* syms.c: Include "bfdlink.h".
[binutils-gdb.git] / bfd / syms.c
1 /* Generic symbol-table support for the BFD library.
2 Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
3 Written by Cygnus Support.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /*
22 SECTION
23 Symbols
24
25 BFD tries to maintain as much symbol information as it can when
26 it moves information from file to file. BFD passes information
27 to applications though the <<asymbol>> structure. When the
28 application requests the symbol table, BFD reads the table in
29 the native form and translates parts of it into the internal
30 format. To maintain more than the information passed to
31 applications, some targets keep some information ``behind the
32 scenes'' in a structure only the particular back end knows
33 about. For example, the coff back end keeps the original
34 symbol table structure as well as the canonical structure when
35 a BFD is read in. On output, the coff back end can reconstruct
36 the output symbol table so that no information is lost, even
37 information unique to coff which BFD doesn't know or
38 understand. If a coff symbol table were read, but were written
39 through an a.out back end, all the coff specific information
40 would be lost. The symbol table of a BFD
41 is not necessarily read in until a canonicalize request is
42 made. Then the BFD back end fills in a table provided by the
43 application with pointers to the canonical information. To
44 output symbols, the application provides BFD with a table of
45 pointers to pointers to <<asymbol>>s. This allows applications
46 like the linker to output a symbol as it was read, since the ``behind
47 the scenes'' information will be still available.
48 @menu
49 @* Reading Symbols::
50 @* Writing Symbols::
51 @* Mini Symbols::
52 @* typedef asymbol::
53 @* symbol handling functions::
54 @end menu
55
56 INODE
57 Reading Symbols, Writing Symbols, Symbols, Symbols
58 SUBSECTION
59 Reading symbols
60
61 There are two stages to reading a symbol table from a BFD:
62 allocating storage, and the actual reading process. This is an
63 excerpt from an application which reads the symbol table:
64
65 | long storage_needed;
66 | asymbol **symbol_table;
67 | long number_of_symbols;
68 | long i;
69 |
70 | storage_needed = bfd_get_symtab_upper_bound (abfd);
71 |
72 | if (storage_needed < 0)
73 | FAIL
74 |
75 | if (storage_needed == 0) {
76 | return ;
77 | }
78 | symbol_table = (asymbol **) xmalloc (storage_needed);
79 | ...
80 | number_of_symbols =
81 | bfd_canonicalize_symtab (abfd, symbol_table);
82 |
83 | if (number_of_symbols < 0)
84 | FAIL
85 |
86 | for (i = 0; i < number_of_symbols; i++) {
87 | process_symbol (symbol_table[i]);
88 | }
89
90 All storage for the symbols themselves is in an obstack
91 connected to the BFD; it is freed when the BFD is closed.
92
93
94 INODE
95 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
96 SUBSECTION
97 Writing symbols
98
99 Writing of a symbol table is automatic when a BFD open for
100 writing is closed. The application attaches a vector of
101 pointers to pointers to symbols to the BFD being written, and
102 fills in the symbol count. The close and cleanup code reads
103 through the table provided and performs all the necessary
104 operations. The BFD output code must always be provided with an
105 ``owned'' symbol: one which has come from another BFD, or one
106 which has been created using <<bfd_make_empty_symbol>>. Here is an
107 example showing the creation of a symbol table with only one element:
108
109 | #include "bfd.h"
110 | main()
111 | {
112 | bfd *abfd;
113 | asymbol *ptrs[2];
114 | asymbol *new;
115 |
116 | abfd = bfd_openw("foo","a.out-sunos-big");
117 | bfd_set_format(abfd, bfd_object);
118 | new = bfd_make_empty_symbol(abfd);
119 | new->name = "dummy_symbol";
120 | new->section = bfd_make_section_old_way(abfd, ".text");
121 | new->flags = BSF_GLOBAL;
122 | new->value = 0x12345;
123 |
124 | ptrs[0] = new;
125 | ptrs[1] = (asymbol *)0;
126 |
127 | bfd_set_symtab(abfd, ptrs, 1);
128 | bfd_close(abfd);
129 | }
130 |
131 | ./makesym
132 | nm foo
133 | 00012345 A dummy_symbol
134
135 Many formats cannot represent arbitary symbol information; for
136 instance, the <<a.out>> object format does not allow an
137 arbitary number of sections. A symbol pointing to a section
138 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
139 be described.
140
141 INODE
142 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
143 SUBSECTION
144 Mini Symbols
145
146 Mini symbols provide read-only access to the symbol table.
147 They use less memory space, but require more time to access.
148 They can be useful for tools like nm or objdump, which may
149 have to handle symbol tables of extremely large executables.
150
151 The <<bfd_read_minisymbols>> function will read the symbols
152 into memory in an internal form. It will return a <<void *>>
153 pointer to a block of memory, a symbol count, and the size of
154 each symbol. The pointer is allocated using <<malloc>>, and
155 should be freed by the caller when it is no longer needed.
156
157 The function <<bfd_minisymbol_to_symbol>> will take a pointer
158 to a minisymbol, and a pointer to a structure returned by
159 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
160 The return value may or may not be the same as the value from
161 <<bfd_make_empty_symbol>> which was passed in.
162
163 */
164
165
166
167 /*
168 DOCDD
169 INODE
170 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
171
172 */
173 /*
174 SUBSECTION
175 typedef asymbol
176
177 An <<asymbol>> has the form:
178
179 */
180
181 /*
182 CODE_FRAGMENT
183
184 .
185 .typedef struct symbol_cache_entry
186 .{
187 . {* A pointer to the BFD which owns the symbol. This information
188 . is necessary so that a back end can work out what additional
189 . information (invisible to the application writer) is carried
190 . with the symbol.
191 .
192 . This field is *almost* redundant, since you can use section->owner
193 . instead, except that some symbols point to the global sections
194 . bfd_{abs,com,und}_section. This could be fixed by making
195 . these globals be per-bfd (or per-target-flavor). FIXME. *}
196 .
197 . struct _bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
198 .
199 . {* The text of the symbol. The name is left alone, and not copied; the
200 . application may not alter it. *}
201 . CONST char *name;
202 .
203 . {* The value of the symbol. This really should be a union of a
204 . numeric value with a pointer, since some flags indicate that
205 . a pointer to another symbol is stored here. *}
206 . symvalue value;
207 .
208 . {* Attributes of a symbol: *}
209 .
210 .#define BSF_NO_FLAGS 0x00
211 .
212 . {* The symbol has local scope; <<static>> in <<C>>. The value
213 . is the offset into the section of the data. *}
214 .#define BSF_LOCAL 0x01
215 .
216 . {* The symbol has global scope; initialized data in <<C>>. The
217 . value is the offset into the section of the data. *}
218 .#define BSF_GLOBAL 0x02
219 .
220 . {* The symbol has global scope and is exported. The value is
221 . the offset into the section of the data. *}
222 .#define BSF_EXPORT BSF_GLOBAL {* no real difference *}
223 .
224 . {* A normal C symbol would be one of:
225 . <<BSF_LOCAL>>, <<BSF_FORT_COMM>>, <<BSF_UNDEFINED>> or
226 . <<BSF_GLOBAL>> *}
227 .
228 . {* The symbol is a debugging record. The value has an arbitary
229 . meaning. *}
230 .#define BSF_DEBUGGING 0x08
231 .
232 . {* The symbol denotes a function entry point. Used in ELF,
233 . perhaps others someday. *}
234 .#define BSF_FUNCTION 0x10
235 .
236 . {* Used by the linker. *}
237 .#define BSF_KEEP 0x20
238 .#define BSF_KEEP_G 0x40
239 .
240 . {* A weak global symbol, overridable without warnings by
241 . a regular global symbol of the same name. *}
242 .#define BSF_WEAK 0x80
243 .
244 . {* This symbol was created to point to a section, e.g. ELF's
245 . STT_SECTION symbols. *}
246 .#define BSF_SECTION_SYM 0x100
247 .
248 . {* The symbol used to be a common symbol, but now it is
249 . allocated. *}
250 .#define BSF_OLD_COMMON 0x200
251 .
252 . {* The default value for common data. *}
253 .#define BFD_FORT_COMM_DEFAULT_VALUE 0
254 .
255 . {* In some files the type of a symbol sometimes alters its
256 . location in an output file - ie in coff a <<ISFCN>> symbol
257 . which is also <<C_EXT>> symbol appears where it was
258 . declared and not at the end of a section. This bit is set
259 . by the target BFD part to convey this information. *}
260 .
261 .#define BSF_NOT_AT_END 0x400
262 .
263 . {* Signal that the symbol is the label of constructor section. *}
264 .#define BSF_CONSTRUCTOR 0x800
265 .
266 . {* Signal that the symbol is a warning symbol. The name is a
267 . warning. The name of the next symbol is the one to warn about;
268 . if a reference is made to a symbol with the same name as the next
269 . symbol, a warning is issued by the linker. *}
270 .#define BSF_WARNING 0x1000
271 .
272 . {* Signal that the symbol is indirect. This symbol is an indirect
273 . pointer to the symbol with the same name as the next symbol. *}
274 .#define BSF_INDIRECT 0x2000
275 .
276 . {* BSF_FILE marks symbols that contain a file name. This is used
277 . for ELF STT_FILE symbols. *}
278 .#define BSF_FILE 0x4000
279 .
280 . {* Symbol is from dynamic linking information. *}
281 .#define BSF_DYNAMIC 0x8000
282 .
283 . flagword flags;
284 .
285 . {* A pointer to the section to which this symbol is
286 . relative. This will always be non NULL, there are special
287 . sections for undefined and absolute symbols. *}
288 . struct sec *section;
289 .
290 . {* Back end special data. *}
291 . union
292 . {
293 . PTR p;
294 . bfd_vma i;
295 . } udata;
296 .
297 .} asymbol;
298 */
299
300 #include "bfd.h"
301 #include "sysdep.h"
302 #include "libbfd.h"
303 #include "bfdlink.h"
304 #include "aout/stab_gnu.h"
305
306 /*
307 DOCDD
308 INODE
309 symbol handling functions, , typedef asymbol, Symbols
310 SUBSECTION
311 Symbol handling functions
312 */
313
314 /*
315 FUNCTION
316 bfd_get_symtab_upper_bound
317
318 DESCRIPTION
319 Return the number of bytes required to store a vector of pointers
320 to <<asymbols>> for all the symbols in the BFD @var{abfd},
321 including a terminal NULL pointer. If there are no symbols in
322 the BFD, then return 0. If an error occurs, return -1.
323
324 .#define bfd_get_symtab_upper_bound(abfd) \
325 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
326
327 */
328
329 /*
330 FUNCTION
331 bfd_is_local_label
332
333 SYNOPSIS
334 boolean bfd_is_local_label(bfd *abfd, asymbol *sym);
335
336 DESCRIPTION
337 Return true if the given symbol @var{sym} in the BFD @var{abfd} is
338 a compiler generated local label, else return false.
339 .#define bfd_is_local_label(abfd, sym) \
340 . BFD_SEND (abfd, _bfd_is_local_label,(abfd, sym))
341 */
342
343 /*
344 FUNCTION
345 bfd_canonicalize_symtab
346
347 DESCRIPTION
348 Read the symbols from the BFD @var{abfd}, and fills in
349 the vector @var{location} with pointers to the symbols and
350 a trailing NULL.
351 Return the actual number of symbol pointers, not
352 including the NULL.
353
354
355 .#define bfd_canonicalize_symtab(abfd, location) \
356 . BFD_SEND (abfd, _bfd_canonicalize_symtab,\
357 . (abfd, location))
358
359 */
360
361
362 /*
363 FUNCTION
364 bfd_set_symtab
365
366 SYNOPSIS
367 boolean bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int count);
368
369 DESCRIPTION
370 Arrange that when the output BFD @var{abfd} is closed,
371 the table @var{location} of @var{count} pointers to symbols
372 will be written.
373 */
374
375 boolean
376 bfd_set_symtab (abfd, location, symcount)
377 bfd *abfd;
378 asymbol **location;
379 unsigned int symcount;
380 {
381 if ((abfd->format != bfd_object) || (bfd_read_p (abfd)))
382 {
383 bfd_set_error (bfd_error_invalid_operation);
384 return false;
385 }
386
387 bfd_get_outsymbols (abfd) = location;
388 bfd_get_symcount (abfd) = symcount;
389 return true;
390 }
391
392 /*
393 FUNCTION
394 bfd_print_symbol_vandf
395
396 SYNOPSIS
397 void bfd_print_symbol_vandf(PTR file, asymbol *symbol);
398
399 DESCRIPTION
400 Print the value and flags of the @var{symbol} supplied to the
401 stream @var{file}.
402 */
403 void
404 bfd_print_symbol_vandf (arg, symbol)
405 PTR arg;
406 asymbol *symbol;
407 {
408 FILE *file = (FILE *) arg;
409 flagword type = symbol->flags;
410 if (symbol->section != (asection *) NULL)
411 {
412 fprintf_vma (file, symbol->value + symbol->section->vma);
413 }
414 else
415 {
416 fprintf_vma (file, symbol->value);
417 }
418
419 /* This presumes that a symbol can not be both BSF_DEBUGGING and
420 BSF_DYNAMIC, nor both BSF_FUNCTION and BSF_FILE. */
421 fprintf (file, " %c%c%c%c%c%c%c",
422 ((type & BSF_LOCAL)
423 ? (type & BSF_GLOBAL) ? '!' : 'l'
424 : (type & BSF_GLOBAL) ? 'g' : ' '),
425 (type & BSF_WEAK) ? 'w' : ' ',
426 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
427 (type & BSF_WARNING) ? 'W' : ' ',
428 (type & BSF_INDIRECT) ? 'I' : ' ',
429 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
430 (type & BSF_FUNCTION) ? 'F' : (type & BSF_FILE) ? 'f' : ' ');
431 }
432
433
434 /*
435 FUNCTION
436 bfd_make_empty_symbol
437
438 DESCRIPTION
439 Create a new <<asymbol>> structure for the BFD @var{abfd}
440 and return a pointer to it.
441
442 This routine is necessary because each back end has private
443 information surrounding the <<asymbol>>. Building your own
444 <<asymbol>> and pointing to it will not create the private
445 information, and will cause problems later on.
446
447 .#define bfd_make_empty_symbol(abfd) \
448 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
449 */
450
451 /*
452 FUNCTION
453 bfd_make_debug_symbol
454
455 DESCRIPTION
456 Create a new <<asymbol>> structure for the BFD @var{abfd},
457 to be used as a debugging symbol. Further details of its use have
458 yet to be worked out.
459
460 .#define bfd_make_debug_symbol(abfd,ptr,size) \
461 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
462 */
463
464 struct section_to_type
465 {
466 CONST char *section;
467 char type;
468 };
469
470 /* Map section names to POSIX/BSD single-character symbol types.
471 This table is probably incomplete. It is sorted for convenience of
472 adding entries. Since it is so short, a linear search is used. */
473 static CONST struct section_to_type stt[] =
474 {
475 {"*DEBUG*", 'N'},
476 {".bss", 'b'},
477 {".data", 'd'},
478 {".rdata", 'r'}, /* Read only data. */
479 {".rodata", 'r'}, /* Read only data. */
480 {".sbss", 's'}, /* Small BSS (uninitialized data). */
481 {".scommon", 'c'}, /* Small common. */
482 {".sdata", 'g'}, /* Small initialized data. */
483 {".text", 't'},
484 {0, 0}
485 };
486
487 /* Return the single-character symbol type corresponding to
488 section S, or '?' for an unknown COFF section.
489
490 Check for any leading string which matches, so .text5 returns
491 't' as well as .text */
492
493 static char
494 coff_section_type (s)
495 char *s;
496 {
497 CONST struct section_to_type *t;
498
499 for (t = &stt[0]; t->section; t++)
500 if (!strncmp (s, t->section, strlen (t->section)))
501 return t->type;
502
503 return '?';
504 }
505
506 #ifndef islower
507 #define islower(c) ((c) >= 'a' && (c) <= 'z')
508 #endif
509 #ifndef toupper
510 #define toupper(c) (islower(c) ? ((c) & ~0x20) : (c))
511 #endif
512
513 /*
514 FUNCTION
515 bfd_decode_symclass
516
517 DESCRIPTION
518 Return a character corresponding to the symbol
519 class of @var{symbol}, or '?' for an unknown class.
520
521 SYNOPSIS
522 int bfd_decode_symclass(asymbol *symbol);
523 */
524 int
525 bfd_decode_symclass (symbol)
526 asymbol *symbol;
527 {
528 char c;
529
530 if (bfd_is_com_section (symbol->section))
531 return 'C';
532 if (bfd_is_und_section (symbol->section))
533 return 'U';
534 if (bfd_is_ind_section (symbol->section))
535 return 'I';
536 if (symbol->flags & BSF_WEAK)
537 return 'W';
538 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
539 return '?';
540
541 if (bfd_is_abs_section (symbol->section))
542 c = 'a';
543 else if (symbol->section)
544 c = coff_section_type (symbol->section->name);
545 else
546 return '?';
547 if (symbol->flags & BSF_GLOBAL)
548 c = toupper (c);
549 return c;
550
551 /* We don't have to handle these cases just yet, but we will soon:
552 N_SETV: 'v';
553 N_SETA: 'l';
554 N_SETT: 'x';
555 N_SETD: 'z';
556 N_SETB: 's';
557 N_INDR: 'i';
558 */
559 }
560
561 /*
562 FUNCTION
563 bfd_symbol_info
564
565 DESCRIPTION
566 Fill in the basic info about symbol that nm needs.
567 Additional info may be added by the back-ends after
568 calling this function.
569
570 SYNOPSIS
571 void bfd_symbol_info(asymbol *symbol, symbol_info *ret);
572 */
573
574 void
575 bfd_symbol_info (symbol, ret)
576 asymbol *symbol;
577 symbol_info *ret;
578 {
579 ret->type = bfd_decode_symclass (symbol);
580 if (ret->type != 'U')
581 ret->value = symbol->value + symbol->section->vma;
582 else
583 ret->value = 0;
584 ret->name = symbol->name;
585 }
586
587 void
588 bfd_symbol_is_absolute ()
589 {
590 abort ();
591 }
592
593 /*
594 FUNCTION
595 bfd_copy_private_symbol_data
596
597 SYNOPSIS
598 boolean bfd_copy_private_symbol_data(bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
599
600 DESCRIPTION
601 Copy private symbol information from @var{isym} in the BFD
602 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
603 Return <<true>> on success, <<false>> on error. Possible error
604 returns are:
605
606 o <<bfd_error_no_memory>> -
607 Not enough memory exists to create private data for @var{osec}.
608
609 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
610 . BFD_SEND (ibfd, _bfd_copy_private_symbol_data, \
611 . (ibfd, isymbol, obfd, osymbol))
612
613 */
614
615 /* The generic version of the function which returns mini symbols.
616 This is used when the backend does not provide a more efficient
617 version. It just uses BFD asymbol structures as mini symbols. */
618
619 long
620 _bfd_generic_read_minisymbols (abfd, dynamic, minisymsp, sizep)
621 bfd *abfd;
622 boolean dynamic;
623 PTR *minisymsp;
624 unsigned int *sizep;
625 {
626 long storage;
627 asymbol **syms = NULL;
628 long symcount;
629
630 if (dynamic)
631 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
632 else
633 storage = bfd_get_symtab_upper_bound (abfd);
634 if (storage < 0)
635 goto error_return;
636
637 syms = (asymbol **) bfd_malloc ((size_t) storage);
638 if (syms == NULL)
639 goto error_return;
640
641 if (dynamic)
642 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
643 else
644 symcount = bfd_canonicalize_symtab (abfd, syms);
645 if (symcount < 0)
646 goto error_return;
647
648 *minisymsp = (PTR) syms;
649 *sizep = sizeof (asymbol *);
650 return symcount;
651
652 error_return:
653 if (syms != NULL)
654 free (syms);
655 return -1;
656 }
657
658 /* The generic version of the function which converts a minisymbol to
659 an asymbol. We don't worry about the sym argument we are passed;
660 we just return the asymbol the minisymbol points to. */
661
662 /*ARGSUSED*/
663 asymbol *
664 _bfd_generic_minisymbol_to_symbol (abfd, dynamic, minisym, sym)
665 bfd *abfd;
666 boolean dynamic;
667 const PTR minisym;
668 asymbol *sym;
669 {
670 return *(asymbol **) minisym;
671 }
672
673 /* Look through stabs debugging information in .stab and .stabstr
674 sections to find the source file and line closest to a desired
675 location. This is used by COFF and ELF targets. It sets *pfound
676 to true if it finds some information. The *pinfo field is used to
677 pass cached information in and out of this routine; this first time
678 the routine is called for a BFD, *pinfo should be NULL. The value
679 placed in *pinfo should be saved with the BFD, and passed back each
680 time this function is called. */
681
682 /* A pointer to this structure is stored in *pinfo. */
683
684 struct stab_find_info
685 {
686 /* The .stab section. */
687 asection *stabsec;
688 /* The .stabstr section. */
689 asection *strsec;
690 /* The contents of the .stab section. */
691 bfd_byte *stabs;
692 /* The contents of the .stabstr section. */
693 bfd_byte *strs;
694 /* An malloc buffer to hold the file name. */
695 char *filename;
696 /* Cached values to restart quickly. */
697 bfd_vma cached_offset;
698 bfd_byte *cached_stab;
699 bfd_byte *cached_str;
700 bfd_size_type cached_stroff;
701 };
702
703 boolean
704 _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, pfound,
705 pfilename, pfnname, pline, pinfo)
706 bfd *abfd;
707 asymbol **symbols;
708 asection *section;
709 bfd_vma offset;
710 boolean *pfound;
711 const char **pfilename;
712 const char **pfnname;
713 unsigned int *pline;
714 PTR *pinfo;
715 {
716 struct stab_find_info *info;
717 bfd_size_type stabsize, strsize;
718 bfd_byte *stab, *stabend, *str;
719 bfd_size_type stroff;
720 bfd_vma fnaddr;
721 char *directory_name, *main_file_name, *current_file_name, *line_file_name;
722 char *fnname;
723 bfd_vma low_func_vma, low_line_vma;
724
725 *pfound = false;
726 *pfilename = bfd_get_filename (abfd);
727 *pfnname = NULL;
728 *pline = 0;
729
730 info = (struct stab_find_info *) *pinfo;
731 if (info != NULL)
732 {
733 if (info->stabsec == NULL || info->strsec == NULL)
734 {
735 /* No stabs debugging information. */
736 return true;
737 }
738
739 stabsize = info->stabsec->_raw_size;
740 strsize = info->strsec->_raw_size;
741 }
742 else
743 {
744 long reloc_size, reloc_count;
745 arelent **reloc_vector;
746
747 info = (struct stab_find_info *) bfd_zalloc (abfd, sizeof *info);
748 if (info == NULL)
749 return false;
750
751 /* FIXME: When using the linker --split-by-file or
752 --split-by-reloc options, it is possible for the .stab and
753 .stabstr sections to be split. We should handle that. */
754
755 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
756 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
757
758 if (info->stabsec == NULL || info->strsec == NULL)
759 {
760 /* No stabs debugging information. Set *pinfo so that we
761 can return quickly in the info != NULL case above. */
762 *pinfo = info;
763 return true;
764 }
765
766 stabsize = info->stabsec->_raw_size;
767 strsize = info->strsec->_raw_size;
768
769 info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
770 info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
771 if (info->stabs == NULL || info->strs == NULL)
772 return false;
773
774 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs, 0,
775 stabsize)
776 || ! bfd_get_section_contents (abfd, info->strsec, info->strs, 0,
777 strsize))
778 return false;
779
780 /* If this is a relocateable object file, we have to relocate
781 the entries in .stab. This should always be simple 32 bit
782 relocations against symbols defined in this object file, so
783 this should be no big deal. */
784 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
785 if (reloc_size < 0)
786 return false;
787 reloc_vector = (arelent **) bfd_malloc (reloc_size);
788 if (reloc_vector == NULL && reloc_size != 0)
789 return false;
790 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
791 symbols);
792 if (reloc_count < 0)
793 {
794 if (reloc_vector != NULL)
795 free (reloc_vector);
796 return false;
797 }
798 if (reloc_count > 0)
799 {
800 arelent **pr;
801
802 for (pr = reloc_vector; *pr != NULL; pr++)
803 {
804 arelent *r;
805 unsigned long val;
806 asymbol *sym;
807
808 r = *pr;
809 if (r->howto->rightshift != 0
810 || r->howto->size != 2
811 || r->howto->bitsize != 32
812 || r->howto->pc_relative
813 || r->howto->bitpos != 0
814 || r->howto->dst_mask != 0xffffffff)
815 {
816 (*_bfd_error_handler)
817 ("Unsupported .stab relocation");
818 bfd_set_error (bfd_error_invalid_operation);
819 if (reloc_vector != NULL)
820 free (reloc_vector);
821 return false;
822 }
823
824 val = bfd_get_32 (abfd, info->stabs + r->address);
825 val &= r->howto->src_mask;
826 sym = *r->sym_ptr_ptr;
827 val += sym->value + sym->section->vma + r->addend;
828 bfd_put_32 (abfd, val, info->stabs + r->address);
829 }
830 }
831
832 if (reloc_vector != NULL)
833 free (reloc_vector);
834
835 *pinfo = info;
836 }
837
838 /* We are passed a section relative offset. The offsets in the
839 stabs information are absolute. */
840 offset += bfd_get_section_vma (abfd, section);
841
842 /* Stabs entries use a 12 byte format:
843 4 byte string table index
844 1 byte stab type
845 1 byte stab other field
846 2 byte stab desc field
847 4 byte stab value
848 FIXME: This will have to change for a 64 bit object format.
849
850 The stabs symbols are divided into compilation units. For the
851 first entry in each unit, the type of 0, the value is the length
852 of the string table for this unit, and the desc field is the
853 number of stabs symbols for this unit. */
854
855 #define STRDXOFF (0)
856 #define TYPEOFF (4)
857 #define OTHEROFF (5)
858 #define DESCOFF (6)
859 #define VALOFF (8)
860 #define STABSIZE (12)
861
862 /* It would be nice if we could skip ahead to the stabs symbols for
863 the next compilation unit to quickly scan through the compilation
864 units. Unfortunately, since each line number gets a separate
865 stabs entry, it is entirely plausible that a large source file
866 will overflow the 16 bit count of stabs entries. */
867 fnaddr = 0;
868 directory_name = NULL;
869 main_file_name = NULL;
870 current_file_name = NULL;
871 line_file_name = NULL;
872 fnname = NULL;
873 low_func_vma = 0;
874 low_line_vma = 0;
875
876 stabend = info->stabs + stabsize;
877
878 if (info->cached_stab == NULL || offset < info->cached_offset)
879 {
880 stab = info->stabs;
881 str = info->strs;
882 stroff = 0;
883 }
884 else
885 {
886 stab = info->cached_stab;
887 str = info->cached_str;
888 stroff = info->cached_stroff;
889 }
890
891 info->cached_offset = offset;
892
893 for (; stab < stabend; stab += STABSIZE)
894 {
895 boolean done;
896 bfd_vma val;
897 char *name;
898
899 done = false;
900
901 switch (stab[TYPEOFF])
902 {
903 case 0:
904 /* This is the first entry in a compilation unit. */
905 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
906 {
907 done = true;
908 break;
909 }
910 str += stroff;
911 stroff = bfd_get_32 (abfd, stab + VALOFF);
912 break;
913
914 case N_SO:
915 /* The main file name. */
916
917 val = bfd_get_32 (abfd, stab + VALOFF);
918 if (val > offset)
919 {
920 done = true;
921 break;
922 }
923
924 name = str + bfd_get_32 (abfd, stab + STRDXOFF);
925
926 /* An empty string indicates the end of the compilation
927 unit. */
928 if (*name == '\0')
929 {
930 /* If there are functions in different sections, they
931 may have addresses larger than val, but we don't want
932 to forget the file name. When there are functions in
933 different cases, there is supposed to be an N_FUN at
934 the end of the function indicating where it ends. */
935 if (low_func_vma < val || fnname == NULL)
936 main_file_name = NULL;
937 break;
938 }
939
940 /* We know that we have to get to at least this point in the
941 stabs entries for this offset. */
942 info->cached_stab = stab;
943 info->cached_str = str;
944 info->cached_stroff = stroff;
945
946 current_file_name = name;
947
948 /* Look ahead to the next symbol. Two consecutive N_SO
949 symbols are a directory and a file name. */
950 if (stab + STABSIZE >= stabend
951 || *(stab + STABSIZE + TYPEOFF) != N_SO)
952 directory_name = NULL;
953 else
954 {
955 stab += STABSIZE;
956 directory_name = current_file_name;
957 current_file_name = str + bfd_get_32 (abfd, stab + STRDXOFF);
958 }
959
960 main_file_name = current_file_name;
961
962 break;
963
964 case N_SOL:
965 /* The name of an include file. */
966 current_file_name = str + bfd_get_32 (abfd, stab + STRDXOFF);
967 break;
968
969 case N_SLINE:
970 case N_DSLINE:
971 case N_BSLINE:
972 /* A line number. The value is relative to the start of the
973 current function. */
974 val = fnaddr + bfd_get_32 (abfd, stab + VALOFF);
975 if (val >= low_line_vma && val <= offset)
976 {
977 *pline = bfd_get_16 (abfd, stab + DESCOFF);
978 low_line_vma = val;
979 line_file_name = current_file_name;
980 }
981 break;
982
983 case N_FUN:
984 /* A function name. */
985 val = bfd_get_32 (abfd, stab + VALOFF);
986 name = str + bfd_get_32 (abfd, stab + STRDXOFF);
987
988 /* An empty string here indicates the end of a function, and
989 the value is relative to fnaddr. */
990
991 if (*name == '\0')
992 {
993 val += fnaddr;
994 if (val >= low_func_vma && val < offset)
995 fnname = NULL;
996 }
997 else
998 {
999 if (val >= low_func_vma && val <= offset)
1000 {
1001 fnname = name;
1002 low_func_vma = val;
1003 }
1004
1005 fnaddr = val;
1006 }
1007
1008 break;
1009 }
1010
1011 if (done)
1012 break;
1013 }
1014
1015 if (main_file_name == NULL)
1016 {
1017 /* No information found. */
1018 return true;
1019 }
1020
1021 *pfound = true;
1022
1023 if (*pline != 0)
1024 main_file_name = line_file_name;
1025
1026 if (main_file_name != NULL)
1027 {
1028 if (main_file_name[0] == '/' || directory_name == NULL)
1029 *pfilename = main_file_name;
1030 else
1031 {
1032 size_t dirlen;
1033
1034 dirlen = strlen (directory_name);
1035 if (info->filename == NULL
1036 || strncmp (info->filename, directory_name, dirlen) != 0
1037 || strcmp (info->filename + dirlen, main_file_name) != 0)
1038 {
1039 if (info->filename != NULL)
1040 free (info->filename);
1041 info->filename = (char *) bfd_malloc (dirlen +
1042 strlen (main_file_name)
1043 + 1);
1044 if (info->filename == NULL)
1045 return false;
1046 strcpy (info->filename, directory_name);
1047 strcpy (info->filename + dirlen, main_file_name);
1048 }
1049
1050 *pfilename = info->filename;
1051 }
1052 }
1053
1054 if (fnname != NULL)
1055 {
1056 char *s;
1057
1058 /* This will typically be something like main:F(0,1), so we want
1059 to clobber the colon. It's OK to change the name, since the
1060 string is in our own local storage anyhow. */
1061
1062 s = strchr (fnname, ':');
1063 if (s != NULL)
1064 *s = '\0';
1065
1066 *pfnname = fnname;
1067 }
1068
1069 return true;
1070 }