2002-03-20 Daniel Jacobowitz <drow@mvista.com>
[binutils-gdb.git] / bfd / syms.c
1 /* Generic symbol-table support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23 /*
24 SECTION
25 Symbols
26
27 BFD tries to maintain as much symbol information as it can when
28 it moves information from file to file. BFD passes information
29 to applications though the <<asymbol>> structure. When the
30 application requests the symbol table, BFD reads the table in
31 the native form and translates parts of it into the internal
32 format. To maintain more than the information passed to
33 applications, some targets keep some information ``behind the
34 scenes'' in a structure only the particular back end knows
35 about. For example, the coff back end keeps the original
36 symbol table structure as well as the canonical structure when
37 a BFD is read in. On output, the coff back end can reconstruct
38 the output symbol table so that no information is lost, even
39 information unique to coff which BFD doesn't know or
40 understand. If a coff symbol table were read, but were written
41 through an a.out back end, all the coff specific information
42 would be lost. The symbol table of a BFD
43 is not necessarily read in until a canonicalize request is
44 made. Then the BFD back end fills in a table provided by the
45 application with pointers to the canonical information. To
46 output symbols, the application provides BFD with a table of
47 pointers to pointers to <<asymbol>>s. This allows applications
48 like the linker to output a symbol as it was read, since the ``behind
49 the scenes'' information will be still available.
50 @menu
51 @* Reading Symbols::
52 @* Writing Symbols::
53 @* Mini Symbols::
54 @* typedef asymbol::
55 @* symbol handling functions::
56 @end menu
57
58 INODE
59 Reading Symbols, Writing Symbols, Symbols, Symbols
60 SUBSECTION
61 Reading symbols
62
63 There are two stages to reading a symbol table from a BFD:
64 allocating storage, and the actual reading process. This is an
65 excerpt from an application which reads the symbol table:
66
67 | long storage_needed;
68 | asymbol **symbol_table;
69 | long number_of_symbols;
70 | long i;
71 |
72 | storage_needed = bfd_get_symtab_upper_bound (abfd);
73 |
74 | if (storage_needed < 0)
75 | FAIL
76 |
77 | if (storage_needed == 0) {
78 | return ;
79 | }
80 | symbol_table = (asymbol **) xmalloc (storage_needed);
81 | ...
82 | number_of_symbols =
83 | bfd_canonicalize_symtab (abfd, symbol_table);
84 |
85 | if (number_of_symbols < 0)
86 | FAIL
87 |
88 | for (i = 0; i < number_of_symbols; i++) {
89 | process_symbol (symbol_table[i]);
90 | }
91
92 All storage for the symbols themselves is in an objalloc
93 connected to the BFD; it is freed when the BFD is closed.
94
95 INODE
96 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
97 SUBSECTION
98 Writing symbols
99
100 Writing of a symbol table is automatic when a BFD open for
101 writing is closed. The application attaches a vector of
102 pointers to pointers to symbols to the BFD being written, and
103 fills in the symbol count. The close and cleanup code reads
104 through the table provided and performs all the necessary
105 operations. The BFD output code must always be provided with an
106 ``owned'' symbol: one which has come from another BFD, or one
107 which has been created using <<bfd_make_empty_symbol>>. Here is an
108 example showing the creation of a symbol table with only one element:
109
110 | #include "bfd.h"
111 | main()
112 | {
113 | bfd *abfd;
114 | asymbol *ptrs[2];
115 | asymbol *new;
116 |
117 | abfd = bfd_openw("foo","a.out-sunos-big");
118 | bfd_set_format(abfd, bfd_object);
119 | new = bfd_make_empty_symbol(abfd);
120 | new->name = "dummy_symbol";
121 | new->section = bfd_make_section_old_way(abfd, ".text");
122 | new->flags = BSF_GLOBAL;
123 | new->value = 0x12345;
124 |
125 | ptrs[0] = new;
126 | ptrs[1] = (asymbol *)0;
127 |
128 | bfd_set_symtab(abfd, ptrs, 1);
129 | bfd_close(abfd);
130 | }
131 |
132 | ./makesym
133 | nm foo
134 | 00012345 A dummy_symbol
135
136 Many formats cannot represent arbitary symbol information; for
137 instance, the <<a.out>> object format does not allow an
138 arbitary number of sections. A symbol pointing to a section
139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
140 be described.
141
142 INODE
143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
144 SUBSECTION
145 Mini Symbols
146
147 Mini symbols provide read-only access to the symbol table.
148 They use less memory space, but require more time to access.
149 They can be useful for tools like nm or objdump, which may
150 have to handle symbol tables of extremely large executables.
151
152 The <<bfd_read_minisymbols>> function will read the symbols
153 into memory in an internal form. It will return a <<void *>>
154 pointer to a block of memory, a symbol count, and the size of
155 each symbol. The pointer is allocated using <<malloc>>, and
156 should be freed by the caller when it is no longer needed.
157
158 The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 to a minisymbol, and a pointer to a structure returned by
160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 The return value may or may not be the same as the value from
162 <<bfd_make_empty_symbol>> which was passed in.
163
164 */
165
166 /*
167 DOCDD
168 INODE
169 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
170
171 */
172 /*
173 SUBSECTION
174 typedef asymbol
175
176 An <<asymbol>> has the form:
177
178 */
179
180 /*
181 CODE_FRAGMENT
182
183 .
184 .typedef struct symbol_cache_entry
185 .{
186 . {* A pointer to the BFD which owns the symbol. This information
187 . is necessary so that a back end can work out what additional
188 . information (invisible to the application writer) is carried
189 . with the symbol.
190 .
191 . This field is *almost* redundant, since you can use section->owner
192 . instead, except that some symbols point to the global sections
193 . bfd_{abs,com,und}_section. This could be fixed by making
194 . these globals be per-bfd (or per-target-flavor). FIXME. *}
195 . struct _bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
196 .
197 . {* The text of the symbol. The name is left alone, and not copied; the
198 . application may not alter it. *}
199 . const char *name;
200 .
201 . {* The value of the symbol. This really should be a union of a
202 . numeric value with a pointer, since some flags indicate that
203 . a pointer to another symbol is stored here. *}
204 . symvalue value;
205 .
206 . {* Attributes of a symbol. *}
207 .#define BSF_NO_FLAGS 0x00
208 .
209 . {* The symbol has local scope; <<static>> in <<C>>. The value
210 . is the offset into the section of the data. *}
211 .#define BSF_LOCAL 0x01
212 .
213 . {* The symbol has global scope; initialized data in <<C>>. The
214 . value is the offset into the section of the data. *}
215 .#define BSF_GLOBAL 0x02
216 .
217 . {* The symbol has global scope and is exported. The value is
218 . the offset into the section of the data. *}
219 .#define BSF_EXPORT BSF_GLOBAL {* No real difference. *}
220 .
221 . {* A normal C symbol would be one of:
222 . <<BSF_LOCAL>>, <<BSF_FORT_COMM>>, <<BSF_UNDEFINED>> or
223 . <<BSF_GLOBAL>>. *}
224 .
225 . {* The symbol is a debugging record. The value has an arbitary
226 . meaning, unless BSF_DEBUGGING_RELOC is also set. *}
227 .#define BSF_DEBUGGING 0x08
228 .
229 . {* The symbol denotes a function entry point. Used in ELF,
230 . perhaps others someday. *}
231 .#define BSF_FUNCTION 0x10
232 .
233 . {* Used by the linker. *}
234 .#define BSF_KEEP 0x20
235 .#define BSF_KEEP_G 0x40
236 .
237 . {* A weak global symbol, overridable without warnings by
238 . a regular global symbol of the same name. *}
239 .#define BSF_WEAK 0x80
240 .
241 . {* This symbol was created to point to a section, e.g. ELF's
242 . STT_SECTION symbols. *}
243 .#define BSF_SECTION_SYM 0x100
244 .
245 . {* The symbol used to be a common symbol, but now it is
246 . allocated. *}
247 .#define BSF_OLD_COMMON 0x200
248 .
249 . {* The default value for common data. *}
250 .#define BFD_FORT_COMM_DEFAULT_VALUE 0
251 .
252 . {* In some files the type of a symbol sometimes alters its
253 . location in an output file - ie in coff a <<ISFCN>> symbol
254 . which is also <<C_EXT>> symbol appears where it was
255 . declared and not at the end of a section. This bit is set
256 . by the target BFD part to convey this information. *}
257 .#define BSF_NOT_AT_END 0x400
258 .
259 . {* Signal that the symbol is the label of constructor section. *}
260 .#define BSF_CONSTRUCTOR 0x800
261 .
262 . {* Signal that the symbol is a warning symbol. The name is a
263 . warning. The name of the next symbol is the one to warn about;
264 . if a reference is made to a symbol with the same name as the next
265 . symbol, a warning is issued by the linker. *}
266 .#define BSF_WARNING 0x1000
267 .
268 . {* Signal that the symbol is indirect. This symbol is an indirect
269 . pointer to the symbol with the same name as the next symbol. *}
270 .#define BSF_INDIRECT 0x2000
271 .
272 . {* BSF_FILE marks symbols that contain a file name. This is used
273 . for ELF STT_FILE symbols. *}
274 .#define BSF_FILE 0x4000
275 .
276 . {* Symbol is from dynamic linking information. *}
277 .#define BSF_DYNAMIC 0x8000
278 .
279 . {* The symbol denotes a data object. Used in ELF, and perhaps
280 . others someday. *}
281 .#define BSF_OBJECT 0x10000
282 .
283 . {* This symbol is a debugging symbol. The value is the offset
284 . into the section of the data. BSF_DEBUGGING should be set
285 . as well. *}
286 .#define BSF_DEBUGGING_RELOC 0x20000
287 .
288 . flagword flags;
289 .
290 . {* A pointer to the section to which this symbol is
291 . relative. This will always be non NULL, there are special
292 . sections for undefined and absolute symbols. *}
293 . struct sec *section;
294 .
295 . {* Back end special data. *}
296 . union
297 . {
298 . PTR p;
299 . bfd_vma i;
300 . }
301 . udata;
302 .}
303 .asymbol;
304 .
305 */
306
307 #include "bfd.h"
308 #include "sysdep.h"
309 #include "libbfd.h"
310 #include "safe-ctype.h"
311 #include "bfdlink.h"
312 #include "aout/stab_gnu.h"
313
314 static char coff_section_type PARAMS ((const char *));
315 static int cmpindexentry PARAMS ((const PTR, const PTR));
316
317 /*
318 DOCDD
319 INODE
320 symbol handling functions, , typedef asymbol, Symbols
321 SUBSECTION
322 Symbol handling functions
323 */
324
325 /*
326 FUNCTION
327 bfd_get_symtab_upper_bound
328
329 DESCRIPTION
330 Return the number of bytes required to store a vector of pointers
331 to <<asymbols>> for all the symbols in the BFD @var{abfd},
332 including a terminal NULL pointer. If there are no symbols in
333 the BFD, then return 0. If an error occurs, return -1.
334
335 .#define bfd_get_symtab_upper_bound(abfd) \
336 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
337 .
338 */
339
340 /*
341 FUNCTION
342 bfd_is_local_label
343
344 SYNOPSIS
345 boolean bfd_is_local_label(bfd *abfd, asymbol *sym);
346
347 DESCRIPTION
348 Return true if the given symbol @var{sym} in the BFD @var{abfd} is
349 a compiler generated local label, else return false.
350 */
351
352 boolean
353 bfd_is_local_label (abfd, sym)
354 bfd *abfd;
355 asymbol *sym;
356 {
357 /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
358 starts with '.' is local. This would accidentally catch section names
359 if we didn't reject them here. */
360 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_SECTION_SYM)) != 0)
361 return false;
362 if (sym->name == NULL)
363 return false;
364 return bfd_is_local_label_name (abfd, sym->name);
365 }
366
367 /*
368 FUNCTION
369 bfd_is_local_label_name
370
371 SYNOPSIS
372 boolean bfd_is_local_label_name(bfd *abfd, const char *name);
373
374 DESCRIPTION
375 Return true if a symbol with the name @var{name} in the BFD
376 @var{abfd} is a compiler generated local label, else return
377 false. This just checks whether the name has the form of a
378 local label.
379
380 .#define bfd_is_local_label_name(abfd, name) \
381 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
382 .
383 */
384
385 /*
386 FUNCTION
387 bfd_canonicalize_symtab
388
389 DESCRIPTION
390 Read the symbols from the BFD @var{abfd}, and fills in
391 the vector @var{location} with pointers to the symbols and
392 a trailing NULL.
393 Return the actual number of symbol pointers, not
394 including the NULL.
395
396 .#define bfd_canonicalize_symtab(abfd, location) \
397 . BFD_SEND (abfd, _bfd_canonicalize_symtab,\
398 . (abfd, location))
399 .
400 */
401
402 /*
403 FUNCTION
404 bfd_set_symtab
405
406 SYNOPSIS
407 boolean bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int count);
408
409 DESCRIPTION
410 Arrange that when the output BFD @var{abfd} is closed,
411 the table @var{location} of @var{count} pointers to symbols
412 will be written.
413 */
414
415 boolean
416 bfd_set_symtab (abfd, location, symcount)
417 bfd *abfd;
418 asymbol **location;
419 unsigned int symcount;
420 {
421 if ((abfd->format != bfd_object) || (bfd_read_p (abfd)))
422 {
423 bfd_set_error (bfd_error_invalid_operation);
424 return false;
425 }
426
427 bfd_get_outsymbols (abfd) = location;
428 bfd_get_symcount (abfd) = symcount;
429 return true;
430 }
431
432 /*
433 FUNCTION
434 bfd_print_symbol_vandf
435
436 SYNOPSIS
437 void bfd_print_symbol_vandf(bfd *abfd, PTR file, asymbol *symbol);
438
439 DESCRIPTION
440 Print the value and flags of the @var{symbol} supplied to the
441 stream @var{file}.
442 */
443 void
444 bfd_print_symbol_vandf (abfd, arg, symbol)
445 bfd *abfd;
446 PTR arg;
447 asymbol *symbol;
448 {
449 FILE *file = (FILE *) arg;
450 flagword type = symbol->flags;
451 if (symbol->section != (asection *) NULL)
452 {
453 bfd_fprintf_vma (abfd, file,
454 symbol->value + symbol->section->vma);
455 }
456 else
457 {
458 bfd_fprintf_vma (abfd, file, symbol->value);
459 }
460
461 /* This presumes that a symbol can not be both BSF_DEBUGGING and
462 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
463 BSF_OBJECT. */
464 fprintf (file, " %c%c%c%c%c%c%c",
465 ((type & BSF_LOCAL)
466 ? (type & BSF_GLOBAL) ? '!' : 'l'
467 : (type & BSF_GLOBAL) ? 'g' : ' '),
468 (type & BSF_WEAK) ? 'w' : ' ',
469 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
470 (type & BSF_WARNING) ? 'W' : ' ',
471 (type & BSF_INDIRECT) ? 'I' : ' ',
472 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
473 ((type & BSF_FUNCTION)
474 ? 'F'
475 : ((type & BSF_FILE)
476 ? 'f'
477 : ((type & BSF_OBJECT) ? 'O' : ' '))));
478 }
479
480 /*
481 FUNCTION
482 bfd_make_empty_symbol
483
484 DESCRIPTION
485 Create a new <<asymbol>> structure for the BFD @var{abfd}
486 and return a pointer to it.
487
488 This routine is necessary because each back end has private
489 information surrounding the <<asymbol>>. Building your own
490 <<asymbol>> and pointing to it will not create the private
491 information, and will cause problems later on.
492
493 .#define bfd_make_empty_symbol(abfd) \
494 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
495 .
496 */
497
498 /*
499 FUNCTION
500 _bfd_generic_make_empty_symbol
501
502 SYNOPSIS
503 asymbol *_bfd_generic_make_empty_symbol (bfd *);
504
505 DESCRIPTION
506 Create a new <<asymbol>> structure for the BFD @var{abfd}
507 and return a pointer to it. Used by core file routines,
508 binary back-end and anywhere else where no private info
509 is needed.
510 */
511
512 asymbol *
513 _bfd_generic_make_empty_symbol (abfd)
514 bfd *abfd;
515 {
516 bfd_size_type amt = sizeof (asymbol);
517 asymbol *new = (asymbol *) bfd_zalloc (abfd, amt);
518 if (new)
519 new->the_bfd = abfd;
520 return new;
521 }
522
523 /*
524 FUNCTION
525 bfd_make_debug_symbol
526
527 DESCRIPTION
528 Create a new <<asymbol>> structure for the BFD @var{abfd},
529 to be used as a debugging symbol. Further details of its use have
530 yet to be worked out.
531
532 .#define bfd_make_debug_symbol(abfd,ptr,size) \
533 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
534 .
535 */
536
537 struct section_to_type
538 {
539 const char *section;
540 char type;
541 };
542
543 /* Map section names to POSIX/BSD single-character symbol types.
544 This table is probably incomplete. It is sorted for convenience of
545 adding entries. Since it is so short, a linear search is used. */
546 static const struct section_to_type stt[] =
547 {
548 {".bss", 'b'},
549 {"code", 't'}, /* MRI .text */
550 {".data", 'd'},
551 {"*DEBUG*", 'N'},
552 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */
553 {".drectve", 'i'}, /* MSVC's .drective section */
554 {".edata", 'e'}, /* MSVC's .edata (export) section */
555 {".fini", 't'}, /* ELF fini section */
556 {".idata", 'i'}, /* MSVC's .idata (import) section */
557 {".init", 't'}, /* ELF init section */
558 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
559 {".rdata", 'r'}, /* Read only data. */
560 {".rodata", 'r'}, /* Read only data. */
561 {".sbss", 's'}, /* Small BSS (uninitialized data). */
562 {".scommon", 'c'}, /* Small common. */
563 {".sdata", 'g'}, /* Small initialized data. */
564 {".text", 't'},
565 {"vars", 'd'}, /* MRI .data */
566 {"zerovars", 'b'}, /* MRI .bss */
567 {0, 0}
568 };
569
570 /* Return the single-character symbol type corresponding to
571 section S, or '?' for an unknown COFF section.
572
573 Check for any leading string which matches, so .text5 returns
574 't' as well as .text */
575
576 static char
577 coff_section_type (s)
578 const char *s;
579 {
580 const struct section_to_type *t;
581
582 for (t = &stt[0]; t->section; t++)
583 if (!strncmp (s, t->section, strlen (t->section)))
584 return t->type;
585
586 return '?';
587 }
588
589 /*
590 FUNCTION
591 bfd_decode_symclass
592
593 DESCRIPTION
594 Return a character corresponding to the symbol
595 class of @var{symbol}, or '?' for an unknown class.
596
597 SYNOPSIS
598 int bfd_decode_symclass(asymbol *symbol);
599 */
600 int
601 bfd_decode_symclass (symbol)
602 asymbol *symbol;
603 {
604 char c;
605
606 if (bfd_is_com_section (symbol->section))
607 return 'C';
608 if (bfd_is_und_section (symbol->section))
609 {
610 if (symbol->flags & BSF_WEAK)
611 {
612 /* If weak, determine if it's specifically an object
613 or non-object weak. */
614 if (symbol->flags & BSF_OBJECT)
615 return 'v';
616 else
617 return 'w';
618 }
619 else
620 return 'U';
621 }
622 if (bfd_is_ind_section (symbol->section))
623 return 'I';
624 if (symbol->flags & BSF_WEAK)
625 {
626 /* If weak, determine if it's specifically an object
627 or non-object weak. */
628 if (symbol->flags & BSF_OBJECT)
629 return 'V';
630 else
631 return 'W';
632 }
633 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
634 return '?';
635
636 if (bfd_is_abs_section (symbol->section))
637 c = 'a';
638 else if (symbol->section)
639 c = coff_section_type (symbol->section->name);
640 else
641 return '?';
642 if (symbol->flags & BSF_GLOBAL)
643 c = TOUPPER (c);
644 return c;
645
646 /* We don't have to handle these cases just yet, but we will soon:
647 N_SETV: 'v';
648 N_SETA: 'l';
649 N_SETT: 'x';
650 N_SETD: 'z';
651 N_SETB: 's';
652 N_INDR: 'i';
653 */
654 }
655
656 /*
657 FUNCTION
658 bfd_is_undefined_symclass
659
660 DESCRIPTION
661 Returns non-zero if the class symbol returned by
662 bfd_decode_symclass represents an undefined symbol.
663 Returns zero otherwise.
664
665 SYNOPSIS
666 boolean bfd_is_undefined_symclass (int symclass);
667 */
668
669 boolean
670 bfd_is_undefined_symclass (symclass)
671 int symclass;
672 {
673 return symclass == 'U' || symclass == 'w' || symclass == 'v';
674 }
675
676 /*
677 FUNCTION
678 bfd_symbol_info
679
680 DESCRIPTION
681 Fill in the basic info about symbol that nm needs.
682 Additional info may be added by the back-ends after
683 calling this function.
684
685 SYNOPSIS
686 void bfd_symbol_info(asymbol *symbol, symbol_info *ret);
687 */
688
689 void
690 bfd_symbol_info (symbol, ret)
691 asymbol *symbol;
692 symbol_info *ret;
693 {
694 ret->type = bfd_decode_symclass (symbol);
695
696 if (bfd_is_undefined_symclass (ret->type))
697 ret->value = 0;
698 else
699 ret->value = symbol->value + symbol->section->vma;
700
701 ret->name = symbol->name;
702 }
703
704 /*
705 FUNCTION
706 bfd_copy_private_symbol_data
707
708 SYNOPSIS
709 boolean bfd_copy_private_symbol_data(bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
710
711 DESCRIPTION
712 Copy private symbol information from @var{isym} in the BFD
713 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
714 Return <<true>> on success, <<false>> on error. Possible error
715 returns are:
716
717 o <<bfd_error_no_memory>> -
718 Not enough memory exists to create private data for @var{osec}.
719
720 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
721 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
722 . (ibfd, isymbol, obfd, osymbol))
723 .
724 */
725
726 /* The generic version of the function which returns mini symbols.
727 This is used when the backend does not provide a more efficient
728 version. It just uses BFD asymbol structures as mini symbols. */
729
730 long
731 _bfd_generic_read_minisymbols (abfd, dynamic, minisymsp, sizep)
732 bfd *abfd;
733 boolean dynamic;
734 PTR *minisymsp;
735 unsigned int *sizep;
736 {
737 long storage;
738 asymbol **syms = NULL;
739 long symcount;
740
741 if (dynamic)
742 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
743 else
744 storage = bfd_get_symtab_upper_bound (abfd);
745 if (storage < 0)
746 goto error_return;
747 if (storage == 0)
748 return 0;
749
750 syms = (asymbol **) bfd_malloc ((bfd_size_type) storage);
751 if (syms == NULL)
752 goto error_return;
753
754 if (dynamic)
755 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
756 else
757 symcount = bfd_canonicalize_symtab (abfd, syms);
758 if (symcount < 0)
759 goto error_return;
760
761 *minisymsp = (PTR) syms;
762 *sizep = sizeof (asymbol *);
763 return symcount;
764
765 error_return:
766 if (syms != NULL)
767 free (syms);
768 return -1;
769 }
770
771 /* The generic version of the function which converts a minisymbol to
772 an asymbol. We don't worry about the sym argument we are passed;
773 we just return the asymbol the minisymbol points to. */
774
775 /*ARGSUSED*/
776 asymbol *
777 _bfd_generic_minisymbol_to_symbol (abfd, dynamic, minisym, sym)
778 bfd *abfd ATTRIBUTE_UNUSED;
779 boolean dynamic ATTRIBUTE_UNUSED;
780 const PTR minisym;
781 asymbol *sym ATTRIBUTE_UNUSED;
782 {
783 return *(asymbol **) minisym;
784 }
785
786 /* Look through stabs debugging information in .stab and .stabstr
787 sections to find the source file and line closest to a desired
788 location. This is used by COFF and ELF targets. It sets *pfound
789 to true if it finds some information. The *pinfo field is used to
790 pass cached information in and out of this routine; this first time
791 the routine is called for a BFD, *pinfo should be NULL. The value
792 placed in *pinfo should be saved with the BFD, and passed back each
793 time this function is called. */
794
795 /* We use a cache by default. */
796
797 #define ENABLE_CACHING
798
799 /* We keep an array of indexentry structures to record where in the
800 stabs section we should look to find line number information for a
801 particular address. */
802
803 struct indexentry
804 {
805 bfd_vma val;
806 bfd_byte *stab;
807 bfd_byte *str;
808 char *directory_name;
809 char *file_name;
810 char *function_name;
811 };
812
813 /* Compare two indexentry structures. This is called via qsort. */
814
815 static int
816 cmpindexentry (a, b)
817 const PTR a;
818 const PTR b;
819 {
820 const struct indexentry *contestantA = (const struct indexentry *) a;
821 const struct indexentry *contestantB = (const struct indexentry *) b;
822
823 if (contestantA->val < contestantB->val)
824 return -1;
825 else if (contestantA->val > contestantB->val)
826 return 1;
827 else
828 return 0;
829 }
830
831 /* A pointer to this structure is stored in *pinfo. */
832
833 struct stab_find_info
834 {
835 /* The .stab section. */
836 asection *stabsec;
837 /* The .stabstr section. */
838 asection *strsec;
839 /* The contents of the .stab section. */
840 bfd_byte *stabs;
841 /* The contents of the .stabstr section. */
842 bfd_byte *strs;
843
844 /* A table that indexes stabs by memory address. */
845 struct indexentry *indextable;
846 /* The number of entries in indextable. */
847 int indextablesize;
848
849 #ifdef ENABLE_CACHING
850 /* Cached values to restart quickly. */
851 struct indexentry *cached_indexentry;
852 bfd_vma cached_offset;
853 bfd_byte *cached_stab;
854 char *cached_file_name;
855 #endif
856
857 /* Saved ptr to malloc'ed filename. */
858 char *filename;
859 };
860
861 boolean
862 _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, pfound,
863 pfilename, pfnname, pline, pinfo)
864 bfd *abfd;
865 asymbol **symbols;
866 asection *section;
867 bfd_vma offset;
868 boolean *pfound;
869 const char **pfilename;
870 const char **pfnname;
871 unsigned int *pline;
872 PTR *pinfo;
873 {
874 struct stab_find_info *info;
875 bfd_size_type stabsize, strsize;
876 bfd_byte *stab, *str;
877 bfd_byte *last_stab = NULL;
878 bfd_size_type stroff;
879 struct indexentry *indexentry;
880 char *file_name;
881 char *directory_name;
882 int saw_fun;
883
884 *pfound = false;
885 *pfilename = bfd_get_filename (abfd);
886 *pfnname = NULL;
887 *pline = 0;
888
889 /* Stabs entries use a 12 byte format:
890 4 byte string table index
891 1 byte stab type
892 1 byte stab other field
893 2 byte stab desc field
894 4 byte stab value
895 FIXME: This will have to change for a 64 bit object format.
896
897 The stabs symbols are divided into compilation units. For the
898 first entry in each unit, the type of 0, the value is the length
899 of the string table for this unit, and the desc field is the
900 number of stabs symbols for this unit. */
901
902 #define STRDXOFF (0)
903 #define TYPEOFF (4)
904 #define OTHEROFF (5)
905 #define DESCOFF (6)
906 #define VALOFF (8)
907 #define STABSIZE (12)
908
909 info = (struct stab_find_info *) *pinfo;
910 if (info != NULL)
911 {
912 if (info->stabsec == NULL || info->strsec == NULL)
913 {
914 /* No stabs debugging information. */
915 return true;
916 }
917
918 stabsize = info->stabsec->_raw_size;
919 strsize = info->strsec->_raw_size;
920 }
921 else
922 {
923 long reloc_size, reloc_count;
924 arelent **reloc_vector;
925 int i;
926 char *name;
927 char *function_name;
928 bfd_size_type amt = sizeof *info;
929
930 info = (struct stab_find_info *) bfd_zalloc (abfd, amt);
931 if (info == NULL)
932 return false;
933
934 /* FIXME: When using the linker --split-by-file or
935 --split-by-reloc options, it is possible for the .stab and
936 .stabstr sections to be split. We should handle that. */
937
938 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
939 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
940
941 if (info->stabsec == NULL || info->strsec == NULL)
942 {
943 /* No stabs debugging information. Set *pinfo so that we
944 can return quickly in the info != NULL case above. */
945 *pinfo = (PTR) info;
946 return true;
947 }
948
949 stabsize = info->stabsec->_raw_size;
950 strsize = info->strsec->_raw_size;
951
952 info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
953 info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
954 if (info->stabs == NULL || info->strs == NULL)
955 return false;
956
957 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
958 (bfd_vma) 0, stabsize)
959 || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
960 (bfd_vma) 0, strsize))
961 return false;
962
963 /* If this is a relocateable object file, we have to relocate
964 the entries in .stab. This should always be simple 32 bit
965 relocations against symbols defined in this object file, so
966 this should be no big deal. */
967 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
968 if (reloc_size < 0)
969 return false;
970 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
971 if (reloc_vector == NULL && reloc_size != 0)
972 return false;
973 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
974 symbols);
975 if (reloc_count < 0)
976 {
977 if (reloc_vector != NULL)
978 free (reloc_vector);
979 return false;
980 }
981 if (reloc_count > 0)
982 {
983 arelent **pr;
984
985 for (pr = reloc_vector; *pr != NULL; pr++)
986 {
987 arelent *r;
988 unsigned long val;
989 asymbol *sym;
990
991 r = *pr;
992 if (r->howto->rightshift != 0
993 || r->howto->size != 2
994 || r->howto->bitsize != 32
995 || r->howto->pc_relative
996 || r->howto->bitpos != 0
997 || r->howto->dst_mask != 0xffffffff)
998 {
999 (*_bfd_error_handler)
1000 (_("Unsupported .stab relocation"));
1001 bfd_set_error (bfd_error_invalid_operation);
1002 if (reloc_vector != NULL)
1003 free (reloc_vector);
1004 return false;
1005 }
1006
1007 val = bfd_get_32 (abfd, info->stabs + r->address);
1008 val &= r->howto->src_mask;
1009 sym = *r->sym_ptr_ptr;
1010 val += sym->value + sym->section->vma + r->addend;
1011 bfd_put_32 (abfd, (bfd_vma) val, info->stabs + r->address);
1012 }
1013 }
1014
1015 if (reloc_vector != NULL)
1016 free (reloc_vector);
1017
1018 /* First time through this function, build a table matching
1019 function VM addresses to stabs, then sort based on starting
1020 VM address. Do this in two passes: once to count how many
1021 table entries we'll need, and a second to actually build the
1022 table. */
1023
1024 info->indextablesize = 0;
1025 saw_fun = 1;
1026 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1027 {
1028 if (stab[TYPEOFF] == N_SO)
1029 {
1030 /* N_SO with null name indicates EOF */
1031 if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1032 continue;
1033
1034 /* if we did not see a function def, leave space for one. */
1035 if (saw_fun == 0)
1036 ++info->indextablesize;
1037
1038 saw_fun = 0;
1039
1040 /* two N_SO's in a row is a filename and directory. Skip */
1041 if (stab + STABSIZE < info->stabs + stabsize
1042 && *(stab + STABSIZE + TYPEOFF) == N_SO)
1043 {
1044 stab += STABSIZE;
1045 }
1046 }
1047 else if (stab[TYPEOFF] == N_FUN)
1048 {
1049 saw_fun = 1;
1050 ++info->indextablesize;
1051 }
1052 }
1053
1054 if (saw_fun == 0)
1055 ++info->indextablesize;
1056
1057 if (info->indextablesize == 0)
1058 return true;
1059 ++info->indextablesize;
1060
1061 amt = info->indextablesize;
1062 amt *= sizeof (struct indexentry);
1063 info->indextable = (struct indexentry *) bfd_alloc (abfd, amt);
1064 if (info->indextable == NULL)
1065 return false;
1066
1067 file_name = NULL;
1068 directory_name = NULL;
1069 saw_fun = 1;
1070
1071 for (i = 0, stroff = 0, stab = info->stabs, str = info->strs;
1072 i < info->indextablesize && stab < info->stabs + stabsize;
1073 stab += STABSIZE)
1074 {
1075 switch (stab[TYPEOFF])
1076 {
1077 case 0:
1078 /* This is the first entry in a compilation unit. */
1079 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1080 break;
1081 str += stroff;
1082 stroff = bfd_get_32 (abfd, stab + VALOFF);
1083 break;
1084
1085 case N_SO:
1086 /* The main file name. */
1087
1088 /* The following code creates a new indextable entry with
1089 a NULL function name if there were no N_FUNs in a file.
1090 Note that a N_SO without a file name is an EOF and
1091 there could be 2 N_SO following it with the new filename
1092 and directory. */
1093 if (saw_fun == 0)
1094 {
1095 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1096 info->indextable[i].stab = last_stab;
1097 info->indextable[i].str = str;
1098 info->indextable[i].directory_name = directory_name;
1099 info->indextable[i].file_name = file_name;
1100 info->indextable[i].function_name = NULL;
1101 ++i;
1102 }
1103 saw_fun = 0;
1104
1105 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1106 if (*file_name == '\0')
1107 {
1108 directory_name = NULL;
1109 file_name = NULL;
1110 saw_fun = 1;
1111 }
1112 else
1113 {
1114 last_stab = stab;
1115 if (stab + STABSIZE >= info->stabs + stabsize
1116 || *(stab + STABSIZE + TYPEOFF) != N_SO)
1117 {
1118 directory_name = NULL;
1119 }
1120 else
1121 {
1122 /* Two consecutive N_SOs are a directory and a
1123 file name. */
1124 stab += STABSIZE;
1125 directory_name = file_name;
1126 file_name = ((char *) str
1127 + bfd_get_32 (abfd, stab + STRDXOFF));
1128 }
1129 }
1130 break;
1131
1132 case N_SOL:
1133 /* The name of an include file. */
1134 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1135 break;
1136
1137 case N_FUN:
1138 /* A function name. */
1139 saw_fun = 1;
1140 name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1141
1142 if (*name == '\0')
1143 name = NULL;
1144
1145 function_name = name;
1146
1147 if (name == NULL)
1148 continue;
1149
1150 info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1151 info->indextable[i].stab = stab;
1152 info->indextable[i].str = str;
1153 info->indextable[i].directory_name = directory_name;
1154 info->indextable[i].file_name = file_name;
1155 info->indextable[i].function_name = function_name;
1156 ++i;
1157 break;
1158 }
1159 }
1160
1161 if (saw_fun == 0)
1162 {
1163 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1164 info->indextable[i].stab = last_stab;
1165 info->indextable[i].str = str;
1166 info->indextable[i].directory_name = directory_name;
1167 info->indextable[i].file_name = file_name;
1168 info->indextable[i].function_name = NULL;
1169 ++i;
1170 }
1171
1172 info->indextable[i].val = (bfd_vma) -1;
1173 info->indextable[i].stab = info->stabs + stabsize;
1174 info->indextable[i].str = str;
1175 info->indextable[i].directory_name = NULL;
1176 info->indextable[i].file_name = NULL;
1177 info->indextable[i].function_name = NULL;
1178 ++i;
1179
1180 info->indextablesize = i;
1181 qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1182 cmpindexentry);
1183
1184 *pinfo = (PTR) info;
1185 }
1186
1187 /* We are passed a section relative offset. The offsets in the
1188 stabs information are absolute. */
1189 offset += bfd_get_section_vma (abfd, section);
1190
1191 #ifdef ENABLE_CACHING
1192 if (info->cached_indexentry != NULL
1193 && offset >= info->cached_offset
1194 && offset < (info->cached_indexentry + 1)->val)
1195 {
1196 stab = info->cached_stab;
1197 indexentry = info->cached_indexentry;
1198 file_name = info->cached_file_name;
1199 }
1200 else
1201 #endif
1202 {
1203 /* Cache non-existant or invalid. Do binary search on
1204 indextable. */
1205
1206 long low, high;
1207 long mid = -1;
1208
1209 indexentry = NULL;
1210
1211 low = 0;
1212 high = info->indextablesize - 1;
1213 while (low != high)
1214 {
1215 mid = (high + low) / 2;
1216 if (offset >= info->indextable[mid].val
1217 && offset < info->indextable[mid + 1].val)
1218 {
1219 indexentry = &info->indextable[mid];
1220 break;
1221 }
1222
1223 if (info->indextable[mid].val > offset)
1224 high = mid;
1225 else
1226 low = mid + 1;
1227 }
1228
1229 if (indexentry == NULL)
1230 return true;
1231
1232 stab = indexentry->stab + STABSIZE;
1233 file_name = indexentry->file_name;
1234 }
1235
1236 directory_name = indexentry->directory_name;
1237 str = indexentry->str;
1238
1239 for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1240 {
1241 boolean done, saw_line, saw_func;
1242 bfd_vma val;
1243
1244 saw_line = false;
1245 saw_func = false;
1246 done = false;
1247
1248 switch (stab[TYPEOFF])
1249 {
1250 case N_SOL:
1251 /* The name of an include file. */
1252 val = bfd_get_32 (abfd, stab + VALOFF);
1253 if (val <= offset)
1254 {
1255 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1256 *pline = 0;
1257 }
1258 break;
1259
1260 case N_SLINE:
1261 case N_DSLINE:
1262 case N_BSLINE:
1263 /* A line number. The value is relative to the start of the
1264 current function. */
1265 val = indexentry->val + bfd_get_32 (abfd, stab + VALOFF);
1266 /* If this line starts before our desired offset, or if it's
1267 the first line we've been able to find, use it. The
1268 !saw_line check works around a bug in GCC 2.95.3, which emits
1269 the first N_SLINE late. */
1270 if (!saw_line || val <= offset)
1271 {
1272 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1273
1274 #ifdef ENABLE_CACHING
1275 info->cached_stab = stab;
1276 info->cached_offset = val;
1277 info->cached_file_name = file_name;
1278 info->cached_indexentry = indexentry;
1279 #endif
1280 }
1281 if (val > offset)
1282 done = true;
1283 saw_line = true;
1284 break;
1285
1286 case N_FUN:
1287 case N_SO:
1288 if (saw_func || saw_line)
1289 done = true;
1290 saw_func = true;
1291 break;
1292 }
1293
1294 if (done)
1295 break;
1296 }
1297
1298 *pfound = true;
1299
1300 if (IS_ABSOLUTE_PATH(file_name) || directory_name == NULL)
1301 *pfilename = file_name;
1302 else
1303 {
1304 size_t dirlen;
1305
1306 dirlen = strlen (directory_name);
1307 if (info->filename == NULL
1308 || strncmp (info->filename, directory_name, dirlen) != 0
1309 || strcmp (info->filename + dirlen, file_name) != 0)
1310 {
1311 if (info->filename != NULL)
1312 free (info->filename);
1313 info->filename = (char *) bfd_malloc ((bfd_size_type) dirlen
1314 + strlen (file_name) + 1);
1315 if (info->filename == NULL)
1316 return false;
1317 strcpy (info->filename, directory_name);
1318 strcpy (info->filename + dirlen, file_name);
1319 }
1320
1321 *pfilename = info->filename;
1322 }
1323
1324 if (indexentry->function_name != NULL)
1325 {
1326 char *s;
1327
1328 /* This will typically be something like main:F(0,1), so we want
1329 to clobber the colon. It's OK to change the name, since the
1330 string is in our own local storage anyhow. */
1331
1332 s = strchr (indexentry->function_name, ':');
1333 if (s != NULL)
1334 *s = '\0';
1335
1336 *pfnname = indexentry->function_name;
1337 }
1338
1339 return true;
1340 }