_BITS_TYPE_LITTLE)
2346 >> RELOC_EXT_BITS_TYPE_SH_LITTLE);
2347 baserel = (r_type == RELOC_BASE10
2348 || r_type == RELOC_BASE13
2349 || r_type == RELOC_BASE22);
2350 jmptbl = r_type == RELOC_JMP_TBL;
2351 }
2352
2353 if (baserel)
2354 {
2355 bfd_vma *got_offsetp;
2356 asection *sgot;
2357
2358 if (h != NULL)
2359 got_offsetp = &h->got_offset;
2360 else if (adata (input_bfd).local_got_offsets == NULL)
2361 got_offsetp = NULL;
2362 else
2363 {
2364 struct reloc_std_external *srel;
2365 int r_index;
2366
2367 srel = (struct reloc_std_external *) reloc;
2368 if (obj_reloc_entry_size (input_bfd) == RELOC_STD_SIZE)
2369 {
2370 if (input_bfd->xvec->header_byteorder_big_p)
2371 r_index = ((srel->r_index[0] << 16)
2372 | (srel->r_index[1] << 8)
2373 | srel->r_index[2]);
2374 else
2375 r_index = ((srel->r_index[2] << 16)
2376 | (srel->r_index[1] << 8)
2377 | srel->r_index[0]);
2378 }
2379 else
2380 {
2381 struct reloc_ext_external *erel;
2382
2383 erel = (struct reloc_ext_external *) reloc;
2384 if (input_bfd->xvec->header_byteorder_big_p)
2385 r_index = ((erel->r_index[0] << 16)
2386 | (erel->r_index[1] << 8)
2387 | erel->r_index[2]);
2388 else
2389 r_index = ((erel->r_index[2] << 16)
2390 | (erel->r_index[1] << 8)
2391 | erel->r_index[0]);
2392 }
2393
2394 got_offsetp = adata (input_bfd).local_got_offsets + r_index;
2395 }
2396
2397 BFD_ASSERT (got_offsetp != NULL && *got_offsetp != 0);
2398
2399 sgot = bfd_get_section_by_name (dynobj, ".got");
2400
2401 /* We set the least significant bit to indicate whether we have
2402 already initialized the GOT entry. */
2403 if ((*got_offsetp & 1) == 0)
2404 {
2405 if (h == NULL
2406 || (! info->shared
2407 && ((h->flags & SUNOS_DEF_DYNAMIC) == 0
2408 || (h->flags & SUNOS_DEF_REGULAR) != 0)))
2409 PUT_WORD (dynobj, *relocationp, sgot->contents + *got_offsetp);
2410 else
2411 PUT_WORD (dynobj, 0, sgot->contents + *got_offsetp);
2412
2413 if (info->shared
2414 || (h != NULL
2415 && (h->flags & SUNOS_DEF_DYNAMIC) != 0
2416 && (h->flags & SUNOS_DEF_REGULAR) == 0))
2417 {
2418 /* We need to create a GLOB_DAT or 32 reloc to tell the
2419 dynamic linker to fill in this entry in the table. */
2420
2421 s = bfd_get_section_by_name (dynobj, ".dynrel");
2422 BFD_ASSERT (s != NULL);
2423 BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj)
2424 < s->_raw_size);
2425
2426 p = (s->contents
2427 + s->reloc_count * obj_reloc_entry_size (dynobj));
2428
2429 if (h != NULL)
2430 indx = h->dynindx;
2431 else
2432 indx = 0;
2433
2434 if (obj_reloc_entry_size (dynobj) == RELOC_STD_SIZE)
2435 {
2436 struct reloc_std_external *srel;
2437
2438 srel = (struct reloc_std_external *) p;
2439 PUT_WORD (dynobj,
2440 (*got_offsetp
2441 + sgot->output_section->vma
2442 + sgot->output_offset),
2443 srel->r_address);
2444 if (dynobj->xvec->header_byteorder_big_p)
2445 {
2446 srel->r_index[0] = indx >> 16;
2447 srel->r_index[1] = indx >> 8;
2448 srel->r_index[2] = indx;
2449 if (h == NULL)
2450 srel->r_type[0] = 2 << RELOC_STD_BITS_LENGTH_SH_BIG;
2451 else
2452 srel->r_type[0] =
2453 (RELOC_STD_BITS_EXTERN_BIG
2454 | RELOC_STD_BITS_BASEREL_BIG
2455 | RELOC_STD_BITS_RELATIVE_BIG
2456 | (2 << RELOC_STD_BITS_LENGTH_SH_BIG));
2457 }
2458 else
2459 {
2460 srel->r_index[2] = indx >> 16;
2461 srel->r_index[1] = indx >> 8;
2462 srel->r_index[0] = indx;
2463 if (h == NULL)
2464 srel->r_type[0] = 2 << RELOC_STD_BITS_LENGTH_SH_LITTLE;
2465 else
2466 srel->r_type[0] =
2467 (RELOC_STD_BITS_EXTERN_LITTLE
2468 | RELOC_STD_BITS_BASEREL_LITTLE
2469 | RELOC_STD_BITS_RELATIVE_LITTLE
2470 | (2 << RELOC_STD_BITS_LENGTH_SH_LITTLE));
2471 }
2472 }
2473 else
2474 {
2475 struct reloc_ext_external *erel;
2476
2477 erel = (struct reloc_ext_external *) p;
2478 PUT_WORD (dynobj,
2479 (*got_offsetp
2480 + sgot->output_section->vma
2481 + sgot->output_offset),
2482 erel->r_address);
2483 if (dynobj->xvec->header_byteorder_big_p)
2484 {
2485 erel->r_index[0] = indx >> 16;
2486 erel->r_index[1] = indx >> 8;
2487 erel->r_index[2] = indx;
2488 if (h == NULL)
2489 erel->r_type[0] =
2490 RELOC_32 << RELOC_EXT_BITS_TYPE_SH_BIG;
2491 else
2492 erel->r_type[0] =
2493 (RELOC_EXT_BITS_EXTERN_BIG
2494 | (RELOC_GLOB_DAT << RELOC_EXT_BITS_TYPE_SH_BIG));
2495 }
2496 else
2497 {
2498 erel->r_index[2] = indx >> 16;
2499 erel->r_index[1] = indx >> 8;
2500 erel->r_index[0] = indx;
2501 if (h == NULL)
2502 erel->r_type[0] =
2503 RELOC_32 << RELOC_EXT_BITS_TYPE_SH_LITTLE;
2504 else
2505 erel->r_type[0] =
2506 (RELOC_EXT_BITS_EXTERN_LITTLE
2507 | (RELOC_GLOB_DAT
2508 << RELOC_EXT_BITS_TYPE_SH_LITTLE));
2509 }
2510 PUT_WORD (dynobj, 0, erel->r_addend);
2511 }
2512
2513 ++s->reloc_count;
2514 }
2515
2516 *got_offsetp |= 1;
2517 }
2518
2519 *relocationp = sgot->vma + (*got_offsetp &~ 1);
2520
2521 /* There is nothing else to do for a base relative reloc. */
2522 return true;
2523 }
2524
2525 if (! sunos_hash_table (info)->dynamic_sections_needed)
2526 return true;
2527 if (! info->shared)
2528 {
2529 if (h == NULL
2530 || h->dynindx == -1
2531 || h->root.root.type != bfd_link_hash_undefined
2532 || (h->flags & SUNOS_DEF_REGULAR) != 0
2533 || (h->flags & SUNOS_DEF_DYNAMIC) == 0
2534 || (h->root.root.u.undef.abfd->flags & DYNAMIC) == 0)
2535 return true;
2536 }
2537 else
2538 {
2539 if (h != NULL
2540 && (h->dynindx == -1
2541 || jmptbl
2542 || strcmp (h->root.root.root.string,
2543 "__GLOBAL_OFFSET_TABLE_") == 0))
2544 return true;
2545 }
2546
2547 /* It looks like this is a reloc we are supposed to copy. */
2548
2549 s = bfd_get_section_by_name (dynobj, ".dynrel");
2550 BFD_ASSERT (s != NULL);
2551 BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj) < s->_raw_size);
2552
2553 p = s->contents + s->reloc_count * obj_reloc_entry_size (dynobj);
2554
2555 /* Copy the reloc over. */
2556 memcpy (p, reloc, obj_reloc_entry_size (dynobj));
2557
2558 if (h != NULL)
2559 indx = h->dynindx;
2560 else
2561 indx = 0;
2562
2563 /* Adjust the address and symbol index. */
2564 if (obj_reloc_entry_size (dynobj) == RELOC_STD_SIZE)
2565 {
2566 struct reloc_std_external *srel;
2567
2568 srel = (struct reloc_std_external *) p;
2569 PUT_WORD (dynobj,
2570 (GET_WORD (dynobj, srel->r_address)
2571 + input_section->output_section->vma
2572 + input_section->output_offset),
2573 srel->r_address);
2574 if (dynobj->xvec->header_byteorder_big_p)
2575 {
2576 srel->r_index[0] = indx >> 16;
2577 srel->r_index[1] = indx >> 8;
2578 srel->r_index[2] = indx;
2579 }
2580 else
2581 {
2582 srel->r_index[2] = indx >> 16;
2583 srel->r_index[1] = indx >> 8;
2584 srel->r_index[0] = indx;
2585 }
2586 }
2587 else
2588 {
2589 struct reloc_ext_external *erel;
2590
2591 erel = (struct reloc_ext_external *) p;
2592 PUT_WORD (dynobj,
2593 (GET_WORD (dynobj, erel->r_address)
2594 + input_section->output_section->vma
2595 + input_section->output_offset),
2596 erel->r_address);
2597 if (dynobj->xvec->header_byteorder_big_p)
2598 {
2599 erel->r_index[0] = indx >> 16;
2600 erel->r_index[1] = indx >> 8;
2601 erel->r_index[2] = indx;
2602 }
2603 else
2604 {
2605 erel->r_index[2] = indx >> 16;
2606 erel->r_index[1] = indx >> 8;
2607 erel->r_index[0] = indx;
2608 }
2609 }
2610
2611 ++s->reloc_count;
2612
2613 if (h != NULL)
2614 *skip = true;
2615
2616 return true;
2617 }
2618
2619 /* Finish up the dynamic linking information. */
2620
2621 static boolean
2622 sunos_finish_dynamic_link (abfd, info)
2623 bfd *abfd;
2624 struct bfd_link_info *info;
2625 {
2626 bfd *dynobj;
2627 asection *o;
2628 asection *s;
2629 asection *sdyn;
2630 struct external_sun4_dynamic esd;
2631 struct external_sun4_dynamic_link esdl;
2632
2633 if (! sunos_hash_table (info)->dynamic_sections_needed)
2634 return true;
2635
2636 dynobj = sunos_hash_table (info)->dynobj;
2637
2638 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2639 BFD_ASSERT (sdyn != NULL);
2640
2641 /* Finish up the .need section. The linker emulation code filled it
2642 in, but with offsets from the start of the section instead of
2643 real addresses. Now that we know the section location, we can
2644 fill in the final values. */
2645 s = bfd_get_section_by_name (dynobj, ".need");
2646 if (s != NULL && s->_raw_size != 0)
2647 {
2648 file_ptr filepos;
2649 bfd_byte *p;
2650
2651 filepos = s->output_section->filepos + s->output_offset;
2652 p = s->contents;
2653 while (1)
2654 {
2655 bfd_vma val;
2656
2657 PUT_WORD (dynobj, GET_WORD (dynobj, p) + filepos, p);
2658 val = GET_WORD (dynobj, p + 12);
2659 if (val == 0)
2660 break;
2661 PUT_WORD (dynobj, val + filepos, p + 12);
2662 p += 16;
2663 }
2664 }
2665
2666 /* The first entry in the .got section is the address of the
2667 dynamic information, unless this is a shared library. */
2668 s = bfd_get_section_by_name (dynobj, ".got");
2669 BFD_ASSERT (s != NULL);
2670 if (info->shared)
2671 PUT_WORD (dynobj, 0, s->contents);
2672 else
2673 PUT_WORD (dynobj, sdyn->output_section->vma + sdyn->output_offset,
2674 s->contents);
2675
2676 for (o = dynobj->sections; o != NULL; o = o->next)
2677 {
2678 if ((o->flags & SEC_HAS_CONTENTS) != 0
2679 && o->contents != NULL)
2680 {
2681 BFD_ASSERT (o->output_section != NULL
2682 && o->output_section->owner == abfd);
2683 if (! bfd_set_section_contents (abfd, o->output_section,
2684 o->contents, o->output_offset,
2685 o->_raw_size))
2686 return false;
2687 }
2688 }
2689
2690 /* Finish up the dynamic link information. */
2691 PUT_WORD (dynobj, (bfd_vma) 3, esd.ld_version);
2692 PUT_WORD (dynobj,
2693 sdyn->output_section->vma + sdyn->output_offset + sizeof esd,
2694 esd.ldd);
2695 PUT_WORD (dynobj,
2696 (sdyn->output_section->vma
2697 + sdyn->output_offset
2698 + sizeof esd
2699 + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE),
2700 esd.ld);
2701
2702 if (! bfd_set_section_contents (abfd, sdyn->output_section, &esd,
2703 sdyn->output_offset, sizeof esd))
2704 return false;
2705
2706
2707 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_loaded);
2708
2709 s = bfd_get_section_by_name (dynobj, ".need");
2710 if (s == NULL || s->_raw_size == 0)
2711 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_need);
2712 else
2713 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2714 esdl.ld_need);
2715
2716 s = bfd_get_section_by_name (dynobj, ".rules");
2717 if (s == NULL || s->_raw_size == 0)
2718 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_rules);
2719 else
2720 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2721 esdl.ld_rules);
2722
2723 s = bfd_get_section_by_name (dynobj, ".got");
2724 BFD_ASSERT (s != NULL);
2725 PUT_WORD (dynobj, s->output_section->vma + s->output_offset, esdl.ld_got);
2726
2727 s = bfd_get_section_by_name (dynobj, ".plt");
2728 BFD_ASSERT (s != NULL);
2729 PUT_WORD (dynobj, s->output_section->vma + s->output_offset, esdl.ld_plt);
2730 PUT_WORD (dynobj, s->_raw_size, esdl.ld_plt_sz);
2731
2732 s = bfd_get_section_by_name (dynobj, ".dynrel");
2733 BFD_ASSERT (s != NULL);
2734 BFD_ASSERT (s->reloc_count * obj_reloc_entry_size (dynobj) == s->_raw_size);
2735 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2736 esdl.ld_rel);
2737
2738 s = bfd_get_section_by_name (dynobj, ".hash");
2739 BFD_ASSERT (s != NULL);
2740 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2741 esdl.ld_hash);
2742
2743 s = bfd_get_section_by_name (dynobj, ".dynsym");
2744 BFD_ASSERT (s != NULL);
2745 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2746 esdl.ld_stab);
2747
2748 PUT_WORD (dynobj, (bfd_vma) 0, esdl.ld_stab_hash);
2749
2750 PUT_WORD (dynobj, (bfd_vma) sunos_hash_table (info)->bucketcount,
2751 esdl.ld_buckets);
2752
2753 s = bfd_get_section_by_name (dynobj, ".dynstr");
2754 BFD_ASSERT (s != NULL);
2755 PUT_WORD (dynobj, s->output_section->filepos + s->output_offset,
2756 esdl.ld_symbols);
2757 PUT_WORD (dynobj, s->_raw_size, esdl.ld_symb_size);
2758
2759 /* The size of the text area is the size of the .text section
2760 rounded up to a page boundary. FIXME: Should the page size be
2761 conditional on something? */
2762 PUT_WORD (dynobj,
2763 BFD_ALIGN (obj_textsec (abfd)->_raw_size, 0x2000),
2764 esdl.ld_text);
2765
2766 if (! bfd_set_section_contents (abfd, sdyn->output_section, &esdl,
2767 (sdyn->output_offset
2768 + sizeof esd
2769 + EXTERNAL_SUN4_DYNAMIC_DEBUGGER_SIZE),
2770 sizeof esdl))
2771 return false;
2772
2773 abfd->flags |= DYNAMIC;
2774
2775 return true;
2776 }