Fixed xgettext invocation in .Sanitize files
[binutils-gdb.git] / bfd / syms.c
1 /* Generic symbol-table support for the BFD library.
2 Copyright (C) 1990, 91, 92, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4 Written by Cygnus Support.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 /*
23 SECTION
24 Symbols
25
26 BFD tries to maintain as much symbol information as it can when
27 it moves information from file to file. BFD passes information
28 to applications though the <<asymbol>> structure. When the
29 application requests the symbol table, BFD reads the table in
30 the native form and translates parts of it into the internal
31 format. To maintain more than the information passed to
32 applications, some targets keep some information ``behind the
33 scenes'' in a structure only the particular back end knows
34 about. For example, the coff back end keeps the original
35 symbol table structure as well as the canonical structure when
36 a BFD is read in. On output, the coff back end can reconstruct
37 the output symbol table so that no information is lost, even
38 information unique to coff which BFD doesn't know or
39 understand. If a coff symbol table were read, but were written
40 through an a.out back end, all the coff specific information
41 would be lost. The symbol table of a BFD
42 is not necessarily read in until a canonicalize request is
43 made. Then the BFD back end fills in a table provided by the
44 application with pointers to the canonical information. To
45 output symbols, the application provides BFD with a table of
46 pointers to pointers to <<asymbol>>s. This allows applications
47 like the linker to output a symbol as it was read, since the ``behind
48 the scenes'' information will be still available.
49 @menu
50 @* Reading Symbols::
51 @* Writing Symbols::
52 @* Mini Symbols::
53 @* typedef asymbol::
54 @* symbol handling functions::
55 @end menu
56
57 INODE
58 Reading Symbols, Writing Symbols, Symbols, Symbols
59 SUBSECTION
60 Reading symbols
61
62 There are two stages to reading a symbol table from a BFD:
63 allocating storage, and the actual reading process. This is an
64 excerpt from an application which reads the symbol table:
65
66 | long storage_needed;
67 | asymbol **symbol_table;
68 | long number_of_symbols;
69 | long i;
70 |
71 | storage_needed = bfd_get_symtab_upper_bound (abfd);
72 |
73 | if (storage_needed < 0)
74 | FAIL
75 |
76 | if (storage_needed == 0) {
77 | return ;
78 | }
79 | symbol_table = (asymbol **) xmalloc (storage_needed);
80 | ...
81 | number_of_symbols =
82 | bfd_canonicalize_symtab (abfd, symbol_table);
83 |
84 | if (number_of_symbols < 0)
85 | FAIL
86 |
87 | for (i = 0; i < number_of_symbols; i++) {
88 | process_symbol (symbol_table[i]);
89 | }
90
91 All storage for the symbols themselves is in an objalloc
92 connected to the BFD; it is freed when the BFD is closed.
93
94
95 INODE
96 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
97 SUBSECTION
98 Writing symbols
99
100 Writing of a symbol table is automatic when a BFD open for
101 writing is closed. The application attaches a vector of
102 pointers to pointers to symbols to the BFD being written, and
103 fills in the symbol count. The close and cleanup code reads
104 through the table provided and performs all the necessary
105 operations. The BFD output code must always be provided with an
106 ``owned'' symbol: one which has come from another BFD, or one
107 which has been created using <<bfd_make_empty_symbol>>. Here is an
108 example showing the creation of a symbol table with only one element:
109
110 | #include "bfd.h"
111 | main()
112 | {
113 | bfd *abfd;
114 | asymbol *ptrs[2];
115 | asymbol *new;
116 |
117 | abfd = bfd_openw("foo","a.out-sunos-big");
118 | bfd_set_format(abfd, bfd_object);
119 | new = bfd_make_empty_symbol(abfd);
120 | new->name = "dummy_symbol";
121 | new->section = bfd_make_section_old_way(abfd, ".text");
122 | new->flags = BSF_GLOBAL;
123 | new->value = 0x12345;
124 |
125 | ptrs[0] = new;
126 | ptrs[1] = (asymbol *)0;
127 |
128 | bfd_set_symtab(abfd, ptrs, 1);
129 | bfd_close(abfd);
130 | }
131 |
132 | ./makesym
133 | nm foo
134 | 00012345 A dummy_symbol
135
136 Many formats cannot represent arbitary symbol information; for
137 instance, the <<a.out>> object format does not allow an
138 arbitary number of sections. A symbol pointing to a section
139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
140 be described.
141
142 INODE
143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
144 SUBSECTION
145 Mini Symbols
146
147 Mini symbols provide read-only access to the symbol table.
148 They use less memory space, but require more time to access.
149 They can be useful for tools like nm or objdump, which may
150 have to handle symbol tables of extremely large executables.
151
152 The <<bfd_read_minisymbols>> function will read the symbols
153 into memory in an internal form. It will return a <<void *>>
154 pointer to a block of memory, a symbol count, and the size of
155 each symbol. The pointer is allocated using <<malloc>>, and
156 should be freed by the caller when it is no longer needed.
157
158 The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 to a minisymbol, and a pointer to a structure returned by
160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 The return value may or may not be the same as the value from
162 <<bfd_make_empty_symbol>> which was passed in.
163
164 */
165
166
167
168 /*
169 DOCDD
170 INODE
171 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
172
173 */
174 /*
175 SUBSECTION
176 typedef asymbol
177
178 An <<asymbol>> has the form:
179
180 */
181
182 /*
183 CODE_FRAGMENT
184
185 .
186 .typedef struct symbol_cache_entry
187 .{
188 . {* A pointer to the BFD which owns the symbol. This information
189 . is necessary so that a back end can work out what additional
190 . information (invisible to the application writer) is carried
191 . with the symbol.
192 .
193 . This field is *almost* redundant, since you can use section->owner
194 . instead, except that some symbols point to the global sections
195 . bfd_{abs,com,und}_section. This could be fixed by making
196 . these globals be per-bfd (or per-target-flavor). FIXME. *}
197 .
198 . struct _bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
199 .
200 . {* The text of the symbol. The name is left alone, and not copied; the
201 . application may not alter it. *}
202 . CONST char *name;
203 .
204 . {* The value of the symbol. This really should be a union of a
205 . numeric value with a pointer, since some flags indicate that
206 . a pointer to another symbol is stored here. *}
207 . symvalue value;
208 .
209 . {* Attributes of a symbol: *}
210 .
211 .#define BSF_NO_FLAGS 0x00
212 .
213 . {* The symbol has local scope; <<static>> in <<C>>. The value
214 . is the offset into the section of the data. *}
215 .#define BSF_LOCAL 0x01
216 .
217 . {* The symbol has global scope; initialized data in <<C>>. The
218 . value is the offset into the section of the data. *}
219 .#define BSF_GLOBAL 0x02
220 .
221 . {* The symbol has global scope and is exported. The value is
222 . the offset into the section of the data. *}
223 .#define BSF_EXPORT BSF_GLOBAL {* no real difference *}
224 .
225 . {* A normal C symbol would be one of:
226 . <<BSF_LOCAL>>, <<BSF_FORT_COMM>>, <<BSF_UNDEFINED>> or
227 . <<BSF_GLOBAL>> *}
228 .
229 . {* The symbol is a debugging record. The value has an arbitary
230 . meaning. *}
231 .#define BSF_DEBUGGING 0x08
232 .
233 . {* The symbol denotes a function entry point. Used in ELF,
234 . perhaps others someday. *}
235 .#define BSF_FUNCTION 0x10
236 .
237 . {* Used by the linker. *}
238 .#define BSF_KEEP 0x20
239 .#define BSF_KEEP_G 0x40
240 .
241 . {* A weak global symbol, overridable without warnings by
242 . a regular global symbol of the same name. *}
243 .#define BSF_WEAK 0x80
244 .
245 . {* This symbol was created to point to a section, e.g. ELF's
246 . STT_SECTION symbols. *}
247 .#define BSF_SECTION_SYM 0x100
248 .
249 . {* The symbol used to be a common symbol, but now it is
250 . allocated. *}
251 .#define BSF_OLD_COMMON 0x200
252 .
253 . {* The default value for common data. *}
254 .#define BFD_FORT_COMM_DEFAULT_VALUE 0
255 .
256 . {* In some files the type of a symbol sometimes alters its
257 . location in an output file - ie in coff a <<ISFCN>> symbol
258 . which is also <<C_EXT>> symbol appears where it was
259 . declared and not at the end of a section. This bit is set
260 . by the target BFD part to convey this information. *}
261 .
262 .#define BSF_NOT_AT_END 0x400
263 .
264 . {* Signal that the symbol is the label of constructor section. *}
265 .#define BSF_CONSTRUCTOR 0x800
266 .
267 . {* Signal that the symbol is a warning symbol. The name is a
268 . warning. The name of the next symbol is the one to warn about;
269 . if a reference is made to a symbol with the same name as the next
270 . symbol, a warning is issued by the linker. *}
271 .#define BSF_WARNING 0x1000
272 .
273 . {* Signal that the symbol is indirect. This symbol is an indirect
274 . pointer to the symbol with the same name as the next symbol. *}
275 .#define BSF_INDIRECT 0x2000
276 .
277 . {* BSF_FILE marks symbols that contain a file name. This is used
278 . for ELF STT_FILE symbols. *}
279 .#define BSF_FILE 0x4000
280 .
281 . {* Symbol is from dynamic linking information. *}
282 .#define BSF_DYNAMIC 0x8000
283 .
284 . {* The symbol denotes a data object. Used in ELF, and perhaps
285 . others someday. *}
286 .#define BSF_OBJECT 0x10000
287 .
288 . flagword flags;
289 .
290 . {* A pointer to the section to which this symbol is
291 . relative. This will always be non NULL, there are special
292 . sections for undefined and absolute symbols. *}
293 . struct sec *section;
294 .
295 . {* Back end special data. *}
296 . union
297 . {
298 . PTR p;
299 . bfd_vma i;
300 . } udata;
301 .
302 .} asymbol;
303 */
304
305 #include "bfd.h"
306 #include "sysdep.h"
307 #include "libbfd.h"
308 #include "bfdlink.h"
309 #include "aout/stab_gnu.h"
310
311 static char coff_section_type PARAMS ((const char *));
312
313 /*
314 DOCDD
315 INODE
316 symbol handling functions, , typedef asymbol, Symbols
317 SUBSECTION
318 Symbol handling functions
319 */
320
321 /*
322 FUNCTION
323 bfd_get_symtab_upper_bound
324
325 DESCRIPTION
326 Return the number of bytes required to store a vector of pointers
327 to <<asymbols>> for all the symbols in the BFD @var{abfd},
328 including a terminal NULL pointer. If there are no symbols in
329 the BFD, then return 0. If an error occurs, return -1.
330
331 .#define bfd_get_symtab_upper_bound(abfd) \
332 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
333
334 */
335
336 /*
337 FUNCTION
338 bfd_is_local_label
339
340 SYNOPSIS
341 boolean bfd_is_local_label(bfd *abfd, asymbol *sym);
342
343 DESCRIPTION
344 Return true if the given symbol @var{sym} in the BFD @var{abfd} is
345 a compiler generated local label, else return false.
346 */
347
348 boolean
349 bfd_is_local_label (abfd, sym)
350 bfd *abfd;
351 asymbol *sym;
352 {
353 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
354 return false;
355 if (sym->name == NULL)
356 return false;
357 return bfd_is_local_label_name (abfd, sym->name);
358 }
359
360 /*
361 FUNCTION
362 bfd_is_local_label_name
363
364 SYNOPSIS
365 boolean bfd_is_local_label_name(bfd *abfd, const char *name);
366
367 DESCRIPTION
368 Return true if a symbol with the name @var{name} in the BFD
369 @var{abfd} is a compiler generated local label, else return
370 false. This just checks whether the name has the form of a
371 local label.
372
373 .#define bfd_is_local_label_name(abfd, name) \
374 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
375 */
376
377 /*
378 FUNCTION
379 bfd_canonicalize_symtab
380
381 DESCRIPTION
382 Read the symbols from the BFD @var{abfd}, and fills in
383 the vector @var{location} with pointers to the symbols and
384 a trailing NULL.
385 Return the actual number of symbol pointers, not
386 including the NULL.
387
388
389 .#define bfd_canonicalize_symtab(abfd, location) \
390 . BFD_SEND (abfd, _bfd_canonicalize_symtab,\
391 . (abfd, location))
392
393 */
394
395
396 /*
397 FUNCTION
398 bfd_set_symtab
399
400 SYNOPSIS
401 boolean bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int count);
402
403 DESCRIPTION
404 Arrange that when the output BFD @var{abfd} is closed,
405 the table @var{location} of @var{count} pointers to symbols
406 will be written.
407 */
408
409 boolean
410 bfd_set_symtab (abfd, location, symcount)
411 bfd *abfd;
412 asymbol **location;
413 unsigned int symcount;
414 {
415 if ((abfd->format != bfd_object) || (bfd_read_p (abfd)))
416 {
417 bfd_set_error (bfd_error_invalid_operation);
418 return false;
419 }
420
421 bfd_get_outsymbols (abfd) = location;
422 bfd_get_symcount (abfd) = symcount;
423 return true;
424 }
425
426 /*
427 FUNCTION
428 bfd_print_symbol_vandf
429
430 SYNOPSIS
431 void bfd_print_symbol_vandf(PTR file, asymbol *symbol);
432
433 DESCRIPTION
434 Print the value and flags of the @var{symbol} supplied to the
435 stream @var{file}.
436 */
437 void
438 bfd_print_symbol_vandf (arg, symbol)
439 PTR arg;
440 asymbol *symbol;
441 {
442 FILE *file = (FILE *) arg;
443 flagword type = symbol->flags;
444 if (symbol->section != (asection *) NULL)
445 {
446 fprintf_vma (file, symbol->value + symbol->section->vma);
447 }
448 else
449 {
450 fprintf_vma (file, symbol->value);
451 }
452
453 /* This presumes that a symbol can not be both BSF_DEBUGGING and
454 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
455 BSF_OBJECT. */
456 fprintf (file, " %c%c%c%c%c%c%c",
457 ((type & BSF_LOCAL)
458 ? (type & BSF_GLOBAL) ? '!' : 'l'
459 : (type & BSF_GLOBAL) ? 'g' : ' '),
460 (type & BSF_WEAK) ? 'w' : ' ',
461 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
462 (type & BSF_WARNING) ? 'W' : ' ',
463 (type & BSF_INDIRECT) ? 'I' : ' ',
464 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
465 ((type & BSF_FUNCTION)
466 ? 'F'
467 : ((type & BSF_FILE)
468 ? 'f'
469 : ((type & BSF_OBJECT) ? 'O' : ' '))));
470 }
471
472
473 /*
474 FUNCTION
475 bfd_make_empty_symbol
476
477 DESCRIPTION
478 Create a new <<asymbol>> structure for the BFD @var{abfd}
479 and return a pointer to it.
480
481 This routine is necessary because each back end has private
482 information surrounding the <<asymbol>>. Building your own
483 <<asymbol>> and pointing to it will not create the private
484 information, and will cause problems later on.
485
486 .#define bfd_make_empty_symbol(abfd) \
487 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
488 */
489
490 /*
491 FUNCTION
492 bfd_make_debug_symbol
493
494 DESCRIPTION
495 Create a new <<asymbol>> structure for the BFD @var{abfd},
496 to be used as a debugging symbol. Further details of its use have
497 yet to be worked out.
498
499 .#define bfd_make_debug_symbol(abfd,ptr,size) \
500 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
501 */
502
503 struct section_to_type
504 {
505 CONST char *section;
506 char type;
507 };
508
509 /* Map section names to POSIX/BSD single-character symbol types.
510 This table is probably incomplete. It is sorted for convenience of
511 adding entries. Since it is so short, a linear search is used. */
512 static CONST struct section_to_type stt[] =
513 {
514 {"*DEBUG*", 'N'},
515 {".bss", 'b'},
516 {"zerovars", 'b'}, /* MRI .bss */
517 {".data", 'd'},
518 {"vars", 'd'}, /* MRI .data */
519 {".rdata", 'r'}, /* Read only data. */
520 {".rodata", 'r'}, /* Read only data. */
521 {".sbss", 's'}, /* Small BSS (uninitialized data). */
522 {".scommon", 'c'}, /* Small common. */
523 {".sdata", 'g'}, /* Small initialized data. */
524 {".text", 't'},
525 {"code", 't'}, /* MRI .text */
526 {0, 0}
527 };
528
529 /* Return the single-character symbol type corresponding to
530 section S, or '?' for an unknown COFF section.
531
532 Check for any leading string which matches, so .text5 returns
533 't' as well as .text */
534
535 static char
536 coff_section_type (s)
537 const char *s;
538 {
539 CONST struct section_to_type *t;
540
541 for (t = &stt[0]; t->section; t++)
542 if (!strncmp (s, t->section, strlen (t->section)))
543 return t->type;
544
545 return '?';
546 }
547
548 #ifndef islower
549 #define islower(c) ((c) >= 'a' && (c) <= 'z')
550 #endif
551 #ifndef toupper
552 #define toupper(c) (islower(c) ? ((c) & ~0x20) : (c))
553 #endif
554
555 /*
556 FUNCTION
557 bfd_decode_symclass
558
559 DESCRIPTION
560 Return a character corresponding to the symbol
561 class of @var{symbol}, or '?' for an unknown class.
562
563 SYNOPSIS
564 int bfd_decode_symclass(asymbol *symbol);
565 */
566 int
567 bfd_decode_symclass (symbol)
568 asymbol *symbol;
569 {
570 char c;
571
572 if (bfd_is_com_section (symbol->section))
573 return 'C';
574 if (bfd_is_und_section (symbol->section))
575 return 'U';
576 if (bfd_is_ind_section (symbol->section))
577 return 'I';
578 if (symbol->flags & BSF_WEAK)
579 return 'W';
580 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
581 return '?';
582
583 if (bfd_is_abs_section (symbol->section))
584 c = 'a';
585 else if (symbol->section)
586 c = coff_section_type (symbol->section->name);
587 else
588 return '?';
589 if (symbol->flags & BSF_GLOBAL)
590 c = toupper (c);
591 return c;
592
593 /* We don't have to handle these cases just yet, but we will soon:
594 N_SETV: 'v';
595 N_SETA: 'l';
596 N_SETT: 'x';
597 N_SETD: 'z';
598 N_SETB: 's';
599 N_INDR: 'i';
600 */
601 }
602
603 /*
604 FUNCTION
605 bfd_symbol_info
606
607 DESCRIPTION
608 Fill in the basic info about symbol that nm needs.
609 Additional info may be added by the back-ends after
610 calling this function.
611
612 SYNOPSIS
613 void bfd_symbol_info(asymbol *symbol, symbol_info *ret);
614 */
615
616 void
617 bfd_symbol_info (symbol, ret)
618 asymbol *symbol;
619 symbol_info *ret;
620 {
621 ret->type = bfd_decode_symclass (symbol);
622 if (ret->type != 'U')
623 ret->value = symbol->value + symbol->section->vma;
624 else
625 ret->value = 0;
626 ret->name = symbol->name;
627 }
628
629 /*
630 FUNCTION
631 bfd_copy_private_symbol_data
632
633 SYNOPSIS
634 boolean bfd_copy_private_symbol_data(bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
635
636 DESCRIPTION
637 Copy private symbol information from @var{isym} in the BFD
638 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
639 Return <<true>> on success, <<false>> on error. Possible error
640 returns are:
641
642 o <<bfd_error_no_memory>> -
643 Not enough memory exists to create private data for @var{osec}.
644
645 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
646 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
647 . (ibfd, isymbol, obfd, osymbol))
648
649 */
650
651 /* The generic version of the function which returns mini symbols.
652 This is used when the backend does not provide a more efficient
653 version. It just uses BFD asymbol structures as mini symbols. */
654
655 long
656 _bfd_generic_read_minisymbols (abfd, dynamic, minisymsp, sizep)
657 bfd *abfd;
658 boolean dynamic;
659 PTR *minisymsp;
660 unsigned int *sizep;
661 {
662 long storage;
663 asymbol **syms = NULL;
664 long symcount;
665
666 if (dynamic)
667 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
668 else
669 storage = bfd_get_symtab_upper_bound (abfd);
670 if (storage < 0)
671 goto error_return;
672
673 syms = (asymbol **) bfd_malloc ((size_t) storage);
674 if (syms == NULL)
675 goto error_return;
676
677 if (dynamic)
678 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
679 else
680 symcount = bfd_canonicalize_symtab (abfd, syms);
681 if (symcount < 0)
682 goto error_return;
683
684 *minisymsp = (PTR) syms;
685 *sizep = sizeof (asymbol *);
686 return symcount;
687
688 error_return:
689 if (syms != NULL)
690 free (syms);
691 return -1;
692 }
693
694 /* The generic version of the function which converts a minisymbol to
695 an asymbol. We don't worry about the sym argument we are passed;
696 we just return the asymbol the minisymbol points to. */
697
698 /*ARGSUSED*/
699 asymbol *
700 _bfd_generic_minisymbol_to_symbol (abfd, dynamic, minisym, sym)
701 bfd *abfd;
702 boolean dynamic;
703 const PTR minisym;
704 asymbol *sym;
705 {
706 return *(asymbol **) minisym;
707 }
708
709 /* Look through stabs debugging information in .stab and .stabstr
710 sections to find the source file and line closest to a desired
711 location. This is used by COFF and ELF targets. It sets *pfound
712 to true if it finds some information. The *pinfo field is used to
713 pass cached information in and out of this routine; this first time
714 the routine is called for a BFD, *pinfo should be NULL. The value
715 placed in *pinfo should be saved with the BFD, and passed back each
716 time this function is called. */
717
718 /* We use a cache by default. */
719
720 #define ENABLE_CACHING
721
722 /* We keep an array of indexentry structures to record where in the
723 stabs section we should look to find line number information for a
724 particular address. */
725
726 struct indexentry
727 {
728 bfd_vma val;
729 bfd_byte *stab;
730 bfd_byte *str;
731 bfd_byte *directory_name;
732 bfd_byte *file_name;
733 bfd_byte *function_name;
734 };
735
736 /* Compare two indexentry structures. This is called via qsort. */
737
738 static int
739 cmpindexentry (a, b)
740 const PTR *a;
741 const PTR *b;
742 {
743 const struct indexentry *contestantA = (const struct indexentry *) a;
744 const struct indexentry *contestantB = (const struct indexentry *) b;
745
746 if (contestantA->val < contestantB->val)
747 return -1;
748 else if (contestantA->val > contestantB->val)
749 return 1;
750 else
751 return 0;
752 }
753
754 /* A pointer to this structure is stored in *pinfo. */
755
756 struct stab_find_info
757 {
758 /* The .stab section. */
759 asection *stabsec;
760 /* The .stabstr section. */
761 asection *strsec;
762 /* The contents of the .stab section. */
763 bfd_byte *stabs;
764 /* The contents of the .stabstr section. */
765 bfd_byte *strs;
766
767 /* A table that indexes stabs by memory address. */
768 struct indexentry *indextable;
769 /* The number of entries in indextable. */
770 int indextablesize;
771
772 #ifdef ENABLE_CACHING
773 /* Cached values to restart quickly. */
774 struct indexentry *cached_indexentry;
775 bfd_vma cached_offset;
776 bfd_byte *cached_stab;
777 bfd_byte *cached_file_name;
778 #endif
779
780 /* Saved ptr to malloc'ed filename. */
781 char *filename;
782 };
783
784 boolean
785 _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, pfound,
786 pfilename, pfnname, pline, pinfo)
787 bfd *abfd;
788 asymbol **symbols;
789 asection *section;
790 bfd_vma offset;
791 boolean *pfound;
792 const char **pfilename;
793 const char **pfnname;
794 unsigned int *pline;
795 PTR *pinfo;
796 {
797 struct stab_find_info *info;
798 bfd_size_type stabsize, strsize;
799 bfd_byte *stab, *str;
800 bfd_size_type stroff;
801 struct indexentry *indexentry;
802 char *directory_name, *file_name;
803
804 *pfound = false;
805 *pfilename = bfd_get_filename (abfd);
806 *pfnname = NULL;
807 *pline = 0;
808
809 /* Stabs entries use a 12 byte format:
810 4 byte string table index
811 1 byte stab type
812 1 byte stab other field
813 2 byte stab desc field
814 4 byte stab value
815 FIXME: This will have to change for a 64 bit object format.
816
817 The stabs symbols are divided into compilation units. For the
818 first entry in each unit, the type of 0, the value is the length
819 of the string table for this unit, and the desc field is the
820 number of stabs symbols for this unit. */
821
822 #define STRDXOFF (0)
823 #define TYPEOFF (4)
824 #define OTHEROFF (5)
825 #define DESCOFF (6)
826 #define VALOFF (8)
827 #define STABSIZE (12)
828
829 info = (struct stab_find_info *) *pinfo;
830 if (info != NULL)
831 {
832 if (info->stabsec == NULL || info->strsec == NULL)
833 {
834 /* No stabs debugging information. */
835 return true;
836 }
837
838 stabsize = info->stabsec->_raw_size;
839 strsize = info->strsec->_raw_size;
840 }
841 else
842 {
843 long reloc_size, reloc_count;
844 arelent **reloc_vector;
845 bfd_vma val;
846 int i;
847 char *name;
848 char *file_name;
849 char *directory_name;
850 char *function_name;
851
852 info = (struct stab_find_info *) bfd_zalloc (abfd, sizeof *info);
853 if (info == NULL)
854 return false;
855
856 /* FIXME: When using the linker --split-by-file or
857 --split-by-reloc options, it is possible for the .stab and
858 .stabstr sections to be split. We should handle that. */
859
860 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
861 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
862
863 if (info->stabsec == NULL || info->strsec == NULL)
864 {
865 /* No stabs debugging information. Set *pinfo so that we
866 can return quickly in the info != NULL case above. */
867 *pinfo = (PTR) info;
868 return true;
869 }
870
871 stabsize = info->stabsec->_raw_size;
872 strsize = info->strsec->_raw_size;
873
874 info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
875 info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
876 if (info->stabs == NULL || info->strs == NULL)
877 return false;
878
879 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs, 0,
880 stabsize)
881 || ! bfd_get_section_contents (abfd, info->strsec, info->strs, 0,
882 strsize))
883 return false;
884
885 /* If this is a relocateable object file, we have to relocate
886 the entries in .stab. This should always be simple 32 bit
887 relocations against symbols defined in this object file, so
888 this should be no big deal. */
889 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
890 if (reloc_size < 0)
891 return false;
892 reloc_vector = (arelent **) bfd_malloc (reloc_size);
893 if (reloc_vector == NULL && reloc_size != 0)
894 return false;
895 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
896 symbols);
897 if (reloc_count < 0)
898 {
899 if (reloc_vector != NULL)
900 free (reloc_vector);
901 return false;
902 }
903 if (reloc_count > 0)
904 {
905 arelent **pr;
906
907 for (pr = reloc_vector; *pr != NULL; pr++)
908 {
909 arelent *r;
910 unsigned long val;
911 asymbol *sym;
912
913 r = *pr;
914 if (r->howto->rightshift != 0
915 || r->howto->size != 2
916 || r->howto->bitsize != 32
917 || r->howto->pc_relative
918 || r->howto->bitpos != 0
919 || r->howto->dst_mask != 0xffffffff)
920 {
921 (*_bfd_error_handler)
922 (_("Unsupported .stab relocation"));
923 bfd_set_error (bfd_error_invalid_operation);
924 if (reloc_vector != NULL)
925 free (reloc_vector);
926 return false;
927 }
928
929 val = bfd_get_32 (abfd, info->stabs + r->address);
930 val &= r->howto->src_mask;
931 sym = *r->sym_ptr_ptr;
932 val += sym->value + sym->section->vma + r->addend;
933 bfd_put_32 (abfd, val, info->stabs + r->address);
934 }
935 }
936
937 if (reloc_vector != NULL)
938 free (reloc_vector);
939
940 /* First time through this function, build a table matching
941 function VM addresses to stabs, then sort based on starting
942 VM address. Do this in two passes: once to count how many
943 table entries we'll need, and a second to actually build the
944 table. */
945
946 info->indextablesize = 0;
947 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
948 {
949 if (stab[TYPEOFF] == N_FUN)
950 ++info->indextablesize;
951 }
952
953 if (info->indextablesize == 0)
954 return true;
955 ++info->indextablesize;
956
957 info->indextable = ((struct indexentry *)
958 bfd_alloc (abfd,
959 (sizeof (struct indexentry)
960 * info->indextablesize)));
961 if (info->indextable == NULL)
962 return false;
963
964 file_name = NULL;
965 directory_name = NULL;
966
967 for (i = 0, stroff = 0, stab = info->stabs, str = info->strs;
968 i < info->indextablesize && stab < info->stabs + stabsize;
969 stab += STABSIZE)
970 {
971 switch (stab[TYPEOFF])
972 {
973 case 0:
974 /* This is the first entry in a compilation unit. */
975 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
976 break;
977 str += stroff;
978 stroff = bfd_get_32 (abfd, stab + VALOFF);
979 break;
980
981 case N_SO:
982 /* The main file name. */
983
984 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
985
986 if (*file_name == '\0')
987 {
988 directory_name = NULL;
989 file_name = NULL;
990 }
991 else if (stab + STABSIZE >= info->stabs + stabsize
992 || *(stab + STABSIZE + TYPEOFF) != N_SO)
993 {
994 directory_name = NULL;
995 }
996 else
997 {
998 /* Two consecutive N_SOs are a directory and a file
999 name. */
1000 stab += STABSIZE;
1001 directory_name = file_name;
1002 file_name = ((char *) str
1003 + bfd_get_32 (abfd, stab + STRDXOFF));
1004 }
1005 break;
1006
1007 case N_SOL:
1008 /* The name of an include file. */
1009 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1010 break;
1011
1012 case N_FUN:
1013 /* A function name. */
1014
1015 name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1016
1017 if (*name == '\0')
1018 name = NULL;
1019
1020 function_name = name;
1021
1022 if (name == NULL)
1023 continue;
1024
1025 val = bfd_get_32 (abfd, stab + VALOFF);
1026
1027 info->indextable[i].val = val;
1028 info->indextable[i].stab = stab;
1029 info->indextable[i].str = str;
1030 info->indextable[i].directory_name = directory_name;
1031 info->indextable[i].file_name = file_name;
1032 info->indextable[i].function_name = function_name;
1033
1034 ++i;
1035 break;
1036 }
1037 }
1038
1039 info->indextable[i].val = (bfd_vma) -1;
1040 info->indextable[i].stab = info->stabs + stabsize;
1041 info->indextable[i].str = str;
1042 info->indextable[i].directory_name = NULL;
1043 info->indextable[i].file_name = NULL;
1044 info->indextable[i].function_name = NULL;
1045 ++i;
1046
1047 info->indextablesize = i;
1048
1049 qsort (info->indextable, i, sizeof (struct indexentry), cmpindexentry);
1050
1051 *pinfo = (PTR) info;
1052 }
1053
1054 /* We are passed a section relative offset. The offsets in the
1055 stabs information are absolute. */
1056 offset += bfd_get_section_vma (abfd, section);
1057
1058 #ifdef ENABLE_CACHING
1059 if (info->cached_indexentry != NULL
1060 && offset >= info->cached_offset
1061 && offset < (info->cached_indexentry + 1)->val)
1062 {
1063 stab = info->cached_stab;
1064 indexentry = info->cached_indexentry;
1065 file_name = info->cached_file_name;
1066 }
1067 else
1068 #endif
1069 {
1070 /* Cache non-existant or invalid. Do binary search on
1071 indextable. */
1072
1073 long low, high;
1074 long mid = -1;
1075
1076 indexentry = NULL;
1077
1078 low = 0;
1079 high = info->indextablesize - 1;
1080 while (low != high)
1081 {
1082 mid = (high + low) / 2;
1083 if (offset >= info->indextable[mid].val
1084 && offset < info->indextable[mid + 1].val)
1085 {
1086 indexentry = &info->indextable[mid];
1087 break;
1088 }
1089
1090 if (info->indextable[mid].val > offset)
1091 high = mid;
1092 else
1093 low = mid + 1;
1094 }
1095
1096 if (indexentry == NULL)
1097 return true;
1098
1099 stab = indexentry->stab + STABSIZE;
1100 file_name = indexentry->file_name;
1101 }
1102
1103 directory_name = indexentry->directory_name;
1104 str = indexentry->str;
1105
1106 for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1107 {
1108 boolean done;
1109 bfd_vma val;
1110
1111 done = false;
1112
1113 switch (stab[TYPEOFF])
1114 {
1115 case N_SOL:
1116 /* The name of an include file. */
1117 val = bfd_get_32 (abfd, stab + VALOFF);
1118 if (val <= offset)
1119 {
1120 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1121 *pline = 0;
1122 }
1123 break;
1124
1125 case N_SLINE:
1126 case N_DSLINE:
1127 case N_BSLINE:
1128 /* A line number. The value is relative to the start of the
1129 current function. */
1130 val = indexentry->val + bfd_get_32 (abfd, stab + VALOFF);
1131 if (val <= offset)
1132 {
1133 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1134
1135 #ifdef ENABLE_CACHING
1136 info->cached_stab = stab;
1137 info->cached_offset = val;
1138 info->cached_file_name = file_name;
1139 info->cached_indexentry = indexentry;
1140 #endif
1141 }
1142 if (val > offset)
1143 done = true;
1144 break;
1145
1146 case N_FUN:
1147 case N_SO:
1148 done = true;
1149 break;
1150 }
1151
1152 if (done)
1153 break;
1154 }
1155
1156 *pfound = true;
1157
1158 if (file_name[0] == '/' || directory_name == NULL)
1159 *pfilename = file_name;
1160 else
1161 {
1162 size_t dirlen;
1163
1164 dirlen = strlen (directory_name);
1165 if (info->filename == NULL
1166 || strncmp (info->filename, directory_name, dirlen) != 0
1167 || strcmp (info->filename + dirlen, file_name) != 0)
1168 {
1169 if (info->filename != NULL)
1170 free (info->filename);
1171 info->filename = (char *) bfd_malloc (dirlen +
1172 strlen (file_name)
1173 + 1);
1174 if (info->filename == NULL)
1175 return false;
1176 strcpy (info->filename, directory_name);
1177 strcpy (info->filename + dirlen, file_name);
1178 }
1179
1180 *pfilename = info->filename;
1181 }
1182
1183 if (indexentry->function_name != NULL)
1184 {
1185 char *s;
1186
1187 /* This will typically be something like main:F(0,1), so we want
1188 to clobber the colon. It's OK to change the name, since the
1189 string is in our own local storage anyhow. */
1190
1191 s = strchr (indexentry->function_name, ':');
1192 if (s != NULL)
1193 *s = '\0';
1194
1195 *pfnname = indexentry->function_name;
1196 }
1197
1198 return true;
1199 }