Lint (saber actually).
[binutils-gdb.git] / bfd / targets.c
1 /* Copyright (C) 1990, 1991 Free Software Foundation, Inc.
2
3 This file is part of BFD, the Binary File Diddler.
4
5 BFD is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 1, or (at your option)
8 any later version.
9
10 BFD is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with BFD; see the file COPYING. If not, write to
17 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
18
19 /* $Id$ */
20
21
22 #include <sysdep.h>
23 #include "bfd.h"
24 #include "libbfd.h"
25
26 /*doc*
27 @section Targets
28 Each port of BFD to a different machine requries the creation of a
29 target back end. All the back end provides to the root part of bfd is
30 a structure containing pointers to functions which perform certain low
31 level operations on files. BFD translates the applications's requests
32 through a pointer into calls to the back end routines.
33
34 When a file is opened with @code{bfd_openr}, its format and target are
35 unknown. BFD uses various mechanisms to determine how to interpret the
36 file. The operatios performed are:
37 @itemize @bullet
38 @item
39 First a bfd is created by calling the internal routine
40 @code{new_bfd}, then @code{bfd_find_target} is called with the target
41 string supplied to @code{bfd_openr} and the new bfd pointer.
42 @item
43 If a null target string was provided to
44 @code{bfd_find_target}, it looks up the environment variable
45 @code{GNUTARGET} and uses that as the target string.
46 @item
47 If the target string is still NULL, or the target string
48 is @code{default}, then the first item in the target vector is used as
49 the target type. @xref{targets}.
50 @item
51 Otherwise, the elements in the target vector are
52 inspected one by one, until a match on target name is found. When
53 found, that is used.
54 @item
55 Otherwise the error @code{invalid_target} is returned to
56 @code{bfd_openr}.
57 @item
58 @code{bfd_openr} attempts to open the file using
59 @code{bfd_open_file}, and returns the bfd.
60 @end itemize
61 Once the bfd has been opened and the target selected, the file format
62 may be determined. This is done by calling @code{bfd_check_format} on
63 the bfd with a suggested format. The routine returns @code{true} when
64 the application guesses right.
65 */
66
67
68 /*proto* bfd_target
69 @node bfd_target
70 @subsection bfd_target
71 This structure contains everything that BFD knows about a target.
72 It includes things like its byte order, name, what routines to call
73 to do various operations, etc.
74
75 Every BFD points to a target structure with its "xvec" member.
76
77
78 Shortcut for declaring fields which are prototyped function pointers,
79 while avoiding anguish on compilers that don't support protos.
80
81 $#define SDEF(ret, name, arglist) \
82 $ PROTO(ret,(*name),arglist)
83 $#define SDEF_FMT(ret, name, arglist) \
84 $ PROTO(ret,(*name[bfd_type_end]),arglist)
85
86 These macros are used to dispatch to functions through the bfd_target
87 vector. They are used in a number of macros further down in bfd.h, and
88 are also used when calling various routines by hand inside the bfd
89 implementation. The "arglist" argument must be parenthesized; it
90 contains all the arguments to the called function.
91
92 $#define BFD_SEND(bfd, message, arglist) \
93 $ ((*((bfd)->xvec->message)) arglist)
94
95 For operations which index on the bfd format
96
97 $#define BFD_SEND_FMT(bfd, message, arglist) \
98 $ (((bfd)->xvec->message[(int)((bfd)->format)]) arglist)
99
100 This is the struct which defines the type of BFD this is. The
101 "xvec" member of the struct bfd itself points here. Each module
102 that implements access to a different target under BFD, defines
103 one of these.
104
105 FIXME, these names should be rationalised with the names of the
106 entry points which call them. Too bad we can't have one macro to
107 define them both!
108
109 *+++
110
111 $typedef struct bfd_target
112 ${
113
114 identifies the kind of target, eg SunOS4, Ultrix, etc
115
116 $ char *name;
117
118 The "flavour" of a back end is a general indication about the contents
119 of a file.
120
121 $ enum target_flavour_enum {
122 $ bfd_target_aout_flavour_enum,
123 $ bfd_target_coff_flavour_enum,
124 $ bfd_target_ieee_flavour_enum,
125 $ bfd_target_oasys_flavour_enum,
126 $ bfd_target_srec_flavour_enum} flavour;
127
128 The order of bytes within the data area of a file.
129
130 $ boolean byteorder_big_p;
131
132 The order of bytes within the header parts of a file.
133
134 $ boolean header_byteorder_big_p;
135
136 This is a mask of all the flags which an executable may have set -
137 from the set @code{NO_FLAGS}, @code{HAS_RELOC}, ...@code{D_PAGED}.
138
139 $ flagword object_flags;
140
141 This is a mask of all the flags which a section may have set - from
142 the set @code{SEC_NO_FLAGS}, @code{SEC_ALLOC}, ...@code{SET_NEVER_LOAD}.
143
144 $ flagword section_flags;
145
146 The pad character for filenames within an archive header.
147
148 $ char ar_pad_char;
149
150 The maximum number of characters in an archive header.
151
152 $ unsigned short ar_max_namelen;
153
154 The minimum alignment restriction for any section.
155
156 $ unsigned int align_power_min;
157
158 Entries for byte swapping for data. These are different to the other
159 entry points, since they don't take bfd as first arg. Certain other handlers
160 could do the same.
161
162 $ SDEF (bfd_vma, bfd_getx64, (bfd_byte *));
163 $ SDEF (void, bfd_putx64, (bfd_vma, bfd_byte *));
164 $ SDEF (bfd_vma, bfd_getx32, (bfd_byte *));
165 $ SDEF (void, bfd_putx32, (bfd_vma, bfd_byte *));
166 $ SDEF (bfd_vma, bfd_getx16, (bfd_byte *));
167 $ SDEF (void, bfd_putx16, (bfd_vma, bfd_byte *));
168
169 Byte swapping for the headers
170
171 $ SDEF (bfd_64_type, bfd_h_getx64, (bfd_byte *));
172 $ SDEF (void, bfd_h_putx64, (bfd_vma, bfd_byte *));
173 $ SDEF (bfd_vma, bfd_h_getx32, (bfd_byte *));
174 $ SDEF (void, bfd_h_putx32, (bfd_vma, bfd_byte *));
175 $ SDEF (bfd_vma, bfd_h_getx16, (bfd_byte *));
176 $ SDEF (void, bfd_h_putx16, (bfd_vma, bfd_byte *));
177
178 Format dependent routines, these turn into vectors of entry points
179 within the target vector structure; one for each format to check.
180
181 Check the format of a file being read. Return bfd_target * or zero.
182
183 $ SDEF_FMT (struct bfd_target *, _bfd_check_format, (bfd *));
184
185 Set the format of a file being written.
186
187 $ SDEF_FMT (boolean, _bfd_set_format, (bfd *));
188
189 Write cached information into a file being written, at bfd_close.
190
191 $ SDEF_FMT (boolean, _bfd_write_contents, (bfd *));
192
193 The following functions are defined in @code{JUMP_TABLE}. The idea is
194 that the back end writer of @code{foo} names all the routines
195 @code{foo_}@var{entry_point}, @code{JUMP_TABLE} will built the entries
196 in this structure in the right order.
197
198 Core file entry points
199
200 $ SDEF (char *, _core_file_failing_command, (bfd *));
201 $ SDEF (int, _core_file_failing_signal, (bfd *));
202 $ SDEF (boolean, _core_file_matches_executable_p, (bfd *, bfd *));
203
204 Archive entry points
205
206 $ SDEF (boolean, _bfd_slurp_armap, (bfd *));
207 $ SDEF (boolean, _bfd_slurp_extended_name_table, (bfd *));
208 $ SDEF (void, _bfd_truncate_arname, (bfd *, CONST char *, char *));
209 $ SDEF (boolean, write_armap, (bfd *arch,
210 $ unsigned int elength,
211 $ struct orl *map,
212 $ int orl_count,
213 $ int stridx));
214
215 Standard stuff.
216
217 $ SDEF (boolean, _close_and_cleanup, (bfd *));
218 $ SDEF (boolean, _bfd_set_section_contents, (bfd *, sec_ptr, PTR,
219 $ file_ptr, bfd_size_type));
220 $ SDEF (boolean, _bfd_get_section_contents, (bfd *, sec_ptr, PTR,
221 $ file_ptr, bfd_size_type));
222 $ SDEF (boolean, _new_section_hook, (bfd *, sec_ptr));
223
224 Symbols and reloctions
225
226 $ SDEF (unsigned int, _get_symtab_upper_bound, (bfd *));
227 $ SDEF (unsigned int, _bfd_canonicalize_symtab,
228 $ (bfd *, struct symbol_cache_entry **));
229 $ SDEF (unsigned int, _get_reloc_upper_bound, (bfd *, sec_ptr));
230 $ SDEF (unsigned int, _bfd_canonicalize_reloc, (bfd *, sec_ptr, arelent **,
231 $ struct symbol_cache_entry**));
232 $ SDEF (struct symbol_cache_entry *, _bfd_make_empty_symbol, (bfd *));
233 $ SDEF (void, _bfd_print_symbol, (bfd *, PTR, struct symbol_cache_entry *,
234 $ bfd_print_symbol_enum_type));
235 $#define bfd_print_symbol(b,p,s,e) BFD_SEND(b, _bfd_print_symbol, (b,p,s,e))
236 $ SDEF (alent *, _get_lineno, (bfd *, struct symbol_cache_entry *));
237 $
238 $ SDEF (boolean, _bfd_set_arch_mach, (bfd *, enum bfd_architecture,
239 $ unsigned long));
240 $
241 $ SDEF (bfd *, openr_next_archived_file, (bfd *arch, bfd *prev));
242 $ SDEF (boolean, _bfd_find_nearest_line,
243 $ (bfd *abfd, struct sec *section,
244 $ struct symbol_cache_entry **symbols,bfd_vma offset,
245 $ CONST char **file, CONST char **func, unsigned int *line));
246 $ SDEF (int, _bfd_stat_arch_elt, (bfd *, struct stat *));
247 $
248 $ SDEF (int, _bfd_sizeof_headers, (bfd *, boolean));
249 $
250 $ SDEF (void, _bfd_debug_info_start, (bfd *));
251 $ SDEF (void, _bfd_debug_info_end, (bfd *));
252 $ SDEF (void, _bfd_debug_info_accumulate, (bfd *, struct sec *));
253
254 Special entry points for gdb to swap in coff symbol table parts
255
256 $ SDEF(void, _bfd_coff_swap_aux_in,(
257 $ bfd *abfd ,
258 $ PTR ext,
259 $ int type,
260 $ int class ,
261 $ PTR in));
262 $
263 $ SDEF(void, _bfd_coff_swap_sym_in,(
264 $ bfd *abfd ,
265 $ PTR ext,
266 $ PTR in));
267 $
268 $ SDEF(void, _bfd_coff_swap_lineno_in, (
269 $ bfd *abfd,
270 $ PTR ext,
271 $ PTR in));
272 $
273 $} bfd_target;
274
275 *---
276
277 */
278 extern bfd_target ecoff_little_vec;
279 extern bfd_target ecoff_big_vec;
280 extern bfd_target sunos_big_vec;
281 extern bfd_target demo_64_vec;
282 extern bfd_target srec_vec;
283 extern bfd_target b_out_vec_little_host;
284 extern bfd_target b_out_vec_big_host;
285 extern bfd_target icoff_little_vec;
286 extern bfd_target icoff_big_vec;
287 extern bfd_target ieee_vec;
288 extern bfd_target oasys_vec;
289 extern bfd_target m88k_bcs_vec;
290 extern bfd_target m68kcoff_vec;
291 extern bfd_target i386coff_vec;
292 extern bfd_target a29kcoff_big_vec;
293 #ifdef DEFAULT_VECTOR
294 extern bfd_target DEFAULT_VECTOR;
295 #endif
296
297 #ifdef GNU960
298 #define ICOFF_LITTLE_VEC icoff_little_vec
299 #define ICOFF_BIG_VEC icoff_big_vec
300 #define B_OUT_VEC_LITTLE_HOST b_out_vec_little_host
301 #define B_OUT_VEC_BIG_HOST b_out_vec_big_host
302 #endif /* GNU960 */
303
304 #ifndef RESTRICTED
305 #define ECOFF_LITTLE_VEC ecoff_little_vec
306 #define ECOFF_BIG_VEC ecoff_big_vec
307 #define ICOFF_LITTLE_VEC icoff_little_vec
308 #define ICOFF_BIG_VEC icoff_big_vec
309 #define ZB_OUT_VEC_LITTLE_HOST b_out_vec_little_host
310 #define ZB_OUT_VEC_BIG_HOST b_out_vec_big_host
311 #define SUNOS_VEC_BIG_HOST sunos_big_vec
312 #define DEMO_64_VEC demo_64_vec
313 #define OASYS_VEC oasys_vec
314 #define IEEE_VEC ieee_vec
315 #define M88K_BCS_VEC m88k_bcs_vec
316 #define SREC_VEC srec_vec
317 #define M68KCOFF_VEC m68kcoff_vec
318 #define I386COFF_VEC i386coff_vec
319 #define A29KCOFF_BIG_VEC a29kcoff_big_vec
320 #endif
321 bfd_target *target_vector[] = {
322
323 #ifdef DEFAULT_VECTOR
324 &DEFAULT_VECTOR,
325 #endif /* DEFAULT_VECTOR */
326
327 #ifdef I386COFF_VEC
328 &I386COFF_VEC,
329 #endif /* I386COFF_VEC */
330
331 #ifdef ECOFF_LITTLE_VEC
332 &ECOFF_LITTLE_VEC,
333 #endif
334
335 #ifdef ECOFF_BIG_VEC
336 &ECOFF_BIG_VEC,
337 #endif
338 #ifdef IEEE_VEC
339 &IEEE_VEC,
340 #endif /* IEEE_VEC */
341
342 #ifdef OASYS_VEC
343 &OASYS_VEC,
344 #endif /* OASYS_VEC */
345
346 #ifdef SUNOS_VEC_BIG_HOST
347 &SUNOS_VEC_BIG_HOST,
348 #endif /* SUNOS_BIG_VEC */
349
350
351 #ifdef HOST_64_BIT
352 #ifdef DEMO_64_VEC
353 &DEMO_64_VEC,
354 #endif
355 #endif
356
357 #ifdef M88K_BCS_VEC
358 &M88K_BCS_VEC,
359 #endif /* M88K_BCS_VEC */
360
361 #ifdef SREC_VEC
362 &SREC_VEC,
363 #endif /* SREC_VEC */
364
365 #ifdef ICOFF_LITTLE_VEC
366 &ICOFF_LITTLE_VEC,
367 #endif /* ICOFF_LITTLE_VEC */
368
369 #ifdef ICOFF_BIG_VEC
370 &ICOFF_BIG_VEC,
371 #endif /* ICOFF_BIG_VEC */
372
373 #ifdef B_OUT_VEC_LITTLE_HOST
374 &B_OUT_VEC_LITTLE_HOST,
375 #endif /* B_OUT_VEC_LITTLE_HOST */
376
377 #ifdef B_OUT_VEC_BIG_HOST
378 &B_OUT_VEC_BIG_HOST,
379 #endif /* B_OUT_VEC_BIG_HOST */
380
381 #ifdef M68KCOFF_VEC
382 &M68KCOFF_VEC,
383 #endif /* M68KCOFF_VEC */
384
385 #ifdef A29KCOFF_BIG_VEC
386 &A29KCOFF_BIG_VEC,
387 #endif /* A29KCOFF_BIG_VEC */
388
389 NULL, /* end of list marker */
390 };
391
392
393 /* default_vector[0] contains either the address of the default vector,
394 if there is one, or zero if there isn't. */
395
396 bfd_target *default_vector[] = {
397 #ifdef DEFAULT_VECTOR
398 &DEFAULT_VECTOR,
399 #endif
400 0,
401 };
402
403
404
405
406 /*proto*
407 *i bfd_find_target
408 Returns a pointer to the transfer vector for the object target
409 named target_name. If target_name is NULL, chooses the one in the
410 environment variable GNUTARGET; if that is null or not defined then
411 the first entry in the target list is chosen. Passing in the
412 string "default" or setting the environment variable to "default"
413 will cause the first entry in the target list to be returned,
414 and "target_defaulted" will be set in the bfd. This causes
415 bfd_check_format to loop over all the targets to find the one
416 that matches the file being read.
417 *; PROTO(bfd_target *, bfd_find_target,(CONST char *, bfd *));
418 *-*/
419
420 bfd_target *
421 DEFUN(bfd_find_target,(target_name, abfd),
422 CONST char *target_name AND
423 bfd *abfd)
424 {
425 bfd_target **target;
426 extern char *getenv ();
427 CONST char *targname = (target_name ? target_name : getenv ("GNUTARGET"));
428
429 /* This is safe; the vector cannot be null */
430 if (targname == NULL || !strcmp (targname, "default")) {
431 abfd->target_defaulted = true;
432 return abfd->xvec = target_vector[0];
433 }
434
435 abfd->target_defaulted = false;
436
437 for (target = &target_vector[0]; *target != NULL; target++) {
438 if (!strcmp (targname, (*target)->name))
439 return abfd->xvec = *target;
440 }
441
442 bfd_error = invalid_target;
443 return NULL;
444 }
445
446
447 /*proto*
448 *i bfd_target_list
449 This function returns a freshly malloced NULL-terminated vector of the
450 names of all the valid bfd targets. Do not modify the names
451 *; PROTO(CONST char **,bfd_target_list,());
452
453 *-*/
454
455 CONST char **
456 DEFUN_VOID(bfd_target_list)
457 {
458 int vec_length= 0;
459 bfd_target **target;
460 CONST char **name_list, **name_ptr;
461
462 for (target = &target_vector[0]; *target != NULL; target++)
463 vec_length++;
464
465 name_ptr =
466 name_list = (CONST char **) zalloc ((vec_length + 1) * sizeof (char **));
467
468 if (name_list == NULL) {
469 bfd_error = no_memory;
470 return NULL;
471 }
472
473
474
475 for (target = &target_vector[0]; *target != NULL; target++)
476 *(name_ptr++) = (*target)->name;
477
478 return name_list;
479 }