readelf: Update check for invalid word offsets in ARM unwind information.
[binutils-gdb.git] / binutils / readelf.c
1 /* readelf.c -- display contents of an ELF format file
2 Copyright (C) 1998-2017 Free Software Foundation, Inc.
3
4 Originally developed by Eric Youngdale <eric@andante.jic.com>
5 Modifications by Nick Clifton <nickc@redhat.com>
6
7 This file is part of GNU Binutils.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
22 02110-1301, USA. */
23 \f
24 /* The difference between readelf and objdump:
25
26 Both programs are capable of displaying the contents of ELF format files,
27 so why does the binutils project have two file dumpers ?
28
29 The reason is that objdump sees an ELF file through a BFD filter of the
30 world; if BFD has a bug where, say, it disagrees about a machine constant
31 in e_flags, then the odds are good that it will remain internally
32 consistent. The linker sees it the BFD way, objdump sees it the BFD way,
33 GAS sees it the BFD way. There was need for a tool to go find out what
34 the file actually says.
35
36 This is why the readelf program does not link against the BFD library - it
37 exists as an independent program to help verify the correct working of BFD.
38
39 There is also the case that readelf can provide more information about an
40 ELF file than is provided by objdump. In particular it can display DWARF
41 debugging information which (at the moment) objdump cannot. */
42 \f
43 #include "sysdep.h"
44 #include <assert.h>
45 #include <time.h>
46 #include <zlib.h>
47 #ifdef HAVE_WCHAR_H
48 #include <wchar.h>
49 #endif
50
51 #if __GNUC__ >= 2
52 /* Define BFD64 here, even if our default architecture is 32 bit ELF
53 as this will allow us to read in and parse 64bit and 32bit ELF files.
54 Only do this if we believe that the compiler can support a 64 bit
55 data type. For now we only rely on GCC being able to do this. */
56 #define BFD64
57 #endif
58
59 #include "bfd.h"
60 #include "bucomm.h"
61 #include "elfcomm.h"
62 #include "dwarf.h"
63
64 #include "elf/common.h"
65 #include "elf/external.h"
66 #include "elf/internal.h"
67
68
69 /* Included here, before RELOC_MACROS_GEN_FUNC is defined, so that
70 we can obtain the H8 reloc numbers. We need these for the
71 get_reloc_size() function. We include h8.h again after defining
72 RELOC_MACROS_GEN_FUNC so that we get the naming function as well. */
73
74 #include "elf/h8.h"
75 #undef _ELF_H8_H
76
77 /* Undo the effects of #including reloc-macros.h. */
78
79 #undef START_RELOC_NUMBERS
80 #undef RELOC_NUMBER
81 #undef FAKE_RELOC
82 #undef EMPTY_RELOC
83 #undef END_RELOC_NUMBERS
84 #undef _RELOC_MACROS_H
85
86 /* The following headers use the elf/reloc-macros.h file to
87 automatically generate relocation recognition functions
88 such as elf_mips_reloc_type() */
89
90 #define RELOC_MACROS_GEN_FUNC
91
92 #include "elf/aarch64.h"
93 #include "elf/alpha.h"
94 #include "elf/arc.h"
95 #include "elf/arm.h"
96 #include "elf/avr.h"
97 #include "elf/bfin.h"
98 #include "elf/cr16.h"
99 #include "elf/cris.h"
100 #include "elf/crx.h"
101 #include "elf/d10v.h"
102 #include "elf/d30v.h"
103 #include "elf/dlx.h"
104 #include "elf/epiphany.h"
105 #include "elf/fr30.h"
106 #include "elf/frv.h"
107 #include "elf/ft32.h"
108 #include "elf/h8.h"
109 #include "elf/hppa.h"
110 #include "elf/i386.h"
111 #include "elf/i370.h"
112 #include "elf/i860.h"
113 #include "elf/i960.h"
114 #include "elf/ia64.h"
115 #include "elf/ip2k.h"
116 #include "elf/lm32.h"
117 #include "elf/iq2000.h"
118 #include "elf/m32c.h"
119 #include "elf/m32r.h"
120 #include "elf/m68k.h"
121 #include "elf/m68hc11.h"
122 #include "elf/mcore.h"
123 #include "elf/mep.h"
124 #include "elf/metag.h"
125 #include "elf/microblaze.h"
126 #include "elf/mips.h"
127 #include "elf/riscv.h"
128 #include "elf/mmix.h"
129 #include "elf/mn10200.h"
130 #include "elf/mn10300.h"
131 #include "elf/moxie.h"
132 #include "elf/mt.h"
133 #include "elf/msp430.h"
134 #include "elf/nds32.h"
135 #include "elf/nios2.h"
136 #include "elf/or1k.h"
137 #include "elf/pj.h"
138 #include "elf/ppc.h"
139 #include "elf/ppc64.h"
140 #include "elf/pru.h"
141 #include "elf/rl78.h"
142 #include "elf/rx.h"
143 #include "elf/s390.h"
144 #include "elf/score.h"
145 #include "elf/sh.h"
146 #include "elf/sparc.h"
147 #include "elf/spu.h"
148 #include "elf/tic6x.h"
149 #include "elf/tilegx.h"
150 #include "elf/tilepro.h"
151 #include "elf/v850.h"
152 #include "elf/vax.h"
153 #include "elf/visium.h"
154 #include "elf/wasm32.h"
155 #include "elf/x86-64.h"
156 #include "elf/xc16x.h"
157 #include "elf/xgate.h"
158 #include "elf/xstormy16.h"
159 #include "elf/xtensa.h"
160
161 #include "getopt.h"
162 #include "libiberty.h"
163 #include "safe-ctype.h"
164 #include "filenames.h"
165
166 #ifndef offsetof
167 #define offsetof(TYPE, MEMBER) ((size_t) &(((TYPE *) 0)->MEMBER))
168 #endif
169
170 typedef struct elf_section_list
171 {
172 Elf_Internal_Shdr * hdr;
173 struct elf_section_list * next;
174 } elf_section_list;
175
176 char * program_name = "readelf";
177 static unsigned long archive_file_offset;
178 static unsigned long archive_file_size;
179 static bfd_size_type current_file_size;
180 static unsigned long dynamic_addr;
181 static bfd_size_type dynamic_size;
182 static size_t dynamic_nent;
183 static char * dynamic_strings;
184 static unsigned long dynamic_strings_length;
185 static char * string_table;
186 static unsigned long string_table_length;
187 static unsigned long num_dynamic_syms;
188 static Elf_Internal_Sym * dynamic_symbols;
189 static Elf_Internal_Syminfo * dynamic_syminfo;
190 static unsigned long dynamic_syminfo_offset;
191 static unsigned int dynamic_syminfo_nent;
192 static char program_interpreter[PATH_MAX];
193 static bfd_vma dynamic_info[DT_ENCODING];
194 static bfd_vma dynamic_info_DT_GNU_HASH;
195 static bfd_vma version_info[16];
196 static Elf_Internal_Ehdr elf_header;
197 static Elf_Internal_Shdr * section_headers;
198 static Elf_Internal_Phdr * program_headers;
199 static Elf_Internal_Dyn * dynamic_section;
200 static elf_section_list * symtab_shndx_list;
201 static bfd_boolean show_name = FALSE;
202 static bfd_boolean do_dynamic = FALSE;
203 static bfd_boolean do_syms = FALSE;
204 static bfd_boolean do_dyn_syms = FALSE;
205 static bfd_boolean do_reloc = FALSE;
206 static bfd_boolean do_sections = FALSE;
207 static bfd_boolean do_section_groups = FALSE;
208 static bfd_boolean do_section_details = FALSE;
209 static bfd_boolean do_segments = FALSE;
210 static bfd_boolean do_unwind = FALSE;
211 static bfd_boolean do_using_dynamic = FALSE;
212 static bfd_boolean do_header = FALSE;
213 static bfd_boolean do_dump = FALSE;
214 static bfd_boolean do_version = FALSE;
215 static bfd_boolean do_histogram = FALSE;
216 static bfd_boolean do_debugging = FALSE;
217 static bfd_boolean do_arch = FALSE;
218 static bfd_boolean do_notes = FALSE;
219 static bfd_boolean do_archive_index = FALSE;
220 static bfd_boolean is_32bit_elf = FALSE;
221 static bfd_boolean decompress_dumps = FALSE;
222
223 struct group_list
224 {
225 struct group_list * next;
226 unsigned int section_index;
227 };
228
229 struct group
230 {
231 struct group_list * root;
232 unsigned int group_index;
233 };
234
235 static size_t group_count;
236 static struct group * section_groups;
237 static struct group ** section_headers_groups;
238
239
240 /* Flag bits indicating particular types of dump. */
241 #define HEX_DUMP (1 << 0) /* The -x command line switch. */
242 #define DISASS_DUMP (1 << 1) /* The -i command line switch. */
243 #define DEBUG_DUMP (1 << 2) /* The -w command line switch. */
244 #define STRING_DUMP (1 << 3) /* The -p command line switch. */
245 #define RELOC_DUMP (1 << 4) /* The -R command line switch. */
246
247 typedef unsigned char dump_type;
248
249 /* A linked list of the section names for which dumps were requested. */
250 struct dump_list_entry
251 {
252 char * name;
253 dump_type type;
254 struct dump_list_entry * next;
255 };
256 static struct dump_list_entry * dump_sects_byname;
257
258 /* A dynamic array of flags indicating for which sections a dump
259 has been requested via command line switches. */
260 static dump_type * cmdline_dump_sects = NULL;
261 static unsigned int num_cmdline_dump_sects = 0;
262
263 /* A dynamic array of flags indicating for which sections a dump of
264 some kind has been requested. It is reset on a per-object file
265 basis and then initialised from the cmdline_dump_sects array,
266 the results of interpreting the -w switch, and the
267 dump_sects_byname list. */
268 static dump_type * dump_sects = NULL;
269 static unsigned int num_dump_sects = 0;
270
271
272 /* How to print a vma value. */
273 typedef enum print_mode
274 {
275 HEX,
276 DEC,
277 DEC_5,
278 UNSIGNED,
279 PREFIX_HEX,
280 FULL_HEX,
281 LONG_HEX
282 }
283 print_mode;
284
285 /* Versioned symbol info. */
286 enum versioned_symbol_info
287 {
288 symbol_undefined,
289 symbol_hidden,
290 symbol_public
291 };
292
293 static const char * get_symbol_version_string
294 (FILE *, bfd_boolean, const char *, unsigned long, unsigned,
295 Elf_Internal_Sym *, enum versioned_symbol_info *, unsigned short *);
296
297 #define UNKNOWN -1
298
299 #define SECTION_NAME(X) \
300 ((X) == NULL ? _("<none>") \
301 : string_table == NULL ? _("<no-name>") \
302 : ((X)->sh_name >= string_table_length ? _("<corrupt>") \
303 : string_table + (X)->sh_name))
304
305 #define DT_VERSIONTAGIDX(tag) (DT_VERNEEDNUM - (tag)) /* Reverse order! */
306
307 #define GET_ELF_SYMBOLS(file, section, sym_count) \
308 (is_32bit_elf ? get_32bit_elf_symbols (file, section, sym_count) \
309 : get_64bit_elf_symbols (file, section, sym_count))
310
311 #define VALID_DYNAMIC_NAME(offset) ((dynamic_strings != NULL) && (offset < dynamic_strings_length))
312 /* GET_DYNAMIC_NAME asssumes that VALID_DYNAMIC_NAME has
313 already been called and verified that the string exists. */
314 #define GET_DYNAMIC_NAME(offset) (dynamic_strings + offset)
315
316 #define REMOVE_ARCH_BITS(ADDR) \
317 do \
318 { \
319 if (elf_header.e_machine == EM_ARM) \
320 (ADDR) &= ~1; \
321 } \
322 while (0)
323 \f
324 /* Retrieve NMEMB structures, each SIZE bytes long from FILE starting at OFFSET +
325 the offset of the current archive member, if we are examining an archive.
326 Put the retrieved data into VAR, if it is not NULL. Otherwise allocate a buffer
327 using malloc and fill that. In either case return the pointer to the start of
328 the retrieved data or NULL if something went wrong. If something does go wrong
329 and REASON is not NULL then emit an error message using REASON as part of the
330 context. */
331
332 static void *
333 get_data (void * var, FILE * file, unsigned long offset, bfd_size_type size,
334 bfd_size_type nmemb, const char * reason)
335 {
336 void * mvar;
337 bfd_size_type amt = size * nmemb;
338
339 if (size == 0 || nmemb == 0)
340 return NULL;
341
342 /* If the size_t type is smaller than the bfd_size_type, eg because
343 you are building a 32-bit tool on a 64-bit host, then make sure
344 that when the sizes are cast to (size_t) no information is lost. */
345 if (sizeof (size_t) < sizeof (bfd_size_type)
346 && ( (bfd_size_type) ((size_t) size) != size
347 || (bfd_size_type) ((size_t) nmemb) != nmemb))
348 {
349 if (reason)
350 error (_("Size truncation prevents reading 0x%" BFD_VMA_FMT "x"
351 " elements of size 0x%" BFD_VMA_FMT "x for %s\n"),
352 nmemb, size, reason);
353 return NULL;
354 }
355
356 /* Check for size overflow. */
357 if (amt < nmemb)
358 {
359 if (reason)
360 error (_("Size overflow prevents reading 0x%" BFD_VMA_FMT "x"
361 " elements of size 0x%" BFD_VMA_FMT "x for %s\n"),
362 nmemb, size, reason);
363 return NULL;
364 }
365
366 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
367 attempting to allocate memory when the read is bound to fail. */
368 if (amt > current_file_size
369 || offset + archive_file_offset + amt > current_file_size)
370 {
371 if (reason)
372 error (_("Reading 0x%" BFD_VMA_FMT "x"
373 " bytes extends past end of file for %s\n"),
374 amt, reason);
375 return NULL;
376 }
377
378 if (fseek (file, archive_file_offset + offset, SEEK_SET))
379 {
380 if (reason)
381 error (_("Unable to seek to 0x%lx for %s\n"),
382 archive_file_offset + offset, reason);
383 return NULL;
384 }
385
386 mvar = var;
387 if (mvar == NULL)
388 {
389 /* Check for overflow. */
390 if (nmemb < (~(bfd_size_type) 0 - 1) / size)
391 /* + 1 so that we can '\0' terminate invalid string table sections. */
392 mvar = malloc ((size_t) amt + 1);
393
394 if (mvar == NULL)
395 {
396 if (reason)
397 error (_("Out of memory allocating 0x%" BFD_VMA_FMT "x"
398 " bytes for %s\n"),
399 amt, reason);
400 return NULL;
401 }
402
403 ((char *) mvar)[amt] = '\0';
404 }
405
406 if (fread (mvar, (size_t) size, (size_t) nmemb, file) != nmemb)
407 {
408 if (reason)
409 error (_("Unable to read in 0x%" BFD_VMA_FMT "x bytes of %s\n"),
410 amt, reason);
411 if (mvar != var)
412 free (mvar);
413 return NULL;
414 }
415
416 return mvar;
417 }
418
419 /* Print a VMA value in the MODE specified.
420 Returns the number of characters displayed. */
421
422 static unsigned int
423 print_vma (bfd_vma vma, print_mode mode)
424 {
425 unsigned int nc = 0;
426
427 switch (mode)
428 {
429 case FULL_HEX:
430 nc = printf ("0x");
431 /* Fall through. */
432 case LONG_HEX:
433 #ifdef BFD64
434 if (is_32bit_elf)
435 return nc + printf ("%8.8" BFD_VMA_FMT "x", vma);
436 #endif
437 printf_vma (vma);
438 return nc + 16;
439
440 case DEC_5:
441 if (vma <= 99999)
442 return printf ("%5" BFD_VMA_FMT "d", vma);
443 /* Fall through. */
444 case PREFIX_HEX:
445 nc = printf ("0x");
446 /* Fall through. */
447 case HEX:
448 return nc + printf ("%" BFD_VMA_FMT "x", vma);
449
450 case DEC:
451 return printf ("%" BFD_VMA_FMT "d", vma);
452
453 case UNSIGNED:
454 return printf ("%" BFD_VMA_FMT "u", vma);
455
456 default:
457 /* FIXME: Report unrecognised mode ? */
458 return 0;
459 }
460 }
461
462 /* Display a symbol on stdout. Handles the display of control characters and
463 multibye characters (assuming the host environment supports them).
464
465 Display at most abs(WIDTH) characters, truncating as necessary, unless do_wide is true.
466
467 If WIDTH is negative then ensure that the output is at least (- WIDTH) characters,
468 padding as necessary.
469
470 Returns the number of emitted characters. */
471
472 static unsigned int
473 print_symbol (signed int width, const char *symbol)
474 {
475 bfd_boolean extra_padding = FALSE;
476 signed int num_printed = 0;
477 #ifdef HAVE_MBSTATE_T
478 mbstate_t state;
479 #endif
480 unsigned int width_remaining;
481
482 if (width < 0)
483 {
484 /* Keep the width positive. This also helps. */
485 width = - width;
486 extra_padding = TRUE;
487 }
488 assert (width != 0);
489
490 if (do_wide)
491 /* Set the remaining width to a very large value.
492 This simplifies the code below. */
493 width_remaining = INT_MAX;
494 else
495 width_remaining = width;
496
497 #ifdef HAVE_MBSTATE_T
498 /* Initialise the multibyte conversion state. */
499 memset (& state, 0, sizeof (state));
500 #endif
501
502 while (width_remaining)
503 {
504 size_t n;
505 const char c = *symbol++;
506
507 if (c == 0)
508 break;
509
510 /* Do not print control characters directly as they can affect terminal
511 settings. Such characters usually appear in the names generated
512 by the assembler for local labels. */
513 if (ISCNTRL (c))
514 {
515 if (width_remaining < 2)
516 break;
517
518 printf ("^%c", c + 0x40);
519 width_remaining -= 2;
520 num_printed += 2;
521 }
522 else if (ISPRINT (c))
523 {
524 putchar (c);
525 width_remaining --;
526 num_printed ++;
527 }
528 else
529 {
530 #ifdef HAVE_MBSTATE_T
531 wchar_t w;
532 #endif
533 /* Let printf do the hard work of displaying multibyte characters. */
534 printf ("%.1s", symbol - 1);
535 width_remaining --;
536 num_printed ++;
537
538 #ifdef HAVE_MBSTATE_T
539 /* Try to find out how many bytes made up the character that was
540 just printed. Advance the symbol pointer past the bytes that
541 were displayed. */
542 n = mbrtowc (& w, symbol - 1, MB_CUR_MAX, & state);
543 #else
544 n = 1;
545 #endif
546 if (n != (size_t) -1 && n != (size_t) -2 && n > 0)
547 symbol += (n - 1);
548 }
549 }
550
551 if (extra_padding && num_printed < width)
552 {
553 /* Fill in the remaining spaces. */
554 printf ("%-*s", width - num_printed, " ");
555 num_printed = width;
556 }
557
558 return num_printed;
559 }
560
561 /* Returns a pointer to a static buffer containing a printable version of
562 the given section's name. Like print_symbol, except that it does not try
563 to print multibyte characters, it just interprets them as hex values. */
564
565 static const char *
566 printable_section_name (const Elf_Internal_Shdr * sec)
567 {
568 #define MAX_PRINT_SEC_NAME_LEN 128
569 static char sec_name_buf [MAX_PRINT_SEC_NAME_LEN + 1];
570 const char * name = SECTION_NAME (sec);
571 char * buf = sec_name_buf;
572 char c;
573 unsigned int remaining = MAX_PRINT_SEC_NAME_LEN;
574
575 while ((c = * name ++) != 0)
576 {
577 if (ISCNTRL (c))
578 {
579 if (remaining < 2)
580 break;
581
582 * buf ++ = '^';
583 * buf ++ = c + 0x40;
584 remaining -= 2;
585 }
586 else if (ISPRINT (c))
587 {
588 * buf ++ = c;
589 remaining -= 1;
590 }
591 else
592 {
593 static char hex[17] = "0123456789ABCDEF";
594
595 if (remaining < 4)
596 break;
597 * buf ++ = '<';
598 * buf ++ = hex[(c & 0xf0) >> 4];
599 * buf ++ = hex[c & 0x0f];
600 * buf ++ = '>';
601 remaining -= 4;
602 }
603
604 if (remaining == 0)
605 break;
606 }
607
608 * buf = 0;
609 return sec_name_buf;
610 }
611
612 static const char *
613 printable_section_name_from_index (unsigned long ndx)
614 {
615 if (ndx >= elf_header.e_shnum)
616 return _("<corrupt>");
617
618 return printable_section_name (section_headers + ndx);
619 }
620
621 /* Return a pointer to section NAME, or NULL if no such section exists. */
622
623 static Elf_Internal_Shdr *
624 find_section (const char * name)
625 {
626 unsigned int i;
627
628 for (i = 0; i < elf_header.e_shnum; i++)
629 if (streq (SECTION_NAME (section_headers + i), name))
630 return section_headers + i;
631
632 return NULL;
633 }
634
635 /* Return a pointer to a section containing ADDR, or NULL if no such
636 section exists. */
637
638 static Elf_Internal_Shdr *
639 find_section_by_address (bfd_vma addr)
640 {
641 unsigned int i;
642
643 for (i = 0; i < elf_header.e_shnum; i++)
644 {
645 Elf_Internal_Shdr *sec = section_headers + i;
646 if (addr >= sec->sh_addr && addr < sec->sh_addr + sec->sh_size)
647 return sec;
648 }
649
650 return NULL;
651 }
652
653 static Elf_Internal_Shdr *
654 find_section_by_type (unsigned int type)
655 {
656 unsigned int i;
657
658 for (i = 0; i < elf_header.e_shnum; i++)
659 {
660 Elf_Internal_Shdr *sec = section_headers + i;
661 if (sec->sh_type == type)
662 return sec;
663 }
664
665 return NULL;
666 }
667
668 /* Return a pointer to section NAME, or NULL if no such section exists,
669 restricted to the list of sections given in SET. */
670
671 static Elf_Internal_Shdr *
672 find_section_in_set (const char * name, unsigned int * set)
673 {
674 unsigned int i;
675
676 if (set != NULL)
677 {
678 while ((i = *set++) > 0)
679 {
680 /* See PR 21156 for a reproducer. */
681 if (i >= elf_header.e_shnum)
682 continue; /* FIXME: Should we issue an error message ? */
683
684 if (streq (SECTION_NAME (section_headers + i), name))
685 return section_headers + i;
686 }
687 }
688
689 return find_section (name);
690 }
691
692 /* Read an unsigned LEB128 encoded value from DATA.
693 Set *LENGTH_RETURN to the number of bytes read. */
694
695 static inline unsigned long
696 read_uleb128 (unsigned char * data,
697 unsigned int * length_return,
698 const unsigned char * const end)
699 {
700 return read_leb128 (data, length_return, FALSE, end);
701 }
702
703 /* Return TRUE if the current file is for IA-64 machine and OpenVMS ABI.
704 This OS has so many departures from the ELF standard that we test it at
705 many places. */
706
707 static inline bfd_boolean
708 is_ia64_vms (void)
709 {
710 return elf_header.e_machine == EM_IA_64
711 && elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS;
712 }
713
714 /* Guess the relocation size commonly used by the specific machines. */
715
716 static bfd_boolean
717 guess_is_rela (unsigned int e_machine)
718 {
719 switch (e_machine)
720 {
721 /* Targets that use REL relocations. */
722 case EM_386:
723 case EM_IAMCU:
724 case EM_960:
725 case EM_ARM:
726 case EM_D10V:
727 case EM_CYGNUS_D10V:
728 case EM_DLX:
729 case EM_MIPS:
730 case EM_MIPS_RS3_LE:
731 case EM_CYGNUS_M32R:
732 case EM_SCORE:
733 case EM_XGATE:
734 return FALSE;
735
736 /* Targets that use RELA relocations. */
737 case EM_68K:
738 case EM_860:
739 case EM_AARCH64:
740 case EM_ADAPTEVA_EPIPHANY:
741 case EM_ALPHA:
742 case EM_ALTERA_NIOS2:
743 case EM_ARC:
744 case EM_ARC_COMPACT:
745 case EM_ARC_COMPACT2:
746 case EM_AVR:
747 case EM_AVR_OLD:
748 case EM_BLACKFIN:
749 case EM_CR16:
750 case EM_CRIS:
751 case EM_CRX:
752 case EM_D30V:
753 case EM_CYGNUS_D30V:
754 case EM_FR30:
755 case EM_FT32:
756 case EM_CYGNUS_FR30:
757 case EM_CYGNUS_FRV:
758 case EM_H8S:
759 case EM_H8_300:
760 case EM_H8_300H:
761 case EM_IA_64:
762 case EM_IP2K:
763 case EM_IP2K_OLD:
764 case EM_IQ2000:
765 case EM_LATTICEMICO32:
766 case EM_M32C_OLD:
767 case EM_M32C:
768 case EM_M32R:
769 case EM_MCORE:
770 case EM_CYGNUS_MEP:
771 case EM_METAG:
772 case EM_MMIX:
773 case EM_MN10200:
774 case EM_CYGNUS_MN10200:
775 case EM_MN10300:
776 case EM_CYGNUS_MN10300:
777 case EM_MOXIE:
778 case EM_MSP430:
779 case EM_MSP430_OLD:
780 case EM_MT:
781 case EM_NDS32:
782 case EM_NIOS32:
783 case EM_OR1K:
784 case EM_PPC64:
785 case EM_PPC:
786 case EM_TI_PRU:
787 case EM_RISCV:
788 case EM_RL78:
789 case EM_RX:
790 case EM_S390:
791 case EM_S390_OLD:
792 case EM_SH:
793 case EM_SPARC:
794 case EM_SPARC32PLUS:
795 case EM_SPARCV9:
796 case EM_SPU:
797 case EM_TI_C6000:
798 case EM_TILEGX:
799 case EM_TILEPRO:
800 case EM_V800:
801 case EM_V850:
802 case EM_CYGNUS_V850:
803 case EM_VAX:
804 case EM_VISIUM:
805 case EM_X86_64:
806 case EM_L1OM:
807 case EM_K1OM:
808 case EM_XSTORMY16:
809 case EM_XTENSA:
810 case EM_XTENSA_OLD:
811 case EM_MICROBLAZE:
812 case EM_MICROBLAZE_OLD:
813 case EM_WEBASSEMBLY:
814 return TRUE;
815
816 case EM_68HC05:
817 case EM_68HC08:
818 case EM_68HC11:
819 case EM_68HC16:
820 case EM_FX66:
821 case EM_ME16:
822 case EM_MMA:
823 case EM_NCPU:
824 case EM_NDR1:
825 case EM_PCP:
826 case EM_ST100:
827 case EM_ST19:
828 case EM_ST7:
829 case EM_ST9PLUS:
830 case EM_STARCORE:
831 case EM_SVX:
832 case EM_TINYJ:
833 default:
834 warn (_("Don't know about relocations on this machine architecture\n"));
835 return FALSE;
836 }
837 }
838
839 /* Load RELA type relocations from FILE at REL_OFFSET extending for REL_SIZE bytes.
840 Returns TRUE upon success, FALSE otherwise. If successful then a
841 pointer to a malloc'ed buffer containing the relocs is placed in *RELASP,
842 and the number of relocs loaded is placed in *NRELASP. It is the caller's
843 responsibility to free the allocated buffer. */
844
845 static bfd_boolean
846 slurp_rela_relocs (FILE * file,
847 unsigned long rel_offset,
848 unsigned long rel_size,
849 Elf_Internal_Rela ** relasp,
850 unsigned long * nrelasp)
851 {
852 Elf_Internal_Rela * relas;
853 size_t nrelas;
854 unsigned int i;
855
856 if (is_32bit_elf)
857 {
858 Elf32_External_Rela * erelas;
859
860 erelas = (Elf32_External_Rela *) get_data (NULL, file, rel_offset, 1,
861 rel_size, _("32-bit relocation data"));
862 if (!erelas)
863 return FALSE;
864
865 nrelas = rel_size / sizeof (Elf32_External_Rela);
866
867 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
868 sizeof (Elf_Internal_Rela));
869
870 if (relas == NULL)
871 {
872 free (erelas);
873 error (_("out of memory parsing relocs\n"));
874 return FALSE;
875 }
876
877 for (i = 0; i < nrelas; i++)
878 {
879 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
880 relas[i].r_info = BYTE_GET (erelas[i].r_info);
881 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
882 }
883
884 free (erelas);
885 }
886 else
887 {
888 Elf64_External_Rela * erelas;
889
890 erelas = (Elf64_External_Rela *) get_data (NULL, file, rel_offset, 1,
891 rel_size, _("64-bit relocation data"));
892 if (!erelas)
893 return FALSE;
894
895 nrelas = rel_size / sizeof (Elf64_External_Rela);
896
897 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
898 sizeof (Elf_Internal_Rela));
899
900 if (relas == NULL)
901 {
902 free (erelas);
903 error (_("out of memory parsing relocs\n"));
904 return FALSE;
905 }
906
907 for (i = 0; i < nrelas; i++)
908 {
909 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
910 relas[i].r_info = BYTE_GET (erelas[i].r_info);
911 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
912
913 /* The #ifdef BFD64 below is to prevent a compile time
914 warning. We know that if we do not have a 64 bit data
915 type that we will never execute this code anyway. */
916 #ifdef BFD64
917 if (elf_header.e_machine == EM_MIPS
918 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
919 {
920 /* In little-endian objects, r_info isn't really a
921 64-bit little-endian value: it has a 32-bit
922 little-endian symbol index followed by four
923 individual byte fields. Reorder INFO
924 accordingly. */
925 bfd_vma inf = relas[i].r_info;
926 inf = (((inf & 0xffffffff) << 32)
927 | ((inf >> 56) & 0xff)
928 | ((inf >> 40) & 0xff00)
929 | ((inf >> 24) & 0xff0000)
930 | ((inf >> 8) & 0xff000000));
931 relas[i].r_info = inf;
932 }
933 #endif /* BFD64 */
934 }
935
936 free (erelas);
937 }
938
939 *relasp = relas;
940 *nrelasp = nrelas;
941 return TRUE;
942 }
943
944 /* Load REL type relocations from FILE at REL_OFFSET extending for REL_SIZE bytes.
945 Returns TRUE upon success, FALSE otherwise. If successful then a
946 pointer to a malloc'ed buffer containing the relocs is placed in *RELSP,
947 and the number of relocs loaded is placed in *NRELSP. It is the caller's
948 responsibility to free the allocated buffer. */
949
950 static bfd_boolean
951 slurp_rel_relocs (FILE * file,
952 unsigned long rel_offset,
953 unsigned long rel_size,
954 Elf_Internal_Rela ** relsp,
955 unsigned long * nrelsp)
956 {
957 Elf_Internal_Rela * rels;
958 size_t nrels;
959 unsigned int i;
960
961 if (is_32bit_elf)
962 {
963 Elf32_External_Rel * erels;
964
965 erels = (Elf32_External_Rel *) get_data (NULL, file, rel_offset, 1,
966 rel_size, _("32-bit relocation data"));
967 if (!erels)
968 return FALSE;
969
970 nrels = rel_size / sizeof (Elf32_External_Rel);
971
972 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
973
974 if (rels == NULL)
975 {
976 free (erels);
977 error (_("out of memory parsing relocs\n"));
978 return FALSE;
979 }
980
981 for (i = 0; i < nrels; i++)
982 {
983 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
984 rels[i].r_info = BYTE_GET (erels[i].r_info);
985 rels[i].r_addend = 0;
986 }
987
988 free (erels);
989 }
990 else
991 {
992 Elf64_External_Rel * erels;
993
994 erels = (Elf64_External_Rel *) get_data (NULL, file, rel_offset, 1,
995 rel_size, _("64-bit relocation data"));
996 if (!erels)
997 return FALSE;
998
999 nrels = rel_size / sizeof (Elf64_External_Rel);
1000
1001 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
1002
1003 if (rels == NULL)
1004 {
1005 free (erels);
1006 error (_("out of memory parsing relocs\n"));
1007 return FALSE;
1008 }
1009
1010 for (i = 0; i < nrels; i++)
1011 {
1012 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
1013 rels[i].r_info = BYTE_GET (erels[i].r_info);
1014 rels[i].r_addend = 0;
1015
1016 /* The #ifdef BFD64 below is to prevent a compile time
1017 warning. We know that if we do not have a 64 bit data
1018 type that we will never execute this code anyway. */
1019 #ifdef BFD64
1020 if (elf_header.e_machine == EM_MIPS
1021 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
1022 {
1023 /* In little-endian objects, r_info isn't really a
1024 64-bit little-endian value: it has a 32-bit
1025 little-endian symbol index followed by four
1026 individual byte fields. Reorder INFO
1027 accordingly. */
1028 bfd_vma inf = rels[i].r_info;
1029 inf = (((inf & 0xffffffff) << 32)
1030 | ((inf >> 56) & 0xff)
1031 | ((inf >> 40) & 0xff00)
1032 | ((inf >> 24) & 0xff0000)
1033 | ((inf >> 8) & 0xff000000));
1034 rels[i].r_info = inf;
1035 }
1036 #endif /* BFD64 */
1037 }
1038
1039 free (erels);
1040 }
1041
1042 *relsp = rels;
1043 *nrelsp = nrels;
1044 return TRUE;
1045 }
1046
1047 /* Returns the reloc type extracted from the reloc info field. */
1048
1049 static unsigned int
1050 get_reloc_type (bfd_vma reloc_info)
1051 {
1052 if (is_32bit_elf)
1053 return ELF32_R_TYPE (reloc_info);
1054
1055 switch (elf_header.e_machine)
1056 {
1057 case EM_MIPS:
1058 /* Note: We assume that reloc_info has already been adjusted for us. */
1059 return ELF64_MIPS_R_TYPE (reloc_info);
1060
1061 case EM_SPARCV9:
1062 return ELF64_R_TYPE_ID (reloc_info);
1063
1064 default:
1065 return ELF64_R_TYPE (reloc_info);
1066 }
1067 }
1068
1069 /* Return the symbol index extracted from the reloc info field. */
1070
1071 static bfd_vma
1072 get_reloc_symindex (bfd_vma reloc_info)
1073 {
1074 return is_32bit_elf ? ELF32_R_SYM (reloc_info) : ELF64_R_SYM (reloc_info);
1075 }
1076
1077 static inline bfd_boolean
1078 uses_msp430x_relocs (void)
1079 {
1080 return
1081 elf_header.e_machine == EM_MSP430 /* Paranoia. */
1082 /* GCC uses osabi == ELFOSBI_STANDALONE. */
1083 && (((elf_header.e_flags & EF_MSP430_MACH) == E_MSP430_MACH_MSP430X)
1084 /* TI compiler uses ELFOSABI_NONE. */
1085 || (elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE));
1086 }
1087
1088 /* Display the contents of the relocation data found at the specified
1089 offset. */
1090
1091 static bfd_boolean
1092 dump_relocations (FILE * file,
1093 unsigned long rel_offset,
1094 unsigned long rel_size,
1095 Elf_Internal_Sym * symtab,
1096 unsigned long nsyms,
1097 char * strtab,
1098 unsigned long strtablen,
1099 int is_rela,
1100 bfd_boolean is_dynsym)
1101 {
1102 unsigned long i;
1103 Elf_Internal_Rela * rels;
1104 bfd_boolean res = TRUE;
1105
1106 if (is_rela == UNKNOWN)
1107 is_rela = guess_is_rela (elf_header.e_machine);
1108
1109 if (is_rela)
1110 {
1111 if (!slurp_rela_relocs (file, rel_offset, rel_size, &rels, &rel_size))
1112 return FALSE;
1113 }
1114 else
1115 {
1116 if (!slurp_rel_relocs (file, rel_offset, rel_size, &rels, &rel_size))
1117 return FALSE;
1118 }
1119
1120 if (is_32bit_elf)
1121 {
1122 if (is_rela)
1123 {
1124 if (do_wide)
1125 printf (_(" Offset Info Type Sym. Value Symbol's Name + Addend\n"));
1126 else
1127 printf (_(" Offset Info Type Sym.Value Sym. Name + Addend\n"));
1128 }
1129 else
1130 {
1131 if (do_wide)
1132 printf (_(" Offset Info Type Sym. Value Symbol's Name\n"));
1133 else
1134 printf (_(" Offset Info Type Sym.Value Sym. Name\n"));
1135 }
1136 }
1137 else
1138 {
1139 if (is_rela)
1140 {
1141 if (do_wide)
1142 printf (_(" Offset Info Type Symbol's Value Symbol's Name + Addend\n"));
1143 else
1144 printf (_(" Offset Info Type Sym. Value Sym. Name + Addend\n"));
1145 }
1146 else
1147 {
1148 if (do_wide)
1149 printf (_(" Offset Info Type Symbol's Value Symbol's Name\n"));
1150 else
1151 printf (_(" Offset Info Type Sym. Value Sym. Name\n"));
1152 }
1153 }
1154
1155 for (i = 0; i < rel_size; i++)
1156 {
1157 const char * rtype;
1158 bfd_vma offset;
1159 bfd_vma inf;
1160 bfd_vma symtab_index;
1161 bfd_vma type;
1162
1163 offset = rels[i].r_offset;
1164 inf = rels[i].r_info;
1165
1166 type = get_reloc_type (inf);
1167 symtab_index = get_reloc_symindex (inf);
1168
1169 if (is_32bit_elf)
1170 {
1171 printf ("%8.8lx %8.8lx ",
1172 (unsigned long) offset & 0xffffffff,
1173 (unsigned long) inf & 0xffffffff);
1174 }
1175 else
1176 {
1177 #if BFD_HOST_64BIT_LONG
1178 printf (do_wide
1179 ? "%16.16lx %16.16lx "
1180 : "%12.12lx %12.12lx ",
1181 offset, inf);
1182 #elif BFD_HOST_64BIT_LONG_LONG
1183 #ifndef __MSVCRT__
1184 printf (do_wide
1185 ? "%16.16llx %16.16llx "
1186 : "%12.12llx %12.12llx ",
1187 offset, inf);
1188 #else
1189 printf (do_wide
1190 ? "%16.16I64x %16.16I64x "
1191 : "%12.12I64x %12.12I64x ",
1192 offset, inf);
1193 #endif
1194 #else
1195 printf (do_wide
1196 ? "%8.8lx%8.8lx %8.8lx%8.8lx "
1197 : "%4.4lx%8.8lx %4.4lx%8.8lx ",
1198 _bfd_int64_high (offset),
1199 _bfd_int64_low (offset),
1200 _bfd_int64_high (inf),
1201 _bfd_int64_low (inf));
1202 #endif
1203 }
1204
1205 switch (elf_header.e_machine)
1206 {
1207 default:
1208 rtype = NULL;
1209 break;
1210
1211 case EM_AARCH64:
1212 rtype = elf_aarch64_reloc_type (type);
1213 break;
1214
1215 case EM_M32R:
1216 case EM_CYGNUS_M32R:
1217 rtype = elf_m32r_reloc_type (type);
1218 break;
1219
1220 case EM_386:
1221 case EM_IAMCU:
1222 rtype = elf_i386_reloc_type (type);
1223 break;
1224
1225 case EM_68HC11:
1226 case EM_68HC12:
1227 rtype = elf_m68hc11_reloc_type (type);
1228 break;
1229
1230 case EM_68K:
1231 rtype = elf_m68k_reloc_type (type);
1232 break;
1233
1234 case EM_960:
1235 rtype = elf_i960_reloc_type (type);
1236 break;
1237
1238 case EM_AVR:
1239 case EM_AVR_OLD:
1240 rtype = elf_avr_reloc_type (type);
1241 break;
1242
1243 case EM_OLD_SPARCV9:
1244 case EM_SPARC32PLUS:
1245 case EM_SPARCV9:
1246 case EM_SPARC:
1247 rtype = elf_sparc_reloc_type (type);
1248 break;
1249
1250 case EM_SPU:
1251 rtype = elf_spu_reloc_type (type);
1252 break;
1253
1254 case EM_V800:
1255 rtype = v800_reloc_type (type);
1256 break;
1257 case EM_V850:
1258 case EM_CYGNUS_V850:
1259 rtype = v850_reloc_type (type);
1260 break;
1261
1262 case EM_D10V:
1263 case EM_CYGNUS_D10V:
1264 rtype = elf_d10v_reloc_type (type);
1265 break;
1266
1267 case EM_D30V:
1268 case EM_CYGNUS_D30V:
1269 rtype = elf_d30v_reloc_type (type);
1270 break;
1271
1272 case EM_DLX:
1273 rtype = elf_dlx_reloc_type (type);
1274 break;
1275
1276 case EM_SH:
1277 rtype = elf_sh_reloc_type (type);
1278 break;
1279
1280 case EM_MN10300:
1281 case EM_CYGNUS_MN10300:
1282 rtype = elf_mn10300_reloc_type (type);
1283 break;
1284
1285 case EM_MN10200:
1286 case EM_CYGNUS_MN10200:
1287 rtype = elf_mn10200_reloc_type (type);
1288 break;
1289
1290 case EM_FR30:
1291 case EM_CYGNUS_FR30:
1292 rtype = elf_fr30_reloc_type (type);
1293 break;
1294
1295 case EM_CYGNUS_FRV:
1296 rtype = elf_frv_reloc_type (type);
1297 break;
1298
1299 case EM_FT32:
1300 rtype = elf_ft32_reloc_type (type);
1301 break;
1302
1303 case EM_MCORE:
1304 rtype = elf_mcore_reloc_type (type);
1305 break;
1306
1307 case EM_MMIX:
1308 rtype = elf_mmix_reloc_type (type);
1309 break;
1310
1311 case EM_MOXIE:
1312 rtype = elf_moxie_reloc_type (type);
1313 break;
1314
1315 case EM_MSP430:
1316 if (uses_msp430x_relocs ())
1317 {
1318 rtype = elf_msp430x_reloc_type (type);
1319 break;
1320 }
1321 /* Fall through. */
1322 case EM_MSP430_OLD:
1323 rtype = elf_msp430_reloc_type (type);
1324 break;
1325
1326 case EM_NDS32:
1327 rtype = elf_nds32_reloc_type (type);
1328 break;
1329
1330 case EM_PPC:
1331 rtype = elf_ppc_reloc_type (type);
1332 break;
1333
1334 case EM_PPC64:
1335 rtype = elf_ppc64_reloc_type (type);
1336 break;
1337
1338 case EM_MIPS:
1339 case EM_MIPS_RS3_LE:
1340 rtype = elf_mips_reloc_type (type);
1341 break;
1342
1343 case EM_RISCV:
1344 rtype = elf_riscv_reloc_type (type);
1345 break;
1346
1347 case EM_ALPHA:
1348 rtype = elf_alpha_reloc_type (type);
1349 break;
1350
1351 case EM_ARM:
1352 rtype = elf_arm_reloc_type (type);
1353 break;
1354
1355 case EM_ARC:
1356 case EM_ARC_COMPACT:
1357 case EM_ARC_COMPACT2:
1358 rtype = elf_arc_reloc_type (type);
1359 break;
1360
1361 case EM_PARISC:
1362 rtype = elf_hppa_reloc_type (type);
1363 break;
1364
1365 case EM_H8_300:
1366 case EM_H8_300H:
1367 case EM_H8S:
1368 rtype = elf_h8_reloc_type (type);
1369 break;
1370
1371 case EM_OR1K:
1372 rtype = elf_or1k_reloc_type (type);
1373 break;
1374
1375 case EM_PJ:
1376 case EM_PJ_OLD:
1377 rtype = elf_pj_reloc_type (type);
1378 break;
1379 case EM_IA_64:
1380 rtype = elf_ia64_reloc_type (type);
1381 break;
1382
1383 case EM_CRIS:
1384 rtype = elf_cris_reloc_type (type);
1385 break;
1386
1387 case EM_860:
1388 rtype = elf_i860_reloc_type (type);
1389 break;
1390
1391 case EM_X86_64:
1392 case EM_L1OM:
1393 case EM_K1OM:
1394 rtype = elf_x86_64_reloc_type (type);
1395 break;
1396
1397 case EM_S370:
1398 rtype = i370_reloc_type (type);
1399 break;
1400
1401 case EM_S390_OLD:
1402 case EM_S390:
1403 rtype = elf_s390_reloc_type (type);
1404 break;
1405
1406 case EM_SCORE:
1407 rtype = elf_score_reloc_type (type);
1408 break;
1409
1410 case EM_XSTORMY16:
1411 rtype = elf_xstormy16_reloc_type (type);
1412 break;
1413
1414 case EM_CRX:
1415 rtype = elf_crx_reloc_type (type);
1416 break;
1417
1418 case EM_VAX:
1419 rtype = elf_vax_reloc_type (type);
1420 break;
1421
1422 case EM_VISIUM:
1423 rtype = elf_visium_reloc_type (type);
1424 break;
1425
1426 case EM_ADAPTEVA_EPIPHANY:
1427 rtype = elf_epiphany_reloc_type (type);
1428 break;
1429
1430 case EM_IP2K:
1431 case EM_IP2K_OLD:
1432 rtype = elf_ip2k_reloc_type (type);
1433 break;
1434
1435 case EM_IQ2000:
1436 rtype = elf_iq2000_reloc_type (type);
1437 break;
1438
1439 case EM_XTENSA_OLD:
1440 case EM_XTENSA:
1441 rtype = elf_xtensa_reloc_type (type);
1442 break;
1443
1444 case EM_LATTICEMICO32:
1445 rtype = elf_lm32_reloc_type (type);
1446 break;
1447
1448 case EM_M32C_OLD:
1449 case EM_M32C:
1450 rtype = elf_m32c_reloc_type (type);
1451 break;
1452
1453 case EM_MT:
1454 rtype = elf_mt_reloc_type (type);
1455 break;
1456
1457 case EM_BLACKFIN:
1458 rtype = elf_bfin_reloc_type (type);
1459 break;
1460
1461 case EM_CYGNUS_MEP:
1462 rtype = elf_mep_reloc_type (type);
1463 break;
1464
1465 case EM_CR16:
1466 rtype = elf_cr16_reloc_type (type);
1467 break;
1468
1469 case EM_MICROBLAZE:
1470 case EM_MICROBLAZE_OLD:
1471 rtype = elf_microblaze_reloc_type (type);
1472 break;
1473
1474 case EM_RL78:
1475 rtype = elf_rl78_reloc_type (type);
1476 break;
1477
1478 case EM_RX:
1479 rtype = elf_rx_reloc_type (type);
1480 break;
1481
1482 case EM_METAG:
1483 rtype = elf_metag_reloc_type (type);
1484 break;
1485
1486 case EM_XC16X:
1487 case EM_C166:
1488 rtype = elf_xc16x_reloc_type (type);
1489 break;
1490
1491 case EM_TI_C6000:
1492 rtype = elf_tic6x_reloc_type (type);
1493 break;
1494
1495 case EM_TILEGX:
1496 rtype = elf_tilegx_reloc_type (type);
1497 break;
1498
1499 case EM_TILEPRO:
1500 rtype = elf_tilepro_reloc_type (type);
1501 break;
1502
1503 case EM_WEBASSEMBLY:
1504 rtype = elf_wasm32_reloc_type (type);
1505 break;
1506
1507 case EM_XGATE:
1508 rtype = elf_xgate_reloc_type (type);
1509 break;
1510
1511 case EM_ALTERA_NIOS2:
1512 rtype = elf_nios2_reloc_type (type);
1513 break;
1514
1515 case EM_TI_PRU:
1516 rtype = elf_pru_reloc_type (type);
1517 break;
1518 }
1519
1520 if (rtype == NULL)
1521 printf (_("unrecognized: %-7lx"), (unsigned long) type & 0xffffffff);
1522 else
1523 printf (do_wide ? "%-22.22s" : "%-17.17s", rtype);
1524
1525 if (elf_header.e_machine == EM_ALPHA
1526 && rtype != NULL
1527 && streq (rtype, "R_ALPHA_LITUSE")
1528 && is_rela)
1529 {
1530 switch (rels[i].r_addend)
1531 {
1532 case LITUSE_ALPHA_ADDR: rtype = "ADDR"; break;
1533 case LITUSE_ALPHA_BASE: rtype = "BASE"; break;
1534 case LITUSE_ALPHA_BYTOFF: rtype = "BYTOFF"; break;
1535 case LITUSE_ALPHA_JSR: rtype = "JSR"; break;
1536 case LITUSE_ALPHA_TLSGD: rtype = "TLSGD"; break;
1537 case LITUSE_ALPHA_TLSLDM: rtype = "TLSLDM"; break;
1538 case LITUSE_ALPHA_JSRDIRECT: rtype = "JSRDIRECT"; break;
1539 default: rtype = NULL;
1540 }
1541
1542 if (rtype)
1543 printf (" (%s)", rtype);
1544 else
1545 {
1546 putchar (' ');
1547 printf (_("<unknown addend: %lx>"),
1548 (unsigned long) rels[i].r_addend);
1549 res = FALSE;
1550 }
1551 }
1552 else if (symtab_index)
1553 {
1554 if (symtab == NULL || symtab_index >= nsyms)
1555 {
1556 error (_(" bad symbol index: %08lx in reloc"), (unsigned long) symtab_index);
1557 res = FALSE;
1558 }
1559 else
1560 {
1561 Elf_Internal_Sym * psym;
1562 const char * version_string;
1563 enum versioned_symbol_info sym_info;
1564 unsigned short vna_other;
1565
1566 psym = symtab + symtab_index;
1567
1568 version_string
1569 = get_symbol_version_string (file, is_dynsym,
1570 strtab, strtablen,
1571 symtab_index,
1572 psym,
1573 &sym_info,
1574 &vna_other);
1575
1576 printf (" ");
1577
1578 if (ELF_ST_TYPE (psym->st_info) == STT_GNU_IFUNC)
1579 {
1580 const char * name;
1581 unsigned int len;
1582 unsigned int width = is_32bit_elf ? 8 : 14;
1583
1584 /* Relocations against GNU_IFUNC symbols do not use the value
1585 of the symbol as the address to relocate against. Instead
1586 they invoke the function named by the symbol and use its
1587 result as the address for relocation.
1588
1589 To indicate this to the user, do not display the value of
1590 the symbol in the "Symbols's Value" field. Instead show
1591 its name followed by () as a hint that the symbol is
1592 invoked. */
1593
1594 if (strtab == NULL
1595 || psym->st_name == 0
1596 || psym->st_name >= strtablen)
1597 name = "??";
1598 else
1599 name = strtab + psym->st_name;
1600
1601 len = print_symbol (width, name);
1602 if (version_string)
1603 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1604 version_string);
1605 printf ("()%-*s", len <= width ? (width + 1) - len : 1, " ");
1606 }
1607 else
1608 {
1609 print_vma (psym->st_value, LONG_HEX);
1610
1611 printf (is_32bit_elf ? " " : " ");
1612 }
1613
1614 if (psym->st_name == 0)
1615 {
1616 const char * sec_name = "<null>";
1617 char name_buf[40];
1618
1619 if (ELF_ST_TYPE (psym->st_info) == STT_SECTION)
1620 {
1621 if (psym->st_shndx < elf_header.e_shnum)
1622 sec_name = SECTION_NAME (section_headers + psym->st_shndx);
1623 else if (psym->st_shndx == SHN_ABS)
1624 sec_name = "ABS";
1625 else if (psym->st_shndx == SHN_COMMON)
1626 sec_name = "COMMON";
1627 else if ((elf_header.e_machine == EM_MIPS
1628 && psym->st_shndx == SHN_MIPS_SCOMMON)
1629 || (elf_header.e_machine == EM_TI_C6000
1630 && psym->st_shndx == SHN_TIC6X_SCOMMON))
1631 sec_name = "SCOMMON";
1632 else if (elf_header.e_machine == EM_MIPS
1633 && psym->st_shndx == SHN_MIPS_SUNDEFINED)
1634 sec_name = "SUNDEF";
1635 else if ((elf_header.e_machine == EM_X86_64
1636 || elf_header.e_machine == EM_L1OM
1637 || elf_header.e_machine == EM_K1OM)
1638 && psym->st_shndx == SHN_X86_64_LCOMMON)
1639 sec_name = "LARGE_COMMON";
1640 else if (elf_header.e_machine == EM_IA_64
1641 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX
1642 && psym->st_shndx == SHN_IA_64_ANSI_COMMON)
1643 sec_name = "ANSI_COM";
1644 else if (is_ia64_vms ()
1645 && psym->st_shndx == SHN_IA_64_VMS_SYMVEC)
1646 sec_name = "VMS_SYMVEC";
1647 else
1648 {
1649 sprintf (name_buf, "<section 0x%x>",
1650 (unsigned int) psym->st_shndx);
1651 sec_name = name_buf;
1652 }
1653 }
1654 print_symbol (22, sec_name);
1655 }
1656 else if (strtab == NULL)
1657 printf (_("<string table index: %3ld>"), psym->st_name);
1658 else if (psym->st_name >= strtablen)
1659 {
1660 error (_("<corrupt string table index: %3ld>"), psym->st_name);
1661 res = FALSE;
1662 }
1663 else
1664 {
1665 print_symbol (22, strtab + psym->st_name);
1666 if (version_string)
1667 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1668 version_string);
1669 }
1670
1671 if (is_rela)
1672 {
1673 bfd_vma off = rels[i].r_addend;
1674
1675 if ((bfd_signed_vma) off < 0)
1676 printf (" - %" BFD_VMA_FMT "x", - off);
1677 else
1678 printf (" + %" BFD_VMA_FMT "x", off);
1679 }
1680 }
1681 }
1682 else if (is_rela)
1683 {
1684 bfd_vma off = rels[i].r_addend;
1685
1686 printf ("%*c", is_32bit_elf ? 12 : 20, ' ');
1687 if ((bfd_signed_vma) off < 0)
1688 printf ("-%" BFD_VMA_FMT "x", - off);
1689 else
1690 printf ("%" BFD_VMA_FMT "x", off);
1691 }
1692
1693 if (elf_header.e_machine == EM_SPARCV9
1694 && rtype != NULL
1695 && streq (rtype, "R_SPARC_OLO10"))
1696 printf (" + %lx", (unsigned long) ELF64_R_TYPE_DATA (inf));
1697
1698 putchar ('\n');
1699
1700 #ifdef BFD64
1701 if (! is_32bit_elf && elf_header.e_machine == EM_MIPS)
1702 {
1703 bfd_vma type2 = ELF64_MIPS_R_TYPE2 (inf);
1704 bfd_vma type3 = ELF64_MIPS_R_TYPE3 (inf);
1705 const char * rtype2 = elf_mips_reloc_type (type2);
1706 const char * rtype3 = elf_mips_reloc_type (type3);
1707
1708 printf (" Type2: ");
1709
1710 if (rtype2 == NULL)
1711 printf (_("unrecognized: %-7lx"),
1712 (unsigned long) type2 & 0xffffffff);
1713 else
1714 printf ("%-17.17s", rtype2);
1715
1716 printf ("\n Type3: ");
1717
1718 if (rtype3 == NULL)
1719 printf (_("unrecognized: %-7lx"),
1720 (unsigned long) type3 & 0xffffffff);
1721 else
1722 printf ("%-17.17s", rtype3);
1723
1724 putchar ('\n');
1725 }
1726 #endif /* BFD64 */
1727 }
1728
1729 free (rels);
1730
1731 return res;
1732 }
1733
1734 static const char *
1735 get_mips_dynamic_type (unsigned long type)
1736 {
1737 switch (type)
1738 {
1739 case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION";
1740 case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP";
1741 case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM";
1742 case DT_MIPS_IVERSION: return "MIPS_IVERSION";
1743 case DT_MIPS_FLAGS: return "MIPS_FLAGS";
1744 case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS";
1745 case DT_MIPS_MSYM: return "MIPS_MSYM";
1746 case DT_MIPS_CONFLICT: return "MIPS_CONFLICT";
1747 case DT_MIPS_LIBLIST: return "MIPS_LIBLIST";
1748 case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO";
1749 case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO";
1750 case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO";
1751 case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO";
1752 case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO";
1753 case DT_MIPS_GOTSYM: return "MIPS_GOTSYM";
1754 case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO";
1755 case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP";
1756 case DT_MIPS_RLD_MAP_REL: return "MIPS_RLD_MAP_REL";
1757 case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS";
1758 case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO";
1759 case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE";
1760 case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO";
1761 case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC";
1762 case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO";
1763 case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM";
1764 case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO";
1765 case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM";
1766 case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO";
1767 case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS";
1768 case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT";
1769 case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
1770 case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX";
1771 case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX";
1772 case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX";
1773 case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX";
1774 case DT_MIPS_OPTIONS: return "MIPS_OPTIONS";
1775 case DT_MIPS_INTERFACE: return "MIPS_INTERFACE";
1776 case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN";
1777 case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE";
1778 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR";
1779 case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX";
1780 case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE";
1781 case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE";
1782 case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC";
1783 case DT_MIPS_PLTGOT: return "MIPS_PLTGOT";
1784 case DT_MIPS_RWPLT: return "MIPS_RWPLT";
1785 default:
1786 return NULL;
1787 }
1788 }
1789
1790 static const char *
1791 get_sparc64_dynamic_type (unsigned long type)
1792 {
1793 switch (type)
1794 {
1795 case DT_SPARC_REGISTER: return "SPARC_REGISTER";
1796 default:
1797 return NULL;
1798 }
1799 }
1800
1801 static const char *
1802 get_ppc_dynamic_type (unsigned long type)
1803 {
1804 switch (type)
1805 {
1806 case DT_PPC_GOT: return "PPC_GOT";
1807 case DT_PPC_OPT: return "PPC_OPT";
1808 default:
1809 return NULL;
1810 }
1811 }
1812
1813 static const char *
1814 get_ppc64_dynamic_type (unsigned long type)
1815 {
1816 switch (type)
1817 {
1818 case DT_PPC64_GLINK: return "PPC64_GLINK";
1819 case DT_PPC64_OPD: return "PPC64_OPD";
1820 case DT_PPC64_OPDSZ: return "PPC64_OPDSZ";
1821 case DT_PPC64_OPT: return "PPC64_OPT";
1822 default:
1823 return NULL;
1824 }
1825 }
1826
1827 static const char *
1828 get_parisc_dynamic_type (unsigned long type)
1829 {
1830 switch (type)
1831 {
1832 case DT_HP_LOAD_MAP: return "HP_LOAD_MAP";
1833 case DT_HP_DLD_FLAGS: return "HP_DLD_FLAGS";
1834 case DT_HP_DLD_HOOK: return "HP_DLD_HOOK";
1835 case DT_HP_UX10_INIT: return "HP_UX10_INIT";
1836 case DT_HP_UX10_INITSZ: return "HP_UX10_INITSZ";
1837 case DT_HP_PREINIT: return "HP_PREINIT";
1838 case DT_HP_PREINITSZ: return "HP_PREINITSZ";
1839 case DT_HP_NEEDED: return "HP_NEEDED";
1840 case DT_HP_TIME_STAMP: return "HP_TIME_STAMP";
1841 case DT_HP_CHECKSUM: return "HP_CHECKSUM";
1842 case DT_HP_GST_SIZE: return "HP_GST_SIZE";
1843 case DT_HP_GST_VERSION: return "HP_GST_VERSION";
1844 case DT_HP_GST_HASHVAL: return "HP_GST_HASHVAL";
1845 case DT_HP_EPLTREL: return "HP_GST_EPLTREL";
1846 case DT_HP_EPLTRELSZ: return "HP_GST_EPLTRELSZ";
1847 case DT_HP_FILTERED: return "HP_FILTERED";
1848 case DT_HP_FILTER_TLS: return "HP_FILTER_TLS";
1849 case DT_HP_COMPAT_FILTERED: return "HP_COMPAT_FILTERED";
1850 case DT_HP_LAZYLOAD: return "HP_LAZYLOAD";
1851 case DT_HP_BIND_NOW_COUNT: return "HP_BIND_NOW_COUNT";
1852 case DT_PLT: return "PLT";
1853 case DT_PLT_SIZE: return "PLT_SIZE";
1854 case DT_DLT: return "DLT";
1855 case DT_DLT_SIZE: return "DLT_SIZE";
1856 default:
1857 return NULL;
1858 }
1859 }
1860
1861 static const char *
1862 get_ia64_dynamic_type (unsigned long type)
1863 {
1864 switch (type)
1865 {
1866 case DT_IA_64_PLT_RESERVE: return "IA_64_PLT_RESERVE";
1867 case DT_IA_64_VMS_SUBTYPE: return "VMS_SUBTYPE";
1868 case DT_IA_64_VMS_IMGIOCNT: return "VMS_IMGIOCNT";
1869 case DT_IA_64_VMS_LNKFLAGS: return "VMS_LNKFLAGS";
1870 case DT_IA_64_VMS_VIR_MEM_BLK_SIZ: return "VMS_VIR_MEM_BLK_SIZ";
1871 case DT_IA_64_VMS_IDENT: return "VMS_IDENT";
1872 case DT_IA_64_VMS_NEEDED_IDENT: return "VMS_NEEDED_IDENT";
1873 case DT_IA_64_VMS_IMG_RELA_CNT: return "VMS_IMG_RELA_CNT";
1874 case DT_IA_64_VMS_SEG_RELA_CNT: return "VMS_SEG_RELA_CNT";
1875 case DT_IA_64_VMS_FIXUP_RELA_CNT: return "VMS_FIXUP_RELA_CNT";
1876 case DT_IA_64_VMS_FIXUP_NEEDED: return "VMS_FIXUP_NEEDED";
1877 case DT_IA_64_VMS_SYMVEC_CNT: return "VMS_SYMVEC_CNT";
1878 case DT_IA_64_VMS_XLATED: return "VMS_XLATED";
1879 case DT_IA_64_VMS_STACKSIZE: return "VMS_STACKSIZE";
1880 case DT_IA_64_VMS_UNWINDSZ: return "VMS_UNWINDSZ";
1881 case DT_IA_64_VMS_UNWIND_CODSEG: return "VMS_UNWIND_CODSEG";
1882 case DT_IA_64_VMS_UNWIND_INFOSEG: return "VMS_UNWIND_INFOSEG";
1883 case DT_IA_64_VMS_LINKTIME: return "VMS_LINKTIME";
1884 case DT_IA_64_VMS_SEG_NO: return "VMS_SEG_NO";
1885 case DT_IA_64_VMS_SYMVEC_OFFSET: return "VMS_SYMVEC_OFFSET";
1886 case DT_IA_64_VMS_SYMVEC_SEG: return "VMS_SYMVEC_SEG";
1887 case DT_IA_64_VMS_UNWIND_OFFSET: return "VMS_UNWIND_OFFSET";
1888 case DT_IA_64_VMS_UNWIND_SEG: return "VMS_UNWIND_SEG";
1889 case DT_IA_64_VMS_STRTAB_OFFSET: return "VMS_STRTAB_OFFSET";
1890 case DT_IA_64_VMS_SYSVER_OFFSET: return "VMS_SYSVER_OFFSET";
1891 case DT_IA_64_VMS_IMG_RELA_OFF: return "VMS_IMG_RELA_OFF";
1892 case DT_IA_64_VMS_SEG_RELA_OFF: return "VMS_SEG_RELA_OFF";
1893 case DT_IA_64_VMS_FIXUP_RELA_OFF: return "VMS_FIXUP_RELA_OFF";
1894 case DT_IA_64_VMS_PLTGOT_OFFSET: return "VMS_PLTGOT_OFFSET";
1895 case DT_IA_64_VMS_PLTGOT_SEG: return "VMS_PLTGOT_SEG";
1896 case DT_IA_64_VMS_FPMODE: return "VMS_FPMODE";
1897 default:
1898 return NULL;
1899 }
1900 }
1901
1902 static const char *
1903 get_solaris_section_type (unsigned long type)
1904 {
1905 switch (type)
1906 {
1907 case 0x6fffffee: return "SUNW_ancillary";
1908 case 0x6fffffef: return "SUNW_capchain";
1909 case 0x6ffffff0: return "SUNW_capinfo";
1910 case 0x6ffffff1: return "SUNW_symsort";
1911 case 0x6ffffff2: return "SUNW_tlssort";
1912 case 0x6ffffff3: return "SUNW_LDYNSYM";
1913 case 0x6ffffff4: return "SUNW_dof";
1914 case 0x6ffffff5: return "SUNW_cap";
1915 case 0x6ffffff6: return "SUNW_SIGNATURE";
1916 case 0x6ffffff7: return "SUNW_ANNOTATE";
1917 case 0x6ffffff8: return "SUNW_DEBUGSTR";
1918 case 0x6ffffff9: return "SUNW_DEBUG";
1919 case 0x6ffffffa: return "SUNW_move";
1920 case 0x6ffffffb: return "SUNW_COMDAT";
1921 case 0x6ffffffc: return "SUNW_syminfo";
1922 case 0x6ffffffd: return "SUNW_verdef";
1923 case 0x6ffffffe: return "SUNW_verneed";
1924 case 0x6fffffff: return "SUNW_versym";
1925 case 0x70000000: return "SPARC_GOTDATA";
1926 default: return NULL;
1927 }
1928 }
1929
1930 static const char *
1931 get_alpha_dynamic_type (unsigned long type)
1932 {
1933 switch (type)
1934 {
1935 case DT_ALPHA_PLTRO: return "ALPHA_PLTRO";
1936 default: return NULL;
1937 }
1938 }
1939
1940 static const char *
1941 get_score_dynamic_type (unsigned long type)
1942 {
1943 switch (type)
1944 {
1945 case DT_SCORE_BASE_ADDRESS: return "SCORE_BASE_ADDRESS";
1946 case DT_SCORE_LOCAL_GOTNO: return "SCORE_LOCAL_GOTNO";
1947 case DT_SCORE_SYMTABNO: return "SCORE_SYMTABNO";
1948 case DT_SCORE_GOTSYM: return "SCORE_GOTSYM";
1949 case DT_SCORE_UNREFEXTNO: return "SCORE_UNREFEXTNO";
1950 case DT_SCORE_HIPAGENO: return "SCORE_HIPAGENO";
1951 default: return NULL;
1952 }
1953 }
1954
1955 static const char *
1956 get_tic6x_dynamic_type (unsigned long type)
1957 {
1958 switch (type)
1959 {
1960 case DT_C6000_GSYM_OFFSET: return "C6000_GSYM_OFFSET";
1961 case DT_C6000_GSTR_OFFSET: return "C6000_GSTR_OFFSET";
1962 case DT_C6000_DSBT_BASE: return "C6000_DSBT_BASE";
1963 case DT_C6000_DSBT_SIZE: return "C6000_DSBT_SIZE";
1964 case DT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
1965 case DT_C6000_DSBT_INDEX: return "C6000_DSBT_INDEX";
1966 default: return NULL;
1967 }
1968 }
1969
1970 static const char *
1971 get_nios2_dynamic_type (unsigned long type)
1972 {
1973 switch (type)
1974 {
1975 case DT_NIOS2_GP: return "NIOS2_GP";
1976 default: return NULL;
1977 }
1978 }
1979
1980 static const char *
1981 get_solaris_dynamic_type (unsigned long type)
1982 {
1983 switch (type)
1984 {
1985 case 0x6000000d: return "SUNW_AUXILIARY";
1986 case 0x6000000e: return "SUNW_RTLDINF";
1987 case 0x6000000f: return "SUNW_FILTER";
1988 case 0x60000010: return "SUNW_CAP";
1989 case 0x60000011: return "SUNW_SYMTAB";
1990 case 0x60000012: return "SUNW_SYMSZ";
1991 case 0x60000013: return "SUNW_SORTENT";
1992 case 0x60000014: return "SUNW_SYMSORT";
1993 case 0x60000015: return "SUNW_SYMSORTSZ";
1994 case 0x60000016: return "SUNW_TLSSORT";
1995 case 0x60000017: return "SUNW_TLSSORTSZ";
1996 case 0x60000018: return "SUNW_CAPINFO";
1997 case 0x60000019: return "SUNW_STRPAD";
1998 case 0x6000001a: return "SUNW_CAPCHAIN";
1999 case 0x6000001b: return "SUNW_LDMACH";
2000 case 0x6000001d: return "SUNW_CAPCHAINENT";
2001 case 0x6000001f: return "SUNW_CAPCHAINSZ";
2002 case 0x60000021: return "SUNW_PARENT";
2003 case 0x60000023: return "SUNW_ASLR";
2004 case 0x60000025: return "SUNW_RELAX";
2005 case 0x60000029: return "SUNW_NXHEAP";
2006 case 0x6000002b: return "SUNW_NXSTACK";
2007
2008 case 0x70000001: return "SPARC_REGISTER";
2009 case 0x7ffffffd: return "AUXILIARY";
2010 case 0x7ffffffe: return "USED";
2011 case 0x7fffffff: return "FILTER";
2012
2013 default: return NULL;
2014 }
2015 }
2016
2017 static const char *
2018 get_dynamic_type (unsigned long type)
2019 {
2020 static char buff[64];
2021
2022 switch (type)
2023 {
2024 case DT_NULL: return "NULL";
2025 case DT_NEEDED: return "NEEDED";
2026 case DT_PLTRELSZ: return "PLTRELSZ";
2027 case DT_PLTGOT: return "PLTGOT";
2028 case DT_HASH: return "HASH";
2029 case DT_STRTAB: return "STRTAB";
2030 case DT_SYMTAB: return "SYMTAB";
2031 case DT_RELA: return "RELA";
2032 case DT_RELASZ: return "RELASZ";
2033 case DT_RELAENT: return "RELAENT";
2034 case DT_STRSZ: return "STRSZ";
2035 case DT_SYMENT: return "SYMENT";
2036 case DT_INIT: return "INIT";
2037 case DT_FINI: return "FINI";
2038 case DT_SONAME: return "SONAME";
2039 case DT_RPATH: return "RPATH";
2040 case DT_SYMBOLIC: return "SYMBOLIC";
2041 case DT_REL: return "REL";
2042 case DT_RELSZ: return "RELSZ";
2043 case DT_RELENT: return "RELENT";
2044 case DT_PLTREL: return "PLTREL";
2045 case DT_DEBUG: return "DEBUG";
2046 case DT_TEXTREL: return "TEXTREL";
2047 case DT_JMPREL: return "JMPREL";
2048 case DT_BIND_NOW: return "BIND_NOW";
2049 case DT_INIT_ARRAY: return "INIT_ARRAY";
2050 case DT_FINI_ARRAY: return "FINI_ARRAY";
2051 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
2052 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
2053 case DT_RUNPATH: return "RUNPATH";
2054 case DT_FLAGS: return "FLAGS";
2055
2056 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
2057 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
2058 case DT_SYMTAB_SHNDX: return "SYMTAB_SHNDX";
2059
2060 case DT_CHECKSUM: return "CHECKSUM";
2061 case DT_PLTPADSZ: return "PLTPADSZ";
2062 case DT_MOVEENT: return "MOVEENT";
2063 case DT_MOVESZ: return "MOVESZ";
2064 case DT_FEATURE: return "FEATURE";
2065 case DT_POSFLAG_1: return "POSFLAG_1";
2066 case DT_SYMINSZ: return "SYMINSZ";
2067 case DT_SYMINENT: return "SYMINENT"; /* aka VALRNGHI */
2068
2069 case DT_ADDRRNGLO: return "ADDRRNGLO";
2070 case DT_CONFIG: return "CONFIG";
2071 case DT_DEPAUDIT: return "DEPAUDIT";
2072 case DT_AUDIT: return "AUDIT";
2073 case DT_PLTPAD: return "PLTPAD";
2074 case DT_MOVETAB: return "MOVETAB";
2075 case DT_SYMINFO: return "SYMINFO"; /* aka ADDRRNGHI */
2076
2077 case DT_VERSYM: return "VERSYM";
2078
2079 case DT_TLSDESC_GOT: return "TLSDESC_GOT";
2080 case DT_TLSDESC_PLT: return "TLSDESC_PLT";
2081 case DT_RELACOUNT: return "RELACOUNT";
2082 case DT_RELCOUNT: return "RELCOUNT";
2083 case DT_FLAGS_1: return "FLAGS_1";
2084 case DT_VERDEF: return "VERDEF";
2085 case DT_VERDEFNUM: return "VERDEFNUM";
2086 case DT_VERNEED: return "VERNEED";
2087 case DT_VERNEEDNUM: return "VERNEEDNUM";
2088
2089 case DT_AUXILIARY: return "AUXILIARY";
2090 case DT_USED: return "USED";
2091 case DT_FILTER: return "FILTER";
2092
2093 case DT_GNU_PRELINKED: return "GNU_PRELINKED";
2094 case DT_GNU_CONFLICT: return "GNU_CONFLICT";
2095 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
2096 case DT_GNU_LIBLIST: return "GNU_LIBLIST";
2097 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
2098 case DT_GNU_HASH: return "GNU_HASH";
2099
2100 default:
2101 if ((type >= DT_LOPROC) && (type <= DT_HIPROC))
2102 {
2103 const char * result;
2104
2105 switch (elf_header.e_machine)
2106 {
2107 case EM_MIPS:
2108 case EM_MIPS_RS3_LE:
2109 result = get_mips_dynamic_type (type);
2110 break;
2111 case EM_SPARCV9:
2112 result = get_sparc64_dynamic_type (type);
2113 break;
2114 case EM_PPC:
2115 result = get_ppc_dynamic_type (type);
2116 break;
2117 case EM_PPC64:
2118 result = get_ppc64_dynamic_type (type);
2119 break;
2120 case EM_IA_64:
2121 result = get_ia64_dynamic_type (type);
2122 break;
2123 case EM_ALPHA:
2124 result = get_alpha_dynamic_type (type);
2125 break;
2126 case EM_SCORE:
2127 result = get_score_dynamic_type (type);
2128 break;
2129 case EM_TI_C6000:
2130 result = get_tic6x_dynamic_type (type);
2131 break;
2132 case EM_ALTERA_NIOS2:
2133 result = get_nios2_dynamic_type (type);
2134 break;
2135 default:
2136 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2137 result = get_solaris_dynamic_type (type);
2138 else
2139 result = NULL;
2140 break;
2141 }
2142
2143 if (result != NULL)
2144 return result;
2145
2146 snprintf (buff, sizeof (buff), _("Processor Specific: %lx"), type);
2147 }
2148 else if (((type >= DT_LOOS) && (type <= DT_HIOS))
2149 || (elf_header.e_machine == EM_PARISC
2150 && (type >= OLD_DT_LOOS) && (type <= OLD_DT_HIOS)))
2151 {
2152 const char * result;
2153
2154 switch (elf_header.e_machine)
2155 {
2156 case EM_PARISC:
2157 result = get_parisc_dynamic_type (type);
2158 break;
2159 case EM_IA_64:
2160 result = get_ia64_dynamic_type (type);
2161 break;
2162 default:
2163 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2164 result = get_solaris_dynamic_type (type);
2165 else
2166 result = NULL;
2167 break;
2168 }
2169
2170 if (result != NULL)
2171 return result;
2172
2173 snprintf (buff, sizeof (buff), _("Operating System specific: %lx"),
2174 type);
2175 }
2176 else
2177 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), type);
2178
2179 return buff;
2180 }
2181 }
2182
2183 static char *
2184 get_file_type (unsigned e_type)
2185 {
2186 static char buff[32];
2187
2188 switch (e_type)
2189 {
2190 case ET_NONE: return _("NONE (None)");
2191 case ET_REL: return _("REL (Relocatable file)");
2192 case ET_EXEC: return _("EXEC (Executable file)");
2193 case ET_DYN: return _("DYN (Shared object file)");
2194 case ET_CORE: return _("CORE (Core file)");
2195
2196 default:
2197 if ((e_type >= ET_LOPROC) && (e_type <= ET_HIPROC))
2198 snprintf (buff, sizeof (buff), _("Processor Specific: (%x)"), e_type);
2199 else if ((e_type >= ET_LOOS) && (e_type <= ET_HIOS))
2200 snprintf (buff, sizeof (buff), _("OS Specific: (%x)"), e_type);
2201 else
2202 snprintf (buff, sizeof (buff), _("<unknown>: %x"), e_type);
2203 return buff;
2204 }
2205 }
2206
2207 static char *
2208 get_machine_name (unsigned e_machine)
2209 {
2210 static char buff[64]; /* XXX */
2211
2212 switch (e_machine)
2213 {
2214 /* Please keep this switch table sorted by increasing EM_ value. */
2215 /* 0 */
2216 case EM_NONE: return _("None");
2217 case EM_M32: return "WE32100";
2218 case EM_SPARC: return "Sparc";
2219 case EM_386: return "Intel 80386";
2220 case EM_68K: return "MC68000";
2221 case EM_88K: return "MC88000";
2222 case EM_IAMCU: return "Intel MCU";
2223 case EM_860: return "Intel 80860";
2224 case EM_MIPS: return "MIPS R3000";
2225 case EM_S370: return "IBM System/370";
2226 /* 10 */
2227 case EM_MIPS_RS3_LE: return "MIPS R4000 big-endian";
2228 case EM_OLD_SPARCV9: return "Sparc v9 (old)";
2229 case EM_PARISC: return "HPPA";
2230 case EM_VPP550: return "Fujitsu VPP500";
2231 case EM_SPARC32PLUS: return "Sparc v8+" ;
2232 case EM_960: return "Intel 90860";
2233 case EM_PPC: return "PowerPC";
2234 /* 20 */
2235 case EM_PPC64: return "PowerPC64";
2236 case EM_S390_OLD:
2237 case EM_S390: return "IBM S/390";
2238 case EM_SPU: return "SPU";
2239 /* 30 */
2240 case EM_V800: return "Renesas V850 (using RH850 ABI)";
2241 case EM_FR20: return "Fujitsu FR20";
2242 case EM_RH32: return "TRW RH32";
2243 case EM_MCORE: return "MCORE";
2244 /* 40 */
2245 case EM_ARM: return "ARM";
2246 case EM_OLD_ALPHA: return "Digital Alpha (old)";
2247 case EM_SH: return "Renesas / SuperH SH";
2248 case EM_SPARCV9: return "Sparc v9";
2249 case EM_TRICORE: return "Siemens Tricore";
2250 case EM_ARC: return "ARC";
2251 case EM_H8_300: return "Renesas H8/300";
2252 case EM_H8_300H: return "Renesas H8/300H";
2253 case EM_H8S: return "Renesas H8S";
2254 case EM_H8_500: return "Renesas H8/500";
2255 /* 50 */
2256 case EM_IA_64: return "Intel IA-64";
2257 case EM_MIPS_X: return "Stanford MIPS-X";
2258 case EM_COLDFIRE: return "Motorola Coldfire";
2259 case EM_68HC12: return "Motorola MC68HC12 Microcontroller";
2260 case EM_MMA: return "Fujitsu Multimedia Accelerator";
2261 case EM_PCP: return "Siemens PCP";
2262 case EM_NCPU: return "Sony nCPU embedded RISC processor";
2263 case EM_NDR1: return "Denso NDR1 microprocesspr";
2264 case EM_STARCORE: return "Motorola Star*Core processor";
2265 case EM_ME16: return "Toyota ME16 processor";
2266 /* 60 */
2267 case EM_ST100: return "STMicroelectronics ST100 processor";
2268 case EM_TINYJ: return "Advanced Logic Corp. TinyJ embedded processor";
2269 case EM_X86_64: return "Advanced Micro Devices X86-64";
2270 case EM_PDSP: return "Sony DSP processor";
2271 case EM_PDP10: return "Digital Equipment Corp. PDP-10";
2272 case EM_PDP11: return "Digital Equipment Corp. PDP-11";
2273 case EM_FX66: return "Siemens FX66 microcontroller";
2274 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 bit microcontroller";
2275 case EM_ST7: return "STMicroelectronics ST7 8-bit microcontroller";
2276 case EM_68HC16: return "Motorola MC68HC16 Microcontroller";
2277 /* 70 */
2278 case EM_68HC11: return "Motorola MC68HC11 Microcontroller";
2279 case EM_68HC08: return "Motorola MC68HC08 Microcontroller";
2280 case EM_68HC05: return "Motorola MC68HC05 Microcontroller";
2281 case EM_SVX: return "Silicon Graphics SVx";
2282 case EM_ST19: return "STMicroelectronics ST19 8-bit microcontroller";
2283 case EM_VAX: return "Digital VAX";
2284 case EM_CRIS: return "Axis Communications 32-bit embedded processor";
2285 case EM_JAVELIN: return "Infineon Technologies 32-bit embedded cpu";
2286 case EM_FIREPATH: return "Element 14 64-bit DSP processor";
2287 case EM_ZSP: return "LSI Logic's 16-bit DSP processor";
2288 /* 80 */
2289 case EM_MMIX: return "Donald Knuth's educational 64-bit processor";
2290 case EM_HUANY: return "Harvard Universitys's machine-independent object format";
2291 case EM_PRISM: return "Vitesse Prism";
2292 case EM_AVR_OLD:
2293 case EM_AVR: return "Atmel AVR 8-bit microcontroller";
2294 case EM_CYGNUS_FR30:
2295 case EM_FR30: return "Fujitsu FR30";
2296 case EM_CYGNUS_D10V:
2297 case EM_D10V: return "d10v";
2298 case EM_CYGNUS_D30V:
2299 case EM_D30V: return "d30v";
2300 case EM_CYGNUS_V850:
2301 case EM_V850: return "Renesas V850";
2302 case EM_CYGNUS_M32R:
2303 case EM_M32R: return "Renesas M32R (formerly Mitsubishi M32r)";
2304 case EM_CYGNUS_MN10300:
2305 case EM_MN10300: return "mn10300";
2306 /* 90 */
2307 case EM_CYGNUS_MN10200:
2308 case EM_MN10200: return "mn10200";
2309 case EM_PJ: return "picoJava";
2310 case EM_OR1K: return "OpenRISC 1000";
2311 case EM_ARC_COMPACT: return "ARCompact";
2312 case EM_XTENSA_OLD:
2313 case EM_XTENSA: return "Tensilica Xtensa Processor";
2314 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
2315 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
2316 case EM_NS32K: return "National Semiconductor 32000 series";
2317 case EM_TPC: return "Tenor Network TPC processor";
2318 case EM_SNP1K: return "Trebia SNP 1000 processor";
2319 /* 100 */
2320 case EM_ST200: return "STMicroelectronics ST200 microcontroller";
2321 case EM_IP2K_OLD:
2322 case EM_IP2K: return "Ubicom IP2xxx 8-bit microcontrollers";
2323 case EM_MAX: return "MAX Processor";
2324 case EM_CR: return "National Semiconductor CompactRISC";
2325 case EM_F2MC16: return "Fujitsu F2MC16";
2326 case EM_MSP430: return "Texas Instruments msp430 microcontroller";
2327 case EM_BLACKFIN: return "Analog Devices Blackfin";
2328 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
2329 case EM_SEP: return "Sharp embedded microprocessor";
2330 case EM_ARCA: return "Arca RISC microprocessor";
2331 /* 110 */
2332 case EM_UNICORE: return "Unicore";
2333 case EM_EXCESS: return "eXcess 16/32/64-bit configurable embedded CPU";
2334 case EM_DXP: return "Icera Semiconductor Inc. Deep Execution Processor";
2335 case EM_ALTERA_NIOS2: return "Altera Nios II";
2336 case EM_CRX: return "National Semiconductor CRX microprocessor";
2337 case EM_XGATE: return "Motorola XGATE embedded processor";
2338 case EM_C166:
2339 case EM_XC16X: return "Infineon Technologies xc16x";
2340 case EM_M16C: return "Renesas M16C series microprocessors";
2341 case EM_DSPIC30F: return "Microchip Technology dsPIC30F Digital Signal Controller";
2342 case EM_CE: return "Freescale Communication Engine RISC core";
2343 /* 120 */
2344 case EM_M32C: return "Renesas M32c";
2345 /* 130 */
2346 case EM_TSK3000: return "Altium TSK3000 core";
2347 case EM_RS08: return "Freescale RS08 embedded processor";
2348 case EM_ECOG2: return "Cyan Technology eCOG2 microprocessor";
2349 case EM_SCORE: return "SUNPLUS S+Core";
2350 case EM_DSP24: return "New Japan Radio (NJR) 24-bit DSP Processor";
2351 case EM_VIDEOCORE3: return "Broadcom VideoCore III processor";
2352 case EM_LATTICEMICO32: return "Lattice Mico32";
2353 case EM_SE_C17: return "Seiko Epson C17 family";
2354 /* 140 */
2355 case EM_TI_C6000: return "Texas Instruments TMS320C6000 DSP family";
2356 case EM_TI_C2000: return "Texas Instruments TMS320C2000 DSP family";
2357 case EM_TI_C5500: return "Texas Instruments TMS320C55x DSP family";
2358 case EM_TI_PRU: return "TI PRU I/O processor";
2359 /* 160 */
2360 case EM_MMDSP_PLUS: return "STMicroelectronics 64bit VLIW Data Signal Processor";
2361 case EM_CYPRESS_M8C: return "Cypress M8C microprocessor";
2362 case EM_R32C: return "Renesas R32C series microprocessors";
2363 case EM_TRIMEDIA: return "NXP Semiconductors TriMedia architecture family";
2364 case EM_QDSP6: return "QUALCOMM DSP6 Processor";
2365 case EM_8051: return "Intel 8051 and variants";
2366 case EM_STXP7X: return "STMicroelectronics STxP7x family";
2367 case EM_NDS32: return "Andes Technology compact code size embedded RISC processor family";
2368 case EM_ECOG1X: return "Cyan Technology eCOG1X family";
2369 case EM_MAXQ30: return "Dallas Semiconductor MAXQ30 Core microcontrollers";
2370 /* 170 */
2371 case EM_XIMO16: return "New Japan Radio (NJR) 16-bit DSP Processor";
2372 case EM_MANIK: return "M2000 Reconfigurable RISC Microprocessor";
2373 case EM_CRAYNV2: return "Cray Inc. NV2 vector architecture";
2374 case EM_RX: return "Renesas RX";
2375 case EM_METAG: return "Imagination Technologies Meta processor architecture";
2376 case EM_MCST_ELBRUS: return "MCST Elbrus general purpose hardware architecture";
2377 case EM_ECOG16: return "Cyan Technology eCOG16 family";
2378 case EM_CR16:
2379 case EM_MICROBLAZE:
2380 case EM_MICROBLAZE_OLD: return "Xilinx MicroBlaze";
2381 case EM_ETPU: return "Freescale Extended Time Processing Unit";
2382 case EM_SLE9X: return "Infineon Technologies SLE9X core";
2383 /* 180 */
2384 case EM_L1OM: return "Intel L1OM";
2385 case EM_K1OM: return "Intel K1OM";
2386 case EM_INTEL182: return "Intel (reserved)";
2387 case EM_AARCH64: return "AArch64";
2388 case EM_ARM184: return "ARM (reserved)";
2389 case EM_AVR32: return "Atmel Corporation 32-bit microprocessor";
2390 case EM_STM8: return "STMicroeletronics STM8 8-bit microcontroller";
2391 case EM_TILE64: return "Tilera TILE64 multicore architecture family";
2392 case EM_TILEPRO: return "Tilera TILEPro multicore architecture family";
2393 /* 190 */
2394 case EM_CUDA: return "NVIDIA CUDA architecture";
2395 case EM_TILEGX: return "Tilera TILE-Gx multicore architecture family";
2396 case EM_CLOUDSHIELD: return "CloudShield architecture family";
2397 case EM_COREA_1ST: return "KIPO-KAIST Core-A 1st generation processor family";
2398 case EM_COREA_2ND: return "KIPO-KAIST Core-A 2nd generation processor family";
2399 case EM_ARC_COMPACT2: return "ARCv2";
2400 case EM_OPEN8: return "Open8 8-bit RISC soft processor core";
2401 case EM_RL78: return "Renesas RL78";
2402 case EM_VIDEOCORE5: return "Broadcom VideoCore V processor";
2403 case EM_78K0R: return "Renesas 78K0R";
2404 /* 200 */
2405 case EM_56800EX: return "Freescale 56800EX Digital Signal Controller (DSC)";
2406 case EM_BA1: return "Beyond BA1 CPU architecture";
2407 case EM_BA2: return "Beyond BA2 CPU architecture";
2408 case EM_XCORE: return "XMOS xCORE processor family";
2409 case EM_MCHP_PIC: return "Microchip 8-bit PIC(r) family";
2410 /* 210 */
2411 case EM_KM32: return "KM211 KM32 32-bit processor";
2412 case EM_KMX32: return "KM211 KMX32 32-bit processor";
2413 case EM_KMX16: return "KM211 KMX16 16-bit processor";
2414 case EM_KMX8: return "KM211 KMX8 8-bit processor";
2415 case EM_KVARC: return "KM211 KVARC processor";
2416 case EM_CDP: return "Paneve CDP architecture family";
2417 case EM_COGE: return "Cognitive Smart Memory Processor";
2418 case EM_COOL: return "Bluechip Systems CoolEngine";
2419 case EM_NORC: return "Nanoradio Optimized RISC";
2420 case EM_CSR_KALIMBA: return "CSR Kalimba architecture family";
2421 /* 220 */
2422 case EM_Z80: return "Zilog Z80";
2423 case EM_VISIUM: return "CDS VISIUMcore processor";
2424 case EM_FT32: return "FTDI Chip FT32";
2425 case EM_MOXIE: return "Moxie";
2426 case EM_AMDGPU: return "AMD GPU";
2427 case EM_RISCV: return "RISC-V";
2428 case EM_LANAI: return "Lanai 32-bit processor";
2429 case EM_BPF: return "Linux BPF";
2430
2431 /* Large numbers... */
2432 case EM_MT: return "Morpho Techologies MT processor";
2433 case EM_ALPHA: return "Alpha";
2434 case EM_WEBASSEMBLY: return "Web Assembly";
2435 case EM_DLX: return "OpenDLX";
2436 case EM_XSTORMY16: return "Sanyo XStormy16 CPU core";
2437 case EM_IQ2000: return "Vitesse IQ2000";
2438 case EM_M32C_OLD:
2439 case EM_NIOS32: return "Altera Nios";
2440 case EM_CYGNUS_MEP: return "Toshiba MeP Media Engine";
2441 case EM_ADAPTEVA_EPIPHANY: return "Adapteva EPIPHANY";
2442 case EM_CYGNUS_FRV: return "Fujitsu FR-V";
2443
2444 default:
2445 snprintf (buff, sizeof (buff), _("<unknown>: 0x%x"), e_machine);
2446 return buff;
2447 }
2448 }
2449
2450 static void
2451 decode_ARC_machine_flags (unsigned e_flags, unsigned e_machine, char buf[])
2452 {
2453 /* ARC has two machine types EM_ARC_COMPACT and EM_ARC_COMPACT2. Some
2454 other compilers don't a specific architecture type in the e_flags, and
2455 instead use EM_ARC_COMPACT for old ARC600, ARC601, and ARC700
2456 architectures, and switch to EM_ARC_COMPACT2 for newer ARCEM and ARCHS
2457 architectures.
2458
2459 Th GNU tools follows this use of EM_ARC_COMPACT and EM_ARC_COMPACT2,
2460 but also sets a specific architecture type in the e_flags field.
2461
2462 However, when decoding the flags we don't worry if we see an
2463 unexpected pairing, for example EM_ARC_COMPACT machine type, with
2464 ARCEM architecture type. */
2465
2466 switch (e_flags & EF_ARC_MACH_MSK)
2467 {
2468 /* We only expect these to occur for EM_ARC_COMPACT2. */
2469 case EF_ARC_CPU_ARCV2EM:
2470 strcat (buf, ", ARC EM");
2471 break;
2472 case EF_ARC_CPU_ARCV2HS:
2473 strcat (buf, ", ARC HS");
2474 break;
2475
2476 /* We only expect these to occur for EM_ARC_COMPACT. */
2477 case E_ARC_MACH_ARC600:
2478 strcat (buf, ", ARC600");
2479 break;
2480 case E_ARC_MACH_ARC601:
2481 strcat (buf, ", ARC601");
2482 break;
2483 case E_ARC_MACH_ARC700:
2484 strcat (buf, ", ARC700");
2485 break;
2486
2487 /* The only times we should end up here are (a) A corrupt ELF, (b) A
2488 new ELF with new architecture being read by an old version of
2489 readelf, or (c) An ELF built with non-GNU compiler that does not
2490 set the architecture in the e_flags. */
2491 default:
2492 if (e_machine == EM_ARC_COMPACT)
2493 strcat (buf, ", Unknown ARCompact");
2494 else
2495 strcat (buf, ", Unknown ARC");
2496 break;
2497 }
2498
2499 switch (e_flags & EF_ARC_OSABI_MSK)
2500 {
2501 case E_ARC_OSABI_ORIG:
2502 strcat (buf, ", (ABI:legacy)");
2503 break;
2504 case E_ARC_OSABI_V2:
2505 strcat (buf, ", (ABI:v2)");
2506 break;
2507 /* Only upstream 3.9+ kernels will support ARCv2 ISA. */
2508 case E_ARC_OSABI_V3:
2509 strcat (buf, ", v3 no-legacy-syscalls ABI");
2510 break;
2511 default:
2512 strcat (buf, ", unrecognised ARC OSABI flag");
2513 break;
2514 }
2515 }
2516
2517 static void
2518 decode_ARM_machine_flags (unsigned e_flags, char buf[])
2519 {
2520 unsigned eabi;
2521 bfd_boolean unknown = FALSE;
2522
2523 eabi = EF_ARM_EABI_VERSION (e_flags);
2524 e_flags &= ~ EF_ARM_EABIMASK;
2525
2526 /* Handle "generic" ARM flags. */
2527 if (e_flags & EF_ARM_RELEXEC)
2528 {
2529 strcat (buf, ", relocatable executable");
2530 e_flags &= ~ EF_ARM_RELEXEC;
2531 }
2532
2533 /* Now handle EABI specific flags. */
2534 switch (eabi)
2535 {
2536 default:
2537 strcat (buf, ", <unrecognized EABI>");
2538 if (e_flags)
2539 unknown = TRUE;
2540 break;
2541
2542 case EF_ARM_EABI_VER1:
2543 strcat (buf, ", Version1 EABI");
2544 while (e_flags)
2545 {
2546 unsigned flag;
2547
2548 /* Process flags one bit at a time. */
2549 flag = e_flags & - e_flags;
2550 e_flags &= ~ flag;
2551
2552 switch (flag)
2553 {
2554 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2555 strcat (buf, ", sorted symbol tables");
2556 break;
2557
2558 default:
2559 unknown = TRUE;
2560 break;
2561 }
2562 }
2563 break;
2564
2565 case EF_ARM_EABI_VER2:
2566 strcat (buf, ", Version2 EABI");
2567 while (e_flags)
2568 {
2569 unsigned flag;
2570
2571 /* Process flags one bit at a time. */
2572 flag = e_flags & - e_flags;
2573 e_flags &= ~ flag;
2574
2575 switch (flag)
2576 {
2577 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2578 strcat (buf, ", sorted symbol tables");
2579 break;
2580
2581 case EF_ARM_DYNSYMSUSESEGIDX:
2582 strcat (buf, ", dynamic symbols use segment index");
2583 break;
2584
2585 case EF_ARM_MAPSYMSFIRST:
2586 strcat (buf, ", mapping symbols precede others");
2587 break;
2588
2589 default:
2590 unknown = TRUE;
2591 break;
2592 }
2593 }
2594 break;
2595
2596 case EF_ARM_EABI_VER3:
2597 strcat (buf, ", Version3 EABI");
2598 break;
2599
2600 case EF_ARM_EABI_VER4:
2601 strcat (buf, ", Version4 EABI");
2602 while (e_flags)
2603 {
2604 unsigned flag;
2605
2606 /* Process flags one bit at a time. */
2607 flag = e_flags & - e_flags;
2608 e_flags &= ~ flag;
2609
2610 switch (flag)
2611 {
2612 case EF_ARM_BE8:
2613 strcat (buf, ", BE8");
2614 break;
2615
2616 case EF_ARM_LE8:
2617 strcat (buf, ", LE8");
2618 break;
2619
2620 default:
2621 unknown = TRUE;
2622 break;
2623 }
2624 }
2625 break;
2626
2627 case EF_ARM_EABI_VER5:
2628 strcat (buf, ", Version5 EABI");
2629 while (e_flags)
2630 {
2631 unsigned flag;
2632
2633 /* Process flags one bit at a time. */
2634 flag = e_flags & - e_flags;
2635 e_flags &= ~ flag;
2636
2637 switch (flag)
2638 {
2639 case EF_ARM_BE8:
2640 strcat (buf, ", BE8");
2641 break;
2642
2643 case EF_ARM_LE8:
2644 strcat (buf, ", LE8");
2645 break;
2646
2647 case EF_ARM_ABI_FLOAT_SOFT: /* Conflicts with EF_ARM_SOFT_FLOAT. */
2648 strcat (buf, ", soft-float ABI");
2649 break;
2650
2651 case EF_ARM_ABI_FLOAT_HARD: /* Conflicts with EF_ARM_VFP_FLOAT. */
2652 strcat (buf, ", hard-float ABI");
2653 break;
2654
2655 default:
2656 unknown = TRUE;
2657 break;
2658 }
2659 }
2660 break;
2661
2662 case EF_ARM_EABI_UNKNOWN:
2663 strcat (buf, ", GNU EABI");
2664 while (e_flags)
2665 {
2666 unsigned flag;
2667
2668 /* Process flags one bit at a time. */
2669 flag = e_flags & - e_flags;
2670 e_flags &= ~ flag;
2671
2672 switch (flag)
2673 {
2674 case EF_ARM_INTERWORK:
2675 strcat (buf, ", interworking enabled");
2676 break;
2677
2678 case EF_ARM_APCS_26:
2679 strcat (buf, ", uses APCS/26");
2680 break;
2681
2682 case EF_ARM_APCS_FLOAT:
2683 strcat (buf, ", uses APCS/float");
2684 break;
2685
2686 case EF_ARM_PIC:
2687 strcat (buf, ", position independent");
2688 break;
2689
2690 case EF_ARM_ALIGN8:
2691 strcat (buf, ", 8 bit structure alignment");
2692 break;
2693
2694 case EF_ARM_NEW_ABI:
2695 strcat (buf, ", uses new ABI");
2696 break;
2697
2698 case EF_ARM_OLD_ABI:
2699 strcat (buf, ", uses old ABI");
2700 break;
2701
2702 case EF_ARM_SOFT_FLOAT:
2703 strcat (buf, ", software FP");
2704 break;
2705
2706 case EF_ARM_VFP_FLOAT:
2707 strcat (buf, ", VFP");
2708 break;
2709
2710 case EF_ARM_MAVERICK_FLOAT:
2711 strcat (buf, ", Maverick FP");
2712 break;
2713
2714 default:
2715 unknown = TRUE;
2716 break;
2717 }
2718 }
2719 }
2720
2721 if (unknown)
2722 strcat (buf,_(", <unknown>"));
2723 }
2724
2725 static void
2726 decode_AVR_machine_flags (unsigned e_flags, char buf[], size_t size)
2727 {
2728 --size; /* Leave space for null terminator. */
2729
2730 switch (e_flags & EF_AVR_MACH)
2731 {
2732 case E_AVR_MACH_AVR1:
2733 strncat (buf, ", avr:1", size);
2734 break;
2735 case E_AVR_MACH_AVR2:
2736 strncat (buf, ", avr:2", size);
2737 break;
2738 case E_AVR_MACH_AVR25:
2739 strncat (buf, ", avr:25", size);
2740 break;
2741 case E_AVR_MACH_AVR3:
2742 strncat (buf, ", avr:3", size);
2743 break;
2744 case E_AVR_MACH_AVR31:
2745 strncat (buf, ", avr:31", size);
2746 break;
2747 case E_AVR_MACH_AVR35:
2748 strncat (buf, ", avr:35", size);
2749 break;
2750 case E_AVR_MACH_AVR4:
2751 strncat (buf, ", avr:4", size);
2752 break;
2753 case E_AVR_MACH_AVR5:
2754 strncat (buf, ", avr:5", size);
2755 break;
2756 case E_AVR_MACH_AVR51:
2757 strncat (buf, ", avr:51", size);
2758 break;
2759 case E_AVR_MACH_AVR6:
2760 strncat (buf, ", avr:6", size);
2761 break;
2762 case E_AVR_MACH_AVRTINY:
2763 strncat (buf, ", avr:100", size);
2764 break;
2765 case E_AVR_MACH_XMEGA1:
2766 strncat (buf, ", avr:101", size);
2767 break;
2768 case E_AVR_MACH_XMEGA2:
2769 strncat (buf, ", avr:102", size);
2770 break;
2771 case E_AVR_MACH_XMEGA3:
2772 strncat (buf, ", avr:103", size);
2773 break;
2774 case E_AVR_MACH_XMEGA4:
2775 strncat (buf, ", avr:104", size);
2776 break;
2777 case E_AVR_MACH_XMEGA5:
2778 strncat (buf, ", avr:105", size);
2779 break;
2780 case E_AVR_MACH_XMEGA6:
2781 strncat (buf, ", avr:106", size);
2782 break;
2783 case E_AVR_MACH_XMEGA7:
2784 strncat (buf, ", avr:107", size);
2785 break;
2786 default:
2787 strncat (buf, ", avr:<unknown>", size);
2788 break;
2789 }
2790
2791 size -= strlen (buf);
2792 if (e_flags & EF_AVR_LINKRELAX_PREPARED)
2793 strncat (buf, ", link-relax", size);
2794 }
2795
2796 static void
2797 decode_NDS32_machine_flags (unsigned e_flags, char buf[], size_t size)
2798 {
2799 unsigned abi;
2800 unsigned arch;
2801 unsigned config;
2802 unsigned version;
2803 bfd_boolean has_fpu = FALSE;
2804 unsigned int r = 0;
2805
2806 static const char *ABI_STRINGS[] =
2807 {
2808 "ABI v0", /* use r5 as return register; only used in N1213HC */
2809 "ABI v1", /* use r0 as return register */
2810 "ABI v2", /* use r0 as return register and don't reserve 24 bytes for arguments */
2811 "ABI v2fp", /* for FPU */
2812 "AABI",
2813 "ABI2 FP+"
2814 };
2815 static const char *VER_STRINGS[] =
2816 {
2817 "Andes ELF V1.3 or older",
2818 "Andes ELF V1.3.1",
2819 "Andes ELF V1.4"
2820 };
2821 static const char *ARCH_STRINGS[] =
2822 {
2823 "",
2824 "Andes Star v1.0",
2825 "Andes Star v2.0",
2826 "Andes Star v3.0",
2827 "Andes Star v3.0m"
2828 };
2829
2830 abi = EF_NDS_ABI & e_flags;
2831 arch = EF_NDS_ARCH & e_flags;
2832 config = EF_NDS_INST & e_flags;
2833 version = EF_NDS32_ELF_VERSION & e_flags;
2834
2835 memset (buf, 0, size);
2836
2837 switch (abi)
2838 {
2839 case E_NDS_ABI_V0:
2840 case E_NDS_ABI_V1:
2841 case E_NDS_ABI_V2:
2842 case E_NDS_ABI_V2FP:
2843 case E_NDS_ABI_AABI:
2844 case E_NDS_ABI_V2FP_PLUS:
2845 /* In case there are holes in the array. */
2846 r += snprintf (buf + r, size - r, ", %s", ABI_STRINGS[abi >> EF_NDS_ABI_SHIFT]);
2847 break;
2848
2849 default:
2850 r += snprintf (buf + r, size - r, ", <unrecognized ABI>");
2851 break;
2852 }
2853
2854 switch (version)
2855 {
2856 case E_NDS32_ELF_VER_1_2:
2857 case E_NDS32_ELF_VER_1_3:
2858 case E_NDS32_ELF_VER_1_4:
2859 r += snprintf (buf + r, size - r, ", %s", VER_STRINGS[version >> EF_NDS32_ELF_VERSION_SHIFT]);
2860 break;
2861
2862 default:
2863 r += snprintf (buf + r, size - r, ", <unrecognized ELF version number>");
2864 break;
2865 }
2866
2867 if (E_NDS_ABI_V0 == abi)
2868 {
2869 /* OLD ABI; only used in N1213HC, has performance extension 1. */
2870 r += snprintf (buf + r, size - r, ", Andes Star v1.0, N1213HC, MAC, PERF1");
2871 if (arch == E_NDS_ARCH_STAR_V1_0)
2872 r += snprintf (buf + r, size -r, ", 16b"); /* has 16-bit instructions */
2873 return;
2874 }
2875
2876 switch (arch)
2877 {
2878 case E_NDS_ARCH_STAR_V1_0:
2879 case E_NDS_ARCH_STAR_V2_0:
2880 case E_NDS_ARCH_STAR_V3_0:
2881 case E_NDS_ARCH_STAR_V3_M:
2882 r += snprintf (buf + r, size - r, ", %s", ARCH_STRINGS[arch >> EF_NDS_ARCH_SHIFT]);
2883 break;
2884
2885 default:
2886 r += snprintf (buf + r, size - r, ", <unrecognized architecture>");
2887 /* ARCH version determines how the e_flags are interpreted.
2888 If it is unknown, we cannot proceed. */
2889 return;
2890 }
2891
2892 /* Newer ABI; Now handle architecture specific flags. */
2893 if (arch == E_NDS_ARCH_STAR_V1_0)
2894 {
2895 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2896 r += snprintf (buf + r, size -r, ", MFUSR_PC");
2897
2898 if (!(config & E_NDS32_HAS_NO_MAC_INST))
2899 r += snprintf (buf + r, size -r, ", MAC");
2900
2901 if (config & E_NDS32_HAS_DIV_INST)
2902 r += snprintf (buf + r, size -r, ", DIV");
2903
2904 if (config & E_NDS32_HAS_16BIT_INST)
2905 r += snprintf (buf + r, size -r, ", 16b");
2906 }
2907 else
2908 {
2909 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2910 {
2911 if (version <= E_NDS32_ELF_VER_1_3)
2912 r += snprintf (buf + r, size -r, ", [B8]");
2913 else
2914 r += snprintf (buf + r, size -r, ", EX9");
2915 }
2916
2917 if (config & E_NDS32_HAS_MAC_DX_INST)
2918 r += snprintf (buf + r, size -r, ", MAC_DX");
2919
2920 if (config & E_NDS32_HAS_DIV_DX_INST)
2921 r += snprintf (buf + r, size -r, ", DIV_DX");
2922
2923 if (config & E_NDS32_HAS_16BIT_INST)
2924 {
2925 if (version <= E_NDS32_ELF_VER_1_3)
2926 r += snprintf (buf + r, size -r, ", 16b");
2927 else
2928 r += snprintf (buf + r, size -r, ", IFC");
2929 }
2930 }
2931
2932 if (config & E_NDS32_HAS_EXT_INST)
2933 r += snprintf (buf + r, size -r, ", PERF1");
2934
2935 if (config & E_NDS32_HAS_EXT2_INST)
2936 r += snprintf (buf + r, size -r, ", PERF2");
2937
2938 if (config & E_NDS32_HAS_FPU_INST)
2939 {
2940 has_fpu = TRUE;
2941 r += snprintf (buf + r, size -r, ", FPU_SP");
2942 }
2943
2944 if (config & E_NDS32_HAS_FPU_DP_INST)
2945 {
2946 has_fpu = TRUE;
2947 r += snprintf (buf + r, size -r, ", FPU_DP");
2948 }
2949
2950 if (config & E_NDS32_HAS_FPU_MAC_INST)
2951 {
2952 has_fpu = TRUE;
2953 r += snprintf (buf + r, size -r, ", FPU_MAC");
2954 }
2955
2956 if (has_fpu)
2957 {
2958 switch ((config & E_NDS32_FPU_REG_CONF) >> E_NDS32_FPU_REG_CONF_SHIFT)
2959 {
2960 case E_NDS32_FPU_REG_8SP_4DP:
2961 r += snprintf (buf + r, size -r, ", FPU_REG:8/4");
2962 break;
2963 case E_NDS32_FPU_REG_16SP_8DP:
2964 r += snprintf (buf + r, size -r, ", FPU_REG:16/8");
2965 break;
2966 case E_NDS32_FPU_REG_32SP_16DP:
2967 r += snprintf (buf + r, size -r, ", FPU_REG:32/16");
2968 break;
2969 case E_NDS32_FPU_REG_32SP_32DP:
2970 r += snprintf (buf + r, size -r, ", FPU_REG:32/32");
2971 break;
2972 }
2973 }
2974
2975 if (config & E_NDS32_HAS_AUDIO_INST)
2976 r += snprintf (buf + r, size -r, ", AUDIO");
2977
2978 if (config & E_NDS32_HAS_STRING_INST)
2979 r += snprintf (buf + r, size -r, ", STR");
2980
2981 if (config & E_NDS32_HAS_REDUCED_REGS)
2982 r += snprintf (buf + r, size -r, ", 16REG");
2983
2984 if (config & E_NDS32_HAS_VIDEO_INST)
2985 {
2986 if (version <= E_NDS32_ELF_VER_1_3)
2987 r += snprintf (buf + r, size -r, ", VIDEO");
2988 else
2989 r += snprintf (buf + r, size -r, ", SATURATION");
2990 }
2991
2992 if (config & E_NDS32_HAS_ENCRIPT_INST)
2993 r += snprintf (buf + r, size -r, ", ENCRP");
2994
2995 if (config & E_NDS32_HAS_L2C_INST)
2996 r += snprintf (buf + r, size -r, ", L2C");
2997 }
2998
2999 static char *
3000 get_machine_flags (unsigned e_flags, unsigned e_machine)
3001 {
3002 static char buf[1024];
3003
3004 buf[0] = '\0';
3005
3006 if (e_flags)
3007 {
3008 switch (e_machine)
3009 {
3010 default:
3011 break;
3012
3013 case EM_ARC_COMPACT2:
3014 case EM_ARC_COMPACT:
3015 decode_ARC_machine_flags (e_flags, e_machine, buf);
3016 break;
3017
3018 case EM_ARM:
3019 decode_ARM_machine_flags (e_flags, buf);
3020 break;
3021
3022 case EM_AVR:
3023 decode_AVR_machine_flags (e_flags, buf, sizeof buf);
3024 break;
3025
3026 case EM_BLACKFIN:
3027 if (e_flags & EF_BFIN_PIC)
3028 strcat (buf, ", PIC");
3029
3030 if (e_flags & EF_BFIN_FDPIC)
3031 strcat (buf, ", FDPIC");
3032
3033 if (e_flags & EF_BFIN_CODE_IN_L1)
3034 strcat (buf, ", code in L1");
3035
3036 if (e_flags & EF_BFIN_DATA_IN_L1)
3037 strcat (buf, ", data in L1");
3038
3039 break;
3040
3041 case EM_CYGNUS_FRV:
3042 switch (e_flags & EF_FRV_CPU_MASK)
3043 {
3044 case EF_FRV_CPU_GENERIC:
3045 break;
3046
3047 default:
3048 strcat (buf, ", fr???");
3049 break;
3050
3051 case EF_FRV_CPU_FR300:
3052 strcat (buf, ", fr300");
3053 break;
3054
3055 case EF_FRV_CPU_FR400:
3056 strcat (buf, ", fr400");
3057 break;
3058 case EF_FRV_CPU_FR405:
3059 strcat (buf, ", fr405");
3060 break;
3061
3062 case EF_FRV_CPU_FR450:
3063 strcat (buf, ", fr450");
3064 break;
3065
3066 case EF_FRV_CPU_FR500:
3067 strcat (buf, ", fr500");
3068 break;
3069 case EF_FRV_CPU_FR550:
3070 strcat (buf, ", fr550");
3071 break;
3072
3073 case EF_FRV_CPU_SIMPLE:
3074 strcat (buf, ", simple");
3075 break;
3076 case EF_FRV_CPU_TOMCAT:
3077 strcat (buf, ", tomcat");
3078 break;
3079 }
3080 break;
3081
3082 case EM_68K:
3083 if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
3084 strcat (buf, ", m68000");
3085 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
3086 strcat (buf, ", cpu32");
3087 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
3088 strcat (buf, ", fido_a");
3089 else
3090 {
3091 char const * isa = _("unknown");
3092 char const * mac = _("unknown mac");
3093 char const * additional = NULL;
3094
3095 switch (e_flags & EF_M68K_CF_ISA_MASK)
3096 {
3097 case EF_M68K_CF_ISA_A_NODIV:
3098 isa = "A";
3099 additional = ", nodiv";
3100 break;
3101 case EF_M68K_CF_ISA_A:
3102 isa = "A";
3103 break;
3104 case EF_M68K_CF_ISA_A_PLUS:
3105 isa = "A+";
3106 break;
3107 case EF_M68K_CF_ISA_B_NOUSP:
3108 isa = "B";
3109 additional = ", nousp";
3110 break;
3111 case EF_M68K_CF_ISA_B:
3112 isa = "B";
3113 break;
3114 case EF_M68K_CF_ISA_C:
3115 isa = "C";
3116 break;
3117 case EF_M68K_CF_ISA_C_NODIV:
3118 isa = "C";
3119 additional = ", nodiv";
3120 break;
3121 }
3122 strcat (buf, ", cf, isa ");
3123 strcat (buf, isa);
3124 if (additional)
3125 strcat (buf, additional);
3126 if (e_flags & EF_M68K_CF_FLOAT)
3127 strcat (buf, ", float");
3128 switch (e_flags & EF_M68K_CF_MAC_MASK)
3129 {
3130 case 0:
3131 mac = NULL;
3132 break;
3133 case EF_M68K_CF_MAC:
3134 mac = "mac";
3135 break;
3136 case EF_M68K_CF_EMAC:
3137 mac = "emac";
3138 break;
3139 case EF_M68K_CF_EMAC_B:
3140 mac = "emac_b";
3141 break;
3142 }
3143 if (mac)
3144 {
3145 strcat (buf, ", ");
3146 strcat (buf, mac);
3147 }
3148 }
3149 break;
3150
3151 case EM_CYGNUS_MEP:
3152 switch (e_flags & EF_MEP_CPU_MASK)
3153 {
3154 case EF_MEP_CPU_MEP: strcat (buf, ", generic MeP"); break;
3155 case EF_MEP_CPU_C2: strcat (buf, ", MeP C2"); break;
3156 case EF_MEP_CPU_C3: strcat (buf, ", MeP C3"); break;
3157 case EF_MEP_CPU_C4: strcat (buf, ", MeP C4"); break;
3158 case EF_MEP_CPU_C5: strcat (buf, ", MeP C5"); break;
3159 case EF_MEP_CPU_H1: strcat (buf, ", MeP H1"); break;
3160 default: strcat (buf, _(", <unknown MeP cpu type>")); break;
3161 }
3162
3163 switch (e_flags & EF_MEP_COP_MASK)
3164 {
3165 case EF_MEP_COP_NONE: break;
3166 case EF_MEP_COP_AVC: strcat (buf, ", AVC coprocessor"); break;
3167 case EF_MEP_COP_AVC2: strcat (buf, ", AVC2 coprocessor"); break;
3168 case EF_MEP_COP_FMAX: strcat (buf, ", FMAX coprocessor"); break;
3169 case EF_MEP_COP_IVC2: strcat (buf, ", IVC2 coprocessor"); break;
3170 default: strcat (buf, _("<unknown MeP copro type>")); break;
3171 }
3172
3173 if (e_flags & EF_MEP_LIBRARY)
3174 strcat (buf, ", Built for Library");
3175
3176 if (e_flags & EF_MEP_INDEX_MASK)
3177 sprintf (buf + strlen (buf), ", Configuration Index: %#x",
3178 e_flags & EF_MEP_INDEX_MASK);
3179
3180 if (e_flags & ~ EF_MEP_ALL_FLAGS)
3181 sprintf (buf + strlen (buf), _(", unknown flags bits: %#x"),
3182 e_flags & ~ EF_MEP_ALL_FLAGS);
3183 break;
3184
3185 case EM_PPC:
3186 if (e_flags & EF_PPC_EMB)
3187 strcat (buf, ", emb");
3188
3189 if (e_flags & EF_PPC_RELOCATABLE)
3190 strcat (buf, _(", relocatable"));
3191
3192 if (e_flags & EF_PPC_RELOCATABLE_LIB)
3193 strcat (buf, _(", relocatable-lib"));
3194 break;
3195
3196 case EM_PPC64:
3197 if (e_flags & EF_PPC64_ABI)
3198 {
3199 char abi[] = ", abiv0";
3200
3201 abi[6] += e_flags & EF_PPC64_ABI;
3202 strcat (buf, abi);
3203 }
3204 break;
3205
3206 case EM_V800:
3207 if ((e_flags & EF_RH850_ABI) == EF_RH850_ABI)
3208 strcat (buf, ", RH850 ABI");
3209
3210 if (e_flags & EF_V800_850E3)
3211 strcat (buf, ", V3 architecture");
3212
3213 if ((e_flags & (EF_RH850_FPU_DOUBLE | EF_RH850_FPU_SINGLE)) == 0)
3214 strcat (buf, ", FPU not used");
3215
3216 if ((e_flags & (EF_RH850_REGMODE22 | EF_RH850_REGMODE32)) == 0)
3217 strcat (buf, ", regmode: COMMON");
3218
3219 if ((e_flags & (EF_RH850_GP_FIX | EF_RH850_GP_NOFIX)) == 0)
3220 strcat (buf, ", r4 not used");
3221
3222 if ((e_flags & (EF_RH850_EP_FIX | EF_RH850_EP_NOFIX)) == 0)
3223 strcat (buf, ", r30 not used");
3224
3225 if ((e_flags & (EF_RH850_TP_FIX | EF_RH850_TP_NOFIX)) == 0)
3226 strcat (buf, ", r5 not used");
3227
3228 if ((e_flags & (EF_RH850_REG2_RESERVE | EF_RH850_REG2_NORESERVE)) == 0)
3229 strcat (buf, ", r2 not used");
3230
3231 for (e_flags &= 0xFFFF; e_flags; e_flags &= ~ (e_flags & - e_flags))
3232 {
3233 switch (e_flags & - e_flags)
3234 {
3235 case EF_RH850_FPU_DOUBLE: strcat (buf, ", double precision FPU"); break;
3236 case EF_RH850_FPU_SINGLE: strcat (buf, ", single precision FPU"); break;
3237 case EF_RH850_REGMODE22: strcat (buf, ", regmode:22"); break;
3238 case EF_RH850_REGMODE32: strcat (buf, ", regmode:23"); break;
3239 case EF_RH850_GP_FIX: strcat (buf, ", r4 fixed"); break;
3240 case EF_RH850_GP_NOFIX: strcat (buf, ", r4 free"); break;
3241 case EF_RH850_EP_FIX: strcat (buf, ", r30 fixed"); break;
3242 case EF_RH850_EP_NOFIX: strcat (buf, ", r30 free"); break;
3243 case EF_RH850_TP_FIX: strcat (buf, ", r5 fixed"); break;
3244 case EF_RH850_TP_NOFIX: strcat (buf, ", r5 free"); break;
3245 case EF_RH850_REG2_RESERVE: strcat (buf, ", r2 fixed"); break;
3246 case EF_RH850_REG2_NORESERVE: strcat (buf, ", r2 free"); break;
3247 default: break;
3248 }
3249 }
3250 break;
3251
3252 case EM_V850:
3253 case EM_CYGNUS_V850:
3254 switch (e_flags & EF_V850_ARCH)
3255 {
3256 case E_V850E3V5_ARCH:
3257 strcat (buf, ", v850e3v5");
3258 break;
3259 case E_V850E2V3_ARCH:
3260 strcat (buf, ", v850e2v3");
3261 break;
3262 case E_V850E2_ARCH:
3263 strcat (buf, ", v850e2");
3264 break;
3265 case E_V850E1_ARCH:
3266 strcat (buf, ", v850e1");
3267 break;
3268 case E_V850E_ARCH:
3269 strcat (buf, ", v850e");
3270 break;
3271 case E_V850_ARCH:
3272 strcat (buf, ", v850");
3273 break;
3274 default:
3275 strcat (buf, _(", unknown v850 architecture variant"));
3276 break;
3277 }
3278 break;
3279
3280 case EM_M32R:
3281 case EM_CYGNUS_M32R:
3282 if ((e_flags & EF_M32R_ARCH) == E_M32R_ARCH)
3283 strcat (buf, ", m32r");
3284 break;
3285
3286 case EM_MIPS:
3287 case EM_MIPS_RS3_LE:
3288 if (e_flags & EF_MIPS_NOREORDER)
3289 strcat (buf, ", noreorder");
3290
3291 if (e_flags & EF_MIPS_PIC)
3292 strcat (buf, ", pic");
3293
3294 if (e_flags & EF_MIPS_CPIC)
3295 strcat (buf, ", cpic");
3296
3297 if (e_flags & EF_MIPS_UCODE)
3298 strcat (buf, ", ugen_reserved");
3299
3300 if (e_flags & EF_MIPS_ABI2)
3301 strcat (buf, ", abi2");
3302
3303 if (e_flags & EF_MIPS_OPTIONS_FIRST)
3304 strcat (buf, ", odk first");
3305
3306 if (e_flags & EF_MIPS_32BITMODE)
3307 strcat (buf, ", 32bitmode");
3308
3309 if (e_flags & EF_MIPS_NAN2008)
3310 strcat (buf, ", nan2008");
3311
3312 if (e_flags & EF_MIPS_FP64)
3313 strcat (buf, ", fp64");
3314
3315 switch ((e_flags & EF_MIPS_MACH))
3316 {
3317 case E_MIPS_MACH_3900: strcat (buf, ", 3900"); break;
3318 case E_MIPS_MACH_4010: strcat (buf, ", 4010"); break;
3319 case E_MIPS_MACH_4100: strcat (buf, ", 4100"); break;
3320 case E_MIPS_MACH_4111: strcat (buf, ", 4111"); break;
3321 case E_MIPS_MACH_4120: strcat (buf, ", 4120"); break;
3322 case E_MIPS_MACH_4650: strcat (buf, ", 4650"); break;
3323 case E_MIPS_MACH_5400: strcat (buf, ", 5400"); break;
3324 case E_MIPS_MACH_5500: strcat (buf, ", 5500"); break;
3325 case E_MIPS_MACH_SB1: strcat (buf, ", sb1"); break;
3326 case E_MIPS_MACH_9000: strcat (buf, ", 9000"); break;
3327 case E_MIPS_MACH_LS2E: strcat (buf, ", loongson-2e"); break;
3328 case E_MIPS_MACH_LS2F: strcat (buf, ", loongson-2f"); break;
3329 case E_MIPS_MACH_LS3A: strcat (buf, ", loongson-3a"); break;
3330 case E_MIPS_MACH_OCTEON: strcat (buf, ", octeon"); break;
3331 case E_MIPS_MACH_OCTEON2: strcat (buf, ", octeon2"); break;
3332 case E_MIPS_MACH_OCTEON3: strcat (buf, ", octeon3"); break;
3333 case E_MIPS_MACH_XLR: strcat (buf, ", xlr"); break;
3334 case 0:
3335 /* We simply ignore the field in this case to avoid confusion:
3336 MIPS ELF does not specify EF_MIPS_MACH, it is a GNU
3337 extension. */
3338 break;
3339 default: strcat (buf, _(", unknown CPU")); break;
3340 }
3341
3342 switch ((e_flags & EF_MIPS_ABI))
3343 {
3344 case E_MIPS_ABI_O32: strcat (buf, ", o32"); break;
3345 case E_MIPS_ABI_O64: strcat (buf, ", o64"); break;
3346 case E_MIPS_ABI_EABI32: strcat (buf, ", eabi32"); break;
3347 case E_MIPS_ABI_EABI64: strcat (buf, ", eabi64"); break;
3348 case 0:
3349 /* We simply ignore the field in this case to avoid confusion:
3350 MIPS ELF does not specify EF_MIPS_ABI, it is a GNU extension.
3351 This means it is likely to be an o32 file, but not for
3352 sure. */
3353 break;
3354 default: strcat (buf, _(", unknown ABI")); break;
3355 }
3356
3357 if (e_flags & EF_MIPS_ARCH_ASE_MDMX)
3358 strcat (buf, ", mdmx");
3359
3360 if (e_flags & EF_MIPS_ARCH_ASE_M16)
3361 strcat (buf, ", mips16");
3362
3363 if (e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
3364 strcat (buf, ", micromips");
3365
3366 switch ((e_flags & EF_MIPS_ARCH))
3367 {
3368 case E_MIPS_ARCH_1: strcat (buf, ", mips1"); break;
3369 case E_MIPS_ARCH_2: strcat (buf, ", mips2"); break;
3370 case E_MIPS_ARCH_3: strcat (buf, ", mips3"); break;
3371 case E_MIPS_ARCH_4: strcat (buf, ", mips4"); break;
3372 case E_MIPS_ARCH_5: strcat (buf, ", mips5"); break;
3373 case E_MIPS_ARCH_32: strcat (buf, ", mips32"); break;
3374 case E_MIPS_ARCH_32R2: strcat (buf, ", mips32r2"); break;
3375 case E_MIPS_ARCH_32R6: strcat (buf, ", mips32r6"); break;
3376 case E_MIPS_ARCH_64: strcat (buf, ", mips64"); break;
3377 case E_MIPS_ARCH_64R2: strcat (buf, ", mips64r2"); break;
3378 case E_MIPS_ARCH_64R6: strcat (buf, ", mips64r6"); break;
3379 default: strcat (buf, _(", unknown ISA")); break;
3380 }
3381 break;
3382
3383 case EM_NDS32:
3384 decode_NDS32_machine_flags (e_flags, buf, sizeof buf);
3385 break;
3386
3387 case EM_RISCV:
3388 if (e_flags & EF_RISCV_RVC)
3389 strcat (buf, ", RVC");
3390
3391 switch (e_flags & EF_RISCV_FLOAT_ABI)
3392 {
3393 case EF_RISCV_FLOAT_ABI_SOFT:
3394 strcat (buf, ", soft-float ABI");
3395 break;
3396
3397 case EF_RISCV_FLOAT_ABI_SINGLE:
3398 strcat (buf, ", single-float ABI");
3399 break;
3400
3401 case EF_RISCV_FLOAT_ABI_DOUBLE:
3402 strcat (buf, ", double-float ABI");
3403 break;
3404
3405 case EF_RISCV_FLOAT_ABI_QUAD:
3406 strcat (buf, ", quad-float ABI");
3407 break;
3408 }
3409 break;
3410
3411 case EM_SH:
3412 switch ((e_flags & EF_SH_MACH_MASK))
3413 {
3414 case EF_SH1: strcat (buf, ", sh1"); break;
3415 case EF_SH2: strcat (buf, ", sh2"); break;
3416 case EF_SH3: strcat (buf, ", sh3"); break;
3417 case EF_SH_DSP: strcat (buf, ", sh-dsp"); break;
3418 case EF_SH3_DSP: strcat (buf, ", sh3-dsp"); break;
3419 case EF_SH4AL_DSP: strcat (buf, ", sh4al-dsp"); break;
3420 case EF_SH3E: strcat (buf, ", sh3e"); break;
3421 case EF_SH4: strcat (buf, ", sh4"); break;
3422 case EF_SH5: strcat (buf, ", sh5"); break;
3423 case EF_SH2E: strcat (buf, ", sh2e"); break;
3424 case EF_SH4A: strcat (buf, ", sh4a"); break;
3425 case EF_SH2A: strcat (buf, ", sh2a"); break;
3426 case EF_SH4_NOFPU: strcat (buf, ", sh4-nofpu"); break;
3427 case EF_SH4A_NOFPU: strcat (buf, ", sh4a-nofpu"); break;
3428 case EF_SH2A_NOFPU: strcat (buf, ", sh2a-nofpu"); break;
3429 case EF_SH3_NOMMU: strcat (buf, ", sh3-nommu"); break;
3430 case EF_SH4_NOMMU_NOFPU: strcat (buf, ", sh4-nommu-nofpu"); break;
3431 case EF_SH2A_SH4_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh4-nommu-nofpu"); break;
3432 case EF_SH2A_SH3_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh3-nommu"); break;
3433 case EF_SH2A_SH4: strcat (buf, ", sh2a-or-sh4"); break;
3434 case EF_SH2A_SH3E: strcat (buf, ", sh2a-or-sh3e"); break;
3435 default: strcat (buf, _(", unknown ISA")); break;
3436 }
3437
3438 if (e_flags & EF_SH_PIC)
3439 strcat (buf, ", pic");
3440
3441 if (e_flags & EF_SH_FDPIC)
3442 strcat (buf, ", fdpic");
3443 break;
3444
3445 case EM_OR1K:
3446 if (e_flags & EF_OR1K_NODELAY)
3447 strcat (buf, ", no delay");
3448 break;
3449
3450 case EM_SPARCV9:
3451 if (e_flags & EF_SPARC_32PLUS)
3452 strcat (buf, ", v8+");
3453
3454 if (e_flags & EF_SPARC_SUN_US1)
3455 strcat (buf, ", ultrasparcI");
3456
3457 if (e_flags & EF_SPARC_SUN_US3)
3458 strcat (buf, ", ultrasparcIII");
3459
3460 if (e_flags & EF_SPARC_HAL_R1)
3461 strcat (buf, ", halr1");
3462
3463 if (e_flags & EF_SPARC_LEDATA)
3464 strcat (buf, ", ledata");
3465
3466 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_TSO)
3467 strcat (buf, ", tso");
3468
3469 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_PSO)
3470 strcat (buf, ", pso");
3471
3472 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_RMO)
3473 strcat (buf, ", rmo");
3474 break;
3475
3476 case EM_PARISC:
3477 switch (e_flags & EF_PARISC_ARCH)
3478 {
3479 case EFA_PARISC_1_0:
3480 strcpy (buf, ", PA-RISC 1.0");
3481 break;
3482 case EFA_PARISC_1_1:
3483 strcpy (buf, ", PA-RISC 1.1");
3484 break;
3485 case EFA_PARISC_2_0:
3486 strcpy (buf, ", PA-RISC 2.0");
3487 break;
3488 default:
3489 break;
3490 }
3491 if (e_flags & EF_PARISC_TRAPNIL)
3492 strcat (buf, ", trapnil");
3493 if (e_flags & EF_PARISC_EXT)
3494 strcat (buf, ", ext");
3495 if (e_flags & EF_PARISC_LSB)
3496 strcat (buf, ", lsb");
3497 if (e_flags & EF_PARISC_WIDE)
3498 strcat (buf, ", wide");
3499 if (e_flags & EF_PARISC_NO_KABP)
3500 strcat (buf, ", no kabp");
3501 if (e_flags & EF_PARISC_LAZYSWAP)
3502 strcat (buf, ", lazyswap");
3503 break;
3504
3505 case EM_PJ:
3506 case EM_PJ_OLD:
3507 if ((e_flags & EF_PICOJAVA_NEWCALLS) == EF_PICOJAVA_NEWCALLS)
3508 strcat (buf, ", new calling convention");
3509
3510 if ((e_flags & EF_PICOJAVA_GNUCALLS) == EF_PICOJAVA_GNUCALLS)
3511 strcat (buf, ", gnu calling convention");
3512 break;
3513
3514 case EM_IA_64:
3515 if ((e_flags & EF_IA_64_ABI64))
3516 strcat (buf, ", 64-bit");
3517 else
3518 strcat (buf, ", 32-bit");
3519 if ((e_flags & EF_IA_64_REDUCEDFP))
3520 strcat (buf, ", reduced fp model");
3521 if ((e_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
3522 strcat (buf, ", no function descriptors, constant gp");
3523 else if ((e_flags & EF_IA_64_CONS_GP))
3524 strcat (buf, ", constant gp");
3525 if ((e_flags & EF_IA_64_ABSOLUTE))
3526 strcat (buf, ", absolute");
3527 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
3528 {
3529 if ((e_flags & EF_IA_64_VMS_LINKAGES))
3530 strcat (buf, ", vms_linkages");
3531 switch ((e_flags & EF_IA_64_VMS_COMCOD))
3532 {
3533 case EF_IA_64_VMS_COMCOD_SUCCESS:
3534 break;
3535 case EF_IA_64_VMS_COMCOD_WARNING:
3536 strcat (buf, ", warning");
3537 break;
3538 case EF_IA_64_VMS_COMCOD_ERROR:
3539 strcat (buf, ", error");
3540 break;
3541 case EF_IA_64_VMS_COMCOD_ABORT:
3542 strcat (buf, ", abort");
3543 break;
3544 default:
3545 warn (_("Unrecognised IA64 VMS Command Code: %x\n"),
3546 e_flags & EF_IA_64_VMS_COMCOD);
3547 strcat (buf, ", <unknown>");
3548 }
3549 }
3550 break;
3551
3552 case EM_VAX:
3553 if ((e_flags & EF_VAX_NONPIC))
3554 strcat (buf, ", non-PIC");
3555 if ((e_flags & EF_VAX_DFLOAT))
3556 strcat (buf, ", D-Float");
3557 if ((e_flags & EF_VAX_GFLOAT))
3558 strcat (buf, ", G-Float");
3559 break;
3560
3561 case EM_VISIUM:
3562 if (e_flags & EF_VISIUM_ARCH_MCM)
3563 strcat (buf, ", mcm");
3564 else if (e_flags & EF_VISIUM_ARCH_MCM24)
3565 strcat (buf, ", mcm24");
3566 if (e_flags & EF_VISIUM_ARCH_GR6)
3567 strcat (buf, ", gr6");
3568 break;
3569
3570 case EM_RL78:
3571 switch (e_flags & E_FLAG_RL78_CPU_MASK)
3572 {
3573 case E_FLAG_RL78_ANY_CPU: break;
3574 case E_FLAG_RL78_G10: strcat (buf, ", G10"); break;
3575 case E_FLAG_RL78_G13: strcat (buf, ", G13"); break;
3576 case E_FLAG_RL78_G14: strcat (buf, ", G14"); break;
3577 }
3578 if (e_flags & E_FLAG_RL78_64BIT_DOUBLES)
3579 strcat (buf, ", 64-bit doubles");
3580 break;
3581
3582 case EM_RX:
3583 if (e_flags & E_FLAG_RX_64BIT_DOUBLES)
3584 strcat (buf, ", 64-bit doubles");
3585 if (e_flags & E_FLAG_RX_DSP)
3586 strcat (buf, ", dsp");
3587 if (e_flags & E_FLAG_RX_PID)
3588 strcat (buf, ", pid");
3589 if (e_flags & E_FLAG_RX_ABI)
3590 strcat (buf, ", RX ABI");
3591 if (e_flags & E_FLAG_RX_SINSNS_SET)
3592 strcat (buf, e_flags & E_FLAG_RX_SINSNS_YES
3593 ? ", uses String instructions" : ", bans String instructions");
3594 if (e_flags & E_FLAG_RX_V2)
3595 strcat (buf, ", V2");
3596 break;
3597
3598 case EM_S390:
3599 if (e_flags & EF_S390_HIGH_GPRS)
3600 strcat (buf, ", highgprs");
3601 break;
3602
3603 case EM_TI_C6000:
3604 if ((e_flags & EF_C6000_REL))
3605 strcat (buf, ", relocatable module");
3606 break;
3607
3608 case EM_MSP430:
3609 strcat (buf, _(": architecture variant: "));
3610 switch (e_flags & EF_MSP430_MACH)
3611 {
3612 case E_MSP430_MACH_MSP430x11: strcat (buf, "MSP430x11"); break;
3613 case E_MSP430_MACH_MSP430x11x1 : strcat (buf, "MSP430x11x1 "); break;
3614 case E_MSP430_MACH_MSP430x12: strcat (buf, "MSP430x12"); break;
3615 case E_MSP430_MACH_MSP430x13: strcat (buf, "MSP430x13"); break;
3616 case E_MSP430_MACH_MSP430x14: strcat (buf, "MSP430x14"); break;
3617 case E_MSP430_MACH_MSP430x15: strcat (buf, "MSP430x15"); break;
3618 case E_MSP430_MACH_MSP430x16: strcat (buf, "MSP430x16"); break;
3619 case E_MSP430_MACH_MSP430x31: strcat (buf, "MSP430x31"); break;
3620 case E_MSP430_MACH_MSP430x32: strcat (buf, "MSP430x32"); break;
3621 case E_MSP430_MACH_MSP430x33: strcat (buf, "MSP430x33"); break;
3622 case E_MSP430_MACH_MSP430x41: strcat (buf, "MSP430x41"); break;
3623 case E_MSP430_MACH_MSP430x42: strcat (buf, "MSP430x42"); break;
3624 case E_MSP430_MACH_MSP430x43: strcat (buf, "MSP430x43"); break;
3625 case E_MSP430_MACH_MSP430x44: strcat (buf, "MSP430x44"); break;
3626 case E_MSP430_MACH_MSP430X : strcat (buf, "MSP430X"); break;
3627 default:
3628 strcat (buf, _(": unknown")); break;
3629 }
3630
3631 if (e_flags & ~ EF_MSP430_MACH)
3632 strcat (buf, _(": unknown extra flag bits also present"));
3633 }
3634 }
3635
3636 return buf;
3637 }
3638
3639 static const char *
3640 get_osabi_name (unsigned int osabi)
3641 {
3642 static char buff[32];
3643
3644 switch (osabi)
3645 {
3646 case ELFOSABI_NONE: return "UNIX - System V";
3647 case ELFOSABI_HPUX: return "UNIX - HP-UX";
3648 case ELFOSABI_NETBSD: return "UNIX - NetBSD";
3649 case ELFOSABI_GNU: return "UNIX - GNU";
3650 case ELFOSABI_SOLARIS: return "UNIX - Solaris";
3651 case ELFOSABI_AIX: return "UNIX - AIX";
3652 case ELFOSABI_IRIX: return "UNIX - IRIX";
3653 case ELFOSABI_FREEBSD: return "UNIX - FreeBSD";
3654 case ELFOSABI_TRU64: return "UNIX - TRU64";
3655 case ELFOSABI_MODESTO: return "Novell - Modesto";
3656 case ELFOSABI_OPENBSD: return "UNIX - OpenBSD";
3657 case ELFOSABI_OPENVMS: return "VMS - OpenVMS";
3658 case ELFOSABI_NSK: return "HP - Non-Stop Kernel";
3659 case ELFOSABI_AROS: return "AROS";
3660 case ELFOSABI_FENIXOS: return "FenixOS";
3661 case ELFOSABI_CLOUDABI: return "Nuxi CloudABI";
3662 case ELFOSABI_OPENVOS: return "Stratus Technologies OpenVOS";
3663 default:
3664 if (osabi >= 64)
3665 switch (elf_header.e_machine)
3666 {
3667 case EM_ARM:
3668 switch (osabi)
3669 {
3670 case ELFOSABI_ARM: return "ARM";
3671 default:
3672 break;
3673 }
3674 break;
3675
3676 case EM_MSP430:
3677 case EM_MSP430_OLD:
3678 case EM_VISIUM:
3679 switch (osabi)
3680 {
3681 case ELFOSABI_STANDALONE: return _("Standalone App");
3682 default:
3683 break;
3684 }
3685 break;
3686
3687 case EM_TI_C6000:
3688 switch (osabi)
3689 {
3690 case ELFOSABI_C6000_ELFABI: return _("Bare-metal C6000");
3691 case ELFOSABI_C6000_LINUX: return "Linux C6000";
3692 default:
3693 break;
3694 }
3695 break;
3696
3697 default:
3698 break;
3699 }
3700 snprintf (buff, sizeof (buff), _("<unknown: %x>"), osabi);
3701 return buff;
3702 }
3703 }
3704
3705 static const char *
3706 get_aarch64_segment_type (unsigned long type)
3707 {
3708 switch (type)
3709 {
3710 case PT_AARCH64_ARCHEXT: return "AARCH64_ARCHEXT";
3711 default: return NULL;
3712 }
3713 }
3714
3715 static const char *
3716 get_arm_segment_type (unsigned long type)
3717 {
3718 switch (type)
3719 {
3720 case PT_ARM_EXIDX: return "EXIDX";
3721 default: return NULL;
3722 }
3723 }
3724
3725 static const char *
3726 get_mips_segment_type (unsigned long type)
3727 {
3728 switch (type)
3729 {
3730 case PT_MIPS_REGINFO: return "REGINFO";
3731 case PT_MIPS_RTPROC: return "RTPROC";
3732 case PT_MIPS_OPTIONS: return "OPTIONS";
3733 case PT_MIPS_ABIFLAGS: return "ABIFLAGS";
3734 default: return NULL;
3735 }
3736 }
3737
3738 static const char *
3739 get_parisc_segment_type (unsigned long type)
3740 {
3741 switch (type)
3742 {
3743 case PT_HP_TLS: return "HP_TLS";
3744 case PT_HP_CORE_NONE: return "HP_CORE_NONE";
3745 case PT_HP_CORE_VERSION: return "HP_CORE_VERSION";
3746 case PT_HP_CORE_KERNEL: return "HP_CORE_KERNEL";
3747 case PT_HP_CORE_COMM: return "HP_CORE_COMM";
3748 case PT_HP_CORE_PROC: return "HP_CORE_PROC";
3749 case PT_HP_CORE_LOADABLE: return "HP_CORE_LOADABLE";
3750 case PT_HP_CORE_STACK: return "HP_CORE_STACK";
3751 case PT_HP_CORE_SHM: return "HP_CORE_SHM";
3752 case PT_HP_CORE_MMF: return "HP_CORE_MMF";
3753 case PT_HP_PARALLEL: return "HP_PARALLEL";
3754 case PT_HP_FASTBIND: return "HP_FASTBIND";
3755 case PT_HP_OPT_ANNOT: return "HP_OPT_ANNOT";
3756 case PT_HP_HSL_ANNOT: return "HP_HSL_ANNOT";
3757 case PT_HP_STACK: return "HP_STACK";
3758 case PT_HP_CORE_UTSNAME: return "HP_CORE_UTSNAME";
3759 case PT_PARISC_ARCHEXT: return "PARISC_ARCHEXT";
3760 case PT_PARISC_UNWIND: return "PARISC_UNWIND";
3761 case PT_PARISC_WEAKORDER: return "PARISC_WEAKORDER";
3762 default: return NULL;
3763 }
3764 }
3765
3766 static const char *
3767 get_ia64_segment_type (unsigned long type)
3768 {
3769 switch (type)
3770 {
3771 case PT_IA_64_ARCHEXT: return "IA_64_ARCHEXT";
3772 case PT_IA_64_UNWIND: return "IA_64_UNWIND";
3773 case PT_HP_TLS: return "HP_TLS";
3774 case PT_IA_64_HP_OPT_ANOT: return "HP_OPT_ANNOT";
3775 case PT_IA_64_HP_HSL_ANOT: return "HP_HSL_ANNOT";
3776 case PT_IA_64_HP_STACK: return "HP_STACK";
3777 default: return NULL;
3778 }
3779 }
3780
3781 static const char *
3782 get_tic6x_segment_type (unsigned long type)
3783 {
3784 switch (type)
3785 {
3786 case PT_C6000_PHATTR: return "C6000_PHATTR";
3787 default: return NULL;
3788 }
3789 }
3790
3791 static const char *
3792 get_solaris_segment_type (unsigned long type)
3793 {
3794 switch (type)
3795 {
3796 case 0x6464e550: return "PT_SUNW_UNWIND";
3797 case 0x6474e550: return "PT_SUNW_EH_FRAME";
3798 case 0x6ffffff7: return "PT_LOSUNW";
3799 case 0x6ffffffa: return "PT_SUNWBSS";
3800 case 0x6ffffffb: return "PT_SUNWSTACK";
3801 case 0x6ffffffc: return "PT_SUNWDTRACE";
3802 case 0x6ffffffd: return "PT_SUNWCAP";
3803 case 0x6fffffff: return "PT_HISUNW";
3804 default: return NULL;
3805 }
3806 }
3807
3808 static const char *
3809 get_segment_type (unsigned long p_type)
3810 {
3811 static char buff[32];
3812
3813 switch (p_type)
3814 {
3815 case PT_NULL: return "NULL";
3816 case PT_LOAD: return "LOAD";
3817 case PT_DYNAMIC: return "DYNAMIC";
3818 case PT_INTERP: return "INTERP";
3819 case PT_NOTE: return "NOTE";
3820 case PT_SHLIB: return "SHLIB";
3821 case PT_PHDR: return "PHDR";
3822 case PT_TLS: return "TLS";
3823 case PT_GNU_EH_FRAME: return "GNU_EH_FRAME";
3824 case PT_GNU_STACK: return "GNU_STACK";
3825 case PT_GNU_RELRO: return "GNU_RELRO";
3826
3827 default:
3828 if ((p_type >= PT_LOPROC) && (p_type <= PT_HIPROC))
3829 {
3830 const char * result;
3831
3832 switch (elf_header.e_machine)
3833 {
3834 case EM_AARCH64:
3835 result = get_aarch64_segment_type (p_type);
3836 break;
3837 case EM_ARM:
3838 result = get_arm_segment_type (p_type);
3839 break;
3840 case EM_MIPS:
3841 case EM_MIPS_RS3_LE:
3842 result = get_mips_segment_type (p_type);
3843 break;
3844 case EM_PARISC:
3845 result = get_parisc_segment_type (p_type);
3846 break;
3847 case EM_IA_64:
3848 result = get_ia64_segment_type (p_type);
3849 break;
3850 case EM_TI_C6000:
3851 result = get_tic6x_segment_type (p_type);
3852 break;
3853 default:
3854 result = NULL;
3855 break;
3856 }
3857
3858 if (result != NULL)
3859 return result;
3860
3861 sprintf (buff, "LOPROC+%#lx", p_type - PT_LOPROC);
3862 }
3863 else if ((p_type >= PT_LOOS) && (p_type <= PT_HIOS))
3864 {
3865 const char * result;
3866
3867 switch (elf_header.e_machine)
3868 {
3869 case EM_PARISC:
3870 result = get_parisc_segment_type (p_type);
3871 break;
3872 case EM_IA_64:
3873 result = get_ia64_segment_type (p_type);
3874 break;
3875 default:
3876 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
3877 result = get_solaris_segment_type (p_type);
3878 else
3879 result = NULL;
3880 break;
3881 }
3882
3883 if (result != NULL)
3884 return result;
3885
3886 sprintf (buff, "LOOS+%#lx", p_type - PT_LOOS);
3887 }
3888 else
3889 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), p_type);
3890
3891 return buff;
3892 }
3893 }
3894
3895 static const char *
3896 get_mips_section_type_name (unsigned int sh_type)
3897 {
3898 switch (sh_type)
3899 {
3900 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
3901 case SHT_MIPS_MSYM: return "MIPS_MSYM";
3902 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
3903 case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
3904 case SHT_MIPS_UCODE: return "MIPS_UCODE";
3905 case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
3906 case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
3907 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
3908 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
3909 case SHT_MIPS_RELD: return "MIPS_RELD";
3910 case SHT_MIPS_IFACE: return "MIPS_IFACE";
3911 case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
3912 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
3913 case SHT_MIPS_SHDR: return "MIPS_SHDR";
3914 case SHT_MIPS_FDESC: return "MIPS_FDESC";
3915 case SHT_MIPS_EXTSYM: return "MIPS_EXTSYM";
3916 case SHT_MIPS_DENSE: return "MIPS_DENSE";
3917 case SHT_MIPS_PDESC: return "MIPS_PDESC";
3918 case SHT_MIPS_LOCSYM: return "MIPS_LOCSYM";
3919 case SHT_MIPS_AUXSYM: return "MIPS_AUXSYM";
3920 case SHT_MIPS_OPTSYM: return "MIPS_OPTSYM";
3921 case SHT_MIPS_LOCSTR: return "MIPS_LOCSTR";
3922 case SHT_MIPS_LINE: return "MIPS_LINE";
3923 case SHT_MIPS_RFDESC: return "MIPS_RFDESC";
3924 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
3925 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
3926 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
3927 case SHT_MIPS_DWARF: return "MIPS_DWARF";
3928 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
3929 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
3930 case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
3931 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
3932 case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
3933 case SHT_MIPS_XLATE: return "MIPS_XLATE";
3934 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
3935 case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
3936 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
3937 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
3938 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
3939 case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS";
3940 default:
3941 break;
3942 }
3943 return NULL;
3944 }
3945
3946 static const char *
3947 get_parisc_section_type_name (unsigned int sh_type)
3948 {
3949 switch (sh_type)
3950 {
3951 case SHT_PARISC_EXT: return "PARISC_EXT";
3952 case SHT_PARISC_UNWIND: return "PARISC_UNWIND";
3953 case SHT_PARISC_DOC: return "PARISC_DOC";
3954 case SHT_PARISC_ANNOT: return "PARISC_ANNOT";
3955 case SHT_PARISC_SYMEXTN: return "PARISC_SYMEXTN";
3956 case SHT_PARISC_STUBS: return "PARISC_STUBS";
3957 case SHT_PARISC_DLKM: return "PARISC_DLKM";
3958 default: return NULL;
3959 }
3960 }
3961
3962 static const char *
3963 get_ia64_section_type_name (unsigned int sh_type)
3964 {
3965 /* If the top 8 bits are 0x78 the next 8 are the os/abi ID. */
3966 if ((sh_type & 0xFF000000) == SHT_IA_64_LOPSREG)
3967 return get_osabi_name ((sh_type & 0x00FF0000) >> 16);
3968
3969 switch (sh_type)
3970 {
3971 case SHT_IA_64_EXT: return "IA_64_EXT";
3972 case SHT_IA_64_UNWIND: return "IA_64_UNWIND";
3973 case SHT_IA_64_PRIORITY_INIT: return "IA_64_PRIORITY_INIT";
3974 case SHT_IA_64_VMS_TRACE: return "VMS_TRACE";
3975 case SHT_IA_64_VMS_TIE_SIGNATURES: return "VMS_TIE_SIGNATURES";
3976 case SHT_IA_64_VMS_DEBUG: return "VMS_DEBUG";
3977 case SHT_IA_64_VMS_DEBUG_STR: return "VMS_DEBUG_STR";
3978 case SHT_IA_64_VMS_LINKAGES: return "VMS_LINKAGES";
3979 case SHT_IA_64_VMS_SYMBOL_VECTOR: return "VMS_SYMBOL_VECTOR";
3980 case SHT_IA_64_VMS_FIXUP: return "VMS_FIXUP";
3981 default:
3982 break;
3983 }
3984 return NULL;
3985 }
3986
3987 static const char *
3988 get_x86_64_section_type_name (unsigned int sh_type)
3989 {
3990 switch (sh_type)
3991 {
3992 case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
3993 default: return NULL;
3994 }
3995 }
3996
3997 static const char *
3998 get_aarch64_section_type_name (unsigned int sh_type)
3999 {
4000 switch (sh_type)
4001 {
4002 case SHT_AARCH64_ATTRIBUTES: return "AARCH64_ATTRIBUTES";
4003 default: return NULL;
4004 }
4005 }
4006
4007 static const char *
4008 get_arm_section_type_name (unsigned int sh_type)
4009 {
4010 switch (sh_type)
4011 {
4012 case SHT_ARM_EXIDX: return "ARM_EXIDX";
4013 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP";
4014 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES";
4015 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY";
4016 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION";
4017 default: return NULL;
4018 }
4019 }
4020
4021 static const char *
4022 get_tic6x_section_type_name (unsigned int sh_type)
4023 {
4024 switch (sh_type)
4025 {
4026 case SHT_C6000_UNWIND: return "C6000_UNWIND";
4027 case SHT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
4028 case SHT_C6000_ATTRIBUTES: return "C6000_ATTRIBUTES";
4029 case SHT_TI_ICODE: return "TI_ICODE";
4030 case SHT_TI_XREF: return "TI_XREF";
4031 case SHT_TI_HANDLER: return "TI_HANDLER";
4032 case SHT_TI_INITINFO: return "TI_INITINFO";
4033 case SHT_TI_PHATTRS: return "TI_PHATTRS";
4034 default: return NULL;
4035 }
4036 }
4037
4038 static const char *
4039 get_msp430x_section_type_name (unsigned int sh_type)
4040 {
4041 switch (sh_type)
4042 {
4043 case SHT_MSP430_SEC_FLAGS: return "MSP430_SEC_FLAGS";
4044 case SHT_MSP430_SYM_ALIASES: return "MSP430_SYM_ALIASES";
4045 case SHT_MSP430_ATTRIBUTES: return "MSP430_ATTRIBUTES";
4046 default: return NULL;
4047 }
4048 }
4049
4050 static const char *
4051 get_v850_section_type_name (unsigned int sh_type)
4052 {
4053 switch (sh_type)
4054 {
4055 case SHT_V850_SCOMMON: return "V850 Small Common";
4056 case SHT_V850_TCOMMON: return "V850 Tiny Common";
4057 case SHT_V850_ZCOMMON: return "V850 Zero Common";
4058 case SHT_RENESAS_IOP: return "RENESAS IOP";
4059 case SHT_RENESAS_INFO: return "RENESAS INFO";
4060 default: return NULL;
4061 }
4062 }
4063
4064 static const char *
4065 get_section_type_name (unsigned int sh_type)
4066 {
4067 static char buff[32];
4068 const char * result;
4069
4070 switch (sh_type)
4071 {
4072 case SHT_NULL: return "NULL";
4073 case SHT_PROGBITS: return "PROGBITS";
4074 case SHT_SYMTAB: return "SYMTAB";
4075 case SHT_STRTAB: return "STRTAB";
4076 case SHT_RELA: return "RELA";
4077 case SHT_HASH: return "HASH";
4078 case SHT_DYNAMIC: return "DYNAMIC";
4079 case SHT_NOTE: return "NOTE";
4080 case SHT_NOBITS: return "NOBITS";
4081 case SHT_REL: return "REL";
4082 case SHT_SHLIB: return "SHLIB";
4083 case SHT_DYNSYM: return "DYNSYM";
4084 case SHT_INIT_ARRAY: return "INIT_ARRAY";
4085 case SHT_FINI_ARRAY: return "FINI_ARRAY";
4086 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
4087 case SHT_GNU_HASH: return "GNU_HASH";
4088 case SHT_GROUP: return "GROUP";
4089 case SHT_SYMTAB_SHNDX: return "SYMTAB SECTION INDICIES";
4090 case SHT_GNU_verdef: return "VERDEF";
4091 case SHT_GNU_verneed: return "VERNEED";
4092 case SHT_GNU_versym: return "VERSYM";
4093 case 0x6ffffff0: return "VERSYM";
4094 case 0x6ffffffc: return "VERDEF";
4095 case 0x7ffffffd: return "AUXILIARY";
4096 case 0x7fffffff: return "FILTER";
4097 case SHT_GNU_LIBLIST: return "GNU_LIBLIST";
4098
4099 default:
4100 if ((sh_type >= SHT_LOPROC) && (sh_type <= SHT_HIPROC))
4101 {
4102 switch (elf_header.e_machine)
4103 {
4104 case EM_MIPS:
4105 case EM_MIPS_RS3_LE:
4106 result = get_mips_section_type_name (sh_type);
4107 break;
4108 case EM_PARISC:
4109 result = get_parisc_section_type_name (sh_type);
4110 break;
4111 case EM_IA_64:
4112 result = get_ia64_section_type_name (sh_type);
4113 break;
4114 case EM_X86_64:
4115 case EM_L1OM:
4116 case EM_K1OM:
4117 result = get_x86_64_section_type_name (sh_type);
4118 break;
4119 case EM_AARCH64:
4120 result = get_aarch64_section_type_name (sh_type);
4121 break;
4122 case EM_ARM:
4123 result = get_arm_section_type_name (sh_type);
4124 break;
4125 case EM_TI_C6000:
4126 result = get_tic6x_section_type_name (sh_type);
4127 break;
4128 case EM_MSP430:
4129 result = get_msp430x_section_type_name (sh_type);
4130 break;
4131 case EM_V800:
4132 case EM_V850:
4133 case EM_CYGNUS_V850:
4134 result = get_v850_section_type_name (sh_type);
4135 break;
4136 default:
4137 result = NULL;
4138 break;
4139 }
4140
4141 if (result != NULL)
4142 return result;
4143
4144 sprintf (buff, "LOPROC+%#x", sh_type - SHT_LOPROC);
4145 }
4146 else if ((sh_type >= SHT_LOOS) && (sh_type <= SHT_HIOS))
4147 {
4148 switch (elf_header.e_machine)
4149 {
4150 case EM_IA_64:
4151 result = get_ia64_section_type_name (sh_type);
4152 break;
4153 default:
4154 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
4155 result = get_solaris_section_type (sh_type);
4156 else
4157 {
4158 switch (sh_type)
4159 {
4160 case SHT_GNU_INCREMENTAL_INPUTS: result = "GNU_INCREMENTAL_INPUTS"; break;
4161 case SHT_GNU_ATTRIBUTES: result = "GNU_ATTRIBUTES"; break;
4162 case SHT_GNU_HASH: result = "GNU_HASH"; break;
4163 case SHT_GNU_LIBLIST: result = "GNU_LIBLIST"; break;
4164 default:
4165 result = NULL;
4166 break;
4167 }
4168 }
4169 break;
4170 }
4171
4172 if (result != NULL)
4173 return result;
4174
4175 sprintf (buff, "LOOS+%#x", sh_type - SHT_LOOS);
4176 }
4177 else if ((sh_type >= SHT_LOUSER) && (sh_type <= SHT_HIUSER))
4178 {
4179 switch (elf_header.e_machine)
4180 {
4181 case EM_V800:
4182 case EM_V850:
4183 case EM_CYGNUS_V850:
4184 result = get_v850_section_type_name (sh_type);
4185 break;
4186 default:
4187 result = NULL;
4188 break;
4189 }
4190
4191 if (result != NULL)
4192 return result;
4193
4194 sprintf (buff, "LOUSER+%#x", sh_type - SHT_LOUSER);
4195 }
4196 else
4197 /* This message is probably going to be displayed in a 15
4198 character wide field, so put the hex value first. */
4199 snprintf (buff, sizeof (buff), _("%08x: <unknown>"), sh_type);
4200
4201 return buff;
4202 }
4203 }
4204
4205 #define OPTION_DEBUG_DUMP 512
4206 #define OPTION_DYN_SYMS 513
4207 #define OPTION_DWARF_DEPTH 514
4208 #define OPTION_DWARF_START 515
4209 #define OPTION_DWARF_CHECK 516
4210
4211 static struct option options[] =
4212 {
4213 {"all", no_argument, 0, 'a'},
4214 {"file-header", no_argument, 0, 'h'},
4215 {"program-headers", no_argument, 0, 'l'},
4216 {"headers", no_argument, 0, 'e'},
4217 {"histogram", no_argument, 0, 'I'},
4218 {"segments", no_argument, 0, 'l'},
4219 {"sections", no_argument, 0, 'S'},
4220 {"section-headers", no_argument, 0, 'S'},
4221 {"section-groups", no_argument, 0, 'g'},
4222 {"section-details", no_argument, 0, 't'},
4223 {"full-section-name",no_argument, 0, 'N'},
4224 {"symbols", no_argument, 0, 's'},
4225 {"syms", no_argument, 0, 's'},
4226 {"dyn-syms", no_argument, 0, OPTION_DYN_SYMS},
4227 {"relocs", no_argument, 0, 'r'},
4228 {"notes", no_argument, 0, 'n'},
4229 {"dynamic", no_argument, 0, 'd'},
4230 {"arch-specific", no_argument, 0, 'A'},
4231 {"version-info", no_argument, 0, 'V'},
4232 {"use-dynamic", no_argument, 0, 'D'},
4233 {"unwind", no_argument, 0, 'u'},
4234 {"archive-index", no_argument, 0, 'c'},
4235 {"hex-dump", required_argument, 0, 'x'},
4236 {"relocated-dump", required_argument, 0, 'R'},
4237 {"string-dump", required_argument, 0, 'p'},
4238 {"decompress", no_argument, 0, 'z'},
4239 #ifdef SUPPORT_DISASSEMBLY
4240 {"instruction-dump", required_argument, 0, 'i'},
4241 #endif
4242 {"debug-dump", optional_argument, 0, OPTION_DEBUG_DUMP},
4243
4244 {"dwarf-depth", required_argument, 0, OPTION_DWARF_DEPTH},
4245 {"dwarf-start", required_argument, 0, OPTION_DWARF_START},
4246 {"dwarf-check", no_argument, 0, OPTION_DWARF_CHECK},
4247
4248 {"version", no_argument, 0, 'v'},
4249 {"wide", no_argument, 0, 'W'},
4250 {"help", no_argument, 0, 'H'},
4251 {0, no_argument, 0, 0}
4252 };
4253
4254 static void
4255 usage (FILE * stream)
4256 {
4257 fprintf (stream, _("Usage: readelf <option(s)> elf-file(s)\n"));
4258 fprintf (stream, _(" Display information about the contents of ELF format files\n"));
4259 fprintf (stream, _(" Options are:\n\
4260 -a --all Equivalent to: -h -l -S -s -r -d -V -A -I\n\
4261 -h --file-header Display the ELF file header\n\
4262 -l --program-headers Display the program headers\n\
4263 --segments An alias for --program-headers\n\
4264 -S --section-headers Display the sections' header\n\
4265 --sections An alias for --section-headers\n\
4266 -g --section-groups Display the section groups\n\
4267 -t --section-details Display the section details\n\
4268 -e --headers Equivalent to: -h -l -S\n\
4269 -s --syms Display the symbol table\n\
4270 --symbols An alias for --syms\n\
4271 --dyn-syms Display the dynamic symbol table\n\
4272 -n --notes Display the core notes (if present)\n\
4273 -r --relocs Display the relocations (if present)\n\
4274 -u --unwind Display the unwind info (if present)\n\
4275 -d --dynamic Display the dynamic section (if present)\n\
4276 -V --version-info Display the version sections (if present)\n\
4277 -A --arch-specific Display architecture specific information (if any)\n\
4278 -c --archive-index Display the symbol/file index in an archive\n\
4279 -D --use-dynamic Use the dynamic section info when displaying symbols\n\
4280 -x --hex-dump=<number|name>\n\
4281 Dump the contents of section <number|name> as bytes\n\
4282 -p --string-dump=<number|name>\n\
4283 Dump the contents of section <number|name> as strings\n\
4284 -R --relocated-dump=<number|name>\n\
4285 Dump the contents of section <number|name> as relocated bytes\n\
4286 -z --decompress Decompress section before dumping it\n\
4287 -w[lLiaprmfFsoRt] or\n\
4288 --debug-dump[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,\n\
4289 =frames-interp,=str,=loc,=Ranges,=pubtypes,\n\
4290 =gdb_index,=trace_info,=trace_abbrev,=trace_aranges,\n\
4291 =addr,=cu_index]\n\
4292 Display the contents of DWARF2 debug sections\n"));
4293 fprintf (stream, _("\
4294 --dwarf-depth=N Do not display DIEs at depth N or greater\n\
4295 --dwarf-start=N Display DIEs starting with N, at the same depth\n\
4296 or deeper\n"));
4297 #ifdef SUPPORT_DISASSEMBLY
4298 fprintf (stream, _("\
4299 -i --instruction-dump=<number|name>\n\
4300 Disassemble the contents of section <number|name>\n"));
4301 #endif
4302 fprintf (stream, _("\
4303 -I --histogram Display histogram of bucket list lengths\n\
4304 -W --wide Allow output width to exceed 80 characters\n\
4305 @<file> Read options from <file>\n\
4306 -H --help Display this information\n\
4307 -v --version Display the version number of readelf\n"));
4308
4309 if (REPORT_BUGS_TO[0] && stream == stdout)
4310 fprintf (stdout, _("Report bugs to %s\n"), REPORT_BUGS_TO);
4311
4312 exit (stream == stdout ? 0 : 1);
4313 }
4314
4315 /* Record the fact that the user wants the contents of section number
4316 SECTION to be displayed using the method(s) encoded as flags bits
4317 in TYPE. Note, TYPE can be zero if we are creating the array for
4318 the first time. */
4319
4320 static void
4321 request_dump_bynumber (unsigned int section, dump_type type)
4322 {
4323 if (section >= num_dump_sects)
4324 {
4325 dump_type * new_dump_sects;
4326
4327 new_dump_sects = (dump_type *) calloc (section + 1,
4328 sizeof (* dump_sects));
4329
4330 if (new_dump_sects == NULL)
4331 error (_("Out of memory allocating dump request table.\n"));
4332 else
4333 {
4334 if (dump_sects)
4335 {
4336 /* Copy current flag settings. */
4337 memcpy (new_dump_sects, dump_sects, num_dump_sects * sizeof (* dump_sects));
4338
4339 free (dump_sects);
4340 }
4341
4342 dump_sects = new_dump_sects;
4343 num_dump_sects = section + 1;
4344 }
4345 }
4346
4347 if (dump_sects)
4348 dump_sects[section] |= type;
4349
4350 return;
4351 }
4352
4353 /* Request a dump by section name. */
4354
4355 static void
4356 request_dump_byname (const char * section, dump_type type)
4357 {
4358 struct dump_list_entry * new_request;
4359
4360 new_request = (struct dump_list_entry *)
4361 malloc (sizeof (struct dump_list_entry));
4362 if (!new_request)
4363 error (_("Out of memory allocating dump request table.\n"));
4364
4365 new_request->name = strdup (section);
4366 if (!new_request->name)
4367 error (_("Out of memory allocating dump request table.\n"));
4368
4369 new_request->type = type;
4370
4371 new_request->next = dump_sects_byname;
4372 dump_sects_byname = new_request;
4373 }
4374
4375 static inline void
4376 request_dump (dump_type type)
4377 {
4378 int section;
4379 char * cp;
4380
4381 do_dump++;
4382 section = strtoul (optarg, & cp, 0);
4383
4384 if (! *cp && section >= 0)
4385 request_dump_bynumber (section, type);
4386 else
4387 request_dump_byname (optarg, type);
4388 }
4389
4390
4391 static void
4392 parse_args (int argc, char ** argv)
4393 {
4394 int c;
4395
4396 if (argc < 2)
4397 usage (stderr);
4398
4399 while ((c = getopt_long
4400 (argc, argv, "ADHINR:SVWacdeghi:lnp:rstuvw::x:z", options, NULL)) != EOF)
4401 {
4402 switch (c)
4403 {
4404 case 0:
4405 /* Long options. */
4406 break;
4407 case 'H':
4408 usage (stdout);
4409 break;
4410
4411 case 'a':
4412 do_syms = TRUE;
4413 do_reloc = TRUE;
4414 do_unwind = TRUE;
4415 do_dynamic = TRUE;
4416 do_header = TRUE;
4417 do_sections = TRUE;
4418 do_section_groups = TRUE;
4419 do_segments = TRUE;
4420 do_version = TRUE;
4421 do_histogram = TRUE;
4422 do_arch = TRUE;
4423 do_notes = TRUE;
4424 break;
4425 case 'g':
4426 do_section_groups = TRUE;
4427 break;
4428 case 't':
4429 case 'N':
4430 do_sections = TRUE;
4431 do_section_details = TRUE;
4432 break;
4433 case 'e':
4434 do_header = TRUE;
4435 do_sections = TRUE;
4436 do_segments = TRUE;
4437 break;
4438 case 'A':
4439 do_arch = TRUE;
4440 break;
4441 case 'D':
4442 do_using_dynamic = TRUE;
4443 break;
4444 case 'r':
4445 do_reloc = TRUE;
4446 break;
4447 case 'u':
4448 do_unwind = TRUE;
4449 break;
4450 case 'h':
4451 do_header = TRUE;
4452 break;
4453 case 'l':
4454 do_segments = TRUE;
4455 break;
4456 case 's':
4457 do_syms = TRUE;
4458 break;
4459 case 'S':
4460 do_sections = TRUE;
4461 break;
4462 case 'd':
4463 do_dynamic = TRUE;
4464 break;
4465 case 'I':
4466 do_histogram = TRUE;
4467 break;
4468 case 'n':
4469 do_notes = TRUE;
4470 break;
4471 case 'c':
4472 do_archive_index = TRUE;
4473 break;
4474 case 'x':
4475 request_dump (HEX_DUMP);
4476 break;
4477 case 'p':
4478 request_dump (STRING_DUMP);
4479 break;
4480 case 'R':
4481 request_dump (RELOC_DUMP);
4482 break;
4483 case 'z':
4484 decompress_dumps = TRUE;
4485 break;
4486 case 'w':
4487 do_dump = TRUE;
4488 if (optarg == 0)
4489 {
4490 do_debugging = TRUE;
4491 dwarf_select_sections_all ();
4492 }
4493 else
4494 {
4495 do_debugging = FALSE;
4496 dwarf_select_sections_by_letters (optarg);
4497 }
4498 break;
4499 case OPTION_DEBUG_DUMP:
4500 do_dump = TRUE;
4501 if (optarg == 0)
4502 do_debugging = TRUE;
4503 else
4504 {
4505 do_debugging = FALSE;
4506 dwarf_select_sections_by_names (optarg);
4507 }
4508 break;
4509 case OPTION_DWARF_DEPTH:
4510 {
4511 char *cp;
4512
4513 dwarf_cutoff_level = strtoul (optarg, & cp, 0);
4514 }
4515 break;
4516 case OPTION_DWARF_START:
4517 {
4518 char *cp;
4519
4520 dwarf_start_die = strtoul (optarg, & cp, 0);
4521 }
4522 break;
4523 case OPTION_DWARF_CHECK:
4524 dwarf_check = TRUE;
4525 break;
4526 case OPTION_DYN_SYMS:
4527 do_dyn_syms = TRUE;
4528 break;
4529 #ifdef SUPPORT_DISASSEMBLY
4530 case 'i':
4531 request_dump (DISASS_DUMP);
4532 break;
4533 #endif
4534 case 'v':
4535 print_version (program_name);
4536 break;
4537 case 'V':
4538 do_version = TRUE;
4539 break;
4540 case 'W':
4541 do_wide = TRUE;
4542 break;
4543 default:
4544 /* xgettext:c-format */
4545 error (_("Invalid option '-%c'\n"), c);
4546 /* Fall through. */
4547 case '?':
4548 usage (stderr);
4549 }
4550 }
4551
4552 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
4553 && !do_segments && !do_header && !do_dump && !do_version
4554 && !do_histogram && !do_debugging && !do_arch && !do_notes
4555 && !do_section_groups && !do_archive_index
4556 && !do_dyn_syms)
4557 usage (stderr);
4558 }
4559
4560 static const char *
4561 get_elf_class (unsigned int elf_class)
4562 {
4563 static char buff[32];
4564
4565 switch (elf_class)
4566 {
4567 case ELFCLASSNONE: return _("none");
4568 case ELFCLASS32: return "ELF32";
4569 case ELFCLASS64: return "ELF64";
4570 default:
4571 snprintf (buff, sizeof (buff), _("<unknown: %x>"), elf_class);
4572 return buff;
4573 }
4574 }
4575
4576 static const char *
4577 get_data_encoding (unsigned int encoding)
4578 {
4579 static char buff[32];
4580
4581 switch (encoding)
4582 {
4583 case ELFDATANONE: return _("none");
4584 case ELFDATA2LSB: return _("2's complement, little endian");
4585 case ELFDATA2MSB: return _("2's complement, big endian");
4586 default:
4587 snprintf (buff, sizeof (buff), _("<unknown: %x>"), encoding);
4588 return buff;
4589 }
4590 }
4591
4592 /* Decode the data held in 'elf_header'. */
4593
4594 static bfd_boolean
4595 process_file_header (void)
4596 {
4597 if ( elf_header.e_ident[EI_MAG0] != ELFMAG0
4598 || elf_header.e_ident[EI_MAG1] != ELFMAG1
4599 || elf_header.e_ident[EI_MAG2] != ELFMAG2
4600 || elf_header.e_ident[EI_MAG3] != ELFMAG3)
4601 {
4602 error
4603 (_("Not an ELF file - it has the wrong magic bytes at the start\n"));
4604 return FALSE;
4605 }
4606
4607 init_dwarf_regnames (elf_header.e_machine);
4608
4609 if (do_header)
4610 {
4611 unsigned i;
4612
4613 printf (_("ELF Header:\n"));
4614 printf (_(" Magic: "));
4615 for (i = 0; i < EI_NIDENT; i++)
4616 printf ("%2.2x ", elf_header.e_ident[i]);
4617 printf ("\n");
4618 printf (_(" Class: %s\n"),
4619 get_elf_class (elf_header.e_ident[EI_CLASS]));
4620 printf (_(" Data: %s\n"),
4621 get_data_encoding (elf_header.e_ident[EI_DATA]));
4622 printf (_(" Version: %d %s\n"),
4623 elf_header.e_ident[EI_VERSION],
4624 (elf_header.e_ident[EI_VERSION] == EV_CURRENT
4625 ? "(current)"
4626 : (elf_header.e_ident[EI_VERSION] != EV_NONE
4627 ? _("<unknown: %lx>")
4628 : "")));
4629 printf (_(" OS/ABI: %s\n"),
4630 get_osabi_name (elf_header.e_ident[EI_OSABI]));
4631 printf (_(" ABI Version: %d\n"),
4632 elf_header.e_ident[EI_ABIVERSION]);
4633 printf (_(" Type: %s\n"),
4634 get_file_type (elf_header.e_type));
4635 printf (_(" Machine: %s\n"),
4636 get_machine_name (elf_header.e_machine));
4637 printf (_(" Version: 0x%lx\n"),
4638 (unsigned long) elf_header.e_version);
4639
4640 printf (_(" Entry point address: "));
4641 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4642 printf (_("\n Start of program headers: "));
4643 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4644 printf (_(" (bytes into file)\n Start of section headers: "));
4645 print_vma ((bfd_vma) elf_header.e_shoff, DEC);
4646 printf (_(" (bytes into file)\n"));
4647
4648 printf (_(" Flags: 0x%lx%s\n"),
4649 (unsigned long) elf_header.e_flags,
4650 get_machine_flags (elf_header.e_flags, elf_header.e_machine));
4651 printf (_(" Size of this header: %ld (bytes)\n"),
4652 (long) elf_header.e_ehsize);
4653 printf (_(" Size of program headers: %ld (bytes)\n"),
4654 (long) elf_header.e_phentsize);
4655 printf (_(" Number of program headers: %ld"),
4656 (long) elf_header.e_phnum);
4657 if (section_headers != NULL
4658 && elf_header.e_phnum == PN_XNUM
4659 && section_headers[0].sh_info != 0)
4660 printf (" (%ld)", (long) section_headers[0].sh_info);
4661 putc ('\n', stdout);
4662 printf (_(" Size of section headers: %ld (bytes)\n"),
4663 (long) elf_header.e_shentsize);
4664 printf (_(" Number of section headers: %ld"),
4665 (long) elf_header.e_shnum);
4666 if (section_headers != NULL && elf_header.e_shnum == SHN_UNDEF)
4667 printf (" (%ld)", (long) section_headers[0].sh_size);
4668 putc ('\n', stdout);
4669 printf (_(" Section header string table index: %ld"),
4670 (long) elf_header.e_shstrndx);
4671 if (section_headers != NULL
4672 && elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4673 printf (" (%u)", section_headers[0].sh_link);
4674 else if (elf_header.e_shstrndx != SHN_UNDEF
4675 && elf_header.e_shstrndx >= elf_header.e_shnum)
4676 printf (_(" <corrupt: out of range>"));
4677 putc ('\n', stdout);
4678 }
4679
4680 if (section_headers != NULL)
4681 {
4682 if (elf_header.e_phnum == PN_XNUM
4683 && section_headers[0].sh_info != 0)
4684 elf_header.e_phnum = section_headers[0].sh_info;
4685 if (elf_header.e_shnum == SHN_UNDEF)
4686 elf_header.e_shnum = section_headers[0].sh_size;
4687 if (elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4688 elf_header.e_shstrndx = section_headers[0].sh_link;
4689 else if (elf_header.e_shstrndx >= elf_header.e_shnum)
4690 elf_header.e_shstrndx = SHN_UNDEF;
4691 free (section_headers);
4692 section_headers = NULL;
4693 }
4694
4695 return TRUE;
4696 }
4697
4698 static bfd_boolean
4699 get_32bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4700 {
4701 Elf32_External_Phdr * phdrs;
4702 Elf32_External_Phdr * external;
4703 Elf_Internal_Phdr * internal;
4704 unsigned int i;
4705 unsigned int size = elf_header.e_phentsize;
4706 unsigned int num = elf_header.e_phnum;
4707
4708 /* PR binutils/17531: Cope with unexpected section header sizes. */
4709 if (size == 0 || num == 0)
4710 return FALSE;
4711 if (size < sizeof * phdrs)
4712 {
4713 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4714 return FALSE;
4715 }
4716 if (size > sizeof * phdrs)
4717 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4718
4719 phdrs = (Elf32_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4720 size, num, _("program headers"));
4721 if (phdrs == NULL)
4722 return FALSE;
4723
4724 for (i = 0, internal = pheaders, external = phdrs;
4725 i < elf_header.e_phnum;
4726 i++, internal++, external++)
4727 {
4728 internal->p_type = BYTE_GET (external->p_type);
4729 internal->p_offset = BYTE_GET (external->p_offset);
4730 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4731 internal->p_paddr = BYTE_GET (external->p_paddr);
4732 internal->p_filesz = BYTE_GET (external->p_filesz);
4733 internal->p_memsz = BYTE_GET (external->p_memsz);
4734 internal->p_flags = BYTE_GET (external->p_flags);
4735 internal->p_align = BYTE_GET (external->p_align);
4736 }
4737
4738 free (phdrs);
4739 return TRUE;
4740 }
4741
4742 static bfd_boolean
4743 get_64bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4744 {
4745 Elf64_External_Phdr * phdrs;
4746 Elf64_External_Phdr * external;
4747 Elf_Internal_Phdr * internal;
4748 unsigned int i;
4749 unsigned int size = elf_header.e_phentsize;
4750 unsigned int num = elf_header.e_phnum;
4751
4752 /* PR binutils/17531: Cope with unexpected section header sizes. */
4753 if (size == 0 || num == 0)
4754 return FALSE;
4755 if (size < sizeof * phdrs)
4756 {
4757 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4758 return FALSE;
4759 }
4760 if (size > sizeof * phdrs)
4761 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4762
4763 phdrs = (Elf64_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4764 size, num, _("program headers"));
4765 if (!phdrs)
4766 return FALSE;
4767
4768 for (i = 0, internal = pheaders, external = phdrs;
4769 i < elf_header.e_phnum;
4770 i++, internal++, external++)
4771 {
4772 internal->p_type = BYTE_GET (external->p_type);
4773 internal->p_flags = BYTE_GET (external->p_flags);
4774 internal->p_offset = BYTE_GET (external->p_offset);
4775 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4776 internal->p_paddr = BYTE_GET (external->p_paddr);
4777 internal->p_filesz = BYTE_GET (external->p_filesz);
4778 internal->p_memsz = BYTE_GET (external->p_memsz);
4779 internal->p_align = BYTE_GET (external->p_align);
4780 }
4781
4782 free (phdrs);
4783 return TRUE;
4784 }
4785
4786 /* Returns TRUE if the program headers were read into `program_headers'. */
4787
4788 static bfd_boolean
4789 get_program_headers (FILE * file)
4790 {
4791 Elf_Internal_Phdr * phdrs;
4792
4793 /* Check cache of prior read. */
4794 if (program_headers != NULL)
4795 return TRUE;
4796
4797 phdrs = (Elf_Internal_Phdr *) cmalloc (elf_header.e_phnum,
4798 sizeof (Elf_Internal_Phdr));
4799
4800 if (phdrs == NULL)
4801 {
4802 error (_("Out of memory reading %u program headers\n"),
4803 elf_header.e_phnum);
4804 return FALSE;
4805 }
4806
4807 if (is_32bit_elf
4808 ? get_32bit_program_headers (file, phdrs)
4809 : get_64bit_program_headers (file, phdrs))
4810 {
4811 program_headers = phdrs;
4812 return TRUE;
4813 }
4814
4815 free (phdrs);
4816 return FALSE;
4817 }
4818
4819 /* Returns TRUE if the program headers were loaded. */
4820
4821 static bfd_boolean
4822 process_program_headers (FILE * file)
4823 {
4824 Elf_Internal_Phdr * segment;
4825 unsigned int i;
4826 Elf_Internal_Phdr * previous_load = NULL;
4827
4828 if (elf_header.e_phnum == 0)
4829 {
4830 /* PR binutils/12467. */
4831 if (elf_header.e_phoff != 0)
4832 {
4833 warn (_("possibly corrupt ELF header - it has a non-zero program"
4834 " header offset, but no program headers\n"));
4835 return FALSE;
4836 }
4837 else if (do_segments)
4838 printf (_("\nThere are no program headers in this file.\n"));
4839 return TRUE;
4840 }
4841
4842 if (do_segments && !do_header)
4843 {
4844 printf (_("\nElf file type is %s\n"), get_file_type (elf_header.e_type));
4845 printf (_("Entry point "));
4846 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4847 printf (_("\nThere are %d program headers, starting at offset "),
4848 elf_header.e_phnum);
4849 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4850 printf ("\n");
4851 }
4852
4853 if (! get_program_headers (file))
4854 return TRUE;
4855
4856 if (do_segments)
4857 {
4858 if (elf_header.e_phnum > 1)
4859 printf (_("\nProgram Headers:\n"));
4860 else
4861 printf (_("\nProgram Headers:\n"));
4862
4863 if (is_32bit_elf)
4864 printf
4865 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4866 else if (do_wide)
4867 printf
4868 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4869 else
4870 {
4871 printf
4872 (_(" Type Offset VirtAddr PhysAddr\n"));
4873 printf
4874 (_(" FileSiz MemSiz Flags Align\n"));
4875 }
4876 }
4877
4878 dynamic_addr = 0;
4879 dynamic_size = 0;
4880
4881 for (i = 0, segment = program_headers;
4882 i < elf_header.e_phnum;
4883 i++, segment++)
4884 {
4885 if (do_segments)
4886 {
4887 printf (" %-14.14s ", get_segment_type (segment->p_type));
4888
4889 if (is_32bit_elf)
4890 {
4891 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4892 printf ("0x%8.8lx ", (unsigned long) segment->p_vaddr);
4893 printf ("0x%8.8lx ", (unsigned long) segment->p_paddr);
4894 printf ("0x%5.5lx ", (unsigned long) segment->p_filesz);
4895 printf ("0x%5.5lx ", (unsigned long) segment->p_memsz);
4896 printf ("%c%c%c ",
4897 (segment->p_flags & PF_R ? 'R' : ' '),
4898 (segment->p_flags & PF_W ? 'W' : ' '),
4899 (segment->p_flags & PF_X ? 'E' : ' '));
4900 printf ("%#lx", (unsigned long) segment->p_align);
4901 }
4902 else if (do_wide)
4903 {
4904 if ((unsigned long) segment->p_offset == segment->p_offset)
4905 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4906 else
4907 {
4908 print_vma (segment->p_offset, FULL_HEX);
4909 putchar (' ');
4910 }
4911
4912 print_vma (segment->p_vaddr, FULL_HEX);
4913 putchar (' ');
4914 print_vma (segment->p_paddr, FULL_HEX);
4915 putchar (' ');
4916
4917 if ((unsigned long) segment->p_filesz == segment->p_filesz)
4918 printf ("0x%6.6lx ", (unsigned long) segment->p_filesz);
4919 else
4920 {
4921 print_vma (segment->p_filesz, FULL_HEX);
4922 putchar (' ');
4923 }
4924
4925 if ((unsigned long) segment->p_memsz == segment->p_memsz)
4926 printf ("0x%6.6lx", (unsigned long) segment->p_memsz);
4927 else
4928 {
4929 print_vma (segment->p_memsz, FULL_HEX);
4930 }
4931
4932 printf (" %c%c%c ",
4933 (segment->p_flags & PF_R ? 'R' : ' '),
4934 (segment->p_flags & PF_W ? 'W' : ' '),
4935 (segment->p_flags & PF_X ? 'E' : ' '));
4936
4937 if ((unsigned long) segment->p_align == segment->p_align)
4938 printf ("%#lx", (unsigned long) segment->p_align);
4939 else
4940 {
4941 print_vma (segment->p_align, PREFIX_HEX);
4942 }
4943 }
4944 else
4945 {
4946 print_vma (segment->p_offset, FULL_HEX);
4947 putchar (' ');
4948 print_vma (segment->p_vaddr, FULL_HEX);
4949 putchar (' ');
4950 print_vma (segment->p_paddr, FULL_HEX);
4951 printf ("\n ");
4952 print_vma (segment->p_filesz, FULL_HEX);
4953 putchar (' ');
4954 print_vma (segment->p_memsz, FULL_HEX);
4955 printf (" %c%c%c ",
4956 (segment->p_flags & PF_R ? 'R' : ' '),
4957 (segment->p_flags & PF_W ? 'W' : ' '),
4958 (segment->p_flags & PF_X ? 'E' : ' '));
4959 print_vma (segment->p_align, PREFIX_HEX);
4960 }
4961
4962 putc ('\n', stdout);
4963 }
4964
4965 switch (segment->p_type)
4966 {
4967 case PT_LOAD:
4968 #if 0 /* Do not warn about out of order PT_LOAD segments. Although officially
4969 required by the ELF standard, several programs, including the Linux
4970 kernel, make use of non-ordered segments. */
4971 if (previous_load
4972 && previous_load->p_vaddr > segment->p_vaddr)
4973 error (_("LOAD segments must be sorted in order of increasing VirtAddr\n"));
4974 #endif
4975 if (segment->p_memsz < segment->p_filesz)
4976 error (_("the segment's file size is larger than its memory size\n"));
4977 previous_load = segment;
4978 break;
4979
4980 case PT_PHDR:
4981 /* PR 20815 - Verify that the program header is loaded into memory. */
4982 if (i > 0 && previous_load != NULL)
4983 error (_("the PHDR segment must occur before any LOAD segment\n"));
4984 if (elf_header.e_machine != EM_PARISC)
4985 {
4986 unsigned int j;
4987
4988 for (j = 1; j < elf_header.e_phnum; j++)
4989 if (program_headers[j].p_vaddr <= segment->p_vaddr
4990 && (program_headers[j].p_vaddr + program_headers[j].p_memsz)
4991 >= (segment->p_vaddr + segment->p_filesz))
4992 break;
4993 if (j == elf_header.e_phnum)
4994 error (_("the PHDR segment is not covered by a LOAD segment\n"));
4995 }
4996 break;
4997
4998 case PT_DYNAMIC:
4999 if (dynamic_addr)
5000 error (_("more than one dynamic segment\n"));
5001
5002 /* By default, assume that the .dynamic section is the first
5003 section in the DYNAMIC segment. */
5004 dynamic_addr = segment->p_offset;
5005 dynamic_size = segment->p_filesz;
5006
5007 /* Try to locate the .dynamic section. If there is
5008 a section header table, we can easily locate it. */
5009 if (section_headers != NULL)
5010 {
5011 Elf_Internal_Shdr * sec;
5012
5013 sec = find_section (".dynamic");
5014 if (sec == NULL || sec->sh_size == 0)
5015 {
5016 /* A corresponding .dynamic section is expected, but on
5017 IA-64/OpenVMS it is OK for it to be missing. */
5018 if (!is_ia64_vms ())
5019 error (_("no .dynamic section in the dynamic segment\n"));
5020 break;
5021 }
5022
5023 if (sec->sh_type == SHT_NOBITS)
5024 {
5025 dynamic_size = 0;
5026 break;
5027 }
5028
5029 dynamic_addr = sec->sh_offset;
5030 dynamic_size = sec->sh_size;
5031
5032 if (dynamic_addr < segment->p_offset
5033 || dynamic_addr > segment->p_offset + segment->p_filesz)
5034 warn (_("the .dynamic section is not contained"
5035 " within the dynamic segment\n"));
5036 else if (dynamic_addr > segment->p_offset)
5037 warn (_("the .dynamic section is not the first section"
5038 " in the dynamic segment.\n"));
5039 }
5040
5041 /* PR binutils/17512: Avoid corrupt dynamic section info in the
5042 segment. Check this after matching against the section headers
5043 so we don't warn on debuginfo file (which have NOBITS .dynamic
5044 sections). */
5045 if (dynamic_addr + dynamic_size >= current_file_size)
5046 {
5047 error (_("the dynamic segment offset + size exceeds the size of the file\n"));
5048 dynamic_addr = dynamic_size = 0;
5049 }
5050 break;
5051
5052 case PT_INTERP:
5053 if (fseek (file, archive_file_offset + (long) segment->p_offset,
5054 SEEK_SET))
5055 error (_("Unable to find program interpreter name\n"));
5056 else
5057 {
5058 char fmt [32];
5059 int ret = snprintf (fmt, sizeof (fmt), "%%%ds", PATH_MAX - 1);
5060
5061 if (ret >= (int) sizeof (fmt) || ret < 0)
5062 error (_("Internal error: failed to create format string to display program interpreter\n"));
5063
5064 program_interpreter[0] = 0;
5065 if (fscanf (file, fmt, program_interpreter) <= 0)
5066 error (_("Unable to read program interpreter name\n"));
5067
5068 if (do_segments)
5069 printf (_(" [Requesting program interpreter: %s]\n"),
5070 program_interpreter);
5071 }
5072 break;
5073 }
5074 }
5075
5076 if (do_segments && section_headers != NULL && string_table != NULL)
5077 {
5078 printf (_("\n Section to Segment mapping:\n"));
5079 printf (_(" Segment Sections...\n"));
5080
5081 for (i = 0; i < elf_header.e_phnum; i++)
5082 {
5083 unsigned int j;
5084 Elf_Internal_Shdr * section;
5085
5086 segment = program_headers + i;
5087 section = section_headers + 1;
5088
5089 printf (" %2.2d ", i);
5090
5091 for (j = 1; j < elf_header.e_shnum; j++, section++)
5092 {
5093 if (!ELF_TBSS_SPECIAL (section, segment)
5094 && ELF_SECTION_IN_SEGMENT_STRICT (section, segment))
5095 printf ("%s ", printable_section_name (section));
5096 }
5097
5098 putc ('\n',stdout);
5099 }
5100 }
5101
5102 return TRUE;
5103 }
5104
5105
5106 /* Find the file offset corresponding to VMA by using the program headers. */
5107
5108 static long
5109 offset_from_vma (FILE * file, bfd_vma vma, bfd_size_type size)
5110 {
5111 Elf_Internal_Phdr * seg;
5112
5113 if (! get_program_headers (file))
5114 {
5115 warn (_("Cannot interpret virtual addresses without program headers.\n"));
5116 return (long) vma;
5117 }
5118
5119 for (seg = program_headers;
5120 seg < program_headers + elf_header.e_phnum;
5121 ++seg)
5122 {
5123 if (seg->p_type != PT_LOAD)
5124 continue;
5125
5126 if (vma >= (seg->p_vaddr & -seg->p_align)
5127 && vma + size <= seg->p_vaddr + seg->p_filesz)
5128 return vma - seg->p_vaddr + seg->p_offset;
5129 }
5130
5131 warn (_("Virtual address 0x%lx not located in any PT_LOAD segment.\n"),
5132 (unsigned long) vma);
5133 return (long) vma;
5134 }
5135
5136
5137 /* Allocate memory and load the sections headers into the global pointer
5138 SECTION_HEADERS. If PROBE is true, this is just a probe and we do not
5139 generate any error messages if the load fails. */
5140
5141 static bfd_boolean
5142 get_32bit_section_headers (FILE * file, bfd_boolean probe)
5143 {
5144 Elf32_External_Shdr * shdrs;
5145 Elf_Internal_Shdr * internal;
5146 unsigned int i;
5147 unsigned int size = elf_header.e_shentsize;
5148 unsigned int num = probe ? 1 : elf_header.e_shnum;
5149
5150 /* PR binutils/17531: Cope with unexpected section header sizes. */
5151 if (size == 0 || num == 0)
5152 return FALSE;
5153 if (size < sizeof * shdrs)
5154 {
5155 if (! probe)
5156 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5157 return FALSE;
5158 }
5159 if (!probe && size > sizeof * shdrs)
5160 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5161
5162 shdrs = (Elf32_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
5163 size, num,
5164 probe ? NULL : _("section headers"));
5165 if (shdrs == NULL)
5166 return FALSE;
5167
5168 if (section_headers != NULL)
5169 free (section_headers);
5170 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
5171 sizeof (Elf_Internal_Shdr));
5172 if (section_headers == NULL)
5173 {
5174 if (!probe)
5175 error (_("Out of memory reading %u section headers\n"), num);
5176 return FALSE;
5177 }
5178
5179 for (i = 0, internal = section_headers;
5180 i < num;
5181 i++, internal++)
5182 {
5183 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5184 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5185 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5186 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5187 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5188 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5189 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5190 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5191 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5192 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5193 if (!probe && internal->sh_link > num)
5194 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5195 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5196 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5197 }
5198
5199 free (shdrs);
5200 return TRUE;
5201 }
5202
5203 static bfd_boolean
5204 get_64bit_section_headers (FILE * file, bfd_boolean probe)
5205 {
5206 Elf64_External_Shdr * shdrs;
5207 Elf_Internal_Shdr * internal;
5208 unsigned int i;
5209 unsigned int size = elf_header.e_shentsize;
5210 unsigned int num = probe ? 1 : elf_header.e_shnum;
5211
5212 /* PR binutils/17531: Cope with unexpected section header sizes. */
5213 if (size == 0 || num == 0)
5214 return FALSE;
5215 if (size < sizeof * shdrs)
5216 {
5217 if (! probe)
5218 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5219 return FALSE;
5220 }
5221 if (! probe && size > sizeof * shdrs)
5222 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5223
5224 shdrs = (Elf64_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
5225 size, num,
5226 probe ? NULL : _("section headers"));
5227 if (shdrs == NULL)
5228 return FALSE;
5229
5230 if (section_headers != NULL)
5231 free (section_headers);
5232 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
5233 sizeof (Elf_Internal_Shdr));
5234 if (section_headers == NULL)
5235 {
5236 if (! probe)
5237 error (_("Out of memory reading %u section headers\n"), num);
5238 return FALSE;
5239 }
5240
5241 for (i = 0, internal = section_headers;
5242 i < num;
5243 i++, internal++)
5244 {
5245 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5246 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5247 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5248 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5249 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5250 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5251 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5252 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5253 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5254 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5255 if (!probe && internal->sh_link > num)
5256 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5257 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5258 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5259 }
5260
5261 free (shdrs);
5262 return TRUE;
5263 }
5264
5265 static Elf_Internal_Sym *
5266 get_32bit_elf_symbols (FILE * file,
5267 Elf_Internal_Shdr * section,
5268 unsigned long * num_syms_return)
5269 {
5270 unsigned long number = 0;
5271 Elf32_External_Sym * esyms = NULL;
5272 Elf_External_Sym_Shndx * shndx = NULL;
5273 Elf_Internal_Sym * isyms = NULL;
5274 Elf_Internal_Sym * psym;
5275 unsigned int j;
5276
5277 if (section->sh_size == 0)
5278 {
5279 if (num_syms_return != NULL)
5280 * num_syms_return = 0;
5281 return NULL;
5282 }
5283
5284 /* Run some sanity checks first. */
5285 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5286 {
5287 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5288 printable_section_name (section), (unsigned long) section->sh_entsize);
5289 goto exit_point;
5290 }
5291
5292 if (section->sh_size > current_file_size)
5293 {
5294 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5295 printable_section_name (section), (unsigned long) section->sh_size);
5296 goto exit_point;
5297 }
5298
5299 number = section->sh_size / section->sh_entsize;
5300
5301 if (number * sizeof (Elf32_External_Sym) > section->sh_size + 1)
5302 {
5303 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5304 (unsigned long) section->sh_size,
5305 printable_section_name (section),
5306 (unsigned long) section->sh_entsize);
5307 goto exit_point;
5308 }
5309
5310 esyms = (Elf32_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
5311 section->sh_size, _("symbols"));
5312 if (esyms == NULL)
5313 goto exit_point;
5314
5315 {
5316 elf_section_list * entry;
5317
5318 shndx = NULL;
5319 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5320 if (entry->hdr->sh_link == (unsigned long) (section - section_headers))
5321 {
5322 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
5323 entry->hdr->sh_offset,
5324 1, entry->hdr->sh_size,
5325 _("symbol table section indicies"));
5326 if (shndx == NULL)
5327 goto exit_point;
5328 /* PR17531: file: heap-buffer-overflow */
5329 else if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5330 {
5331 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5332 printable_section_name (entry->hdr),
5333 (unsigned long) entry->hdr->sh_size,
5334 (unsigned long) section->sh_size);
5335 goto exit_point;
5336 }
5337 }
5338 }
5339
5340 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5341
5342 if (isyms == NULL)
5343 {
5344 error (_("Out of memory reading %lu symbols\n"),
5345 (unsigned long) number);
5346 goto exit_point;
5347 }
5348
5349 for (j = 0, psym = isyms; j < number; j++, psym++)
5350 {
5351 psym->st_name = BYTE_GET (esyms[j].st_name);
5352 psym->st_value = BYTE_GET (esyms[j].st_value);
5353 psym->st_size = BYTE_GET (esyms[j].st_size);
5354 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5355 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5356 psym->st_shndx
5357 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5358 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5359 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5360 psym->st_info = BYTE_GET (esyms[j].st_info);
5361 psym->st_other = BYTE_GET (esyms[j].st_other);
5362 }
5363
5364 exit_point:
5365 if (shndx != NULL)
5366 free (shndx);
5367 if (esyms != NULL)
5368 free (esyms);
5369
5370 if (num_syms_return != NULL)
5371 * num_syms_return = isyms == NULL ? 0 : number;
5372
5373 return isyms;
5374 }
5375
5376 static Elf_Internal_Sym *
5377 get_64bit_elf_symbols (FILE * file,
5378 Elf_Internal_Shdr * section,
5379 unsigned long * num_syms_return)
5380 {
5381 unsigned long number = 0;
5382 Elf64_External_Sym * esyms = NULL;
5383 Elf_External_Sym_Shndx * shndx = NULL;
5384 Elf_Internal_Sym * isyms = NULL;
5385 Elf_Internal_Sym * psym;
5386 unsigned int j;
5387
5388 if (section->sh_size == 0)
5389 {
5390 if (num_syms_return != NULL)
5391 * num_syms_return = 0;
5392 return NULL;
5393 }
5394
5395 /* Run some sanity checks first. */
5396 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5397 {
5398 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5399 printable_section_name (section),
5400 (unsigned long) section->sh_entsize);
5401 goto exit_point;
5402 }
5403
5404 if (section->sh_size > current_file_size)
5405 {
5406 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5407 printable_section_name (section),
5408 (unsigned long) section->sh_size);
5409 goto exit_point;
5410 }
5411
5412 number = section->sh_size / section->sh_entsize;
5413
5414 if (number * sizeof (Elf64_External_Sym) > section->sh_size + 1)
5415 {
5416 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5417 (unsigned long) section->sh_size,
5418 printable_section_name (section),
5419 (unsigned long) section->sh_entsize);
5420 goto exit_point;
5421 }
5422
5423 esyms = (Elf64_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
5424 section->sh_size, _("symbols"));
5425 if (!esyms)
5426 goto exit_point;
5427
5428 {
5429 elf_section_list * entry;
5430
5431 shndx = NULL;
5432 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5433 if (entry->hdr->sh_link == (unsigned long) (section - section_headers))
5434 {
5435 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
5436 entry->hdr->sh_offset,
5437 1, entry->hdr->sh_size,
5438 _("symbol table section indicies"));
5439 if (shndx == NULL)
5440 goto exit_point;
5441 /* PR17531: file: heap-buffer-overflow */
5442 else if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5443 {
5444 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5445 printable_section_name (entry->hdr),
5446 (unsigned long) entry->hdr->sh_size,
5447 (unsigned long) section->sh_size);
5448 goto exit_point;
5449 }
5450 }
5451 }
5452
5453 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5454
5455 if (isyms == NULL)
5456 {
5457 error (_("Out of memory reading %lu symbols\n"),
5458 (unsigned long) number);
5459 goto exit_point;
5460 }
5461
5462 for (j = 0, psym = isyms; j < number; j++, psym++)
5463 {
5464 psym->st_name = BYTE_GET (esyms[j].st_name);
5465 psym->st_info = BYTE_GET (esyms[j].st_info);
5466 psym->st_other = BYTE_GET (esyms[j].st_other);
5467 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5468
5469 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5470 psym->st_shndx
5471 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5472 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5473 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5474
5475 psym->st_value = BYTE_GET (esyms[j].st_value);
5476 psym->st_size = BYTE_GET (esyms[j].st_size);
5477 }
5478
5479 exit_point:
5480 if (shndx != NULL)
5481 free (shndx);
5482 if (esyms != NULL)
5483 free (esyms);
5484
5485 if (num_syms_return != NULL)
5486 * num_syms_return = isyms == NULL ? 0 : number;
5487
5488 return isyms;
5489 }
5490
5491 static const char *
5492 get_elf_section_flags (bfd_vma sh_flags)
5493 {
5494 static char buff[1024];
5495 char * p = buff;
5496 unsigned int field_size = is_32bit_elf ? 8 : 16;
5497 signed int sindex;
5498 unsigned int size = sizeof (buff) - (field_size + 4 + 1);
5499 bfd_vma os_flags = 0;
5500 bfd_vma proc_flags = 0;
5501 bfd_vma unknown_flags = 0;
5502 static const struct
5503 {
5504 const char * str;
5505 unsigned int len;
5506 }
5507 flags [] =
5508 {
5509 /* 0 */ { STRING_COMMA_LEN ("WRITE") },
5510 /* 1 */ { STRING_COMMA_LEN ("ALLOC") },
5511 /* 2 */ { STRING_COMMA_LEN ("EXEC") },
5512 /* 3 */ { STRING_COMMA_LEN ("MERGE") },
5513 /* 4 */ { STRING_COMMA_LEN ("STRINGS") },
5514 /* 5 */ { STRING_COMMA_LEN ("INFO LINK") },
5515 /* 6 */ { STRING_COMMA_LEN ("LINK ORDER") },
5516 /* 7 */ { STRING_COMMA_LEN ("OS NONCONF") },
5517 /* 8 */ { STRING_COMMA_LEN ("GROUP") },
5518 /* 9 */ { STRING_COMMA_LEN ("TLS") },
5519 /* IA-64 specific. */
5520 /* 10 */ { STRING_COMMA_LEN ("SHORT") },
5521 /* 11 */ { STRING_COMMA_LEN ("NORECOV") },
5522 /* IA-64 OpenVMS specific. */
5523 /* 12 */ { STRING_COMMA_LEN ("VMS_GLOBAL") },
5524 /* 13 */ { STRING_COMMA_LEN ("VMS_OVERLAID") },
5525 /* 14 */ { STRING_COMMA_LEN ("VMS_SHARED") },
5526 /* 15 */ { STRING_COMMA_LEN ("VMS_VECTOR") },
5527 /* 16 */ { STRING_COMMA_LEN ("VMS_ALLOC_64BIT") },
5528 /* 17 */ { STRING_COMMA_LEN ("VMS_PROTECTED") },
5529 /* Generic. */
5530 /* 18 */ { STRING_COMMA_LEN ("EXCLUDE") },
5531 /* SPARC specific. */
5532 /* 19 */ { STRING_COMMA_LEN ("ORDERED") },
5533 /* 20 */ { STRING_COMMA_LEN ("COMPRESSED") },
5534 /* ARM specific. */
5535 /* 21 */ { STRING_COMMA_LEN ("ENTRYSECT") },
5536 /* 22 */ { STRING_COMMA_LEN ("ARM_PURECODE") },
5537 /* 23 */ { STRING_COMMA_LEN ("COMDEF") }
5538 };
5539
5540 if (do_section_details)
5541 {
5542 sprintf (buff, "[%*.*lx]: ",
5543 field_size, field_size, (unsigned long) sh_flags);
5544 p += field_size + 4;
5545 }
5546
5547 while (sh_flags)
5548 {
5549 bfd_vma flag;
5550
5551 flag = sh_flags & - sh_flags;
5552 sh_flags &= ~ flag;
5553
5554 if (do_section_details)
5555 {
5556 switch (flag)
5557 {
5558 case SHF_WRITE: sindex = 0; break;
5559 case SHF_ALLOC: sindex = 1; break;
5560 case SHF_EXECINSTR: sindex = 2; break;
5561 case SHF_MERGE: sindex = 3; break;
5562 case SHF_STRINGS: sindex = 4; break;
5563 case SHF_INFO_LINK: sindex = 5; break;
5564 case SHF_LINK_ORDER: sindex = 6; break;
5565 case SHF_OS_NONCONFORMING: sindex = 7; break;
5566 case SHF_GROUP: sindex = 8; break;
5567 case SHF_TLS: sindex = 9; break;
5568 case SHF_EXCLUDE: sindex = 18; break;
5569 case SHF_COMPRESSED: sindex = 20; break;
5570
5571 default:
5572 sindex = -1;
5573 switch (elf_header.e_machine)
5574 {
5575 case EM_IA_64:
5576 if (flag == SHF_IA_64_SHORT)
5577 sindex = 10;
5578 else if (flag == SHF_IA_64_NORECOV)
5579 sindex = 11;
5580 #ifdef BFD64
5581 else if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
5582 switch (flag)
5583 {
5584 case SHF_IA_64_VMS_GLOBAL: sindex = 12; break;
5585 case SHF_IA_64_VMS_OVERLAID: sindex = 13; break;
5586 case SHF_IA_64_VMS_SHARED: sindex = 14; break;
5587 case SHF_IA_64_VMS_VECTOR: sindex = 15; break;
5588 case SHF_IA_64_VMS_ALLOC_64BIT: sindex = 16; break;
5589 case SHF_IA_64_VMS_PROTECTED: sindex = 17; break;
5590 default: break;
5591 }
5592 #endif
5593 break;
5594
5595 case EM_386:
5596 case EM_IAMCU:
5597 case EM_X86_64:
5598 case EM_L1OM:
5599 case EM_K1OM:
5600 case EM_OLD_SPARCV9:
5601 case EM_SPARC32PLUS:
5602 case EM_SPARCV9:
5603 case EM_SPARC:
5604 if (flag == SHF_ORDERED)
5605 sindex = 19;
5606 break;
5607
5608 case EM_ARM:
5609 switch (flag)
5610 {
5611 case SHF_ENTRYSECT: sindex = 21; break;
5612 case SHF_ARM_PURECODE: sindex = 22; break;
5613 case SHF_COMDEF: sindex = 23; break;
5614 default: break;
5615 }
5616 break;
5617
5618 default:
5619 break;
5620 }
5621 }
5622
5623 if (sindex != -1)
5624 {
5625 if (p != buff + field_size + 4)
5626 {
5627 if (size < (10 + 2))
5628 {
5629 warn (_("Internal error: not enough buffer room for section flag info"));
5630 return _("<unknown>");
5631 }
5632 size -= 2;
5633 *p++ = ',';
5634 *p++ = ' ';
5635 }
5636
5637 size -= flags [sindex].len;
5638 p = stpcpy (p, flags [sindex].str);
5639 }
5640 else if (flag & SHF_MASKOS)
5641 os_flags |= flag;
5642 else if (flag & SHF_MASKPROC)
5643 proc_flags |= flag;
5644 else
5645 unknown_flags |= flag;
5646 }
5647 else
5648 {
5649 switch (flag)
5650 {
5651 case SHF_WRITE: *p = 'W'; break;
5652 case SHF_ALLOC: *p = 'A'; break;
5653 case SHF_EXECINSTR: *p = 'X'; break;
5654 case SHF_MERGE: *p = 'M'; break;
5655 case SHF_STRINGS: *p = 'S'; break;
5656 case SHF_INFO_LINK: *p = 'I'; break;
5657 case SHF_LINK_ORDER: *p = 'L'; break;
5658 case SHF_OS_NONCONFORMING: *p = 'O'; break;
5659 case SHF_GROUP: *p = 'G'; break;
5660 case SHF_TLS: *p = 'T'; break;
5661 case SHF_EXCLUDE: *p = 'E'; break;
5662 case SHF_COMPRESSED: *p = 'C'; break;
5663
5664 default:
5665 if ((elf_header.e_machine == EM_X86_64
5666 || elf_header.e_machine == EM_L1OM
5667 || elf_header.e_machine == EM_K1OM)
5668 && flag == SHF_X86_64_LARGE)
5669 *p = 'l';
5670 else if (elf_header.e_machine == EM_ARM
5671 && flag == SHF_ARM_PURECODE)
5672 *p = 'y';
5673 else if (flag & SHF_MASKOS)
5674 {
5675 *p = 'o';
5676 sh_flags &= ~ SHF_MASKOS;
5677 }
5678 else if (flag & SHF_MASKPROC)
5679 {
5680 *p = 'p';
5681 sh_flags &= ~ SHF_MASKPROC;
5682 }
5683 else
5684 *p = 'x';
5685 break;
5686 }
5687 p++;
5688 }
5689 }
5690
5691 if (do_section_details)
5692 {
5693 if (os_flags)
5694 {
5695 size -= 5 + field_size;
5696 if (p != buff + field_size + 4)
5697 {
5698 if (size < (2 + 1))
5699 {
5700 warn (_("Internal error: not enough buffer room for section flag info"));
5701 return _("<unknown>");
5702 }
5703 size -= 2;
5704 *p++ = ',';
5705 *p++ = ' ';
5706 }
5707 sprintf (p, "OS (%*.*lx)", field_size, field_size,
5708 (unsigned long) os_flags);
5709 p += 5 + field_size;
5710 }
5711 if (proc_flags)
5712 {
5713 size -= 7 + field_size;
5714 if (p != buff + field_size + 4)
5715 {
5716 if (size < (2 + 1))
5717 {
5718 warn (_("Internal error: not enough buffer room for section flag info"));
5719 return _("<unknown>");
5720 }
5721 size -= 2;
5722 *p++ = ',';
5723 *p++ = ' ';
5724 }
5725 sprintf (p, "PROC (%*.*lx)", field_size, field_size,
5726 (unsigned long) proc_flags);
5727 p += 7 + field_size;
5728 }
5729 if (unknown_flags)
5730 {
5731 size -= 10 + field_size;
5732 if (p != buff + field_size + 4)
5733 {
5734 if (size < (2 + 1))
5735 {
5736 warn (_("Internal error: not enough buffer room for section flag info"));
5737 return _("<unknown>");
5738 }
5739 size -= 2;
5740 *p++ = ',';
5741 *p++ = ' ';
5742 }
5743 sprintf (p, _("UNKNOWN (%*.*lx)"), field_size, field_size,
5744 (unsigned long) unknown_flags);
5745 p += 10 + field_size;
5746 }
5747 }
5748
5749 *p = '\0';
5750 return buff;
5751 }
5752
5753 static unsigned int
5754 get_compression_header (Elf_Internal_Chdr *chdr, unsigned char *buf, bfd_size_type size)
5755 {
5756 if (is_32bit_elf)
5757 {
5758 Elf32_External_Chdr *echdr = (Elf32_External_Chdr *) buf;
5759
5760 if (size < sizeof (* echdr))
5761 {
5762 error (_("Compressed section is too small even for a compression header\n"));
5763 return 0;
5764 }
5765
5766 chdr->ch_type = BYTE_GET (echdr->ch_type);
5767 chdr->ch_size = BYTE_GET (echdr->ch_size);
5768 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
5769 return sizeof (*echdr);
5770 }
5771 else
5772 {
5773 Elf64_External_Chdr *echdr = (Elf64_External_Chdr *) buf;
5774
5775 if (size < sizeof (* echdr))
5776 {
5777 error (_("Compressed section is too small even for a compression header\n"));
5778 return 0;
5779 }
5780
5781 chdr->ch_type = BYTE_GET (echdr->ch_type);
5782 chdr->ch_size = BYTE_GET (echdr->ch_size);
5783 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
5784 return sizeof (*echdr);
5785 }
5786 }
5787
5788 static bfd_boolean
5789 process_section_headers (FILE * file)
5790 {
5791 Elf_Internal_Shdr * section;
5792 unsigned int i;
5793
5794 section_headers = NULL;
5795
5796 if (elf_header.e_shnum == 0)
5797 {
5798 /* PR binutils/12467. */
5799 if (elf_header.e_shoff != 0)
5800 {
5801 warn (_("possibly corrupt ELF file header - it has a non-zero"
5802 " section header offset, but no section headers\n"));
5803 return FALSE;
5804 }
5805 else if (do_sections)
5806 printf (_("\nThere are no sections in this file.\n"));
5807
5808 return TRUE;
5809 }
5810
5811 if (do_sections && !do_header)
5812 printf (_("There are %d section headers, starting at offset 0x%lx:\n"),
5813 elf_header.e_shnum, (unsigned long) elf_header.e_shoff);
5814
5815 if (is_32bit_elf)
5816 {
5817 if (! get_32bit_section_headers (file, FALSE))
5818 return FALSE;
5819 }
5820 else
5821 {
5822 if (! get_64bit_section_headers (file, FALSE))
5823 return FALSE;
5824 }
5825
5826 /* Read in the string table, so that we have names to display. */
5827 if (elf_header.e_shstrndx != SHN_UNDEF
5828 && elf_header.e_shstrndx < elf_header.e_shnum)
5829 {
5830 section = section_headers + elf_header.e_shstrndx;
5831
5832 if (section->sh_size != 0)
5833 {
5834 string_table = (char *) get_data (NULL, file, section->sh_offset,
5835 1, section->sh_size,
5836 _("string table"));
5837
5838 string_table_length = string_table != NULL ? section->sh_size : 0;
5839 }
5840 }
5841
5842 /* Scan the sections for the dynamic symbol table
5843 and dynamic string table and debug sections. */
5844 dynamic_symbols = NULL;
5845 dynamic_strings = NULL;
5846 dynamic_syminfo = NULL;
5847 symtab_shndx_list = NULL;
5848
5849 eh_addr_size = is_32bit_elf ? 4 : 8;
5850 switch (elf_header.e_machine)
5851 {
5852 case EM_MIPS:
5853 case EM_MIPS_RS3_LE:
5854 /* The 64-bit MIPS EABI uses a combination of 32-bit ELF and 64-bit
5855 FDE addresses. However, the ABI also has a semi-official ILP32
5856 variant for which the normal FDE address size rules apply.
5857
5858 GCC 4.0 marks EABI64 objects with a dummy .gcc_compiled_longXX
5859 section, where XX is the size of longs in bits. Unfortunately,
5860 earlier compilers provided no way of distinguishing ILP32 objects
5861 from LP64 objects, so if there's any doubt, we should assume that
5862 the official LP64 form is being used. */
5863 if ((elf_header.e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64
5864 && find_section (".gcc_compiled_long32") == NULL)
5865 eh_addr_size = 8;
5866 break;
5867
5868 case EM_H8_300:
5869 case EM_H8_300H:
5870 switch (elf_header.e_flags & EF_H8_MACH)
5871 {
5872 case E_H8_MACH_H8300:
5873 case E_H8_MACH_H8300HN:
5874 case E_H8_MACH_H8300SN:
5875 case E_H8_MACH_H8300SXN:
5876 eh_addr_size = 2;
5877 break;
5878 case E_H8_MACH_H8300H:
5879 case E_H8_MACH_H8300S:
5880 case E_H8_MACH_H8300SX:
5881 eh_addr_size = 4;
5882 break;
5883 }
5884 break;
5885
5886 case EM_M32C_OLD:
5887 case EM_M32C:
5888 switch (elf_header.e_flags & EF_M32C_CPU_MASK)
5889 {
5890 case EF_M32C_CPU_M16C:
5891 eh_addr_size = 2;
5892 break;
5893 }
5894 break;
5895 }
5896
5897 #define CHECK_ENTSIZE_VALUES(section, i, size32, size64) \
5898 do \
5899 { \
5900 bfd_size_type expected_entsize = is_32bit_elf ? size32 : size64; \
5901 if (section->sh_entsize != expected_entsize) \
5902 { \
5903 char buf[40]; \
5904 sprintf_vma (buf, section->sh_entsize); \
5905 /* Note: coded this way so that there is a single string for \
5906 translation. */ \
5907 error (_("Section %d has invalid sh_entsize of %s\n"), i, buf); \
5908 error (_("(Using the expected size of %u for the rest of this dump)\n"), \
5909 (unsigned) expected_entsize); \
5910 section->sh_entsize = expected_entsize; \
5911 } \
5912 } \
5913 while (0)
5914
5915 #define CHECK_ENTSIZE(section, i, type) \
5916 CHECK_ENTSIZE_VALUES (section, i, sizeof (Elf32_External_##type), \
5917 sizeof (Elf64_External_##type))
5918
5919 for (i = 0, section = section_headers;
5920 i < elf_header.e_shnum;
5921 i++, section++)
5922 {
5923 char * name = SECTION_NAME (section);
5924
5925 if (section->sh_type == SHT_DYNSYM)
5926 {
5927 if (dynamic_symbols != NULL)
5928 {
5929 error (_("File contains multiple dynamic symbol tables\n"));
5930 continue;
5931 }
5932
5933 CHECK_ENTSIZE (section, i, Sym);
5934 dynamic_symbols = GET_ELF_SYMBOLS (file, section, & num_dynamic_syms);
5935 }
5936 else if (section->sh_type == SHT_STRTAB
5937 && streq (name, ".dynstr"))
5938 {
5939 if (dynamic_strings != NULL)
5940 {
5941 error (_("File contains multiple dynamic string tables\n"));
5942 continue;
5943 }
5944
5945 dynamic_strings = (char *) get_data (NULL, file, section->sh_offset,
5946 1, section->sh_size,
5947 _("dynamic strings"));
5948 dynamic_strings_length = dynamic_strings == NULL ? 0 : section->sh_size;
5949 }
5950 else if (section->sh_type == SHT_SYMTAB_SHNDX)
5951 {
5952 elf_section_list * entry = xmalloc (sizeof * entry);
5953 entry->hdr = section;
5954 entry->next = symtab_shndx_list;
5955 symtab_shndx_list = entry;
5956 }
5957 else if (section->sh_type == SHT_SYMTAB)
5958 CHECK_ENTSIZE (section, i, Sym);
5959 else if (section->sh_type == SHT_GROUP)
5960 CHECK_ENTSIZE_VALUES (section, i, GRP_ENTRY_SIZE, GRP_ENTRY_SIZE);
5961 else if (section->sh_type == SHT_REL)
5962 CHECK_ENTSIZE (section, i, Rel);
5963 else if (section->sh_type == SHT_RELA)
5964 CHECK_ENTSIZE (section, i, Rela);
5965 else if ((do_debugging || do_debug_info || do_debug_abbrevs
5966 || do_debug_lines || do_debug_pubnames || do_debug_pubtypes
5967 || do_debug_aranges || do_debug_frames || do_debug_macinfo
5968 || do_debug_str || do_debug_loc || do_debug_ranges
5969 || do_debug_addr || do_debug_cu_index)
5970 && (const_strneq (name, ".debug_")
5971 || const_strneq (name, ".zdebug_")))
5972 {
5973 if (name[1] == 'z')
5974 name += sizeof (".zdebug_") - 1;
5975 else
5976 name += sizeof (".debug_") - 1;
5977
5978 if (do_debugging
5979 || (do_debug_info && const_strneq (name, "info"))
5980 || (do_debug_info && const_strneq (name, "types"))
5981 || (do_debug_abbrevs && const_strneq (name, "abbrev"))
5982 || (do_debug_lines && strcmp (name, "line") == 0)
5983 || (do_debug_lines && const_strneq (name, "line."))
5984 || (do_debug_pubnames && const_strneq (name, "pubnames"))
5985 || (do_debug_pubtypes && const_strneq (name, "pubtypes"))
5986 || (do_debug_pubnames && const_strneq (name, "gnu_pubnames"))
5987 || (do_debug_pubtypes && const_strneq (name, "gnu_pubtypes"))
5988 || (do_debug_aranges && const_strneq (name, "aranges"))
5989 || (do_debug_ranges && const_strneq (name, "ranges"))
5990 || (do_debug_ranges && const_strneq (name, "rnglists"))
5991 || (do_debug_frames && const_strneq (name, "frame"))
5992 || (do_debug_macinfo && const_strneq (name, "macinfo"))
5993 || (do_debug_macinfo && const_strneq (name, "macro"))
5994 || (do_debug_str && const_strneq (name, "str"))
5995 || (do_debug_loc && const_strneq (name, "loc"))
5996 || (do_debug_loc && const_strneq (name, "loclists"))
5997 || (do_debug_addr && const_strneq (name, "addr"))
5998 || (do_debug_cu_index && const_strneq (name, "cu_index"))
5999 || (do_debug_cu_index && const_strneq (name, "tu_index"))
6000 )
6001 request_dump_bynumber (i, DEBUG_DUMP);
6002 }
6003 /* Linkonce section to be combined with .debug_info at link time. */
6004 else if ((do_debugging || do_debug_info)
6005 && const_strneq (name, ".gnu.linkonce.wi."))
6006 request_dump_bynumber (i, DEBUG_DUMP);
6007 else if (do_debug_frames && streq (name, ".eh_frame"))
6008 request_dump_bynumber (i, DEBUG_DUMP);
6009 else if (do_gdb_index && streq (name, ".gdb_index"))
6010 request_dump_bynumber (i, DEBUG_DUMP);
6011 /* Trace sections for Itanium VMS. */
6012 else if ((do_debugging || do_trace_info || do_trace_abbrevs
6013 || do_trace_aranges)
6014 && const_strneq (name, ".trace_"))
6015 {
6016 name += sizeof (".trace_") - 1;
6017
6018 if (do_debugging
6019 || (do_trace_info && streq (name, "info"))
6020 || (do_trace_abbrevs && streq (name, "abbrev"))
6021 || (do_trace_aranges && streq (name, "aranges"))
6022 )
6023 request_dump_bynumber (i, DEBUG_DUMP);
6024 }
6025 }
6026
6027 if (! do_sections)
6028 return TRUE;
6029
6030 if (elf_header.e_shnum > 1)
6031 printf (_("\nSection Headers:\n"));
6032 else
6033 printf (_("\nSection Header:\n"));
6034
6035 if (is_32bit_elf)
6036 {
6037 if (do_section_details)
6038 {
6039 printf (_(" [Nr] Name\n"));
6040 printf (_(" Type Addr Off Size ES Lk Inf Al\n"));
6041 }
6042 else
6043 printf
6044 (_(" [Nr] Name Type Addr Off Size ES Flg Lk Inf Al\n"));
6045 }
6046 else if (do_wide)
6047 {
6048 if (do_section_details)
6049 {
6050 printf (_(" [Nr] Name\n"));
6051 printf (_(" Type Address Off Size ES Lk Inf Al\n"));
6052 }
6053 else
6054 printf
6055 (_(" [Nr] Name Type Address Off Size ES Flg Lk Inf Al\n"));
6056 }
6057 else
6058 {
6059 if (do_section_details)
6060 {
6061 printf (_(" [Nr] Name\n"));
6062 printf (_(" Type Address Offset Link\n"));
6063 printf (_(" Size EntSize Info Align\n"));
6064 }
6065 else
6066 {
6067 printf (_(" [Nr] Name Type Address Offset\n"));
6068 printf (_(" Size EntSize Flags Link Info Align\n"));
6069 }
6070 }
6071
6072 if (do_section_details)
6073 printf (_(" Flags\n"));
6074
6075 for (i = 0, section = section_headers;
6076 i < elf_header.e_shnum;
6077 i++, section++)
6078 {
6079 /* Run some sanity checks on the section header. */
6080
6081 /* Check the sh_link field. */
6082 switch (section->sh_type)
6083 {
6084 case SHT_SYMTAB_SHNDX:
6085 case SHT_GROUP:
6086 case SHT_HASH:
6087 case SHT_GNU_HASH:
6088 case SHT_GNU_versym:
6089 case SHT_REL:
6090 case SHT_RELA:
6091 if (section->sh_link < 1
6092 || section->sh_link >= elf_header.e_shnum
6093 || (section_headers[section->sh_link].sh_type != SHT_SYMTAB
6094 && section_headers[section->sh_link].sh_type != SHT_DYNSYM))
6095 warn (_("[%2u]: Link field (%u) should index a symtab section.\n"),
6096 i, section->sh_link);
6097 break;
6098
6099 case SHT_DYNAMIC:
6100 case SHT_SYMTAB:
6101 case SHT_DYNSYM:
6102 case SHT_GNU_verneed:
6103 case SHT_GNU_verdef:
6104 case SHT_GNU_LIBLIST:
6105 if (section->sh_link < 1
6106 || section->sh_link >= elf_header.e_shnum
6107 || section_headers[section->sh_link].sh_type != SHT_STRTAB)
6108 warn (_("[%2u]: Link field (%u) should index a string section.\n"),
6109 i, section->sh_link);
6110 break;
6111
6112 case SHT_INIT_ARRAY:
6113 case SHT_FINI_ARRAY:
6114 case SHT_PREINIT_ARRAY:
6115 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
6116 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
6117 i, section->sh_link);
6118 break;
6119
6120 default:
6121 /* FIXME: Add support for target specific section types. */
6122 #if 0 /* Currently we do not check other section types as there are too
6123 many special cases. Stab sections for example have a type
6124 of SHT_PROGBITS but an sh_link field that links to the .stabstr
6125 section. */
6126 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
6127 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
6128 i, section->sh_link);
6129 #endif
6130 break;
6131 }
6132
6133 /* Check the sh_info field. */
6134 switch (section->sh_type)
6135 {
6136 case SHT_REL:
6137 case SHT_RELA:
6138 if (section->sh_info < 1
6139 || section->sh_info >= elf_header.e_shnum
6140 || (section_headers[section->sh_info].sh_type != SHT_PROGBITS
6141 && section_headers[section->sh_info].sh_type != SHT_NOBITS
6142 && section_headers[section->sh_info].sh_type != SHT_NOTE
6143 && section_headers[section->sh_info].sh_type != SHT_INIT_ARRAY
6144 /* FIXME: Are other section types valid ? */
6145 && section_headers[section->sh_info].sh_type < SHT_LOOS))
6146 {
6147 if (section->sh_info == 0
6148 && (streq (SECTION_NAME (section), ".rel.dyn")
6149 || streq (SECTION_NAME (section), ".rela.dyn")))
6150 /* The .rel.dyn and .rela.dyn sections have an sh_info field
6151 of zero. The relocations in these sections may apply
6152 to many different sections. */
6153 ;
6154 else
6155 warn (_("[%2u]: Info field (%u) should index a relocatable section.\n"),
6156 i, section->sh_info);
6157 }
6158 break;
6159
6160 case SHT_DYNAMIC:
6161 case SHT_HASH:
6162 case SHT_SYMTAB_SHNDX:
6163 case SHT_INIT_ARRAY:
6164 case SHT_FINI_ARRAY:
6165 case SHT_PREINIT_ARRAY:
6166 if (section->sh_info != 0)
6167 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6168 i, section->sh_info);
6169 break;
6170
6171 case SHT_GROUP:
6172 case SHT_SYMTAB:
6173 case SHT_DYNSYM:
6174 /* A symbol index - we assume that it is valid. */
6175 break;
6176
6177 default:
6178 /* FIXME: Add support for target specific section types. */
6179 if (section->sh_type == SHT_NOBITS)
6180 /* NOBITS section headers with non-zero sh_info fields can be
6181 created when a binary is stripped of everything but its debug
6182 information. The stripped sections have their headers
6183 preserved but their types set to SHT_NOBITS. So do not check
6184 this type of section. */
6185 ;
6186 else if (section->sh_flags & SHF_INFO_LINK)
6187 {
6188 if (section->sh_info < 1 || section->sh_info >= elf_header.e_shnum)
6189 warn (_("[%2u]: Expected link to another section in info field"), i);
6190 }
6191 else if (section->sh_type < SHT_LOOS && section->sh_info != 0)
6192 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6193 i, section->sh_info);
6194 break;
6195 }
6196
6197 printf (" [%2u] ", i);
6198 if (do_section_details)
6199 printf ("%s\n ", printable_section_name (section));
6200 else
6201 print_symbol (-17, SECTION_NAME (section));
6202
6203 printf (do_wide ? " %-15s " : " %-15.15s ",
6204 get_section_type_name (section->sh_type));
6205
6206 if (is_32bit_elf)
6207 {
6208 const char * link_too_big = NULL;
6209
6210 print_vma (section->sh_addr, LONG_HEX);
6211
6212 printf ( " %6.6lx %6.6lx %2.2lx",
6213 (unsigned long) section->sh_offset,
6214 (unsigned long) section->sh_size,
6215 (unsigned long) section->sh_entsize);
6216
6217 if (do_section_details)
6218 fputs (" ", stdout);
6219 else
6220 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6221
6222 if (section->sh_link >= elf_header.e_shnum)
6223 {
6224 link_too_big = "";
6225 /* The sh_link value is out of range. Normally this indicates
6226 an error but it can have special values in Solaris binaries. */
6227 switch (elf_header.e_machine)
6228 {
6229 case EM_386:
6230 case EM_IAMCU:
6231 case EM_X86_64:
6232 case EM_L1OM:
6233 case EM_K1OM:
6234 case EM_OLD_SPARCV9:
6235 case EM_SPARC32PLUS:
6236 case EM_SPARCV9:
6237 case EM_SPARC:
6238 if (section->sh_link == (SHN_BEFORE & 0xffff))
6239 link_too_big = "BEFORE";
6240 else if (section->sh_link == (SHN_AFTER & 0xffff))
6241 link_too_big = "AFTER";
6242 break;
6243 default:
6244 break;
6245 }
6246 }
6247
6248 if (do_section_details)
6249 {
6250 if (link_too_big != NULL && * link_too_big)
6251 printf ("<%s> ", link_too_big);
6252 else
6253 printf ("%2u ", section->sh_link);
6254 printf ("%3u %2lu\n", section->sh_info,
6255 (unsigned long) section->sh_addralign);
6256 }
6257 else
6258 printf ("%2u %3u %2lu\n",
6259 section->sh_link,
6260 section->sh_info,
6261 (unsigned long) section->sh_addralign);
6262
6263 if (link_too_big && ! * link_too_big)
6264 warn (_("section %u: sh_link value of %u is larger than the number of sections\n"),
6265 i, section->sh_link);
6266 }
6267 else if (do_wide)
6268 {
6269 print_vma (section->sh_addr, LONG_HEX);
6270
6271 if ((long) section->sh_offset == section->sh_offset)
6272 printf (" %6.6lx", (unsigned long) section->sh_offset);
6273 else
6274 {
6275 putchar (' ');
6276 print_vma (section->sh_offset, LONG_HEX);
6277 }
6278
6279 if ((unsigned long) section->sh_size == section->sh_size)
6280 printf (" %6.6lx", (unsigned long) section->sh_size);
6281 else
6282 {
6283 putchar (' ');
6284 print_vma (section->sh_size, LONG_HEX);
6285 }
6286
6287 if ((unsigned long) section->sh_entsize == section->sh_entsize)
6288 printf (" %2.2lx", (unsigned long) section->sh_entsize);
6289 else
6290 {
6291 putchar (' ');
6292 print_vma (section->sh_entsize, LONG_HEX);
6293 }
6294
6295 if (do_section_details)
6296 fputs (" ", stdout);
6297 else
6298 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6299
6300 printf ("%2u %3u ", section->sh_link, section->sh_info);
6301
6302 if ((unsigned long) section->sh_addralign == section->sh_addralign)
6303 printf ("%2lu\n", (unsigned long) section->sh_addralign);
6304 else
6305 {
6306 print_vma (section->sh_addralign, DEC);
6307 putchar ('\n');
6308 }
6309 }
6310 else if (do_section_details)
6311 {
6312 printf (" %-15.15s ",
6313 get_section_type_name (section->sh_type));
6314 print_vma (section->sh_addr, LONG_HEX);
6315 if ((long) section->sh_offset == section->sh_offset)
6316 printf (" %16.16lx", (unsigned long) section->sh_offset);
6317 else
6318 {
6319 printf (" ");
6320 print_vma (section->sh_offset, LONG_HEX);
6321 }
6322 printf (" %u\n ", section->sh_link);
6323 print_vma (section->sh_size, LONG_HEX);
6324 putchar (' ');
6325 print_vma (section->sh_entsize, LONG_HEX);
6326
6327 printf (" %-16u %lu\n",
6328 section->sh_info,
6329 (unsigned long) section->sh_addralign);
6330 }
6331 else
6332 {
6333 putchar (' ');
6334 print_vma (section->sh_addr, LONG_HEX);
6335 if ((long) section->sh_offset == section->sh_offset)
6336 printf (" %8.8lx", (unsigned long) section->sh_offset);
6337 else
6338 {
6339 printf (" ");
6340 print_vma (section->sh_offset, LONG_HEX);
6341 }
6342 printf ("\n ");
6343 print_vma (section->sh_size, LONG_HEX);
6344 printf (" ");
6345 print_vma (section->sh_entsize, LONG_HEX);
6346
6347 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6348
6349 printf (" %2u %3u %lu\n",
6350 section->sh_link,
6351 section->sh_info,
6352 (unsigned long) section->sh_addralign);
6353 }
6354
6355 if (do_section_details)
6356 {
6357 printf (" %s\n", get_elf_section_flags (section->sh_flags));
6358 if ((section->sh_flags & SHF_COMPRESSED) != 0)
6359 {
6360 /* Minimum section size is 12 bytes for 32-bit compression
6361 header + 12 bytes for compressed data header. */
6362 unsigned char buf[24];
6363
6364 assert (sizeof (buf) >= sizeof (Elf64_External_Chdr));
6365 if (get_data (&buf, (FILE *) file, section->sh_offset, 1,
6366 sizeof (buf), _("compression header")))
6367 {
6368 Elf_Internal_Chdr chdr;
6369
6370 (void) get_compression_header (&chdr, buf, sizeof (buf));
6371
6372 if (chdr.ch_type == ELFCOMPRESS_ZLIB)
6373 printf (" ZLIB, ");
6374 else
6375 printf (_(" [<unknown>: 0x%x], "),
6376 chdr.ch_type);
6377 print_vma (chdr.ch_size, LONG_HEX);
6378 printf (", %lu\n", (unsigned long) chdr.ch_addralign);
6379 }
6380 }
6381 }
6382 }
6383
6384 if (!do_section_details)
6385 {
6386 /* The ordering of the letters shown here matches the ordering of the
6387 corresponding SHF_xxx values, and hence the order in which these
6388 letters will be displayed to the user. */
6389 printf (_("Key to Flags:\n\
6390 W (write), A (alloc), X (execute), M (merge), S (strings), I (info),\n\
6391 L (link order), O (extra OS processing required), G (group), T (TLS),\n\
6392 C (compressed), x (unknown), o (OS specific), E (exclude),\n "));
6393 if (elf_header.e_machine == EM_X86_64
6394 || elf_header.e_machine == EM_L1OM
6395 || elf_header.e_machine == EM_K1OM)
6396 printf (_("l (large), "));
6397 else if (elf_header.e_machine == EM_ARM)
6398 printf (_("y (purecode), "));
6399 printf ("p (processor specific)\n");
6400 }
6401
6402 return TRUE;
6403 }
6404
6405 static const char *
6406 get_group_flags (unsigned int flags)
6407 {
6408 static char buff[128];
6409
6410 if (flags == 0)
6411 return "";
6412 else if (flags == GRP_COMDAT)
6413 return "COMDAT ";
6414
6415 snprintf (buff, 14, _("[0x%x: "), flags);
6416
6417 flags &= ~ GRP_COMDAT;
6418 if (flags & GRP_MASKOS)
6419 {
6420 strcat (buff, "<OS specific>");
6421 flags &= ~ GRP_MASKOS;
6422 }
6423
6424 if (flags & GRP_MASKPROC)
6425 {
6426 strcat (buff, "<PROC specific>");
6427 flags &= ~ GRP_MASKPROC;
6428 }
6429
6430 if (flags)
6431 strcat (buff, "<unknown>");
6432
6433 strcat (buff, "]");
6434 return buff;
6435 }
6436
6437 static bfd_boolean
6438 process_section_groups (FILE * file)
6439 {
6440 Elf_Internal_Shdr * section;
6441 unsigned int i;
6442 struct group * group;
6443 Elf_Internal_Shdr * symtab_sec;
6444 Elf_Internal_Shdr * strtab_sec;
6445 Elf_Internal_Sym * symtab;
6446 unsigned long num_syms;
6447 char * strtab;
6448 size_t strtab_size;
6449
6450 /* Don't process section groups unless needed. */
6451 if (!do_unwind && !do_section_groups)
6452 return TRUE;
6453
6454 if (elf_header.e_shnum == 0)
6455 {
6456 if (do_section_groups)
6457 printf (_("\nThere are no sections to group in this file.\n"));
6458
6459 return TRUE;
6460 }
6461
6462 if (section_headers == NULL)
6463 {
6464 error (_("Section headers are not available!\n"));
6465 /* PR 13622: This can happen with a corrupt ELF header. */
6466 return FALSE;
6467 }
6468
6469 section_headers_groups = (struct group **) calloc (elf_header.e_shnum,
6470 sizeof (struct group *));
6471
6472 if (section_headers_groups == NULL)
6473 {
6474 error (_("Out of memory reading %u section group headers\n"),
6475 elf_header.e_shnum);
6476 return FALSE;
6477 }
6478
6479 /* Scan the sections for the group section. */
6480 group_count = 0;
6481 for (i = 0, section = section_headers;
6482 i < elf_header.e_shnum;
6483 i++, section++)
6484 if (section->sh_type == SHT_GROUP)
6485 group_count++;
6486
6487 if (group_count == 0)
6488 {
6489 if (do_section_groups)
6490 printf (_("\nThere are no section groups in this file.\n"));
6491
6492 return TRUE;
6493 }
6494
6495 section_groups = (struct group *) calloc (group_count, sizeof (struct group));
6496
6497 if (section_groups == NULL)
6498 {
6499 error (_("Out of memory reading %lu groups\n"),
6500 (unsigned long) group_count);
6501 return FALSE;
6502 }
6503
6504 symtab_sec = NULL;
6505 strtab_sec = NULL;
6506 symtab = NULL;
6507 num_syms = 0;
6508 strtab = NULL;
6509 strtab_size = 0;
6510 for (i = 0, section = section_headers, group = section_groups;
6511 i < elf_header.e_shnum;
6512 i++, section++)
6513 {
6514 if (section->sh_type == SHT_GROUP)
6515 {
6516 const char * name = printable_section_name (section);
6517 const char * group_name;
6518 unsigned char * start;
6519 unsigned char * indices;
6520 unsigned int entry, j, size;
6521 Elf_Internal_Shdr * sec;
6522 Elf_Internal_Sym * sym;
6523
6524 /* Get the symbol table. */
6525 if (section->sh_link >= elf_header.e_shnum
6526 || ((sec = section_headers + section->sh_link)->sh_type
6527 != SHT_SYMTAB))
6528 {
6529 error (_("Bad sh_link in group section `%s'\n"), name);
6530 continue;
6531 }
6532
6533 if (symtab_sec != sec)
6534 {
6535 symtab_sec = sec;
6536 if (symtab)
6537 free (symtab);
6538 symtab = GET_ELF_SYMBOLS (file, symtab_sec, & num_syms);
6539 }
6540
6541 if (symtab == NULL)
6542 {
6543 error (_("Corrupt header in group section `%s'\n"), name);
6544 continue;
6545 }
6546
6547 if (section->sh_info >= num_syms)
6548 {
6549 error (_("Bad sh_info in group section `%s'\n"), name);
6550 continue;
6551 }
6552
6553 sym = symtab + section->sh_info;
6554
6555 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6556 {
6557 if (sym->st_shndx == 0
6558 || sym->st_shndx >= elf_header.e_shnum)
6559 {
6560 error (_("Bad sh_info in group section `%s'\n"), name);
6561 continue;
6562 }
6563
6564 group_name = SECTION_NAME (section_headers + sym->st_shndx);
6565 strtab_sec = NULL;
6566 if (strtab)
6567 free (strtab);
6568 strtab = NULL;
6569 strtab_size = 0;
6570 }
6571 else
6572 {
6573 /* Get the string table. */
6574 if (symtab_sec->sh_link >= elf_header.e_shnum)
6575 {
6576 strtab_sec = NULL;
6577 if (strtab)
6578 free (strtab);
6579 strtab = NULL;
6580 strtab_size = 0;
6581 }
6582 else if (strtab_sec
6583 != (sec = section_headers + symtab_sec->sh_link))
6584 {
6585 strtab_sec = sec;
6586 if (strtab)
6587 free (strtab);
6588
6589 strtab = (char *) get_data (NULL, file, strtab_sec->sh_offset,
6590 1, strtab_sec->sh_size,
6591 _("string table"));
6592 strtab_size = strtab != NULL ? strtab_sec->sh_size : 0;
6593 }
6594 group_name = sym->st_name < strtab_size
6595 ? strtab + sym->st_name : _("<corrupt>");
6596 }
6597
6598 /* PR 17531: file: loop. */
6599 if (section->sh_entsize > section->sh_size)
6600 {
6601 error (_("Section %s has sh_entsize (0x%lx) which is larger than its size (0x%lx)\n"),
6602 printable_section_name (section),
6603 (unsigned long) section->sh_entsize,
6604 (unsigned long) section->sh_size);
6605 break;
6606 }
6607
6608 start = (unsigned char *) get_data (NULL, file, section->sh_offset,
6609 1, section->sh_size,
6610 _("section data"));
6611 if (start == NULL)
6612 continue;
6613
6614 indices = start;
6615 size = (section->sh_size / section->sh_entsize) - 1;
6616 entry = byte_get (indices, 4);
6617 indices += 4;
6618
6619 if (do_section_groups)
6620 {
6621 printf (_("\n%sgroup section [%5u] `%s' [%s] contains %u sections:\n"),
6622 get_group_flags (entry), i, name, group_name, size);
6623
6624 printf (_(" [Index] Name\n"));
6625 }
6626
6627 group->group_index = i;
6628
6629 for (j = 0; j < size; j++)
6630 {
6631 struct group_list * g;
6632
6633 entry = byte_get (indices, 4);
6634 indices += 4;
6635
6636 if (entry >= elf_header.e_shnum)
6637 {
6638 static unsigned num_group_errors = 0;
6639
6640 if (num_group_errors ++ < 10)
6641 {
6642 error (_("section [%5u] in group section [%5u] > maximum section [%5u]\n"),
6643 entry, i, elf_header.e_shnum - 1);
6644 if (num_group_errors == 10)
6645 warn (_("Futher error messages about overlarge group section indicies suppressed\n"));
6646 }
6647 continue;
6648 }
6649
6650 if (section_headers_groups [entry] != NULL)
6651 {
6652 if (entry)
6653 {
6654 static unsigned num_errs = 0;
6655
6656 if (num_errs ++ < 10)
6657 {
6658 error (_("section [%5u] in group section [%5u] already in group section [%5u]\n"),
6659 entry, i,
6660 section_headers_groups [entry]->group_index);
6661 if (num_errs == 10)
6662 warn (_("Further error messages about already contained group sections suppressed\n"));
6663 }
6664 continue;
6665 }
6666 else
6667 {
6668 /* Intel C/C++ compiler may put section 0 in a
6669 section group. We just warn it the first time
6670 and ignore it afterwards. */
6671 static bfd_boolean warned = FALSE;
6672 if (!warned)
6673 {
6674 error (_("section 0 in group section [%5u]\n"),
6675 section_headers_groups [entry]->group_index);
6676 warned = TRUE;
6677 }
6678 }
6679 }
6680
6681 section_headers_groups [entry] = group;
6682
6683 if (do_section_groups)
6684 {
6685 sec = section_headers + entry;
6686 printf (" [%5u] %s\n", entry, printable_section_name (sec));
6687 }
6688
6689 g = (struct group_list *) xmalloc (sizeof (struct group_list));
6690 g->section_index = entry;
6691 g->next = group->root;
6692 group->root = g;
6693 }
6694
6695 if (start)
6696 free (start);
6697
6698 group++;
6699 }
6700 }
6701
6702 if (symtab)
6703 free (symtab);
6704 if (strtab)
6705 free (strtab);
6706 return TRUE;
6707 }
6708
6709 /* Data used to display dynamic fixups. */
6710
6711 struct ia64_vms_dynfixup
6712 {
6713 bfd_vma needed_ident; /* Library ident number. */
6714 bfd_vma needed; /* Index in the dstrtab of the library name. */
6715 bfd_vma fixup_needed; /* Index of the library. */
6716 bfd_vma fixup_rela_cnt; /* Number of fixups. */
6717 bfd_vma fixup_rela_off; /* Fixups offset in the dynamic segment. */
6718 };
6719
6720 /* Data used to display dynamic relocations. */
6721
6722 struct ia64_vms_dynimgrela
6723 {
6724 bfd_vma img_rela_cnt; /* Number of relocations. */
6725 bfd_vma img_rela_off; /* Reloc offset in the dynamic segment. */
6726 };
6727
6728 /* Display IA-64 OpenVMS dynamic fixups (used to dynamically link a shared
6729 library). */
6730
6731 static bfd_boolean
6732 dump_ia64_vms_dynamic_fixups (FILE * file,
6733 struct ia64_vms_dynfixup * fixup,
6734 const char * strtab,
6735 unsigned int strtab_sz)
6736 {
6737 Elf64_External_VMS_IMAGE_FIXUP * imfs;
6738 long i;
6739 const char * lib_name;
6740
6741 imfs = get_data (NULL, file, dynamic_addr + fixup->fixup_rela_off,
6742 1, fixup->fixup_rela_cnt * sizeof (*imfs),
6743 _("dynamic section image fixups"));
6744 if (!imfs)
6745 return FALSE;
6746
6747 if (fixup->needed < strtab_sz)
6748 lib_name = strtab + fixup->needed;
6749 else
6750 {
6751 warn (_("corrupt library name index of 0x%lx found in dynamic entry"),
6752 (unsigned long) fixup->needed);
6753 lib_name = "???";
6754 }
6755 printf (_("\nImage fixups for needed library #%d: %s - ident: %lx\n"),
6756 (int) fixup->fixup_needed, lib_name, (long) fixup->needed_ident);
6757 printf
6758 (_("Seg Offset Type SymVec DataType\n"));
6759
6760 for (i = 0; i < (long) fixup->fixup_rela_cnt; i++)
6761 {
6762 unsigned int type;
6763 const char *rtype;
6764
6765 printf ("%3u ", (unsigned) BYTE_GET (imfs [i].fixup_seg));
6766 printf_vma ((bfd_vma) BYTE_GET (imfs [i].fixup_offset));
6767 type = BYTE_GET (imfs [i].type);
6768 rtype = elf_ia64_reloc_type (type);
6769 if (rtype == NULL)
6770 printf (" 0x%08x ", type);
6771 else
6772 printf (" %-32s ", rtype);
6773 printf ("%6u ", (unsigned) BYTE_GET (imfs [i].symvec_index));
6774 printf ("0x%08x\n", (unsigned) BYTE_GET (imfs [i].data_type));
6775 }
6776
6777 free (imfs);
6778 return TRUE;
6779 }
6780
6781 /* Display IA-64 OpenVMS dynamic relocations (used to relocate an image). */
6782
6783 static bfd_boolean
6784 dump_ia64_vms_dynamic_relocs (FILE *file, struct ia64_vms_dynimgrela *imgrela)
6785 {
6786 Elf64_External_VMS_IMAGE_RELA *imrs;
6787 long i;
6788
6789 imrs = get_data (NULL, file, dynamic_addr + imgrela->img_rela_off,
6790 1, imgrela->img_rela_cnt * sizeof (*imrs),
6791 _("dynamic section image relocations"));
6792 if (!imrs)
6793 return FALSE;
6794
6795 printf (_("\nImage relocs\n"));
6796 printf
6797 (_("Seg Offset Type Addend Seg Sym Off\n"));
6798
6799 for (i = 0; i < (long) imgrela->img_rela_cnt; i++)
6800 {
6801 unsigned int type;
6802 const char *rtype;
6803
6804 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].rela_seg));
6805 printf ("%08" BFD_VMA_FMT "x ",
6806 (bfd_vma) BYTE_GET (imrs [i].rela_offset));
6807 type = BYTE_GET (imrs [i].type);
6808 rtype = elf_ia64_reloc_type (type);
6809 if (rtype == NULL)
6810 printf ("0x%08x ", type);
6811 else
6812 printf ("%-31s ", rtype);
6813 print_vma (BYTE_GET (imrs [i].addend), FULL_HEX);
6814 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].sym_seg));
6815 printf ("%08" BFD_VMA_FMT "x\n",
6816 (bfd_vma) BYTE_GET (imrs [i].sym_offset));
6817 }
6818
6819 free (imrs);
6820 return TRUE;
6821 }
6822
6823 /* Display IA-64 OpenVMS dynamic relocations and fixups. */
6824
6825 static bfd_boolean
6826 process_ia64_vms_dynamic_relocs (FILE *file)
6827 {
6828 struct ia64_vms_dynfixup fixup;
6829 struct ia64_vms_dynimgrela imgrela;
6830 Elf_Internal_Dyn *entry;
6831 bfd_vma strtab_off = 0;
6832 bfd_vma strtab_sz = 0;
6833 char *strtab = NULL;
6834 bfd_boolean res = TRUE;
6835
6836 memset (&fixup, 0, sizeof (fixup));
6837 memset (&imgrela, 0, sizeof (imgrela));
6838
6839 /* Note: the order of the entries is specified by the OpenVMS specs. */
6840 for (entry = dynamic_section;
6841 entry < dynamic_section + dynamic_nent;
6842 entry++)
6843 {
6844 switch (entry->d_tag)
6845 {
6846 case DT_IA_64_VMS_STRTAB_OFFSET:
6847 strtab_off = entry->d_un.d_val;
6848 break;
6849 case DT_STRSZ:
6850 strtab_sz = entry->d_un.d_val;
6851 if (strtab == NULL)
6852 strtab = get_data (NULL, file, dynamic_addr + strtab_off,
6853 1, strtab_sz, _("dynamic string section"));
6854 break;
6855
6856 case DT_IA_64_VMS_NEEDED_IDENT:
6857 fixup.needed_ident = entry->d_un.d_val;
6858 break;
6859 case DT_NEEDED:
6860 fixup.needed = entry->d_un.d_val;
6861 break;
6862 case DT_IA_64_VMS_FIXUP_NEEDED:
6863 fixup.fixup_needed = entry->d_un.d_val;
6864 break;
6865 case DT_IA_64_VMS_FIXUP_RELA_CNT:
6866 fixup.fixup_rela_cnt = entry->d_un.d_val;
6867 break;
6868 case DT_IA_64_VMS_FIXUP_RELA_OFF:
6869 fixup.fixup_rela_off = entry->d_un.d_val;
6870 if (! dump_ia64_vms_dynamic_fixups (file, &fixup, strtab, strtab_sz))
6871 res = FALSE;
6872 break;
6873 case DT_IA_64_VMS_IMG_RELA_CNT:
6874 imgrela.img_rela_cnt = entry->d_un.d_val;
6875 break;
6876 case DT_IA_64_VMS_IMG_RELA_OFF:
6877 imgrela.img_rela_off = entry->d_un.d_val;
6878 if (! dump_ia64_vms_dynamic_relocs (file, &imgrela))
6879 res = FALSE;
6880 break;
6881
6882 default:
6883 break;
6884 }
6885 }
6886
6887 if (strtab != NULL)
6888 free (strtab);
6889
6890 return res;
6891 }
6892
6893 static struct
6894 {
6895 const char * name;
6896 int reloc;
6897 int size;
6898 int rela;
6899 }
6900 dynamic_relocations [] =
6901 {
6902 { "REL", DT_REL, DT_RELSZ, FALSE },
6903 { "RELA", DT_RELA, DT_RELASZ, TRUE },
6904 { "PLT", DT_JMPREL, DT_PLTRELSZ, UNKNOWN }
6905 };
6906
6907 /* Process the reloc section. */
6908
6909 static bfd_boolean
6910 process_relocs (FILE * file)
6911 {
6912 unsigned long rel_size;
6913 unsigned long rel_offset;
6914
6915 if (!do_reloc)
6916 return TRUE;
6917
6918 if (do_using_dynamic)
6919 {
6920 int is_rela;
6921 const char * name;
6922 bfd_boolean has_dynamic_reloc;
6923 unsigned int i;
6924
6925 has_dynamic_reloc = FALSE;
6926
6927 for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
6928 {
6929 is_rela = dynamic_relocations [i].rela;
6930 name = dynamic_relocations [i].name;
6931 rel_size = dynamic_info [dynamic_relocations [i].size];
6932 rel_offset = dynamic_info [dynamic_relocations [i].reloc];
6933
6934 if (rel_size)
6935 has_dynamic_reloc = TRUE;
6936
6937 if (is_rela == UNKNOWN)
6938 {
6939 if (dynamic_relocations [i].reloc == DT_JMPREL)
6940 switch (dynamic_info[DT_PLTREL])
6941 {
6942 case DT_REL:
6943 is_rela = FALSE;
6944 break;
6945 case DT_RELA:
6946 is_rela = TRUE;
6947 break;
6948 }
6949 }
6950
6951 if (rel_size)
6952 {
6953 printf
6954 (_("\n'%s' relocation section at offset 0x%lx contains %ld bytes:\n"),
6955 name, rel_offset, rel_size);
6956
6957 dump_relocations (file,
6958 offset_from_vma (file, rel_offset, rel_size),
6959 rel_size,
6960 dynamic_symbols, num_dynamic_syms,
6961 dynamic_strings, dynamic_strings_length,
6962 is_rela, TRUE /* is_dynamic */);
6963 }
6964 }
6965
6966 if (is_ia64_vms ())
6967 if (process_ia64_vms_dynamic_relocs (file))
6968 has_dynamic_reloc = TRUE;
6969
6970 if (! has_dynamic_reloc)
6971 printf (_("\nThere are no dynamic relocations in this file.\n"));
6972 }
6973 else
6974 {
6975 Elf_Internal_Shdr * section;
6976 unsigned long i;
6977 bfd_boolean found = FALSE;
6978
6979 for (i = 0, section = section_headers;
6980 i < elf_header.e_shnum;
6981 i++, section++)
6982 {
6983 if ( section->sh_type != SHT_RELA
6984 && section->sh_type != SHT_REL)
6985 continue;
6986
6987 rel_offset = section->sh_offset;
6988 rel_size = section->sh_size;
6989
6990 if (rel_size)
6991 {
6992 Elf_Internal_Shdr * strsec;
6993 int is_rela;
6994
6995 printf (_("\nRelocation section "));
6996
6997 if (string_table == NULL)
6998 printf ("%d", section->sh_name);
6999 else
7000 printf ("'%s'", printable_section_name (section));
7001
7002 printf (_(" at offset 0x%lx contains %lu entries:\n"),
7003 rel_offset, (unsigned long) (rel_size / section->sh_entsize));
7004
7005 is_rela = section->sh_type == SHT_RELA;
7006
7007 if (section->sh_link != 0
7008 && section->sh_link < elf_header.e_shnum)
7009 {
7010 Elf_Internal_Shdr * symsec;
7011 Elf_Internal_Sym * symtab;
7012 unsigned long nsyms;
7013 unsigned long strtablen = 0;
7014 char * strtab = NULL;
7015
7016 symsec = section_headers + section->sh_link;
7017 if (symsec->sh_type != SHT_SYMTAB
7018 && symsec->sh_type != SHT_DYNSYM)
7019 continue;
7020
7021 symtab = GET_ELF_SYMBOLS (file, symsec, & nsyms);
7022
7023 if (symtab == NULL)
7024 continue;
7025
7026 if (symsec->sh_link != 0
7027 && symsec->sh_link < elf_header.e_shnum)
7028 {
7029 strsec = section_headers + symsec->sh_link;
7030
7031 strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7032 1, strsec->sh_size,
7033 _("string table"));
7034 strtablen = strtab == NULL ? 0 : strsec->sh_size;
7035 }
7036
7037 dump_relocations (file, rel_offset, rel_size,
7038 symtab, nsyms, strtab, strtablen,
7039 is_rela,
7040 symsec->sh_type == SHT_DYNSYM);
7041 if (strtab)
7042 free (strtab);
7043 free (symtab);
7044 }
7045 else
7046 dump_relocations (file, rel_offset, rel_size,
7047 NULL, 0, NULL, 0, is_rela,
7048 FALSE /* is_dynamic */);
7049
7050 found = TRUE;
7051 }
7052 }
7053
7054 if (! found)
7055 printf (_("\nThere are no relocations in this file.\n"));
7056 }
7057
7058 return TRUE;
7059 }
7060
7061 /* An absolute address consists of a section and an offset. If the
7062 section is NULL, the offset itself is the address, otherwise, the
7063 address equals to LOAD_ADDRESS(section) + offset. */
7064
7065 struct absaddr
7066 {
7067 unsigned short section;
7068 bfd_vma offset;
7069 };
7070
7071 #define ABSADDR(a) \
7072 ((a).section \
7073 ? section_headers [(a).section].sh_addr + (a).offset \
7074 : (a).offset)
7075
7076 /* Find the nearest symbol at or below ADDR. Returns the symbol
7077 name, if found, and the offset from the symbol to ADDR. */
7078
7079 static void
7080 find_symbol_for_address (Elf_Internal_Sym * symtab,
7081 unsigned long nsyms,
7082 const char * strtab,
7083 unsigned long strtab_size,
7084 struct absaddr addr,
7085 const char ** symname,
7086 bfd_vma * offset)
7087 {
7088 bfd_vma dist = 0x100000;
7089 Elf_Internal_Sym * sym;
7090 Elf_Internal_Sym * beg;
7091 Elf_Internal_Sym * end;
7092 Elf_Internal_Sym * best = NULL;
7093
7094 REMOVE_ARCH_BITS (addr.offset);
7095 beg = symtab;
7096 end = symtab + nsyms;
7097
7098 while (beg < end)
7099 {
7100 bfd_vma value;
7101
7102 sym = beg + (end - beg) / 2;
7103
7104 value = sym->st_value;
7105 REMOVE_ARCH_BITS (value);
7106
7107 if (sym->st_name != 0
7108 && (addr.section == SHN_UNDEF || addr.section == sym->st_shndx)
7109 && addr.offset >= value
7110 && addr.offset - value < dist)
7111 {
7112 best = sym;
7113 dist = addr.offset - value;
7114 if (!dist)
7115 break;
7116 }
7117
7118 if (addr.offset < value)
7119 end = sym;
7120 else
7121 beg = sym + 1;
7122 }
7123
7124 if (best)
7125 {
7126 *symname = (best->st_name >= strtab_size
7127 ? _("<corrupt>") : strtab + best->st_name);
7128 *offset = dist;
7129 return;
7130 }
7131
7132 *symname = NULL;
7133 *offset = addr.offset;
7134 }
7135
7136 static /* signed */ int
7137 symcmp (const void *p, const void *q)
7138 {
7139 Elf_Internal_Sym *sp = (Elf_Internal_Sym *) p;
7140 Elf_Internal_Sym *sq = (Elf_Internal_Sym *) q;
7141
7142 return sp->st_value > sq->st_value ? 1 : (sp->st_value < sq->st_value ? -1 : 0);
7143 }
7144
7145 /* Process the unwind section. */
7146
7147 #include "unwind-ia64.h"
7148
7149 struct ia64_unw_table_entry
7150 {
7151 struct absaddr start;
7152 struct absaddr end;
7153 struct absaddr info;
7154 };
7155
7156 struct ia64_unw_aux_info
7157 {
7158 struct ia64_unw_table_entry * table; /* Unwind table. */
7159 unsigned long table_len; /* Length of unwind table. */
7160 unsigned char * info; /* Unwind info. */
7161 unsigned long info_size; /* Size of unwind info. */
7162 bfd_vma info_addr; /* Starting address of unwind info. */
7163 bfd_vma seg_base; /* Starting address of segment. */
7164 Elf_Internal_Sym * symtab; /* The symbol table. */
7165 unsigned long nsyms; /* Number of symbols. */
7166 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7167 unsigned long nfuns; /* Number of entries in funtab. */
7168 char * strtab; /* The string table. */
7169 unsigned long strtab_size; /* Size of string table. */
7170 };
7171
7172 static bfd_boolean
7173 dump_ia64_unwind (struct ia64_unw_aux_info * aux)
7174 {
7175 struct ia64_unw_table_entry * tp;
7176 unsigned long j, nfuns;
7177 int in_body;
7178 bfd_boolean res = TRUE;
7179
7180 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
7181 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
7182 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
7183 aux->funtab[nfuns++] = aux->symtab[j];
7184 aux->nfuns = nfuns;
7185 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
7186
7187 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
7188 {
7189 bfd_vma stamp;
7190 bfd_vma offset;
7191 const unsigned char * dp;
7192 const unsigned char * head;
7193 const unsigned char * end;
7194 const char * procname;
7195
7196 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7197 aux->strtab_size, tp->start, &procname, &offset);
7198
7199 fputs ("\n<", stdout);
7200
7201 if (procname)
7202 {
7203 fputs (procname, stdout);
7204
7205 if (offset)
7206 printf ("+%lx", (unsigned long) offset);
7207 }
7208
7209 fputs (">: [", stdout);
7210 print_vma (tp->start.offset, PREFIX_HEX);
7211 fputc ('-', stdout);
7212 print_vma (tp->end.offset, PREFIX_HEX);
7213 printf ("], info at +0x%lx\n",
7214 (unsigned long) (tp->info.offset - aux->seg_base));
7215
7216 /* PR 17531: file: 86232b32. */
7217 if (aux->info == NULL)
7218 continue;
7219
7220 /* PR 17531: file: 0997b4d1. */
7221 if ((ABSADDR (tp->info) - aux->info_addr) >= aux->info_size)
7222 {
7223 warn (_("Invalid offset %lx in table entry %ld\n"),
7224 (long) tp->info.offset, (long) (tp - aux->table));
7225 res = FALSE;
7226 continue;
7227 }
7228
7229 head = aux->info + (ABSADDR (tp->info) - aux->info_addr);
7230 stamp = byte_get ((unsigned char *) head, sizeof (stamp));
7231
7232 printf (" v%u, flags=0x%lx (%s%s), len=%lu bytes\n",
7233 (unsigned) UNW_VER (stamp),
7234 (unsigned long) ((stamp & UNW_FLAG_MASK) >> 32),
7235 UNW_FLAG_EHANDLER (stamp) ? " ehandler" : "",
7236 UNW_FLAG_UHANDLER (stamp) ? " uhandler" : "",
7237 (unsigned long) (eh_addr_size * UNW_LENGTH (stamp)));
7238
7239 if (UNW_VER (stamp) != 1)
7240 {
7241 printf (_("\tUnknown version.\n"));
7242 continue;
7243 }
7244
7245 in_body = 0;
7246 end = head + 8 + eh_addr_size * UNW_LENGTH (stamp);
7247 /* PR 17531: file: 16ceda89. */
7248 if (end > aux->info + aux->info_size)
7249 end = aux->info + aux->info_size;
7250 for (dp = head + 8; dp < end;)
7251 dp = unw_decode (dp, in_body, & in_body, end);
7252 }
7253
7254 free (aux->funtab);
7255
7256 return res;
7257 }
7258
7259 static bfd_boolean
7260 slurp_ia64_unwind_table (FILE * file,
7261 struct ia64_unw_aux_info * aux,
7262 Elf_Internal_Shdr * sec)
7263 {
7264 unsigned long size, nrelas, i;
7265 Elf_Internal_Phdr * seg;
7266 struct ia64_unw_table_entry * tep;
7267 Elf_Internal_Shdr * relsec;
7268 Elf_Internal_Rela * rela;
7269 Elf_Internal_Rela * rp;
7270 unsigned char * table;
7271 unsigned char * tp;
7272 Elf_Internal_Sym * sym;
7273 const char * relname;
7274
7275 aux->table_len = 0;
7276
7277 /* First, find the starting address of the segment that includes
7278 this section: */
7279
7280 if (elf_header.e_phnum)
7281 {
7282 if (! get_program_headers (file))
7283 return FALSE;
7284
7285 for (seg = program_headers;
7286 seg < program_headers + elf_header.e_phnum;
7287 ++seg)
7288 {
7289 if (seg->p_type != PT_LOAD)
7290 continue;
7291
7292 if (sec->sh_addr >= seg->p_vaddr
7293 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
7294 {
7295 aux->seg_base = seg->p_vaddr;
7296 break;
7297 }
7298 }
7299 }
7300
7301 /* Second, build the unwind table from the contents of the unwind section: */
7302 size = sec->sh_size;
7303 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
7304 _("unwind table"));
7305 if (!table)
7306 return FALSE;
7307
7308 aux->table_len = size / (3 * eh_addr_size);
7309 aux->table = (struct ia64_unw_table_entry *)
7310 xcmalloc (aux->table_len, sizeof (aux->table[0]));
7311 tep = aux->table;
7312
7313 for (tp = table; tp <= table + size - (3 * eh_addr_size); ++tep)
7314 {
7315 tep->start.section = SHN_UNDEF;
7316 tep->end.section = SHN_UNDEF;
7317 tep->info.section = SHN_UNDEF;
7318 tep->start.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7319 tep->end.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7320 tep->info.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7321 tep->start.offset += aux->seg_base;
7322 tep->end.offset += aux->seg_base;
7323 tep->info.offset += aux->seg_base;
7324 }
7325 free (table);
7326
7327 /* Third, apply any relocations to the unwind table: */
7328 for (relsec = section_headers;
7329 relsec < section_headers + elf_header.e_shnum;
7330 ++relsec)
7331 {
7332 if (relsec->sh_type != SHT_RELA
7333 || relsec->sh_info >= elf_header.e_shnum
7334 || section_headers + relsec->sh_info != sec)
7335 continue;
7336
7337 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
7338 & rela, & nrelas))
7339 {
7340 free (aux->table);
7341 aux->table = NULL;
7342 aux->table_len = 0;
7343 return FALSE;
7344 }
7345
7346 for (rp = rela; rp < rela + nrelas; ++rp)
7347 {
7348 relname = elf_ia64_reloc_type (get_reloc_type (rp->r_info));
7349 sym = aux->symtab + get_reloc_symindex (rp->r_info);
7350
7351 /* PR 17531: file: 9fa67536. */
7352 if (relname == NULL)
7353 {
7354 warn (_("Skipping unknown relocation type: %u\n"), get_reloc_type (rp->r_info));
7355 continue;
7356 }
7357
7358 if (! const_strneq (relname, "R_IA64_SEGREL"))
7359 {
7360 warn (_("Skipping unexpected relocation type: %s\n"), relname);
7361 continue;
7362 }
7363
7364 i = rp->r_offset / (3 * eh_addr_size);
7365
7366 /* PR 17531: file: 5bc8d9bf. */
7367 if (i >= aux->table_len)
7368 {
7369 warn (_("Skipping reloc with overlarge offset: %lx\n"), i);
7370 continue;
7371 }
7372
7373 switch (rp->r_offset / eh_addr_size % 3)
7374 {
7375 case 0:
7376 aux->table[i].start.section = sym->st_shndx;
7377 aux->table[i].start.offset = rp->r_addend + sym->st_value;
7378 break;
7379 case 1:
7380 aux->table[i].end.section = sym->st_shndx;
7381 aux->table[i].end.offset = rp->r_addend + sym->st_value;
7382 break;
7383 case 2:
7384 aux->table[i].info.section = sym->st_shndx;
7385 aux->table[i].info.offset = rp->r_addend + sym->st_value;
7386 break;
7387 default:
7388 break;
7389 }
7390 }
7391
7392 free (rela);
7393 }
7394
7395 return TRUE;
7396 }
7397
7398 static bfd_boolean
7399 ia64_process_unwind (FILE * file)
7400 {
7401 Elf_Internal_Shdr * sec;
7402 Elf_Internal_Shdr * unwsec = NULL;
7403 Elf_Internal_Shdr * strsec;
7404 unsigned long i, unwcount = 0, unwstart = 0;
7405 struct ia64_unw_aux_info aux;
7406 bfd_boolean res = TRUE;
7407
7408 memset (& aux, 0, sizeof (aux));
7409
7410 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7411 {
7412 if (sec->sh_type == SHT_SYMTAB
7413 && sec->sh_link < elf_header.e_shnum)
7414 {
7415 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7416
7417 strsec = section_headers + sec->sh_link;
7418 if (aux.strtab != NULL)
7419 {
7420 error (_("Multiple auxillary string tables encountered\n"));
7421 free (aux.strtab);
7422 res = FALSE;
7423 }
7424 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7425 1, strsec->sh_size,
7426 _("string table"));
7427 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7428 }
7429 else if (sec->sh_type == SHT_IA_64_UNWIND)
7430 unwcount++;
7431 }
7432
7433 if (!unwcount)
7434 printf (_("\nThere are no unwind sections in this file.\n"));
7435
7436 while (unwcount-- > 0)
7437 {
7438 char * suffix;
7439 size_t len, len2;
7440
7441 for (i = unwstart, sec = section_headers + unwstart, unwsec = NULL;
7442 i < elf_header.e_shnum; ++i, ++sec)
7443 if (sec->sh_type == SHT_IA_64_UNWIND)
7444 {
7445 unwsec = sec;
7446 break;
7447 }
7448 /* We have already counted the number of SHT_IA64_UNWIND
7449 sections so the loop above should never fail. */
7450 assert (unwsec != NULL);
7451
7452 unwstart = i + 1;
7453 len = sizeof (ELF_STRING_ia64_unwind_once) - 1;
7454
7455 if ((unwsec->sh_flags & SHF_GROUP) != 0)
7456 {
7457 /* We need to find which section group it is in. */
7458 struct group_list * g;
7459
7460 if (section_headers_groups == NULL
7461 || section_headers_groups [i] == NULL)
7462 i = elf_header.e_shnum;
7463 else
7464 {
7465 g = section_headers_groups [i]->root;
7466
7467 for (; g != NULL; g = g->next)
7468 {
7469 sec = section_headers + g->section_index;
7470
7471 if (streq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info))
7472 break;
7473 }
7474
7475 if (g == NULL)
7476 i = elf_header.e_shnum;
7477 }
7478 }
7479 else if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind_once, len))
7480 {
7481 /* .gnu.linkonce.ia64unw.FOO -> .gnu.linkonce.ia64unwi.FOO. */
7482 len2 = sizeof (ELF_STRING_ia64_unwind_info_once) - 1;
7483 suffix = SECTION_NAME (unwsec) + len;
7484 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
7485 ++i, ++sec)
7486 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info_once, len2)
7487 && streq (SECTION_NAME (sec) + len2, suffix))
7488 break;
7489 }
7490 else
7491 {
7492 /* .IA_64.unwindFOO -> .IA_64.unwind_infoFOO
7493 .IA_64.unwind or BAR -> .IA_64.unwind_info. */
7494 len = sizeof (ELF_STRING_ia64_unwind) - 1;
7495 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
7496 suffix = "";
7497 if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind, len))
7498 suffix = SECTION_NAME (unwsec) + len;
7499 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
7500 ++i, ++sec)
7501 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info, len2)
7502 && streq (SECTION_NAME (sec) + len2, suffix))
7503 break;
7504 }
7505
7506 if (i == elf_header.e_shnum)
7507 {
7508 printf (_("\nCould not find unwind info section for "));
7509
7510 if (string_table == NULL)
7511 printf ("%d", unwsec->sh_name);
7512 else
7513 printf ("'%s'", printable_section_name (unwsec));
7514 }
7515 else
7516 {
7517 aux.info_addr = sec->sh_addr;
7518 aux.info = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1,
7519 sec->sh_size,
7520 _("unwind info"));
7521 aux.info_size = aux.info == NULL ? 0 : sec->sh_size;
7522
7523 printf (_("\nUnwind section "));
7524
7525 if (string_table == NULL)
7526 printf ("%d", unwsec->sh_name);
7527 else
7528 printf ("'%s'", printable_section_name (unwsec));
7529
7530 printf (_(" at offset 0x%lx contains %lu entries:\n"),
7531 (unsigned long) unwsec->sh_offset,
7532 (unsigned long) (unwsec->sh_size / (3 * eh_addr_size)));
7533
7534 if (slurp_ia64_unwind_table (file, & aux, unwsec)
7535 && aux.table_len > 0)
7536 dump_ia64_unwind (& aux);
7537
7538 if (aux.table)
7539 free ((char *) aux.table);
7540 if (aux.info)
7541 free ((char *) aux.info);
7542 aux.table = NULL;
7543 aux.info = NULL;
7544 }
7545 }
7546
7547 if (aux.symtab)
7548 free (aux.symtab);
7549 if (aux.strtab)
7550 free ((char *) aux.strtab);
7551
7552 return res;
7553 }
7554
7555 struct hppa_unw_table_entry
7556 {
7557 struct absaddr start;
7558 struct absaddr end;
7559 unsigned int Cannot_unwind:1; /* 0 */
7560 unsigned int Millicode:1; /* 1 */
7561 unsigned int Millicode_save_sr0:1; /* 2 */
7562 unsigned int Region_description:2; /* 3..4 */
7563 unsigned int reserved1:1; /* 5 */
7564 unsigned int Entry_SR:1; /* 6 */
7565 unsigned int Entry_FR:4; /* Number saved 7..10 */
7566 unsigned int Entry_GR:5; /* Number saved 11..15 */
7567 unsigned int Args_stored:1; /* 16 */
7568 unsigned int Variable_Frame:1; /* 17 */
7569 unsigned int Separate_Package_Body:1; /* 18 */
7570 unsigned int Frame_Extension_Millicode:1; /* 19 */
7571 unsigned int Stack_Overflow_Check:1; /* 20 */
7572 unsigned int Two_Instruction_SP_Increment:1; /* 21 */
7573 unsigned int Ada_Region:1; /* 22 */
7574 unsigned int cxx_info:1; /* 23 */
7575 unsigned int cxx_try_catch:1; /* 24 */
7576 unsigned int sched_entry_seq:1; /* 25 */
7577 unsigned int reserved2:1; /* 26 */
7578 unsigned int Save_SP:1; /* 27 */
7579 unsigned int Save_RP:1; /* 28 */
7580 unsigned int Save_MRP_in_frame:1; /* 29 */
7581 unsigned int extn_ptr_defined:1; /* 30 */
7582 unsigned int Cleanup_defined:1; /* 31 */
7583
7584 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
7585 unsigned int HP_UX_interrupt_marker:1; /* 1 */
7586 unsigned int Large_frame:1; /* 2 */
7587 unsigned int Pseudo_SP_Set:1; /* 3 */
7588 unsigned int reserved4:1; /* 4 */
7589 unsigned int Total_frame_size:27; /* 5..31 */
7590 };
7591
7592 struct hppa_unw_aux_info
7593 {
7594 struct hppa_unw_table_entry * table; /* Unwind table. */
7595 unsigned long table_len; /* Length of unwind table. */
7596 bfd_vma seg_base; /* Starting address of segment. */
7597 Elf_Internal_Sym * symtab; /* The symbol table. */
7598 unsigned long nsyms; /* Number of symbols. */
7599 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7600 unsigned long nfuns; /* Number of entries in funtab. */
7601 char * strtab; /* The string table. */
7602 unsigned long strtab_size; /* Size of string table. */
7603 };
7604
7605 static bfd_boolean
7606 dump_hppa_unwind (struct hppa_unw_aux_info * aux)
7607 {
7608 struct hppa_unw_table_entry * tp;
7609 unsigned long j, nfuns;
7610 bfd_boolean res = TRUE;
7611
7612 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
7613 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
7614 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
7615 aux->funtab[nfuns++] = aux->symtab[j];
7616 aux->nfuns = nfuns;
7617 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
7618
7619 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
7620 {
7621 bfd_vma offset;
7622 const char * procname;
7623
7624 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7625 aux->strtab_size, tp->start, &procname,
7626 &offset);
7627
7628 fputs ("\n<", stdout);
7629
7630 if (procname)
7631 {
7632 fputs (procname, stdout);
7633
7634 if (offset)
7635 printf ("+%lx", (unsigned long) offset);
7636 }
7637
7638 fputs (">: [", stdout);
7639 print_vma (tp->start.offset, PREFIX_HEX);
7640 fputc ('-', stdout);
7641 print_vma (tp->end.offset, PREFIX_HEX);
7642 printf ("]\n\t");
7643
7644 #define PF(_m) if (tp->_m) printf (#_m " ");
7645 #define PV(_m) if (tp->_m) printf (#_m "=%d ", tp->_m);
7646 PF(Cannot_unwind);
7647 PF(Millicode);
7648 PF(Millicode_save_sr0);
7649 /* PV(Region_description); */
7650 PF(Entry_SR);
7651 PV(Entry_FR);
7652 PV(Entry_GR);
7653 PF(Args_stored);
7654 PF(Variable_Frame);
7655 PF(Separate_Package_Body);
7656 PF(Frame_Extension_Millicode);
7657 PF(Stack_Overflow_Check);
7658 PF(Two_Instruction_SP_Increment);
7659 PF(Ada_Region);
7660 PF(cxx_info);
7661 PF(cxx_try_catch);
7662 PF(sched_entry_seq);
7663 PF(Save_SP);
7664 PF(Save_RP);
7665 PF(Save_MRP_in_frame);
7666 PF(extn_ptr_defined);
7667 PF(Cleanup_defined);
7668 PF(MPE_XL_interrupt_marker);
7669 PF(HP_UX_interrupt_marker);
7670 PF(Large_frame);
7671 PF(Pseudo_SP_Set);
7672 PV(Total_frame_size);
7673 #undef PF
7674 #undef PV
7675 }
7676
7677 printf ("\n");
7678
7679 free (aux->funtab);
7680
7681 return res;
7682 }
7683
7684 static bfd_boolean
7685 slurp_hppa_unwind_table (FILE * file,
7686 struct hppa_unw_aux_info * aux,
7687 Elf_Internal_Shdr * sec)
7688 {
7689 unsigned long size, unw_ent_size, nentries, nrelas, i;
7690 Elf_Internal_Phdr * seg;
7691 struct hppa_unw_table_entry * tep;
7692 Elf_Internal_Shdr * relsec;
7693 Elf_Internal_Rela * rela;
7694 Elf_Internal_Rela * rp;
7695 unsigned char * table;
7696 unsigned char * tp;
7697 Elf_Internal_Sym * sym;
7698 const char * relname;
7699
7700 /* First, find the starting address of the segment that includes
7701 this section. */
7702 if (elf_header.e_phnum)
7703 {
7704 if (! get_program_headers (file))
7705 return FALSE;
7706
7707 for (seg = program_headers;
7708 seg < program_headers + elf_header.e_phnum;
7709 ++seg)
7710 {
7711 if (seg->p_type != PT_LOAD)
7712 continue;
7713
7714 if (sec->sh_addr >= seg->p_vaddr
7715 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
7716 {
7717 aux->seg_base = seg->p_vaddr;
7718 break;
7719 }
7720 }
7721 }
7722
7723 /* Second, build the unwind table from the contents of the unwind
7724 section. */
7725 size = sec->sh_size;
7726 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
7727 _("unwind table"));
7728 if (!table)
7729 return FALSE;
7730
7731 unw_ent_size = 16;
7732 nentries = size / unw_ent_size;
7733 size = unw_ent_size * nentries;
7734
7735 tep = aux->table = (struct hppa_unw_table_entry *)
7736 xcmalloc (nentries, sizeof (aux->table[0]));
7737
7738 for (tp = table; tp < table + size; tp += unw_ent_size, ++tep)
7739 {
7740 unsigned int tmp1, tmp2;
7741
7742 tep->start.section = SHN_UNDEF;
7743 tep->end.section = SHN_UNDEF;
7744
7745 tep->start.offset = byte_get ((unsigned char *) tp + 0, 4);
7746 tep->end.offset = byte_get ((unsigned char *) tp + 4, 4);
7747 tmp1 = byte_get ((unsigned char *) tp + 8, 4);
7748 tmp2 = byte_get ((unsigned char *) tp + 12, 4);
7749
7750 tep->start.offset += aux->seg_base;
7751 tep->end.offset += aux->seg_base;
7752
7753 tep->Cannot_unwind = (tmp1 >> 31) & 0x1;
7754 tep->Millicode = (tmp1 >> 30) & 0x1;
7755 tep->Millicode_save_sr0 = (tmp1 >> 29) & 0x1;
7756 tep->Region_description = (tmp1 >> 27) & 0x3;
7757 tep->reserved1 = (tmp1 >> 26) & 0x1;
7758 tep->Entry_SR = (tmp1 >> 25) & 0x1;
7759 tep->Entry_FR = (tmp1 >> 21) & 0xf;
7760 tep->Entry_GR = (tmp1 >> 16) & 0x1f;
7761 tep->Args_stored = (tmp1 >> 15) & 0x1;
7762 tep->Variable_Frame = (tmp1 >> 14) & 0x1;
7763 tep->Separate_Package_Body = (tmp1 >> 13) & 0x1;
7764 tep->Frame_Extension_Millicode = (tmp1 >> 12) & 0x1;
7765 tep->Stack_Overflow_Check = (tmp1 >> 11) & 0x1;
7766 tep->Two_Instruction_SP_Increment = (tmp1 >> 10) & 0x1;
7767 tep->Ada_Region = (tmp1 >> 9) & 0x1;
7768 tep->cxx_info = (tmp1 >> 8) & 0x1;
7769 tep->cxx_try_catch = (tmp1 >> 7) & 0x1;
7770 tep->sched_entry_seq = (tmp1 >> 6) & 0x1;
7771 tep->reserved2 = (tmp1 >> 5) & 0x1;
7772 tep->Save_SP = (tmp1 >> 4) & 0x1;
7773 tep->Save_RP = (tmp1 >> 3) & 0x1;
7774 tep->Save_MRP_in_frame = (tmp1 >> 2) & 0x1;
7775 tep->extn_ptr_defined = (tmp1 >> 1) & 0x1;
7776 tep->Cleanup_defined = tmp1 & 0x1;
7777
7778 tep->MPE_XL_interrupt_marker = (tmp2 >> 31) & 0x1;
7779 tep->HP_UX_interrupt_marker = (tmp2 >> 30) & 0x1;
7780 tep->Large_frame = (tmp2 >> 29) & 0x1;
7781 tep->Pseudo_SP_Set = (tmp2 >> 28) & 0x1;
7782 tep->reserved4 = (tmp2 >> 27) & 0x1;
7783 tep->Total_frame_size = tmp2 & 0x7ffffff;
7784 }
7785 free (table);
7786
7787 /* Third, apply any relocations to the unwind table. */
7788 for (relsec = section_headers;
7789 relsec < section_headers + elf_header.e_shnum;
7790 ++relsec)
7791 {
7792 if (relsec->sh_type != SHT_RELA
7793 || relsec->sh_info >= elf_header.e_shnum
7794 || section_headers + relsec->sh_info != sec)
7795 continue;
7796
7797 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
7798 & rela, & nrelas))
7799 return FALSE;
7800
7801 for (rp = rela; rp < rela + nrelas; ++rp)
7802 {
7803 relname = elf_hppa_reloc_type (get_reloc_type (rp->r_info));
7804 sym = aux->symtab + get_reloc_symindex (rp->r_info);
7805
7806 /* R_PARISC_SEGREL32 or R_PARISC_SEGREL64. */
7807 if (! const_strneq (relname, "R_PARISC_SEGREL"))
7808 {
7809 warn (_("Skipping unexpected relocation type %s\n"), relname);
7810 continue;
7811 }
7812
7813 i = rp->r_offset / unw_ent_size;
7814
7815 switch ((rp->r_offset % unw_ent_size) / eh_addr_size)
7816 {
7817 case 0:
7818 aux->table[i].start.section = sym->st_shndx;
7819 aux->table[i].start.offset = sym->st_value + rp->r_addend;
7820 break;
7821 case 1:
7822 aux->table[i].end.section = sym->st_shndx;
7823 aux->table[i].end.offset = sym->st_value + rp->r_addend;
7824 break;
7825 default:
7826 break;
7827 }
7828 }
7829
7830 free (rela);
7831 }
7832
7833 aux->table_len = nentries;
7834
7835 return TRUE;
7836 }
7837
7838 static bfd_boolean
7839 hppa_process_unwind (FILE * file)
7840 {
7841 struct hppa_unw_aux_info aux;
7842 Elf_Internal_Shdr * unwsec = NULL;
7843 Elf_Internal_Shdr * strsec;
7844 Elf_Internal_Shdr * sec;
7845 unsigned long i;
7846 bfd_boolean res = TRUE;
7847
7848 if (string_table == NULL)
7849 return FALSE;
7850
7851 memset (& aux, 0, sizeof (aux));
7852
7853 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7854 {
7855 if (sec->sh_type == SHT_SYMTAB
7856 && sec->sh_link < elf_header.e_shnum)
7857 {
7858 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7859
7860 strsec = section_headers + sec->sh_link;
7861 if (aux.strtab != NULL)
7862 {
7863 error (_("Multiple auxillary string tables encountered\n"));
7864 free (aux.strtab);
7865 res = FALSE;
7866 }
7867 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7868 1, strsec->sh_size,
7869 _("string table"));
7870 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7871 }
7872 else if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
7873 unwsec = sec;
7874 }
7875
7876 if (!unwsec)
7877 printf (_("\nThere are no unwind sections in this file.\n"));
7878
7879 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7880 {
7881 if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
7882 {
7883 printf (_("\nUnwind section '%s' at offset 0x%lx contains %lu entries:\n"),
7884 printable_section_name (sec),
7885 (unsigned long) sec->sh_offset,
7886 (unsigned long) (sec->sh_size / (2 * eh_addr_size + 8)));
7887
7888 if (! slurp_hppa_unwind_table (file, &aux, sec))
7889 res = FALSE;
7890
7891 if (aux.table_len > 0)
7892 {
7893 if (! dump_hppa_unwind (&aux))
7894 res = FALSE;
7895 }
7896
7897 if (aux.table)
7898 free ((char *) aux.table);
7899 aux.table = NULL;
7900 }
7901 }
7902
7903 if (aux.symtab)
7904 free (aux.symtab);
7905 if (aux.strtab)
7906 free ((char *) aux.strtab);
7907
7908 return res;
7909 }
7910
7911 struct arm_section
7912 {
7913 unsigned char * data; /* The unwind data. */
7914 Elf_Internal_Shdr * sec; /* The cached unwind section header. */
7915 Elf_Internal_Rela * rela; /* The cached relocations for this section. */
7916 unsigned long nrelas; /* The number of relocations. */
7917 unsigned int rel_type; /* REL or RELA ? */
7918 Elf_Internal_Rela * next_rela; /* Cyclic pointer to the next reloc to process. */
7919 };
7920
7921 struct arm_unw_aux_info
7922 {
7923 FILE * file; /* The file containing the unwind sections. */
7924 Elf_Internal_Sym * symtab; /* The file's symbol table. */
7925 unsigned long nsyms; /* Number of symbols. */
7926 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7927 unsigned long nfuns; /* Number of these symbols. */
7928 char * strtab; /* The file's string table. */
7929 unsigned long strtab_size; /* Size of string table. */
7930 };
7931
7932 static const char *
7933 arm_print_vma_and_name (struct arm_unw_aux_info *aux,
7934 bfd_vma fn, struct absaddr addr)
7935 {
7936 const char *procname;
7937 bfd_vma sym_offset;
7938
7939 if (addr.section == SHN_UNDEF)
7940 addr.offset = fn;
7941
7942 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7943 aux->strtab_size, addr, &procname,
7944 &sym_offset);
7945
7946 print_vma (fn, PREFIX_HEX);
7947
7948 if (procname)
7949 {
7950 fputs (" <", stdout);
7951 fputs (procname, stdout);
7952
7953 if (sym_offset)
7954 printf ("+0x%lx", (unsigned long) sym_offset);
7955 fputc ('>', stdout);
7956 }
7957
7958 return procname;
7959 }
7960
7961 static void
7962 arm_free_section (struct arm_section *arm_sec)
7963 {
7964 if (arm_sec->data != NULL)
7965 free (arm_sec->data);
7966
7967 if (arm_sec->rela != NULL)
7968 free (arm_sec->rela);
7969 }
7970
7971 /* 1) If SEC does not match the one cached in ARM_SEC, then free the current
7972 cached section and install SEC instead.
7973 2) Locate the 32-bit word at WORD_OFFSET in unwind section SEC
7974 and return its valued in * WORDP, relocating if necessary.
7975 3) Update the NEXT_RELA field in ARM_SEC and store the section index and
7976 relocation's offset in ADDR.
7977 4) If SYM_NAME is non-NULL and a relocation was applied, record the offset
7978 into the string table of the symbol associated with the reloc. If no
7979 reloc was applied store -1 there.
7980 5) Return TRUE upon success, FALSE otherwise. */
7981
7982 static bfd_boolean
7983 get_unwind_section_word (struct arm_unw_aux_info * aux,
7984 struct arm_section * arm_sec,
7985 Elf_Internal_Shdr * sec,
7986 bfd_vma word_offset,
7987 unsigned int * wordp,
7988 struct absaddr * addr,
7989 bfd_vma * sym_name)
7990 {
7991 Elf_Internal_Rela *rp;
7992 Elf_Internal_Sym *sym;
7993 const char * relname;
7994 unsigned int word;
7995 bfd_boolean wrapped;
7996
7997 if (sec == NULL || arm_sec == NULL)
7998 return FALSE;
7999
8000 addr->section = SHN_UNDEF;
8001 addr->offset = 0;
8002
8003 if (sym_name != NULL)
8004 *sym_name = (bfd_vma) -1;
8005
8006 /* If necessary, update the section cache. */
8007 if (sec != arm_sec->sec)
8008 {
8009 Elf_Internal_Shdr *relsec;
8010
8011 arm_free_section (arm_sec);
8012
8013 arm_sec->sec = sec;
8014 arm_sec->data = get_data (NULL, aux->file, sec->sh_offset, 1,
8015 sec->sh_size, _("unwind data"));
8016 arm_sec->rela = NULL;
8017 arm_sec->nrelas = 0;
8018
8019 for (relsec = section_headers;
8020 relsec < section_headers + elf_header.e_shnum;
8021 ++relsec)
8022 {
8023 if (relsec->sh_info >= elf_header.e_shnum
8024 || section_headers + relsec->sh_info != sec
8025 /* PR 15745: Check the section type as well. */
8026 || (relsec->sh_type != SHT_REL
8027 && relsec->sh_type != SHT_RELA))
8028 continue;
8029
8030 arm_sec->rel_type = relsec->sh_type;
8031 if (relsec->sh_type == SHT_REL)
8032 {
8033 if (!slurp_rel_relocs (aux->file, relsec->sh_offset,
8034 relsec->sh_size,
8035 & arm_sec->rela, & arm_sec->nrelas))
8036 return FALSE;
8037 }
8038 else /* relsec->sh_type == SHT_RELA */
8039 {
8040 if (!slurp_rela_relocs (aux->file, relsec->sh_offset,
8041 relsec->sh_size,
8042 & arm_sec->rela, & arm_sec->nrelas))
8043 return FALSE;
8044 }
8045 break;
8046 }
8047
8048 arm_sec->next_rela = arm_sec->rela;
8049 }
8050
8051 /* If there is no unwind data we can do nothing. */
8052 if (arm_sec->data == NULL)
8053 return FALSE;
8054
8055 /* If the offset is invalid then fail. */
8056 if (/* PR 21343 *//* PR 18879 */
8057 sec->sh_size < 4
8058 || word_offset > (sec->sh_size - 4)
8059 || ((bfd_signed_vma) word_offset) < 0)
8060 return FALSE;
8061
8062 /* Get the word at the required offset. */
8063 word = byte_get (arm_sec->data + word_offset, 4);
8064
8065 /* PR 17531: file: id:000001,src:001266+003044,op:splice,rep:128. */
8066 if (arm_sec->rela == NULL)
8067 {
8068 * wordp = word;
8069 return TRUE;
8070 }
8071
8072 /* Look through the relocs to find the one that applies to the provided offset. */
8073 wrapped = FALSE;
8074 for (rp = arm_sec->next_rela; rp != arm_sec->rela + arm_sec->nrelas; rp++)
8075 {
8076 bfd_vma prelval, offset;
8077
8078 if (rp->r_offset > word_offset && !wrapped)
8079 {
8080 rp = arm_sec->rela;
8081 wrapped = TRUE;
8082 }
8083 if (rp->r_offset > word_offset)
8084 break;
8085
8086 if (rp->r_offset & 3)
8087 {
8088 warn (_("Skipping unexpected relocation at offset 0x%lx\n"),
8089 (unsigned long) rp->r_offset);
8090 continue;
8091 }
8092
8093 if (rp->r_offset < word_offset)
8094 continue;
8095
8096 /* PR 17531: file: 027-161405-0.004 */
8097 if (aux->symtab == NULL)
8098 continue;
8099
8100 if (arm_sec->rel_type == SHT_REL)
8101 {
8102 offset = word & 0x7fffffff;
8103 if (offset & 0x40000000)
8104 offset |= ~ (bfd_vma) 0x7fffffff;
8105 }
8106 else if (arm_sec->rel_type == SHT_RELA)
8107 offset = rp->r_addend;
8108 else
8109 {
8110 error (_("Unknown section relocation type %d encountered\n"),
8111 arm_sec->rel_type);
8112 break;
8113 }
8114
8115 /* PR 17531 file: 027-1241568-0.004. */
8116 if (ELF32_R_SYM (rp->r_info) >= aux->nsyms)
8117 {
8118 error (_("Bad symbol index in unwind relocation (%lu > %lu)\n"),
8119 (unsigned long) ELF32_R_SYM (rp->r_info), aux->nsyms);
8120 break;
8121 }
8122
8123 sym = aux->symtab + ELF32_R_SYM (rp->r_info);
8124 offset += sym->st_value;
8125 prelval = offset - (arm_sec->sec->sh_addr + rp->r_offset);
8126
8127 /* Check that we are processing the expected reloc type. */
8128 if (elf_header.e_machine == EM_ARM)
8129 {
8130 relname = elf_arm_reloc_type (ELF32_R_TYPE (rp->r_info));
8131 if (relname == NULL)
8132 {
8133 warn (_("Skipping unknown ARM relocation type: %d\n"),
8134 (int) ELF32_R_TYPE (rp->r_info));
8135 continue;
8136 }
8137
8138 if (streq (relname, "R_ARM_NONE"))
8139 continue;
8140
8141 if (! streq (relname, "R_ARM_PREL31"))
8142 {
8143 warn (_("Skipping unexpected ARM relocation type %s\n"), relname);
8144 continue;
8145 }
8146 }
8147 else if (elf_header.e_machine == EM_TI_C6000)
8148 {
8149 relname = elf_tic6x_reloc_type (ELF32_R_TYPE (rp->r_info));
8150 if (relname == NULL)
8151 {
8152 warn (_("Skipping unknown C6000 relocation type: %d\n"),
8153 (int) ELF32_R_TYPE (rp->r_info));
8154 continue;
8155 }
8156
8157 if (streq (relname, "R_C6000_NONE"))
8158 continue;
8159
8160 if (! streq (relname, "R_C6000_PREL31"))
8161 {
8162 warn (_("Skipping unexpected C6000 relocation type %s\n"), relname);
8163 continue;
8164 }
8165
8166 prelval >>= 1;
8167 }
8168 else
8169 {
8170 /* This function currently only supports ARM and TI unwinders. */
8171 warn (_("Only TI and ARM unwinders are currently supported\n"));
8172 break;
8173 }
8174
8175 word = (word & ~ (bfd_vma) 0x7fffffff) | (prelval & 0x7fffffff);
8176 addr->section = sym->st_shndx;
8177 addr->offset = offset;
8178
8179 if (sym_name)
8180 * sym_name = sym->st_name;
8181 break;
8182 }
8183
8184 *wordp = word;
8185 arm_sec->next_rela = rp;
8186
8187 return TRUE;
8188 }
8189
8190 static const char *tic6x_unwind_regnames[16] =
8191 {
8192 "A15", "B15", "B14", "B13", "B12", "B11", "B10", "B3",
8193 "A14", "A13", "A12", "A11", "A10",
8194 "[invalid reg 13]", "[invalid reg 14]", "[invalid reg 15]"
8195 };
8196
8197 static void
8198 decode_tic6x_unwind_regmask (unsigned int mask)
8199 {
8200 int i;
8201
8202 for (i = 12; mask; mask >>= 1, i--)
8203 {
8204 if (mask & 1)
8205 {
8206 fputs (tic6x_unwind_regnames[i], stdout);
8207 if (mask > 1)
8208 fputs (", ", stdout);
8209 }
8210 }
8211 }
8212
8213 #define ADVANCE \
8214 if (remaining == 0 && more_words) \
8215 { \
8216 data_offset += 4; \
8217 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, \
8218 data_offset, & word, & addr, NULL)) \
8219 return FALSE; \
8220 remaining = 4; \
8221 more_words--; \
8222 } \
8223
8224 #define GET_OP(OP) \
8225 ADVANCE; \
8226 if (remaining) \
8227 { \
8228 remaining--; \
8229 (OP) = word >> 24; \
8230 word <<= 8; \
8231 } \
8232 else \
8233 { \
8234 printf (_("[Truncated opcode]\n")); \
8235 return FALSE; \
8236 } \
8237 printf ("0x%02x ", OP)
8238
8239 static bfd_boolean
8240 decode_arm_unwind_bytecode (struct arm_unw_aux_info * aux,
8241 unsigned int word,
8242 unsigned int remaining,
8243 unsigned int more_words,
8244 bfd_vma data_offset,
8245 Elf_Internal_Shdr * data_sec,
8246 struct arm_section * data_arm_sec)
8247 {
8248 struct absaddr addr;
8249 bfd_boolean res = TRUE;
8250
8251 /* Decode the unwinding instructions. */
8252 while (1)
8253 {
8254 unsigned int op, op2;
8255
8256 ADVANCE;
8257 if (remaining == 0)
8258 break;
8259 remaining--;
8260 op = word >> 24;
8261 word <<= 8;
8262
8263 printf (" 0x%02x ", op);
8264
8265 if ((op & 0xc0) == 0x00)
8266 {
8267 int offset = ((op & 0x3f) << 2) + 4;
8268
8269 printf (" vsp = vsp + %d", offset);
8270 }
8271 else if ((op & 0xc0) == 0x40)
8272 {
8273 int offset = ((op & 0x3f) << 2) + 4;
8274
8275 printf (" vsp = vsp - %d", offset);
8276 }
8277 else if ((op & 0xf0) == 0x80)
8278 {
8279 GET_OP (op2);
8280 if (op == 0x80 && op2 == 0)
8281 printf (_("Refuse to unwind"));
8282 else
8283 {
8284 unsigned int mask = ((op & 0x0f) << 8) | op2;
8285 bfd_boolean first = TRUE;
8286 int i;
8287
8288 printf ("pop {");
8289 for (i = 0; i < 12; i++)
8290 if (mask & (1 << i))
8291 {
8292 if (first)
8293 first = FALSE;
8294 else
8295 printf (", ");
8296 printf ("r%d", 4 + i);
8297 }
8298 printf ("}");
8299 }
8300 }
8301 else if ((op & 0xf0) == 0x90)
8302 {
8303 if (op == 0x9d || op == 0x9f)
8304 printf (_(" [Reserved]"));
8305 else
8306 printf (" vsp = r%d", op & 0x0f);
8307 }
8308 else if ((op & 0xf0) == 0xa0)
8309 {
8310 int end = 4 + (op & 0x07);
8311 bfd_boolean first = TRUE;
8312 int i;
8313
8314 printf (" pop {");
8315 for (i = 4; i <= end; i++)
8316 {
8317 if (first)
8318 first = FALSE;
8319 else
8320 printf (", ");
8321 printf ("r%d", i);
8322 }
8323 if (op & 0x08)
8324 {
8325 if (!first)
8326 printf (", ");
8327 printf ("r14");
8328 }
8329 printf ("}");
8330 }
8331 else if (op == 0xb0)
8332 printf (_(" finish"));
8333 else if (op == 0xb1)
8334 {
8335 GET_OP (op2);
8336 if (op2 == 0 || (op2 & 0xf0) != 0)
8337 printf (_("[Spare]"));
8338 else
8339 {
8340 unsigned int mask = op2 & 0x0f;
8341 bfd_boolean first = TRUE;
8342 int i;
8343
8344 printf ("pop {");
8345 for (i = 0; i < 12; i++)
8346 if (mask & (1 << i))
8347 {
8348 if (first)
8349 first = FALSE;
8350 else
8351 printf (", ");
8352 printf ("r%d", i);
8353 }
8354 printf ("}");
8355 }
8356 }
8357 else if (op == 0xb2)
8358 {
8359 unsigned char buf[9];
8360 unsigned int i, len;
8361 unsigned long offset;
8362
8363 for (i = 0; i < sizeof (buf); i++)
8364 {
8365 GET_OP (buf[i]);
8366 if ((buf[i] & 0x80) == 0)
8367 break;
8368 }
8369 if (i == sizeof (buf))
8370 {
8371 error (_("corrupt change to vsp"));
8372 res = FALSE;
8373 }
8374 else
8375 {
8376 offset = read_uleb128 (buf, &len, buf + i + 1);
8377 assert (len == i + 1);
8378 offset = offset * 4 + 0x204;
8379 printf ("vsp = vsp + %ld", offset);
8380 }
8381 }
8382 else if (op == 0xb3 || op == 0xc8 || op == 0xc9)
8383 {
8384 unsigned int first, last;
8385
8386 GET_OP (op2);
8387 first = op2 >> 4;
8388 last = op2 & 0x0f;
8389 if (op == 0xc8)
8390 first = first + 16;
8391 printf ("pop {D%d", first);
8392 if (last)
8393 printf ("-D%d", first + last);
8394 printf ("}");
8395 }
8396 else if ((op & 0xf8) == 0xb8 || (op & 0xf8) == 0xd0)
8397 {
8398 unsigned int count = op & 0x07;
8399
8400 printf ("pop {D8");
8401 if (count)
8402 printf ("-D%d", 8 + count);
8403 printf ("}");
8404 }
8405 else if (op >= 0xc0 && op <= 0xc5)
8406 {
8407 unsigned int count = op & 0x07;
8408
8409 printf (" pop {wR10");
8410 if (count)
8411 printf ("-wR%d", 10 + count);
8412 printf ("}");
8413 }
8414 else if (op == 0xc6)
8415 {
8416 unsigned int first, last;
8417
8418 GET_OP (op2);
8419 first = op2 >> 4;
8420 last = op2 & 0x0f;
8421 printf ("pop {wR%d", first);
8422 if (last)
8423 printf ("-wR%d", first + last);
8424 printf ("}");
8425 }
8426 else if (op == 0xc7)
8427 {
8428 GET_OP (op2);
8429 if (op2 == 0 || (op2 & 0xf0) != 0)
8430 printf (_("[Spare]"));
8431 else
8432 {
8433 unsigned int mask = op2 & 0x0f;
8434 bfd_boolean first = TRUE;
8435 int i;
8436
8437 printf ("pop {");
8438 for (i = 0; i < 4; i++)
8439 if (mask & (1 << i))
8440 {
8441 if (first)
8442 first = FALSE;
8443 else
8444 printf (", ");
8445 printf ("wCGR%d", i);
8446 }
8447 printf ("}");
8448 }
8449 }
8450 else
8451 {
8452 printf (_(" [unsupported opcode]"));
8453 res = FALSE;
8454 }
8455
8456 printf ("\n");
8457 }
8458
8459 return res;
8460 }
8461
8462 static bfd_boolean
8463 decode_tic6x_unwind_bytecode (struct arm_unw_aux_info * aux,
8464 unsigned int word,
8465 unsigned int remaining,
8466 unsigned int more_words,
8467 bfd_vma data_offset,
8468 Elf_Internal_Shdr * data_sec,
8469 struct arm_section * data_arm_sec)
8470 {
8471 struct absaddr addr;
8472
8473 /* Decode the unwinding instructions. */
8474 while (1)
8475 {
8476 unsigned int op, op2;
8477
8478 ADVANCE;
8479 if (remaining == 0)
8480 break;
8481 remaining--;
8482 op = word >> 24;
8483 word <<= 8;
8484
8485 printf (" 0x%02x ", op);
8486
8487 if ((op & 0xc0) == 0x00)
8488 {
8489 int offset = ((op & 0x3f) << 3) + 8;
8490 printf (" sp = sp + %d", offset);
8491 }
8492 else if ((op & 0xc0) == 0x80)
8493 {
8494 GET_OP (op2);
8495 if (op == 0x80 && op2 == 0)
8496 printf (_("Refuse to unwind"));
8497 else
8498 {
8499 unsigned int mask = ((op & 0x1f) << 8) | op2;
8500 if (op & 0x20)
8501 printf ("pop compact {");
8502 else
8503 printf ("pop {");
8504
8505 decode_tic6x_unwind_regmask (mask);
8506 printf("}");
8507 }
8508 }
8509 else if ((op & 0xf0) == 0xc0)
8510 {
8511 unsigned int reg;
8512 unsigned int nregs;
8513 unsigned int i;
8514 const char *name;
8515 struct
8516 {
8517 unsigned int offset;
8518 unsigned int reg;
8519 } regpos[16];
8520
8521 /* Scan entire instruction first so that GET_OP output is not
8522 interleaved with disassembly. */
8523 nregs = 0;
8524 for (i = 0; nregs < (op & 0xf); i++)
8525 {
8526 GET_OP (op2);
8527 reg = op2 >> 4;
8528 if (reg != 0xf)
8529 {
8530 regpos[nregs].offset = i * 2;
8531 regpos[nregs].reg = reg;
8532 nregs++;
8533 }
8534
8535 reg = op2 & 0xf;
8536 if (reg != 0xf)
8537 {
8538 regpos[nregs].offset = i * 2 + 1;
8539 regpos[nregs].reg = reg;
8540 nregs++;
8541 }
8542 }
8543
8544 printf (_("pop frame {"));
8545 reg = nregs - 1;
8546 for (i = i * 2; i > 0; i--)
8547 {
8548 if (regpos[reg].offset == i - 1)
8549 {
8550 name = tic6x_unwind_regnames[regpos[reg].reg];
8551 if (reg > 0)
8552 reg--;
8553 }
8554 else
8555 name = _("[pad]");
8556
8557 fputs (name, stdout);
8558 if (i > 1)
8559 printf (", ");
8560 }
8561
8562 printf ("}");
8563 }
8564 else if (op == 0xd0)
8565 printf (" MOV FP, SP");
8566 else if (op == 0xd1)
8567 printf (" __c6xabi_pop_rts");
8568 else if (op == 0xd2)
8569 {
8570 unsigned char buf[9];
8571 unsigned int i, len;
8572 unsigned long offset;
8573
8574 for (i = 0; i < sizeof (buf); i++)
8575 {
8576 GET_OP (buf[i]);
8577 if ((buf[i] & 0x80) == 0)
8578 break;
8579 }
8580 /* PR 17531: file: id:000001,src:001906+004739,op:splice,rep:2. */
8581 if (i == sizeof (buf))
8582 {
8583 warn (_("Corrupt stack pointer adjustment detected\n"));
8584 return FALSE;
8585 }
8586
8587 offset = read_uleb128 (buf, &len, buf + i + 1);
8588 assert (len == i + 1);
8589 offset = offset * 8 + 0x408;
8590 printf (_("sp = sp + %ld"), offset);
8591 }
8592 else if ((op & 0xf0) == 0xe0)
8593 {
8594 if ((op & 0x0f) == 7)
8595 printf (" RETURN");
8596 else
8597 printf (" MV %s, B3", tic6x_unwind_regnames[op & 0x0f]);
8598 }
8599 else
8600 {
8601 printf (_(" [unsupported opcode]"));
8602 }
8603 putchar ('\n');
8604 }
8605
8606 return TRUE;
8607 }
8608
8609 static bfd_vma
8610 arm_expand_prel31 (bfd_vma word, bfd_vma where)
8611 {
8612 bfd_vma offset;
8613
8614 offset = word & 0x7fffffff;
8615 if (offset & 0x40000000)
8616 offset |= ~ (bfd_vma) 0x7fffffff;
8617
8618 if (elf_header.e_machine == EM_TI_C6000)
8619 offset <<= 1;
8620
8621 return offset + where;
8622 }
8623
8624 static bfd_boolean
8625 decode_arm_unwind (struct arm_unw_aux_info * aux,
8626 unsigned int word,
8627 unsigned int remaining,
8628 bfd_vma data_offset,
8629 Elf_Internal_Shdr * data_sec,
8630 struct arm_section * data_arm_sec)
8631 {
8632 int per_index;
8633 unsigned int more_words = 0;
8634 struct absaddr addr;
8635 bfd_vma sym_name = (bfd_vma) -1;
8636 bfd_boolean res = FALSE;
8637
8638 if (remaining == 0)
8639 {
8640 /* Fetch the first word.
8641 Note - when decoding an object file the address extracted
8642 here will always be 0. So we also pass in the sym_name
8643 parameter so that we can find the symbol associated with
8644 the personality routine. */
8645 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, data_offset,
8646 & word, & addr, & sym_name))
8647 return FALSE;
8648
8649 remaining = 4;
8650 }
8651
8652 if ((word & 0x80000000) == 0)
8653 {
8654 /* Expand prel31 for personality routine. */
8655 bfd_vma fn;
8656 const char *procname;
8657
8658 fn = arm_expand_prel31 (word, data_sec->sh_addr + data_offset);
8659 printf (_(" Personality routine: "));
8660 if (fn == 0
8661 && addr.section == SHN_UNDEF && addr.offset == 0
8662 && sym_name != (bfd_vma) -1 && sym_name < aux->strtab_size)
8663 {
8664 procname = aux->strtab + sym_name;
8665 print_vma (fn, PREFIX_HEX);
8666 if (procname)
8667 {
8668 fputs (" <", stdout);
8669 fputs (procname, stdout);
8670 fputc ('>', stdout);
8671 }
8672 }
8673 else
8674 procname = arm_print_vma_and_name (aux, fn, addr);
8675 fputc ('\n', stdout);
8676
8677 /* The GCC personality routines use the standard compact
8678 encoding, starting with one byte giving the number of
8679 words. */
8680 if (procname != NULL
8681 && (const_strneq (procname, "__gcc_personality_v0")
8682 || const_strneq (procname, "__gxx_personality_v0")
8683 || const_strneq (procname, "__gcj_personality_v0")
8684 || const_strneq (procname, "__gnu_objc_personality_v0")))
8685 {
8686 remaining = 0;
8687 more_words = 1;
8688 ADVANCE;
8689 if (!remaining)
8690 {
8691 printf (_(" [Truncated data]\n"));
8692 return FALSE;
8693 }
8694 more_words = word >> 24;
8695 word <<= 8;
8696 remaining--;
8697 per_index = -1;
8698 }
8699 else
8700 return TRUE;
8701 }
8702 else
8703 {
8704 /* ARM EHABI Section 6.3:
8705
8706 An exception-handling table entry for the compact model looks like:
8707
8708 31 30-28 27-24 23-0
8709 -- ----- ----- ----
8710 1 0 index Data for personalityRoutine[index] */
8711
8712 if (elf_header.e_machine == EM_ARM
8713 && (word & 0x70000000))
8714 {
8715 warn (_("Corrupt ARM compact model table entry: %x \n"), word);
8716 res = FALSE;
8717 }
8718
8719 per_index = (word >> 24) & 0x7f;
8720 printf (_(" Compact model index: %d\n"), per_index);
8721 if (per_index == 0)
8722 {
8723 more_words = 0;
8724 word <<= 8;
8725 remaining--;
8726 }
8727 else if (per_index < 3)
8728 {
8729 more_words = (word >> 16) & 0xff;
8730 word <<= 16;
8731 remaining -= 2;
8732 }
8733 }
8734
8735 switch (elf_header.e_machine)
8736 {
8737 case EM_ARM:
8738 if (per_index < 3)
8739 {
8740 if (! decode_arm_unwind_bytecode (aux, word, remaining, more_words,
8741 data_offset, data_sec, data_arm_sec))
8742 res = FALSE;
8743 }
8744 else
8745 {
8746 warn (_("Unknown ARM compact model index encountered\n"));
8747 printf (_(" [reserved]\n"));
8748 res = FALSE;
8749 }
8750 break;
8751
8752 case EM_TI_C6000:
8753 if (per_index < 3)
8754 {
8755 if (! decode_tic6x_unwind_bytecode (aux, word, remaining, more_words,
8756 data_offset, data_sec, data_arm_sec))
8757 res = FALSE;
8758 }
8759 else if (per_index < 5)
8760 {
8761 if (((word >> 17) & 0x7f) == 0x7f)
8762 printf (_(" Restore stack from frame pointer\n"));
8763 else
8764 printf (_(" Stack increment %d\n"), (word >> 14) & 0x1fc);
8765 printf (_(" Registers restored: "));
8766 if (per_index == 4)
8767 printf (" (compact) ");
8768 decode_tic6x_unwind_regmask ((word >> 4) & 0x1fff);
8769 putchar ('\n');
8770 printf (_(" Return register: %s\n"),
8771 tic6x_unwind_regnames[word & 0xf]);
8772 }
8773 else
8774 printf (_(" [reserved (%d)]\n"), per_index);
8775 break;
8776
8777 default:
8778 error (_("Unsupported architecture type %d encountered when decoding unwind table\n"),
8779 elf_header.e_machine);
8780 res = FALSE;
8781 }
8782
8783 /* Decode the descriptors. Not implemented. */
8784
8785 return res;
8786 }
8787
8788 static bfd_boolean
8789 dump_arm_unwind (struct arm_unw_aux_info *aux, Elf_Internal_Shdr *exidx_sec)
8790 {
8791 struct arm_section exidx_arm_sec, extab_arm_sec;
8792 unsigned int i, exidx_len;
8793 unsigned long j, nfuns;
8794 bfd_boolean res = TRUE;
8795
8796 memset (&exidx_arm_sec, 0, sizeof (exidx_arm_sec));
8797 memset (&extab_arm_sec, 0, sizeof (extab_arm_sec));
8798 exidx_len = exidx_sec->sh_size / 8;
8799
8800 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
8801 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
8802 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
8803 aux->funtab[nfuns++] = aux->symtab[j];
8804 aux->nfuns = nfuns;
8805 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
8806
8807 for (i = 0; i < exidx_len; i++)
8808 {
8809 unsigned int exidx_fn, exidx_entry;
8810 struct absaddr fn_addr, entry_addr;
8811 bfd_vma fn;
8812
8813 fputc ('\n', stdout);
8814
8815 if (! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
8816 8 * i, & exidx_fn, & fn_addr, NULL)
8817 || ! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
8818 8 * i + 4, & exidx_entry, & entry_addr, NULL))
8819 {
8820 free (aux->funtab);
8821 arm_free_section (& exidx_arm_sec);
8822 arm_free_section (& extab_arm_sec);
8823 return FALSE;
8824 }
8825
8826 /* ARM EHABI, Section 5:
8827 An index table entry consists of 2 words.
8828 The first word contains a prel31 offset to the start of a function, with bit 31 clear. */
8829 if (exidx_fn & 0x80000000)
8830 {
8831 warn (_("corrupt index table entry: %x\n"), exidx_fn);
8832 res = FALSE;
8833 }
8834
8835 fn = arm_expand_prel31 (exidx_fn, exidx_sec->sh_addr + 8 * i);
8836
8837 arm_print_vma_and_name (aux, fn, fn_addr);
8838 fputs (": ", stdout);
8839
8840 if (exidx_entry == 1)
8841 {
8842 print_vma (exidx_entry, PREFIX_HEX);
8843 fputs (" [cantunwind]\n", stdout);
8844 }
8845 else if (exidx_entry & 0x80000000)
8846 {
8847 print_vma (exidx_entry, PREFIX_HEX);
8848 fputc ('\n', stdout);
8849 decode_arm_unwind (aux, exidx_entry, 4, 0, NULL, NULL);
8850 }
8851 else
8852 {
8853 bfd_vma table, table_offset = 0;
8854 Elf_Internal_Shdr *table_sec;
8855
8856 fputs ("@", stdout);
8857 table = arm_expand_prel31 (exidx_entry, exidx_sec->sh_addr + 8 * i + 4);
8858 print_vma (table, PREFIX_HEX);
8859 printf ("\n");
8860
8861 /* Locate the matching .ARM.extab. */
8862 if (entry_addr.section != SHN_UNDEF
8863 && entry_addr.section < elf_header.e_shnum)
8864 {
8865 table_sec = section_headers + entry_addr.section;
8866 table_offset = entry_addr.offset;
8867 /* PR 18879 */
8868 if (table_offset > table_sec->sh_size
8869 || ((bfd_signed_vma) table_offset) < 0)
8870 {
8871 warn (_("Unwind entry contains corrupt offset (0x%lx) into section %s\n"),
8872 (unsigned long) table_offset,
8873 printable_section_name (table_sec));
8874 res = FALSE;
8875 continue;
8876 }
8877 }
8878 else
8879 {
8880 table_sec = find_section_by_address (table);
8881 if (table_sec != NULL)
8882 table_offset = table - table_sec->sh_addr;
8883 }
8884
8885 if (table_sec == NULL)
8886 {
8887 warn (_("Could not locate .ARM.extab section containing 0x%lx.\n"),
8888 (unsigned long) table);
8889 res = FALSE;
8890 continue;
8891 }
8892
8893 if (! decode_arm_unwind (aux, 0, 0, table_offset, table_sec,
8894 &extab_arm_sec))
8895 res = FALSE;
8896 }
8897 }
8898
8899 printf ("\n");
8900
8901 free (aux->funtab);
8902 arm_free_section (&exidx_arm_sec);
8903 arm_free_section (&extab_arm_sec);
8904
8905 return res;
8906 }
8907
8908 /* Used for both ARM and C6X unwinding tables. */
8909
8910 static bfd_boolean
8911 arm_process_unwind (FILE *file)
8912 {
8913 struct arm_unw_aux_info aux;
8914 Elf_Internal_Shdr *unwsec = NULL;
8915 Elf_Internal_Shdr *strsec;
8916 Elf_Internal_Shdr *sec;
8917 unsigned long i;
8918 unsigned int sec_type;
8919 bfd_boolean res = TRUE;
8920
8921 switch (elf_header.e_machine)
8922 {
8923 case EM_ARM:
8924 sec_type = SHT_ARM_EXIDX;
8925 break;
8926
8927 case EM_TI_C6000:
8928 sec_type = SHT_C6000_UNWIND;
8929 break;
8930
8931 default:
8932 error (_("Unsupported architecture type %d encountered when processing unwind table\n"),
8933 elf_header.e_machine);
8934 return FALSE;
8935 }
8936
8937 if (string_table == NULL)
8938 return FALSE;
8939
8940 memset (& aux, 0, sizeof (aux));
8941 aux.file = file;
8942
8943 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
8944 {
8945 if (sec->sh_type == SHT_SYMTAB && sec->sh_link < elf_header.e_shnum)
8946 {
8947 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
8948
8949 strsec = section_headers + sec->sh_link;
8950
8951 /* PR binutils/17531 file: 011-12666-0.004. */
8952 if (aux.strtab != NULL)
8953 {
8954 error (_("Multiple string tables found in file.\n"));
8955 free (aux.strtab);
8956 res = FALSE;
8957 }
8958 aux.strtab = get_data (NULL, file, strsec->sh_offset,
8959 1, strsec->sh_size, _("string table"));
8960 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
8961 }
8962 else if (sec->sh_type == sec_type)
8963 unwsec = sec;
8964 }
8965
8966 if (unwsec == NULL)
8967 printf (_("\nThere are no unwind sections in this file.\n"));
8968 else
8969 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
8970 {
8971 if (sec->sh_type == sec_type)
8972 {
8973 printf (_("\nUnwind table index '%s' at offset 0x%lx contains %lu entries:\n"),
8974 printable_section_name (sec),
8975 (unsigned long) sec->sh_offset,
8976 (unsigned long) (sec->sh_size / (2 * eh_addr_size)));
8977
8978 if (! dump_arm_unwind (&aux, sec))
8979 res = FALSE;
8980 }
8981 }
8982
8983 if (aux.symtab)
8984 free (aux.symtab);
8985 if (aux.strtab)
8986 free ((char *) aux.strtab);
8987
8988 return res;
8989 }
8990
8991 static bfd_boolean
8992 process_unwind (FILE * file)
8993 {
8994 struct unwind_handler
8995 {
8996 unsigned int machtype;
8997 bfd_boolean (* handler)(FILE *);
8998 } handlers[] =
8999 {
9000 { EM_ARM, arm_process_unwind },
9001 { EM_IA_64, ia64_process_unwind },
9002 { EM_PARISC, hppa_process_unwind },
9003 { EM_TI_C6000, arm_process_unwind },
9004 { 0, NULL }
9005 };
9006 int i;
9007
9008 if (!do_unwind)
9009 return TRUE;
9010
9011 for (i = 0; handlers[i].handler != NULL; i++)
9012 if (elf_header.e_machine == handlers[i].machtype)
9013 return handlers[i].handler (file);
9014
9015 printf (_("\nThe decoding of unwind sections for machine type %s is not currently supported.\n"),
9016 get_machine_name (elf_header.e_machine));
9017 return TRUE;
9018 }
9019
9020 static void
9021 dynamic_section_mips_val (Elf_Internal_Dyn * entry)
9022 {
9023 switch (entry->d_tag)
9024 {
9025 case DT_MIPS_FLAGS:
9026 if (entry->d_un.d_val == 0)
9027 printf (_("NONE"));
9028 else
9029 {
9030 static const char * opts[] =
9031 {
9032 "QUICKSTART", "NOTPOT", "NO_LIBRARY_REPLACEMENT",
9033 "NO_MOVE", "SGI_ONLY", "GUARANTEE_INIT", "DELTA_C_PLUS_PLUS",
9034 "GUARANTEE_START_INIT", "PIXIE", "DEFAULT_DELAY_LOAD",
9035 "REQUICKSTART", "REQUICKSTARTED", "CORD", "NO_UNRES_UNDEF",
9036 "RLD_ORDER_SAFE"
9037 };
9038 unsigned int cnt;
9039 bfd_boolean first = TRUE;
9040
9041 for (cnt = 0; cnt < ARRAY_SIZE (opts); ++cnt)
9042 if (entry->d_un.d_val & (1 << cnt))
9043 {
9044 printf ("%s%s", first ? "" : " ", opts[cnt]);
9045 first = FALSE;
9046 }
9047 }
9048 break;
9049
9050 case DT_MIPS_IVERSION:
9051 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9052 printf (_("Interface Version: %s"), GET_DYNAMIC_NAME (entry->d_un.d_val));
9053 else
9054 {
9055 char buf[40];
9056 sprintf_vma (buf, entry->d_un.d_ptr);
9057 /* Note: coded this way so that there is a single string for translation. */
9058 printf (_("<corrupt: %s>"), buf);
9059 }
9060 break;
9061
9062 case DT_MIPS_TIME_STAMP:
9063 {
9064 char timebuf[128];
9065 struct tm * tmp;
9066 time_t atime = entry->d_un.d_val;
9067
9068 tmp = gmtime (&atime);
9069 /* PR 17531: file: 6accc532. */
9070 if (tmp == NULL)
9071 snprintf (timebuf, sizeof (timebuf), _("<corrupt>"));
9072 else
9073 snprintf (timebuf, sizeof (timebuf), "%04u-%02u-%02uT%02u:%02u:%02u",
9074 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
9075 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
9076 printf (_("Time Stamp: %s"), timebuf);
9077 }
9078 break;
9079
9080 case DT_MIPS_RLD_VERSION:
9081 case DT_MIPS_LOCAL_GOTNO:
9082 case DT_MIPS_CONFLICTNO:
9083 case DT_MIPS_LIBLISTNO:
9084 case DT_MIPS_SYMTABNO:
9085 case DT_MIPS_UNREFEXTNO:
9086 case DT_MIPS_HIPAGENO:
9087 case DT_MIPS_DELTA_CLASS_NO:
9088 case DT_MIPS_DELTA_INSTANCE_NO:
9089 case DT_MIPS_DELTA_RELOC_NO:
9090 case DT_MIPS_DELTA_SYM_NO:
9091 case DT_MIPS_DELTA_CLASSSYM_NO:
9092 case DT_MIPS_COMPACT_SIZE:
9093 print_vma (entry->d_un.d_val, DEC);
9094 break;
9095
9096 default:
9097 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9098 }
9099 putchar ('\n');
9100 }
9101
9102 static void
9103 dynamic_section_parisc_val (Elf_Internal_Dyn * entry)
9104 {
9105 switch (entry->d_tag)
9106 {
9107 case DT_HP_DLD_FLAGS:
9108 {
9109 static struct
9110 {
9111 long int bit;
9112 const char * str;
9113 }
9114 flags[] =
9115 {
9116 { DT_HP_DEBUG_PRIVATE, "HP_DEBUG_PRIVATE" },
9117 { DT_HP_DEBUG_CALLBACK, "HP_DEBUG_CALLBACK" },
9118 { DT_HP_DEBUG_CALLBACK_BOR, "HP_DEBUG_CALLBACK_BOR" },
9119 { DT_HP_NO_ENVVAR, "HP_NO_ENVVAR" },
9120 { DT_HP_BIND_NOW, "HP_BIND_NOW" },
9121 { DT_HP_BIND_NONFATAL, "HP_BIND_NONFATAL" },
9122 { DT_HP_BIND_VERBOSE, "HP_BIND_VERBOSE" },
9123 { DT_HP_BIND_RESTRICTED, "HP_BIND_RESTRICTED" },
9124 { DT_HP_BIND_SYMBOLIC, "HP_BIND_SYMBOLIC" },
9125 { DT_HP_RPATH_FIRST, "HP_RPATH_FIRST" },
9126 { DT_HP_BIND_DEPTH_FIRST, "HP_BIND_DEPTH_FIRST" },
9127 { DT_HP_GST, "HP_GST" },
9128 { DT_HP_SHLIB_FIXED, "HP_SHLIB_FIXED" },
9129 { DT_HP_MERGE_SHLIB_SEG, "HP_MERGE_SHLIB_SEG" },
9130 { DT_HP_NODELETE, "HP_NODELETE" },
9131 { DT_HP_GROUP, "HP_GROUP" },
9132 { DT_HP_PROTECT_LINKAGE_TABLE, "HP_PROTECT_LINKAGE_TABLE" }
9133 };
9134 bfd_boolean first = TRUE;
9135 size_t cnt;
9136 bfd_vma val = entry->d_un.d_val;
9137
9138 for (cnt = 0; cnt < ARRAY_SIZE (flags); ++cnt)
9139 if (val & flags[cnt].bit)
9140 {
9141 if (! first)
9142 putchar (' ');
9143 fputs (flags[cnt].str, stdout);
9144 first = FALSE;
9145 val ^= flags[cnt].bit;
9146 }
9147
9148 if (val != 0 || first)
9149 {
9150 if (! first)
9151 putchar (' ');
9152 print_vma (val, HEX);
9153 }
9154 }
9155 break;
9156
9157 default:
9158 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9159 break;
9160 }
9161 putchar ('\n');
9162 }
9163
9164 #ifdef BFD64
9165
9166 /* VMS vs Unix time offset and factor. */
9167
9168 #define VMS_EPOCH_OFFSET 35067168000000000LL
9169 #define VMS_GRANULARITY_FACTOR 10000000
9170
9171 /* Display a VMS time in a human readable format. */
9172
9173 static void
9174 print_vms_time (bfd_int64_t vmstime)
9175 {
9176 struct tm *tm;
9177 time_t unxtime;
9178
9179 unxtime = (vmstime - VMS_EPOCH_OFFSET) / VMS_GRANULARITY_FACTOR;
9180 tm = gmtime (&unxtime);
9181 printf ("%04u-%02u-%02uT%02u:%02u:%02u",
9182 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
9183 tm->tm_hour, tm->tm_min, tm->tm_sec);
9184 }
9185 #endif /* BFD64 */
9186
9187 static void
9188 dynamic_section_ia64_val (Elf_Internal_Dyn * entry)
9189 {
9190 switch (entry->d_tag)
9191 {
9192 case DT_IA_64_PLT_RESERVE:
9193 /* First 3 slots reserved. */
9194 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9195 printf (" -- ");
9196 print_vma (entry->d_un.d_ptr + (3 * 8), PREFIX_HEX);
9197 break;
9198
9199 case DT_IA_64_VMS_LINKTIME:
9200 #ifdef BFD64
9201 print_vms_time (entry->d_un.d_val);
9202 #endif
9203 break;
9204
9205 case DT_IA_64_VMS_LNKFLAGS:
9206 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9207 if (entry->d_un.d_val & VMS_LF_CALL_DEBUG)
9208 printf (" CALL_DEBUG");
9209 if (entry->d_un.d_val & VMS_LF_NOP0BUFS)
9210 printf (" NOP0BUFS");
9211 if (entry->d_un.d_val & VMS_LF_P0IMAGE)
9212 printf (" P0IMAGE");
9213 if (entry->d_un.d_val & VMS_LF_MKTHREADS)
9214 printf (" MKTHREADS");
9215 if (entry->d_un.d_val & VMS_LF_UPCALLS)
9216 printf (" UPCALLS");
9217 if (entry->d_un.d_val & VMS_LF_IMGSTA)
9218 printf (" IMGSTA");
9219 if (entry->d_un.d_val & VMS_LF_INITIALIZE)
9220 printf (" INITIALIZE");
9221 if (entry->d_un.d_val & VMS_LF_MAIN)
9222 printf (" MAIN");
9223 if (entry->d_un.d_val & VMS_LF_EXE_INIT)
9224 printf (" EXE_INIT");
9225 if (entry->d_un.d_val & VMS_LF_TBK_IN_IMG)
9226 printf (" TBK_IN_IMG");
9227 if (entry->d_un.d_val & VMS_LF_DBG_IN_IMG)
9228 printf (" DBG_IN_IMG");
9229 if (entry->d_un.d_val & VMS_LF_TBK_IN_DSF)
9230 printf (" TBK_IN_DSF");
9231 if (entry->d_un.d_val & VMS_LF_DBG_IN_DSF)
9232 printf (" DBG_IN_DSF");
9233 if (entry->d_un.d_val & VMS_LF_SIGNATURES)
9234 printf (" SIGNATURES");
9235 if (entry->d_un.d_val & VMS_LF_REL_SEG_OFF)
9236 printf (" REL_SEG_OFF");
9237 break;
9238
9239 default:
9240 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9241 break;
9242 }
9243 putchar ('\n');
9244 }
9245
9246 static bfd_boolean
9247 get_32bit_dynamic_section (FILE * file)
9248 {
9249 Elf32_External_Dyn * edyn;
9250 Elf32_External_Dyn * ext;
9251 Elf_Internal_Dyn * entry;
9252
9253 edyn = (Elf32_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
9254 dynamic_size, _("dynamic section"));
9255 if (!edyn)
9256 return FALSE;
9257
9258 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9259 might not have the luxury of section headers. Look for the DT_NULL
9260 terminator to determine the number of entries. */
9261 for (ext = edyn, dynamic_nent = 0;
9262 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9263 ext++)
9264 {
9265 dynamic_nent++;
9266 if (BYTE_GET (ext->d_tag) == DT_NULL)
9267 break;
9268 }
9269
9270 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9271 sizeof (* entry));
9272 if (dynamic_section == NULL)
9273 {
9274 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9275 (unsigned long) dynamic_nent);
9276 free (edyn);
9277 return FALSE;
9278 }
9279
9280 for (ext = edyn, entry = dynamic_section;
9281 entry < dynamic_section + dynamic_nent;
9282 ext++, entry++)
9283 {
9284 entry->d_tag = BYTE_GET (ext->d_tag);
9285 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9286 }
9287
9288 free (edyn);
9289
9290 return TRUE;
9291 }
9292
9293 static bfd_boolean
9294 get_64bit_dynamic_section (FILE * file)
9295 {
9296 Elf64_External_Dyn * edyn;
9297 Elf64_External_Dyn * ext;
9298 Elf_Internal_Dyn * entry;
9299
9300 /* Read in the data. */
9301 edyn = (Elf64_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
9302 dynamic_size, _("dynamic section"));
9303 if (!edyn)
9304 return FALSE;
9305
9306 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9307 might not have the luxury of section headers. Look for the DT_NULL
9308 terminator to determine the number of entries. */
9309 for (ext = edyn, dynamic_nent = 0;
9310 /* PR 17533 file: 033-67080-0.004 - do not read past end of buffer. */
9311 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9312 ext++)
9313 {
9314 dynamic_nent++;
9315 if (BYTE_GET (ext->d_tag) == DT_NULL)
9316 break;
9317 }
9318
9319 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9320 sizeof (* entry));
9321 if (dynamic_section == NULL)
9322 {
9323 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9324 (unsigned long) dynamic_nent);
9325 free (edyn);
9326 return FALSE;
9327 }
9328
9329 /* Convert from external to internal formats. */
9330 for (ext = edyn, entry = dynamic_section;
9331 entry < dynamic_section + dynamic_nent;
9332 ext++, entry++)
9333 {
9334 entry->d_tag = BYTE_GET (ext->d_tag);
9335 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9336 }
9337
9338 free (edyn);
9339
9340 return TRUE;
9341 }
9342
9343 static void
9344 print_dynamic_flags (bfd_vma flags)
9345 {
9346 bfd_boolean first = TRUE;
9347
9348 while (flags)
9349 {
9350 bfd_vma flag;
9351
9352 flag = flags & - flags;
9353 flags &= ~ flag;
9354
9355 if (first)
9356 first = FALSE;
9357 else
9358 putc (' ', stdout);
9359
9360 switch (flag)
9361 {
9362 case DF_ORIGIN: fputs ("ORIGIN", stdout); break;
9363 case DF_SYMBOLIC: fputs ("SYMBOLIC", stdout); break;
9364 case DF_TEXTREL: fputs ("TEXTREL", stdout); break;
9365 case DF_BIND_NOW: fputs ("BIND_NOW", stdout); break;
9366 case DF_STATIC_TLS: fputs ("STATIC_TLS", stdout); break;
9367 default: fputs (_("unknown"), stdout); break;
9368 }
9369 }
9370 puts ("");
9371 }
9372
9373 /* Parse and display the contents of the dynamic section. */
9374
9375 static bfd_boolean
9376 process_dynamic_section (FILE * file)
9377 {
9378 Elf_Internal_Dyn * entry;
9379
9380 if (dynamic_size == 0)
9381 {
9382 if (do_dynamic)
9383 printf (_("\nThere is no dynamic section in this file.\n"));
9384
9385 return TRUE;
9386 }
9387
9388 if (is_32bit_elf)
9389 {
9390 if (! get_32bit_dynamic_section (file))
9391 return FALSE;
9392 }
9393 else
9394 {
9395 if (! get_64bit_dynamic_section (file))
9396 return FALSE;
9397 }
9398
9399 /* Find the appropriate symbol table. */
9400 if (dynamic_symbols == NULL)
9401 {
9402 for (entry = dynamic_section;
9403 entry < dynamic_section + dynamic_nent;
9404 ++entry)
9405 {
9406 Elf_Internal_Shdr section;
9407
9408 if (entry->d_tag != DT_SYMTAB)
9409 continue;
9410
9411 dynamic_info[DT_SYMTAB] = entry->d_un.d_val;
9412
9413 /* Since we do not know how big the symbol table is,
9414 we default to reading in the entire file (!) and
9415 processing that. This is overkill, I know, but it
9416 should work. */
9417 section.sh_offset = offset_from_vma (file, entry->d_un.d_val, 0);
9418
9419 if (archive_file_offset != 0)
9420 section.sh_size = archive_file_size - section.sh_offset;
9421 else
9422 {
9423 if (fseek (file, 0, SEEK_END))
9424 error (_("Unable to seek to end of file!\n"));
9425
9426 section.sh_size = ftell (file) - section.sh_offset;
9427 }
9428
9429 if (is_32bit_elf)
9430 section.sh_entsize = sizeof (Elf32_External_Sym);
9431 else
9432 section.sh_entsize = sizeof (Elf64_External_Sym);
9433 section.sh_name = string_table_length;
9434
9435 dynamic_symbols = GET_ELF_SYMBOLS (file, &section, & num_dynamic_syms);
9436 if (num_dynamic_syms < 1)
9437 {
9438 error (_("Unable to determine the number of symbols to load\n"));
9439 continue;
9440 }
9441 }
9442 }
9443
9444 /* Similarly find a string table. */
9445 if (dynamic_strings == NULL)
9446 {
9447 for (entry = dynamic_section;
9448 entry < dynamic_section + dynamic_nent;
9449 ++entry)
9450 {
9451 unsigned long offset;
9452 long str_tab_len;
9453
9454 if (entry->d_tag != DT_STRTAB)
9455 continue;
9456
9457 dynamic_info[DT_STRTAB] = entry->d_un.d_val;
9458
9459 /* Since we do not know how big the string table is,
9460 we default to reading in the entire file (!) and
9461 processing that. This is overkill, I know, but it
9462 should work. */
9463
9464 offset = offset_from_vma (file, entry->d_un.d_val, 0);
9465
9466 if (archive_file_offset != 0)
9467 str_tab_len = archive_file_size - offset;
9468 else
9469 {
9470 if (fseek (file, 0, SEEK_END))
9471 error (_("Unable to seek to end of file\n"));
9472 str_tab_len = ftell (file) - offset;
9473 }
9474
9475 if (str_tab_len < 1)
9476 {
9477 error
9478 (_("Unable to determine the length of the dynamic string table\n"));
9479 continue;
9480 }
9481
9482 dynamic_strings = (char *) get_data (NULL, file, offset, 1,
9483 str_tab_len,
9484 _("dynamic string table"));
9485 dynamic_strings_length = dynamic_strings == NULL ? 0 : str_tab_len;
9486 break;
9487 }
9488 }
9489
9490 /* And find the syminfo section if available. */
9491 if (dynamic_syminfo == NULL)
9492 {
9493 unsigned long syminsz = 0;
9494
9495 for (entry = dynamic_section;
9496 entry < dynamic_section + dynamic_nent;
9497 ++entry)
9498 {
9499 if (entry->d_tag == DT_SYMINENT)
9500 {
9501 /* Note: these braces are necessary to avoid a syntax
9502 error from the SunOS4 C compiler. */
9503 /* PR binutils/17531: A corrupt file can trigger this test.
9504 So do not use an assert, instead generate an error message. */
9505 if (sizeof (Elf_External_Syminfo) != entry->d_un.d_val)
9506 error (_("Bad value (%d) for SYMINENT entry\n"),
9507 (int) entry->d_un.d_val);
9508 }
9509 else if (entry->d_tag == DT_SYMINSZ)
9510 syminsz = entry->d_un.d_val;
9511 else if (entry->d_tag == DT_SYMINFO)
9512 dynamic_syminfo_offset = offset_from_vma (file, entry->d_un.d_val,
9513 syminsz);
9514 }
9515
9516 if (dynamic_syminfo_offset != 0 && syminsz != 0)
9517 {
9518 Elf_External_Syminfo * extsyminfo;
9519 Elf_External_Syminfo * extsym;
9520 Elf_Internal_Syminfo * syminfo;
9521
9522 /* There is a syminfo section. Read the data. */
9523 extsyminfo = (Elf_External_Syminfo *)
9524 get_data (NULL, file, dynamic_syminfo_offset, 1, syminsz,
9525 _("symbol information"));
9526 if (!extsyminfo)
9527 return FALSE;
9528
9529 dynamic_syminfo = (Elf_Internal_Syminfo *) malloc (syminsz);
9530 if (dynamic_syminfo == NULL)
9531 {
9532 error (_("Out of memory allocating %lu byte for dynamic symbol info\n"),
9533 (unsigned long) syminsz);
9534 return FALSE;
9535 }
9536
9537 dynamic_syminfo_nent = syminsz / sizeof (Elf_External_Syminfo);
9538 for (syminfo = dynamic_syminfo, extsym = extsyminfo;
9539 syminfo < dynamic_syminfo + dynamic_syminfo_nent;
9540 ++syminfo, ++extsym)
9541 {
9542 syminfo->si_boundto = BYTE_GET (extsym->si_boundto);
9543 syminfo->si_flags = BYTE_GET (extsym->si_flags);
9544 }
9545
9546 free (extsyminfo);
9547 }
9548 }
9549
9550 if (do_dynamic && dynamic_addr)
9551 printf (_("\nDynamic section at offset 0x%lx contains %lu entries:\n"),
9552 dynamic_addr, (unsigned long) dynamic_nent);
9553 if (do_dynamic)
9554 printf (_(" Tag Type Name/Value\n"));
9555
9556 for (entry = dynamic_section;
9557 entry < dynamic_section + dynamic_nent;
9558 entry++)
9559 {
9560 if (do_dynamic)
9561 {
9562 const char * dtype;
9563
9564 putchar (' ');
9565 print_vma (entry->d_tag, FULL_HEX);
9566 dtype = get_dynamic_type (entry->d_tag);
9567 printf (" (%s)%*s", dtype,
9568 ((is_32bit_elf ? 27 : 19) - (int) strlen (dtype)), " ");
9569 }
9570
9571 switch (entry->d_tag)
9572 {
9573 case DT_FLAGS:
9574 if (do_dynamic)
9575 print_dynamic_flags (entry->d_un.d_val);
9576 break;
9577
9578 case DT_AUXILIARY:
9579 case DT_FILTER:
9580 case DT_CONFIG:
9581 case DT_DEPAUDIT:
9582 case DT_AUDIT:
9583 if (do_dynamic)
9584 {
9585 switch (entry->d_tag)
9586 {
9587 case DT_AUXILIARY:
9588 printf (_("Auxiliary library"));
9589 break;
9590
9591 case DT_FILTER:
9592 printf (_("Filter library"));
9593 break;
9594
9595 case DT_CONFIG:
9596 printf (_("Configuration file"));
9597 break;
9598
9599 case DT_DEPAUDIT:
9600 printf (_("Dependency audit library"));
9601 break;
9602
9603 case DT_AUDIT:
9604 printf (_("Audit library"));
9605 break;
9606 }
9607
9608 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9609 printf (": [%s]\n", GET_DYNAMIC_NAME (entry->d_un.d_val));
9610 else
9611 {
9612 printf (": ");
9613 print_vma (entry->d_un.d_val, PREFIX_HEX);
9614 putchar ('\n');
9615 }
9616 }
9617 break;
9618
9619 case DT_FEATURE:
9620 if (do_dynamic)
9621 {
9622 printf (_("Flags:"));
9623
9624 if (entry->d_un.d_val == 0)
9625 printf (_(" None\n"));
9626 else
9627 {
9628 unsigned long int val = entry->d_un.d_val;
9629
9630 if (val & DTF_1_PARINIT)
9631 {
9632 printf (" PARINIT");
9633 val ^= DTF_1_PARINIT;
9634 }
9635 if (val & DTF_1_CONFEXP)
9636 {
9637 printf (" CONFEXP");
9638 val ^= DTF_1_CONFEXP;
9639 }
9640 if (val != 0)
9641 printf (" %lx", val);
9642 puts ("");
9643 }
9644 }
9645 break;
9646
9647 case DT_POSFLAG_1:
9648 if (do_dynamic)
9649 {
9650 printf (_("Flags:"));
9651
9652 if (entry->d_un.d_val == 0)
9653 printf (_(" None\n"));
9654 else
9655 {
9656 unsigned long int val = entry->d_un.d_val;
9657
9658 if (val & DF_P1_LAZYLOAD)
9659 {
9660 printf (" LAZYLOAD");
9661 val ^= DF_P1_LAZYLOAD;
9662 }
9663 if (val & DF_P1_GROUPPERM)
9664 {
9665 printf (" GROUPPERM");
9666 val ^= DF_P1_GROUPPERM;
9667 }
9668 if (val != 0)
9669 printf (" %lx", val);
9670 puts ("");
9671 }
9672 }
9673 break;
9674
9675 case DT_FLAGS_1:
9676 if (do_dynamic)
9677 {
9678 printf (_("Flags:"));
9679 if (entry->d_un.d_val == 0)
9680 printf (_(" None\n"));
9681 else
9682 {
9683 unsigned long int val = entry->d_un.d_val;
9684
9685 if (val & DF_1_NOW)
9686 {
9687 printf (" NOW");
9688 val ^= DF_1_NOW;
9689 }
9690 if (val & DF_1_GLOBAL)
9691 {
9692 printf (" GLOBAL");
9693 val ^= DF_1_GLOBAL;
9694 }
9695 if (val & DF_1_GROUP)
9696 {
9697 printf (" GROUP");
9698 val ^= DF_1_GROUP;
9699 }
9700 if (val & DF_1_NODELETE)
9701 {
9702 printf (" NODELETE");
9703 val ^= DF_1_NODELETE;
9704 }
9705 if (val & DF_1_LOADFLTR)
9706 {
9707 printf (" LOADFLTR");
9708 val ^= DF_1_LOADFLTR;
9709 }
9710 if (val & DF_1_INITFIRST)
9711 {
9712 printf (" INITFIRST");
9713 val ^= DF_1_INITFIRST;
9714 }
9715 if (val & DF_1_NOOPEN)
9716 {
9717 printf (" NOOPEN");
9718 val ^= DF_1_NOOPEN;
9719 }
9720 if (val & DF_1_ORIGIN)
9721 {
9722 printf (" ORIGIN");
9723 val ^= DF_1_ORIGIN;
9724 }
9725 if (val & DF_1_DIRECT)
9726 {
9727 printf (" DIRECT");
9728 val ^= DF_1_DIRECT;
9729 }
9730 if (val & DF_1_TRANS)
9731 {
9732 printf (" TRANS");
9733 val ^= DF_1_TRANS;
9734 }
9735 if (val & DF_1_INTERPOSE)
9736 {
9737 printf (" INTERPOSE");
9738 val ^= DF_1_INTERPOSE;
9739 }
9740 if (val & DF_1_NODEFLIB)
9741 {
9742 printf (" NODEFLIB");
9743 val ^= DF_1_NODEFLIB;
9744 }
9745 if (val & DF_1_NODUMP)
9746 {
9747 printf (" NODUMP");
9748 val ^= DF_1_NODUMP;
9749 }
9750 if (val & DF_1_CONFALT)
9751 {
9752 printf (" CONFALT");
9753 val ^= DF_1_CONFALT;
9754 }
9755 if (val & DF_1_ENDFILTEE)
9756 {
9757 printf (" ENDFILTEE");
9758 val ^= DF_1_ENDFILTEE;
9759 }
9760 if (val & DF_1_DISPRELDNE)
9761 {
9762 printf (" DISPRELDNE");
9763 val ^= DF_1_DISPRELDNE;
9764 }
9765 if (val & DF_1_DISPRELPND)
9766 {
9767 printf (" DISPRELPND");
9768 val ^= DF_1_DISPRELPND;
9769 }
9770 if (val & DF_1_NODIRECT)
9771 {
9772 printf (" NODIRECT");
9773 val ^= DF_1_NODIRECT;
9774 }
9775 if (val & DF_1_IGNMULDEF)
9776 {
9777 printf (" IGNMULDEF");
9778 val ^= DF_1_IGNMULDEF;
9779 }
9780 if (val & DF_1_NOKSYMS)
9781 {
9782 printf (" NOKSYMS");
9783 val ^= DF_1_NOKSYMS;
9784 }
9785 if (val & DF_1_NOHDR)
9786 {
9787 printf (" NOHDR");
9788 val ^= DF_1_NOHDR;
9789 }
9790 if (val & DF_1_EDITED)
9791 {
9792 printf (" EDITED");
9793 val ^= DF_1_EDITED;
9794 }
9795 if (val & DF_1_NORELOC)
9796 {
9797 printf (" NORELOC");
9798 val ^= DF_1_NORELOC;
9799 }
9800 if (val & DF_1_SYMINTPOSE)
9801 {
9802 printf (" SYMINTPOSE");
9803 val ^= DF_1_SYMINTPOSE;
9804 }
9805 if (val & DF_1_GLOBAUDIT)
9806 {
9807 printf (" GLOBAUDIT");
9808 val ^= DF_1_GLOBAUDIT;
9809 }
9810 if (val & DF_1_SINGLETON)
9811 {
9812 printf (" SINGLETON");
9813 val ^= DF_1_SINGLETON;
9814 }
9815 if (val & DF_1_STUB)
9816 {
9817 printf (" STUB");
9818 val ^= DF_1_STUB;
9819 }
9820 if (val & DF_1_PIE)
9821 {
9822 printf (" PIE");
9823 val ^= DF_1_PIE;
9824 }
9825 if (val != 0)
9826 printf (" %lx", val);
9827 puts ("");
9828 }
9829 }
9830 break;
9831
9832 case DT_PLTREL:
9833 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9834 if (do_dynamic)
9835 puts (get_dynamic_type (entry->d_un.d_val));
9836 break;
9837
9838 case DT_NULL :
9839 case DT_NEEDED :
9840 case DT_PLTGOT :
9841 case DT_HASH :
9842 case DT_STRTAB :
9843 case DT_SYMTAB :
9844 case DT_RELA :
9845 case DT_INIT :
9846 case DT_FINI :
9847 case DT_SONAME :
9848 case DT_RPATH :
9849 case DT_SYMBOLIC:
9850 case DT_REL :
9851 case DT_DEBUG :
9852 case DT_TEXTREL :
9853 case DT_JMPREL :
9854 case DT_RUNPATH :
9855 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9856
9857 if (do_dynamic)
9858 {
9859 char * name;
9860
9861 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9862 name = GET_DYNAMIC_NAME (entry->d_un.d_val);
9863 else
9864 name = NULL;
9865
9866 if (name)
9867 {
9868 switch (entry->d_tag)
9869 {
9870 case DT_NEEDED:
9871 printf (_("Shared library: [%s]"), name);
9872
9873 if (streq (name, program_interpreter))
9874 printf (_(" program interpreter"));
9875 break;
9876
9877 case DT_SONAME:
9878 printf (_("Library soname: [%s]"), name);
9879 break;
9880
9881 case DT_RPATH:
9882 printf (_("Library rpath: [%s]"), name);
9883 break;
9884
9885 case DT_RUNPATH:
9886 printf (_("Library runpath: [%s]"), name);
9887 break;
9888
9889 default:
9890 print_vma (entry->d_un.d_val, PREFIX_HEX);
9891 break;
9892 }
9893 }
9894 else
9895 print_vma (entry->d_un.d_val, PREFIX_HEX);
9896
9897 putchar ('\n');
9898 }
9899 break;
9900
9901 case DT_PLTRELSZ:
9902 case DT_RELASZ :
9903 case DT_STRSZ :
9904 case DT_RELSZ :
9905 case DT_RELAENT :
9906 case DT_SYMENT :
9907 case DT_RELENT :
9908 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9909 /* Fall through. */
9910 case DT_PLTPADSZ:
9911 case DT_MOVEENT :
9912 case DT_MOVESZ :
9913 case DT_INIT_ARRAYSZ:
9914 case DT_FINI_ARRAYSZ:
9915 case DT_GNU_CONFLICTSZ:
9916 case DT_GNU_LIBLISTSZ:
9917 if (do_dynamic)
9918 {
9919 print_vma (entry->d_un.d_val, UNSIGNED);
9920 printf (_(" (bytes)\n"));
9921 }
9922 break;
9923
9924 case DT_VERDEFNUM:
9925 case DT_VERNEEDNUM:
9926 case DT_RELACOUNT:
9927 case DT_RELCOUNT:
9928 if (do_dynamic)
9929 {
9930 print_vma (entry->d_un.d_val, UNSIGNED);
9931 putchar ('\n');
9932 }
9933 break;
9934
9935 case DT_SYMINSZ:
9936 case DT_SYMINENT:
9937 case DT_SYMINFO:
9938 case DT_USED:
9939 case DT_INIT_ARRAY:
9940 case DT_FINI_ARRAY:
9941 if (do_dynamic)
9942 {
9943 if (entry->d_tag == DT_USED
9944 && VALID_DYNAMIC_NAME (entry->d_un.d_val))
9945 {
9946 char * name = GET_DYNAMIC_NAME (entry->d_un.d_val);
9947
9948 if (*name)
9949 {
9950 printf (_("Not needed object: [%s]\n"), name);
9951 break;
9952 }
9953 }
9954
9955 print_vma (entry->d_un.d_val, PREFIX_HEX);
9956 putchar ('\n');
9957 }
9958 break;
9959
9960 case DT_BIND_NOW:
9961 /* The value of this entry is ignored. */
9962 if (do_dynamic)
9963 putchar ('\n');
9964 break;
9965
9966 case DT_GNU_PRELINKED:
9967 if (do_dynamic)
9968 {
9969 struct tm * tmp;
9970 time_t atime = entry->d_un.d_val;
9971
9972 tmp = gmtime (&atime);
9973 /* PR 17533 file: 041-1244816-0.004. */
9974 if (tmp == NULL)
9975 printf (_("<corrupt time val: %lx"),
9976 (unsigned long) atime);
9977 else
9978 printf ("%04u-%02u-%02uT%02u:%02u:%02u\n",
9979 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
9980 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
9981
9982 }
9983 break;
9984
9985 case DT_GNU_HASH:
9986 dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
9987 if (do_dynamic)
9988 {
9989 print_vma (entry->d_un.d_val, PREFIX_HEX);
9990 putchar ('\n');
9991 }
9992 break;
9993
9994 default:
9995 if ((entry->d_tag >= DT_VERSYM) && (entry->d_tag <= DT_VERNEEDNUM))
9996 version_info[DT_VERSIONTAGIDX (entry->d_tag)] =
9997 entry->d_un.d_val;
9998
9999 if (do_dynamic)
10000 {
10001 switch (elf_header.e_machine)
10002 {
10003 case EM_MIPS:
10004 case EM_MIPS_RS3_LE:
10005 dynamic_section_mips_val (entry);
10006 break;
10007 case EM_PARISC:
10008 dynamic_section_parisc_val (entry);
10009 break;
10010 case EM_IA_64:
10011 dynamic_section_ia64_val (entry);
10012 break;
10013 default:
10014 print_vma (entry->d_un.d_val, PREFIX_HEX);
10015 putchar ('\n');
10016 }
10017 }
10018 break;
10019 }
10020 }
10021
10022 return TRUE;
10023 }
10024
10025 static char *
10026 get_ver_flags (unsigned int flags)
10027 {
10028 static char buff[32];
10029
10030 buff[0] = 0;
10031
10032 if (flags == 0)
10033 return _("none");
10034
10035 if (flags & VER_FLG_BASE)
10036 strcat (buff, "BASE");
10037
10038 if (flags & VER_FLG_WEAK)
10039 {
10040 if (flags & VER_FLG_BASE)
10041 strcat (buff, " | ");
10042
10043 strcat (buff, "WEAK");
10044 }
10045
10046 if (flags & VER_FLG_INFO)
10047 {
10048 if (flags & (VER_FLG_BASE|VER_FLG_WEAK))
10049 strcat (buff, " | ");
10050
10051 strcat (buff, "INFO");
10052 }
10053
10054 if (flags & ~(VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
10055 {
10056 if (flags & (VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
10057 strcat (buff, " | ");
10058
10059 strcat (buff, _("<unknown>"));
10060 }
10061
10062 return buff;
10063 }
10064
10065 /* Display the contents of the version sections. */
10066
10067 static bfd_boolean
10068 process_version_sections (FILE * file)
10069 {
10070 Elf_Internal_Shdr * section;
10071 unsigned i;
10072 bfd_boolean found = FALSE;
10073
10074 if (! do_version)
10075 return TRUE;
10076
10077 for (i = 0, section = section_headers;
10078 i < elf_header.e_shnum;
10079 i++, section++)
10080 {
10081 switch (section->sh_type)
10082 {
10083 case SHT_GNU_verdef:
10084 {
10085 Elf_External_Verdef * edefs;
10086 unsigned int idx;
10087 unsigned int cnt;
10088 unsigned int end;
10089 char * endbuf;
10090
10091 found = TRUE;
10092
10093 printf (_("\nVersion definition section '%s' contains %u entries:\n"),
10094 printable_section_name (section),
10095 section->sh_info);
10096
10097 printf (_(" Addr: 0x"));
10098 printf_vma (section->sh_addr);
10099 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10100 (unsigned long) section->sh_offset, section->sh_link,
10101 printable_section_name_from_index (section->sh_link));
10102
10103 edefs = (Elf_External_Verdef *)
10104 get_data (NULL, file, section->sh_offset, 1,section->sh_size,
10105 _("version definition section"));
10106 if (!edefs)
10107 break;
10108 endbuf = (char *) edefs + section->sh_size;
10109
10110 /* PR 17531: file: id:000001,src:000172+005151,op:splice,rep:2. */
10111 end = (section->sh_info < section->sh_size
10112 ? section->sh_info : section->sh_size);
10113 for (idx = cnt = 0; cnt < end; ++cnt)
10114 {
10115 char * vstart;
10116 Elf_External_Verdef * edef;
10117 Elf_Internal_Verdef ent;
10118 Elf_External_Verdaux * eaux;
10119 Elf_Internal_Verdaux aux;
10120 unsigned int isum;
10121 int j;
10122
10123 /* Check for very large indices. */
10124 if (idx > (size_t) (endbuf - (char *) edefs))
10125 break;
10126
10127 vstart = ((char *) edefs) + idx;
10128 if (vstart + sizeof (*edef) > endbuf)
10129 break;
10130
10131 edef = (Elf_External_Verdef *) vstart;
10132
10133 ent.vd_version = BYTE_GET (edef->vd_version);
10134 ent.vd_flags = BYTE_GET (edef->vd_flags);
10135 ent.vd_ndx = BYTE_GET (edef->vd_ndx);
10136 ent.vd_cnt = BYTE_GET (edef->vd_cnt);
10137 ent.vd_hash = BYTE_GET (edef->vd_hash);
10138 ent.vd_aux = BYTE_GET (edef->vd_aux);
10139 ent.vd_next = BYTE_GET (edef->vd_next);
10140
10141 printf (_(" %#06x: Rev: %d Flags: %s"),
10142 idx, ent.vd_version, get_ver_flags (ent.vd_flags));
10143
10144 printf (_(" Index: %d Cnt: %d "),
10145 ent.vd_ndx, ent.vd_cnt);
10146
10147 /* Check for overflow. */
10148 if (ent.vd_aux + sizeof (* eaux) > (size_t) (endbuf - vstart))
10149 break;
10150
10151 vstart += ent.vd_aux;
10152
10153 eaux = (Elf_External_Verdaux *) vstart;
10154
10155 aux.vda_name = BYTE_GET (eaux->vda_name);
10156 aux.vda_next = BYTE_GET (eaux->vda_next);
10157
10158 if (VALID_DYNAMIC_NAME (aux.vda_name))
10159 printf (_("Name: %s\n"), GET_DYNAMIC_NAME (aux.vda_name));
10160 else
10161 printf (_("Name index: %ld\n"), aux.vda_name);
10162
10163 isum = idx + ent.vd_aux;
10164
10165 for (j = 1; j < ent.vd_cnt; j++)
10166 {
10167 /* Check for overflow. */
10168 if (aux.vda_next > (size_t) (endbuf - vstart))
10169 break;
10170
10171 isum += aux.vda_next;
10172 vstart += aux.vda_next;
10173
10174 eaux = (Elf_External_Verdaux *) vstart;
10175 if (vstart + sizeof (*eaux) > endbuf)
10176 break;
10177
10178 aux.vda_name = BYTE_GET (eaux->vda_name);
10179 aux.vda_next = BYTE_GET (eaux->vda_next);
10180
10181 if (VALID_DYNAMIC_NAME (aux.vda_name))
10182 printf (_(" %#06x: Parent %d: %s\n"),
10183 isum, j, GET_DYNAMIC_NAME (aux.vda_name));
10184 else
10185 printf (_(" %#06x: Parent %d, name index: %ld\n"),
10186 isum, j, aux.vda_name);
10187 }
10188
10189 if (j < ent.vd_cnt)
10190 printf (_(" Version def aux past end of section\n"));
10191
10192 /* PR 17531:
10193 file: id:000001,src:000172+005151,op:splice,rep:2. */
10194 if (idx + ent.vd_next < idx)
10195 break;
10196
10197 idx += ent.vd_next;
10198 }
10199
10200 if (cnt < section->sh_info)
10201 printf (_(" Version definition past end of section\n"));
10202
10203 free (edefs);
10204 }
10205 break;
10206
10207 case SHT_GNU_verneed:
10208 {
10209 Elf_External_Verneed * eneed;
10210 unsigned int idx;
10211 unsigned int cnt;
10212 char * endbuf;
10213
10214 found = TRUE;
10215
10216 printf (_("\nVersion needs section '%s' contains %u entries:\n"),
10217 printable_section_name (section), section->sh_info);
10218
10219 printf (_(" Addr: 0x"));
10220 printf_vma (section->sh_addr);
10221 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10222 (unsigned long) section->sh_offset, section->sh_link,
10223 printable_section_name_from_index (section->sh_link));
10224
10225 eneed = (Elf_External_Verneed *) get_data (NULL, file,
10226 section->sh_offset, 1,
10227 section->sh_size,
10228 _("Version Needs section"));
10229 if (!eneed)
10230 break;
10231 endbuf = (char *) eneed + section->sh_size;
10232
10233 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
10234 {
10235 Elf_External_Verneed * entry;
10236 Elf_Internal_Verneed ent;
10237 unsigned int isum;
10238 int j;
10239 char * vstart;
10240
10241 if (idx > (size_t) (endbuf - (char *) eneed))
10242 break;
10243
10244 vstart = ((char *) eneed) + idx;
10245 if (vstart + sizeof (*entry) > endbuf)
10246 break;
10247
10248 entry = (Elf_External_Verneed *) vstart;
10249
10250 ent.vn_version = BYTE_GET (entry->vn_version);
10251 ent.vn_cnt = BYTE_GET (entry->vn_cnt);
10252 ent.vn_file = BYTE_GET (entry->vn_file);
10253 ent.vn_aux = BYTE_GET (entry->vn_aux);
10254 ent.vn_next = BYTE_GET (entry->vn_next);
10255
10256 printf (_(" %#06x: Version: %d"), idx, ent.vn_version);
10257
10258 if (VALID_DYNAMIC_NAME (ent.vn_file))
10259 printf (_(" File: %s"), GET_DYNAMIC_NAME (ent.vn_file));
10260 else
10261 printf (_(" File: %lx"), ent.vn_file);
10262
10263 printf (_(" Cnt: %d\n"), ent.vn_cnt);
10264
10265 /* Check for overflow. */
10266 if (ent.vn_aux > (size_t) (endbuf - vstart))
10267 break;
10268 vstart += ent.vn_aux;
10269
10270 for (j = 0, isum = idx + ent.vn_aux; j < ent.vn_cnt; ++j)
10271 {
10272 Elf_External_Vernaux * eaux;
10273 Elf_Internal_Vernaux aux;
10274
10275 if (vstart + sizeof (*eaux) > endbuf)
10276 break;
10277 eaux = (Elf_External_Vernaux *) vstart;
10278
10279 aux.vna_hash = BYTE_GET (eaux->vna_hash);
10280 aux.vna_flags = BYTE_GET (eaux->vna_flags);
10281 aux.vna_other = BYTE_GET (eaux->vna_other);
10282 aux.vna_name = BYTE_GET (eaux->vna_name);
10283 aux.vna_next = BYTE_GET (eaux->vna_next);
10284
10285 if (VALID_DYNAMIC_NAME (aux.vna_name))
10286 printf (_(" %#06x: Name: %s"),
10287 isum, GET_DYNAMIC_NAME (aux.vna_name));
10288 else
10289 printf (_(" %#06x: Name index: %lx"),
10290 isum, aux.vna_name);
10291
10292 printf (_(" Flags: %s Version: %d\n"),
10293 get_ver_flags (aux.vna_flags), aux.vna_other);
10294
10295 /* Check for overflow. */
10296 if (aux.vna_next > (size_t) (endbuf - vstart)
10297 || (aux.vna_next == 0 && j < ent.vn_cnt - 1))
10298 {
10299 warn (_("Invalid vna_next field of %lx\n"),
10300 aux.vna_next);
10301 j = ent.vn_cnt;
10302 break;
10303 }
10304 isum += aux.vna_next;
10305 vstart += aux.vna_next;
10306 }
10307
10308 if (j < ent.vn_cnt)
10309 warn (_("Missing Version Needs auxillary information\n"));
10310
10311 if (ent.vn_next == 0 && cnt < section->sh_info - 1)
10312 {
10313 warn (_("Corrupt Version Needs structure - offset to next structure is zero with entries still left to be processed\n"));
10314 cnt = section->sh_info;
10315 break;
10316 }
10317 idx += ent.vn_next;
10318 }
10319
10320 if (cnt < section->sh_info)
10321 warn (_("Missing Version Needs information\n"));
10322
10323 free (eneed);
10324 }
10325 break;
10326
10327 case SHT_GNU_versym:
10328 {
10329 Elf_Internal_Shdr * link_section;
10330 size_t total;
10331 unsigned int cnt;
10332 unsigned char * edata;
10333 unsigned short * data;
10334 char * strtab;
10335 Elf_Internal_Sym * symbols;
10336 Elf_Internal_Shdr * string_sec;
10337 unsigned long num_syms;
10338 long off;
10339
10340 if (section->sh_link >= elf_header.e_shnum)
10341 break;
10342
10343 link_section = section_headers + section->sh_link;
10344 total = section->sh_size / sizeof (Elf_External_Versym);
10345
10346 if (link_section->sh_link >= elf_header.e_shnum)
10347 break;
10348
10349 found = TRUE;
10350
10351 symbols = GET_ELF_SYMBOLS (file, link_section, & num_syms);
10352 if (symbols == NULL)
10353 break;
10354
10355 string_sec = section_headers + link_section->sh_link;
10356
10357 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
10358 string_sec->sh_size,
10359 _("version string table"));
10360 if (!strtab)
10361 {
10362 free (symbols);
10363 break;
10364 }
10365
10366 printf (_("\nVersion symbols section '%s' contains %lu entries:\n"),
10367 printable_section_name (section), (unsigned long) total);
10368
10369 printf (_(" Addr: "));
10370 printf_vma (section->sh_addr);
10371 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10372 (unsigned long) section->sh_offset, section->sh_link,
10373 printable_section_name (link_section));
10374
10375 off = offset_from_vma (file,
10376 version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
10377 total * sizeof (short));
10378 edata = (unsigned char *) get_data (NULL, file, off, total,
10379 sizeof (short),
10380 _("version symbol data"));
10381 if (!edata)
10382 {
10383 free (strtab);
10384 free (symbols);
10385 break;
10386 }
10387
10388 data = (short unsigned int *) cmalloc (total, sizeof (short));
10389
10390 for (cnt = total; cnt --;)
10391 data[cnt] = byte_get (edata + cnt * sizeof (short),
10392 sizeof (short));
10393
10394 free (edata);
10395
10396 for (cnt = 0; cnt < total; cnt += 4)
10397 {
10398 int j, nn;
10399 char *name;
10400 char *invalid = _("*invalid*");
10401
10402 printf (" %03x:", cnt);
10403
10404 for (j = 0; (j < 4) && (cnt + j) < total; ++j)
10405 switch (data[cnt + j])
10406 {
10407 case 0:
10408 fputs (_(" 0 (*local*) "), stdout);
10409 break;
10410
10411 case 1:
10412 fputs (_(" 1 (*global*) "), stdout);
10413 break;
10414
10415 default:
10416 nn = printf ("%4x%c", data[cnt + j] & VERSYM_VERSION,
10417 data[cnt + j] & VERSYM_HIDDEN ? 'h' : ' ');
10418
10419 /* If this index value is greater than the size of the symbols
10420 array, break to avoid an out-of-bounds read. */
10421 if ((unsigned long)(cnt + j) >= num_syms)
10422 {
10423 warn (_("invalid index into symbol array\n"));
10424 break;
10425 }
10426
10427 name = NULL;
10428 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
10429 {
10430 Elf_Internal_Verneed ivn;
10431 unsigned long offset;
10432
10433 offset = offset_from_vma
10434 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
10435 sizeof (Elf_External_Verneed));
10436
10437 do
10438 {
10439 Elf_Internal_Vernaux ivna;
10440 Elf_External_Verneed evn;
10441 Elf_External_Vernaux evna;
10442 unsigned long a_off;
10443
10444 if (get_data (&evn, file, offset, sizeof (evn), 1,
10445 _("version need")) == NULL)
10446 break;
10447
10448 ivn.vn_aux = BYTE_GET (evn.vn_aux);
10449 ivn.vn_next = BYTE_GET (evn.vn_next);
10450
10451 a_off = offset + ivn.vn_aux;
10452
10453 do
10454 {
10455 if (get_data (&evna, file, a_off, sizeof (evna),
10456 1, _("version need aux (2)")) == NULL)
10457 {
10458 ivna.vna_next = 0;
10459 ivna.vna_other = 0;
10460 }
10461 else
10462 {
10463 ivna.vna_next = BYTE_GET (evna.vna_next);
10464 ivna.vna_other = BYTE_GET (evna.vna_other);
10465 }
10466
10467 a_off += ivna.vna_next;
10468 }
10469 while (ivna.vna_other != data[cnt + j]
10470 && ivna.vna_next != 0);
10471
10472 if (ivna.vna_other == data[cnt + j])
10473 {
10474 ivna.vna_name = BYTE_GET (evna.vna_name);
10475
10476 if (ivna.vna_name >= string_sec->sh_size)
10477 name = invalid;
10478 else
10479 name = strtab + ivna.vna_name;
10480 break;
10481 }
10482
10483 offset += ivn.vn_next;
10484 }
10485 while (ivn.vn_next);
10486 }
10487
10488 if (data[cnt + j] != 0x8001
10489 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
10490 {
10491 Elf_Internal_Verdef ivd;
10492 Elf_External_Verdef evd;
10493 unsigned long offset;
10494
10495 offset = offset_from_vma
10496 (file, version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
10497 sizeof evd);
10498
10499 do
10500 {
10501 if (get_data (&evd, file, offset, sizeof (evd), 1,
10502 _("version def")) == NULL)
10503 {
10504 ivd.vd_next = 0;
10505 /* PR 17531: file: 046-1082287-0.004. */
10506 ivd.vd_ndx = (data[cnt + j] & VERSYM_VERSION) + 1;
10507 break;
10508 }
10509 else
10510 {
10511 ivd.vd_next = BYTE_GET (evd.vd_next);
10512 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
10513 }
10514
10515 offset += ivd.vd_next;
10516 }
10517 while (ivd.vd_ndx != (data[cnt + j] & VERSYM_VERSION)
10518 && ivd.vd_next != 0);
10519
10520 if (ivd.vd_ndx == (data[cnt + j] & VERSYM_VERSION))
10521 {
10522 Elf_External_Verdaux evda;
10523 Elf_Internal_Verdaux ivda;
10524
10525 ivd.vd_aux = BYTE_GET (evd.vd_aux);
10526
10527 if (get_data (&evda, file,
10528 offset - ivd.vd_next + ivd.vd_aux,
10529 sizeof (evda), 1,
10530 _("version def aux")) == NULL)
10531 break;
10532
10533 ivda.vda_name = BYTE_GET (evda.vda_name);
10534
10535 if (ivda.vda_name >= string_sec->sh_size)
10536 name = invalid;
10537 else if (name != NULL && name != invalid)
10538 name = _("*both*");
10539 else
10540 name = strtab + ivda.vda_name;
10541 }
10542 }
10543 if (name != NULL)
10544 nn += printf ("(%s%-*s",
10545 name,
10546 12 - (int) strlen (name),
10547 ")");
10548
10549 if (nn < 18)
10550 printf ("%*c", 18 - nn, ' ');
10551 }
10552
10553 putchar ('\n');
10554 }
10555
10556 free (data);
10557 free (strtab);
10558 free (symbols);
10559 }
10560 break;
10561
10562 default:
10563 break;
10564 }
10565 }
10566
10567 if (! found)
10568 printf (_("\nNo version information found in this file.\n"));
10569
10570 return TRUE;
10571 }
10572
10573 static const char *
10574 get_symbol_binding (unsigned int binding)
10575 {
10576 static char buff[32];
10577
10578 switch (binding)
10579 {
10580 case STB_LOCAL: return "LOCAL";
10581 case STB_GLOBAL: return "GLOBAL";
10582 case STB_WEAK: return "WEAK";
10583 default:
10584 if (binding >= STB_LOPROC && binding <= STB_HIPROC)
10585 snprintf (buff, sizeof (buff), _("<processor specific>: %d"),
10586 binding);
10587 else if (binding >= STB_LOOS && binding <= STB_HIOS)
10588 {
10589 if (binding == STB_GNU_UNIQUE
10590 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
10591 /* GNU is still using the default value 0. */
10592 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
10593 return "UNIQUE";
10594 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), binding);
10595 }
10596 else
10597 snprintf (buff, sizeof (buff), _("<unknown>: %d"), binding);
10598 return buff;
10599 }
10600 }
10601
10602 static const char *
10603 get_symbol_type (unsigned int type)
10604 {
10605 static char buff[32];
10606
10607 switch (type)
10608 {
10609 case STT_NOTYPE: return "NOTYPE";
10610 case STT_OBJECT: return "OBJECT";
10611 case STT_FUNC: return "FUNC";
10612 case STT_SECTION: return "SECTION";
10613 case STT_FILE: return "FILE";
10614 case STT_COMMON: return "COMMON";
10615 case STT_TLS: return "TLS";
10616 case STT_RELC: return "RELC";
10617 case STT_SRELC: return "SRELC";
10618 default:
10619 if (type >= STT_LOPROC && type <= STT_HIPROC)
10620 {
10621 if (elf_header.e_machine == EM_ARM && type == STT_ARM_TFUNC)
10622 return "THUMB_FUNC";
10623
10624 if (elf_header.e_machine == EM_SPARCV9 && type == STT_REGISTER)
10625 return "REGISTER";
10626
10627 if (elf_header.e_machine == EM_PARISC && type == STT_PARISC_MILLI)
10628 return "PARISC_MILLI";
10629
10630 snprintf (buff, sizeof (buff), _("<processor specific>: %d"), type);
10631 }
10632 else if (type >= STT_LOOS && type <= STT_HIOS)
10633 {
10634 if (elf_header.e_machine == EM_PARISC)
10635 {
10636 if (type == STT_HP_OPAQUE)
10637 return "HP_OPAQUE";
10638 if (type == STT_HP_STUB)
10639 return "HP_STUB";
10640 }
10641
10642 if (type == STT_GNU_IFUNC
10643 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
10644 || elf_header.e_ident[EI_OSABI] == ELFOSABI_FREEBSD
10645 /* GNU is still using the default value 0. */
10646 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
10647 return "IFUNC";
10648
10649 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), type);
10650 }
10651 else
10652 snprintf (buff, sizeof (buff), _("<unknown>: %d"), type);
10653 return buff;
10654 }
10655 }
10656
10657 static const char *
10658 get_symbol_visibility (unsigned int visibility)
10659 {
10660 switch (visibility)
10661 {
10662 case STV_DEFAULT: return "DEFAULT";
10663 case STV_INTERNAL: return "INTERNAL";
10664 case STV_HIDDEN: return "HIDDEN";
10665 case STV_PROTECTED: return "PROTECTED";
10666 default:
10667 error (_("Unrecognized visibility value: %u"), visibility);
10668 return _("<unknown>");
10669 }
10670 }
10671
10672 static const char *
10673 get_solaris_symbol_visibility (unsigned int visibility)
10674 {
10675 switch (visibility)
10676 {
10677 case 4: return "EXPORTED";
10678 case 5: return "SINGLETON";
10679 case 6: return "ELIMINATE";
10680 default: return get_symbol_visibility (visibility);
10681 }
10682 }
10683
10684 static const char *
10685 get_mips_symbol_other (unsigned int other)
10686 {
10687 switch (other)
10688 {
10689 case STO_OPTIONAL: return "OPTIONAL";
10690 case STO_MIPS_PLT: return "MIPS PLT";
10691 case STO_MIPS_PIC: return "MIPS PIC";
10692 case STO_MICROMIPS: return "MICROMIPS";
10693 case STO_MICROMIPS | STO_MIPS_PIC: return "MICROMIPS, MIPS PIC";
10694 case STO_MIPS16: return "MIPS16";
10695 default: return NULL;
10696 }
10697 }
10698
10699 static const char *
10700 get_ia64_symbol_other (unsigned int other)
10701 {
10702 if (is_ia64_vms ())
10703 {
10704 static char res[32];
10705
10706 res[0] = 0;
10707
10708 /* Function types is for images and .STB files only. */
10709 switch (elf_header.e_type)
10710 {
10711 case ET_DYN:
10712 case ET_EXEC:
10713 switch (VMS_ST_FUNC_TYPE (other))
10714 {
10715 case VMS_SFT_CODE_ADDR:
10716 strcat (res, " CA");
10717 break;
10718 case VMS_SFT_SYMV_IDX:
10719 strcat (res, " VEC");
10720 break;
10721 case VMS_SFT_FD:
10722 strcat (res, " FD");
10723 break;
10724 case VMS_SFT_RESERVE:
10725 strcat (res, " RSV");
10726 break;
10727 default:
10728 warn (_("Unrecognized IA64 VMS ST Function type: %d\n"),
10729 VMS_ST_FUNC_TYPE (other));
10730 strcat (res, " <unknown>");
10731 break;
10732 }
10733 break;
10734 default:
10735 break;
10736 }
10737 switch (VMS_ST_LINKAGE (other))
10738 {
10739 case VMS_STL_IGNORE:
10740 strcat (res, " IGN");
10741 break;
10742 case VMS_STL_RESERVE:
10743 strcat (res, " RSV");
10744 break;
10745 case VMS_STL_STD:
10746 strcat (res, " STD");
10747 break;
10748 case VMS_STL_LNK:
10749 strcat (res, " LNK");
10750 break;
10751 default:
10752 warn (_("Unrecognized IA64 VMS ST Linkage: %d\n"),
10753 VMS_ST_LINKAGE (other));
10754 strcat (res, " <unknown>");
10755 break;
10756 }
10757
10758 if (res[0] != 0)
10759 return res + 1;
10760 else
10761 return res;
10762 }
10763 return NULL;
10764 }
10765
10766 static const char *
10767 get_ppc64_symbol_other (unsigned int other)
10768 {
10769 if (PPC64_LOCAL_ENTRY_OFFSET (other) != 0)
10770 {
10771 static char buf[32];
10772 snprintf (buf, sizeof buf, _("<localentry>: %d"),
10773 PPC64_LOCAL_ENTRY_OFFSET (other));
10774 return buf;
10775 }
10776 return NULL;
10777 }
10778
10779 static const char *
10780 get_symbol_other (unsigned int other)
10781 {
10782 const char * result = NULL;
10783 static char buff [32];
10784
10785 if (other == 0)
10786 return "";
10787
10788 switch (elf_header.e_machine)
10789 {
10790 case EM_MIPS:
10791 result = get_mips_symbol_other (other);
10792 break;
10793 case EM_IA_64:
10794 result = get_ia64_symbol_other (other);
10795 break;
10796 case EM_PPC64:
10797 result = get_ppc64_symbol_other (other);
10798 break;
10799 default:
10800 result = NULL;
10801 break;
10802 }
10803
10804 if (result)
10805 return result;
10806
10807 snprintf (buff, sizeof buff, _("<other>: %x"), other);
10808 return buff;
10809 }
10810
10811 static const char *
10812 get_symbol_index_type (unsigned int type)
10813 {
10814 static char buff[32];
10815
10816 switch (type)
10817 {
10818 case SHN_UNDEF: return "UND";
10819 case SHN_ABS: return "ABS";
10820 case SHN_COMMON: return "COM";
10821 default:
10822 if (type == SHN_IA_64_ANSI_COMMON
10823 && elf_header.e_machine == EM_IA_64
10824 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX)
10825 return "ANSI_COM";
10826 else if ((elf_header.e_machine == EM_X86_64
10827 || elf_header.e_machine == EM_L1OM
10828 || elf_header.e_machine == EM_K1OM)
10829 && type == SHN_X86_64_LCOMMON)
10830 return "LARGE_COM";
10831 else if ((type == SHN_MIPS_SCOMMON
10832 && elf_header.e_machine == EM_MIPS)
10833 || (type == SHN_TIC6X_SCOMMON
10834 && elf_header.e_machine == EM_TI_C6000))
10835 return "SCOM";
10836 else if (type == SHN_MIPS_SUNDEFINED
10837 && elf_header.e_machine == EM_MIPS)
10838 return "SUND";
10839 else if (type >= SHN_LOPROC && type <= SHN_HIPROC)
10840 sprintf (buff, "PRC[0x%04x]", type & 0xffff);
10841 else if (type >= SHN_LOOS && type <= SHN_HIOS)
10842 sprintf (buff, "OS [0x%04x]", type & 0xffff);
10843 else if (type >= SHN_LORESERVE)
10844 sprintf (buff, "RSV[0x%04x]", type & 0xffff);
10845 else if (type >= elf_header.e_shnum)
10846 sprintf (buff, _("bad section index[%3d]"), type);
10847 else
10848 sprintf (buff, "%3d", type);
10849 break;
10850 }
10851
10852 return buff;
10853 }
10854
10855 static bfd_vma *
10856 get_dynamic_data (FILE * file, bfd_size_type number, unsigned int ent_size)
10857 {
10858 unsigned char * e_data;
10859 bfd_vma * i_data;
10860
10861 /* If the size_t type is smaller than the bfd_size_type, eg because
10862 you are building a 32-bit tool on a 64-bit host, then make sure
10863 that when (number) is cast to (size_t) no information is lost. */
10864 if (sizeof (size_t) < sizeof (bfd_size_type)
10865 && (bfd_size_type) ((size_t) number) != number)
10866 {
10867 error (_("Size truncation prevents reading %" BFD_VMA_FMT "u"
10868 " elements of size %u\n"),
10869 number, ent_size);
10870 return NULL;
10871 }
10872
10873 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
10874 attempting to allocate memory when the read is bound to fail. */
10875 if (ent_size * number > current_file_size)
10876 {
10877 error (_("Invalid number of dynamic entries: %" BFD_VMA_FMT "u\n"),
10878 number);
10879 return NULL;
10880 }
10881
10882 e_data = (unsigned char *) cmalloc ((size_t) number, ent_size);
10883 if (e_data == NULL)
10884 {
10885 error (_("Out of memory reading %" BFD_VMA_FMT "u dynamic entries\n"),
10886 number);
10887 return NULL;
10888 }
10889
10890 if (fread (e_data, ent_size, (size_t) number, file) != number)
10891 {
10892 error (_("Unable to read in %" BFD_VMA_FMT "u bytes of dynamic data\n"),
10893 number * ent_size);
10894 free (e_data);
10895 return NULL;
10896 }
10897
10898 i_data = (bfd_vma *) cmalloc ((size_t) number, sizeof (*i_data));
10899 if (i_data == NULL)
10900 {
10901 error (_("Out of memory allocating space for %" BFD_VMA_FMT "u"
10902 " dynamic entries\n"),
10903 number);
10904 free (e_data);
10905 return NULL;
10906 }
10907
10908 while (number--)
10909 i_data[number] = byte_get (e_data + number * ent_size, ent_size);
10910
10911 free (e_data);
10912
10913 return i_data;
10914 }
10915
10916 static void
10917 print_dynamic_symbol (bfd_vma si, unsigned long hn)
10918 {
10919 Elf_Internal_Sym * psym;
10920 int n;
10921
10922 n = print_vma (si, DEC_5);
10923 if (n < 5)
10924 fputs (&" "[n], stdout);
10925 printf (" %3lu: ", hn);
10926
10927 if (dynamic_symbols == NULL || si >= num_dynamic_syms)
10928 {
10929 printf (_("<No info available for dynamic symbol number %lu>\n"),
10930 (unsigned long) si);
10931 return;
10932 }
10933
10934 psym = dynamic_symbols + si;
10935 print_vma (psym->st_value, LONG_HEX);
10936 putchar (' ');
10937 print_vma (psym->st_size, DEC_5);
10938
10939 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
10940 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
10941
10942 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
10943 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
10944 else
10945 {
10946 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
10947
10948 printf (" %-7s", get_symbol_visibility (vis));
10949 /* Check to see if any other bits in the st_other field are set.
10950 Note - displaying this information disrupts the layout of the
10951 table being generated, but for the moment this case is very
10952 rare. */
10953 if (psym->st_other ^ vis)
10954 printf (" [%s] ", get_symbol_other (psym->st_other ^ vis));
10955 }
10956
10957 printf (" %3.3s ", get_symbol_index_type (psym->st_shndx));
10958 if (VALID_DYNAMIC_NAME (psym->st_name))
10959 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
10960 else
10961 printf (_(" <corrupt: %14ld>"), psym->st_name);
10962 putchar ('\n');
10963 }
10964
10965 static const char *
10966 get_symbol_version_string (FILE * file,
10967 bfd_boolean is_dynsym,
10968 const char * strtab,
10969 unsigned long int strtab_size,
10970 unsigned int si,
10971 Elf_Internal_Sym * psym,
10972 enum versioned_symbol_info * sym_info,
10973 unsigned short * vna_other)
10974 {
10975 unsigned char data[2];
10976 unsigned short vers_data;
10977 unsigned long offset;
10978
10979 if (!is_dynsym
10980 || version_info[DT_VERSIONTAGIDX (DT_VERSYM)] == 0)
10981 return NULL;
10982
10983 offset = offset_from_vma (file, version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
10984 sizeof data + si * sizeof (vers_data));
10985
10986 if (get_data (&data, file, offset + si * sizeof (vers_data),
10987 sizeof (data), 1, _("version data")) == NULL)
10988 return NULL;
10989
10990 vers_data = byte_get (data, 2);
10991
10992 if ((vers_data & VERSYM_HIDDEN) == 0 && vers_data <= 1)
10993 return NULL;
10994
10995 /* Usually we'd only see verdef for defined symbols, and verneed for
10996 undefined symbols. However, symbols defined by the linker in
10997 .dynbss for variables copied from a shared library in order to
10998 avoid text relocations are defined yet have verneed. We could
10999 use a heuristic to detect the special case, for example, check
11000 for verneed first on symbols defined in SHT_NOBITS sections, but
11001 it is simpler and more reliable to just look for both verdef and
11002 verneed. .dynbss might not be mapped to a SHT_NOBITS section. */
11003
11004 if (psym->st_shndx != SHN_UNDEF
11005 && vers_data != 0x8001
11006 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
11007 {
11008 Elf_Internal_Verdef ivd;
11009 Elf_Internal_Verdaux ivda;
11010 Elf_External_Verdaux evda;
11011 unsigned long off;
11012
11013 off = offset_from_vma (file,
11014 version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
11015 sizeof (Elf_External_Verdef));
11016
11017 do
11018 {
11019 Elf_External_Verdef evd;
11020
11021 if (get_data (&evd, file, off, sizeof (evd), 1,
11022 _("version def")) == NULL)
11023 {
11024 ivd.vd_ndx = 0;
11025 ivd.vd_aux = 0;
11026 ivd.vd_next = 0;
11027 }
11028 else
11029 {
11030 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
11031 ivd.vd_aux = BYTE_GET (evd.vd_aux);
11032 ivd.vd_next = BYTE_GET (evd.vd_next);
11033 }
11034
11035 off += ivd.vd_next;
11036 }
11037 while (ivd.vd_ndx != (vers_data & VERSYM_VERSION) && ivd.vd_next != 0);
11038
11039 if (ivd.vd_ndx == (vers_data & VERSYM_VERSION))
11040 {
11041 off -= ivd.vd_next;
11042 off += ivd.vd_aux;
11043
11044 if (get_data (&evda, file, off, sizeof (evda), 1,
11045 _("version def aux")) != NULL)
11046 {
11047 ivda.vda_name = BYTE_GET (evda.vda_name);
11048
11049 if (psym->st_name != ivda.vda_name)
11050 {
11051 *sym_info = ((vers_data & VERSYM_HIDDEN) != 0
11052 ? symbol_hidden : symbol_public);
11053 return (ivda.vda_name < strtab_size
11054 ? strtab + ivda.vda_name : _("<corrupt>"));
11055 }
11056 }
11057 }
11058 }
11059
11060 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
11061 {
11062 Elf_External_Verneed evn;
11063 Elf_Internal_Verneed ivn;
11064 Elf_Internal_Vernaux ivna;
11065
11066 offset = offset_from_vma (file,
11067 version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
11068 sizeof evn);
11069 do
11070 {
11071 unsigned long vna_off;
11072
11073 if (get_data (&evn, file, offset, sizeof (evn), 1,
11074 _("version need")) == NULL)
11075 {
11076 ivna.vna_next = 0;
11077 ivna.vna_other = 0;
11078 ivna.vna_name = 0;
11079 break;
11080 }
11081
11082 ivn.vn_aux = BYTE_GET (evn.vn_aux);
11083 ivn.vn_next = BYTE_GET (evn.vn_next);
11084
11085 vna_off = offset + ivn.vn_aux;
11086
11087 do
11088 {
11089 Elf_External_Vernaux evna;
11090
11091 if (get_data (&evna, file, vna_off, sizeof (evna), 1,
11092 _("version need aux (3)")) == NULL)
11093 {
11094 ivna.vna_next = 0;
11095 ivna.vna_other = 0;
11096 ivna.vna_name = 0;
11097 }
11098 else
11099 {
11100 ivna.vna_other = BYTE_GET (evna.vna_other);
11101 ivna.vna_next = BYTE_GET (evna.vna_next);
11102 ivna.vna_name = BYTE_GET (evna.vna_name);
11103 }
11104
11105 vna_off += ivna.vna_next;
11106 }
11107 while (ivna.vna_other != vers_data && ivna.vna_next != 0);
11108
11109 if (ivna.vna_other == vers_data)
11110 break;
11111
11112 offset += ivn.vn_next;
11113 }
11114 while (ivn.vn_next != 0);
11115
11116 if (ivna.vna_other == vers_data)
11117 {
11118 *sym_info = symbol_undefined;
11119 *vna_other = ivna.vna_other;
11120 return (ivna.vna_name < strtab_size
11121 ? strtab + ivna.vna_name : _("<corrupt>"));
11122 }
11123 }
11124 return NULL;
11125 }
11126
11127 /* Dump the symbol table. */
11128 static bfd_boolean
11129 process_symbol_table (FILE * file)
11130 {
11131 Elf_Internal_Shdr * section;
11132 bfd_size_type nbuckets = 0;
11133 bfd_size_type nchains = 0;
11134 bfd_vma * buckets = NULL;
11135 bfd_vma * chains = NULL;
11136 bfd_vma ngnubuckets = 0;
11137 bfd_vma * gnubuckets = NULL;
11138 bfd_vma * gnuchains = NULL;
11139 bfd_vma gnusymidx = 0;
11140 bfd_size_type ngnuchains = 0;
11141
11142 if (!do_syms && !do_dyn_syms && !do_histogram)
11143 return TRUE;
11144
11145 if (dynamic_info[DT_HASH]
11146 && (do_histogram
11147 || (do_using_dynamic
11148 && !do_dyn_syms
11149 && dynamic_strings != NULL)))
11150 {
11151 unsigned char nb[8];
11152 unsigned char nc[8];
11153 unsigned int hash_ent_size = 4;
11154
11155 if ((elf_header.e_machine == EM_ALPHA
11156 || elf_header.e_machine == EM_S390
11157 || elf_header.e_machine == EM_S390_OLD)
11158 && elf_header.e_ident[EI_CLASS] == ELFCLASS64)
11159 hash_ent_size = 8;
11160
11161 if (fseek (file,
11162 (archive_file_offset
11163 + offset_from_vma (file, dynamic_info[DT_HASH],
11164 sizeof nb + sizeof nc)),
11165 SEEK_SET))
11166 {
11167 error (_("Unable to seek to start of dynamic information\n"));
11168 goto no_hash;
11169 }
11170
11171 if (fread (nb, hash_ent_size, 1, file) != 1)
11172 {
11173 error (_("Failed to read in number of buckets\n"));
11174 goto no_hash;
11175 }
11176
11177 if (fread (nc, hash_ent_size, 1, file) != 1)
11178 {
11179 error (_("Failed to read in number of chains\n"));
11180 goto no_hash;
11181 }
11182
11183 nbuckets = byte_get (nb, hash_ent_size);
11184 nchains = byte_get (nc, hash_ent_size);
11185
11186 buckets = get_dynamic_data (file, nbuckets, hash_ent_size);
11187 chains = get_dynamic_data (file, nchains, hash_ent_size);
11188
11189 no_hash:
11190 if (buckets == NULL || chains == NULL)
11191 {
11192 if (do_using_dynamic)
11193 return FALSE;
11194 free (buckets);
11195 free (chains);
11196 buckets = NULL;
11197 chains = NULL;
11198 nbuckets = 0;
11199 nchains = 0;
11200 }
11201 }
11202
11203 if (dynamic_info_DT_GNU_HASH
11204 && (do_histogram
11205 || (do_using_dynamic
11206 && !do_dyn_syms
11207 && dynamic_strings != NULL)))
11208 {
11209 unsigned char nb[16];
11210 bfd_vma i, maxchain = 0xffffffff, bitmaskwords;
11211 bfd_vma buckets_vma;
11212
11213 if (fseek (file,
11214 (archive_file_offset
11215 + offset_from_vma (file, dynamic_info_DT_GNU_HASH,
11216 sizeof nb)),
11217 SEEK_SET))
11218 {
11219 error (_("Unable to seek to start of dynamic information\n"));
11220 goto no_gnu_hash;
11221 }
11222
11223 if (fread (nb, 16, 1, file) != 1)
11224 {
11225 error (_("Failed to read in number of buckets\n"));
11226 goto no_gnu_hash;
11227 }
11228
11229 ngnubuckets = byte_get (nb, 4);
11230 gnusymidx = byte_get (nb + 4, 4);
11231 bitmaskwords = byte_get (nb + 8, 4);
11232 buckets_vma = dynamic_info_DT_GNU_HASH + 16;
11233 if (is_32bit_elf)
11234 buckets_vma += bitmaskwords * 4;
11235 else
11236 buckets_vma += bitmaskwords * 8;
11237
11238 if (fseek (file,
11239 (archive_file_offset
11240 + offset_from_vma (file, buckets_vma, 4)),
11241 SEEK_SET))
11242 {
11243 error (_("Unable to seek to start of dynamic information\n"));
11244 goto no_gnu_hash;
11245 }
11246
11247 gnubuckets = get_dynamic_data (file, ngnubuckets, 4);
11248
11249 if (gnubuckets == NULL)
11250 goto no_gnu_hash;
11251
11252 for (i = 0; i < ngnubuckets; i++)
11253 if (gnubuckets[i] != 0)
11254 {
11255 if (gnubuckets[i] < gnusymidx)
11256 return FALSE;
11257
11258 if (maxchain == 0xffffffff || gnubuckets[i] > maxchain)
11259 maxchain = gnubuckets[i];
11260 }
11261
11262 if (maxchain == 0xffffffff)
11263 goto no_gnu_hash;
11264
11265 maxchain -= gnusymidx;
11266
11267 if (fseek (file,
11268 (archive_file_offset
11269 + offset_from_vma (file, buckets_vma
11270 + 4 * (ngnubuckets + maxchain), 4)),
11271 SEEK_SET))
11272 {
11273 error (_("Unable to seek to start of dynamic information\n"));
11274 goto no_gnu_hash;
11275 }
11276
11277 do
11278 {
11279 if (fread (nb, 4, 1, file) != 1)
11280 {
11281 error (_("Failed to determine last chain length\n"));
11282 goto no_gnu_hash;
11283 }
11284
11285 if (maxchain + 1 == 0)
11286 goto no_gnu_hash;
11287
11288 ++maxchain;
11289 }
11290 while ((byte_get (nb, 4) & 1) == 0);
11291
11292 if (fseek (file,
11293 (archive_file_offset
11294 + offset_from_vma (file, buckets_vma + 4 * ngnubuckets, 4)),
11295 SEEK_SET))
11296 {
11297 error (_("Unable to seek to start of dynamic information\n"));
11298 goto no_gnu_hash;
11299 }
11300
11301 gnuchains = get_dynamic_data (file, maxchain, 4);
11302 ngnuchains = maxchain;
11303
11304 no_gnu_hash:
11305 if (gnuchains == NULL)
11306 {
11307 free (gnubuckets);
11308 gnubuckets = NULL;
11309 ngnubuckets = 0;
11310 if (do_using_dynamic)
11311 return FALSE;
11312 }
11313 }
11314
11315 if ((dynamic_info[DT_HASH] || dynamic_info_DT_GNU_HASH)
11316 && do_syms
11317 && do_using_dynamic
11318 && dynamic_strings != NULL
11319 && dynamic_symbols != NULL)
11320 {
11321 unsigned long hn;
11322
11323 if (dynamic_info[DT_HASH])
11324 {
11325 bfd_vma si;
11326
11327 printf (_("\nSymbol table for image:\n"));
11328 if (is_32bit_elf)
11329 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11330 else
11331 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11332
11333 for (hn = 0; hn < nbuckets; hn++)
11334 {
11335 if (! buckets[hn])
11336 continue;
11337
11338 for (si = buckets[hn]; si < nchains && si > 0; si = chains[si])
11339 print_dynamic_symbol (si, hn);
11340 }
11341 }
11342
11343 if (dynamic_info_DT_GNU_HASH)
11344 {
11345 printf (_("\nSymbol table of `.gnu.hash' for image:\n"));
11346 if (is_32bit_elf)
11347 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11348 else
11349 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11350
11351 for (hn = 0; hn < ngnubuckets; ++hn)
11352 if (gnubuckets[hn] != 0)
11353 {
11354 bfd_vma si = gnubuckets[hn];
11355 bfd_vma off = si - gnusymidx;
11356
11357 do
11358 {
11359 print_dynamic_symbol (si, hn);
11360 si++;
11361 }
11362 while (off < ngnuchains && (gnuchains[off++] & 1) == 0);
11363 }
11364 }
11365 }
11366 else if ((do_dyn_syms || (do_syms && !do_using_dynamic))
11367 && section_headers != NULL)
11368 {
11369 unsigned int i;
11370
11371 for (i = 0, section = section_headers;
11372 i < elf_header.e_shnum;
11373 i++, section++)
11374 {
11375 unsigned int si;
11376 char * strtab = NULL;
11377 unsigned long int strtab_size = 0;
11378 Elf_Internal_Sym * symtab;
11379 Elf_Internal_Sym * psym;
11380 unsigned long num_syms;
11381
11382 if ((section->sh_type != SHT_SYMTAB
11383 && section->sh_type != SHT_DYNSYM)
11384 || (!do_syms
11385 && section->sh_type == SHT_SYMTAB))
11386 continue;
11387
11388 if (section->sh_entsize == 0)
11389 {
11390 printf (_("\nSymbol table '%s' has a sh_entsize of zero!\n"),
11391 printable_section_name (section));
11392 continue;
11393 }
11394
11395 printf (_("\nSymbol table '%s' contains %lu entries:\n"),
11396 printable_section_name (section),
11397 (unsigned long) (section->sh_size / section->sh_entsize));
11398
11399 if (is_32bit_elf)
11400 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
11401 else
11402 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
11403
11404 symtab = GET_ELF_SYMBOLS (file, section, & num_syms);
11405 if (symtab == NULL)
11406 continue;
11407
11408 if (section->sh_link == elf_header.e_shstrndx)
11409 {
11410 strtab = string_table;
11411 strtab_size = string_table_length;
11412 }
11413 else if (section->sh_link < elf_header.e_shnum)
11414 {
11415 Elf_Internal_Shdr * string_sec;
11416
11417 string_sec = section_headers + section->sh_link;
11418
11419 strtab = (char *) get_data (NULL, file, string_sec->sh_offset,
11420 1, string_sec->sh_size,
11421 _("string table"));
11422 strtab_size = strtab != NULL ? string_sec->sh_size : 0;
11423 }
11424
11425 for (si = 0, psym = symtab; si < num_syms; si++, psym++)
11426 {
11427 const char *version_string;
11428 enum versioned_symbol_info sym_info;
11429 unsigned short vna_other;
11430
11431 printf ("%6d: ", si);
11432 print_vma (psym->st_value, LONG_HEX);
11433 putchar (' ');
11434 print_vma (psym->st_size, DEC_5);
11435 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
11436 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
11437 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
11438 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
11439 else
11440 {
11441 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
11442
11443 printf (" %-7s", get_symbol_visibility (vis));
11444 /* Check to see if any other bits in the st_other field are set.
11445 Note - displaying this information disrupts the layout of the
11446 table being generated, but for the moment this case is very rare. */
11447 if (psym->st_other ^ vis)
11448 printf (" [%s] ", get_symbol_other (psym->st_other ^ vis));
11449 }
11450 printf (" %4s ", get_symbol_index_type (psym->st_shndx));
11451 print_symbol (25, psym->st_name < strtab_size
11452 ? strtab + psym->st_name : _("<corrupt>"));
11453
11454 version_string
11455 = get_symbol_version_string (file,
11456 section->sh_type == SHT_DYNSYM,
11457 strtab, strtab_size, si,
11458 psym, &sym_info, &vna_other);
11459 if (version_string)
11460 {
11461 if (sym_info == symbol_undefined)
11462 printf ("@%s (%d)", version_string, vna_other);
11463 else
11464 printf (sym_info == symbol_hidden ? "@%s" : "@@%s",
11465 version_string);
11466 }
11467
11468 putchar ('\n');
11469
11470 if (ELF_ST_BIND (psym->st_info) == STB_LOCAL
11471 && si >= section->sh_info
11472 /* Irix 5 and 6 MIPS binaries are known to ignore this requirement. */
11473 && elf_header.e_machine != EM_MIPS
11474 /* Solaris binaries have been found to violate this requirement as
11475 well. Not sure if this is a bug or an ABI requirement. */
11476 && elf_header.e_ident[EI_OSABI] != ELFOSABI_SOLARIS)
11477 warn (_("local symbol %u found at index >= %s's sh_info value of %u\n"),
11478 si, printable_section_name (section), section->sh_info);
11479 }
11480
11481 free (symtab);
11482 if (strtab != string_table)
11483 free (strtab);
11484 }
11485 }
11486 else if (do_syms)
11487 printf
11488 (_("\nDynamic symbol information is not available for displaying symbols.\n"));
11489
11490 if (do_histogram && buckets != NULL)
11491 {
11492 unsigned long * lengths;
11493 unsigned long * counts;
11494 unsigned long hn;
11495 bfd_vma si;
11496 unsigned long maxlength = 0;
11497 unsigned long nzero_counts = 0;
11498 unsigned long nsyms = 0;
11499 unsigned long chained;
11500
11501 printf (_("\nHistogram for bucket list length (total of %lu buckets):\n"),
11502 (unsigned long) nbuckets);
11503
11504 lengths = (unsigned long *) calloc (nbuckets, sizeof (*lengths));
11505 if (lengths == NULL)
11506 {
11507 error (_("Out of memory allocating space for histogram buckets\n"));
11508 return FALSE;
11509 }
11510
11511 printf (_(" Length Number %% of total Coverage\n"));
11512 for (hn = 0; hn < nbuckets; ++hn)
11513 {
11514 for (si = buckets[hn], chained = 0;
11515 si > 0 && si < nchains && si < nbuckets && chained <= nchains;
11516 si = chains[si], ++chained)
11517 {
11518 ++nsyms;
11519 if (maxlength < ++lengths[hn])
11520 ++maxlength;
11521 }
11522
11523 /* PR binutils/17531: A corrupt binary could contain broken
11524 histogram data. Do not go into an infinite loop trying
11525 to process it. */
11526 if (chained > nchains)
11527 {
11528 error (_("histogram chain is corrupt\n"));
11529 break;
11530 }
11531 }
11532
11533 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
11534 if (counts == NULL)
11535 {
11536 free (lengths);
11537 error (_("Out of memory allocating space for histogram counts\n"));
11538 return FALSE;
11539 }
11540
11541 for (hn = 0; hn < nbuckets; ++hn)
11542 ++counts[lengths[hn]];
11543
11544 if (nbuckets > 0)
11545 {
11546 unsigned long i;
11547 printf (" 0 %-10lu (%5.1f%%)\n",
11548 counts[0], (counts[0] * 100.0) / nbuckets);
11549 for (i = 1; i <= maxlength; ++i)
11550 {
11551 nzero_counts += counts[i] * i;
11552 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
11553 i, counts[i], (counts[i] * 100.0) / nbuckets,
11554 (nzero_counts * 100.0) / nsyms);
11555 }
11556 }
11557
11558 free (counts);
11559 free (lengths);
11560 }
11561
11562 if (buckets != NULL)
11563 {
11564 free (buckets);
11565 free (chains);
11566 }
11567
11568 if (do_histogram && gnubuckets != NULL)
11569 {
11570 unsigned long * lengths;
11571 unsigned long * counts;
11572 unsigned long hn;
11573 unsigned long maxlength = 0;
11574 unsigned long nzero_counts = 0;
11575 unsigned long nsyms = 0;
11576
11577 printf (_("\nHistogram for `.gnu.hash' bucket list length (total of %lu buckets):\n"),
11578 (unsigned long) ngnubuckets);
11579
11580 lengths = (unsigned long *) calloc (ngnubuckets, sizeof (*lengths));
11581 if (lengths == NULL)
11582 {
11583 error (_("Out of memory allocating space for gnu histogram buckets\n"));
11584 return FALSE;
11585 }
11586
11587 printf (_(" Length Number %% of total Coverage\n"));
11588
11589 for (hn = 0; hn < ngnubuckets; ++hn)
11590 if (gnubuckets[hn] != 0)
11591 {
11592 bfd_vma off, length = 1;
11593
11594 for (off = gnubuckets[hn] - gnusymidx;
11595 /* PR 17531 file: 010-77222-0.004. */
11596 off < ngnuchains && (gnuchains[off] & 1) == 0;
11597 ++off)
11598 ++length;
11599 lengths[hn] = length;
11600 if (length > maxlength)
11601 maxlength = length;
11602 nsyms += length;
11603 }
11604
11605 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
11606 if (counts == NULL)
11607 {
11608 free (lengths);
11609 error (_("Out of memory allocating space for gnu histogram counts\n"));
11610 return FALSE;
11611 }
11612
11613 for (hn = 0; hn < ngnubuckets; ++hn)
11614 ++counts[lengths[hn]];
11615
11616 if (ngnubuckets > 0)
11617 {
11618 unsigned long j;
11619 printf (" 0 %-10lu (%5.1f%%)\n",
11620 counts[0], (counts[0] * 100.0) / ngnubuckets);
11621 for (j = 1; j <= maxlength; ++j)
11622 {
11623 nzero_counts += counts[j] * j;
11624 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
11625 j, counts[j], (counts[j] * 100.0) / ngnubuckets,
11626 (nzero_counts * 100.0) / nsyms);
11627 }
11628 }
11629
11630 free (counts);
11631 free (lengths);
11632 free (gnubuckets);
11633 free (gnuchains);
11634 }
11635
11636 return TRUE;
11637 }
11638
11639 static bfd_boolean
11640 process_syminfo (FILE * file ATTRIBUTE_UNUSED)
11641 {
11642 unsigned int i;
11643
11644 if (dynamic_syminfo == NULL
11645 || !do_dynamic)
11646 /* No syminfo, this is ok. */
11647 return TRUE;
11648
11649 /* There better should be a dynamic symbol section. */
11650 if (dynamic_symbols == NULL || dynamic_strings == NULL)
11651 return FALSE;
11652
11653 if (dynamic_addr)
11654 printf (_("\nDynamic info segment at offset 0x%lx contains %d entries:\n"),
11655 dynamic_syminfo_offset, dynamic_syminfo_nent);
11656
11657 printf (_(" Num: Name BoundTo Flags\n"));
11658 for (i = 0; i < dynamic_syminfo_nent; ++i)
11659 {
11660 unsigned short int flags = dynamic_syminfo[i].si_flags;
11661
11662 printf ("%4d: ", i);
11663 if (i >= num_dynamic_syms)
11664 printf (_("<corrupt index>"));
11665 else if (VALID_DYNAMIC_NAME (dynamic_symbols[i].st_name))
11666 print_symbol (30, GET_DYNAMIC_NAME (dynamic_symbols[i].st_name));
11667 else
11668 printf (_("<corrupt: %19ld>"), dynamic_symbols[i].st_name);
11669 putchar (' ');
11670
11671 switch (dynamic_syminfo[i].si_boundto)
11672 {
11673 case SYMINFO_BT_SELF:
11674 fputs ("SELF ", stdout);
11675 break;
11676 case SYMINFO_BT_PARENT:
11677 fputs ("PARENT ", stdout);
11678 break;
11679 default:
11680 if (dynamic_syminfo[i].si_boundto > 0
11681 && dynamic_syminfo[i].si_boundto < dynamic_nent
11682 && VALID_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val))
11683 {
11684 print_symbol (10, GET_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val));
11685 putchar (' ' );
11686 }
11687 else
11688 printf ("%-10d ", dynamic_syminfo[i].si_boundto);
11689 break;
11690 }
11691
11692 if (flags & SYMINFO_FLG_DIRECT)
11693 printf (" DIRECT");
11694 if (flags & SYMINFO_FLG_PASSTHRU)
11695 printf (" PASSTHRU");
11696 if (flags & SYMINFO_FLG_COPY)
11697 printf (" COPY");
11698 if (flags & SYMINFO_FLG_LAZYLOAD)
11699 printf (" LAZYLOAD");
11700
11701 puts ("");
11702 }
11703
11704 return TRUE;
11705 }
11706
11707 #define IN_RANGE(START,END,ADDR,OFF) \
11708 (((ADDR) >= (START)) && ((ADDR) + (OFF) < (END)))
11709
11710 /* Check to see if the given reloc needs to be handled in a target specific
11711 manner. If so then process the reloc and return TRUE otherwise return
11712 FALSE.
11713
11714 If called with reloc == NULL, then this is a signal that reloc processing
11715 for the current section has finished, and any saved state should be
11716 discarded. */
11717
11718 static bfd_boolean
11719 target_specific_reloc_handling (Elf_Internal_Rela * reloc,
11720 unsigned char * start,
11721 unsigned char * end,
11722 Elf_Internal_Sym * symtab,
11723 unsigned long num_syms)
11724 {
11725 unsigned int reloc_type = 0;
11726 unsigned long sym_index = 0;
11727
11728 if (reloc)
11729 {
11730 reloc_type = get_reloc_type (reloc->r_info);
11731 sym_index = get_reloc_symindex (reloc->r_info);
11732 }
11733
11734 switch (elf_header.e_machine)
11735 {
11736 case EM_MSP430:
11737 case EM_MSP430_OLD:
11738 {
11739 static Elf_Internal_Sym * saved_sym = NULL;
11740
11741 if (reloc == NULL)
11742 {
11743 saved_sym = NULL;
11744 return TRUE;
11745 }
11746
11747 switch (reloc_type)
11748 {
11749 case 10: /* R_MSP430_SYM_DIFF */
11750 if (uses_msp430x_relocs ())
11751 break;
11752 /* Fall through. */
11753 case 21: /* R_MSP430X_SYM_DIFF */
11754 /* PR 21139. */
11755 if (sym_index >= num_syms)
11756 error (_("MSP430 SYM_DIFF reloc contains invalid symbol index %lu\n"),
11757 sym_index);
11758 else
11759 saved_sym = symtab + sym_index;
11760 return TRUE;
11761
11762 case 1: /* R_MSP430_32 or R_MSP430_ABS32 */
11763 case 3: /* R_MSP430_16 or R_MSP430_ABS8 */
11764 goto handle_sym_diff;
11765
11766 case 5: /* R_MSP430_16_BYTE */
11767 case 9: /* R_MSP430_8 */
11768 if (uses_msp430x_relocs ())
11769 break;
11770 goto handle_sym_diff;
11771
11772 case 2: /* R_MSP430_ABS16 */
11773 case 15: /* R_MSP430X_ABS16 */
11774 if (! uses_msp430x_relocs ())
11775 break;
11776 goto handle_sym_diff;
11777
11778 handle_sym_diff:
11779 if (saved_sym != NULL)
11780 {
11781 int reloc_size = reloc_type == 1 ? 4 : 2;
11782 bfd_vma value;
11783
11784 if (sym_index >= num_syms)
11785 error (_("MSP430 reloc contains invalid symbol index %lu\n"),
11786 sym_index);
11787 else
11788 {
11789 value = reloc->r_addend + (symtab[sym_index].st_value
11790 - saved_sym->st_value);
11791
11792 if (IN_RANGE (start, end, start + reloc->r_offset, reloc_size))
11793 byte_put (start + reloc->r_offset, value, reloc_size);
11794 else
11795 /* PR 21137 */
11796 error (_("MSP430 sym diff reloc contains invalid offset: 0x%lx\n"),
11797 (long) reloc->r_offset);
11798 }
11799
11800 saved_sym = NULL;
11801 return TRUE;
11802 }
11803 break;
11804
11805 default:
11806 if (saved_sym != NULL)
11807 error (_("Unhandled MSP430 reloc type found after SYM_DIFF reloc\n"));
11808 break;
11809 }
11810 break;
11811 }
11812
11813 case EM_MN10300:
11814 case EM_CYGNUS_MN10300:
11815 {
11816 static Elf_Internal_Sym * saved_sym = NULL;
11817
11818 if (reloc == NULL)
11819 {
11820 saved_sym = NULL;
11821 return TRUE;
11822 }
11823
11824 switch (reloc_type)
11825 {
11826 case 34: /* R_MN10300_ALIGN */
11827 return TRUE;
11828 case 33: /* R_MN10300_SYM_DIFF */
11829 if (sym_index >= num_syms)
11830 error (_("MN10300_SYM_DIFF reloc contains invalid symbol index %lu\n"),
11831 sym_index);
11832 else
11833 saved_sym = symtab + sym_index;
11834 return TRUE;
11835
11836 case 1: /* R_MN10300_32 */
11837 case 2: /* R_MN10300_16 */
11838 if (saved_sym != NULL)
11839 {
11840 int reloc_size = reloc_type == 1 ? 4 : 2;
11841 bfd_vma value;
11842
11843 if (sym_index >= num_syms)
11844 error (_("MN10300 reloc contains invalid symbol index %lu\n"),
11845 sym_index);
11846 else
11847 {
11848 value = reloc->r_addend + (symtab[sym_index].st_value
11849 - saved_sym->st_value);
11850
11851 if (IN_RANGE (start, end, start + reloc->r_offset, reloc_size))
11852 byte_put (start + reloc->r_offset, value, reloc_size);
11853 else
11854 error (_("MN10300 sym diff reloc contains invalid offset: 0x%lx\n"),
11855 (long) reloc->r_offset);
11856 }
11857
11858 saved_sym = NULL;
11859 return TRUE;
11860 }
11861 break;
11862 default:
11863 if (saved_sym != NULL)
11864 error (_("Unhandled MN10300 reloc type found after SYM_DIFF reloc\n"));
11865 break;
11866 }
11867 break;
11868 }
11869
11870 case EM_RL78:
11871 {
11872 static bfd_vma saved_sym1 = 0;
11873 static bfd_vma saved_sym2 = 0;
11874 static bfd_vma value;
11875
11876 if (reloc == NULL)
11877 {
11878 saved_sym1 = saved_sym2 = 0;
11879 return TRUE;
11880 }
11881
11882 switch (reloc_type)
11883 {
11884 case 0x80: /* R_RL78_SYM. */
11885 saved_sym1 = saved_sym2;
11886 if (sym_index >= num_syms)
11887 error (_("RL78_SYM reloc contains invalid symbol index %lu\n"),
11888 sym_index);
11889 else
11890 {
11891 saved_sym2 = symtab[sym_index].st_value;
11892 saved_sym2 += reloc->r_addend;
11893 }
11894 return TRUE;
11895
11896 case 0x83: /* R_RL78_OPsub. */
11897 value = saved_sym1 - saved_sym2;
11898 saved_sym2 = saved_sym1 = 0;
11899 return TRUE;
11900 break;
11901
11902 case 0x41: /* R_RL78_ABS32. */
11903 if (IN_RANGE (start, end, start + reloc->r_offset, 4))
11904 byte_put (start + reloc->r_offset, value, 4);
11905 else
11906 error (_("RL78 sym diff reloc contains invalid offset: 0x%lx\n"),
11907 (long) reloc->r_offset);
11908 value = 0;
11909 return TRUE;
11910
11911 case 0x43: /* R_RL78_ABS16. */
11912 if (IN_RANGE (start, end, start + reloc->r_offset, 2))
11913 byte_put (start + reloc->r_offset, value, 2);
11914 else
11915 error (_("RL78 sym diff reloc contains invalid offset: 0x%lx\n"),
11916 (long) reloc->r_offset);
11917 value = 0;
11918 return TRUE;
11919
11920 default:
11921 break;
11922 }
11923 break;
11924 }
11925 }
11926
11927 return FALSE;
11928 }
11929
11930 /* Returns TRUE iff RELOC_TYPE is a 32-bit absolute RELA relocation used in
11931 DWARF debug sections. This is a target specific test. Note - we do not
11932 go through the whole including-target-headers-multiple-times route, (as
11933 we have already done with <elf/h8.h>) because this would become very
11934 messy and even then this function would have to contain target specific
11935 information (the names of the relocs instead of their numeric values).
11936 FIXME: This is not the correct way to solve this problem. The proper way
11937 is to have target specific reloc sizing and typing functions created by
11938 the reloc-macros.h header, in the same way that it already creates the
11939 reloc naming functions. */
11940
11941 static bfd_boolean
11942 is_32bit_abs_reloc (unsigned int reloc_type)
11943 {
11944 /* Please keep this table alpha-sorted for ease of visual lookup. */
11945 switch (elf_header.e_machine)
11946 {
11947 case EM_386:
11948 case EM_IAMCU:
11949 return reloc_type == 1; /* R_386_32. */
11950 case EM_68K:
11951 return reloc_type == 1; /* R_68K_32. */
11952 case EM_860:
11953 return reloc_type == 1; /* R_860_32. */
11954 case EM_960:
11955 return reloc_type == 2; /* R_960_32. */
11956 case EM_AARCH64:
11957 return (reloc_type == 258
11958 || reloc_type == 1); /* R_AARCH64_ABS32 || R_AARCH64_P32_ABS32 */
11959 case EM_ADAPTEVA_EPIPHANY:
11960 return reloc_type == 3;
11961 case EM_ALPHA:
11962 return reloc_type == 1; /* R_ALPHA_REFLONG. */
11963 case EM_ARC:
11964 return reloc_type == 1; /* R_ARC_32. */
11965 case EM_ARC_COMPACT:
11966 case EM_ARC_COMPACT2:
11967 return reloc_type == 4; /* R_ARC_32. */
11968 case EM_ARM:
11969 return reloc_type == 2; /* R_ARM_ABS32 */
11970 case EM_AVR_OLD:
11971 case EM_AVR:
11972 return reloc_type == 1;
11973 case EM_BLACKFIN:
11974 return reloc_type == 0x12; /* R_byte4_data. */
11975 case EM_CRIS:
11976 return reloc_type == 3; /* R_CRIS_32. */
11977 case EM_CR16:
11978 return reloc_type == 3; /* R_CR16_NUM32. */
11979 case EM_CRX:
11980 return reloc_type == 15; /* R_CRX_NUM32. */
11981 case EM_CYGNUS_FRV:
11982 return reloc_type == 1;
11983 case EM_CYGNUS_D10V:
11984 case EM_D10V:
11985 return reloc_type == 6; /* R_D10V_32. */
11986 case EM_CYGNUS_D30V:
11987 case EM_D30V:
11988 return reloc_type == 12; /* R_D30V_32_NORMAL. */
11989 case EM_DLX:
11990 return reloc_type == 3; /* R_DLX_RELOC_32. */
11991 case EM_CYGNUS_FR30:
11992 case EM_FR30:
11993 return reloc_type == 3; /* R_FR30_32. */
11994 case EM_FT32:
11995 return reloc_type == 1; /* R_FT32_32. */
11996 case EM_H8S:
11997 case EM_H8_300:
11998 case EM_H8_300H:
11999 return reloc_type == 1; /* R_H8_DIR32. */
12000 case EM_IA_64:
12001 return reloc_type == 0x65 /* R_IA64_SECREL32LSB. */
12002 || reloc_type == 0x25; /* R_IA64_DIR32LSB. */
12003 case EM_IP2K_OLD:
12004 case EM_IP2K:
12005 return reloc_type == 2; /* R_IP2K_32. */
12006 case EM_IQ2000:
12007 return reloc_type == 2; /* R_IQ2000_32. */
12008 case EM_LATTICEMICO32:
12009 return reloc_type == 3; /* R_LM32_32. */
12010 case EM_M32C_OLD:
12011 case EM_M32C:
12012 return reloc_type == 3; /* R_M32C_32. */
12013 case EM_M32R:
12014 return reloc_type == 34; /* R_M32R_32_RELA. */
12015 case EM_68HC11:
12016 case EM_68HC12:
12017 return reloc_type == 6; /* R_M68HC11_32. */
12018 case EM_MCORE:
12019 return reloc_type == 1; /* R_MCORE_ADDR32. */
12020 case EM_CYGNUS_MEP:
12021 return reloc_type == 4; /* R_MEP_32. */
12022 case EM_METAG:
12023 return reloc_type == 2; /* R_METAG_ADDR32. */
12024 case EM_MICROBLAZE:
12025 return reloc_type == 1; /* R_MICROBLAZE_32. */
12026 case EM_MIPS:
12027 return reloc_type == 2; /* R_MIPS_32. */
12028 case EM_MMIX:
12029 return reloc_type == 4; /* R_MMIX_32. */
12030 case EM_CYGNUS_MN10200:
12031 case EM_MN10200:
12032 return reloc_type == 1; /* R_MN10200_32. */
12033 case EM_CYGNUS_MN10300:
12034 case EM_MN10300:
12035 return reloc_type == 1; /* R_MN10300_32. */
12036 case EM_MOXIE:
12037 return reloc_type == 1; /* R_MOXIE_32. */
12038 case EM_MSP430_OLD:
12039 case EM_MSP430:
12040 return reloc_type == 1; /* R_MSP430_32 or R_MSP320_ABS32. */
12041 case EM_MT:
12042 return reloc_type == 2; /* R_MT_32. */
12043 case EM_NDS32:
12044 return reloc_type == 20; /* R_NDS32_RELA. */
12045 case EM_ALTERA_NIOS2:
12046 return reloc_type == 12; /* R_NIOS2_BFD_RELOC_32. */
12047 case EM_NIOS32:
12048 return reloc_type == 1; /* R_NIOS_32. */
12049 case EM_OR1K:
12050 return reloc_type == 1; /* R_OR1K_32. */
12051 case EM_PARISC:
12052 return (reloc_type == 1 /* R_PARISC_DIR32. */
12053 || reloc_type == 41); /* R_PARISC_SECREL32. */
12054 case EM_PJ:
12055 case EM_PJ_OLD:
12056 return reloc_type == 1; /* R_PJ_DATA_DIR32. */
12057 case EM_PPC64:
12058 return reloc_type == 1; /* R_PPC64_ADDR32. */
12059 case EM_PPC:
12060 return reloc_type == 1; /* R_PPC_ADDR32. */
12061 case EM_TI_PRU:
12062 return reloc_type == 11; /* R_PRU_BFD_RELOC_32. */
12063 case EM_RISCV:
12064 return reloc_type == 1; /* R_RISCV_32. */
12065 case EM_RL78:
12066 return reloc_type == 1; /* R_RL78_DIR32. */
12067 case EM_RX:
12068 return reloc_type == 1; /* R_RX_DIR32. */
12069 case EM_S370:
12070 return reloc_type == 1; /* R_I370_ADDR31. */
12071 case EM_S390_OLD:
12072 case EM_S390:
12073 return reloc_type == 4; /* R_S390_32. */
12074 case EM_SCORE:
12075 return reloc_type == 8; /* R_SCORE_ABS32. */
12076 case EM_SH:
12077 return reloc_type == 1; /* R_SH_DIR32. */
12078 case EM_SPARC32PLUS:
12079 case EM_SPARCV9:
12080 case EM_SPARC:
12081 return reloc_type == 3 /* R_SPARC_32. */
12082 || reloc_type == 23; /* R_SPARC_UA32. */
12083 case EM_SPU:
12084 return reloc_type == 6; /* R_SPU_ADDR32 */
12085 case EM_TI_C6000:
12086 return reloc_type == 1; /* R_C6000_ABS32. */
12087 case EM_TILEGX:
12088 return reloc_type == 2; /* R_TILEGX_32. */
12089 case EM_TILEPRO:
12090 return reloc_type == 1; /* R_TILEPRO_32. */
12091 case EM_CYGNUS_V850:
12092 case EM_V850:
12093 return reloc_type == 6; /* R_V850_ABS32. */
12094 case EM_V800:
12095 return reloc_type == 0x33; /* R_V810_WORD. */
12096 case EM_VAX:
12097 return reloc_type == 1; /* R_VAX_32. */
12098 case EM_VISIUM:
12099 return reloc_type == 3; /* R_VISIUM_32. */
12100 case EM_WEBASSEMBLY:
12101 return reloc_type == 1; /* R_WASM32_32. */
12102 case EM_X86_64:
12103 case EM_L1OM:
12104 case EM_K1OM:
12105 return reloc_type == 10; /* R_X86_64_32. */
12106 case EM_XC16X:
12107 case EM_C166:
12108 return reloc_type == 3; /* R_XC16C_ABS_32. */
12109 case EM_XGATE:
12110 return reloc_type == 4; /* R_XGATE_32. */
12111 case EM_XSTORMY16:
12112 return reloc_type == 1; /* R_XSTROMY16_32. */
12113 case EM_XTENSA_OLD:
12114 case EM_XTENSA:
12115 return reloc_type == 1; /* R_XTENSA_32. */
12116 default:
12117 {
12118 static unsigned int prev_warn = 0;
12119
12120 /* Avoid repeating the same warning multiple times. */
12121 if (prev_warn != elf_header.e_machine)
12122 error (_("Missing knowledge of 32-bit reloc types used in DWARF sections of machine number %d\n"),
12123 elf_header.e_machine);
12124 prev_warn = elf_header.e_machine;
12125 return FALSE;
12126 }
12127 }
12128 }
12129
12130 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12131 a 32-bit pc-relative RELA relocation used in DWARF debug sections. */
12132
12133 static bfd_boolean
12134 is_32bit_pcrel_reloc (unsigned int reloc_type)
12135 {
12136 switch (elf_header.e_machine)
12137 /* Please keep this table alpha-sorted for ease of visual lookup. */
12138 {
12139 case EM_386:
12140 case EM_IAMCU:
12141 return reloc_type == 2; /* R_386_PC32. */
12142 case EM_68K:
12143 return reloc_type == 4; /* R_68K_PC32. */
12144 case EM_AARCH64:
12145 return reloc_type == 261; /* R_AARCH64_PREL32 */
12146 case EM_ADAPTEVA_EPIPHANY:
12147 return reloc_type == 6;
12148 case EM_ALPHA:
12149 return reloc_type == 10; /* R_ALPHA_SREL32. */
12150 case EM_ARC_COMPACT:
12151 case EM_ARC_COMPACT2:
12152 return reloc_type == 49; /* R_ARC_32_PCREL. */
12153 case EM_ARM:
12154 return reloc_type == 3; /* R_ARM_REL32 */
12155 case EM_AVR_OLD:
12156 case EM_AVR:
12157 return reloc_type == 36; /* R_AVR_32_PCREL. */
12158 case EM_MICROBLAZE:
12159 return reloc_type == 2; /* R_MICROBLAZE_32_PCREL. */
12160 case EM_OR1K:
12161 return reloc_type == 9; /* R_OR1K_32_PCREL. */
12162 case EM_PARISC:
12163 return reloc_type == 9; /* R_PARISC_PCREL32. */
12164 case EM_PPC:
12165 return reloc_type == 26; /* R_PPC_REL32. */
12166 case EM_PPC64:
12167 return reloc_type == 26; /* R_PPC64_REL32. */
12168 case EM_S390_OLD:
12169 case EM_S390:
12170 return reloc_type == 5; /* R_390_PC32. */
12171 case EM_SH:
12172 return reloc_type == 2; /* R_SH_REL32. */
12173 case EM_SPARC32PLUS:
12174 case EM_SPARCV9:
12175 case EM_SPARC:
12176 return reloc_type == 6; /* R_SPARC_DISP32. */
12177 case EM_SPU:
12178 return reloc_type == 13; /* R_SPU_REL32. */
12179 case EM_TILEGX:
12180 return reloc_type == 6; /* R_TILEGX_32_PCREL. */
12181 case EM_TILEPRO:
12182 return reloc_type == 4; /* R_TILEPRO_32_PCREL. */
12183 case EM_VISIUM:
12184 return reloc_type == 6; /* R_VISIUM_32_PCREL */
12185 case EM_X86_64:
12186 case EM_L1OM:
12187 case EM_K1OM:
12188 return reloc_type == 2; /* R_X86_64_PC32. */
12189 case EM_XTENSA_OLD:
12190 case EM_XTENSA:
12191 return reloc_type == 14; /* R_XTENSA_32_PCREL. */
12192 default:
12193 /* Do not abort or issue an error message here. Not all targets use
12194 pc-relative 32-bit relocs in their DWARF debug information and we
12195 have already tested for target coverage in is_32bit_abs_reloc. A
12196 more helpful warning message will be generated by apply_relocations
12197 anyway, so just return. */
12198 return FALSE;
12199 }
12200 }
12201
12202 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12203 a 64-bit absolute RELA relocation used in DWARF debug sections. */
12204
12205 static bfd_boolean
12206 is_64bit_abs_reloc (unsigned int reloc_type)
12207 {
12208 switch (elf_header.e_machine)
12209 {
12210 case EM_AARCH64:
12211 return reloc_type == 257; /* R_AARCH64_ABS64. */
12212 case EM_ALPHA:
12213 return reloc_type == 2; /* R_ALPHA_REFQUAD. */
12214 case EM_IA_64:
12215 return reloc_type == 0x27; /* R_IA64_DIR64LSB. */
12216 case EM_PARISC:
12217 return reloc_type == 80; /* R_PARISC_DIR64. */
12218 case EM_PPC64:
12219 return reloc_type == 38; /* R_PPC64_ADDR64. */
12220 case EM_RISCV:
12221 return reloc_type == 2; /* R_RISCV_64. */
12222 case EM_SPARC32PLUS:
12223 case EM_SPARCV9:
12224 case EM_SPARC:
12225 return reloc_type == 54; /* R_SPARC_UA64. */
12226 case EM_X86_64:
12227 case EM_L1OM:
12228 case EM_K1OM:
12229 return reloc_type == 1; /* R_X86_64_64. */
12230 case EM_S390_OLD:
12231 case EM_S390:
12232 return reloc_type == 22; /* R_S390_64. */
12233 case EM_TILEGX:
12234 return reloc_type == 1; /* R_TILEGX_64. */
12235 case EM_MIPS:
12236 return reloc_type == 18; /* R_MIPS_64. */
12237 default:
12238 return FALSE;
12239 }
12240 }
12241
12242 /* Like is_32bit_pcrel_reloc except that it returns TRUE iff RELOC_TYPE is
12243 a 64-bit pc-relative RELA relocation used in DWARF debug sections. */
12244
12245 static bfd_boolean
12246 is_64bit_pcrel_reloc (unsigned int reloc_type)
12247 {
12248 switch (elf_header.e_machine)
12249 {
12250 case EM_AARCH64:
12251 return reloc_type == 260; /* R_AARCH64_PREL64. */
12252 case EM_ALPHA:
12253 return reloc_type == 11; /* R_ALPHA_SREL64. */
12254 case EM_IA_64:
12255 return reloc_type == 0x4f; /* R_IA64_PCREL64LSB. */
12256 case EM_PARISC:
12257 return reloc_type == 72; /* R_PARISC_PCREL64. */
12258 case EM_PPC64:
12259 return reloc_type == 44; /* R_PPC64_REL64. */
12260 case EM_SPARC32PLUS:
12261 case EM_SPARCV9:
12262 case EM_SPARC:
12263 return reloc_type == 46; /* R_SPARC_DISP64. */
12264 case EM_X86_64:
12265 case EM_L1OM:
12266 case EM_K1OM:
12267 return reloc_type == 24; /* R_X86_64_PC64. */
12268 case EM_S390_OLD:
12269 case EM_S390:
12270 return reloc_type == 23; /* R_S390_PC64. */
12271 case EM_TILEGX:
12272 return reloc_type == 5; /* R_TILEGX_64_PCREL. */
12273 default:
12274 return FALSE;
12275 }
12276 }
12277
12278 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12279 a 24-bit absolute RELA relocation used in DWARF debug sections. */
12280
12281 static bfd_boolean
12282 is_24bit_abs_reloc (unsigned int reloc_type)
12283 {
12284 switch (elf_header.e_machine)
12285 {
12286 case EM_CYGNUS_MN10200:
12287 case EM_MN10200:
12288 return reloc_type == 4; /* R_MN10200_24. */
12289 case EM_FT32:
12290 return reloc_type == 5; /* R_FT32_20. */
12291 default:
12292 return FALSE;
12293 }
12294 }
12295
12296 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12297 a 16-bit absolute RELA relocation used in DWARF debug sections. */
12298
12299 static bfd_boolean
12300 is_16bit_abs_reloc (unsigned int reloc_type)
12301 {
12302 /* Please keep this table alpha-sorted for ease of visual lookup. */
12303 switch (elf_header.e_machine)
12304 {
12305 case EM_ARC:
12306 case EM_ARC_COMPACT:
12307 case EM_ARC_COMPACT2:
12308 return reloc_type == 2; /* R_ARC_16. */
12309 case EM_ADAPTEVA_EPIPHANY:
12310 return reloc_type == 5;
12311 case EM_AVR_OLD:
12312 case EM_AVR:
12313 return reloc_type == 4; /* R_AVR_16. */
12314 case EM_CYGNUS_D10V:
12315 case EM_D10V:
12316 return reloc_type == 3; /* R_D10V_16. */
12317 case EM_H8S:
12318 case EM_H8_300:
12319 case EM_H8_300H:
12320 return reloc_type == R_H8_DIR16;
12321 case EM_IP2K_OLD:
12322 case EM_IP2K:
12323 return reloc_type == 1; /* R_IP2K_16. */
12324 case EM_M32C_OLD:
12325 case EM_M32C:
12326 return reloc_type == 1; /* R_M32C_16 */
12327 case EM_CYGNUS_MN10200:
12328 case EM_MN10200:
12329 return reloc_type == 2; /* R_MN10200_16. */
12330 case EM_CYGNUS_MN10300:
12331 case EM_MN10300:
12332 return reloc_type == 2; /* R_MN10300_16. */
12333 case EM_MSP430:
12334 if (uses_msp430x_relocs ())
12335 return reloc_type == 2; /* R_MSP430_ABS16. */
12336 /* Fall through. */
12337 case EM_MSP430_OLD:
12338 return reloc_type == 5; /* R_MSP430_16_BYTE. */
12339 case EM_NDS32:
12340 return reloc_type == 19; /* R_NDS32_RELA. */
12341 case EM_ALTERA_NIOS2:
12342 return reloc_type == 13; /* R_NIOS2_BFD_RELOC_16. */
12343 case EM_NIOS32:
12344 return reloc_type == 9; /* R_NIOS_16. */
12345 case EM_OR1K:
12346 return reloc_type == 2; /* R_OR1K_16. */
12347 case EM_TI_PRU:
12348 return reloc_type == 8; /* R_PRU_BFD_RELOC_16. */
12349 case EM_TI_C6000:
12350 return reloc_type == 2; /* R_C6000_ABS16. */
12351 case EM_VISIUM:
12352 return reloc_type == 2; /* R_VISIUM_16. */
12353 case EM_XC16X:
12354 case EM_C166:
12355 return reloc_type == 2; /* R_XC16C_ABS_16. */
12356 case EM_XGATE:
12357 return reloc_type == 3; /* R_XGATE_16. */
12358 default:
12359 return FALSE;
12360 }
12361 }
12362
12363 /* Returns TRUE iff RELOC_TYPE is a NONE relocation used for discarded
12364 relocation entries (possibly formerly used for SHT_GROUP sections). */
12365
12366 static bfd_boolean
12367 is_none_reloc (unsigned int reloc_type)
12368 {
12369 switch (elf_header.e_machine)
12370 {
12371 case EM_386: /* R_386_NONE. */
12372 case EM_68K: /* R_68K_NONE. */
12373 case EM_ADAPTEVA_EPIPHANY:
12374 case EM_ALPHA: /* R_ALPHA_NONE. */
12375 case EM_ALTERA_NIOS2: /* R_NIOS2_NONE. */
12376 case EM_ARC: /* R_ARC_NONE. */
12377 case EM_ARC_COMPACT2: /* R_ARC_NONE. */
12378 case EM_ARC_COMPACT: /* R_ARC_NONE. */
12379 case EM_ARM: /* R_ARM_NONE. */
12380 case EM_C166: /* R_XC16X_NONE. */
12381 case EM_CRIS: /* R_CRIS_NONE. */
12382 case EM_FT32: /* R_FT32_NONE. */
12383 case EM_IA_64: /* R_IA64_NONE. */
12384 case EM_K1OM: /* R_X86_64_NONE. */
12385 case EM_L1OM: /* R_X86_64_NONE. */
12386 case EM_M32R: /* R_M32R_NONE. */
12387 case EM_MIPS: /* R_MIPS_NONE. */
12388 case EM_MN10300: /* R_MN10300_NONE. */
12389 case EM_MOXIE: /* R_MOXIE_NONE. */
12390 case EM_NIOS32: /* R_NIOS_NONE. */
12391 case EM_OR1K: /* R_OR1K_NONE. */
12392 case EM_PARISC: /* R_PARISC_NONE. */
12393 case EM_PPC64: /* R_PPC64_NONE. */
12394 case EM_PPC: /* R_PPC_NONE. */
12395 case EM_RISCV: /* R_RISCV_NONE. */
12396 case EM_S390: /* R_390_NONE. */
12397 case EM_S390_OLD:
12398 case EM_SH: /* R_SH_NONE. */
12399 case EM_SPARC32PLUS:
12400 case EM_SPARC: /* R_SPARC_NONE. */
12401 case EM_SPARCV9:
12402 case EM_TILEGX: /* R_TILEGX_NONE. */
12403 case EM_TILEPRO: /* R_TILEPRO_NONE. */
12404 case EM_TI_C6000:/* R_C6000_NONE. */
12405 case EM_X86_64: /* R_X86_64_NONE. */
12406 case EM_XC16X:
12407 case EM_WEBASSEMBLY: /* R_WASM32_NONE. */
12408 return reloc_type == 0;
12409
12410 case EM_AARCH64:
12411 return reloc_type == 0 || reloc_type == 256;
12412 case EM_AVR_OLD:
12413 case EM_AVR:
12414 return (reloc_type == 0 /* R_AVR_NONE. */
12415 || reloc_type == 30 /* R_AVR_DIFF8. */
12416 || reloc_type == 31 /* R_AVR_DIFF16. */
12417 || reloc_type == 32 /* R_AVR_DIFF32. */);
12418 case EM_METAG:
12419 return reloc_type == 3; /* R_METAG_NONE. */
12420 case EM_NDS32:
12421 return (reloc_type == 0 /* R_XTENSA_NONE. */
12422 || reloc_type == 204 /* R_NDS32_DIFF8. */
12423 || reloc_type == 205 /* R_NDS32_DIFF16. */
12424 || reloc_type == 206 /* R_NDS32_DIFF32. */
12425 || reloc_type == 207 /* R_NDS32_ULEB128. */);
12426 case EM_TI_PRU:
12427 return (reloc_type == 0 /* R_PRU_NONE. */
12428 || reloc_type == 65 /* R_PRU_DIFF8. */
12429 || reloc_type == 66 /* R_PRU_DIFF16. */
12430 || reloc_type == 67 /* R_PRU_DIFF32. */);
12431 case EM_XTENSA_OLD:
12432 case EM_XTENSA:
12433 return (reloc_type == 0 /* R_XTENSA_NONE. */
12434 || reloc_type == 17 /* R_XTENSA_DIFF8. */
12435 || reloc_type == 18 /* R_XTENSA_DIFF16. */
12436 || reloc_type == 19 /* R_XTENSA_DIFF32. */);
12437 }
12438 return FALSE;
12439 }
12440
12441 /* Returns TRUE if there is a relocation against
12442 section NAME at OFFSET bytes. */
12443
12444 bfd_boolean
12445 reloc_at (struct dwarf_section * dsec, dwarf_vma offset)
12446 {
12447 Elf_Internal_Rela * relocs;
12448 Elf_Internal_Rela * rp;
12449
12450 if (dsec == NULL || dsec->reloc_info == NULL)
12451 return FALSE;
12452
12453 relocs = (Elf_Internal_Rela *) dsec->reloc_info;
12454
12455 for (rp = relocs; rp < relocs + dsec->num_relocs; ++rp)
12456 if (rp->r_offset == offset)
12457 return TRUE;
12458
12459 return FALSE;
12460 }
12461
12462 /* Apply relocations to a section.
12463 Returns TRUE upon success, FALSE otherwise.
12464 If RELOCS_RETURN is non-NULL then it is set to point to the loaded relocs.
12465 It is then the caller's responsibility to free them. NUM_RELOCS_RETURN
12466 will be set to the number of relocs loaded.
12467
12468 Note: So far support has been added only for those relocations
12469 which can be found in debug sections. FIXME: Add support for
12470 more relocations ? */
12471
12472 static bfd_boolean
12473 apply_relocations (void * file,
12474 const Elf_Internal_Shdr * section,
12475 unsigned char * start,
12476 bfd_size_type size,
12477 void ** relocs_return,
12478 unsigned long * num_relocs_return)
12479 {
12480 Elf_Internal_Shdr * relsec;
12481 unsigned char * end = start + size;
12482 bfd_boolean res = TRUE;
12483
12484 if (relocs_return != NULL)
12485 {
12486 * (Elf_Internal_Rela **) relocs_return = NULL;
12487 * num_relocs_return = 0;
12488 }
12489
12490 if (elf_header.e_type != ET_REL)
12491 /* No relocs to apply. */
12492 return TRUE;
12493
12494 /* Find the reloc section associated with the section. */
12495 for (relsec = section_headers;
12496 relsec < section_headers + elf_header.e_shnum;
12497 ++relsec)
12498 {
12499 bfd_boolean is_rela;
12500 unsigned long num_relocs;
12501 Elf_Internal_Rela * relocs;
12502 Elf_Internal_Rela * rp;
12503 Elf_Internal_Shdr * symsec;
12504 Elf_Internal_Sym * symtab;
12505 unsigned long num_syms;
12506 Elf_Internal_Sym * sym;
12507
12508 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
12509 || relsec->sh_info >= elf_header.e_shnum
12510 || section_headers + relsec->sh_info != section
12511 || relsec->sh_size == 0
12512 || relsec->sh_link >= elf_header.e_shnum)
12513 continue;
12514
12515 is_rela = relsec->sh_type == SHT_RELA;
12516
12517 if (is_rela)
12518 {
12519 if (!slurp_rela_relocs ((FILE *) file, relsec->sh_offset,
12520 relsec->sh_size, & relocs, & num_relocs))
12521 return FALSE;
12522 }
12523 else
12524 {
12525 if (!slurp_rel_relocs ((FILE *) file, relsec->sh_offset,
12526 relsec->sh_size, & relocs, & num_relocs))
12527 return FALSE;
12528 }
12529
12530 /* SH uses RELA but uses in place value instead of the addend field. */
12531 if (elf_header.e_machine == EM_SH)
12532 is_rela = FALSE;
12533
12534 symsec = section_headers + relsec->sh_link;
12535 if (symsec->sh_type != SHT_SYMTAB
12536 && symsec->sh_type != SHT_DYNSYM)
12537 return FALSE;
12538 symtab = GET_ELF_SYMBOLS ((FILE *) file, symsec, & num_syms);
12539
12540 for (rp = relocs; rp < relocs + num_relocs; ++rp)
12541 {
12542 bfd_vma addend;
12543 unsigned int reloc_type;
12544 unsigned int reloc_size;
12545 unsigned char * rloc;
12546 unsigned long sym_index;
12547
12548 reloc_type = get_reloc_type (rp->r_info);
12549
12550 if (target_specific_reloc_handling (rp, start, end, symtab, num_syms))
12551 continue;
12552 else if (is_none_reloc (reloc_type))
12553 continue;
12554 else if (is_32bit_abs_reloc (reloc_type)
12555 || is_32bit_pcrel_reloc (reloc_type))
12556 reloc_size = 4;
12557 else if (is_64bit_abs_reloc (reloc_type)
12558 || is_64bit_pcrel_reloc (reloc_type))
12559 reloc_size = 8;
12560 else if (is_24bit_abs_reloc (reloc_type))
12561 reloc_size = 3;
12562 else if (is_16bit_abs_reloc (reloc_type))
12563 reloc_size = 2;
12564 else
12565 {
12566 static unsigned int prev_reloc = 0;
12567 if (reloc_type != prev_reloc)
12568 warn (_("unable to apply unsupported reloc type %d to section %s\n"),
12569 reloc_type, printable_section_name (section));
12570 prev_reloc = reloc_type;
12571 res = FALSE;
12572 continue;
12573 }
12574
12575 rloc = start + rp->r_offset;
12576 if ((rloc + reloc_size) > end || (rloc < start))
12577 {
12578 warn (_("skipping invalid relocation offset 0x%lx in section %s\n"),
12579 (unsigned long) rp->r_offset,
12580 printable_section_name (section));
12581 res = FALSE;
12582 continue;
12583 }
12584
12585 sym_index = (unsigned long) get_reloc_symindex (rp->r_info);
12586 if (sym_index >= num_syms)
12587 {
12588 warn (_("skipping invalid relocation symbol index 0x%lx in section %s\n"),
12589 sym_index, printable_section_name (section));
12590 res = FALSE;
12591 continue;
12592 }
12593 sym = symtab + sym_index;
12594
12595 /* If the reloc has a symbol associated with it,
12596 make sure that it is of an appropriate type.
12597
12598 Relocations against symbols without type can happen.
12599 Gcc -feliminate-dwarf2-dups may generate symbols
12600 without type for debug info.
12601
12602 Icc generates relocations against function symbols
12603 instead of local labels.
12604
12605 Relocations against object symbols can happen, eg when
12606 referencing a global array. For an example of this see
12607 the _clz.o binary in libgcc.a. */
12608 if (sym != symtab
12609 && ELF_ST_TYPE (sym->st_info) != STT_COMMON
12610 && ELF_ST_TYPE (sym->st_info) > STT_SECTION)
12611 {
12612 warn (_("skipping unexpected symbol type %s in %ld'th relocation in section %s\n"),
12613 get_symbol_type (ELF_ST_TYPE (sym->st_info)),
12614 (long int)(rp - relocs),
12615 printable_section_name (relsec));
12616 res = FALSE;
12617 continue;
12618 }
12619
12620 addend = 0;
12621 if (is_rela)
12622 addend += rp->r_addend;
12623 /* R_XTENSA_32, R_PJ_DATA_DIR32 and R_D30V_32_NORMAL are
12624 partial_inplace. */
12625 if (!is_rela
12626 || (elf_header.e_machine == EM_XTENSA
12627 && reloc_type == 1)
12628 || ((elf_header.e_machine == EM_PJ
12629 || elf_header.e_machine == EM_PJ_OLD)
12630 && reloc_type == 1)
12631 || ((elf_header.e_machine == EM_D30V
12632 || elf_header.e_machine == EM_CYGNUS_D30V)
12633 && reloc_type == 12))
12634 addend += byte_get (rloc, reloc_size);
12635
12636 if (is_32bit_pcrel_reloc (reloc_type)
12637 || is_64bit_pcrel_reloc (reloc_type))
12638 {
12639 /* On HPPA, all pc-relative relocations are biased by 8. */
12640 if (elf_header.e_machine == EM_PARISC)
12641 addend -= 8;
12642 byte_put (rloc, (addend + sym->st_value) - rp->r_offset,
12643 reloc_size);
12644 }
12645 else
12646 byte_put (rloc, addend + sym->st_value, reloc_size);
12647 }
12648
12649 free (symtab);
12650 /* Let the target specific reloc processing code know that
12651 we have finished with these relocs. */
12652 target_specific_reloc_handling (NULL, NULL, NULL, NULL, 0);
12653
12654 if (relocs_return)
12655 {
12656 * (Elf_Internal_Rela **) relocs_return = relocs;
12657 * num_relocs_return = num_relocs;
12658 }
12659 else
12660 free (relocs);
12661
12662 break;
12663 }
12664
12665 return res;
12666 }
12667
12668 #ifdef SUPPORT_DISASSEMBLY
12669 static bfd_boolean
12670 disassemble_section (Elf_Internal_Shdr * section, FILE * file)
12671 {
12672 printf (_("\nAssembly dump of section %s\n"), printable_section_name (section));
12673
12674 /* FIXME: XXX -- to be done --- XXX */
12675
12676 return TRUE;
12677 }
12678 #endif
12679
12680 /* Reads in the contents of SECTION from FILE, returning a pointer
12681 to a malloc'ed buffer or NULL if something went wrong. */
12682
12683 static char *
12684 get_section_contents (Elf_Internal_Shdr * section, FILE * file)
12685 {
12686 bfd_size_type num_bytes;
12687
12688 num_bytes = section->sh_size;
12689
12690 if (num_bytes == 0 || section->sh_type == SHT_NOBITS)
12691 {
12692 printf (_("\nSection '%s' has no data to dump.\n"),
12693 printable_section_name (section));
12694 return NULL;
12695 }
12696
12697 return (char *) get_data (NULL, file, section->sh_offset, 1, num_bytes,
12698 _("section contents"));
12699 }
12700
12701 /* Uncompresses a section that was compressed using zlib, in place. */
12702
12703 static bfd_boolean
12704 uncompress_section_contents (unsigned char **buffer,
12705 dwarf_size_type uncompressed_size,
12706 dwarf_size_type *size)
12707 {
12708 dwarf_size_type compressed_size = *size;
12709 unsigned char * compressed_buffer = *buffer;
12710 unsigned char * uncompressed_buffer;
12711 z_stream strm;
12712 int rc;
12713
12714 /* It is possible the section consists of several compressed
12715 buffers concatenated together, so we uncompress in a loop. */
12716 /* PR 18313: The state field in the z_stream structure is supposed
12717 to be invisible to the user (ie us), but some compilers will
12718 still complain about it being used without initialisation. So
12719 we first zero the entire z_stream structure and then set the fields
12720 that we need. */
12721 memset (& strm, 0, sizeof strm);
12722 strm.avail_in = compressed_size;
12723 strm.next_in = (Bytef *) compressed_buffer;
12724 strm.avail_out = uncompressed_size;
12725 uncompressed_buffer = (unsigned char *) xmalloc (uncompressed_size);
12726
12727 rc = inflateInit (& strm);
12728 while (strm.avail_in > 0)
12729 {
12730 if (rc != Z_OK)
12731 goto fail;
12732 strm.next_out = ((Bytef *) uncompressed_buffer
12733 + (uncompressed_size - strm.avail_out));
12734 rc = inflate (&strm, Z_FINISH);
12735 if (rc != Z_STREAM_END)
12736 goto fail;
12737 rc = inflateReset (& strm);
12738 }
12739 rc = inflateEnd (& strm);
12740 if (rc != Z_OK
12741 || strm.avail_out != 0)
12742 goto fail;
12743
12744 *buffer = uncompressed_buffer;
12745 *size = uncompressed_size;
12746 return TRUE;
12747
12748 fail:
12749 free (uncompressed_buffer);
12750 /* Indicate decompression failure. */
12751 *buffer = NULL;
12752 return FALSE;
12753 }
12754
12755 static bfd_boolean
12756 dump_section_as_strings (Elf_Internal_Shdr * section, FILE * file)
12757 {
12758 Elf_Internal_Shdr * relsec;
12759 bfd_size_type num_bytes;
12760 unsigned char * data;
12761 unsigned char * end;
12762 unsigned char * real_start;
12763 unsigned char * start;
12764 bfd_boolean some_strings_shown;
12765
12766 real_start = start = (unsigned char *) get_section_contents (section,
12767 file);
12768 if (start == NULL)
12769 return FALSE;
12770 num_bytes = section->sh_size;
12771
12772 printf (_("\nString dump of section '%s':\n"), printable_section_name (section));
12773
12774 if (decompress_dumps)
12775 {
12776 dwarf_size_type new_size = num_bytes;
12777 dwarf_size_type uncompressed_size = 0;
12778
12779 if ((section->sh_flags & SHF_COMPRESSED) != 0)
12780 {
12781 Elf_Internal_Chdr chdr;
12782 unsigned int compression_header_size
12783 = get_compression_header (& chdr, (unsigned char *) start,
12784 num_bytes);
12785
12786 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
12787 {
12788 warn (_("section '%s' has unsupported compress type: %d\n"),
12789 printable_section_name (section), chdr.ch_type);
12790 return FALSE;
12791 }
12792 else if (chdr.ch_addralign != section->sh_addralign)
12793 {
12794 warn (_("compressed section '%s' is corrupted\n"),
12795 printable_section_name (section));
12796 return FALSE;
12797 }
12798 uncompressed_size = chdr.ch_size;
12799 start += compression_header_size;
12800 new_size -= compression_header_size;
12801 }
12802 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
12803 {
12804 /* Read the zlib header. In this case, it should be "ZLIB"
12805 followed by the uncompressed section size, 8 bytes in
12806 big-endian order. */
12807 uncompressed_size = start[4]; uncompressed_size <<= 8;
12808 uncompressed_size += start[5]; uncompressed_size <<= 8;
12809 uncompressed_size += start[6]; uncompressed_size <<= 8;
12810 uncompressed_size += start[7]; uncompressed_size <<= 8;
12811 uncompressed_size += start[8]; uncompressed_size <<= 8;
12812 uncompressed_size += start[9]; uncompressed_size <<= 8;
12813 uncompressed_size += start[10]; uncompressed_size <<= 8;
12814 uncompressed_size += start[11];
12815 start += 12;
12816 new_size -= 12;
12817 }
12818
12819 if (uncompressed_size)
12820 {
12821 if (uncompress_section_contents (& start,
12822 uncompressed_size, & new_size))
12823 num_bytes = new_size;
12824 else
12825 {
12826 error (_("Unable to decompress section %s\n"),
12827 printable_section_name (section));
12828 return FALSE;
12829 }
12830 }
12831 else
12832 start = real_start;
12833 }
12834
12835 /* If the section being dumped has relocations against it the user might
12836 be expecting these relocations to have been applied. Check for this
12837 case and issue a warning message in order to avoid confusion.
12838 FIXME: Maybe we ought to have an option that dumps a section with
12839 relocs applied ? */
12840 for (relsec = section_headers;
12841 relsec < section_headers + elf_header.e_shnum;
12842 ++relsec)
12843 {
12844 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
12845 || relsec->sh_info >= elf_header.e_shnum
12846 || section_headers + relsec->sh_info != section
12847 || relsec->sh_size == 0
12848 || relsec->sh_link >= elf_header.e_shnum)
12849 continue;
12850
12851 printf (_(" Note: This section has relocations against it, but these have NOT been applied to this dump.\n"));
12852 break;
12853 }
12854
12855 data = start;
12856 end = start + num_bytes;
12857 some_strings_shown = FALSE;
12858
12859 while (data < end)
12860 {
12861 while (!ISPRINT (* data))
12862 if (++ data >= end)
12863 break;
12864
12865 if (data < end)
12866 {
12867 size_t maxlen = end - data;
12868
12869 #ifndef __MSVCRT__
12870 /* PR 11128: Use two separate invocations in order to work
12871 around bugs in the Solaris 8 implementation of printf. */
12872 printf (" [%6tx] ", data - start);
12873 #else
12874 printf (" [%6Ix] ", (size_t) (data - start));
12875 #endif
12876 if (maxlen > 0)
12877 {
12878 print_symbol ((int) maxlen, (const char *) data);
12879 putchar ('\n');
12880 data += strnlen ((const char *) data, maxlen);
12881 }
12882 else
12883 {
12884 printf (_("<corrupt>\n"));
12885 data = end;
12886 }
12887 some_strings_shown = TRUE;
12888 }
12889 }
12890
12891 if (! some_strings_shown)
12892 printf (_(" No strings found in this section."));
12893
12894 free (real_start);
12895
12896 putchar ('\n');
12897 return TRUE;
12898 }
12899
12900 static bfd_boolean
12901 dump_section_as_bytes (Elf_Internal_Shdr * section,
12902 FILE * file,
12903 bfd_boolean relocate)
12904 {
12905 Elf_Internal_Shdr * relsec;
12906 bfd_size_type bytes;
12907 bfd_size_type section_size;
12908 bfd_vma addr;
12909 unsigned char * data;
12910 unsigned char * real_start;
12911 unsigned char * start;
12912
12913 real_start = start = (unsigned char *) get_section_contents (section, file);
12914 if (start == NULL)
12915 return FALSE;
12916
12917 section_size = section->sh_size;
12918
12919 printf (_("\nHex dump of section '%s':\n"), printable_section_name (section));
12920
12921 if (decompress_dumps)
12922 {
12923 dwarf_size_type new_size = section_size;
12924 dwarf_size_type uncompressed_size = 0;
12925
12926 if ((section->sh_flags & SHF_COMPRESSED) != 0)
12927 {
12928 Elf_Internal_Chdr chdr;
12929 unsigned int compression_header_size
12930 = get_compression_header (& chdr, start, section_size);
12931
12932 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
12933 {
12934 warn (_("section '%s' has unsupported compress type: %d\n"),
12935 printable_section_name (section), chdr.ch_type);
12936 return FALSE;
12937 }
12938 else if (chdr.ch_addralign != section->sh_addralign)
12939 {
12940 warn (_("compressed section '%s' is corrupted\n"),
12941 printable_section_name (section));
12942 return FALSE;
12943 }
12944 uncompressed_size = chdr.ch_size;
12945 start += compression_header_size;
12946 new_size -= compression_header_size;
12947 }
12948 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
12949 {
12950 /* Read the zlib header. In this case, it should be "ZLIB"
12951 followed by the uncompressed section size, 8 bytes in
12952 big-endian order. */
12953 uncompressed_size = start[4]; uncompressed_size <<= 8;
12954 uncompressed_size += start[5]; uncompressed_size <<= 8;
12955 uncompressed_size += start[6]; uncompressed_size <<= 8;
12956 uncompressed_size += start[7]; uncompressed_size <<= 8;
12957 uncompressed_size += start[8]; uncompressed_size <<= 8;
12958 uncompressed_size += start[9]; uncompressed_size <<= 8;
12959 uncompressed_size += start[10]; uncompressed_size <<= 8;
12960 uncompressed_size += start[11];
12961 start += 12;
12962 new_size -= 12;
12963 }
12964
12965 if (uncompressed_size)
12966 {
12967 if (uncompress_section_contents (& start, uncompressed_size,
12968 & new_size))
12969 {
12970 section_size = new_size;
12971 }
12972 else
12973 {
12974 error (_("Unable to decompress section %s\n"),
12975 printable_section_name (section));
12976 /* FIXME: Print the section anyway ? */
12977 return FALSE;
12978 }
12979 }
12980 else
12981 start = real_start;
12982 }
12983
12984 if (relocate)
12985 {
12986 if (! apply_relocations (file, section, start, section_size, NULL, NULL))
12987 return FALSE;
12988 }
12989 else
12990 {
12991 /* If the section being dumped has relocations against it the user might
12992 be expecting these relocations to have been applied. Check for this
12993 case and issue a warning message in order to avoid confusion.
12994 FIXME: Maybe we ought to have an option that dumps a section with
12995 relocs applied ? */
12996 for (relsec = section_headers;
12997 relsec < section_headers + elf_header.e_shnum;
12998 ++relsec)
12999 {
13000 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
13001 || relsec->sh_info >= elf_header.e_shnum
13002 || section_headers + relsec->sh_info != section
13003 || relsec->sh_size == 0
13004 || relsec->sh_link >= elf_header.e_shnum)
13005 continue;
13006
13007 printf (_(" NOTE: This section has relocations against it, but these have NOT been applied to this dump.\n"));
13008 break;
13009 }
13010 }
13011
13012 addr = section->sh_addr;
13013 bytes = section_size;
13014 data = start;
13015
13016 while (bytes)
13017 {
13018 int j;
13019 int k;
13020 int lbytes;
13021
13022 lbytes = (bytes > 16 ? 16 : bytes);
13023
13024 printf (" 0x%8.8lx ", (unsigned long) addr);
13025
13026 for (j = 0; j < 16; j++)
13027 {
13028 if (j < lbytes)
13029 printf ("%2.2x", data[j]);
13030 else
13031 printf (" ");
13032
13033 if ((j & 3) == 3)
13034 printf (" ");
13035 }
13036
13037 for (j = 0; j < lbytes; j++)
13038 {
13039 k = data[j];
13040 if (k >= ' ' && k < 0x7f)
13041 printf ("%c", k);
13042 else
13043 printf (".");
13044 }
13045
13046 putchar ('\n');
13047
13048 data += lbytes;
13049 addr += lbytes;
13050 bytes -= lbytes;
13051 }
13052
13053 free (real_start);
13054
13055 putchar ('\n');
13056 return TRUE;
13057 }
13058
13059 static bfd_boolean
13060 load_specific_debug_section (enum dwarf_section_display_enum debug,
13061 const Elf_Internal_Shdr * sec, void * file)
13062 {
13063 struct dwarf_section * section = &debug_displays [debug].section;
13064 char buf [64];
13065
13066 /* If it is already loaded, do nothing. */
13067 if (section->start != NULL)
13068 return TRUE;
13069
13070 snprintf (buf, sizeof (buf), _("%s section data"), section->name);
13071 section->address = sec->sh_addr;
13072 section->user_data = NULL;
13073 section->start = (unsigned char *) get_data (NULL, (FILE *) file,
13074 sec->sh_offset, 1,
13075 sec->sh_size, buf);
13076 if (section->start == NULL)
13077 section->size = 0;
13078 else
13079 {
13080 unsigned char *start = section->start;
13081 dwarf_size_type size = sec->sh_size;
13082 dwarf_size_type uncompressed_size = 0;
13083
13084 if ((sec->sh_flags & SHF_COMPRESSED) != 0)
13085 {
13086 Elf_Internal_Chdr chdr;
13087 unsigned int compression_header_size;
13088
13089 if (size < (is_32bit_elf
13090 ? sizeof (Elf32_External_Chdr)
13091 : sizeof (Elf64_External_Chdr)))
13092 {
13093 warn (_("compressed section %s is too small to contain a compression header"),
13094 section->name);
13095 return FALSE;
13096 }
13097
13098 compression_header_size = get_compression_header (&chdr, start, size);
13099
13100 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
13101 {
13102 warn (_("section '%s' has unsupported compress type: %d\n"),
13103 section->name, chdr.ch_type);
13104 return FALSE;
13105 }
13106 else if (chdr.ch_addralign != sec->sh_addralign)
13107 {
13108 warn (_("compressed section '%s' is corrupted\n"),
13109 section->name);
13110 return FALSE;
13111 }
13112 uncompressed_size = chdr.ch_size;
13113 start += compression_header_size;
13114 size -= compression_header_size;
13115 }
13116 else if (size > 12 && streq ((char *) start, "ZLIB"))
13117 {
13118 /* Read the zlib header. In this case, it should be "ZLIB"
13119 followed by the uncompressed section size, 8 bytes in
13120 big-endian order. */
13121 uncompressed_size = start[4]; uncompressed_size <<= 8;
13122 uncompressed_size += start[5]; uncompressed_size <<= 8;
13123 uncompressed_size += start[6]; uncompressed_size <<= 8;
13124 uncompressed_size += start[7]; uncompressed_size <<= 8;
13125 uncompressed_size += start[8]; uncompressed_size <<= 8;
13126 uncompressed_size += start[9]; uncompressed_size <<= 8;
13127 uncompressed_size += start[10]; uncompressed_size <<= 8;
13128 uncompressed_size += start[11];
13129 start += 12;
13130 size -= 12;
13131 }
13132
13133 if (uncompressed_size)
13134 {
13135 if (uncompress_section_contents (&start, uncompressed_size,
13136 &size))
13137 {
13138 /* Free the compressed buffer, update the section buffer
13139 and the section size if uncompress is successful. */
13140 free (section->start);
13141 section->start = start;
13142 }
13143 else
13144 {
13145 error (_("Unable to decompress section %s\n"),
13146 printable_section_name (sec));
13147 return FALSE;
13148 }
13149 }
13150
13151 section->size = size;
13152 }
13153
13154 if (section->start == NULL)
13155 return FALSE;
13156
13157 if (debug_displays [debug].relocate)
13158 {
13159 if (! apply_relocations ((FILE *) file, sec, section->start, section->size,
13160 & section->reloc_info, & section->num_relocs))
13161 return FALSE;
13162 }
13163 else
13164 {
13165 section->reloc_info = NULL;
13166 section->num_relocs = 0;
13167 }
13168
13169 return TRUE;
13170 }
13171
13172 /* If this is not NULL, load_debug_section will only look for sections
13173 within the list of sections given here. */
13174 static unsigned int * section_subset = NULL;
13175
13176 bfd_boolean
13177 load_debug_section (enum dwarf_section_display_enum debug, void * file)
13178 {
13179 struct dwarf_section * section = &debug_displays [debug].section;
13180 Elf_Internal_Shdr * sec;
13181
13182 /* Locate the debug section. */
13183 sec = find_section_in_set (section->uncompressed_name, section_subset);
13184 if (sec != NULL)
13185 section->name = section->uncompressed_name;
13186 else
13187 {
13188 sec = find_section_in_set (section->compressed_name, section_subset);
13189 if (sec != NULL)
13190 section->name = section->compressed_name;
13191 }
13192 if (sec == NULL)
13193 return FALSE;
13194
13195 /* If we're loading from a subset of sections, and we've loaded
13196 a section matching this name before, it's likely that it's a
13197 different one. */
13198 if (section_subset != NULL)
13199 free_debug_section (debug);
13200
13201 return load_specific_debug_section (debug, sec, (FILE *) file);
13202 }
13203
13204 void
13205 free_debug_section (enum dwarf_section_display_enum debug)
13206 {
13207 struct dwarf_section * section = &debug_displays [debug].section;
13208
13209 if (section->start == NULL)
13210 return;
13211
13212 free ((char *) section->start);
13213 section->start = NULL;
13214 section->address = 0;
13215 section->size = 0;
13216 }
13217
13218 static bfd_boolean
13219 display_debug_section (int shndx, Elf_Internal_Shdr * section, FILE * file)
13220 {
13221 char * name = SECTION_NAME (section);
13222 const char * print_name = printable_section_name (section);
13223 bfd_size_type length;
13224 bfd_boolean result = TRUE;
13225 int i;
13226
13227 length = section->sh_size;
13228 if (length == 0)
13229 {
13230 printf (_("\nSection '%s' has no debugging data.\n"), print_name);
13231 return TRUE;
13232 }
13233 if (section->sh_type == SHT_NOBITS)
13234 {
13235 /* There is no point in dumping the contents of a debugging section
13236 which has the NOBITS type - the bits in the file will be random.
13237 This can happen when a file containing a .eh_frame section is
13238 stripped with the --only-keep-debug command line option. */
13239 printf (_("section '%s' has the NOBITS type - its contents are unreliable.\n"),
13240 print_name);
13241 return FALSE;
13242 }
13243
13244 if (const_strneq (name, ".gnu.linkonce.wi."))
13245 name = ".debug_info";
13246
13247 /* See if we know how to display the contents of this section. */
13248 for (i = 0; i < max; i++)
13249 if (streq (debug_displays[i].section.uncompressed_name, name)
13250 || (i == line && const_strneq (name, ".debug_line."))
13251 || streq (debug_displays[i].section.compressed_name, name))
13252 {
13253 struct dwarf_section * sec = &debug_displays [i].section;
13254 int secondary = (section != find_section (name));
13255
13256 if (secondary)
13257 free_debug_section ((enum dwarf_section_display_enum) i);
13258
13259 if (i == line && const_strneq (name, ".debug_line."))
13260 sec->name = name;
13261 else if (streq (sec->uncompressed_name, name))
13262 sec->name = sec->uncompressed_name;
13263 else
13264 sec->name = sec->compressed_name;
13265 if (load_specific_debug_section ((enum dwarf_section_display_enum) i,
13266 section, file))
13267 {
13268 /* If this debug section is part of a CU/TU set in a .dwp file,
13269 restrict load_debug_section to the sections in that set. */
13270 section_subset = find_cu_tu_set (file, shndx);
13271
13272 result &= debug_displays[i].display (sec, file);
13273
13274 section_subset = NULL;
13275
13276 if (secondary || (i != info && i != abbrev))
13277 free_debug_section ((enum dwarf_section_display_enum) i);
13278 }
13279
13280 break;
13281 }
13282
13283 if (i == max)
13284 {
13285 printf (_("Unrecognized debug section: %s\n"), print_name);
13286 result = FALSE;
13287 }
13288
13289 return result;
13290 }
13291
13292 /* Set DUMP_SECTS for all sections where dumps were requested
13293 based on section name. */
13294
13295 static void
13296 initialise_dumps_byname (void)
13297 {
13298 struct dump_list_entry * cur;
13299
13300 for (cur = dump_sects_byname; cur; cur = cur->next)
13301 {
13302 unsigned int i;
13303 bfd_boolean any = FALSE;
13304
13305 for (i = 0; i < elf_header.e_shnum; i++)
13306 if (streq (SECTION_NAME (section_headers + i), cur->name))
13307 {
13308 request_dump_bynumber (i, cur->type);
13309 any = TRUE;
13310 }
13311
13312 if (!any)
13313 warn (_("Section '%s' was not dumped because it does not exist!\n"),
13314 cur->name);
13315 }
13316 }
13317
13318 static bfd_boolean
13319 process_section_contents (FILE * file)
13320 {
13321 Elf_Internal_Shdr * section;
13322 unsigned int i;
13323 bfd_boolean res = TRUE;
13324
13325 if (! do_dump)
13326 return TRUE;
13327
13328 initialise_dumps_byname ();
13329
13330 for (i = 0, section = section_headers;
13331 i < elf_header.e_shnum && i < num_dump_sects;
13332 i++, section++)
13333 {
13334 #ifdef SUPPORT_DISASSEMBLY
13335 if (dump_sects[i] & DISASS_DUMP)
13336 disassemble_section (section, file);
13337 #endif
13338 if (dump_sects[i] & HEX_DUMP)
13339 {
13340 if (! dump_section_as_bytes (section, file, FALSE))
13341 res = FALSE;
13342 }
13343
13344 if (dump_sects[i] & RELOC_DUMP)
13345 {
13346 if (! dump_section_as_bytes (section, file, TRUE))
13347 res = FALSE;
13348 }
13349
13350 if (dump_sects[i] & STRING_DUMP)
13351 {
13352 if (! dump_section_as_strings (section, file))
13353 res = FALSE;
13354 }
13355
13356 if (dump_sects[i] & DEBUG_DUMP)
13357 {
13358 if (! display_debug_section (i, section, file))
13359 res = FALSE;
13360 }
13361 }
13362
13363 /* Check to see if the user requested a
13364 dump of a section that does not exist. */
13365 while (i < num_dump_sects)
13366 {
13367 if (dump_sects[i])
13368 {
13369 warn (_("Section %d was not dumped because it does not exist!\n"), i);
13370 res = FALSE;
13371 }
13372 i++;
13373 }
13374
13375 return res;
13376 }
13377
13378 static void
13379 process_mips_fpe_exception (int mask)
13380 {
13381 if (mask)
13382 {
13383 bfd_boolean first = TRUE;
13384
13385 if (mask & OEX_FPU_INEX)
13386 fputs ("INEX", stdout), first = FALSE;
13387 if (mask & OEX_FPU_UFLO)
13388 printf ("%sUFLO", first ? "" : "|"), first = FALSE;
13389 if (mask & OEX_FPU_OFLO)
13390 printf ("%sOFLO", first ? "" : "|"), first = FALSE;
13391 if (mask & OEX_FPU_DIV0)
13392 printf ("%sDIV0", first ? "" : "|"), first = FALSE;
13393 if (mask & OEX_FPU_INVAL)
13394 printf ("%sINVAL", first ? "" : "|");
13395 }
13396 else
13397 fputs ("0", stdout);
13398 }
13399
13400 /* Display's the value of TAG at location P. If TAG is
13401 greater than 0 it is assumed to be an unknown tag, and
13402 a message is printed to this effect. Otherwise it is
13403 assumed that a message has already been printed.
13404
13405 If the bottom bit of TAG is set it assumed to have a
13406 string value, otherwise it is assumed to have an integer
13407 value.
13408
13409 Returns an updated P pointing to the first unread byte
13410 beyond the end of TAG's value.
13411
13412 Reads at or beyond END will not be made. */
13413
13414 static unsigned char *
13415 display_tag_value (signed int tag,
13416 unsigned char * p,
13417 const unsigned char * const end)
13418 {
13419 unsigned long val;
13420
13421 if (tag > 0)
13422 printf (" Tag_unknown_%d: ", tag);
13423
13424 if (p >= end)
13425 {
13426 warn (_("<corrupt tag>\n"));
13427 }
13428 else if (tag & 1)
13429 {
13430 /* PR 17531 file: 027-19978-0.004. */
13431 size_t maxlen = (end - p) - 1;
13432
13433 putchar ('"');
13434 if (maxlen > 0)
13435 {
13436 print_symbol ((int) maxlen, (const char *) p);
13437 p += strnlen ((char *) p, maxlen) + 1;
13438 }
13439 else
13440 {
13441 printf (_("<corrupt string tag>"));
13442 p = (unsigned char *) end;
13443 }
13444 printf ("\"\n");
13445 }
13446 else
13447 {
13448 unsigned int len;
13449
13450 val = read_uleb128 (p, &len, end);
13451 p += len;
13452 printf ("%ld (0x%lx)\n", val, val);
13453 }
13454
13455 assert (p <= end);
13456 return p;
13457 }
13458
13459 /* ARM EABI attributes section. */
13460 typedef struct
13461 {
13462 unsigned int tag;
13463 const char * name;
13464 /* 0 = special, 1 = string, 2 = uleb123, > 0x80 == table lookup. */
13465 unsigned int type;
13466 const char ** table;
13467 } arm_attr_public_tag;
13468
13469 static const char * arm_attr_tag_CPU_arch[] =
13470 {"Pre-v4", "v4", "v4T", "v5T", "v5TE", "v5TEJ", "v6", "v6KZ", "v6T2",
13471 "v6K", "v7", "v6-M", "v6S-M", "v7E-M", "v8", "", "v8-M.baseline",
13472 "v8-M.mainline"};
13473 static const char * arm_attr_tag_ARM_ISA_use[] = {"No", "Yes"};
13474 static const char * arm_attr_tag_THUMB_ISA_use[] =
13475 {"No", "Thumb-1", "Thumb-2", "Yes"};
13476 static const char * arm_attr_tag_FP_arch[] =
13477 {"No", "VFPv1", "VFPv2", "VFPv3", "VFPv3-D16", "VFPv4", "VFPv4-D16",
13478 "FP for ARMv8", "FPv5/FP-D16 for ARMv8"};
13479 static const char * arm_attr_tag_WMMX_arch[] = {"No", "WMMXv1", "WMMXv2"};
13480 static const char * arm_attr_tag_Advanced_SIMD_arch[] =
13481 {"No", "NEONv1", "NEONv1 with Fused-MAC", "NEON for ARMv8",
13482 "NEON for ARMv8.1"};
13483 static const char * arm_attr_tag_PCS_config[] =
13484 {"None", "Bare platform", "Linux application", "Linux DSO", "PalmOS 2004",
13485 "PalmOS (reserved)", "SymbianOS 2004", "SymbianOS (reserved)"};
13486 static const char * arm_attr_tag_ABI_PCS_R9_use[] =
13487 {"V6", "SB", "TLS", "Unused"};
13488 static const char * arm_attr_tag_ABI_PCS_RW_data[] =
13489 {"Absolute", "PC-relative", "SB-relative", "None"};
13490 static const char * arm_attr_tag_ABI_PCS_RO_data[] =
13491 {"Absolute", "PC-relative", "None"};
13492 static const char * arm_attr_tag_ABI_PCS_GOT_use[] =
13493 {"None", "direct", "GOT-indirect"};
13494 static const char * arm_attr_tag_ABI_PCS_wchar_t[] =
13495 {"None", "??? 1", "2", "??? 3", "4"};
13496 static const char * arm_attr_tag_ABI_FP_rounding[] = {"Unused", "Needed"};
13497 static const char * arm_attr_tag_ABI_FP_denormal[] =
13498 {"Unused", "Needed", "Sign only"};
13499 static const char * arm_attr_tag_ABI_FP_exceptions[] = {"Unused", "Needed"};
13500 static const char * arm_attr_tag_ABI_FP_user_exceptions[] = {"Unused", "Needed"};
13501 static const char * arm_attr_tag_ABI_FP_number_model[] =
13502 {"Unused", "Finite", "RTABI", "IEEE 754"};
13503 static const char * arm_attr_tag_ABI_enum_size[] =
13504 {"Unused", "small", "int", "forced to int"};
13505 static const char * arm_attr_tag_ABI_HardFP_use[] =
13506 {"As Tag_FP_arch", "SP only", "Reserved", "Deprecated"};
13507 static const char * arm_attr_tag_ABI_VFP_args[] =
13508 {"AAPCS", "VFP registers", "custom", "compatible"};
13509 static const char * arm_attr_tag_ABI_WMMX_args[] =
13510 {"AAPCS", "WMMX registers", "custom"};
13511 static const char * arm_attr_tag_ABI_optimization_goals[] =
13512 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
13513 "Aggressive Size", "Prefer Debug", "Aggressive Debug"};
13514 static const char * arm_attr_tag_ABI_FP_optimization_goals[] =
13515 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
13516 "Aggressive Size", "Prefer Accuracy", "Aggressive Accuracy"};
13517 static const char * arm_attr_tag_CPU_unaligned_access[] = {"None", "v6"};
13518 static const char * arm_attr_tag_FP_HP_extension[] =
13519 {"Not Allowed", "Allowed"};
13520 static const char * arm_attr_tag_ABI_FP_16bit_format[] =
13521 {"None", "IEEE 754", "Alternative Format"};
13522 static const char * arm_attr_tag_DSP_extension[] =
13523 {"Follow architecture", "Allowed"};
13524 static const char * arm_attr_tag_MPextension_use[] =
13525 {"Not Allowed", "Allowed"};
13526 static const char * arm_attr_tag_DIV_use[] =
13527 {"Allowed in Thumb-ISA, v7-R or v7-M", "Not allowed",
13528 "Allowed in v7-A with integer division extension"};
13529 static const char * arm_attr_tag_T2EE_use[] = {"Not Allowed", "Allowed"};
13530 static const char * arm_attr_tag_Virtualization_use[] =
13531 {"Not Allowed", "TrustZone", "Virtualization Extensions",
13532 "TrustZone and Virtualization Extensions"};
13533 static const char * arm_attr_tag_MPextension_use_legacy[] =
13534 {"Not Allowed", "Allowed"};
13535
13536 #define LOOKUP(id, name) \
13537 {id, #name, 0x80 | ARRAY_SIZE(arm_attr_tag_##name), arm_attr_tag_##name}
13538 static arm_attr_public_tag arm_attr_public_tags[] =
13539 {
13540 {4, "CPU_raw_name", 1, NULL},
13541 {5, "CPU_name", 1, NULL},
13542 LOOKUP(6, CPU_arch),
13543 {7, "CPU_arch_profile", 0, NULL},
13544 LOOKUP(8, ARM_ISA_use),
13545 LOOKUP(9, THUMB_ISA_use),
13546 LOOKUP(10, FP_arch),
13547 LOOKUP(11, WMMX_arch),
13548 LOOKUP(12, Advanced_SIMD_arch),
13549 LOOKUP(13, PCS_config),
13550 LOOKUP(14, ABI_PCS_R9_use),
13551 LOOKUP(15, ABI_PCS_RW_data),
13552 LOOKUP(16, ABI_PCS_RO_data),
13553 LOOKUP(17, ABI_PCS_GOT_use),
13554 LOOKUP(18, ABI_PCS_wchar_t),
13555 LOOKUP(19, ABI_FP_rounding),
13556 LOOKUP(20, ABI_FP_denormal),
13557 LOOKUP(21, ABI_FP_exceptions),
13558 LOOKUP(22, ABI_FP_user_exceptions),
13559 LOOKUP(23, ABI_FP_number_model),
13560 {24, "ABI_align_needed", 0, NULL},
13561 {25, "ABI_align_preserved", 0, NULL},
13562 LOOKUP(26, ABI_enum_size),
13563 LOOKUP(27, ABI_HardFP_use),
13564 LOOKUP(28, ABI_VFP_args),
13565 LOOKUP(29, ABI_WMMX_args),
13566 LOOKUP(30, ABI_optimization_goals),
13567 LOOKUP(31, ABI_FP_optimization_goals),
13568 {32, "compatibility", 0, NULL},
13569 LOOKUP(34, CPU_unaligned_access),
13570 LOOKUP(36, FP_HP_extension),
13571 LOOKUP(38, ABI_FP_16bit_format),
13572 LOOKUP(42, MPextension_use),
13573 LOOKUP(44, DIV_use),
13574 LOOKUP(46, DSP_extension),
13575 {64, "nodefaults", 0, NULL},
13576 {65, "also_compatible_with", 0, NULL},
13577 LOOKUP(66, T2EE_use),
13578 {67, "conformance", 1, NULL},
13579 LOOKUP(68, Virtualization_use),
13580 LOOKUP(70, MPextension_use_legacy)
13581 };
13582 #undef LOOKUP
13583
13584 static unsigned char *
13585 display_arm_attribute (unsigned char * p,
13586 const unsigned char * const end)
13587 {
13588 unsigned int tag;
13589 unsigned int len;
13590 unsigned int val;
13591 arm_attr_public_tag * attr;
13592 unsigned i;
13593 unsigned int type;
13594
13595 tag = read_uleb128 (p, &len, end);
13596 p += len;
13597 attr = NULL;
13598 for (i = 0; i < ARRAY_SIZE (arm_attr_public_tags); i++)
13599 {
13600 if (arm_attr_public_tags[i].tag == tag)
13601 {
13602 attr = &arm_attr_public_tags[i];
13603 break;
13604 }
13605 }
13606
13607 if (attr)
13608 {
13609 printf (" Tag_%s: ", attr->name);
13610 switch (attr->type)
13611 {
13612 case 0:
13613 switch (tag)
13614 {
13615 case 7: /* Tag_CPU_arch_profile. */
13616 val = read_uleb128 (p, &len, end);
13617 p += len;
13618 switch (val)
13619 {
13620 case 0: printf (_("None\n")); break;
13621 case 'A': printf (_("Application\n")); break;
13622 case 'R': printf (_("Realtime\n")); break;
13623 case 'M': printf (_("Microcontroller\n")); break;
13624 case 'S': printf (_("Application or Realtime\n")); break;
13625 default: printf ("??? (%d)\n", val); break;
13626 }
13627 break;
13628
13629 case 24: /* Tag_align_needed. */
13630 val = read_uleb128 (p, &len, end);
13631 p += len;
13632 switch (val)
13633 {
13634 case 0: printf (_("None\n")); break;
13635 case 1: printf (_("8-byte\n")); break;
13636 case 2: printf (_("4-byte\n")); break;
13637 case 3: printf ("??? 3\n"); break;
13638 default:
13639 if (val <= 12)
13640 printf (_("8-byte and up to %d-byte extended\n"),
13641 1 << val);
13642 else
13643 printf ("??? (%d)\n", val);
13644 break;
13645 }
13646 break;
13647
13648 case 25: /* Tag_align_preserved. */
13649 val = read_uleb128 (p, &len, end);
13650 p += len;
13651 switch (val)
13652 {
13653 case 0: printf (_("None\n")); break;
13654 case 1: printf (_("8-byte, except leaf SP\n")); break;
13655 case 2: printf (_("8-byte\n")); break;
13656 case 3: printf ("??? 3\n"); break;
13657 default:
13658 if (val <= 12)
13659 printf (_("8-byte and up to %d-byte extended\n"),
13660 1 << val);
13661 else
13662 printf ("??? (%d)\n", val);
13663 break;
13664 }
13665 break;
13666
13667 case 32: /* Tag_compatibility. */
13668 {
13669 val = read_uleb128 (p, &len, end);
13670 p += len;
13671 printf (_("flag = %d, vendor = "), val);
13672 if (p < end - 1)
13673 {
13674 size_t maxlen = (end - p) - 1;
13675
13676 print_symbol ((int) maxlen, (const char *) p);
13677 p += strnlen ((char *) p, maxlen) + 1;
13678 }
13679 else
13680 {
13681 printf (_("<corrupt>"));
13682 p = (unsigned char *) end;
13683 }
13684 putchar ('\n');
13685 }
13686 break;
13687
13688 case 64: /* Tag_nodefaults. */
13689 /* PR 17531: file: 001-505008-0.01. */
13690 if (p < end)
13691 p++;
13692 printf (_("True\n"));
13693 break;
13694
13695 case 65: /* Tag_also_compatible_with. */
13696 val = read_uleb128 (p, &len, end);
13697 p += len;
13698 if (val == 6 /* Tag_CPU_arch. */)
13699 {
13700 val = read_uleb128 (p, &len, end);
13701 p += len;
13702 if ((unsigned int) val >= ARRAY_SIZE (arm_attr_tag_CPU_arch))
13703 printf ("??? (%d)\n", val);
13704 else
13705 printf ("%s\n", arm_attr_tag_CPU_arch[val]);
13706 }
13707 else
13708 printf ("???\n");
13709 while (p < end && *(p++) != '\0' /* NUL terminator. */)
13710 ;
13711 break;
13712
13713 default:
13714 printf (_("<unknown: %d>\n"), tag);
13715 break;
13716 }
13717 return p;
13718
13719 case 1:
13720 return display_tag_value (-1, p, end);
13721 case 2:
13722 return display_tag_value (0, p, end);
13723
13724 default:
13725 assert (attr->type & 0x80);
13726 val = read_uleb128 (p, &len, end);
13727 p += len;
13728 type = attr->type & 0x7f;
13729 if (val >= type)
13730 printf ("??? (%d)\n", val);
13731 else
13732 printf ("%s\n", attr->table[val]);
13733 return p;
13734 }
13735 }
13736
13737 return display_tag_value (tag, p, end);
13738 }
13739
13740 static unsigned char *
13741 display_gnu_attribute (unsigned char * p,
13742 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, unsigned int, const unsigned char * const),
13743 const unsigned char * const end)
13744 {
13745 int tag;
13746 unsigned int len;
13747 unsigned int val;
13748
13749 tag = read_uleb128 (p, &len, end);
13750 p += len;
13751
13752 /* Tag_compatibility is the only generic GNU attribute defined at
13753 present. */
13754 if (tag == 32)
13755 {
13756 val = read_uleb128 (p, &len, end);
13757 p += len;
13758
13759 printf (_("flag = %d, vendor = "), val);
13760 if (p == end)
13761 {
13762 printf (_("<corrupt>\n"));
13763 warn (_("corrupt vendor attribute\n"));
13764 }
13765 else
13766 {
13767 if (p < end - 1)
13768 {
13769 size_t maxlen = (end - p) - 1;
13770
13771 print_symbol ((int) maxlen, (const char *) p);
13772 p += strnlen ((char *) p, maxlen) + 1;
13773 }
13774 else
13775 {
13776 printf (_("<corrupt>"));
13777 p = (unsigned char *) end;
13778 }
13779 putchar ('\n');
13780 }
13781 return p;
13782 }
13783
13784 if ((tag & 2) == 0 && display_proc_gnu_attribute)
13785 return display_proc_gnu_attribute (p, tag, end);
13786
13787 return display_tag_value (tag, p, end);
13788 }
13789
13790 static unsigned char *
13791 display_power_gnu_attribute (unsigned char * p,
13792 unsigned int tag,
13793 const unsigned char * const end)
13794 {
13795 unsigned int len;
13796 unsigned int val;
13797
13798 if (tag == Tag_GNU_Power_ABI_FP)
13799 {
13800 val = read_uleb128 (p, &len, end);
13801 p += len;
13802 printf (" Tag_GNU_Power_ABI_FP: ");
13803 if (len == 0)
13804 {
13805 printf (_("<corrupt>\n"));
13806 return p;
13807 }
13808
13809 if (val > 15)
13810 printf ("(%#x), ", val);
13811
13812 switch (val & 3)
13813 {
13814 case 0:
13815 printf (_("unspecified hard/soft float, "));
13816 break;
13817 case 1:
13818 printf (_("hard float, "));
13819 break;
13820 case 2:
13821 printf (_("soft float, "));
13822 break;
13823 case 3:
13824 printf (_("single-precision hard float, "));
13825 break;
13826 }
13827
13828 switch (val & 0xC)
13829 {
13830 case 0:
13831 printf (_("unspecified long double\n"));
13832 break;
13833 case 4:
13834 printf (_("128-bit IBM long double\n"));
13835 break;
13836 case 8:
13837 printf (_("64-bit long double\n"));
13838 break;
13839 case 12:
13840 printf (_("128-bit IEEE long double\n"));
13841 break;
13842 }
13843 return p;
13844 }
13845
13846 if (tag == Tag_GNU_Power_ABI_Vector)
13847 {
13848 val = read_uleb128 (p, &len, end);
13849 p += len;
13850 printf (" Tag_GNU_Power_ABI_Vector: ");
13851 if (len == 0)
13852 {
13853 printf (_("<corrupt>\n"));
13854 return p;
13855 }
13856
13857 if (val > 3)
13858 printf ("(%#x), ", val);
13859
13860 switch (val & 3)
13861 {
13862 case 0:
13863 printf (_("unspecified\n"));
13864 break;
13865 case 1:
13866 printf (_("generic\n"));
13867 break;
13868 case 2:
13869 printf ("AltiVec\n");
13870 break;
13871 case 3:
13872 printf ("SPE\n");
13873 break;
13874 }
13875 return p;
13876 }
13877
13878 if (tag == Tag_GNU_Power_ABI_Struct_Return)
13879 {
13880 val = read_uleb128 (p, &len, end);
13881 p += len;
13882 printf (" Tag_GNU_Power_ABI_Struct_Return: ");
13883 if (len == 0)
13884 {
13885 printf (_("<corrupt>\n"));
13886 return p;
13887 }
13888
13889 if (val > 2)
13890 printf ("(%#x), ", val);
13891
13892 switch (val & 3)
13893 {
13894 case 0:
13895 printf (_("unspecified\n"));
13896 break;
13897 case 1:
13898 printf ("r3/r4\n");
13899 break;
13900 case 2:
13901 printf (_("memory\n"));
13902 break;
13903 case 3:
13904 printf ("???\n");
13905 break;
13906 }
13907 return p;
13908 }
13909
13910 return display_tag_value (tag & 1, p, end);
13911 }
13912
13913 static unsigned char *
13914 display_s390_gnu_attribute (unsigned char * p,
13915 unsigned int tag,
13916 const unsigned char * const end)
13917 {
13918 unsigned int len;
13919 int val;
13920
13921 if (tag == Tag_GNU_S390_ABI_Vector)
13922 {
13923 val = read_uleb128 (p, &len, end);
13924 p += len;
13925 printf (" Tag_GNU_S390_ABI_Vector: ");
13926
13927 switch (val)
13928 {
13929 case 0:
13930 printf (_("any\n"));
13931 break;
13932 case 1:
13933 printf (_("software\n"));
13934 break;
13935 case 2:
13936 printf (_("hardware\n"));
13937 break;
13938 default:
13939 printf ("??? (%d)\n", val);
13940 break;
13941 }
13942 return p;
13943 }
13944
13945 return display_tag_value (tag & 1, p, end);
13946 }
13947
13948 static void
13949 display_sparc_hwcaps (unsigned int mask)
13950 {
13951 if (mask)
13952 {
13953 bfd_boolean first = TRUE;
13954
13955 if (mask & ELF_SPARC_HWCAP_MUL32)
13956 fputs ("mul32", stdout), first = FALSE;
13957 if (mask & ELF_SPARC_HWCAP_DIV32)
13958 printf ("%sdiv32", first ? "" : "|"), first = FALSE;
13959 if (mask & ELF_SPARC_HWCAP_FSMULD)
13960 printf ("%sfsmuld", first ? "" : "|"), first = FALSE;
13961 if (mask & ELF_SPARC_HWCAP_V8PLUS)
13962 printf ("%sv8plus", first ? "" : "|"), first = FALSE;
13963 if (mask & ELF_SPARC_HWCAP_POPC)
13964 printf ("%spopc", first ? "" : "|"), first = FALSE;
13965 if (mask & ELF_SPARC_HWCAP_VIS)
13966 printf ("%svis", first ? "" : "|"), first = FALSE;
13967 if (mask & ELF_SPARC_HWCAP_VIS2)
13968 printf ("%svis2", first ? "" : "|"), first = FALSE;
13969 if (mask & ELF_SPARC_HWCAP_ASI_BLK_INIT)
13970 printf ("%sASIBlkInit", first ? "" : "|"), first = FALSE;
13971 if (mask & ELF_SPARC_HWCAP_FMAF)
13972 printf ("%sfmaf", first ? "" : "|"), first = FALSE;
13973 if (mask & ELF_SPARC_HWCAP_VIS3)
13974 printf ("%svis3", first ? "" : "|"), first = FALSE;
13975 if (mask & ELF_SPARC_HWCAP_HPC)
13976 printf ("%shpc", first ? "" : "|"), first = FALSE;
13977 if (mask & ELF_SPARC_HWCAP_RANDOM)
13978 printf ("%srandom", first ? "" : "|"), first = FALSE;
13979 if (mask & ELF_SPARC_HWCAP_TRANS)
13980 printf ("%strans", first ? "" : "|"), first = FALSE;
13981 if (mask & ELF_SPARC_HWCAP_FJFMAU)
13982 printf ("%sfjfmau", first ? "" : "|"), first = FALSE;
13983 if (mask & ELF_SPARC_HWCAP_IMA)
13984 printf ("%sima", first ? "" : "|"), first = FALSE;
13985 if (mask & ELF_SPARC_HWCAP_ASI_CACHE_SPARING)
13986 printf ("%scspare", first ? "" : "|"), first = FALSE;
13987 }
13988 else
13989 fputc ('0', stdout);
13990 fputc ('\n', stdout);
13991 }
13992
13993 static void
13994 display_sparc_hwcaps2 (unsigned int mask)
13995 {
13996 if (mask)
13997 {
13998 bfd_boolean first = TRUE;
13999
14000 if (mask & ELF_SPARC_HWCAP2_FJATHPLUS)
14001 fputs ("fjathplus", stdout), first = FALSE;
14002 if (mask & ELF_SPARC_HWCAP2_VIS3B)
14003 printf ("%svis3b", first ? "" : "|"), first = FALSE;
14004 if (mask & ELF_SPARC_HWCAP2_ADP)
14005 printf ("%sadp", first ? "" : "|"), first = FALSE;
14006 if (mask & ELF_SPARC_HWCAP2_SPARC5)
14007 printf ("%ssparc5", first ? "" : "|"), first = FALSE;
14008 if (mask & ELF_SPARC_HWCAP2_MWAIT)
14009 printf ("%smwait", first ? "" : "|"), first = FALSE;
14010 if (mask & ELF_SPARC_HWCAP2_XMPMUL)
14011 printf ("%sxmpmul", first ? "" : "|"), first = FALSE;
14012 if (mask & ELF_SPARC_HWCAP2_XMONT)
14013 printf ("%sxmont2", first ? "" : "|"), first = FALSE;
14014 if (mask & ELF_SPARC_HWCAP2_NSEC)
14015 printf ("%snsec", first ? "" : "|"), first = FALSE;
14016 if (mask & ELF_SPARC_HWCAP2_FJATHHPC)
14017 printf ("%sfjathhpc", first ? "" : "|"), first = FALSE;
14018 if (mask & ELF_SPARC_HWCAP2_FJDES)
14019 printf ("%sfjdes", first ? "" : "|"), first = FALSE;
14020 if (mask & ELF_SPARC_HWCAP2_FJAES)
14021 printf ("%sfjaes", first ? "" : "|"), first = FALSE;
14022 }
14023 else
14024 fputc ('0', stdout);
14025 fputc ('\n', stdout);
14026 }
14027
14028 static unsigned char *
14029 display_sparc_gnu_attribute (unsigned char * p,
14030 unsigned int tag,
14031 const unsigned char * const end)
14032 {
14033 unsigned int len;
14034 int val;
14035
14036 if (tag == Tag_GNU_Sparc_HWCAPS)
14037 {
14038 val = read_uleb128 (p, &len, end);
14039 p += len;
14040 printf (" Tag_GNU_Sparc_HWCAPS: ");
14041 display_sparc_hwcaps (val);
14042 return p;
14043 }
14044 if (tag == Tag_GNU_Sparc_HWCAPS2)
14045 {
14046 val = read_uleb128 (p, &len, end);
14047 p += len;
14048 printf (" Tag_GNU_Sparc_HWCAPS2: ");
14049 display_sparc_hwcaps2 (val);
14050 return p;
14051 }
14052
14053 return display_tag_value (tag, p, end);
14054 }
14055
14056 static void
14057 print_mips_fp_abi_value (unsigned int val)
14058 {
14059 switch (val)
14060 {
14061 case Val_GNU_MIPS_ABI_FP_ANY:
14062 printf (_("Hard or soft float\n"));
14063 break;
14064 case Val_GNU_MIPS_ABI_FP_DOUBLE:
14065 printf (_("Hard float (double precision)\n"));
14066 break;
14067 case Val_GNU_MIPS_ABI_FP_SINGLE:
14068 printf (_("Hard float (single precision)\n"));
14069 break;
14070 case Val_GNU_MIPS_ABI_FP_SOFT:
14071 printf (_("Soft float\n"));
14072 break;
14073 case Val_GNU_MIPS_ABI_FP_OLD_64:
14074 printf (_("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
14075 break;
14076 case Val_GNU_MIPS_ABI_FP_XX:
14077 printf (_("Hard float (32-bit CPU, Any FPU)\n"));
14078 break;
14079 case Val_GNU_MIPS_ABI_FP_64:
14080 printf (_("Hard float (32-bit CPU, 64-bit FPU)\n"));
14081 break;
14082 case Val_GNU_MIPS_ABI_FP_64A:
14083 printf (_("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
14084 break;
14085 case Val_GNU_MIPS_ABI_FP_NAN2008:
14086 printf (_("NaN 2008 compatibility\n"));
14087 break;
14088 default:
14089 printf ("??? (%d)\n", val);
14090 break;
14091 }
14092 }
14093
14094 static unsigned char *
14095 display_mips_gnu_attribute (unsigned char * p,
14096 unsigned int tag,
14097 const unsigned char * const end)
14098 {
14099 if (tag == Tag_GNU_MIPS_ABI_FP)
14100 {
14101 unsigned int len;
14102 unsigned int val;
14103
14104 val = read_uleb128 (p, &len, end);
14105 p += len;
14106 printf (" Tag_GNU_MIPS_ABI_FP: ");
14107
14108 print_mips_fp_abi_value (val);
14109
14110 return p;
14111 }
14112
14113 if (tag == Tag_GNU_MIPS_ABI_MSA)
14114 {
14115 unsigned int len;
14116 unsigned int val;
14117
14118 val = read_uleb128 (p, &len, end);
14119 p += len;
14120 printf (" Tag_GNU_MIPS_ABI_MSA: ");
14121
14122 switch (val)
14123 {
14124 case Val_GNU_MIPS_ABI_MSA_ANY:
14125 printf (_("Any MSA or not\n"));
14126 break;
14127 case Val_GNU_MIPS_ABI_MSA_128:
14128 printf (_("128-bit MSA\n"));
14129 break;
14130 default:
14131 printf ("??? (%d)\n", val);
14132 break;
14133 }
14134 return p;
14135 }
14136
14137 return display_tag_value (tag & 1, p, end);
14138 }
14139
14140 static unsigned char *
14141 display_tic6x_attribute (unsigned char * p,
14142 const unsigned char * const end)
14143 {
14144 unsigned int tag;
14145 unsigned int len;
14146 int val;
14147
14148 tag = read_uleb128 (p, &len, end);
14149 p += len;
14150
14151 switch (tag)
14152 {
14153 case Tag_ISA:
14154 val = read_uleb128 (p, &len, end);
14155 p += len;
14156 printf (" Tag_ISA: ");
14157
14158 switch (val)
14159 {
14160 case C6XABI_Tag_ISA_none:
14161 printf (_("None\n"));
14162 break;
14163 case C6XABI_Tag_ISA_C62X:
14164 printf ("C62x\n");
14165 break;
14166 case C6XABI_Tag_ISA_C67X:
14167 printf ("C67x\n");
14168 break;
14169 case C6XABI_Tag_ISA_C67XP:
14170 printf ("C67x+\n");
14171 break;
14172 case C6XABI_Tag_ISA_C64X:
14173 printf ("C64x\n");
14174 break;
14175 case C6XABI_Tag_ISA_C64XP:
14176 printf ("C64x+\n");
14177 break;
14178 case C6XABI_Tag_ISA_C674X:
14179 printf ("C674x\n");
14180 break;
14181 default:
14182 printf ("??? (%d)\n", val);
14183 break;
14184 }
14185 return p;
14186
14187 case Tag_ABI_wchar_t:
14188 val = read_uleb128 (p, &len, end);
14189 p += len;
14190 printf (" Tag_ABI_wchar_t: ");
14191 switch (val)
14192 {
14193 case 0:
14194 printf (_("Not used\n"));
14195 break;
14196 case 1:
14197 printf (_("2 bytes\n"));
14198 break;
14199 case 2:
14200 printf (_("4 bytes\n"));
14201 break;
14202 default:
14203 printf ("??? (%d)\n", val);
14204 break;
14205 }
14206 return p;
14207
14208 case Tag_ABI_stack_align_needed:
14209 val = read_uleb128 (p, &len, end);
14210 p += len;
14211 printf (" Tag_ABI_stack_align_needed: ");
14212 switch (val)
14213 {
14214 case 0:
14215 printf (_("8-byte\n"));
14216 break;
14217 case 1:
14218 printf (_("16-byte\n"));
14219 break;
14220 default:
14221 printf ("??? (%d)\n", val);
14222 break;
14223 }
14224 return p;
14225
14226 case Tag_ABI_stack_align_preserved:
14227 val = read_uleb128 (p, &len, end);
14228 p += len;
14229 printf (" Tag_ABI_stack_align_preserved: ");
14230 switch (val)
14231 {
14232 case 0:
14233 printf (_("8-byte\n"));
14234 break;
14235 case 1:
14236 printf (_("16-byte\n"));
14237 break;
14238 default:
14239 printf ("??? (%d)\n", val);
14240 break;
14241 }
14242 return p;
14243
14244 case Tag_ABI_DSBT:
14245 val = read_uleb128 (p, &len, end);
14246 p += len;
14247 printf (" Tag_ABI_DSBT: ");
14248 switch (val)
14249 {
14250 case 0:
14251 printf (_("DSBT addressing not used\n"));
14252 break;
14253 case 1:
14254 printf (_("DSBT addressing used\n"));
14255 break;
14256 default:
14257 printf ("??? (%d)\n", val);
14258 break;
14259 }
14260 return p;
14261
14262 case Tag_ABI_PID:
14263 val = read_uleb128 (p, &len, end);
14264 p += len;
14265 printf (" Tag_ABI_PID: ");
14266 switch (val)
14267 {
14268 case 0:
14269 printf (_("Data addressing position-dependent\n"));
14270 break;
14271 case 1:
14272 printf (_("Data addressing position-independent, GOT near DP\n"));
14273 break;
14274 case 2:
14275 printf (_("Data addressing position-independent, GOT far from DP\n"));
14276 break;
14277 default:
14278 printf ("??? (%d)\n", val);
14279 break;
14280 }
14281 return p;
14282
14283 case Tag_ABI_PIC:
14284 val = read_uleb128 (p, &len, end);
14285 p += len;
14286 printf (" Tag_ABI_PIC: ");
14287 switch (val)
14288 {
14289 case 0:
14290 printf (_("Code addressing position-dependent\n"));
14291 break;
14292 case 1:
14293 printf (_("Code addressing position-independent\n"));
14294 break;
14295 default:
14296 printf ("??? (%d)\n", val);
14297 break;
14298 }
14299 return p;
14300
14301 case Tag_ABI_array_object_alignment:
14302 val = read_uleb128 (p, &len, end);
14303 p += len;
14304 printf (" Tag_ABI_array_object_alignment: ");
14305 switch (val)
14306 {
14307 case 0:
14308 printf (_("8-byte\n"));
14309 break;
14310 case 1:
14311 printf (_("4-byte\n"));
14312 break;
14313 case 2:
14314 printf (_("16-byte\n"));
14315 break;
14316 default:
14317 printf ("??? (%d)\n", val);
14318 break;
14319 }
14320 return p;
14321
14322 case Tag_ABI_array_object_align_expected:
14323 val = read_uleb128 (p, &len, end);
14324 p += len;
14325 printf (" Tag_ABI_array_object_align_expected: ");
14326 switch (val)
14327 {
14328 case 0:
14329 printf (_("8-byte\n"));
14330 break;
14331 case 1:
14332 printf (_("4-byte\n"));
14333 break;
14334 case 2:
14335 printf (_("16-byte\n"));
14336 break;
14337 default:
14338 printf ("??? (%d)\n", val);
14339 break;
14340 }
14341 return p;
14342
14343 case Tag_ABI_compatibility:
14344 {
14345 val = read_uleb128 (p, &len, end);
14346 p += len;
14347 printf (" Tag_ABI_compatibility: ");
14348 printf (_("flag = %d, vendor = "), val);
14349 if (p < end - 1)
14350 {
14351 size_t maxlen = (end - p) - 1;
14352
14353 print_symbol ((int) maxlen, (const char *) p);
14354 p += strnlen ((char *) p, maxlen) + 1;
14355 }
14356 else
14357 {
14358 printf (_("<corrupt>"));
14359 p = (unsigned char *) end;
14360 }
14361 putchar ('\n');
14362 return p;
14363 }
14364
14365 case Tag_ABI_conformance:
14366 {
14367 printf (" Tag_ABI_conformance: \"");
14368 if (p < end - 1)
14369 {
14370 size_t maxlen = (end - p) - 1;
14371
14372 print_symbol ((int) maxlen, (const char *) p);
14373 p += strnlen ((char *) p, maxlen) + 1;
14374 }
14375 else
14376 {
14377 printf (_("<corrupt>"));
14378 p = (unsigned char *) end;
14379 }
14380 printf ("\"\n");
14381 return p;
14382 }
14383 }
14384
14385 return display_tag_value (tag, p, end);
14386 }
14387
14388 static void
14389 display_raw_attribute (unsigned char * p, unsigned char const * const end)
14390 {
14391 unsigned long addr = 0;
14392 size_t bytes = end - p;
14393
14394 assert (end > p);
14395 while (bytes)
14396 {
14397 int j;
14398 int k;
14399 int lbytes = (bytes > 16 ? 16 : bytes);
14400
14401 printf (" 0x%8.8lx ", addr);
14402
14403 for (j = 0; j < 16; j++)
14404 {
14405 if (j < lbytes)
14406 printf ("%2.2x", p[j]);
14407 else
14408 printf (" ");
14409
14410 if ((j & 3) == 3)
14411 printf (" ");
14412 }
14413
14414 for (j = 0; j < lbytes; j++)
14415 {
14416 k = p[j];
14417 if (k >= ' ' && k < 0x7f)
14418 printf ("%c", k);
14419 else
14420 printf (".");
14421 }
14422
14423 putchar ('\n');
14424
14425 p += lbytes;
14426 bytes -= lbytes;
14427 addr += lbytes;
14428 }
14429
14430 putchar ('\n');
14431 }
14432
14433 static unsigned char *
14434 display_msp430x_attribute (unsigned char * p,
14435 const unsigned char * const end)
14436 {
14437 unsigned int len;
14438 unsigned int val;
14439 unsigned int tag;
14440
14441 tag = read_uleb128 (p, & len, end);
14442 p += len;
14443
14444 switch (tag)
14445 {
14446 case OFBA_MSPABI_Tag_ISA:
14447 val = read_uleb128 (p, &len, end);
14448 p += len;
14449 printf (" Tag_ISA: ");
14450 switch (val)
14451 {
14452 case 0: printf (_("None\n")); break;
14453 case 1: printf (_("MSP430\n")); break;
14454 case 2: printf (_("MSP430X\n")); break;
14455 default: printf ("??? (%d)\n", val); break;
14456 }
14457 break;
14458
14459 case OFBA_MSPABI_Tag_Code_Model:
14460 val = read_uleb128 (p, &len, end);
14461 p += len;
14462 printf (" Tag_Code_Model: ");
14463 switch (val)
14464 {
14465 case 0: printf (_("None\n")); break;
14466 case 1: printf (_("Small\n")); break;
14467 case 2: printf (_("Large\n")); break;
14468 default: printf ("??? (%d)\n", val); break;
14469 }
14470 break;
14471
14472 case OFBA_MSPABI_Tag_Data_Model:
14473 val = read_uleb128 (p, &len, end);
14474 p += len;
14475 printf (" Tag_Data_Model: ");
14476 switch (val)
14477 {
14478 case 0: printf (_("None\n")); break;
14479 case 1: printf (_("Small\n")); break;
14480 case 2: printf (_("Large\n")); break;
14481 case 3: printf (_("Restricted Large\n")); break;
14482 default: printf ("??? (%d)\n", val); break;
14483 }
14484 break;
14485
14486 default:
14487 printf (_(" <unknown tag %d>: "), tag);
14488
14489 if (tag & 1)
14490 {
14491 putchar ('"');
14492 if (p < end - 1)
14493 {
14494 size_t maxlen = (end - p) - 1;
14495
14496 print_symbol ((int) maxlen, (const char *) p);
14497 p += strnlen ((char *) p, maxlen) + 1;
14498 }
14499 else
14500 {
14501 printf (_("<corrupt>"));
14502 p = (unsigned char *) end;
14503 }
14504 printf ("\"\n");
14505 }
14506 else
14507 {
14508 val = read_uleb128 (p, &len, end);
14509 p += len;
14510 printf ("%d (0x%x)\n", val, val);
14511 }
14512 break;
14513 }
14514
14515 assert (p <= end);
14516 return p;
14517 }
14518
14519 static bfd_boolean
14520 process_attributes (FILE * file,
14521 const char * public_name,
14522 unsigned int proc_type,
14523 unsigned char * (* display_pub_attribute) (unsigned char *, const unsigned char * const),
14524 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, unsigned int, const unsigned char * const))
14525 {
14526 Elf_Internal_Shdr * sect;
14527 unsigned i;
14528 bfd_boolean res = TRUE;
14529
14530 /* Find the section header so that we get the size. */
14531 for (i = 0, sect = section_headers;
14532 i < elf_header.e_shnum;
14533 i++, sect++)
14534 {
14535 unsigned char * contents;
14536 unsigned char * p;
14537
14538 if (sect->sh_type != proc_type && sect->sh_type != SHT_GNU_ATTRIBUTES)
14539 continue;
14540
14541 contents = (unsigned char *) get_data (NULL, file, sect->sh_offset, 1,
14542 sect->sh_size, _("attributes"));
14543 if (contents == NULL)
14544 {
14545 res = FALSE;
14546 continue;
14547 }
14548
14549 p = contents;
14550 /* The first character is the version of the attributes.
14551 Currently only version 1, (aka 'A') is recognised here. */
14552 if (*p != 'A')
14553 {
14554 printf (_("Unknown attributes version '%c'(%d) - expecting 'A'\n"), *p, *p);
14555 res = FALSE;
14556 }
14557 else
14558 {
14559 bfd_vma section_len;
14560
14561 section_len = sect->sh_size - 1;
14562 p++;
14563
14564 while (section_len > 0)
14565 {
14566 bfd_vma attr_len;
14567 unsigned int namelen;
14568 bfd_boolean public_section;
14569 bfd_boolean gnu_section;
14570
14571 if (section_len <= 4)
14572 {
14573 error (_("Tag section ends prematurely\n"));
14574 res = FALSE;
14575 break;
14576 }
14577 attr_len = byte_get (p, 4);
14578 p += 4;
14579
14580 if (attr_len > section_len)
14581 {
14582 error (_("Bad attribute length (%u > %u)\n"),
14583 (unsigned) attr_len, (unsigned) section_len);
14584 attr_len = section_len;
14585 res = FALSE;
14586 }
14587 /* PR 17531: file: 001-101425-0.004 */
14588 else if (attr_len < 5)
14589 {
14590 error (_("Attribute length of %u is too small\n"), (unsigned) attr_len);
14591 res = FALSE;
14592 break;
14593 }
14594
14595 section_len -= attr_len;
14596 attr_len -= 4;
14597
14598 namelen = strnlen ((char *) p, attr_len) + 1;
14599 if (namelen == 0 || namelen >= attr_len)
14600 {
14601 error (_("Corrupt attribute section name\n"));
14602 res = FALSE;
14603 break;
14604 }
14605
14606 printf (_("Attribute Section: "));
14607 print_symbol (INT_MAX, (const char *) p);
14608 putchar ('\n');
14609
14610 if (public_name && streq ((char *) p, public_name))
14611 public_section = TRUE;
14612 else
14613 public_section = FALSE;
14614
14615 if (streq ((char *) p, "gnu"))
14616 gnu_section = TRUE;
14617 else
14618 gnu_section = FALSE;
14619
14620 p += namelen;
14621 attr_len -= namelen;
14622
14623 while (attr_len > 0 && p < contents + sect->sh_size)
14624 {
14625 int tag;
14626 int val;
14627 bfd_vma size;
14628 unsigned char * end;
14629
14630 /* PR binutils/17531: Safe handling of corrupt files. */
14631 if (attr_len < 6)
14632 {
14633 error (_("Unused bytes at end of section\n"));
14634 res = FALSE;
14635 section_len = 0;
14636 break;
14637 }
14638
14639 tag = *(p++);
14640 size = byte_get (p, 4);
14641 if (size > attr_len)
14642 {
14643 error (_("Bad subsection length (%u > %u)\n"),
14644 (unsigned) size, (unsigned) attr_len);
14645 res = FALSE;
14646 size = attr_len;
14647 }
14648 /* PR binutils/17531: Safe handling of corrupt files. */
14649 if (size < 6)
14650 {
14651 error (_("Bad subsection length (%u < 6)\n"),
14652 (unsigned) size);
14653 res = FALSE;
14654 section_len = 0;
14655 break;
14656 }
14657
14658 attr_len -= size;
14659 end = p + size - 1;
14660 assert (end <= contents + sect->sh_size);
14661 p += 4;
14662
14663 switch (tag)
14664 {
14665 case 1:
14666 printf (_("File Attributes\n"));
14667 break;
14668 case 2:
14669 printf (_("Section Attributes:"));
14670 goto do_numlist;
14671 case 3:
14672 printf (_("Symbol Attributes:"));
14673 /* Fall through. */
14674 do_numlist:
14675 for (;;)
14676 {
14677 unsigned int j;
14678
14679 val = read_uleb128 (p, &j, end);
14680 p += j;
14681 if (val == 0)
14682 break;
14683 printf (" %d", val);
14684 }
14685 printf ("\n");
14686 break;
14687 default:
14688 printf (_("Unknown tag: %d\n"), tag);
14689 public_section = FALSE;
14690 break;
14691 }
14692
14693 if (public_section && display_pub_attribute != NULL)
14694 {
14695 while (p < end)
14696 p = display_pub_attribute (p, end);
14697 assert (p == end);
14698 }
14699 else if (gnu_section && display_proc_gnu_attribute != NULL)
14700 {
14701 while (p < end)
14702 p = display_gnu_attribute (p,
14703 display_proc_gnu_attribute,
14704 end);
14705 assert (p == end);
14706 }
14707 else if (p < end)
14708 {
14709 printf (_(" Unknown attribute:\n"));
14710 display_raw_attribute (p, end);
14711 p = end;
14712 }
14713 else
14714 attr_len = 0;
14715 }
14716 }
14717 }
14718
14719 free (contents);
14720 }
14721
14722 return res;
14723 }
14724
14725 /* DATA points to the contents of a MIPS GOT that starts at VMA PLTGOT.
14726 Print the Address, Access and Initial fields of an entry at VMA ADDR
14727 and return the VMA of the next entry, or -1 if there was a problem.
14728 Does not read from DATA_END or beyond. */
14729
14730 static bfd_vma
14731 print_mips_got_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr,
14732 unsigned char * data_end)
14733 {
14734 printf (" ");
14735 print_vma (addr, LONG_HEX);
14736 printf (" ");
14737 if (addr < pltgot + 0xfff0)
14738 printf ("%6d(gp)", (int) (addr - pltgot - 0x7ff0));
14739 else
14740 printf ("%10s", "");
14741 printf (" ");
14742 if (data == NULL)
14743 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
14744 else
14745 {
14746 bfd_vma entry;
14747 unsigned char * from = data + addr - pltgot;
14748
14749 if (from + (is_32bit_elf ? 4 : 8) > data_end)
14750 {
14751 warn (_("MIPS GOT entry extends beyond the end of available data\n"));
14752 printf ("%*s", is_32bit_elf ? 8 : 16, _("<corrupt>"));
14753 return (bfd_vma) -1;
14754 }
14755 else
14756 {
14757 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
14758 print_vma (entry, LONG_HEX);
14759 }
14760 }
14761 return addr + (is_32bit_elf ? 4 : 8);
14762 }
14763
14764 /* DATA points to the contents of a MIPS PLT GOT that starts at VMA
14765 PLTGOT. Print the Address and Initial fields of an entry at VMA
14766 ADDR and return the VMA of the next entry. */
14767
14768 static bfd_vma
14769 print_mips_pltgot_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
14770 {
14771 printf (" ");
14772 print_vma (addr, LONG_HEX);
14773 printf (" ");
14774 if (data == NULL)
14775 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
14776 else
14777 {
14778 bfd_vma entry;
14779
14780 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
14781 print_vma (entry, LONG_HEX);
14782 }
14783 return addr + (is_32bit_elf ? 4 : 8);
14784 }
14785
14786 static void
14787 print_mips_ases (unsigned int mask)
14788 {
14789 if (mask & AFL_ASE_DSP)
14790 fputs ("\n\tDSP ASE", stdout);
14791 if (mask & AFL_ASE_DSPR2)
14792 fputs ("\n\tDSP R2 ASE", stdout);
14793 if (mask & AFL_ASE_DSPR3)
14794 fputs ("\n\tDSP R3 ASE", stdout);
14795 if (mask & AFL_ASE_EVA)
14796 fputs ("\n\tEnhanced VA Scheme", stdout);
14797 if (mask & AFL_ASE_MCU)
14798 fputs ("\n\tMCU (MicroController) ASE", stdout);
14799 if (mask & AFL_ASE_MDMX)
14800 fputs ("\n\tMDMX ASE", stdout);
14801 if (mask & AFL_ASE_MIPS3D)
14802 fputs ("\n\tMIPS-3D ASE", stdout);
14803 if (mask & AFL_ASE_MT)
14804 fputs ("\n\tMT ASE", stdout);
14805 if (mask & AFL_ASE_SMARTMIPS)
14806 fputs ("\n\tSmartMIPS ASE", stdout);
14807 if (mask & AFL_ASE_VIRT)
14808 fputs ("\n\tVZ ASE", stdout);
14809 if (mask & AFL_ASE_MSA)
14810 fputs ("\n\tMSA ASE", stdout);
14811 if (mask & AFL_ASE_MIPS16)
14812 fputs ("\n\tMIPS16 ASE", stdout);
14813 if (mask & AFL_ASE_MICROMIPS)
14814 fputs ("\n\tMICROMIPS ASE", stdout);
14815 if (mask & AFL_ASE_XPA)
14816 fputs ("\n\tXPA ASE", stdout);
14817 if (mask == 0)
14818 fprintf (stdout, "\n\t%s", _("None"));
14819 else if ((mask & ~AFL_ASE_MASK) != 0)
14820 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
14821 }
14822
14823 static void
14824 print_mips_isa_ext (unsigned int isa_ext)
14825 {
14826 switch (isa_ext)
14827 {
14828 case 0:
14829 fputs (_("None"), stdout);
14830 break;
14831 case AFL_EXT_XLR:
14832 fputs ("RMI XLR", stdout);
14833 break;
14834 case AFL_EXT_OCTEON3:
14835 fputs ("Cavium Networks Octeon3", stdout);
14836 break;
14837 case AFL_EXT_OCTEON2:
14838 fputs ("Cavium Networks Octeon2", stdout);
14839 break;
14840 case AFL_EXT_OCTEONP:
14841 fputs ("Cavium Networks OcteonP", stdout);
14842 break;
14843 case AFL_EXT_LOONGSON_3A:
14844 fputs ("Loongson 3A", stdout);
14845 break;
14846 case AFL_EXT_OCTEON:
14847 fputs ("Cavium Networks Octeon", stdout);
14848 break;
14849 case AFL_EXT_5900:
14850 fputs ("Toshiba R5900", stdout);
14851 break;
14852 case AFL_EXT_4650:
14853 fputs ("MIPS R4650", stdout);
14854 break;
14855 case AFL_EXT_4010:
14856 fputs ("LSI R4010", stdout);
14857 break;
14858 case AFL_EXT_4100:
14859 fputs ("NEC VR4100", stdout);
14860 break;
14861 case AFL_EXT_3900:
14862 fputs ("Toshiba R3900", stdout);
14863 break;
14864 case AFL_EXT_10000:
14865 fputs ("MIPS R10000", stdout);
14866 break;
14867 case AFL_EXT_SB1:
14868 fputs ("Broadcom SB-1", stdout);
14869 break;
14870 case AFL_EXT_4111:
14871 fputs ("NEC VR4111/VR4181", stdout);
14872 break;
14873 case AFL_EXT_4120:
14874 fputs ("NEC VR4120", stdout);
14875 break;
14876 case AFL_EXT_5400:
14877 fputs ("NEC VR5400", stdout);
14878 break;
14879 case AFL_EXT_5500:
14880 fputs ("NEC VR5500", stdout);
14881 break;
14882 case AFL_EXT_LOONGSON_2E:
14883 fputs ("ST Microelectronics Loongson 2E", stdout);
14884 break;
14885 case AFL_EXT_LOONGSON_2F:
14886 fputs ("ST Microelectronics Loongson 2F", stdout);
14887 break;
14888 default:
14889 fprintf (stdout, "%s (%d)", _("Unknown"), isa_ext);
14890 }
14891 }
14892
14893 static signed int
14894 get_mips_reg_size (int reg_size)
14895 {
14896 return (reg_size == AFL_REG_NONE) ? 0
14897 : (reg_size == AFL_REG_32) ? 32
14898 : (reg_size == AFL_REG_64) ? 64
14899 : (reg_size == AFL_REG_128) ? 128
14900 : -1;
14901 }
14902
14903 static bfd_boolean
14904 process_mips_specific (FILE * file)
14905 {
14906 Elf_Internal_Dyn * entry;
14907 Elf_Internal_Shdr *sect = NULL;
14908 size_t liblist_offset = 0;
14909 size_t liblistno = 0;
14910 size_t conflictsno = 0;
14911 size_t options_offset = 0;
14912 size_t conflicts_offset = 0;
14913 size_t pltrelsz = 0;
14914 size_t pltrel = 0;
14915 bfd_vma pltgot = 0;
14916 bfd_vma mips_pltgot = 0;
14917 bfd_vma jmprel = 0;
14918 bfd_vma local_gotno = 0;
14919 bfd_vma gotsym = 0;
14920 bfd_vma symtabno = 0;
14921 bfd_boolean res = TRUE;
14922
14923 if (! process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
14924 display_mips_gnu_attribute))
14925 res = FALSE;
14926
14927 sect = find_section (".MIPS.abiflags");
14928
14929 if (sect != NULL)
14930 {
14931 Elf_External_ABIFlags_v0 *abiflags_ext;
14932 Elf_Internal_ABIFlags_v0 abiflags_in;
14933
14934 if (sizeof (Elf_External_ABIFlags_v0) != sect->sh_size)
14935 {
14936 error (_("Corrupt MIPS ABI Flags section.\n"));
14937 res = FALSE;
14938 }
14939 else
14940 {
14941 abiflags_ext = get_data (NULL, file, sect->sh_offset, 1,
14942 sect->sh_size, _("MIPS ABI Flags section"));
14943 if (abiflags_ext)
14944 {
14945 abiflags_in.version = BYTE_GET (abiflags_ext->version);
14946 abiflags_in.isa_level = BYTE_GET (abiflags_ext->isa_level);
14947 abiflags_in.isa_rev = BYTE_GET (abiflags_ext->isa_rev);
14948 abiflags_in.gpr_size = BYTE_GET (abiflags_ext->gpr_size);
14949 abiflags_in.cpr1_size = BYTE_GET (abiflags_ext->cpr1_size);
14950 abiflags_in.cpr2_size = BYTE_GET (abiflags_ext->cpr2_size);
14951 abiflags_in.fp_abi = BYTE_GET (abiflags_ext->fp_abi);
14952 abiflags_in.isa_ext = BYTE_GET (abiflags_ext->isa_ext);
14953 abiflags_in.ases = BYTE_GET (abiflags_ext->ases);
14954 abiflags_in.flags1 = BYTE_GET (abiflags_ext->flags1);
14955 abiflags_in.flags2 = BYTE_GET (abiflags_ext->flags2);
14956
14957 printf ("\nMIPS ABI Flags Version: %d\n", abiflags_in.version);
14958 printf ("\nISA: MIPS%d", abiflags_in.isa_level);
14959 if (abiflags_in.isa_rev > 1)
14960 printf ("r%d", abiflags_in.isa_rev);
14961 printf ("\nGPR size: %d",
14962 get_mips_reg_size (abiflags_in.gpr_size));
14963 printf ("\nCPR1 size: %d",
14964 get_mips_reg_size (abiflags_in.cpr1_size));
14965 printf ("\nCPR2 size: %d",
14966 get_mips_reg_size (abiflags_in.cpr2_size));
14967 fputs ("\nFP ABI: ", stdout);
14968 print_mips_fp_abi_value (abiflags_in.fp_abi);
14969 fputs ("ISA Extension: ", stdout);
14970 print_mips_isa_ext (abiflags_in.isa_ext);
14971 fputs ("\nASEs:", stdout);
14972 print_mips_ases (abiflags_in.ases);
14973 printf ("\nFLAGS 1: %8.8lx", abiflags_in.flags1);
14974 printf ("\nFLAGS 2: %8.8lx", abiflags_in.flags2);
14975 fputc ('\n', stdout);
14976 free (abiflags_ext);
14977 }
14978 }
14979 }
14980
14981 /* We have a lot of special sections. Thanks SGI! */
14982 if (dynamic_section == NULL)
14983 /* No information available. */
14984 return res;
14985
14986 for (entry = dynamic_section;
14987 /* PR 17531 file: 012-50589-0.004. */
14988 entry < dynamic_section + dynamic_nent && entry->d_tag != DT_NULL;
14989 ++entry)
14990 switch (entry->d_tag)
14991 {
14992 case DT_MIPS_LIBLIST:
14993 liblist_offset
14994 = offset_from_vma (file, entry->d_un.d_val,
14995 liblistno * sizeof (Elf32_External_Lib));
14996 break;
14997 case DT_MIPS_LIBLISTNO:
14998 liblistno = entry->d_un.d_val;
14999 break;
15000 case DT_MIPS_OPTIONS:
15001 options_offset = offset_from_vma (file, entry->d_un.d_val, 0);
15002 break;
15003 case DT_MIPS_CONFLICT:
15004 conflicts_offset
15005 = offset_from_vma (file, entry->d_un.d_val,
15006 conflictsno * sizeof (Elf32_External_Conflict));
15007 break;
15008 case DT_MIPS_CONFLICTNO:
15009 conflictsno = entry->d_un.d_val;
15010 break;
15011 case DT_PLTGOT:
15012 pltgot = entry->d_un.d_ptr;
15013 break;
15014 case DT_MIPS_LOCAL_GOTNO:
15015 local_gotno = entry->d_un.d_val;
15016 break;
15017 case DT_MIPS_GOTSYM:
15018 gotsym = entry->d_un.d_val;
15019 break;
15020 case DT_MIPS_SYMTABNO:
15021 symtabno = entry->d_un.d_val;
15022 break;
15023 case DT_MIPS_PLTGOT:
15024 mips_pltgot = entry->d_un.d_ptr;
15025 break;
15026 case DT_PLTREL:
15027 pltrel = entry->d_un.d_val;
15028 break;
15029 case DT_PLTRELSZ:
15030 pltrelsz = entry->d_un.d_val;
15031 break;
15032 case DT_JMPREL:
15033 jmprel = entry->d_un.d_ptr;
15034 break;
15035 default:
15036 break;
15037 }
15038
15039 if (liblist_offset != 0 && liblistno != 0 && do_dynamic)
15040 {
15041 Elf32_External_Lib * elib;
15042 size_t cnt;
15043
15044 elib = (Elf32_External_Lib *) get_data (NULL, file, liblist_offset,
15045 liblistno,
15046 sizeof (Elf32_External_Lib),
15047 _("liblist section data"));
15048 if (elib)
15049 {
15050 printf (_("\nSection '.liblist' contains %lu entries:\n"),
15051 (unsigned long) liblistno);
15052 fputs (_(" Library Time Stamp Checksum Version Flags\n"),
15053 stdout);
15054
15055 for (cnt = 0; cnt < liblistno; ++cnt)
15056 {
15057 Elf32_Lib liblist;
15058 time_t atime;
15059 char timebuf[128];
15060 struct tm * tmp;
15061
15062 liblist.l_name = BYTE_GET (elib[cnt].l_name);
15063 atime = BYTE_GET (elib[cnt].l_time_stamp);
15064 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
15065 liblist.l_version = BYTE_GET (elib[cnt].l_version);
15066 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
15067
15068 tmp = gmtime (&atime);
15069 snprintf (timebuf, sizeof (timebuf),
15070 "%04u-%02u-%02uT%02u:%02u:%02u",
15071 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
15072 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
15073
15074 printf ("%3lu: ", (unsigned long) cnt);
15075 if (VALID_DYNAMIC_NAME (liblist.l_name))
15076 print_symbol (20, GET_DYNAMIC_NAME (liblist.l_name));
15077 else
15078 printf (_("<corrupt: %9ld>"), liblist.l_name);
15079 printf (" %s %#10lx %-7ld", timebuf, liblist.l_checksum,
15080 liblist.l_version);
15081
15082 if (liblist.l_flags == 0)
15083 puts (_(" NONE"));
15084 else
15085 {
15086 static const struct
15087 {
15088 const char * name;
15089 int bit;
15090 }
15091 l_flags_vals[] =
15092 {
15093 { " EXACT_MATCH", LL_EXACT_MATCH },
15094 { " IGNORE_INT_VER", LL_IGNORE_INT_VER },
15095 { " REQUIRE_MINOR", LL_REQUIRE_MINOR },
15096 { " EXPORTS", LL_EXPORTS },
15097 { " DELAY_LOAD", LL_DELAY_LOAD },
15098 { " DELTA", LL_DELTA }
15099 };
15100 int flags = liblist.l_flags;
15101 size_t fcnt;
15102
15103 for (fcnt = 0; fcnt < ARRAY_SIZE (l_flags_vals); ++fcnt)
15104 if ((flags & l_flags_vals[fcnt].bit) != 0)
15105 {
15106 fputs (l_flags_vals[fcnt].name, stdout);
15107 flags ^= l_flags_vals[fcnt].bit;
15108 }
15109 if (flags != 0)
15110 printf (" %#x", (unsigned int) flags);
15111
15112 puts ("");
15113 }
15114 }
15115
15116 free (elib);
15117 }
15118 else
15119 res = FALSE;
15120 }
15121
15122 if (options_offset != 0)
15123 {
15124 Elf_External_Options * eopt;
15125 Elf_Internal_Options * iopt;
15126 Elf_Internal_Options * option;
15127 size_t offset;
15128 int cnt;
15129 sect = section_headers;
15130
15131 /* Find the section header so that we get the size. */
15132 sect = find_section_by_type (SHT_MIPS_OPTIONS);
15133 /* PR 17533 file: 012-277276-0.004. */
15134 if (sect == NULL)
15135 {
15136 error (_("No MIPS_OPTIONS header found\n"));
15137 return FALSE;
15138 }
15139
15140 eopt = (Elf_External_Options *) get_data (NULL, file, options_offset, 1,
15141 sect->sh_size, _("options"));
15142 if (eopt)
15143 {
15144 iopt = (Elf_Internal_Options *)
15145 cmalloc ((sect->sh_size / sizeof (eopt)), sizeof (* iopt));
15146 if (iopt == NULL)
15147 {
15148 error (_("Out of memory allocating space for MIPS options\n"));
15149 return FALSE;
15150 }
15151
15152 offset = cnt = 0;
15153 option = iopt;
15154
15155 while (offset <= sect->sh_size - sizeof (* eopt))
15156 {
15157 Elf_External_Options * eoption;
15158
15159 eoption = (Elf_External_Options *) ((char *) eopt + offset);
15160
15161 option->kind = BYTE_GET (eoption->kind);
15162 option->size = BYTE_GET (eoption->size);
15163 option->section = BYTE_GET (eoption->section);
15164 option->info = BYTE_GET (eoption->info);
15165
15166 /* PR 17531: file: ffa0fa3b. */
15167 if (option->size < sizeof (* eopt)
15168 || offset + option->size > sect->sh_size)
15169 {
15170 error (_("Invalid size (%u) for MIPS option\n"), option->size);
15171 return FALSE;
15172 }
15173 offset += option->size;
15174
15175 ++option;
15176 ++cnt;
15177 }
15178
15179 printf (_("\nSection '%s' contains %d entries:\n"),
15180 printable_section_name (sect), cnt);
15181
15182 option = iopt;
15183 offset = 0;
15184
15185 while (cnt-- > 0)
15186 {
15187 size_t len;
15188
15189 switch (option->kind)
15190 {
15191 case ODK_NULL:
15192 /* This shouldn't happen. */
15193 printf (" NULL %d %lx", option->section, option->info);
15194 break;
15195 case ODK_REGINFO:
15196 printf (" REGINFO ");
15197 if (elf_header.e_machine == EM_MIPS)
15198 {
15199 /* 32bit form. */
15200 Elf32_External_RegInfo * ereg;
15201 Elf32_RegInfo reginfo;
15202
15203 ereg = (Elf32_External_RegInfo *) (option + 1);
15204 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
15205 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
15206 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
15207 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
15208 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
15209 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
15210
15211 printf ("GPR %08lx GP 0x%lx\n",
15212 reginfo.ri_gprmask,
15213 (unsigned long) reginfo.ri_gp_value);
15214 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
15215 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
15216 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
15217 }
15218 else
15219 {
15220 /* 64 bit form. */
15221 Elf64_External_RegInfo * ereg;
15222 Elf64_Internal_RegInfo reginfo;
15223
15224 ereg = (Elf64_External_RegInfo *) (option + 1);
15225 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
15226 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
15227 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
15228 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
15229 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
15230 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
15231
15232 printf ("GPR %08lx GP 0x",
15233 reginfo.ri_gprmask);
15234 printf_vma (reginfo.ri_gp_value);
15235 printf ("\n");
15236
15237 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
15238 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
15239 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
15240 }
15241 ++option;
15242 continue;
15243 case ODK_EXCEPTIONS:
15244 fputs (" EXCEPTIONS fpe_min(", stdout);
15245 process_mips_fpe_exception (option->info & OEX_FPU_MIN);
15246 fputs (") fpe_max(", stdout);
15247 process_mips_fpe_exception ((option->info & OEX_FPU_MAX) >> 8);
15248 fputs (")", stdout);
15249
15250 if (option->info & OEX_PAGE0)
15251 fputs (" PAGE0", stdout);
15252 if (option->info & OEX_SMM)
15253 fputs (" SMM", stdout);
15254 if (option->info & OEX_FPDBUG)
15255 fputs (" FPDBUG", stdout);
15256 if (option->info & OEX_DISMISS)
15257 fputs (" DISMISS", stdout);
15258 break;
15259 case ODK_PAD:
15260 fputs (" PAD ", stdout);
15261 if (option->info & OPAD_PREFIX)
15262 fputs (" PREFIX", stdout);
15263 if (option->info & OPAD_POSTFIX)
15264 fputs (" POSTFIX", stdout);
15265 if (option->info & OPAD_SYMBOL)
15266 fputs (" SYMBOL", stdout);
15267 break;
15268 case ODK_HWPATCH:
15269 fputs (" HWPATCH ", stdout);
15270 if (option->info & OHW_R4KEOP)
15271 fputs (" R4KEOP", stdout);
15272 if (option->info & OHW_R8KPFETCH)
15273 fputs (" R8KPFETCH", stdout);
15274 if (option->info & OHW_R5KEOP)
15275 fputs (" R5KEOP", stdout);
15276 if (option->info & OHW_R5KCVTL)
15277 fputs (" R5KCVTL", stdout);
15278 break;
15279 case ODK_FILL:
15280 fputs (" FILL ", stdout);
15281 /* XXX Print content of info word? */
15282 break;
15283 case ODK_TAGS:
15284 fputs (" TAGS ", stdout);
15285 /* XXX Print content of info word? */
15286 break;
15287 case ODK_HWAND:
15288 fputs (" HWAND ", stdout);
15289 if (option->info & OHWA0_R4KEOP_CHECKED)
15290 fputs (" R4KEOP_CHECKED", stdout);
15291 if (option->info & OHWA0_R4KEOP_CLEAN)
15292 fputs (" R4KEOP_CLEAN", stdout);
15293 break;
15294 case ODK_HWOR:
15295 fputs (" HWOR ", stdout);
15296 if (option->info & OHWA0_R4KEOP_CHECKED)
15297 fputs (" R4KEOP_CHECKED", stdout);
15298 if (option->info & OHWA0_R4KEOP_CLEAN)
15299 fputs (" R4KEOP_CLEAN", stdout);
15300 break;
15301 case ODK_GP_GROUP:
15302 printf (" GP_GROUP %#06lx self-contained %#06lx",
15303 option->info & OGP_GROUP,
15304 (option->info & OGP_SELF) >> 16);
15305 break;
15306 case ODK_IDENT:
15307 printf (" IDENT %#06lx self-contained %#06lx",
15308 option->info & OGP_GROUP,
15309 (option->info & OGP_SELF) >> 16);
15310 break;
15311 default:
15312 /* This shouldn't happen. */
15313 printf (" %3d ??? %d %lx",
15314 option->kind, option->section, option->info);
15315 break;
15316 }
15317
15318 len = sizeof (* eopt);
15319 while (len < option->size)
15320 {
15321 unsigned char datum = * ((unsigned char *) eopt + offset + len);
15322
15323 if (ISPRINT (datum))
15324 printf ("%c", datum);
15325 else
15326 printf ("\\%03o", datum);
15327 len ++;
15328 }
15329 fputs ("\n", stdout);
15330
15331 offset += option->size;
15332 ++option;
15333 }
15334
15335 free (eopt);
15336 }
15337 else
15338 res = FALSE;
15339 }
15340
15341 if (conflicts_offset != 0 && conflictsno != 0)
15342 {
15343 Elf32_Conflict * iconf;
15344 size_t cnt;
15345
15346 if (dynamic_symbols == NULL)
15347 {
15348 error (_("conflict list found without a dynamic symbol table\n"));
15349 return FALSE;
15350 }
15351
15352 iconf = (Elf32_Conflict *) cmalloc (conflictsno, sizeof (* iconf));
15353 if (iconf == NULL)
15354 {
15355 error (_("Out of memory allocating space for dynamic conflicts\n"));
15356 return FALSE;
15357 }
15358
15359 if (is_32bit_elf)
15360 {
15361 Elf32_External_Conflict * econf32;
15362
15363 econf32 = (Elf32_External_Conflict *)
15364 get_data (NULL, file, conflicts_offset, conflictsno,
15365 sizeof (* econf32), _("conflict"));
15366 if (!econf32)
15367 return FALSE;
15368
15369 for (cnt = 0; cnt < conflictsno; ++cnt)
15370 iconf[cnt] = BYTE_GET (econf32[cnt]);
15371
15372 free (econf32);
15373 }
15374 else
15375 {
15376 Elf64_External_Conflict * econf64;
15377
15378 econf64 = (Elf64_External_Conflict *)
15379 get_data (NULL, file, conflicts_offset, conflictsno,
15380 sizeof (* econf64), _("conflict"));
15381 if (!econf64)
15382 return FALSE;
15383
15384 for (cnt = 0; cnt < conflictsno; ++cnt)
15385 iconf[cnt] = BYTE_GET (econf64[cnt]);
15386
15387 free (econf64);
15388 }
15389
15390 printf (_("\nSection '.conflict' contains %lu entries:\n"),
15391 (unsigned long) conflictsno);
15392 puts (_(" Num: Index Value Name"));
15393
15394 for (cnt = 0; cnt < conflictsno; ++cnt)
15395 {
15396 printf ("%5lu: %8lu ", (unsigned long) cnt, iconf[cnt]);
15397
15398 if (iconf[cnt] >= num_dynamic_syms)
15399 printf (_("<corrupt symbol index>"));
15400 else
15401 {
15402 Elf_Internal_Sym * psym;
15403
15404 psym = & dynamic_symbols[iconf[cnt]];
15405 print_vma (psym->st_value, FULL_HEX);
15406 putchar (' ');
15407 if (VALID_DYNAMIC_NAME (psym->st_name))
15408 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
15409 else
15410 printf (_("<corrupt: %14ld>"), psym->st_name);
15411 }
15412 putchar ('\n');
15413 }
15414
15415 free (iconf);
15416 }
15417
15418 if (pltgot != 0 && local_gotno != 0)
15419 {
15420 bfd_vma ent, local_end, global_end;
15421 size_t i, offset;
15422 unsigned char * data;
15423 unsigned char * data_end;
15424 int addr_size;
15425
15426 ent = pltgot;
15427 addr_size = (is_32bit_elf ? 4 : 8);
15428 local_end = pltgot + local_gotno * addr_size;
15429
15430 /* PR binutils/17533 file: 012-111227-0.004 */
15431 if (symtabno < gotsym)
15432 {
15433 error (_("The GOT symbol offset (%lu) is greater than the symbol table size (%lu)\n"),
15434 (unsigned long) gotsym, (unsigned long) symtabno);
15435 return FALSE;
15436 }
15437
15438 global_end = local_end + (symtabno - gotsym) * addr_size;
15439 /* PR 17531: file: 54c91a34. */
15440 if (global_end < local_end)
15441 {
15442 error (_("Too many GOT symbols: %lu\n"), (unsigned long) symtabno);
15443 return FALSE;
15444 }
15445
15446 offset = offset_from_vma (file, pltgot, global_end - pltgot);
15447 data = (unsigned char *) get_data (NULL, file, offset,
15448 global_end - pltgot, 1,
15449 _("Global Offset Table data"));
15450 if (data == NULL)
15451 return FALSE;
15452 data_end = data + (global_end - pltgot);
15453
15454 printf (_("\nPrimary GOT:\n"));
15455 printf (_(" Canonical gp value: "));
15456 print_vma (pltgot + 0x7ff0, LONG_HEX);
15457 printf ("\n\n");
15458
15459 printf (_(" Reserved entries:\n"));
15460 printf (_(" %*s %10s %*s Purpose\n"),
15461 addr_size * 2, _("Address"), _("Access"),
15462 addr_size * 2, _("Initial"));
15463 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15464 printf (_(" Lazy resolver\n"));
15465 if (ent == (bfd_vma) -1)
15466 goto got_print_fail;
15467 if (data
15468 && (byte_get (data + ent - pltgot, addr_size)
15469 >> (addr_size * 8 - 1)) != 0)
15470 {
15471 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15472 printf (_(" Module pointer (GNU extension)\n"));
15473 if (ent == (bfd_vma) -1)
15474 goto got_print_fail;
15475 }
15476 printf ("\n");
15477
15478 if (ent < local_end)
15479 {
15480 printf (_(" Local entries:\n"));
15481 printf (" %*s %10s %*s\n",
15482 addr_size * 2, _("Address"), _("Access"),
15483 addr_size * 2, _("Initial"));
15484 while (ent < local_end)
15485 {
15486 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15487 printf ("\n");
15488 if (ent == (bfd_vma) -1)
15489 goto got_print_fail;
15490 }
15491 printf ("\n");
15492 }
15493
15494 if (gotsym < symtabno)
15495 {
15496 int sym_width;
15497
15498 printf (_(" Global entries:\n"));
15499 printf (" %*s %10s %*s %*s %-7s %3s %s\n",
15500 addr_size * 2, _("Address"),
15501 _("Access"),
15502 addr_size * 2, _("Initial"),
15503 addr_size * 2, _("Sym.Val."),
15504 _("Type"),
15505 /* Note for translators: "Ndx" = abbreviated form of "Index". */
15506 _("Ndx"), _("Name"));
15507
15508 sym_width = (is_32bit_elf ? 80 : 160) - 28 - addr_size * 6 - 1;
15509
15510 for (i = gotsym; i < symtabno; i++)
15511 {
15512 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15513 printf (" ");
15514
15515 if (dynamic_symbols == NULL)
15516 printf (_("<no dynamic symbols>"));
15517 else if (i < num_dynamic_syms)
15518 {
15519 Elf_Internal_Sym * psym = dynamic_symbols + i;
15520
15521 print_vma (psym->st_value, LONG_HEX);
15522 printf (" %-7s %3s ",
15523 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
15524 get_symbol_index_type (psym->st_shndx));
15525
15526 if (VALID_DYNAMIC_NAME (psym->st_name))
15527 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
15528 else
15529 printf (_("<corrupt: %14ld>"), psym->st_name);
15530 }
15531 else
15532 printf (_("<symbol index %lu exceeds number of dynamic symbols>"),
15533 (unsigned long) i);
15534
15535 printf ("\n");
15536 if (ent == (bfd_vma) -1)
15537 break;
15538 }
15539 printf ("\n");
15540 }
15541
15542 got_print_fail:
15543 if (data)
15544 free (data);
15545 }
15546
15547 if (mips_pltgot != 0 && jmprel != 0 && pltrel != 0 && pltrelsz != 0)
15548 {
15549 bfd_vma ent, end;
15550 size_t offset, rel_offset;
15551 unsigned long count, i;
15552 unsigned char * data;
15553 int addr_size, sym_width;
15554 Elf_Internal_Rela * rels;
15555
15556 rel_offset = offset_from_vma (file, jmprel, pltrelsz);
15557 if (pltrel == DT_RELA)
15558 {
15559 if (!slurp_rela_relocs (file, rel_offset, pltrelsz, &rels, &count))
15560 return FALSE;
15561 }
15562 else
15563 {
15564 if (!slurp_rel_relocs (file, rel_offset, pltrelsz, &rels, &count))
15565 return FALSE;
15566 }
15567
15568 ent = mips_pltgot;
15569 addr_size = (is_32bit_elf ? 4 : 8);
15570 end = mips_pltgot + (2 + count) * addr_size;
15571
15572 offset = offset_from_vma (file, mips_pltgot, end - mips_pltgot);
15573 data = (unsigned char *) get_data (NULL, file, offset, end - mips_pltgot,
15574 1, _("Procedure Linkage Table data"));
15575 if (data == NULL)
15576 return FALSE;
15577
15578 printf ("\nPLT GOT:\n\n");
15579 printf (_(" Reserved entries:\n"));
15580 printf (_(" %*s %*s Purpose\n"),
15581 addr_size * 2, _("Address"), addr_size * 2, _("Initial"));
15582 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15583 printf (_(" PLT lazy resolver\n"));
15584 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15585 printf (_(" Module pointer\n"));
15586 printf ("\n");
15587
15588 printf (_(" Entries:\n"));
15589 printf (" %*s %*s %*s %-7s %3s %s\n",
15590 addr_size * 2, _("Address"),
15591 addr_size * 2, _("Initial"),
15592 addr_size * 2, _("Sym.Val."), _("Type"), _("Ndx"), _("Name"));
15593 sym_width = (is_32bit_elf ? 80 : 160) - 17 - addr_size * 6 - 1;
15594 for (i = 0; i < count; i++)
15595 {
15596 unsigned long idx = get_reloc_symindex (rels[i].r_info);
15597
15598 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15599 printf (" ");
15600
15601 if (idx >= num_dynamic_syms)
15602 printf (_("<corrupt symbol index: %lu>"), idx);
15603 else
15604 {
15605 Elf_Internal_Sym * psym = dynamic_symbols + idx;
15606
15607 print_vma (psym->st_value, LONG_HEX);
15608 printf (" %-7s %3s ",
15609 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
15610 get_symbol_index_type (psym->st_shndx));
15611 if (VALID_DYNAMIC_NAME (psym->st_name))
15612 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
15613 else
15614 printf (_("<corrupt: %14ld>"), psym->st_name);
15615 }
15616 printf ("\n");
15617 }
15618 printf ("\n");
15619
15620 if (data)
15621 free (data);
15622 free (rels);
15623 }
15624
15625 return res;
15626 }
15627
15628 static bfd_boolean
15629 process_nds32_specific (FILE * file)
15630 {
15631 Elf_Internal_Shdr *sect = NULL;
15632
15633 sect = find_section (".nds32_e_flags");
15634 if (sect != NULL)
15635 {
15636 unsigned int *flag;
15637
15638 printf ("\nNDS32 elf flags section:\n");
15639 flag = get_data (NULL, file, sect->sh_offset, 1,
15640 sect->sh_size, _("NDS32 elf flags section"));
15641
15642 if (! flag)
15643 return FALSE;
15644
15645 switch ((*flag) & 0x3)
15646 {
15647 case 0:
15648 printf ("(VEC_SIZE):\tNo entry.\n");
15649 break;
15650 case 1:
15651 printf ("(VEC_SIZE):\t4 bytes\n");
15652 break;
15653 case 2:
15654 printf ("(VEC_SIZE):\t16 bytes\n");
15655 break;
15656 case 3:
15657 printf ("(VEC_SIZE):\treserved\n");
15658 break;
15659 }
15660 }
15661
15662 return TRUE;
15663 }
15664
15665 static bfd_boolean
15666 process_gnu_liblist (FILE * file)
15667 {
15668 Elf_Internal_Shdr * section;
15669 Elf_Internal_Shdr * string_sec;
15670 Elf32_External_Lib * elib;
15671 char * strtab;
15672 size_t strtab_size;
15673 size_t cnt;
15674 unsigned i;
15675 bfd_boolean res = TRUE;
15676
15677 if (! do_arch)
15678 return TRUE;
15679
15680 for (i = 0, section = section_headers;
15681 i < elf_header.e_shnum;
15682 i++, section++)
15683 {
15684 switch (section->sh_type)
15685 {
15686 case SHT_GNU_LIBLIST:
15687 if (section->sh_link >= elf_header.e_shnum)
15688 break;
15689
15690 elib = (Elf32_External_Lib *)
15691 get_data (NULL, file, section->sh_offset, 1, section->sh_size,
15692 _("liblist section data"));
15693
15694 if (elib == NULL)
15695 {
15696 res = FALSE;
15697 break;
15698 }
15699
15700 string_sec = section_headers + section->sh_link;
15701 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
15702 string_sec->sh_size,
15703 _("liblist string table"));
15704 if (strtab == NULL
15705 || section->sh_entsize != sizeof (Elf32_External_Lib))
15706 {
15707 free (elib);
15708 free (strtab);
15709 res = FALSE;
15710 break;
15711 }
15712 strtab_size = string_sec->sh_size;
15713
15714 printf (_("\nLibrary list section '%s' contains %lu entries:\n"),
15715 printable_section_name (section),
15716 (unsigned long) (section->sh_size / sizeof (Elf32_External_Lib)));
15717
15718 puts (_(" Library Time Stamp Checksum Version Flags"));
15719
15720 for (cnt = 0; cnt < section->sh_size / sizeof (Elf32_External_Lib);
15721 ++cnt)
15722 {
15723 Elf32_Lib liblist;
15724 time_t atime;
15725 char timebuf[128];
15726 struct tm * tmp;
15727
15728 liblist.l_name = BYTE_GET (elib[cnt].l_name);
15729 atime = BYTE_GET (elib[cnt].l_time_stamp);
15730 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
15731 liblist.l_version = BYTE_GET (elib[cnt].l_version);
15732 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
15733
15734 tmp = gmtime (&atime);
15735 snprintf (timebuf, sizeof (timebuf),
15736 "%04u-%02u-%02uT%02u:%02u:%02u",
15737 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
15738 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
15739
15740 printf ("%3lu: ", (unsigned long) cnt);
15741 if (do_wide)
15742 printf ("%-20s", liblist.l_name < strtab_size
15743 ? strtab + liblist.l_name : _("<corrupt>"));
15744 else
15745 printf ("%-20.20s", liblist.l_name < strtab_size
15746 ? strtab + liblist.l_name : _("<corrupt>"));
15747 printf (" %s %#010lx %-7ld %-7ld\n", timebuf, liblist.l_checksum,
15748 liblist.l_version, liblist.l_flags);
15749 }
15750
15751 free (elib);
15752 free (strtab);
15753 }
15754 }
15755
15756 return res;
15757 }
15758
15759 static const char *
15760 get_note_type (unsigned e_type)
15761 {
15762 static char buff[64];
15763
15764 if (elf_header.e_type == ET_CORE)
15765 switch (e_type)
15766 {
15767 case NT_AUXV:
15768 return _("NT_AUXV (auxiliary vector)");
15769 case NT_PRSTATUS:
15770 return _("NT_PRSTATUS (prstatus structure)");
15771 case NT_FPREGSET:
15772 return _("NT_FPREGSET (floating point registers)");
15773 case NT_PRPSINFO:
15774 return _("NT_PRPSINFO (prpsinfo structure)");
15775 case NT_TASKSTRUCT:
15776 return _("NT_TASKSTRUCT (task structure)");
15777 case NT_PRXFPREG:
15778 return _("NT_PRXFPREG (user_xfpregs structure)");
15779 case NT_PPC_VMX:
15780 return _("NT_PPC_VMX (ppc Altivec registers)");
15781 case NT_PPC_VSX:
15782 return _("NT_PPC_VSX (ppc VSX registers)");
15783 case NT_386_TLS:
15784 return _("NT_386_TLS (x86 TLS information)");
15785 case NT_386_IOPERM:
15786 return _("NT_386_IOPERM (x86 I/O permissions)");
15787 case NT_X86_XSTATE:
15788 return _("NT_X86_XSTATE (x86 XSAVE extended state)");
15789 case NT_S390_HIGH_GPRS:
15790 return _("NT_S390_HIGH_GPRS (s390 upper register halves)");
15791 case NT_S390_TIMER:
15792 return _("NT_S390_TIMER (s390 timer register)");
15793 case NT_S390_TODCMP:
15794 return _("NT_S390_TODCMP (s390 TOD comparator register)");
15795 case NT_S390_TODPREG:
15796 return _("NT_S390_TODPREG (s390 TOD programmable register)");
15797 case NT_S390_CTRS:
15798 return _("NT_S390_CTRS (s390 control registers)");
15799 case NT_S390_PREFIX:
15800 return _("NT_S390_PREFIX (s390 prefix register)");
15801 case NT_S390_LAST_BREAK:
15802 return _("NT_S390_LAST_BREAK (s390 last breaking event address)");
15803 case NT_S390_SYSTEM_CALL:
15804 return _("NT_S390_SYSTEM_CALL (s390 system call restart data)");
15805 case NT_S390_TDB:
15806 return _("NT_S390_TDB (s390 transaction diagnostic block)");
15807 case NT_S390_VXRS_LOW:
15808 return _("NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)");
15809 case NT_S390_VXRS_HIGH:
15810 return _("NT_S390_VXRS_HIGH (s390 vector registers 16-31)");
15811 case NT_ARM_VFP:
15812 return _("NT_ARM_VFP (arm VFP registers)");
15813 case NT_ARM_TLS:
15814 return _("NT_ARM_TLS (AArch TLS registers)");
15815 case NT_ARM_HW_BREAK:
15816 return _("NT_ARM_HW_BREAK (AArch hardware breakpoint registers)");
15817 case NT_ARM_HW_WATCH:
15818 return _("NT_ARM_HW_WATCH (AArch hardware watchpoint registers)");
15819 case NT_PSTATUS:
15820 return _("NT_PSTATUS (pstatus structure)");
15821 case NT_FPREGS:
15822 return _("NT_FPREGS (floating point registers)");
15823 case NT_PSINFO:
15824 return _("NT_PSINFO (psinfo structure)");
15825 case NT_LWPSTATUS:
15826 return _("NT_LWPSTATUS (lwpstatus_t structure)");
15827 case NT_LWPSINFO:
15828 return _("NT_LWPSINFO (lwpsinfo_t structure)");
15829 case NT_WIN32PSTATUS:
15830 return _("NT_WIN32PSTATUS (win32_pstatus structure)");
15831 case NT_SIGINFO:
15832 return _("NT_SIGINFO (siginfo_t data)");
15833 case NT_FILE:
15834 return _("NT_FILE (mapped files)");
15835 default:
15836 break;
15837 }
15838 else
15839 switch (e_type)
15840 {
15841 case NT_VERSION:
15842 return _("NT_VERSION (version)");
15843 case NT_ARCH:
15844 return _("NT_ARCH (architecture)");
15845 case NT_GNU_BUILD_ATTRIBUTE_OPEN:
15846 return _("NT_GNU_BUILD_ATTRIBUTE_OPEN");
15847 case NT_GNU_BUILD_ATTRIBUTE_FUNC:
15848 return _("NT_GNU_BUILD_ATTRIBUTE_FUNC");
15849 default:
15850 break;
15851 }
15852
15853 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
15854 return buff;
15855 }
15856
15857 static bfd_boolean
15858 print_core_note (Elf_Internal_Note *pnote)
15859 {
15860 unsigned int addr_size = is_32bit_elf ? 4 : 8;
15861 bfd_vma count, page_size;
15862 unsigned char *descdata, *filenames, *descend;
15863
15864 if (pnote->type != NT_FILE)
15865 return TRUE;
15866
15867 #ifndef BFD64
15868 if (!is_32bit_elf)
15869 {
15870 printf (_(" Cannot decode 64-bit note in 32-bit build\n"));
15871 /* Still "successful". */
15872 return TRUE;
15873 }
15874 #endif
15875
15876 if (pnote->descsz < 2 * addr_size)
15877 {
15878 error (_(" Malformed note - too short for header\n"));
15879 return FALSE;
15880 }
15881
15882 descdata = (unsigned char *) pnote->descdata;
15883 descend = descdata + pnote->descsz;
15884
15885 if (descdata[pnote->descsz - 1] != '\0')
15886 {
15887 error (_(" Malformed note - does not end with \\0\n"));
15888 return FALSE;
15889 }
15890
15891 count = byte_get (descdata, addr_size);
15892 descdata += addr_size;
15893
15894 page_size = byte_get (descdata, addr_size);
15895 descdata += addr_size;
15896
15897 if (pnote->descsz < 2 * addr_size + count * 3 * addr_size)
15898 {
15899 error (_(" Malformed note - too short for supplied file count\n"));
15900 return FALSE;
15901 }
15902
15903 printf (_(" Page size: "));
15904 print_vma (page_size, DEC);
15905 printf ("\n");
15906
15907 printf (_(" %*s%*s%*s\n"),
15908 (int) (2 + 2 * addr_size), _("Start"),
15909 (int) (4 + 2 * addr_size), _("End"),
15910 (int) (4 + 2 * addr_size), _("Page Offset"));
15911 filenames = descdata + count * 3 * addr_size;
15912 while (count-- > 0)
15913 {
15914 bfd_vma start, end, file_ofs;
15915
15916 if (filenames == descend)
15917 {
15918 error (_(" Malformed note - filenames end too early\n"));
15919 return FALSE;
15920 }
15921
15922 start = byte_get (descdata, addr_size);
15923 descdata += addr_size;
15924 end = byte_get (descdata, addr_size);
15925 descdata += addr_size;
15926 file_ofs = byte_get (descdata, addr_size);
15927 descdata += addr_size;
15928
15929 printf (" ");
15930 print_vma (start, FULL_HEX);
15931 printf (" ");
15932 print_vma (end, FULL_HEX);
15933 printf (" ");
15934 print_vma (file_ofs, FULL_HEX);
15935 printf ("\n %s\n", filenames);
15936
15937 filenames += 1 + strlen ((char *) filenames);
15938 }
15939
15940 return TRUE;
15941 }
15942
15943 static const char *
15944 get_gnu_elf_note_type (unsigned e_type)
15945 {
15946 /* NB/ Keep this switch statement in sync with print_gnu_note (). */
15947 switch (e_type)
15948 {
15949 case NT_GNU_ABI_TAG:
15950 return _("NT_GNU_ABI_TAG (ABI version tag)");
15951 case NT_GNU_HWCAP:
15952 return _("NT_GNU_HWCAP (DSO-supplied software HWCAP info)");
15953 case NT_GNU_BUILD_ID:
15954 return _("NT_GNU_BUILD_ID (unique build ID bitstring)");
15955 case NT_GNU_GOLD_VERSION:
15956 return _("NT_GNU_GOLD_VERSION (gold version)");
15957 case NT_GNU_PROPERTY_TYPE_0:
15958 return _("NT_GNU_PROPERTY_TYPE_0");
15959 case NT_GNU_BUILD_ATTRIBUTE_OPEN:
15960 return _("NT_GNU_BUILD_ATTRIBUTE_OPEN");
15961 case NT_GNU_BUILD_ATTRIBUTE_FUNC:
15962 return _("NT_GNU_BUILD_ATTRIBUTE_FUNC");
15963 default:
15964 {
15965 static char buff[64];
15966
15967 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
15968 return buff;
15969 }
15970 }
15971 }
15972
15973 static void
15974 decode_x86_isa (unsigned int bitmask)
15975 {
15976 while (bitmask)
15977 {
15978 unsigned int bit = bitmask & (- bitmask);
15979
15980 bitmask &= ~ bit;
15981 switch (bit)
15982 {
15983 case GNU_PROPERTY_X86_ISA_1_486: printf ("i486"); break;
15984 case GNU_PROPERTY_X86_ISA_1_586: printf ("586"); break;
15985 case GNU_PROPERTY_X86_ISA_1_686: printf ("686"); break;
15986 case GNU_PROPERTY_X86_ISA_1_SSE: printf ("SSE"); break;
15987 case GNU_PROPERTY_X86_ISA_1_SSE2: printf ("SSE2"); break;
15988 case GNU_PROPERTY_X86_ISA_1_SSE3: printf ("SSE3"); break;
15989 case GNU_PROPERTY_X86_ISA_1_SSSE3: printf ("SSSE3"); break;
15990 case GNU_PROPERTY_X86_ISA_1_SSE4_1: printf ("SSE4_1"); break;
15991 case GNU_PROPERTY_X86_ISA_1_SSE4_2: printf ("SSE4_2"); break;
15992 case GNU_PROPERTY_X86_ISA_1_AVX: printf ("AVX"); break;
15993 case GNU_PROPERTY_X86_ISA_1_AVX2: printf ("AVX2"); break;
15994 case GNU_PROPERTY_X86_ISA_1_AVX512F: printf ("AVX512F"); break;
15995 case GNU_PROPERTY_X86_ISA_1_AVX512CD: printf ("AVX512CD"); break;
15996 case GNU_PROPERTY_X86_ISA_1_AVX512ER: printf ("AVX512ER"); break;
15997 case GNU_PROPERTY_X86_ISA_1_AVX512PF: printf ("AVX512PF"); break;
15998 case GNU_PROPERTY_X86_ISA_1_AVX512VL: printf ("AVX512VL"); break;
15999 case GNU_PROPERTY_X86_ISA_1_AVX512DQ: printf ("AVX512DQ"); break;
16000 case GNU_PROPERTY_X86_ISA_1_AVX512BW: printf ("AVX512BW"); break;
16001 default: printf (_("<unknown: %x>"), bit); break;
16002 }
16003 if (bitmask)
16004 printf (", ");
16005 }
16006 }
16007
16008 static void
16009 print_gnu_property_note (Elf_Internal_Note * pnote)
16010 {
16011 unsigned char * ptr = (unsigned char *) pnote->descdata;
16012 unsigned char * ptr_end = ptr + pnote->descsz;
16013 unsigned int size = is_32bit_elf ? 4 : 8;
16014
16015 printf (_(" Properties: "));
16016
16017 if (pnote->descsz < 8 || (pnote->descsz % size) != 0)
16018 {
16019 printf (_("<corrupt GNU_PROPERTY_TYPE, size = %#lx>\n"), pnote->descsz);
16020 return;
16021 }
16022
16023 while (1)
16024 {
16025 unsigned int j;
16026 unsigned int type = byte_get (ptr, 4);
16027 unsigned int datasz = byte_get (ptr + 4, 4);
16028
16029 ptr += 8;
16030
16031 if ((ptr + datasz) > ptr_end)
16032 {
16033 printf (_("<corrupt type (%#x) datasz: %#x>\n"),
16034 type, datasz);
16035 break;
16036 }
16037
16038 if (type >= GNU_PROPERTY_LOPROC && type <= GNU_PROPERTY_HIPROC)
16039 {
16040 if (elf_header.e_machine == EM_X86_64
16041 || elf_header.e_machine == EM_IAMCU
16042 || elf_header.e_machine == EM_386)
16043 {
16044 switch (type)
16045 {
16046 case GNU_PROPERTY_X86_ISA_1_USED:
16047 printf ("x86 ISA used: ");
16048 if (datasz != 4)
16049 printf (_("<corrupt length: %#x> "), datasz);
16050 else
16051 decode_x86_isa (byte_get (ptr, 4));
16052 goto next;
16053
16054 case GNU_PROPERTY_X86_ISA_1_NEEDED:
16055 printf ("x86 ISA needed: ");
16056 if (datasz != 4)
16057 printf (_("<corrupt length: %#x> "), datasz);
16058 else
16059 decode_x86_isa (byte_get (ptr, 4));
16060 goto next;
16061
16062 default:
16063 break;
16064 }
16065 }
16066 }
16067 else
16068 {
16069 switch (type)
16070 {
16071 case GNU_PROPERTY_STACK_SIZE:
16072 printf (_("stack size: "));
16073 if (datasz != size)
16074 printf (_("<corrupt length: %#x> "), datasz);
16075 else
16076 printf ("%#lx", (unsigned long) byte_get (ptr, size));
16077 goto next;
16078
16079 case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
16080 printf ("no copy on protected ");
16081 if (datasz)
16082 printf (_("<corrupt length: %#x> "), datasz);
16083 goto next;
16084
16085 default:
16086 break;
16087 }
16088 }
16089
16090 if (type < GNU_PROPERTY_LOPROC)
16091 printf (_("<unknown type %#x data: "), type);
16092 else if (type < GNU_PROPERTY_LOUSER)
16093 printf (_("<procesor-specific type %#x data: "), type);
16094 else
16095 printf (_("<application-specific type %#x data: "), type);
16096 for (j = 0; j < datasz; ++j)
16097 printf ("%02x ", ptr[j] & 0xff);
16098 printf (">");
16099
16100 next:
16101 ptr += ((datasz + (size - 1)) & ~ (size - 1));
16102 if (ptr == ptr_end)
16103 break;
16104 else
16105 {
16106 if (do_wide)
16107 printf (", ");
16108 else
16109 printf ("\n\t");
16110 }
16111
16112 if (ptr > (ptr_end - 8))
16113 {
16114 printf (_("<corrupt descsz: %#lx>\n"), pnote->descsz);
16115 break;
16116 }
16117 }
16118
16119 printf ("\n");
16120 }
16121
16122 static bfd_boolean
16123 print_gnu_note (Elf_Internal_Note *pnote)
16124 {
16125 /* NB/ Keep this switch statement in sync with get_gnu_elf_note_type (). */
16126 switch (pnote->type)
16127 {
16128 case NT_GNU_BUILD_ID:
16129 {
16130 unsigned long i;
16131
16132 printf (_(" Build ID: "));
16133 for (i = 0; i < pnote->descsz; ++i)
16134 printf ("%02x", pnote->descdata[i] & 0xff);
16135 printf ("\n");
16136 }
16137 break;
16138
16139 case NT_GNU_ABI_TAG:
16140 {
16141 unsigned long os, major, minor, subminor;
16142 const char *osname;
16143
16144 /* PR 17531: file: 030-599401-0.004. */
16145 if (pnote->descsz < 16)
16146 {
16147 printf (_(" <corrupt GNU_ABI_TAG>\n"));
16148 break;
16149 }
16150
16151 os = byte_get ((unsigned char *) pnote->descdata, 4);
16152 major = byte_get ((unsigned char *) pnote->descdata + 4, 4);
16153 minor = byte_get ((unsigned char *) pnote->descdata + 8, 4);
16154 subminor = byte_get ((unsigned char *) pnote->descdata + 12, 4);
16155
16156 switch (os)
16157 {
16158 case GNU_ABI_TAG_LINUX:
16159 osname = "Linux";
16160 break;
16161 case GNU_ABI_TAG_HURD:
16162 osname = "Hurd";
16163 break;
16164 case GNU_ABI_TAG_SOLARIS:
16165 osname = "Solaris";
16166 break;
16167 case GNU_ABI_TAG_FREEBSD:
16168 osname = "FreeBSD";
16169 break;
16170 case GNU_ABI_TAG_NETBSD:
16171 osname = "NetBSD";
16172 break;
16173 case GNU_ABI_TAG_SYLLABLE:
16174 osname = "Syllable";
16175 break;
16176 case GNU_ABI_TAG_NACL:
16177 osname = "NaCl";
16178 break;
16179 default:
16180 osname = "Unknown";
16181 break;
16182 }
16183
16184 printf (_(" OS: %s, ABI: %ld.%ld.%ld\n"), osname,
16185 major, minor, subminor);
16186 }
16187 break;
16188
16189 case NT_GNU_GOLD_VERSION:
16190 {
16191 unsigned long i;
16192
16193 printf (_(" Version: "));
16194 for (i = 0; i < pnote->descsz && pnote->descdata[i] != '\0'; ++i)
16195 printf ("%c", pnote->descdata[i]);
16196 printf ("\n");
16197 }
16198 break;
16199
16200 case NT_GNU_HWCAP:
16201 {
16202 unsigned long num_entries, mask;
16203
16204 /* Hardware capabilities information. Word 0 is the number of entries.
16205 Word 1 is a bitmask of enabled entries. The rest of the descriptor
16206 is a series of entries, where each entry is a single byte followed
16207 by a nul terminated string. The byte gives the bit number to test
16208 if enabled in the bitmask. */
16209 printf (_(" Hardware Capabilities: "));
16210 if (pnote->descsz < 8)
16211 {
16212 error (_("<corrupt GNU_HWCAP>\n"));
16213 return FALSE;
16214 }
16215 num_entries = byte_get ((unsigned char *) pnote->descdata, 4);
16216 mask = byte_get ((unsigned char *) pnote->descdata + 4, 4);
16217 printf (_("num entries: %ld, enabled mask: %lx\n"), num_entries, mask);
16218 /* FIXME: Add code to display the entries... */
16219 }
16220 break;
16221
16222 case NT_GNU_PROPERTY_TYPE_0:
16223 print_gnu_property_note (pnote);
16224 break;
16225
16226 default:
16227 /* Handle unrecognised types. An error message should have already been
16228 created by get_gnu_elf_note_type(), so all that we need to do is to
16229 display the data. */
16230 {
16231 unsigned long i;
16232
16233 printf (_(" Description data: "));
16234 for (i = 0; i < pnote->descsz; ++i)
16235 printf ("%02x ", pnote->descdata[i] & 0xff);
16236 printf ("\n");
16237 }
16238 break;
16239 }
16240
16241 return TRUE;
16242 }
16243
16244 static const char *
16245 get_v850_elf_note_type (enum v850_notes n_type)
16246 {
16247 static char buff[64];
16248
16249 switch (n_type)
16250 {
16251 case V850_NOTE_ALIGNMENT: return _("Alignment of 8-byte objects");
16252 case V850_NOTE_DATA_SIZE: return _("Sizeof double and long double");
16253 case V850_NOTE_FPU_INFO: return _("Type of FPU support needed");
16254 case V850_NOTE_SIMD_INFO: return _("Use of SIMD instructions");
16255 case V850_NOTE_CACHE_INFO: return _("Use of cache");
16256 case V850_NOTE_MMU_INFO: return _("Use of MMU");
16257 default:
16258 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), n_type);
16259 return buff;
16260 }
16261 }
16262
16263 static bfd_boolean
16264 print_v850_note (Elf_Internal_Note * pnote)
16265 {
16266 unsigned int val;
16267
16268 if (pnote->descsz != 4)
16269 return FALSE;
16270
16271 val = byte_get ((unsigned char *) pnote->descdata, pnote->descsz);
16272
16273 if (val == 0)
16274 {
16275 printf (_("not set\n"));
16276 return TRUE;
16277 }
16278
16279 switch (pnote->type)
16280 {
16281 case V850_NOTE_ALIGNMENT:
16282 switch (val)
16283 {
16284 case EF_RH850_DATA_ALIGN4: printf (_("4-byte\n")); return TRUE;
16285 case EF_RH850_DATA_ALIGN8: printf (_("8-byte\n")); return TRUE;
16286 }
16287 break;
16288
16289 case V850_NOTE_DATA_SIZE:
16290 switch (val)
16291 {
16292 case EF_RH850_DOUBLE32: printf (_("4-bytes\n")); return TRUE;
16293 case EF_RH850_DOUBLE64: printf (_("8-bytes\n")); return TRUE;
16294 }
16295 break;
16296
16297 case V850_NOTE_FPU_INFO:
16298 switch (val)
16299 {
16300 case EF_RH850_FPU20: printf (_("FPU-2.0\n")); return TRUE;
16301 case EF_RH850_FPU30: printf (_("FPU-3.0\n")); return TRUE;
16302 }
16303 break;
16304
16305 case V850_NOTE_MMU_INFO:
16306 case V850_NOTE_CACHE_INFO:
16307 case V850_NOTE_SIMD_INFO:
16308 if (val == EF_RH850_SIMD)
16309 {
16310 printf (_("yes\n"));
16311 return TRUE;
16312 }
16313 break;
16314
16315 default:
16316 /* An 'unknown note type' message will already have been displayed. */
16317 break;
16318 }
16319
16320 printf (_("unknown value: %x\n"), val);
16321 return FALSE;
16322 }
16323
16324 static bfd_boolean
16325 process_netbsd_elf_note (Elf_Internal_Note * pnote)
16326 {
16327 unsigned int version;
16328
16329 switch (pnote->type)
16330 {
16331 case NT_NETBSD_IDENT:
16332 version = byte_get ((unsigned char *) pnote->descdata, sizeof (version));
16333 if ((version / 10000) % 100)
16334 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u%s%c)\n", pnote->descsz,
16335 version, version / 100000000, (version / 1000000) % 100,
16336 (version / 10000) % 100 > 26 ? "Z" : "",
16337 'A' + (version / 10000) % 26);
16338 else
16339 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u.%u)\n", pnote->descsz,
16340 version, version / 100000000, (version / 1000000) % 100,
16341 (version / 100) % 100);
16342 return TRUE;
16343
16344 case NT_NETBSD_MARCH:
16345 printf (" NetBSD\t0x%08lx\tMARCH <%s>\n", pnote->descsz,
16346 pnote->descdata);
16347 return TRUE;
16348
16349 default:
16350 printf (" NetBSD\t0x%08lx\tUnknown note type: (0x%08lx)\n", pnote->descsz,
16351 pnote->type);
16352 return FALSE;
16353 }
16354 }
16355
16356 static const char *
16357 get_freebsd_elfcore_note_type (unsigned e_type)
16358 {
16359 switch (e_type)
16360 {
16361 case NT_FREEBSD_THRMISC:
16362 return _("NT_THRMISC (thrmisc structure)");
16363 case NT_FREEBSD_PROCSTAT_PROC:
16364 return _("NT_PROCSTAT_PROC (proc data)");
16365 case NT_FREEBSD_PROCSTAT_FILES:
16366 return _("NT_PROCSTAT_FILES (files data)");
16367 case NT_FREEBSD_PROCSTAT_VMMAP:
16368 return _("NT_PROCSTAT_VMMAP (vmmap data)");
16369 case NT_FREEBSD_PROCSTAT_GROUPS:
16370 return _("NT_PROCSTAT_GROUPS (groups data)");
16371 case NT_FREEBSD_PROCSTAT_UMASK:
16372 return _("NT_PROCSTAT_UMASK (umask data)");
16373 case NT_FREEBSD_PROCSTAT_RLIMIT:
16374 return _("NT_PROCSTAT_RLIMIT (rlimit data)");
16375 case NT_FREEBSD_PROCSTAT_OSREL:
16376 return _("NT_PROCSTAT_OSREL (osreldate data)");
16377 case NT_FREEBSD_PROCSTAT_PSSTRINGS:
16378 return _("NT_PROCSTAT_PSSTRINGS (ps_strings data)");
16379 case NT_FREEBSD_PROCSTAT_AUXV:
16380 return _("NT_PROCSTAT_AUXV (auxv data)");
16381 }
16382 return get_note_type (e_type);
16383 }
16384
16385 static const char *
16386 get_netbsd_elfcore_note_type (unsigned e_type)
16387 {
16388 static char buff[64];
16389
16390 if (e_type == NT_NETBSDCORE_PROCINFO)
16391 {
16392 /* NetBSD core "procinfo" structure. */
16393 return _("NetBSD procinfo structure");
16394 }
16395
16396 /* As of Jan 2002 there are no other machine-independent notes
16397 defined for NetBSD core files. If the note type is less
16398 than the start of the machine-dependent note types, we don't
16399 understand it. */
16400
16401 if (e_type < NT_NETBSDCORE_FIRSTMACH)
16402 {
16403 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16404 return buff;
16405 }
16406
16407 switch (elf_header.e_machine)
16408 {
16409 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0
16410 and PT_GETFPREGS == mach+2. */
16411
16412 case EM_OLD_ALPHA:
16413 case EM_ALPHA:
16414 case EM_SPARC:
16415 case EM_SPARC32PLUS:
16416 case EM_SPARCV9:
16417 switch (e_type)
16418 {
16419 case NT_NETBSDCORE_FIRSTMACH + 0:
16420 return _("PT_GETREGS (reg structure)");
16421 case NT_NETBSDCORE_FIRSTMACH + 2:
16422 return _("PT_GETFPREGS (fpreg structure)");
16423 default:
16424 break;
16425 }
16426 break;
16427
16428 /* On all other arch's, PT_GETREGS == mach+1 and
16429 PT_GETFPREGS == mach+3. */
16430 default:
16431 switch (e_type)
16432 {
16433 case NT_NETBSDCORE_FIRSTMACH + 1:
16434 return _("PT_GETREGS (reg structure)");
16435 case NT_NETBSDCORE_FIRSTMACH + 3:
16436 return _("PT_GETFPREGS (fpreg structure)");
16437 default:
16438 break;
16439 }
16440 }
16441
16442 snprintf (buff, sizeof (buff), "PT_FIRSTMACH+%d",
16443 e_type - NT_NETBSDCORE_FIRSTMACH);
16444 return buff;
16445 }
16446
16447 static const char *
16448 get_stapsdt_note_type (unsigned e_type)
16449 {
16450 static char buff[64];
16451
16452 switch (e_type)
16453 {
16454 case NT_STAPSDT:
16455 return _("NT_STAPSDT (SystemTap probe descriptors)");
16456
16457 default:
16458 break;
16459 }
16460
16461 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16462 return buff;
16463 }
16464
16465 static bfd_boolean
16466 print_stapsdt_note (Elf_Internal_Note *pnote)
16467 {
16468 int addr_size = is_32bit_elf ? 4 : 8;
16469 char *data = pnote->descdata;
16470 char *data_end = pnote->descdata + pnote->descsz;
16471 bfd_vma pc, base_addr, semaphore;
16472 char *provider, *probe, *arg_fmt;
16473
16474 pc = byte_get ((unsigned char *) data, addr_size);
16475 data += addr_size;
16476 base_addr = byte_get ((unsigned char *) data, addr_size);
16477 data += addr_size;
16478 semaphore = byte_get ((unsigned char *) data, addr_size);
16479 data += addr_size;
16480
16481 provider = data;
16482 data += strlen (data) + 1;
16483 probe = data;
16484 data += strlen (data) + 1;
16485 arg_fmt = data;
16486 data += strlen (data) + 1;
16487
16488 printf (_(" Provider: %s\n"), provider);
16489 printf (_(" Name: %s\n"), probe);
16490 printf (_(" Location: "));
16491 print_vma (pc, FULL_HEX);
16492 printf (_(", Base: "));
16493 print_vma (base_addr, FULL_HEX);
16494 printf (_(", Semaphore: "));
16495 print_vma (semaphore, FULL_HEX);
16496 printf ("\n");
16497 printf (_(" Arguments: %s\n"), arg_fmt);
16498
16499 return data == data_end;
16500 }
16501
16502 static const char *
16503 get_ia64_vms_note_type (unsigned e_type)
16504 {
16505 static char buff[64];
16506
16507 switch (e_type)
16508 {
16509 case NT_VMS_MHD:
16510 return _("NT_VMS_MHD (module header)");
16511 case NT_VMS_LNM:
16512 return _("NT_VMS_LNM (language name)");
16513 case NT_VMS_SRC:
16514 return _("NT_VMS_SRC (source files)");
16515 case NT_VMS_TITLE:
16516 return "NT_VMS_TITLE";
16517 case NT_VMS_EIDC:
16518 return _("NT_VMS_EIDC (consistency check)");
16519 case NT_VMS_FPMODE:
16520 return _("NT_VMS_FPMODE (FP mode)");
16521 case NT_VMS_LINKTIME:
16522 return "NT_VMS_LINKTIME";
16523 case NT_VMS_IMGNAM:
16524 return _("NT_VMS_IMGNAM (image name)");
16525 case NT_VMS_IMGID:
16526 return _("NT_VMS_IMGID (image id)");
16527 case NT_VMS_LINKID:
16528 return _("NT_VMS_LINKID (link id)");
16529 case NT_VMS_IMGBID:
16530 return _("NT_VMS_IMGBID (build id)");
16531 case NT_VMS_GSTNAM:
16532 return _("NT_VMS_GSTNAM (sym table name)");
16533 case NT_VMS_ORIG_DYN:
16534 return "NT_VMS_ORIG_DYN";
16535 case NT_VMS_PATCHTIME:
16536 return "NT_VMS_PATCHTIME";
16537 default:
16538 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16539 return buff;
16540 }
16541 }
16542
16543 static bfd_boolean
16544 print_ia64_vms_note (Elf_Internal_Note * pnote)
16545 {
16546 switch (pnote->type)
16547 {
16548 case NT_VMS_MHD:
16549 if (pnote->descsz > 36)
16550 {
16551 size_t l = strlen (pnote->descdata + 34);
16552 printf (_(" Creation date : %.17s\n"), pnote->descdata);
16553 printf (_(" Last patch date: %.17s\n"), pnote->descdata + 17);
16554 printf (_(" Module name : %s\n"), pnote->descdata + 34);
16555 printf (_(" Module version : %s\n"), pnote->descdata + 34 + l + 1);
16556 }
16557 else
16558 printf (_(" Invalid size\n"));
16559 break;
16560 case NT_VMS_LNM:
16561 printf (_(" Language: %s\n"), pnote->descdata);
16562 break;
16563 #ifdef BFD64
16564 case NT_VMS_FPMODE:
16565 printf (_(" Floating Point mode: "));
16566 printf ("0x%016" BFD_VMA_FMT "x\n",
16567 (bfd_vma) byte_get ((unsigned char *)pnote->descdata, 8));
16568 break;
16569 case NT_VMS_LINKTIME:
16570 printf (_(" Link time: "));
16571 print_vms_time
16572 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
16573 printf ("\n");
16574 break;
16575 case NT_VMS_PATCHTIME:
16576 printf (_(" Patch time: "));
16577 print_vms_time
16578 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
16579 printf ("\n");
16580 break;
16581 case NT_VMS_ORIG_DYN:
16582 printf (_(" Major id: %u, minor id: %u\n"),
16583 (unsigned) byte_get ((unsigned char *)pnote->descdata, 4),
16584 (unsigned) byte_get ((unsigned char *)pnote->descdata + 4, 4));
16585 printf (_(" Last modified : "));
16586 print_vms_time
16587 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata + 8, 8));
16588 printf (_("\n Link flags : "));
16589 printf ("0x%016" BFD_VMA_FMT "x\n",
16590 (bfd_vma) byte_get ((unsigned char *)pnote->descdata + 16, 8));
16591 printf (_(" Header flags: 0x%08x\n"),
16592 (unsigned) byte_get ((unsigned char *)pnote->descdata + 24, 4));
16593 printf (_(" Image id : %s\n"), pnote->descdata + 32);
16594 break;
16595 #endif
16596 case NT_VMS_IMGNAM:
16597 printf (_(" Image name: %s\n"), pnote->descdata);
16598 break;
16599 case NT_VMS_GSTNAM:
16600 printf (_(" Global symbol table name: %s\n"), pnote->descdata);
16601 break;
16602 case NT_VMS_IMGID:
16603 printf (_(" Image id: %s\n"), pnote->descdata);
16604 break;
16605 case NT_VMS_LINKID:
16606 printf (_(" Linker id: %s\n"), pnote->descdata);
16607 break;
16608 default:
16609 return FALSE;
16610 }
16611 return TRUE;
16612 }
16613
16614 /* Print the name of the symbol associated with a build attribute
16615 that is attached to address OFFSET. */
16616
16617 static bfd_boolean
16618 print_symbol_for_build_attribute (FILE * file,
16619 unsigned long offset,
16620 bfd_boolean is_open_attr)
16621 {
16622 static FILE * saved_file = NULL;
16623 static char * strtab;
16624 static unsigned long strtablen;
16625 static Elf_Internal_Sym * symtab;
16626 static unsigned long nsyms;
16627 Elf_Internal_Sym * saved_sym = NULL;
16628 Elf_Internal_Sym * sym;
16629
16630 if (saved_file == NULL || file != saved_file)
16631 {
16632 Elf_Internal_Shdr * symsec;
16633
16634 /* Load the symbol and string sections. */
16635 for (symsec = section_headers;
16636 symsec < section_headers + elf_header.e_shnum;
16637 symsec ++)
16638 {
16639 if (symsec->sh_type == SHT_SYMTAB)
16640 {
16641 symtab = GET_ELF_SYMBOLS (file, symsec, & nsyms);
16642
16643 if (symsec->sh_link < elf_header.e_shnum)
16644 {
16645 Elf_Internal_Shdr * strtab_sec = section_headers + symsec->sh_link;
16646
16647 strtab = (char *) get_data (NULL, file, strtab_sec->sh_offset,
16648 1, strtab_sec->sh_size,
16649 _("string table"));
16650 strtablen = strtab != NULL ? strtab_sec->sh_size : 0;
16651 }
16652 }
16653 }
16654 saved_file = file;
16655 }
16656
16657 if (symtab == NULL || strtab == NULL)
16658 {
16659 printf ("\n");
16660 return FALSE;
16661 }
16662
16663 /* Find a symbol whose value matches offset. */
16664 for (sym = symtab; sym < symtab + nsyms; sym ++)
16665 if (sym->st_value == offset)
16666 {
16667 if (sym->st_name >= strtablen)
16668 /* Huh ? This should not happen. */
16669 continue;
16670
16671 if (strtab[sym->st_name] == 0)
16672 continue;
16673
16674 if (is_open_attr)
16675 {
16676 /* For OPEN attributes we prefer GLOBAL over LOCAL symbols
16677 and FILE or OBJECT symbols over NOTYPE symbols. We skip
16678 FUNC symbols entirely. */
16679 switch (ELF_ST_TYPE (sym->st_info))
16680 {
16681 case STT_FILE:
16682 saved_sym = sym;
16683 /* We can stop searching now. */
16684 sym = symtab + nsyms;
16685 continue;
16686
16687 case STT_OBJECT:
16688 saved_sym = sym;
16689 continue;
16690
16691 case STT_FUNC:
16692 /* Ignore function symbols. */
16693 continue;
16694
16695 default:
16696 break;
16697 }
16698
16699 switch (ELF_ST_BIND (sym->st_info))
16700 {
16701 case STB_GLOBAL:
16702 if (saved_sym == NULL
16703 || ELF_ST_TYPE (saved_sym->st_info) != STT_OBJECT)
16704 saved_sym = sym;
16705 break;
16706
16707 case STB_LOCAL:
16708 if (saved_sym == NULL)
16709 saved_sym = sym;
16710 break;
16711
16712 default:
16713 break;
16714 }
16715 }
16716 else
16717 {
16718 if (ELF_ST_TYPE (sym->st_info) != STT_FUNC)
16719 continue;
16720
16721 saved_sym = sym;
16722 break;
16723 }
16724 }
16725
16726 printf (" (%s: %s)\n",
16727 is_open_attr ? _("file") : _("func"),
16728 saved_sym ? strtab + saved_sym->st_name : _("<no symbol found>)"));
16729 return TRUE;
16730 }
16731
16732 static bfd_boolean
16733 print_gnu_build_attribute_description (Elf_Internal_Note * pnote,
16734 FILE * file)
16735 {
16736 static unsigned long global_offset = 0;
16737 unsigned long offset;
16738 unsigned int desc_size = is_32bit_elf ? 4 : 8;
16739 bfd_boolean is_open_attr = pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN;
16740
16741 if (pnote->descsz == 0)
16742 {
16743 if (is_open_attr)
16744 {
16745 printf (_(" Applies from offset %#lx\n"), global_offset);
16746 return TRUE;
16747 }
16748 else
16749 {
16750 printf (_(" Applies to func at %#lx"), global_offset);
16751 return print_symbol_for_build_attribute (file, global_offset, is_open_attr);
16752 }
16753 }
16754
16755 if (pnote->descsz != desc_size)
16756 {
16757 error (_(" <invalid description size: %lx>\n"), pnote->descsz);
16758 printf (_(" <invalid descsz>"));
16759 return FALSE;
16760 }
16761
16762 offset = byte_get ((unsigned char *) pnote->descdata, desc_size);
16763
16764 if (is_open_attr)
16765 {
16766 printf (_(" Applies from offset %#lx"), offset);
16767 global_offset = offset;
16768 }
16769 else
16770 {
16771 printf (_(" Applies to func at %#lx"), offset);
16772 }
16773
16774 return print_symbol_for_build_attribute (file, offset, is_open_attr);
16775 }
16776
16777 static bfd_boolean
16778 print_gnu_build_attribute_name (Elf_Internal_Note * pnote)
16779 {
16780 char name_type;
16781 char name_attribute;
16782 char * expected_types;
16783 const char * name = pnote->namedata;
16784 const char * text;
16785 int left;
16786
16787 if (name == NULL || pnote->namesz < 2)
16788 {
16789 error (_("corrupt name field in GNU build attribute note: size = %ld\n"), pnote->namesz);
16790 print_symbol (-20, _(" <corrupt name field>"));
16791 return FALSE;
16792 }
16793
16794 switch ((name_type = * name))
16795 {
16796 case GNU_BUILD_ATTRIBUTE_TYPE_NUMERIC:
16797 case GNU_BUILD_ATTRIBUTE_TYPE_STRING:
16798 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_TRUE:
16799 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_FALSE:
16800 printf ("%c", * name);
16801 break;
16802 default:
16803 error (_("unrecognised attribute type in name field: %d\n"), name_type);
16804 print_symbol (-20, _("<unknown name type>"));
16805 return FALSE;
16806 }
16807
16808 left = 19;
16809 ++ name;
16810 text = NULL;
16811
16812 switch ((name_attribute = * name))
16813 {
16814 case GNU_BUILD_ATTRIBUTE_VERSION:
16815 text = _("<version>");
16816 expected_types = "$";
16817 ++ name;
16818 break;
16819 case GNU_BUILD_ATTRIBUTE_STACK_PROT:
16820 text = _("<stack prot>");
16821 expected_types = "!+*";
16822 ++ name;
16823 break;
16824 case GNU_BUILD_ATTRIBUTE_RELRO:
16825 text = _("<relro>");
16826 expected_types = "!+";
16827 ++ name;
16828 break;
16829 case GNU_BUILD_ATTRIBUTE_STACK_SIZE:
16830 text = _("<stack size>");
16831 expected_types = "*";
16832 ++ name;
16833 break;
16834 case GNU_BUILD_ATTRIBUTE_TOOL:
16835 text = _("<tool>");
16836 expected_types = "$";
16837 ++ name;
16838 break;
16839 case GNU_BUILD_ATTRIBUTE_ABI:
16840 text = _("<ABI>");
16841 expected_types = "$*";
16842 ++ name;
16843 break;
16844 case GNU_BUILD_ATTRIBUTE_PIC:
16845 text = _("<PIC>");
16846 expected_types = "*";
16847 ++ name;
16848 break;
16849 case GNU_BUILD_ATTRIBUTE_SHORT_ENUM:
16850 text = _("<short enum>");
16851 expected_types = "!+";
16852 ++ name;
16853 break;
16854
16855 default:
16856 if (ISPRINT (* name))
16857 {
16858 int len = strnlen (name, pnote->namesz - (name - pnote->namedata)) + 1;
16859
16860 if (len > left && ! do_wide)
16861 len = left;
16862 printf ("%.*s:", len, name);
16863 left -= len;
16864 name += len;
16865 }
16866 else
16867 {
16868 error (_("unexpected character in name field\n"));
16869 print_symbol (- left, _("<unknown attribute>"));
16870 return 0;
16871 }
16872 expected_types = "*$!+";
16873 break;
16874 }
16875
16876 if (text)
16877 {
16878 printf ("%s", text);
16879 left -= strlen (text);
16880 }
16881
16882 if (strchr (expected_types, name_type) == NULL)
16883 warn (_("attribute does not have an expected type (%c)\n"), name_type);
16884
16885 if ((unsigned long)(name - pnote->namedata) > pnote->namesz)
16886 {
16887 error (_("corrupt name field: namesz: %lu but parsing gets to %ld\n"),
16888 (unsigned long) pnote->namesz,
16889 (long) (name - pnote->namedata));
16890 return FALSE;
16891 }
16892
16893 if (left < 1 && ! do_wide)
16894 return TRUE;
16895
16896 switch (name_type)
16897 {
16898 case GNU_BUILD_ATTRIBUTE_TYPE_NUMERIC:
16899 {
16900 unsigned int bytes = pnote->namesz - (name - pnote->namedata);
16901 unsigned long val = 0;
16902 unsigned int shift = 0;
16903 char * decoded = NULL;
16904
16905 while (bytes --)
16906 {
16907 unsigned long byte = (* name ++) & 0xff;
16908
16909 val |= byte << shift;
16910 shift += 8;
16911 }
16912
16913 switch (name_attribute)
16914 {
16915 case GNU_BUILD_ATTRIBUTE_PIC:
16916 switch (val)
16917 {
16918 case 0: decoded = "static"; break;
16919 case 1: decoded = "pic"; break;
16920 case 2: decoded = "PIC"; break;
16921 case 3: decoded = "pie"; break;
16922 case 4: decoded = "PIE"; break;
16923 default: break;
16924 }
16925 break;
16926 case GNU_BUILD_ATTRIBUTE_STACK_PROT:
16927 switch (val)
16928 {
16929 /* Based upon the SPCT_FLAG_xxx enum values in gcc/cfgexpand.c. */
16930 case 0: decoded = "off"; break;
16931 case 1: decoded = "on"; break;
16932 case 2: decoded = "all"; break;
16933 case 3: decoded = "strong"; break;
16934 case 4: decoded = "explicit"; break;
16935 default: break;
16936 }
16937 break;
16938 default:
16939 break;
16940 }
16941
16942 if (decoded != NULL)
16943 print_symbol (-left, decoded);
16944 else
16945 {
16946 if (do_wide)
16947 left -= printf ("0x%lx", val);
16948 else
16949 left -= printf ("0x%-.*lx", left, val);
16950 }
16951 }
16952 break;
16953 case GNU_BUILD_ATTRIBUTE_TYPE_STRING:
16954 left -= print_symbol (- left, name);
16955 break;
16956 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_TRUE:
16957 left -= print_symbol (- left, "true");
16958 break;
16959 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_FALSE:
16960 left -= print_symbol (- left, "false");
16961 break;
16962 }
16963
16964 if (do_wide && left > 0)
16965 printf ("%-*s", left, " ");
16966
16967 return TRUE;
16968 }
16969
16970 /* Note that by the ELF standard, the name field is already null byte
16971 terminated, and namesz includes the terminating null byte.
16972 I.E. the value of namesz for the name "FSF" is 4.
16973
16974 If the value of namesz is zero, there is no name present. */
16975
16976 static bfd_boolean
16977 process_note (Elf_Internal_Note * pnote,
16978 FILE * file)
16979 {
16980 const char * name = pnote->namesz ? pnote->namedata : "(NONE)";
16981 const char * nt;
16982
16983 if (pnote->namesz == 0)
16984 /* If there is no note name, then use the default set of
16985 note type strings. */
16986 nt = get_note_type (pnote->type);
16987
16988 else if (const_strneq (pnote->namedata, "GNU"))
16989 /* GNU-specific object file notes. */
16990 nt = get_gnu_elf_note_type (pnote->type);
16991
16992 else if (const_strneq (pnote->namedata, "FreeBSD"))
16993 /* FreeBSD-specific core file notes. */
16994 nt = get_freebsd_elfcore_note_type (pnote->type);
16995
16996 else if (const_strneq (pnote->namedata, "NetBSD-CORE"))
16997 /* NetBSD-specific core file notes. */
16998 nt = get_netbsd_elfcore_note_type (pnote->type);
16999
17000 else if (const_strneq (pnote->namedata, "NetBSD"))
17001 /* NetBSD-specific core file notes. */
17002 return process_netbsd_elf_note (pnote);
17003
17004 else if (strneq (pnote->namedata, "SPU/", 4))
17005 {
17006 /* SPU-specific core file notes. */
17007 nt = pnote->namedata + 4;
17008 name = "SPU";
17009 }
17010
17011 else if (const_strneq (pnote->namedata, "IPF/VMS"))
17012 /* VMS/ia64-specific file notes. */
17013 nt = get_ia64_vms_note_type (pnote->type);
17014
17015 else if (const_strneq (pnote->namedata, "stapsdt"))
17016 nt = get_stapsdt_note_type (pnote->type);
17017
17018 else
17019 /* Don't recognize this note name; just use the default set of
17020 note type strings. */
17021 nt = get_note_type (pnote->type);
17022
17023 printf (" ");
17024
17025 if (pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN
17026 || pnote->type == NT_GNU_BUILD_ATTRIBUTE_FUNC)
17027 print_gnu_build_attribute_name (pnote);
17028 else
17029 print_symbol (-20, name);
17030
17031 if (do_wide)
17032 printf (" 0x%08lx\t%s\t", pnote->descsz, nt);
17033 else
17034 printf (" 0x%08lx\t%s\n", pnote->descsz, nt);
17035
17036 if (const_strneq (pnote->namedata, "IPF/VMS"))
17037 return print_ia64_vms_note (pnote);
17038 else if (const_strneq (pnote->namedata, "GNU"))
17039 return print_gnu_note (pnote);
17040 else if (const_strneq (pnote->namedata, "stapsdt"))
17041 return print_stapsdt_note (pnote);
17042 else if (const_strneq (pnote->namedata, "CORE"))
17043 return print_core_note (pnote);
17044 else if (pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN
17045 || pnote->type == NT_GNU_BUILD_ATTRIBUTE_FUNC)
17046 return print_gnu_build_attribute_description (pnote, file);
17047
17048 if (pnote->descsz)
17049 {
17050 unsigned long i;
17051
17052 printf (_(" description data: "));
17053 for (i = 0; i < pnote->descsz; i++)
17054 printf ("%02x ", pnote->descdata[i]);
17055 }
17056
17057 if (do_wide)
17058 printf ("\n");
17059
17060 return TRUE;
17061 }
17062
17063 static bfd_boolean
17064 process_notes_at (FILE * file,
17065 Elf_Internal_Shdr * section,
17066 bfd_vma offset,
17067 bfd_vma length)
17068 {
17069 Elf_External_Note * pnotes;
17070 Elf_External_Note * external;
17071 char * end;
17072 bfd_boolean res = TRUE;
17073
17074 if (length <= 0)
17075 return FALSE;
17076
17077 if (section)
17078 {
17079 pnotes = (Elf_External_Note *) get_section_contents (section, file);
17080 if (pnotes)
17081 {
17082 if (! apply_relocations (file, section, (unsigned char *) pnotes, length, NULL, NULL))
17083 return FALSE;
17084 }
17085 }
17086 else
17087 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
17088 _("notes"));
17089 if (pnotes == NULL)
17090 return FALSE;
17091
17092 external = pnotes;
17093
17094 if (section)
17095 printf (_("\nDisplaying notes found in: %s\n"), printable_section_name (section));
17096 else
17097 printf (_("\nDisplaying notes found at file offset 0x%08lx with length 0x%08lx:\n"),
17098 (unsigned long) offset, (unsigned long) length);
17099
17100 printf (_(" %-20s %10s\tDescription\n"), _("Owner"), _("Data size"));
17101
17102 end = (char *) pnotes + length;
17103 while ((char *) external < end)
17104 {
17105 Elf_Internal_Note inote;
17106 size_t min_notesz;
17107 char *next;
17108 char * temp = NULL;
17109 size_t data_remaining = end - (char *) external;
17110
17111 if (!is_ia64_vms ())
17112 {
17113 /* PR binutils/15191
17114 Make sure that there is enough data to read. */
17115 min_notesz = offsetof (Elf_External_Note, name);
17116 if (data_remaining < min_notesz)
17117 {
17118 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
17119 (int) data_remaining);
17120 break;
17121 }
17122 inote.type = BYTE_GET (external->type);
17123 inote.namesz = BYTE_GET (external->namesz);
17124 inote.namedata = external->name;
17125 inote.descsz = BYTE_GET (external->descsz);
17126 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
17127 /* PR 17531: file: 3443835e. */
17128 if (inote.descdata < (char *) pnotes || inote.descdata > end)
17129 {
17130 warn (_("Corrupt note: name size is too big: (got: %lx, expected no more than: %lx)\n"),
17131 inote.namesz, (long)(end - inote.namedata));
17132 inote.descdata = inote.namedata;
17133 inote.namesz = 0;
17134 }
17135
17136 inote.descpos = offset + (inote.descdata - (char *) pnotes);
17137 next = inote.descdata + align_power (inote.descsz, 2);
17138 }
17139 else
17140 {
17141 Elf64_External_VMS_Note *vms_external;
17142
17143 /* PR binutils/15191
17144 Make sure that there is enough data to read. */
17145 min_notesz = offsetof (Elf64_External_VMS_Note, name);
17146 if (data_remaining < min_notesz)
17147 {
17148 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
17149 (int) data_remaining);
17150 break;
17151 }
17152
17153 vms_external = (Elf64_External_VMS_Note *) external;
17154 inote.type = BYTE_GET (vms_external->type);
17155 inote.namesz = BYTE_GET (vms_external->namesz);
17156 inote.namedata = vms_external->name;
17157 inote.descsz = BYTE_GET (vms_external->descsz);
17158 inote.descdata = inote.namedata + align_power (inote.namesz, 3);
17159 inote.descpos = offset + (inote.descdata - (char *) pnotes);
17160 next = inote.descdata + align_power (inote.descsz, 3);
17161 }
17162
17163 if (inote.descdata < (char *) external + min_notesz
17164 || next < (char *) external + min_notesz
17165 /* PR binutils/17531: file: id:000000,sig:11,src:006986,op:havoc,rep:4. */
17166 || inote.namedata + inote.namesz < inote.namedata
17167 || inote.descdata + inote.descsz < inote.descdata
17168 || data_remaining < (size_t)(next - (char *) external))
17169 {
17170 warn (_("note with invalid namesz and/or descsz found at offset 0x%lx\n"),
17171 (unsigned long) ((char *) external - (char *) pnotes));
17172 warn (_(" type: 0x%lx, namesize: 0x%08lx, descsize: 0x%08lx\n"),
17173 inote.type, inote.namesz, inote.descsz);
17174 break;
17175 }
17176
17177 external = (Elf_External_Note *) next;
17178
17179 /* Verify that name is null terminated. It appears that at least
17180 one version of Linux (RedHat 6.0) generates corefiles that don't
17181 comply with the ELF spec by failing to include the null byte in
17182 namesz. */
17183 if (inote.namedata[inote.namesz - 1] != '\0')
17184 {
17185 temp = (char *) malloc (inote.namesz + 1);
17186 if (temp == NULL)
17187 {
17188 error (_("Out of memory allocating space for inote name\n"));
17189 res = FALSE;
17190 break;
17191 }
17192
17193 memcpy (temp, inote.namedata, inote.namesz);
17194 temp[inote.namesz] = 0;
17195
17196 /* warn (_("'%s' NOTE name not properly null terminated\n"), temp); */
17197 inote.namedata = temp;
17198 }
17199
17200 if (! process_note (& inote, file))
17201 res = FALSE;
17202
17203 if (temp != NULL)
17204 {
17205 free (temp);
17206 temp = NULL;
17207 }
17208 }
17209
17210 free (pnotes);
17211
17212 return res;
17213 }
17214
17215 static bfd_boolean
17216 process_corefile_note_segments (FILE * file)
17217 {
17218 Elf_Internal_Phdr * segment;
17219 unsigned int i;
17220 bfd_boolean res = TRUE;
17221
17222 if (! get_program_headers (file))
17223 return TRUE;
17224
17225 for (i = 0, segment = program_headers;
17226 i < elf_header.e_phnum;
17227 i++, segment++)
17228 {
17229 if (segment->p_type == PT_NOTE)
17230 if (! process_notes_at (file, NULL,
17231 (bfd_vma) segment->p_offset,
17232 (bfd_vma) segment->p_filesz))
17233 res = FALSE;
17234 }
17235
17236 return res;
17237 }
17238
17239 static bfd_boolean
17240 process_v850_notes (FILE * file, bfd_vma offset, bfd_vma length)
17241 {
17242 Elf_External_Note * pnotes;
17243 Elf_External_Note * external;
17244 char * end;
17245 bfd_boolean res = TRUE;
17246
17247 if (length <= 0)
17248 return FALSE;
17249
17250 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
17251 _("v850 notes"));
17252 if (pnotes == NULL)
17253 return FALSE;
17254
17255 external = pnotes;
17256 end = (char*) pnotes + length;
17257
17258 printf (_("\nDisplaying contents of Renesas V850 notes section at offset 0x%lx with length 0x%lx:\n"),
17259 (unsigned long) offset, (unsigned long) length);
17260
17261 while ((char *) external + sizeof (Elf_External_Note) < end)
17262 {
17263 Elf_External_Note * next;
17264 Elf_Internal_Note inote;
17265
17266 inote.type = BYTE_GET (external->type);
17267 inote.namesz = BYTE_GET (external->namesz);
17268 inote.namedata = external->name;
17269 inote.descsz = BYTE_GET (external->descsz);
17270 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
17271 inote.descpos = offset + (inote.descdata - (char *) pnotes);
17272
17273 if (inote.descdata < (char *) pnotes || inote.descdata >= end)
17274 {
17275 warn (_("Corrupt note: name size is too big: %lx\n"), inote.namesz);
17276 inote.descdata = inote.namedata;
17277 inote.namesz = 0;
17278 }
17279
17280 next = (Elf_External_Note *) (inote.descdata + align_power (inote.descsz, 2));
17281
17282 if ( ((char *) next > end)
17283 || ((char *) next < (char *) pnotes))
17284 {
17285 warn (_("corrupt descsz found in note at offset 0x%lx\n"),
17286 (unsigned long) ((char *) external - (char *) pnotes));
17287 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
17288 inote.type, inote.namesz, inote.descsz);
17289 break;
17290 }
17291
17292 external = next;
17293
17294 /* Prevent out-of-bounds indexing. */
17295 if ( inote.namedata + inote.namesz > end
17296 || inote.namedata + inote.namesz < inote.namedata)
17297 {
17298 warn (_("corrupt namesz found in note at offset 0x%lx\n"),
17299 (unsigned long) ((char *) external - (char *) pnotes));
17300 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
17301 inote.type, inote.namesz, inote.descsz);
17302 break;
17303 }
17304
17305 printf (" %s: ", get_v850_elf_note_type (inote.type));
17306
17307 if (! print_v850_note (& inote))
17308 {
17309 res = FALSE;
17310 printf ("<corrupt sizes: namesz: %lx, descsz: %lx>\n",
17311 inote.namesz, inote.descsz);
17312 }
17313 }
17314
17315 free (pnotes);
17316
17317 return res;
17318 }
17319
17320 static bfd_boolean
17321 process_note_sections (FILE * file)
17322 {
17323 Elf_Internal_Shdr * section;
17324 unsigned long i;
17325 unsigned int n = 0;
17326 bfd_boolean res = TRUE;
17327
17328 for (i = 0, section = section_headers;
17329 i < elf_header.e_shnum && section != NULL;
17330 i++, section++)
17331 {
17332 if (section->sh_type == SHT_NOTE)
17333 {
17334 if (! process_notes_at (file, section,
17335 (bfd_vma) section->sh_offset,
17336 (bfd_vma) section->sh_size))
17337 res = FALSE;
17338 n++;
17339 }
17340
17341 if (( elf_header.e_machine == EM_V800
17342 || elf_header.e_machine == EM_V850
17343 || elf_header.e_machine == EM_CYGNUS_V850)
17344 && section->sh_type == SHT_RENESAS_INFO)
17345 {
17346 if (! process_v850_notes (file,
17347 (bfd_vma) section->sh_offset,
17348 (bfd_vma) section->sh_size))
17349 res = FALSE;
17350 n++;
17351 }
17352 }
17353
17354 if (n == 0)
17355 /* Try processing NOTE segments instead. */
17356 return process_corefile_note_segments (file);
17357
17358 return res;
17359 }
17360
17361 static bfd_boolean
17362 process_notes (FILE * file)
17363 {
17364 /* If we have not been asked to display the notes then do nothing. */
17365 if (! do_notes)
17366 return TRUE;
17367
17368 if (elf_header.e_type != ET_CORE)
17369 return process_note_sections (file);
17370
17371 /* No program headers means no NOTE segment. */
17372 if (elf_header.e_phnum > 0)
17373 return process_corefile_note_segments (file);
17374
17375 printf (_("No note segments present in the core file.\n"));
17376 return TRUE;
17377 }
17378
17379 static unsigned char *
17380 display_public_gnu_attributes (unsigned char * start,
17381 const unsigned char * const end)
17382 {
17383 printf (_(" Unknown GNU attribute: %s\n"), start);
17384
17385 start += strnlen ((char *) start, end - start);
17386 display_raw_attribute (start, end);
17387
17388 return (unsigned char *) end;
17389 }
17390
17391 static unsigned char *
17392 display_generic_attribute (unsigned char * start,
17393 unsigned int tag,
17394 const unsigned char * const end)
17395 {
17396 if (tag == 0)
17397 return (unsigned char *) end;
17398
17399 return display_tag_value (tag, start, end);
17400 }
17401
17402 static bfd_boolean
17403 process_arch_specific (FILE * file)
17404 {
17405 if (! do_arch)
17406 return TRUE;
17407
17408 switch (elf_header.e_machine)
17409 {
17410 case EM_ARM:
17411 return process_attributes (file, "aeabi", SHT_ARM_ATTRIBUTES,
17412 display_arm_attribute,
17413 display_generic_attribute);
17414
17415 case EM_MIPS:
17416 case EM_MIPS_RS3_LE:
17417 return process_mips_specific (file);
17418
17419 case EM_MSP430:
17420 return process_attributes (file, "mspabi", SHT_MSP430_ATTRIBUTES,
17421 display_msp430x_attribute,
17422 display_generic_attribute);
17423
17424 case EM_NDS32:
17425 return process_nds32_specific (file);
17426
17427 case EM_PPC:
17428 case EM_PPC64:
17429 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
17430 display_power_gnu_attribute);
17431
17432 case EM_S390:
17433 case EM_S390_OLD:
17434 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
17435 display_s390_gnu_attribute);
17436
17437 case EM_SPARC:
17438 case EM_SPARC32PLUS:
17439 case EM_SPARCV9:
17440 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
17441 display_sparc_gnu_attribute);
17442
17443 case EM_TI_C6000:
17444 return process_attributes (file, "c6xabi", SHT_C6000_ATTRIBUTES,
17445 display_tic6x_attribute,
17446 display_generic_attribute);
17447
17448 default:
17449 return process_attributes (file, "gnu", SHT_GNU_ATTRIBUTES,
17450 display_public_gnu_attributes,
17451 display_generic_attribute);
17452 }
17453 }
17454
17455 static bfd_boolean
17456 get_file_header (FILE * file)
17457 {
17458 /* Read in the identity array. */
17459 if (fread (elf_header.e_ident, EI_NIDENT, 1, file) != 1)
17460 return FALSE;
17461
17462 /* Determine how to read the rest of the header. */
17463 switch (elf_header.e_ident[EI_DATA])
17464 {
17465 default:
17466 case ELFDATANONE:
17467 case ELFDATA2LSB:
17468 byte_get = byte_get_little_endian;
17469 byte_put = byte_put_little_endian;
17470 break;
17471 case ELFDATA2MSB:
17472 byte_get = byte_get_big_endian;
17473 byte_put = byte_put_big_endian;
17474 break;
17475 }
17476
17477 /* For now we only support 32 bit and 64 bit ELF files. */
17478 is_32bit_elf = (elf_header.e_ident[EI_CLASS] != ELFCLASS64);
17479
17480 /* Read in the rest of the header. */
17481 if (is_32bit_elf)
17482 {
17483 Elf32_External_Ehdr ehdr32;
17484
17485 if (fread (ehdr32.e_type, sizeof (ehdr32) - EI_NIDENT, 1, file) != 1)
17486 return FALSE;
17487
17488 elf_header.e_type = BYTE_GET (ehdr32.e_type);
17489 elf_header.e_machine = BYTE_GET (ehdr32.e_machine);
17490 elf_header.e_version = BYTE_GET (ehdr32.e_version);
17491 elf_header.e_entry = BYTE_GET (ehdr32.e_entry);
17492 elf_header.e_phoff = BYTE_GET (ehdr32.e_phoff);
17493 elf_header.e_shoff = BYTE_GET (ehdr32.e_shoff);
17494 elf_header.e_flags = BYTE_GET (ehdr32.e_flags);
17495 elf_header.e_ehsize = BYTE_GET (ehdr32.e_ehsize);
17496 elf_header.e_phentsize = BYTE_GET (ehdr32.e_phentsize);
17497 elf_header.e_phnum = BYTE_GET (ehdr32.e_phnum);
17498 elf_header.e_shentsize = BYTE_GET (ehdr32.e_shentsize);
17499 elf_header.e_shnum = BYTE_GET (ehdr32.e_shnum);
17500 elf_header.e_shstrndx = BYTE_GET (ehdr32.e_shstrndx);
17501 }
17502 else
17503 {
17504 Elf64_External_Ehdr ehdr64;
17505
17506 /* If we have been compiled with sizeof (bfd_vma) == 4, then
17507 we will not be able to cope with the 64bit data found in
17508 64 ELF files. Detect this now and abort before we start
17509 overwriting things. */
17510 if (sizeof (bfd_vma) < 8)
17511 {
17512 error (_("This instance of readelf has been built without support for a\n\
17513 64 bit data type and so it cannot read 64 bit ELF files.\n"));
17514 return FALSE;
17515 }
17516
17517 if (fread (ehdr64.e_type, sizeof (ehdr64) - EI_NIDENT, 1, file) != 1)
17518 return FALSE;
17519
17520 elf_header.e_type = BYTE_GET (ehdr64.e_type);
17521 elf_header.e_machine = BYTE_GET (ehdr64.e_machine);
17522 elf_header.e_version = BYTE_GET (ehdr64.e_version);
17523 elf_header.e_entry = BYTE_GET (ehdr64.e_entry);
17524 elf_header.e_phoff = BYTE_GET (ehdr64.e_phoff);
17525 elf_header.e_shoff = BYTE_GET (ehdr64.e_shoff);
17526 elf_header.e_flags = BYTE_GET (ehdr64.e_flags);
17527 elf_header.e_ehsize = BYTE_GET (ehdr64.e_ehsize);
17528 elf_header.e_phentsize = BYTE_GET (ehdr64.e_phentsize);
17529 elf_header.e_phnum = BYTE_GET (ehdr64.e_phnum);
17530 elf_header.e_shentsize = BYTE_GET (ehdr64.e_shentsize);
17531 elf_header.e_shnum = BYTE_GET (ehdr64.e_shnum);
17532 elf_header.e_shstrndx = BYTE_GET (ehdr64.e_shstrndx);
17533 }
17534
17535 if (elf_header.e_shoff)
17536 {
17537 /* There may be some extensions in the first section header. Don't
17538 bomb if we can't read it. */
17539 if (is_32bit_elf)
17540 get_32bit_section_headers (file, TRUE);
17541 else
17542 get_64bit_section_headers (file, TRUE);
17543 }
17544
17545 return TRUE;
17546 }
17547
17548 /* Process one ELF object file according to the command line options.
17549 This file may actually be stored in an archive. The file is
17550 positioned at the start of the ELF object. Returns TRUE if no
17551 problems were encountered, FALSE otherwise. */
17552
17553 static bfd_boolean
17554 process_object (char * file_name, FILE * file)
17555 {
17556 unsigned int i;
17557 bfd_boolean res = TRUE;
17558
17559 if (! get_file_header (file))
17560 {
17561 error (_("%s: Failed to read file header\n"), file_name);
17562 return FALSE;
17563 }
17564
17565 /* Initialise per file variables. */
17566 for (i = ARRAY_SIZE (version_info); i--;)
17567 version_info[i] = 0;
17568
17569 for (i = ARRAY_SIZE (dynamic_info); i--;)
17570 dynamic_info[i] = 0;
17571 dynamic_info_DT_GNU_HASH = 0;
17572
17573 /* Process the file. */
17574 if (show_name)
17575 printf (_("\nFile: %s\n"), file_name);
17576
17577 /* Initialise the dump_sects array from the cmdline_dump_sects array.
17578 Note we do this even if cmdline_dump_sects is empty because we
17579 must make sure that the dump_sets array is zeroed out before each
17580 object file is processed. */
17581 if (num_dump_sects > num_cmdline_dump_sects)
17582 memset (dump_sects, 0, num_dump_sects * sizeof (* dump_sects));
17583
17584 if (num_cmdline_dump_sects > 0)
17585 {
17586 if (num_dump_sects == 0)
17587 /* A sneaky way of allocating the dump_sects array. */
17588 request_dump_bynumber (num_cmdline_dump_sects, 0);
17589
17590 assert (num_dump_sects >= num_cmdline_dump_sects);
17591 memcpy (dump_sects, cmdline_dump_sects,
17592 num_cmdline_dump_sects * sizeof (* dump_sects));
17593 }
17594
17595 if (! process_file_header ())
17596 return FALSE;
17597
17598 if (! process_section_headers (file))
17599 {
17600 /* Without loaded section headers we cannot process lots of things. */
17601 do_unwind = do_version = do_dump = do_arch = FALSE;
17602
17603 if (! do_using_dynamic)
17604 do_syms = do_dyn_syms = do_reloc = FALSE;
17605 }
17606
17607 if (! process_section_groups (file))
17608 /* Without loaded section groups we cannot process unwind. */
17609 do_unwind = FALSE;
17610
17611 if (process_program_headers (file))
17612 process_dynamic_section (file);
17613 else
17614 res = FALSE;
17615
17616 if (! process_relocs (file))
17617 res = FALSE;
17618
17619 if (! process_unwind (file))
17620 res = FALSE;
17621
17622 if (! process_symbol_table (file))
17623 res = FALSE;
17624
17625 if (! process_syminfo (file))
17626 res = FALSE;
17627
17628 if (! process_version_sections (file))
17629 res = FALSE;
17630
17631 if (! process_section_contents (file))
17632 res = FALSE;
17633
17634 if (! process_notes (file))
17635 res = FALSE;
17636
17637 if (! process_gnu_liblist (file))
17638 res = FALSE;
17639
17640 if (! process_arch_specific (file))
17641 res = FALSE;
17642
17643 if (program_headers)
17644 {
17645 free (program_headers);
17646 program_headers = NULL;
17647 }
17648
17649 if (section_headers)
17650 {
17651 free (section_headers);
17652 section_headers = NULL;
17653 }
17654
17655 if (string_table)
17656 {
17657 free (string_table);
17658 string_table = NULL;
17659 string_table_length = 0;
17660 }
17661
17662 if (dynamic_strings)
17663 {
17664 free (dynamic_strings);
17665 dynamic_strings = NULL;
17666 dynamic_strings_length = 0;
17667 }
17668
17669 if (dynamic_symbols)
17670 {
17671 free (dynamic_symbols);
17672 dynamic_symbols = NULL;
17673 num_dynamic_syms = 0;
17674 }
17675
17676 if (dynamic_syminfo)
17677 {
17678 free (dynamic_syminfo);
17679 dynamic_syminfo = NULL;
17680 }
17681
17682 if (dynamic_section)
17683 {
17684 free (dynamic_section);
17685 dynamic_section = NULL;
17686 }
17687
17688 if (section_headers_groups)
17689 {
17690 free (section_headers_groups);
17691 section_headers_groups = NULL;
17692 }
17693
17694 if (section_groups)
17695 {
17696 struct group_list * g;
17697 struct group_list * next;
17698
17699 for (i = 0; i < group_count; i++)
17700 {
17701 for (g = section_groups [i].root; g != NULL; g = next)
17702 {
17703 next = g->next;
17704 free (g);
17705 }
17706 }
17707
17708 free (section_groups);
17709 section_groups = NULL;
17710 }
17711
17712 free_debug_memory ();
17713
17714 return res;
17715 }
17716
17717 /* Process an ELF archive.
17718 On entry the file is positioned just after the ARMAG string.
17719 Returns TRUE upon success, FALSE otherwise. */
17720
17721 static bfd_boolean
17722 process_archive (char * file_name, FILE * file, bfd_boolean is_thin_archive)
17723 {
17724 struct archive_info arch;
17725 struct archive_info nested_arch;
17726 size_t got;
17727 bfd_boolean ret = TRUE;
17728
17729 show_name = TRUE;
17730
17731 /* The ARCH structure is used to hold information about this archive. */
17732 arch.file_name = NULL;
17733 arch.file = NULL;
17734 arch.index_array = NULL;
17735 arch.sym_table = NULL;
17736 arch.longnames = NULL;
17737
17738 /* The NESTED_ARCH structure is used as a single-item cache of information
17739 about a nested archive (when members of a thin archive reside within
17740 another regular archive file). */
17741 nested_arch.file_name = NULL;
17742 nested_arch.file = NULL;
17743 nested_arch.index_array = NULL;
17744 nested_arch.sym_table = NULL;
17745 nested_arch.longnames = NULL;
17746
17747 if (setup_archive (&arch, file_name, file, is_thin_archive, do_archive_index) != 0)
17748 {
17749 ret = FALSE;
17750 goto out;
17751 }
17752
17753 if (do_archive_index)
17754 {
17755 if (arch.sym_table == NULL)
17756 error (_("%s: unable to dump the index as none was found\n"), file_name);
17757 else
17758 {
17759 unsigned long i, l;
17760 unsigned long current_pos;
17761
17762 printf (_("Index of archive %s: (%lu entries, 0x%lx bytes in the symbol table)\n"),
17763 file_name, (unsigned long) arch.index_num, arch.sym_size);
17764 current_pos = ftell (file);
17765
17766 for (i = l = 0; i < arch.index_num; i++)
17767 {
17768 if ((i == 0) || ((i > 0) && (arch.index_array[i] != arch.index_array[i - 1])))
17769 {
17770 char * member_name;
17771
17772 member_name = get_archive_member_name_at (&arch, arch.index_array[i], &nested_arch);
17773
17774 if (member_name != NULL)
17775 {
17776 char * qualified_name = make_qualified_name (&arch, &nested_arch, member_name);
17777
17778 if (qualified_name != NULL)
17779 {
17780 printf (_("Contents of binary %s at offset "), qualified_name);
17781 (void) print_vma (arch.index_array[i], PREFIX_HEX);
17782 putchar ('\n');
17783 free (qualified_name);
17784 }
17785 }
17786 }
17787
17788 if (l >= arch.sym_size)
17789 {
17790 error (_("%s: end of the symbol table reached before the end of the index\n"),
17791 file_name);
17792 ret = FALSE;
17793 break;
17794 }
17795 /* PR 17531: file: 0b6630b2. */
17796 printf ("\t%.*s\n", (int) (arch.sym_size - l), arch.sym_table + l);
17797 l += strnlen (arch.sym_table + l, arch.sym_size - l) + 1;
17798 }
17799
17800 if (arch.uses_64bit_indicies)
17801 l = (l + 7) & ~ 7;
17802 else
17803 l += l & 1;
17804
17805 if (l < arch.sym_size)
17806 {
17807 error (_("%s: %ld bytes remain in the symbol table, but without corresponding entries in the index table\n"),
17808 file_name, arch.sym_size - l);
17809 ret = FALSE;
17810 }
17811
17812 if (fseek (file, current_pos, SEEK_SET) != 0)
17813 {
17814 error (_("%s: failed to seek back to start of object files in the archive\n"), file_name);
17815 ret = FALSE;
17816 goto out;
17817 }
17818 }
17819
17820 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
17821 && !do_segments && !do_header && !do_dump && !do_version
17822 && !do_histogram && !do_debugging && !do_arch && !do_notes
17823 && !do_section_groups && !do_dyn_syms)
17824 {
17825 ret = TRUE; /* Archive index only. */
17826 goto out;
17827 }
17828 }
17829
17830 while (1)
17831 {
17832 char * name;
17833 size_t namelen;
17834 char * qualified_name;
17835
17836 /* Read the next archive header. */
17837 if (fseek (file, arch.next_arhdr_offset, SEEK_SET) != 0)
17838 {
17839 error (_("%s: failed to seek to next archive header\n"), file_name);
17840 return FALSE;
17841 }
17842 got = fread (&arch.arhdr, 1, sizeof arch.arhdr, file);
17843 if (got != sizeof arch.arhdr)
17844 {
17845 if (got == 0)
17846 break;
17847 error (_("%s: failed to read archive header\n"), file_name);
17848 ret = FALSE;
17849 break;
17850 }
17851 if (memcmp (arch.arhdr.ar_fmag, ARFMAG, 2) != 0)
17852 {
17853 error (_("%s: did not find a valid archive header\n"), arch.file_name);
17854 ret = FALSE;
17855 break;
17856 }
17857
17858 arch.next_arhdr_offset += sizeof arch.arhdr;
17859
17860 archive_file_size = strtoul (arch.arhdr.ar_size, NULL, 10);
17861 if (archive_file_size & 01)
17862 ++archive_file_size;
17863
17864 name = get_archive_member_name (&arch, &nested_arch);
17865 if (name == NULL)
17866 {
17867 error (_("%s: bad archive file name\n"), file_name);
17868 ret = FALSE;
17869 break;
17870 }
17871 namelen = strlen (name);
17872
17873 qualified_name = make_qualified_name (&arch, &nested_arch, name);
17874 if (qualified_name == NULL)
17875 {
17876 error (_("%s: bad archive file name\n"), file_name);
17877 ret = FALSE;
17878 break;
17879 }
17880
17881 if (is_thin_archive && arch.nested_member_origin == 0)
17882 {
17883 /* This is a proxy for an external member of a thin archive. */
17884 FILE * member_file;
17885 char * member_file_name = adjust_relative_path (file_name, name, namelen);
17886
17887 if (member_file_name == NULL)
17888 {
17889 ret = FALSE;
17890 break;
17891 }
17892
17893 member_file = fopen (member_file_name, "rb");
17894 if (member_file == NULL)
17895 {
17896 error (_("Input file '%s' is not readable.\n"), member_file_name);
17897 free (member_file_name);
17898 ret = FALSE;
17899 break;
17900 }
17901
17902 archive_file_offset = arch.nested_member_origin;
17903
17904 if (! process_object (qualified_name, member_file))
17905 ret = FALSE;
17906
17907 fclose (member_file);
17908 free (member_file_name);
17909 }
17910 else if (is_thin_archive)
17911 {
17912 /* PR 15140: Allow for corrupt thin archives. */
17913 if (nested_arch.file == NULL)
17914 {
17915 error (_("%s: contains corrupt thin archive: %s\n"),
17916 file_name, name);
17917 ret = FALSE;
17918 break;
17919 }
17920
17921 /* This is a proxy for a member of a nested archive. */
17922 archive_file_offset = arch.nested_member_origin + sizeof arch.arhdr;
17923
17924 /* The nested archive file will have been opened and setup by
17925 get_archive_member_name. */
17926 if (fseek (nested_arch.file, archive_file_offset, SEEK_SET) != 0)
17927 {
17928 error (_("%s: failed to seek to archive member.\n"), nested_arch.file_name);
17929 ret = FALSE;
17930 break;
17931 }
17932
17933 if (! process_object (qualified_name, nested_arch.file))
17934 ret = FALSE;
17935 }
17936 else
17937 {
17938 archive_file_offset = arch.next_arhdr_offset;
17939 arch.next_arhdr_offset += archive_file_size;
17940
17941 if (! process_object (qualified_name, file))
17942 ret = FALSE;
17943 }
17944
17945 if (dump_sects != NULL)
17946 {
17947 free (dump_sects);
17948 dump_sects = NULL;
17949 num_dump_sects = 0;
17950 }
17951
17952 free (qualified_name);
17953 }
17954
17955 out:
17956 if (nested_arch.file != NULL)
17957 fclose (nested_arch.file);
17958 release_archive (&nested_arch);
17959 release_archive (&arch);
17960
17961 return ret;
17962 }
17963
17964 static bfd_boolean
17965 process_file (char * file_name)
17966 {
17967 FILE * file;
17968 struct stat statbuf;
17969 char armag[SARMAG];
17970 bfd_boolean ret = TRUE;
17971
17972 if (stat (file_name, &statbuf) < 0)
17973 {
17974 if (errno == ENOENT)
17975 error (_("'%s': No such file\n"), file_name);
17976 else
17977 error (_("Could not locate '%s'. System error message: %s\n"),
17978 file_name, strerror (errno));
17979 return FALSE;
17980 }
17981
17982 if (! S_ISREG (statbuf.st_mode))
17983 {
17984 error (_("'%s' is not an ordinary file\n"), file_name);
17985 return FALSE;
17986 }
17987
17988 file = fopen (file_name, "rb");
17989 if (file == NULL)
17990 {
17991 error (_("Input file '%s' is not readable.\n"), file_name);
17992 return FALSE;
17993 }
17994
17995 if (fread (armag, SARMAG, 1, file) != 1)
17996 {
17997 error (_("%s: Failed to read file's magic number\n"), file_name);
17998 fclose (file);
17999 return FALSE;
18000 }
18001
18002 current_file_size = (bfd_size_type) statbuf.st_size;
18003
18004 if (memcmp (armag, ARMAG, SARMAG) == 0)
18005 {
18006 if (! process_archive (file_name, file, FALSE))
18007 ret = FALSE;
18008 }
18009 else if (memcmp (armag, ARMAGT, SARMAG) == 0)
18010 {
18011 if ( ! process_archive (file_name, file, TRUE))
18012 ret = FALSE;
18013 }
18014 else
18015 {
18016 if (do_archive_index)
18017 error (_("File %s is not an archive so its index cannot be displayed.\n"),
18018 file_name);
18019
18020 rewind (file);
18021 archive_file_size = archive_file_offset = 0;
18022
18023 if (! process_object (file_name, file))
18024 ret = FALSE;
18025 }
18026
18027 fclose (file);
18028 current_file_size = 0;
18029
18030 return ret;
18031 }
18032
18033 #ifdef SUPPORT_DISASSEMBLY
18034 /* Needed by the i386 disassembler. For extra credit, someone could
18035 fix this so that we insert symbolic addresses here, esp for GOT/PLT
18036 symbols. */
18037
18038 void
18039 print_address (unsigned int addr, FILE * outfile)
18040 {
18041 fprintf (outfile,"0x%8.8x", addr);
18042 }
18043
18044 /* Needed by the i386 disassembler. */
18045 void
18046 db_task_printsym (unsigned int addr)
18047 {
18048 print_address (addr, stderr);
18049 }
18050 #endif
18051
18052 int
18053 main (int argc, char ** argv)
18054 {
18055 int err;
18056
18057 #if defined (HAVE_SETLOCALE) && defined (HAVE_LC_MESSAGES)
18058 setlocale (LC_MESSAGES, "");
18059 #endif
18060 #if defined (HAVE_SETLOCALE)
18061 setlocale (LC_CTYPE, "");
18062 #endif
18063 bindtextdomain (PACKAGE, LOCALEDIR);
18064 textdomain (PACKAGE);
18065
18066 expandargv (&argc, &argv);
18067
18068 parse_args (argc, argv);
18069
18070 if (num_dump_sects > 0)
18071 {
18072 /* Make a copy of the dump_sects array. */
18073 cmdline_dump_sects = (dump_type *)
18074 malloc (num_dump_sects * sizeof (* dump_sects));
18075 if (cmdline_dump_sects == NULL)
18076 error (_("Out of memory allocating dump request table.\n"));
18077 else
18078 {
18079 memcpy (cmdline_dump_sects, dump_sects,
18080 num_dump_sects * sizeof (* dump_sects));
18081 num_cmdline_dump_sects = num_dump_sects;
18082 }
18083 }
18084
18085 if (optind < (argc - 1))
18086 show_name = TRUE;
18087 else if (optind >= argc)
18088 {
18089 warn (_("Nothing to do.\n"));
18090 usage (stderr);
18091 }
18092
18093 err = FALSE;
18094 while (optind < argc)
18095 if (! process_file (argv[optind++]))
18096 err = TRUE;
18097
18098 if (dump_sects != NULL)
18099 free (dump_sects);
18100 if (cmdline_dump_sects != NULL)
18101 free (cmdline_dump_sects);
18102
18103 return err ? EXIT_FAILURE : EXIT_SUCCESS;
18104 }