PowerPC64 statistics message
[binutils-gdb.git] / binutils / readelf.c
1 /* readelf.c -- display contents of an ELF format file
2 Copyright (C) 1998-2017 Free Software Foundation, Inc.
3
4 Originally developed by Eric Youngdale <eric@andante.jic.com>
5 Modifications by Nick Clifton <nickc@redhat.com>
6
7 This file is part of GNU Binutils.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
22 02110-1301, USA. */
23 \f
24 /* The difference between readelf and objdump:
25
26 Both programs are capable of displaying the contents of ELF format files,
27 so why does the binutils project have two file dumpers ?
28
29 The reason is that objdump sees an ELF file through a BFD filter of the
30 world; if BFD has a bug where, say, it disagrees about a machine constant
31 in e_flags, then the odds are good that it will remain internally
32 consistent. The linker sees it the BFD way, objdump sees it the BFD way,
33 GAS sees it the BFD way. There was need for a tool to go find out what
34 the file actually says.
35
36 This is why the readelf program does not link against the BFD library - it
37 exists as an independent program to help verify the correct working of BFD.
38
39 There is also the case that readelf can provide more information about an
40 ELF file than is provided by objdump. In particular it can display DWARF
41 debugging information which (at the moment) objdump cannot. */
42 \f
43 #include "sysdep.h"
44 #include <assert.h>
45 #include <time.h>
46 #include <zlib.h>
47 #ifdef HAVE_WCHAR_H
48 #include <wchar.h>
49 #endif
50
51 #if __GNUC__ >= 2
52 /* Define BFD64 here, even if our default architecture is 32 bit ELF
53 as this will allow us to read in and parse 64bit and 32bit ELF files.
54 Only do this if we believe that the compiler can support a 64 bit
55 data type. For now we only rely on GCC being able to do this. */
56 #define BFD64
57 #endif
58
59 #include "bfd.h"
60 #include "bucomm.h"
61 #include "elfcomm.h"
62 #include "dwarf.h"
63
64 #include "elf/common.h"
65 #include "elf/external.h"
66 #include "elf/internal.h"
67
68
69 /* Included here, before RELOC_MACROS_GEN_FUNC is defined, so that
70 we can obtain the H8 reloc numbers. We need these for the
71 get_reloc_size() function. We include h8.h again after defining
72 RELOC_MACROS_GEN_FUNC so that we get the naming function as well. */
73
74 #include "elf/h8.h"
75 #undef _ELF_H8_H
76
77 /* Undo the effects of #including reloc-macros.h. */
78
79 #undef START_RELOC_NUMBERS
80 #undef RELOC_NUMBER
81 #undef FAKE_RELOC
82 #undef EMPTY_RELOC
83 #undef END_RELOC_NUMBERS
84 #undef _RELOC_MACROS_H
85
86 /* The following headers use the elf/reloc-macros.h file to
87 automatically generate relocation recognition functions
88 such as elf_mips_reloc_type() */
89
90 #define RELOC_MACROS_GEN_FUNC
91
92 #include "elf/aarch64.h"
93 #include "elf/alpha.h"
94 #include "elf/arc.h"
95 #include "elf/arm.h"
96 #include "elf/avr.h"
97 #include "elf/bfin.h"
98 #include "elf/cr16.h"
99 #include "elf/cris.h"
100 #include "elf/crx.h"
101 #include "elf/d10v.h"
102 #include "elf/d30v.h"
103 #include "elf/dlx.h"
104 #include "elf/epiphany.h"
105 #include "elf/fr30.h"
106 #include "elf/frv.h"
107 #include "elf/ft32.h"
108 #include "elf/h8.h"
109 #include "elf/hppa.h"
110 #include "elf/i386.h"
111 #include "elf/i370.h"
112 #include "elf/i860.h"
113 #include "elf/i960.h"
114 #include "elf/ia64.h"
115 #include "elf/ip2k.h"
116 #include "elf/lm32.h"
117 #include "elf/iq2000.h"
118 #include "elf/m32c.h"
119 #include "elf/m32r.h"
120 #include "elf/m68k.h"
121 #include "elf/m68hc11.h"
122 #include "elf/mcore.h"
123 #include "elf/mep.h"
124 #include "elf/metag.h"
125 #include "elf/microblaze.h"
126 #include "elf/mips.h"
127 #include "elf/riscv.h"
128 #include "elf/mmix.h"
129 #include "elf/mn10200.h"
130 #include "elf/mn10300.h"
131 #include "elf/moxie.h"
132 #include "elf/mt.h"
133 #include "elf/msp430.h"
134 #include "elf/nds32.h"
135 #include "elf/nios2.h"
136 #include "elf/or1k.h"
137 #include "elf/pj.h"
138 #include "elf/ppc.h"
139 #include "elf/ppc64.h"
140 #include "elf/pru.h"
141 #include "elf/rl78.h"
142 #include "elf/rx.h"
143 #include "elf/s390.h"
144 #include "elf/score.h"
145 #include "elf/sh.h"
146 #include "elf/sparc.h"
147 #include "elf/spu.h"
148 #include "elf/tic6x.h"
149 #include "elf/tilegx.h"
150 #include "elf/tilepro.h"
151 #include "elf/v850.h"
152 #include "elf/vax.h"
153 #include "elf/visium.h"
154 #include "elf/wasm32.h"
155 #include "elf/x86-64.h"
156 #include "elf/xc16x.h"
157 #include "elf/xgate.h"
158 #include "elf/xstormy16.h"
159 #include "elf/xtensa.h"
160
161 #include "getopt.h"
162 #include "libiberty.h"
163 #include "safe-ctype.h"
164 #include "filenames.h"
165
166 #ifndef offsetof
167 #define offsetof(TYPE, MEMBER) ((size_t) &(((TYPE *) 0)->MEMBER))
168 #endif
169
170 typedef struct elf_section_list
171 {
172 Elf_Internal_Shdr * hdr;
173 struct elf_section_list * next;
174 } elf_section_list;
175
176 char * program_name = "readelf";
177 static unsigned long archive_file_offset;
178 static unsigned long archive_file_size;
179 static bfd_size_type current_file_size;
180 static unsigned long dynamic_addr;
181 static bfd_size_type dynamic_size;
182 static size_t dynamic_nent;
183 static char * dynamic_strings;
184 static unsigned long dynamic_strings_length;
185 static char * string_table;
186 static unsigned long string_table_length;
187 static unsigned long num_dynamic_syms;
188 static Elf_Internal_Sym * dynamic_symbols;
189 static Elf_Internal_Syminfo * dynamic_syminfo;
190 static unsigned long dynamic_syminfo_offset;
191 static unsigned int dynamic_syminfo_nent;
192 static char program_interpreter[PATH_MAX];
193 static bfd_vma dynamic_info[DT_ENCODING];
194 static bfd_vma dynamic_info_DT_GNU_HASH;
195 static bfd_vma version_info[16];
196 static Elf_Internal_Ehdr elf_header;
197 static Elf_Internal_Shdr * section_headers;
198 static Elf_Internal_Phdr * program_headers;
199 static Elf_Internal_Dyn * dynamic_section;
200 static elf_section_list * symtab_shndx_list;
201 static bfd_boolean show_name = FALSE;
202 static bfd_boolean do_dynamic = FALSE;
203 static bfd_boolean do_syms = FALSE;
204 static bfd_boolean do_dyn_syms = FALSE;
205 static bfd_boolean do_reloc = FALSE;
206 static bfd_boolean do_sections = FALSE;
207 static bfd_boolean do_section_groups = FALSE;
208 static bfd_boolean do_section_details = FALSE;
209 static bfd_boolean do_segments = FALSE;
210 static bfd_boolean do_unwind = FALSE;
211 static bfd_boolean do_using_dynamic = FALSE;
212 static bfd_boolean do_header = FALSE;
213 static bfd_boolean do_dump = FALSE;
214 static bfd_boolean do_version = FALSE;
215 static bfd_boolean do_histogram = FALSE;
216 static bfd_boolean do_debugging = FALSE;
217 static bfd_boolean do_arch = FALSE;
218 static bfd_boolean do_notes = FALSE;
219 static bfd_boolean do_archive_index = FALSE;
220 static bfd_boolean is_32bit_elf = FALSE;
221 static bfd_boolean decompress_dumps = FALSE;
222
223 struct group_list
224 {
225 struct group_list * next;
226 unsigned int section_index;
227 };
228
229 struct group
230 {
231 struct group_list * root;
232 unsigned int group_index;
233 };
234
235 static size_t group_count;
236 static struct group * section_groups;
237 static struct group ** section_headers_groups;
238
239
240 /* Flag bits indicating particular types of dump. */
241 #define HEX_DUMP (1 << 0) /* The -x command line switch. */
242 #define DISASS_DUMP (1 << 1) /* The -i command line switch. */
243 #define DEBUG_DUMP (1 << 2) /* The -w command line switch. */
244 #define STRING_DUMP (1 << 3) /* The -p command line switch. */
245 #define RELOC_DUMP (1 << 4) /* The -R command line switch. */
246
247 typedef unsigned char dump_type;
248
249 /* A linked list of the section names for which dumps were requested. */
250 struct dump_list_entry
251 {
252 char * name;
253 dump_type type;
254 struct dump_list_entry * next;
255 };
256 static struct dump_list_entry * dump_sects_byname;
257
258 /* A dynamic array of flags indicating for which sections a dump
259 has been requested via command line switches. */
260 static dump_type * cmdline_dump_sects = NULL;
261 static unsigned int num_cmdline_dump_sects = 0;
262
263 /* A dynamic array of flags indicating for which sections a dump of
264 some kind has been requested. It is reset on a per-object file
265 basis and then initialised from the cmdline_dump_sects array,
266 the results of interpreting the -w switch, and the
267 dump_sects_byname list. */
268 static dump_type * dump_sects = NULL;
269 static unsigned int num_dump_sects = 0;
270
271
272 /* How to print a vma value. */
273 typedef enum print_mode
274 {
275 HEX,
276 DEC,
277 DEC_5,
278 UNSIGNED,
279 PREFIX_HEX,
280 FULL_HEX,
281 LONG_HEX
282 }
283 print_mode;
284
285 /* Versioned symbol info. */
286 enum versioned_symbol_info
287 {
288 symbol_undefined,
289 symbol_hidden,
290 symbol_public
291 };
292
293 static const char * get_symbol_version_string
294 (FILE *, bfd_boolean, const char *, unsigned long, unsigned,
295 Elf_Internal_Sym *, enum versioned_symbol_info *, unsigned short *);
296
297 #define UNKNOWN -1
298
299 #define SECTION_NAME(X) \
300 ((X) == NULL ? _("<none>") \
301 : string_table == NULL ? _("<no-name>") \
302 : ((X)->sh_name >= string_table_length ? _("<corrupt>") \
303 : string_table + (X)->sh_name))
304
305 #define DT_VERSIONTAGIDX(tag) (DT_VERNEEDNUM - (tag)) /* Reverse order! */
306
307 #define GET_ELF_SYMBOLS(file, section, sym_count) \
308 (is_32bit_elf ? get_32bit_elf_symbols (file, section, sym_count) \
309 : get_64bit_elf_symbols (file, section, sym_count))
310
311 #define VALID_DYNAMIC_NAME(offset) ((dynamic_strings != NULL) && (offset < dynamic_strings_length))
312 /* GET_DYNAMIC_NAME asssumes that VALID_DYNAMIC_NAME has
313 already been called and verified that the string exists. */
314 #define GET_DYNAMIC_NAME(offset) (dynamic_strings + offset)
315
316 #define REMOVE_ARCH_BITS(ADDR) \
317 do \
318 { \
319 if (elf_header.e_machine == EM_ARM) \
320 (ADDR) &= ~1; \
321 } \
322 while (0)
323 \f
324 /* Print a BFD_VMA to an internal buffer, for use in error messages.
325 BFD_FMA_FMT can't be used in translated strings. */
326
327 static const char *
328 bfd_vmatoa (char *fmtch, bfd_vma value)
329 {
330 /* bfd_vmatoa is used more then once in a printf call for output.
331 Cycle through an array of buffers. */
332 static int buf_pos = 0;
333 static struct bfd_vmatoa_buf
334 {
335 char place[64];
336 } buf[4];
337 char *ret;
338 char fmt[32];
339
340 ret = buf[buf_pos++].place;
341 buf_pos %= ARRAY_SIZE (buf);
342
343 sprintf (fmt, "%%%s%s", BFD_VMA_FMT, fmtch);
344 snprintf (ret, sizeof (buf[0].place), fmt, value);
345 return ret;
346 }
347
348 /* Retrieve NMEMB structures, each SIZE bytes long from FILE starting at OFFSET +
349 the offset of the current archive member, if we are examining an archive.
350 Put the retrieved data into VAR, if it is not NULL. Otherwise allocate a buffer
351 using malloc and fill that. In either case return the pointer to the start of
352 the retrieved data or NULL if something went wrong. If something does go wrong
353 and REASON is not NULL then emit an error message using REASON as part of the
354 context. */
355
356 static void *
357 get_data (void * var, FILE * file, unsigned long offset, bfd_size_type size,
358 bfd_size_type nmemb, const char * reason)
359 {
360 void * mvar;
361 bfd_size_type amt = size * nmemb;
362
363 if (size == 0 || nmemb == 0)
364 return NULL;
365
366 /* If the size_t type is smaller than the bfd_size_type, eg because
367 you are building a 32-bit tool on a 64-bit host, then make sure
368 that when the sizes are cast to (size_t) no information is lost. */
369 if (sizeof (size_t) < sizeof (bfd_size_type)
370 && ( (bfd_size_type) ((size_t) size) != size
371 || (bfd_size_type) ((size_t) nmemb) != nmemb))
372 {
373 if (reason)
374 error (_("Size truncation prevents reading %s"
375 " elements of size %s for %s\n"),
376 bfd_vmatoa ("u", nmemb), bfd_vmatoa ("u", size), reason);
377 return NULL;
378 }
379
380 /* Check for size overflow. */
381 if (amt < nmemb)
382 {
383 if (reason)
384 error (_("Size overflow prevents reading %s"
385 " elements of size %s for %s\n"),
386 bfd_vmatoa ("u", nmemb), bfd_vmatoa ("u", size), reason);
387 return NULL;
388 }
389
390 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
391 attempting to allocate memory when the read is bound to fail. */
392 if (amt > current_file_size
393 || offset + archive_file_offset + amt > current_file_size)
394 {
395 if (reason)
396 error (_("Reading %s bytes extends past end of file for %s\n"),
397 bfd_vmatoa ("u", amt), reason);
398 return NULL;
399 }
400
401 if (fseek (file, archive_file_offset + offset, SEEK_SET))
402 {
403 if (reason)
404 error (_("Unable to seek to 0x%lx for %s\n"),
405 archive_file_offset + offset, reason);
406 return NULL;
407 }
408
409 mvar = var;
410 if (mvar == NULL)
411 {
412 /* Check for overflow. */
413 if (nmemb < (~(bfd_size_type) 0 - 1) / size)
414 /* + 1 so that we can '\0' terminate invalid string table sections. */
415 mvar = malloc ((size_t) amt + 1);
416
417 if (mvar == NULL)
418 {
419 if (reason)
420 error (_("Out of memory allocating %s bytes for %s\n"),
421 bfd_vmatoa ("u", amt), reason);
422 return NULL;
423 }
424
425 ((char *) mvar)[amt] = '\0';
426 }
427
428 if (fread (mvar, (size_t) size, (size_t) nmemb, file) != nmemb)
429 {
430 if (reason)
431 error (_("Unable to read in %s bytes of %s\n"),
432 bfd_vmatoa ("u", amt), reason);
433 if (mvar != var)
434 free (mvar);
435 return NULL;
436 }
437
438 return mvar;
439 }
440
441 /* Print a VMA value in the MODE specified.
442 Returns the number of characters displayed. */
443
444 static unsigned int
445 print_vma (bfd_vma vma, print_mode mode)
446 {
447 unsigned int nc = 0;
448
449 switch (mode)
450 {
451 case FULL_HEX:
452 nc = printf ("0x");
453 /* Fall through. */
454 case LONG_HEX:
455 #ifdef BFD64
456 if (is_32bit_elf)
457 return nc + printf ("%8.8" BFD_VMA_FMT "x", vma);
458 #endif
459 printf_vma (vma);
460 return nc + 16;
461
462 case DEC_5:
463 if (vma <= 99999)
464 return printf ("%5" BFD_VMA_FMT "d", vma);
465 /* Fall through. */
466 case PREFIX_HEX:
467 nc = printf ("0x");
468 /* Fall through. */
469 case HEX:
470 return nc + printf ("%" BFD_VMA_FMT "x", vma);
471
472 case DEC:
473 return printf ("%" BFD_VMA_FMT "d", vma);
474
475 case UNSIGNED:
476 return printf ("%" BFD_VMA_FMT "u", vma);
477
478 default:
479 /* FIXME: Report unrecognised mode ? */
480 return 0;
481 }
482 }
483
484 /* Display a symbol on stdout. Handles the display of control characters and
485 multibye characters (assuming the host environment supports them).
486
487 Display at most abs(WIDTH) characters, truncating as necessary, unless do_wide is true.
488
489 If WIDTH is negative then ensure that the output is at least (- WIDTH) characters,
490 padding as necessary.
491
492 Returns the number of emitted characters. */
493
494 static unsigned int
495 print_symbol (signed int width, const char *symbol)
496 {
497 bfd_boolean extra_padding = FALSE;
498 signed int num_printed = 0;
499 #ifdef HAVE_MBSTATE_T
500 mbstate_t state;
501 #endif
502 unsigned int width_remaining;
503
504 if (width < 0)
505 {
506 /* Keep the width positive. This helps the code below. */
507 width = - width;
508 extra_padding = TRUE;
509 }
510 assert (width != 0);
511
512 if (do_wide)
513 /* Set the remaining width to a very large value.
514 This simplifies the code below. */
515 width_remaining = INT_MAX;
516 else
517 width_remaining = width;
518
519 #ifdef HAVE_MBSTATE_T
520 /* Initialise the multibyte conversion state. */
521 memset (& state, 0, sizeof (state));
522 #endif
523
524 while (width_remaining)
525 {
526 size_t n;
527 const char c = *symbol++;
528
529 if (c == 0)
530 break;
531
532 /* Do not print control characters directly as they can affect terminal
533 settings. Such characters usually appear in the names generated
534 by the assembler for local labels. */
535 if (ISCNTRL (c))
536 {
537 if (width_remaining < 2)
538 break;
539
540 printf ("^%c", c + 0x40);
541 width_remaining -= 2;
542 num_printed += 2;
543 }
544 else if (ISPRINT (c))
545 {
546 putchar (c);
547 width_remaining --;
548 num_printed ++;
549 }
550 else
551 {
552 #ifdef HAVE_MBSTATE_T
553 wchar_t w;
554 #endif
555 /* Let printf do the hard work of displaying multibyte characters. */
556 printf ("%.1s", symbol - 1);
557 width_remaining --;
558 num_printed ++;
559
560 #ifdef HAVE_MBSTATE_T
561 /* Try to find out how many bytes made up the character that was
562 just printed. Advance the symbol pointer past the bytes that
563 were displayed. */
564 n = mbrtowc (& w, symbol - 1, MB_CUR_MAX, & state);
565 #else
566 n = 1;
567 #endif
568 if (n != (size_t) -1 && n != (size_t) -2 && n > 0)
569 symbol += (n - 1);
570 }
571 }
572
573 if (extra_padding && num_printed < width)
574 {
575 /* Fill in the remaining spaces. */
576 printf ("%-*s", width - num_printed, " ");
577 num_printed = width;
578 }
579
580 return num_printed;
581 }
582
583 /* Returns a pointer to a static buffer containing a printable version of
584 the given section's name. Like print_symbol, except that it does not try
585 to print multibyte characters, it just interprets them as hex values. */
586
587 static const char *
588 printable_section_name (const Elf_Internal_Shdr * sec)
589 {
590 #define MAX_PRINT_SEC_NAME_LEN 128
591 static char sec_name_buf [MAX_PRINT_SEC_NAME_LEN + 1];
592 const char * name = SECTION_NAME (sec);
593 char * buf = sec_name_buf;
594 char c;
595 unsigned int remaining = MAX_PRINT_SEC_NAME_LEN;
596
597 while ((c = * name ++) != 0)
598 {
599 if (ISCNTRL (c))
600 {
601 if (remaining < 2)
602 break;
603
604 * buf ++ = '^';
605 * buf ++ = c + 0x40;
606 remaining -= 2;
607 }
608 else if (ISPRINT (c))
609 {
610 * buf ++ = c;
611 remaining -= 1;
612 }
613 else
614 {
615 static char hex[17] = "0123456789ABCDEF";
616
617 if (remaining < 4)
618 break;
619 * buf ++ = '<';
620 * buf ++ = hex[(c & 0xf0) >> 4];
621 * buf ++ = hex[c & 0x0f];
622 * buf ++ = '>';
623 remaining -= 4;
624 }
625
626 if (remaining == 0)
627 break;
628 }
629
630 * buf = 0;
631 return sec_name_buf;
632 }
633
634 static const char *
635 printable_section_name_from_index (unsigned long ndx)
636 {
637 if (ndx >= elf_header.e_shnum)
638 return _("<corrupt>");
639
640 return printable_section_name (section_headers + ndx);
641 }
642
643 /* Return a pointer to section NAME, or NULL if no such section exists. */
644
645 static Elf_Internal_Shdr *
646 find_section (const char * name)
647 {
648 unsigned int i;
649
650 for (i = 0; i < elf_header.e_shnum; i++)
651 if (streq (SECTION_NAME (section_headers + i), name))
652 return section_headers + i;
653
654 return NULL;
655 }
656
657 /* Return a pointer to a section containing ADDR, or NULL if no such
658 section exists. */
659
660 static Elf_Internal_Shdr *
661 find_section_by_address (bfd_vma addr)
662 {
663 unsigned int i;
664
665 for (i = 0; i < elf_header.e_shnum; i++)
666 {
667 Elf_Internal_Shdr *sec = section_headers + i;
668 if (addr >= sec->sh_addr && addr < sec->sh_addr + sec->sh_size)
669 return sec;
670 }
671
672 return NULL;
673 }
674
675 static Elf_Internal_Shdr *
676 find_section_by_type (unsigned int type)
677 {
678 unsigned int i;
679
680 for (i = 0; i < elf_header.e_shnum; i++)
681 {
682 Elf_Internal_Shdr *sec = section_headers + i;
683 if (sec->sh_type == type)
684 return sec;
685 }
686
687 return NULL;
688 }
689
690 /* Return a pointer to section NAME, or NULL if no such section exists,
691 restricted to the list of sections given in SET. */
692
693 static Elf_Internal_Shdr *
694 find_section_in_set (const char * name, unsigned int * set)
695 {
696 unsigned int i;
697
698 if (set != NULL)
699 {
700 while ((i = *set++) > 0)
701 {
702 /* See PR 21156 for a reproducer. */
703 if (i >= elf_header.e_shnum)
704 continue; /* FIXME: Should we issue an error message ? */
705
706 if (streq (SECTION_NAME (section_headers + i), name))
707 return section_headers + i;
708 }
709 }
710
711 return find_section (name);
712 }
713
714 /* Read an unsigned LEB128 encoded value from DATA.
715 Set *LENGTH_RETURN to the number of bytes read. */
716
717 static inline unsigned long
718 read_uleb128 (unsigned char * data,
719 unsigned int * length_return,
720 const unsigned char * const end)
721 {
722 return read_leb128 (data, length_return, FALSE, end);
723 }
724
725 /* Return TRUE if the current file is for IA-64 machine and OpenVMS ABI.
726 This OS has so many departures from the ELF standard that we test it at
727 many places. */
728
729 static inline bfd_boolean
730 is_ia64_vms (void)
731 {
732 return elf_header.e_machine == EM_IA_64
733 && elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS;
734 }
735
736 /* Guess the relocation size commonly used by the specific machines. */
737
738 static bfd_boolean
739 guess_is_rela (unsigned int e_machine)
740 {
741 switch (e_machine)
742 {
743 /* Targets that use REL relocations. */
744 case EM_386:
745 case EM_IAMCU:
746 case EM_960:
747 case EM_ARM:
748 case EM_D10V:
749 case EM_CYGNUS_D10V:
750 case EM_DLX:
751 case EM_MIPS:
752 case EM_MIPS_RS3_LE:
753 case EM_CYGNUS_M32R:
754 case EM_SCORE:
755 case EM_XGATE:
756 return FALSE;
757
758 /* Targets that use RELA relocations. */
759 case EM_68K:
760 case EM_860:
761 case EM_AARCH64:
762 case EM_ADAPTEVA_EPIPHANY:
763 case EM_ALPHA:
764 case EM_ALTERA_NIOS2:
765 case EM_ARC:
766 case EM_ARC_COMPACT:
767 case EM_ARC_COMPACT2:
768 case EM_AVR:
769 case EM_AVR_OLD:
770 case EM_BLACKFIN:
771 case EM_CR16:
772 case EM_CRIS:
773 case EM_CRX:
774 case EM_D30V:
775 case EM_CYGNUS_D30V:
776 case EM_FR30:
777 case EM_FT32:
778 case EM_CYGNUS_FR30:
779 case EM_CYGNUS_FRV:
780 case EM_H8S:
781 case EM_H8_300:
782 case EM_H8_300H:
783 case EM_IA_64:
784 case EM_IP2K:
785 case EM_IP2K_OLD:
786 case EM_IQ2000:
787 case EM_LATTICEMICO32:
788 case EM_M32C_OLD:
789 case EM_M32C:
790 case EM_M32R:
791 case EM_MCORE:
792 case EM_CYGNUS_MEP:
793 case EM_METAG:
794 case EM_MMIX:
795 case EM_MN10200:
796 case EM_CYGNUS_MN10200:
797 case EM_MN10300:
798 case EM_CYGNUS_MN10300:
799 case EM_MOXIE:
800 case EM_MSP430:
801 case EM_MSP430_OLD:
802 case EM_MT:
803 case EM_NDS32:
804 case EM_NIOS32:
805 case EM_OR1K:
806 case EM_PPC64:
807 case EM_PPC:
808 case EM_TI_PRU:
809 case EM_RISCV:
810 case EM_RL78:
811 case EM_RX:
812 case EM_S390:
813 case EM_S390_OLD:
814 case EM_SH:
815 case EM_SPARC:
816 case EM_SPARC32PLUS:
817 case EM_SPARCV9:
818 case EM_SPU:
819 case EM_TI_C6000:
820 case EM_TILEGX:
821 case EM_TILEPRO:
822 case EM_V800:
823 case EM_V850:
824 case EM_CYGNUS_V850:
825 case EM_VAX:
826 case EM_VISIUM:
827 case EM_X86_64:
828 case EM_L1OM:
829 case EM_K1OM:
830 case EM_XSTORMY16:
831 case EM_XTENSA:
832 case EM_XTENSA_OLD:
833 case EM_MICROBLAZE:
834 case EM_MICROBLAZE_OLD:
835 case EM_WEBASSEMBLY:
836 return TRUE;
837
838 case EM_68HC05:
839 case EM_68HC08:
840 case EM_68HC11:
841 case EM_68HC16:
842 case EM_FX66:
843 case EM_ME16:
844 case EM_MMA:
845 case EM_NCPU:
846 case EM_NDR1:
847 case EM_PCP:
848 case EM_ST100:
849 case EM_ST19:
850 case EM_ST7:
851 case EM_ST9PLUS:
852 case EM_STARCORE:
853 case EM_SVX:
854 case EM_TINYJ:
855 default:
856 warn (_("Don't know about relocations on this machine architecture\n"));
857 return FALSE;
858 }
859 }
860
861 /* Load RELA type relocations from FILE at REL_OFFSET extending for REL_SIZE bytes.
862 Returns TRUE upon success, FALSE otherwise. If successful then a
863 pointer to a malloc'ed buffer containing the relocs is placed in *RELASP,
864 and the number of relocs loaded is placed in *NRELASP. It is the caller's
865 responsibility to free the allocated buffer. */
866
867 static bfd_boolean
868 slurp_rela_relocs (FILE * file,
869 unsigned long rel_offset,
870 unsigned long rel_size,
871 Elf_Internal_Rela ** relasp,
872 unsigned long * nrelasp)
873 {
874 Elf_Internal_Rela * relas;
875 size_t nrelas;
876 unsigned int i;
877
878 if (is_32bit_elf)
879 {
880 Elf32_External_Rela * erelas;
881
882 erelas = (Elf32_External_Rela *) get_data (NULL, file, rel_offset, 1,
883 rel_size, _("32-bit relocation data"));
884 if (!erelas)
885 return FALSE;
886
887 nrelas = rel_size / sizeof (Elf32_External_Rela);
888
889 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
890 sizeof (Elf_Internal_Rela));
891
892 if (relas == NULL)
893 {
894 free (erelas);
895 error (_("out of memory parsing relocs\n"));
896 return FALSE;
897 }
898
899 for (i = 0; i < nrelas; i++)
900 {
901 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
902 relas[i].r_info = BYTE_GET (erelas[i].r_info);
903 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
904 }
905
906 free (erelas);
907 }
908 else
909 {
910 Elf64_External_Rela * erelas;
911
912 erelas = (Elf64_External_Rela *) get_data (NULL, file, rel_offset, 1,
913 rel_size, _("64-bit relocation data"));
914 if (!erelas)
915 return FALSE;
916
917 nrelas = rel_size / sizeof (Elf64_External_Rela);
918
919 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
920 sizeof (Elf_Internal_Rela));
921
922 if (relas == NULL)
923 {
924 free (erelas);
925 error (_("out of memory parsing relocs\n"));
926 return FALSE;
927 }
928
929 for (i = 0; i < nrelas; i++)
930 {
931 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
932 relas[i].r_info = BYTE_GET (erelas[i].r_info);
933 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
934
935 /* The #ifdef BFD64 below is to prevent a compile time
936 warning. We know that if we do not have a 64 bit data
937 type that we will never execute this code anyway. */
938 #ifdef BFD64
939 if (elf_header.e_machine == EM_MIPS
940 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
941 {
942 /* In little-endian objects, r_info isn't really a
943 64-bit little-endian value: it has a 32-bit
944 little-endian symbol index followed by four
945 individual byte fields. Reorder INFO
946 accordingly. */
947 bfd_vma inf = relas[i].r_info;
948 inf = (((inf & 0xffffffff) << 32)
949 | ((inf >> 56) & 0xff)
950 | ((inf >> 40) & 0xff00)
951 | ((inf >> 24) & 0xff0000)
952 | ((inf >> 8) & 0xff000000));
953 relas[i].r_info = inf;
954 }
955 #endif /* BFD64 */
956 }
957
958 free (erelas);
959 }
960
961 *relasp = relas;
962 *nrelasp = nrelas;
963 return TRUE;
964 }
965
966 /* Load REL type relocations from FILE at REL_OFFSET extending for REL_SIZE bytes.
967 Returns TRUE upon success, FALSE otherwise. If successful then a
968 pointer to a malloc'ed buffer containing the relocs is placed in *RELSP,
969 and the number of relocs loaded is placed in *NRELSP. It is the caller's
970 responsibility to free the allocated buffer. */
971
972 static bfd_boolean
973 slurp_rel_relocs (FILE * file,
974 unsigned long rel_offset,
975 unsigned long rel_size,
976 Elf_Internal_Rela ** relsp,
977 unsigned long * nrelsp)
978 {
979 Elf_Internal_Rela * rels;
980 size_t nrels;
981 unsigned int i;
982
983 if (is_32bit_elf)
984 {
985 Elf32_External_Rel * erels;
986
987 erels = (Elf32_External_Rel *) get_data (NULL, file, rel_offset, 1,
988 rel_size, _("32-bit relocation data"));
989 if (!erels)
990 return FALSE;
991
992 nrels = rel_size / sizeof (Elf32_External_Rel);
993
994 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
995
996 if (rels == NULL)
997 {
998 free (erels);
999 error (_("out of memory parsing relocs\n"));
1000 return FALSE;
1001 }
1002
1003 for (i = 0; i < nrels; i++)
1004 {
1005 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
1006 rels[i].r_info = BYTE_GET (erels[i].r_info);
1007 rels[i].r_addend = 0;
1008 }
1009
1010 free (erels);
1011 }
1012 else
1013 {
1014 Elf64_External_Rel * erels;
1015
1016 erels = (Elf64_External_Rel *) get_data (NULL, file, rel_offset, 1,
1017 rel_size, _("64-bit relocation data"));
1018 if (!erels)
1019 return FALSE;
1020
1021 nrels = rel_size / sizeof (Elf64_External_Rel);
1022
1023 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
1024
1025 if (rels == NULL)
1026 {
1027 free (erels);
1028 error (_("out of memory parsing relocs\n"));
1029 return FALSE;
1030 }
1031
1032 for (i = 0; i < nrels; i++)
1033 {
1034 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
1035 rels[i].r_info = BYTE_GET (erels[i].r_info);
1036 rels[i].r_addend = 0;
1037
1038 /* The #ifdef BFD64 below is to prevent a compile time
1039 warning. We know that if we do not have a 64 bit data
1040 type that we will never execute this code anyway. */
1041 #ifdef BFD64
1042 if (elf_header.e_machine == EM_MIPS
1043 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
1044 {
1045 /* In little-endian objects, r_info isn't really a
1046 64-bit little-endian value: it has a 32-bit
1047 little-endian symbol index followed by four
1048 individual byte fields. Reorder INFO
1049 accordingly. */
1050 bfd_vma inf = rels[i].r_info;
1051 inf = (((inf & 0xffffffff) << 32)
1052 | ((inf >> 56) & 0xff)
1053 | ((inf >> 40) & 0xff00)
1054 | ((inf >> 24) & 0xff0000)
1055 | ((inf >> 8) & 0xff000000));
1056 rels[i].r_info = inf;
1057 }
1058 #endif /* BFD64 */
1059 }
1060
1061 free (erels);
1062 }
1063
1064 *relsp = rels;
1065 *nrelsp = nrels;
1066 return TRUE;
1067 }
1068
1069 /* Returns the reloc type extracted from the reloc info field. */
1070
1071 static unsigned int
1072 get_reloc_type (bfd_vma reloc_info)
1073 {
1074 if (is_32bit_elf)
1075 return ELF32_R_TYPE (reloc_info);
1076
1077 switch (elf_header.e_machine)
1078 {
1079 case EM_MIPS:
1080 /* Note: We assume that reloc_info has already been adjusted for us. */
1081 return ELF64_MIPS_R_TYPE (reloc_info);
1082
1083 case EM_SPARCV9:
1084 return ELF64_R_TYPE_ID (reloc_info);
1085
1086 default:
1087 return ELF64_R_TYPE (reloc_info);
1088 }
1089 }
1090
1091 /* Return the symbol index extracted from the reloc info field. */
1092
1093 static bfd_vma
1094 get_reloc_symindex (bfd_vma reloc_info)
1095 {
1096 return is_32bit_elf ? ELF32_R_SYM (reloc_info) : ELF64_R_SYM (reloc_info);
1097 }
1098
1099 static inline bfd_boolean
1100 uses_msp430x_relocs (void)
1101 {
1102 return
1103 elf_header.e_machine == EM_MSP430 /* Paranoia. */
1104 /* GCC uses osabi == ELFOSBI_STANDALONE. */
1105 && (((elf_header.e_flags & EF_MSP430_MACH) == E_MSP430_MACH_MSP430X)
1106 /* TI compiler uses ELFOSABI_NONE. */
1107 || (elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE));
1108 }
1109
1110 /* Display the contents of the relocation data found at the specified
1111 offset. */
1112
1113 static bfd_boolean
1114 dump_relocations (FILE * file,
1115 unsigned long rel_offset,
1116 unsigned long rel_size,
1117 Elf_Internal_Sym * symtab,
1118 unsigned long nsyms,
1119 char * strtab,
1120 unsigned long strtablen,
1121 int is_rela,
1122 bfd_boolean is_dynsym)
1123 {
1124 unsigned long i;
1125 Elf_Internal_Rela * rels;
1126 bfd_boolean res = TRUE;
1127
1128 if (is_rela == UNKNOWN)
1129 is_rela = guess_is_rela (elf_header.e_machine);
1130
1131 if (is_rela)
1132 {
1133 if (!slurp_rela_relocs (file, rel_offset, rel_size, &rels, &rel_size))
1134 return FALSE;
1135 }
1136 else
1137 {
1138 if (!slurp_rel_relocs (file, rel_offset, rel_size, &rels, &rel_size))
1139 return FALSE;
1140 }
1141
1142 if (is_32bit_elf)
1143 {
1144 if (is_rela)
1145 {
1146 if (do_wide)
1147 printf (_(" Offset Info Type Sym. Value Symbol's Name + Addend\n"));
1148 else
1149 printf (_(" Offset Info Type Sym.Value Sym. Name + Addend\n"));
1150 }
1151 else
1152 {
1153 if (do_wide)
1154 printf (_(" Offset Info Type Sym. Value Symbol's Name\n"));
1155 else
1156 printf (_(" Offset Info Type Sym.Value Sym. Name\n"));
1157 }
1158 }
1159 else
1160 {
1161 if (is_rela)
1162 {
1163 if (do_wide)
1164 printf (_(" Offset Info Type Symbol's Value Symbol's Name + Addend\n"));
1165 else
1166 printf (_(" Offset Info Type Sym. Value Sym. Name + Addend\n"));
1167 }
1168 else
1169 {
1170 if (do_wide)
1171 printf (_(" Offset Info Type Symbol's Value Symbol's Name\n"));
1172 else
1173 printf (_(" Offset Info Type Sym. Value Sym. Name\n"));
1174 }
1175 }
1176
1177 for (i = 0; i < rel_size; i++)
1178 {
1179 const char * rtype;
1180 bfd_vma offset;
1181 bfd_vma inf;
1182 bfd_vma symtab_index;
1183 bfd_vma type;
1184
1185 offset = rels[i].r_offset;
1186 inf = rels[i].r_info;
1187
1188 type = get_reloc_type (inf);
1189 symtab_index = get_reloc_symindex (inf);
1190
1191 if (is_32bit_elf)
1192 {
1193 printf ("%8.8lx %8.8lx ",
1194 (unsigned long) offset & 0xffffffff,
1195 (unsigned long) inf & 0xffffffff);
1196 }
1197 else
1198 {
1199 #if BFD_HOST_64BIT_LONG
1200 printf (do_wide
1201 ? "%16.16lx %16.16lx "
1202 : "%12.12lx %12.12lx ",
1203 offset, inf);
1204 #elif BFD_HOST_64BIT_LONG_LONG
1205 #ifndef __MSVCRT__
1206 printf (do_wide
1207 ? "%16.16llx %16.16llx "
1208 : "%12.12llx %12.12llx ",
1209 offset, inf);
1210 #else
1211 printf (do_wide
1212 ? "%16.16I64x %16.16I64x "
1213 : "%12.12I64x %12.12I64x ",
1214 offset, inf);
1215 #endif
1216 #else
1217 printf (do_wide
1218 ? "%8.8lx%8.8lx %8.8lx%8.8lx "
1219 : "%4.4lx%8.8lx %4.4lx%8.8lx ",
1220 _bfd_int64_high (offset),
1221 _bfd_int64_low (offset),
1222 _bfd_int64_high (inf),
1223 _bfd_int64_low (inf));
1224 #endif
1225 }
1226
1227 switch (elf_header.e_machine)
1228 {
1229 default:
1230 rtype = NULL;
1231 break;
1232
1233 case EM_AARCH64:
1234 rtype = elf_aarch64_reloc_type (type);
1235 break;
1236
1237 case EM_M32R:
1238 case EM_CYGNUS_M32R:
1239 rtype = elf_m32r_reloc_type (type);
1240 break;
1241
1242 case EM_386:
1243 case EM_IAMCU:
1244 rtype = elf_i386_reloc_type (type);
1245 break;
1246
1247 case EM_68HC11:
1248 case EM_68HC12:
1249 rtype = elf_m68hc11_reloc_type (type);
1250 break;
1251
1252 case EM_68K:
1253 rtype = elf_m68k_reloc_type (type);
1254 break;
1255
1256 case EM_960:
1257 rtype = elf_i960_reloc_type (type);
1258 break;
1259
1260 case EM_AVR:
1261 case EM_AVR_OLD:
1262 rtype = elf_avr_reloc_type (type);
1263 break;
1264
1265 case EM_OLD_SPARCV9:
1266 case EM_SPARC32PLUS:
1267 case EM_SPARCV9:
1268 case EM_SPARC:
1269 rtype = elf_sparc_reloc_type (type);
1270 break;
1271
1272 case EM_SPU:
1273 rtype = elf_spu_reloc_type (type);
1274 break;
1275
1276 case EM_V800:
1277 rtype = v800_reloc_type (type);
1278 break;
1279 case EM_V850:
1280 case EM_CYGNUS_V850:
1281 rtype = v850_reloc_type (type);
1282 break;
1283
1284 case EM_D10V:
1285 case EM_CYGNUS_D10V:
1286 rtype = elf_d10v_reloc_type (type);
1287 break;
1288
1289 case EM_D30V:
1290 case EM_CYGNUS_D30V:
1291 rtype = elf_d30v_reloc_type (type);
1292 break;
1293
1294 case EM_DLX:
1295 rtype = elf_dlx_reloc_type (type);
1296 break;
1297
1298 case EM_SH:
1299 rtype = elf_sh_reloc_type (type);
1300 break;
1301
1302 case EM_MN10300:
1303 case EM_CYGNUS_MN10300:
1304 rtype = elf_mn10300_reloc_type (type);
1305 break;
1306
1307 case EM_MN10200:
1308 case EM_CYGNUS_MN10200:
1309 rtype = elf_mn10200_reloc_type (type);
1310 break;
1311
1312 case EM_FR30:
1313 case EM_CYGNUS_FR30:
1314 rtype = elf_fr30_reloc_type (type);
1315 break;
1316
1317 case EM_CYGNUS_FRV:
1318 rtype = elf_frv_reloc_type (type);
1319 break;
1320
1321 case EM_FT32:
1322 rtype = elf_ft32_reloc_type (type);
1323 break;
1324
1325 case EM_MCORE:
1326 rtype = elf_mcore_reloc_type (type);
1327 break;
1328
1329 case EM_MMIX:
1330 rtype = elf_mmix_reloc_type (type);
1331 break;
1332
1333 case EM_MOXIE:
1334 rtype = elf_moxie_reloc_type (type);
1335 break;
1336
1337 case EM_MSP430:
1338 if (uses_msp430x_relocs ())
1339 {
1340 rtype = elf_msp430x_reloc_type (type);
1341 break;
1342 }
1343 /* Fall through. */
1344 case EM_MSP430_OLD:
1345 rtype = elf_msp430_reloc_type (type);
1346 break;
1347
1348 case EM_NDS32:
1349 rtype = elf_nds32_reloc_type (type);
1350 break;
1351
1352 case EM_PPC:
1353 rtype = elf_ppc_reloc_type (type);
1354 break;
1355
1356 case EM_PPC64:
1357 rtype = elf_ppc64_reloc_type (type);
1358 break;
1359
1360 case EM_MIPS:
1361 case EM_MIPS_RS3_LE:
1362 rtype = elf_mips_reloc_type (type);
1363 break;
1364
1365 case EM_RISCV:
1366 rtype = elf_riscv_reloc_type (type);
1367 break;
1368
1369 case EM_ALPHA:
1370 rtype = elf_alpha_reloc_type (type);
1371 break;
1372
1373 case EM_ARM:
1374 rtype = elf_arm_reloc_type (type);
1375 break;
1376
1377 case EM_ARC:
1378 case EM_ARC_COMPACT:
1379 case EM_ARC_COMPACT2:
1380 rtype = elf_arc_reloc_type (type);
1381 break;
1382
1383 case EM_PARISC:
1384 rtype = elf_hppa_reloc_type (type);
1385 break;
1386
1387 case EM_H8_300:
1388 case EM_H8_300H:
1389 case EM_H8S:
1390 rtype = elf_h8_reloc_type (type);
1391 break;
1392
1393 case EM_OR1K:
1394 rtype = elf_or1k_reloc_type (type);
1395 break;
1396
1397 case EM_PJ:
1398 case EM_PJ_OLD:
1399 rtype = elf_pj_reloc_type (type);
1400 break;
1401 case EM_IA_64:
1402 rtype = elf_ia64_reloc_type (type);
1403 break;
1404
1405 case EM_CRIS:
1406 rtype = elf_cris_reloc_type (type);
1407 break;
1408
1409 case EM_860:
1410 rtype = elf_i860_reloc_type (type);
1411 break;
1412
1413 case EM_X86_64:
1414 case EM_L1OM:
1415 case EM_K1OM:
1416 rtype = elf_x86_64_reloc_type (type);
1417 break;
1418
1419 case EM_S370:
1420 rtype = i370_reloc_type (type);
1421 break;
1422
1423 case EM_S390_OLD:
1424 case EM_S390:
1425 rtype = elf_s390_reloc_type (type);
1426 break;
1427
1428 case EM_SCORE:
1429 rtype = elf_score_reloc_type (type);
1430 break;
1431
1432 case EM_XSTORMY16:
1433 rtype = elf_xstormy16_reloc_type (type);
1434 break;
1435
1436 case EM_CRX:
1437 rtype = elf_crx_reloc_type (type);
1438 break;
1439
1440 case EM_VAX:
1441 rtype = elf_vax_reloc_type (type);
1442 break;
1443
1444 case EM_VISIUM:
1445 rtype = elf_visium_reloc_type (type);
1446 break;
1447
1448 case EM_ADAPTEVA_EPIPHANY:
1449 rtype = elf_epiphany_reloc_type (type);
1450 break;
1451
1452 case EM_IP2K:
1453 case EM_IP2K_OLD:
1454 rtype = elf_ip2k_reloc_type (type);
1455 break;
1456
1457 case EM_IQ2000:
1458 rtype = elf_iq2000_reloc_type (type);
1459 break;
1460
1461 case EM_XTENSA_OLD:
1462 case EM_XTENSA:
1463 rtype = elf_xtensa_reloc_type (type);
1464 break;
1465
1466 case EM_LATTICEMICO32:
1467 rtype = elf_lm32_reloc_type (type);
1468 break;
1469
1470 case EM_M32C_OLD:
1471 case EM_M32C:
1472 rtype = elf_m32c_reloc_type (type);
1473 break;
1474
1475 case EM_MT:
1476 rtype = elf_mt_reloc_type (type);
1477 break;
1478
1479 case EM_BLACKFIN:
1480 rtype = elf_bfin_reloc_type (type);
1481 break;
1482
1483 case EM_CYGNUS_MEP:
1484 rtype = elf_mep_reloc_type (type);
1485 break;
1486
1487 case EM_CR16:
1488 rtype = elf_cr16_reloc_type (type);
1489 break;
1490
1491 case EM_MICROBLAZE:
1492 case EM_MICROBLAZE_OLD:
1493 rtype = elf_microblaze_reloc_type (type);
1494 break;
1495
1496 case EM_RL78:
1497 rtype = elf_rl78_reloc_type (type);
1498 break;
1499
1500 case EM_RX:
1501 rtype = elf_rx_reloc_type (type);
1502 break;
1503
1504 case EM_METAG:
1505 rtype = elf_metag_reloc_type (type);
1506 break;
1507
1508 case EM_XC16X:
1509 case EM_C166:
1510 rtype = elf_xc16x_reloc_type (type);
1511 break;
1512
1513 case EM_TI_C6000:
1514 rtype = elf_tic6x_reloc_type (type);
1515 break;
1516
1517 case EM_TILEGX:
1518 rtype = elf_tilegx_reloc_type (type);
1519 break;
1520
1521 case EM_TILEPRO:
1522 rtype = elf_tilepro_reloc_type (type);
1523 break;
1524
1525 case EM_WEBASSEMBLY:
1526 rtype = elf_wasm32_reloc_type (type);
1527 break;
1528
1529 case EM_XGATE:
1530 rtype = elf_xgate_reloc_type (type);
1531 break;
1532
1533 case EM_ALTERA_NIOS2:
1534 rtype = elf_nios2_reloc_type (type);
1535 break;
1536
1537 case EM_TI_PRU:
1538 rtype = elf_pru_reloc_type (type);
1539 break;
1540 }
1541
1542 if (rtype == NULL)
1543 printf (_("unrecognized: %-7lx"), (unsigned long) type & 0xffffffff);
1544 else
1545 printf (do_wide ? "%-22s" : "%-17.17s", rtype);
1546
1547 if (elf_header.e_machine == EM_ALPHA
1548 && rtype != NULL
1549 && streq (rtype, "R_ALPHA_LITUSE")
1550 && is_rela)
1551 {
1552 switch (rels[i].r_addend)
1553 {
1554 case LITUSE_ALPHA_ADDR: rtype = "ADDR"; break;
1555 case LITUSE_ALPHA_BASE: rtype = "BASE"; break;
1556 case LITUSE_ALPHA_BYTOFF: rtype = "BYTOFF"; break;
1557 case LITUSE_ALPHA_JSR: rtype = "JSR"; break;
1558 case LITUSE_ALPHA_TLSGD: rtype = "TLSGD"; break;
1559 case LITUSE_ALPHA_TLSLDM: rtype = "TLSLDM"; break;
1560 case LITUSE_ALPHA_JSRDIRECT: rtype = "JSRDIRECT"; break;
1561 default: rtype = NULL;
1562 }
1563
1564 if (rtype)
1565 printf (" (%s)", rtype);
1566 else
1567 {
1568 putchar (' ');
1569 printf (_("<unknown addend: %lx>"),
1570 (unsigned long) rels[i].r_addend);
1571 res = FALSE;
1572 }
1573 }
1574 else if (symtab_index)
1575 {
1576 if (symtab == NULL || symtab_index >= nsyms)
1577 {
1578 error (_(" bad symbol index: %08lx in reloc"), (unsigned long) symtab_index);
1579 res = FALSE;
1580 }
1581 else
1582 {
1583 Elf_Internal_Sym * psym;
1584 const char * version_string;
1585 enum versioned_symbol_info sym_info;
1586 unsigned short vna_other;
1587
1588 psym = symtab + symtab_index;
1589
1590 version_string
1591 = get_symbol_version_string (file, is_dynsym,
1592 strtab, strtablen,
1593 symtab_index,
1594 psym,
1595 &sym_info,
1596 &vna_other);
1597
1598 printf (" ");
1599
1600 if (ELF_ST_TYPE (psym->st_info) == STT_GNU_IFUNC)
1601 {
1602 const char * name;
1603 unsigned int len;
1604 unsigned int width = is_32bit_elf ? 8 : 14;
1605
1606 /* Relocations against GNU_IFUNC symbols do not use the value
1607 of the symbol as the address to relocate against. Instead
1608 they invoke the function named by the symbol and use its
1609 result as the address for relocation.
1610
1611 To indicate this to the user, do not display the value of
1612 the symbol in the "Symbols's Value" field. Instead show
1613 its name followed by () as a hint that the symbol is
1614 invoked. */
1615
1616 if (strtab == NULL
1617 || psym->st_name == 0
1618 || psym->st_name >= strtablen)
1619 name = "??";
1620 else
1621 name = strtab + psym->st_name;
1622
1623 len = print_symbol (width, name);
1624 if (version_string)
1625 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1626 version_string);
1627 printf ("()%-*s", len <= width ? (width + 1) - len : 1, " ");
1628 }
1629 else
1630 {
1631 print_vma (psym->st_value, LONG_HEX);
1632
1633 printf (is_32bit_elf ? " " : " ");
1634 }
1635
1636 if (psym->st_name == 0)
1637 {
1638 const char * sec_name = "<null>";
1639 char name_buf[40];
1640
1641 if (ELF_ST_TYPE (psym->st_info) == STT_SECTION)
1642 {
1643 if (psym->st_shndx < elf_header.e_shnum)
1644 sec_name = SECTION_NAME (section_headers + psym->st_shndx);
1645 else if (psym->st_shndx == SHN_ABS)
1646 sec_name = "ABS";
1647 else if (psym->st_shndx == SHN_COMMON)
1648 sec_name = "COMMON";
1649 else if ((elf_header.e_machine == EM_MIPS
1650 && psym->st_shndx == SHN_MIPS_SCOMMON)
1651 || (elf_header.e_machine == EM_TI_C6000
1652 && psym->st_shndx == SHN_TIC6X_SCOMMON))
1653 sec_name = "SCOMMON";
1654 else if (elf_header.e_machine == EM_MIPS
1655 && psym->st_shndx == SHN_MIPS_SUNDEFINED)
1656 sec_name = "SUNDEF";
1657 else if ((elf_header.e_machine == EM_X86_64
1658 || elf_header.e_machine == EM_L1OM
1659 || elf_header.e_machine == EM_K1OM)
1660 && psym->st_shndx == SHN_X86_64_LCOMMON)
1661 sec_name = "LARGE_COMMON";
1662 else if (elf_header.e_machine == EM_IA_64
1663 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX
1664 && psym->st_shndx == SHN_IA_64_ANSI_COMMON)
1665 sec_name = "ANSI_COM";
1666 else if (is_ia64_vms ()
1667 && psym->st_shndx == SHN_IA_64_VMS_SYMVEC)
1668 sec_name = "VMS_SYMVEC";
1669 else
1670 {
1671 sprintf (name_buf, "<section 0x%x>",
1672 (unsigned int) psym->st_shndx);
1673 sec_name = name_buf;
1674 }
1675 }
1676 print_symbol (22, sec_name);
1677 }
1678 else if (strtab == NULL)
1679 printf (_("<string table index: %3ld>"), psym->st_name);
1680 else if (psym->st_name >= strtablen)
1681 {
1682 error (_("<corrupt string table index: %3ld>"), psym->st_name);
1683 res = FALSE;
1684 }
1685 else
1686 {
1687 print_symbol (22, strtab + psym->st_name);
1688 if (version_string)
1689 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1690 version_string);
1691 }
1692
1693 if (is_rela)
1694 {
1695 bfd_vma off = rels[i].r_addend;
1696
1697 if ((bfd_signed_vma) off < 0)
1698 printf (" - %" BFD_VMA_FMT "x", - off);
1699 else
1700 printf (" + %" BFD_VMA_FMT "x", off);
1701 }
1702 }
1703 }
1704 else if (is_rela)
1705 {
1706 bfd_vma off = rels[i].r_addend;
1707
1708 printf ("%*c", is_32bit_elf ? 12 : 20, ' ');
1709 if ((bfd_signed_vma) off < 0)
1710 printf ("-%" BFD_VMA_FMT "x", - off);
1711 else
1712 printf ("%" BFD_VMA_FMT "x", off);
1713 }
1714
1715 if (elf_header.e_machine == EM_SPARCV9
1716 && rtype != NULL
1717 && streq (rtype, "R_SPARC_OLO10"))
1718 printf (" + %lx", (unsigned long) ELF64_R_TYPE_DATA (inf));
1719
1720 putchar ('\n');
1721
1722 #ifdef BFD64
1723 if (! is_32bit_elf && elf_header.e_machine == EM_MIPS)
1724 {
1725 bfd_vma type2 = ELF64_MIPS_R_TYPE2 (inf);
1726 bfd_vma type3 = ELF64_MIPS_R_TYPE3 (inf);
1727 const char * rtype2 = elf_mips_reloc_type (type2);
1728 const char * rtype3 = elf_mips_reloc_type (type3);
1729
1730 printf (" Type2: ");
1731
1732 if (rtype2 == NULL)
1733 printf (_("unrecognized: %-7lx"),
1734 (unsigned long) type2 & 0xffffffff);
1735 else
1736 printf ("%-17.17s", rtype2);
1737
1738 printf ("\n Type3: ");
1739
1740 if (rtype3 == NULL)
1741 printf (_("unrecognized: %-7lx"),
1742 (unsigned long) type3 & 0xffffffff);
1743 else
1744 printf ("%-17.17s", rtype3);
1745
1746 putchar ('\n');
1747 }
1748 #endif /* BFD64 */
1749 }
1750
1751 free (rels);
1752
1753 return res;
1754 }
1755
1756 static const char *
1757 get_mips_dynamic_type (unsigned long type)
1758 {
1759 switch (type)
1760 {
1761 case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION";
1762 case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP";
1763 case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM";
1764 case DT_MIPS_IVERSION: return "MIPS_IVERSION";
1765 case DT_MIPS_FLAGS: return "MIPS_FLAGS";
1766 case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS";
1767 case DT_MIPS_MSYM: return "MIPS_MSYM";
1768 case DT_MIPS_CONFLICT: return "MIPS_CONFLICT";
1769 case DT_MIPS_LIBLIST: return "MIPS_LIBLIST";
1770 case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO";
1771 case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO";
1772 case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO";
1773 case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO";
1774 case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO";
1775 case DT_MIPS_GOTSYM: return "MIPS_GOTSYM";
1776 case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO";
1777 case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP";
1778 case DT_MIPS_RLD_MAP_REL: return "MIPS_RLD_MAP_REL";
1779 case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS";
1780 case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO";
1781 case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE";
1782 case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO";
1783 case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC";
1784 case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO";
1785 case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM";
1786 case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO";
1787 case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM";
1788 case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO";
1789 case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS";
1790 case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT";
1791 case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
1792 case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX";
1793 case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX";
1794 case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX";
1795 case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX";
1796 case DT_MIPS_OPTIONS: return "MIPS_OPTIONS";
1797 case DT_MIPS_INTERFACE: return "MIPS_INTERFACE";
1798 case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN";
1799 case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE";
1800 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR";
1801 case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX";
1802 case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE";
1803 case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE";
1804 case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC";
1805 case DT_MIPS_PLTGOT: return "MIPS_PLTGOT";
1806 case DT_MIPS_RWPLT: return "MIPS_RWPLT";
1807 default:
1808 return NULL;
1809 }
1810 }
1811
1812 static const char *
1813 get_sparc64_dynamic_type (unsigned long type)
1814 {
1815 switch (type)
1816 {
1817 case DT_SPARC_REGISTER: return "SPARC_REGISTER";
1818 default:
1819 return NULL;
1820 }
1821 }
1822
1823 static const char *
1824 get_ppc_dynamic_type (unsigned long type)
1825 {
1826 switch (type)
1827 {
1828 case DT_PPC_GOT: return "PPC_GOT";
1829 case DT_PPC_OPT: return "PPC_OPT";
1830 default:
1831 return NULL;
1832 }
1833 }
1834
1835 static const char *
1836 get_ppc64_dynamic_type (unsigned long type)
1837 {
1838 switch (type)
1839 {
1840 case DT_PPC64_GLINK: return "PPC64_GLINK";
1841 case DT_PPC64_OPD: return "PPC64_OPD";
1842 case DT_PPC64_OPDSZ: return "PPC64_OPDSZ";
1843 case DT_PPC64_OPT: return "PPC64_OPT";
1844 default:
1845 return NULL;
1846 }
1847 }
1848
1849 static const char *
1850 get_parisc_dynamic_type (unsigned long type)
1851 {
1852 switch (type)
1853 {
1854 case DT_HP_LOAD_MAP: return "HP_LOAD_MAP";
1855 case DT_HP_DLD_FLAGS: return "HP_DLD_FLAGS";
1856 case DT_HP_DLD_HOOK: return "HP_DLD_HOOK";
1857 case DT_HP_UX10_INIT: return "HP_UX10_INIT";
1858 case DT_HP_UX10_INITSZ: return "HP_UX10_INITSZ";
1859 case DT_HP_PREINIT: return "HP_PREINIT";
1860 case DT_HP_PREINITSZ: return "HP_PREINITSZ";
1861 case DT_HP_NEEDED: return "HP_NEEDED";
1862 case DT_HP_TIME_STAMP: return "HP_TIME_STAMP";
1863 case DT_HP_CHECKSUM: return "HP_CHECKSUM";
1864 case DT_HP_GST_SIZE: return "HP_GST_SIZE";
1865 case DT_HP_GST_VERSION: return "HP_GST_VERSION";
1866 case DT_HP_GST_HASHVAL: return "HP_GST_HASHVAL";
1867 case DT_HP_EPLTREL: return "HP_GST_EPLTREL";
1868 case DT_HP_EPLTRELSZ: return "HP_GST_EPLTRELSZ";
1869 case DT_HP_FILTERED: return "HP_FILTERED";
1870 case DT_HP_FILTER_TLS: return "HP_FILTER_TLS";
1871 case DT_HP_COMPAT_FILTERED: return "HP_COMPAT_FILTERED";
1872 case DT_HP_LAZYLOAD: return "HP_LAZYLOAD";
1873 case DT_HP_BIND_NOW_COUNT: return "HP_BIND_NOW_COUNT";
1874 case DT_PLT: return "PLT";
1875 case DT_PLT_SIZE: return "PLT_SIZE";
1876 case DT_DLT: return "DLT";
1877 case DT_DLT_SIZE: return "DLT_SIZE";
1878 default:
1879 return NULL;
1880 }
1881 }
1882
1883 static const char *
1884 get_ia64_dynamic_type (unsigned long type)
1885 {
1886 switch (type)
1887 {
1888 case DT_IA_64_PLT_RESERVE: return "IA_64_PLT_RESERVE";
1889 case DT_IA_64_VMS_SUBTYPE: return "VMS_SUBTYPE";
1890 case DT_IA_64_VMS_IMGIOCNT: return "VMS_IMGIOCNT";
1891 case DT_IA_64_VMS_LNKFLAGS: return "VMS_LNKFLAGS";
1892 case DT_IA_64_VMS_VIR_MEM_BLK_SIZ: return "VMS_VIR_MEM_BLK_SIZ";
1893 case DT_IA_64_VMS_IDENT: return "VMS_IDENT";
1894 case DT_IA_64_VMS_NEEDED_IDENT: return "VMS_NEEDED_IDENT";
1895 case DT_IA_64_VMS_IMG_RELA_CNT: return "VMS_IMG_RELA_CNT";
1896 case DT_IA_64_VMS_SEG_RELA_CNT: return "VMS_SEG_RELA_CNT";
1897 case DT_IA_64_VMS_FIXUP_RELA_CNT: return "VMS_FIXUP_RELA_CNT";
1898 case DT_IA_64_VMS_FIXUP_NEEDED: return "VMS_FIXUP_NEEDED";
1899 case DT_IA_64_VMS_SYMVEC_CNT: return "VMS_SYMVEC_CNT";
1900 case DT_IA_64_VMS_XLATED: return "VMS_XLATED";
1901 case DT_IA_64_VMS_STACKSIZE: return "VMS_STACKSIZE";
1902 case DT_IA_64_VMS_UNWINDSZ: return "VMS_UNWINDSZ";
1903 case DT_IA_64_VMS_UNWIND_CODSEG: return "VMS_UNWIND_CODSEG";
1904 case DT_IA_64_VMS_UNWIND_INFOSEG: return "VMS_UNWIND_INFOSEG";
1905 case DT_IA_64_VMS_LINKTIME: return "VMS_LINKTIME";
1906 case DT_IA_64_VMS_SEG_NO: return "VMS_SEG_NO";
1907 case DT_IA_64_VMS_SYMVEC_OFFSET: return "VMS_SYMVEC_OFFSET";
1908 case DT_IA_64_VMS_SYMVEC_SEG: return "VMS_SYMVEC_SEG";
1909 case DT_IA_64_VMS_UNWIND_OFFSET: return "VMS_UNWIND_OFFSET";
1910 case DT_IA_64_VMS_UNWIND_SEG: return "VMS_UNWIND_SEG";
1911 case DT_IA_64_VMS_STRTAB_OFFSET: return "VMS_STRTAB_OFFSET";
1912 case DT_IA_64_VMS_SYSVER_OFFSET: return "VMS_SYSVER_OFFSET";
1913 case DT_IA_64_VMS_IMG_RELA_OFF: return "VMS_IMG_RELA_OFF";
1914 case DT_IA_64_VMS_SEG_RELA_OFF: return "VMS_SEG_RELA_OFF";
1915 case DT_IA_64_VMS_FIXUP_RELA_OFF: return "VMS_FIXUP_RELA_OFF";
1916 case DT_IA_64_VMS_PLTGOT_OFFSET: return "VMS_PLTGOT_OFFSET";
1917 case DT_IA_64_VMS_PLTGOT_SEG: return "VMS_PLTGOT_SEG";
1918 case DT_IA_64_VMS_FPMODE: return "VMS_FPMODE";
1919 default:
1920 return NULL;
1921 }
1922 }
1923
1924 static const char *
1925 get_solaris_section_type (unsigned long type)
1926 {
1927 switch (type)
1928 {
1929 case 0x6fffffee: return "SUNW_ancillary";
1930 case 0x6fffffef: return "SUNW_capchain";
1931 case 0x6ffffff0: return "SUNW_capinfo";
1932 case 0x6ffffff1: return "SUNW_symsort";
1933 case 0x6ffffff2: return "SUNW_tlssort";
1934 case 0x6ffffff3: return "SUNW_LDYNSYM";
1935 case 0x6ffffff4: return "SUNW_dof";
1936 case 0x6ffffff5: return "SUNW_cap";
1937 case 0x6ffffff6: return "SUNW_SIGNATURE";
1938 case 0x6ffffff7: return "SUNW_ANNOTATE";
1939 case 0x6ffffff8: return "SUNW_DEBUGSTR";
1940 case 0x6ffffff9: return "SUNW_DEBUG";
1941 case 0x6ffffffa: return "SUNW_move";
1942 case 0x6ffffffb: return "SUNW_COMDAT";
1943 case 0x6ffffffc: return "SUNW_syminfo";
1944 case 0x6ffffffd: return "SUNW_verdef";
1945 case 0x6ffffffe: return "SUNW_verneed";
1946 case 0x6fffffff: return "SUNW_versym";
1947 case 0x70000000: return "SPARC_GOTDATA";
1948 default: return NULL;
1949 }
1950 }
1951
1952 static const char *
1953 get_alpha_dynamic_type (unsigned long type)
1954 {
1955 switch (type)
1956 {
1957 case DT_ALPHA_PLTRO: return "ALPHA_PLTRO";
1958 default: return NULL;
1959 }
1960 }
1961
1962 static const char *
1963 get_score_dynamic_type (unsigned long type)
1964 {
1965 switch (type)
1966 {
1967 case DT_SCORE_BASE_ADDRESS: return "SCORE_BASE_ADDRESS";
1968 case DT_SCORE_LOCAL_GOTNO: return "SCORE_LOCAL_GOTNO";
1969 case DT_SCORE_SYMTABNO: return "SCORE_SYMTABNO";
1970 case DT_SCORE_GOTSYM: return "SCORE_GOTSYM";
1971 case DT_SCORE_UNREFEXTNO: return "SCORE_UNREFEXTNO";
1972 case DT_SCORE_HIPAGENO: return "SCORE_HIPAGENO";
1973 default: return NULL;
1974 }
1975 }
1976
1977 static const char *
1978 get_tic6x_dynamic_type (unsigned long type)
1979 {
1980 switch (type)
1981 {
1982 case DT_C6000_GSYM_OFFSET: return "C6000_GSYM_OFFSET";
1983 case DT_C6000_GSTR_OFFSET: return "C6000_GSTR_OFFSET";
1984 case DT_C6000_DSBT_BASE: return "C6000_DSBT_BASE";
1985 case DT_C6000_DSBT_SIZE: return "C6000_DSBT_SIZE";
1986 case DT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
1987 case DT_C6000_DSBT_INDEX: return "C6000_DSBT_INDEX";
1988 default: return NULL;
1989 }
1990 }
1991
1992 static const char *
1993 get_nios2_dynamic_type (unsigned long type)
1994 {
1995 switch (type)
1996 {
1997 case DT_NIOS2_GP: return "NIOS2_GP";
1998 default: return NULL;
1999 }
2000 }
2001
2002 static const char *
2003 get_solaris_dynamic_type (unsigned long type)
2004 {
2005 switch (type)
2006 {
2007 case 0x6000000d: return "SUNW_AUXILIARY";
2008 case 0x6000000e: return "SUNW_RTLDINF";
2009 case 0x6000000f: return "SUNW_FILTER";
2010 case 0x60000010: return "SUNW_CAP";
2011 case 0x60000011: return "SUNW_SYMTAB";
2012 case 0x60000012: return "SUNW_SYMSZ";
2013 case 0x60000013: return "SUNW_SORTENT";
2014 case 0x60000014: return "SUNW_SYMSORT";
2015 case 0x60000015: return "SUNW_SYMSORTSZ";
2016 case 0x60000016: return "SUNW_TLSSORT";
2017 case 0x60000017: return "SUNW_TLSSORTSZ";
2018 case 0x60000018: return "SUNW_CAPINFO";
2019 case 0x60000019: return "SUNW_STRPAD";
2020 case 0x6000001a: return "SUNW_CAPCHAIN";
2021 case 0x6000001b: return "SUNW_LDMACH";
2022 case 0x6000001d: return "SUNW_CAPCHAINENT";
2023 case 0x6000001f: return "SUNW_CAPCHAINSZ";
2024 case 0x60000021: return "SUNW_PARENT";
2025 case 0x60000023: return "SUNW_ASLR";
2026 case 0x60000025: return "SUNW_RELAX";
2027 case 0x60000029: return "SUNW_NXHEAP";
2028 case 0x6000002b: return "SUNW_NXSTACK";
2029
2030 case 0x70000001: return "SPARC_REGISTER";
2031 case 0x7ffffffd: return "AUXILIARY";
2032 case 0x7ffffffe: return "USED";
2033 case 0x7fffffff: return "FILTER";
2034
2035 default: return NULL;
2036 }
2037 }
2038
2039 static const char *
2040 get_dynamic_type (unsigned long type)
2041 {
2042 static char buff[64];
2043
2044 switch (type)
2045 {
2046 case DT_NULL: return "NULL";
2047 case DT_NEEDED: return "NEEDED";
2048 case DT_PLTRELSZ: return "PLTRELSZ";
2049 case DT_PLTGOT: return "PLTGOT";
2050 case DT_HASH: return "HASH";
2051 case DT_STRTAB: return "STRTAB";
2052 case DT_SYMTAB: return "SYMTAB";
2053 case DT_RELA: return "RELA";
2054 case DT_RELASZ: return "RELASZ";
2055 case DT_RELAENT: return "RELAENT";
2056 case DT_STRSZ: return "STRSZ";
2057 case DT_SYMENT: return "SYMENT";
2058 case DT_INIT: return "INIT";
2059 case DT_FINI: return "FINI";
2060 case DT_SONAME: return "SONAME";
2061 case DT_RPATH: return "RPATH";
2062 case DT_SYMBOLIC: return "SYMBOLIC";
2063 case DT_REL: return "REL";
2064 case DT_RELSZ: return "RELSZ";
2065 case DT_RELENT: return "RELENT";
2066 case DT_PLTREL: return "PLTREL";
2067 case DT_DEBUG: return "DEBUG";
2068 case DT_TEXTREL: return "TEXTREL";
2069 case DT_JMPREL: return "JMPREL";
2070 case DT_BIND_NOW: return "BIND_NOW";
2071 case DT_INIT_ARRAY: return "INIT_ARRAY";
2072 case DT_FINI_ARRAY: return "FINI_ARRAY";
2073 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
2074 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
2075 case DT_RUNPATH: return "RUNPATH";
2076 case DT_FLAGS: return "FLAGS";
2077
2078 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
2079 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
2080 case DT_SYMTAB_SHNDX: return "SYMTAB_SHNDX";
2081
2082 case DT_CHECKSUM: return "CHECKSUM";
2083 case DT_PLTPADSZ: return "PLTPADSZ";
2084 case DT_MOVEENT: return "MOVEENT";
2085 case DT_MOVESZ: return "MOVESZ";
2086 case DT_FEATURE: return "FEATURE";
2087 case DT_POSFLAG_1: return "POSFLAG_1";
2088 case DT_SYMINSZ: return "SYMINSZ";
2089 case DT_SYMINENT: return "SYMINENT"; /* aka VALRNGHI */
2090
2091 case DT_ADDRRNGLO: return "ADDRRNGLO";
2092 case DT_CONFIG: return "CONFIG";
2093 case DT_DEPAUDIT: return "DEPAUDIT";
2094 case DT_AUDIT: return "AUDIT";
2095 case DT_PLTPAD: return "PLTPAD";
2096 case DT_MOVETAB: return "MOVETAB";
2097 case DT_SYMINFO: return "SYMINFO"; /* aka ADDRRNGHI */
2098
2099 case DT_VERSYM: return "VERSYM";
2100
2101 case DT_TLSDESC_GOT: return "TLSDESC_GOT";
2102 case DT_TLSDESC_PLT: return "TLSDESC_PLT";
2103 case DT_RELACOUNT: return "RELACOUNT";
2104 case DT_RELCOUNT: return "RELCOUNT";
2105 case DT_FLAGS_1: return "FLAGS_1";
2106 case DT_VERDEF: return "VERDEF";
2107 case DT_VERDEFNUM: return "VERDEFNUM";
2108 case DT_VERNEED: return "VERNEED";
2109 case DT_VERNEEDNUM: return "VERNEEDNUM";
2110
2111 case DT_AUXILIARY: return "AUXILIARY";
2112 case DT_USED: return "USED";
2113 case DT_FILTER: return "FILTER";
2114
2115 case DT_GNU_PRELINKED: return "GNU_PRELINKED";
2116 case DT_GNU_CONFLICT: return "GNU_CONFLICT";
2117 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
2118 case DT_GNU_LIBLIST: return "GNU_LIBLIST";
2119 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
2120 case DT_GNU_HASH: return "GNU_HASH";
2121
2122 default:
2123 if ((type >= DT_LOPROC) && (type <= DT_HIPROC))
2124 {
2125 const char * result;
2126
2127 switch (elf_header.e_machine)
2128 {
2129 case EM_MIPS:
2130 case EM_MIPS_RS3_LE:
2131 result = get_mips_dynamic_type (type);
2132 break;
2133 case EM_SPARCV9:
2134 result = get_sparc64_dynamic_type (type);
2135 break;
2136 case EM_PPC:
2137 result = get_ppc_dynamic_type (type);
2138 break;
2139 case EM_PPC64:
2140 result = get_ppc64_dynamic_type (type);
2141 break;
2142 case EM_IA_64:
2143 result = get_ia64_dynamic_type (type);
2144 break;
2145 case EM_ALPHA:
2146 result = get_alpha_dynamic_type (type);
2147 break;
2148 case EM_SCORE:
2149 result = get_score_dynamic_type (type);
2150 break;
2151 case EM_TI_C6000:
2152 result = get_tic6x_dynamic_type (type);
2153 break;
2154 case EM_ALTERA_NIOS2:
2155 result = get_nios2_dynamic_type (type);
2156 break;
2157 default:
2158 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2159 result = get_solaris_dynamic_type (type);
2160 else
2161 result = NULL;
2162 break;
2163 }
2164
2165 if (result != NULL)
2166 return result;
2167
2168 snprintf (buff, sizeof (buff), _("Processor Specific: %lx"), type);
2169 }
2170 else if (((type >= DT_LOOS) && (type <= DT_HIOS))
2171 || (elf_header.e_machine == EM_PARISC
2172 && (type >= OLD_DT_LOOS) && (type <= OLD_DT_HIOS)))
2173 {
2174 const char * result;
2175
2176 switch (elf_header.e_machine)
2177 {
2178 case EM_PARISC:
2179 result = get_parisc_dynamic_type (type);
2180 break;
2181 case EM_IA_64:
2182 result = get_ia64_dynamic_type (type);
2183 break;
2184 default:
2185 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2186 result = get_solaris_dynamic_type (type);
2187 else
2188 result = NULL;
2189 break;
2190 }
2191
2192 if (result != NULL)
2193 return result;
2194
2195 snprintf (buff, sizeof (buff), _("Operating System specific: %lx"),
2196 type);
2197 }
2198 else
2199 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), type);
2200
2201 return buff;
2202 }
2203 }
2204
2205 static char *
2206 get_file_type (unsigned e_type)
2207 {
2208 static char buff[32];
2209
2210 switch (e_type)
2211 {
2212 case ET_NONE: return _("NONE (None)");
2213 case ET_REL: return _("REL (Relocatable file)");
2214 case ET_EXEC: return _("EXEC (Executable file)");
2215 case ET_DYN: return _("DYN (Shared object file)");
2216 case ET_CORE: return _("CORE (Core file)");
2217
2218 default:
2219 if ((e_type >= ET_LOPROC) && (e_type <= ET_HIPROC))
2220 snprintf (buff, sizeof (buff), _("Processor Specific: (%x)"), e_type);
2221 else if ((e_type >= ET_LOOS) && (e_type <= ET_HIOS))
2222 snprintf (buff, sizeof (buff), _("OS Specific: (%x)"), e_type);
2223 else
2224 snprintf (buff, sizeof (buff), _("<unknown>: %x"), e_type);
2225 return buff;
2226 }
2227 }
2228
2229 static char *
2230 get_machine_name (unsigned e_machine)
2231 {
2232 static char buff[64]; /* XXX */
2233
2234 switch (e_machine)
2235 {
2236 /* Please keep this switch table sorted by increasing EM_ value. */
2237 /* 0 */
2238 case EM_NONE: return _("None");
2239 case EM_M32: return "WE32100";
2240 case EM_SPARC: return "Sparc";
2241 case EM_386: return "Intel 80386";
2242 case EM_68K: return "MC68000";
2243 case EM_88K: return "MC88000";
2244 case EM_IAMCU: return "Intel MCU";
2245 case EM_860: return "Intel 80860";
2246 case EM_MIPS: return "MIPS R3000";
2247 case EM_S370: return "IBM System/370";
2248 /* 10 */
2249 case EM_MIPS_RS3_LE: return "MIPS R4000 big-endian";
2250 case EM_OLD_SPARCV9: return "Sparc v9 (old)";
2251 case EM_PARISC: return "HPPA";
2252 case EM_VPP550: return "Fujitsu VPP500";
2253 case EM_SPARC32PLUS: return "Sparc v8+" ;
2254 case EM_960: return "Intel 90860";
2255 case EM_PPC: return "PowerPC";
2256 /* 20 */
2257 case EM_PPC64: return "PowerPC64";
2258 case EM_S390_OLD:
2259 case EM_S390: return "IBM S/390";
2260 case EM_SPU: return "SPU";
2261 /* 30 */
2262 case EM_V800: return "Renesas V850 (using RH850 ABI)";
2263 case EM_FR20: return "Fujitsu FR20";
2264 case EM_RH32: return "TRW RH32";
2265 case EM_MCORE: return "MCORE";
2266 /* 40 */
2267 case EM_ARM: return "ARM";
2268 case EM_OLD_ALPHA: return "Digital Alpha (old)";
2269 case EM_SH: return "Renesas / SuperH SH";
2270 case EM_SPARCV9: return "Sparc v9";
2271 case EM_TRICORE: return "Siemens Tricore";
2272 case EM_ARC: return "ARC";
2273 case EM_H8_300: return "Renesas H8/300";
2274 case EM_H8_300H: return "Renesas H8/300H";
2275 case EM_H8S: return "Renesas H8S";
2276 case EM_H8_500: return "Renesas H8/500";
2277 /* 50 */
2278 case EM_IA_64: return "Intel IA-64";
2279 case EM_MIPS_X: return "Stanford MIPS-X";
2280 case EM_COLDFIRE: return "Motorola Coldfire";
2281 case EM_68HC12: return "Motorola MC68HC12 Microcontroller";
2282 case EM_MMA: return "Fujitsu Multimedia Accelerator";
2283 case EM_PCP: return "Siemens PCP";
2284 case EM_NCPU: return "Sony nCPU embedded RISC processor";
2285 case EM_NDR1: return "Denso NDR1 microprocesspr";
2286 case EM_STARCORE: return "Motorola Star*Core processor";
2287 case EM_ME16: return "Toyota ME16 processor";
2288 /* 60 */
2289 case EM_ST100: return "STMicroelectronics ST100 processor";
2290 case EM_TINYJ: return "Advanced Logic Corp. TinyJ embedded processor";
2291 case EM_X86_64: return "Advanced Micro Devices X86-64";
2292 case EM_PDSP: return "Sony DSP processor";
2293 case EM_PDP10: return "Digital Equipment Corp. PDP-10";
2294 case EM_PDP11: return "Digital Equipment Corp. PDP-11";
2295 case EM_FX66: return "Siemens FX66 microcontroller";
2296 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 bit microcontroller";
2297 case EM_ST7: return "STMicroelectronics ST7 8-bit microcontroller";
2298 case EM_68HC16: return "Motorola MC68HC16 Microcontroller";
2299 /* 70 */
2300 case EM_68HC11: return "Motorola MC68HC11 Microcontroller";
2301 case EM_68HC08: return "Motorola MC68HC08 Microcontroller";
2302 case EM_68HC05: return "Motorola MC68HC05 Microcontroller";
2303 case EM_SVX: return "Silicon Graphics SVx";
2304 case EM_ST19: return "STMicroelectronics ST19 8-bit microcontroller";
2305 case EM_VAX: return "Digital VAX";
2306 case EM_CRIS: return "Axis Communications 32-bit embedded processor";
2307 case EM_JAVELIN: return "Infineon Technologies 32-bit embedded cpu";
2308 case EM_FIREPATH: return "Element 14 64-bit DSP processor";
2309 case EM_ZSP: return "LSI Logic's 16-bit DSP processor";
2310 /* 80 */
2311 case EM_MMIX: return "Donald Knuth's educational 64-bit processor";
2312 case EM_HUANY: return "Harvard Universitys's machine-independent object format";
2313 case EM_PRISM: return "Vitesse Prism";
2314 case EM_AVR_OLD:
2315 case EM_AVR: return "Atmel AVR 8-bit microcontroller";
2316 case EM_CYGNUS_FR30:
2317 case EM_FR30: return "Fujitsu FR30";
2318 case EM_CYGNUS_D10V:
2319 case EM_D10V: return "d10v";
2320 case EM_CYGNUS_D30V:
2321 case EM_D30V: return "d30v";
2322 case EM_CYGNUS_V850:
2323 case EM_V850: return "Renesas V850";
2324 case EM_CYGNUS_M32R:
2325 case EM_M32R: return "Renesas M32R (formerly Mitsubishi M32r)";
2326 case EM_CYGNUS_MN10300:
2327 case EM_MN10300: return "mn10300";
2328 /* 90 */
2329 case EM_CYGNUS_MN10200:
2330 case EM_MN10200: return "mn10200";
2331 case EM_PJ: return "picoJava";
2332 case EM_OR1K: return "OpenRISC 1000";
2333 case EM_ARC_COMPACT: return "ARCompact";
2334 case EM_XTENSA_OLD:
2335 case EM_XTENSA: return "Tensilica Xtensa Processor";
2336 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
2337 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
2338 case EM_NS32K: return "National Semiconductor 32000 series";
2339 case EM_TPC: return "Tenor Network TPC processor";
2340 case EM_SNP1K: return "Trebia SNP 1000 processor";
2341 /* 100 */
2342 case EM_ST200: return "STMicroelectronics ST200 microcontroller";
2343 case EM_IP2K_OLD:
2344 case EM_IP2K: return "Ubicom IP2xxx 8-bit microcontrollers";
2345 case EM_MAX: return "MAX Processor";
2346 case EM_CR: return "National Semiconductor CompactRISC";
2347 case EM_F2MC16: return "Fujitsu F2MC16";
2348 case EM_MSP430: return "Texas Instruments msp430 microcontroller";
2349 case EM_BLACKFIN: return "Analog Devices Blackfin";
2350 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
2351 case EM_SEP: return "Sharp embedded microprocessor";
2352 case EM_ARCA: return "Arca RISC microprocessor";
2353 /* 110 */
2354 case EM_UNICORE: return "Unicore";
2355 case EM_EXCESS: return "eXcess 16/32/64-bit configurable embedded CPU";
2356 case EM_DXP: return "Icera Semiconductor Inc. Deep Execution Processor";
2357 case EM_ALTERA_NIOS2: return "Altera Nios II";
2358 case EM_CRX: return "National Semiconductor CRX microprocessor";
2359 case EM_XGATE: return "Motorola XGATE embedded processor";
2360 case EM_C166:
2361 case EM_XC16X: return "Infineon Technologies xc16x";
2362 case EM_M16C: return "Renesas M16C series microprocessors";
2363 case EM_DSPIC30F: return "Microchip Technology dsPIC30F Digital Signal Controller";
2364 case EM_CE: return "Freescale Communication Engine RISC core";
2365 /* 120 */
2366 case EM_M32C: return "Renesas M32c";
2367 /* 130 */
2368 case EM_TSK3000: return "Altium TSK3000 core";
2369 case EM_RS08: return "Freescale RS08 embedded processor";
2370 case EM_ECOG2: return "Cyan Technology eCOG2 microprocessor";
2371 case EM_SCORE: return "SUNPLUS S+Core";
2372 case EM_DSP24: return "New Japan Radio (NJR) 24-bit DSP Processor";
2373 case EM_VIDEOCORE3: return "Broadcom VideoCore III processor";
2374 case EM_LATTICEMICO32: return "Lattice Mico32";
2375 case EM_SE_C17: return "Seiko Epson C17 family";
2376 /* 140 */
2377 case EM_TI_C6000: return "Texas Instruments TMS320C6000 DSP family";
2378 case EM_TI_C2000: return "Texas Instruments TMS320C2000 DSP family";
2379 case EM_TI_C5500: return "Texas Instruments TMS320C55x DSP family";
2380 case EM_TI_PRU: return "TI PRU I/O processor";
2381 /* 160 */
2382 case EM_MMDSP_PLUS: return "STMicroelectronics 64bit VLIW Data Signal Processor";
2383 case EM_CYPRESS_M8C: return "Cypress M8C microprocessor";
2384 case EM_R32C: return "Renesas R32C series microprocessors";
2385 case EM_TRIMEDIA: return "NXP Semiconductors TriMedia architecture family";
2386 case EM_QDSP6: return "QUALCOMM DSP6 Processor";
2387 case EM_8051: return "Intel 8051 and variants";
2388 case EM_STXP7X: return "STMicroelectronics STxP7x family";
2389 case EM_NDS32: return "Andes Technology compact code size embedded RISC processor family";
2390 case EM_ECOG1X: return "Cyan Technology eCOG1X family";
2391 case EM_MAXQ30: return "Dallas Semiconductor MAXQ30 Core microcontrollers";
2392 /* 170 */
2393 case EM_XIMO16: return "New Japan Radio (NJR) 16-bit DSP Processor";
2394 case EM_MANIK: return "M2000 Reconfigurable RISC Microprocessor";
2395 case EM_CRAYNV2: return "Cray Inc. NV2 vector architecture";
2396 case EM_RX: return "Renesas RX";
2397 case EM_METAG: return "Imagination Technologies Meta processor architecture";
2398 case EM_MCST_ELBRUS: return "MCST Elbrus general purpose hardware architecture";
2399 case EM_ECOG16: return "Cyan Technology eCOG16 family";
2400 case EM_CR16:
2401 case EM_MICROBLAZE:
2402 case EM_MICROBLAZE_OLD: return "Xilinx MicroBlaze";
2403 case EM_ETPU: return "Freescale Extended Time Processing Unit";
2404 case EM_SLE9X: return "Infineon Technologies SLE9X core";
2405 /* 180 */
2406 case EM_L1OM: return "Intel L1OM";
2407 case EM_K1OM: return "Intel K1OM";
2408 case EM_INTEL182: return "Intel (reserved)";
2409 case EM_AARCH64: return "AArch64";
2410 case EM_ARM184: return "ARM (reserved)";
2411 case EM_AVR32: return "Atmel Corporation 32-bit microprocessor";
2412 case EM_STM8: return "STMicroeletronics STM8 8-bit microcontroller";
2413 case EM_TILE64: return "Tilera TILE64 multicore architecture family";
2414 case EM_TILEPRO: return "Tilera TILEPro multicore architecture family";
2415 /* 190 */
2416 case EM_CUDA: return "NVIDIA CUDA architecture";
2417 case EM_TILEGX: return "Tilera TILE-Gx multicore architecture family";
2418 case EM_CLOUDSHIELD: return "CloudShield architecture family";
2419 case EM_COREA_1ST: return "KIPO-KAIST Core-A 1st generation processor family";
2420 case EM_COREA_2ND: return "KIPO-KAIST Core-A 2nd generation processor family";
2421 case EM_ARC_COMPACT2: return "ARCv2";
2422 case EM_OPEN8: return "Open8 8-bit RISC soft processor core";
2423 case EM_RL78: return "Renesas RL78";
2424 case EM_VIDEOCORE5: return "Broadcom VideoCore V processor";
2425 case EM_78K0R: return "Renesas 78K0R";
2426 /* 200 */
2427 case EM_56800EX: return "Freescale 56800EX Digital Signal Controller (DSC)";
2428 case EM_BA1: return "Beyond BA1 CPU architecture";
2429 case EM_BA2: return "Beyond BA2 CPU architecture";
2430 case EM_XCORE: return "XMOS xCORE processor family";
2431 case EM_MCHP_PIC: return "Microchip 8-bit PIC(r) family";
2432 /* 210 */
2433 case EM_KM32: return "KM211 KM32 32-bit processor";
2434 case EM_KMX32: return "KM211 KMX32 32-bit processor";
2435 case EM_KMX16: return "KM211 KMX16 16-bit processor";
2436 case EM_KMX8: return "KM211 KMX8 8-bit processor";
2437 case EM_KVARC: return "KM211 KVARC processor";
2438 case EM_CDP: return "Paneve CDP architecture family";
2439 case EM_COGE: return "Cognitive Smart Memory Processor";
2440 case EM_COOL: return "Bluechip Systems CoolEngine";
2441 case EM_NORC: return "Nanoradio Optimized RISC";
2442 case EM_CSR_KALIMBA: return "CSR Kalimba architecture family";
2443 /* 220 */
2444 case EM_Z80: return "Zilog Z80";
2445 case EM_VISIUM: return "CDS VISIUMcore processor";
2446 case EM_FT32: return "FTDI Chip FT32";
2447 case EM_MOXIE: return "Moxie";
2448 case EM_AMDGPU: return "AMD GPU";
2449 case EM_RISCV: return "RISC-V";
2450 case EM_LANAI: return "Lanai 32-bit processor";
2451 case EM_BPF: return "Linux BPF";
2452
2453 /* Large numbers... */
2454 case EM_MT: return "Morpho Techologies MT processor";
2455 case EM_ALPHA: return "Alpha";
2456 case EM_WEBASSEMBLY: return "Web Assembly";
2457 case EM_DLX: return "OpenDLX";
2458 case EM_XSTORMY16: return "Sanyo XStormy16 CPU core";
2459 case EM_IQ2000: return "Vitesse IQ2000";
2460 case EM_M32C_OLD:
2461 case EM_NIOS32: return "Altera Nios";
2462 case EM_CYGNUS_MEP: return "Toshiba MeP Media Engine";
2463 case EM_ADAPTEVA_EPIPHANY: return "Adapteva EPIPHANY";
2464 case EM_CYGNUS_FRV: return "Fujitsu FR-V";
2465
2466 default:
2467 snprintf (buff, sizeof (buff), _("<unknown>: 0x%x"), e_machine);
2468 return buff;
2469 }
2470 }
2471
2472 static void
2473 decode_ARC_machine_flags (unsigned e_flags, unsigned e_machine, char buf[])
2474 {
2475 /* ARC has two machine types EM_ARC_COMPACT and EM_ARC_COMPACT2. Some
2476 other compilers don't a specific architecture type in the e_flags, and
2477 instead use EM_ARC_COMPACT for old ARC600, ARC601, and ARC700
2478 architectures, and switch to EM_ARC_COMPACT2 for newer ARCEM and ARCHS
2479 architectures.
2480
2481 Th GNU tools follows this use of EM_ARC_COMPACT and EM_ARC_COMPACT2,
2482 but also sets a specific architecture type in the e_flags field.
2483
2484 However, when decoding the flags we don't worry if we see an
2485 unexpected pairing, for example EM_ARC_COMPACT machine type, with
2486 ARCEM architecture type. */
2487
2488 switch (e_flags & EF_ARC_MACH_MSK)
2489 {
2490 /* We only expect these to occur for EM_ARC_COMPACT2. */
2491 case EF_ARC_CPU_ARCV2EM:
2492 strcat (buf, ", ARC EM");
2493 break;
2494 case EF_ARC_CPU_ARCV2HS:
2495 strcat (buf, ", ARC HS");
2496 break;
2497
2498 /* We only expect these to occur for EM_ARC_COMPACT. */
2499 case E_ARC_MACH_ARC600:
2500 strcat (buf, ", ARC600");
2501 break;
2502 case E_ARC_MACH_ARC601:
2503 strcat (buf, ", ARC601");
2504 break;
2505 case E_ARC_MACH_ARC700:
2506 strcat (buf, ", ARC700");
2507 break;
2508
2509 /* The only times we should end up here are (a) A corrupt ELF, (b) A
2510 new ELF with new architecture being read by an old version of
2511 readelf, or (c) An ELF built with non-GNU compiler that does not
2512 set the architecture in the e_flags. */
2513 default:
2514 if (e_machine == EM_ARC_COMPACT)
2515 strcat (buf, ", Unknown ARCompact");
2516 else
2517 strcat (buf, ", Unknown ARC");
2518 break;
2519 }
2520
2521 switch (e_flags & EF_ARC_OSABI_MSK)
2522 {
2523 case E_ARC_OSABI_ORIG:
2524 strcat (buf, ", (ABI:legacy)");
2525 break;
2526 case E_ARC_OSABI_V2:
2527 strcat (buf, ", (ABI:v2)");
2528 break;
2529 /* Only upstream 3.9+ kernels will support ARCv2 ISA. */
2530 case E_ARC_OSABI_V3:
2531 strcat (buf, ", v3 no-legacy-syscalls ABI");
2532 break;
2533 case E_ARC_OSABI_V4:
2534 strcat (buf, ", v4 ABI");
2535 break;
2536 default:
2537 strcat (buf, ", unrecognised ARC OSABI flag");
2538 break;
2539 }
2540 }
2541
2542 static void
2543 decode_ARM_machine_flags (unsigned e_flags, char buf[])
2544 {
2545 unsigned eabi;
2546 bfd_boolean unknown = FALSE;
2547
2548 eabi = EF_ARM_EABI_VERSION (e_flags);
2549 e_flags &= ~ EF_ARM_EABIMASK;
2550
2551 /* Handle "generic" ARM flags. */
2552 if (e_flags & EF_ARM_RELEXEC)
2553 {
2554 strcat (buf, ", relocatable executable");
2555 e_flags &= ~ EF_ARM_RELEXEC;
2556 }
2557
2558 /* Now handle EABI specific flags. */
2559 switch (eabi)
2560 {
2561 default:
2562 strcat (buf, ", <unrecognized EABI>");
2563 if (e_flags)
2564 unknown = TRUE;
2565 break;
2566
2567 case EF_ARM_EABI_VER1:
2568 strcat (buf, ", Version1 EABI");
2569 while (e_flags)
2570 {
2571 unsigned flag;
2572
2573 /* Process flags one bit at a time. */
2574 flag = e_flags & - e_flags;
2575 e_flags &= ~ flag;
2576
2577 switch (flag)
2578 {
2579 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2580 strcat (buf, ", sorted symbol tables");
2581 break;
2582
2583 default:
2584 unknown = TRUE;
2585 break;
2586 }
2587 }
2588 break;
2589
2590 case EF_ARM_EABI_VER2:
2591 strcat (buf, ", Version2 EABI");
2592 while (e_flags)
2593 {
2594 unsigned flag;
2595
2596 /* Process flags one bit at a time. */
2597 flag = e_flags & - e_flags;
2598 e_flags &= ~ flag;
2599
2600 switch (flag)
2601 {
2602 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2603 strcat (buf, ", sorted symbol tables");
2604 break;
2605
2606 case EF_ARM_DYNSYMSUSESEGIDX:
2607 strcat (buf, ", dynamic symbols use segment index");
2608 break;
2609
2610 case EF_ARM_MAPSYMSFIRST:
2611 strcat (buf, ", mapping symbols precede others");
2612 break;
2613
2614 default:
2615 unknown = TRUE;
2616 break;
2617 }
2618 }
2619 break;
2620
2621 case EF_ARM_EABI_VER3:
2622 strcat (buf, ", Version3 EABI");
2623 break;
2624
2625 case EF_ARM_EABI_VER4:
2626 strcat (buf, ", Version4 EABI");
2627 while (e_flags)
2628 {
2629 unsigned flag;
2630
2631 /* Process flags one bit at a time. */
2632 flag = e_flags & - e_flags;
2633 e_flags &= ~ flag;
2634
2635 switch (flag)
2636 {
2637 case EF_ARM_BE8:
2638 strcat (buf, ", BE8");
2639 break;
2640
2641 case EF_ARM_LE8:
2642 strcat (buf, ", LE8");
2643 break;
2644
2645 default:
2646 unknown = TRUE;
2647 break;
2648 }
2649 }
2650 break;
2651
2652 case EF_ARM_EABI_VER5:
2653 strcat (buf, ", Version5 EABI");
2654 while (e_flags)
2655 {
2656 unsigned flag;
2657
2658 /* Process flags one bit at a time. */
2659 flag = e_flags & - e_flags;
2660 e_flags &= ~ flag;
2661
2662 switch (flag)
2663 {
2664 case EF_ARM_BE8:
2665 strcat (buf, ", BE8");
2666 break;
2667
2668 case EF_ARM_LE8:
2669 strcat (buf, ", LE8");
2670 break;
2671
2672 case EF_ARM_ABI_FLOAT_SOFT: /* Conflicts with EF_ARM_SOFT_FLOAT. */
2673 strcat (buf, ", soft-float ABI");
2674 break;
2675
2676 case EF_ARM_ABI_FLOAT_HARD: /* Conflicts with EF_ARM_VFP_FLOAT. */
2677 strcat (buf, ", hard-float ABI");
2678 break;
2679
2680 default:
2681 unknown = TRUE;
2682 break;
2683 }
2684 }
2685 break;
2686
2687 case EF_ARM_EABI_UNKNOWN:
2688 strcat (buf, ", GNU EABI");
2689 while (e_flags)
2690 {
2691 unsigned flag;
2692
2693 /* Process flags one bit at a time. */
2694 flag = e_flags & - e_flags;
2695 e_flags &= ~ flag;
2696
2697 switch (flag)
2698 {
2699 case EF_ARM_INTERWORK:
2700 strcat (buf, ", interworking enabled");
2701 break;
2702
2703 case EF_ARM_APCS_26:
2704 strcat (buf, ", uses APCS/26");
2705 break;
2706
2707 case EF_ARM_APCS_FLOAT:
2708 strcat (buf, ", uses APCS/float");
2709 break;
2710
2711 case EF_ARM_PIC:
2712 strcat (buf, ", position independent");
2713 break;
2714
2715 case EF_ARM_ALIGN8:
2716 strcat (buf, ", 8 bit structure alignment");
2717 break;
2718
2719 case EF_ARM_NEW_ABI:
2720 strcat (buf, ", uses new ABI");
2721 break;
2722
2723 case EF_ARM_OLD_ABI:
2724 strcat (buf, ", uses old ABI");
2725 break;
2726
2727 case EF_ARM_SOFT_FLOAT:
2728 strcat (buf, ", software FP");
2729 break;
2730
2731 case EF_ARM_VFP_FLOAT:
2732 strcat (buf, ", VFP");
2733 break;
2734
2735 case EF_ARM_MAVERICK_FLOAT:
2736 strcat (buf, ", Maverick FP");
2737 break;
2738
2739 default:
2740 unknown = TRUE;
2741 break;
2742 }
2743 }
2744 }
2745
2746 if (unknown)
2747 strcat (buf,_(", <unknown>"));
2748 }
2749
2750 static void
2751 decode_AVR_machine_flags (unsigned e_flags, char buf[], size_t size)
2752 {
2753 --size; /* Leave space for null terminator. */
2754
2755 switch (e_flags & EF_AVR_MACH)
2756 {
2757 case E_AVR_MACH_AVR1:
2758 strncat (buf, ", avr:1", size);
2759 break;
2760 case E_AVR_MACH_AVR2:
2761 strncat (buf, ", avr:2", size);
2762 break;
2763 case E_AVR_MACH_AVR25:
2764 strncat (buf, ", avr:25", size);
2765 break;
2766 case E_AVR_MACH_AVR3:
2767 strncat (buf, ", avr:3", size);
2768 break;
2769 case E_AVR_MACH_AVR31:
2770 strncat (buf, ", avr:31", size);
2771 break;
2772 case E_AVR_MACH_AVR35:
2773 strncat (buf, ", avr:35", size);
2774 break;
2775 case E_AVR_MACH_AVR4:
2776 strncat (buf, ", avr:4", size);
2777 break;
2778 case E_AVR_MACH_AVR5:
2779 strncat (buf, ", avr:5", size);
2780 break;
2781 case E_AVR_MACH_AVR51:
2782 strncat (buf, ", avr:51", size);
2783 break;
2784 case E_AVR_MACH_AVR6:
2785 strncat (buf, ", avr:6", size);
2786 break;
2787 case E_AVR_MACH_AVRTINY:
2788 strncat (buf, ", avr:100", size);
2789 break;
2790 case E_AVR_MACH_XMEGA1:
2791 strncat (buf, ", avr:101", size);
2792 break;
2793 case E_AVR_MACH_XMEGA2:
2794 strncat (buf, ", avr:102", size);
2795 break;
2796 case E_AVR_MACH_XMEGA3:
2797 strncat (buf, ", avr:103", size);
2798 break;
2799 case E_AVR_MACH_XMEGA4:
2800 strncat (buf, ", avr:104", size);
2801 break;
2802 case E_AVR_MACH_XMEGA5:
2803 strncat (buf, ", avr:105", size);
2804 break;
2805 case E_AVR_MACH_XMEGA6:
2806 strncat (buf, ", avr:106", size);
2807 break;
2808 case E_AVR_MACH_XMEGA7:
2809 strncat (buf, ", avr:107", size);
2810 break;
2811 default:
2812 strncat (buf, ", avr:<unknown>", size);
2813 break;
2814 }
2815
2816 size -= strlen (buf);
2817 if (e_flags & EF_AVR_LINKRELAX_PREPARED)
2818 strncat (buf, ", link-relax", size);
2819 }
2820
2821 static void
2822 decode_NDS32_machine_flags (unsigned e_flags, char buf[], size_t size)
2823 {
2824 unsigned abi;
2825 unsigned arch;
2826 unsigned config;
2827 unsigned version;
2828 bfd_boolean has_fpu = FALSE;
2829 unsigned int r = 0;
2830
2831 static const char *ABI_STRINGS[] =
2832 {
2833 "ABI v0", /* use r5 as return register; only used in N1213HC */
2834 "ABI v1", /* use r0 as return register */
2835 "ABI v2", /* use r0 as return register and don't reserve 24 bytes for arguments */
2836 "ABI v2fp", /* for FPU */
2837 "AABI",
2838 "ABI2 FP+"
2839 };
2840 static const char *VER_STRINGS[] =
2841 {
2842 "Andes ELF V1.3 or older",
2843 "Andes ELF V1.3.1",
2844 "Andes ELF V1.4"
2845 };
2846 static const char *ARCH_STRINGS[] =
2847 {
2848 "",
2849 "Andes Star v1.0",
2850 "Andes Star v2.0",
2851 "Andes Star v3.0",
2852 "Andes Star v3.0m"
2853 };
2854
2855 abi = EF_NDS_ABI & e_flags;
2856 arch = EF_NDS_ARCH & e_flags;
2857 config = EF_NDS_INST & e_flags;
2858 version = EF_NDS32_ELF_VERSION & e_flags;
2859
2860 memset (buf, 0, size);
2861
2862 switch (abi)
2863 {
2864 case E_NDS_ABI_V0:
2865 case E_NDS_ABI_V1:
2866 case E_NDS_ABI_V2:
2867 case E_NDS_ABI_V2FP:
2868 case E_NDS_ABI_AABI:
2869 case E_NDS_ABI_V2FP_PLUS:
2870 /* In case there are holes in the array. */
2871 r += snprintf (buf + r, size - r, ", %s", ABI_STRINGS[abi >> EF_NDS_ABI_SHIFT]);
2872 break;
2873
2874 default:
2875 r += snprintf (buf + r, size - r, ", <unrecognized ABI>");
2876 break;
2877 }
2878
2879 switch (version)
2880 {
2881 case E_NDS32_ELF_VER_1_2:
2882 case E_NDS32_ELF_VER_1_3:
2883 case E_NDS32_ELF_VER_1_4:
2884 r += snprintf (buf + r, size - r, ", %s", VER_STRINGS[version >> EF_NDS32_ELF_VERSION_SHIFT]);
2885 break;
2886
2887 default:
2888 r += snprintf (buf + r, size - r, ", <unrecognized ELF version number>");
2889 break;
2890 }
2891
2892 if (E_NDS_ABI_V0 == abi)
2893 {
2894 /* OLD ABI; only used in N1213HC, has performance extension 1. */
2895 r += snprintf (buf + r, size - r, ", Andes Star v1.0, N1213HC, MAC, PERF1");
2896 if (arch == E_NDS_ARCH_STAR_V1_0)
2897 r += snprintf (buf + r, size -r, ", 16b"); /* has 16-bit instructions */
2898 return;
2899 }
2900
2901 switch (arch)
2902 {
2903 case E_NDS_ARCH_STAR_V1_0:
2904 case E_NDS_ARCH_STAR_V2_0:
2905 case E_NDS_ARCH_STAR_V3_0:
2906 case E_NDS_ARCH_STAR_V3_M:
2907 r += snprintf (buf + r, size - r, ", %s", ARCH_STRINGS[arch >> EF_NDS_ARCH_SHIFT]);
2908 break;
2909
2910 default:
2911 r += snprintf (buf + r, size - r, ", <unrecognized architecture>");
2912 /* ARCH version determines how the e_flags are interpreted.
2913 If it is unknown, we cannot proceed. */
2914 return;
2915 }
2916
2917 /* Newer ABI; Now handle architecture specific flags. */
2918 if (arch == E_NDS_ARCH_STAR_V1_0)
2919 {
2920 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2921 r += snprintf (buf + r, size -r, ", MFUSR_PC");
2922
2923 if (!(config & E_NDS32_HAS_NO_MAC_INST))
2924 r += snprintf (buf + r, size -r, ", MAC");
2925
2926 if (config & E_NDS32_HAS_DIV_INST)
2927 r += snprintf (buf + r, size -r, ", DIV");
2928
2929 if (config & E_NDS32_HAS_16BIT_INST)
2930 r += snprintf (buf + r, size -r, ", 16b");
2931 }
2932 else
2933 {
2934 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2935 {
2936 if (version <= E_NDS32_ELF_VER_1_3)
2937 r += snprintf (buf + r, size -r, ", [B8]");
2938 else
2939 r += snprintf (buf + r, size -r, ", EX9");
2940 }
2941
2942 if (config & E_NDS32_HAS_MAC_DX_INST)
2943 r += snprintf (buf + r, size -r, ", MAC_DX");
2944
2945 if (config & E_NDS32_HAS_DIV_DX_INST)
2946 r += snprintf (buf + r, size -r, ", DIV_DX");
2947
2948 if (config & E_NDS32_HAS_16BIT_INST)
2949 {
2950 if (version <= E_NDS32_ELF_VER_1_3)
2951 r += snprintf (buf + r, size -r, ", 16b");
2952 else
2953 r += snprintf (buf + r, size -r, ", IFC");
2954 }
2955 }
2956
2957 if (config & E_NDS32_HAS_EXT_INST)
2958 r += snprintf (buf + r, size -r, ", PERF1");
2959
2960 if (config & E_NDS32_HAS_EXT2_INST)
2961 r += snprintf (buf + r, size -r, ", PERF2");
2962
2963 if (config & E_NDS32_HAS_FPU_INST)
2964 {
2965 has_fpu = TRUE;
2966 r += snprintf (buf + r, size -r, ", FPU_SP");
2967 }
2968
2969 if (config & E_NDS32_HAS_FPU_DP_INST)
2970 {
2971 has_fpu = TRUE;
2972 r += snprintf (buf + r, size -r, ", FPU_DP");
2973 }
2974
2975 if (config & E_NDS32_HAS_FPU_MAC_INST)
2976 {
2977 has_fpu = TRUE;
2978 r += snprintf (buf + r, size -r, ", FPU_MAC");
2979 }
2980
2981 if (has_fpu)
2982 {
2983 switch ((config & E_NDS32_FPU_REG_CONF) >> E_NDS32_FPU_REG_CONF_SHIFT)
2984 {
2985 case E_NDS32_FPU_REG_8SP_4DP:
2986 r += snprintf (buf + r, size -r, ", FPU_REG:8/4");
2987 break;
2988 case E_NDS32_FPU_REG_16SP_8DP:
2989 r += snprintf (buf + r, size -r, ", FPU_REG:16/8");
2990 break;
2991 case E_NDS32_FPU_REG_32SP_16DP:
2992 r += snprintf (buf + r, size -r, ", FPU_REG:32/16");
2993 break;
2994 case E_NDS32_FPU_REG_32SP_32DP:
2995 r += snprintf (buf + r, size -r, ", FPU_REG:32/32");
2996 break;
2997 }
2998 }
2999
3000 if (config & E_NDS32_HAS_AUDIO_INST)
3001 r += snprintf (buf + r, size -r, ", AUDIO");
3002
3003 if (config & E_NDS32_HAS_STRING_INST)
3004 r += snprintf (buf + r, size -r, ", STR");
3005
3006 if (config & E_NDS32_HAS_REDUCED_REGS)
3007 r += snprintf (buf + r, size -r, ", 16REG");
3008
3009 if (config & E_NDS32_HAS_VIDEO_INST)
3010 {
3011 if (version <= E_NDS32_ELF_VER_1_3)
3012 r += snprintf (buf + r, size -r, ", VIDEO");
3013 else
3014 r += snprintf (buf + r, size -r, ", SATURATION");
3015 }
3016
3017 if (config & E_NDS32_HAS_ENCRIPT_INST)
3018 r += snprintf (buf + r, size -r, ", ENCRP");
3019
3020 if (config & E_NDS32_HAS_L2C_INST)
3021 r += snprintf (buf + r, size -r, ", L2C");
3022 }
3023
3024 static char *
3025 get_machine_flags (unsigned e_flags, unsigned e_machine)
3026 {
3027 static char buf[1024];
3028
3029 buf[0] = '\0';
3030
3031 if (e_flags)
3032 {
3033 switch (e_machine)
3034 {
3035 default:
3036 break;
3037
3038 case EM_ARC_COMPACT2:
3039 case EM_ARC_COMPACT:
3040 decode_ARC_machine_flags (e_flags, e_machine, buf);
3041 break;
3042
3043 case EM_ARM:
3044 decode_ARM_machine_flags (e_flags, buf);
3045 break;
3046
3047 case EM_AVR:
3048 decode_AVR_machine_flags (e_flags, buf, sizeof buf);
3049 break;
3050
3051 case EM_BLACKFIN:
3052 if (e_flags & EF_BFIN_PIC)
3053 strcat (buf, ", PIC");
3054
3055 if (e_flags & EF_BFIN_FDPIC)
3056 strcat (buf, ", FDPIC");
3057
3058 if (e_flags & EF_BFIN_CODE_IN_L1)
3059 strcat (buf, ", code in L1");
3060
3061 if (e_flags & EF_BFIN_DATA_IN_L1)
3062 strcat (buf, ", data in L1");
3063
3064 break;
3065
3066 case EM_CYGNUS_FRV:
3067 switch (e_flags & EF_FRV_CPU_MASK)
3068 {
3069 case EF_FRV_CPU_GENERIC:
3070 break;
3071
3072 default:
3073 strcat (buf, ", fr???");
3074 break;
3075
3076 case EF_FRV_CPU_FR300:
3077 strcat (buf, ", fr300");
3078 break;
3079
3080 case EF_FRV_CPU_FR400:
3081 strcat (buf, ", fr400");
3082 break;
3083 case EF_FRV_CPU_FR405:
3084 strcat (buf, ", fr405");
3085 break;
3086
3087 case EF_FRV_CPU_FR450:
3088 strcat (buf, ", fr450");
3089 break;
3090
3091 case EF_FRV_CPU_FR500:
3092 strcat (buf, ", fr500");
3093 break;
3094 case EF_FRV_CPU_FR550:
3095 strcat (buf, ", fr550");
3096 break;
3097
3098 case EF_FRV_CPU_SIMPLE:
3099 strcat (buf, ", simple");
3100 break;
3101 case EF_FRV_CPU_TOMCAT:
3102 strcat (buf, ", tomcat");
3103 break;
3104 }
3105 break;
3106
3107 case EM_68K:
3108 if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
3109 strcat (buf, ", m68000");
3110 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
3111 strcat (buf, ", cpu32");
3112 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
3113 strcat (buf, ", fido_a");
3114 else
3115 {
3116 char const * isa = _("unknown");
3117 char const * mac = _("unknown mac");
3118 char const * additional = NULL;
3119
3120 switch (e_flags & EF_M68K_CF_ISA_MASK)
3121 {
3122 case EF_M68K_CF_ISA_A_NODIV:
3123 isa = "A";
3124 additional = ", nodiv";
3125 break;
3126 case EF_M68K_CF_ISA_A:
3127 isa = "A";
3128 break;
3129 case EF_M68K_CF_ISA_A_PLUS:
3130 isa = "A+";
3131 break;
3132 case EF_M68K_CF_ISA_B_NOUSP:
3133 isa = "B";
3134 additional = ", nousp";
3135 break;
3136 case EF_M68K_CF_ISA_B:
3137 isa = "B";
3138 break;
3139 case EF_M68K_CF_ISA_C:
3140 isa = "C";
3141 break;
3142 case EF_M68K_CF_ISA_C_NODIV:
3143 isa = "C";
3144 additional = ", nodiv";
3145 break;
3146 }
3147 strcat (buf, ", cf, isa ");
3148 strcat (buf, isa);
3149 if (additional)
3150 strcat (buf, additional);
3151 if (e_flags & EF_M68K_CF_FLOAT)
3152 strcat (buf, ", float");
3153 switch (e_flags & EF_M68K_CF_MAC_MASK)
3154 {
3155 case 0:
3156 mac = NULL;
3157 break;
3158 case EF_M68K_CF_MAC:
3159 mac = "mac";
3160 break;
3161 case EF_M68K_CF_EMAC:
3162 mac = "emac";
3163 break;
3164 case EF_M68K_CF_EMAC_B:
3165 mac = "emac_b";
3166 break;
3167 }
3168 if (mac)
3169 {
3170 strcat (buf, ", ");
3171 strcat (buf, mac);
3172 }
3173 }
3174 break;
3175
3176 case EM_CYGNUS_MEP:
3177 switch (e_flags & EF_MEP_CPU_MASK)
3178 {
3179 case EF_MEP_CPU_MEP: strcat (buf, ", generic MeP"); break;
3180 case EF_MEP_CPU_C2: strcat (buf, ", MeP C2"); break;
3181 case EF_MEP_CPU_C3: strcat (buf, ", MeP C3"); break;
3182 case EF_MEP_CPU_C4: strcat (buf, ", MeP C4"); break;
3183 case EF_MEP_CPU_C5: strcat (buf, ", MeP C5"); break;
3184 case EF_MEP_CPU_H1: strcat (buf, ", MeP H1"); break;
3185 default: strcat (buf, _(", <unknown MeP cpu type>")); break;
3186 }
3187
3188 switch (e_flags & EF_MEP_COP_MASK)
3189 {
3190 case EF_MEP_COP_NONE: break;
3191 case EF_MEP_COP_AVC: strcat (buf, ", AVC coprocessor"); break;
3192 case EF_MEP_COP_AVC2: strcat (buf, ", AVC2 coprocessor"); break;
3193 case EF_MEP_COP_FMAX: strcat (buf, ", FMAX coprocessor"); break;
3194 case EF_MEP_COP_IVC2: strcat (buf, ", IVC2 coprocessor"); break;
3195 default: strcat (buf, _("<unknown MeP copro type>")); break;
3196 }
3197
3198 if (e_flags & EF_MEP_LIBRARY)
3199 strcat (buf, ", Built for Library");
3200
3201 if (e_flags & EF_MEP_INDEX_MASK)
3202 sprintf (buf + strlen (buf), ", Configuration Index: %#x",
3203 e_flags & EF_MEP_INDEX_MASK);
3204
3205 if (e_flags & ~ EF_MEP_ALL_FLAGS)
3206 sprintf (buf + strlen (buf), _(", unknown flags bits: %#x"),
3207 e_flags & ~ EF_MEP_ALL_FLAGS);
3208 break;
3209
3210 case EM_PPC:
3211 if (e_flags & EF_PPC_EMB)
3212 strcat (buf, ", emb");
3213
3214 if (e_flags & EF_PPC_RELOCATABLE)
3215 strcat (buf, _(", relocatable"));
3216
3217 if (e_flags & EF_PPC_RELOCATABLE_LIB)
3218 strcat (buf, _(", relocatable-lib"));
3219 break;
3220
3221 case EM_PPC64:
3222 if (e_flags & EF_PPC64_ABI)
3223 {
3224 char abi[] = ", abiv0";
3225
3226 abi[6] += e_flags & EF_PPC64_ABI;
3227 strcat (buf, abi);
3228 }
3229 break;
3230
3231 case EM_V800:
3232 if ((e_flags & EF_RH850_ABI) == EF_RH850_ABI)
3233 strcat (buf, ", RH850 ABI");
3234
3235 if (e_flags & EF_V800_850E3)
3236 strcat (buf, ", V3 architecture");
3237
3238 if ((e_flags & (EF_RH850_FPU_DOUBLE | EF_RH850_FPU_SINGLE)) == 0)
3239 strcat (buf, ", FPU not used");
3240
3241 if ((e_flags & (EF_RH850_REGMODE22 | EF_RH850_REGMODE32)) == 0)
3242 strcat (buf, ", regmode: COMMON");
3243
3244 if ((e_flags & (EF_RH850_GP_FIX | EF_RH850_GP_NOFIX)) == 0)
3245 strcat (buf, ", r4 not used");
3246
3247 if ((e_flags & (EF_RH850_EP_FIX | EF_RH850_EP_NOFIX)) == 0)
3248 strcat (buf, ", r30 not used");
3249
3250 if ((e_flags & (EF_RH850_TP_FIX | EF_RH850_TP_NOFIX)) == 0)
3251 strcat (buf, ", r5 not used");
3252
3253 if ((e_flags & (EF_RH850_REG2_RESERVE | EF_RH850_REG2_NORESERVE)) == 0)
3254 strcat (buf, ", r2 not used");
3255
3256 for (e_flags &= 0xFFFF; e_flags; e_flags &= ~ (e_flags & - e_flags))
3257 {
3258 switch (e_flags & - e_flags)
3259 {
3260 case EF_RH850_FPU_DOUBLE: strcat (buf, ", double precision FPU"); break;
3261 case EF_RH850_FPU_SINGLE: strcat (buf, ", single precision FPU"); break;
3262 case EF_RH850_REGMODE22: strcat (buf, ", regmode:22"); break;
3263 case EF_RH850_REGMODE32: strcat (buf, ", regmode:23"); break;
3264 case EF_RH850_GP_FIX: strcat (buf, ", r4 fixed"); break;
3265 case EF_RH850_GP_NOFIX: strcat (buf, ", r4 free"); break;
3266 case EF_RH850_EP_FIX: strcat (buf, ", r30 fixed"); break;
3267 case EF_RH850_EP_NOFIX: strcat (buf, ", r30 free"); break;
3268 case EF_RH850_TP_FIX: strcat (buf, ", r5 fixed"); break;
3269 case EF_RH850_TP_NOFIX: strcat (buf, ", r5 free"); break;
3270 case EF_RH850_REG2_RESERVE: strcat (buf, ", r2 fixed"); break;
3271 case EF_RH850_REG2_NORESERVE: strcat (buf, ", r2 free"); break;
3272 default: break;
3273 }
3274 }
3275 break;
3276
3277 case EM_V850:
3278 case EM_CYGNUS_V850:
3279 switch (e_flags & EF_V850_ARCH)
3280 {
3281 case E_V850E3V5_ARCH:
3282 strcat (buf, ", v850e3v5");
3283 break;
3284 case E_V850E2V3_ARCH:
3285 strcat (buf, ", v850e2v3");
3286 break;
3287 case E_V850E2_ARCH:
3288 strcat (buf, ", v850e2");
3289 break;
3290 case E_V850E1_ARCH:
3291 strcat (buf, ", v850e1");
3292 break;
3293 case E_V850E_ARCH:
3294 strcat (buf, ", v850e");
3295 break;
3296 case E_V850_ARCH:
3297 strcat (buf, ", v850");
3298 break;
3299 default:
3300 strcat (buf, _(", unknown v850 architecture variant"));
3301 break;
3302 }
3303 break;
3304
3305 case EM_M32R:
3306 case EM_CYGNUS_M32R:
3307 if ((e_flags & EF_M32R_ARCH) == E_M32R_ARCH)
3308 strcat (buf, ", m32r");
3309 break;
3310
3311 case EM_MIPS:
3312 case EM_MIPS_RS3_LE:
3313 if (e_flags & EF_MIPS_NOREORDER)
3314 strcat (buf, ", noreorder");
3315
3316 if (e_flags & EF_MIPS_PIC)
3317 strcat (buf, ", pic");
3318
3319 if (e_flags & EF_MIPS_CPIC)
3320 strcat (buf, ", cpic");
3321
3322 if (e_flags & EF_MIPS_UCODE)
3323 strcat (buf, ", ugen_reserved");
3324
3325 if (e_flags & EF_MIPS_ABI2)
3326 strcat (buf, ", abi2");
3327
3328 if (e_flags & EF_MIPS_OPTIONS_FIRST)
3329 strcat (buf, ", odk first");
3330
3331 if (e_flags & EF_MIPS_32BITMODE)
3332 strcat (buf, ", 32bitmode");
3333
3334 if (e_flags & EF_MIPS_NAN2008)
3335 strcat (buf, ", nan2008");
3336
3337 if (e_flags & EF_MIPS_FP64)
3338 strcat (buf, ", fp64");
3339
3340 switch ((e_flags & EF_MIPS_MACH))
3341 {
3342 case E_MIPS_MACH_3900: strcat (buf, ", 3900"); break;
3343 case E_MIPS_MACH_4010: strcat (buf, ", 4010"); break;
3344 case E_MIPS_MACH_4100: strcat (buf, ", 4100"); break;
3345 case E_MIPS_MACH_4111: strcat (buf, ", 4111"); break;
3346 case E_MIPS_MACH_4120: strcat (buf, ", 4120"); break;
3347 case E_MIPS_MACH_4650: strcat (buf, ", 4650"); break;
3348 case E_MIPS_MACH_5400: strcat (buf, ", 5400"); break;
3349 case E_MIPS_MACH_5500: strcat (buf, ", 5500"); break;
3350 case E_MIPS_MACH_5900: strcat (buf, ", 5900"); break;
3351 case E_MIPS_MACH_SB1: strcat (buf, ", sb1"); break;
3352 case E_MIPS_MACH_9000: strcat (buf, ", 9000"); break;
3353 case E_MIPS_MACH_LS2E: strcat (buf, ", loongson-2e"); break;
3354 case E_MIPS_MACH_LS2F: strcat (buf, ", loongson-2f"); break;
3355 case E_MIPS_MACH_LS3A: strcat (buf, ", loongson-3a"); break;
3356 case E_MIPS_MACH_OCTEON: strcat (buf, ", octeon"); break;
3357 case E_MIPS_MACH_OCTEON2: strcat (buf, ", octeon2"); break;
3358 case E_MIPS_MACH_OCTEON3: strcat (buf, ", octeon3"); break;
3359 case E_MIPS_MACH_XLR: strcat (buf, ", xlr"); break;
3360 case E_MIPS_MACH_IAMR2: strcat (buf, ", interaptiv-mr2"); break;
3361 case 0:
3362 /* We simply ignore the field in this case to avoid confusion:
3363 MIPS ELF does not specify EF_MIPS_MACH, it is a GNU
3364 extension. */
3365 break;
3366 default: strcat (buf, _(", unknown CPU")); break;
3367 }
3368
3369 switch ((e_flags & EF_MIPS_ABI))
3370 {
3371 case E_MIPS_ABI_O32: strcat (buf, ", o32"); break;
3372 case E_MIPS_ABI_O64: strcat (buf, ", o64"); break;
3373 case E_MIPS_ABI_EABI32: strcat (buf, ", eabi32"); break;
3374 case E_MIPS_ABI_EABI64: strcat (buf, ", eabi64"); break;
3375 case 0:
3376 /* We simply ignore the field in this case to avoid confusion:
3377 MIPS ELF does not specify EF_MIPS_ABI, it is a GNU extension.
3378 This means it is likely to be an o32 file, but not for
3379 sure. */
3380 break;
3381 default: strcat (buf, _(", unknown ABI")); break;
3382 }
3383
3384 if (e_flags & EF_MIPS_ARCH_ASE_MDMX)
3385 strcat (buf, ", mdmx");
3386
3387 if (e_flags & EF_MIPS_ARCH_ASE_M16)
3388 strcat (buf, ", mips16");
3389
3390 if (e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
3391 strcat (buf, ", micromips");
3392
3393 switch ((e_flags & EF_MIPS_ARCH))
3394 {
3395 case E_MIPS_ARCH_1: strcat (buf, ", mips1"); break;
3396 case E_MIPS_ARCH_2: strcat (buf, ", mips2"); break;
3397 case E_MIPS_ARCH_3: strcat (buf, ", mips3"); break;
3398 case E_MIPS_ARCH_4: strcat (buf, ", mips4"); break;
3399 case E_MIPS_ARCH_5: strcat (buf, ", mips5"); break;
3400 case E_MIPS_ARCH_32: strcat (buf, ", mips32"); break;
3401 case E_MIPS_ARCH_32R2: strcat (buf, ", mips32r2"); break;
3402 case E_MIPS_ARCH_32R6: strcat (buf, ", mips32r6"); break;
3403 case E_MIPS_ARCH_64: strcat (buf, ", mips64"); break;
3404 case E_MIPS_ARCH_64R2: strcat (buf, ", mips64r2"); break;
3405 case E_MIPS_ARCH_64R6: strcat (buf, ", mips64r6"); break;
3406 default: strcat (buf, _(", unknown ISA")); break;
3407 }
3408 break;
3409
3410 case EM_NDS32:
3411 decode_NDS32_machine_flags (e_flags, buf, sizeof buf);
3412 break;
3413
3414 case EM_RISCV:
3415 if (e_flags & EF_RISCV_RVC)
3416 strcat (buf, ", RVC");
3417
3418 switch (e_flags & EF_RISCV_FLOAT_ABI)
3419 {
3420 case EF_RISCV_FLOAT_ABI_SOFT:
3421 strcat (buf, ", soft-float ABI");
3422 break;
3423
3424 case EF_RISCV_FLOAT_ABI_SINGLE:
3425 strcat (buf, ", single-float ABI");
3426 break;
3427
3428 case EF_RISCV_FLOAT_ABI_DOUBLE:
3429 strcat (buf, ", double-float ABI");
3430 break;
3431
3432 case EF_RISCV_FLOAT_ABI_QUAD:
3433 strcat (buf, ", quad-float ABI");
3434 break;
3435 }
3436 break;
3437
3438 case EM_SH:
3439 switch ((e_flags & EF_SH_MACH_MASK))
3440 {
3441 case EF_SH1: strcat (buf, ", sh1"); break;
3442 case EF_SH2: strcat (buf, ", sh2"); break;
3443 case EF_SH3: strcat (buf, ", sh3"); break;
3444 case EF_SH_DSP: strcat (buf, ", sh-dsp"); break;
3445 case EF_SH3_DSP: strcat (buf, ", sh3-dsp"); break;
3446 case EF_SH4AL_DSP: strcat (buf, ", sh4al-dsp"); break;
3447 case EF_SH3E: strcat (buf, ", sh3e"); break;
3448 case EF_SH4: strcat (buf, ", sh4"); break;
3449 case EF_SH5: strcat (buf, ", sh5"); break;
3450 case EF_SH2E: strcat (buf, ", sh2e"); break;
3451 case EF_SH4A: strcat (buf, ", sh4a"); break;
3452 case EF_SH2A: strcat (buf, ", sh2a"); break;
3453 case EF_SH4_NOFPU: strcat (buf, ", sh4-nofpu"); break;
3454 case EF_SH4A_NOFPU: strcat (buf, ", sh4a-nofpu"); break;
3455 case EF_SH2A_NOFPU: strcat (buf, ", sh2a-nofpu"); break;
3456 case EF_SH3_NOMMU: strcat (buf, ", sh3-nommu"); break;
3457 case EF_SH4_NOMMU_NOFPU: strcat (buf, ", sh4-nommu-nofpu"); break;
3458 case EF_SH2A_SH4_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh4-nommu-nofpu"); break;
3459 case EF_SH2A_SH3_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh3-nommu"); break;
3460 case EF_SH2A_SH4: strcat (buf, ", sh2a-or-sh4"); break;
3461 case EF_SH2A_SH3E: strcat (buf, ", sh2a-or-sh3e"); break;
3462 default: strcat (buf, _(", unknown ISA")); break;
3463 }
3464
3465 if (e_flags & EF_SH_PIC)
3466 strcat (buf, ", pic");
3467
3468 if (e_flags & EF_SH_FDPIC)
3469 strcat (buf, ", fdpic");
3470 break;
3471
3472 case EM_OR1K:
3473 if (e_flags & EF_OR1K_NODELAY)
3474 strcat (buf, ", no delay");
3475 break;
3476
3477 case EM_SPARCV9:
3478 if (e_flags & EF_SPARC_32PLUS)
3479 strcat (buf, ", v8+");
3480
3481 if (e_flags & EF_SPARC_SUN_US1)
3482 strcat (buf, ", ultrasparcI");
3483
3484 if (e_flags & EF_SPARC_SUN_US3)
3485 strcat (buf, ", ultrasparcIII");
3486
3487 if (e_flags & EF_SPARC_HAL_R1)
3488 strcat (buf, ", halr1");
3489
3490 if (e_flags & EF_SPARC_LEDATA)
3491 strcat (buf, ", ledata");
3492
3493 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_TSO)
3494 strcat (buf, ", tso");
3495
3496 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_PSO)
3497 strcat (buf, ", pso");
3498
3499 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_RMO)
3500 strcat (buf, ", rmo");
3501 break;
3502
3503 case EM_PARISC:
3504 switch (e_flags & EF_PARISC_ARCH)
3505 {
3506 case EFA_PARISC_1_0:
3507 strcpy (buf, ", PA-RISC 1.0");
3508 break;
3509 case EFA_PARISC_1_1:
3510 strcpy (buf, ", PA-RISC 1.1");
3511 break;
3512 case EFA_PARISC_2_0:
3513 strcpy (buf, ", PA-RISC 2.0");
3514 break;
3515 default:
3516 break;
3517 }
3518 if (e_flags & EF_PARISC_TRAPNIL)
3519 strcat (buf, ", trapnil");
3520 if (e_flags & EF_PARISC_EXT)
3521 strcat (buf, ", ext");
3522 if (e_flags & EF_PARISC_LSB)
3523 strcat (buf, ", lsb");
3524 if (e_flags & EF_PARISC_WIDE)
3525 strcat (buf, ", wide");
3526 if (e_flags & EF_PARISC_NO_KABP)
3527 strcat (buf, ", no kabp");
3528 if (e_flags & EF_PARISC_LAZYSWAP)
3529 strcat (buf, ", lazyswap");
3530 break;
3531
3532 case EM_PJ:
3533 case EM_PJ_OLD:
3534 if ((e_flags & EF_PICOJAVA_NEWCALLS) == EF_PICOJAVA_NEWCALLS)
3535 strcat (buf, ", new calling convention");
3536
3537 if ((e_flags & EF_PICOJAVA_GNUCALLS) == EF_PICOJAVA_GNUCALLS)
3538 strcat (buf, ", gnu calling convention");
3539 break;
3540
3541 case EM_IA_64:
3542 if ((e_flags & EF_IA_64_ABI64))
3543 strcat (buf, ", 64-bit");
3544 else
3545 strcat (buf, ", 32-bit");
3546 if ((e_flags & EF_IA_64_REDUCEDFP))
3547 strcat (buf, ", reduced fp model");
3548 if ((e_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
3549 strcat (buf, ", no function descriptors, constant gp");
3550 else if ((e_flags & EF_IA_64_CONS_GP))
3551 strcat (buf, ", constant gp");
3552 if ((e_flags & EF_IA_64_ABSOLUTE))
3553 strcat (buf, ", absolute");
3554 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
3555 {
3556 if ((e_flags & EF_IA_64_VMS_LINKAGES))
3557 strcat (buf, ", vms_linkages");
3558 switch ((e_flags & EF_IA_64_VMS_COMCOD))
3559 {
3560 case EF_IA_64_VMS_COMCOD_SUCCESS:
3561 break;
3562 case EF_IA_64_VMS_COMCOD_WARNING:
3563 strcat (buf, ", warning");
3564 break;
3565 case EF_IA_64_VMS_COMCOD_ERROR:
3566 strcat (buf, ", error");
3567 break;
3568 case EF_IA_64_VMS_COMCOD_ABORT:
3569 strcat (buf, ", abort");
3570 break;
3571 default:
3572 warn (_("Unrecognised IA64 VMS Command Code: %x\n"),
3573 e_flags & EF_IA_64_VMS_COMCOD);
3574 strcat (buf, ", <unknown>");
3575 }
3576 }
3577 break;
3578
3579 case EM_VAX:
3580 if ((e_flags & EF_VAX_NONPIC))
3581 strcat (buf, ", non-PIC");
3582 if ((e_flags & EF_VAX_DFLOAT))
3583 strcat (buf, ", D-Float");
3584 if ((e_flags & EF_VAX_GFLOAT))
3585 strcat (buf, ", G-Float");
3586 break;
3587
3588 case EM_VISIUM:
3589 if (e_flags & EF_VISIUM_ARCH_MCM)
3590 strcat (buf, ", mcm");
3591 else if (e_flags & EF_VISIUM_ARCH_MCM24)
3592 strcat (buf, ", mcm24");
3593 if (e_flags & EF_VISIUM_ARCH_GR6)
3594 strcat (buf, ", gr6");
3595 break;
3596
3597 case EM_RL78:
3598 switch (e_flags & E_FLAG_RL78_CPU_MASK)
3599 {
3600 case E_FLAG_RL78_ANY_CPU: break;
3601 case E_FLAG_RL78_G10: strcat (buf, ", G10"); break;
3602 case E_FLAG_RL78_G13: strcat (buf, ", G13"); break;
3603 case E_FLAG_RL78_G14: strcat (buf, ", G14"); break;
3604 }
3605 if (e_flags & E_FLAG_RL78_64BIT_DOUBLES)
3606 strcat (buf, ", 64-bit doubles");
3607 break;
3608
3609 case EM_RX:
3610 if (e_flags & E_FLAG_RX_64BIT_DOUBLES)
3611 strcat (buf, ", 64-bit doubles");
3612 if (e_flags & E_FLAG_RX_DSP)
3613 strcat (buf, ", dsp");
3614 if (e_flags & E_FLAG_RX_PID)
3615 strcat (buf, ", pid");
3616 if (e_flags & E_FLAG_RX_ABI)
3617 strcat (buf, ", RX ABI");
3618 if (e_flags & E_FLAG_RX_SINSNS_SET)
3619 strcat (buf, e_flags & E_FLAG_RX_SINSNS_YES
3620 ? ", uses String instructions" : ", bans String instructions");
3621 if (e_flags & E_FLAG_RX_V2)
3622 strcat (buf, ", V2");
3623 break;
3624
3625 case EM_S390:
3626 if (e_flags & EF_S390_HIGH_GPRS)
3627 strcat (buf, ", highgprs");
3628 break;
3629
3630 case EM_TI_C6000:
3631 if ((e_flags & EF_C6000_REL))
3632 strcat (buf, ", relocatable module");
3633 break;
3634
3635 case EM_MSP430:
3636 strcat (buf, _(": architecture variant: "));
3637 switch (e_flags & EF_MSP430_MACH)
3638 {
3639 case E_MSP430_MACH_MSP430x11: strcat (buf, "MSP430x11"); break;
3640 case E_MSP430_MACH_MSP430x11x1 : strcat (buf, "MSP430x11x1 "); break;
3641 case E_MSP430_MACH_MSP430x12: strcat (buf, "MSP430x12"); break;
3642 case E_MSP430_MACH_MSP430x13: strcat (buf, "MSP430x13"); break;
3643 case E_MSP430_MACH_MSP430x14: strcat (buf, "MSP430x14"); break;
3644 case E_MSP430_MACH_MSP430x15: strcat (buf, "MSP430x15"); break;
3645 case E_MSP430_MACH_MSP430x16: strcat (buf, "MSP430x16"); break;
3646 case E_MSP430_MACH_MSP430x31: strcat (buf, "MSP430x31"); break;
3647 case E_MSP430_MACH_MSP430x32: strcat (buf, "MSP430x32"); break;
3648 case E_MSP430_MACH_MSP430x33: strcat (buf, "MSP430x33"); break;
3649 case E_MSP430_MACH_MSP430x41: strcat (buf, "MSP430x41"); break;
3650 case E_MSP430_MACH_MSP430x42: strcat (buf, "MSP430x42"); break;
3651 case E_MSP430_MACH_MSP430x43: strcat (buf, "MSP430x43"); break;
3652 case E_MSP430_MACH_MSP430x44: strcat (buf, "MSP430x44"); break;
3653 case E_MSP430_MACH_MSP430X : strcat (buf, "MSP430X"); break;
3654 default:
3655 strcat (buf, _(": unknown")); break;
3656 }
3657
3658 if (e_flags & ~ EF_MSP430_MACH)
3659 strcat (buf, _(": unknown extra flag bits also present"));
3660 }
3661 }
3662
3663 return buf;
3664 }
3665
3666 static const char *
3667 get_osabi_name (unsigned int osabi)
3668 {
3669 static char buff[32];
3670
3671 switch (osabi)
3672 {
3673 case ELFOSABI_NONE: return "UNIX - System V";
3674 case ELFOSABI_HPUX: return "UNIX - HP-UX";
3675 case ELFOSABI_NETBSD: return "UNIX - NetBSD";
3676 case ELFOSABI_GNU: return "UNIX - GNU";
3677 case ELFOSABI_SOLARIS: return "UNIX - Solaris";
3678 case ELFOSABI_AIX: return "UNIX - AIX";
3679 case ELFOSABI_IRIX: return "UNIX - IRIX";
3680 case ELFOSABI_FREEBSD: return "UNIX - FreeBSD";
3681 case ELFOSABI_TRU64: return "UNIX - TRU64";
3682 case ELFOSABI_MODESTO: return "Novell - Modesto";
3683 case ELFOSABI_OPENBSD: return "UNIX - OpenBSD";
3684 case ELFOSABI_OPENVMS: return "VMS - OpenVMS";
3685 case ELFOSABI_NSK: return "HP - Non-Stop Kernel";
3686 case ELFOSABI_AROS: return "AROS";
3687 case ELFOSABI_FENIXOS: return "FenixOS";
3688 case ELFOSABI_CLOUDABI: return "Nuxi CloudABI";
3689 case ELFOSABI_OPENVOS: return "Stratus Technologies OpenVOS";
3690 default:
3691 if (osabi >= 64)
3692 switch (elf_header.e_machine)
3693 {
3694 case EM_ARM:
3695 switch (osabi)
3696 {
3697 case ELFOSABI_ARM: return "ARM";
3698 default:
3699 break;
3700 }
3701 break;
3702
3703 case EM_MSP430:
3704 case EM_MSP430_OLD:
3705 case EM_VISIUM:
3706 switch (osabi)
3707 {
3708 case ELFOSABI_STANDALONE: return _("Standalone App");
3709 default:
3710 break;
3711 }
3712 break;
3713
3714 case EM_TI_C6000:
3715 switch (osabi)
3716 {
3717 case ELFOSABI_C6000_ELFABI: return _("Bare-metal C6000");
3718 case ELFOSABI_C6000_LINUX: return "Linux C6000";
3719 default:
3720 break;
3721 }
3722 break;
3723
3724 default:
3725 break;
3726 }
3727 snprintf (buff, sizeof (buff), _("<unknown: %x>"), osabi);
3728 return buff;
3729 }
3730 }
3731
3732 static const char *
3733 get_aarch64_segment_type (unsigned long type)
3734 {
3735 switch (type)
3736 {
3737 case PT_AARCH64_ARCHEXT: return "AARCH64_ARCHEXT";
3738 default: return NULL;
3739 }
3740 }
3741
3742 static const char *
3743 get_arm_segment_type (unsigned long type)
3744 {
3745 switch (type)
3746 {
3747 case PT_ARM_EXIDX: return "EXIDX";
3748 default: return NULL;
3749 }
3750 }
3751
3752 static const char *
3753 get_s390_segment_type (unsigned long type)
3754 {
3755 switch (type)
3756 {
3757 case PT_S390_PGSTE: return "S390_PGSTE";
3758 default: return NULL;
3759 }
3760 }
3761
3762 static const char *
3763 get_mips_segment_type (unsigned long type)
3764 {
3765 switch (type)
3766 {
3767 case PT_MIPS_REGINFO: return "REGINFO";
3768 case PT_MIPS_RTPROC: return "RTPROC";
3769 case PT_MIPS_OPTIONS: return "OPTIONS";
3770 case PT_MIPS_ABIFLAGS: return "ABIFLAGS";
3771 default: return NULL;
3772 }
3773 }
3774
3775 static const char *
3776 get_parisc_segment_type (unsigned long type)
3777 {
3778 switch (type)
3779 {
3780 case PT_HP_TLS: return "HP_TLS";
3781 case PT_HP_CORE_NONE: return "HP_CORE_NONE";
3782 case PT_HP_CORE_VERSION: return "HP_CORE_VERSION";
3783 case PT_HP_CORE_KERNEL: return "HP_CORE_KERNEL";
3784 case PT_HP_CORE_COMM: return "HP_CORE_COMM";
3785 case PT_HP_CORE_PROC: return "HP_CORE_PROC";
3786 case PT_HP_CORE_LOADABLE: return "HP_CORE_LOADABLE";
3787 case PT_HP_CORE_STACK: return "HP_CORE_STACK";
3788 case PT_HP_CORE_SHM: return "HP_CORE_SHM";
3789 case PT_HP_CORE_MMF: return "HP_CORE_MMF";
3790 case PT_HP_PARALLEL: return "HP_PARALLEL";
3791 case PT_HP_FASTBIND: return "HP_FASTBIND";
3792 case PT_HP_OPT_ANNOT: return "HP_OPT_ANNOT";
3793 case PT_HP_HSL_ANNOT: return "HP_HSL_ANNOT";
3794 case PT_HP_STACK: return "HP_STACK";
3795 case PT_HP_CORE_UTSNAME: return "HP_CORE_UTSNAME";
3796 case PT_PARISC_ARCHEXT: return "PARISC_ARCHEXT";
3797 case PT_PARISC_UNWIND: return "PARISC_UNWIND";
3798 case PT_PARISC_WEAKORDER: return "PARISC_WEAKORDER";
3799 default: return NULL;
3800 }
3801 }
3802
3803 static const char *
3804 get_ia64_segment_type (unsigned long type)
3805 {
3806 switch (type)
3807 {
3808 case PT_IA_64_ARCHEXT: return "IA_64_ARCHEXT";
3809 case PT_IA_64_UNWIND: return "IA_64_UNWIND";
3810 case PT_HP_TLS: return "HP_TLS";
3811 case PT_IA_64_HP_OPT_ANOT: return "HP_OPT_ANNOT";
3812 case PT_IA_64_HP_HSL_ANOT: return "HP_HSL_ANNOT";
3813 case PT_IA_64_HP_STACK: return "HP_STACK";
3814 default: return NULL;
3815 }
3816 }
3817
3818 static const char *
3819 get_tic6x_segment_type (unsigned long type)
3820 {
3821 switch (type)
3822 {
3823 case PT_C6000_PHATTR: return "C6000_PHATTR";
3824 default: return NULL;
3825 }
3826 }
3827
3828 static const char *
3829 get_solaris_segment_type (unsigned long type)
3830 {
3831 switch (type)
3832 {
3833 case 0x6464e550: return "PT_SUNW_UNWIND";
3834 case 0x6474e550: return "PT_SUNW_EH_FRAME";
3835 case 0x6ffffff7: return "PT_LOSUNW";
3836 case 0x6ffffffa: return "PT_SUNWBSS";
3837 case 0x6ffffffb: return "PT_SUNWSTACK";
3838 case 0x6ffffffc: return "PT_SUNWDTRACE";
3839 case 0x6ffffffd: return "PT_SUNWCAP";
3840 case 0x6fffffff: return "PT_HISUNW";
3841 default: return NULL;
3842 }
3843 }
3844
3845 static const char *
3846 get_segment_type (unsigned long p_type)
3847 {
3848 static char buff[32];
3849
3850 switch (p_type)
3851 {
3852 case PT_NULL: return "NULL";
3853 case PT_LOAD: return "LOAD";
3854 case PT_DYNAMIC: return "DYNAMIC";
3855 case PT_INTERP: return "INTERP";
3856 case PT_NOTE: return "NOTE";
3857 case PT_SHLIB: return "SHLIB";
3858 case PT_PHDR: return "PHDR";
3859 case PT_TLS: return "TLS";
3860 case PT_GNU_EH_FRAME: return "GNU_EH_FRAME";
3861 case PT_GNU_STACK: return "GNU_STACK";
3862 case PT_GNU_RELRO: return "GNU_RELRO";
3863
3864 default:
3865 if (p_type >= PT_GNU_MBIND_LO && p_type <= PT_GNU_MBIND_HI)
3866 {
3867 sprintf (buff, "GNU_MBIND+%#lx",
3868 p_type - PT_GNU_MBIND_LO);
3869 }
3870 else if ((p_type >= PT_LOPROC) && (p_type <= PT_HIPROC))
3871 {
3872 const char * result;
3873
3874 switch (elf_header.e_machine)
3875 {
3876 case EM_AARCH64:
3877 result = get_aarch64_segment_type (p_type);
3878 break;
3879 case EM_ARM:
3880 result = get_arm_segment_type (p_type);
3881 break;
3882 case EM_MIPS:
3883 case EM_MIPS_RS3_LE:
3884 result = get_mips_segment_type (p_type);
3885 break;
3886 case EM_PARISC:
3887 result = get_parisc_segment_type (p_type);
3888 break;
3889 case EM_IA_64:
3890 result = get_ia64_segment_type (p_type);
3891 break;
3892 case EM_TI_C6000:
3893 result = get_tic6x_segment_type (p_type);
3894 break;
3895 case EM_S390:
3896 case EM_S390_OLD:
3897 result = get_s390_segment_type (p_type);
3898 break;
3899 default:
3900 result = NULL;
3901 break;
3902 }
3903
3904 if (result != NULL)
3905 return result;
3906
3907 sprintf (buff, "LOPROC+%#lx", p_type - PT_LOPROC);
3908 }
3909 else if ((p_type >= PT_LOOS) && (p_type <= PT_HIOS))
3910 {
3911 const char * result;
3912
3913 switch (elf_header.e_machine)
3914 {
3915 case EM_PARISC:
3916 result = get_parisc_segment_type (p_type);
3917 break;
3918 case EM_IA_64:
3919 result = get_ia64_segment_type (p_type);
3920 break;
3921 default:
3922 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
3923 result = get_solaris_segment_type (p_type);
3924 else
3925 result = NULL;
3926 break;
3927 }
3928
3929 if (result != NULL)
3930 return result;
3931
3932 sprintf (buff, "LOOS+%#lx", p_type - PT_LOOS);
3933 }
3934 else
3935 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), p_type);
3936
3937 return buff;
3938 }
3939 }
3940
3941 static const char *
3942 get_arc_section_type_name (unsigned int sh_type)
3943 {
3944 switch (sh_type)
3945 {
3946 case SHT_ARC_ATTRIBUTES: return "ARC_ATTRIBUTES";
3947 default:
3948 break;
3949 }
3950 return NULL;
3951 }
3952
3953 static const char *
3954 get_mips_section_type_name (unsigned int sh_type)
3955 {
3956 switch (sh_type)
3957 {
3958 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
3959 case SHT_MIPS_MSYM: return "MIPS_MSYM";
3960 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
3961 case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
3962 case SHT_MIPS_UCODE: return "MIPS_UCODE";
3963 case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
3964 case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
3965 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
3966 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
3967 case SHT_MIPS_RELD: return "MIPS_RELD";
3968 case SHT_MIPS_IFACE: return "MIPS_IFACE";
3969 case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
3970 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
3971 case SHT_MIPS_SHDR: return "MIPS_SHDR";
3972 case SHT_MIPS_FDESC: return "MIPS_FDESC";
3973 case SHT_MIPS_EXTSYM: return "MIPS_EXTSYM";
3974 case SHT_MIPS_DENSE: return "MIPS_DENSE";
3975 case SHT_MIPS_PDESC: return "MIPS_PDESC";
3976 case SHT_MIPS_LOCSYM: return "MIPS_LOCSYM";
3977 case SHT_MIPS_AUXSYM: return "MIPS_AUXSYM";
3978 case SHT_MIPS_OPTSYM: return "MIPS_OPTSYM";
3979 case SHT_MIPS_LOCSTR: return "MIPS_LOCSTR";
3980 case SHT_MIPS_LINE: return "MIPS_LINE";
3981 case SHT_MIPS_RFDESC: return "MIPS_RFDESC";
3982 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
3983 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
3984 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
3985 case SHT_MIPS_DWARF: return "MIPS_DWARF";
3986 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
3987 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
3988 case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
3989 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
3990 case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
3991 case SHT_MIPS_XLATE: return "MIPS_XLATE";
3992 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
3993 case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
3994 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
3995 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
3996 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
3997 case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS";
3998 default:
3999 break;
4000 }
4001 return NULL;
4002 }
4003
4004 static const char *
4005 get_parisc_section_type_name (unsigned int sh_type)
4006 {
4007 switch (sh_type)
4008 {
4009 case SHT_PARISC_EXT: return "PARISC_EXT";
4010 case SHT_PARISC_UNWIND: return "PARISC_UNWIND";
4011 case SHT_PARISC_DOC: return "PARISC_DOC";
4012 case SHT_PARISC_ANNOT: return "PARISC_ANNOT";
4013 case SHT_PARISC_SYMEXTN: return "PARISC_SYMEXTN";
4014 case SHT_PARISC_STUBS: return "PARISC_STUBS";
4015 case SHT_PARISC_DLKM: return "PARISC_DLKM";
4016 default: return NULL;
4017 }
4018 }
4019
4020 static const char *
4021 get_ia64_section_type_name (unsigned int sh_type)
4022 {
4023 /* If the top 8 bits are 0x78 the next 8 are the os/abi ID. */
4024 if ((sh_type & 0xFF000000) == SHT_IA_64_LOPSREG)
4025 return get_osabi_name ((sh_type & 0x00FF0000) >> 16);
4026
4027 switch (sh_type)
4028 {
4029 case SHT_IA_64_EXT: return "IA_64_EXT";
4030 case SHT_IA_64_UNWIND: return "IA_64_UNWIND";
4031 case SHT_IA_64_PRIORITY_INIT: return "IA_64_PRIORITY_INIT";
4032 case SHT_IA_64_VMS_TRACE: return "VMS_TRACE";
4033 case SHT_IA_64_VMS_TIE_SIGNATURES: return "VMS_TIE_SIGNATURES";
4034 case SHT_IA_64_VMS_DEBUG: return "VMS_DEBUG";
4035 case SHT_IA_64_VMS_DEBUG_STR: return "VMS_DEBUG_STR";
4036 case SHT_IA_64_VMS_LINKAGES: return "VMS_LINKAGES";
4037 case SHT_IA_64_VMS_SYMBOL_VECTOR: return "VMS_SYMBOL_VECTOR";
4038 case SHT_IA_64_VMS_FIXUP: return "VMS_FIXUP";
4039 default:
4040 break;
4041 }
4042 return NULL;
4043 }
4044
4045 static const char *
4046 get_x86_64_section_type_name (unsigned int sh_type)
4047 {
4048 switch (sh_type)
4049 {
4050 case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
4051 default: return NULL;
4052 }
4053 }
4054
4055 static const char *
4056 get_aarch64_section_type_name (unsigned int sh_type)
4057 {
4058 switch (sh_type)
4059 {
4060 case SHT_AARCH64_ATTRIBUTES: return "AARCH64_ATTRIBUTES";
4061 default: return NULL;
4062 }
4063 }
4064
4065 static const char *
4066 get_arm_section_type_name (unsigned int sh_type)
4067 {
4068 switch (sh_type)
4069 {
4070 case SHT_ARM_EXIDX: return "ARM_EXIDX";
4071 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP";
4072 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES";
4073 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY";
4074 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION";
4075 default: return NULL;
4076 }
4077 }
4078
4079 static const char *
4080 get_tic6x_section_type_name (unsigned int sh_type)
4081 {
4082 switch (sh_type)
4083 {
4084 case SHT_C6000_UNWIND: return "C6000_UNWIND";
4085 case SHT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
4086 case SHT_C6000_ATTRIBUTES: return "C6000_ATTRIBUTES";
4087 case SHT_TI_ICODE: return "TI_ICODE";
4088 case SHT_TI_XREF: return "TI_XREF";
4089 case SHT_TI_HANDLER: return "TI_HANDLER";
4090 case SHT_TI_INITINFO: return "TI_INITINFO";
4091 case SHT_TI_PHATTRS: return "TI_PHATTRS";
4092 default: return NULL;
4093 }
4094 }
4095
4096 static const char *
4097 get_msp430x_section_type_name (unsigned int sh_type)
4098 {
4099 switch (sh_type)
4100 {
4101 case SHT_MSP430_SEC_FLAGS: return "MSP430_SEC_FLAGS";
4102 case SHT_MSP430_SYM_ALIASES: return "MSP430_SYM_ALIASES";
4103 case SHT_MSP430_ATTRIBUTES: return "MSP430_ATTRIBUTES";
4104 default: return NULL;
4105 }
4106 }
4107
4108 static const char *
4109 get_v850_section_type_name (unsigned int sh_type)
4110 {
4111 switch (sh_type)
4112 {
4113 case SHT_V850_SCOMMON: return "V850 Small Common";
4114 case SHT_V850_TCOMMON: return "V850 Tiny Common";
4115 case SHT_V850_ZCOMMON: return "V850 Zero Common";
4116 case SHT_RENESAS_IOP: return "RENESAS IOP";
4117 case SHT_RENESAS_INFO: return "RENESAS INFO";
4118 default: return NULL;
4119 }
4120 }
4121
4122 static const char *
4123 get_section_type_name (unsigned int sh_type)
4124 {
4125 static char buff[32];
4126 const char * result;
4127
4128 switch (sh_type)
4129 {
4130 case SHT_NULL: return "NULL";
4131 case SHT_PROGBITS: return "PROGBITS";
4132 case SHT_SYMTAB: return "SYMTAB";
4133 case SHT_STRTAB: return "STRTAB";
4134 case SHT_RELA: return "RELA";
4135 case SHT_HASH: return "HASH";
4136 case SHT_DYNAMIC: return "DYNAMIC";
4137 case SHT_NOTE: return "NOTE";
4138 case SHT_NOBITS: return "NOBITS";
4139 case SHT_REL: return "REL";
4140 case SHT_SHLIB: return "SHLIB";
4141 case SHT_DYNSYM: return "DYNSYM";
4142 case SHT_INIT_ARRAY: return "INIT_ARRAY";
4143 case SHT_FINI_ARRAY: return "FINI_ARRAY";
4144 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
4145 case SHT_GNU_HASH: return "GNU_HASH";
4146 case SHT_GROUP: return "GROUP";
4147 case SHT_SYMTAB_SHNDX: return "SYMTAB SECTION INDICIES";
4148 case SHT_GNU_verdef: return "VERDEF";
4149 case SHT_GNU_verneed: return "VERNEED";
4150 case SHT_GNU_versym: return "VERSYM";
4151 case 0x6ffffff0: return "VERSYM";
4152 case 0x6ffffffc: return "VERDEF";
4153 case 0x7ffffffd: return "AUXILIARY";
4154 case 0x7fffffff: return "FILTER";
4155 case SHT_GNU_LIBLIST: return "GNU_LIBLIST";
4156
4157 default:
4158 if ((sh_type >= SHT_LOPROC) && (sh_type <= SHT_HIPROC))
4159 {
4160 switch (elf_header.e_machine)
4161 {
4162 case EM_ARC:
4163 case EM_ARC_COMPACT:
4164 case EM_ARC_COMPACT2:
4165 result = get_arc_section_type_name (sh_type);
4166 break;
4167 case EM_MIPS:
4168 case EM_MIPS_RS3_LE:
4169 result = get_mips_section_type_name (sh_type);
4170 break;
4171 case EM_PARISC:
4172 result = get_parisc_section_type_name (sh_type);
4173 break;
4174 case EM_IA_64:
4175 result = get_ia64_section_type_name (sh_type);
4176 break;
4177 case EM_X86_64:
4178 case EM_L1OM:
4179 case EM_K1OM:
4180 result = get_x86_64_section_type_name (sh_type);
4181 break;
4182 case EM_AARCH64:
4183 result = get_aarch64_section_type_name (sh_type);
4184 break;
4185 case EM_ARM:
4186 result = get_arm_section_type_name (sh_type);
4187 break;
4188 case EM_TI_C6000:
4189 result = get_tic6x_section_type_name (sh_type);
4190 break;
4191 case EM_MSP430:
4192 result = get_msp430x_section_type_name (sh_type);
4193 break;
4194 case EM_V800:
4195 case EM_V850:
4196 case EM_CYGNUS_V850:
4197 result = get_v850_section_type_name (sh_type);
4198 break;
4199 default:
4200 result = NULL;
4201 break;
4202 }
4203
4204 if (result != NULL)
4205 return result;
4206
4207 sprintf (buff, "LOPROC+%#x", sh_type - SHT_LOPROC);
4208 }
4209 else if ((sh_type >= SHT_LOOS) && (sh_type <= SHT_HIOS))
4210 {
4211 switch (elf_header.e_machine)
4212 {
4213 case EM_IA_64:
4214 result = get_ia64_section_type_name (sh_type);
4215 break;
4216 default:
4217 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
4218 result = get_solaris_section_type (sh_type);
4219 else
4220 {
4221 switch (sh_type)
4222 {
4223 case SHT_GNU_INCREMENTAL_INPUTS: result = "GNU_INCREMENTAL_INPUTS"; break;
4224 case SHT_GNU_ATTRIBUTES: result = "GNU_ATTRIBUTES"; break;
4225 case SHT_GNU_HASH: result = "GNU_HASH"; break;
4226 case SHT_GNU_LIBLIST: result = "GNU_LIBLIST"; break;
4227 default:
4228 result = NULL;
4229 break;
4230 }
4231 }
4232 break;
4233 }
4234
4235 if (result != NULL)
4236 return result;
4237
4238 sprintf (buff, "LOOS+%#x", sh_type - SHT_LOOS);
4239 }
4240 else if ((sh_type >= SHT_LOUSER) && (sh_type <= SHT_HIUSER))
4241 {
4242 switch (elf_header.e_machine)
4243 {
4244 case EM_V800:
4245 case EM_V850:
4246 case EM_CYGNUS_V850:
4247 result = get_v850_section_type_name (sh_type);
4248 break;
4249 default:
4250 result = NULL;
4251 break;
4252 }
4253
4254 if (result != NULL)
4255 return result;
4256
4257 sprintf (buff, "LOUSER+%#x", sh_type - SHT_LOUSER);
4258 }
4259 else
4260 /* This message is probably going to be displayed in a 15
4261 character wide field, so put the hex value first. */
4262 snprintf (buff, sizeof (buff), _("%08x: <unknown>"), sh_type);
4263
4264 return buff;
4265 }
4266 }
4267
4268 #define OPTION_DEBUG_DUMP 512
4269 #define OPTION_DYN_SYMS 513
4270 #define OPTION_DWARF_DEPTH 514
4271 #define OPTION_DWARF_START 515
4272 #define OPTION_DWARF_CHECK 516
4273
4274 static struct option options[] =
4275 {
4276 {"all", no_argument, 0, 'a'},
4277 {"file-header", no_argument, 0, 'h'},
4278 {"program-headers", no_argument, 0, 'l'},
4279 {"headers", no_argument, 0, 'e'},
4280 {"histogram", no_argument, 0, 'I'},
4281 {"segments", no_argument, 0, 'l'},
4282 {"sections", no_argument, 0, 'S'},
4283 {"section-headers", no_argument, 0, 'S'},
4284 {"section-groups", no_argument, 0, 'g'},
4285 {"section-details", no_argument, 0, 't'},
4286 {"full-section-name",no_argument, 0, 'N'},
4287 {"symbols", no_argument, 0, 's'},
4288 {"syms", no_argument, 0, 's'},
4289 {"dyn-syms", no_argument, 0, OPTION_DYN_SYMS},
4290 {"relocs", no_argument, 0, 'r'},
4291 {"notes", no_argument, 0, 'n'},
4292 {"dynamic", no_argument, 0, 'd'},
4293 {"arch-specific", no_argument, 0, 'A'},
4294 {"version-info", no_argument, 0, 'V'},
4295 {"use-dynamic", no_argument, 0, 'D'},
4296 {"unwind", no_argument, 0, 'u'},
4297 {"archive-index", no_argument, 0, 'c'},
4298 {"hex-dump", required_argument, 0, 'x'},
4299 {"relocated-dump", required_argument, 0, 'R'},
4300 {"string-dump", required_argument, 0, 'p'},
4301 {"decompress", no_argument, 0, 'z'},
4302 #ifdef SUPPORT_DISASSEMBLY
4303 {"instruction-dump", required_argument, 0, 'i'},
4304 #endif
4305 {"debug-dump", optional_argument, 0, OPTION_DEBUG_DUMP},
4306
4307 {"dwarf-depth", required_argument, 0, OPTION_DWARF_DEPTH},
4308 {"dwarf-start", required_argument, 0, OPTION_DWARF_START},
4309 {"dwarf-check", no_argument, 0, OPTION_DWARF_CHECK},
4310
4311 {"version", no_argument, 0, 'v'},
4312 {"wide", no_argument, 0, 'W'},
4313 {"help", no_argument, 0, 'H'},
4314 {0, no_argument, 0, 0}
4315 };
4316
4317 static void
4318 usage (FILE * stream)
4319 {
4320 fprintf (stream, _("Usage: readelf <option(s)> elf-file(s)\n"));
4321 fprintf (stream, _(" Display information about the contents of ELF format files\n"));
4322 fprintf (stream, _(" Options are:\n\
4323 -a --all Equivalent to: -h -l -S -s -r -d -V -A -I\n\
4324 -h --file-header Display the ELF file header\n\
4325 -l --program-headers Display the program headers\n\
4326 --segments An alias for --program-headers\n\
4327 -S --section-headers Display the sections' header\n\
4328 --sections An alias for --section-headers\n\
4329 -g --section-groups Display the section groups\n\
4330 -t --section-details Display the section details\n\
4331 -e --headers Equivalent to: -h -l -S\n\
4332 -s --syms Display the symbol table\n\
4333 --symbols An alias for --syms\n\
4334 --dyn-syms Display the dynamic symbol table\n\
4335 -n --notes Display the core notes (if present)\n\
4336 -r --relocs Display the relocations (if present)\n\
4337 -u --unwind Display the unwind info (if present)\n\
4338 -d --dynamic Display the dynamic section (if present)\n\
4339 -V --version-info Display the version sections (if present)\n\
4340 -A --arch-specific Display architecture specific information (if any)\n\
4341 -c --archive-index Display the symbol/file index in an archive\n\
4342 -D --use-dynamic Use the dynamic section info when displaying symbols\n\
4343 -x --hex-dump=<number|name>\n\
4344 Dump the contents of section <number|name> as bytes\n\
4345 -p --string-dump=<number|name>\n\
4346 Dump the contents of section <number|name> as strings\n\
4347 -R --relocated-dump=<number|name>\n\
4348 Dump the contents of section <number|name> as relocated bytes\n\
4349 -z --decompress Decompress section before dumping it\n\
4350 -w[lLiaprmfFsoRt] or\n\
4351 --debug-dump[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,\n\
4352 =frames-interp,=str,=loc,=Ranges,=pubtypes,\n\
4353 =gdb_index,=trace_info,=trace_abbrev,=trace_aranges,\n\
4354 =addr,=cu_index]\n\
4355 Display the contents of DWARF2 debug sections\n"));
4356 fprintf (stream, _("\
4357 --dwarf-depth=N Do not display DIEs at depth N or greater\n\
4358 --dwarf-start=N Display DIEs starting with N, at the same depth\n\
4359 or deeper\n"));
4360 #ifdef SUPPORT_DISASSEMBLY
4361 fprintf (stream, _("\
4362 -i --instruction-dump=<number|name>\n\
4363 Disassemble the contents of section <number|name>\n"));
4364 #endif
4365 fprintf (stream, _("\
4366 -I --histogram Display histogram of bucket list lengths\n\
4367 -W --wide Allow output width to exceed 80 characters\n\
4368 @<file> Read options from <file>\n\
4369 -H --help Display this information\n\
4370 -v --version Display the version number of readelf\n"));
4371
4372 if (REPORT_BUGS_TO[0] && stream == stdout)
4373 fprintf (stdout, _("Report bugs to %s\n"), REPORT_BUGS_TO);
4374
4375 exit (stream == stdout ? 0 : 1);
4376 }
4377
4378 /* Record the fact that the user wants the contents of section number
4379 SECTION to be displayed using the method(s) encoded as flags bits
4380 in TYPE. Note, TYPE can be zero if we are creating the array for
4381 the first time. */
4382
4383 static void
4384 request_dump_bynumber (unsigned int section, dump_type type)
4385 {
4386 if (section >= num_dump_sects)
4387 {
4388 dump_type * new_dump_sects;
4389
4390 new_dump_sects = (dump_type *) calloc (section + 1,
4391 sizeof (* dump_sects));
4392
4393 if (new_dump_sects == NULL)
4394 error (_("Out of memory allocating dump request table.\n"));
4395 else
4396 {
4397 if (dump_sects)
4398 {
4399 /* Copy current flag settings. */
4400 memcpy (new_dump_sects, dump_sects, num_dump_sects * sizeof (* dump_sects));
4401
4402 free (dump_sects);
4403 }
4404
4405 dump_sects = new_dump_sects;
4406 num_dump_sects = section + 1;
4407 }
4408 }
4409
4410 if (dump_sects)
4411 dump_sects[section] |= type;
4412
4413 return;
4414 }
4415
4416 /* Request a dump by section name. */
4417
4418 static void
4419 request_dump_byname (const char * section, dump_type type)
4420 {
4421 struct dump_list_entry * new_request;
4422
4423 new_request = (struct dump_list_entry *)
4424 malloc (sizeof (struct dump_list_entry));
4425 if (!new_request)
4426 error (_("Out of memory allocating dump request table.\n"));
4427
4428 new_request->name = strdup (section);
4429 if (!new_request->name)
4430 error (_("Out of memory allocating dump request table.\n"));
4431
4432 new_request->type = type;
4433
4434 new_request->next = dump_sects_byname;
4435 dump_sects_byname = new_request;
4436 }
4437
4438 static inline void
4439 request_dump (dump_type type)
4440 {
4441 int section;
4442 char * cp;
4443
4444 do_dump++;
4445 section = strtoul (optarg, & cp, 0);
4446
4447 if (! *cp && section >= 0)
4448 request_dump_bynumber (section, type);
4449 else
4450 request_dump_byname (optarg, type);
4451 }
4452
4453
4454 static void
4455 parse_args (int argc, char ** argv)
4456 {
4457 int c;
4458
4459 if (argc < 2)
4460 usage (stderr);
4461
4462 while ((c = getopt_long
4463 (argc, argv, "ADHINR:SVWacdeghi:lnp:rstuvw::x:z", options, NULL)) != EOF)
4464 {
4465 switch (c)
4466 {
4467 case 0:
4468 /* Long options. */
4469 break;
4470 case 'H':
4471 usage (stdout);
4472 break;
4473
4474 case 'a':
4475 do_syms = TRUE;
4476 do_reloc = TRUE;
4477 do_unwind = TRUE;
4478 do_dynamic = TRUE;
4479 do_header = TRUE;
4480 do_sections = TRUE;
4481 do_section_groups = TRUE;
4482 do_segments = TRUE;
4483 do_version = TRUE;
4484 do_histogram = TRUE;
4485 do_arch = TRUE;
4486 do_notes = TRUE;
4487 break;
4488 case 'g':
4489 do_section_groups = TRUE;
4490 break;
4491 case 't':
4492 case 'N':
4493 do_sections = TRUE;
4494 do_section_details = TRUE;
4495 break;
4496 case 'e':
4497 do_header = TRUE;
4498 do_sections = TRUE;
4499 do_segments = TRUE;
4500 break;
4501 case 'A':
4502 do_arch = TRUE;
4503 break;
4504 case 'D':
4505 do_using_dynamic = TRUE;
4506 break;
4507 case 'r':
4508 do_reloc = TRUE;
4509 break;
4510 case 'u':
4511 do_unwind = TRUE;
4512 break;
4513 case 'h':
4514 do_header = TRUE;
4515 break;
4516 case 'l':
4517 do_segments = TRUE;
4518 break;
4519 case 's':
4520 do_syms = TRUE;
4521 break;
4522 case 'S':
4523 do_sections = TRUE;
4524 break;
4525 case 'd':
4526 do_dynamic = TRUE;
4527 break;
4528 case 'I':
4529 do_histogram = TRUE;
4530 break;
4531 case 'n':
4532 do_notes = TRUE;
4533 break;
4534 case 'c':
4535 do_archive_index = TRUE;
4536 break;
4537 case 'x':
4538 request_dump (HEX_DUMP);
4539 break;
4540 case 'p':
4541 request_dump (STRING_DUMP);
4542 break;
4543 case 'R':
4544 request_dump (RELOC_DUMP);
4545 break;
4546 case 'z':
4547 decompress_dumps = TRUE;
4548 break;
4549 case 'w':
4550 do_dump = TRUE;
4551 if (optarg == 0)
4552 {
4553 do_debugging = TRUE;
4554 dwarf_select_sections_all ();
4555 }
4556 else
4557 {
4558 do_debugging = FALSE;
4559 dwarf_select_sections_by_letters (optarg);
4560 }
4561 break;
4562 case OPTION_DEBUG_DUMP:
4563 do_dump = TRUE;
4564 if (optarg == 0)
4565 do_debugging = TRUE;
4566 else
4567 {
4568 do_debugging = FALSE;
4569 dwarf_select_sections_by_names (optarg);
4570 }
4571 break;
4572 case OPTION_DWARF_DEPTH:
4573 {
4574 char *cp;
4575
4576 dwarf_cutoff_level = strtoul (optarg, & cp, 0);
4577 }
4578 break;
4579 case OPTION_DWARF_START:
4580 {
4581 char *cp;
4582
4583 dwarf_start_die = strtoul (optarg, & cp, 0);
4584 }
4585 break;
4586 case OPTION_DWARF_CHECK:
4587 dwarf_check = TRUE;
4588 break;
4589 case OPTION_DYN_SYMS:
4590 do_dyn_syms = TRUE;
4591 break;
4592 #ifdef SUPPORT_DISASSEMBLY
4593 case 'i':
4594 request_dump (DISASS_DUMP);
4595 break;
4596 #endif
4597 case 'v':
4598 print_version (program_name);
4599 break;
4600 case 'V':
4601 do_version = TRUE;
4602 break;
4603 case 'W':
4604 do_wide = TRUE;
4605 break;
4606 default:
4607 /* xgettext:c-format */
4608 error (_("Invalid option '-%c'\n"), c);
4609 /* Fall through. */
4610 case '?':
4611 usage (stderr);
4612 }
4613 }
4614
4615 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
4616 && !do_segments && !do_header && !do_dump && !do_version
4617 && !do_histogram && !do_debugging && !do_arch && !do_notes
4618 && !do_section_groups && !do_archive_index
4619 && !do_dyn_syms)
4620 usage (stderr);
4621 }
4622
4623 static const char *
4624 get_elf_class (unsigned int elf_class)
4625 {
4626 static char buff[32];
4627
4628 switch (elf_class)
4629 {
4630 case ELFCLASSNONE: return _("none");
4631 case ELFCLASS32: return "ELF32";
4632 case ELFCLASS64: return "ELF64";
4633 default:
4634 snprintf (buff, sizeof (buff), _("<unknown: %x>"), elf_class);
4635 return buff;
4636 }
4637 }
4638
4639 static const char *
4640 get_data_encoding (unsigned int encoding)
4641 {
4642 static char buff[32];
4643
4644 switch (encoding)
4645 {
4646 case ELFDATANONE: return _("none");
4647 case ELFDATA2LSB: return _("2's complement, little endian");
4648 case ELFDATA2MSB: return _("2's complement, big endian");
4649 default:
4650 snprintf (buff, sizeof (buff), _("<unknown: %x>"), encoding);
4651 return buff;
4652 }
4653 }
4654
4655 /* Decode the data held in 'elf_header'. */
4656
4657 static bfd_boolean
4658 process_file_header (void)
4659 {
4660 if ( elf_header.e_ident[EI_MAG0] != ELFMAG0
4661 || elf_header.e_ident[EI_MAG1] != ELFMAG1
4662 || elf_header.e_ident[EI_MAG2] != ELFMAG2
4663 || elf_header.e_ident[EI_MAG3] != ELFMAG3)
4664 {
4665 error
4666 (_("Not an ELF file - it has the wrong magic bytes at the start\n"));
4667 return FALSE;
4668 }
4669
4670 init_dwarf_regnames (elf_header.e_machine);
4671
4672 if (do_header)
4673 {
4674 unsigned i;
4675
4676 printf (_("ELF Header:\n"));
4677 printf (_(" Magic: "));
4678 for (i = 0; i < EI_NIDENT; i++)
4679 printf ("%2.2x ", elf_header.e_ident[i]);
4680 printf ("\n");
4681 printf (_(" Class: %s\n"),
4682 get_elf_class (elf_header.e_ident[EI_CLASS]));
4683 printf (_(" Data: %s\n"),
4684 get_data_encoding (elf_header.e_ident[EI_DATA]));
4685 printf (_(" Version: %d %s\n"),
4686 elf_header.e_ident[EI_VERSION],
4687 (elf_header.e_ident[EI_VERSION] == EV_CURRENT
4688 ? "(current)"
4689 : (elf_header.e_ident[EI_VERSION] != EV_NONE
4690 ? _("<unknown: %lx>")
4691 : "")));
4692 printf (_(" OS/ABI: %s\n"),
4693 get_osabi_name (elf_header.e_ident[EI_OSABI]));
4694 printf (_(" ABI Version: %d\n"),
4695 elf_header.e_ident[EI_ABIVERSION]);
4696 printf (_(" Type: %s\n"),
4697 get_file_type (elf_header.e_type));
4698 printf (_(" Machine: %s\n"),
4699 get_machine_name (elf_header.e_machine));
4700 printf (_(" Version: 0x%lx\n"),
4701 (unsigned long) elf_header.e_version);
4702
4703 printf (_(" Entry point address: "));
4704 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4705 printf (_("\n Start of program headers: "));
4706 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4707 printf (_(" (bytes into file)\n Start of section headers: "));
4708 print_vma ((bfd_vma) elf_header.e_shoff, DEC);
4709 printf (_(" (bytes into file)\n"));
4710
4711 printf (_(" Flags: 0x%lx%s\n"),
4712 (unsigned long) elf_header.e_flags,
4713 get_machine_flags (elf_header.e_flags, elf_header.e_machine));
4714 printf (_(" Size of this header: %ld (bytes)\n"),
4715 (long) elf_header.e_ehsize);
4716 printf (_(" Size of program headers: %ld (bytes)\n"),
4717 (long) elf_header.e_phentsize);
4718 printf (_(" Number of program headers: %ld"),
4719 (long) elf_header.e_phnum);
4720 if (section_headers != NULL
4721 && elf_header.e_phnum == PN_XNUM
4722 && section_headers[0].sh_info != 0)
4723 printf (" (%ld)", (long) section_headers[0].sh_info);
4724 putc ('\n', stdout);
4725 printf (_(" Size of section headers: %ld (bytes)\n"),
4726 (long) elf_header.e_shentsize);
4727 printf (_(" Number of section headers: %ld"),
4728 (long) elf_header.e_shnum);
4729 if (section_headers != NULL && elf_header.e_shnum == SHN_UNDEF)
4730 printf (" (%ld)", (long) section_headers[0].sh_size);
4731 putc ('\n', stdout);
4732 printf (_(" Section header string table index: %ld"),
4733 (long) elf_header.e_shstrndx);
4734 if (section_headers != NULL
4735 && elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4736 printf (" (%u)", section_headers[0].sh_link);
4737 else if (elf_header.e_shstrndx != SHN_UNDEF
4738 && elf_header.e_shstrndx >= elf_header.e_shnum)
4739 printf (_(" <corrupt: out of range>"));
4740 putc ('\n', stdout);
4741 }
4742
4743 if (section_headers != NULL)
4744 {
4745 if (elf_header.e_phnum == PN_XNUM
4746 && section_headers[0].sh_info != 0)
4747 elf_header.e_phnum = section_headers[0].sh_info;
4748 if (elf_header.e_shnum == SHN_UNDEF)
4749 elf_header.e_shnum = section_headers[0].sh_size;
4750 if (elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4751 elf_header.e_shstrndx = section_headers[0].sh_link;
4752 else if (elf_header.e_shstrndx >= elf_header.e_shnum)
4753 elf_header.e_shstrndx = SHN_UNDEF;
4754 free (section_headers);
4755 section_headers = NULL;
4756 }
4757
4758 return TRUE;
4759 }
4760
4761 static bfd_boolean
4762 get_32bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4763 {
4764 Elf32_External_Phdr * phdrs;
4765 Elf32_External_Phdr * external;
4766 Elf_Internal_Phdr * internal;
4767 unsigned int i;
4768 unsigned int size = elf_header.e_phentsize;
4769 unsigned int num = elf_header.e_phnum;
4770
4771 /* PR binutils/17531: Cope with unexpected section header sizes. */
4772 if (size == 0 || num == 0)
4773 return FALSE;
4774 if (size < sizeof * phdrs)
4775 {
4776 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4777 return FALSE;
4778 }
4779 if (size > sizeof * phdrs)
4780 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4781
4782 phdrs = (Elf32_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4783 size, num, _("program headers"));
4784 if (phdrs == NULL)
4785 return FALSE;
4786
4787 for (i = 0, internal = pheaders, external = phdrs;
4788 i < elf_header.e_phnum;
4789 i++, internal++, external++)
4790 {
4791 internal->p_type = BYTE_GET (external->p_type);
4792 internal->p_offset = BYTE_GET (external->p_offset);
4793 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4794 internal->p_paddr = BYTE_GET (external->p_paddr);
4795 internal->p_filesz = BYTE_GET (external->p_filesz);
4796 internal->p_memsz = BYTE_GET (external->p_memsz);
4797 internal->p_flags = BYTE_GET (external->p_flags);
4798 internal->p_align = BYTE_GET (external->p_align);
4799 }
4800
4801 free (phdrs);
4802 return TRUE;
4803 }
4804
4805 static bfd_boolean
4806 get_64bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4807 {
4808 Elf64_External_Phdr * phdrs;
4809 Elf64_External_Phdr * external;
4810 Elf_Internal_Phdr * internal;
4811 unsigned int i;
4812 unsigned int size = elf_header.e_phentsize;
4813 unsigned int num = elf_header.e_phnum;
4814
4815 /* PR binutils/17531: Cope with unexpected section header sizes. */
4816 if (size == 0 || num == 0)
4817 return FALSE;
4818 if (size < sizeof * phdrs)
4819 {
4820 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4821 return FALSE;
4822 }
4823 if (size > sizeof * phdrs)
4824 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4825
4826 phdrs = (Elf64_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4827 size, num, _("program headers"));
4828 if (!phdrs)
4829 return FALSE;
4830
4831 for (i = 0, internal = pheaders, external = phdrs;
4832 i < elf_header.e_phnum;
4833 i++, internal++, external++)
4834 {
4835 internal->p_type = BYTE_GET (external->p_type);
4836 internal->p_flags = BYTE_GET (external->p_flags);
4837 internal->p_offset = BYTE_GET (external->p_offset);
4838 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4839 internal->p_paddr = BYTE_GET (external->p_paddr);
4840 internal->p_filesz = BYTE_GET (external->p_filesz);
4841 internal->p_memsz = BYTE_GET (external->p_memsz);
4842 internal->p_align = BYTE_GET (external->p_align);
4843 }
4844
4845 free (phdrs);
4846 return TRUE;
4847 }
4848
4849 /* Returns TRUE if the program headers were read into `program_headers'. */
4850
4851 static bfd_boolean
4852 get_program_headers (FILE * file)
4853 {
4854 Elf_Internal_Phdr * phdrs;
4855
4856 /* Check cache of prior read. */
4857 if (program_headers != NULL)
4858 return TRUE;
4859
4860 /* Be kind to memory checkers by looking for
4861 e_phnum values which we know must be invalid. */
4862 if (elf_header.e_phnum
4863 * (is_32bit_elf ? sizeof (Elf32_External_Phdr) : sizeof (Elf64_External_Phdr))
4864 >= current_file_size)
4865 {
4866 error (_("Too many program headers - %#x - the file is not that big\n"),
4867 elf_header.e_phnum);
4868 return FALSE;
4869 }
4870
4871 phdrs = (Elf_Internal_Phdr *) cmalloc (elf_header.e_phnum,
4872 sizeof (Elf_Internal_Phdr));
4873 if (phdrs == NULL)
4874 {
4875 error (_("Out of memory reading %u program headers\n"),
4876 elf_header.e_phnum);
4877 return FALSE;
4878 }
4879
4880 if (is_32bit_elf
4881 ? get_32bit_program_headers (file, phdrs)
4882 : get_64bit_program_headers (file, phdrs))
4883 {
4884 program_headers = phdrs;
4885 return TRUE;
4886 }
4887
4888 free (phdrs);
4889 return FALSE;
4890 }
4891
4892 /* Returns TRUE if the program headers were loaded. */
4893
4894 static bfd_boolean
4895 process_program_headers (FILE * file)
4896 {
4897 Elf_Internal_Phdr * segment;
4898 unsigned int i;
4899 Elf_Internal_Phdr * previous_load = NULL;
4900
4901 if (elf_header.e_phnum == 0)
4902 {
4903 /* PR binutils/12467. */
4904 if (elf_header.e_phoff != 0)
4905 {
4906 warn (_("possibly corrupt ELF header - it has a non-zero program"
4907 " header offset, but no program headers\n"));
4908 return FALSE;
4909 }
4910 else if (do_segments)
4911 printf (_("\nThere are no program headers in this file.\n"));
4912 return TRUE;
4913 }
4914
4915 if (do_segments && !do_header)
4916 {
4917 printf (_("\nElf file type is %s\n"), get_file_type (elf_header.e_type));
4918 printf (_("Entry point 0x%s\n"), bfd_vmatoa ("x", elf_header.e_entry));
4919 printf (ngettext ("There is %d program header, starting at offset %s\n",
4920 "There are %d program headers, starting at offset %s\n",
4921 elf_header.e_phnum),
4922 elf_header.e_phnum,
4923 bfd_vmatoa ("u", elf_header.e_phoff));
4924 }
4925
4926 if (! get_program_headers (file))
4927 return TRUE;
4928
4929 if (do_segments)
4930 {
4931 if (elf_header.e_phnum > 1)
4932 printf (_("\nProgram Headers:\n"));
4933 else
4934 printf (_("\nProgram Headers:\n"));
4935
4936 if (is_32bit_elf)
4937 printf
4938 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4939 else if (do_wide)
4940 printf
4941 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4942 else
4943 {
4944 printf
4945 (_(" Type Offset VirtAddr PhysAddr\n"));
4946 printf
4947 (_(" FileSiz MemSiz Flags Align\n"));
4948 }
4949 }
4950
4951 dynamic_addr = 0;
4952 dynamic_size = 0;
4953
4954 for (i = 0, segment = program_headers;
4955 i < elf_header.e_phnum;
4956 i++, segment++)
4957 {
4958 if (do_segments)
4959 {
4960 printf (" %-14.14s ", get_segment_type (segment->p_type));
4961
4962 if (is_32bit_elf)
4963 {
4964 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4965 printf ("0x%8.8lx ", (unsigned long) segment->p_vaddr);
4966 printf ("0x%8.8lx ", (unsigned long) segment->p_paddr);
4967 printf ("0x%5.5lx ", (unsigned long) segment->p_filesz);
4968 printf ("0x%5.5lx ", (unsigned long) segment->p_memsz);
4969 printf ("%c%c%c ",
4970 (segment->p_flags & PF_R ? 'R' : ' '),
4971 (segment->p_flags & PF_W ? 'W' : ' '),
4972 (segment->p_flags & PF_X ? 'E' : ' '));
4973 printf ("%#lx", (unsigned long) segment->p_align);
4974 }
4975 else if (do_wide)
4976 {
4977 if ((unsigned long) segment->p_offset == segment->p_offset)
4978 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4979 else
4980 {
4981 print_vma (segment->p_offset, FULL_HEX);
4982 putchar (' ');
4983 }
4984
4985 print_vma (segment->p_vaddr, FULL_HEX);
4986 putchar (' ');
4987 print_vma (segment->p_paddr, FULL_HEX);
4988 putchar (' ');
4989
4990 if ((unsigned long) segment->p_filesz == segment->p_filesz)
4991 printf ("0x%6.6lx ", (unsigned long) segment->p_filesz);
4992 else
4993 {
4994 print_vma (segment->p_filesz, FULL_HEX);
4995 putchar (' ');
4996 }
4997
4998 if ((unsigned long) segment->p_memsz == segment->p_memsz)
4999 printf ("0x%6.6lx", (unsigned long) segment->p_memsz);
5000 else
5001 {
5002 print_vma (segment->p_memsz, FULL_HEX);
5003 }
5004
5005 printf (" %c%c%c ",
5006 (segment->p_flags & PF_R ? 'R' : ' '),
5007 (segment->p_flags & PF_W ? 'W' : ' '),
5008 (segment->p_flags & PF_X ? 'E' : ' '));
5009
5010 if ((unsigned long) segment->p_align == segment->p_align)
5011 printf ("%#lx", (unsigned long) segment->p_align);
5012 else
5013 {
5014 print_vma (segment->p_align, PREFIX_HEX);
5015 }
5016 }
5017 else
5018 {
5019 print_vma (segment->p_offset, FULL_HEX);
5020 putchar (' ');
5021 print_vma (segment->p_vaddr, FULL_HEX);
5022 putchar (' ');
5023 print_vma (segment->p_paddr, FULL_HEX);
5024 printf ("\n ");
5025 print_vma (segment->p_filesz, FULL_HEX);
5026 putchar (' ');
5027 print_vma (segment->p_memsz, FULL_HEX);
5028 printf (" %c%c%c ",
5029 (segment->p_flags & PF_R ? 'R' : ' '),
5030 (segment->p_flags & PF_W ? 'W' : ' '),
5031 (segment->p_flags & PF_X ? 'E' : ' '));
5032 print_vma (segment->p_align, PREFIX_HEX);
5033 }
5034
5035 putc ('\n', stdout);
5036 }
5037
5038 switch (segment->p_type)
5039 {
5040 case PT_LOAD:
5041 #if 0 /* Do not warn about out of order PT_LOAD segments. Although officially
5042 required by the ELF standard, several programs, including the Linux
5043 kernel, make use of non-ordered segments. */
5044 if (previous_load
5045 && previous_load->p_vaddr > segment->p_vaddr)
5046 error (_("LOAD segments must be sorted in order of increasing VirtAddr\n"));
5047 #endif
5048 if (segment->p_memsz < segment->p_filesz)
5049 error (_("the segment's file size is larger than its memory size\n"));
5050 previous_load = segment;
5051 break;
5052
5053 case PT_PHDR:
5054 /* PR 20815 - Verify that the program header is loaded into memory. */
5055 if (i > 0 && previous_load != NULL)
5056 error (_("the PHDR segment must occur before any LOAD segment\n"));
5057 if (elf_header.e_machine != EM_PARISC)
5058 {
5059 unsigned int j;
5060
5061 for (j = 1; j < elf_header.e_phnum; j++)
5062 if (program_headers[j].p_vaddr <= segment->p_vaddr
5063 && (program_headers[j].p_vaddr + program_headers[j].p_memsz)
5064 >= (segment->p_vaddr + segment->p_filesz))
5065 break;
5066 if (j == elf_header.e_phnum)
5067 error (_("the PHDR segment is not covered by a LOAD segment\n"));
5068 }
5069 break;
5070
5071 case PT_DYNAMIC:
5072 if (dynamic_addr)
5073 error (_("more than one dynamic segment\n"));
5074
5075 /* By default, assume that the .dynamic section is the first
5076 section in the DYNAMIC segment. */
5077 dynamic_addr = segment->p_offset;
5078 dynamic_size = segment->p_filesz;
5079
5080 /* Try to locate the .dynamic section. If there is
5081 a section header table, we can easily locate it. */
5082 if (section_headers != NULL)
5083 {
5084 Elf_Internal_Shdr * sec;
5085
5086 sec = find_section (".dynamic");
5087 if (sec == NULL || sec->sh_size == 0)
5088 {
5089 /* A corresponding .dynamic section is expected, but on
5090 IA-64/OpenVMS it is OK for it to be missing. */
5091 if (!is_ia64_vms ())
5092 error (_("no .dynamic section in the dynamic segment\n"));
5093 break;
5094 }
5095
5096 if (sec->sh_type == SHT_NOBITS)
5097 {
5098 dynamic_size = 0;
5099 break;
5100 }
5101
5102 dynamic_addr = sec->sh_offset;
5103 dynamic_size = sec->sh_size;
5104
5105 if (dynamic_addr < segment->p_offset
5106 || dynamic_addr > segment->p_offset + segment->p_filesz)
5107 warn (_("the .dynamic section is not contained"
5108 " within the dynamic segment\n"));
5109 else if (dynamic_addr > segment->p_offset)
5110 warn (_("the .dynamic section is not the first section"
5111 " in the dynamic segment.\n"));
5112 }
5113
5114 /* PR binutils/17512: Avoid corrupt dynamic section info in the
5115 segment. Check this after matching against the section headers
5116 so we don't warn on debuginfo file (which have NOBITS .dynamic
5117 sections). */
5118 if (dynamic_addr + dynamic_size >= current_file_size)
5119 {
5120 error (_("the dynamic segment offset + size exceeds the size of the file\n"));
5121 dynamic_addr = dynamic_size = 0;
5122 }
5123 break;
5124
5125 case PT_INTERP:
5126 if (fseek (file, archive_file_offset + (long) segment->p_offset,
5127 SEEK_SET))
5128 error (_("Unable to find program interpreter name\n"));
5129 else
5130 {
5131 char fmt [32];
5132 int ret = snprintf (fmt, sizeof (fmt), "%%%ds", PATH_MAX - 1);
5133
5134 if (ret >= (int) sizeof (fmt) || ret < 0)
5135 error (_("Internal error: failed to create format string to display program interpreter\n"));
5136
5137 program_interpreter[0] = 0;
5138 if (fscanf (file, fmt, program_interpreter) <= 0)
5139 error (_("Unable to read program interpreter name\n"));
5140
5141 if (do_segments)
5142 printf (_(" [Requesting program interpreter: %s]\n"),
5143 program_interpreter);
5144 }
5145 break;
5146 }
5147 }
5148
5149 if (do_segments && section_headers != NULL && string_table != NULL)
5150 {
5151 printf (_("\n Section to Segment mapping:\n"));
5152 printf (_(" Segment Sections...\n"));
5153
5154 for (i = 0; i < elf_header.e_phnum; i++)
5155 {
5156 unsigned int j;
5157 Elf_Internal_Shdr * section;
5158
5159 segment = program_headers + i;
5160 section = section_headers + 1;
5161
5162 printf (" %2.2d ", i);
5163
5164 for (j = 1; j < elf_header.e_shnum; j++, section++)
5165 {
5166 if (!ELF_TBSS_SPECIAL (section, segment)
5167 && ELF_SECTION_IN_SEGMENT_STRICT (section, segment))
5168 printf ("%s ", printable_section_name (section));
5169 }
5170
5171 putc ('\n',stdout);
5172 }
5173 }
5174
5175 return TRUE;
5176 }
5177
5178
5179 /* Find the file offset corresponding to VMA by using the program headers. */
5180
5181 static long
5182 offset_from_vma (FILE * file, bfd_vma vma, bfd_size_type size)
5183 {
5184 Elf_Internal_Phdr * seg;
5185
5186 if (! get_program_headers (file))
5187 {
5188 warn (_("Cannot interpret virtual addresses without program headers.\n"));
5189 return (long) vma;
5190 }
5191
5192 for (seg = program_headers;
5193 seg < program_headers + elf_header.e_phnum;
5194 ++seg)
5195 {
5196 if (seg->p_type != PT_LOAD)
5197 continue;
5198
5199 if (vma >= (seg->p_vaddr & -seg->p_align)
5200 && vma + size <= seg->p_vaddr + seg->p_filesz)
5201 return vma - seg->p_vaddr + seg->p_offset;
5202 }
5203
5204 warn (_("Virtual address 0x%lx not located in any PT_LOAD segment.\n"),
5205 (unsigned long) vma);
5206 return (long) vma;
5207 }
5208
5209
5210 /* Allocate memory and load the sections headers into the global pointer
5211 SECTION_HEADERS. If PROBE is true, this is just a probe and we do not
5212 generate any error messages if the load fails. */
5213
5214 static bfd_boolean
5215 get_32bit_section_headers (FILE * file, bfd_boolean probe)
5216 {
5217 Elf32_External_Shdr * shdrs;
5218 Elf_Internal_Shdr * internal;
5219 unsigned int i;
5220 unsigned int size = elf_header.e_shentsize;
5221 unsigned int num = probe ? 1 : elf_header.e_shnum;
5222
5223 /* PR binutils/17531: Cope with unexpected section header sizes. */
5224 if (size == 0 || num == 0)
5225 return FALSE;
5226 if (size < sizeof * shdrs)
5227 {
5228 if (! probe)
5229 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5230 return FALSE;
5231 }
5232 if (!probe && size > sizeof * shdrs)
5233 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5234
5235 shdrs = (Elf32_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
5236 size, num,
5237 probe ? NULL : _("section headers"));
5238 if (shdrs == NULL)
5239 return FALSE;
5240
5241 if (section_headers != NULL)
5242 free (section_headers);
5243 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
5244 sizeof (Elf_Internal_Shdr));
5245 if (section_headers == NULL)
5246 {
5247 if (!probe)
5248 error (_("Out of memory reading %u section headers\n"), num);
5249 return FALSE;
5250 }
5251
5252 for (i = 0, internal = section_headers;
5253 i < num;
5254 i++, internal++)
5255 {
5256 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5257 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5258 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5259 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5260 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5261 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5262 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5263 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5264 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5265 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5266 if (!probe && internal->sh_link > num)
5267 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5268 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5269 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5270 }
5271
5272 free (shdrs);
5273 return TRUE;
5274 }
5275
5276 static bfd_boolean
5277 get_64bit_section_headers (FILE * file, bfd_boolean probe)
5278 {
5279 Elf64_External_Shdr * shdrs;
5280 Elf_Internal_Shdr * internal;
5281 unsigned int i;
5282 unsigned int size = elf_header.e_shentsize;
5283 unsigned int num = probe ? 1 : elf_header.e_shnum;
5284
5285 /* PR binutils/17531: Cope with unexpected section header sizes. */
5286 if (size == 0 || num == 0)
5287 return FALSE;
5288 if (size < sizeof * shdrs)
5289 {
5290 if (! probe)
5291 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5292 return FALSE;
5293 }
5294 if (! probe && size > sizeof * shdrs)
5295 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5296
5297 shdrs = (Elf64_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
5298 size, num,
5299 probe ? NULL : _("section headers"));
5300 if (shdrs == NULL)
5301 return FALSE;
5302
5303 if (section_headers != NULL)
5304 free (section_headers);
5305 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
5306 sizeof (Elf_Internal_Shdr));
5307 if (section_headers == NULL)
5308 {
5309 if (! probe)
5310 error (_("Out of memory reading %u section headers\n"), num);
5311 return FALSE;
5312 }
5313
5314 for (i = 0, internal = section_headers;
5315 i < num;
5316 i++, internal++)
5317 {
5318 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5319 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5320 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5321 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5322 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5323 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5324 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5325 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5326 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5327 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5328 if (!probe && internal->sh_link > num)
5329 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5330 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5331 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5332 }
5333
5334 free (shdrs);
5335 return TRUE;
5336 }
5337
5338 static Elf_Internal_Sym *
5339 get_32bit_elf_symbols (FILE * file,
5340 Elf_Internal_Shdr * section,
5341 unsigned long * num_syms_return)
5342 {
5343 unsigned long number = 0;
5344 Elf32_External_Sym * esyms = NULL;
5345 Elf_External_Sym_Shndx * shndx = NULL;
5346 Elf_Internal_Sym * isyms = NULL;
5347 Elf_Internal_Sym * psym;
5348 unsigned int j;
5349
5350 if (section->sh_size == 0)
5351 {
5352 if (num_syms_return != NULL)
5353 * num_syms_return = 0;
5354 return NULL;
5355 }
5356
5357 /* Run some sanity checks first. */
5358 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5359 {
5360 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5361 printable_section_name (section), (unsigned long) section->sh_entsize);
5362 goto exit_point;
5363 }
5364
5365 if (section->sh_size > current_file_size)
5366 {
5367 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5368 printable_section_name (section), (unsigned long) section->sh_size);
5369 goto exit_point;
5370 }
5371
5372 number = section->sh_size / section->sh_entsize;
5373
5374 if (number * sizeof (Elf32_External_Sym) > section->sh_size + 1)
5375 {
5376 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5377 (unsigned long) section->sh_size,
5378 printable_section_name (section),
5379 (unsigned long) section->sh_entsize);
5380 goto exit_point;
5381 }
5382
5383 esyms = (Elf32_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
5384 section->sh_size, _("symbols"));
5385 if (esyms == NULL)
5386 goto exit_point;
5387
5388 {
5389 elf_section_list * entry;
5390
5391 shndx = NULL;
5392 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5393 if (entry->hdr->sh_link == (unsigned long) (section - section_headers))
5394 {
5395 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
5396 entry->hdr->sh_offset,
5397 1, entry->hdr->sh_size,
5398 _("symbol table section indicies"));
5399 if (shndx == NULL)
5400 goto exit_point;
5401 /* PR17531: file: heap-buffer-overflow */
5402 else if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5403 {
5404 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5405 printable_section_name (entry->hdr),
5406 (unsigned long) entry->hdr->sh_size,
5407 (unsigned long) section->sh_size);
5408 goto exit_point;
5409 }
5410 }
5411 }
5412
5413 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5414
5415 if (isyms == NULL)
5416 {
5417 error (_("Out of memory reading %lu symbols\n"),
5418 (unsigned long) number);
5419 goto exit_point;
5420 }
5421
5422 for (j = 0, psym = isyms; j < number; j++, psym++)
5423 {
5424 psym->st_name = BYTE_GET (esyms[j].st_name);
5425 psym->st_value = BYTE_GET (esyms[j].st_value);
5426 psym->st_size = BYTE_GET (esyms[j].st_size);
5427 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5428 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5429 psym->st_shndx
5430 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5431 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5432 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5433 psym->st_info = BYTE_GET (esyms[j].st_info);
5434 psym->st_other = BYTE_GET (esyms[j].st_other);
5435 }
5436
5437 exit_point:
5438 if (shndx != NULL)
5439 free (shndx);
5440 if (esyms != NULL)
5441 free (esyms);
5442
5443 if (num_syms_return != NULL)
5444 * num_syms_return = isyms == NULL ? 0 : number;
5445
5446 return isyms;
5447 }
5448
5449 static Elf_Internal_Sym *
5450 get_64bit_elf_symbols (FILE * file,
5451 Elf_Internal_Shdr * section,
5452 unsigned long * num_syms_return)
5453 {
5454 unsigned long number = 0;
5455 Elf64_External_Sym * esyms = NULL;
5456 Elf_External_Sym_Shndx * shndx = NULL;
5457 Elf_Internal_Sym * isyms = NULL;
5458 Elf_Internal_Sym * psym;
5459 unsigned int j;
5460
5461 if (section->sh_size == 0)
5462 {
5463 if (num_syms_return != NULL)
5464 * num_syms_return = 0;
5465 return NULL;
5466 }
5467
5468 /* Run some sanity checks first. */
5469 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5470 {
5471 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5472 printable_section_name (section),
5473 (unsigned long) section->sh_entsize);
5474 goto exit_point;
5475 }
5476
5477 if (section->sh_size > current_file_size)
5478 {
5479 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5480 printable_section_name (section),
5481 (unsigned long) section->sh_size);
5482 goto exit_point;
5483 }
5484
5485 number = section->sh_size / section->sh_entsize;
5486
5487 if (number * sizeof (Elf64_External_Sym) > section->sh_size + 1)
5488 {
5489 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5490 (unsigned long) section->sh_size,
5491 printable_section_name (section),
5492 (unsigned long) section->sh_entsize);
5493 goto exit_point;
5494 }
5495
5496 esyms = (Elf64_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
5497 section->sh_size, _("symbols"));
5498 if (!esyms)
5499 goto exit_point;
5500
5501 {
5502 elf_section_list * entry;
5503
5504 shndx = NULL;
5505 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5506 if (entry->hdr->sh_link == (unsigned long) (section - section_headers))
5507 {
5508 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
5509 entry->hdr->sh_offset,
5510 1, entry->hdr->sh_size,
5511 _("symbol table section indicies"));
5512 if (shndx == NULL)
5513 goto exit_point;
5514 /* PR17531: file: heap-buffer-overflow */
5515 else if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5516 {
5517 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5518 printable_section_name (entry->hdr),
5519 (unsigned long) entry->hdr->sh_size,
5520 (unsigned long) section->sh_size);
5521 goto exit_point;
5522 }
5523 }
5524 }
5525
5526 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5527
5528 if (isyms == NULL)
5529 {
5530 error (_("Out of memory reading %lu symbols\n"),
5531 (unsigned long) number);
5532 goto exit_point;
5533 }
5534
5535 for (j = 0, psym = isyms; j < number; j++, psym++)
5536 {
5537 psym->st_name = BYTE_GET (esyms[j].st_name);
5538 psym->st_info = BYTE_GET (esyms[j].st_info);
5539 psym->st_other = BYTE_GET (esyms[j].st_other);
5540 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5541
5542 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5543 psym->st_shndx
5544 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5545 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5546 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5547
5548 psym->st_value = BYTE_GET (esyms[j].st_value);
5549 psym->st_size = BYTE_GET (esyms[j].st_size);
5550 }
5551
5552 exit_point:
5553 if (shndx != NULL)
5554 free (shndx);
5555 if (esyms != NULL)
5556 free (esyms);
5557
5558 if (num_syms_return != NULL)
5559 * num_syms_return = isyms == NULL ? 0 : number;
5560
5561 return isyms;
5562 }
5563
5564 static const char *
5565 get_elf_section_flags (bfd_vma sh_flags)
5566 {
5567 static char buff[1024];
5568 char * p = buff;
5569 unsigned int field_size = is_32bit_elf ? 8 : 16;
5570 signed int sindex;
5571 unsigned int size = sizeof (buff) - (field_size + 4 + 1);
5572 bfd_vma os_flags = 0;
5573 bfd_vma proc_flags = 0;
5574 bfd_vma unknown_flags = 0;
5575 static const struct
5576 {
5577 const char * str;
5578 unsigned int len;
5579 }
5580 flags [] =
5581 {
5582 /* 0 */ { STRING_COMMA_LEN ("WRITE") },
5583 /* 1 */ { STRING_COMMA_LEN ("ALLOC") },
5584 /* 2 */ { STRING_COMMA_LEN ("EXEC") },
5585 /* 3 */ { STRING_COMMA_LEN ("MERGE") },
5586 /* 4 */ { STRING_COMMA_LEN ("STRINGS") },
5587 /* 5 */ { STRING_COMMA_LEN ("INFO LINK") },
5588 /* 6 */ { STRING_COMMA_LEN ("LINK ORDER") },
5589 /* 7 */ { STRING_COMMA_LEN ("OS NONCONF") },
5590 /* 8 */ { STRING_COMMA_LEN ("GROUP") },
5591 /* 9 */ { STRING_COMMA_LEN ("TLS") },
5592 /* IA-64 specific. */
5593 /* 10 */ { STRING_COMMA_LEN ("SHORT") },
5594 /* 11 */ { STRING_COMMA_LEN ("NORECOV") },
5595 /* IA-64 OpenVMS specific. */
5596 /* 12 */ { STRING_COMMA_LEN ("VMS_GLOBAL") },
5597 /* 13 */ { STRING_COMMA_LEN ("VMS_OVERLAID") },
5598 /* 14 */ { STRING_COMMA_LEN ("VMS_SHARED") },
5599 /* 15 */ { STRING_COMMA_LEN ("VMS_VECTOR") },
5600 /* 16 */ { STRING_COMMA_LEN ("VMS_ALLOC_64BIT") },
5601 /* 17 */ { STRING_COMMA_LEN ("VMS_PROTECTED") },
5602 /* Generic. */
5603 /* 18 */ { STRING_COMMA_LEN ("EXCLUDE") },
5604 /* SPARC specific. */
5605 /* 19 */ { STRING_COMMA_LEN ("ORDERED") },
5606 /* 20 */ { STRING_COMMA_LEN ("COMPRESSED") },
5607 /* ARM specific. */
5608 /* 21 */ { STRING_COMMA_LEN ("ENTRYSECT") },
5609 /* 22 */ { STRING_COMMA_LEN ("ARM_PURECODE") },
5610 /* 23 */ { STRING_COMMA_LEN ("COMDEF") },
5611 /* GNU specific. */
5612 /* 24 */ { STRING_COMMA_LEN ("GNU_MBIND") },
5613 /* VLE specific. */
5614 /* 25 */ { STRING_COMMA_LEN ("VLE") },
5615 };
5616
5617 if (do_section_details)
5618 {
5619 sprintf (buff, "[%*.*lx]: ",
5620 field_size, field_size, (unsigned long) sh_flags);
5621 p += field_size + 4;
5622 }
5623
5624 while (sh_flags)
5625 {
5626 bfd_vma flag;
5627
5628 flag = sh_flags & - sh_flags;
5629 sh_flags &= ~ flag;
5630
5631 if (do_section_details)
5632 {
5633 switch (flag)
5634 {
5635 case SHF_WRITE: sindex = 0; break;
5636 case SHF_ALLOC: sindex = 1; break;
5637 case SHF_EXECINSTR: sindex = 2; break;
5638 case SHF_MERGE: sindex = 3; break;
5639 case SHF_STRINGS: sindex = 4; break;
5640 case SHF_INFO_LINK: sindex = 5; break;
5641 case SHF_LINK_ORDER: sindex = 6; break;
5642 case SHF_OS_NONCONFORMING: sindex = 7; break;
5643 case SHF_GROUP: sindex = 8; break;
5644 case SHF_TLS: sindex = 9; break;
5645 case SHF_EXCLUDE: sindex = 18; break;
5646 case SHF_COMPRESSED: sindex = 20; break;
5647 case SHF_GNU_MBIND: sindex = 24; break;
5648
5649 default:
5650 sindex = -1;
5651 switch (elf_header.e_machine)
5652 {
5653 case EM_IA_64:
5654 if (flag == SHF_IA_64_SHORT)
5655 sindex = 10;
5656 else if (flag == SHF_IA_64_NORECOV)
5657 sindex = 11;
5658 #ifdef BFD64
5659 else if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
5660 switch (flag)
5661 {
5662 case SHF_IA_64_VMS_GLOBAL: sindex = 12; break;
5663 case SHF_IA_64_VMS_OVERLAID: sindex = 13; break;
5664 case SHF_IA_64_VMS_SHARED: sindex = 14; break;
5665 case SHF_IA_64_VMS_VECTOR: sindex = 15; break;
5666 case SHF_IA_64_VMS_ALLOC_64BIT: sindex = 16; break;
5667 case SHF_IA_64_VMS_PROTECTED: sindex = 17; break;
5668 default: break;
5669 }
5670 #endif
5671 break;
5672
5673 case EM_386:
5674 case EM_IAMCU:
5675 case EM_X86_64:
5676 case EM_L1OM:
5677 case EM_K1OM:
5678 case EM_OLD_SPARCV9:
5679 case EM_SPARC32PLUS:
5680 case EM_SPARCV9:
5681 case EM_SPARC:
5682 if (flag == SHF_ORDERED)
5683 sindex = 19;
5684 break;
5685
5686 case EM_ARM:
5687 switch (flag)
5688 {
5689 case SHF_ENTRYSECT: sindex = 21; break;
5690 case SHF_ARM_PURECODE: sindex = 22; break;
5691 case SHF_COMDEF: sindex = 23; break;
5692 default: break;
5693 }
5694 break;
5695 case EM_PPC:
5696 if (flag == SHF_PPC_VLE)
5697 sindex = 25;
5698 break;
5699
5700 default:
5701 break;
5702 }
5703 }
5704
5705 if (sindex != -1)
5706 {
5707 if (p != buff + field_size + 4)
5708 {
5709 if (size < (10 + 2))
5710 {
5711 warn (_("Internal error: not enough buffer room for section flag info"));
5712 return _("<unknown>");
5713 }
5714 size -= 2;
5715 *p++ = ',';
5716 *p++ = ' ';
5717 }
5718
5719 size -= flags [sindex].len;
5720 p = stpcpy (p, flags [sindex].str);
5721 }
5722 else if (flag & SHF_MASKOS)
5723 os_flags |= flag;
5724 else if (flag & SHF_MASKPROC)
5725 proc_flags |= flag;
5726 else
5727 unknown_flags |= flag;
5728 }
5729 else
5730 {
5731 switch (flag)
5732 {
5733 case SHF_WRITE: *p = 'W'; break;
5734 case SHF_ALLOC: *p = 'A'; break;
5735 case SHF_EXECINSTR: *p = 'X'; break;
5736 case SHF_MERGE: *p = 'M'; break;
5737 case SHF_STRINGS: *p = 'S'; break;
5738 case SHF_INFO_LINK: *p = 'I'; break;
5739 case SHF_LINK_ORDER: *p = 'L'; break;
5740 case SHF_OS_NONCONFORMING: *p = 'O'; break;
5741 case SHF_GROUP: *p = 'G'; break;
5742 case SHF_TLS: *p = 'T'; break;
5743 case SHF_EXCLUDE: *p = 'E'; break;
5744 case SHF_COMPRESSED: *p = 'C'; break;
5745 case SHF_GNU_MBIND: *p = 'D'; break;
5746
5747 default:
5748 if ((elf_header.e_machine == EM_X86_64
5749 || elf_header.e_machine == EM_L1OM
5750 || elf_header.e_machine == EM_K1OM)
5751 && flag == SHF_X86_64_LARGE)
5752 *p = 'l';
5753 else if (elf_header.e_machine == EM_ARM
5754 && flag == SHF_ARM_PURECODE)
5755 *p = 'y';
5756 else if (elf_header.e_machine == EM_PPC
5757 && flag == SHF_PPC_VLE)
5758 *p = 'v';
5759 else if (flag & SHF_MASKOS)
5760 {
5761 *p = 'o';
5762 sh_flags &= ~ SHF_MASKOS;
5763 }
5764 else if (flag & SHF_MASKPROC)
5765 {
5766 *p = 'p';
5767 sh_flags &= ~ SHF_MASKPROC;
5768 }
5769 else
5770 *p = 'x';
5771 break;
5772 }
5773 p++;
5774 }
5775 }
5776
5777 if (do_section_details)
5778 {
5779 if (os_flags)
5780 {
5781 size -= 5 + field_size;
5782 if (p != buff + field_size + 4)
5783 {
5784 if (size < (2 + 1))
5785 {
5786 warn (_("Internal error: not enough buffer room for section flag info"));
5787 return _("<unknown>");
5788 }
5789 size -= 2;
5790 *p++ = ',';
5791 *p++ = ' ';
5792 }
5793 sprintf (p, "OS (%*.*lx)", field_size, field_size,
5794 (unsigned long) os_flags);
5795 p += 5 + field_size;
5796 }
5797 if (proc_flags)
5798 {
5799 size -= 7 + field_size;
5800 if (p != buff + field_size + 4)
5801 {
5802 if (size < (2 + 1))
5803 {
5804 warn (_("Internal error: not enough buffer room for section flag info"));
5805 return _("<unknown>");
5806 }
5807 size -= 2;
5808 *p++ = ',';
5809 *p++ = ' ';
5810 }
5811 sprintf (p, "PROC (%*.*lx)", field_size, field_size,
5812 (unsigned long) proc_flags);
5813 p += 7 + field_size;
5814 }
5815 if (unknown_flags)
5816 {
5817 size -= 10 + field_size;
5818 if (p != buff + field_size + 4)
5819 {
5820 if (size < (2 + 1))
5821 {
5822 warn (_("Internal error: not enough buffer room for section flag info"));
5823 return _("<unknown>");
5824 }
5825 size -= 2;
5826 *p++ = ',';
5827 *p++ = ' ';
5828 }
5829 sprintf (p, _("UNKNOWN (%*.*lx)"), field_size, field_size,
5830 (unsigned long) unknown_flags);
5831 p += 10 + field_size;
5832 }
5833 }
5834
5835 *p = '\0';
5836 return buff;
5837 }
5838
5839 static unsigned int
5840 get_compression_header (Elf_Internal_Chdr *chdr, unsigned char *buf, bfd_size_type size)
5841 {
5842 if (is_32bit_elf)
5843 {
5844 Elf32_External_Chdr *echdr = (Elf32_External_Chdr *) buf;
5845
5846 if (size < sizeof (* echdr))
5847 {
5848 error (_("Compressed section is too small even for a compression header\n"));
5849 return 0;
5850 }
5851
5852 chdr->ch_type = BYTE_GET (echdr->ch_type);
5853 chdr->ch_size = BYTE_GET (echdr->ch_size);
5854 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
5855 return sizeof (*echdr);
5856 }
5857 else
5858 {
5859 Elf64_External_Chdr *echdr = (Elf64_External_Chdr *) buf;
5860
5861 if (size < sizeof (* echdr))
5862 {
5863 error (_("Compressed section is too small even for a compression header\n"));
5864 return 0;
5865 }
5866
5867 chdr->ch_type = BYTE_GET (echdr->ch_type);
5868 chdr->ch_size = BYTE_GET (echdr->ch_size);
5869 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
5870 return sizeof (*echdr);
5871 }
5872 }
5873
5874 static bfd_boolean
5875 process_section_headers (FILE * file)
5876 {
5877 Elf_Internal_Shdr * section;
5878 unsigned int i;
5879
5880 section_headers = NULL;
5881
5882 if (elf_header.e_shnum == 0)
5883 {
5884 /* PR binutils/12467. */
5885 if (elf_header.e_shoff != 0)
5886 {
5887 warn (_("possibly corrupt ELF file header - it has a non-zero"
5888 " section header offset, but no section headers\n"));
5889 return FALSE;
5890 }
5891 else if (do_sections)
5892 printf (_("\nThere are no sections in this file.\n"));
5893
5894 return TRUE;
5895 }
5896
5897 if (do_sections && !do_header)
5898 printf (ngettext ("There is %d section header, "
5899 "starting at offset 0x%lx:\n",
5900 "There are %d section headers, "
5901 "starting at offset 0x%lx:\n",
5902 elf_header.e_shnum),
5903 elf_header.e_shnum, (unsigned long) elf_header.e_shoff);
5904
5905 if (is_32bit_elf)
5906 {
5907 if (! get_32bit_section_headers (file, FALSE))
5908 return FALSE;
5909 }
5910 else
5911 {
5912 if (! get_64bit_section_headers (file, FALSE))
5913 return FALSE;
5914 }
5915
5916 /* Read in the string table, so that we have names to display. */
5917 if (elf_header.e_shstrndx != SHN_UNDEF
5918 && elf_header.e_shstrndx < elf_header.e_shnum)
5919 {
5920 section = section_headers + elf_header.e_shstrndx;
5921
5922 if (section->sh_size != 0)
5923 {
5924 string_table = (char *) get_data (NULL, file, section->sh_offset,
5925 1, section->sh_size,
5926 _("string table"));
5927
5928 string_table_length = string_table != NULL ? section->sh_size : 0;
5929 }
5930 }
5931
5932 /* Scan the sections for the dynamic symbol table
5933 and dynamic string table and debug sections. */
5934 dynamic_symbols = NULL;
5935 dynamic_strings = NULL;
5936 dynamic_syminfo = NULL;
5937 symtab_shndx_list = NULL;
5938
5939 eh_addr_size = is_32bit_elf ? 4 : 8;
5940 switch (elf_header.e_machine)
5941 {
5942 case EM_MIPS:
5943 case EM_MIPS_RS3_LE:
5944 /* The 64-bit MIPS EABI uses a combination of 32-bit ELF and 64-bit
5945 FDE addresses. However, the ABI also has a semi-official ILP32
5946 variant for which the normal FDE address size rules apply.
5947
5948 GCC 4.0 marks EABI64 objects with a dummy .gcc_compiled_longXX
5949 section, where XX is the size of longs in bits. Unfortunately,
5950 earlier compilers provided no way of distinguishing ILP32 objects
5951 from LP64 objects, so if there's any doubt, we should assume that
5952 the official LP64 form is being used. */
5953 if ((elf_header.e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64
5954 && find_section (".gcc_compiled_long32") == NULL)
5955 eh_addr_size = 8;
5956 break;
5957
5958 case EM_H8_300:
5959 case EM_H8_300H:
5960 switch (elf_header.e_flags & EF_H8_MACH)
5961 {
5962 case E_H8_MACH_H8300:
5963 case E_H8_MACH_H8300HN:
5964 case E_H8_MACH_H8300SN:
5965 case E_H8_MACH_H8300SXN:
5966 eh_addr_size = 2;
5967 break;
5968 case E_H8_MACH_H8300H:
5969 case E_H8_MACH_H8300S:
5970 case E_H8_MACH_H8300SX:
5971 eh_addr_size = 4;
5972 break;
5973 }
5974 break;
5975
5976 case EM_M32C_OLD:
5977 case EM_M32C:
5978 switch (elf_header.e_flags & EF_M32C_CPU_MASK)
5979 {
5980 case EF_M32C_CPU_M16C:
5981 eh_addr_size = 2;
5982 break;
5983 }
5984 break;
5985 }
5986
5987 #define CHECK_ENTSIZE_VALUES(section, i, size32, size64) \
5988 do \
5989 { \
5990 bfd_size_type expected_entsize = is_32bit_elf ? size32 : size64; \
5991 if (section->sh_entsize != expected_entsize) \
5992 { \
5993 char buf[40]; \
5994 sprintf_vma (buf, section->sh_entsize); \
5995 /* Note: coded this way so that there is a single string for \
5996 translation. */ \
5997 error (_("Section %d has invalid sh_entsize of %s\n"), i, buf); \
5998 error (_("(Using the expected size of %u for the rest of this dump)\n"), \
5999 (unsigned) expected_entsize); \
6000 section->sh_entsize = expected_entsize; \
6001 } \
6002 } \
6003 while (0)
6004
6005 #define CHECK_ENTSIZE(section, i, type) \
6006 CHECK_ENTSIZE_VALUES (section, i, sizeof (Elf32_External_##type), \
6007 sizeof (Elf64_External_##type))
6008
6009 for (i = 0, section = section_headers;
6010 i < elf_header.e_shnum;
6011 i++, section++)
6012 {
6013 char * name = SECTION_NAME (section);
6014
6015 if (section->sh_type == SHT_DYNSYM)
6016 {
6017 if (dynamic_symbols != NULL)
6018 {
6019 error (_("File contains multiple dynamic symbol tables\n"));
6020 continue;
6021 }
6022
6023 CHECK_ENTSIZE (section, i, Sym);
6024 dynamic_symbols = GET_ELF_SYMBOLS (file, section, & num_dynamic_syms);
6025 }
6026 else if (section->sh_type == SHT_STRTAB
6027 && streq (name, ".dynstr"))
6028 {
6029 if (dynamic_strings != NULL)
6030 {
6031 error (_("File contains multiple dynamic string tables\n"));
6032 continue;
6033 }
6034
6035 dynamic_strings = (char *) get_data (NULL, file, section->sh_offset,
6036 1, section->sh_size,
6037 _("dynamic strings"));
6038 dynamic_strings_length = dynamic_strings == NULL ? 0 : section->sh_size;
6039 }
6040 else if (section->sh_type == SHT_SYMTAB_SHNDX)
6041 {
6042 elf_section_list * entry = xmalloc (sizeof * entry);
6043 entry->hdr = section;
6044 entry->next = symtab_shndx_list;
6045 symtab_shndx_list = entry;
6046 }
6047 else if (section->sh_type == SHT_SYMTAB)
6048 CHECK_ENTSIZE (section, i, Sym);
6049 else if (section->sh_type == SHT_GROUP)
6050 CHECK_ENTSIZE_VALUES (section, i, GRP_ENTRY_SIZE, GRP_ENTRY_SIZE);
6051 else if (section->sh_type == SHT_REL)
6052 CHECK_ENTSIZE (section, i, Rel);
6053 else if (section->sh_type == SHT_RELA)
6054 CHECK_ENTSIZE (section, i, Rela);
6055 else if ((do_debugging || do_debug_info || do_debug_abbrevs
6056 || do_debug_lines || do_debug_pubnames || do_debug_pubtypes
6057 || do_debug_aranges || do_debug_frames || do_debug_macinfo
6058 || do_debug_str || do_debug_loc || do_debug_ranges
6059 || do_debug_addr || do_debug_cu_index)
6060 && (const_strneq (name, ".debug_")
6061 || const_strneq (name, ".zdebug_")))
6062 {
6063 if (name[1] == 'z')
6064 name += sizeof (".zdebug_") - 1;
6065 else
6066 name += sizeof (".debug_") - 1;
6067
6068 if (do_debugging
6069 || (do_debug_info && const_strneq (name, "info"))
6070 || (do_debug_info && const_strneq (name, "types"))
6071 || (do_debug_abbrevs && const_strneq (name, "abbrev"))
6072 || (do_debug_lines && strcmp (name, "line") == 0)
6073 || (do_debug_lines && const_strneq (name, "line."))
6074 || (do_debug_pubnames && const_strneq (name, "pubnames"))
6075 || (do_debug_pubtypes && const_strneq (name, "pubtypes"))
6076 || (do_debug_pubnames && const_strneq (name, "gnu_pubnames"))
6077 || (do_debug_pubtypes && const_strneq (name, "gnu_pubtypes"))
6078 || (do_debug_aranges && const_strneq (name, "aranges"))
6079 || (do_debug_ranges && const_strneq (name, "ranges"))
6080 || (do_debug_ranges && const_strneq (name, "rnglists"))
6081 || (do_debug_frames && const_strneq (name, "frame"))
6082 || (do_debug_macinfo && const_strneq (name, "macinfo"))
6083 || (do_debug_macinfo && const_strneq (name, "macro"))
6084 || (do_debug_str && const_strneq (name, "str"))
6085 || (do_debug_loc && const_strneq (name, "loc"))
6086 || (do_debug_loc && const_strneq (name, "loclists"))
6087 || (do_debug_addr && const_strneq (name, "addr"))
6088 || (do_debug_cu_index && const_strneq (name, "cu_index"))
6089 || (do_debug_cu_index && const_strneq (name, "tu_index"))
6090 )
6091 request_dump_bynumber (i, DEBUG_DUMP);
6092 }
6093 /* Linkonce section to be combined with .debug_info at link time. */
6094 else if ((do_debugging || do_debug_info)
6095 && const_strneq (name, ".gnu.linkonce.wi."))
6096 request_dump_bynumber (i, DEBUG_DUMP);
6097 else if (do_debug_frames && streq (name, ".eh_frame"))
6098 request_dump_bynumber (i, DEBUG_DUMP);
6099 else if (do_gdb_index && (streq (name, ".gdb_index")
6100 || streq (name, ".debug_names")))
6101 request_dump_bynumber (i, DEBUG_DUMP);
6102 /* Trace sections for Itanium VMS. */
6103 else if ((do_debugging || do_trace_info || do_trace_abbrevs
6104 || do_trace_aranges)
6105 && const_strneq (name, ".trace_"))
6106 {
6107 name += sizeof (".trace_") - 1;
6108
6109 if (do_debugging
6110 || (do_trace_info && streq (name, "info"))
6111 || (do_trace_abbrevs && streq (name, "abbrev"))
6112 || (do_trace_aranges && streq (name, "aranges"))
6113 )
6114 request_dump_bynumber (i, DEBUG_DUMP);
6115 }
6116 }
6117
6118 if (! do_sections)
6119 return TRUE;
6120
6121 if (elf_header.e_shnum > 1)
6122 printf (_("\nSection Headers:\n"));
6123 else
6124 printf (_("\nSection Header:\n"));
6125
6126 if (is_32bit_elf)
6127 {
6128 if (do_section_details)
6129 {
6130 printf (_(" [Nr] Name\n"));
6131 printf (_(" Type Addr Off Size ES Lk Inf Al\n"));
6132 }
6133 else
6134 printf
6135 (_(" [Nr] Name Type Addr Off Size ES Flg Lk Inf Al\n"));
6136 }
6137 else if (do_wide)
6138 {
6139 if (do_section_details)
6140 {
6141 printf (_(" [Nr] Name\n"));
6142 printf (_(" Type Address Off Size ES Lk Inf Al\n"));
6143 }
6144 else
6145 printf
6146 (_(" [Nr] Name Type Address Off Size ES Flg Lk Inf Al\n"));
6147 }
6148 else
6149 {
6150 if (do_section_details)
6151 {
6152 printf (_(" [Nr] Name\n"));
6153 printf (_(" Type Address Offset Link\n"));
6154 printf (_(" Size EntSize Info Align\n"));
6155 }
6156 else
6157 {
6158 printf (_(" [Nr] Name Type Address Offset\n"));
6159 printf (_(" Size EntSize Flags Link Info Align\n"));
6160 }
6161 }
6162
6163 if (do_section_details)
6164 printf (_(" Flags\n"));
6165
6166 for (i = 0, section = section_headers;
6167 i < elf_header.e_shnum;
6168 i++, section++)
6169 {
6170 /* Run some sanity checks on the section header. */
6171
6172 /* Check the sh_link field. */
6173 switch (section->sh_type)
6174 {
6175 case SHT_SYMTAB_SHNDX:
6176 case SHT_GROUP:
6177 case SHT_HASH:
6178 case SHT_GNU_HASH:
6179 case SHT_GNU_versym:
6180 case SHT_REL:
6181 case SHT_RELA:
6182 if (section->sh_link < 1
6183 || section->sh_link >= elf_header.e_shnum
6184 || (section_headers[section->sh_link].sh_type != SHT_SYMTAB
6185 && section_headers[section->sh_link].sh_type != SHT_DYNSYM))
6186 warn (_("[%2u]: Link field (%u) should index a symtab section.\n"),
6187 i, section->sh_link);
6188 break;
6189
6190 case SHT_DYNAMIC:
6191 case SHT_SYMTAB:
6192 case SHT_DYNSYM:
6193 case SHT_GNU_verneed:
6194 case SHT_GNU_verdef:
6195 case SHT_GNU_LIBLIST:
6196 if (section->sh_link < 1
6197 || section->sh_link >= elf_header.e_shnum
6198 || section_headers[section->sh_link].sh_type != SHT_STRTAB)
6199 warn (_("[%2u]: Link field (%u) should index a string section.\n"),
6200 i, section->sh_link);
6201 break;
6202
6203 case SHT_INIT_ARRAY:
6204 case SHT_FINI_ARRAY:
6205 case SHT_PREINIT_ARRAY:
6206 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
6207 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
6208 i, section->sh_link);
6209 break;
6210
6211 default:
6212 /* FIXME: Add support for target specific section types. */
6213 #if 0 /* Currently we do not check other section types as there are too
6214 many special cases. Stab sections for example have a type
6215 of SHT_PROGBITS but an sh_link field that links to the .stabstr
6216 section. */
6217 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
6218 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
6219 i, section->sh_link);
6220 #endif
6221 break;
6222 }
6223
6224 /* Check the sh_info field. */
6225 switch (section->sh_type)
6226 {
6227 case SHT_REL:
6228 case SHT_RELA:
6229 if (section->sh_info < 1
6230 || section->sh_info >= elf_header.e_shnum
6231 || (section_headers[section->sh_info].sh_type != SHT_PROGBITS
6232 && section_headers[section->sh_info].sh_type != SHT_NOBITS
6233 && section_headers[section->sh_info].sh_type != SHT_NOTE
6234 && section_headers[section->sh_info].sh_type != SHT_INIT_ARRAY
6235 /* FIXME: Are other section types valid ? */
6236 && section_headers[section->sh_info].sh_type < SHT_LOOS))
6237 {
6238 if (section->sh_info == 0
6239 && (streq (SECTION_NAME (section), ".rel.dyn")
6240 || streq (SECTION_NAME (section), ".rela.dyn")))
6241 /* The .rel.dyn and .rela.dyn sections have an sh_info field
6242 of zero. The relocations in these sections may apply
6243 to many different sections. */
6244 ;
6245 else
6246 warn (_("[%2u]: Info field (%u) should index a relocatable section.\n"),
6247 i, section->sh_info);
6248 }
6249 break;
6250
6251 case SHT_DYNAMIC:
6252 case SHT_HASH:
6253 case SHT_SYMTAB_SHNDX:
6254 case SHT_INIT_ARRAY:
6255 case SHT_FINI_ARRAY:
6256 case SHT_PREINIT_ARRAY:
6257 if (section->sh_info != 0)
6258 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6259 i, section->sh_info);
6260 break;
6261
6262 case SHT_GROUP:
6263 case SHT_SYMTAB:
6264 case SHT_DYNSYM:
6265 /* A symbol index - we assume that it is valid. */
6266 break;
6267
6268 default:
6269 /* FIXME: Add support for target specific section types. */
6270 if (section->sh_type == SHT_NOBITS)
6271 /* NOBITS section headers with non-zero sh_info fields can be
6272 created when a binary is stripped of everything but its debug
6273 information. The stripped sections have their headers
6274 preserved but their types set to SHT_NOBITS. So do not check
6275 this type of section. */
6276 ;
6277 else if (section->sh_flags & SHF_INFO_LINK)
6278 {
6279 if (section->sh_info < 1 || section->sh_info >= elf_header.e_shnum)
6280 warn (_("[%2u]: Expected link to another section in info field"), i);
6281 }
6282 else if (section->sh_type < SHT_LOOS
6283 && (section->sh_flags & SHF_GNU_MBIND) == 0
6284 && section->sh_info != 0)
6285 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6286 i, section->sh_info);
6287 break;
6288 }
6289
6290 /* Check the sh_size field. */
6291 if (section->sh_size > current_file_size
6292 && section->sh_type != SHT_NOBITS
6293 && section->sh_type != SHT_NULL
6294 && section->sh_type < SHT_LOOS)
6295 warn (_("Size of section %u is larger than the entire file!\n"), i);
6296
6297 printf (" [%2u] ", i);
6298 if (do_section_details)
6299 printf ("%s\n ", printable_section_name (section));
6300 else
6301 print_symbol (-17, SECTION_NAME (section));
6302
6303 printf (do_wide ? " %-15s " : " %-15.15s ",
6304 get_section_type_name (section->sh_type));
6305
6306 if (is_32bit_elf)
6307 {
6308 const char * link_too_big = NULL;
6309
6310 print_vma (section->sh_addr, LONG_HEX);
6311
6312 printf ( " %6.6lx %6.6lx %2.2lx",
6313 (unsigned long) section->sh_offset,
6314 (unsigned long) section->sh_size,
6315 (unsigned long) section->sh_entsize);
6316
6317 if (do_section_details)
6318 fputs (" ", stdout);
6319 else
6320 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6321
6322 if (section->sh_link >= elf_header.e_shnum)
6323 {
6324 link_too_big = "";
6325 /* The sh_link value is out of range. Normally this indicates
6326 an error but it can have special values in Solaris binaries. */
6327 switch (elf_header.e_machine)
6328 {
6329 case EM_386:
6330 case EM_IAMCU:
6331 case EM_X86_64:
6332 case EM_L1OM:
6333 case EM_K1OM:
6334 case EM_OLD_SPARCV9:
6335 case EM_SPARC32PLUS:
6336 case EM_SPARCV9:
6337 case EM_SPARC:
6338 if (section->sh_link == (SHN_BEFORE & 0xffff))
6339 link_too_big = "BEFORE";
6340 else if (section->sh_link == (SHN_AFTER & 0xffff))
6341 link_too_big = "AFTER";
6342 break;
6343 default:
6344 break;
6345 }
6346 }
6347
6348 if (do_section_details)
6349 {
6350 if (link_too_big != NULL && * link_too_big)
6351 printf ("<%s> ", link_too_big);
6352 else
6353 printf ("%2u ", section->sh_link);
6354 printf ("%3u %2lu\n", section->sh_info,
6355 (unsigned long) section->sh_addralign);
6356 }
6357 else
6358 printf ("%2u %3u %2lu\n",
6359 section->sh_link,
6360 section->sh_info,
6361 (unsigned long) section->sh_addralign);
6362
6363 if (link_too_big && ! * link_too_big)
6364 warn (_("section %u: sh_link value of %u is larger than the number of sections\n"),
6365 i, section->sh_link);
6366 }
6367 else if (do_wide)
6368 {
6369 print_vma (section->sh_addr, LONG_HEX);
6370
6371 if ((long) section->sh_offset == section->sh_offset)
6372 printf (" %6.6lx", (unsigned long) section->sh_offset);
6373 else
6374 {
6375 putchar (' ');
6376 print_vma (section->sh_offset, LONG_HEX);
6377 }
6378
6379 if ((unsigned long) section->sh_size == section->sh_size)
6380 printf (" %6.6lx", (unsigned long) section->sh_size);
6381 else
6382 {
6383 putchar (' ');
6384 print_vma (section->sh_size, LONG_HEX);
6385 }
6386
6387 if ((unsigned long) section->sh_entsize == section->sh_entsize)
6388 printf (" %2.2lx", (unsigned long) section->sh_entsize);
6389 else
6390 {
6391 putchar (' ');
6392 print_vma (section->sh_entsize, LONG_HEX);
6393 }
6394
6395 if (do_section_details)
6396 fputs (" ", stdout);
6397 else
6398 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6399
6400 printf ("%2u %3u ", section->sh_link, section->sh_info);
6401
6402 if ((unsigned long) section->sh_addralign == section->sh_addralign)
6403 printf ("%2lu\n", (unsigned long) section->sh_addralign);
6404 else
6405 {
6406 print_vma (section->sh_addralign, DEC);
6407 putchar ('\n');
6408 }
6409 }
6410 else if (do_section_details)
6411 {
6412 printf (" %-15.15s ",
6413 get_section_type_name (section->sh_type));
6414 print_vma (section->sh_addr, LONG_HEX);
6415 if ((long) section->sh_offset == section->sh_offset)
6416 printf (" %16.16lx", (unsigned long) section->sh_offset);
6417 else
6418 {
6419 printf (" ");
6420 print_vma (section->sh_offset, LONG_HEX);
6421 }
6422 printf (" %u\n ", section->sh_link);
6423 print_vma (section->sh_size, LONG_HEX);
6424 putchar (' ');
6425 print_vma (section->sh_entsize, LONG_HEX);
6426
6427 printf (" %-16u %lu\n",
6428 section->sh_info,
6429 (unsigned long) section->sh_addralign);
6430 }
6431 else
6432 {
6433 putchar (' ');
6434 print_vma (section->sh_addr, LONG_HEX);
6435 if ((long) section->sh_offset == section->sh_offset)
6436 printf (" %8.8lx", (unsigned long) section->sh_offset);
6437 else
6438 {
6439 printf (" ");
6440 print_vma (section->sh_offset, LONG_HEX);
6441 }
6442 printf ("\n ");
6443 print_vma (section->sh_size, LONG_HEX);
6444 printf (" ");
6445 print_vma (section->sh_entsize, LONG_HEX);
6446
6447 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6448
6449 printf (" %2u %3u %lu\n",
6450 section->sh_link,
6451 section->sh_info,
6452 (unsigned long) section->sh_addralign);
6453 }
6454
6455 if (do_section_details)
6456 {
6457 printf (" %s\n", get_elf_section_flags (section->sh_flags));
6458 if ((section->sh_flags & SHF_COMPRESSED) != 0)
6459 {
6460 /* Minimum section size is 12 bytes for 32-bit compression
6461 header + 12 bytes for compressed data header. */
6462 unsigned char buf[24];
6463
6464 assert (sizeof (buf) >= sizeof (Elf64_External_Chdr));
6465 if (get_data (&buf, (FILE *) file, section->sh_offset, 1,
6466 sizeof (buf), _("compression header")))
6467 {
6468 Elf_Internal_Chdr chdr;
6469
6470 (void) get_compression_header (&chdr, buf, sizeof (buf));
6471
6472 if (chdr.ch_type == ELFCOMPRESS_ZLIB)
6473 printf (" ZLIB, ");
6474 else
6475 printf (_(" [<unknown>: 0x%x], "),
6476 chdr.ch_type);
6477 print_vma (chdr.ch_size, LONG_HEX);
6478 printf (", %lu\n", (unsigned long) chdr.ch_addralign);
6479 }
6480 }
6481 }
6482 }
6483
6484 if (!do_section_details)
6485 {
6486 /* The ordering of the letters shown here matches the ordering of the
6487 corresponding SHF_xxx values, and hence the order in which these
6488 letters will be displayed to the user. */
6489 printf (_("Key to Flags:\n\
6490 W (write), A (alloc), X (execute), M (merge), S (strings), I (info),\n\
6491 L (link order), O (extra OS processing required), G (group), T (TLS),\n\
6492 C (compressed), x (unknown), o (OS specific), E (exclude),\n "));
6493 if (elf_header.e_machine == EM_X86_64
6494 || elf_header.e_machine == EM_L1OM
6495 || elf_header.e_machine == EM_K1OM)
6496 printf (_("l (large), "));
6497 else if (elf_header.e_machine == EM_ARM)
6498 printf (_("y (purecode), "));
6499 else if (elf_header.e_machine == EM_PPC)
6500 printf (_("v (VLE), "));
6501 printf ("p (processor specific)\n");
6502 }
6503
6504 return TRUE;
6505 }
6506
6507 static const char *
6508 get_group_flags (unsigned int flags)
6509 {
6510 static char buff[128];
6511
6512 if (flags == 0)
6513 return "";
6514 else if (flags == GRP_COMDAT)
6515 return "COMDAT ";
6516
6517 snprintf (buff, 14, _("[0x%x: "), flags);
6518
6519 flags &= ~ GRP_COMDAT;
6520 if (flags & GRP_MASKOS)
6521 {
6522 strcat (buff, "<OS specific>");
6523 flags &= ~ GRP_MASKOS;
6524 }
6525
6526 if (flags & GRP_MASKPROC)
6527 {
6528 strcat (buff, "<PROC specific>");
6529 flags &= ~ GRP_MASKPROC;
6530 }
6531
6532 if (flags)
6533 strcat (buff, "<unknown>");
6534
6535 strcat (buff, "]");
6536 return buff;
6537 }
6538
6539 static bfd_boolean
6540 process_section_groups (FILE * file)
6541 {
6542 Elf_Internal_Shdr * section;
6543 unsigned int i;
6544 struct group * group;
6545 Elf_Internal_Shdr * symtab_sec;
6546 Elf_Internal_Shdr * strtab_sec;
6547 Elf_Internal_Sym * symtab;
6548 unsigned long num_syms;
6549 char * strtab;
6550 size_t strtab_size;
6551
6552 /* Don't process section groups unless needed. */
6553 if (!do_unwind && !do_section_groups)
6554 return TRUE;
6555
6556 if (elf_header.e_shnum == 0)
6557 {
6558 if (do_section_groups)
6559 printf (_("\nThere are no sections to group in this file.\n"));
6560
6561 return TRUE;
6562 }
6563
6564 if (section_headers == NULL)
6565 {
6566 error (_("Section headers are not available!\n"));
6567 /* PR 13622: This can happen with a corrupt ELF header. */
6568 return FALSE;
6569 }
6570
6571 section_headers_groups = (struct group **) calloc (elf_header.e_shnum,
6572 sizeof (struct group *));
6573
6574 if (section_headers_groups == NULL)
6575 {
6576 error (_("Out of memory reading %u section group headers\n"),
6577 elf_header.e_shnum);
6578 return FALSE;
6579 }
6580
6581 /* Scan the sections for the group section. */
6582 group_count = 0;
6583 for (i = 0, section = section_headers;
6584 i < elf_header.e_shnum;
6585 i++, section++)
6586 if (section->sh_type == SHT_GROUP)
6587 group_count++;
6588
6589 if (group_count == 0)
6590 {
6591 if (do_section_groups)
6592 printf (_("\nThere are no section groups in this file.\n"));
6593
6594 return TRUE;
6595 }
6596
6597 section_groups = (struct group *) calloc (group_count, sizeof (struct group));
6598
6599 if (section_groups == NULL)
6600 {
6601 error (_("Out of memory reading %lu groups\n"),
6602 (unsigned long) group_count);
6603 return FALSE;
6604 }
6605
6606 symtab_sec = NULL;
6607 strtab_sec = NULL;
6608 symtab = NULL;
6609 num_syms = 0;
6610 strtab = NULL;
6611 strtab_size = 0;
6612 for (i = 0, section = section_headers, group = section_groups;
6613 i < elf_header.e_shnum;
6614 i++, section++)
6615 {
6616 if (section->sh_type == SHT_GROUP)
6617 {
6618 const char * name = printable_section_name (section);
6619 const char * group_name;
6620 unsigned char * start;
6621 unsigned char * indices;
6622 unsigned int entry, j, size;
6623 Elf_Internal_Shdr * sec;
6624 Elf_Internal_Sym * sym;
6625
6626 /* Get the symbol table. */
6627 if (section->sh_link >= elf_header.e_shnum
6628 || ((sec = section_headers + section->sh_link)->sh_type
6629 != SHT_SYMTAB))
6630 {
6631 error (_("Bad sh_link in group section `%s'\n"), name);
6632 continue;
6633 }
6634
6635 if (symtab_sec != sec)
6636 {
6637 symtab_sec = sec;
6638 if (symtab)
6639 free (symtab);
6640 symtab = GET_ELF_SYMBOLS (file, symtab_sec, & num_syms);
6641 }
6642
6643 if (symtab == NULL)
6644 {
6645 error (_("Corrupt header in group section `%s'\n"), name);
6646 continue;
6647 }
6648
6649 if (section->sh_info >= num_syms)
6650 {
6651 error (_("Bad sh_info in group section `%s'\n"), name);
6652 continue;
6653 }
6654
6655 sym = symtab + section->sh_info;
6656
6657 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6658 {
6659 if (sym->st_shndx == 0
6660 || sym->st_shndx >= elf_header.e_shnum)
6661 {
6662 error (_("Bad sh_info in group section `%s'\n"), name);
6663 continue;
6664 }
6665
6666 group_name = SECTION_NAME (section_headers + sym->st_shndx);
6667 strtab_sec = NULL;
6668 if (strtab)
6669 free (strtab);
6670 strtab = NULL;
6671 strtab_size = 0;
6672 }
6673 else
6674 {
6675 /* Get the string table. */
6676 if (symtab_sec->sh_link >= elf_header.e_shnum)
6677 {
6678 strtab_sec = NULL;
6679 if (strtab)
6680 free (strtab);
6681 strtab = NULL;
6682 strtab_size = 0;
6683 }
6684 else if (strtab_sec
6685 != (sec = section_headers + symtab_sec->sh_link))
6686 {
6687 strtab_sec = sec;
6688 if (strtab)
6689 free (strtab);
6690
6691 strtab = (char *) get_data (NULL, file, strtab_sec->sh_offset,
6692 1, strtab_sec->sh_size,
6693 _("string table"));
6694 strtab_size = strtab != NULL ? strtab_sec->sh_size : 0;
6695 }
6696 group_name = sym->st_name < strtab_size
6697 ? strtab + sym->st_name : _("<corrupt>");
6698 }
6699
6700 /* PR 17531: file: loop. */
6701 if (section->sh_entsize > section->sh_size)
6702 {
6703 error (_("Section %s has sh_entsize (0x%lx) which is larger than its size (0x%lx)\n"),
6704 printable_section_name (section),
6705 (unsigned long) section->sh_entsize,
6706 (unsigned long) section->sh_size);
6707 break;
6708 }
6709
6710 start = (unsigned char *) get_data (NULL, file, section->sh_offset,
6711 1, section->sh_size,
6712 _("section data"));
6713 if (start == NULL)
6714 continue;
6715
6716 indices = start;
6717 size = (section->sh_size / section->sh_entsize) - 1;
6718 entry = byte_get (indices, 4);
6719 indices += 4;
6720
6721 if (do_section_groups)
6722 {
6723 printf (_("\n%sgroup section [%5u] `%s' [%s] contains %u sections:\n"),
6724 get_group_flags (entry), i, name, group_name, size);
6725
6726 printf (_(" [Index] Name\n"));
6727 }
6728
6729 group->group_index = i;
6730
6731 for (j = 0; j < size; j++)
6732 {
6733 struct group_list * g;
6734
6735 entry = byte_get (indices, 4);
6736 indices += 4;
6737
6738 if (entry >= elf_header.e_shnum)
6739 {
6740 static unsigned num_group_errors = 0;
6741
6742 if (num_group_errors ++ < 10)
6743 {
6744 error (_("section [%5u] in group section [%5u] > maximum section [%5u]\n"),
6745 entry, i, elf_header.e_shnum - 1);
6746 if (num_group_errors == 10)
6747 warn (_("Further error messages about overlarge group section indicies suppressed\n"));
6748 }
6749 continue;
6750 }
6751
6752 if (section_headers_groups [entry] != NULL)
6753 {
6754 if (entry)
6755 {
6756 static unsigned num_errs = 0;
6757
6758 if (num_errs ++ < 10)
6759 {
6760 error (_("section [%5u] in group section [%5u] already in group section [%5u]\n"),
6761 entry, i,
6762 section_headers_groups [entry]->group_index);
6763 if (num_errs == 10)
6764 warn (_("Further error messages about already contained group sections suppressed\n"));
6765 }
6766 continue;
6767 }
6768 else
6769 {
6770 /* Intel C/C++ compiler may put section 0 in a
6771 section group. We just warn it the first time
6772 and ignore it afterwards. */
6773 static bfd_boolean warned = FALSE;
6774 if (!warned)
6775 {
6776 error (_("section 0 in group section [%5u]\n"),
6777 section_headers_groups [entry]->group_index);
6778 warned = TRUE;
6779 }
6780 }
6781 }
6782
6783 section_headers_groups [entry] = group;
6784
6785 if (do_section_groups)
6786 {
6787 sec = section_headers + entry;
6788 printf (" [%5u] %s\n", entry, printable_section_name (sec));
6789 }
6790
6791 g = (struct group_list *) xmalloc (sizeof (struct group_list));
6792 g->section_index = entry;
6793 g->next = group->root;
6794 group->root = g;
6795 }
6796
6797 if (start)
6798 free (start);
6799
6800 group++;
6801 }
6802 }
6803
6804 if (symtab)
6805 free (symtab);
6806 if (strtab)
6807 free (strtab);
6808 return TRUE;
6809 }
6810
6811 /* Data used to display dynamic fixups. */
6812
6813 struct ia64_vms_dynfixup
6814 {
6815 bfd_vma needed_ident; /* Library ident number. */
6816 bfd_vma needed; /* Index in the dstrtab of the library name. */
6817 bfd_vma fixup_needed; /* Index of the library. */
6818 bfd_vma fixup_rela_cnt; /* Number of fixups. */
6819 bfd_vma fixup_rela_off; /* Fixups offset in the dynamic segment. */
6820 };
6821
6822 /* Data used to display dynamic relocations. */
6823
6824 struct ia64_vms_dynimgrela
6825 {
6826 bfd_vma img_rela_cnt; /* Number of relocations. */
6827 bfd_vma img_rela_off; /* Reloc offset in the dynamic segment. */
6828 };
6829
6830 /* Display IA-64 OpenVMS dynamic fixups (used to dynamically link a shared
6831 library). */
6832
6833 static bfd_boolean
6834 dump_ia64_vms_dynamic_fixups (FILE * file,
6835 struct ia64_vms_dynfixup * fixup,
6836 const char * strtab,
6837 unsigned int strtab_sz)
6838 {
6839 Elf64_External_VMS_IMAGE_FIXUP * imfs;
6840 long i;
6841 const char * lib_name;
6842
6843 imfs = get_data (NULL, file, dynamic_addr + fixup->fixup_rela_off,
6844 1, fixup->fixup_rela_cnt * sizeof (*imfs),
6845 _("dynamic section image fixups"));
6846 if (!imfs)
6847 return FALSE;
6848
6849 if (fixup->needed < strtab_sz)
6850 lib_name = strtab + fixup->needed;
6851 else
6852 {
6853 warn (_("corrupt library name index of 0x%lx found in dynamic entry"),
6854 (unsigned long) fixup->needed);
6855 lib_name = "???";
6856 }
6857 printf (_("\nImage fixups for needed library #%d: %s - ident: %lx\n"),
6858 (int) fixup->fixup_needed, lib_name, (long) fixup->needed_ident);
6859 printf
6860 (_("Seg Offset Type SymVec DataType\n"));
6861
6862 for (i = 0; i < (long) fixup->fixup_rela_cnt; i++)
6863 {
6864 unsigned int type;
6865 const char *rtype;
6866
6867 printf ("%3u ", (unsigned) BYTE_GET (imfs [i].fixup_seg));
6868 printf_vma ((bfd_vma) BYTE_GET (imfs [i].fixup_offset));
6869 type = BYTE_GET (imfs [i].type);
6870 rtype = elf_ia64_reloc_type (type);
6871 if (rtype == NULL)
6872 printf (" 0x%08x ", type);
6873 else
6874 printf (" %-32s ", rtype);
6875 printf ("%6u ", (unsigned) BYTE_GET (imfs [i].symvec_index));
6876 printf ("0x%08x\n", (unsigned) BYTE_GET (imfs [i].data_type));
6877 }
6878
6879 free (imfs);
6880 return TRUE;
6881 }
6882
6883 /* Display IA-64 OpenVMS dynamic relocations (used to relocate an image). */
6884
6885 static bfd_boolean
6886 dump_ia64_vms_dynamic_relocs (FILE *file, struct ia64_vms_dynimgrela *imgrela)
6887 {
6888 Elf64_External_VMS_IMAGE_RELA *imrs;
6889 long i;
6890
6891 imrs = get_data (NULL, file, dynamic_addr + imgrela->img_rela_off,
6892 1, imgrela->img_rela_cnt * sizeof (*imrs),
6893 _("dynamic section image relocations"));
6894 if (!imrs)
6895 return FALSE;
6896
6897 printf (_("\nImage relocs\n"));
6898 printf
6899 (_("Seg Offset Type Addend Seg Sym Off\n"));
6900
6901 for (i = 0; i < (long) imgrela->img_rela_cnt; i++)
6902 {
6903 unsigned int type;
6904 const char *rtype;
6905
6906 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].rela_seg));
6907 printf ("%08" BFD_VMA_FMT "x ",
6908 (bfd_vma) BYTE_GET (imrs [i].rela_offset));
6909 type = BYTE_GET (imrs [i].type);
6910 rtype = elf_ia64_reloc_type (type);
6911 if (rtype == NULL)
6912 printf ("0x%08x ", type);
6913 else
6914 printf ("%-31s ", rtype);
6915 print_vma (BYTE_GET (imrs [i].addend), FULL_HEX);
6916 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].sym_seg));
6917 printf ("%08" BFD_VMA_FMT "x\n",
6918 (bfd_vma) BYTE_GET (imrs [i].sym_offset));
6919 }
6920
6921 free (imrs);
6922 return TRUE;
6923 }
6924
6925 /* Display IA-64 OpenVMS dynamic relocations and fixups. */
6926
6927 static bfd_boolean
6928 process_ia64_vms_dynamic_relocs (FILE *file)
6929 {
6930 struct ia64_vms_dynfixup fixup;
6931 struct ia64_vms_dynimgrela imgrela;
6932 Elf_Internal_Dyn *entry;
6933 bfd_vma strtab_off = 0;
6934 bfd_vma strtab_sz = 0;
6935 char *strtab = NULL;
6936 bfd_boolean res = TRUE;
6937
6938 memset (&fixup, 0, sizeof (fixup));
6939 memset (&imgrela, 0, sizeof (imgrela));
6940
6941 /* Note: the order of the entries is specified by the OpenVMS specs. */
6942 for (entry = dynamic_section;
6943 entry < dynamic_section + dynamic_nent;
6944 entry++)
6945 {
6946 switch (entry->d_tag)
6947 {
6948 case DT_IA_64_VMS_STRTAB_OFFSET:
6949 strtab_off = entry->d_un.d_val;
6950 break;
6951 case DT_STRSZ:
6952 strtab_sz = entry->d_un.d_val;
6953 if (strtab == NULL)
6954 strtab = get_data (NULL, file, dynamic_addr + strtab_off,
6955 1, strtab_sz, _("dynamic string section"));
6956 break;
6957
6958 case DT_IA_64_VMS_NEEDED_IDENT:
6959 fixup.needed_ident = entry->d_un.d_val;
6960 break;
6961 case DT_NEEDED:
6962 fixup.needed = entry->d_un.d_val;
6963 break;
6964 case DT_IA_64_VMS_FIXUP_NEEDED:
6965 fixup.fixup_needed = entry->d_un.d_val;
6966 break;
6967 case DT_IA_64_VMS_FIXUP_RELA_CNT:
6968 fixup.fixup_rela_cnt = entry->d_un.d_val;
6969 break;
6970 case DT_IA_64_VMS_FIXUP_RELA_OFF:
6971 fixup.fixup_rela_off = entry->d_un.d_val;
6972 if (! dump_ia64_vms_dynamic_fixups (file, &fixup, strtab, strtab_sz))
6973 res = FALSE;
6974 break;
6975 case DT_IA_64_VMS_IMG_RELA_CNT:
6976 imgrela.img_rela_cnt = entry->d_un.d_val;
6977 break;
6978 case DT_IA_64_VMS_IMG_RELA_OFF:
6979 imgrela.img_rela_off = entry->d_un.d_val;
6980 if (! dump_ia64_vms_dynamic_relocs (file, &imgrela))
6981 res = FALSE;
6982 break;
6983
6984 default:
6985 break;
6986 }
6987 }
6988
6989 if (strtab != NULL)
6990 free (strtab);
6991
6992 return res;
6993 }
6994
6995 static struct
6996 {
6997 const char * name;
6998 int reloc;
6999 int size;
7000 int rela;
7001 }
7002 dynamic_relocations [] =
7003 {
7004 { "REL", DT_REL, DT_RELSZ, FALSE },
7005 { "RELA", DT_RELA, DT_RELASZ, TRUE },
7006 { "PLT", DT_JMPREL, DT_PLTRELSZ, UNKNOWN }
7007 };
7008
7009 /* Process the reloc section. */
7010
7011 static bfd_boolean
7012 process_relocs (FILE * file)
7013 {
7014 unsigned long rel_size;
7015 unsigned long rel_offset;
7016
7017 if (!do_reloc)
7018 return TRUE;
7019
7020 if (do_using_dynamic)
7021 {
7022 int is_rela;
7023 const char * name;
7024 bfd_boolean has_dynamic_reloc;
7025 unsigned int i;
7026
7027 has_dynamic_reloc = FALSE;
7028
7029 for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
7030 {
7031 is_rela = dynamic_relocations [i].rela;
7032 name = dynamic_relocations [i].name;
7033 rel_size = dynamic_info [dynamic_relocations [i].size];
7034 rel_offset = dynamic_info [dynamic_relocations [i].reloc];
7035
7036 if (rel_size)
7037 has_dynamic_reloc = TRUE;
7038
7039 if (is_rela == UNKNOWN)
7040 {
7041 if (dynamic_relocations [i].reloc == DT_JMPREL)
7042 switch (dynamic_info[DT_PLTREL])
7043 {
7044 case DT_REL:
7045 is_rela = FALSE;
7046 break;
7047 case DT_RELA:
7048 is_rela = TRUE;
7049 break;
7050 }
7051 }
7052
7053 if (rel_size)
7054 {
7055 printf
7056 (_("\n'%s' relocation section at offset 0x%lx contains %ld bytes:\n"),
7057 name, rel_offset, rel_size);
7058
7059 dump_relocations (file,
7060 offset_from_vma (file, rel_offset, rel_size),
7061 rel_size,
7062 dynamic_symbols, num_dynamic_syms,
7063 dynamic_strings, dynamic_strings_length,
7064 is_rela, TRUE /* is_dynamic */);
7065 }
7066 }
7067
7068 if (is_ia64_vms ())
7069 if (process_ia64_vms_dynamic_relocs (file))
7070 has_dynamic_reloc = TRUE;
7071
7072 if (! has_dynamic_reloc)
7073 printf (_("\nThere are no dynamic relocations in this file.\n"));
7074 }
7075 else
7076 {
7077 Elf_Internal_Shdr * section;
7078 unsigned long i;
7079 bfd_boolean found = FALSE;
7080
7081 for (i = 0, section = section_headers;
7082 i < elf_header.e_shnum;
7083 i++, section++)
7084 {
7085 if ( section->sh_type != SHT_RELA
7086 && section->sh_type != SHT_REL)
7087 continue;
7088
7089 rel_offset = section->sh_offset;
7090 rel_size = section->sh_size;
7091
7092 if (rel_size)
7093 {
7094 Elf_Internal_Shdr * strsec;
7095 int is_rela;
7096 unsigned long num_rela;
7097
7098 printf (_("\nRelocation section "));
7099
7100 if (string_table == NULL)
7101 printf ("%d", section->sh_name);
7102 else
7103 printf ("'%s'", printable_section_name (section));
7104
7105 num_rela = rel_size / section->sh_entsize;
7106 printf (ngettext (" at offset 0x%lx contains %lu entry:\n",
7107 " at offset 0x%lx contains %lu entries:\n",
7108 num_rela),
7109 rel_offset, num_rela);
7110
7111 is_rela = section->sh_type == SHT_RELA;
7112
7113 if (section->sh_link != 0
7114 && section->sh_link < elf_header.e_shnum)
7115 {
7116 Elf_Internal_Shdr * symsec;
7117 Elf_Internal_Sym * symtab;
7118 unsigned long nsyms;
7119 unsigned long strtablen = 0;
7120 char * strtab = NULL;
7121
7122 symsec = section_headers + section->sh_link;
7123 if (symsec->sh_type != SHT_SYMTAB
7124 && symsec->sh_type != SHT_DYNSYM)
7125 continue;
7126
7127 symtab = GET_ELF_SYMBOLS (file, symsec, & nsyms);
7128
7129 if (symtab == NULL)
7130 continue;
7131
7132 if (symsec->sh_link != 0
7133 && symsec->sh_link < elf_header.e_shnum)
7134 {
7135 strsec = section_headers + symsec->sh_link;
7136
7137 strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7138 1, strsec->sh_size,
7139 _("string table"));
7140 strtablen = strtab == NULL ? 0 : strsec->sh_size;
7141 }
7142
7143 dump_relocations (file, rel_offset, rel_size,
7144 symtab, nsyms, strtab, strtablen,
7145 is_rela,
7146 symsec->sh_type == SHT_DYNSYM);
7147 if (strtab)
7148 free (strtab);
7149 free (symtab);
7150 }
7151 else
7152 dump_relocations (file, rel_offset, rel_size,
7153 NULL, 0, NULL, 0, is_rela,
7154 FALSE /* is_dynamic */);
7155
7156 found = TRUE;
7157 }
7158 }
7159
7160 if (! found)
7161 {
7162 /* Users sometimes forget the -D option, so try to be helpful. */
7163 for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
7164 {
7165 if (dynamic_info [dynamic_relocations [i].size])
7166 {
7167 printf (_("\nThere are no static relocations in this file."));
7168 printf (_("\nTo see the dynamic relocations add --use-dynamic to the command line.\n"));
7169
7170 break;
7171 }
7172 }
7173 if (i == ARRAY_SIZE (dynamic_relocations))
7174 printf (_("\nThere are no relocations in this file.\n"));
7175 }
7176 }
7177
7178 return TRUE;
7179 }
7180
7181 /* An absolute address consists of a section and an offset. If the
7182 section is NULL, the offset itself is the address, otherwise, the
7183 address equals to LOAD_ADDRESS(section) + offset. */
7184
7185 struct absaddr
7186 {
7187 unsigned short section;
7188 bfd_vma offset;
7189 };
7190
7191 #define ABSADDR(a) \
7192 ((a).section \
7193 ? section_headers [(a).section].sh_addr + (a).offset \
7194 : (a).offset)
7195
7196 /* Find the nearest symbol at or below ADDR. Returns the symbol
7197 name, if found, and the offset from the symbol to ADDR. */
7198
7199 static void
7200 find_symbol_for_address (Elf_Internal_Sym * symtab,
7201 unsigned long nsyms,
7202 const char * strtab,
7203 unsigned long strtab_size,
7204 struct absaddr addr,
7205 const char ** symname,
7206 bfd_vma * offset)
7207 {
7208 bfd_vma dist = 0x100000;
7209 Elf_Internal_Sym * sym;
7210 Elf_Internal_Sym * beg;
7211 Elf_Internal_Sym * end;
7212 Elf_Internal_Sym * best = NULL;
7213
7214 REMOVE_ARCH_BITS (addr.offset);
7215 beg = symtab;
7216 end = symtab + nsyms;
7217
7218 while (beg < end)
7219 {
7220 bfd_vma value;
7221
7222 sym = beg + (end - beg) / 2;
7223
7224 value = sym->st_value;
7225 REMOVE_ARCH_BITS (value);
7226
7227 if (sym->st_name != 0
7228 && (addr.section == SHN_UNDEF || addr.section == sym->st_shndx)
7229 && addr.offset >= value
7230 && addr.offset - value < dist)
7231 {
7232 best = sym;
7233 dist = addr.offset - value;
7234 if (!dist)
7235 break;
7236 }
7237
7238 if (addr.offset < value)
7239 end = sym;
7240 else
7241 beg = sym + 1;
7242 }
7243
7244 if (best)
7245 {
7246 *symname = (best->st_name >= strtab_size
7247 ? _("<corrupt>") : strtab + best->st_name);
7248 *offset = dist;
7249 return;
7250 }
7251
7252 *symname = NULL;
7253 *offset = addr.offset;
7254 }
7255
7256 static /* signed */ int
7257 symcmp (const void *p, const void *q)
7258 {
7259 Elf_Internal_Sym *sp = (Elf_Internal_Sym *) p;
7260 Elf_Internal_Sym *sq = (Elf_Internal_Sym *) q;
7261
7262 return sp->st_value > sq->st_value ? 1 : (sp->st_value < sq->st_value ? -1 : 0);
7263 }
7264
7265 /* Process the unwind section. */
7266
7267 #include "unwind-ia64.h"
7268
7269 struct ia64_unw_table_entry
7270 {
7271 struct absaddr start;
7272 struct absaddr end;
7273 struct absaddr info;
7274 };
7275
7276 struct ia64_unw_aux_info
7277 {
7278 struct ia64_unw_table_entry * table; /* Unwind table. */
7279 unsigned long table_len; /* Length of unwind table. */
7280 unsigned char * info; /* Unwind info. */
7281 unsigned long info_size; /* Size of unwind info. */
7282 bfd_vma info_addr; /* Starting address of unwind info. */
7283 bfd_vma seg_base; /* Starting address of segment. */
7284 Elf_Internal_Sym * symtab; /* The symbol table. */
7285 unsigned long nsyms; /* Number of symbols. */
7286 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7287 unsigned long nfuns; /* Number of entries in funtab. */
7288 char * strtab; /* The string table. */
7289 unsigned long strtab_size; /* Size of string table. */
7290 };
7291
7292 static bfd_boolean
7293 dump_ia64_unwind (struct ia64_unw_aux_info * aux)
7294 {
7295 struct ia64_unw_table_entry * tp;
7296 unsigned long j, nfuns;
7297 int in_body;
7298 bfd_boolean res = TRUE;
7299
7300 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
7301 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
7302 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
7303 aux->funtab[nfuns++] = aux->symtab[j];
7304 aux->nfuns = nfuns;
7305 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
7306
7307 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
7308 {
7309 bfd_vma stamp;
7310 bfd_vma offset;
7311 const unsigned char * dp;
7312 const unsigned char * head;
7313 const unsigned char * end;
7314 const char * procname;
7315
7316 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7317 aux->strtab_size, tp->start, &procname, &offset);
7318
7319 fputs ("\n<", stdout);
7320
7321 if (procname)
7322 {
7323 fputs (procname, stdout);
7324
7325 if (offset)
7326 printf ("+%lx", (unsigned long) offset);
7327 }
7328
7329 fputs (">: [", stdout);
7330 print_vma (tp->start.offset, PREFIX_HEX);
7331 fputc ('-', stdout);
7332 print_vma (tp->end.offset, PREFIX_HEX);
7333 printf ("], info at +0x%lx\n",
7334 (unsigned long) (tp->info.offset - aux->seg_base));
7335
7336 /* PR 17531: file: 86232b32. */
7337 if (aux->info == NULL)
7338 continue;
7339
7340 /* PR 17531: file: 0997b4d1. */
7341 if ((ABSADDR (tp->info) - aux->info_addr) >= aux->info_size)
7342 {
7343 warn (_("Invalid offset %lx in table entry %ld\n"),
7344 (long) tp->info.offset, (long) (tp - aux->table));
7345 res = FALSE;
7346 continue;
7347 }
7348
7349 head = aux->info + (ABSADDR (tp->info) - aux->info_addr);
7350 stamp = byte_get ((unsigned char *) head, sizeof (stamp));
7351
7352 printf (" v%u, flags=0x%lx (%s%s), len=%lu bytes\n",
7353 (unsigned) UNW_VER (stamp),
7354 (unsigned long) ((stamp & UNW_FLAG_MASK) >> 32),
7355 UNW_FLAG_EHANDLER (stamp) ? " ehandler" : "",
7356 UNW_FLAG_UHANDLER (stamp) ? " uhandler" : "",
7357 (unsigned long) (eh_addr_size * UNW_LENGTH (stamp)));
7358
7359 if (UNW_VER (stamp) != 1)
7360 {
7361 printf (_("\tUnknown version.\n"));
7362 continue;
7363 }
7364
7365 in_body = 0;
7366 end = head + 8 + eh_addr_size * UNW_LENGTH (stamp);
7367 /* PR 17531: file: 16ceda89. */
7368 if (end > aux->info + aux->info_size)
7369 end = aux->info + aux->info_size;
7370 for (dp = head + 8; dp < end;)
7371 dp = unw_decode (dp, in_body, & in_body, end);
7372 }
7373
7374 free (aux->funtab);
7375
7376 return res;
7377 }
7378
7379 static bfd_boolean
7380 slurp_ia64_unwind_table (FILE * file,
7381 struct ia64_unw_aux_info * aux,
7382 Elf_Internal_Shdr * sec)
7383 {
7384 unsigned long size, nrelas, i;
7385 Elf_Internal_Phdr * seg;
7386 struct ia64_unw_table_entry * tep;
7387 Elf_Internal_Shdr * relsec;
7388 Elf_Internal_Rela * rela;
7389 Elf_Internal_Rela * rp;
7390 unsigned char * table;
7391 unsigned char * tp;
7392 Elf_Internal_Sym * sym;
7393 const char * relname;
7394
7395 aux->table_len = 0;
7396
7397 /* First, find the starting address of the segment that includes
7398 this section: */
7399
7400 if (elf_header.e_phnum)
7401 {
7402 if (! get_program_headers (file))
7403 return FALSE;
7404
7405 for (seg = program_headers;
7406 seg < program_headers + elf_header.e_phnum;
7407 ++seg)
7408 {
7409 if (seg->p_type != PT_LOAD)
7410 continue;
7411
7412 if (sec->sh_addr >= seg->p_vaddr
7413 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
7414 {
7415 aux->seg_base = seg->p_vaddr;
7416 break;
7417 }
7418 }
7419 }
7420
7421 /* Second, build the unwind table from the contents of the unwind section: */
7422 size = sec->sh_size;
7423 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
7424 _("unwind table"));
7425 if (!table)
7426 return FALSE;
7427
7428 aux->table_len = size / (3 * eh_addr_size);
7429 aux->table = (struct ia64_unw_table_entry *)
7430 xcmalloc (aux->table_len, sizeof (aux->table[0]));
7431 tep = aux->table;
7432
7433 for (tp = table; tp <= table + size - (3 * eh_addr_size); ++tep)
7434 {
7435 tep->start.section = SHN_UNDEF;
7436 tep->end.section = SHN_UNDEF;
7437 tep->info.section = SHN_UNDEF;
7438 tep->start.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7439 tep->end.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7440 tep->info.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7441 tep->start.offset += aux->seg_base;
7442 tep->end.offset += aux->seg_base;
7443 tep->info.offset += aux->seg_base;
7444 }
7445 free (table);
7446
7447 /* Third, apply any relocations to the unwind table: */
7448 for (relsec = section_headers;
7449 relsec < section_headers + elf_header.e_shnum;
7450 ++relsec)
7451 {
7452 if (relsec->sh_type != SHT_RELA
7453 || relsec->sh_info >= elf_header.e_shnum
7454 || section_headers + relsec->sh_info != sec)
7455 continue;
7456
7457 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
7458 & rela, & nrelas))
7459 {
7460 free (aux->table);
7461 aux->table = NULL;
7462 aux->table_len = 0;
7463 return FALSE;
7464 }
7465
7466 for (rp = rela; rp < rela + nrelas; ++rp)
7467 {
7468 relname = elf_ia64_reloc_type (get_reloc_type (rp->r_info));
7469 sym = aux->symtab + get_reloc_symindex (rp->r_info);
7470
7471 /* PR 17531: file: 9fa67536. */
7472 if (relname == NULL)
7473 {
7474 warn (_("Skipping unknown relocation type: %u\n"), get_reloc_type (rp->r_info));
7475 continue;
7476 }
7477
7478 if (! const_strneq (relname, "R_IA64_SEGREL"))
7479 {
7480 warn (_("Skipping unexpected relocation type: %s\n"), relname);
7481 continue;
7482 }
7483
7484 i = rp->r_offset / (3 * eh_addr_size);
7485
7486 /* PR 17531: file: 5bc8d9bf. */
7487 if (i >= aux->table_len)
7488 {
7489 warn (_("Skipping reloc with overlarge offset: %lx\n"), i);
7490 continue;
7491 }
7492
7493 switch (rp->r_offset / eh_addr_size % 3)
7494 {
7495 case 0:
7496 aux->table[i].start.section = sym->st_shndx;
7497 aux->table[i].start.offset = rp->r_addend + sym->st_value;
7498 break;
7499 case 1:
7500 aux->table[i].end.section = sym->st_shndx;
7501 aux->table[i].end.offset = rp->r_addend + sym->st_value;
7502 break;
7503 case 2:
7504 aux->table[i].info.section = sym->st_shndx;
7505 aux->table[i].info.offset = rp->r_addend + sym->st_value;
7506 break;
7507 default:
7508 break;
7509 }
7510 }
7511
7512 free (rela);
7513 }
7514
7515 return TRUE;
7516 }
7517
7518 static bfd_boolean
7519 ia64_process_unwind (FILE * file)
7520 {
7521 Elf_Internal_Shdr * sec;
7522 Elf_Internal_Shdr * unwsec = NULL;
7523 Elf_Internal_Shdr * strsec;
7524 unsigned long i, unwcount = 0, unwstart = 0;
7525 struct ia64_unw_aux_info aux;
7526 bfd_boolean res = TRUE;
7527
7528 memset (& aux, 0, sizeof (aux));
7529
7530 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7531 {
7532 if (sec->sh_type == SHT_SYMTAB
7533 && sec->sh_link < elf_header.e_shnum)
7534 {
7535 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7536
7537 strsec = section_headers + sec->sh_link;
7538 if (aux.strtab != NULL)
7539 {
7540 error (_("Multiple auxillary string tables encountered\n"));
7541 free (aux.strtab);
7542 res = FALSE;
7543 }
7544 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7545 1, strsec->sh_size,
7546 _("string table"));
7547 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7548 }
7549 else if (sec->sh_type == SHT_IA_64_UNWIND)
7550 unwcount++;
7551 }
7552
7553 if (!unwcount)
7554 printf (_("\nThere are no unwind sections in this file.\n"));
7555
7556 while (unwcount-- > 0)
7557 {
7558 char * suffix;
7559 size_t len, len2;
7560
7561 for (i = unwstart, sec = section_headers + unwstart, unwsec = NULL;
7562 i < elf_header.e_shnum; ++i, ++sec)
7563 if (sec->sh_type == SHT_IA_64_UNWIND)
7564 {
7565 unwsec = sec;
7566 break;
7567 }
7568 /* We have already counted the number of SHT_IA64_UNWIND
7569 sections so the loop above should never fail. */
7570 assert (unwsec != NULL);
7571
7572 unwstart = i + 1;
7573 len = sizeof (ELF_STRING_ia64_unwind_once) - 1;
7574
7575 if ((unwsec->sh_flags & SHF_GROUP) != 0)
7576 {
7577 /* We need to find which section group it is in. */
7578 struct group_list * g;
7579
7580 if (section_headers_groups == NULL
7581 || section_headers_groups [i] == NULL)
7582 i = elf_header.e_shnum;
7583 else
7584 {
7585 g = section_headers_groups [i]->root;
7586
7587 for (; g != NULL; g = g->next)
7588 {
7589 sec = section_headers + g->section_index;
7590
7591 if (streq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info))
7592 break;
7593 }
7594
7595 if (g == NULL)
7596 i = elf_header.e_shnum;
7597 }
7598 }
7599 else if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind_once, len))
7600 {
7601 /* .gnu.linkonce.ia64unw.FOO -> .gnu.linkonce.ia64unwi.FOO. */
7602 len2 = sizeof (ELF_STRING_ia64_unwind_info_once) - 1;
7603 suffix = SECTION_NAME (unwsec) + len;
7604 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
7605 ++i, ++sec)
7606 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info_once, len2)
7607 && streq (SECTION_NAME (sec) + len2, suffix))
7608 break;
7609 }
7610 else
7611 {
7612 /* .IA_64.unwindFOO -> .IA_64.unwind_infoFOO
7613 .IA_64.unwind or BAR -> .IA_64.unwind_info. */
7614 len = sizeof (ELF_STRING_ia64_unwind) - 1;
7615 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
7616 suffix = "";
7617 if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind, len))
7618 suffix = SECTION_NAME (unwsec) + len;
7619 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
7620 ++i, ++sec)
7621 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info, len2)
7622 && streq (SECTION_NAME (sec) + len2, suffix))
7623 break;
7624 }
7625
7626 if (i == elf_header.e_shnum)
7627 {
7628 printf (_("\nCould not find unwind info section for "));
7629
7630 if (string_table == NULL)
7631 printf ("%d", unwsec->sh_name);
7632 else
7633 printf ("'%s'", printable_section_name (unwsec));
7634 }
7635 else
7636 {
7637 aux.info_addr = sec->sh_addr;
7638 aux.info = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1,
7639 sec->sh_size,
7640 _("unwind info"));
7641 aux.info_size = aux.info == NULL ? 0 : sec->sh_size;
7642
7643 printf (_("\nUnwind section "));
7644
7645 if (string_table == NULL)
7646 printf ("%d", unwsec->sh_name);
7647 else
7648 printf ("'%s'", printable_section_name (unwsec));
7649
7650 printf (_(" at offset 0x%lx contains %lu entries:\n"),
7651 (unsigned long) unwsec->sh_offset,
7652 (unsigned long) (unwsec->sh_size / (3 * eh_addr_size)));
7653
7654 if (slurp_ia64_unwind_table (file, & aux, unwsec)
7655 && aux.table_len > 0)
7656 dump_ia64_unwind (& aux);
7657
7658 if (aux.table)
7659 free ((char *) aux.table);
7660 if (aux.info)
7661 free ((char *) aux.info);
7662 aux.table = NULL;
7663 aux.info = NULL;
7664 }
7665 }
7666
7667 if (aux.symtab)
7668 free (aux.symtab);
7669 if (aux.strtab)
7670 free ((char *) aux.strtab);
7671
7672 return res;
7673 }
7674
7675 struct hppa_unw_table_entry
7676 {
7677 struct absaddr start;
7678 struct absaddr end;
7679 unsigned int Cannot_unwind:1; /* 0 */
7680 unsigned int Millicode:1; /* 1 */
7681 unsigned int Millicode_save_sr0:1; /* 2 */
7682 unsigned int Region_description:2; /* 3..4 */
7683 unsigned int reserved1:1; /* 5 */
7684 unsigned int Entry_SR:1; /* 6 */
7685 unsigned int Entry_FR:4; /* Number saved 7..10 */
7686 unsigned int Entry_GR:5; /* Number saved 11..15 */
7687 unsigned int Args_stored:1; /* 16 */
7688 unsigned int Variable_Frame:1; /* 17 */
7689 unsigned int Separate_Package_Body:1; /* 18 */
7690 unsigned int Frame_Extension_Millicode:1; /* 19 */
7691 unsigned int Stack_Overflow_Check:1; /* 20 */
7692 unsigned int Two_Instruction_SP_Increment:1; /* 21 */
7693 unsigned int Ada_Region:1; /* 22 */
7694 unsigned int cxx_info:1; /* 23 */
7695 unsigned int cxx_try_catch:1; /* 24 */
7696 unsigned int sched_entry_seq:1; /* 25 */
7697 unsigned int reserved2:1; /* 26 */
7698 unsigned int Save_SP:1; /* 27 */
7699 unsigned int Save_RP:1; /* 28 */
7700 unsigned int Save_MRP_in_frame:1; /* 29 */
7701 unsigned int extn_ptr_defined:1; /* 30 */
7702 unsigned int Cleanup_defined:1; /* 31 */
7703
7704 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
7705 unsigned int HP_UX_interrupt_marker:1; /* 1 */
7706 unsigned int Large_frame:1; /* 2 */
7707 unsigned int Pseudo_SP_Set:1; /* 3 */
7708 unsigned int reserved4:1; /* 4 */
7709 unsigned int Total_frame_size:27; /* 5..31 */
7710 };
7711
7712 struct hppa_unw_aux_info
7713 {
7714 struct hppa_unw_table_entry * table; /* Unwind table. */
7715 unsigned long table_len; /* Length of unwind table. */
7716 bfd_vma seg_base; /* Starting address of segment. */
7717 Elf_Internal_Sym * symtab; /* The symbol table. */
7718 unsigned long nsyms; /* Number of symbols. */
7719 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7720 unsigned long nfuns; /* Number of entries in funtab. */
7721 char * strtab; /* The string table. */
7722 unsigned long strtab_size; /* Size of string table. */
7723 };
7724
7725 static bfd_boolean
7726 dump_hppa_unwind (struct hppa_unw_aux_info * aux)
7727 {
7728 struct hppa_unw_table_entry * tp;
7729 unsigned long j, nfuns;
7730 bfd_boolean res = TRUE;
7731
7732 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
7733 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
7734 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
7735 aux->funtab[nfuns++] = aux->symtab[j];
7736 aux->nfuns = nfuns;
7737 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
7738
7739 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
7740 {
7741 bfd_vma offset;
7742 const char * procname;
7743
7744 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7745 aux->strtab_size, tp->start, &procname,
7746 &offset);
7747
7748 fputs ("\n<", stdout);
7749
7750 if (procname)
7751 {
7752 fputs (procname, stdout);
7753
7754 if (offset)
7755 printf ("+%lx", (unsigned long) offset);
7756 }
7757
7758 fputs (">: [", stdout);
7759 print_vma (tp->start.offset, PREFIX_HEX);
7760 fputc ('-', stdout);
7761 print_vma (tp->end.offset, PREFIX_HEX);
7762 printf ("]\n\t");
7763
7764 #define PF(_m) if (tp->_m) printf (#_m " ");
7765 #define PV(_m) if (tp->_m) printf (#_m "=%d ", tp->_m);
7766 PF(Cannot_unwind);
7767 PF(Millicode);
7768 PF(Millicode_save_sr0);
7769 /* PV(Region_description); */
7770 PF(Entry_SR);
7771 PV(Entry_FR);
7772 PV(Entry_GR);
7773 PF(Args_stored);
7774 PF(Variable_Frame);
7775 PF(Separate_Package_Body);
7776 PF(Frame_Extension_Millicode);
7777 PF(Stack_Overflow_Check);
7778 PF(Two_Instruction_SP_Increment);
7779 PF(Ada_Region);
7780 PF(cxx_info);
7781 PF(cxx_try_catch);
7782 PF(sched_entry_seq);
7783 PF(Save_SP);
7784 PF(Save_RP);
7785 PF(Save_MRP_in_frame);
7786 PF(extn_ptr_defined);
7787 PF(Cleanup_defined);
7788 PF(MPE_XL_interrupt_marker);
7789 PF(HP_UX_interrupt_marker);
7790 PF(Large_frame);
7791 PF(Pseudo_SP_Set);
7792 PV(Total_frame_size);
7793 #undef PF
7794 #undef PV
7795 }
7796
7797 printf ("\n");
7798
7799 free (aux->funtab);
7800
7801 return res;
7802 }
7803
7804 static bfd_boolean
7805 slurp_hppa_unwind_table (FILE * file,
7806 struct hppa_unw_aux_info * aux,
7807 Elf_Internal_Shdr * sec)
7808 {
7809 unsigned long size, unw_ent_size, nentries, nrelas, i;
7810 Elf_Internal_Phdr * seg;
7811 struct hppa_unw_table_entry * tep;
7812 Elf_Internal_Shdr * relsec;
7813 Elf_Internal_Rela * rela;
7814 Elf_Internal_Rela * rp;
7815 unsigned char * table;
7816 unsigned char * tp;
7817 Elf_Internal_Sym * sym;
7818 const char * relname;
7819
7820 /* First, find the starting address of the segment that includes
7821 this section. */
7822 if (elf_header.e_phnum)
7823 {
7824 if (! get_program_headers (file))
7825 return FALSE;
7826
7827 for (seg = program_headers;
7828 seg < program_headers + elf_header.e_phnum;
7829 ++seg)
7830 {
7831 if (seg->p_type != PT_LOAD)
7832 continue;
7833
7834 if (sec->sh_addr >= seg->p_vaddr
7835 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
7836 {
7837 aux->seg_base = seg->p_vaddr;
7838 break;
7839 }
7840 }
7841 }
7842
7843 /* Second, build the unwind table from the contents of the unwind
7844 section. */
7845 size = sec->sh_size;
7846 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
7847 _("unwind table"));
7848 if (!table)
7849 return FALSE;
7850
7851 unw_ent_size = 16;
7852 nentries = size / unw_ent_size;
7853 size = unw_ent_size * nentries;
7854
7855 tep = aux->table = (struct hppa_unw_table_entry *)
7856 xcmalloc (nentries, sizeof (aux->table[0]));
7857
7858 for (tp = table; tp < table + size; tp += unw_ent_size, ++tep)
7859 {
7860 unsigned int tmp1, tmp2;
7861
7862 tep->start.section = SHN_UNDEF;
7863 tep->end.section = SHN_UNDEF;
7864
7865 tep->start.offset = byte_get ((unsigned char *) tp + 0, 4);
7866 tep->end.offset = byte_get ((unsigned char *) tp + 4, 4);
7867 tmp1 = byte_get ((unsigned char *) tp + 8, 4);
7868 tmp2 = byte_get ((unsigned char *) tp + 12, 4);
7869
7870 tep->start.offset += aux->seg_base;
7871 tep->end.offset += aux->seg_base;
7872
7873 tep->Cannot_unwind = (tmp1 >> 31) & 0x1;
7874 tep->Millicode = (tmp1 >> 30) & 0x1;
7875 tep->Millicode_save_sr0 = (tmp1 >> 29) & 0x1;
7876 tep->Region_description = (tmp1 >> 27) & 0x3;
7877 tep->reserved1 = (tmp1 >> 26) & 0x1;
7878 tep->Entry_SR = (tmp1 >> 25) & 0x1;
7879 tep->Entry_FR = (tmp1 >> 21) & 0xf;
7880 tep->Entry_GR = (tmp1 >> 16) & 0x1f;
7881 tep->Args_stored = (tmp1 >> 15) & 0x1;
7882 tep->Variable_Frame = (tmp1 >> 14) & 0x1;
7883 tep->Separate_Package_Body = (tmp1 >> 13) & 0x1;
7884 tep->Frame_Extension_Millicode = (tmp1 >> 12) & 0x1;
7885 tep->Stack_Overflow_Check = (tmp1 >> 11) & 0x1;
7886 tep->Two_Instruction_SP_Increment = (tmp1 >> 10) & 0x1;
7887 tep->Ada_Region = (tmp1 >> 9) & 0x1;
7888 tep->cxx_info = (tmp1 >> 8) & 0x1;
7889 tep->cxx_try_catch = (tmp1 >> 7) & 0x1;
7890 tep->sched_entry_seq = (tmp1 >> 6) & 0x1;
7891 tep->reserved2 = (tmp1 >> 5) & 0x1;
7892 tep->Save_SP = (tmp1 >> 4) & 0x1;
7893 tep->Save_RP = (tmp1 >> 3) & 0x1;
7894 tep->Save_MRP_in_frame = (tmp1 >> 2) & 0x1;
7895 tep->extn_ptr_defined = (tmp1 >> 1) & 0x1;
7896 tep->Cleanup_defined = tmp1 & 0x1;
7897
7898 tep->MPE_XL_interrupt_marker = (tmp2 >> 31) & 0x1;
7899 tep->HP_UX_interrupt_marker = (tmp2 >> 30) & 0x1;
7900 tep->Large_frame = (tmp2 >> 29) & 0x1;
7901 tep->Pseudo_SP_Set = (tmp2 >> 28) & 0x1;
7902 tep->reserved4 = (tmp2 >> 27) & 0x1;
7903 tep->Total_frame_size = tmp2 & 0x7ffffff;
7904 }
7905 free (table);
7906
7907 /* Third, apply any relocations to the unwind table. */
7908 for (relsec = section_headers;
7909 relsec < section_headers + elf_header.e_shnum;
7910 ++relsec)
7911 {
7912 if (relsec->sh_type != SHT_RELA
7913 || relsec->sh_info >= elf_header.e_shnum
7914 || section_headers + relsec->sh_info != sec)
7915 continue;
7916
7917 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
7918 & rela, & nrelas))
7919 return FALSE;
7920
7921 for (rp = rela; rp < rela + nrelas; ++rp)
7922 {
7923 relname = elf_hppa_reloc_type (get_reloc_type (rp->r_info));
7924 sym = aux->symtab + get_reloc_symindex (rp->r_info);
7925
7926 /* R_PARISC_SEGREL32 or R_PARISC_SEGREL64. */
7927 if (! const_strneq (relname, "R_PARISC_SEGREL"))
7928 {
7929 warn (_("Skipping unexpected relocation type %s\n"), relname);
7930 continue;
7931 }
7932
7933 i = rp->r_offset / unw_ent_size;
7934
7935 switch ((rp->r_offset % unw_ent_size) / eh_addr_size)
7936 {
7937 case 0:
7938 aux->table[i].start.section = sym->st_shndx;
7939 aux->table[i].start.offset = sym->st_value + rp->r_addend;
7940 break;
7941 case 1:
7942 aux->table[i].end.section = sym->st_shndx;
7943 aux->table[i].end.offset = sym->st_value + rp->r_addend;
7944 break;
7945 default:
7946 break;
7947 }
7948 }
7949
7950 free (rela);
7951 }
7952
7953 aux->table_len = nentries;
7954
7955 return TRUE;
7956 }
7957
7958 static bfd_boolean
7959 hppa_process_unwind (FILE * file)
7960 {
7961 struct hppa_unw_aux_info aux;
7962 Elf_Internal_Shdr * unwsec = NULL;
7963 Elf_Internal_Shdr * strsec;
7964 Elf_Internal_Shdr * sec;
7965 unsigned long i;
7966 bfd_boolean res = TRUE;
7967
7968 if (string_table == NULL)
7969 return FALSE;
7970
7971 memset (& aux, 0, sizeof (aux));
7972
7973 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7974 {
7975 if (sec->sh_type == SHT_SYMTAB
7976 && sec->sh_link < elf_header.e_shnum)
7977 {
7978 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7979
7980 strsec = section_headers + sec->sh_link;
7981 if (aux.strtab != NULL)
7982 {
7983 error (_("Multiple auxillary string tables encountered\n"));
7984 free (aux.strtab);
7985 res = FALSE;
7986 }
7987 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7988 1, strsec->sh_size,
7989 _("string table"));
7990 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7991 }
7992 else if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
7993 unwsec = sec;
7994 }
7995
7996 if (!unwsec)
7997 printf (_("\nThere are no unwind sections in this file.\n"));
7998
7999 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
8000 {
8001 if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
8002 {
8003 unsigned long num_unwind = sec->sh_size / (2 * eh_addr_size + 8);
8004 printf (ngettext ("\nUnwind section '%s' at offset 0x%lx "
8005 "contains %lu entry:\n",
8006 "\nUnwind section '%s' at offset 0x%lx "
8007 "contains %lu entries:\n",
8008 num_unwind),
8009 printable_section_name (sec),
8010 (unsigned long) sec->sh_offset,
8011 num_unwind);
8012
8013 if (! slurp_hppa_unwind_table (file, &aux, sec))
8014 res = FALSE;
8015
8016 if (aux.table_len > 0)
8017 {
8018 if (! dump_hppa_unwind (&aux))
8019 res = FALSE;
8020 }
8021
8022 if (aux.table)
8023 free ((char *) aux.table);
8024 aux.table = NULL;
8025 }
8026 }
8027
8028 if (aux.symtab)
8029 free (aux.symtab);
8030 if (aux.strtab)
8031 free ((char *) aux.strtab);
8032
8033 return res;
8034 }
8035
8036 struct arm_section
8037 {
8038 unsigned char * data; /* The unwind data. */
8039 Elf_Internal_Shdr * sec; /* The cached unwind section header. */
8040 Elf_Internal_Rela * rela; /* The cached relocations for this section. */
8041 unsigned long nrelas; /* The number of relocations. */
8042 unsigned int rel_type; /* REL or RELA ? */
8043 Elf_Internal_Rela * next_rela; /* Cyclic pointer to the next reloc to process. */
8044 };
8045
8046 struct arm_unw_aux_info
8047 {
8048 FILE * file; /* The file containing the unwind sections. */
8049 Elf_Internal_Sym * symtab; /* The file's symbol table. */
8050 unsigned long nsyms; /* Number of symbols. */
8051 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
8052 unsigned long nfuns; /* Number of these symbols. */
8053 char * strtab; /* The file's string table. */
8054 unsigned long strtab_size; /* Size of string table. */
8055 };
8056
8057 static const char *
8058 arm_print_vma_and_name (struct arm_unw_aux_info *aux,
8059 bfd_vma fn, struct absaddr addr)
8060 {
8061 const char *procname;
8062 bfd_vma sym_offset;
8063
8064 if (addr.section == SHN_UNDEF)
8065 addr.offset = fn;
8066
8067 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
8068 aux->strtab_size, addr, &procname,
8069 &sym_offset);
8070
8071 print_vma (fn, PREFIX_HEX);
8072
8073 if (procname)
8074 {
8075 fputs (" <", stdout);
8076 fputs (procname, stdout);
8077
8078 if (sym_offset)
8079 printf ("+0x%lx", (unsigned long) sym_offset);
8080 fputc ('>', stdout);
8081 }
8082
8083 return procname;
8084 }
8085
8086 static void
8087 arm_free_section (struct arm_section *arm_sec)
8088 {
8089 if (arm_sec->data != NULL)
8090 free (arm_sec->data);
8091
8092 if (arm_sec->rela != NULL)
8093 free (arm_sec->rela);
8094 }
8095
8096 /* 1) If SEC does not match the one cached in ARM_SEC, then free the current
8097 cached section and install SEC instead.
8098 2) Locate the 32-bit word at WORD_OFFSET in unwind section SEC
8099 and return its valued in * WORDP, relocating if necessary.
8100 3) Update the NEXT_RELA field in ARM_SEC and store the section index and
8101 relocation's offset in ADDR.
8102 4) If SYM_NAME is non-NULL and a relocation was applied, record the offset
8103 into the string table of the symbol associated with the reloc. If no
8104 reloc was applied store -1 there.
8105 5) Return TRUE upon success, FALSE otherwise. */
8106
8107 static bfd_boolean
8108 get_unwind_section_word (struct arm_unw_aux_info * aux,
8109 struct arm_section * arm_sec,
8110 Elf_Internal_Shdr * sec,
8111 bfd_vma word_offset,
8112 unsigned int * wordp,
8113 struct absaddr * addr,
8114 bfd_vma * sym_name)
8115 {
8116 Elf_Internal_Rela *rp;
8117 Elf_Internal_Sym *sym;
8118 const char * relname;
8119 unsigned int word;
8120 bfd_boolean wrapped;
8121
8122 if (sec == NULL || arm_sec == NULL)
8123 return FALSE;
8124
8125 addr->section = SHN_UNDEF;
8126 addr->offset = 0;
8127
8128 if (sym_name != NULL)
8129 *sym_name = (bfd_vma) -1;
8130
8131 /* If necessary, update the section cache. */
8132 if (sec != arm_sec->sec)
8133 {
8134 Elf_Internal_Shdr *relsec;
8135
8136 arm_free_section (arm_sec);
8137
8138 arm_sec->sec = sec;
8139 arm_sec->data = get_data (NULL, aux->file, sec->sh_offset, 1,
8140 sec->sh_size, _("unwind data"));
8141 arm_sec->rela = NULL;
8142 arm_sec->nrelas = 0;
8143
8144 for (relsec = section_headers;
8145 relsec < section_headers + elf_header.e_shnum;
8146 ++relsec)
8147 {
8148 if (relsec->sh_info >= elf_header.e_shnum
8149 || section_headers + relsec->sh_info != sec
8150 /* PR 15745: Check the section type as well. */
8151 || (relsec->sh_type != SHT_REL
8152 && relsec->sh_type != SHT_RELA))
8153 continue;
8154
8155 arm_sec->rel_type = relsec->sh_type;
8156 if (relsec->sh_type == SHT_REL)
8157 {
8158 if (!slurp_rel_relocs (aux->file, relsec->sh_offset,
8159 relsec->sh_size,
8160 & arm_sec->rela, & arm_sec->nrelas))
8161 return FALSE;
8162 }
8163 else /* relsec->sh_type == SHT_RELA */
8164 {
8165 if (!slurp_rela_relocs (aux->file, relsec->sh_offset,
8166 relsec->sh_size,
8167 & arm_sec->rela, & arm_sec->nrelas))
8168 return FALSE;
8169 }
8170 break;
8171 }
8172
8173 arm_sec->next_rela = arm_sec->rela;
8174 }
8175
8176 /* If there is no unwind data we can do nothing. */
8177 if (arm_sec->data == NULL)
8178 return FALSE;
8179
8180 /* If the offset is invalid then fail. */
8181 if (/* PR 21343 *//* PR 18879 */
8182 sec->sh_size < 4
8183 || word_offset > (sec->sh_size - 4)
8184 || ((bfd_signed_vma) word_offset) < 0)
8185 return FALSE;
8186
8187 /* Get the word at the required offset. */
8188 word = byte_get (arm_sec->data + word_offset, 4);
8189
8190 /* PR 17531: file: id:000001,src:001266+003044,op:splice,rep:128. */
8191 if (arm_sec->rela == NULL)
8192 {
8193 * wordp = word;
8194 return TRUE;
8195 }
8196
8197 /* Look through the relocs to find the one that applies to the provided offset. */
8198 wrapped = FALSE;
8199 for (rp = arm_sec->next_rela; rp != arm_sec->rela + arm_sec->nrelas; rp++)
8200 {
8201 bfd_vma prelval, offset;
8202
8203 if (rp->r_offset > word_offset && !wrapped)
8204 {
8205 rp = arm_sec->rela;
8206 wrapped = TRUE;
8207 }
8208 if (rp->r_offset > word_offset)
8209 break;
8210
8211 if (rp->r_offset & 3)
8212 {
8213 warn (_("Skipping unexpected relocation at offset 0x%lx\n"),
8214 (unsigned long) rp->r_offset);
8215 continue;
8216 }
8217
8218 if (rp->r_offset < word_offset)
8219 continue;
8220
8221 /* PR 17531: file: 027-161405-0.004 */
8222 if (aux->symtab == NULL)
8223 continue;
8224
8225 if (arm_sec->rel_type == SHT_REL)
8226 {
8227 offset = word & 0x7fffffff;
8228 if (offset & 0x40000000)
8229 offset |= ~ (bfd_vma) 0x7fffffff;
8230 }
8231 else if (arm_sec->rel_type == SHT_RELA)
8232 offset = rp->r_addend;
8233 else
8234 {
8235 error (_("Unknown section relocation type %d encountered\n"),
8236 arm_sec->rel_type);
8237 break;
8238 }
8239
8240 /* PR 17531 file: 027-1241568-0.004. */
8241 if (ELF32_R_SYM (rp->r_info) >= aux->nsyms)
8242 {
8243 error (_("Bad symbol index in unwind relocation (%lu > %lu)\n"),
8244 (unsigned long) ELF32_R_SYM (rp->r_info), aux->nsyms);
8245 break;
8246 }
8247
8248 sym = aux->symtab + ELF32_R_SYM (rp->r_info);
8249 offset += sym->st_value;
8250 prelval = offset - (arm_sec->sec->sh_addr + rp->r_offset);
8251
8252 /* Check that we are processing the expected reloc type. */
8253 if (elf_header.e_machine == EM_ARM)
8254 {
8255 relname = elf_arm_reloc_type (ELF32_R_TYPE (rp->r_info));
8256 if (relname == NULL)
8257 {
8258 warn (_("Skipping unknown ARM relocation type: %d\n"),
8259 (int) ELF32_R_TYPE (rp->r_info));
8260 continue;
8261 }
8262
8263 if (streq (relname, "R_ARM_NONE"))
8264 continue;
8265
8266 if (! streq (relname, "R_ARM_PREL31"))
8267 {
8268 warn (_("Skipping unexpected ARM relocation type %s\n"), relname);
8269 continue;
8270 }
8271 }
8272 else if (elf_header.e_machine == EM_TI_C6000)
8273 {
8274 relname = elf_tic6x_reloc_type (ELF32_R_TYPE (rp->r_info));
8275 if (relname == NULL)
8276 {
8277 warn (_("Skipping unknown C6000 relocation type: %d\n"),
8278 (int) ELF32_R_TYPE (rp->r_info));
8279 continue;
8280 }
8281
8282 if (streq (relname, "R_C6000_NONE"))
8283 continue;
8284
8285 if (! streq (relname, "R_C6000_PREL31"))
8286 {
8287 warn (_("Skipping unexpected C6000 relocation type %s\n"), relname);
8288 continue;
8289 }
8290
8291 prelval >>= 1;
8292 }
8293 else
8294 {
8295 /* This function currently only supports ARM and TI unwinders. */
8296 warn (_("Only TI and ARM unwinders are currently supported\n"));
8297 break;
8298 }
8299
8300 word = (word & ~ (bfd_vma) 0x7fffffff) | (prelval & 0x7fffffff);
8301 addr->section = sym->st_shndx;
8302 addr->offset = offset;
8303
8304 if (sym_name)
8305 * sym_name = sym->st_name;
8306 break;
8307 }
8308
8309 *wordp = word;
8310 arm_sec->next_rela = rp;
8311
8312 return TRUE;
8313 }
8314
8315 static const char *tic6x_unwind_regnames[16] =
8316 {
8317 "A15", "B15", "B14", "B13", "B12", "B11", "B10", "B3",
8318 "A14", "A13", "A12", "A11", "A10",
8319 "[invalid reg 13]", "[invalid reg 14]", "[invalid reg 15]"
8320 };
8321
8322 static void
8323 decode_tic6x_unwind_regmask (unsigned int mask)
8324 {
8325 int i;
8326
8327 for (i = 12; mask; mask >>= 1, i--)
8328 {
8329 if (mask & 1)
8330 {
8331 fputs (tic6x_unwind_regnames[i], stdout);
8332 if (mask > 1)
8333 fputs (", ", stdout);
8334 }
8335 }
8336 }
8337
8338 #define ADVANCE \
8339 if (remaining == 0 && more_words) \
8340 { \
8341 data_offset += 4; \
8342 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, \
8343 data_offset, & word, & addr, NULL)) \
8344 return FALSE; \
8345 remaining = 4; \
8346 more_words--; \
8347 } \
8348
8349 #define GET_OP(OP) \
8350 ADVANCE; \
8351 if (remaining) \
8352 { \
8353 remaining--; \
8354 (OP) = word >> 24; \
8355 word <<= 8; \
8356 } \
8357 else \
8358 { \
8359 printf (_("[Truncated opcode]\n")); \
8360 return FALSE; \
8361 } \
8362 printf ("0x%02x ", OP)
8363
8364 static bfd_boolean
8365 decode_arm_unwind_bytecode (struct arm_unw_aux_info * aux,
8366 unsigned int word,
8367 unsigned int remaining,
8368 unsigned int more_words,
8369 bfd_vma data_offset,
8370 Elf_Internal_Shdr * data_sec,
8371 struct arm_section * data_arm_sec)
8372 {
8373 struct absaddr addr;
8374 bfd_boolean res = TRUE;
8375
8376 /* Decode the unwinding instructions. */
8377 while (1)
8378 {
8379 unsigned int op, op2;
8380
8381 ADVANCE;
8382 if (remaining == 0)
8383 break;
8384 remaining--;
8385 op = word >> 24;
8386 word <<= 8;
8387
8388 printf (" 0x%02x ", op);
8389
8390 if ((op & 0xc0) == 0x00)
8391 {
8392 int offset = ((op & 0x3f) << 2) + 4;
8393
8394 printf (" vsp = vsp + %d", offset);
8395 }
8396 else if ((op & 0xc0) == 0x40)
8397 {
8398 int offset = ((op & 0x3f) << 2) + 4;
8399
8400 printf (" vsp = vsp - %d", offset);
8401 }
8402 else if ((op & 0xf0) == 0x80)
8403 {
8404 GET_OP (op2);
8405 if (op == 0x80 && op2 == 0)
8406 printf (_("Refuse to unwind"));
8407 else
8408 {
8409 unsigned int mask = ((op & 0x0f) << 8) | op2;
8410 bfd_boolean first = TRUE;
8411 int i;
8412
8413 printf ("pop {");
8414 for (i = 0; i < 12; i++)
8415 if (mask & (1 << i))
8416 {
8417 if (first)
8418 first = FALSE;
8419 else
8420 printf (", ");
8421 printf ("r%d", 4 + i);
8422 }
8423 printf ("}");
8424 }
8425 }
8426 else if ((op & 0xf0) == 0x90)
8427 {
8428 if (op == 0x9d || op == 0x9f)
8429 printf (_(" [Reserved]"));
8430 else
8431 printf (" vsp = r%d", op & 0x0f);
8432 }
8433 else if ((op & 0xf0) == 0xa0)
8434 {
8435 int end = 4 + (op & 0x07);
8436 bfd_boolean first = TRUE;
8437 int i;
8438
8439 printf (" pop {");
8440 for (i = 4; i <= end; i++)
8441 {
8442 if (first)
8443 first = FALSE;
8444 else
8445 printf (", ");
8446 printf ("r%d", i);
8447 }
8448 if (op & 0x08)
8449 {
8450 if (!first)
8451 printf (", ");
8452 printf ("r14");
8453 }
8454 printf ("}");
8455 }
8456 else if (op == 0xb0)
8457 printf (_(" finish"));
8458 else if (op == 0xb1)
8459 {
8460 GET_OP (op2);
8461 if (op2 == 0 || (op2 & 0xf0) != 0)
8462 printf (_("[Spare]"));
8463 else
8464 {
8465 unsigned int mask = op2 & 0x0f;
8466 bfd_boolean first = TRUE;
8467 int i;
8468
8469 printf ("pop {");
8470 for (i = 0; i < 12; i++)
8471 if (mask & (1 << i))
8472 {
8473 if (first)
8474 first = FALSE;
8475 else
8476 printf (", ");
8477 printf ("r%d", i);
8478 }
8479 printf ("}");
8480 }
8481 }
8482 else if (op == 0xb2)
8483 {
8484 unsigned char buf[9];
8485 unsigned int i, len;
8486 unsigned long offset;
8487
8488 for (i = 0; i < sizeof (buf); i++)
8489 {
8490 GET_OP (buf[i]);
8491 if ((buf[i] & 0x80) == 0)
8492 break;
8493 }
8494 if (i == sizeof (buf))
8495 {
8496 error (_("corrupt change to vsp"));
8497 res = FALSE;
8498 }
8499 else
8500 {
8501 offset = read_uleb128 (buf, &len, buf + i + 1);
8502 assert (len == i + 1);
8503 offset = offset * 4 + 0x204;
8504 printf ("vsp = vsp + %ld", offset);
8505 }
8506 }
8507 else if (op == 0xb3 || op == 0xc8 || op == 0xc9)
8508 {
8509 unsigned int first, last;
8510
8511 GET_OP (op2);
8512 first = op2 >> 4;
8513 last = op2 & 0x0f;
8514 if (op == 0xc8)
8515 first = first + 16;
8516 printf ("pop {D%d", first);
8517 if (last)
8518 printf ("-D%d", first + last);
8519 printf ("}");
8520 }
8521 else if ((op & 0xf8) == 0xb8 || (op & 0xf8) == 0xd0)
8522 {
8523 unsigned int count = op & 0x07;
8524
8525 printf ("pop {D8");
8526 if (count)
8527 printf ("-D%d", 8 + count);
8528 printf ("}");
8529 }
8530 else if (op >= 0xc0 && op <= 0xc5)
8531 {
8532 unsigned int count = op & 0x07;
8533
8534 printf (" pop {wR10");
8535 if (count)
8536 printf ("-wR%d", 10 + count);
8537 printf ("}");
8538 }
8539 else if (op == 0xc6)
8540 {
8541 unsigned int first, last;
8542
8543 GET_OP (op2);
8544 first = op2 >> 4;
8545 last = op2 & 0x0f;
8546 printf ("pop {wR%d", first);
8547 if (last)
8548 printf ("-wR%d", first + last);
8549 printf ("}");
8550 }
8551 else if (op == 0xc7)
8552 {
8553 GET_OP (op2);
8554 if (op2 == 0 || (op2 & 0xf0) != 0)
8555 printf (_("[Spare]"));
8556 else
8557 {
8558 unsigned int mask = op2 & 0x0f;
8559 bfd_boolean first = TRUE;
8560 int i;
8561
8562 printf ("pop {");
8563 for (i = 0; i < 4; i++)
8564 if (mask & (1 << i))
8565 {
8566 if (first)
8567 first = FALSE;
8568 else
8569 printf (", ");
8570 printf ("wCGR%d", i);
8571 }
8572 printf ("}");
8573 }
8574 }
8575 else
8576 {
8577 printf (_(" [unsupported opcode]"));
8578 res = FALSE;
8579 }
8580
8581 printf ("\n");
8582 }
8583
8584 return res;
8585 }
8586
8587 static bfd_boolean
8588 decode_tic6x_unwind_bytecode (struct arm_unw_aux_info * aux,
8589 unsigned int word,
8590 unsigned int remaining,
8591 unsigned int more_words,
8592 bfd_vma data_offset,
8593 Elf_Internal_Shdr * data_sec,
8594 struct arm_section * data_arm_sec)
8595 {
8596 struct absaddr addr;
8597
8598 /* Decode the unwinding instructions. */
8599 while (1)
8600 {
8601 unsigned int op, op2;
8602
8603 ADVANCE;
8604 if (remaining == 0)
8605 break;
8606 remaining--;
8607 op = word >> 24;
8608 word <<= 8;
8609
8610 printf (" 0x%02x ", op);
8611
8612 if ((op & 0xc0) == 0x00)
8613 {
8614 int offset = ((op & 0x3f) << 3) + 8;
8615 printf (" sp = sp + %d", offset);
8616 }
8617 else if ((op & 0xc0) == 0x80)
8618 {
8619 GET_OP (op2);
8620 if (op == 0x80 && op2 == 0)
8621 printf (_("Refuse to unwind"));
8622 else
8623 {
8624 unsigned int mask = ((op & 0x1f) << 8) | op2;
8625 if (op & 0x20)
8626 printf ("pop compact {");
8627 else
8628 printf ("pop {");
8629
8630 decode_tic6x_unwind_regmask (mask);
8631 printf("}");
8632 }
8633 }
8634 else if ((op & 0xf0) == 0xc0)
8635 {
8636 unsigned int reg;
8637 unsigned int nregs;
8638 unsigned int i;
8639 const char *name;
8640 struct
8641 {
8642 unsigned int offset;
8643 unsigned int reg;
8644 } regpos[16];
8645
8646 /* Scan entire instruction first so that GET_OP output is not
8647 interleaved with disassembly. */
8648 nregs = 0;
8649 for (i = 0; nregs < (op & 0xf); i++)
8650 {
8651 GET_OP (op2);
8652 reg = op2 >> 4;
8653 if (reg != 0xf)
8654 {
8655 regpos[nregs].offset = i * 2;
8656 regpos[nregs].reg = reg;
8657 nregs++;
8658 }
8659
8660 reg = op2 & 0xf;
8661 if (reg != 0xf)
8662 {
8663 regpos[nregs].offset = i * 2 + 1;
8664 regpos[nregs].reg = reg;
8665 nregs++;
8666 }
8667 }
8668
8669 printf (_("pop frame {"));
8670 reg = nregs - 1;
8671 for (i = i * 2; i > 0; i--)
8672 {
8673 if (regpos[reg].offset == i - 1)
8674 {
8675 name = tic6x_unwind_regnames[regpos[reg].reg];
8676 if (reg > 0)
8677 reg--;
8678 }
8679 else
8680 name = _("[pad]");
8681
8682 fputs (name, stdout);
8683 if (i > 1)
8684 printf (", ");
8685 }
8686
8687 printf ("}");
8688 }
8689 else if (op == 0xd0)
8690 printf (" MOV FP, SP");
8691 else if (op == 0xd1)
8692 printf (" __c6xabi_pop_rts");
8693 else if (op == 0xd2)
8694 {
8695 unsigned char buf[9];
8696 unsigned int i, len;
8697 unsigned long offset;
8698
8699 for (i = 0; i < sizeof (buf); i++)
8700 {
8701 GET_OP (buf[i]);
8702 if ((buf[i] & 0x80) == 0)
8703 break;
8704 }
8705 /* PR 17531: file: id:000001,src:001906+004739,op:splice,rep:2. */
8706 if (i == sizeof (buf))
8707 {
8708 warn (_("Corrupt stack pointer adjustment detected\n"));
8709 return FALSE;
8710 }
8711
8712 offset = read_uleb128 (buf, &len, buf + i + 1);
8713 assert (len == i + 1);
8714 offset = offset * 8 + 0x408;
8715 printf (_("sp = sp + %ld"), offset);
8716 }
8717 else if ((op & 0xf0) == 0xe0)
8718 {
8719 if ((op & 0x0f) == 7)
8720 printf (" RETURN");
8721 else
8722 printf (" MV %s, B3", tic6x_unwind_regnames[op & 0x0f]);
8723 }
8724 else
8725 {
8726 printf (_(" [unsupported opcode]"));
8727 }
8728 putchar ('\n');
8729 }
8730
8731 return TRUE;
8732 }
8733
8734 static bfd_vma
8735 arm_expand_prel31 (bfd_vma word, bfd_vma where)
8736 {
8737 bfd_vma offset;
8738
8739 offset = word & 0x7fffffff;
8740 if (offset & 0x40000000)
8741 offset |= ~ (bfd_vma) 0x7fffffff;
8742
8743 if (elf_header.e_machine == EM_TI_C6000)
8744 offset <<= 1;
8745
8746 return offset + where;
8747 }
8748
8749 static bfd_boolean
8750 decode_arm_unwind (struct arm_unw_aux_info * aux,
8751 unsigned int word,
8752 unsigned int remaining,
8753 bfd_vma data_offset,
8754 Elf_Internal_Shdr * data_sec,
8755 struct arm_section * data_arm_sec)
8756 {
8757 int per_index;
8758 unsigned int more_words = 0;
8759 struct absaddr addr;
8760 bfd_vma sym_name = (bfd_vma) -1;
8761 bfd_boolean res = TRUE;
8762
8763 if (remaining == 0)
8764 {
8765 /* Fetch the first word.
8766 Note - when decoding an object file the address extracted
8767 here will always be 0. So we also pass in the sym_name
8768 parameter so that we can find the symbol associated with
8769 the personality routine. */
8770 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, data_offset,
8771 & word, & addr, & sym_name))
8772 return FALSE;
8773
8774 remaining = 4;
8775 }
8776
8777 if ((word & 0x80000000) == 0)
8778 {
8779 /* Expand prel31 for personality routine. */
8780 bfd_vma fn;
8781 const char *procname;
8782
8783 fn = arm_expand_prel31 (word, data_sec->sh_addr + data_offset);
8784 printf (_(" Personality routine: "));
8785 if (fn == 0
8786 && addr.section == SHN_UNDEF && addr.offset == 0
8787 && sym_name != (bfd_vma) -1 && sym_name < aux->strtab_size)
8788 {
8789 procname = aux->strtab + sym_name;
8790 print_vma (fn, PREFIX_HEX);
8791 if (procname)
8792 {
8793 fputs (" <", stdout);
8794 fputs (procname, stdout);
8795 fputc ('>', stdout);
8796 }
8797 }
8798 else
8799 procname = arm_print_vma_and_name (aux, fn, addr);
8800 fputc ('\n', stdout);
8801
8802 /* The GCC personality routines use the standard compact
8803 encoding, starting with one byte giving the number of
8804 words. */
8805 if (procname != NULL
8806 && (const_strneq (procname, "__gcc_personality_v0")
8807 || const_strneq (procname, "__gxx_personality_v0")
8808 || const_strneq (procname, "__gcj_personality_v0")
8809 || const_strneq (procname, "__gnu_objc_personality_v0")))
8810 {
8811 remaining = 0;
8812 more_words = 1;
8813 ADVANCE;
8814 if (!remaining)
8815 {
8816 printf (_(" [Truncated data]\n"));
8817 return FALSE;
8818 }
8819 more_words = word >> 24;
8820 word <<= 8;
8821 remaining--;
8822 per_index = -1;
8823 }
8824 else
8825 return TRUE;
8826 }
8827 else
8828 {
8829 /* ARM EHABI Section 6.3:
8830
8831 An exception-handling table entry for the compact model looks like:
8832
8833 31 30-28 27-24 23-0
8834 -- ----- ----- ----
8835 1 0 index Data for personalityRoutine[index] */
8836
8837 if (elf_header.e_machine == EM_ARM
8838 && (word & 0x70000000))
8839 {
8840 warn (_("Corrupt ARM compact model table entry: %x \n"), word);
8841 res = FALSE;
8842 }
8843
8844 per_index = (word >> 24) & 0x7f;
8845 printf (_(" Compact model index: %d\n"), per_index);
8846 if (per_index == 0)
8847 {
8848 more_words = 0;
8849 word <<= 8;
8850 remaining--;
8851 }
8852 else if (per_index < 3)
8853 {
8854 more_words = (word >> 16) & 0xff;
8855 word <<= 16;
8856 remaining -= 2;
8857 }
8858 }
8859
8860 switch (elf_header.e_machine)
8861 {
8862 case EM_ARM:
8863 if (per_index < 3)
8864 {
8865 if (! decode_arm_unwind_bytecode (aux, word, remaining, more_words,
8866 data_offset, data_sec, data_arm_sec))
8867 res = FALSE;
8868 }
8869 else
8870 {
8871 warn (_("Unknown ARM compact model index encountered\n"));
8872 printf (_(" [reserved]\n"));
8873 res = FALSE;
8874 }
8875 break;
8876
8877 case EM_TI_C6000:
8878 if (per_index < 3)
8879 {
8880 if (! decode_tic6x_unwind_bytecode (aux, word, remaining, more_words,
8881 data_offset, data_sec, data_arm_sec))
8882 res = FALSE;
8883 }
8884 else if (per_index < 5)
8885 {
8886 if (((word >> 17) & 0x7f) == 0x7f)
8887 printf (_(" Restore stack from frame pointer\n"));
8888 else
8889 printf (_(" Stack increment %d\n"), (word >> 14) & 0x1fc);
8890 printf (_(" Registers restored: "));
8891 if (per_index == 4)
8892 printf (" (compact) ");
8893 decode_tic6x_unwind_regmask ((word >> 4) & 0x1fff);
8894 putchar ('\n');
8895 printf (_(" Return register: %s\n"),
8896 tic6x_unwind_regnames[word & 0xf]);
8897 }
8898 else
8899 printf (_(" [reserved (%d)]\n"), per_index);
8900 break;
8901
8902 default:
8903 error (_("Unsupported architecture type %d encountered when decoding unwind table\n"),
8904 elf_header.e_machine);
8905 res = FALSE;
8906 }
8907
8908 /* Decode the descriptors. Not implemented. */
8909
8910 return res;
8911 }
8912
8913 static bfd_boolean
8914 dump_arm_unwind (struct arm_unw_aux_info *aux, Elf_Internal_Shdr *exidx_sec)
8915 {
8916 struct arm_section exidx_arm_sec, extab_arm_sec;
8917 unsigned int i, exidx_len;
8918 unsigned long j, nfuns;
8919 bfd_boolean res = TRUE;
8920
8921 memset (&exidx_arm_sec, 0, sizeof (exidx_arm_sec));
8922 memset (&extab_arm_sec, 0, sizeof (extab_arm_sec));
8923 exidx_len = exidx_sec->sh_size / 8;
8924
8925 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
8926 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
8927 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
8928 aux->funtab[nfuns++] = aux->symtab[j];
8929 aux->nfuns = nfuns;
8930 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
8931
8932 for (i = 0; i < exidx_len; i++)
8933 {
8934 unsigned int exidx_fn, exidx_entry;
8935 struct absaddr fn_addr, entry_addr;
8936 bfd_vma fn;
8937
8938 fputc ('\n', stdout);
8939
8940 if (! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
8941 8 * i, & exidx_fn, & fn_addr, NULL)
8942 || ! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
8943 8 * i + 4, & exidx_entry, & entry_addr, NULL))
8944 {
8945 free (aux->funtab);
8946 arm_free_section (& exidx_arm_sec);
8947 arm_free_section (& extab_arm_sec);
8948 return FALSE;
8949 }
8950
8951 /* ARM EHABI, Section 5:
8952 An index table entry consists of 2 words.
8953 The first word contains a prel31 offset to the start of a function, with bit 31 clear. */
8954 if (exidx_fn & 0x80000000)
8955 {
8956 warn (_("corrupt index table entry: %x\n"), exidx_fn);
8957 res = FALSE;
8958 }
8959
8960 fn = arm_expand_prel31 (exidx_fn, exidx_sec->sh_addr + 8 * i);
8961
8962 arm_print_vma_and_name (aux, fn, fn_addr);
8963 fputs (": ", stdout);
8964
8965 if (exidx_entry == 1)
8966 {
8967 print_vma (exidx_entry, PREFIX_HEX);
8968 fputs (" [cantunwind]\n", stdout);
8969 }
8970 else if (exidx_entry & 0x80000000)
8971 {
8972 print_vma (exidx_entry, PREFIX_HEX);
8973 fputc ('\n', stdout);
8974 decode_arm_unwind (aux, exidx_entry, 4, 0, NULL, NULL);
8975 }
8976 else
8977 {
8978 bfd_vma table, table_offset = 0;
8979 Elf_Internal_Shdr *table_sec;
8980
8981 fputs ("@", stdout);
8982 table = arm_expand_prel31 (exidx_entry, exidx_sec->sh_addr + 8 * i + 4);
8983 print_vma (table, PREFIX_HEX);
8984 printf ("\n");
8985
8986 /* Locate the matching .ARM.extab. */
8987 if (entry_addr.section != SHN_UNDEF
8988 && entry_addr.section < elf_header.e_shnum)
8989 {
8990 table_sec = section_headers + entry_addr.section;
8991 table_offset = entry_addr.offset;
8992 /* PR 18879 */
8993 if (table_offset > table_sec->sh_size
8994 || ((bfd_signed_vma) table_offset) < 0)
8995 {
8996 warn (_("Unwind entry contains corrupt offset (0x%lx) into section %s\n"),
8997 (unsigned long) table_offset,
8998 printable_section_name (table_sec));
8999 res = FALSE;
9000 continue;
9001 }
9002 }
9003 else
9004 {
9005 table_sec = find_section_by_address (table);
9006 if (table_sec != NULL)
9007 table_offset = table - table_sec->sh_addr;
9008 }
9009
9010 if (table_sec == NULL)
9011 {
9012 warn (_("Could not locate .ARM.extab section containing 0x%lx.\n"),
9013 (unsigned long) table);
9014 res = FALSE;
9015 continue;
9016 }
9017
9018 if (! decode_arm_unwind (aux, 0, 0, table_offset, table_sec,
9019 &extab_arm_sec))
9020 res = FALSE;
9021 }
9022 }
9023
9024 printf ("\n");
9025
9026 free (aux->funtab);
9027 arm_free_section (&exidx_arm_sec);
9028 arm_free_section (&extab_arm_sec);
9029
9030 return res;
9031 }
9032
9033 /* Used for both ARM and C6X unwinding tables. */
9034
9035 static bfd_boolean
9036 arm_process_unwind (FILE *file)
9037 {
9038 struct arm_unw_aux_info aux;
9039 Elf_Internal_Shdr *unwsec = NULL;
9040 Elf_Internal_Shdr *strsec;
9041 Elf_Internal_Shdr *sec;
9042 unsigned long i;
9043 unsigned int sec_type;
9044 bfd_boolean res = TRUE;
9045
9046 switch (elf_header.e_machine)
9047 {
9048 case EM_ARM:
9049 sec_type = SHT_ARM_EXIDX;
9050 break;
9051
9052 case EM_TI_C6000:
9053 sec_type = SHT_C6000_UNWIND;
9054 break;
9055
9056 default:
9057 error (_("Unsupported architecture type %d encountered when processing unwind table\n"),
9058 elf_header.e_machine);
9059 return FALSE;
9060 }
9061
9062 if (string_table == NULL)
9063 return FALSE;
9064
9065 memset (& aux, 0, sizeof (aux));
9066 aux.file = file;
9067
9068 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
9069 {
9070 if (sec->sh_type == SHT_SYMTAB && sec->sh_link < elf_header.e_shnum)
9071 {
9072 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
9073
9074 strsec = section_headers + sec->sh_link;
9075
9076 /* PR binutils/17531 file: 011-12666-0.004. */
9077 if (aux.strtab != NULL)
9078 {
9079 error (_("Multiple string tables found in file.\n"));
9080 free (aux.strtab);
9081 res = FALSE;
9082 }
9083 aux.strtab = get_data (NULL, file, strsec->sh_offset,
9084 1, strsec->sh_size, _("string table"));
9085 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
9086 }
9087 else if (sec->sh_type == sec_type)
9088 unwsec = sec;
9089 }
9090
9091 if (unwsec == NULL)
9092 printf (_("\nThere are no unwind sections in this file.\n"));
9093 else
9094 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
9095 {
9096 if (sec->sh_type == sec_type)
9097 {
9098 unsigned long num_unwind = sec->sh_size / (2 * eh_addr_size);
9099 printf (ngettext ("\nUnwind section '%s' at offset 0x%lx "
9100 "contains %lu entry:\n",
9101 "\nUnwind section '%s' at offset 0x%lx "
9102 "contains %lu entries:\n",
9103 num_unwind),
9104 printable_section_name (sec),
9105 (unsigned long) sec->sh_offset,
9106 num_unwind);
9107
9108 if (! dump_arm_unwind (&aux, sec))
9109 res = FALSE;
9110 }
9111 }
9112
9113 if (aux.symtab)
9114 free (aux.symtab);
9115 if (aux.strtab)
9116 free ((char *) aux.strtab);
9117
9118 return res;
9119 }
9120
9121 static bfd_boolean
9122 process_unwind (FILE * file)
9123 {
9124 struct unwind_handler
9125 {
9126 unsigned int machtype;
9127 bfd_boolean (* handler)(FILE *);
9128 } handlers[] =
9129 {
9130 { EM_ARM, arm_process_unwind },
9131 { EM_IA_64, ia64_process_unwind },
9132 { EM_PARISC, hppa_process_unwind },
9133 { EM_TI_C6000, arm_process_unwind },
9134 { 0, NULL }
9135 };
9136 int i;
9137
9138 if (!do_unwind)
9139 return TRUE;
9140
9141 for (i = 0; handlers[i].handler != NULL; i++)
9142 if (elf_header.e_machine == handlers[i].machtype)
9143 return handlers[i].handler (file);
9144
9145 printf (_("\nThe decoding of unwind sections for machine type %s is not currently supported.\n"),
9146 get_machine_name (elf_header.e_machine));
9147 return TRUE;
9148 }
9149
9150 static void
9151 dynamic_section_mips_val (Elf_Internal_Dyn * entry)
9152 {
9153 switch (entry->d_tag)
9154 {
9155 case DT_MIPS_FLAGS:
9156 if (entry->d_un.d_val == 0)
9157 printf (_("NONE"));
9158 else
9159 {
9160 static const char * opts[] =
9161 {
9162 "QUICKSTART", "NOTPOT", "NO_LIBRARY_REPLACEMENT",
9163 "NO_MOVE", "SGI_ONLY", "GUARANTEE_INIT", "DELTA_C_PLUS_PLUS",
9164 "GUARANTEE_START_INIT", "PIXIE", "DEFAULT_DELAY_LOAD",
9165 "REQUICKSTART", "REQUICKSTARTED", "CORD", "NO_UNRES_UNDEF",
9166 "RLD_ORDER_SAFE"
9167 };
9168 unsigned int cnt;
9169 bfd_boolean first = TRUE;
9170
9171 for (cnt = 0; cnt < ARRAY_SIZE (opts); ++cnt)
9172 if (entry->d_un.d_val & (1 << cnt))
9173 {
9174 printf ("%s%s", first ? "" : " ", opts[cnt]);
9175 first = FALSE;
9176 }
9177 }
9178 break;
9179
9180 case DT_MIPS_IVERSION:
9181 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9182 printf (_("Interface Version: %s"), GET_DYNAMIC_NAME (entry->d_un.d_val));
9183 else
9184 {
9185 char buf[40];
9186 sprintf_vma (buf, entry->d_un.d_ptr);
9187 /* Note: coded this way so that there is a single string for translation. */
9188 printf (_("<corrupt: %s>"), buf);
9189 }
9190 break;
9191
9192 case DT_MIPS_TIME_STAMP:
9193 {
9194 char timebuf[128];
9195 struct tm * tmp;
9196 time_t atime = entry->d_un.d_val;
9197
9198 tmp = gmtime (&atime);
9199 /* PR 17531: file: 6accc532. */
9200 if (tmp == NULL)
9201 snprintf (timebuf, sizeof (timebuf), _("<corrupt>"));
9202 else
9203 snprintf (timebuf, sizeof (timebuf), "%04u-%02u-%02uT%02u:%02u:%02u",
9204 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
9205 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
9206 printf (_("Time Stamp: %s"), timebuf);
9207 }
9208 break;
9209
9210 case DT_MIPS_RLD_VERSION:
9211 case DT_MIPS_LOCAL_GOTNO:
9212 case DT_MIPS_CONFLICTNO:
9213 case DT_MIPS_LIBLISTNO:
9214 case DT_MIPS_SYMTABNO:
9215 case DT_MIPS_UNREFEXTNO:
9216 case DT_MIPS_HIPAGENO:
9217 case DT_MIPS_DELTA_CLASS_NO:
9218 case DT_MIPS_DELTA_INSTANCE_NO:
9219 case DT_MIPS_DELTA_RELOC_NO:
9220 case DT_MIPS_DELTA_SYM_NO:
9221 case DT_MIPS_DELTA_CLASSSYM_NO:
9222 case DT_MIPS_COMPACT_SIZE:
9223 print_vma (entry->d_un.d_val, DEC);
9224 break;
9225
9226 default:
9227 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9228 }
9229 putchar ('\n');
9230 }
9231
9232 static void
9233 dynamic_section_parisc_val (Elf_Internal_Dyn * entry)
9234 {
9235 switch (entry->d_tag)
9236 {
9237 case DT_HP_DLD_FLAGS:
9238 {
9239 static struct
9240 {
9241 long int bit;
9242 const char * str;
9243 }
9244 flags[] =
9245 {
9246 { DT_HP_DEBUG_PRIVATE, "HP_DEBUG_PRIVATE" },
9247 { DT_HP_DEBUG_CALLBACK, "HP_DEBUG_CALLBACK" },
9248 { DT_HP_DEBUG_CALLBACK_BOR, "HP_DEBUG_CALLBACK_BOR" },
9249 { DT_HP_NO_ENVVAR, "HP_NO_ENVVAR" },
9250 { DT_HP_BIND_NOW, "HP_BIND_NOW" },
9251 { DT_HP_BIND_NONFATAL, "HP_BIND_NONFATAL" },
9252 { DT_HP_BIND_VERBOSE, "HP_BIND_VERBOSE" },
9253 { DT_HP_BIND_RESTRICTED, "HP_BIND_RESTRICTED" },
9254 { DT_HP_BIND_SYMBOLIC, "HP_BIND_SYMBOLIC" },
9255 { DT_HP_RPATH_FIRST, "HP_RPATH_FIRST" },
9256 { DT_HP_BIND_DEPTH_FIRST, "HP_BIND_DEPTH_FIRST" },
9257 { DT_HP_GST, "HP_GST" },
9258 { DT_HP_SHLIB_FIXED, "HP_SHLIB_FIXED" },
9259 { DT_HP_MERGE_SHLIB_SEG, "HP_MERGE_SHLIB_SEG" },
9260 { DT_HP_NODELETE, "HP_NODELETE" },
9261 { DT_HP_GROUP, "HP_GROUP" },
9262 { DT_HP_PROTECT_LINKAGE_TABLE, "HP_PROTECT_LINKAGE_TABLE" }
9263 };
9264 bfd_boolean first = TRUE;
9265 size_t cnt;
9266 bfd_vma val = entry->d_un.d_val;
9267
9268 for (cnt = 0; cnt < ARRAY_SIZE (flags); ++cnt)
9269 if (val & flags[cnt].bit)
9270 {
9271 if (! first)
9272 putchar (' ');
9273 fputs (flags[cnt].str, stdout);
9274 first = FALSE;
9275 val ^= flags[cnt].bit;
9276 }
9277
9278 if (val != 0 || first)
9279 {
9280 if (! first)
9281 putchar (' ');
9282 print_vma (val, HEX);
9283 }
9284 }
9285 break;
9286
9287 default:
9288 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9289 break;
9290 }
9291 putchar ('\n');
9292 }
9293
9294 #ifdef BFD64
9295
9296 /* VMS vs Unix time offset and factor. */
9297
9298 #define VMS_EPOCH_OFFSET 35067168000000000LL
9299 #define VMS_GRANULARITY_FACTOR 10000000
9300
9301 /* Display a VMS time in a human readable format. */
9302
9303 static void
9304 print_vms_time (bfd_int64_t vmstime)
9305 {
9306 struct tm *tm;
9307 time_t unxtime;
9308
9309 unxtime = (vmstime - VMS_EPOCH_OFFSET) / VMS_GRANULARITY_FACTOR;
9310 tm = gmtime (&unxtime);
9311 printf ("%04u-%02u-%02uT%02u:%02u:%02u",
9312 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
9313 tm->tm_hour, tm->tm_min, tm->tm_sec);
9314 }
9315 #endif /* BFD64 */
9316
9317 static void
9318 dynamic_section_ia64_val (Elf_Internal_Dyn * entry)
9319 {
9320 switch (entry->d_tag)
9321 {
9322 case DT_IA_64_PLT_RESERVE:
9323 /* First 3 slots reserved. */
9324 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9325 printf (" -- ");
9326 print_vma (entry->d_un.d_ptr + (3 * 8), PREFIX_HEX);
9327 break;
9328
9329 case DT_IA_64_VMS_LINKTIME:
9330 #ifdef BFD64
9331 print_vms_time (entry->d_un.d_val);
9332 #endif
9333 break;
9334
9335 case DT_IA_64_VMS_LNKFLAGS:
9336 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9337 if (entry->d_un.d_val & VMS_LF_CALL_DEBUG)
9338 printf (" CALL_DEBUG");
9339 if (entry->d_un.d_val & VMS_LF_NOP0BUFS)
9340 printf (" NOP0BUFS");
9341 if (entry->d_un.d_val & VMS_LF_P0IMAGE)
9342 printf (" P0IMAGE");
9343 if (entry->d_un.d_val & VMS_LF_MKTHREADS)
9344 printf (" MKTHREADS");
9345 if (entry->d_un.d_val & VMS_LF_UPCALLS)
9346 printf (" UPCALLS");
9347 if (entry->d_un.d_val & VMS_LF_IMGSTA)
9348 printf (" IMGSTA");
9349 if (entry->d_un.d_val & VMS_LF_INITIALIZE)
9350 printf (" INITIALIZE");
9351 if (entry->d_un.d_val & VMS_LF_MAIN)
9352 printf (" MAIN");
9353 if (entry->d_un.d_val & VMS_LF_EXE_INIT)
9354 printf (" EXE_INIT");
9355 if (entry->d_un.d_val & VMS_LF_TBK_IN_IMG)
9356 printf (" TBK_IN_IMG");
9357 if (entry->d_un.d_val & VMS_LF_DBG_IN_IMG)
9358 printf (" DBG_IN_IMG");
9359 if (entry->d_un.d_val & VMS_LF_TBK_IN_DSF)
9360 printf (" TBK_IN_DSF");
9361 if (entry->d_un.d_val & VMS_LF_DBG_IN_DSF)
9362 printf (" DBG_IN_DSF");
9363 if (entry->d_un.d_val & VMS_LF_SIGNATURES)
9364 printf (" SIGNATURES");
9365 if (entry->d_un.d_val & VMS_LF_REL_SEG_OFF)
9366 printf (" REL_SEG_OFF");
9367 break;
9368
9369 default:
9370 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9371 break;
9372 }
9373 putchar ('\n');
9374 }
9375
9376 static bfd_boolean
9377 get_32bit_dynamic_section (FILE * file)
9378 {
9379 Elf32_External_Dyn * edyn;
9380 Elf32_External_Dyn * ext;
9381 Elf_Internal_Dyn * entry;
9382
9383 edyn = (Elf32_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
9384 dynamic_size, _("dynamic section"));
9385 if (!edyn)
9386 return FALSE;
9387
9388 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9389 might not have the luxury of section headers. Look for the DT_NULL
9390 terminator to determine the number of entries. */
9391 for (ext = edyn, dynamic_nent = 0;
9392 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9393 ext++)
9394 {
9395 dynamic_nent++;
9396 if (BYTE_GET (ext->d_tag) == DT_NULL)
9397 break;
9398 }
9399
9400 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9401 sizeof (* entry));
9402 if (dynamic_section == NULL)
9403 {
9404 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9405 (unsigned long) dynamic_nent);
9406 free (edyn);
9407 return FALSE;
9408 }
9409
9410 for (ext = edyn, entry = dynamic_section;
9411 entry < dynamic_section + dynamic_nent;
9412 ext++, entry++)
9413 {
9414 entry->d_tag = BYTE_GET (ext->d_tag);
9415 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9416 }
9417
9418 free (edyn);
9419
9420 return TRUE;
9421 }
9422
9423 static bfd_boolean
9424 get_64bit_dynamic_section (FILE * file)
9425 {
9426 Elf64_External_Dyn * edyn;
9427 Elf64_External_Dyn * ext;
9428 Elf_Internal_Dyn * entry;
9429
9430 /* Read in the data. */
9431 edyn = (Elf64_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
9432 dynamic_size, _("dynamic section"));
9433 if (!edyn)
9434 return FALSE;
9435
9436 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9437 might not have the luxury of section headers. Look for the DT_NULL
9438 terminator to determine the number of entries. */
9439 for (ext = edyn, dynamic_nent = 0;
9440 /* PR 17533 file: 033-67080-0.004 - do not read past end of buffer. */
9441 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9442 ext++)
9443 {
9444 dynamic_nent++;
9445 if (BYTE_GET (ext->d_tag) == DT_NULL)
9446 break;
9447 }
9448
9449 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9450 sizeof (* entry));
9451 if (dynamic_section == NULL)
9452 {
9453 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9454 (unsigned long) dynamic_nent);
9455 free (edyn);
9456 return FALSE;
9457 }
9458
9459 /* Convert from external to internal formats. */
9460 for (ext = edyn, entry = dynamic_section;
9461 entry < dynamic_section + dynamic_nent;
9462 ext++, entry++)
9463 {
9464 entry->d_tag = BYTE_GET (ext->d_tag);
9465 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9466 }
9467
9468 free (edyn);
9469
9470 return TRUE;
9471 }
9472
9473 static void
9474 print_dynamic_flags (bfd_vma flags)
9475 {
9476 bfd_boolean first = TRUE;
9477
9478 while (flags)
9479 {
9480 bfd_vma flag;
9481
9482 flag = flags & - flags;
9483 flags &= ~ flag;
9484
9485 if (first)
9486 first = FALSE;
9487 else
9488 putc (' ', stdout);
9489
9490 switch (flag)
9491 {
9492 case DF_ORIGIN: fputs ("ORIGIN", stdout); break;
9493 case DF_SYMBOLIC: fputs ("SYMBOLIC", stdout); break;
9494 case DF_TEXTREL: fputs ("TEXTREL", stdout); break;
9495 case DF_BIND_NOW: fputs ("BIND_NOW", stdout); break;
9496 case DF_STATIC_TLS: fputs ("STATIC_TLS", stdout); break;
9497 default: fputs (_("unknown"), stdout); break;
9498 }
9499 }
9500 puts ("");
9501 }
9502
9503 /* Parse and display the contents of the dynamic section. */
9504
9505 static bfd_boolean
9506 process_dynamic_section (FILE * file)
9507 {
9508 Elf_Internal_Dyn * entry;
9509
9510 if (dynamic_size == 0)
9511 {
9512 if (do_dynamic)
9513 printf (_("\nThere is no dynamic section in this file.\n"));
9514
9515 return TRUE;
9516 }
9517
9518 if (is_32bit_elf)
9519 {
9520 if (! get_32bit_dynamic_section (file))
9521 return FALSE;
9522 }
9523 else
9524 {
9525 if (! get_64bit_dynamic_section (file))
9526 return FALSE;
9527 }
9528
9529 /* Find the appropriate symbol table. */
9530 if (dynamic_symbols == NULL)
9531 {
9532 for (entry = dynamic_section;
9533 entry < dynamic_section + dynamic_nent;
9534 ++entry)
9535 {
9536 Elf_Internal_Shdr section;
9537
9538 if (entry->d_tag != DT_SYMTAB)
9539 continue;
9540
9541 dynamic_info[DT_SYMTAB] = entry->d_un.d_val;
9542
9543 /* Since we do not know how big the symbol table is,
9544 we default to reading in the entire file (!) and
9545 processing that. This is overkill, I know, but it
9546 should work. */
9547 section.sh_offset = offset_from_vma (file, entry->d_un.d_val, 0);
9548 if ((bfd_size_type) section.sh_offset > current_file_size)
9549 {
9550 /* See PR 21379 for a reproducer. */
9551 error (_("Invalid DT_SYMTAB entry: %lx"), (long) section.sh_offset);
9552 return FALSE;
9553 }
9554
9555 if (archive_file_offset != 0)
9556 section.sh_size = archive_file_size - section.sh_offset;
9557 else
9558 {
9559 if (fseek (file, 0, SEEK_END))
9560 error (_("Unable to seek to end of file!\n"));
9561
9562 section.sh_size = ftell (file) - section.sh_offset;
9563 }
9564
9565 if (is_32bit_elf)
9566 section.sh_entsize = sizeof (Elf32_External_Sym);
9567 else
9568 section.sh_entsize = sizeof (Elf64_External_Sym);
9569 section.sh_name = string_table_length;
9570
9571 dynamic_symbols = GET_ELF_SYMBOLS (file, &section, & num_dynamic_syms);
9572 if (num_dynamic_syms < 1)
9573 {
9574 error (_("Unable to determine the number of symbols to load\n"));
9575 continue;
9576 }
9577 }
9578 }
9579
9580 /* Similarly find a string table. */
9581 if (dynamic_strings == NULL)
9582 {
9583 for (entry = dynamic_section;
9584 entry < dynamic_section + dynamic_nent;
9585 ++entry)
9586 {
9587 unsigned long offset;
9588 long str_tab_len;
9589
9590 if (entry->d_tag != DT_STRTAB)
9591 continue;
9592
9593 dynamic_info[DT_STRTAB] = entry->d_un.d_val;
9594
9595 /* Since we do not know how big the string table is,
9596 we default to reading in the entire file (!) and
9597 processing that. This is overkill, I know, but it
9598 should work. */
9599
9600 offset = offset_from_vma (file, entry->d_un.d_val, 0);
9601
9602 if (archive_file_offset != 0)
9603 str_tab_len = archive_file_size - offset;
9604 else
9605 {
9606 if (fseek (file, 0, SEEK_END))
9607 error (_("Unable to seek to end of file\n"));
9608 str_tab_len = ftell (file) - offset;
9609 }
9610
9611 if (str_tab_len < 1)
9612 {
9613 error
9614 (_("Unable to determine the length of the dynamic string table\n"));
9615 continue;
9616 }
9617
9618 dynamic_strings = (char *) get_data (NULL, file, offset, 1,
9619 str_tab_len,
9620 _("dynamic string table"));
9621 dynamic_strings_length = dynamic_strings == NULL ? 0 : str_tab_len;
9622 break;
9623 }
9624 }
9625
9626 /* And find the syminfo section if available. */
9627 if (dynamic_syminfo == NULL)
9628 {
9629 unsigned long syminsz = 0;
9630
9631 for (entry = dynamic_section;
9632 entry < dynamic_section + dynamic_nent;
9633 ++entry)
9634 {
9635 if (entry->d_tag == DT_SYMINENT)
9636 {
9637 /* Note: these braces are necessary to avoid a syntax
9638 error from the SunOS4 C compiler. */
9639 /* PR binutils/17531: A corrupt file can trigger this test.
9640 So do not use an assert, instead generate an error message. */
9641 if (sizeof (Elf_External_Syminfo) != entry->d_un.d_val)
9642 error (_("Bad value (%d) for SYMINENT entry\n"),
9643 (int) entry->d_un.d_val);
9644 }
9645 else if (entry->d_tag == DT_SYMINSZ)
9646 syminsz = entry->d_un.d_val;
9647 else if (entry->d_tag == DT_SYMINFO)
9648 dynamic_syminfo_offset = offset_from_vma (file, entry->d_un.d_val,
9649 syminsz);
9650 }
9651
9652 if (dynamic_syminfo_offset != 0 && syminsz != 0)
9653 {
9654 Elf_External_Syminfo * extsyminfo;
9655 Elf_External_Syminfo * extsym;
9656 Elf_Internal_Syminfo * syminfo;
9657
9658 /* There is a syminfo section. Read the data. */
9659 extsyminfo = (Elf_External_Syminfo *)
9660 get_data (NULL, file, dynamic_syminfo_offset, 1, syminsz,
9661 _("symbol information"));
9662 if (!extsyminfo)
9663 return FALSE;
9664
9665 dynamic_syminfo = (Elf_Internal_Syminfo *) malloc (syminsz);
9666 if (dynamic_syminfo == NULL)
9667 {
9668 error (_("Out of memory allocating %lu byte for dynamic symbol info\n"),
9669 (unsigned long) syminsz);
9670 return FALSE;
9671 }
9672
9673 dynamic_syminfo_nent = syminsz / sizeof (Elf_External_Syminfo);
9674 for (syminfo = dynamic_syminfo, extsym = extsyminfo;
9675 syminfo < dynamic_syminfo + dynamic_syminfo_nent;
9676 ++syminfo, ++extsym)
9677 {
9678 syminfo->si_boundto = BYTE_GET (extsym->si_boundto);
9679 syminfo->si_flags = BYTE_GET (extsym->si_flags);
9680 }
9681
9682 free (extsyminfo);
9683 }
9684 }
9685
9686 if (do_dynamic && dynamic_addr)
9687 printf (ngettext ("\nDynamic section at offset 0x%lx "
9688 "contains %lu entry:\n",
9689 "\nDynamic section at offset 0x%lx "
9690 "contains %lu entries:\n",
9691 dynamic_nent),
9692 dynamic_addr, (unsigned long) dynamic_nent);
9693 if (do_dynamic)
9694 printf (_(" Tag Type Name/Value\n"));
9695
9696 for (entry = dynamic_section;
9697 entry < dynamic_section + dynamic_nent;
9698 entry++)
9699 {
9700 if (do_dynamic)
9701 {
9702 const char * dtype;
9703
9704 putchar (' ');
9705 print_vma (entry->d_tag, FULL_HEX);
9706 dtype = get_dynamic_type (entry->d_tag);
9707 printf (" (%s)%*s", dtype,
9708 ((is_32bit_elf ? 27 : 19) - (int) strlen (dtype)), " ");
9709 }
9710
9711 switch (entry->d_tag)
9712 {
9713 case DT_FLAGS:
9714 if (do_dynamic)
9715 print_dynamic_flags (entry->d_un.d_val);
9716 break;
9717
9718 case DT_AUXILIARY:
9719 case DT_FILTER:
9720 case DT_CONFIG:
9721 case DT_DEPAUDIT:
9722 case DT_AUDIT:
9723 if (do_dynamic)
9724 {
9725 switch (entry->d_tag)
9726 {
9727 case DT_AUXILIARY:
9728 printf (_("Auxiliary library"));
9729 break;
9730
9731 case DT_FILTER:
9732 printf (_("Filter library"));
9733 break;
9734
9735 case DT_CONFIG:
9736 printf (_("Configuration file"));
9737 break;
9738
9739 case DT_DEPAUDIT:
9740 printf (_("Dependency audit library"));
9741 break;
9742
9743 case DT_AUDIT:
9744 printf (_("Audit library"));
9745 break;
9746 }
9747
9748 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9749 printf (": [%s]\n", GET_DYNAMIC_NAME (entry->d_un.d_val));
9750 else
9751 {
9752 printf (": ");
9753 print_vma (entry->d_un.d_val, PREFIX_HEX);
9754 putchar ('\n');
9755 }
9756 }
9757 break;
9758
9759 case DT_FEATURE:
9760 if (do_dynamic)
9761 {
9762 printf (_("Flags:"));
9763
9764 if (entry->d_un.d_val == 0)
9765 printf (_(" None\n"));
9766 else
9767 {
9768 unsigned long int val = entry->d_un.d_val;
9769
9770 if (val & DTF_1_PARINIT)
9771 {
9772 printf (" PARINIT");
9773 val ^= DTF_1_PARINIT;
9774 }
9775 if (val & DTF_1_CONFEXP)
9776 {
9777 printf (" CONFEXP");
9778 val ^= DTF_1_CONFEXP;
9779 }
9780 if (val != 0)
9781 printf (" %lx", val);
9782 puts ("");
9783 }
9784 }
9785 break;
9786
9787 case DT_POSFLAG_1:
9788 if (do_dynamic)
9789 {
9790 printf (_("Flags:"));
9791
9792 if (entry->d_un.d_val == 0)
9793 printf (_(" None\n"));
9794 else
9795 {
9796 unsigned long int val = entry->d_un.d_val;
9797
9798 if (val & DF_P1_LAZYLOAD)
9799 {
9800 printf (" LAZYLOAD");
9801 val ^= DF_P1_LAZYLOAD;
9802 }
9803 if (val & DF_P1_GROUPPERM)
9804 {
9805 printf (" GROUPPERM");
9806 val ^= DF_P1_GROUPPERM;
9807 }
9808 if (val != 0)
9809 printf (" %lx", val);
9810 puts ("");
9811 }
9812 }
9813 break;
9814
9815 case DT_FLAGS_1:
9816 if (do_dynamic)
9817 {
9818 printf (_("Flags:"));
9819 if (entry->d_un.d_val == 0)
9820 printf (_(" None\n"));
9821 else
9822 {
9823 unsigned long int val = entry->d_un.d_val;
9824
9825 if (val & DF_1_NOW)
9826 {
9827 printf (" NOW");
9828 val ^= DF_1_NOW;
9829 }
9830 if (val & DF_1_GLOBAL)
9831 {
9832 printf (" GLOBAL");
9833 val ^= DF_1_GLOBAL;
9834 }
9835 if (val & DF_1_GROUP)
9836 {
9837 printf (" GROUP");
9838 val ^= DF_1_GROUP;
9839 }
9840 if (val & DF_1_NODELETE)
9841 {
9842 printf (" NODELETE");
9843 val ^= DF_1_NODELETE;
9844 }
9845 if (val & DF_1_LOADFLTR)
9846 {
9847 printf (" LOADFLTR");
9848 val ^= DF_1_LOADFLTR;
9849 }
9850 if (val & DF_1_INITFIRST)
9851 {
9852 printf (" INITFIRST");
9853 val ^= DF_1_INITFIRST;
9854 }
9855 if (val & DF_1_NOOPEN)
9856 {
9857 printf (" NOOPEN");
9858 val ^= DF_1_NOOPEN;
9859 }
9860 if (val & DF_1_ORIGIN)
9861 {
9862 printf (" ORIGIN");
9863 val ^= DF_1_ORIGIN;
9864 }
9865 if (val & DF_1_DIRECT)
9866 {
9867 printf (" DIRECT");
9868 val ^= DF_1_DIRECT;
9869 }
9870 if (val & DF_1_TRANS)
9871 {
9872 printf (" TRANS");
9873 val ^= DF_1_TRANS;
9874 }
9875 if (val & DF_1_INTERPOSE)
9876 {
9877 printf (" INTERPOSE");
9878 val ^= DF_1_INTERPOSE;
9879 }
9880 if (val & DF_1_NODEFLIB)
9881 {
9882 printf (" NODEFLIB");
9883 val ^= DF_1_NODEFLIB;
9884 }
9885 if (val & DF_1_NODUMP)
9886 {
9887 printf (" NODUMP");
9888 val ^= DF_1_NODUMP;
9889 }
9890 if (val & DF_1_CONFALT)
9891 {
9892 printf (" CONFALT");
9893 val ^= DF_1_CONFALT;
9894 }
9895 if (val & DF_1_ENDFILTEE)
9896 {
9897 printf (" ENDFILTEE");
9898 val ^= DF_1_ENDFILTEE;
9899 }
9900 if (val & DF_1_DISPRELDNE)
9901 {
9902 printf (" DISPRELDNE");
9903 val ^= DF_1_DISPRELDNE;
9904 }
9905 if (val & DF_1_DISPRELPND)
9906 {
9907 printf (" DISPRELPND");
9908 val ^= DF_1_DISPRELPND;
9909 }
9910 if (val & DF_1_NODIRECT)
9911 {
9912 printf (" NODIRECT");
9913 val ^= DF_1_NODIRECT;
9914 }
9915 if (val & DF_1_IGNMULDEF)
9916 {
9917 printf (" IGNMULDEF");
9918 val ^= DF_1_IGNMULDEF;
9919 }
9920 if (val & DF_1_NOKSYMS)
9921 {
9922 printf (" NOKSYMS");
9923 val ^= DF_1_NOKSYMS;
9924 }
9925 if (val & DF_1_NOHDR)
9926 {
9927 printf (" NOHDR");
9928 val ^= DF_1_NOHDR;
9929 }
9930 if (val & DF_1_EDITED)
9931 {
9932 printf (" EDITED");
9933 val ^= DF_1_EDITED;
9934 }
9935 if (val & DF_1_NORELOC)
9936 {
9937 printf (" NORELOC");
9938 val ^= DF_1_NORELOC;
9939 }
9940 if (val & DF_1_SYMINTPOSE)
9941 {
9942 printf (" SYMINTPOSE");
9943 val ^= DF_1_SYMINTPOSE;
9944 }
9945 if (val & DF_1_GLOBAUDIT)
9946 {
9947 printf (" GLOBAUDIT");
9948 val ^= DF_1_GLOBAUDIT;
9949 }
9950 if (val & DF_1_SINGLETON)
9951 {
9952 printf (" SINGLETON");
9953 val ^= DF_1_SINGLETON;
9954 }
9955 if (val & DF_1_STUB)
9956 {
9957 printf (" STUB");
9958 val ^= DF_1_STUB;
9959 }
9960 if (val & DF_1_PIE)
9961 {
9962 printf (" PIE");
9963 val ^= DF_1_PIE;
9964 }
9965 if (val != 0)
9966 printf (" %lx", val);
9967 puts ("");
9968 }
9969 }
9970 break;
9971
9972 case DT_PLTREL:
9973 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9974 if (do_dynamic)
9975 puts (get_dynamic_type (entry->d_un.d_val));
9976 break;
9977
9978 case DT_NULL :
9979 case DT_NEEDED :
9980 case DT_PLTGOT :
9981 case DT_HASH :
9982 case DT_STRTAB :
9983 case DT_SYMTAB :
9984 case DT_RELA :
9985 case DT_INIT :
9986 case DT_FINI :
9987 case DT_SONAME :
9988 case DT_RPATH :
9989 case DT_SYMBOLIC:
9990 case DT_REL :
9991 case DT_DEBUG :
9992 case DT_TEXTREL :
9993 case DT_JMPREL :
9994 case DT_RUNPATH :
9995 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9996
9997 if (do_dynamic)
9998 {
9999 char * name;
10000
10001 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
10002 name = GET_DYNAMIC_NAME (entry->d_un.d_val);
10003 else
10004 name = NULL;
10005
10006 if (name)
10007 {
10008 switch (entry->d_tag)
10009 {
10010 case DT_NEEDED:
10011 printf (_("Shared library: [%s]"), name);
10012
10013 if (streq (name, program_interpreter))
10014 printf (_(" program interpreter"));
10015 break;
10016
10017 case DT_SONAME:
10018 printf (_("Library soname: [%s]"), name);
10019 break;
10020
10021 case DT_RPATH:
10022 printf (_("Library rpath: [%s]"), name);
10023 break;
10024
10025 case DT_RUNPATH:
10026 printf (_("Library runpath: [%s]"), name);
10027 break;
10028
10029 default:
10030 print_vma (entry->d_un.d_val, PREFIX_HEX);
10031 break;
10032 }
10033 }
10034 else
10035 print_vma (entry->d_un.d_val, PREFIX_HEX);
10036
10037 putchar ('\n');
10038 }
10039 break;
10040
10041 case DT_PLTRELSZ:
10042 case DT_RELASZ :
10043 case DT_STRSZ :
10044 case DT_RELSZ :
10045 case DT_RELAENT :
10046 case DT_SYMENT :
10047 case DT_RELENT :
10048 dynamic_info[entry->d_tag] = entry->d_un.d_val;
10049 /* Fall through. */
10050 case DT_PLTPADSZ:
10051 case DT_MOVEENT :
10052 case DT_MOVESZ :
10053 case DT_INIT_ARRAYSZ:
10054 case DT_FINI_ARRAYSZ:
10055 case DT_GNU_CONFLICTSZ:
10056 case DT_GNU_LIBLISTSZ:
10057 if (do_dynamic)
10058 {
10059 print_vma (entry->d_un.d_val, UNSIGNED);
10060 printf (_(" (bytes)\n"));
10061 }
10062 break;
10063
10064 case DT_VERDEFNUM:
10065 case DT_VERNEEDNUM:
10066 case DT_RELACOUNT:
10067 case DT_RELCOUNT:
10068 if (do_dynamic)
10069 {
10070 print_vma (entry->d_un.d_val, UNSIGNED);
10071 putchar ('\n');
10072 }
10073 break;
10074
10075 case DT_SYMINSZ:
10076 case DT_SYMINENT:
10077 case DT_SYMINFO:
10078 case DT_USED:
10079 case DT_INIT_ARRAY:
10080 case DT_FINI_ARRAY:
10081 if (do_dynamic)
10082 {
10083 if (entry->d_tag == DT_USED
10084 && VALID_DYNAMIC_NAME (entry->d_un.d_val))
10085 {
10086 char * name = GET_DYNAMIC_NAME (entry->d_un.d_val);
10087
10088 if (*name)
10089 {
10090 printf (_("Not needed object: [%s]\n"), name);
10091 break;
10092 }
10093 }
10094
10095 print_vma (entry->d_un.d_val, PREFIX_HEX);
10096 putchar ('\n');
10097 }
10098 break;
10099
10100 case DT_BIND_NOW:
10101 /* The value of this entry is ignored. */
10102 if (do_dynamic)
10103 putchar ('\n');
10104 break;
10105
10106 case DT_GNU_PRELINKED:
10107 if (do_dynamic)
10108 {
10109 struct tm * tmp;
10110 time_t atime = entry->d_un.d_val;
10111
10112 tmp = gmtime (&atime);
10113 /* PR 17533 file: 041-1244816-0.004. */
10114 if (tmp == NULL)
10115 printf (_("<corrupt time val: %lx"),
10116 (unsigned long) atime);
10117 else
10118 printf ("%04u-%02u-%02uT%02u:%02u:%02u\n",
10119 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
10120 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
10121
10122 }
10123 break;
10124
10125 case DT_GNU_HASH:
10126 dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
10127 if (do_dynamic)
10128 {
10129 print_vma (entry->d_un.d_val, PREFIX_HEX);
10130 putchar ('\n');
10131 }
10132 break;
10133
10134 default:
10135 if ((entry->d_tag >= DT_VERSYM) && (entry->d_tag <= DT_VERNEEDNUM))
10136 version_info[DT_VERSIONTAGIDX (entry->d_tag)] =
10137 entry->d_un.d_val;
10138
10139 if (do_dynamic)
10140 {
10141 switch (elf_header.e_machine)
10142 {
10143 case EM_MIPS:
10144 case EM_MIPS_RS3_LE:
10145 dynamic_section_mips_val (entry);
10146 break;
10147 case EM_PARISC:
10148 dynamic_section_parisc_val (entry);
10149 break;
10150 case EM_IA_64:
10151 dynamic_section_ia64_val (entry);
10152 break;
10153 default:
10154 print_vma (entry->d_un.d_val, PREFIX_HEX);
10155 putchar ('\n');
10156 }
10157 }
10158 break;
10159 }
10160 }
10161
10162 return TRUE;
10163 }
10164
10165 static char *
10166 get_ver_flags (unsigned int flags)
10167 {
10168 static char buff[32];
10169
10170 buff[0] = 0;
10171
10172 if (flags == 0)
10173 return _("none");
10174
10175 if (flags & VER_FLG_BASE)
10176 strcat (buff, "BASE");
10177
10178 if (flags & VER_FLG_WEAK)
10179 {
10180 if (flags & VER_FLG_BASE)
10181 strcat (buff, " | ");
10182
10183 strcat (buff, "WEAK");
10184 }
10185
10186 if (flags & VER_FLG_INFO)
10187 {
10188 if (flags & (VER_FLG_BASE|VER_FLG_WEAK))
10189 strcat (buff, " | ");
10190
10191 strcat (buff, "INFO");
10192 }
10193
10194 if (flags & ~(VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
10195 {
10196 if (flags & (VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
10197 strcat (buff, " | ");
10198
10199 strcat (buff, _("<unknown>"));
10200 }
10201
10202 return buff;
10203 }
10204
10205 /* Display the contents of the version sections. */
10206
10207 static bfd_boolean
10208 process_version_sections (FILE * file)
10209 {
10210 Elf_Internal_Shdr * section;
10211 unsigned i;
10212 bfd_boolean found = FALSE;
10213
10214 if (! do_version)
10215 return TRUE;
10216
10217 for (i = 0, section = section_headers;
10218 i < elf_header.e_shnum;
10219 i++, section++)
10220 {
10221 switch (section->sh_type)
10222 {
10223 case SHT_GNU_verdef:
10224 {
10225 Elf_External_Verdef * edefs;
10226 unsigned long idx;
10227 unsigned long cnt;
10228 char * endbuf;
10229
10230 found = TRUE;
10231
10232 printf (ngettext ("\nVersion definition section '%s' "
10233 "contains %u entry:\n",
10234 "\nVersion definition section '%s' "
10235 "contains %u entries:\n",
10236 section->sh_info),
10237 printable_section_name (section),
10238 section->sh_info);
10239
10240 printf (_(" Addr: 0x"));
10241 printf_vma (section->sh_addr);
10242 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10243 (unsigned long) section->sh_offset, section->sh_link,
10244 printable_section_name_from_index (section->sh_link));
10245
10246 edefs = (Elf_External_Verdef *)
10247 get_data (NULL, file, section->sh_offset, 1,section->sh_size,
10248 _("version definition section"));
10249 if (!edefs)
10250 break;
10251 endbuf = (char *) edefs + section->sh_size;
10252
10253 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
10254 {
10255 char * vstart;
10256 Elf_External_Verdef * edef;
10257 Elf_Internal_Verdef ent;
10258 Elf_External_Verdaux * eaux;
10259 Elf_Internal_Verdaux aux;
10260 unsigned long isum;
10261 int j;
10262
10263 vstart = ((char *) edefs) + idx;
10264 if (vstart + sizeof (*edef) > endbuf)
10265 break;
10266
10267 edef = (Elf_External_Verdef *) vstart;
10268
10269 ent.vd_version = BYTE_GET (edef->vd_version);
10270 ent.vd_flags = BYTE_GET (edef->vd_flags);
10271 ent.vd_ndx = BYTE_GET (edef->vd_ndx);
10272 ent.vd_cnt = BYTE_GET (edef->vd_cnt);
10273 ent.vd_hash = BYTE_GET (edef->vd_hash);
10274 ent.vd_aux = BYTE_GET (edef->vd_aux);
10275 ent.vd_next = BYTE_GET (edef->vd_next);
10276
10277 printf (_(" %#06lx: Rev: %d Flags: %s"),
10278 idx, ent.vd_version, get_ver_flags (ent.vd_flags));
10279
10280 printf (_(" Index: %d Cnt: %d "),
10281 ent.vd_ndx, ent.vd_cnt);
10282
10283 /* Check for overflow. */
10284 if (ent.vd_aux > (size_t) (endbuf - vstart))
10285 break;
10286
10287 vstart += ent.vd_aux;
10288
10289 if (vstart + sizeof (*eaux) > endbuf)
10290 break;
10291 eaux = (Elf_External_Verdaux *) vstart;
10292
10293 aux.vda_name = BYTE_GET (eaux->vda_name);
10294 aux.vda_next = BYTE_GET (eaux->vda_next);
10295
10296 if (VALID_DYNAMIC_NAME (aux.vda_name))
10297 printf (_("Name: %s\n"), GET_DYNAMIC_NAME (aux.vda_name));
10298 else
10299 printf (_("Name index: %ld\n"), aux.vda_name);
10300
10301 isum = idx + ent.vd_aux;
10302
10303 for (j = 1; j < ent.vd_cnt; j++)
10304 {
10305 if (aux.vda_next < sizeof (*eaux)
10306 && !(j == ent.vd_cnt - 1 && aux.vda_next == 0))
10307 {
10308 warn (_("Invalid vda_next field of %lx\n"),
10309 aux.vda_next);
10310 j = ent.vd_cnt;
10311 break;
10312 }
10313 /* Check for overflow. */
10314 if (aux.vda_next > (size_t) (endbuf - vstart))
10315 break;
10316
10317 isum += aux.vda_next;
10318 vstart += aux.vda_next;
10319
10320 if (vstart + sizeof (*eaux) > endbuf)
10321 break;
10322 eaux = (Elf_External_Verdaux *) vstart;
10323
10324 aux.vda_name = BYTE_GET (eaux->vda_name);
10325 aux.vda_next = BYTE_GET (eaux->vda_next);
10326
10327 if (VALID_DYNAMIC_NAME (aux.vda_name))
10328 printf (_(" %#06lx: Parent %d: %s\n"),
10329 isum, j, GET_DYNAMIC_NAME (aux.vda_name));
10330 else
10331 printf (_(" %#06lx: Parent %d, name index: %ld\n"),
10332 isum, j, aux.vda_name);
10333 }
10334
10335 if (j < ent.vd_cnt)
10336 printf (_(" Version def aux past end of section\n"));
10337
10338 /* PR 17531:
10339 file: id:000001,src:000172+005151,op:splice,rep:2. */
10340 if (ent.vd_next < sizeof (*edef)
10341 && !(cnt == section->sh_info - 1 && ent.vd_next == 0))
10342 {
10343 warn (_("Invalid vd_next field of %lx\n"), ent.vd_next);
10344 cnt = section->sh_info;
10345 break;
10346 }
10347 if (ent.vd_next > (size_t) (endbuf - ((char *) edefs + idx)))
10348 break;
10349
10350 idx += ent.vd_next;
10351 }
10352
10353 if (cnt < section->sh_info)
10354 printf (_(" Version definition past end of section\n"));
10355
10356 free (edefs);
10357 }
10358 break;
10359
10360 case SHT_GNU_verneed:
10361 {
10362 Elf_External_Verneed * eneed;
10363 unsigned long idx;
10364 unsigned long cnt;
10365 char * endbuf;
10366
10367 found = TRUE;
10368
10369 printf (ngettext ("\nVersion needs section '%s' "
10370 "contains %u entry:\n",
10371 "\nVersion needs section '%s' "
10372 "contains %u entries:\n",
10373 section->sh_info),
10374 printable_section_name (section), section->sh_info);
10375
10376 printf (_(" Addr: 0x"));
10377 printf_vma (section->sh_addr);
10378 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10379 (unsigned long) section->sh_offset, section->sh_link,
10380 printable_section_name_from_index (section->sh_link));
10381
10382 eneed = (Elf_External_Verneed *) get_data (NULL, file,
10383 section->sh_offset, 1,
10384 section->sh_size,
10385 _("Version Needs section"));
10386 if (!eneed)
10387 break;
10388 endbuf = (char *) eneed + section->sh_size;
10389
10390 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
10391 {
10392 Elf_External_Verneed * entry;
10393 Elf_Internal_Verneed ent;
10394 unsigned long isum;
10395 int j;
10396 char * vstart;
10397
10398 vstart = ((char *) eneed) + idx;
10399 if (vstart + sizeof (*entry) > endbuf)
10400 break;
10401
10402 entry = (Elf_External_Verneed *) vstart;
10403
10404 ent.vn_version = BYTE_GET (entry->vn_version);
10405 ent.vn_cnt = BYTE_GET (entry->vn_cnt);
10406 ent.vn_file = BYTE_GET (entry->vn_file);
10407 ent.vn_aux = BYTE_GET (entry->vn_aux);
10408 ent.vn_next = BYTE_GET (entry->vn_next);
10409
10410 printf (_(" %#06lx: Version: %d"), idx, ent.vn_version);
10411
10412 if (VALID_DYNAMIC_NAME (ent.vn_file))
10413 printf (_(" File: %s"), GET_DYNAMIC_NAME (ent.vn_file));
10414 else
10415 printf (_(" File: %lx"), ent.vn_file);
10416
10417 printf (_(" Cnt: %d\n"), ent.vn_cnt);
10418
10419 /* Check for overflow. */
10420 if (ent.vn_aux > (size_t) (endbuf - vstart))
10421 break;
10422 vstart += ent.vn_aux;
10423
10424 for (j = 0, isum = idx + ent.vn_aux; j < ent.vn_cnt; ++j)
10425 {
10426 Elf_External_Vernaux * eaux;
10427 Elf_Internal_Vernaux aux;
10428
10429 if (vstart + sizeof (*eaux) > endbuf)
10430 break;
10431 eaux = (Elf_External_Vernaux *) vstart;
10432
10433 aux.vna_hash = BYTE_GET (eaux->vna_hash);
10434 aux.vna_flags = BYTE_GET (eaux->vna_flags);
10435 aux.vna_other = BYTE_GET (eaux->vna_other);
10436 aux.vna_name = BYTE_GET (eaux->vna_name);
10437 aux.vna_next = BYTE_GET (eaux->vna_next);
10438
10439 if (VALID_DYNAMIC_NAME (aux.vna_name))
10440 printf (_(" %#06lx: Name: %s"),
10441 isum, GET_DYNAMIC_NAME (aux.vna_name));
10442 else
10443 printf (_(" %#06lx: Name index: %lx"),
10444 isum, aux.vna_name);
10445
10446 printf (_(" Flags: %s Version: %d\n"),
10447 get_ver_flags (aux.vna_flags), aux.vna_other);
10448
10449 if (aux.vna_next < sizeof (*eaux)
10450 && !(j == ent.vn_cnt - 1 && aux.vna_next == 0))
10451 {
10452 warn (_("Invalid vna_next field of %lx\n"),
10453 aux.vna_next);
10454 j = ent.vn_cnt;
10455 break;
10456 }
10457 /* Check for overflow. */
10458 if (aux.vna_next > (size_t) (endbuf - vstart))
10459 break;
10460 isum += aux.vna_next;
10461 vstart += aux.vna_next;
10462 }
10463
10464 if (j < ent.vn_cnt)
10465 warn (_("Missing Version Needs auxillary information\n"));
10466
10467 if (ent.vn_next < sizeof (*entry)
10468 && !(cnt == section->sh_info - 1 && ent.vn_next == 0))
10469 {
10470 warn (_("Invalid vn_next field of %lx\n"), ent.vn_next);
10471 cnt = section->sh_info;
10472 break;
10473 }
10474 if (ent.vn_next > (size_t) (endbuf - ((char *) eneed + idx)))
10475 break;
10476 idx += ent.vn_next;
10477 }
10478
10479 if (cnt < section->sh_info)
10480 warn (_("Missing Version Needs information\n"));
10481
10482 free (eneed);
10483 }
10484 break;
10485
10486 case SHT_GNU_versym:
10487 {
10488 Elf_Internal_Shdr * link_section;
10489 size_t total;
10490 unsigned int cnt;
10491 unsigned char * edata;
10492 unsigned short * data;
10493 char * strtab;
10494 Elf_Internal_Sym * symbols;
10495 Elf_Internal_Shdr * string_sec;
10496 unsigned long num_syms;
10497 long off;
10498
10499 if (section->sh_link >= elf_header.e_shnum)
10500 break;
10501
10502 link_section = section_headers + section->sh_link;
10503 total = section->sh_size / sizeof (Elf_External_Versym);
10504
10505 if (link_section->sh_link >= elf_header.e_shnum)
10506 break;
10507
10508 found = TRUE;
10509
10510 symbols = GET_ELF_SYMBOLS (file, link_section, & num_syms);
10511 if (symbols == NULL)
10512 break;
10513
10514 string_sec = section_headers + link_section->sh_link;
10515
10516 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
10517 string_sec->sh_size,
10518 _("version string table"));
10519 if (!strtab)
10520 {
10521 free (symbols);
10522 break;
10523 }
10524
10525 printf (ngettext ("\nVersion symbols section '%s' "
10526 "contains %lu entry:\n",
10527 "\nVersion symbols section '%s' "
10528 "contains %lu entries:\n",
10529 total),
10530 printable_section_name (section), (unsigned long) total);
10531
10532 printf (_(" Addr: "));
10533 printf_vma (section->sh_addr);
10534 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10535 (unsigned long) section->sh_offset, section->sh_link,
10536 printable_section_name (link_section));
10537
10538 off = offset_from_vma (file,
10539 version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
10540 total * sizeof (short));
10541 edata = (unsigned char *) get_data (NULL, file, off, total,
10542 sizeof (short),
10543 _("version symbol data"));
10544 if (!edata)
10545 {
10546 free (strtab);
10547 free (symbols);
10548 break;
10549 }
10550
10551 data = (short unsigned int *) cmalloc (total, sizeof (short));
10552
10553 for (cnt = total; cnt --;)
10554 data[cnt] = byte_get (edata + cnt * sizeof (short),
10555 sizeof (short));
10556
10557 free (edata);
10558
10559 for (cnt = 0; cnt < total; cnt += 4)
10560 {
10561 int j, nn;
10562 char *name;
10563 char *invalid = _("*invalid*");
10564
10565 printf (" %03x:", cnt);
10566
10567 for (j = 0; (j < 4) && (cnt + j) < total; ++j)
10568 switch (data[cnt + j])
10569 {
10570 case 0:
10571 fputs (_(" 0 (*local*) "), stdout);
10572 break;
10573
10574 case 1:
10575 fputs (_(" 1 (*global*) "), stdout);
10576 break;
10577
10578 default:
10579 nn = printf ("%4x%c", data[cnt + j] & VERSYM_VERSION,
10580 data[cnt + j] & VERSYM_HIDDEN ? 'h' : ' ');
10581
10582 /* If this index value is greater than the size of the symbols
10583 array, break to avoid an out-of-bounds read. */
10584 if ((unsigned long)(cnt + j) >= num_syms)
10585 {
10586 warn (_("invalid index into symbol array\n"));
10587 break;
10588 }
10589
10590 name = NULL;
10591 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
10592 {
10593 Elf_Internal_Verneed ivn;
10594 unsigned long offset;
10595
10596 offset = offset_from_vma
10597 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
10598 sizeof (Elf_External_Verneed));
10599
10600 do
10601 {
10602 Elf_Internal_Vernaux ivna;
10603 Elf_External_Verneed evn;
10604 Elf_External_Vernaux evna;
10605 unsigned long a_off;
10606
10607 if (get_data (&evn, file, offset, sizeof (evn), 1,
10608 _("version need")) == NULL)
10609 break;
10610
10611 ivn.vn_aux = BYTE_GET (evn.vn_aux);
10612 ivn.vn_next = BYTE_GET (evn.vn_next);
10613
10614 a_off = offset + ivn.vn_aux;
10615
10616 do
10617 {
10618 if (get_data (&evna, file, a_off, sizeof (evna),
10619 1, _("version need aux (2)")) == NULL)
10620 {
10621 ivna.vna_next = 0;
10622 ivna.vna_other = 0;
10623 }
10624 else
10625 {
10626 ivna.vna_next = BYTE_GET (evna.vna_next);
10627 ivna.vna_other = BYTE_GET (evna.vna_other);
10628 }
10629
10630 a_off += ivna.vna_next;
10631 }
10632 while (ivna.vna_other != data[cnt + j]
10633 && ivna.vna_next != 0);
10634
10635 if (ivna.vna_other == data[cnt + j])
10636 {
10637 ivna.vna_name = BYTE_GET (evna.vna_name);
10638
10639 if (ivna.vna_name >= string_sec->sh_size)
10640 name = invalid;
10641 else
10642 name = strtab + ivna.vna_name;
10643 break;
10644 }
10645
10646 offset += ivn.vn_next;
10647 }
10648 while (ivn.vn_next);
10649 }
10650
10651 if (data[cnt + j] != 0x8001
10652 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
10653 {
10654 Elf_Internal_Verdef ivd;
10655 Elf_External_Verdef evd;
10656 unsigned long offset;
10657
10658 offset = offset_from_vma
10659 (file, version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
10660 sizeof evd);
10661
10662 do
10663 {
10664 if (get_data (&evd, file, offset, sizeof (evd), 1,
10665 _("version def")) == NULL)
10666 {
10667 ivd.vd_next = 0;
10668 /* PR 17531: file: 046-1082287-0.004. */
10669 ivd.vd_ndx = (data[cnt + j] & VERSYM_VERSION) + 1;
10670 break;
10671 }
10672 else
10673 {
10674 ivd.vd_next = BYTE_GET (evd.vd_next);
10675 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
10676 }
10677
10678 offset += ivd.vd_next;
10679 }
10680 while (ivd.vd_ndx != (data[cnt + j] & VERSYM_VERSION)
10681 && ivd.vd_next != 0);
10682
10683 if (ivd.vd_ndx == (data[cnt + j] & VERSYM_VERSION))
10684 {
10685 Elf_External_Verdaux evda;
10686 Elf_Internal_Verdaux ivda;
10687
10688 ivd.vd_aux = BYTE_GET (evd.vd_aux);
10689
10690 if (get_data (&evda, file,
10691 offset - ivd.vd_next + ivd.vd_aux,
10692 sizeof (evda), 1,
10693 _("version def aux")) == NULL)
10694 break;
10695
10696 ivda.vda_name = BYTE_GET (evda.vda_name);
10697
10698 if (ivda.vda_name >= string_sec->sh_size)
10699 name = invalid;
10700 else if (name != NULL && name != invalid)
10701 name = _("*both*");
10702 else
10703 name = strtab + ivda.vda_name;
10704 }
10705 }
10706 if (name != NULL)
10707 nn += printf ("(%s%-*s",
10708 name,
10709 12 - (int) strlen (name),
10710 ")");
10711
10712 if (nn < 18)
10713 printf ("%*c", 18 - nn, ' ');
10714 }
10715
10716 putchar ('\n');
10717 }
10718
10719 free (data);
10720 free (strtab);
10721 free (symbols);
10722 }
10723 break;
10724
10725 default:
10726 break;
10727 }
10728 }
10729
10730 if (! found)
10731 printf (_("\nNo version information found in this file.\n"));
10732
10733 return TRUE;
10734 }
10735
10736 static const char *
10737 get_symbol_binding (unsigned int binding)
10738 {
10739 static char buff[32];
10740
10741 switch (binding)
10742 {
10743 case STB_LOCAL: return "LOCAL";
10744 case STB_GLOBAL: return "GLOBAL";
10745 case STB_WEAK: return "WEAK";
10746 default:
10747 if (binding >= STB_LOPROC && binding <= STB_HIPROC)
10748 snprintf (buff, sizeof (buff), _("<processor specific>: %d"),
10749 binding);
10750 else if (binding >= STB_LOOS && binding <= STB_HIOS)
10751 {
10752 if (binding == STB_GNU_UNIQUE
10753 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
10754 /* GNU is still using the default value 0. */
10755 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
10756 return "UNIQUE";
10757 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), binding);
10758 }
10759 else
10760 snprintf (buff, sizeof (buff), _("<unknown>: %d"), binding);
10761 return buff;
10762 }
10763 }
10764
10765 static const char *
10766 get_symbol_type (unsigned int type)
10767 {
10768 static char buff[32];
10769
10770 switch (type)
10771 {
10772 case STT_NOTYPE: return "NOTYPE";
10773 case STT_OBJECT: return "OBJECT";
10774 case STT_FUNC: return "FUNC";
10775 case STT_SECTION: return "SECTION";
10776 case STT_FILE: return "FILE";
10777 case STT_COMMON: return "COMMON";
10778 case STT_TLS: return "TLS";
10779 case STT_RELC: return "RELC";
10780 case STT_SRELC: return "SRELC";
10781 default:
10782 if (type >= STT_LOPROC && type <= STT_HIPROC)
10783 {
10784 if (elf_header.e_machine == EM_ARM && type == STT_ARM_TFUNC)
10785 return "THUMB_FUNC";
10786
10787 if (elf_header.e_machine == EM_SPARCV9 && type == STT_REGISTER)
10788 return "REGISTER";
10789
10790 if (elf_header.e_machine == EM_PARISC && type == STT_PARISC_MILLI)
10791 return "PARISC_MILLI";
10792
10793 snprintf (buff, sizeof (buff), _("<processor specific>: %d"), type);
10794 }
10795 else if (type >= STT_LOOS && type <= STT_HIOS)
10796 {
10797 if (elf_header.e_machine == EM_PARISC)
10798 {
10799 if (type == STT_HP_OPAQUE)
10800 return "HP_OPAQUE";
10801 if (type == STT_HP_STUB)
10802 return "HP_STUB";
10803 }
10804
10805 if (type == STT_GNU_IFUNC
10806 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
10807 || elf_header.e_ident[EI_OSABI] == ELFOSABI_FREEBSD
10808 /* GNU is still using the default value 0. */
10809 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
10810 return "IFUNC";
10811
10812 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), type);
10813 }
10814 else
10815 snprintf (buff, sizeof (buff), _("<unknown>: %d"), type);
10816 return buff;
10817 }
10818 }
10819
10820 static const char *
10821 get_symbol_visibility (unsigned int visibility)
10822 {
10823 switch (visibility)
10824 {
10825 case STV_DEFAULT: return "DEFAULT";
10826 case STV_INTERNAL: return "INTERNAL";
10827 case STV_HIDDEN: return "HIDDEN";
10828 case STV_PROTECTED: return "PROTECTED";
10829 default:
10830 error (_("Unrecognized visibility value: %u"), visibility);
10831 return _("<unknown>");
10832 }
10833 }
10834
10835 static const char *
10836 get_solaris_symbol_visibility (unsigned int visibility)
10837 {
10838 switch (visibility)
10839 {
10840 case 4: return "EXPORTED";
10841 case 5: return "SINGLETON";
10842 case 6: return "ELIMINATE";
10843 default: return get_symbol_visibility (visibility);
10844 }
10845 }
10846
10847 static const char *
10848 get_mips_symbol_other (unsigned int other)
10849 {
10850 switch (other)
10851 {
10852 case STO_OPTIONAL: return "OPTIONAL";
10853 case STO_MIPS_PLT: return "MIPS PLT";
10854 case STO_MIPS_PIC: return "MIPS PIC";
10855 case STO_MICROMIPS: return "MICROMIPS";
10856 case STO_MICROMIPS | STO_MIPS_PIC: return "MICROMIPS, MIPS PIC";
10857 case STO_MIPS16: return "MIPS16";
10858 default: return NULL;
10859 }
10860 }
10861
10862 static const char *
10863 get_ia64_symbol_other (unsigned int other)
10864 {
10865 if (is_ia64_vms ())
10866 {
10867 static char res[32];
10868
10869 res[0] = 0;
10870
10871 /* Function types is for images and .STB files only. */
10872 switch (elf_header.e_type)
10873 {
10874 case ET_DYN:
10875 case ET_EXEC:
10876 switch (VMS_ST_FUNC_TYPE (other))
10877 {
10878 case VMS_SFT_CODE_ADDR:
10879 strcat (res, " CA");
10880 break;
10881 case VMS_SFT_SYMV_IDX:
10882 strcat (res, " VEC");
10883 break;
10884 case VMS_SFT_FD:
10885 strcat (res, " FD");
10886 break;
10887 case VMS_SFT_RESERVE:
10888 strcat (res, " RSV");
10889 break;
10890 default:
10891 warn (_("Unrecognized IA64 VMS ST Function type: %d\n"),
10892 VMS_ST_FUNC_TYPE (other));
10893 strcat (res, " <unknown>");
10894 break;
10895 }
10896 break;
10897 default:
10898 break;
10899 }
10900 switch (VMS_ST_LINKAGE (other))
10901 {
10902 case VMS_STL_IGNORE:
10903 strcat (res, " IGN");
10904 break;
10905 case VMS_STL_RESERVE:
10906 strcat (res, " RSV");
10907 break;
10908 case VMS_STL_STD:
10909 strcat (res, " STD");
10910 break;
10911 case VMS_STL_LNK:
10912 strcat (res, " LNK");
10913 break;
10914 default:
10915 warn (_("Unrecognized IA64 VMS ST Linkage: %d\n"),
10916 VMS_ST_LINKAGE (other));
10917 strcat (res, " <unknown>");
10918 break;
10919 }
10920
10921 if (res[0] != 0)
10922 return res + 1;
10923 else
10924 return res;
10925 }
10926 return NULL;
10927 }
10928
10929 static const char *
10930 get_ppc64_symbol_other (unsigned int other)
10931 {
10932 if (PPC64_LOCAL_ENTRY_OFFSET (other) != 0)
10933 {
10934 static char buf[32];
10935 snprintf (buf, sizeof buf, _("<localentry>: %d"),
10936 PPC64_LOCAL_ENTRY_OFFSET (other));
10937 return buf;
10938 }
10939 return NULL;
10940 }
10941
10942 static const char *
10943 get_symbol_other (unsigned int other)
10944 {
10945 const char * result = NULL;
10946 static char buff [32];
10947
10948 if (other == 0)
10949 return "";
10950
10951 switch (elf_header.e_machine)
10952 {
10953 case EM_MIPS:
10954 result = get_mips_symbol_other (other);
10955 break;
10956 case EM_IA_64:
10957 result = get_ia64_symbol_other (other);
10958 break;
10959 case EM_PPC64:
10960 result = get_ppc64_symbol_other (other);
10961 break;
10962 default:
10963 result = NULL;
10964 break;
10965 }
10966
10967 if (result)
10968 return result;
10969
10970 snprintf (buff, sizeof buff, _("<other>: %x"), other);
10971 return buff;
10972 }
10973
10974 static const char *
10975 get_symbol_index_type (unsigned int type)
10976 {
10977 static char buff[32];
10978
10979 switch (type)
10980 {
10981 case SHN_UNDEF: return "UND";
10982 case SHN_ABS: return "ABS";
10983 case SHN_COMMON: return "COM";
10984 default:
10985 if (type == SHN_IA_64_ANSI_COMMON
10986 && elf_header.e_machine == EM_IA_64
10987 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX)
10988 return "ANSI_COM";
10989 else if ((elf_header.e_machine == EM_X86_64
10990 || elf_header.e_machine == EM_L1OM
10991 || elf_header.e_machine == EM_K1OM)
10992 && type == SHN_X86_64_LCOMMON)
10993 return "LARGE_COM";
10994 else if ((type == SHN_MIPS_SCOMMON
10995 && elf_header.e_machine == EM_MIPS)
10996 || (type == SHN_TIC6X_SCOMMON
10997 && elf_header.e_machine == EM_TI_C6000))
10998 return "SCOM";
10999 else if (type == SHN_MIPS_SUNDEFINED
11000 && elf_header.e_machine == EM_MIPS)
11001 return "SUND";
11002 else if (type >= SHN_LOPROC && type <= SHN_HIPROC)
11003 sprintf (buff, "PRC[0x%04x]", type & 0xffff);
11004 else if (type >= SHN_LOOS && type <= SHN_HIOS)
11005 sprintf (buff, "OS [0x%04x]", type & 0xffff);
11006 else if (type >= SHN_LORESERVE)
11007 sprintf (buff, "RSV[0x%04x]", type & 0xffff);
11008 else if (type >= elf_header.e_shnum)
11009 sprintf (buff, _("bad section index[%3d]"), type);
11010 else
11011 sprintf (buff, "%3d", type);
11012 break;
11013 }
11014
11015 return buff;
11016 }
11017
11018 static bfd_vma *
11019 get_dynamic_data (FILE * file, bfd_size_type number, unsigned int ent_size)
11020 {
11021 unsigned char * e_data;
11022 bfd_vma * i_data;
11023
11024 /* If the size_t type is smaller than the bfd_size_type, eg because
11025 you are building a 32-bit tool on a 64-bit host, then make sure
11026 that when (number) is cast to (size_t) no information is lost. */
11027 if (sizeof (size_t) < sizeof (bfd_size_type)
11028 && (bfd_size_type) ((size_t) number) != number)
11029 {
11030 error (_("Size truncation prevents reading %s elements of size %u\n"),
11031 bfd_vmatoa ("u", number), ent_size);
11032 return NULL;
11033 }
11034
11035 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
11036 attempting to allocate memory when the read is bound to fail. */
11037 if (ent_size * number > current_file_size)
11038 {
11039 error (_("Invalid number of dynamic entries: %s\n"),
11040 bfd_vmatoa ("u", number));
11041 return NULL;
11042 }
11043
11044 e_data = (unsigned char *) cmalloc ((size_t) number, ent_size);
11045 if (e_data == NULL)
11046 {
11047 error (_("Out of memory reading %s dynamic entries\n"),
11048 bfd_vmatoa ("u", number));
11049 return NULL;
11050 }
11051
11052 if (fread (e_data, ent_size, (size_t) number, file) != number)
11053 {
11054 error (_("Unable to read in %s bytes of dynamic data\n"),
11055 bfd_vmatoa ("u", number * ent_size));
11056 free (e_data);
11057 return NULL;
11058 }
11059
11060 i_data = (bfd_vma *) cmalloc ((size_t) number, sizeof (*i_data));
11061 if (i_data == NULL)
11062 {
11063 error (_("Out of memory allocating space for %s dynamic entries\n"),
11064 bfd_vmatoa ("u", number));
11065 free (e_data);
11066 return NULL;
11067 }
11068
11069 while (number--)
11070 i_data[number] = byte_get (e_data + number * ent_size, ent_size);
11071
11072 free (e_data);
11073
11074 return i_data;
11075 }
11076
11077 static void
11078 print_dynamic_symbol (bfd_vma si, unsigned long hn)
11079 {
11080 Elf_Internal_Sym * psym;
11081 int n;
11082
11083 n = print_vma (si, DEC_5);
11084 if (n < 5)
11085 fputs (&" "[n], stdout);
11086 printf (" %3lu: ", hn);
11087
11088 if (dynamic_symbols == NULL || si >= num_dynamic_syms)
11089 {
11090 printf (_("<No info available for dynamic symbol number %lu>\n"),
11091 (unsigned long) si);
11092 return;
11093 }
11094
11095 psym = dynamic_symbols + si;
11096 print_vma (psym->st_value, LONG_HEX);
11097 putchar (' ');
11098 print_vma (psym->st_size, DEC_5);
11099
11100 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
11101 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
11102
11103 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
11104 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
11105 else
11106 {
11107 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
11108
11109 printf (" %-7s", get_symbol_visibility (vis));
11110 /* Check to see if any other bits in the st_other field are set.
11111 Note - displaying this information disrupts the layout of the
11112 table being generated, but for the moment this case is very
11113 rare. */
11114 if (psym->st_other ^ vis)
11115 printf (" [%s] ", get_symbol_other (psym->st_other ^ vis));
11116 }
11117
11118 printf (" %3.3s ", get_symbol_index_type (psym->st_shndx));
11119 if (VALID_DYNAMIC_NAME (psym->st_name))
11120 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
11121 else
11122 printf (_(" <corrupt: %14ld>"), psym->st_name);
11123 putchar ('\n');
11124 }
11125
11126 static const char *
11127 get_symbol_version_string (FILE * file,
11128 bfd_boolean is_dynsym,
11129 const char * strtab,
11130 unsigned long int strtab_size,
11131 unsigned int si,
11132 Elf_Internal_Sym * psym,
11133 enum versioned_symbol_info * sym_info,
11134 unsigned short * vna_other)
11135 {
11136 unsigned char data[2];
11137 unsigned short vers_data;
11138 unsigned long offset;
11139
11140 if (!is_dynsym
11141 || version_info[DT_VERSIONTAGIDX (DT_VERSYM)] == 0)
11142 return NULL;
11143
11144 offset = offset_from_vma (file, version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
11145 sizeof data + si * sizeof (vers_data));
11146
11147 if (get_data (&data, file, offset + si * sizeof (vers_data),
11148 sizeof (data), 1, _("version data")) == NULL)
11149 return NULL;
11150
11151 vers_data = byte_get (data, 2);
11152
11153 if ((vers_data & VERSYM_HIDDEN) == 0 && vers_data <= 1)
11154 return NULL;
11155
11156 /* Usually we'd only see verdef for defined symbols, and verneed for
11157 undefined symbols. However, symbols defined by the linker in
11158 .dynbss for variables copied from a shared library in order to
11159 avoid text relocations are defined yet have verneed. We could
11160 use a heuristic to detect the special case, for example, check
11161 for verneed first on symbols defined in SHT_NOBITS sections, but
11162 it is simpler and more reliable to just look for both verdef and
11163 verneed. .dynbss might not be mapped to a SHT_NOBITS section. */
11164
11165 if (psym->st_shndx != SHN_UNDEF
11166 && vers_data != 0x8001
11167 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
11168 {
11169 Elf_Internal_Verdef ivd;
11170 Elf_Internal_Verdaux ivda;
11171 Elf_External_Verdaux evda;
11172 unsigned long off;
11173
11174 off = offset_from_vma (file,
11175 version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
11176 sizeof (Elf_External_Verdef));
11177
11178 do
11179 {
11180 Elf_External_Verdef evd;
11181
11182 if (get_data (&evd, file, off, sizeof (evd), 1,
11183 _("version def")) == NULL)
11184 {
11185 ivd.vd_ndx = 0;
11186 ivd.vd_aux = 0;
11187 ivd.vd_next = 0;
11188 }
11189 else
11190 {
11191 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
11192 ivd.vd_aux = BYTE_GET (evd.vd_aux);
11193 ivd.vd_next = BYTE_GET (evd.vd_next);
11194 }
11195
11196 off += ivd.vd_next;
11197 }
11198 while (ivd.vd_ndx != (vers_data & VERSYM_VERSION) && ivd.vd_next != 0);
11199
11200 if (ivd.vd_ndx == (vers_data & VERSYM_VERSION))
11201 {
11202 off -= ivd.vd_next;
11203 off += ivd.vd_aux;
11204
11205 if (get_data (&evda, file, off, sizeof (evda), 1,
11206 _("version def aux")) != NULL)
11207 {
11208 ivda.vda_name = BYTE_GET (evda.vda_name);
11209
11210 if (psym->st_name != ivda.vda_name)
11211 {
11212 *sym_info = ((vers_data & VERSYM_HIDDEN) != 0
11213 ? symbol_hidden : symbol_public);
11214 return (ivda.vda_name < strtab_size
11215 ? strtab + ivda.vda_name : _("<corrupt>"));
11216 }
11217 }
11218 }
11219 }
11220
11221 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
11222 {
11223 Elf_External_Verneed evn;
11224 Elf_Internal_Verneed ivn;
11225 Elf_Internal_Vernaux ivna;
11226
11227 offset = offset_from_vma (file,
11228 version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
11229 sizeof evn);
11230 do
11231 {
11232 unsigned long vna_off;
11233
11234 if (get_data (&evn, file, offset, sizeof (evn), 1,
11235 _("version need")) == NULL)
11236 {
11237 ivna.vna_next = 0;
11238 ivna.vna_other = 0;
11239 ivna.vna_name = 0;
11240 break;
11241 }
11242
11243 ivn.vn_aux = BYTE_GET (evn.vn_aux);
11244 ivn.vn_next = BYTE_GET (evn.vn_next);
11245
11246 vna_off = offset + ivn.vn_aux;
11247
11248 do
11249 {
11250 Elf_External_Vernaux evna;
11251
11252 if (get_data (&evna, file, vna_off, sizeof (evna), 1,
11253 _("version need aux (3)")) == NULL)
11254 {
11255 ivna.vna_next = 0;
11256 ivna.vna_other = 0;
11257 ivna.vna_name = 0;
11258 }
11259 else
11260 {
11261 ivna.vna_other = BYTE_GET (evna.vna_other);
11262 ivna.vna_next = BYTE_GET (evna.vna_next);
11263 ivna.vna_name = BYTE_GET (evna.vna_name);
11264 }
11265
11266 vna_off += ivna.vna_next;
11267 }
11268 while (ivna.vna_other != vers_data && ivna.vna_next != 0);
11269
11270 if (ivna.vna_other == vers_data)
11271 break;
11272
11273 offset += ivn.vn_next;
11274 }
11275 while (ivn.vn_next != 0);
11276
11277 if (ivna.vna_other == vers_data)
11278 {
11279 *sym_info = symbol_undefined;
11280 *vna_other = ivna.vna_other;
11281 return (ivna.vna_name < strtab_size
11282 ? strtab + ivna.vna_name : _("<corrupt>"));
11283 }
11284 }
11285 return NULL;
11286 }
11287
11288 /* Dump the symbol table. */
11289 static bfd_boolean
11290 process_symbol_table (FILE * file)
11291 {
11292 Elf_Internal_Shdr * section;
11293 bfd_size_type nbuckets = 0;
11294 bfd_size_type nchains = 0;
11295 bfd_vma * buckets = NULL;
11296 bfd_vma * chains = NULL;
11297 bfd_vma ngnubuckets = 0;
11298 bfd_vma * gnubuckets = NULL;
11299 bfd_vma * gnuchains = NULL;
11300 bfd_vma gnusymidx = 0;
11301 bfd_size_type ngnuchains = 0;
11302
11303 if (!do_syms && !do_dyn_syms && !do_histogram)
11304 return TRUE;
11305
11306 if (dynamic_info[DT_HASH]
11307 && (do_histogram
11308 || (do_using_dynamic
11309 && !do_dyn_syms
11310 && dynamic_strings != NULL)))
11311 {
11312 unsigned char nb[8];
11313 unsigned char nc[8];
11314 unsigned int hash_ent_size = 4;
11315
11316 if ((elf_header.e_machine == EM_ALPHA
11317 || elf_header.e_machine == EM_S390
11318 || elf_header.e_machine == EM_S390_OLD)
11319 && elf_header.e_ident[EI_CLASS] == ELFCLASS64)
11320 hash_ent_size = 8;
11321
11322 if (fseek (file,
11323 (archive_file_offset
11324 + offset_from_vma (file, dynamic_info[DT_HASH],
11325 sizeof nb + sizeof nc)),
11326 SEEK_SET))
11327 {
11328 error (_("Unable to seek to start of dynamic information\n"));
11329 goto no_hash;
11330 }
11331
11332 if (fread (nb, hash_ent_size, 1, file) != 1)
11333 {
11334 error (_("Failed to read in number of buckets\n"));
11335 goto no_hash;
11336 }
11337
11338 if (fread (nc, hash_ent_size, 1, file) != 1)
11339 {
11340 error (_("Failed to read in number of chains\n"));
11341 goto no_hash;
11342 }
11343
11344 nbuckets = byte_get (nb, hash_ent_size);
11345 nchains = byte_get (nc, hash_ent_size);
11346
11347 buckets = get_dynamic_data (file, nbuckets, hash_ent_size);
11348 chains = get_dynamic_data (file, nchains, hash_ent_size);
11349
11350 no_hash:
11351 if (buckets == NULL || chains == NULL)
11352 {
11353 if (do_using_dynamic)
11354 return FALSE;
11355 free (buckets);
11356 free (chains);
11357 buckets = NULL;
11358 chains = NULL;
11359 nbuckets = 0;
11360 nchains = 0;
11361 }
11362 }
11363
11364 if (dynamic_info_DT_GNU_HASH
11365 && (do_histogram
11366 || (do_using_dynamic
11367 && !do_dyn_syms
11368 && dynamic_strings != NULL)))
11369 {
11370 unsigned char nb[16];
11371 bfd_vma i, maxchain = 0xffffffff, bitmaskwords;
11372 bfd_vma buckets_vma;
11373
11374 if (fseek (file,
11375 (archive_file_offset
11376 + offset_from_vma (file, dynamic_info_DT_GNU_HASH,
11377 sizeof nb)),
11378 SEEK_SET))
11379 {
11380 error (_("Unable to seek to start of dynamic information\n"));
11381 goto no_gnu_hash;
11382 }
11383
11384 if (fread (nb, 16, 1, file) != 1)
11385 {
11386 error (_("Failed to read in number of buckets\n"));
11387 goto no_gnu_hash;
11388 }
11389
11390 ngnubuckets = byte_get (nb, 4);
11391 gnusymidx = byte_get (nb + 4, 4);
11392 bitmaskwords = byte_get (nb + 8, 4);
11393 buckets_vma = dynamic_info_DT_GNU_HASH + 16;
11394 if (is_32bit_elf)
11395 buckets_vma += bitmaskwords * 4;
11396 else
11397 buckets_vma += bitmaskwords * 8;
11398
11399 if (fseek (file,
11400 (archive_file_offset
11401 + offset_from_vma (file, buckets_vma, 4)),
11402 SEEK_SET))
11403 {
11404 error (_("Unable to seek to start of dynamic information\n"));
11405 goto no_gnu_hash;
11406 }
11407
11408 gnubuckets = get_dynamic_data (file, ngnubuckets, 4);
11409
11410 if (gnubuckets == NULL)
11411 goto no_gnu_hash;
11412
11413 for (i = 0; i < ngnubuckets; i++)
11414 if (gnubuckets[i] != 0)
11415 {
11416 if (gnubuckets[i] < gnusymidx)
11417 return FALSE;
11418
11419 if (maxchain == 0xffffffff || gnubuckets[i] > maxchain)
11420 maxchain = gnubuckets[i];
11421 }
11422
11423 if (maxchain == 0xffffffff)
11424 goto no_gnu_hash;
11425
11426 maxchain -= gnusymidx;
11427
11428 if (fseek (file,
11429 (archive_file_offset
11430 + offset_from_vma (file, buckets_vma
11431 + 4 * (ngnubuckets + maxchain), 4)),
11432 SEEK_SET))
11433 {
11434 error (_("Unable to seek to start of dynamic information\n"));
11435 goto no_gnu_hash;
11436 }
11437
11438 do
11439 {
11440 if (fread (nb, 4, 1, file) != 1)
11441 {
11442 error (_("Failed to determine last chain length\n"));
11443 goto no_gnu_hash;
11444 }
11445
11446 if (maxchain + 1 == 0)
11447 goto no_gnu_hash;
11448
11449 ++maxchain;
11450 }
11451 while ((byte_get (nb, 4) & 1) == 0);
11452
11453 if (fseek (file,
11454 (archive_file_offset
11455 + offset_from_vma (file, buckets_vma + 4 * ngnubuckets, 4)),
11456 SEEK_SET))
11457 {
11458 error (_("Unable to seek to start of dynamic information\n"));
11459 goto no_gnu_hash;
11460 }
11461
11462 gnuchains = get_dynamic_data (file, maxchain, 4);
11463 ngnuchains = maxchain;
11464
11465 no_gnu_hash:
11466 if (gnuchains == NULL)
11467 {
11468 free (gnubuckets);
11469 gnubuckets = NULL;
11470 ngnubuckets = 0;
11471 if (do_using_dynamic)
11472 return FALSE;
11473 }
11474 }
11475
11476 if ((dynamic_info[DT_HASH] || dynamic_info_DT_GNU_HASH)
11477 && do_syms
11478 && do_using_dynamic
11479 && dynamic_strings != NULL
11480 && dynamic_symbols != NULL)
11481 {
11482 unsigned long hn;
11483
11484 if (dynamic_info[DT_HASH])
11485 {
11486 bfd_vma si;
11487 char *visited;
11488
11489 printf (_("\nSymbol table for image:\n"));
11490 if (is_32bit_elf)
11491 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11492 else
11493 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11494
11495 visited = xcmalloc (nchains, 1);
11496 memset (visited, 0, nchains);
11497 for (hn = 0; hn < nbuckets; hn++)
11498 {
11499 for (si = buckets[hn]; si > 0; si = chains[si])
11500 {
11501 print_dynamic_symbol (si, hn);
11502 if (si >= nchains || visited[si])
11503 {
11504 error (_("histogram chain is corrupt\n"));
11505 break;
11506 }
11507 visited[si] = 1;
11508 }
11509 }
11510 free (visited);
11511 }
11512
11513 if (dynamic_info_DT_GNU_HASH)
11514 {
11515 printf (_("\nSymbol table of `.gnu.hash' for image:\n"));
11516 if (is_32bit_elf)
11517 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11518 else
11519 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11520
11521 for (hn = 0; hn < ngnubuckets; ++hn)
11522 if (gnubuckets[hn] != 0)
11523 {
11524 bfd_vma si = gnubuckets[hn];
11525 bfd_vma off = si - gnusymidx;
11526
11527 do
11528 {
11529 print_dynamic_symbol (si, hn);
11530 si++;
11531 }
11532 while (off < ngnuchains && (gnuchains[off++] & 1) == 0);
11533 }
11534 }
11535 }
11536 else if ((do_dyn_syms || (do_syms && !do_using_dynamic))
11537 && section_headers != NULL)
11538 {
11539 unsigned int i;
11540
11541 for (i = 0, section = section_headers;
11542 i < elf_header.e_shnum;
11543 i++, section++)
11544 {
11545 unsigned int si;
11546 char * strtab = NULL;
11547 unsigned long int strtab_size = 0;
11548 Elf_Internal_Sym * symtab;
11549 Elf_Internal_Sym * psym;
11550 unsigned long num_syms;
11551
11552 if ((section->sh_type != SHT_SYMTAB
11553 && section->sh_type != SHT_DYNSYM)
11554 || (!do_syms
11555 && section->sh_type == SHT_SYMTAB))
11556 continue;
11557
11558 if (section->sh_entsize == 0)
11559 {
11560 printf (_("\nSymbol table '%s' has a sh_entsize of zero!\n"),
11561 printable_section_name (section));
11562 continue;
11563 }
11564
11565 num_syms = section->sh_size / section->sh_entsize;
11566 printf (ngettext ("\nSymbol table '%s' contains %lu entry:\n",
11567 "\nSymbol table '%s' contains %lu entries:\n",
11568 num_syms),
11569 printable_section_name (section),
11570 num_syms);
11571
11572 if (is_32bit_elf)
11573 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
11574 else
11575 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
11576
11577 symtab = GET_ELF_SYMBOLS (file, section, & num_syms);
11578 if (symtab == NULL)
11579 continue;
11580
11581 if (section->sh_link == elf_header.e_shstrndx)
11582 {
11583 strtab = string_table;
11584 strtab_size = string_table_length;
11585 }
11586 else if (section->sh_link < elf_header.e_shnum)
11587 {
11588 Elf_Internal_Shdr * string_sec;
11589
11590 string_sec = section_headers + section->sh_link;
11591
11592 strtab = (char *) get_data (NULL, file, string_sec->sh_offset,
11593 1, string_sec->sh_size,
11594 _("string table"));
11595 strtab_size = strtab != NULL ? string_sec->sh_size : 0;
11596 }
11597
11598 for (si = 0, psym = symtab; si < num_syms; si++, psym++)
11599 {
11600 const char *version_string;
11601 enum versioned_symbol_info sym_info;
11602 unsigned short vna_other;
11603
11604 printf ("%6d: ", si);
11605 print_vma (psym->st_value, LONG_HEX);
11606 putchar (' ');
11607 print_vma (psym->st_size, DEC_5);
11608 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
11609 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
11610 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
11611 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
11612 else
11613 {
11614 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
11615
11616 printf (" %-7s", get_symbol_visibility (vis));
11617 /* Check to see if any other bits in the st_other field are set.
11618 Note - displaying this information disrupts the layout of the
11619 table being generated, but for the moment this case is very rare. */
11620 if (psym->st_other ^ vis)
11621 printf (" [%s] ", get_symbol_other (psym->st_other ^ vis));
11622 }
11623 printf (" %4s ", get_symbol_index_type (psym->st_shndx));
11624 print_symbol (25, psym->st_name < strtab_size
11625 ? strtab + psym->st_name : _("<corrupt>"));
11626
11627 version_string
11628 = get_symbol_version_string (file,
11629 section->sh_type == SHT_DYNSYM,
11630 strtab, strtab_size, si,
11631 psym, &sym_info, &vna_other);
11632 if (version_string)
11633 {
11634 if (sym_info == symbol_undefined)
11635 printf ("@%s (%d)", version_string, vna_other);
11636 else
11637 printf (sym_info == symbol_hidden ? "@%s" : "@@%s",
11638 version_string);
11639 }
11640
11641 putchar ('\n');
11642
11643 if (ELF_ST_BIND (psym->st_info) == STB_LOCAL
11644 && si >= section->sh_info
11645 /* Irix 5 and 6 MIPS binaries are known to ignore this requirement. */
11646 && elf_header.e_machine != EM_MIPS
11647 /* Solaris binaries have been found to violate this requirement as
11648 well. Not sure if this is a bug or an ABI requirement. */
11649 && elf_header.e_ident[EI_OSABI] != ELFOSABI_SOLARIS)
11650 warn (_("local symbol %u found at index >= %s's sh_info value of %u\n"),
11651 si, printable_section_name (section), section->sh_info);
11652 }
11653
11654 free (symtab);
11655 if (strtab != string_table)
11656 free (strtab);
11657 }
11658 }
11659 else if (do_syms)
11660 printf
11661 (_("\nDynamic symbol information is not available for displaying symbols.\n"));
11662
11663 if (do_histogram && buckets != NULL)
11664 {
11665 unsigned long * lengths;
11666 unsigned long * counts;
11667 unsigned long hn;
11668 bfd_vma si;
11669 unsigned long maxlength = 0;
11670 unsigned long nzero_counts = 0;
11671 unsigned long nsyms = 0;
11672 char *visited;
11673
11674 printf (ngettext ("\nHistogram for bucket list length "
11675 "(total of %lu bucket):\n",
11676 "\nHistogram for bucket list length "
11677 "(total of %lu buckets):\n",
11678 (unsigned long) nbuckets),
11679 (unsigned long) nbuckets);
11680
11681 lengths = (unsigned long *) calloc (nbuckets, sizeof (*lengths));
11682 if (lengths == NULL)
11683 {
11684 error (_("Out of memory allocating space for histogram buckets\n"));
11685 return FALSE;
11686 }
11687 visited = xcmalloc (nchains, 1);
11688 memset (visited, 0, nchains);
11689
11690 printf (_(" Length Number %% of total Coverage\n"));
11691 for (hn = 0; hn < nbuckets; ++hn)
11692 {
11693 for (si = buckets[hn]; si > 0; si = chains[si])
11694 {
11695 ++nsyms;
11696 if (maxlength < ++lengths[hn])
11697 ++maxlength;
11698 if (si >= nchains || visited[si])
11699 {
11700 error (_("histogram chain is corrupt\n"));
11701 break;
11702 }
11703 visited[si] = 1;
11704 }
11705 }
11706 free (visited);
11707
11708 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
11709 if (counts == NULL)
11710 {
11711 free (lengths);
11712 error (_("Out of memory allocating space for histogram counts\n"));
11713 return FALSE;
11714 }
11715
11716 for (hn = 0; hn < nbuckets; ++hn)
11717 ++counts[lengths[hn]];
11718
11719 if (nbuckets > 0)
11720 {
11721 unsigned long i;
11722 printf (" 0 %-10lu (%5.1f%%)\n",
11723 counts[0], (counts[0] * 100.0) / nbuckets);
11724 for (i = 1; i <= maxlength; ++i)
11725 {
11726 nzero_counts += counts[i] * i;
11727 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
11728 i, counts[i], (counts[i] * 100.0) / nbuckets,
11729 (nzero_counts * 100.0) / nsyms);
11730 }
11731 }
11732
11733 free (counts);
11734 free (lengths);
11735 }
11736
11737 if (buckets != NULL)
11738 {
11739 free (buckets);
11740 free (chains);
11741 }
11742
11743 if (do_histogram && gnubuckets != NULL)
11744 {
11745 unsigned long * lengths;
11746 unsigned long * counts;
11747 unsigned long hn;
11748 unsigned long maxlength = 0;
11749 unsigned long nzero_counts = 0;
11750 unsigned long nsyms = 0;
11751
11752 printf (ngettext ("\nHistogram for `.gnu.hash' bucket list length "
11753 "(total of %lu bucket):\n",
11754 "\nHistogram for `.gnu.hash' bucket list length "
11755 "(total of %lu buckets):\n",
11756 (unsigned long) ngnubuckets),
11757 (unsigned long) ngnubuckets);
11758
11759 lengths = (unsigned long *) calloc (ngnubuckets, sizeof (*lengths));
11760 if (lengths == NULL)
11761 {
11762 error (_("Out of memory allocating space for gnu histogram buckets\n"));
11763 return FALSE;
11764 }
11765
11766 printf (_(" Length Number %% of total Coverage\n"));
11767
11768 for (hn = 0; hn < ngnubuckets; ++hn)
11769 if (gnubuckets[hn] != 0)
11770 {
11771 bfd_vma off, length = 1;
11772
11773 for (off = gnubuckets[hn] - gnusymidx;
11774 /* PR 17531 file: 010-77222-0.004. */
11775 off < ngnuchains && (gnuchains[off] & 1) == 0;
11776 ++off)
11777 ++length;
11778 lengths[hn] = length;
11779 if (length > maxlength)
11780 maxlength = length;
11781 nsyms += length;
11782 }
11783
11784 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
11785 if (counts == NULL)
11786 {
11787 free (lengths);
11788 error (_("Out of memory allocating space for gnu histogram counts\n"));
11789 return FALSE;
11790 }
11791
11792 for (hn = 0; hn < ngnubuckets; ++hn)
11793 ++counts[lengths[hn]];
11794
11795 if (ngnubuckets > 0)
11796 {
11797 unsigned long j;
11798 printf (" 0 %-10lu (%5.1f%%)\n",
11799 counts[0], (counts[0] * 100.0) / ngnubuckets);
11800 for (j = 1; j <= maxlength; ++j)
11801 {
11802 nzero_counts += counts[j] * j;
11803 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
11804 j, counts[j], (counts[j] * 100.0) / ngnubuckets,
11805 (nzero_counts * 100.0) / nsyms);
11806 }
11807 }
11808
11809 free (counts);
11810 free (lengths);
11811 free (gnubuckets);
11812 free (gnuchains);
11813 }
11814
11815 return TRUE;
11816 }
11817
11818 static bfd_boolean
11819 process_syminfo (FILE * file ATTRIBUTE_UNUSED)
11820 {
11821 unsigned int i;
11822
11823 if (dynamic_syminfo == NULL
11824 || !do_dynamic)
11825 /* No syminfo, this is ok. */
11826 return TRUE;
11827
11828 /* There better should be a dynamic symbol section. */
11829 if (dynamic_symbols == NULL || dynamic_strings == NULL)
11830 return FALSE;
11831
11832 if (dynamic_addr)
11833 printf (ngettext ("\nDynamic info segment at offset 0x%lx "
11834 "contains %d entry:\n",
11835 "\nDynamic info segment at offset 0x%lx "
11836 "contains %d entries:\n",
11837 dynamic_syminfo_nent),
11838 dynamic_syminfo_offset, dynamic_syminfo_nent);
11839
11840 printf (_(" Num: Name BoundTo Flags\n"));
11841 for (i = 0; i < dynamic_syminfo_nent; ++i)
11842 {
11843 unsigned short int flags = dynamic_syminfo[i].si_flags;
11844
11845 printf ("%4d: ", i);
11846 if (i >= num_dynamic_syms)
11847 printf (_("<corrupt index>"));
11848 else if (VALID_DYNAMIC_NAME (dynamic_symbols[i].st_name))
11849 print_symbol (30, GET_DYNAMIC_NAME (dynamic_symbols[i].st_name));
11850 else
11851 printf (_("<corrupt: %19ld>"), dynamic_symbols[i].st_name);
11852 putchar (' ');
11853
11854 switch (dynamic_syminfo[i].si_boundto)
11855 {
11856 case SYMINFO_BT_SELF:
11857 fputs ("SELF ", stdout);
11858 break;
11859 case SYMINFO_BT_PARENT:
11860 fputs ("PARENT ", stdout);
11861 break;
11862 default:
11863 if (dynamic_syminfo[i].si_boundto > 0
11864 && dynamic_syminfo[i].si_boundto < dynamic_nent
11865 && VALID_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val))
11866 {
11867 print_symbol (10, GET_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val));
11868 putchar (' ' );
11869 }
11870 else
11871 printf ("%-10d ", dynamic_syminfo[i].si_boundto);
11872 break;
11873 }
11874
11875 if (flags & SYMINFO_FLG_DIRECT)
11876 printf (" DIRECT");
11877 if (flags & SYMINFO_FLG_PASSTHRU)
11878 printf (" PASSTHRU");
11879 if (flags & SYMINFO_FLG_COPY)
11880 printf (" COPY");
11881 if (flags & SYMINFO_FLG_LAZYLOAD)
11882 printf (" LAZYLOAD");
11883
11884 puts ("");
11885 }
11886
11887 return TRUE;
11888 }
11889
11890 #define IN_RANGE(START,END,ADDR,OFF) \
11891 (((ADDR) >= (START)) && ((ADDR) + (OFF) < (END)))
11892
11893 /* Check to see if the given reloc needs to be handled in a target specific
11894 manner. If so then process the reloc and return TRUE otherwise return
11895 FALSE.
11896
11897 If called with reloc == NULL, then this is a signal that reloc processing
11898 for the current section has finished, and any saved state should be
11899 discarded. */
11900
11901 static bfd_boolean
11902 target_specific_reloc_handling (Elf_Internal_Rela * reloc,
11903 unsigned char * start,
11904 unsigned char * end,
11905 Elf_Internal_Sym * symtab,
11906 unsigned long num_syms)
11907 {
11908 unsigned int reloc_type = 0;
11909 unsigned long sym_index = 0;
11910
11911 if (reloc)
11912 {
11913 reloc_type = get_reloc_type (reloc->r_info);
11914 sym_index = get_reloc_symindex (reloc->r_info);
11915 }
11916
11917 switch (elf_header.e_machine)
11918 {
11919 case EM_MSP430:
11920 case EM_MSP430_OLD:
11921 {
11922 static Elf_Internal_Sym * saved_sym = NULL;
11923
11924 if (reloc == NULL)
11925 {
11926 saved_sym = NULL;
11927 return TRUE;
11928 }
11929
11930 switch (reloc_type)
11931 {
11932 case 10: /* R_MSP430_SYM_DIFF */
11933 if (uses_msp430x_relocs ())
11934 break;
11935 /* Fall through. */
11936 case 21: /* R_MSP430X_SYM_DIFF */
11937 /* PR 21139. */
11938 if (sym_index >= num_syms)
11939 error (_("MSP430 SYM_DIFF reloc contains invalid symbol index %lu\n"),
11940 sym_index);
11941 else
11942 saved_sym = symtab + sym_index;
11943 return TRUE;
11944
11945 case 1: /* R_MSP430_32 or R_MSP430_ABS32 */
11946 case 3: /* R_MSP430_16 or R_MSP430_ABS8 */
11947 goto handle_sym_diff;
11948
11949 case 5: /* R_MSP430_16_BYTE */
11950 case 9: /* R_MSP430_8 */
11951 if (uses_msp430x_relocs ())
11952 break;
11953 goto handle_sym_diff;
11954
11955 case 2: /* R_MSP430_ABS16 */
11956 case 15: /* R_MSP430X_ABS16 */
11957 if (! uses_msp430x_relocs ())
11958 break;
11959 goto handle_sym_diff;
11960
11961 handle_sym_diff:
11962 if (saved_sym != NULL)
11963 {
11964 int reloc_size = reloc_type == 1 ? 4 : 2;
11965 bfd_vma value;
11966
11967 if (sym_index >= num_syms)
11968 error (_("MSP430 reloc contains invalid symbol index %lu\n"),
11969 sym_index);
11970 else
11971 {
11972 value = reloc->r_addend + (symtab[sym_index].st_value
11973 - saved_sym->st_value);
11974
11975 if (IN_RANGE (start, end, start + reloc->r_offset, reloc_size))
11976 byte_put (start + reloc->r_offset, value, reloc_size);
11977 else
11978 /* PR 21137 */
11979 error (_("MSP430 sym diff reloc contains invalid offset: 0x%lx\n"),
11980 (long) reloc->r_offset);
11981 }
11982
11983 saved_sym = NULL;
11984 return TRUE;
11985 }
11986 break;
11987
11988 default:
11989 if (saved_sym != NULL)
11990 error (_("Unhandled MSP430 reloc type found after SYM_DIFF reloc\n"));
11991 break;
11992 }
11993 break;
11994 }
11995
11996 case EM_MN10300:
11997 case EM_CYGNUS_MN10300:
11998 {
11999 static Elf_Internal_Sym * saved_sym = NULL;
12000
12001 if (reloc == NULL)
12002 {
12003 saved_sym = NULL;
12004 return TRUE;
12005 }
12006
12007 switch (reloc_type)
12008 {
12009 case 34: /* R_MN10300_ALIGN */
12010 return TRUE;
12011 case 33: /* R_MN10300_SYM_DIFF */
12012 if (sym_index >= num_syms)
12013 error (_("MN10300_SYM_DIFF reloc contains invalid symbol index %lu\n"),
12014 sym_index);
12015 else
12016 saved_sym = symtab + sym_index;
12017 return TRUE;
12018
12019 case 1: /* R_MN10300_32 */
12020 case 2: /* R_MN10300_16 */
12021 if (saved_sym != NULL)
12022 {
12023 int reloc_size = reloc_type == 1 ? 4 : 2;
12024 bfd_vma value;
12025
12026 if (sym_index >= num_syms)
12027 error (_("MN10300 reloc contains invalid symbol index %lu\n"),
12028 sym_index);
12029 else
12030 {
12031 value = reloc->r_addend + (symtab[sym_index].st_value
12032 - saved_sym->st_value);
12033
12034 if (IN_RANGE (start, end, start + reloc->r_offset, reloc_size))
12035 byte_put (start + reloc->r_offset, value, reloc_size);
12036 else
12037 error (_("MN10300 sym diff reloc contains invalid offset: 0x%lx\n"),
12038 (long) reloc->r_offset);
12039 }
12040
12041 saved_sym = NULL;
12042 return TRUE;
12043 }
12044 break;
12045 default:
12046 if (saved_sym != NULL)
12047 error (_("Unhandled MN10300 reloc type found after SYM_DIFF reloc\n"));
12048 break;
12049 }
12050 break;
12051 }
12052
12053 case EM_RL78:
12054 {
12055 static bfd_vma saved_sym1 = 0;
12056 static bfd_vma saved_sym2 = 0;
12057 static bfd_vma value;
12058
12059 if (reloc == NULL)
12060 {
12061 saved_sym1 = saved_sym2 = 0;
12062 return TRUE;
12063 }
12064
12065 switch (reloc_type)
12066 {
12067 case 0x80: /* R_RL78_SYM. */
12068 saved_sym1 = saved_sym2;
12069 if (sym_index >= num_syms)
12070 error (_("RL78_SYM reloc contains invalid symbol index %lu\n"),
12071 sym_index);
12072 else
12073 {
12074 saved_sym2 = symtab[sym_index].st_value;
12075 saved_sym2 += reloc->r_addend;
12076 }
12077 return TRUE;
12078
12079 case 0x83: /* R_RL78_OPsub. */
12080 value = saved_sym1 - saved_sym2;
12081 saved_sym2 = saved_sym1 = 0;
12082 return TRUE;
12083 break;
12084
12085 case 0x41: /* R_RL78_ABS32. */
12086 if (IN_RANGE (start, end, start + reloc->r_offset, 4))
12087 byte_put (start + reloc->r_offset, value, 4);
12088 else
12089 error (_("RL78 sym diff reloc contains invalid offset: 0x%lx\n"),
12090 (long) reloc->r_offset);
12091 value = 0;
12092 return TRUE;
12093
12094 case 0x43: /* R_RL78_ABS16. */
12095 if (IN_RANGE (start, end, start + reloc->r_offset, 2))
12096 byte_put (start + reloc->r_offset, value, 2);
12097 else
12098 error (_("RL78 sym diff reloc contains invalid offset: 0x%lx\n"),
12099 (long) reloc->r_offset);
12100 value = 0;
12101 return TRUE;
12102
12103 default:
12104 break;
12105 }
12106 break;
12107 }
12108 }
12109
12110 return FALSE;
12111 }
12112
12113 /* Returns TRUE iff RELOC_TYPE is a 32-bit absolute RELA relocation used in
12114 DWARF debug sections. This is a target specific test. Note - we do not
12115 go through the whole including-target-headers-multiple-times route, (as
12116 we have already done with <elf/h8.h>) because this would become very
12117 messy and even then this function would have to contain target specific
12118 information (the names of the relocs instead of their numeric values).
12119 FIXME: This is not the correct way to solve this problem. The proper way
12120 is to have target specific reloc sizing and typing functions created by
12121 the reloc-macros.h header, in the same way that it already creates the
12122 reloc naming functions. */
12123
12124 static bfd_boolean
12125 is_32bit_abs_reloc (unsigned int reloc_type)
12126 {
12127 /* Please keep this table alpha-sorted for ease of visual lookup. */
12128 switch (elf_header.e_machine)
12129 {
12130 case EM_386:
12131 case EM_IAMCU:
12132 return reloc_type == 1; /* R_386_32. */
12133 case EM_68K:
12134 return reloc_type == 1; /* R_68K_32. */
12135 case EM_860:
12136 return reloc_type == 1; /* R_860_32. */
12137 case EM_960:
12138 return reloc_type == 2; /* R_960_32. */
12139 case EM_AARCH64:
12140 return (reloc_type == 258
12141 || reloc_type == 1); /* R_AARCH64_ABS32 || R_AARCH64_P32_ABS32 */
12142 case EM_ADAPTEVA_EPIPHANY:
12143 return reloc_type == 3;
12144 case EM_ALPHA:
12145 return reloc_type == 1; /* R_ALPHA_REFLONG. */
12146 case EM_ARC:
12147 return reloc_type == 1; /* R_ARC_32. */
12148 case EM_ARC_COMPACT:
12149 case EM_ARC_COMPACT2:
12150 return reloc_type == 4; /* R_ARC_32. */
12151 case EM_ARM:
12152 return reloc_type == 2; /* R_ARM_ABS32 */
12153 case EM_AVR_OLD:
12154 case EM_AVR:
12155 return reloc_type == 1;
12156 case EM_BLACKFIN:
12157 return reloc_type == 0x12; /* R_byte4_data. */
12158 case EM_CRIS:
12159 return reloc_type == 3; /* R_CRIS_32. */
12160 case EM_CR16:
12161 return reloc_type == 3; /* R_CR16_NUM32. */
12162 case EM_CRX:
12163 return reloc_type == 15; /* R_CRX_NUM32. */
12164 case EM_CYGNUS_FRV:
12165 return reloc_type == 1;
12166 case EM_CYGNUS_D10V:
12167 case EM_D10V:
12168 return reloc_type == 6; /* R_D10V_32. */
12169 case EM_CYGNUS_D30V:
12170 case EM_D30V:
12171 return reloc_type == 12; /* R_D30V_32_NORMAL. */
12172 case EM_DLX:
12173 return reloc_type == 3; /* R_DLX_RELOC_32. */
12174 case EM_CYGNUS_FR30:
12175 case EM_FR30:
12176 return reloc_type == 3; /* R_FR30_32. */
12177 case EM_FT32:
12178 return reloc_type == 1; /* R_FT32_32. */
12179 case EM_H8S:
12180 case EM_H8_300:
12181 case EM_H8_300H:
12182 return reloc_type == 1; /* R_H8_DIR32. */
12183 case EM_IA_64:
12184 return (reloc_type == 0x64 /* R_IA64_SECREL32MSB. */
12185 || reloc_type == 0x65 /* R_IA64_SECREL32LSB. */
12186 || reloc_type == 0x24 /* R_IA64_DIR32MSB. */
12187 || reloc_type == 0x25 /* R_IA64_DIR32LSB. */);
12188 case EM_IP2K_OLD:
12189 case EM_IP2K:
12190 return reloc_type == 2; /* R_IP2K_32. */
12191 case EM_IQ2000:
12192 return reloc_type == 2; /* R_IQ2000_32. */
12193 case EM_LATTICEMICO32:
12194 return reloc_type == 3; /* R_LM32_32. */
12195 case EM_M32C_OLD:
12196 case EM_M32C:
12197 return reloc_type == 3; /* R_M32C_32. */
12198 case EM_M32R:
12199 return reloc_type == 34; /* R_M32R_32_RELA. */
12200 case EM_68HC11:
12201 case EM_68HC12:
12202 return reloc_type == 6; /* R_M68HC11_32. */
12203 case EM_MCORE:
12204 return reloc_type == 1; /* R_MCORE_ADDR32. */
12205 case EM_CYGNUS_MEP:
12206 return reloc_type == 4; /* R_MEP_32. */
12207 case EM_METAG:
12208 return reloc_type == 2; /* R_METAG_ADDR32. */
12209 case EM_MICROBLAZE:
12210 return reloc_type == 1; /* R_MICROBLAZE_32. */
12211 case EM_MIPS:
12212 return reloc_type == 2; /* R_MIPS_32. */
12213 case EM_MMIX:
12214 return reloc_type == 4; /* R_MMIX_32. */
12215 case EM_CYGNUS_MN10200:
12216 case EM_MN10200:
12217 return reloc_type == 1; /* R_MN10200_32. */
12218 case EM_CYGNUS_MN10300:
12219 case EM_MN10300:
12220 return reloc_type == 1; /* R_MN10300_32. */
12221 case EM_MOXIE:
12222 return reloc_type == 1; /* R_MOXIE_32. */
12223 case EM_MSP430_OLD:
12224 case EM_MSP430:
12225 return reloc_type == 1; /* R_MSP430_32 or R_MSP320_ABS32. */
12226 case EM_MT:
12227 return reloc_type == 2; /* R_MT_32. */
12228 case EM_NDS32:
12229 return reloc_type == 20; /* R_NDS32_RELA. */
12230 case EM_ALTERA_NIOS2:
12231 return reloc_type == 12; /* R_NIOS2_BFD_RELOC_32. */
12232 case EM_NIOS32:
12233 return reloc_type == 1; /* R_NIOS_32. */
12234 case EM_OR1K:
12235 return reloc_type == 1; /* R_OR1K_32. */
12236 case EM_PARISC:
12237 return (reloc_type == 1 /* R_PARISC_DIR32. */
12238 || reloc_type == 41); /* R_PARISC_SECREL32. */
12239 case EM_PJ:
12240 case EM_PJ_OLD:
12241 return reloc_type == 1; /* R_PJ_DATA_DIR32. */
12242 case EM_PPC64:
12243 return reloc_type == 1; /* R_PPC64_ADDR32. */
12244 case EM_PPC:
12245 return reloc_type == 1; /* R_PPC_ADDR32. */
12246 case EM_TI_PRU:
12247 return reloc_type == 11; /* R_PRU_BFD_RELOC_32. */
12248 case EM_RISCV:
12249 return reloc_type == 1; /* R_RISCV_32. */
12250 case EM_RL78:
12251 return reloc_type == 1; /* R_RL78_DIR32. */
12252 case EM_RX:
12253 return reloc_type == 1; /* R_RX_DIR32. */
12254 case EM_S370:
12255 return reloc_type == 1; /* R_I370_ADDR31. */
12256 case EM_S390_OLD:
12257 case EM_S390:
12258 return reloc_type == 4; /* R_S390_32. */
12259 case EM_SCORE:
12260 return reloc_type == 8; /* R_SCORE_ABS32. */
12261 case EM_SH:
12262 return reloc_type == 1; /* R_SH_DIR32. */
12263 case EM_SPARC32PLUS:
12264 case EM_SPARCV9:
12265 case EM_SPARC:
12266 return reloc_type == 3 /* R_SPARC_32. */
12267 || reloc_type == 23; /* R_SPARC_UA32. */
12268 case EM_SPU:
12269 return reloc_type == 6; /* R_SPU_ADDR32 */
12270 case EM_TI_C6000:
12271 return reloc_type == 1; /* R_C6000_ABS32. */
12272 case EM_TILEGX:
12273 return reloc_type == 2; /* R_TILEGX_32. */
12274 case EM_TILEPRO:
12275 return reloc_type == 1; /* R_TILEPRO_32. */
12276 case EM_CYGNUS_V850:
12277 case EM_V850:
12278 return reloc_type == 6; /* R_V850_ABS32. */
12279 case EM_V800:
12280 return reloc_type == 0x33; /* R_V810_WORD. */
12281 case EM_VAX:
12282 return reloc_type == 1; /* R_VAX_32. */
12283 case EM_VISIUM:
12284 return reloc_type == 3; /* R_VISIUM_32. */
12285 case EM_WEBASSEMBLY:
12286 return reloc_type == 1; /* R_WASM32_32. */
12287 case EM_X86_64:
12288 case EM_L1OM:
12289 case EM_K1OM:
12290 return reloc_type == 10; /* R_X86_64_32. */
12291 case EM_XC16X:
12292 case EM_C166:
12293 return reloc_type == 3; /* R_XC16C_ABS_32. */
12294 case EM_XGATE:
12295 return reloc_type == 4; /* R_XGATE_32. */
12296 case EM_XSTORMY16:
12297 return reloc_type == 1; /* R_XSTROMY16_32. */
12298 case EM_XTENSA_OLD:
12299 case EM_XTENSA:
12300 return reloc_type == 1; /* R_XTENSA_32. */
12301 default:
12302 {
12303 static unsigned int prev_warn = 0;
12304
12305 /* Avoid repeating the same warning multiple times. */
12306 if (prev_warn != elf_header.e_machine)
12307 error (_("Missing knowledge of 32-bit reloc types used in DWARF sections of machine number %d\n"),
12308 elf_header.e_machine);
12309 prev_warn = elf_header.e_machine;
12310 return FALSE;
12311 }
12312 }
12313 }
12314
12315 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12316 a 32-bit pc-relative RELA relocation used in DWARF debug sections. */
12317
12318 static bfd_boolean
12319 is_32bit_pcrel_reloc (unsigned int reloc_type)
12320 {
12321 switch (elf_header.e_machine)
12322 /* Please keep this table alpha-sorted for ease of visual lookup. */
12323 {
12324 case EM_386:
12325 case EM_IAMCU:
12326 return reloc_type == 2; /* R_386_PC32. */
12327 case EM_68K:
12328 return reloc_type == 4; /* R_68K_PC32. */
12329 case EM_AARCH64:
12330 return reloc_type == 261; /* R_AARCH64_PREL32 */
12331 case EM_ADAPTEVA_EPIPHANY:
12332 return reloc_type == 6;
12333 case EM_ALPHA:
12334 return reloc_type == 10; /* R_ALPHA_SREL32. */
12335 case EM_ARC_COMPACT:
12336 case EM_ARC_COMPACT2:
12337 return reloc_type == 49; /* R_ARC_32_PCREL. */
12338 case EM_ARM:
12339 return reloc_type == 3; /* R_ARM_REL32 */
12340 case EM_AVR_OLD:
12341 case EM_AVR:
12342 return reloc_type == 36; /* R_AVR_32_PCREL. */
12343 case EM_MICROBLAZE:
12344 return reloc_type == 2; /* R_MICROBLAZE_32_PCREL. */
12345 case EM_OR1K:
12346 return reloc_type == 9; /* R_OR1K_32_PCREL. */
12347 case EM_PARISC:
12348 return reloc_type == 9; /* R_PARISC_PCREL32. */
12349 case EM_PPC:
12350 return reloc_type == 26; /* R_PPC_REL32. */
12351 case EM_PPC64:
12352 return reloc_type == 26; /* R_PPC64_REL32. */
12353 case EM_S390_OLD:
12354 case EM_S390:
12355 return reloc_type == 5; /* R_390_PC32. */
12356 case EM_SH:
12357 return reloc_type == 2; /* R_SH_REL32. */
12358 case EM_SPARC32PLUS:
12359 case EM_SPARCV9:
12360 case EM_SPARC:
12361 return reloc_type == 6; /* R_SPARC_DISP32. */
12362 case EM_SPU:
12363 return reloc_type == 13; /* R_SPU_REL32. */
12364 case EM_TILEGX:
12365 return reloc_type == 6; /* R_TILEGX_32_PCREL. */
12366 case EM_TILEPRO:
12367 return reloc_type == 4; /* R_TILEPRO_32_PCREL. */
12368 case EM_VISIUM:
12369 return reloc_type == 6; /* R_VISIUM_32_PCREL */
12370 case EM_X86_64:
12371 case EM_L1OM:
12372 case EM_K1OM:
12373 return reloc_type == 2; /* R_X86_64_PC32. */
12374 case EM_XTENSA_OLD:
12375 case EM_XTENSA:
12376 return reloc_type == 14; /* R_XTENSA_32_PCREL. */
12377 default:
12378 /* Do not abort or issue an error message here. Not all targets use
12379 pc-relative 32-bit relocs in their DWARF debug information and we
12380 have already tested for target coverage in is_32bit_abs_reloc. A
12381 more helpful warning message will be generated by apply_relocations
12382 anyway, so just return. */
12383 return FALSE;
12384 }
12385 }
12386
12387 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12388 a 64-bit absolute RELA relocation used in DWARF debug sections. */
12389
12390 static bfd_boolean
12391 is_64bit_abs_reloc (unsigned int reloc_type)
12392 {
12393 switch (elf_header.e_machine)
12394 {
12395 case EM_AARCH64:
12396 return reloc_type == 257; /* R_AARCH64_ABS64. */
12397 case EM_ALPHA:
12398 return reloc_type == 2; /* R_ALPHA_REFQUAD. */
12399 case EM_IA_64:
12400 return (reloc_type == 0x26 /* R_IA64_DIR64MSB. */
12401 || reloc_type == 0x27 /* R_IA64_DIR64LSB. */);
12402 case EM_PARISC:
12403 return reloc_type == 80; /* R_PARISC_DIR64. */
12404 case EM_PPC64:
12405 return reloc_type == 38; /* R_PPC64_ADDR64. */
12406 case EM_RISCV:
12407 return reloc_type == 2; /* R_RISCV_64. */
12408 case EM_SPARC32PLUS:
12409 case EM_SPARCV9:
12410 case EM_SPARC:
12411 return reloc_type == 32 /* R_SPARC_64. */
12412 || reloc_type == 54; /* R_SPARC_UA64. */
12413 case EM_X86_64:
12414 case EM_L1OM:
12415 case EM_K1OM:
12416 return reloc_type == 1; /* R_X86_64_64. */
12417 case EM_S390_OLD:
12418 case EM_S390:
12419 return reloc_type == 22; /* R_S390_64. */
12420 case EM_TILEGX:
12421 return reloc_type == 1; /* R_TILEGX_64. */
12422 case EM_MIPS:
12423 return reloc_type == 18; /* R_MIPS_64. */
12424 default:
12425 return FALSE;
12426 }
12427 }
12428
12429 /* Like is_32bit_pcrel_reloc except that it returns TRUE iff RELOC_TYPE is
12430 a 64-bit pc-relative RELA relocation used in DWARF debug sections. */
12431
12432 static bfd_boolean
12433 is_64bit_pcrel_reloc (unsigned int reloc_type)
12434 {
12435 switch (elf_header.e_machine)
12436 {
12437 case EM_AARCH64:
12438 return reloc_type == 260; /* R_AARCH64_PREL64. */
12439 case EM_ALPHA:
12440 return reloc_type == 11; /* R_ALPHA_SREL64. */
12441 case EM_IA_64:
12442 return (reloc_type == 0x4e /* R_IA64_PCREL64MSB. */
12443 || reloc_type == 0x4f /* R_IA64_PCREL64LSB. */);
12444 case EM_PARISC:
12445 return reloc_type == 72; /* R_PARISC_PCREL64. */
12446 case EM_PPC64:
12447 return reloc_type == 44; /* R_PPC64_REL64. */
12448 case EM_SPARC32PLUS:
12449 case EM_SPARCV9:
12450 case EM_SPARC:
12451 return reloc_type == 46; /* R_SPARC_DISP64. */
12452 case EM_X86_64:
12453 case EM_L1OM:
12454 case EM_K1OM:
12455 return reloc_type == 24; /* R_X86_64_PC64. */
12456 case EM_S390_OLD:
12457 case EM_S390:
12458 return reloc_type == 23; /* R_S390_PC64. */
12459 case EM_TILEGX:
12460 return reloc_type == 5; /* R_TILEGX_64_PCREL. */
12461 default:
12462 return FALSE;
12463 }
12464 }
12465
12466 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12467 a 24-bit absolute RELA relocation used in DWARF debug sections. */
12468
12469 static bfd_boolean
12470 is_24bit_abs_reloc (unsigned int reloc_type)
12471 {
12472 switch (elf_header.e_machine)
12473 {
12474 case EM_CYGNUS_MN10200:
12475 case EM_MN10200:
12476 return reloc_type == 4; /* R_MN10200_24. */
12477 case EM_FT32:
12478 return reloc_type == 5; /* R_FT32_20. */
12479 default:
12480 return FALSE;
12481 }
12482 }
12483
12484 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12485 a 16-bit absolute RELA relocation used in DWARF debug sections. */
12486
12487 static bfd_boolean
12488 is_16bit_abs_reloc (unsigned int reloc_type)
12489 {
12490 /* Please keep this table alpha-sorted for ease of visual lookup. */
12491 switch (elf_header.e_machine)
12492 {
12493 case EM_ARC:
12494 case EM_ARC_COMPACT:
12495 case EM_ARC_COMPACT2:
12496 return reloc_type == 2; /* R_ARC_16. */
12497 case EM_ADAPTEVA_EPIPHANY:
12498 return reloc_type == 5;
12499 case EM_AVR_OLD:
12500 case EM_AVR:
12501 return reloc_type == 4; /* R_AVR_16. */
12502 case EM_CYGNUS_D10V:
12503 case EM_D10V:
12504 return reloc_type == 3; /* R_D10V_16. */
12505 case EM_FT32:
12506 return reloc_type == 2; /* R_FT32_16. */
12507 case EM_H8S:
12508 case EM_H8_300:
12509 case EM_H8_300H:
12510 return reloc_type == R_H8_DIR16;
12511 case EM_IP2K_OLD:
12512 case EM_IP2K:
12513 return reloc_type == 1; /* R_IP2K_16. */
12514 case EM_M32C_OLD:
12515 case EM_M32C:
12516 return reloc_type == 1; /* R_M32C_16 */
12517 case EM_CYGNUS_MN10200:
12518 case EM_MN10200:
12519 return reloc_type == 2; /* R_MN10200_16. */
12520 case EM_CYGNUS_MN10300:
12521 case EM_MN10300:
12522 return reloc_type == 2; /* R_MN10300_16. */
12523 case EM_MSP430:
12524 if (uses_msp430x_relocs ())
12525 return reloc_type == 2; /* R_MSP430_ABS16. */
12526 /* Fall through. */
12527 case EM_MSP430_OLD:
12528 return reloc_type == 5; /* R_MSP430_16_BYTE. */
12529 case EM_NDS32:
12530 return reloc_type == 19; /* R_NDS32_RELA. */
12531 case EM_ALTERA_NIOS2:
12532 return reloc_type == 13; /* R_NIOS2_BFD_RELOC_16. */
12533 case EM_NIOS32:
12534 return reloc_type == 9; /* R_NIOS_16. */
12535 case EM_OR1K:
12536 return reloc_type == 2; /* R_OR1K_16. */
12537 case EM_TI_PRU:
12538 return reloc_type == 8; /* R_PRU_BFD_RELOC_16. */
12539 case EM_TI_C6000:
12540 return reloc_type == 2; /* R_C6000_ABS16. */
12541 case EM_VISIUM:
12542 return reloc_type == 2; /* R_VISIUM_16. */
12543 case EM_XC16X:
12544 case EM_C166:
12545 return reloc_type == 2; /* R_XC16C_ABS_16. */
12546 case EM_XGATE:
12547 return reloc_type == 3; /* R_XGATE_16. */
12548 default:
12549 return FALSE;
12550 }
12551 }
12552
12553 /* Returns TRUE iff RELOC_TYPE is a NONE relocation used for discarded
12554 relocation entries (possibly formerly used for SHT_GROUP sections). */
12555
12556 static bfd_boolean
12557 is_none_reloc (unsigned int reloc_type)
12558 {
12559 switch (elf_header.e_machine)
12560 {
12561 case EM_386: /* R_386_NONE. */
12562 case EM_68K: /* R_68K_NONE. */
12563 case EM_ADAPTEVA_EPIPHANY:
12564 case EM_ALPHA: /* R_ALPHA_NONE. */
12565 case EM_ALTERA_NIOS2: /* R_NIOS2_NONE. */
12566 case EM_ARC: /* R_ARC_NONE. */
12567 case EM_ARC_COMPACT2: /* R_ARC_NONE. */
12568 case EM_ARC_COMPACT: /* R_ARC_NONE. */
12569 case EM_ARM: /* R_ARM_NONE. */
12570 case EM_C166: /* R_XC16X_NONE. */
12571 case EM_CRIS: /* R_CRIS_NONE. */
12572 case EM_FT32: /* R_FT32_NONE. */
12573 case EM_IA_64: /* R_IA64_NONE. */
12574 case EM_K1OM: /* R_X86_64_NONE. */
12575 case EM_L1OM: /* R_X86_64_NONE. */
12576 case EM_M32R: /* R_M32R_NONE. */
12577 case EM_MIPS: /* R_MIPS_NONE. */
12578 case EM_MN10300: /* R_MN10300_NONE. */
12579 case EM_MOXIE: /* R_MOXIE_NONE. */
12580 case EM_NIOS32: /* R_NIOS_NONE. */
12581 case EM_OR1K: /* R_OR1K_NONE. */
12582 case EM_PARISC: /* R_PARISC_NONE. */
12583 case EM_PPC64: /* R_PPC64_NONE. */
12584 case EM_PPC: /* R_PPC_NONE. */
12585 case EM_RISCV: /* R_RISCV_NONE. */
12586 case EM_S390: /* R_390_NONE. */
12587 case EM_S390_OLD:
12588 case EM_SH: /* R_SH_NONE. */
12589 case EM_SPARC32PLUS:
12590 case EM_SPARC: /* R_SPARC_NONE. */
12591 case EM_SPARCV9:
12592 case EM_TILEGX: /* R_TILEGX_NONE. */
12593 case EM_TILEPRO: /* R_TILEPRO_NONE. */
12594 case EM_TI_C6000:/* R_C6000_NONE. */
12595 case EM_X86_64: /* R_X86_64_NONE. */
12596 case EM_XC16X:
12597 case EM_WEBASSEMBLY: /* R_WASM32_NONE. */
12598 return reloc_type == 0;
12599
12600 case EM_AARCH64:
12601 return reloc_type == 0 || reloc_type == 256;
12602 case EM_AVR_OLD:
12603 case EM_AVR:
12604 return (reloc_type == 0 /* R_AVR_NONE. */
12605 || reloc_type == 30 /* R_AVR_DIFF8. */
12606 || reloc_type == 31 /* R_AVR_DIFF16. */
12607 || reloc_type == 32 /* R_AVR_DIFF32. */);
12608 case EM_METAG:
12609 return reloc_type == 3; /* R_METAG_NONE. */
12610 case EM_NDS32:
12611 return (reloc_type == 0 /* R_XTENSA_NONE. */
12612 || reloc_type == 204 /* R_NDS32_DIFF8. */
12613 || reloc_type == 205 /* R_NDS32_DIFF16. */
12614 || reloc_type == 206 /* R_NDS32_DIFF32. */
12615 || reloc_type == 207 /* R_NDS32_ULEB128. */);
12616 case EM_TI_PRU:
12617 return (reloc_type == 0 /* R_PRU_NONE. */
12618 || reloc_type == 65 /* R_PRU_DIFF8. */
12619 || reloc_type == 66 /* R_PRU_DIFF16. */
12620 || reloc_type == 67 /* R_PRU_DIFF32. */);
12621 case EM_XTENSA_OLD:
12622 case EM_XTENSA:
12623 return (reloc_type == 0 /* R_XTENSA_NONE. */
12624 || reloc_type == 17 /* R_XTENSA_DIFF8. */
12625 || reloc_type == 18 /* R_XTENSA_DIFF16. */
12626 || reloc_type == 19 /* R_XTENSA_DIFF32. */);
12627 }
12628 return FALSE;
12629 }
12630
12631 /* Returns TRUE if there is a relocation against
12632 section NAME at OFFSET bytes. */
12633
12634 bfd_boolean
12635 reloc_at (struct dwarf_section * dsec, dwarf_vma offset)
12636 {
12637 Elf_Internal_Rela * relocs;
12638 Elf_Internal_Rela * rp;
12639
12640 if (dsec == NULL || dsec->reloc_info == NULL)
12641 return FALSE;
12642
12643 relocs = (Elf_Internal_Rela *) dsec->reloc_info;
12644
12645 for (rp = relocs; rp < relocs + dsec->num_relocs; ++rp)
12646 if (rp->r_offset == offset)
12647 return TRUE;
12648
12649 return FALSE;
12650 }
12651
12652 /* Apply relocations to a section.
12653 Returns TRUE upon success, FALSE otherwise.
12654 If RELOCS_RETURN is non-NULL then it is set to point to the loaded relocs.
12655 It is then the caller's responsibility to free them. NUM_RELOCS_RETURN
12656 will be set to the number of relocs loaded.
12657
12658 Note: So far support has been added only for those relocations
12659 which can be found in debug sections. FIXME: Add support for
12660 more relocations ? */
12661
12662 static bfd_boolean
12663 apply_relocations (void * file,
12664 const Elf_Internal_Shdr * section,
12665 unsigned char * start,
12666 bfd_size_type size,
12667 void ** relocs_return,
12668 unsigned long * num_relocs_return)
12669 {
12670 Elf_Internal_Shdr * relsec;
12671 unsigned char * end = start + size;
12672 bfd_boolean res = TRUE;
12673
12674 if (relocs_return != NULL)
12675 {
12676 * (Elf_Internal_Rela **) relocs_return = NULL;
12677 * num_relocs_return = 0;
12678 }
12679
12680 if (elf_header.e_type != ET_REL)
12681 /* No relocs to apply. */
12682 return TRUE;
12683
12684 /* Find the reloc section associated with the section. */
12685 for (relsec = section_headers;
12686 relsec < section_headers + elf_header.e_shnum;
12687 ++relsec)
12688 {
12689 bfd_boolean is_rela;
12690 unsigned long num_relocs;
12691 Elf_Internal_Rela * relocs;
12692 Elf_Internal_Rela * rp;
12693 Elf_Internal_Shdr * symsec;
12694 Elf_Internal_Sym * symtab;
12695 unsigned long num_syms;
12696 Elf_Internal_Sym * sym;
12697
12698 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
12699 || relsec->sh_info >= elf_header.e_shnum
12700 || section_headers + relsec->sh_info != section
12701 || relsec->sh_size == 0
12702 || relsec->sh_link >= elf_header.e_shnum)
12703 continue;
12704
12705 is_rela = relsec->sh_type == SHT_RELA;
12706
12707 if (is_rela)
12708 {
12709 if (!slurp_rela_relocs ((FILE *) file, relsec->sh_offset,
12710 relsec->sh_size, & relocs, & num_relocs))
12711 return FALSE;
12712 }
12713 else
12714 {
12715 if (!slurp_rel_relocs ((FILE *) file, relsec->sh_offset,
12716 relsec->sh_size, & relocs, & num_relocs))
12717 return FALSE;
12718 }
12719
12720 /* SH uses RELA but uses in place value instead of the addend field. */
12721 if (elf_header.e_machine == EM_SH)
12722 is_rela = FALSE;
12723
12724 symsec = section_headers + relsec->sh_link;
12725 if (symsec->sh_type != SHT_SYMTAB
12726 && symsec->sh_type != SHT_DYNSYM)
12727 return FALSE;
12728 symtab = GET_ELF_SYMBOLS ((FILE *) file, symsec, & num_syms);
12729
12730 for (rp = relocs; rp < relocs + num_relocs; ++rp)
12731 {
12732 bfd_vma addend;
12733 unsigned int reloc_type;
12734 unsigned int reloc_size;
12735 unsigned char * rloc;
12736 unsigned long sym_index;
12737
12738 reloc_type = get_reloc_type (rp->r_info);
12739
12740 if (target_specific_reloc_handling (rp, start, end, symtab, num_syms))
12741 continue;
12742 else if (is_none_reloc (reloc_type))
12743 continue;
12744 else if (is_32bit_abs_reloc (reloc_type)
12745 || is_32bit_pcrel_reloc (reloc_type))
12746 reloc_size = 4;
12747 else if (is_64bit_abs_reloc (reloc_type)
12748 || is_64bit_pcrel_reloc (reloc_type))
12749 reloc_size = 8;
12750 else if (is_24bit_abs_reloc (reloc_type))
12751 reloc_size = 3;
12752 else if (is_16bit_abs_reloc (reloc_type))
12753 reloc_size = 2;
12754 else
12755 {
12756 static unsigned int prev_reloc = 0;
12757 if (reloc_type != prev_reloc)
12758 warn (_("unable to apply unsupported reloc type %d to section %s\n"),
12759 reloc_type, printable_section_name (section));
12760 prev_reloc = reloc_type;
12761 res = FALSE;
12762 continue;
12763 }
12764
12765 rloc = start + rp->r_offset;
12766 if ((rloc + reloc_size) > end || (rloc < start))
12767 {
12768 warn (_("skipping invalid relocation offset 0x%lx in section %s\n"),
12769 (unsigned long) rp->r_offset,
12770 printable_section_name (section));
12771 res = FALSE;
12772 continue;
12773 }
12774
12775 sym_index = (unsigned long) get_reloc_symindex (rp->r_info);
12776 if (sym_index >= num_syms)
12777 {
12778 warn (_("skipping invalid relocation symbol index 0x%lx in section %s\n"),
12779 sym_index, printable_section_name (section));
12780 res = FALSE;
12781 continue;
12782 }
12783 sym = symtab + sym_index;
12784
12785 /* If the reloc has a symbol associated with it,
12786 make sure that it is of an appropriate type.
12787
12788 Relocations against symbols without type can happen.
12789 Gcc -feliminate-dwarf2-dups may generate symbols
12790 without type for debug info.
12791
12792 Icc generates relocations against function symbols
12793 instead of local labels.
12794
12795 Relocations against object symbols can happen, eg when
12796 referencing a global array. For an example of this see
12797 the _clz.o binary in libgcc.a. */
12798 if (sym != symtab
12799 && ELF_ST_TYPE (sym->st_info) != STT_COMMON
12800 && ELF_ST_TYPE (sym->st_info) > STT_SECTION)
12801 {
12802 warn (_("skipping unexpected symbol type %s in section %s relocation %ld\n"),
12803 get_symbol_type (ELF_ST_TYPE (sym->st_info)),
12804 printable_section_name (relsec),
12805 (long int)(rp - relocs));
12806 res = FALSE;
12807 continue;
12808 }
12809
12810 addend = 0;
12811 if (is_rela)
12812 addend += rp->r_addend;
12813 /* R_XTENSA_32, R_PJ_DATA_DIR32 and R_D30V_32_NORMAL are
12814 partial_inplace. */
12815 if (!is_rela
12816 || (elf_header.e_machine == EM_XTENSA
12817 && reloc_type == 1)
12818 || ((elf_header.e_machine == EM_PJ
12819 || elf_header.e_machine == EM_PJ_OLD)
12820 && reloc_type == 1)
12821 || ((elf_header.e_machine == EM_D30V
12822 || elf_header.e_machine == EM_CYGNUS_D30V)
12823 && reloc_type == 12))
12824 addend += byte_get (rloc, reloc_size);
12825
12826 if (is_32bit_pcrel_reloc (reloc_type)
12827 || is_64bit_pcrel_reloc (reloc_type))
12828 {
12829 /* On HPPA, all pc-relative relocations are biased by 8. */
12830 if (elf_header.e_machine == EM_PARISC)
12831 addend -= 8;
12832 byte_put (rloc, (addend + sym->st_value) - rp->r_offset,
12833 reloc_size);
12834 }
12835 else
12836 byte_put (rloc, addend + sym->st_value, reloc_size);
12837 }
12838
12839 free (symtab);
12840 /* Let the target specific reloc processing code know that
12841 we have finished with these relocs. */
12842 target_specific_reloc_handling (NULL, NULL, NULL, NULL, 0);
12843
12844 if (relocs_return)
12845 {
12846 * (Elf_Internal_Rela **) relocs_return = relocs;
12847 * num_relocs_return = num_relocs;
12848 }
12849 else
12850 free (relocs);
12851
12852 break;
12853 }
12854
12855 return res;
12856 }
12857
12858 #ifdef SUPPORT_DISASSEMBLY
12859 static bfd_boolean
12860 disassemble_section (Elf_Internal_Shdr * section, FILE * file)
12861 {
12862 printf (_("\nAssembly dump of section %s\n"), printable_section_name (section));
12863
12864 /* FIXME: XXX -- to be done --- XXX */
12865
12866 return TRUE;
12867 }
12868 #endif
12869
12870 /* Reads in the contents of SECTION from FILE, returning a pointer
12871 to a malloc'ed buffer or NULL if something went wrong. */
12872
12873 static char *
12874 get_section_contents (Elf_Internal_Shdr * section, FILE * file)
12875 {
12876 bfd_size_type num_bytes;
12877
12878 num_bytes = section->sh_size;
12879
12880 if (num_bytes == 0 || section->sh_type == SHT_NOBITS)
12881 {
12882 printf (_("Section '%s' has no data to dump.\n"),
12883 printable_section_name (section));
12884 return NULL;
12885 }
12886
12887 return (char *) get_data (NULL, file, section->sh_offset, 1, num_bytes,
12888 _("section contents"));
12889 }
12890
12891 /* Uncompresses a section that was compressed using zlib, in place. */
12892
12893 static bfd_boolean
12894 uncompress_section_contents (unsigned char **buffer,
12895 dwarf_size_type uncompressed_size,
12896 dwarf_size_type *size)
12897 {
12898 dwarf_size_type compressed_size = *size;
12899 unsigned char * compressed_buffer = *buffer;
12900 unsigned char * uncompressed_buffer;
12901 z_stream strm;
12902 int rc;
12903
12904 /* It is possible the section consists of several compressed
12905 buffers concatenated together, so we uncompress in a loop. */
12906 /* PR 18313: The state field in the z_stream structure is supposed
12907 to be invisible to the user (ie us), but some compilers will
12908 still complain about it being used without initialisation. So
12909 we first zero the entire z_stream structure and then set the fields
12910 that we need. */
12911 memset (& strm, 0, sizeof strm);
12912 strm.avail_in = compressed_size;
12913 strm.next_in = (Bytef *) compressed_buffer;
12914 strm.avail_out = uncompressed_size;
12915 uncompressed_buffer = (unsigned char *) xmalloc (uncompressed_size);
12916
12917 rc = inflateInit (& strm);
12918 while (strm.avail_in > 0)
12919 {
12920 if (rc != Z_OK)
12921 goto fail;
12922 strm.next_out = ((Bytef *) uncompressed_buffer
12923 + (uncompressed_size - strm.avail_out));
12924 rc = inflate (&strm, Z_FINISH);
12925 if (rc != Z_STREAM_END)
12926 goto fail;
12927 rc = inflateReset (& strm);
12928 }
12929 rc = inflateEnd (& strm);
12930 if (rc != Z_OK
12931 || strm.avail_out != 0)
12932 goto fail;
12933
12934 *buffer = uncompressed_buffer;
12935 *size = uncompressed_size;
12936 return TRUE;
12937
12938 fail:
12939 free (uncompressed_buffer);
12940 /* Indicate decompression failure. */
12941 *buffer = NULL;
12942 return FALSE;
12943 }
12944
12945 static bfd_boolean
12946 dump_section_as_strings (Elf_Internal_Shdr * section, FILE * file)
12947 {
12948 Elf_Internal_Shdr * relsec;
12949 bfd_size_type num_bytes;
12950 unsigned char * data;
12951 unsigned char * end;
12952 unsigned char * real_start;
12953 unsigned char * start;
12954 bfd_boolean some_strings_shown;
12955
12956 real_start = start = (unsigned char *) get_section_contents (section, file);
12957 if (start == NULL)
12958 /* PR 21820: Do not fail if the section was empty. */
12959 return (section->sh_size == 0 || section->sh_type == SHT_NOBITS) ? TRUE : FALSE;
12960
12961 num_bytes = section->sh_size;
12962
12963 printf (_("\nString dump of section '%s':\n"), printable_section_name (section));
12964
12965 if (decompress_dumps)
12966 {
12967 dwarf_size_type new_size = num_bytes;
12968 dwarf_size_type uncompressed_size = 0;
12969
12970 if ((section->sh_flags & SHF_COMPRESSED) != 0)
12971 {
12972 Elf_Internal_Chdr chdr;
12973 unsigned int compression_header_size
12974 = get_compression_header (& chdr, (unsigned char *) start,
12975 num_bytes);
12976
12977 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
12978 {
12979 warn (_("section '%s' has unsupported compress type: %d\n"),
12980 printable_section_name (section), chdr.ch_type);
12981 return FALSE;
12982 }
12983 else if (chdr.ch_addralign != section->sh_addralign)
12984 {
12985 warn (_("compressed section '%s' is corrupted\n"),
12986 printable_section_name (section));
12987 return FALSE;
12988 }
12989 uncompressed_size = chdr.ch_size;
12990 start += compression_header_size;
12991 new_size -= compression_header_size;
12992 }
12993 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
12994 {
12995 /* Read the zlib header. In this case, it should be "ZLIB"
12996 followed by the uncompressed section size, 8 bytes in
12997 big-endian order. */
12998 uncompressed_size = start[4]; uncompressed_size <<= 8;
12999 uncompressed_size += start[5]; uncompressed_size <<= 8;
13000 uncompressed_size += start[6]; uncompressed_size <<= 8;
13001 uncompressed_size += start[7]; uncompressed_size <<= 8;
13002 uncompressed_size += start[8]; uncompressed_size <<= 8;
13003 uncompressed_size += start[9]; uncompressed_size <<= 8;
13004 uncompressed_size += start[10]; uncompressed_size <<= 8;
13005 uncompressed_size += start[11];
13006 start += 12;
13007 new_size -= 12;
13008 }
13009
13010 if (uncompressed_size)
13011 {
13012 if (uncompress_section_contents (& start,
13013 uncompressed_size, & new_size))
13014 num_bytes = new_size;
13015 else
13016 {
13017 error (_("Unable to decompress section %s\n"),
13018 printable_section_name (section));
13019 return FALSE;
13020 }
13021 }
13022 else
13023 start = real_start;
13024 }
13025
13026 /* If the section being dumped has relocations against it the user might
13027 be expecting these relocations to have been applied. Check for this
13028 case and issue a warning message in order to avoid confusion.
13029 FIXME: Maybe we ought to have an option that dumps a section with
13030 relocs applied ? */
13031 for (relsec = section_headers;
13032 relsec < section_headers + elf_header.e_shnum;
13033 ++relsec)
13034 {
13035 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
13036 || relsec->sh_info >= elf_header.e_shnum
13037 || section_headers + relsec->sh_info != section
13038 || relsec->sh_size == 0
13039 || relsec->sh_link >= elf_header.e_shnum)
13040 continue;
13041
13042 printf (_(" Note: This section has relocations against it, but these have NOT been applied to this dump.\n"));
13043 break;
13044 }
13045
13046 data = start;
13047 end = start + num_bytes;
13048 some_strings_shown = FALSE;
13049
13050 while (data < end)
13051 {
13052 while (!ISPRINT (* data))
13053 if (++ data >= end)
13054 break;
13055
13056 if (data < end)
13057 {
13058 size_t maxlen = end - data;
13059
13060 #ifndef __MSVCRT__
13061 /* PR 11128: Use two separate invocations in order to work
13062 around bugs in the Solaris 8 implementation of printf. */
13063 printf (" [%6tx] ", data - start);
13064 #else
13065 printf (" [%6Ix] ", (size_t) (data - start));
13066 #endif
13067 if (maxlen > 0)
13068 {
13069 print_symbol ((int) maxlen, (const char *) data);
13070 putchar ('\n');
13071 data += strnlen ((const char *) data, maxlen);
13072 }
13073 else
13074 {
13075 printf (_("<corrupt>\n"));
13076 data = end;
13077 }
13078 some_strings_shown = TRUE;
13079 }
13080 }
13081
13082 if (! some_strings_shown)
13083 printf (_(" No strings found in this section."));
13084
13085 free (real_start);
13086
13087 putchar ('\n');
13088 return TRUE;
13089 }
13090
13091 static bfd_boolean
13092 dump_section_as_bytes (Elf_Internal_Shdr * section,
13093 FILE * file,
13094 bfd_boolean relocate)
13095 {
13096 Elf_Internal_Shdr * relsec;
13097 bfd_size_type bytes;
13098 bfd_size_type section_size;
13099 bfd_vma addr;
13100 unsigned char * data;
13101 unsigned char * real_start;
13102 unsigned char * start;
13103
13104 real_start = start = (unsigned char *) get_section_contents (section, file);
13105 if (start == NULL)
13106 /* PR 21820: Do not fail if the section was empty. */
13107 return (section->sh_size == 0 || section->sh_type == SHT_NOBITS) ? TRUE : FALSE;
13108
13109 section_size = section->sh_size;
13110
13111 printf (_("\nHex dump of section '%s':\n"), printable_section_name (section));
13112
13113 if (decompress_dumps)
13114 {
13115 dwarf_size_type new_size = section_size;
13116 dwarf_size_type uncompressed_size = 0;
13117
13118 if ((section->sh_flags & SHF_COMPRESSED) != 0)
13119 {
13120 Elf_Internal_Chdr chdr;
13121 unsigned int compression_header_size
13122 = get_compression_header (& chdr, start, section_size);
13123
13124 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
13125 {
13126 warn (_("section '%s' has unsupported compress type: %d\n"),
13127 printable_section_name (section), chdr.ch_type);
13128 return FALSE;
13129 }
13130 else if (chdr.ch_addralign != section->sh_addralign)
13131 {
13132 warn (_("compressed section '%s' is corrupted\n"),
13133 printable_section_name (section));
13134 return FALSE;
13135 }
13136 uncompressed_size = chdr.ch_size;
13137 start += compression_header_size;
13138 new_size -= compression_header_size;
13139 }
13140 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
13141 {
13142 /* Read the zlib header. In this case, it should be "ZLIB"
13143 followed by the uncompressed section size, 8 bytes in
13144 big-endian order. */
13145 uncompressed_size = start[4]; uncompressed_size <<= 8;
13146 uncompressed_size += start[5]; uncompressed_size <<= 8;
13147 uncompressed_size += start[6]; uncompressed_size <<= 8;
13148 uncompressed_size += start[7]; uncompressed_size <<= 8;
13149 uncompressed_size += start[8]; uncompressed_size <<= 8;
13150 uncompressed_size += start[9]; uncompressed_size <<= 8;
13151 uncompressed_size += start[10]; uncompressed_size <<= 8;
13152 uncompressed_size += start[11];
13153 start += 12;
13154 new_size -= 12;
13155 }
13156
13157 if (uncompressed_size)
13158 {
13159 if (uncompress_section_contents (& start, uncompressed_size,
13160 & new_size))
13161 {
13162 section_size = new_size;
13163 }
13164 else
13165 {
13166 error (_("Unable to decompress section %s\n"),
13167 printable_section_name (section));
13168 /* FIXME: Print the section anyway ? */
13169 return FALSE;
13170 }
13171 }
13172 else
13173 start = real_start;
13174 }
13175
13176 if (relocate)
13177 {
13178 if (! apply_relocations (file, section, start, section_size, NULL, NULL))
13179 return FALSE;
13180 }
13181 else
13182 {
13183 /* If the section being dumped has relocations against it the user might
13184 be expecting these relocations to have been applied. Check for this
13185 case and issue a warning message in order to avoid confusion.
13186 FIXME: Maybe we ought to have an option that dumps a section with
13187 relocs applied ? */
13188 for (relsec = section_headers;
13189 relsec < section_headers + elf_header.e_shnum;
13190 ++relsec)
13191 {
13192 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
13193 || relsec->sh_info >= elf_header.e_shnum
13194 || section_headers + relsec->sh_info != section
13195 || relsec->sh_size == 0
13196 || relsec->sh_link >= elf_header.e_shnum)
13197 continue;
13198
13199 printf (_(" NOTE: This section has relocations against it, but these have NOT been applied to this dump.\n"));
13200 break;
13201 }
13202 }
13203
13204 addr = section->sh_addr;
13205 bytes = section_size;
13206 data = start;
13207
13208 while (bytes)
13209 {
13210 int j;
13211 int k;
13212 int lbytes;
13213
13214 lbytes = (bytes > 16 ? 16 : bytes);
13215
13216 printf (" 0x%8.8lx ", (unsigned long) addr);
13217
13218 for (j = 0; j < 16; j++)
13219 {
13220 if (j < lbytes)
13221 printf ("%2.2x", data[j]);
13222 else
13223 printf (" ");
13224
13225 if ((j & 3) == 3)
13226 printf (" ");
13227 }
13228
13229 for (j = 0; j < lbytes; j++)
13230 {
13231 k = data[j];
13232 if (k >= ' ' && k < 0x7f)
13233 printf ("%c", k);
13234 else
13235 printf (".");
13236 }
13237
13238 putchar ('\n');
13239
13240 data += lbytes;
13241 addr += lbytes;
13242 bytes -= lbytes;
13243 }
13244
13245 free (real_start);
13246
13247 putchar ('\n');
13248 return TRUE;
13249 }
13250
13251 static bfd_boolean
13252 load_specific_debug_section (enum dwarf_section_display_enum debug,
13253 const Elf_Internal_Shdr * sec, void * file)
13254 {
13255 struct dwarf_section * section = &debug_displays [debug].section;
13256 char buf [64];
13257
13258 /* If it is already loaded, do nothing. */
13259 if (section->start != NULL)
13260 return TRUE;
13261
13262 snprintf (buf, sizeof (buf), _("%s section data"), section->name);
13263 section->address = sec->sh_addr;
13264 section->user_data = NULL;
13265 section->start = (unsigned char *) get_data (NULL, (FILE *) file,
13266 sec->sh_offset, 1,
13267 sec->sh_size, buf);
13268 if (section->start == NULL)
13269 section->size = 0;
13270 else
13271 {
13272 unsigned char *start = section->start;
13273 dwarf_size_type size = sec->sh_size;
13274 dwarf_size_type uncompressed_size = 0;
13275
13276 if ((sec->sh_flags & SHF_COMPRESSED) != 0)
13277 {
13278 Elf_Internal_Chdr chdr;
13279 unsigned int compression_header_size;
13280
13281 if (size < (is_32bit_elf
13282 ? sizeof (Elf32_External_Chdr)
13283 : sizeof (Elf64_External_Chdr)))
13284 {
13285 warn (_("compressed section %s is too small to contain a compression header"),
13286 section->name);
13287 return FALSE;
13288 }
13289
13290 compression_header_size = get_compression_header (&chdr, start, size);
13291
13292 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
13293 {
13294 warn (_("section '%s' has unsupported compress type: %d\n"),
13295 section->name, chdr.ch_type);
13296 return FALSE;
13297 }
13298 else if (chdr.ch_addralign != sec->sh_addralign)
13299 {
13300 warn (_("compressed section '%s' is corrupted\n"),
13301 section->name);
13302 return FALSE;
13303 }
13304 uncompressed_size = chdr.ch_size;
13305 start += compression_header_size;
13306 size -= compression_header_size;
13307 }
13308 else if (size > 12 && streq ((char *) start, "ZLIB"))
13309 {
13310 /* Read the zlib header. In this case, it should be "ZLIB"
13311 followed by the uncompressed section size, 8 bytes in
13312 big-endian order. */
13313 uncompressed_size = start[4]; uncompressed_size <<= 8;
13314 uncompressed_size += start[5]; uncompressed_size <<= 8;
13315 uncompressed_size += start[6]; uncompressed_size <<= 8;
13316 uncompressed_size += start[7]; uncompressed_size <<= 8;
13317 uncompressed_size += start[8]; uncompressed_size <<= 8;
13318 uncompressed_size += start[9]; uncompressed_size <<= 8;
13319 uncompressed_size += start[10]; uncompressed_size <<= 8;
13320 uncompressed_size += start[11];
13321 start += 12;
13322 size -= 12;
13323 }
13324
13325 if (uncompressed_size)
13326 {
13327 if (uncompress_section_contents (&start, uncompressed_size,
13328 &size))
13329 {
13330 /* Free the compressed buffer, update the section buffer
13331 and the section size if uncompress is successful. */
13332 free (section->start);
13333 section->start = start;
13334 }
13335 else
13336 {
13337 error (_("Unable to decompress section %s\n"),
13338 printable_section_name (sec));
13339 return FALSE;
13340 }
13341 }
13342
13343 section->size = size;
13344 }
13345
13346 if (section->start == NULL)
13347 return FALSE;
13348
13349 if (debug_displays [debug].relocate)
13350 {
13351 if (! apply_relocations ((FILE *) file, sec, section->start, section->size,
13352 & section->reloc_info, & section->num_relocs))
13353 return FALSE;
13354 }
13355 else
13356 {
13357 section->reloc_info = NULL;
13358 section->num_relocs = 0;
13359 }
13360
13361 return TRUE;
13362 }
13363
13364 /* If this is not NULL, load_debug_section will only look for sections
13365 within the list of sections given here. */
13366 static unsigned int * section_subset = NULL;
13367
13368 bfd_boolean
13369 load_debug_section (enum dwarf_section_display_enum debug, void * file)
13370 {
13371 struct dwarf_section * section = &debug_displays [debug].section;
13372 Elf_Internal_Shdr * sec;
13373
13374 /* Locate the debug section. */
13375 sec = find_section_in_set (section->uncompressed_name, section_subset);
13376 if (sec != NULL)
13377 section->name = section->uncompressed_name;
13378 else
13379 {
13380 sec = find_section_in_set (section->compressed_name, section_subset);
13381 if (sec != NULL)
13382 section->name = section->compressed_name;
13383 }
13384 if (sec == NULL)
13385 return FALSE;
13386
13387 /* If we're loading from a subset of sections, and we've loaded
13388 a section matching this name before, it's likely that it's a
13389 different one. */
13390 if (section_subset != NULL)
13391 free_debug_section (debug);
13392
13393 return load_specific_debug_section (debug, sec, (FILE *) file);
13394 }
13395
13396 void
13397 free_debug_section (enum dwarf_section_display_enum debug)
13398 {
13399 struct dwarf_section * section = &debug_displays [debug].section;
13400
13401 if (section->start == NULL)
13402 return;
13403
13404 free ((char *) section->start);
13405 section->start = NULL;
13406 section->address = 0;
13407 section->size = 0;
13408 }
13409
13410 static bfd_boolean
13411 display_debug_section (int shndx, Elf_Internal_Shdr * section, FILE * file)
13412 {
13413 char * name = SECTION_NAME (section);
13414 const char * print_name = printable_section_name (section);
13415 bfd_size_type length;
13416 bfd_boolean result = TRUE;
13417 int i;
13418
13419 length = section->sh_size;
13420 if (length == 0)
13421 {
13422 printf (_("\nSection '%s' has no debugging data.\n"), print_name);
13423 return TRUE;
13424 }
13425 if (section->sh_type == SHT_NOBITS)
13426 {
13427 /* There is no point in dumping the contents of a debugging section
13428 which has the NOBITS type - the bits in the file will be random.
13429 This can happen when a file containing a .eh_frame section is
13430 stripped with the --only-keep-debug command line option. */
13431 printf (_("section '%s' has the NOBITS type - its contents are unreliable.\n"),
13432 print_name);
13433 return FALSE;
13434 }
13435
13436 if (const_strneq (name, ".gnu.linkonce.wi."))
13437 name = ".debug_info";
13438
13439 /* See if we know how to display the contents of this section. */
13440 for (i = 0; i < max; i++)
13441 if (streq (debug_displays[i].section.uncompressed_name, name)
13442 || (i == line && const_strneq (name, ".debug_line."))
13443 || streq (debug_displays[i].section.compressed_name, name))
13444 {
13445 struct dwarf_section * sec = &debug_displays [i].section;
13446 int secondary = (section != find_section (name));
13447
13448 if (secondary)
13449 free_debug_section ((enum dwarf_section_display_enum) i);
13450
13451 if (i == line && const_strneq (name, ".debug_line."))
13452 sec->name = name;
13453 else if (streq (sec->uncompressed_name, name))
13454 sec->name = sec->uncompressed_name;
13455 else
13456 sec->name = sec->compressed_name;
13457 if (load_specific_debug_section ((enum dwarf_section_display_enum) i,
13458 section, file))
13459 {
13460 /* If this debug section is part of a CU/TU set in a .dwp file,
13461 restrict load_debug_section to the sections in that set. */
13462 section_subset = find_cu_tu_set (file, shndx);
13463
13464 result &= debug_displays[i].display (sec, file);
13465
13466 section_subset = NULL;
13467
13468 if (secondary || (i != info && i != abbrev))
13469 free_debug_section ((enum dwarf_section_display_enum) i);
13470 }
13471
13472 break;
13473 }
13474
13475 if (i == max)
13476 {
13477 printf (_("Unrecognized debug section: %s\n"), print_name);
13478 result = FALSE;
13479 }
13480
13481 return result;
13482 }
13483
13484 /* Set DUMP_SECTS for all sections where dumps were requested
13485 based on section name. */
13486
13487 static void
13488 initialise_dumps_byname (void)
13489 {
13490 struct dump_list_entry * cur;
13491
13492 for (cur = dump_sects_byname; cur; cur = cur->next)
13493 {
13494 unsigned int i;
13495 bfd_boolean any = FALSE;
13496
13497 for (i = 0; i < elf_header.e_shnum; i++)
13498 if (streq (SECTION_NAME (section_headers + i), cur->name))
13499 {
13500 request_dump_bynumber (i, cur->type);
13501 any = TRUE;
13502 }
13503
13504 if (!any)
13505 warn (_("Section '%s' was not dumped because it does not exist!\n"),
13506 cur->name);
13507 }
13508 }
13509
13510 static bfd_boolean
13511 process_section_contents (FILE * file)
13512 {
13513 Elf_Internal_Shdr * section;
13514 unsigned int i;
13515 bfd_boolean res = TRUE;
13516
13517 if (! do_dump)
13518 return TRUE;
13519
13520 initialise_dumps_byname ();
13521
13522 for (i = 0, section = section_headers;
13523 i < elf_header.e_shnum && i < num_dump_sects;
13524 i++, section++)
13525 {
13526 #ifdef SUPPORT_DISASSEMBLY
13527 if (dump_sects[i] & DISASS_DUMP)
13528 disassemble_section (section, file);
13529 #endif
13530 if (dump_sects[i] & HEX_DUMP)
13531 {
13532 if (! dump_section_as_bytes (section, file, FALSE))
13533 res = FALSE;
13534 }
13535
13536 if (dump_sects[i] & RELOC_DUMP)
13537 {
13538 if (! dump_section_as_bytes (section, file, TRUE))
13539 res = FALSE;
13540 }
13541
13542 if (dump_sects[i] & STRING_DUMP)
13543 {
13544 if (! dump_section_as_strings (section, file))
13545 res = FALSE;
13546 }
13547
13548 if (dump_sects[i] & DEBUG_DUMP)
13549 {
13550 if (! display_debug_section (i, section, file))
13551 res = FALSE;
13552 }
13553 }
13554
13555 /* Check to see if the user requested a
13556 dump of a section that does not exist. */
13557 while (i < num_dump_sects)
13558 {
13559 if (dump_sects[i])
13560 {
13561 warn (_("Section %d was not dumped because it does not exist!\n"), i);
13562 res = FALSE;
13563 }
13564 i++;
13565 }
13566
13567 return res;
13568 }
13569
13570 static void
13571 process_mips_fpe_exception (int mask)
13572 {
13573 if (mask)
13574 {
13575 bfd_boolean first = TRUE;
13576
13577 if (mask & OEX_FPU_INEX)
13578 fputs ("INEX", stdout), first = FALSE;
13579 if (mask & OEX_FPU_UFLO)
13580 printf ("%sUFLO", first ? "" : "|"), first = FALSE;
13581 if (mask & OEX_FPU_OFLO)
13582 printf ("%sOFLO", first ? "" : "|"), first = FALSE;
13583 if (mask & OEX_FPU_DIV0)
13584 printf ("%sDIV0", first ? "" : "|"), first = FALSE;
13585 if (mask & OEX_FPU_INVAL)
13586 printf ("%sINVAL", first ? "" : "|");
13587 }
13588 else
13589 fputs ("0", stdout);
13590 }
13591
13592 /* Display's the value of TAG at location P. If TAG is
13593 greater than 0 it is assumed to be an unknown tag, and
13594 a message is printed to this effect. Otherwise it is
13595 assumed that a message has already been printed.
13596
13597 If the bottom bit of TAG is set it assumed to have a
13598 string value, otherwise it is assumed to have an integer
13599 value.
13600
13601 Returns an updated P pointing to the first unread byte
13602 beyond the end of TAG's value.
13603
13604 Reads at or beyond END will not be made. */
13605
13606 static unsigned char *
13607 display_tag_value (signed int tag,
13608 unsigned char * p,
13609 const unsigned char * const end)
13610 {
13611 unsigned long val;
13612
13613 if (tag > 0)
13614 printf (" Tag_unknown_%d: ", tag);
13615
13616 if (p >= end)
13617 {
13618 warn (_("<corrupt tag>\n"));
13619 }
13620 else if (tag & 1)
13621 {
13622 /* PR 17531 file: 027-19978-0.004. */
13623 size_t maxlen = (end - p) - 1;
13624
13625 putchar ('"');
13626 if (maxlen > 0)
13627 {
13628 print_symbol ((int) maxlen, (const char *) p);
13629 p += strnlen ((char *) p, maxlen) + 1;
13630 }
13631 else
13632 {
13633 printf (_("<corrupt string tag>"));
13634 p = (unsigned char *) end;
13635 }
13636 printf ("\"\n");
13637 }
13638 else
13639 {
13640 unsigned int len;
13641
13642 val = read_uleb128 (p, &len, end);
13643 p += len;
13644 printf ("%ld (0x%lx)\n", val, val);
13645 }
13646
13647 assert (p <= end);
13648 return p;
13649 }
13650
13651 /* ARC ABI attributes section. */
13652
13653 static unsigned char *
13654 display_arc_attribute (unsigned char * p,
13655 const unsigned char * const end)
13656 {
13657 unsigned int tag;
13658 unsigned int len;
13659 unsigned int val;
13660
13661 tag = read_uleb128 (p, &len, end);
13662 p += len;
13663
13664 switch (tag)
13665 {
13666 case Tag_ARC_PCS_config:
13667 val = read_uleb128 (p, &len, end);
13668 p += len;
13669 printf (" Tag_ARC_PCS_config: ");
13670 switch (val)
13671 {
13672 case 0:
13673 printf (_("Absent/Non standard\n"));
13674 break;
13675 case 1:
13676 printf (_("Bare metal/mwdt\n"));
13677 break;
13678 case 2:
13679 printf (_("Bare metal/newlib\n"));
13680 break;
13681 case 3:
13682 printf (_("Linux/uclibc\n"));
13683 break;
13684 case 4:
13685 printf (_("Linux/glibc\n"));
13686 break;
13687 default:
13688 printf (_("Unknown\n"));
13689 break;
13690 }
13691 break;
13692
13693 case Tag_ARC_CPU_base:
13694 val = read_uleb128 (p, &len, end);
13695 p += len;
13696 printf (" Tag_ARC_CPU_base: ");
13697 switch (val)
13698 {
13699 default:
13700 case TAG_CPU_NONE:
13701 printf (_("Absent\n"));
13702 break;
13703 case TAG_CPU_ARC6xx:
13704 printf ("ARC6xx\n");
13705 break;
13706 case TAG_CPU_ARC7xx:
13707 printf ("ARC7xx\n");
13708 break;
13709 case TAG_CPU_ARCEM:
13710 printf ("ARCEM\n");
13711 break;
13712 case TAG_CPU_ARCHS:
13713 printf ("ARCHS\n");
13714 break;
13715 }
13716 break;
13717
13718 case Tag_ARC_CPU_variation:
13719 val = read_uleb128 (p, &len, end);
13720 p += len;
13721 printf (" Tag_ARC_CPU_variation: ");
13722 switch (val)
13723 {
13724 default:
13725 if (val > 0 && val < 16)
13726 printf ("Core%d\n", val);
13727 else
13728 printf ("Unknown\n");
13729 break;
13730
13731 case 0:
13732 printf (_("Absent\n"));
13733 break;
13734 }
13735 break;
13736
13737 case Tag_ARC_CPU_name:
13738 printf (" Tag_ARC_CPU_name: ");
13739 p = display_tag_value (-1, p, end);
13740 break;
13741
13742 case Tag_ARC_ABI_rf16:
13743 val = read_uleb128 (p, &len, end);
13744 p += len;
13745 printf (" Tag_ARC_ABI_rf16: %s\n", val ? _("yes") : _("no"));
13746 break;
13747
13748 case Tag_ARC_ABI_osver:
13749 val = read_uleb128 (p, &len, end);
13750 p += len;
13751 printf (" Tag_ARC_ABI_osver: v%d\n", val);
13752 break;
13753
13754 case Tag_ARC_ABI_pic:
13755 case Tag_ARC_ABI_sda:
13756 val = read_uleb128 (p, &len, end);
13757 p += len;
13758 printf (tag == Tag_ARC_ABI_sda ? " Tag_ARC_ABI_sda: "
13759 : " Tag_ARC_ABI_pic: ");
13760 switch (val)
13761 {
13762 case 0:
13763 printf (_("Absent\n"));
13764 break;
13765 case 1:
13766 printf ("MWDT\n");
13767 break;
13768 case 2:
13769 printf ("GNU\n");
13770 break;
13771 default:
13772 printf (_("Unknown\n"));
13773 break;
13774 }
13775 break;
13776
13777 case Tag_ARC_ABI_tls:
13778 val = read_uleb128 (p, &len, end);
13779 p += len;
13780 printf (" Tag_ARC_ABI_tls: %s\n", val ? "r25": "none");
13781 break;
13782
13783 case Tag_ARC_ABI_enumsize:
13784 val = read_uleb128 (p, &len, end);
13785 p += len;
13786 printf (" Tag_ARC_ABI_enumsize: %s\n", val ? _("default") :
13787 _("smallest"));
13788 break;
13789
13790 case Tag_ARC_ABI_exceptions:
13791 val = read_uleb128 (p, &len, end);
13792 p += len;
13793 printf (" Tag_ARC_ABI_exceptions: %s\n", val ? _("OPTFP")
13794 : _("default"));
13795 break;
13796
13797 case Tag_ARC_ABI_double_size:
13798 val = read_uleb128 (p, &len, end);
13799 p += len;
13800 printf (" Tag_ARC_ABI_double_size: %d\n", val);
13801 break;
13802
13803 case Tag_ARC_ISA_config:
13804 printf (" Tag_ARC_ISA_config: ");
13805 p = display_tag_value (-1, p, end);
13806 break;
13807
13808 case Tag_ARC_ISA_apex:
13809 printf (" Tag_ARC_ISA_apex: ");
13810 p = display_tag_value (-1, p, end);
13811 break;
13812
13813 case Tag_ARC_ISA_mpy_option:
13814 val = read_uleb128 (p, &len, end);
13815 p += len;
13816 printf (" Tag_ARC_ISA_mpy_option: %d\n", val);
13817 break;
13818
13819 default:
13820 return display_tag_value (tag & 1, p, end);
13821 }
13822
13823 return p;
13824 }
13825
13826 /* ARM EABI attributes section. */
13827 typedef struct
13828 {
13829 unsigned int tag;
13830 const char * name;
13831 /* 0 = special, 1 = string, 2 = uleb123, > 0x80 == table lookup. */
13832 unsigned int type;
13833 const char ** table;
13834 } arm_attr_public_tag;
13835
13836 static const char * arm_attr_tag_CPU_arch[] =
13837 {"Pre-v4", "v4", "v4T", "v5T", "v5TE", "v5TEJ", "v6", "v6KZ", "v6T2",
13838 "v6K", "v7", "v6-M", "v6S-M", "v7E-M", "v8", "v8-R", "v8-M.baseline",
13839 "v8-M.mainline"};
13840 static const char * arm_attr_tag_ARM_ISA_use[] = {"No", "Yes"};
13841 static const char * arm_attr_tag_THUMB_ISA_use[] =
13842 {"No", "Thumb-1", "Thumb-2", "Yes"};
13843 static const char * arm_attr_tag_FP_arch[] =
13844 {"No", "VFPv1", "VFPv2", "VFPv3", "VFPv3-D16", "VFPv4", "VFPv4-D16",
13845 "FP for ARMv8", "FPv5/FP-D16 for ARMv8"};
13846 static const char * arm_attr_tag_WMMX_arch[] = {"No", "WMMXv1", "WMMXv2"};
13847 static const char * arm_attr_tag_Advanced_SIMD_arch[] =
13848 {"No", "NEONv1", "NEONv1 with Fused-MAC", "NEON for ARMv8",
13849 "NEON for ARMv8.1"};
13850 static const char * arm_attr_tag_PCS_config[] =
13851 {"None", "Bare platform", "Linux application", "Linux DSO", "PalmOS 2004",
13852 "PalmOS (reserved)", "SymbianOS 2004", "SymbianOS (reserved)"};
13853 static const char * arm_attr_tag_ABI_PCS_R9_use[] =
13854 {"V6", "SB", "TLS", "Unused"};
13855 static const char * arm_attr_tag_ABI_PCS_RW_data[] =
13856 {"Absolute", "PC-relative", "SB-relative", "None"};
13857 static const char * arm_attr_tag_ABI_PCS_RO_data[] =
13858 {"Absolute", "PC-relative", "None"};
13859 static const char * arm_attr_tag_ABI_PCS_GOT_use[] =
13860 {"None", "direct", "GOT-indirect"};
13861 static const char * arm_attr_tag_ABI_PCS_wchar_t[] =
13862 {"None", "??? 1", "2", "??? 3", "4"};
13863 static const char * arm_attr_tag_ABI_FP_rounding[] = {"Unused", "Needed"};
13864 static const char * arm_attr_tag_ABI_FP_denormal[] =
13865 {"Unused", "Needed", "Sign only"};
13866 static const char * arm_attr_tag_ABI_FP_exceptions[] = {"Unused", "Needed"};
13867 static const char * arm_attr_tag_ABI_FP_user_exceptions[] = {"Unused", "Needed"};
13868 static const char * arm_attr_tag_ABI_FP_number_model[] =
13869 {"Unused", "Finite", "RTABI", "IEEE 754"};
13870 static const char * arm_attr_tag_ABI_enum_size[] =
13871 {"Unused", "small", "int", "forced to int"};
13872 static const char * arm_attr_tag_ABI_HardFP_use[] =
13873 {"As Tag_FP_arch", "SP only", "Reserved", "Deprecated"};
13874 static const char * arm_attr_tag_ABI_VFP_args[] =
13875 {"AAPCS", "VFP registers", "custom", "compatible"};
13876 static const char * arm_attr_tag_ABI_WMMX_args[] =
13877 {"AAPCS", "WMMX registers", "custom"};
13878 static const char * arm_attr_tag_ABI_optimization_goals[] =
13879 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
13880 "Aggressive Size", "Prefer Debug", "Aggressive Debug"};
13881 static const char * arm_attr_tag_ABI_FP_optimization_goals[] =
13882 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
13883 "Aggressive Size", "Prefer Accuracy", "Aggressive Accuracy"};
13884 static const char * arm_attr_tag_CPU_unaligned_access[] = {"None", "v6"};
13885 static const char * arm_attr_tag_FP_HP_extension[] =
13886 {"Not Allowed", "Allowed"};
13887 static const char * arm_attr_tag_ABI_FP_16bit_format[] =
13888 {"None", "IEEE 754", "Alternative Format"};
13889 static const char * arm_attr_tag_DSP_extension[] =
13890 {"Follow architecture", "Allowed"};
13891 static const char * arm_attr_tag_MPextension_use[] =
13892 {"Not Allowed", "Allowed"};
13893 static const char * arm_attr_tag_DIV_use[] =
13894 {"Allowed in Thumb-ISA, v7-R or v7-M", "Not allowed",
13895 "Allowed in v7-A with integer division extension"};
13896 static const char * arm_attr_tag_T2EE_use[] = {"Not Allowed", "Allowed"};
13897 static const char * arm_attr_tag_Virtualization_use[] =
13898 {"Not Allowed", "TrustZone", "Virtualization Extensions",
13899 "TrustZone and Virtualization Extensions"};
13900 static const char * arm_attr_tag_MPextension_use_legacy[] =
13901 {"Not Allowed", "Allowed"};
13902
13903 #define LOOKUP(id, name) \
13904 {id, #name, 0x80 | ARRAY_SIZE(arm_attr_tag_##name), arm_attr_tag_##name}
13905 static arm_attr_public_tag arm_attr_public_tags[] =
13906 {
13907 {4, "CPU_raw_name", 1, NULL},
13908 {5, "CPU_name", 1, NULL},
13909 LOOKUP(6, CPU_arch),
13910 {7, "CPU_arch_profile", 0, NULL},
13911 LOOKUP(8, ARM_ISA_use),
13912 LOOKUP(9, THUMB_ISA_use),
13913 LOOKUP(10, FP_arch),
13914 LOOKUP(11, WMMX_arch),
13915 LOOKUP(12, Advanced_SIMD_arch),
13916 LOOKUP(13, PCS_config),
13917 LOOKUP(14, ABI_PCS_R9_use),
13918 LOOKUP(15, ABI_PCS_RW_data),
13919 LOOKUP(16, ABI_PCS_RO_data),
13920 LOOKUP(17, ABI_PCS_GOT_use),
13921 LOOKUP(18, ABI_PCS_wchar_t),
13922 LOOKUP(19, ABI_FP_rounding),
13923 LOOKUP(20, ABI_FP_denormal),
13924 LOOKUP(21, ABI_FP_exceptions),
13925 LOOKUP(22, ABI_FP_user_exceptions),
13926 LOOKUP(23, ABI_FP_number_model),
13927 {24, "ABI_align_needed", 0, NULL},
13928 {25, "ABI_align_preserved", 0, NULL},
13929 LOOKUP(26, ABI_enum_size),
13930 LOOKUP(27, ABI_HardFP_use),
13931 LOOKUP(28, ABI_VFP_args),
13932 LOOKUP(29, ABI_WMMX_args),
13933 LOOKUP(30, ABI_optimization_goals),
13934 LOOKUP(31, ABI_FP_optimization_goals),
13935 {32, "compatibility", 0, NULL},
13936 LOOKUP(34, CPU_unaligned_access),
13937 LOOKUP(36, FP_HP_extension),
13938 LOOKUP(38, ABI_FP_16bit_format),
13939 LOOKUP(42, MPextension_use),
13940 LOOKUP(44, DIV_use),
13941 LOOKUP(46, DSP_extension),
13942 {64, "nodefaults", 0, NULL},
13943 {65, "also_compatible_with", 0, NULL},
13944 LOOKUP(66, T2EE_use),
13945 {67, "conformance", 1, NULL},
13946 LOOKUP(68, Virtualization_use),
13947 LOOKUP(70, MPextension_use_legacy)
13948 };
13949 #undef LOOKUP
13950
13951 static unsigned char *
13952 display_arm_attribute (unsigned char * p,
13953 const unsigned char * const end)
13954 {
13955 unsigned int tag;
13956 unsigned int len;
13957 unsigned int val;
13958 arm_attr_public_tag * attr;
13959 unsigned i;
13960 unsigned int type;
13961
13962 tag = read_uleb128 (p, &len, end);
13963 p += len;
13964 attr = NULL;
13965 for (i = 0; i < ARRAY_SIZE (arm_attr_public_tags); i++)
13966 {
13967 if (arm_attr_public_tags[i].tag == tag)
13968 {
13969 attr = &arm_attr_public_tags[i];
13970 break;
13971 }
13972 }
13973
13974 if (attr)
13975 {
13976 printf (" Tag_%s: ", attr->name);
13977 switch (attr->type)
13978 {
13979 case 0:
13980 switch (tag)
13981 {
13982 case 7: /* Tag_CPU_arch_profile. */
13983 val = read_uleb128 (p, &len, end);
13984 p += len;
13985 switch (val)
13986 {
13987 case 0: printf (_("None\n")); break;
13988 case 'A': printf (_("Application\n")); break;
13989 case 'R': printf (_("Realtime\n")); break;
13990 case 'M': printf (_("Microcontroller\n")); break;
13991 case 'S': printf (_("Application or Realtime\n")); break;
13992 default: printf ("??? (%d)\n", val); break;
13993 }
13994 break;
13995
13996 case 24: /* Tag_align_needed. */
13997 val = read_uleb128 (p, &len, end);
13998 p += len;
13999 switch (val)
14000 {
14001 case 0: printf (_("None\n")); break;
14002 case 1: printf (_("8-byte\n")); break;
14003 case 2: printf (_("4-byte\n")); break;
14004 case 3: printf ("??? 3\n"); break;
14005 default:
14006 if (val <= 12)
14007 printf (_("8-byte and up to %d-byte extended\n"),
14008 1 << val);
14009 else
14010 printf ("??? (%d)\n", val);
14011 break;
14012 }
14013 break;
14014
14015 case 25: /* Tag_align_preserved. */
14016 val = read_uleb128 (p, &len, end);
14017 p += len;
14018 switch (val)
14019 {
14020 case 0: printf (_("None\n")); break;
14021 case 1: printf (_("8-byte, except leaf SP\n")); break;
14022 case 2: printf (_("8-byte\n")); break;
14023 case 3: printf ("??? 3\n"); break;
14024 default:
14025 if (val <= 12)
14026 printf (_("8-byte and up to %d-byte extended\n"),
14027 1 << val);
14028 else
14029 printf ("??? (%d)\n", val);
14030 break;
14031 }
14032 break;
14033
14034 case 32: /* Tag_compatibility. */
14035 {
14036 val = read_uleb128 (p, &len, end);
14037 p += len;
14038 printf (_("flag = %d, vendor = "), val);
14039 if (p < end - 1)
14040 {
14041 size_t maxlen = (end - p) - 1;
14042
14043 print_symbol ((int) maxlen, (const char *) p);
14044 p += strnlen ((char *) p, maxlen) + 1;
14045 }
14046 else
14047 {
14048 printf (_("<corrupt>"));
14049 p = (unsigned char *) end;
14050 }
14051 putchar ('\n');
14052 }
14053 break;
14054
14055 case 64: /* Tag_nodefaults. */
14056 /* PR 17531: file: 001-505008-0.01. */
14057 if (p < end)
14058 p++;
14059 printf (_("True\n"));
14060 break;
14061
14062 case 65: /* Tag_also_compatible_with. */
14063 val = read_uleb128 (p, &len, end);
14064 p += len;
14065 if (val == 6 /* Tag_CPU_arch. */)
14066 {
14067 val = read_uleb128 (p, &len, end);
14068 p += len;
14069 if ((unsigned int) val >= ARRAY_SIZE (arm_attr_tag_CPU_arch))
14070 printf ("??? (%d)\n", val);
14071 else
14072 printf ("%s\n", arm_attr_tag_CPU_arch[val]);
14073 }
14074 else
14075 printf ("???\n");
14076 while (p < end && *(p++) != '\0' /* NUL terminator. */)
14077 ;
14078 break;
14079
14080 default:
14081 printf (_("<unknown: %d>\n"), tag);
14082 break;
14083 }
14084 return p;
14085
14086 case 1:
14087 return display_tag_value (-1, p, end);
14088 case 2:
14089 return display_tag_value (0, p, end);
14090
14091 default:
14092 assert (attr->type & 0x80);
14093 val = read_uleb128 (p, &len, end);
14094 p += len;
14095 type = attr->type & 0x7f;
14096 if (val >= type)
14097 printf ("??? (%d)\n", val);
14098 else
14099 printf ("%s\n", attr->table[val]);
14100 return p;
14101 }
14102 }
14103
14104 return display_tag_value (tag, p, end);
14105 }
14106
14107 static unsigned char *
14108 display_gnu_attribute (unsigned char * p,
14109 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, unsigned int, const unsigned char * const),
14110 const unsigned char * const end)
14111 {
14112 int tag;
14113 unsigned int len;
14114 unsigned int val;
14115
14116 tag = read_uleb128 (p, &len, end);
14117 p += len;
14118
14119 /* Tag_compatibility is the only generic GNU attribute defined at
14120 present. */
14121 if (tag == 32)
14122 {
14123 val = read_uleb128 (p, &len, end);
14124 p += len;
14125
14126 printf (_("flag = %d, vendor = "), val);
14127 if (p == end)
14128 {
14129 printf (_("<corrupt>\n"));
14130 warn (_("corrupt vendor attribute\n"));
14131 }
14132 else
14133 {
14134 if (p < end - 1)
14135 {
14136 size_t maxlen = (end - p) - 1;
14137
14138 print_symbol ((int) maxlen, (const char *) p);
14139 p += strnlen ((char *) p, maxlen) + 1;
14140 }
14141 else
14142 {
14143 printf (_("<corrupt>"));
14144 p = (unsigned char *) end;
14145 }
14146 putchar ('\n');
14147 }
14148 return p;
14149 }
14150
14151 if ((tag & 2) == 0 && display_proc_gnu_attribute)
14152 return display_proc_gnu_attribute (p, tag, end);
14153
14154 return display_tag_value (tag, p, end);
14155 }
14156
14157 static unsigned char *
14158 display_power_gnu_attribute (unsigned char * p,
14159 unsigned int tag,
14160 const unsigned char * const end)
14161 {
14162 unsigned int len;
14163 unsigned int val;
14164
14165 if (tag == Tag_GNU_Power_ABI_FP)
14166 {
14167 val = read_uleb128 (p, &len, end);
14168 p += len;
14169 printf (" Tag_GNU_Power_ABI_FP: ");
14170 if (len == 0)
14171 {
14172 printf (_("<corrupt>\n"));
14173 return p;
14174 }
14175
14176 if (val > 15)
14177 printf ("(%#x), ", val);
14178
14179 switch (val & 3)
14180 {
14181 case 0:
14182 printf (_("unspecified hard/soft float, "));
14183 break;
14184 case 1:
14185 printf (_("hard float, "));
14186 break;
14187 case 2:
14188 printf (_("soft float, "));
14189 break;
14190 case 3:
14191 printf (_("single-precision hard float, "));
14192 break;
14193 }
14194
14195 switch (val & 0xC)
14196 {
14197 case 0:
14198 printf (_("unspecified long double\n"));
14199 break;
14200 case 4:
14201 printf (_("128-bit IBM long double\n"));
14202 break;
14203 case 8:
14204 printf (_("64-bit long double\n"));
14205 break;
14206 case 12:
14207 printf (_("128-bit IEEE long double\n"));
14208 break;
14209 }
14210 return p;
14211 }
14212
14213 if (tag == Tag_GNU_Power_ABI_Vector)
14214 {
14215 val = read_uleb128 (p, &len, end);
14216 p += len;
14217 printf (" Tag_GNU_Power_ABI_Vector: ");
14218 if (len == 0)
14219 {
14220 printf (_("<corrupt>\n"));
14221 return p;
14222 }
14223
14224 if (val > 3)
14225 printf ("(%#x), ", val);
14226
14227 switch (val & 3)
14228 {
14229 case 0:
14230 printf (_("unspecified\n"));
14231 break;
14232 case 1:
14233 printf (_("generic\n"));
14234 break;
14235 case 2:
14236 printf ("AltiVec\n");
14237 break;
14238 case 3:
14239 printf ("SPE\n");
14240 break;
14241 }
14242 return p;
14243 }
14244
14245 if (tag == Tag_GNU_Power_ABI_Struct_Return)
14246 {
14247 val = read_uleb128 (p, &len, end);
14248 p += len;
14249 printf (" Tag_GNU_Power_ABI_Struct_Return: ");
14250 if (len == 0)
14251 {
14252 printf (_("<corrupt>\n"));
14253 return p;
14254 }
14255
14256 if (val > 2)
14257 printf ("(%#x), ", val);
14258
14259 switch (val & 3)
14260 {
14261 case 0:
14262 printf (_("unspecified\n"));
14263 break;
14264 case 1:
14265 printf ("r3/r4\n");
14266 break;
14267 case 2:
14268 printf (_("memory\n"));
14269 break;
14270 case 3:
14271 printf ("???\n");
14272 break;
14273 }
14274 return p;
14275 }
14276
14277 return display_tag_value (tag & 1, p, end);
14278 }
14279
14280 static unsigned char *
14281 display_s390_gnu_attribute (unsigned char * p,
14282 unsigned int tag,
14283 const unsigned char * const end)
14284 {
14285 unsigned int len;
14286 int val;
14287
14288 if (tag == Tag_GNU_S390_ABI_Vector)
14289 {
14290 val = read_uleb128 (p, &len, end);
14291 p += len;
14292 printf (" Tag_GNU_S390_ABI_Vector: ");
14293
14294 switch (val)
14295 {
14296 case 0:
14297 printf (_("any\n"));
14298 break;
14299 case 1:
14300 printf (_("software\n"));
14301 break;
14302 case 2:
14303 printf (_("hardware\n"));
14304 break;
14305 default:
14306 printf ("??? (%d)\n", val);
14307 break;
14308 }
14309 return p;
14310 }
14311
14312 return display_tag_value (tag & 1, p, end);
14313 }
14314
14315 static void
14316 display_sparc_hwcaps (unsigned int mask)
14317 {
14318 if (mask)
14319 {
14320 bfd_boolean first = TRUE;
14321
14322 if (mask & ELF_SPARC_HWCAP_MUL32)
14323 fputs ("mul32", stdout), first = FALSE;
14324 if (mask & ELF_SPARC_HWCAP_DIV32)
14325 printf ("%sdiv32", first ? "" : "|"), first = FALSE;
14326 if (mask & ELF_SPARC_HWCAP_FSMULD)
14327 printf ("%sfsmuld", first ? "" : "|"), first = FALSE;
14328 if (mask & ELF_SPARC_HWCAP_V8PLUS)
14329 printf ("%sv8plus", first ? "" : "|"), first = FALSE;
14330 if (mask & ELF_SPARC_HWCAP_POPC)
14331 printf ("%spopc", first ? "" : "|"), first = FALSE;
14332 if (mask & ELF_SPARC_HWCAP_VIS)
14333 printf ("%svis", first ? "" : "|"), first = FALSE;
14334 if (mask & ELF_SPARC_HWCAP_VIS2)
14335 printf ("%svis2", first ? "" : "|"), first = FALSE;
14336 if (mask & ELF_SPARC_HWCAP_ASI_BLK_INIT)
14337 printf ("%sASIBlkInit", first ? "" : "|"), first = FALSE;
14338 if (mask & ELF_SPARC_HWCAP_FMAF)
14339 printf ("%sfmaf", first ? "" : "|"), first = FALSE;
14340 if (mask & ELF_SPARC_HWCAP_VIS3)
14341 printf ("%svis3", first ? "" : "|"), first = FALSE;
14342 if (mask & ELF_SPARC_HWCAP_HPC)
14343 printf ("%shpc", first ? "" : "|"), first = FALSE;
14344 if (mask & ELF_SPARC_HWCAP_RANDOM)
14345 printf ("%srandom", first ? "" : "|"), first = FALSE;
14346 if (mask & ELF_SPARC_HWCAP_TRANS)
14347 printf ("%strans", first ? "" : "|"), first = FALSE;
14348 if (mask & ELF_SPARC_HWCAP_FJFMAU)
14349 printf ("%sfjfmau", first ? "" : "|"), first = FALSE;
14350 if (mask & ELF_SPARC_HWCAP_IMA)
14351 printf ("%sima", first ? "" : "|"), first = FALSE;
14352 if (mask & ELF_SPARC_HWCAP_ASI_CACHE_SPARING)
14353 printf ("%scspare", first ? "" : "|"), first = FALSE;
14354 }
14355 else
14356 fputc ('0', stdout);
14357 fputc ('\n', stdout);
14358 }
14359
14360 static void
14361 display_sparc_hwcaps2 (unsigned int mask)
14362 {
14363 if (mask)
14364 {
14365 bfd_boolean first = TRUE;
14366
14367 if (mask & ELF_SPARC_HWCAP2_FJATHPLUS)
14368 fputs ("fjathplus", stdout), first = FALSE;
14369 if (mask & ELF_SPARC_HWCAP2_VIS3B)
14370 printf ("%svis3b", first ? "" : "|"), first = FALSE;
14371 if (mask & ELF_SPARC_HWCAP2_ADP)
14372 printf ("%sadp", first ? "" : "|"), first = FALSE;
14373 if (mask & ELF_SPARC_HWCAP2_SPARC5)
14374 printf ("%ssparc5", first ? "" : "|"), first = FALSE;
14375 if (mask & ELF_SPARC_HWCAP2_MWAIT)
14376 printf ("%smwait", first ? "" : "|"), first = FALSE;
14377 if (mask & ELF_SPARC_HWCAP2_XMPMUL)
14378 printf ("%sxmpmul", first ? "" : "|"), first = FALSE;
14379 if (mask & ELF_SPARC_HWCAP2_XMONT)
14380 printf ("%sxmont2", first ? "" : "|"), first = FALSE;
14381 if (mask & ELF_SPARC_HWCAP2_NSEC)
14382 printf ("%snsec", first ? "" : "|"), first = FALSE;
14383 if (mask & ELF_SPARC_HWCAP2_FJATHHPC)
14384 printf ("%sfjathhpc", first ? "" : "|"), first = FALSE;
14385 if (mask & ELF_SPARC_HWCAP2_FJDES)
14386 printf ("%sfjdes", first ? "" : "|"), first = FALSE;
14387 if (mask & ELF_SPARC_HWCAP2_FJAES)
14388 printf ("%sfjaes", first ? "" : "|"), first = FALSE;
14389 }
14390 else
14391 fputc ('0', stdout);
14392 fputc ('\n', stdout);
14393 }
14394
14395 static unsigned char *
14396 display_sparc_gnu_attribute (unsigned char * p,
14397 unsigned int tag,
14398 const unsigned char * const end)
14399 {
14400 unsigned int len;
14401 int val;
14402
14403 if (tag == Tag_GNU_Sparc_HWCAPS)
14404 {
14405 val = read_uleb128 (p, &len, end);
14406 p += len;
14407 printf (" Tag_GNU_Sparc_HWCAPS: ");
14408 display_sparc_hwcaps (val);
14409 return p;
14410 }
14411 if (tag == Tag_GNU_Sparc_HWCAPS2)
14412 {
14413 val = read_uleb128 (p, &len, end);
14414 p += len;
14415 printf (" Tag_GNU_Sparc_HWCAPS2: ");
14416 display_sparc_hwcaps2 (val);
14417 return p;
14418 }
14419
14420 return display_tag_value (tag, p, end);
14421 }
14422
14423 static void
14424 print_mips_fp_abi_value (unsigned int val)
14425 {
14426 switch (val)
14427 {
14428 case Val_GNU_MIPS_ABI_FP_ANY:
14429 printf (_("Hard or soft float\n"));
14430 break;
14431 case Val_GNU_MIPS_ABI_FP_DOUBLE:
14432 printf (_("Hard float (double precision)\n"));
14433 break;
14434 case Val_GNU_MIPS_ABI_FP_SINGLE:
14435 printf (_("Hard float (single precision)\n"));
14436 break;
14437 case Val_GNU_MIPS_ABI_FP_SOFT:
14438 printf (_("Soft float\n"));
14439 break;
14440 case Val_GNU_MIPS_ABI_FP_OLD_64:
14441 printf (_("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
14442 break;
14443 case Val_GNU_MIPS_ABI_FP_XX:
14444 printf (_("Hard float (32-bit CPU, Any FPU)\n"));
14445 break;
14446 case Val_GNU_MIPS_ABI_FP_64:
14447 printf (_("Hard float (32-bit CPU, 64-bit FPU)\n"));
14448 break;
14449 case Val_GNU_MIPS_ABI_FP_64A:
14450 printf (_("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
14451 break;
14452 case Val_GNU_MIPS_ABI_FP_NAN2008:
14453 printf (_("NaN 2008 compatibility\n"));
14454 break;
14455 default:
14456 printf ("??? (%d)\n", val);
14457 break;
14458 }
14459 }
14460
14461 static unsigned char *
14462 display_mips_gnu_attribute (unsigned char * p,
14463 unsigned int tag,
14464 const unsigned char * const end)
14465 {
14466 if (tag == Tag_GNU_MIPS_ABI_FP)
14467 {
14468 unsigned int len;
14469 unsigned int val;
14470
14471 val = read_uleb128 (p, &len, end);
14472 p += len;
14473 printf (" Tag_GNU_MIPS_ABI_FP: ");
14474
14475 print_mips_fp_abi_value (val);
14476
14477 return p;
14478 }
14479
14480 if (tag == Tag_GNU_MIPS_ABI_MSA)
14481 {
14482 unsigned int len;
14483 unsigned int val;
14484
14485 val = read_uleb128 (p, &len, end);
14486 p += len;
14487 printf (" Tag_GNU_MIPS_ABI_MSA: ");
14488
14489 switch (val)
14490 {
14491 case Val_GNU_MIPS_ABI_MSA_ANY:
14492 printf (_("Any MSA or not\n"));
14493 break;
14494 case Val_GNU_MIPS_ABI_MSA_128:
14495 printf (_("128-bit MSA\n"));
14496 break;
14497 default:
14498 printf ("??? (%d)\n", val);
14499 break;
14500 }
14501 return p;
14502 }
14503
14504 return display_tag_value (tag & 1, p, end);
14505 }
14506
14507 static unsigned char *
14508 display_tic6x_attribute (unsigned char * p,
14509 const unsigned char * const end)
14510 {
14511 unsigned int tag;
14512 unsigned int len;
14513 int val;
14514
14515 tag = read_uleb128 (p, &len, end);
14516 p += len;
14517
14518 switch (tag)
14519 {
14520 case Tag_ISA:
14521 val = read_uleb128 (p, &len, end);
14522 p += len;
14523 printf (" Tag_ISA: ");
14524
14525 switch (val)
14526 {
14527 case C6XABI_Tag_ISA_none:
14528 printf (_("None\n"));
14529 break;
14530 case C6XABI_Tag_ISA_C62X:
14531 printf ("C62x\n");
14532 break;
14533 case C6XABI_Tag_ISA_C67X:
14534 printf ("C67x\n");
14535 break;
14536 case C6XABI_Tag_ISA_C67XP:
14537 printf ("C67x+\n");
14538 break;
14539 case C6XABI_Tag_ISA_C64X:
14540 printf ("C64x\n");
14541 break;
14542 case C6XABI_Tag_ISA_C64XP:
14543 printf ("C64x+\n");
14544 break;
14545 case C6XABI_Tag_ISA_C674X:
14546 printf ("C674x\n");
14547 break;
14548 default:
14549 printf ("??? (%d)\n", val);
14550 break;
14551 }
14552 return p;
14553
14554 case Tag_ABI_wchar_t:
14555 val = read_uleb128 (p, &len, end);
14556 p += len;
14557 printf (" Tag_ABI_wchar_t: ");
14558 switch (val)
14559 {
14560 case 0:
14561 printf (_("Not used\n"));
14562 break;
14563 case 1:
14564 printf (_("2 bytes\n"));
14565 break;
14566 case 2:
14567 printf (_("4 bytes\n"));
14568 break;
14569 default:
14570 printf ("??? (%d)\n", val);
14571 break;
14572 }
14573 return p;
14574
14575 case Tag_ABI_stack_align_needed:
14576 val = read_uleb128 (p, &len, end);
14577 p += len;
14578 printf (" Tag_ABI_stack_align_needed: ");
14579 switch (val)
14580 {
14581 case 0:
14582 printf (_("8-byte\n"));
14583 break;
14584 case 1:
14585 printf (_("16-byte\n"));
14586 break;
14587 default:
14588 printf ("??? (%d)\n", val);
14589 break;
14590 }
14591 return p;
14592
14593 case Tag_ABI_stack_align_preserved:
14594 val = read_uleb128 (p, &len, end);
14595 p += len;
14596 printf (" Tag_ABI_stack_align_preserved: ");
14597 switch (val)
14598 {
14599 case 0:
14600 printf (_("8-byte\n"));
14601 break;
14602 case 1:
14603 printf (_("16-byte\n"));
14604 break;
14605 default:
14606 printf ("??? (%d)\n", val);
14607 break;
14608 }
14609 return p;
14610
14611 case Tag_ABI_DSBT:
14612 val = read_uleb128 (p, &len, end);
14613 p += len;
14614 printf (" Tag_ABI_DSBT: ");
14615 switch (val)
14616 {
14617 case 0:
14618 printf (_("DSBT addressing not used\n"));
14619 break;
14620 case 1:
14621 printf (_("DSBT addressing used\n"));
14622 break;
14623 default:
14624 printf ("??? (%d)\n", val);
14625 break;
14626 }
14627 return p;
14628
14629 case Tag_ABI_PID:
14630 val = read_uleb128 (p, &len, end);
14631 p += len;
14632 printf (" Tag_ABI_PID: ");
14633 switch (val)
14634 {
14635 case 0:
14636 printf (_("Data addressing position-dependent\n"));
14637 break;
14638 case 1:
14639 printf (_("Data addressing position-independent, GOT near DP\n"));
14640 break;
14641 case 2:
14642 printf (_("Data addressing position-independent, GOT far from DP\n"));
14643 break;
14644 default:
14645 printf ("??? (%d)\n", val);
14646 break;
14647 }
14648 return p;
14649
14650 case Tag_ABI_PIC:
14651 val = read_uleb128 (p, &len, end);
14652 p += len;
14653 printf (" Tag_ABI_PIC: ");
14654 switch (val)
14655 {
14656 case 0:
14657 printf (_("Code addressing position-dependent\n"));
14658 break;
14659 case 1:
14660 printf (_("Code addressing position-independent\n"));
14661 break;
14662 default:
14663 printf ("??? (%d)\n", val);
14664 break;
14665 }
14666 return p;
14667
14668 case Tag_ABI_array_object_alignment:
14669 val = read_uleb128 (p, &len, end);
14670 p += len;
14671 printf (" Tag_ABI_array_object_alignment: ");
14672 switch (val)
14673 {
14674 case 0:
14675 printf (_("8-byte\n"));
14676 break;
14677 case 1:
14678 printf (_("4-byte\n"));
14679 break;
14680 case 2:
14681 printf (_("16-byte\n"));
14682 break;
14683 default:
14684 printf ("??? (%d)\n", val);
14685 break;
14686 }
14687 return p;
14688
14689 case Tag_ABI_array_object_align_expected:
14690 val = read_uleb128 (p, &len, end);
14691 p += len;
14692 printf (" Tag_ABI_array_object_align_expected: ");
14693 switch (val)
14694 {
14695 case 0:
14696 printf (_("8-byte\n"));
14697 break;
14698 case 1:
14699 printf (_("4-byte\n"));
14700 break;
14701 case 2:
14702 printf (_("16-byte\n"));
14703 break;
14704 default:
14705 printf ("??? (%d)\n", val);
14706 break;
14707 }
14708 return p;
14709
14710 case Tag_ABI_compatibility:
14711 {
14712 val = read_uleb128 (p, &len, end);
14713 p += len;
14714 printf (" Tag_ABI_compatibility: ");
14715 printf (_("flag = %d, vendor = "), val);
14716 if (p < end - 1)
14717 {
14718 size_t maxlen = (end - p) - 1;
14719
14720 print_symbol ((int) maxlen, (const char *) p);
14721 p += strnlen ((char *) p, maxlen) + 1;
14722 }
14723 else
14724 {
14725 printf (_("<corrupt>"));
14726 p = (unsigned char *) end;
14727 }
14728 putchar ('\n');
14729 return p;
14730 }
14731
14732 case Tag_ABI_conformance:
14733 {
14734 printf (" Tag_ABI_conformance: \"");
14735 if (p < end - 1)
14736 {
14737 size_t maxlen = (end - p) - 1;
14738
14739 print_symbol ((int) maxlen, (const char *) p);
14740 p += strnlen ((char *) p, maxlen) + 1;
14741 }
14742 else
14743 {
14744 printf (_("<corrupt>"));
14745 p = (unsigned char *) end;
14746 }
14747 printf ("\"\n");
14748 return p;
14749 }
14750 }
14751
14752 return display_tag_value (tag, p, end);
14753 }
14754
14755 static void
14756 display_raw_attribute (unsigned char * p, unsigned char const * const end)
14757 {
14758 unsigned long addr = 0;
14759 size_t bytes = end - p;
14760
14761 assert (end > p);
14762 while (bytes)
14763 {
14764 int j;
14765 int k;
14766 int lbytes = (bytes > 16 ? 16 : bytes);
14767
14768 printf (" 0x%8.8lx ", addr);
14769
14770 for (j = 0; j < 16; j++)
14771 {
14772 if (j < lbytes)
14773 printf ("%2.2x", p[j]);
14774 else
14775 printf (" ");
14776
14777 if ((j & 3) == 3)
14778 printf (" ");
14779 }
14780
14781 for (j = 0; j < lbytes; j++)
14782 {
14783 k = p[j];
14784 if (k >= ' ' && k < 0x7f)
14785 printf ("%c", k);
14786 else
14787 printf (".");
14788 }
14789
14790 putchar ('\n');
14791
14792 p += lbytes;
14793 bytes -= lbytes;
14794 addr += lbytes;
14795 }
14796
14797 putchar ('\n');
14798 }
14799
14800 static unsigned char *
14801 display_msp430x_attribute (unsigned char * p,
14802 const unsigned char * const end)
14803 {
14804 unsigned int len;
14805 unsigned int val;
14806 unsigned int tag;
14807
14808 tag = read_uleb128 (p, & len, end);
14809 p += len;
14810
14811 switch (tag)
14812 {
14813 case OFBA_MSPABI_Tag_ISA:
14814 val = read_uleb128 (p, &len, end);
14815 p += len;
14816 printf (" Tag_ISA: ");
14817 switch (val)
14818 {
14819 case 0: printf (_("None\n")); break;
14820 case 1: printf (_("MSP430\n")); break;
14821 case 2: printf (_("MSP430X\n")); break;
14822 default: printf ("??? (%d)\n", val); break;
14823 }
14824 break;
14825
14826 case OFBA_MSPABI_Tag_Code_Model:
14827 val = read_uleb128 (p, &len, end);
14828 p += len;
14829 printf (" Tag_Code_Model: ");
14830 switch (val)
14831 {
14832 case 0: printf (_("None\n")); break;
14833 case 1: printf (_("Small\n")); break;
14834 case 2: printf (_("Large\n")); break;
14835 default: printf ("??? (%d)\n", val); break;
14836 }
14837 break;
14838
14839 case OFBA_MSPABI_Tag_Data_Model:
14840 val = read_uleb128 (p, &len, end);
14841 p += len;
14842 printf (" Tag_Data_Model: ");
14843 switch (val)
14844 {
14845 case 0: printf (_("None\n")); break;
14846 case 1: printf (_("Small\n")); break;
14847 case 2: printf (_("Large\n")); break;
14848 case 3: printf (_("Restricted Large\n")); break;
14849 default: printf ("??? (%d)\n", val); break;
14850 }
14851 break;
14852
14853 default:
14854 printf (_(" <unknown tag %d>: "), tag);
14855
14856 if (tag & 1)
14857 {
14858 putchar ('"');
14859 if (p < end - 1)
14860 {
14861 size_t maxlen = (end - p) - 1;
14862
14863 print_symbol ((int) maxlen, (const char *) p);
14864 p += strnlen ((char *) p, maxlen) + 1;
14865 }
14866 else
14867 {
14868 printf (_("<corrupt>"));
14869 p = (unsigned char *) end;
14870 }
14871 printf ("\"\n");
14872 }
14873 else
14874 {
14875 val = read_uleb128 (p, &len, end);
14876 p += len;
14877 printf ("%d (0x%x)\n", val, val);
14878 }
14879 break;
14880 }
14881
14882 assert (p <= end);
14883 return p;
14884 }
14885
14886 static bfd_boolean
14887 process_attributes (FILE * file,
14888 const char * public_name,
14889 unsigned int proc_type,
14890 unsigned char * (* display_pub_attribute) (unsigned char *, const unsigned char * const),
14891 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, unsigned int, const unsigned char * const))
14892 {
14893 Elf_Internal_Shdr * sect;
14894 unsigned i;
14895 bfd_boolean res = TRUE;
14896
14897 /* Find the section header so that we get the size. */
14898 for (i = 0, sect = section_headers;
14899 i < elf_header.e_shnum;
14900 i++, sect++)
14901 {
14902 unsigned char * contents;
14903 unsigned char * p;
14904
14905 if (sect->sh_type != proc_type && sect->sh_type != SHT_GNU_ATTRIBUTES)
14906 continue;
14907
14908 contents = (unsigned char *) get_data (NULL, file, sect->sh_offset, 1,
14909 sect->sh_size, _("attributes"));
14910 if (contents == NULL)
14911 {
14912 res = FALSE;
14913 continue;
14914 }
14915
14916 p = contents;
14917 /* The first character is the version of the attributes.
14918 Currently only version 1, (aka 'A') is recognised here. */
14919 if (*p != 'A')
14920 {
14921 printf (_("Unknown attributes version '%c'(%d) - expecting 'A'\n"), *p, *p);
14922 res = FALSE;
14923 }
14924 else
14925 {
14926 bfd_vma section_len;
14927
14928 section_len = sect->sh_size - 1;
14929 p++;
14930
14931 while (section_len > 0)
14932 {
14933 bfd_vma attr_len;
14934 unsigned int namelen;
14935 bfd_boolean public_section;
14936 bfd_boolean gnu_section;
14937
14938 if (section_len <= 4)
14939 {
14940 error (_("Tag section ends prematurely\n"));
14941 res = FALSE;
14942 break;
14943 }
14944 attr_len = byte_get (p, 4);
14945 p += 4;
14946
14947 if (attr_len > section_len)
14948 {
14949 error (_("Bad attribute length (%u > %u)\n"),
14950 (unsigned) attr_len, (unsigned) section_len);
14951 attr_len = section_len;
14952 res = FALSE;
14953 }
14954 /* PR 17531: file: 001-101425-0.004 */
14955 else if (attr_len < 5)
14956 {
14957 error (_("Attribute length of %u is too small\n"), (unsigned) attr_len);
14958 res = FALSE;
14959 break;
14960 }
14961
14962 section_len -= attr_len;
14963 attr_len -= 4;
14964
14965 namelen = strnlen ((char *) p, attr_len) + 1;
14966 if (namelen == 0 || namelen >= attr_len)
14967 {
14968 error (_("Corrupt attribute section name\n"));
14969 res = FALSE;
14970 break;
14971 }
14972
14973 printf (_("Attribute Section: "));
14974 print_symbol (INT_MAX, (const char *) p);
14975 putchar ('\n');
14976
14977 if (public_name && streq ((char *) p, public_name))
14978 public_section = TRUE;
14979 else
14980 public_section = FALSE;
14981
14982 if (streq ((char *) p, "gnu"))
14983 gnu_section = TRUE;
14984 else
14985 gnu_section = FALSE;
14986
14987 p += namelen;
14988 attr_len -= namelen;
14989
14990 while (attr_len > 0 && p < contents + sect->sh_size)
14991 {
14992 int tag;
14993 int val;
14994 bfd_vma size;
14995 unsigned char * end;
14996
14997 /* PR binutils/17531: Safe handling of corrupt files. */
14998 if (attr_len < 6)
14999 {
15000 error (_("Unused bytes at end of section\n"));
15001 res = FALSE;
15002 section_len = 0;
15003 break;
15004 }
15005
15006 tag = *(p++);
15007 size = byte_get (p, 4);
15008 if (size > attr_len)
15009 {
15010 error (_("Bad subsection length (%u > %u)\n"),
15011 (unsigned) size, (unsigned) attr_len);
15012 res = FALSE;
15013 size = attr_len;
15014 }
15015 /* PR binutils/17531: Safe handling of corrupt files. */
15016 if (size < 6)
15017 {
15018 error (_("Bad subsection length (%u < 6)\n"),
15019 (unsigned) size);
15020 res = FALSE;
15021 section_len = 0;
15022 break;
15023 }
15024
15025 attr_len -= size;
15026 end = p + size - 1;
15027 assert (end <= contents + sect->sh_size);
15028 p += 4;
15029
15030 switch (tag)
15031 {
15032 case 1:
15033 printf (_("File Attributes\n"));
15034 break;
15035 case 2:
15036 printf (_("Section Attributes:"));
15037 goto do_numlist;
15038 case 3:
15039 printf (_("Symbol Attributes:"));
15040 /* Fall through. */
15041 do_numlist:
15042 for (;;)
15043 {
15044 unsigned int j;
15045
15046 val = read_uleb128 (p, &j, end);
15047 p += j;
15048 if (val == 0)
15049 break;
15050 printf (" %d", val);
15051 }
15052 printf ("\n");
15053 break;
15054 default:
15055 printf (_("Unknown tag: %d\n"), tag);
15056 public_section = FALSE;
15057 break;
15058 }
15059
15060 if (public_section && display_pub_attribute != NULL)
15061 {
15062 while (p < end)
15063 p = display_pub_attribute (p, end);
15064 assert (p == end);
15065 }
15066 else if (gnu_section && display_proc_gnu_attribute != NULL)
15067 {
15068 while (p < end)
15069 p = display_gnu_attribute (p,
15070 display_proc_gnu_attribute,
15071 end);
15072 assert (p == end);
15073 }
15074 else if (p < end)
15075 {
15076 printf (_(" Unknown attribute:\n"));
15077 display_raw_attribute (p, end);
15078 p = end;
15079 }
15080 else
15081 attr_len = 0;
15082 }
15083 }
15084 }
15085
15086 free (contents);
15087 }
15088
15089 return res;
15090 }
15091
15092 /* DATA points to the contents of a MIPS GOT that starts at VMA PLTGOT.
15093 Print the Address, Access and Initial fields of an entry at VMA ADDR
15094 and return the VMA of the next entry, or -1 if there was a problem.
15095 Does not read from DATA_END or beyond. */
15096
15097 static bfd_vma
15098 print_mips_got_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr,
15099 unsigned char * data_end)
15100 {
15101 printf (" ");
15102 print_vma (addr, LONG_HEX);
15103 printf (" ");
15104 if (addr < pltgot + 0xfff0)
15105 printf ("%6d(gp)", (int) (addr - pltgot - 0x7ff0));
15106 else
15107 printf ("%10s", "");
15108 printf (" ");
15109 if (data == NULL)
15110 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
15111 else
15112 {
15113 bfd_vma entry;
15114 unsigned char * from = data + addr - pltgot;
15115
15116 if (from + (is_32bit_elf ? 4 : 8) > data_end)
15117 {
15118 warn (_("MIPS GOT entry extends beyond the end of available data\n"));
15119 printf ("%*s", is_32bit_elf ? 8 : 16, _("<corrupt>"));
15120 return (bfd_vma) -1;
15121 }
15122 else
15123 {
15124 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
15125 print_vma (entry, LONG_HEX);
15126 }
15127 }
15128 return addr + (is_32bit_elf ? 4 : 8);
15129 }
15130
15131 /* DATA points to the contents of a MIPS PLT GOT that starts at VMA
15132 PLTGOT. Print the Address and Initial fields of an entry at VMA
15133 ADDR and return the VMA of the next entry. */
15134
15135 static bfd_vma
15136 print_mips_pltgot_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
15137 {
15138 printf (" ");
15139 print_vma (addr, LONG_HEX);
15140 printf (" ");
15141 if (data == NULL)
15142 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
15143 else
15144 {
15145 bfd_vma entry;
15146
15147 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
15148 print_vma (entry, LONG_HEX);
15149 }
15150 return addr + (is_32bit_elf ? 4 : 8);
15151 }
15152
15153 static void
15154 print_mips_ases (unsigned int mask)
15155 {
15156 if (mask & AFL_ASE_DSP)
15157 fputs ("\n\tDSP ASE", stdout);
15158 if (mask & AFL_ASE_DSPR2)
15159 fputs ("\n\tDSP R2 ASE", stdout);
15160 if (mask & AFL_ASE_DSPR3)
15161 fputs ("\n\tDSP R3 ASE", stdout);
15162 if (mask & AFL_ASE_EVA)
15163 fputs ("\n\tEnhanced VA Scheme", stdout);
15164 if (mask & AFL_ASE_MCU)
15165 fputs ("\n\tMCU (MicroController) ASE", stdout);
15166 if (mask & AFL_ASE_MDMX)
15167 fputs ("\n\tMDMX ASE", stdout);
15168 if (mask & AFL_ASE_MIPS3D)
15169 fputs ("\n\tMIPS-3D ASE", stdout);
15170 if (mask & AFL_ASE_MT)
15171 fputs ("\n\tMT ASE", stdout);
15172 if (mask & AFL_ASE_SMARTMIPS)
15173 fputs ("\n\tSmartMIPS ASE", stdout);
15174 if (mask & AFL_ASE_VIRT)
15175 fputs ("\n\tVZ ASE", stdout);
15176 if (mask & AFL_ASE_MSA)
15177 fputs ("\n\tMSA ASE", stdout);
15178 if (mask & AFL_ASE_MIPS16)
15179 fputs ("\n\tMIPS16 ASE", stdout);
15180 if (mask & AFL_ASE_MICROMIPS)
15181 fputs ("\n\tMICROMIPS ASE", stdout);
15182 if (mask & AFL_ASE_XPA)
15183 fputs ("\n\tXPA ASE", stdout);
15184 if (mask & AFL_ASE_MIPS16E2)
15185 fputs ("\n\tMIPS16e2 ASE", stdout);
15186 if (mask == 0)
15187 fprintf (stdout, "\n\t%s", _("None"));
15188 else if ((mask & ~AFL_ASE_MASK) != 0)
15189 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15190 }
15191
15192 static void
15193 print_mips_isa_ext (unsigned int isa_ext)
15194 {
15195 switch (isa_ext)
15196 {
15197 case 0:
15198 fputs (_("None"), stdout);
15199 break;
15200 case AFL_EXT_XLR:
15201 fputs ("RMI XLR", stdout);
15202 break;
15203 case AFL_EXT_OCTEON3:
15204 fputs ("Cavium Networks Octeon3", stdout);
15205 break;
15206 case AFL_EXT_OCTEON2:
15207 fputs ("Cavium Networks Octeon2", stdout);
15208 break;
15209 case AFL_EXT_OCTEONP:
15210 fputs ("Cavium Networks OcteonP", stdout);
15211 break;
15212 case AFL_EXT_LOONGSON_3A:
15213 fputs ("Loongson 3A", stdout);
15214 break;
15215 case AFL_EXT_OCTEON:
15216 fputs ("Cavium Networks Octeon", stdout);
15217 break;
15218 case AFL_EXT_5900:
15219 fputs ("Toshiba R5900", stdout);
15220 break;
15221 case AFL_EXT_4650:
15222 fputs ("MIPS R4650", stdout);
15223 break;
15224 case AFL_EXT_4010:
15225 fputs ("LSI R4010", stdout);
15226 break;
15227 case AFL_EXT_4100:
15228 fputs ("NEC VR4100", stdout);
15229 break;
15230 case AFL_EXT_3900:
15231 fputs ("Toshiba R3900", stdout);
15232 break;
15233 case AFL_EXT_10000:
15234 fputs ("MIPS R10000", stdout);
15235 break;
15236 case AFL_EXT_SB1:
15237 fputs ("Broadcom SB-1", stdout);
15238 break;
15239 case AFL_EXT_4111:
15240 fputs ("NEC VR4111/VR4181", stdout);
15241 break;
15242 case AFL_EXT_4120:
15243 fputs ("NEC VR4120", stdout);
15244 break;
15245 case AFL_EXT_5400:
15246 fputs ("NEC VR5400", stdout);
15247 break;
15248 case AFL_EXT_5500:
15249 fputs ("NEC VR5500", stdout);
15250 break;
15251 case AFL_EXT_LOONGSON_2E:
15252 fputs ("ST Microelectronics Loongson 2E", stdout);
15253 break;
15254 case AFL_EXT_LOONGSON_2F:
15255 fputs ("ST Microelectronics Loongson 2F", stdout);
15256 break;
15257 case AFL_EXT_INTERAPTIV_MR2:
15258 fputs ("Imagination interAptiv MR2", stdout);
15259 break;
15260 default:
15261 fprintf (stdout, "%s (%d)", _("Unknown"), isa_ext);
15262 }
15263 }
15264
15265 static signed int
15266 get_mips_reg_size (int reg_size)
15267 {
15268 return (reg_size == AFL_REG_NONE) ? 0
15269 : (reg_size == AFL_REG_32) ? 32
15270 : (reg_size == AFL_REG_64) ? 64
15271 : (reg_size == AFL_REG_128) ? 128
15272 : -1;
15273 }
15274
15275 static bfd_boolean
15276 process_mips_specific (FILE * file)
15277 {
15278 Elf_Internal_Dyn * entry;
15279 Elf_Internal_Shdr *sect = NULL;
15280 size_t liblist_offset = 0;
15281 size_t liblistno = 0;
15282 size_t conflictsno = 0;
15283 size_t options_offset = 0;
15284 size_t conflicts_offset = 0;
15285 size_t pltrelsz = 0;
15286 size_t pltrel = 0;
15287 bfd_vma pltgot = 0;
15288 bfd_vma mips_pltgot = 0;
15289 bfd_vma jmprel = 0;
15290 bfd_vma local_gotno = 0;
15291 bfd_vma gotsym = 0;
15292 bfd_vma symtabno = 0;
15293 bfd_boolean res = TRUE;
15294
15295 if (! process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
15296 display_mips_gnu_attribute))
15297 res = FALSE;
15298
15299 sect = find_section (".MIPS.abiflags");
15300
15301 if (sect != NULL)
15302 {
15303 Elf_External_ABIFlags_v0 *abiflags_ext;
15304 Elf_Internal_ABIFlags_v0 abiflags_in;
15305
15306 if (sizeof (Elf_External_ABIFlags_v0) != sect->sh_size)
15307 {
15308 error (_("Corrupt MIPS ABI Flags section.\n"));
15309 res = FALSE;
15310 }
15311 else
15312 {
15313 abiflags_ext = get_data (NULL, file, sect->sh_offset, 1,
15314 sect->sh_size, _("MIPS ABI Flags section"));
15315 if (abiflags_ext)
15316 {
15317 abiflags_in.version = BYTE_GET (abiflags_ext->version);
15318 abiflags_in.isa_level = BYTE_GET (abiflags_ext->isa_level);
15319 abiflags_in.isa_rev = BYTE_GET (abiflags_ext->isa_rev);
15320 abiflags_in.gpr_size = BYTE_GET (abiflags_ext->gpr_size);
15321 abiflags_in.cpr1_size = BYTE_GET (abiflags_ext->cpr1_size);
15322 abiflags_in.cpr2_size = BYTE_GET (abiflags_ext->cpr2_size);
15323 abiflags_in.fp_abi = BYTE_GET (abiflags_ext->fp_abi);
15324 abiflags_in.isa_ext = BYTE_GET (abiflags_ext->isa_ext);
15325 abiflags_in.ases = BYTE_GET (abiflags_ext->ases);
15326 abiflags_in.flags1 = BYTE_GET (abiflags_ext->flags1);
15327 abiflags_in.flags2 = BYTE_GET (abiflags_ext->flags2);
15328
15329 printf ("\nMIPS ABI Flags Version: %d\n", abiflags_in.version);
15330 printf ("\nISA: MIPS%d", abiflags_in.isa_level);
15331 if (abiflags_in.isa_rev > 1)
15332 printf ("r%d", abiflags_in.isa_rev);
15333 printf ("\nGPR size: %d",
15334 get_mips_reg_size (abiflags_in.gpr_size));
15335 printf ("\nCPR1 size: %d",
15336 get_mips_reg_size (abiflags_in.cpr1_size));
15337 printf ("\nCPR2 size: %d",
15338 get_mips_reg_size (abiflags_in.cpr2_size));
15339 fputs ("\nFP ABI: ", stdout);
15340 print_mips_fp_abi_value (abiflags_in.fp_abi);
15341 fputs ("ISA Extension: ", stdout);
15342 print_mips_isa_ext (abiflags_in.isa_ext);
15343 fputs ("\nASEs:", stdout);
15344 print_mips_ases (abiflags_in.ases);
15345 printf ("\nFLAGS 1: %8.8lx", abiflags_in.flags1);
15346 printf ("\nFLAGS 2: %8.8lx", abiflags_in.flags2);
15347 fputc ('\n', stdout);
15348 free (abiflags_ext);
15349 }
15350 }
15351 }
15352
15353 /* We have a lot of special sections. Thanks SGI! */
15354 if (dynamic_section == NULL)
15355 {
15356 /* No dynamic information available. See if there is static GOT. */
15357 sect = find_section (".got");
15358 if (sect != NULL)
15359 {
15360 unsigned char *data_end;
15361 unsigned char *data;
15362 bfd_vma ent, end;
15363 int addr_size;
15364
15365 pltgot = sect->sh_addr;
15366
15367 ent = pltgot;
15368 addr_size = (is_32bit_elf ? 4 : 8);
15369 end = pltgot + sect->sh_size;
15370
15371 data = (unsigned char *) get_data (NULL, file, sect->sh_offset,
15372 end - pltgot, 1,
15373 _("Global Offset Table data"));
15374 /* PR 12855: Null data is handled gracefully throughout. */
15375 data_end = data + (end - pltgot);
15376
15377 printf (_("\nStatic GOT:\n"));
15378 printf (_(" Canonical gp value: "));
15379 print_vma (ent + 0x7ff0, LONG_HEX);
15380 printf ("\n\n");
15381
15382 /* In a dynamic binary GOT[0] is reserved for the dynamic
15383 loader to store the lazy resolver pointer, however in
15384 a static binary it may well have been omitted and GOT
15385 reduced to a table of addresses.
15386 PR 21344: Check for the entry being fully available
15387 before fetching it. */
15388 if (data
15389 && data + ent - pltgot + addr_size <= data_end
15390 && byte_get (data + ent - pltgot, addr_size) == 0)
15391 {
15392 printf (_(" Reserved entries:\n"));
15393 printf (_(" %*s %10s %*s\n"),
15394 addr_size * 2, _("Address"), _("Access"),
15395 addr_size * 2, _("Value"));
15396 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15397 printf ("\n");
15398 if (ent == (bfd_vma) -1)
15399 goto sgot_print_fail;
15400
15401 /* Check for the MSB of GOT[1] being set, identifying a
15402 GNU object. This entry will be used by some runtime
15403 loaders, to store the module pointer. Otherwise this
15404 is an ordinary local entry.
15405 PR 21344: Check for the entry being fully available
15406 before fetching it. */
15407 if (data
15408 && data + ent - pltgot + addr_size <= data_end
15409 && (byte_get (data + ent - pltgot, addr_size)
15410 >> (addr_size * 8 - 1)) != 0)
15411 {
15412 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15413 printf ("\n");
15414 if (ent == (bfd_vma) -1)
15415 goto sgot_print_fail;
15416 }
15417 printf ("\n");
15418 }
15419
15420 if (data != NULL && ent < end)
15421 {
15422 printf (_(" Local entries:\n"));
15423 printf (" %*s %10s %*s\n",
15424 addr_size * 2, _("Address"), _("Access"),
15425 addr_size * 2, _("Value"));
15426 while (ent < end)
15427 {
15428 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15429 printf ("\n");
15430 if (ent == (bfd_vma) -1)
15431 goto sgot_print_fail;
15432 }
15433 printf ("\n");
15434 }
15435
15436 sgot_print_fail:
15437 if (data)
15438 free (data);
15439 }
15440 return res;
15441 }
15442
15443 for (entry = dynamic_section;
15444 /* PR 17531 file: 012-50589-0.004. */
15445 entry < dynamic_section + dynamic_nent && entry->d_tag != DT_NULL;
15446 ++entry)
15447 switch (entry->d_tag)
15448 {
15449 case DT_MIPS_LIBLIST:
15450 liblist_offset
15451 = offset_from_vma (file, entry->d_un.d_val,
15452 liblistno * sizeof (Elf32_External_Lib));
15453 break;
15454 case DT_MIPS_LIBLISTNO:
15455 liblistno = entry->d_un.d_val;
15456 break;
15457 case DT_MIPS_OPTIONS:
15458 options_offset = offset_from_vma (file, entry->d_un.d_val, 0);
15459 break;
15460 case DT_MIPS_CONFLICT:
15461 conflicts_offset
15462 = offset_from_vma (file, entry->d_un.d_val,
15463 conflictsno * sizeof (Elf32_External_Conflict));
15464 break;
15465 case DT_MIPS_CONFLICTNO:
15466 conflictsno = entry->d_un.d_val;
15467 break;
15468 case DT_PLTGOT:
15469 pltgot = entry->d_un.d_ptr;
15470 break;
15471 case DT_MIPS_LOCAL_GOTNO:
15472 local_gotno = entry->d_un.d_val;
15473 break;
15474 case DT_MIPS_GOTSYM:
15475 gotsym = entry->d_un.d_val;
15476 break;
15477 case DT_MIPS_SYMTABNO:
15478 symtabno = entry->d_un.d_val;
15479 break;
15480 case DT_MIPS_PLTGOT:
15481 mips_pltgot = entry->d_un.d_ptr;
15482 break;
15483 case DT_PLTREL:
15484 pltrel = entry->d_un.d_val;
15485 break;
15486 case DT_PLTRELSZ:
15487 pltrelsz = entry->d_un.d_val;
15488 break;
15489 case DT_JMPREL:
15490 jmprel = entry->d_un.d_ptr;
15491 break;
15492 default:
15493 break;
15494 }
15495
15496 if (liblist_offset != 0 && liblistno != 0 && do_dynamic)
15497 {
15498 Elf32_External_Lib * elib;
15499 size_t cnt;
15500
15501 elib = (Elf32_External_Lib *) get_data (NULL, file, liblist_offset,
15502 liblistno,
15503 sizeof (Elf32_External_Lib),
15504 _("liblist section data"));
15505 if (elib)
15506 {
15507 printf (ngettext ("\nSection '.liblist' contains %lu entry:\n",
15508 "\nSection '.liblist' contains %lu entries:\n",
15509 (unsigned long) liblistno),
15510 (unsigned long) liblistno);
15511 fputs (_(" Library Time Stamp Checksum Version Flags\n"),
15512 stdout);
15513
15514 for (cnt = 0; cnt < liblistno; ++cnt)
15515 {
15516 Elf32_Lib liblist;
15517 time_t atime;
15518 char timebuf[128];
15519 struct tm * tmp;
15520
15521 liblist.l_name = BYTE_GET (elib[cnt].l_name);
15522 atime = BYTE_GET (elib[cnt].l_time_stamp);
15523 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
15524 liblist.l_version = BYTE_GET (elib[cnt].l_version);
15525 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
15526
15527 tmp = gmtime (&atime);
15528 snprintf (timebuf, sizeof (timebuf),
15529 "%04u-%02u-%02uT%02u:%02u:%02u",
15530 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
15531 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
15532
15533 printf ("%3lu: ", (unsigned long) cnt);
15534 if (VALID_DYNAMIC_NAME (liblist.l_name))
15535 print_symbol (20, GET_DYNAMIC_NAME (liblist.l_name));
15536 else
15537 printf (_("<corrupt: %9ld>"), liblist.l_name);
15538 printf (" %s %#10lx %-7ld", timebuf, liblist.l_checksum,
15539 liblist.l_version);
15540
15541 if (liblist.l_flags == 0)
15542 puts (_(" NONE"));
15543 else
15544 {
15545 static const struct
15546 {
15547 const char * name;
15548 int bit;
15549 }
15550 l_flags_vals[] =
15551 {
15552 { " EXACT_MATCH", LL_EXACT_MATCH },
15553 { " IGNORE_INT_VER", LL_IGNORE_INT_VER },
15554 { " REQUIRE_MINOR", LL_REQUIRE_MINOR },
15555 { " EXPORTS", LL_EXPORTS },
15556 { " DELAY_LOAD", LL_DELAY_LOAD },
15557 { " DELTA", LL_DELTA }
15558 };
15559 int flags = liblist.l_flags;
15560 size_t fcnt;
15561
15562 for (fcnt = 0; fcnt < ARRAY_SIZE (l_flags_vals); ++fcnt)
15563 if ((flags & l_flags_vals[fcnt].bit) != 0)
15564 {
15565 fputs (l_flags_vals[fcnt].name, stdout);
15566 flags ^= l_flags_vals[fcnt].bit;
15567 }
15568 if (flags != 0)
15569 printf (" %#x", (unsigned int) flags);
15570
15571 puts ("");
15572 }
15573 }
15574
15575 free (elib);
15576 }
15577 else
15578 res = FALSE;
15579 }
15580
15581 if (options_offset != 0)
15582 {
15583 Elf_External_Options * eopt;
15584 Elf_Internal_Options * iopt;
15585 Elf_Internal_Options * option;
15586 size_t offset;
15587 int cnt;
15588 sect = section_headers;
15589
15590 /* Find the section header so that we get the size. */
15591 sect = find_section_by_type (SHT_MIPS_OPTIONS);
15592 /* PR 17533 file: 012-277276-0.004. */
15593 if (sect == NULL)
15594 {
15595 error (_("No MIPS_OPTIONS header found\n"));
15596 return FALSE;
15597 }
15598
15599 eopt = (Elf_External_Options *) get_data (NULL, file, options_offset, 1,
15600 sect->sh_size, _("options"));
15601 if (eopt)
15602 {
15603 iopt = (Elf_Internal_Options *)
15604 cmalloc ((sect->sh_size / sizeof (eopt)), sizeof (* iopt));
15605 if (iopt == NULL)
15606 {
15607 error (_("Out of memory allocating space for MIPS options\n"));
15608 return FALSE;
15609 }
15610
15611 offset = cnt = 0;
15612 option = iopt;
15613
15614 while (offset <= sect->sh_size - sizeof (* eopt))
15615 {
15616 Elf_External_Options * eoption;
15617
15618 eoption = (Elf_External_Options *) ((char *) eopt + offset);
15619
15620 option->kind = BYTE_GET (eoption->kind);
15621 option->size = BYTE_GET (eoption->size);
15622 option->section = BYTE_GET (eoption->section);
15623 option->info = BYTE_GET (eoption->info);
15624
15625 /* PR 17531: file: ffa0fa3b. */
15626 if (option->size < sizeof (* eopt)
15627 || offset + option->size > sect->sh_size)
15628 {
15629 error (_("Invalid size (%u) for MIPS option\n"), option->size);
15630 return FALSE;
15631 }
15632 offset += option->size;
15633
15634 ++option;
15635 ++cnt;
15636 }
15637
15638 printf (ngettext ("\nSection '%s' contains %d entry:\n",
15639 "\nSection '%s' contains %d entries:\n",
15640 cnt),
15641 printable_section_name (sect), cnt);
15642
15643 option = iopt;
15644 offset = 0;
15645
15646 while (cnt-- > 0)
15647 {
15648 size_t len;
15649
15650 switch (option->kind)
15651 {
15652 case ODK_NULL:
15653 /* This shouldn't happen. */
15654 printf (" NULL %d %lx", option->section, option->info);
15655 break;
15656 case ODK_REGINFO:
15657 printf (" REGINFO ");
15658 if (elf_header.e_machine == EM_MIPS)
15659 {
15660 /* 32bit form. */
15661 Elf32_External_RegInfo * ereg;
15662 Elf32_RegInfo reginfo;
15663
15664 ereg = (Elf32_External_RegInfo *) (option + 1);
15665 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
15666 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
15667 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
15668 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
15669 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
15670 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
15671
15672 printf ("GPR %08lx GP 0x%lx\n",
15673 reginfo.ri_gprmask,
15674 (unsigned long) reginfo.ri_gp_value);
15675 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
15676 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
15677 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
15678 }
15679 else
15680 {
15681 /* 64 bit form. */
15682 Elf64_External_RegInfo * ereg;
15683 Elf64_Internal_RegInfo reginfo;
15684
15685 ereg = (Elf64_External_RegInfo *) (option + 1);
15686 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
15687 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
15688 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
15689 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
15690 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
15691 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
15692
15693 printf ("GPR %08lx GP 0x",
15694 reginfo.ri_gprmask);
15695 printf_vma (reginfo.ri_gp_value);
15696 printf ("\n");
15697
15698 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
15699 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
15700 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
15701 }
15702 ++option;
15703 continue;
15704 case ODK_EXCEPTIONS:
15705 fputs (" EXCEPTIONS fpe_min(", stdout);
15706 process_mips_fpe_exception (option->info & OEX_FPU_MIN);
15707 fputs (") fpe_max(", stdout);
15708 process_mips_fpe_exception ((option->info & OEX_FPU_MAX) >> 8);
15709 fputs (")", stdout);
15710
15711 if (option->info & OEX_PAGE0)
15712 fputs (" PAGE0", stdout);
15713 if (option->info & OEX_SMM)
15714 fputs (" SMM", stdout);
15715 if (option->info & OEX_FPDBUG)
15716 fputs (" FPDBUG", stdout);
15717 if (option->info & OEX_DISMISS)
15718 fputs (" DISMISS", stdout);
15719 break;
15720 case ODK_PAD:
15721 fputs (" PAD ", stdout);
15722 if (option->info & OPAD_PREFIX)
15723 fputs (" PREFIX", stdout);
15724 if (option->info & OPAD_POSTFIX)
15725 fputs (" POSTFIX", stdout);
15726 if (option->info & OPAD_SYMBOL)
15727 fputs (" SYMBOL", stdout);
15728 break;
15729 case ODK_HWPATCH:
15730 fputs (" HWPATCH ", stdout);
15731 if (option->info & OHW_R4KEOP)
15732 fputs (" R4KEOP", stdout);
15733 if (option->info & OHW_R8KPFETCH)
15734 fputs (" R8KPFETCH", stdout);
15735 if (option->info & OHW_R5KEOP)
15736 fputs (" R5KEOP", stdout);
15737 if (option->info & OHW_R5KCVTL)
15738 fputs (" R5KCVTL", stdout);
15739 break;
15740 case ODK_FILL:
15741 fputs (" FILL ", stdout);
15742 /* XXX Print content of info word? */
15743 break;
15744 case ODK_TAGS:
15745 fputs (" TAGS ", stdout);
15746 /* XXX Print content of info word? */
15747 break;
15748 case ODK_HWAND:
15749 fputs (" HWAND ", stdout);
15750 if (option->info & OHWA0_R4KEOP_CHECKED)
15751 fputs (" R4KEOP_CHECKED", stdout);
15752 if (option->info & OHWA0_R4KEOP_CLEAN)
15753 fputs (" R4KEOP_CLEAN", stdout);
15754 break;
15755 case ODK_HWOR:
15756 fputs (" HWOR ", stdout);
15757 if (option->info & OHWA0_R4KEOP_CHECKED)
15758 fputs (" R4KEOP_CHECKED", stdout);
15759 if (option->info & OHWA0_R4KEOP_CLEAN)
15760 fputs (" R4KEOP_CLEAN", stdout);
15761 break;
15762 case ODK_GP_GROUP:
15763 printf (" GP_GROUP %#06lx self-contained %#06lx",
15764 option->info & OGP_GROUP,
15765 (option->info & OGP_SELF) >> 16);
15766 break;
15767 case ODK_IDENT:
15768 printf (" IDENT %#06lx self-contained %#06lx",
15769 option->info & OGP_GROUP,
15770 (option->info & OGP_SELF) >> 16);
15771 break;
15772 default:
15773 /* This shouldn't happen. */
15774 printf (" %3d ??? %d %lx",
15775 option->kind, option->section, option->info);
15776 break;
15777 }
15778
15779 len = sizeof (* eopt);
15780 while (len < option->size)
15781 {
15782 unsigned char datum = * ((unsigned char *) eopt + offset + len);
15783
15784 if (ISPRINT (datum))
15785 printf ("%c", datum);
15786 else
15787 printf ("\\%03o", datum);
15788 len ++;
15789 }
15790 fputs ("\n", stdout);
15791
15792 offset += option->size;
15793 ++option;
15794 }
15795
15796 free (eopt);
15797 }
15798 else
15799 res = FALSE;
15800 }
15801
15802 if (conflicts_offset != 0 && conflictsno != 0)
15803 {
15804 Elf32_Conflict * iconf;
15805 size_t cnt;
15806
15807 if (dynamic_symbols == NULL)
15808 {
15809 error (_("conflict list found without a dynamic symbol table\n"));
15810 return FALSE;
15811 }
15812
15813 /* PR 21345 - print a slightly more helpful error message
15814 if we are sure that the cmalloc will fail. */
15815 if (conflictsno * sizeof (* iconf) > current_file_size)
15816 {
15817 error (_("Overlarge number of conflicts detected: %lx\n"),
15818 (long) conflictsno);
15819 return FALSE;
15820 }
15821
15822 iconf = (Elf32_Conflict *) cmalloc (conflictsno, sizeof (* iconf));
15823 if (iconf == NULL)
15824 {
15825 error (_("Out of memory allocating space for dynamic conflicts\n"));
15826 return FALSE;
15827 }
15828
15829 if (is_32bit_elf)
15830 {
15831 Elf32_External_Conflict * econf32;
15832
15833 econf32 = (Elf32_External_Conflict *)
15834 get_data (NULL, file, conflicts_offset, conflictsno,
15835 sizeof (* econf32), _("conflict"));
15836 if (!econf32)
15837 return FALSE;
15838
15839 for (cnt = 0; cnt < conflictsno; ++cnt)
15840 iconf[cnt] = BYTE_GET (econf32[cnt]);
15841
15842 free (econf32);
15843 }
15844 else
15845 {
15846 Elf64_External_Conflict * econf64;
15847
15848 econf64 = (Elf64_External_Conflict *)
15849 get_data (NULL, file, conflicts_offset, conflictsno,
15850 sizeof (* econf64), _("conflict"));
15851 if (!econf64)
15852 return FALSE;
15853
15854 for (cnt = 0; cnt < conflictsno; ++cnt)
15855 iconf[cnt] = BYTE_GET (econf64[cnt]);
15856
15857 free (econf64);
15858 }
15859
15860 printf (ngettext ("\nSection '.conflict' contains %lu entry:\n",
15861 "\nSection '.conflict' contains %lu entries:\n",
15862 (unsigned long) conflictsno),
15863 (unsigned long) conflictsno);
15864 puts (_(" Num: Index Value Name"));
15865
15866 for (cnt = 0; cnt < conflictsno; ++cnt)
15867 {
15868 printf ("%5lu: %8lu ", (unsigned long) cnt, iconf[cnt]);
15869
15870 if (iconf[cnt] >= num_dynamic_syms)
15871 printf (_("<corrupt symbol index>"));
15872 else
15873 {
15874 Elf_Internal_Sym * psym;
15875
15876 psym = & dynamic_symbols[iconf[cnt]];
15877 print_vma (psym->st_value, FULL_HEX);
15878 putchar (' ');
15879 if (VALID_DYNAMIC_NAME (psym->st_name))
15880 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
15881 else
15882 printf (_("<corrupt: %14ld>"), psym->st_name);
15883 }
15884 putchar ('\n');
15885 }
15886
15887 free (iconf);
15888 }
15889
15890 if (pltgot != 0 && local_gotno != 0)
15891 {
15892 bfd_vma ent, local_end, global_end;
15893 size_t i, offset;
15894 unsigned char * data;
15895 unsigned char * data_end;
15896 int addr_size;
15897
15898 ent = pltgot;
15899 addr_size = (is_32bit_elf ? 4 : 8);
15900 local_end = pltgot + local_gotno * addr_size;
15901
15902 /* PR binutils/17533 file: 012-111227-0.004 */
15903 if (symtabno < gotsym)
15904 {
15905 error (_("The GOT symbol offset (%lu) is greater than the symbol table size (%lu)\n"),
15906 (unsigned long) gotsym, (unsigned long) symtabno);
15907 return FALSE;
15908 }
15909
15910 global_end = local_end + (symtabno - gotsym) * addr_size;
15911 /* PR 17531: file: 54c91a34. */
15912 if (global_end < local_end)
15913 {
15914 error (_("Too many GOT symbols: %lu\n"), (unsigned long) symtabno);
15915 return FALSE;
15916 }
15917
15918 offset = offset_from_vma (file, pltgot, global_end - pltgot);
15919 data = (unsigned char *) get_data (NULL, file, offset,
15920 global_end - pltgot, 1,
15921 _("Global Offset Table data"));
15922 /* PR 12855: Null data is handled gracefully throughout. */
15923 data_end = data + (global_end - pltgot);
15924
15925 printf (_("\nPrimary GOT:\n"));
15926 printf (_(" Canonical gp value: "));
15927 print_vma (pltgot + 0x7ff0, LONG_HEX);
15928 printf ("\n\n");
15929
15930 printf (_(" Reserved entries:\n"));
15931 printf (_(" %*s %10s %*s Purpose\n"),
15932 addr_size * 2, _("Address"), _("Access"),
15933 addr_size * 2, _("Initial"));
15934 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15935 printf (_(" Lazy resolver\n"));
15936 if (ent == (bfd_vma) -1)
15937 goto got_print_fail;
15938
15939 /* Check for the MSB of GOT[1] being set, denoting a GNU object.
15940 This entry will be used by some runtime loaders, to store the
15941 module pointer. Otherwise this is an ordinary local entry.
15942 PR 21344: Check for the entry being fully available before
15943 fetching it. */
15944 if (data
15945 && data + ent - pltgot + addr_size <= data_end
15946 && (byte_get (data + ent - pltgot, addr_size)
15947 >> (addr_size * 8 - 1)) != 0)
15948 {
15949 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15950 printf (_(" Module pointer (GNU extension)\n"));
15951 if (ent == (bfd_vma) -1)
15952 goto got_print_fail;
15953 }
15954 printf ("\n");
15955
15956 if (data != NULL && ent < local_end)
15957 {
15958 printf (_(" Local entries:\n"));
15959 printf (" %*s %10s %*s\n",
15960 addr_size * 2, _("Address"), _("Access"),
15961 addr_size * 2, _("Initial"));
15962 while (ent < local_end)
15963 {
15964 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15965 printf ("\n");
15966 if (ent == (bfd_vma) -1)
15967 goto got_print_fail;
15968 }
15969 printf ("\n");
15970 }
15971
15972 if (data != NULL && gotsym < symtabno)
15973 {
15974 int sym_width;
15975
15976 printf (_(" Global entries:\n"));
15977 printf (" %*s %10s %*s %*s %-7s %3s %s\n",
15978 addr_size * 2, _("Address"),
15979 _("Access"),
15980 addr_size * 2, _("Initial"),
15981 addr_size * 2, _("Sym.Val."),
15982 _("Type"),
15983 /* Note for translators: "Ndx" = abbreviated form of "Index". */
15984 _("Ndx"), _("Name"));
15985
15986 sym_width = (is_32bit_elf ? 80 : 160) - 28 - addr_size * 6 - 1;
15987
15988 for (i = gotsym; i < symtabno; i++)
15989 {
15990 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15991 printf (" ");
15992
15993 if (dynamic_symbols == NULL)
15994 printf (_("<no dynamic symbols>"));
15995 else if (i < num_dynamic_syms)
15996 {
15997 Elf_Internal_Sym * psym = dynamic_symbols + i;
15998
15999 print_vma (psym->st_value, LONG_HEX);
16000 printf (" %-7s %3s ",
16001 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
16002 get_symbol_index_type (psym->st_shndx));
16003
16004 if (VALID_DYNAMIC_NAME (psym->st_name))
16005 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
16006 else
16007 printf (_("<corrupt: %14ld>"), psym->st_name);
16008 }
16009 else
16010 printf (_("<symbol index %lu exceeds number of dynamic symbols>"),
16011 (unsigned long) i);
16012
16013 printf ("\n");
16014 if (ent == (bfd_vma) -1)
16015 break;
16016 }
16017 printf ("\n");
16018 }
16019
16020 got_print_fail:
16021 if (data)
16022 free (data);
16023 }
16024
16025 if (mips_pltgot != 0 && jmprel != 0 && pltrel != 0 && pltrelsz != 0)
16026 {
16027 bfd_vma ent, end;
16028 size_t offset, rel_offset;
16029 unsigned long count, i;
16030 unsigned char * data;
16031 int addr_size, sym_width;
16032 Elf_Internal_Rela * rels;
16033
16034 rel_offset = offset_from_vma (file, jmprel, pltrelsz);
16035 if (pltrel == DT_RELA)
16036 {
16037 if (!slurp_rela_relocs (file, rel_offset, pltrelsz, &rels, &count))
16038 return FALSE;
16039 }
16040 else
16041 {
16042 if (!slurp_rel_relocs (file, rel_offset, pltrelsz, &rels, &count))
16043 return FALSE;
16044 }
16045
16046 ent = mips_pltgot;
16047 addr_size = (is_32bit_elf ? 4 : 8);
16048 end = mips_pltgot + (2 + count) * addr_size;
16049
16050 offset = offset_from_vma (file, mips_pltgot, end - mips_pltgot);
16051 data = (unsigned char *) get_data (NULL, file, offset, end - mips_pltgot,
16052 1, _("Procedure Linkage Table data"));
16053 if (data == NULL)
16054 return FALSE;
16055
16056 printf ("\nPLT GOT:\n\n");
16057 printf (_(" Reserved entries:\n"));
16058 printf (_(" %*s %*s Purpose\n"),
16059 addr_size * 2, _("Address"), addr_size * 2, _("Initial"));
16060 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
16061 printf (_(" PLT lazy resolver\n"));
16062 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
16063 printf (_(" Module pointer\n"));
16064 printf ("\n");
16065
16066 printf (_(" Entries:\n"));
16067 printf (" %*s %*s %*s %-7s %3s %s\n",
16068 addr_size * 2, _("Address"),
16069 addr_size * 2, _("Initial"),
16070 addr_size * 2, _("Sym.Val."), _("Type"), _("Ndx"), _("Name"));
16071 sym_width = (is_32bit_elf ? 80 : 160) - 17 - addr_size * 6 - 1;
16072 for (i = 0; i < count; i++)
16073 {
16074 unsigned long idx = get_reloc_symindex (rels[i].r_info);
16075
16076 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
16077 printf (" ");
16078
16079 if (idx >= num_dynamic_syms)
16080 printf (_("<corrupt symbol index: %lu>"), idx);
16081 else
16082 {
16083 Elf_Internal_Sym * psym = dynamic_symbols + idx;
16084
16085 print_vma (psym->st_value, LONG_HEX);
16086 printf (" %-7s %3s ",
16087 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
16088 get_symbol_index_type (psym->st_shndx));
16089 if (VALID_DYNAMIC_NAME (psym->st_name))
16090 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
16091 else
16092 printf (_("<corrupt: %14ld>"), psym->st_name);
16093 }
16094 printf ("\n");
16095 }
16096 printf ("\n");
16097
16098 if (data)
16099 free (data);
16100 free (rels);
16101 }
16102
16103 return res;
16104 }
16105
16106 static bfd_boolean
16107 process_nds32_specific (FILE * file)
16108 {
16109 Elf_Internal_Shdr *sect = NULL;
16110
16111 sect = find_section (".nds32_e_flags");
16112 if (sect != NULL)
16113 {
16114 unsigned int *flag;
16115
16116 printf ("\nNDS32 elf flags section:\n");
16117 flag = get_data (NULL, file, sect->sh_offset, 1,
16118 sect->sh_size, _("NDS32 elf flags section"));
16119
16120 if (! flag)
16121 return FALSE;
16122
16123 switch ((*flag) & 0x3)
16124 {
16125 case 0:
16126 printf ("(VEC_SIZE):\tNo entry.\n");
16127 break;
16128 case 1:
16129 printf ("(VEC_SIZE):\t4 bytes\n");
16130 break;
16131 case 2:
16132 printf ("(VEC_SIZE):\t16 bytes\n");
16133 break;
16134 case 3:
16135 printf ("(VEC_SIZE):\treserved\n");
16136 break;
16137 }
16138 }
16139
16140 return TRUE;
16141 }
16142
16143 static bfd_boolean
16144 process_gnu_liblist (FILE * file)
16145 {
16146 Elf_Internal_Shdr * section;
16147 Elf_Internal_Shdr * string_sec;
16148 Elf32_External_Lib * elib;
16149 char * strtab;
16150 size_t strtab_size;
16151 size_t cnt;
16152 unsigned long num_liblist;
16153 unsigned i;
16154 bfd_boolean res = TRUE;
16155
16156 if (! do_arch)
16157 return TRUE;
16158
16159 for (i = 0, section = section_headers;
16160 i < elf_header.e_shnum;
16161 i++, section++)
16162 {
16163 switch (section->sh_type)
16164 {
16165 case SHT_GNU_LIBLIST:
16166 if (section->sh_link >= elf_header.e_shnum)
16167 break;
16168
16169 elib = (Elf32_External_Lib *)
16170 get_data (NULL, file, section->sh_offset, 1, section->sh_size,
16171 _("liblist section data"));
16172
16173 if (elib == NULL)
16174 {
16175 res = FALSE;
16176 break;
16177 }
16178
16179 string_sec = section_headers + section->sh_link;
16180 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
16181 string_sec->sh_size,
16182 _("liblist string table"));
16183 if (strtab == NULL
16184 || section->sh_entsize != sizeof (Elf32_External_Lib))
16185 {
16186 free (elib);
16187 free (strtab);
16188 res = FALSE;
16189 break;
16190 }
16191 strtab_size = string_sec->sh_size;
16192
16193 num_liblist = section->sh_size / sizeof (Elf32_External_Lib);
16194 printf (ngettext ("\nLibrary list section '%s' contains %lu entries:\n",
16195 "\nLibrary list section '%s' contains %lu entries:\n",
16196 num_liblist),
16197 printable_section_name (section),
16198 num_liblist);
16199
16200 puts (_(" Library Time Stamp Checksum Version Flags"));
16201
16202 for (cnt = 0; cnt < section->sh_size / sizeof (Elf32_External_Lib);
16203 ++cnt)
16204 {
16205 Elf32_Lib liblist;
16206 time_t atime;
16207 char timebuf[128];
16208 struct tm * tmp;
16209
16210 liblist.l_name = BYTE_GET (elib[cnt].l_name);
16211 atime = BYTE_GET (elib[cnt].l_time_stamp);
16212 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
16213 liblist.l_version = BYTE_GET (elib[cnt].l_version);
16214 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
16215
16216 tmp = gmtime (&atime);
16217 snprintf (timebuf, sizeof (timebuf),
16218 "%04u-%02u-%02uT%02u:%02u:%02u",
16219 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
16220 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
16221
16222 printf ("%3lu: ", (unsigned long) cnt);
16223 if (do_wide)
16224 printf ("%-20s", liblist.l_name < strtab_size
16225 ? strtab + liblist.l_name : _("<corrupt>"));
16226 else
16227 printf ("%-20.20s", liblist.l_name < strtab_size
16228 ? strtab + liblist.l_name : _("<corrupt>"));
16229 printf (" %s %#010lx %-7ld %-7ld\n", timebuf, liblist.l_checksum,
16230 liblist.l_version, liblist.l_flags);
16231 }
16232
16233 free (elib);
16234 free (strtab);
16235 }
16236 }
16237
16238 return res;
16239 }
16240
16241 static const char *
16242 get_note_type (unsigned e_type)
16243 {
16244 static char buff[64];
16245
16246 if (elf_header.e_type == ET_CORE)
16247 switch (e_type)
16248 {
16249 case NT_AUXV:
16250 return _("NT_AUXV (auxiliary vector)");
16251 case NT_PRSTATUS:
16252 return _("NT_PRSTATUS (prstatus structure)");
16253 case NT_FPREGSET:
16254 return _("NT_FPREGSET (floating point registers)");
16255 case NT_PRPSINFO:
16256 return _("NT_PRPSINFO (prpsinfo structure)");
16257 case NT_TASKSTRUCT:
16258 return _("NT_TASKSTRUCT (task structure)");
16259 case NT_PRXFPREG:
16260 return _("NT_PRXFPREG (user_xfpregs structure)");
16261 case NT_PPC_VMX:
16262 return _("NT_PPC_VMX (ppc Altivec registers)");
16263 case NT_PPC_VSX:
16264 return _("NT_PPC_VSX (ppc VSX registers)");
16265 case NT_PPC_TAR:
16266 return _("NT_PPC_TAR (ppc TAR register)");
16267 case NT_PPC_PPR:
16268 return _("NT_PPC_PPR (ppc PPR register)");
16269 case NT_PPC_DSCR:
16270 return _("NT_PPC_DSCR (ppc DSCR register)");
16271 case NT_PPC_EBB:
16272 return _("NT_PPC_EBB (ppc EBB registers)");
16273 case NT_PPC_PMU:
16274 return _("NT_PPC_PMU (ppc PMU registers)");
16275 case NT_PPC_TM_CGPR:
16276 return _("NT_PPC_TM_CGPR (ppc checkpointed GPR registers)");
16277 case NT_PPC_TM_CFPR:
16278 return _("NT_PPC_TM_CFPR (ppc checkpointed floating point registers)");
16279 case NT_PPC_TM_CVMX:
16280 return _("NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)");
16281 case NT_PPC_TM_CVSX:
16282 return _("NT_PPC_TM_VSX (ppc checkpointed VSX registers)");
16283 case NT_PPC_TM_SPR:
16284 return _("NT_PPC_TM_SPR (ppc TM special purpose registers)");
16285 case NT_PPC_TM_CTAR:
16286 return _("NT_PPC_TM_CTAR (ppc checkpointed TAR register)");
16287 case NT_PPC_TM_CPPR:
16288 return _("NT_PPC_TM_CPPR (ppc checkpointed PPR register)");
16289 case NT_PPC_TM_CDSCR:
16290 return _("NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)");
16291 case NT_386_TLS:
16292 return _("NT_386_TLS (x86 TLS information)");
16293 case NT_386_IOPERM:
16294 return _("NT_386_IOPERM (x86 I/O permissions)");
16295 case NT_X86_XSTATE:
16296 return _("NT_X86_XSTATE (x86 XSAVE extended state)");
16297 case NT_S390_HIGH_GPRS:
16298 return _("NT_S390_HIGH_GPRS (s390 upper register halves)");
16299 case NT_S390_TIMER:
16300 return _("NT_S390_TIMER (s390 timer register)");
16301 case NT_S390_TODCMP:
16302 return _("NT_S390_TODCMP (s390 TOD comparator register)");
16303 case NT_S390_TODPREG:
16304 return _("NT_S390_TODPREG (s390 TOD programmable register)");
16305 case NT_S390_CTRS:
16306 return _("NT_S390_CTRS (s390 control registers)");
16307 case NT_S390_PREFIX:
16308 return _("NT_S390_PREFIX (s390 prefix register)");
16309 case NT_S390_LAST_BREAK:
16310 return _("NT_S390_LAST_BREAK (s390 last breaking event address)");
16311 case NT_S390_SYSTEM_CALL:
16312 return _("NT_S390_SYSTEM_CALL (s390 system call restart data)");
16313 case NT_S390_TDB:
16314 return _("NT_S390_TDB (s390 transaction diagnostic block)");
16315 case NT_S390_VXRS_LOW:
16316 return _("NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)");
16317 case NT_S390_VXRS_HIGH:
16318 return _("NT_S390_VXRS_HIGH (s390 vector registers 16-31)");
16319 case NT_S390_GS_CB:
16320 return _("NT_S390_GS_CB (s390 guarded-storage registers)");
16321 case NT_S390_GS_BC:
16322 return _("NT_S390_GS_BC (s390 guarded-storage broadcast control)");
16323 case NT_ARM_VFP:
16324 return _("NT_ARM_VFP (arm VFP registers)");
16325 case NT_ARM_TLS:
16326 return _("NT_ARM_TLS (AArch TLS registers)");
16327 case NT_ARM_HW_BREAK:
16328 return _("NT_ARM_HW_BREAK (AArch hardware breakpoint registers)");
16329 case NT_ARM_HW_WATCH:
16330 return _("NT_ARM_HW_WATCH (AArch hardware watchpoint registers)");
16331 case NT_PSTATUS:
16332 return _("NT_PSTATUS (pstatus structure)");
16333 case NT_FPREGS:
16334 return _("NT_FPREGS (floating point registers)");
16335 case NT_PSINFO:
16336 return _("NT_PSINFO (psinfo structure)");
16337 case NT_LWPSTATUS:
16338 return _("NT_LWPSTATUS (lwpstatus_t structure)");
16339 case NT_LWPSINFO:
16340 return _("NT_LWPSINFO (lwpsinfo_t structure)");
16341 case NT_WIN32PSTATUS:
16342 return _("NT_WIN32PSTATUS (win32_pstatus structure)");
16343 case NT_SIGINFO:
16344 return _("NT_SIGINFO (siginfo_t data)");
16345 case NT_FILE:
16346 return _("NT_FILE (mapped files)");
16347 default:
16348 break;
16349 }
16350 else
16351 switch (e_type)
16352 {
16353 case NT_VERSION:
16354 return _("NT_VERSION (version)");
16355 case NT_ARCH:
16356 return _("NT_ARCH (architecture)");
16357 case NT_GNU_BUILD_ATTRIBUTE_OPEN:
16358 return _("NT_GNU_BUILD_ATTRIBUTE_OPEN");
16359 case NT_GNU_BUILD_ATTRIBUTE_FUNC:
16360 return _("NT_GNU_BUILD_ATTRIBUTE_FUNC");
16361 default:
16362 break;
16363 }
16364
16365 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16366 return buff;
16367 }
16368
16369 static bfd_boolean
16370 print_core_note (Elf_Internal_Note *pnote)
16371 {
16372 unsigned int addr_size = is_32bit_elf ? 4 : 8;
16373 bfd_vma count, page_size;
16374 unsigned char *descdata, *filenames, *descend;
16375
16376 if (pnote->type != NT_FILE)
16377 {
16378 if (do_wide)
16379 printf ("\n");
16380 return TRUE;
16381 }
16382
16383 #ifndef BFD64
16384 if (!is_32bit_elf)
16385 {
16386 printf (_(" Cannot decode 64-bit note in 32-bit build\n"));
16387 /* Still "successful". */
16388 return TRUE;
16389 }
16390 #endif
16391
16392 if (pnote->descsz < 2 * addr_size)
16393 {
16394 error (_(" Malformed note - too short for header\n"));
16395 return FALSE;
16396 }
16397
16398 descdata = (unsigned char *) pnote->descdata;
16399 descend = descdata + pnote->descsz;
16400
16401 if (descdata[pnote->descsz - 1] != '\0')
16402 {
16403 error (_(" Malformed note - does not end with \\0\n"));
16404 return FALSE;
16405 }
16406
16407 count = byte_get (descdata, addr_size);
16408 descdata += addr_size;
16409
16410 page_size = byte_get (descdata, addr_size);
16411 descdata += addr_size;
16412
16413 if (count > ((bfd_vma) -1 - 2 * addr_size) / (3 * addr_size)
16414 || pnote->descsz < 2 * addr_size + count * 3 * addr_size)
16415 {
16416 error (_(" Malformed note - too short for supplied file count\n"));
16417 return FALSE;
16418 }
16419
16420 printf (_(" Page size: "));
16421 print_vma (page_size, DEC);
16422 printf ("\n");
16423
16424 printf (_(" %*s%*s%*s\n"),
16425 (int) (2 + 2 * addr_size), _("Start"),
16426 (int) (4 + 2 * addr_size), _("End"),
16427 (int) (4 + 2 * addr_size), _("Page Offset"));
16428 filenames = descdata + count * 3 * addr_size;
16429 while (count-- > 0)
16430 {
16431 bfd_vma start, end, file_ofs;
16432
16433 if (filenames == descend)
16434 {
16435 error (_(" Malformed note - filenames end too early\n"));
16436 return FALSE;
16437 }
16438
16439 start = byte_get (descdata, addr_size);
16440 descdata += addr_size;
16441 end = byte_get (descdata, addr_size);
16442 descdata += addr_size;
16443 file_ofs = byte_get (descdata, addr_size);
16444 descdata += addr_size;
16445
16446 printf (" ");
16447 print_vma (start, FULL_HEX);
16448 printf (" ");
16449 print_vma (end, FULL_HEX);
16450 printf (" ");
16451 print_vma (file_ofs, FULL_HEX);
16452 printf ("\n %s\n", filenames);
16453
16454 filenames += 1 + strlen ((char *) filenames);
16455 }
16456
16457 return TRUE;
16458 }
16459
16460 static const char *
16461 get_gnu_elf_note_type (unsigned e_type)
16462 {
16463 /* NB/ Keep this switch statement in sync with print_gnu_note (). */
16464 switch (e_type)
16465 {
16466 case NT_GNU_ABI_TAG:
16467 return _("NT_GNU_ABI_TAG (ABI version tag)");
16468 case NT_GNU_HWCAP:
16469 return _("NT_GNU_HWCAP (DSO-supplied software HWCAP info)");
16470 case NT_GNU_BUILD_ID:
16471 return _("NT_GNU_BUILD_ID (unique build ID bitstring)");
16472 case NT_GNU_GOLD_VERSION:
16473 return _("NT_GNU_GOLD_VERSION (gold version)");
16474 case NT_GNU_PROPERTY_TYPE_0:
16475 return _("NT_GNU_PROPERTY_TYPE_0");
16476 case NT_GNU_BUILD_ATTRIBUTE_OPEN:
16477 return _("NT_GNU_BUILD_ATTRIBUTE_OPEN");
16478 case NT_GNU_BUILD_ATTRIBUTE_FUNC:
16479 return _("NT_GNU_BUILD_ATTRIBUTE_FUNC");
16480 default:
16481 {
16482 static char buff[64];
16483
16484 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16485 return buff;
16486 }
16487 }
16488 }
16489
16490 static void
16491 decode_x86_isa (unsigned int bitmask)
16492 {
16493 while (bitmask)
16494 {
16495 unsigned int bit = bitmask & (- bitmask);
16496
16497 bitmask &= ~ bit;
16498 switch (bit)
16499 {
16500 case GNU_PROPERTY_X86_ISA_1_486: printf ("i486"); break;
16501 case GNU_PROPERTY_X86_ISA_1_586: printf ("586"); break;
16502 case GNU_PROPERTY_X86_ISA_1_686: printf ("686"); break;
16503 case GNU_PROPERTY_X86_ISA_1_SSE: printf ("SSE"); break;
16504 case GNU_PROPERTY_X86_ISA_1_SSE2: printf ("SSE2"); break;
16505 case GNU_PROPERTY_X86_ISA_1_SSE3: printf ("SSE3"); break;
16506 case GNU_PROPERTY_X86_ISA_1_SSSE3: printf ("SSSE3"); break;
16507 case GNU_PROPERTY_X86_ISA_1_SSE4_1: printf ("SSE4_1"); break;
16508 case GNU_PROPERTY_X86_ISA_1_SSE4_2: printf ("SSE4_2"); break;
16509 case GNU_PROPERTY_X86_ISA_1_AVX: printf ("AVX"); break;
16510 case GNU_PROPERTY_X86_ISA_1_AVX2: printf ("AVX2"); break;
16511 case GNU_PROPERTY_X86_ISA_1_AVX512F: printf ("AVX512F"); break;
16512 case GNU_PROPERTY_X86_ISA_1_AVX512CD: printf ("AVX512CD"); break;
16513 case GNU_PROPERTY_X86_ISA_1_AVX512ER: printf ("AVX512ER"); break;
16514 case GNU_PROPERTY_X86_ISA_1_AVX512PF: printf ("AVX512PF"); break;
16515 case GNU_PROPERTY_X86_ISA_1_AVX512VL: printf ("AVX512VL"); break;
16516 case GNU_PROPERTY_X86_ISA_1_AVX512DQ: printf ("AVX512DQ"); break;
16517 case GNU_PROPERTY_X86_ISA_1_AVX512BW: printf ("AVX512BW"); break;
16518 default: printf (_("<unknown: %x>"), bit); break;
16519 }
16520 if (bitmask)
16521 printf (", ");
16522 }
16523 }
16524
16525 static void
16526 decode_x86_feature (unsigned int type, unsigned int bitmask)
16527 {
16528 while (bitmask)
16529 {
16530 unsigned int bit = bitmask & (- bitmask);
16531
16532 bitmask &= ~ bit;
16533 switch (bit)
16534 {
16535 case GNU_PROPERTY_X86_FEATURE_1_IBT:
16536 switch (type)
16537 {
16538 case GNU_PROPERTY_X86_FEATURE_1_AND:
16539 printf ("IBT");
16540 break;
16541 default:
16542 /* This should never happen. */
16543 abort ();
16544 }
16545 break;
16546 case GNU_PROPERTY_X86_FEATURE_1_SHSTK:
16547 switch (type)
16548 {
16549 case GNU_PROPERTY_X86_FEATURE_1_AND:
16550 printf ("SHSTK");
16551 break;
16552 default:
16553 /* This should never happen. */
16554 abort ();
16555 }
16556 break;
16557 default:
16558 printf (_("<unknown: %x>"), bit);
16559 break;
16560 }
16561 if (bitmask)
16562 printf (", ");
16563 }
16564 }
16565
16566 static void
16567 print_gnu_property_note (Elf_Internal_Note * pnote)
16568 {
16569 unsigned char * ptr = (unsigned char *) pnote->descdata;
16570 unsigned char * ptr_end = ptr + pnote->descsz;
16571 unsigned int size = is_32bit_elf ? 4 : 8;
16572
16573 printf (_(" Properties: "));
16574
16575 if (pnote->descsz < 8 || (pnote->descsz % size) != 0)
16576 {
16577 printf (_("<corrupt GNU_PROPERTY_TYPE, size = %#lx>\n"), pnote->descsz);
16578 return;
16579 }
16580
16581 while (ptr < ptr_end)
16582 {
16583 unsigned int j;
16584 unsigned int type;
16585 unsigned int datasz;
16586
16587 if ((size_t) (ptr_end - ptr) < 8)
16588 {
16589 printf (_("<corrupt descsz: %#lx>\n"), pnote->descsz);
16590 break;
16591 }
16592
16593 type = byte_get (ptr, 4);
16594 datasz = byte_get (ptr + 4, 4);
16595
16596 ptr += 8;
16597
16598 if (datasz > (size_t) (ptr_end - ptr))
16599 {
16600 printf (_("<corrupt type (%#x) datasz: %#x>\n"),
16601 type, datasz);
16602 break;
16603 }
16604
16605 if (type >= GNU_PROPERTY_LOPROC && type <= GNU_PROPERTY_HIPROC)
16606 {
16607 if (elf_header.e_machine == EM_X86_64
16608 || elf_header.e_machine == EM_IAMCU
16609 || elf_header.e_machine == EM_386)
16610 {
16611 switch (type)
16612 {
16613 case GNU_PROPERTY_X86_ISA_1_USED:
16614 printf ("x86 ISA used: ");
16615 if (datasz != 4)
16616 printf (_("<corrupt length: %#x> "), datasz);
16617 else
16618 decode_x86_isa (byte_get (ptr, 4));
16619 goto next;
16620
16621 case GNU_PROPERTY_X86_ISA_1_NEEDED:
16622 printf ("x86 ISA needed: ");
16623 if (datasz != 4)
16624 printf (_("<corrupt length: %#x> "), datasz);
16625 else
16626 decode_x86_isa (byte_get (ptr, 4));
16627 goto next;
16628
16629 case GNU_PROPERTY_X86_FEATURE_1_AND:
16630 printf ("x86 feature: ");
16631 if (datasz != 4)
16632 printf (_("<corrupt length: %#x> "), datasz);
16633 else
16634 decode_x86_feature (type, byte_get (ptr, 4));
16635 goto next;
16636
16637 default:
16638 break;
16639 }
16640 }
16641 }
16642 else
16643 {
16644 switch (type)
16645 {
16646 case GNU_PROPERTY_STACK_SIZE:
16647 printf (_("stack size: "));
16648 if (datasz != size)
16649 printf (_("<corrupt length: %#x> "), datasz);
16650 else
16651 printf ("%#lx", (unsigned long) byte_get (ptr, size));
16652 goto next;
16653
16654 case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
16655 printf ("no copy on protected ");
16656 if (datasz)
16657 printf (_("<corrupt length: %#x> "), datasz);
16658 goto next;
16659
16660 default:
16661 break;
16662 }
16663 }
16664
16665 if (type < GNU_PROPERTY_LOPROC)
16666 printf (_("<unknown type %#x data: "), type);
16667 else if (type < GNU_PROPERTY_LOUSER)
16668 printf (_("<procesor-specific type %#x data: "), type);
16669 else
16670 printf (_("<application-specific type %#x data: "), type);
16671 for (j = 0; j < datasz; ++j)
16672 printf ("%02x ", ptr[j] & 0xff);
16673 printf (">");
16674
16675 next:
16676 ptr += ((datasz + (size - 1)) & ~ (size - 1));
16677 if (ptr == ptr_end)
16678 break;
16679
16680 if (do_wide)
16681 printf (", ");
16682 else
16683 printf ("\n\t");
16684 }
16685
16686 printf ("\n");
16687 }
16688
16689 static bfd_boolean
16690 print_gnu_note (Elf_Internal_Note *pnote)
16691 {
16692 /* NB/ Keep this switch statement in sync with get_gnu_elf_note_type (). */
16693 switch (pnote->type)
16694 {
16695 case NT_GNU_BUILD_ID:
16696 {
16697 unsigned long i;
16698
16699 printf (_(" Build ID: "));
16700 for (i = 0; i < pnote->descsz; ++i)
16701 printf ("%02x", pnote->descdata[i] & 0xff);
16702 printf ("\n");
16703 }
16704 break;
16705
16706 case NT_GNU_ABI_TAG:
16707 {
16708 unsigned long os, major, minor, subminor;
16709 const char *osname;
16710
16711 /* PR 17531: file: 030-599401-0.004. */
16712 if (pnote->descsz < 16)
16713 {
16714 printf (_(" <corrupt GNU_ABI_TAG>\n"));
16715 break;
16716 }
16717
16718 os = byte_get ((unsigned char *) pnote->descdata, 4);
16719 major = byte_get ((unsigned char *) pnote->descdata + 4, 4);
16720 minor = byte_get ((unsigned char *) pnote->descdata + 8, 4);
16721 subminor = byte_get ((unsigned char *) pnote->descdata + 12, 4);
16722
16723 switch (os)
16724 {
16725 case GNU_ABI_TAG_LINUX:
16726 osname = "Linux";
16727 break;
16728 case GNU_ABI_TAG_HURD:
16729 osname = "Hurd";
16730 break;
16731 case GNU_ABI_TAG_SOLARIS:
16732 osname = "Solaris";
16733 break;
16734 case GNU_ABI_TAG_FREEBSD:
16735 osname = "FreeBSD";
16736 break;
16737 case GNU_ABI_TAG_NETBSD:
16738 osname = "NetBSD";
16739 break;
16740 case GNU_ABI_TAG_SYLLABLE:
16741 osname = "Syllable";
16742 break;
16743 case GNU_ABI_TAG_NACL:
16744 osname = "NaCl";
16745 break;
16746 default:
16747 osname = "Unknown";
16748 break;
16749 }
16750
16751 printf (_(" OS: %s, ABI: %ld.%ld.%ld\n"), osname,
16752 major, minor, subminor);
16753 }
16754 break;
16755
16756 case NT_GNU_GOLD_VERSION:
16757 {
16758 unsigned long i;
16759
16760 printf (_(" Version: "));
16761 for (i = 0; i < pnote->descsz && pnote->descdata[i] != '\0'; ++i)
16762 printf ("%c", pnote->descdata[i]);
16763 printf ("\n");
16764 }
16765 break;
16766
16767 case NT_GNU_HWCAP:
16768 {
16769 unsigned long num_entries, mask;
16770
16771 /* Hardware capabilities information. Word 0 is the number of entries.
16772 Word 1 is a bitmask of enabled entries. The rest of the descriptor
16773 is a series of entries, where each entry is a single byte followed
16774 by a nul terminated string. The byte gives the bit number to test
16775 if enabled in the bitmask. */
16776 printf (_(" Hardware Capabilities: "));
16777 if (pnote->descsz < 8)
16778 {
16779 error (_("<corrupt GNU_HWCAP>\n"));
16780 return FALSE;
16781 }
16782 num_entries = byte_get ((unsigned char *) pnote->descdata, 4);
16783 mask = byte_get ((unsigned char *) pnote->descdata + 4, 4);
16784 printf (_("num entries: %ld, enabled mask: %lx\n"), num_entries, mask);
16785 /* FIXME: Add code to display the entries... */
16786 }
16787 break;
16788
16789 case NT_GNU_PROPERTY_TYPE_0:
16790 print_gnu_property_note (pnote);
16791 break;
16792
16793 default:
16794 /* Handle unrecognised types. An error message should have already been
16795 created by get_gnu_elf_note_type(), so all that we need to do is to
16796 display the data. */
16797 {
16798 unsigned long i;
16799
16800 printf (_(" Description data: "));
16801 for (i = 0; i < pnote->descsz; ++i)
16802 printf ("%02x ", pnote->descdata[i] & 0xff);
16803 printf ("\n");
16804 }
16805 break;
16806 }
16807
16808 return TRUE;
16809 }
16810
16811 static const char *
16812 get_v850_elf_note_type (enum v850_notes n_type)
16813 {
16814 static char buff[64];
16815
16816 switch (n_type)
16817 {
16818 case V850_NOTE_ALIGNMENT: return _("Alignment of 8-byte objects");
16819 case V850_NOTE_DATA_SIZE: return _("Sizeof double and long double");
16820 case V850_NOTE_FPU_INFO: return _("Type of FPU support needed");
16821 case V850_NOTE_SIMD_INFO: return _("Use of SIMD instructions");
16822 case V850_NOTE_CACHE_INFO: return _("Use of cache");
16823 case V850_NOTE_MMU_INFO: return _("Use of MMU");
16824 default:
16825 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), n_type);
16826 return buff;
16827 }
16828 }
16829
16830 static bfd_boolean
16831 print_v850_note (Elf_Internal_Note * pnote)
16832 {
16833 unsigned int val;
16834
16835 if (pnote->descsz != 4)
16836 return FALSE;
16837
16838 val = byte_get ((unsigned char *) pnote->descdata, pnote->descsz);
16839
16840 if (val == 0)
16841 {
16842 printf (_("not set\n"));
16843 return TRUE;
16844 }
16845
16846 switch (pnote->type)
16847 {
16848 case V850_NOTE_ALIGNMENT:
16849 switch (val)
16850 {
16851 case EF_RH850_DATA_ALIGN4: printf (_("4-byte\n")); return TRUE;
16852 case EF_RH850_DATA_ALIGN8: printf (_("8-byte\n")); return TRUE;
16853 }
16854 break;
16855
16856 case V850_NOTE_DATA_SIZE:
16857 switch (val)
16858 {
16859 case EF_RH850_DOUBLE32: printf (_("4-bytes\n")); return TRUE;
16860 case EF_RH850_DOUBLE64: printf (_("8-bytes\n")); return TRUE;
16861 }
16862 break;
16863
16864 case V850_NOTE_FPU_INFO:
16865 switch (val)
16866 {
16867 case EF_RH850_FPU20: printf (_("FPU-2.0\n")); return TRUE;
16868 case EF_RH850_FPU30: printf (_("FPU-3.0\n")); return TRUE;
16869 }
16870 break;
16871
16872 case V850_NOTE_MMU_INFO:
16873 case V850_NOTE_CACHE_INFO:
16874 case V850_NOTE_SIMD_INFO:
16875 if (val == EF_RH850_SIMD)
16876 {
16877 printf (_("yes\n"));
16878 return TRUE;
16879 }
16880 break;
16881
16882 default:
16883 /* An 'unknown note type' message will already have been displayed. */
16884 break;
16885 }
16886
16887 printf (_("unknown value: %x\n"), val);
16888 return FALSE;
16889 }
16890
16891 static bfd_boolean
16892 process_netbsd_elf_note (Elf_Internal_Note * pnote)
16893 {
16894 unsigned int version;
16895
16896 switch (pnote->type)
16897 {
16898 case NT_NETBSD_IDENT:
16899 version = byte_get ((unsigned char *) pnote->descdata, sizeof (version));
16900 if ((version / 10000) % 100)
16901 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u%s%c)\n", pnote->descsz,
16902 version, version / 100000000, (version / 1000000) % 100,
16903 (version / 10000) % 100 > 26 ? "Z" : "",
16904 'A' + (version / 10000) % 26);
16905 else
16906 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u.%u)\n", pnote->descsz,
16907 version, version / 100000000, (version / 1000000) % 100,
16908 (version / 100) % 100);
16909 return TRUE;
16910
16911 case NT_NETBSD_MARCH:
16912 printf (" NetBSD\t0x%08lx\tMARCH <%s>\n", pnote->descsz,
16913 pnote->descdata);
16914 return TRUE;
16915
16916 default:
16917 printf (" NetBSD\t0x%08lx\tUnknown note type: (0x%08lx)\n", pnote->descsz,
16918 pnote->type);
16919 return FALSE;
16920 }
16921 }
16922
16923 static const char *
16924 get_freebsd_elfcore_note_type (unsigned e_type)
16925 {
16926 switch (e_type)
16927 {
16928 case NT_FREEBSD_THRMISC:
16929 return _("NT_THRMISC (thrmisc structure)");
16930 case NT_FREEBSD_PROCSTAT_PROC:
16931 return _("NT_PROCSTAT_PROC (proc data)");
16932 case NT_FREEBSD_PROCSTAT_FILES:
16933 return _("NT_PROCSTAT_FILES (files data)");
16934 case NT_FREEBSD_PROCSTAT_VMMAP:
16935 return _("NT_PROCSTAT_VMMAP (vmmap data)");
16936 case NT_FREEBSD_PROCSTAT_GROUPS:
16937 return _("NT_PROCSTAT_GROUPS (groups data)");
16938 case NT_FREEBSD_PROCSTAT_UMASK:
16939 return _("NT_PROCSTAT_UMASK (umask data)");
16940 case NT_FREEBSD_PROCSTAT_RLIMIT:
16941 return _("NT_PROCSTAT_RLIMIT (rlimit data)");
16942 case NT_FREEBSD_PROCSTAT_OSREL:
16943 return _("NT_PROCSTAT_OSREL (osreldate data)");
16944 case NT_FREEBSD_PROCSTAT_PSSTRINGS:
16945 return _("NT_PROCSTAT_PSSTRINGS (ps_strings data)");
16946 case NT_FREEBSD_PROCSTAT_AUXV:
16947 return _("NT_PROCSTAT_AUXV (auxv data)");
16948 case NT_FREEBSD_PTLWPINFO:
16949 return _("NT_PTLWPINFO (ptrace_lwpinfo structure)");
16950 }
16951 return get_note_type (e_type);
16952 }
16953
16954 static const char *
16955 get_netbsd_elfcore_note_type (unsigned e_type)
16956 {
16957 static char buff[64];
16958
16959 if (e_type == NT_NETBSDCORE_PROCINFO)
16960 {
16961 /* NetBSD core "procinfo" structure. */
16962 return _("NetBSD procinfo structure");
16963 }
16964
16965 /* As of Jan 2002 there are no other machine-independent notes
16966 defined for NetBSD core files. If the note type is less
16967 than the start of the machine-dependent note types, we don't
16968 understand it. */
16969
16970 if (e_type < NT_NETBSDCORE_FIRSTMACH)
16971 {
16972 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16973 return buff;
16974 }
16975
16976 switch (elf_header.e_machine)
16977 {
16978 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0
16979 and PT_GETFPREGS == mach+2. */
16980
16981 case EM_OLD_ALPHA:
16982 case EM_ALPHA:
16983 case EM_SPARC:
16984 case EM_SPARC32PLUS:
16985 case EM_SPARCV9:
16986 switch (e_type)
16987 {
16988 case NT_NETBSDCORE_FIRSTMACH + 0:
16989 return _("PT_GETREGS (reg structure)");
16990 case NT_NETBSDCORE_FIRSTMACH + 2:
16991 return _("PT_GETFPREGS (fpreg structure)");
16992 default:
16993 break;
16994 }
16995 break;
16996
16997 /* On all other arch's, PT_GETREGS == mach+1 and
16998 PT_GETFPREGS == mach+3. */
16999 default:
17000 switch (e_type)
17001 {
17002 case NT_NETBSDCORE_FIRSTMACH + 1:
17003 return _("PT_GETREGS (reg structure)");
17004 case NT_NETBSDCORE_FIRSTMACH + 3:
17005 return _("PT_GETFPREGS (fpreg structure)");
17006 default:
17007 break;
17008 }
17009 }
17010
17011 snprintf (buff, sizeof (buff), "PT_FIRSTMACH+%d",
17012 e_type - NT_NETBSDCORE_FIRSTMACH);
17013 return buff;
17014 }
17015
17016 static const char *
17017 get_stapsdt_note_type (unsigned e_type)
17018 {
17019 static char buff[64];
17020
17021 switch (e_type)
17022 {
17023 case NT_STAPSDT:
17024 return _("NT_STAPSDT (SystemTap probe descriptors)");
17025
17026 default:
17027 break;
17028 }
17029
17030 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
17031 return buff;
17032 }
17033
17034 static bfd_boolean
17035 print_stapsdt_note (Elf_Internal_Note *pnote)
17036 {
17037 int addr_size = is_32bit_elf ? 4 : 8;
17038 char *data = pnote->descdata;
17039 char *data_end = pnote->descdata + pnote->descsz;
17040 bfd_vma pc, base_addr, semaphore;
17041 char *provider, *probe, *arg_fmt;
17042
17043 pc = byte_get ((unsigned char *) data, addr_size);
17044 data += addr_size;
17045 base_addr = byte_get ((unsigned char *) data, addr_size);
17046 data += addr_size;
17047 semaphore = byte_get ((unsigned char *) data, addr_size);
17048 data += addr_size;
17049
17050 provider = data;
17051 data += strlen (data) + 1;
17052 probe = data;
17053 data += strlen (data) + 1;
17054 arg_fmt = data;
17055 data += strlen (data) + 1;
17056
17057 printf (_(" Provider: %s\n"), provider);
17058 printf (_(" Name: %s\n"), probe);
17059 printf (_(" Location: "));
17060 print_vma (pc, FULL_HEX);
17061 printf (_(", Base: "));
17062 print_vma (base_addr, FULL_HEX);
17063 printf (_(", Semaphore: "));
17064 print_vma (semaphore, FULL_HEX);
17065 printf ("\n");
17066 printf (_(" Arguments: %s\n"), arg_fmt);
17067
17068 return data == data_end;
17069 }
17070
17071 static const char *
17072 get_ia64_vms_note_type (unsigned e_type)
17073 {
17074 static char buff[64];
17075
17076 switch (e_type)
17077 {
17078 case NT_VMS_MHD:
17079 return _("NT_VMS_MHD (module header)");
17080 case NT_VMS_LNM:
17081 return _("NT_VMS_LNM (language name)");
17082 case NT_VMS_SRC:
17083 return _("NT_VMS_SRC (source files)");
17084 case NT_VMS_TITLE:
17085 return "NT_VMS_TITLE";
17086 case NT_VMS_EIDC:
17087 return _("NT_VMS_EIDC (consistency check)");
17088 case NT_VMS_FPMODE:
17089 return _("NT_VMS_FPMODE (FP mode)");
17090 case NT_VMS_LINKTIME:
17091 return "NT_VMS_LINKTIME";
17092 case NT_VMS_IMGNAM:
17093 return _("NT_VMS_IMGNAM (image name)");
17094 case NT_VMS_IMGID:
17095 return _("NT_VMS_IMGID (image id)");
17096 case NT_VMS_LINKID:
17097 return _("NT_VMS_LINKID (link id)");
17098 case NT_VMS_IMGBID:
17099 return _("NT_VMS_IMGBID (build id)");
17100 case NT_VMS_GSTNAM:
17101 return _("NT_VMS_GSTNAM (sym table name)");
17102 case NT_VMS_ORIG_DYN:
17103 return "NT_VMS_ORIG_DYN";
17104 case NT_VMS_PATCHTIME:
17105 return "NT_VMS_PATCHTIME";
17106 default:
17107 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
17108 return buff;
17109 }
17110 }
17111
17112 static bfd_boolean
17113 print_ia64_vms_note (Elf_Internal_Note * pnote)
17114 {
17115 switch (pnote->type)
17116 {
17117 case NT_VMS_MHD:
17118 if (pnote->descsz > 36)
17119 {
17120 size_t l = strlen (pnote->descdata + 34);
17121 printf (_(" Creation date : %.17s\n"), pnote->descdata);
17122 printf (_(" Last patch date: %.17s\n"), pnote->descdata + 17);
17123 printf (_(" Module name : %s\n"), pnote->descdata + 34);
17124 printf (_(" Module version : %s\n"), pnote->descdata + 34 + l + 1);
17125 }
17126 else
17127 printf (_(" Invalid size\n"));
17128 break;
17129 case NT_VMS_LNM:
17130 printf (_(" Language: %s\n"), pnote->descdata);
17131 break;
17132 #ifdef BFD64
17133 case NT_VMS_FPMODE:
17134 printf (_(" Floating Point mode: "));
17135 printf ("0x%016" BFD_VMA_FMT "x\n",
17136 (bfd_vma) byte_get ((unsigned char *)pnote->descdata, 8));
17137 break;
17138 case NT_VMS_LINKTIME:
17139 printf (_(" Link time: "));
17140 print_vms_time
17141 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
17142 printf ("\n");
17143 break;
17144 case NT_VMS_PATCHTIME:
17145 printf (_(" Patch time: "));
17146 print_vms_time
17147 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
17148 printf ("\n");
17149 break;
17150 case NT_VMS_ORIG_DYN:
17151 printf (_(" Major id: %u, minor id: %u\n"),
17152 (unsigned) byte_get ((unsigned char *)pnote->descdata, 4),
17153 (unsigned) byte_get ((unsigned char *)pnote->descdata + 4, 4));
17154 printf (_(" Last modified : "));
17155 print_vms_time
17156 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata + 8, 8));
17157 printf (_("\n Link flags : "));
17158 printf ("0x%016" BFD_VMA_FMT "x\n",
17159 (bfd_vma) byte_get ((unsigned char *)pnote->descdata + 16, 8));
17160 printf (_(" Header flags: 0x%08x\n"),
17161 (unsigned) byte_get ((unsigned char *)pnote->descdata + 24, 4));
17162 printf (_(" Image id : %s\n"), pnote->descdata + 32);
17163 break;
17164 #endif
17165 case NT_VMS_IMGNAM:
17166 printf (_(" Image name: %s\n"), pnote->descdata);
17167 break;
17168 case NT_VMS_GSTNAM:
17169 printf (_(" Global symbol table name: %s\n"), pnote->descdata);
17170 break;
17171 case NT_VMS_IMGID:
17172 printf (_(" Image id: %s\n"), pnote->descdata);
17173 break;
17174 case NT_VMS_LINKID:
17175 printf (_(" Linker id: %s\n"), pnote->descdata);
17176 break;
17177 default:
17178 return FALSE;
17179 }
17180 return TRUE;
17181 }
17182
17183 /* Print the name of the symbol associated with a build attribute
17184 that is attached to address OFFSET. */
17185
17186 static bfd_boolean
17187 print_symbol_for_build_attribute (FILE * file,
17188 unsigned long offset,
17189 bfd_boolean is_open_attr)
17190 {
17191 static FILE * saved_file = NULL;
17192 static char * strtab;
17193 static unsigned long strtablen;
17194 static Elf_Internal_Sym * symtab;
17195 static unsigned long nsyms;
17196 Elf_Internal_Sym * saved_sym = NULL;
17197 Elf_Internal_Sym * sym;
17198
17199 if (section_headers != NULL
17200 && (saved_file == NULL || file != saved_file))
17201 {
17202 Elf_Internal_Shdr * symsec;
17203
17204 /* Load the symbol and string sections. */
17205 for (symsec = section_headers;
17206 symsec < section_headers + elf_header.e_shnum;
17207 symsec ++)
17208 {
17209 if (symsec->sh_type == SHT_SYMTAB)
17210 {
17211 symtab = GET_ELF_SYMBOLS (file, symsec, & nsyms);
17212
17213 if (symsec->sh_link < elf_header.e_shnum)
17214 {
17215 Elf_Internal_Shdr * strtab_sec = section_headers + symsec->sh_link;
17216
17217 strtab = (char *) get_data (NULL, file, strtab_sec->sh_offset,
17218 1, strtab_sec->sh_size,
17219 _("string table"));
17220 strtablen = strtab != NULL ? strtab_sec->sh_size : 0;
17221 }
17222 }
17223 }
17224 saved_file = file;
17225 }
17226
17227 if (symtab == NULL || strtab == NULL)
17228 {
17229 printf ("\n");
17230 return FALSE;
17231 }
17232
17233 /* Find a symbol whose value matches offset. */
17234 for (sym = symtab; sym < symtab + nsyms; sym ++)
17235 if (sym->st_value == offset)
17236 {
17237 if (sym->st_name >= strtablen)
17238 /* Huh ? This should not happen. */
17239 continue;
17240
17241 if (strtab[sym->st_name] == 0)
17242 continue;
17243
17244 if (is_open_attr)
17245 {
17246 /* For OPEN attributes we prefer GLOBAL over LOCAL symbols
17247 and FILE or OBJECT symbols over NOTYPE symbols. We skip
17248 FUNC symbols entirely. */
17249 switch (ELF_ST_TYPE (sym->st_info))
17250 {
17251 case STT_FILE:
17252 saved_sym = sym;
17253 /* We can stop searching now. */
17254 sym = symtab + nsyms;
17255 continue;
17256
17257 case STT_OBJECT:
17258 saved_sym = sym;
17259 continue;
17260
17261 case STT_FUNC:
17262 /* Ignore function symbols. */
17263 continue;
17264
17265 default:
17266 break;
17267 }
17268
17269 switch (ELF_ST_BIND (sym->st_info))
17270 {
17271 case STB_GLOBAL:
17272 if (saved_sym == NULL
17273 || ELF_ST_TYPE (saved_sym->st_info) != STT_OBJECT)
17274 saved_sym = sym;
17275 break;
17276
17277 case STB_LOCAL:
17278 if (saved_sym == NULL)
17279 saved_sym = sym;
17280 break;
17281
17282 default:
17283 break;
17284 }
17285 }
17286 else
17287 {
17288 if (ELF_ST_TYPE (sym->st_info) != STT_FUNC)
17289 continue;
17290
17291 saved_sym = sym;
17292 break;
17293 }
17294 }
17295
17296 printf (" (%s: %s)\n",
17297 is_open_attr ? _("file") : _("func"),
17298 saved_sym ? strtab + saved_sym->st_name : _("<no symbol found>)"));
17299 return TRUE;
17300 }
17301
17302 static bfd_boolean
17303 print_gnu_build_attribute_description (Elf_Internal_Note * pnote,
17304 FILE * file)
17305 {
17306 static unsigned long global_offset = 0;
17307 unsigned long offset;
17308 unsigned int desc_size = is_32bit_elf ? 4 : 8;
17309 bfd_boolean is_open_attr = pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN;
17310
17311 if (pnote->descsz == 0)
17312 {
17313 if (is_open_attr)
17314 {
17315 printf (_(" Applies from offset %#lx\n"), global_offset);
17316 return TRUE;
17317 }
17318 else
17319 {
17320 printf (_(" Applies to func at %#lx"), global_offset);
17321 return print_symbol_for_build_attribute (file, global_offset, is_open_attr);
17322 }
17323 }
17324
17325 if (pnote->descsz != desc_size)
17326 {
17327 error (_(" <invalid description size: %lx>\n"), pnote->descsz);
17328 printf (_(" <invalid descsz>"));
17329 return FALSE;
17330 }
17331
17332 offset = byte_get ((unsigned char *) pnote->descdata, desc_size);
17333
17334 if (is_open_attr)
17335 {
17336 printf (_(" Applies from offset %#lx"), offset);
17337 global_offset = offset;
17338 }
17339 else
17340 {
17341 printf (_(" Applies to func at %#lx"), offset);
17342 }
17343
17344 return print_symbol_for_build_attribute (file, offset, is_open_attr);
17345 }
17346
17347 static bfd_boolean
17348 print_gnu_build_attribute_name (Elf_Internal_Note * pnote)
17349 {
17350 static const char string_expected [2] = { GNU_BUILD_ATTRIBUTE_TYPE_STRING, 0 };
17351 static const char number_expected [2] = { GNU_BUILD_ATTRIBUTE_TYPE_NUMERIC, 0 };
17352 static const char bool_expected [3] = { GNU_BUILD_ATTRIBUTE_TYPE_BOOL_TRUE, GNU_BUILD_ATTRIBUTE_TYPE_BOOL_FALSE, 0 };
17353 char name_type;
17354 char name_attribute;
17355 const char * expected_types;
17356 const char * name = pnote->namedata;
17357 const char * text;
17358 signed int left;
17359
17360 if (name == NULL || pnote->namesz < 2)
17361 {
17362 error (_("corrupt name field in GNU build attribute note: size = %ld\n"), pnote->namesz);
17363 print_symbol (-20, _(" <corrupt name>"));
17364 return FALSE;
17365 }
17366
17367 left = 20;
17368
17369 /* Version 2 of the spec adds a "GA" prefix to the name field. */
17370 if (name[0] == 'G' && name[1] == 'A')
17371 {
17372 printf ("GA");
17373 name += 2;
17374 left -= 2;
17375 }
17376
17377 switch ((name_type = * name))
17378 {
17379 case GNU_BUILD_ATTRIBUTE_TYPE_NUMERIC:
17380 case GNU_BUILD_ATTRIBUTE_TYPE_STRING:
17381 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_TRUE:
17382 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_FALSE:
17383 printf ("%c", * name);
17384 left --;
17385 break;
17386 default:
17387 error (_("unrecognised attribute type in name field: %d\n"), name_type);
17388 print_symbol (-20, _("<unknown name type>"));
17389 return FALSE;
17390 }
17391
17392 ++ name;
17393 text = NULL;
17394
17395 switch ((name_attribute = * name))
17396 {
17397 case GNU_BUILD_ATTRIBUTE_VERSION:
17398 text = _("<version>");
17399 expected_types = string_expected;
17400 ++ name;
17401 break;
17402 case GNU_BUILD_ATTRIBUTE_STACK_PROT:
17403 text = _("<stack prot>");
17404 expected_types = "!+*";
17405 ++ name;
17406 break;
17407 case GNU_BUILD_ATTRIBUTE_RELRO:
17408 text = _("<relro>");
17409 expected_types = bool_expected;
17410 ++ name;
17411 break;
17412 case GNU_BUILD_ATTRIBUTE_STACK_SIZE:
17413 text = _("<stack size>");
17414 expected_types = number_expected;
17415 ++ name;
17416 break;
17417 case GNU_BUILD_ATTRIBUTE_TOOL:
17418 text = _("<tool>");
17419 expected_types = string_expected;
17420 ++ name;
17421 break;
17422 case GNU_BUILD_ATTRIBUTE_ABI:
17423 text = _("<ABI>");
17424 expected_types = "$*";
17425 ++ name;
17426 break;
17427 case GNU_BUILD_ATTRIBUTE_PIC:
17428 text = _("<PIC>");
17429 expected_types = number_expected;
17430 ++ name;
17431 break;
17432 case GNU_BUILD_ATTRIBUTE_SHORT_ENUM:
17433 text = _("<short enum>");
17434 expected_types = bool_expected;
17435 ++ name;
17436 break;
17437 default:
17438 if (ISPRINT (* name))
17439 {
17440 int len = strnlen (name, pnote->namesz - (name - pnote->namedata)) + 1;
17441
17442 if (len > left && ! do_wide)
17443 len = left;
17444 printf ("%.*s:", len, name);
17445 left -= len;
17446 name += len;
17447 }
17448 else
17449 {
17450 static char tmpbuf [128];
17451
17452 error (_("unrecognised byte in name field: %d\n"), * name);
17453 sprintf (tmpbuf, _("<unknown:_%d>"), * name);
17454 text = tmpbuf;
17455 name ++;
17456 }
17457 expected_types = "*$!+";
17458 break;
17459 }
17460
17461 if (text)
17462 left -= printf ("%s", text);
17463
17464 if (strchr (expected_types, name_type) == NULL)
17465 warn (_("attribute does not have an expected type (%c)\n"), name_type);
17466
17467 if ((unsigned long)(name - pnote->namedata) > pnote->namesz)
17468 {
17469 error (_("corrupt name field: namesz: %lu but parsing gets to %ld\n"),
17470 (unsigned long) pnote->namesz,
17471 (long) (name - pnote->namedata));
17472 return FALSE;
17473 }
17474
17475 if (left < 1 && ! do_wide)
17476 return TRUE;
17477
17478 switch (name_type)
17479 {
17480 case GNU_BUILD_ATTRIBUTE_TYPE_NUMERIC:
17481 {
17482 unsigned int bytes;
17483 unsigned long long val = 0;
17484 unsigned int shift = 0;
17485 char * decoded = NULL;
17486
17487 bytes = pnote->namesz - (name - pnote->namedata);
17488 if (bytes > 0)
17489 /* The -1 is because the name field is always 0 terminated, and we
17490 want to be able to ensure that the shift in the while loop below
17491 will not overflow. */
17492 -- bytes;
17493
17494 if (bytes > sizeof (val))
17495 {
17496 fprintf (stderr, "namesz %lx name %p namedata %p\n",
17497 pnote->namesz, name, pnote->namedata);
17498 error (_("corrupt numeric name field: too many bytes in the value: %x\n"),
17499 bytes);
17500 bytes = sizeof (val);
17501 }
17502 /* We do not bother to warn if bytes == 0 as this can
17503 happen with some early versions of the gcc plugin. */
17504
17505 while (bytes --)
17506 {
17507 unsigned long byte = (* name ++) & 0xff;
17508
17509 val |= byte << shift;
17510 shift += 8;
17511 }
17512
17513 switch (name_attribute)
17514 {
17515 case GNU_BUILD_ATTRIBUTE_PIC:
17516 switch (val)
17517 {
17518 case 0: decoded = "static"; break;
17519 case 1: decoded = "pic"; break;
17520 case 2: decoded = "PIC"; break;
17521 case 3: decoded = "pie"; break;
17522 case 4: decoded = "PIE"; break;
17523 default: break;
17524 }
17525 break;
17526 case GNU_BUILD_ATTRIBUTE_STACK_PROT:
17527 switch (val)
17528 {
17529 /* Based upon the SPCT_FLAG_xxx enum values in gcc/cfgexpand.c. */
17530 case 0: decoded = "off"; break;
17531 case 1: decoded = "on"; break;
17532 case 2: decoded = "all"; break;
17533 case 3: decoded = "strong"; break;
17534 case 4: decoded = "explicit"; break;
17535 default: break;
17536 }
17537 break;
17538 default:
17539 break;
17540 }
17541
17542 if (decoded != NULL)
17543 {
17544 print_symbol (-left, decoded);
17545 left = 0;
17546 }
17547 else if (val == 0)
17548 {
17549 printf ("0x0");
17550 left -= 3;
17551 }
17552 else
17553 {
17554 if (do_wide)
17555 left -= printf ("0x%llx", val);
17556 else
17557 left -= printf ("0x%-.*llx", left, val);
17558 }
17559 }
17560 break;
17561 case GNU_BUILD_ATTRIBUTE_TYPE_STRING:
17562 left -= print_symbol (- left, name);
17563 break;
17564 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_TRUE:
17565 left -= print_symbol (- left, "true");
17566 break;
17567 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_FALSE:
17568 left -= print_symbol (- left, "false");
17569 break;
17570 }
17571
17572 if (do_wide && left > 0)
17573 printf ("%-*s", left, " ");
17574
17575 return TRUE;
17576 }
17577
17578 /* Note that by the ELF standard, the name field is already null byte
17579 terminated, and namesz includes the terminating null byte.
17580 I.E. the value of namesz for the name "FSF" is 4.
17581
17582 If the value of namesz is zero, there is no name present. */
17583
17584 static bfd_boolean
17585 process_note (Elf_Internal_Note * pnote,
17586 FILE * file)
17587 {
17588 const char * name = pnote->namesz ? pnote->namedata : "(NONE)";
17589 const char * nt;
17590
17591 if (pnote->namesz == 0)
17592 /* If there is no note name, then use the default set of
17593 note type strings. */
17594 nt = get_note_type (pnote->type);
17595
17596 else if (const_strneq (pnote->namedata, "GNU"))
17597 /* GNU-specific object file notes. */
17598 nt = get_gnu_elf_note_type (pnote->type);
17599
17600 else if (const_strneq (pnote->namedata, "FreeBSD"))
17601 /* FreeBSD-specific core file notes. */
17602 nt = get_freebsd_elfcore_note_type (pnote->type);
17603
17604 else if (const_strneq (pnote->namedata, "NetBSD-CORE"))
17605 /* NetBSD-specific core file notes. */
17606 nt = get_netbsd_elfcore_note_type (pnote->type);
17607
17608 else if (const_strneq (pnote->namedata, "NetBSD"))
17609 /* NetBSD-specific core file notes. */
17610 return process_netbsd_elf_note (pnote);
17611
17612 else if (strneq (pnote->namedata, "SPU/", 4))
17613 {
17614 /* SPU-specific core file notes. */
17615 nt = pnote->namedata + 4;
17616 name = "SPU";
17617 }
17618
17619 else if (const_strneq (pnote->namedata, "IPF/VMS"))
17620 /* VMS/ia64-specific file notes. */
17621 nt = get_ia64_vms_note_type (pnote->type);
17622
17623 else if (const_strneq (pnote->namedata, "stapsdt"))
17624 nt = get_stapsdt_note_type (pnote->type);
17625
17626 else
17627 /* Don't recognize this note name; just use the default set of
17628 note type strings. */
17629 nt = get_note_type (pnote->type);
17630
17631 printf (" ");
17632
17633 if (((const_strneq (pnote->namedata, "GA")
17634 && strchr ("*$!+", pnote->namedata[2]) != NULL)
17635 || strchr ("*$!+", pnote->namedata[0]) != NULL)
17636 && (pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN
17637 || pnote->type == NT_GNU_BUILD_ATTRIBUTE_FUNC))
17638 print_gnu_build_attribute_name (pnote);
17639 else
17640 print_symbol (-20, name);
17641
17642 if (do_wide)
17643 printf (" 0x%08lx\t%s\t", pnote->descsz, nt);
17644 else
17645 printf (" 0x%08lx\t%s\n", pnote->descsz, nt);
17646
17647 if (const_strneq (pnote->namedata, "IPF/VMS"))
17648 return print_ia64_vms_note (pnote);
17649 else if (const_strneq (pnote->namedata, "GNU"))
17650 return print_gnu_note (pnote);
17651 else if (const_strneq (pnote->namedata, "stapsdt"))
17652 return print_stapsdt_note (pnote);
17653 else if (const_strneq (pnote->namedata, "CORE"))
17654 return print_core_note (pnote);
17655 else if (((const_strneq (pnote->namedata, "GA")
17656 && strchr ("*$!+", pnote->namedata[2]) != NULL)
17657 || strchr ("*$!+", pnote->namedata[0]) != NULL)
17658 && (pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN
17659 || pnote->type == NT_GNU_BUILD_ATTRIBUTE_FUNC))
17660 return print_gnu_build_attribute_description (pnote, file);
17661
17662 if (pnote->descsz)
17663 {
17664 unsigned long i;
17665
17666 printf (_(" description data: "));
17667 for (i = 0; i < pnote->descsz; i++)
17668 printf ("%02x ", pnote->descdata[i]);
17669 if (!do_wide)
17670 printf ("\n");
17671 }
17672
17673 if (do_wide)
17674 printf ("\n");
17675
17676 return TRUE;
17677 }
17678
17679 static bfd_boolean
17680 process_notes_at (FILE * file,
17681 Elf_Internal_Shdr * section,
17682 bfd_vma offset,
17683 bfd_vma length)
17684 {
17685 Elf_External_Note * pnotes;
17686 Elf_External_Note * external;
17687 char * end;
17688 bfd_boolean res = TRUE;
17689
17690 if (length <= 0)
17691 return FALSE;
17692
17693 if (section)
17694 {
17695 pnotes = (Elf_External_Note *) get_section_contents (section, file);
17696 if (pnotes)
17697 {
17698 if (! apply_relocations (file, section, (unsigned char *) pnotes, length, NULL, NULL))
17699 return FALSE;
17700 }
17701 }
17702 else
17703 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
17704 _("notes"));
17705 if (pnotes == NULL)
17706 return FALSE;
17707
17708 external = pnotes;
17709
17710 if (section)
17711 printf (_("\nDisplaying notes found in: %s\n"), printable_section_name (section));
17712 else
17713 printf (_("\nDisplaying notes found at file offset 0x%08lx with length 0x%08lx:\n"),
17714 (unsigned long) offset, (unsigned long) length);
17715
17716 printf (_(" %-20s %10s\tDescription\n"), _("Owner"), _("Data size"));
17717
17718 end = (char *) pnotes + length;
17719 while ((char *) external < end)
17720 {
17721 Elf_Internal_Note inote;
17722 size_t min_notesz;
17723 char *next;
17724 char * temp = NULL;
17725 size_t data_remaining = end - (char *) external;
17726
17727 if (!is_ia64_vms ())
17728 {
17729 /* PR binutils/15191
17730 Make sure that there is enough data to read. */
17731 min_notesz = offsetof (Elf_External_Note, name);
17732 if (data_remaining < min_notesz)
17733 {
17734 warn (ngettext ("Corrupt note: only %ld byte remains, "
17735 "not enough for a full note\n",
17736 "Corrupt note: only %ld bytes remain, "
17737 "not enough for a full note\n",
17738 data_remaining),
17739 (long) data_remaining);
17740 break;
17741 }
17742 data_remaining -= min_notesz;
17743
17744 inote.type = BYTE_GET (external->type);
17745 inote.namesz = BYTE_GET (external->namesz);
17746 inote.namedata = external->name;
17747 inote.descsz = BYTE_GET (external->descsz);
17748 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
17749 inote.descpos = offset + (inote.descdata - (char *) pnotes);
17750 next = inote.descdata + align_power (inote.descsz, 2);
17751 }
17752 else
17753 {
17754 Elf64_External_VMS_Note *vms_external;
17755
17756 /* PR binutils/15191
17757 Make sure that there is enough data to read. */
17758 min_notesz = offsetof (Elf64_External_VMS_Note, name);
17759 if (data_remaining < min_notesz)
17760 {
17761 warn (ngettext ("Corrupt note: only %ld byte remains, "
17762 "not enough for a full note\n",
17763 "Corrupt note: only %ld bytes remain, "
17764 "not enough for a full note\n",
17765 data_remaining),
17766 (long) data_remaining);
17767 break;
17768 }
17769 data_remaining -= min_notesz;
17770
17771 vms_external = (Elf64_External_VMS_Note *) external;
17772 inote.type = BYTE_GET (vms_external->type);
17773 inote.namesz = BYTE_GET (vms_external->namesz);
17774 inote.namedata = vms_external->name;
17775 inote.descsz = BYTE_GET (vms_external->descsz);
17776 inote.descdata = inote.namedata + align_power (inote.namesz, 3);
17777 inote.descpos = offset + (inote.descdata - (char *) pnotes);
17778 next = inote.descdata + align_power (inote.descsz, 3);
17779 }
17780
17781 /* PR 17531: file: 3443835e. */
17782 /* PR 17531: file: id:000000,sig:11,src:006986,op:havoc,rep:4. */
17783 if ((size_t) (inote.descdata - inote.namedata) < inote.namesz
17784 || (size_t) (inote.descdata - inote.namedata) > data_remaining
17785 || (size_t) (next - inote.descdata) < inote.descsz
17786 || ((size_t) (next - inote.descdata)
17787 > data_remaining - (size_t) (inote.descdata - inote.namedata)))
17788 {
17789 warn (_("note with invalid namesz and/or descsz found at offset 0x%lx\n"),
17790 (unsigned long) ((char *) external - (char *) pnotes));
17791 warn (_(" type: 0x%lx, namesize: 0x%08lx, descsize: 0x%08lx\n"),
17792 inote.type, inote.namesz, inote.descsz);
17793 break;
17794 }
17795
17796 external = (Elf_External_Note *) next;
17797
17798 /* Verify that name is null terminated. It appears that at least
17799 one version of Linux (RedHat 6.0) generates corefiles that don't
17800 comply with the ELF spec by failing to include the null byte in
17801 namesz. */
17802 if (inote.namedata[inote.namesz - 1] != '\0')
17803 {
17804 if ((size_t) (inote.descdata - inote.namedata) == inote.namesz)
17805 {
17806 temp = (char *) malloc (inote.namesz + 1);
17807 if (temp == NULL)
17808 {
17809 error (_("Out of memory allocating space for inote name\n"));
17810 res = FALSE;
17811 break;
17812 }
17813
17814 memcpy (temp, inote.namedata, inote.namesz);
17815 inote.namedata = temp;
17816 }
17817 inote.namedata[inote.namesz] = 0;
17818 }
17819
17820 if (! process_note (& inote, file))
17821 res = FALSE;
17822
17823 if (temp != NULL)
17824 {
17825 free (temp);
17826 temp = NULL;
17827 }
17828 }
17829
17830 free (pnotes);
17831
17832 return res;
17833 }
17834
17835 static bfd_boolean
17836 process_corefile_note_segments (FILE * file)
17837 {
17838 Elf_Internal_Phdr * segment;
17839 unsigned int i;
17840 bfd_boolean res = TRUE;
17841
17842 if (! get_program_headers (file))
17843 return TRUE;
17844
17845 for (i = 0, segment = program_headers;
17846 i < elf_header.e_phnum;
17847 i++, segment++)
17848 {
17849 if (segment->p_type == PT_NOTE)
17850 if (! process_notes_at (file, NULL,
17851 (bfd_vma) segment->p_offset,
17852 (bfd_vma) segment->p_filesz))
17853 res = FALSE;
17854 }
17855
17856 return res;
17857 }
17858
17859 static bfd_boolean
17860 process_v850_notes (FILE * file, bfd_vma offset, bfd_vma length)
17861 {
17862 Elf_External_Note * pnotes;
17863 Elf_External_Note * external;
17864 char * end;
17865 bfd_boolean res = TRUE;
17866
17867 if (length <= 0)
17868 return FALSE;
17869
17870 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
17871 _("v850 notes"));
17872 if (pnotes == NULL)
17873 return FALSE;
17874
17875 external = pnotes;
17876 end = (char*) pnotes + length;
17877
17878 printf (_("\nDisplaying contents of Renesas V850 notes section at offset 0x%lx with length 0x%lx:\n"),
17879 (unsigned long) offset, (unsigned long) length);
17880
17881 while ((char *) external + sizeof (Elf_External_Note) < end)
17882 {
17883 Elf_External_Note * next;
17884 Elf_Internal_Note inote;
17885
17886 inote.type = BYTE_GET (external->type);
17887 inote.namesz = BYTE_GET (external->namesz);
17888 inote.namedata = external->name;
17889 inote.descsz = BYTE_GET (external->descsz);
17890 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
17891 inote.descpos = offset + (inote.descdata - (char *) pnotes);
17892
17893 if (inote.descdata < (char *) pnotes || inote.descdata >= end)
17894 {
17895 warn (_("Corrupt note: name size is too big: %lx\n"), inote.namesz);
17896 inote.descdata = inote.namedata;
17897 inote.namesz = 0;
17898 }
17899
17900 next = (Elf_External_Note *) (inote.descdata + align_power (inote.descsz, 2));
17901
17902 if ( ((char *) next > end)
17903 || ((char *) next < (char *) pnotes))
17904 {
17905 warn (_("corrupt descsz found in note at offset 0x%lx\n"),
17906 (unsigned long) ((char *) external - (char *) pnotes));
17907 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
17908 inote.type, inote.namesz, inote.descsz);
17909 break;
17910 }
17911
17912 external = next;
17913
17914 /* Prevent out-of-bounds indexing. */
17915 if ( inote.namedata + inote.namesz > end
17916 || inote.namedata + inote.namesz < inote.namedata)
17917 {
17918 warn (_("corrupt namesz found in note at offset 0x%lx\n"),
17919 (unsigned long) ((char *) external - (char *) pnotes));
17920 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
17921 inote.type, inote.namesz, inote.descsz);
17922 break;
17923 }
17924
17925 printf (" %s: ", get_v850_elf_note_type (inote.type));
17926
17927 if (! print_v850_note (& inote))
17928 {
17929 res = FALSE;
17930 printf ("<corrupt sizes: namesz: %lx, descsz: %lx>\n",
17931 inote.namesz, inote.descsz);
17932 }
17933 }
17934
17935 free (pnotes);
17936
17937 return res;
17938 }
17939
17940 static bfd_boolean
17941 process_note_sections (FILE * file)
17942 {
17943 Elf_Internal_Shdr * section;
17944 unsigned long i;
17945 unsigned int n = 0;
17946 bfd_boolean res = TRUE;
17947
17948 for (i = 0, section = section_headers;
17949 i < elf_header.e_shnum && section != NULL;
17950 i++, section++)
17951 {
17952 if (section->sh_type == SHT_NOTE)
17953 {
17954 if (! process_notes_at (file, section,
17955 (bfd_vma) section->sh_offset,
17956 (bfd_vma) section->sh_size))
17957 res = FALSE;
17958 n++;
17959 }
17960
17961 if (( elf_header.e_machine == EM_V800
17962 || elf_header.e_machine == EM_V850
17963 || elf_header.e_machine == EM_CYGNUS_V850)
17964 && section->sh_type == SHT_RENESAS_INFO)
17965 {
17966 if (! process_v850_notes (file,
17967 (bfd_vma) section->sh_offset,
17968 (bfd_vma) section->sh_size))
17969 res = FALSE;
17970 n++;
17971 }
17972 }
17973
17974 if (n == 0)
17975 /* Try processing NOTE segments instead. */
17976 return process_corefile_note_segments (file);
17977
17978 return res;
17979 }
17980
17981 static bfd_boolean
17982 process_notes (FILE * file)
17983 {
17984 /* If we have not been asked to display the notes then do nothing. */
17985 if (! do_notes)
17986 return TRUE;
17987
17988 if (elf_header.e_type != ET_CORE)
17989 return process_note_sections (file);
17990
17991 /* No program headers means no NOTE segment. */
17992 if (elf_header.e_phnum > 0)
17993 return process_corefile_note_segments (file);
17994
17995 printf (_("No note segments present in the core file.\n"));
17996 return TRUE;
17997 }
17998
17999 static unsigned char *
18000 display_public_gnu_attributes (unsigned char * start,
18001 const unsigned char * const end)
18002 {
18003 printf (_(" Unknown GNU attribute: %s\n"), start);
18004
18005 start += strnlen ((char *) start, end - start);
18006 display_raw_attribute (start, end);
18007
18008 return (unsigned char *) end;
18009 }
18010
18011 static unsigned char *
18012 display_generic_attribute (unsigned char * start,
18013 unsigned int tag,
18014 const unsigned char * const end)
18015 {
18016 if (tag == 0)
18017 return (unsigned char *) end;
18018
18019 return display_tag_value (tag, start, end);
18020 }
18021
18022 static bfd_boolean
18023 process_arch_specific (FILE * file)
18024 {
18025 if (! do_arch)
18026 return TRUE;
18027
18028 switch (elf_header.e_machine)
18029 {
18030 case EM_ARC:
18031 case EM_ARC_COMPACT:
18032 case EM_ARC_COMPACT2:
18033 return process_attributes (file, "ARC", SHT_ARC_ATTRIBUTES,
18034 display_arc_attribute,
18035 display_generic_attribute);
18036 case EM_ARM:
18037 return process_attributes (file, "aeabi", SHT_ARM_ATTRIBUTES,
18038 display_arm_attribute,
18039 display_generic_attribute);
18040
18041 case EM_MIPS:
18042 case EM_MIPS_RS3_LE:
18043 return process_mips_specific (file);
18044
18045 case EM_MSP430:
18046 return process_attributes (file, "mspabi", SHT_MSP430_ATTRIBUTES,
18047 display_msp430x_attribute,
18048 display_generic_attribute);
18049
18050 case EM_NDS32:
18051 return process_nds32_specific (file);
18052
18053 case EM_PPC:
18054 case EM_PPC64:
18055 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
18056 display_power_gnu_attribute);
18057
18058 case EM_S390:
18059 case EM_S390_OLD:
18060 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
18061 display_s390_gnu_attribute);
18062
18063 case EM_SPARC:
18064 case EM_SPARC32PLUS:
18065 case EM_SPARCV9:
18066 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
18067 display_sparc_gnu_attribute);
18068
18069 case EM_TI_C6000:
18070 return process_attributes (file, "c6xabi", SHT_C6000_ATTRIBUTES,
18071 display_tic6x_attribute,
18072 display_generic_attribute);
18073
18074 default:
18075 return process_attributes (file, "gnu", SHT_GNU_ATTRIBUTES,
18076 display_public_gnu_attributes,
18077 display_generic_attribute);
18078 }
18079 }
18080
18081 static bfd_boolean
18082 get_file_header (FILE * file)
18083 {
18084 /* Read in the identity array. */
18085 if (fread (elf_header.e_ident, EI_NIDENT, 1, file) != 1)
18086 return FALSE;
18087
18088 /* Determine how to read the rest of the header. */
18089 switch (elf_header.e_ident[EI_DATA])
18090 {
18091 default:
18092 case ELFDATANONE:
18093 case ELFDATA2LSB:
18094 byte_get = byte_get_little_endian;
18095 byte_put = byte_put_little_endian;
18096 break;
18097 case ELFDATA2MSB:
18098 byte_get = byte_get_big_endian;
18099 byte_put = byte_put_big_endian;
18100 break;
18101 }
18102
18103 /* For now we only support 32 bit and 64 bit ELF files. */
18104 is_32bit_elf = (elf_header.e_ident[EI_CLASS] != ELFCLASS64);
18105
18106 /* Read in the rest of the header. */
18107 if (is_32bit_elf)
18108 {
18109 Elf32_External_Ehdr ehdr32;
18110
18111 if (fread (ehdr32.e_type, sizeof (ehdr32) - EI_NIDENT, 1, file) != 1)
18112 return FALSE;
18113
18114 elf_header.e_type = BYTE_GET (ehdr32.e_type);
18115 elf_header.e_machine = BYTE_GET (ehdr32.e_machine);
18116 elf_header.e_version = BYTE_GET (ehdr32.e_version);
18117 elf_header.e_entry = BYTE_GET (ehdr32.e_entry);
18118 elf_header.e_phoff = BYTE_GET (ehdr32.e_phoff);
18119 elf_header.e_shoff = BYTE_GET (ehdr32.e_shoff);
18120 elf_header.e_flags = BYTE_GET (ehdr32.e_flags);
18121 elf_header.e_ehsize = BYTE_GET (ehdr32.e_ehsize);
18122 elf_header.e_phentsize = BYTE_GET (ehdr32.e_phentsize);
18123 elf_header.e_phnum = BYTE_GET (ehdr32.e_phnum);
18124 elf_header.e_shentsize = BYTE_GET (ehdr32.e_shentsize);
18125 elf_header.e_shnum = BYTE_GET (ehdr32.e_shnum);
18126 elf_header.e_shstrndx = BYTE_GET (ehdr32.e_shstrndx);
18127 }
18128 else
18129 {
18130 Elf64_External_Ehdr ehdr64;
18131
18132 /* If we have been compiled with sizeof (bfd_vma) == 4, then
18133 we will not be able to cope with the 64bit data found in
18134 64 ELF files. Detect this now and abort before we start
18135 overwriting things. */
18136 if (sizeof (bfd_vma) < 8)
18137 {
18138 error (_("This instance of readelf has been built without support for a\n\
18139 64 bit data type and so it cannot read 64 bit ELF files.\n"));
18140 return FALSE;
18141 }
18142
18143 if (fread (ehdr64.e_type, sizeof (ehdr64) - EI_NIDENT, 1, file) != 1)
18144 return FALSE;
18145
18146 elf_header.e_type = BYTE_GET (ehdr64.e_type);
18147 elf_header.e_machine = BYTE_GET (ehdr64.e_machine);
18148 elf_header.e_version = BYTE_GET (ehdr64.e_version);
18149 elf_header.e_entry = BYTE_GET (ehdr64.e_entry);
18150 elf_header.e_phoff = BYTE_GET (ehdr64.e_phoff);
18151 elf_header.e_shoff = BYTE_GET (ehdr64.e_shoff);
18152 elf_header.e_flags = BYTE_GET (ehdr64.e_flags);
18153 elf_header.e_ehsize = BYTE_GET (ehdr64.e_ehsize);
18154 elf_header.e_phentsize = BYTE_GET (ehdr64.e_phentsize);
18155 elf_header.e_phnum = BYTE_GET (ehdr64.e_phnum);
18156 elf_header.e_shentsize = BYTE_GET (ehdr64.e_shentsize);
18157 elf_header.e_shnum = BYTE_GET (ehdr64.e_shnum);
18158 elf_header.e_shstrndx = BYTE_GET (ehdr64.e_shstrndx);
18159 }
18160
18161 if (elf_header.e_shoff)
18162 {
18163 /* There may be some extensions in the first section header. Don't
18164 bomb if we can't read it. */
18165 if (is_32bit_elf)
18166 get_32bit_section_headers (file, TRUE);
18167 else
18168 get_64bit_section_headers (file, TRUE);
18169 }
18170
18171 return TRUE;
18172 }
18173
18174 /* Process one ELF object file according to the command line options.
18175 This file may actually be stored in an archive. The file is
18176 positioned at the start of the ELF object. Returns TRUE if no
18177 problems were encountered, FALSE otherwise. */
18178
18179 static bfd_boolean
18180 process_object (char * file_name, FILE * file)
18181 {
18182 unsigned int i;
18183 bfd_boolean res = TRUE;
18184
18185 if (! get_file_header (file))
18186 {
18187 error (_("%s: Failed to read file header\n"), file_name);
18188 return FALSE;
18189 }
18190
18191 /* Initialise per file variables. */
18192 for (i = ARRAY_SIZE (version_info); i--;)
18193 version_info[i] = 0;
18194
18195 for (i = ARRAY_SIZE (dynamic_info); i--;)
18196 dynamic_info[i] = 0;
18197 dynamic_info_DT_GNU_HASH = 0;
18198
18199 /* Process the file. */
18200 if (show_name)
18201 printf (_("\nFile: %s\n"), file_name);
18202
18203 /* Initialise the dump_sects array from the cmdline_dump_sects array.
18204 Note we do this even if cmdline_dump_sects is empty because we
18205 must make sure that the dump_sets array is zeroed out before each
18206 object file is processed. */
18207 if (num_dump_sects > num_cmdline_dump_sects)
18208 memset (dump_sects, 0, num_dump_sects * sizeof (* dump_sects));
18209
18210 if (num_cmdline_dump_sects > 0)
18211 {
18212 if (num_dump_sects == 0)
18213 /* A sneaky way of allocating the dump_sects array. */
18214 request_dump_bynumber (num_cmdline_dump_sects, 0);
18215
18216 assert (num_dump_sects >= num_cmdline_dump_sects);
18217 memcpy (dump_sects, cmdline_dump_sects,
18218 num_cmdline_dump_sects * sizeof (* dump_sects));
18219 }
18220
18221 if (! process_file_header ())
18222 return FALSE;
18223
18224 if (! process_section_headers (file))
18225 {
18226 /* Without loaded section headers we cannot process lots of things. */
18227 do_unwind = do_version = do_dump = do_arch = FALSE;
18228
18229 if (! do_using_dynamic)
18230 do_syms = do_dyn_syms = do_reloc = FALSE;
18231 }
18232
18233 if (! process_section_groups (file))
18234 /* Without loaded section groups we cannot process unwind. */
18235 do_unwind = FALSE;
18236
18237 if (process_program_headers (file))
18238 process_dynamic_section (file);
18239 else
18240 res = FALSE;
18241
18242 if (! process_relocs (file))
18243 res = FALSE;
18244
18245 if (! process_unwind (file))
18246 res = FALSE;
18247
18248 if (! process_symbol_table (file))
18249 res = FALSE;
18250
18251 if (! process_syminfo (file))
18252 res = FALSE;
18253
18254 if (! process_version_sections (file))
18255 res = FALSE;
18256
18257 if (! process_section_contents (file))
18258 res = FALSE;
18259
18260 if (! process_notes (file))
18261 res = FALSE;
18262
18263 if (! process_gnu_liblist (file))
18264 res = FALSE;
18265
18266 if (! process_arch_specific (file))
18267 res = FALSE;
18268
18269 if (program_headers)
18270 {
18271 free (program_headers);
18272 program_headers = NULL;
18273 }
18274
18275 if (section_headers)
18276 {
18277 free (section_headers);
18278 section_headers = NULL;
18279 }
18280
18281 if (string_table)
18282 {
18283 free (string_table);
18284 string_table = NULL;
18285 string_table_length = 0;
18286 }
18287
18288 if (dynamic_strings)
18289 {
18290 free (dynamic_strings);
18291 dynamic_strings = NULL;
18292 dynamic_strings_length = 0;
18293 }
18294
18295 if (dynamic_symbols)
18296 {
18297 free (dynamic_symbols);
18298 dynamic_symbols = NULL;
18299 num_dynamic_syms = 0;
18300 }
18301
18302 if (dynamic_syminfo)
18303 {
18304 free (dynamic_syminfo);
18305 dynamic_syminfo = NULL;
18306 }
18307
18308 if (dynamic_section)
18309 {
18310 free (dynamic_section);
18311 dynamic_section = NULL;
18312 }
18313
18314 if (section_headers_groups)
18315 {
18316 free (section_headers_groups);
18317 section_headers_groups = NULL;
18318 }
18319
18320 if (section_groups)
18321 {
18322 struct group_list * g;
18323 struct group_list * next;
18324
18325 for (i = 0; i < group_count; i++)
18326 {
18327 for (g = section_groups [i].root; g != NULL; g = next)
18328 {
18329 next = g->next;
18330 free (g);
18331 }
18332 }
18333
18334 free (section_groups);
18335 section_groups = NULL;
18336 }
18337
18338 free_debug_memory ();
18339
18340 return res;
18341 }
18342
18343 /* Process an ELF archive.
18344 On entry the file is positioned just after the ARMAG string.
18345 Returns TRUE upon success, FALSE otherwise. */
18346
18347 static bfd_boolean
18348 process_archive (char * file_name, FILE * file, bfd_boolean is_thin_archive)
18349 {
18350 struct archive_info arch;
18351 struct archive_info nested_arch;
18352 size_t got;
18353 bfd_boolean ret = TRUE;
18354
18355 show_name = TRUE;
18356
18357 /* The ARCH structure is used to hold information about this archive. */
18358 arch.file_name = NULL;
18359 arch.file = NULL;
18360 arch.index_array = NULL;
18361 arch.sym_table = NULL;
18362 arch.longnames = NULL;
18363
18364 /* The NESTED_ARCH structure is used as a single-item cache of information
18365 about a nested archive (when members of a thin archive reside within
18366 another regular archive file). */
18367 nested_arch.file_name = NULL;
18368 nested_arch.file = NULL;
18369 nested_arch.index_array = NULL;
18370 nested_arch.sym_table = NULL;
18371 nested_arch.longnames = NULL;
18372
18373 if (setup_archive (&arch, file_name, file, is_thin_archive, do_archive_index) != 0)
18374 {
18375 ret = FALSE;
18376 goto out;
18377 }
18378
18379 if (do_archive_index)
18380 {
18381 if (arch.sym_table == NULL)
18382 error (_("%s: unable to dump the index as none was found\n"), file_name);
18383 else
18384 {
18385 unsigned long i, l;
18386 unsigned long current_pos;
18387
18388 printf (_("Index of archive %s: (%lu entries, 0x%lx bytes in the symbol table)\n"),
18389 file_name, (unsigned long) arch.index_num, arch.sym_size);
18390 current_pos = ftell (file);
18391
18392 for (i = l = 0; i < arch.index_num; i++)
18393 {
18394 if ((i == 0) || ((i > 0) && (arch.index_array[i] != arch.index_array[i - 1])))
18395 {
18396 char * member_name;
18397
18398 member_name = get_archive_member_name_at (&arch, arch.index_array[i], &nested_arch);
18399
18400 if (member_name != NULL)
18401 {
18402 char * qualified_name = make_qualified_name (&arch, &nested_arch, member_name);
18403
18404 if (qualified_name != NULL)
18405 {
18406 printf (_("Contents of binary %s at offset "), qualified_name);
18407 (void) print_vma (arch.index_array[i], PREFIX_HEX);
18408 putchar ('\n');
18409 free (qualified_name);
18410 }
18411 }
18412 }
18413
18414 if (l >= arch.sym_size)
18415 {
18416 error (_("%s: end of the symbol table reached before the end of the index\n"),
18417 file_name);
18418 ret = FALSE;
18419 break;
18420 }
18421 /* PR 17531: file: 0b6630b2. */
18422 printf ("\t%.*s\n", (int) (arch.sym_size - l), arch.sym_table + l);
18423 l += strnlen (arch.sym_table + l, arch.sym_size - l) + 1;
18424 }
18425
18426 if (arch.uses_64bit_indicies)
18427 l = (l + 7) & ~ 7;
18428 else
18429 l += l & 1;
18430
18431 if (l < arch.sym_size)
18432 {
18433 error (ngettext ("%s: %ld byte remains in the symbol table, "
18434 "but without corresponding entries in "
18435 "the index table\n",
18436 "%s: %ld bytes remain in the symbol table, "
18437 "but without corresponding entries in "
18438 "the index table\n",
18439 arch.sym_size - l),
18440 file_name, arch.sym_size - l);
18441 ret = FALSE;
18442 }
18443
18444 if (fseek (file, current_pos, SEEK_SET) != 0)
18445 {
18446 error (_("%s: failed to seek back to start of object files in the archive\n"), file_name);
18447 ret = FALSE;
18448 goto out;
18449 }
18450 }
18451
18452 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
18453 && !do_segments && !do_header && !do_dump && !do_version
18454 && !do_histogram && !do_debugging && !do_arch && !do_notes
18455 && !do_section_groups && !do_dyn_syms)
18456 {
18457 ret = TRUE; /* Archive index only. */
18458 goto out;
18459 }
18460 }
18461
18462 while (1)
18463 {
18464 char * name;
18465 size_t namelen;
18466 char * qualified_name;
18467
18468 /* Read the next archive header. */
18469 if (fseek (file, arch.next_arhdr_offset, SEEK_SET) != 0)
18470 {
18471 error (_("%s: failed to seek to next archive header\n"), file_name);
18472 return FALSE;
18473 }
18474 got = fread (&arch.arhdr, 1, sizeof arch.arhdr, file);
18475 if (got != sizeof arch.arhdr)
18476 {
18477 if (got == 0)
18478 break;
18479 error (_("%s: failed to read archive header\n"), file_name);
18480 ret = FALSE;
18481 break;
18482 }
18483 if (memcmp (arch.arhdr.ar_fmag, ARFMAG, 2) != 0)
18484 {
18485 error (_("%s: did not find a valid archive header\n"), arch.file_name);
18486 ret = FALSE;
18487 break;
18488 }
18489
18490 arch.next_arhdr_offset += sizeof arch.arhdr;
18491
18492 archive_file_size = strtoul (arch.arhdr.ar_size, NULL, 10);
18493 if (archive_file_size & 01)
18494 ++archive_file_size;
18495
18496 name = get_archive_member_name (&arch, &nested_arch);
18497 if (name == NULL)
18498 {
18499 error (_("%s: bad archive file name\n"), file_name);
18500 ret = FALSE;
18501 break;
18502 }
18503 namelen = strlen (name);
18504
18505 qualified_name = make_qualified_name (&arch, &nested_arch, name);
18506 if (qualified_name == NULL)
18507 {
18508 error (_("%s: bad archive file name\n"), file_name);
18509 ret = FALSE;
18510 break;
18511 }
18512
18513 if (is_thin_archive && arch.nested_member_origin == 0)
18514 {
18515 /* This is a proxy for an external member of a thin archive. */
18516 FILE * member_file;
18517 char * member_file_name = adjust_relative_path (file_name, name, namelen);
18518
18519 if (member_file_name == NULL)
18520 {
18521 ret = FALSE;
18522 break;
18523 }
18524
18525 member_file = fopen (member_file_name, "rb");
18526 if (member_file == NULL)
18527 {
18528 error (_("Input file '%s' is not readable.\n"), member_file_name);
18529 free (member_file_name);
18530 ret = FALSE;
18531 break;
18532 }
18533
18534 archive_file_offset = arch.nested_member_origin;
18535
18536 if (! process_object (qualified_name, member_file))
18537 ret = FALSE;
18538
18539 fclose (member_file);
18540 free (member_file_name);
18541 }
18542 else if (is_thin_archive)
18543 {
18544 /* PR 15140: Allow for corrupt thin archives. */
18545 if (nested_arch.file == NULL)
18546 {
18547 error (_("%s: contains corrupt thin archive: %s\n"),
18548 file_name, name);
18549 ret = FALSE;
18550 break;
18551 }
18552
18553 /* This is a proxy for a member of a nested archive. */
18554 archive_file_offset = arch.nested_member_origin + sizeof arch.arhdr;
18555
18556 /* The nested archive file will have been opened and setup by
18557 get_archive_member_name. */
18558 if (fseek (nested_arch.file, archive_file_offset, SEEK_SET) != 0)
18559 {
18560 error (_("%s: failed to seek to archive member.\n"), nested_arch.file_name);
18561 ret = FALSE;
18562 break;
18563 }
18564
18565 if (! process_object (qualified_name, nested_arch.file))
18566 ret = FALSE;
18567 }
18568 else
18569 {
18570 archive_file_offset = arch.next_arhdr_offset;
18571 arch.next_arhdr_offset += archive_file_size;
18572
18573 if (! process_object (qualified_name, file))
18574 ret = FALSE;
18575 }
18576
18577 if (dump_sects != NULL)
18578 {
18579 free (dump_sects);
18580 dump_sects = NULL;
18581 num_dump_sects = 0;
18582 }
18583
18584 free (qualified_name);
18585 }
18586
18587 out:
18588 if (nested_arch.file != NULL)
18589 fclose (nested_arch.file);
18590 release_archive (&nested_arch);
18591 release_archive (&arch);
18592
18593 return ret;
18594 }
18595
18596 static bfd_boolean
18597 process_file (char * file_name)
18598 {
18599 FILE * file;
18600 struct stat statbuf;
18601 char armag[SARMAG];
18602 bfd_boolean ret = TRUE;
18603
18604 if (stat (file_name, &statbuf) < 0)
18605 {
18606 if (errno == ENOENT)
18607 error (_("'%s': No such file\n"), file_name);
18608 else
18609 error (_("Could not locate '%s'. System error message: %s\n"),
18610 file_name, strerror (errno));
18611 return FALSE;
18612 }
18613
18614 if (! S_ISREG (statbuf.st_mode))
18615 {
18616 error (_("'%s' is not an ordinary file\n"), file_name);
18617 return FALSE;
18618 }
18619
18620 file = fopen (file_name, "rb");
18621 if (file == NULL)
18622 {
18623 error (_("Input file '%s' is not readable.\n"), file_name);
18624 return FALSE;
18625 }
18626
18627 if (fread (armag, SARMAG, 1, file) != 1)
18628 {
18629 error (_("%s: Failed to read file's magic number\n"), file_name);
18630 fclose (file);
18631 return FALSE;
18632 }
18633
18634 current_file_size = (bfd_size_type) statbuf.st_size;
18635
18636 if (memcmp (armag, ARMAG, SARMAG) == 0)
18637 {
18638 if (! process_archive (file_name, file, FALSE))
18639 ret = FALSE;
18640 }
18641 else if (memcmp (armag, ARMAGT, SARMAG) == 0)
18642 {
18643 if ( ! process_archive (file_name, file, TRUE))
18644 ret = FALSE;
18645 }
18646 else
18647 {
18648 if (do_archive_index)
18649 error (_("File %s is not an archive so its index cannot be displayed.\n"),
18650 file_name);
18651
18652 rewind (file);
18653 archive_file_size = archive_file_offset = 0;
18654
18655 if (! process_object (file_name, file))
18656 ret = FALSE;
18657 }
18658
18659 fclose (file);
18660 current_file_size = 0;
18661
18662 return ret;
18663 }
18664
18665 #ifdef SUPPORT_DISASSEMBLY
18666 /* Needed by the i386 disassembler. For extra credit, someone could
18667 fix this so that we insert symbolic addresses here, esp for GOT/PLT
18668 symbols. */
18669
18670 void
18671 print_address (unsigned int addr, FILE * outfile)
18672 {
18673 fprintf (outfile,"0x%8.8x", addr);
18674 }
18675
18676 /* Needed by the i386 disassembler. */
18677 void
18678 db_task_printsym (unsigned int addr)
18679 {
18680 print_address (addr, stderr);
18681 }
18682 #endif
18683
18684 int
18685 main (int argc, char ** argv)
18686 {
18687 int err;
18688
18689 #if defined (HAVE_SETLOCALE) && defined (HAVE_LC_MESSAGES)
18690 setlocale (LC_MESSAGES, "");
18691 #endif
18692 #if defined (HAVE_SETLOCALE)
18693 setlocale (LC_CTYPE, "");
18694 #endif
18695 bindtextdomain (PACKAGE, LOCALEDIR);
18696 textdomain (PACKAGE);
18697
18698 expandargv (&argc, &argv);
18699
18700 parse_args (argc, argv);
18701
18702 if (num_dump_sects > 0)
18703 {
18704 /* Make a copy of the dump_sects array. */
18705 cmdline_dump_sects = (dump_type *)
18706 malloc (num_dump_sects * sizeof (* dump_sects));
18707 if (cmdline_dump_sects == NULL)
18708 error (_("Out of memory allocating dump request table.\n"));
18709 else
18710 {
18711 memcpy (cmdline_dump_sects, dump_sects,
18712 num_dump_sects * sizeof (* dump_sects));
18713 num_cmdline_dump_sects = num_dump_sects;
18714 }
18715 }
18716
18717 if (optind < (argc - 1))
18718 show_name = TRUE;
18719 else if (optind >= argc)
18720 {
18721 warn (_("Nothing to do.\n"));
18722 usage (stderr);
18723 }
18724
18725 err = FALSE;
18726 while (optind < argc)
18727 if (! process_file (argv[optind++]))
18728 err = TRUE;
18729
18730 if (dump_sects != NULL)
18731 free (dump_sects);
18732 if (cmdline_dump_sects != NULL)
18733 free (cmdline_dump_sects);
18734
18735 return err ? EXIT_FAILURE : EXIT_SUCCESS;
18736 }