Add support to readelf for displaying GNU section types.
[binutils-gdb.git] / binutils / readelf.c
1 /* readelf.c -- display contents of an ELF format file
2 Copyright (C) 1998-2017 Free Software Foundation, Inc.
3
4 Originally developed by Eric Youngdale <eric@andante.jic.com>
5 Modifications by Nick Clifton <nickc@redhat.com>
6
7 This file is part of GNU Binutils.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
22 02110-1301, USA. */
23 \f
24 /* The difference between readelf and objdump:
25
26 Both programs are capable of displaying the contents of ELF format files,
27 so why does the binutils project have two file dumpers ?
28
29 The reason is that objdump sees an ELF file through a BFD filter of the
30 world; if BFD has a bug where, say, it disagrees about a machine constant
31 in e_flags, then the odds are good that it will remain internally
32 consistent. The linker sees it the BFD way, objdump sees it the BFD way,
33 GAS sees it the BFD way. There was need for a tool to go find out what
34 the file actually says.
35
36 This is why the readelf program does not link against the BFD library - it
37 exists as an independent program to help verify the correct working of BFD.
38
39 There is also the case that readelf can provide more information about an
40 ELF file than is provided by objdump. In particular it can display DWARF
41 debugging information which (at the moment) objdump cannot. */
42 \f
43 #include "sysdep.h"
44 #include <assert.h>
45 #include <time.h>
46 #include <zlib.h>
47 #ifdef HAVE_WCHAR_H
48 #include <wchar.h>
49 #endif
50
51 #if __GNUC__ >= 2
52 /* Define BFD64 here, even if our default architecture is 32 bit ELF
53 as this will allow us to read in and parse 64bit and 32bit ELF files.
54 Only do this if we believe that the compiler can support a 64 bit
55 data type. For now we only rely on GCC being able to do this. */
56 #define BFD64
57 #endif
58
59 #include "bfd.h"
60 #include "bucomm.h"
61 #include "elfcomm.h"
62 #include "dwarf.h"
63
64 #include "elf/common.h"
65 #include "elf/external.h"
66 #include "elf/internal.h"
67
68
69 /* Included here, before RELOC_MACROS_GEN_FUNC is defined, so that
70 we can obtain the H8 reloc numbers. We need these for the
71 get_reloc_size() function. We include h8.h again after defining
72 RELOC_MACROS_GEN_FUNC so that we get the naming function as well. */
73
74 #include "elf/h8.h"
75 #undef _ELF_H8_H
76
77 /* Undo the effects of #including reloc-macros.h. */
78
79 #undef START_RELOC_NUMBERS
80 #undef RELOC_NUMBER
81 #undef FAKE_RELOC
82 #undef EMPTY_RELOC
83 #undef END_RELOC_NUMBERS
84 #undef _RELOC_MACROS_H
85
86 /* The following headers use the elf/reloc-macros.h file to
87 automatically generate relocation recognition functions
88 such as elf_mips_reloc_type() */
89
90 #define RELOC_MACROS_GEN_FUNC
91
92 #include "elf/aarch64.h"
93 #include "elf/alpha.h"
94 #include "elf/arc.h"
95 #include "elf/arm.h"
96 #include "elf/avr.h"
97 #include "elf/bfin.h"
98 #include "elf/cr16.h"
99 #include "elf/cris.h"
100 #include "elf/crx.h"
101 #include "elf/d10v.h"
102 #include "elf/d30v.h"
103 #include "elf/dlx.h"
104 #include "elf/epiphany.h"
105 #include "elf/fr30.h"
106 #include "elf/frv.h"
107 #include "elf/ft32.h"
108 #include "elf/h8.h"
109 #include "elf/hppa.h"
110 #include "elf/i386.h"
111 #include "elf/i370.h"
112 #include "elf/i860.h"
113 #include "elf/i960.h"
114 #include "elf/ia64.h"
115 #include "elf/ip2k.h"
116 #include "elf/lm32.h"
117 #include "elf/iq2000.h"
118 #include "elf/m32c.h"
119 #include "elf/m32r.h"
120 #include "elf/m68k.h"
121 #include "elf/m68hc11.h"
122 #include "elf/mcore.h"
123 #include "elf/mep.h"
124 #include "elf/metag.h"
125 #include "elf/microblaze.h"
126 #include "elf/mips.h"
127 #include "elf/riscv.h"
128 #include "elf/mmix.h"
129 #include "elf/mn10200.h"
130 #include "elf/mn10300.h"
131 #include "elf/moxie.h"
132 #include "elf/mt.h"
133 #include "elf/msp430.h"
134 #include "elf/nds32.h"
135 #include "elf/nios2.h"
136 #include "elf/or1k.h"
137 #include "elf/pj.h"
138 #include "elf/ppc.h"
139 #include "elf/ppc64.h"
140 #include "elf/pru.h"
141 #include "elf/rl78.h"
142 #include "elf/rx.h"
143 #include "elf/s390.h"
144 #include "elf/score.h"
145 #include "elf/sh.h"
146 #include "elf/sparc.h"
147 #include "elf/spu.h"
148 #include "elf/tic6x.h"
149 #include "elf/tilegx.h"
150 #include "elf/tilepro.h"
151 #include "elf/v850.h"
152 #include "elf/vax.h"
153 #include "elf/visium.h"
154 #include "elf/x86-64.h"
155 #include "elf/xc16x.h"
156 #include "elf/xgate.h"
157 #include "elf/xstormy16.h"
158 #include "elf/xtensa.h"
159
160 #include "getopt.h"
161 #include "libiberty.h"
162 #include "safe-ctype.h"
163 #include "filenames.h"
164
165 #ifndef offsetof
166 #define offsetof(TYPE, MEMBER) ((size_t) &(((TYPE *) 0)->MEMBER))
167 #endif
168
169 typedef struct elf_section_list
170 {
171 Elf_Internal_Shdr * hdr;
172 struct elf_section_list * next;
173 } elf_section_list;
174
175 char * program_name = "readelf";
176 static unsigned long archive_file_offset;
177 static unsigned long archive_file_size;
178 static bfd_size_type current_file_size;
179 static unsigned long dynamic_addr;
180 static bfd_size_type dynamic_size;
181 static size_t dynamic_nent;
182 static char * dynamic_strings;
183 static unsigned long dynamic_strings_length;
184 static char * string_table;
185 static unsigned long string_table_length;
186 static unsigned long num_dynamic_syms;
187 static Elf_Internal_Sym * dynamic_symbols;
188 static Elf_Internal_Syminfo * dynamic_syminfo;
189 static unsigned long dynamic_syminfo_offset;
190 static unsigned int dynamic_syminfo_nent;
191 static char program_interpreter[PATH_MAX];
192 static bfd_vma dynamic_info[DT_ENCODING];
193 static bfd_vma dynamic_info_DT_GNU_HASH;
194 static bfd_vma version_info[16];
195 static Elf_Internal_Ehdr elf_header;
196 static Elf_Internal_Shdr * section_headers;
197 static Elf_Internal_Phdr * program_headers;
198 static Elf_Internal_Dyn * dynamic_section;
199 static elf_section_list * symtab_shndx_list;
200 static int show_name;
201 static int do_dynamic;
202 static int do_syms;
203 static int do_dyn_syms;
204 static int do_reloc;
205 static int do_sections;
206 static int do_section_groups;
207 static int do_section_details;
208 static int do_segments;
209 static int do_unwind;
210 static int do_using_dynamic;
211 static int do_header;
212 static int do_dump;
213 static int do_version;
214 static int do_histogram;
215 static int do_debugging;
216 static int do_arch;
217 static int do_notes;
218 static int do_archive_index;
219 static int is_32bit_elf;
220 static int decompress_dumps;
221
222 struct group_list
223 {
224 struct group_list * next;
225 unsigned int section_index;
226 };
227
228 struct group
229 {
230 struct group_list * root;
231 unsigned int group_index;
232 };
233
234 static size_t group_count;
235 static struct group * section_groups;
236 static struct group ** section_headers_groups;
237
238
239 /* Flag bits indicating particular types of dump. */
240 #define HEX_DUMP (1 << 0) /* The -x command line switch. */
241 #define DISASS_DUMP (1 << 1) /* The -i command line switch. */
242 #define DEBUG_DUMP (1 << 2) /* The -w command line switch. */
243 #define STRING_DUMP (1 << 3) /* The -p command line switch. */
244 #define RELOC_DUMP (1 << 4) /* The -R command line switch. */
245
246 typedef unsigned char dump_type;
247
248 /* A linked list of the section names for which dumps were requested. */
249 struct dump_list_entry
250 {
251 char * name;
252 dump_type type;
253 struct dump_list_entry * next;
254 };
255 static struct dump_list_entry * dump_sects_byname;
256
257 /* A dynamic array of flags indicating for which sections a dump
258 has been requested via command line switches. */
259 static dump_type * cmdline_dump_sects = NULL;
260 static unsigned int num_cmdline_dump_sects = 0;
261
262 /* A dynamic array of flags indicating for which sections a dump of
263 some kind has been requested. It is reset on a per-object file
264 basis and then initialised from the cmdline_dump_sects array,
265 the results of interpreting the -w switch, and the
266 dump_sects_byname list. */
267 static dump_type * dump_sects = NULL;
268 static unsigned int num_dump_sects = 0;
269
270
271 /* How to print a vma value. */
272 typedef enum print_mode
273 {
274 HEX,
275 DEC,
276 DEC_5,
277 UNSIGNED,
278 PREFIX_HEX,
279 FULL_HEX,
280 LONG_HEX
281 }
282 print_mode;
283
284 /* Versioned symbol info. */
285 enum versioned_symbol_info
286 {
287 symbol_undefined,
288 symbol_hidden,
289 symbol_public
290 };
291
292 static const char *get_symbol_version_string
293 (FILE *file, int is_dynsym, const char *strtab,
294 unsigned long int strtab_size, unsigned int si,
295 Elf_Internal_Sym *psym, enum versioned_symbol_info *sym_info,
296 unsigned short *vna_other);
297
298 #define UNKNOWN -1
299
300 #define SECTION_NAME(X) \
301 ((X) == NULL ? _("<none>") \
302 : string_table == NULL ? _("<no-name>") \
303 : ((X)->sh_name >= string_table_length ? _("<corrupt>") \
304 : string_table + (X)->sh_name))
305
306 #define DT_VERSIONTAGIDX(tag) (DT_VERNEEDNUM - (tag)) /* Reverse order! */
307
308 #define GET_ELF_SYMBOLS(file, section, sym_count) \
309 (is_32bit_elf ? get_32bit_elf_symbols (file, section, sym_count) \
310 : get_64bit_elf_symbols (file, section, sym_count))
311
312 #define VALID_DYNAMIC_NAME(offset) ((dynamic_strings != NULL) && (offset < dynamic_strings_length))
313 /* GET_DYNAMIC_NAME asssumes that VALID_DYNAMIC_NAME has
314 already been called and verified that the string exists. */
315 #define GET_DYNAMIC_NAME(offset) (dynamic_strings + offset)
316
317 #define REMOVE_ARCH_BITS(ADDR) \
318 do \
319 { \
320 if (elf_header.e_machine == EM_ARM) \
321 (ADDR) &= ~1; \
322 } \
323 while (0)
324 \f
325 /* Retrieve NMEMB structures, each SIZE bytes long from FILE starting at OFFSET +
326 the offset of the current archive member, if we are examining an archive.
327 Put the retrieved data into VAR, if it is not NULL. Otherwise allocate a buffer
328 using malloc and fill that. In either case return the pointer to the start of
329 the retrieved data or NULL if something went wrong. If something does go wrong
330 and REASON is not NULL then emit an error message using REASON as part of the
331 context. */
332
333 static void *
334 get_data (void * var, FILE * file, unsigned long offset, bfd_size_type size,
335 bfd_size_type nmemb, const char * reason)
336 {
337 void * mvar;
338 bfd_size_type amt = size * nmemb;
339
340 if (size == 0 || nmemb == 0)
341 return NULL;
342
343 /* If the size_t type is smaller than the bfd_size_type, eg because
344 you are building a 32-bit tool on a 64-bit host, then make sure
345 that when the sizes are cast to (size_t) no information is lost. */
346 if (sizeof (size_t) < sizeof (bfd_size_type)
347 && ( (bfd_size_type) ((size_t) size) != size
348 || (bfd_size_type) ((size_t) nmemb) != nmemb))
349 {
350 if (reason)
351 error (_("Size truncation prevents reading 0x%" BFD_VMA_FMT "x"
352 " elements of size 0x%" BFD_VMA_FMT "x for %s\n"),
353 nmemb, size, reason);
354 return NULL;
355 }
356
357 /* Check for size overflow. */
358 if (amt < nmemb)
359 {
360 if (reason)
361 error (_("Size overflow prevents reading 0x%" BFD_VMA_FMT "x"
362 " elements of size 0x%" BFD_VMA_FMT "x for %s\n"),
363 nmemb, size, reason);
364 return NULL;
365 }
366
367 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
368 attempting to allocate memory when the read is bound to fail. */
369 if (amt > current_file_size
370 || offset + archive_file_offset + amt > current_file_size)
371 {
372 if (reason)
373 error (_("Reading 0x%" BFD_VMA_FMT "x"
374 " bytes extends past end of file for %s\n"),
375 amt, reason);
376 return NULL;
377 }
378
379 if (fseek (file, archive_file_offset + offset, SEEK_SET))
380 {
381 if (reason)
382 error (_("Unable to seek to 0x%lx for %s\n"),
383 archive_file_offset + offset, reason);
384 return NULL;
385 }
386
387 mvar = var;
388 if (mvar == NULL)
389 {
390 /* Check for overflow. */
391 if (nmemb < (~(bfd_size_type) 0 - 1) / size)
392 /* + 1 so that we can '\0' terminate invalid string table sections. */
393 mvar = malloc ((size_t) amt + 1);
394
395 if (mvar == NULL)
396 {
397 if (reason)
398 error (_("Out of memory allocating 0x%" BFD_VMA_FMT "x"
399 " bytes for %s\n"),
400 amt, reason);
401 return NULL;
402 }
403
404 ((char *) mvar)[amt] = '\0';
405 }
406
407 if (fread (mvar, (size_t) size, (size_t) nmemb, file) != nmemb)
408 {
409 if (reason)
410 error (_("Unable to read in 0x%" BFD_VMA_FMT "x bytes of %s\n"),
411 amt, reason);
412 if (mvar != var)
413 free (mvar);
414 return NULL;
415 }
416
417 return mvar;
418 }
419
420 /* Print a VMA value. */
421
422 static int
423 print_vma (bfd_vma vma, print_mode mode)
424 {
425 int nc = 0;
426
427 switch (mode)
428 {
429 case FULL_HEX:
430 nc = printf ("0x");
431 /* Fall through. */
432
433 case LONG_HEX:
434 #ifdef BFD64
435 if (is_32bit_elf)
436 return nc + printf ("%8.8" BFD_VMA_FMT "x", vma);
437 #endif
438 printf_vma (vma);
439 return nc + 16;
440
441 case DEC_5:
442 if (vma <= 99999)
443 return printf ("%5" BFD_VMA_FMT "d", vma);
444 /* Fall through. */
445
446 case PREFIX_HEX:
447 nc = printf ("0x");
448 /* Fall through. */
449
450 case HEX:
451 return nc + printf ("%" BFD_VMA_FMT "x", vma);
452
453 case DEC:
454 return printf ("%" BFD_VMA_FMT "d", vma);
455
456 case UNSIGNED:
457 return printf ("%" BFD_VMA_FMT "u", vma);
458 }
459 return 0;
460 }
461
462 /* Display a symbol on stdout. Handles the display of control characters and
463 multibye characters (assuming the host environment supports them).
464
465 Display at most abs(WIDTH) characters, truncating as necessary, unless do_wide is true.
466
467 If WIDTH is negative then ensure that the output is at least (- WIDTH) characters,
468 padding as necessary.
469
470 Returns the number of emitted characters. */
471
472 static unsigned int
473 print_symbol (int width, const char *symbol)
474 {
475 bfd_boolean extra_padding = FALSE;
476 int num_printed = 0;
477 #ifdef HAVE_MBSTATE_T
478 mbstate_t state;
479 #endif
480 int width_remaining;
481
482 if (width < 0)
483 {
484 /* Keep the width positive. This also helps. */
485 width = - width;
486 extra_padding = TRUE;
487 }
488 assert (width != 0);
489
490 if (do_wide)
491 /* Set the remaining width to a very large value.
492 This simplifies the code below. */
493 width_remaining = INT_MAX;
494 else
495 width_remaining = width;
496
497 #ifdef HAVE_MBSTATE_T
498 /* Initialise the multibyte conversion state. */
499 memset (& state, 0, sizeof (state));
500 #endif
501
502 while (width_remaining)
503 {
504 size_t n;
505 const char c = *symbol++;
506
507 if (c == 0)
508 break;
509
510 /* Do not print control characters directly as they can affect terminal
511 settings. Such characters usually appear in the names generated
512 by the assembler for local labels. */
513 if (ISCNTRL (c))
514 {
515 if (width_remaining < 2)
516 break;
517
518 printf ("^%c", c + 0x40);
519 width_remaining -= 2;
520 num_printed += 2;
521 }
522 else if (ISPRINT (c))
523 {
524 putchar (c);
525 width_remaining --;
526 num_printed ++;
527 }
528 else
529 {
530 #ifdef HAVE_MBSTATE_T
531 wchar_t w;
532 #endif
533 /* Let printf do the hard work of displaying multibyte characters. */
534 printf ("%.1s", symbol - 1);
535 width_remaining --;
536 num_printed ++;
537
538 #ifdef HAVE_MBSTATE_T
539 /* Try to find out how many bytes made up the character that was
540 just printed. Advance the symbol pointer past the bytes that
541 were displayed. */
542 n = mbrtowc (& w, symbol - 1, MB_CUR_MAX, & state);
543 #else
544 n = 1;
545 #endif
546 if (n != (size_t) -1 && n != (size_t) -2 && n > 0)
547 symbol += (n - 1);
548 }
549 }
550
551 if (extra_padding && num_printed < width)
552 {
553 /* Fill in the remaining spaces. */
554 printf ("%-*s", width - num_printed, " ");
555 num_printed = width;
556 }
557
558 return num_printed;
559 }
560
561 /* Returns a pointer to a static buffer containing a printable version of
562 the given section's name. Like print_symbol, except that it does not try
563 to print multibyte characters, it just interprets them as hex values. */
564
565 static const char *
566 printable_section_name (const Elf_Internal_Shdr * sec)
567 {
568 #define MAX_PRINT_SEC_NAME_LEN 128
569 static char sec_name_buf [MAX_PRINT_SEC_NAME_LEN + 1];
570 const char * name = SECTION_NAME (sec);
571 char * buf = sec_name_buf;
572 char c;
573 unsigned int remaining = MAX_PRINT_SEC_NAME_LEN;
574
575 while ((c = * name ++) != 0)
576 {
577 if (ISCNTRL (c))
578 {
579 if (remaining < 2)
580 break;
581
582 * buf ++ = '^';
583 * buf ++ = c + 0x40;
584 remaining -= 2;
585 }
586 else if (ISPRINT (c))
587 {
588 * buf ++ = c;
589 remaining -= 1;
590 }
591 else
592 {
593 static char hex[17] = "0123456789ABCDEF";
594
595 if (remaining < 4)
596 break;
597 * buf ++ = '<';
598 * buf ++ = hex[(c & 0xf0) >> 4];
599 * buf ++ = hex[c & 0x0f];
600 * buf ++ = '>';
601 remaining -= 4;
602 }
603
604 if (remaining == 0)
605 break;
606 }
607
608 * buf = 0;
609 return sec_name_buf;
610 }
611
612 static const char *
613 printable_section_name_from_index (unsigned long ndx)
614 {
615 if (ndx >= elf_header.e_shnum)
616 return _("<corrupt>");
617
618 return printable_section_name (section_headers + ndx);
619 }
620
621 /* Return a pointer to section NAME, or NULL if no such section exists. */
622
623 static Elf_Internal_Shdr *
624 find_section (const char * name)
625 {
626 unsigned int i;
627
628 for (i = 0; i < elf_header.e_shnum; i++)
629 if (streq (SECTION_NAME (section_headers + i), name))
630 return section_headers + i;
631
632 return NULL;
633 }
634
635 /* Return a pointer to a section containing ADDR, or NULL if no such
636 section exists. */
637
638 static Elf_Internal_Shdr *
639 find_section_by_address (bfd_vma addr)
640 {
641 unsigned int i;
642
643 for (i = 0; i < elf_header.e_shnum; i++)
644 {
645 Elf_Internal_Shdr *sec = section_headers + i;
646 if (addr >= sec->sh_addr && addr < sec->sh_addr + sec->sh_size)
647 return sec;
648 }
649
650 return NULL;
651 }
652
653 static Elf_Internal_Shdr *
654 find_section_by_type (unsigned int type)
655 {
656 unsigned int i;
657
658 for (i = 0; i < elf_header.e_shnum; i++)
659 {
660 Elf_Internal_Shdr *sec = section_headers + i;
661 if (sec->sh_type == type)
662 return sec;
663 }
664
665 return NULL;
666 }
667
668 /* Return a pointer to section NAME, or NULL if no such section exists,
669 restricted to the list of sections given in SET. */
670
671 static Elf_Internal_Shdr *
672 find_section_in_set (const char * name, unsigned int * set)
673 {
674 unsigned int i;
675
676 if (set != NULL)
677 {
678 while ((i = *set++) > 0)
679 if (streq (SECTION_NAME (section_headers + i), name))
680 return section_headers + i;
681 }
682
683 return find_section (name);
684 }
685
686 /* Read an unsigned LEB128 encoded value from p. Set *PLEN to the number of
687 bytes read. */
688
689 static inline unsigned long
690 read_uleb128 (unsigned char *data,
691 unsigned int *length_return,
692 const unsigned char * const end)
693 {
694 return read_leb128 (data, length_return, FALSE, end);
695 }
696
697 /* Return true if the current file is for IA-64 machine and OpenVMS ABI.
698 This OS has so many departures from the ELF standard that we test it at
699 many places. */
700
701 static inline int
702 is_ia64_vms (void)
703 {
704 return elf_header.e_machine == EM_IA_64
705 && elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS;
706 }
707
708 /* Guess the relocation size commonly used by the specific machines. */
709
710 static int
711 guess_is_rela (unsigned int e_machine)
712 {
713 switch (e_machine)
714 {
715 /* Targets that use REL relocations. */
716 case EM_386:
717 case EM_IAMCU:
718 case EM_960:
719 case EM_ARM:
720 case EM_D10V:
721 case EM_CYGNUS_D10V:
722 case EM_DLX:
723 case EM_MIPS:
724 case EM_MIPS_RS3_LE:
725 case EM_CYGNUS_M32R:
726 case EM_SCORE:
727 case EM_XGATE:
728 return FALSE;
729
730 /* Targets that use RELA relocations. */
731 case EM_68K:
732 case EM_860:
733 case EM_AARCH64:
734 case EM_ADAPTEVA_EPIPHANY:
735 case EM_ALPHA:
736 case EM_ALTERA_NIOS2:
737 case EM_ARC:
738 case EM_ARC_COMPACT:
739 case EM_ARC_COMPACT2:
740 case EM_AVR:
741 case EM_AVR_OLD:
742 case EM_BLACKFIN:
743 case EM_CR16:
744 case EM_CRIS:
745 case EM_CRX:
746 case EM_D30V:
747 case EM_CYGNUS_D30V:
748 case EM_FR30:
749 case EM_FT32:
750 case EM_CYGNUS_FR30:
751 case EM_CYGNUS_FRV:
752 case EM_H8S:
753 case EM_H8_300:
754 case EM_H8_300H:
755 case EM_IA_64:
756 case EM_IP2K:
757 case EM_IP2K_OLD:
758 case EM_IQ2000:
759 case EM_LATTICEMICO32:
760 case EM_M32C_OLD:
761 case EM_M32C:
762 case EM_M32R:
763 case EM_MCORE:
764 case EM_CYGNUS_MEP:
765 case EM_METAG:
766 case EM_MMIX:
767 case EM_MN10200:
768 case EM_CYGNUS_MN10200:
769 case EM_MN10300:
770 case EM_CYGNUS_MN10300:
771 case EM_MOXIE:
772 case EM_MSP430:
773 case EM_MSP430_OLD:
774 case EM_MT:
775 case EM_NDS32:
776 case EM_NIOS32:
777 case EM_OR1K:
778 case EM_PPC64:
779 case EM_PPC:
780 case EM_TI_PRU:
781 case EM_RISCV:
782 case EM_RL78:
783 case EM_RX:
784 case EM_S390:
785 case EM_S390_OLD:
786 case EM_SH:
787 case EM_SPARC:
788 case EM_SPARC32PLUS:
789 case EM_SPARCV9:
790 case EM_SPU:
791 case EM_TI_C6000:
792 case EM_TILEGX:
793 case EM_TILEPRO:
794 case EM_V800:
795 case EM_V850:
796 case EM_CYGNUS_V850:
797 case EM_VAX:
798 case EM_VISIUM:
799 case EM_X86_64:
800 case EM_L1OM:
801 case EM_K1OM:
802 case EM_XSTORMY16:
803 case EM_XTENSA:
804 case EM_XTENSA_OLD:
805 case EM_MICROBLAZE:
806 case EM_MICROBLAZE_OLD:
807 return TRUE;
808
809 case EM_68HC05:
810 case EM_68HC08:
811 case EM_68HC11:
812 case EM_68HC16:
813 case EM_FX66:
814 case EM_ME16:
815 case EM_MMA:
816 case EM_NCPU:
817 case EM_NDR1:
818 case EM_PCP:
819 case EM_ST100:
820 case EM_ST19:
821 case EM_ST7:
822 case EM_ST9PLUS:
823 case EM_STARCORE:
824 case EM_SVX:
825 case EM_TINYJ:
826 default:
827 warn (_("Don't know about relocations on this machine architecture\n"));
828 return FALSE;
829 }
830 }
831
832 static int
833 slurp_rela_relocs (FILE * file,
834 unsigned long rel_offset,
835 unsigned long rel_size,
836 Elf_Internal_Rela ** relasp,
837 unsigned long * nrelasp)
838 {
839 Elf_Internal_Rela * relas;
840 size_t nrelas;
841 unsigned int i;
842
843 if (is_32bit_elf)
844 {
845 Elf32_External_Rela * erelas;
846
847 erelas = (Elf32_External_Rela *) get_data (NULL, file, rel_offset, 1,
848 rel_size, _("32-bit relocation data"));
849 if (!erelas)
850 return 0;
851
852 nrelas = rel_size / sizeof (Elf32_External_Rela);
853
854 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
855 sizeof (Elf_Internal_Rela));
856
857 if (relas == NULL)
858 {
859 free (erelas);
860 error (_("out of memory parsing relocs\n"));
861 return 0;
862 }
863
864 for (i = 0; i < nrelas; i++)
865 {
866 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
867 relas[i].r_info = BYTE_GET (erelas[i].r_info);
868 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
869 }
870
871 free (erelas);
872 }
873 else
874 {
875 Elf64_External_Rela * erelas;
876
877 erelas = (Elf64_External_Rela *) get_data (NULL, file, rel_offset, 1,
878 rel_size, _("64-bit relocation data"));
879 if (!erelas)
880 return 0;
881
882 nrelas = rel_size / sizeof (Elf64_External_Rela);
883
884 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
885 sizeof (Elf_Internal_Rela));
886
887 if (relas == NULL)
888 {
889 free (erelas);
890 error (_("out of memory parsing relocs\n"));
891 return 0;
892 }
893
894 for (i = 0; i < nrelas; i++)
895 {
896 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
897 relas[i].r_info = BYTE_GET (erelas[i].r_info);
898 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
899
900 /* The #ifdef BFD64 below is to prevent a compile time
901 warning. We know that if we do not have a 64 bit data
902 type that we will never execute this code anyway. */
903 #ifdef BFD64
904 if (elf_header.e_machine == EM_MIPS
905 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
906 {
907 /* In little-endian objects, r_info isn't really a
908 64-bit little-endian value: it has a 32-bit
909 little-endian symbol index followed by four
910 individual byte fields. Reorder INFO
911 accordingly. */
912 bfd_vma inf = relas[i].r_info;
913 inf = (((inf & 0xffffffff) << 32)
914 | ((inf >> 56) & 0xff)
915 | ((inf >> 40) & 0xff00)
916 | ((inf >> 24) & 0xff0000)
917 | ((inf >> 8) & 0xff000000));
918 relas[i].r_info = inf;
919 }
920 #endif /* BFD64 */
921 }
922
923 free (erelas);
924 }
925 *relasp = relas;
926 *nrelasp = nrelas;
927 return 1;
928 }
929
930 static int
931 slurp_rel_relocs (FILE * file,
932 unsigned long rel_offset,
933 unsigned long rel_size,
934 Elf_Internal_Rela ** relsp,
935 unsigned long * nrelsp)
936 {
937 Elf_Internal_Rela * rels;
938 size_t nrels;
939 unsigned int i;
940
941 if (is_32bit_elf)
942 {
943 Elf32_External_Rel * erels;
944
945 erels = (Elf32_External_Rel *) get_data (NULL, file, rel_offset, 1,
946 rel_size, _("32-bit relocation data"));
947 if (!erels)
948 return 0;
949
950 nrels = rel_size / sizeof (Elf32_External_Rel);
951
952 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
953
954 if (rels == NULL)
955 {
956 free (erels);
957 error (_("out of memory parsing relocs\n"));
958 return 0;
959 }
960
961 for (i = 0; i < nrels; i++)
962 {
963 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
964 rels[i].r_info = BYTE_GET (erels[i].r_info);
965 rels[i].r_addend = 0;
966 }
967
968 free (erels);
969 }
970 else
971 {
972 Elf64_External_Rel * erels;
973
974 erels = (Elf64_External_Rel *) get_data (NULL, file, rel_offset, 1,
975 rel_size, _("64-bit relocation data"));
976 if (!erels)
977 return 0;
978
979 nrels = rel_size / sizeof (Elf64_External_Rel);
980
981 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
982
983 if (rels == NULL)
984 {
985 free (erels);
986 error (_("out of memory parsing relocs\n"));
987 return 0;
988 }
989
990 for (i = 0; i < nrels; i++)
991 {
992 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
993 rels[i].r_info = BYTE_GET (erels[i].r_info);
994 rels[i].r_addend = 0;
995
996 /* The #ifdef BFD64 below is to prevent a compile time
997 warning. We know that if we do not have a 64 bit data
998 type that we will never execute this code anyway. */
999 #ifdef BFD64
1000 if (elf_header.e_machine == EM_MIPS
1001 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
1002 {
1003 /* In little-endian objects, r_info isn't really a
1004 64-bit little-endian value: it has a 32-bit
1005 little-endian symbol index followed by four
1006 individual byte fields. Reorder INFO
1007 accordingly. */
1008 bfd_vma inf = rels[i].r_info;
1009 inf = (((inf & 0xffffffff) << 32)
1010 | ((inf >> 56) & 0xff)
1011 | ((inf >> 40) & 0xff00)
1012 | ((inf >> 24) & 0xff0000)
1013 | ((inf >> 8) & 0xff000000));
1014 rels[i].r_info = inf;
1015 }
1016 #endif /* BFD64 */
1017 }
1018
1019 free (erels);
1020 }
1021 *relsp = rels;
1022 *nrelsp = nrels;
1023 return 1;
1024 }
1025
1026 /* Returns the reloc type extracted from the reloc info field. */
1027
1028 static unsigned int
1029 get_reloc_type (bfd_vma reloc_info)
1030 {
1031 if (is_32bit_elf)
1032 return ELF32_R_TYPE (reloc_info);
1033
1034 switch (elf_header.e_machine)
1035 {
1036 case EM_MIPS:
1037 /* Note: We assume that reloc_info has already been adjusted for us. */
1038 return ELF64_MIPS_R_TYPE (reloc_info);
1039
1040 case EM_SPARCV9:
1041 return ELF64_R_TYPE_ID (reloc_info);
1042
1043 default:
1044 return ELF64_R_TYPE (reloc_info);
1045 }
1046 }
1047
1048 /* Return the symbol index extracted from the reloc info field. */
1049
1050 static bfd_vma
1051 get_reloc_symindex (bfd_vma reloc_info)
1052 {
1053 return is_32bit_elf ? ELF32_R_SYM (reloc_info) : ELF64_R_SYM (reloc_info);
1054 }
1055
1056 static inline bfd_boolean
1057 uses_msp430x_relocs (void)
1058 {
1059 return
1060 elf_header.e_machine == EM_MSP430 /* Paranoia. */
1061 /* GCC uses osabi == ELFOSBI_STANDALONE. */
1062 && (((elf_header.e_flags & EF_MSP430_MACH) == E_MSP430_MACH_MSP430X)
1063 /* TI compiler uses ELFOSABI_NONE. */
1064 || (elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE));
1065 }
1066
1067 /* Display the contents of the relocation data found at the specified
1068 offset. */
1069
1070 static void
1071 dump_relocations (FILE * file,
1072 unsigned long rel_offset,
1073 unsigned long rel_size,
1074 Elf_Internal_Sym * symtab,
1075 unsigned long nsyms,
1076 char * strtab,
1077 unsigned long strtablen,
1078 int is_rela,
1079 int is_dynsym)
1080 {
1081 unsigned int i;
1082 Elf_Internal_Rela * rels;
1083
1084 if (is_rela == UNKNOWN)
1085 is_rela = guess_is_rela (elf_header.e_machine);
1086
1087 if (is_rela)
1088 {
1089 if (!slurp_rela_relocs (file, rel_offset, rel_size, &rels, &rel_size))
1090 return;
1091 }
1092 else
1093 {
1094 if (!slurp_rel_relocs (file, rel_offset, rel_size, &rels, &rel_size))
1095 return;
1096 }
1097
1098 if (is_32bit_elf)
1099 {
1100 if (is_rela)
1101 {
1102 if (do_wide)
1103 printf (_(" Offset Info Type Sym. Value Symbol's Name + Addend\n"));
1104 else
1105 printf (_(" Offset Info Type Sym.Value Sym. Name + Addend\n"));
1106 }
1107 else
1108 {
1109 if (do_wide)
1110 printf (_(" Offset Info Type Sym. Value Symbol's Name\n"));
1111 else
1112 printf (_(" Offset Info Type Sym.Value Sym. Name\n"));
1113 }
1114 }
1115 else
1116 {
1117 if (is_rela)
1118 {
1119 if (do_wide)
1120 printf (_(" Offset Info Type Symbol's Value Symbol's Name + Addend\n"));
1121 else
1122 printf (_(" Offset Info Type Sym. Value Sym. Name + Addend\n"));
1123 }
1124 else
1125 {
1126 if (do_wide)
1127 printf (_(" Offset Info Type Symbol's Value Symbol's Name\n"));
1128 else
1129 printf (_(" Offset Info Type Sym. Value Sym. Name\n"));
1130 }
1131 }
1132
1133 for (i = 0; i < rel_size; i++)
1134 {
1135 const char * rtype;
1136 bfd_vma offset;
1137 bfd_vma inf;
1138 bfd_vma symtab_index;
1139 bfd_vma type;
1140
1141 offset = rels[i].r_offset;
1142 inf = rels[i].r_info;
1143
1144 type = get_reloc_type (inf);
1145 symtab_index = get_reloc_symindex (inf);
1146
1147 if (is_32bit_elf)
1148 {
1149 printf ("%8.8lx %8.8lx ",
1150 (unsigned long) offset & 0xffffffff,
1151 (unsigned long) inf & 0xffffffff);
1152 }
1153 else
1154 {
1155 #if BFD_HOST_64BIT_LONG
1156 printf (do_wide
1157 ? "%16.16lx %16.16lx "
1158 : "%12.12lx %12.12lx ",
1159 offset, inf);
1160 #elif BFD_HOST_64BIT_LONG_LONG
1161 #ifndef __MSVCRT__
1162 printf (do_wide
1163 ? "%16.16llx %16.16llx "
1164 : "%12.12llx %12.12llx ",
1165 offset, inf);
1166 #else
1167 printf (do_wide
1168 ? "%16.16I64x %16.16I64x "
1169 : "%12.12I64x %12.12I64x ",
1170 offset, inf);
1171 #endif
1172 #else
1173 printf (do_wide
1174 ? "%8.8lx%8.8lx %8.8lx%8.8lx "
1175 : "%4.4lx%8.8lx %4.4lx%8.8lx ",
1176 _bfd_int64_high (offset),
1177 _bfd_int64_low (offset),
1178 _bfd_int64_high (inf),
1179 _bfd_int64_low (inf));
1180 #endif
1181 }
1182
1183 switch (elf_header.e_machine)
1184 {
1185 default:
1186 rtype = NULL;
1187 break;
1188
1189 case EM_AARCH64:
1190 rtype = elf_aarch64_reloc_type (type);
1191 break;
1192
1193 case EM_M32R:
1194 case EM_CYGNUS_M32R:
1195 rtype = elf_m32r_reloc_type (type);
1196 break;
1197
1198 case EM_386:
1199 case EM_IAMCU:
1200 rtype = elf_i386_reloc_type (type);
1201 break;
1202
1203 case EM_68HC11:
1204 case EM_68HC12:
1205 rtype = elf_m68hc11_reloc_type (type);
1206 break;
1207
1208 case EM_68K:
1209 rtype = elf_m68k_reloc_type (type);
1210 break;
1211
1212 case EM_960:
1213 rtype = elf_i960_reloc_type (type);
1214 break;
1215
1216 case EM_AVR:
1217 case EM_AVR_OLD:
1218 rtype = elf_avr_reloc_type (type);
1219 break;
1220
1221 case EM_OLD_SPARCV9:
1222 case EM_SPARC32PLUS:
1223 case EM_SPARCV9:
1224 case EM_SPARC:
1225 rtype = elf_sparc_reloc_type (type);
1226 break;
1227
1228 case EM_SPU:
1229 rtype = elf_spu_reloc_type (type);
1230 break;
1231
1232 case EM_V800:
1233 rtype = v800_reloc_type (type);
1234 break;
1235 case EM_V850:
1236 case EM_CYGNUS_V850:
1237 rtype = v850_reloc_type (type);
1238 break;
1239
1240 case EM_D10V:
1241 case EM_CYGNUS_D10V:
1242 rtype = elf_d10v_reloc_type (type);
1243 break;
1244
1245 case EM_D30V:
1246 case EM_CYGNUS_D30V:
1247 rtype = elf_d30v_reloc_type (type);
1248 break;
1249
1250 case EM_DLX:
1251 rtype = elf_dlx_reloc_type (type);
1252 break;
1253
1254 case EM_SH:
1255 rtype = elf_sh_reloc_type (type);
1256 break;
1257
1258 case EM_MN10300:
1259 case EM_CYGNUS_MN10300:
1260 rtype = elf_mn10300_reloc_type (type);
1261 break;
1262
1263 case EM_MN10200:
1264 case EM_CYGNUS_MN10200:
1265 rtype = elf_mn10200_reloc_type (type);
1266 break;
1267
1268 case EM_FR30:
1269 case EM_CYGNUS_FR30:
1270 rtype = elf_fr30_reloc_type (type);
1271 break;
1272
1273 case EM_CYGNUS_FRV:
1274 rtype = elf_frv_reloc_type (type);
1275 break;
1276
1277 case EM_FT32:
1278 rtype = elf_ft32_reloc_type (type);
1279 break;
1280
1281 case EM_MCORE:
1282 rtype = elf_mcore_reloc_type (type);
1283 break;
1284
1285 case EM_MMIX:
1286 rtype = elf_mmix_reloc_type (type);
1287 break;
1288
1289 case EM_MOXIE:
1290 rtype = elf_moxie_reloc_type (type);
1291 break;
1292
1293 case EM_MSP430:
1294 if (uses_msp430x_relocs ())
1295 {
1296 rtype = elf_msp430x_reloc_type (type);
1297 break;
1298 }
1299 /* Fall through. */
1300 case EM_MSP430_OLD:
1301 rtype = elf_msp430_reloc_type (type);
1302 break;
1303
1304 case EM_NDS32:
1305 rtype = elf_nds32_reloc_type (type);
1306 break;
1307
1308 case EM_PPC:
1309 rtype = elf_ppc_reloc_type (type);
1310 break;
1311
1312 case EM_PPC64:
1313 rtype = elf_ppc64_reloc_type (type);
1314 break;
1315
1316 case EM_MIPS:
1317 case EM_MIPS_RS3_LE:
1318 rtype = elf_mips_reloc_type (type);
1319 break;
1320
1321 case EM_RISCV:
1322 rtype = elf_riscv_reloc_type (type);
1323 break;
1324
1325 case EM_ALPHA:
1326 rtype = elf_alpha_reloc_type (type);
1327 break;
1328
1329 case EM_ARM:
1330 rtype = elf_arm_reloc_type (type);
1331 break;
1332
1333 case EM_ARC:
1334 case EM_ARC_COMPACT:
1335 case EM_ARC_COMPACT2:
1336 rtype = elf_arc_reloc_type (type);
1337 break;
1338
1339 case EM_PARISC:
1340 rtype = elf_hppa_reloc_type (type);
1341 break;
1342
1343 case EM_H8_300:
1344 case EM_H8_300H:
1345 case EM_H8S:
1346 rtype = elf_h8_reloc_type (type);
1347 break;
1348
1349 case EM_OR1K:
1350 rtype = elf_or1k_reloc_type (type);
1351 break;
1352
1353 case EM_PJ:
1354 case EM_PJ_OLD:
1355 rtype = elf_pj_reloc_type (type);
1356 break;
1357 case EM_IA_64:
1358 rtype = elf_ia64_reloc_type (type);
1359 break;
1360
1361 case EM_CRIS:
1362 rtype = elf_cris_reloc_type (type);
1363 break;
1364
1365 case EM_860:
1366 rtype = elf_i860_reloc_type (type);
1367 break;
1368
1369 case EM_X86_64:
1370 case EM_L1OM:
1371 case EM_K1OM:
1372 rtype = elf_x86_64_reloc_type (type);
1373 break;
1374
1375 case EM_S370:
1376 rtype = i370_reloc_type (type);
1377 break;
1378
1379 case EM_S390_OLD:
1380 case EM_S390:
1381 rtype = elf_s390_reloc_type (type);
1382 break;
1383
1384 case EM_SCORE:
1385 rtype = elf_score_reloc_type (type);
1386 break;
1387
1388 case EM_XSTORMY16:
1389 rtype = elf_xstormy16_reloc_type (type);
1390 break;
1391
1392 case EM_CRX:
1393 rtype = elf_crx_reloc_type (type);
1394 break;
1395
1396 case EM_VAX:
1397 rtype = elf_vax_reloc_type (type);
1398 break;
1399
1400 case EM_VISIUM:
1401 rtype = elf_visium_reloc_type (type);
1402 break;
1403
1404 case EM_ADAPTEVA_EPIPHANY:
1405 rtype = elf_epiphany_reloc_type (type);
1406 break;
1407
1408 case EM_IP2K:
1409 case EM_IP2K_OLD:
1410 rtype = elf_ip2k_reloc_type (type);
1411 break;
1412
1413 case EM_IQ2000:
1414 rtype = elf_iq2000_reloc_type (type);
1415 break;
1416
1417 case EM_XTENSA_OLD:
1418 case EM_XTENSA:
1419 rtype = elf_xtensa_reloc_type (type);
1420 break;
1421
1422 case EM_LATTICEMICO32:
1423 rtype = elf_lm32_reloc_type (type);
1424 break;
1425
1426 case EM_M32C_OLD:
1427 case EM_M32C:
1428 rtype = elf_m32c_reloc_type (type);
1429 break;
1430
1431 case EM_MT:
1432 rtype = elf_mt_reloc_type (type);
1433 break;
1434
1435 case EM_BLACKFIN:
1436 rtype = elf_bfin_reloc_type (type);
1437 break;
1438
1439 case EM_CYGNUS_MEP:
1440 rtype = elf_mep_reloc_type (type);
1441 break;
1442
1443 case EM_CR16:
1444 rtype = elf_cr16_reloc_type (type);
1445 break;
1446
1447 case EM_MICROBLAZE:
1448 case EM_MICROBLAZE_OLD:
1449 rtype = elf_microblaze_reloc_type (type);
1450 break;
1451
1452 case EM_RL78:
1453 rtype = elf_rl78_reloc_type (type);
1454 break;
1455
1456 case EM_RX:
1457 rtype = elf_rx_reloc_type (type);
1458 break;
1459
1460 case EM_METAG:
1461 rtype = elf_metag_reloc_type (type);
1462 break;
1463
1464 case EM_XC16X:
1465 case EM_C166:
1466 rtype = elf_xc16x_reloc_type (type);
1467 break;
1468
1469 case EM_TI_C6000:
1470 rtype = elf_tic6x_reloc_type (type);
1471 break;
1472
1473 case EM_TILEGX:
1474 rtype = elf_tilegx_reloc_type (type);
1475 break;
1476
1477 case EM_TILEPRO:
1478 rtype = elf_tilepro_reloc_type (type);
1479 break;
1480
1481 case EM_XGATE:
1482 rtype = elf_xgate_reloc_type (type);
1483 break;
1484
1485 case EM_ALTERA_NIOS2:
1486 rtype = elf_nios2_reloc_type (type);
1487 break;
1488
1489 case EM_TI_PRU:
1490 rtype = elf_pru_reloc_type (type);
1491 break;
1492 }
1493
1494 if (rtype == NULL)
1495 printf (_("unrecognized: %-7lx"), (unsigned long) type & 0xffffffff);
1496 else
1497 printf (do_wide ? "%-22.22s" : "%-17.17s", rtype);
1498
1499 if (elf_header.e_machine == EM_ALPHA
1500 && rtype != NULL
1501 && streq (rtype, "R_ALPHA_LITUSE")
1502 && is_rela)
1503 {
1504 switch (rels[i].r_addend)
1505 {
1506 case LITUSE_ALPHA_ADDR: rtype = "ADDR"; break;
1507 case LITUSE_ALPHA_BASE: rtype = "BASE"; break;
1508 case LITUSE_ALPHA_BYTOFF: rtype = "BYTOFF"; break;
1509 case LITUSE_ALPHA_JSR: rtype = "JSR"; break;
1510 case LITUSE_ALPHA_TLSGD: rtype = "TLSGD"; break;
1511 case LITUSE_ALPHA_TLSLDM: rtype = "TLSLDM"; break;
1512 case LITUSE_ALPHA_JSRDIRECT: rtype = "JSRDIRECT"; break;
1513 default: rtype = NULL;
1514 }
1515 if (rtype)
1516 printf (" (%s)", rtype);
1517 else
1518 {
1519 putchar (' ');
1520 printf (_("<unknown addend: %lx>"),
1521 (unsigned long) rels[i].r_addend);
1522 }
1523 }
1524 else if (symtab_index)
1525 {
1526 if (symtab == NULL || symtab_index >= nsyms)
1527 printf (_(" bad symbol index: %08lx"), (unsigned long) symtab_index);
1528 else
1529 {
1530 Elf_Internal_Sym * psym;
1531 const char * version_string;
1532 enum versioned_symbol_info sym_info;
1533 unsigned short vna_other;
1534
1535 psym = symtab + symtab_index;
1536
1537 version_string
1538 = get_symbol_version_string (file, is_dynsym,
1539 strtab, strtablen,
1540 symtab_index,
1541 psym,
1542 &sym_info,
1543 &vna_other);
1544
1545 printf (" ");
1546
1547 if (ELF_ST_TYPE (psym->st_info) == STT_GNU_IFUNC)
1548 {
1549 const char * name;
1550 unsigned int len;
1551 unsigned int width = is_32bit_elf ? 8 : 14;
1552
1553 /* Relocations against GNU_IFUNC symbols do not use the value
1554 of the symbol as the address to relocate against. Instead
1555 they invoke the function named by the symbol and use its
1556 result as the address for relocation.
1557
1558 To indicate this to the user, do not display the value of
1559 the symbol in the "Symbols's Value" field. Instead show
1560 its name followed by () as a hint that the symbol is
1561 invoked. */
1562
1563 if (strtab == NULL
1564 || psym->st_name == 0
1565 || psym->st_name >= strtablen)
1566 name = "??";
1567 else
1568 name = strtab + psym->st_name;
1569
1570 len = print_symbol (width, name);
1571 if (version_string)
1572 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1573 version_string);
1574 printf ("()%-*s", len <= width ? (width + 1) - len : 1, " ");
1575 }
1576 else
1577 {
1578 print_vma (psym->st_value, LONG_HEX);
1579
1580 printf (is_32bit_elf ? " " : " ");
1581 }
1582
1583 if (psym->st_name == 0)
1584 {
1585 const char * sec_name = "<null>";
1586 char name_buf[40];
1587
1588 if (ELF_ST_TYPE (psym->st_info) == STT_SECTION)
1589 {
1590 if (psym->st_shndx < elf_header.e_shnum)
1591 sec_name = SECTION_NAME (section_headers + psym->st_shndx);
1592 else if (psym->st_shndx == SHN_ABS)
1593 sec_name = "ABS";
1594 else if (psym->st_shndx == SHN_COMMON)
1595 sec_name = "COMMON";
1596 else if ((elf_header.e_machine == EM_MIPS
1597 && psym->st_shndx == SHN_MIPS_SCOMMON)
1598 || (elf_header.e_machine == EM_TI_C6000
1599 && psym->st_shndx == SHN_TIC6X_SCOMMON))
1600 sec_name = "SCOMMON";
1601 else if (elf_header.e_machine == EM_MIPS
1602 && psym->st_shndx == SHN_MIPS_SUNDEFINED)
1603 sec_name = "SUNDEF";
1604 else if ((elf_header.e_machine == EM_X86_64
1605 || elf_header.e_machine == EM_L1OM
1606 || elf_header.e_machine == EM_K1OM)
1607 && psym->st_shndx == SHN_X86_64_LCOMMON)
1608 sec_name = "LARGE_COMMON";
1609 else if (elf_header.e_machine == EM_IA_64
1610 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX
1611 && psym->st_shndx == SHN_IA_64_ANSI_COMMON)
1612 sec_name = "ANSI_COM";
1613 else if (is_ia64_vms ()
1614 && psym->st_shndx == SHN_IA_64_VMS_SYMVEC)
1615 sec_name = "VMS_SYMVEC";
1616 else
1617 {
1618 sprintf (name_buf, "<section 0x%x>",
1619 (unsigned int) psym->st_shndx);
1620 sec_name = name_buf;
1621 }
1622 }
1623 print_symbol (22, sec_name);
1624 }
1625 else if (strtab == NULL)
1626 printf (_("<string table index: %3ld>"), psym->st_name);
1627 else if (psym->st_name >= strtablen)
1628 printf (_("<corrupt string table index: %3ld>"), psym->st_name);
1629 else
1630 {
1631 print_symbol (22, strtab + psym->st_name);
1632 if (version_string)
1633 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1634 version_string);
1635 }
1636
1637 if (is_rela)
1638 {
1639 bfd_vma off = rels[i].r_addend;
1640
1641 if ((bfd_signed_vma) off < 0)
1642 printf (" - %" BFD_VMA_FMT "x", - off);
1643 else
1644 printf (" + %" BFD_VMA_FMT "x", off);
1645 }
1646 }
1647 }
1648 else if (is_rela)
1649 {
1650 bfd_vma off = rels[i].r_addend;
1651
1652 printf ("%*c", is_32bit_elf ? 12 : 20, ' ');
1653 if ((bfd_signed_vma) off < 0)
1654 printf ("-%" BFD_VMA_FMT "x", - off);
1655 else
1656 printf ("%" BFD_VMA_FMT "x", off);
1657 }
1658
1659 if (elf_header.e_machine == EM_SPARCV9
1660 && rtype != NULL
1661 && streq (rtype, "R_SPARC_OLO10"))
1662 printf (" + %lx", (unsigned long) ELF64_R_TYPE_DATA (inf));
1663
1664 putchar ('\n');
1665
1666 #ifdef BFD64
1667 if (! is_32bit_elf && elf_header.e_machine == EM_MIPS)
1668 {
1669 bfd_vma type2 = ELF64_MIPS_R_TYPE2 (inf);
1670 bfd_vma type3 = ELF64_MIPS_R_TYPE3 (inf);
1671 const char * rtype2 = elf_mips_reloc_type (type2);
1672 const char * rtype3 = elf_mips_reloc_type (type3);
1673
1674 printf (" Type2: ");
1675
1676 if (rtype2 == NULL)
1677 printf (_("unrecognized: %-7lx"),
1678 (unsigned long) type2 & 0xffffffff);
1679 else
1680 printf ("%-17.17s", rtype2);
1681
1682 printf ("\n Type3: ");
1683
1684 if (rtype3 == NULL)
1685 printf (_("unrecognized: %-7lx"),
1686 (unsigned long) type3 & 0xffffffff);
1687 else
1688 printf ("%-17.17s", rtype3);
1689
1690 putchar ('\n');
1691 }
1692 #endif /* BFD64 */
1693 }
1694
1695 free (rels);
1696 }
1697
1698 static const char *
1699 get_mips_dynamic_type (unsigned long type)
1700 {
1701 switch (type)
1702 {
1703 case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION";
1704 case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP";
1705 case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM";
1706 case DT_MIPS_IVERSION: return "MIPS_IVERSION";
1707 case DT_MIPS_FLAGS: return "MIPS_FLAGS";
1708 case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS";
1709 case DT_MIPS_MSYM: return "MIPS_MSYM";
1710 case DT_MIPS_CONFLICT: return "MIPS_CONFLICT";
1711 case DT_MIPS_LIBLIST: return "MIPS_LIBLIST";
1712 case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO";
1713 case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO";
1714 case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO";
1715 case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO";
1716 case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO";
1717 case DT_MIPS_GOTSYM: return "MIPS_GOTSYM";
1718 case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO";
1719 case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP";
1720 case DT_MIPS_RLD_MAP_REL: return "MIPS_RLD_MAP_REL";
1721 case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS";
1722 case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO";
1723 case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE";
1724 case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO";
1725 case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC";
1726 case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO";
1727 case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM";
1728 case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO";
1729 case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM";
1730 case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO";
1731 case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS";
1732 case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT";
1733 case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
1734 case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX";
1735 case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX";
1736 case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX";
1737 case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX";
1738 case DT_MIPS_OPTIONS: return "MIPS_OPTIONS";
1739 case DT_MIPS_INTERFACE: return "MIPS_INTERFACE";
1740 case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN";
1741 case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE";
1742 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR";
1743 case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX";
1744 case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE";
1745 case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE";
1746 case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC";
1747 case DT_MIPS_PLTGOT: return "MIPS_PLTGOT";
1748 case DT_MIPS_RWPLT: return "MIPS_RWPLT";
1749 default:
1750 return NULL;
1751 }
1752 }
1753
1754 static const char *
1755 get_sparc64_dynamic_type (unsigned long type)
1756 {
1757 switch (type)
1758 {
1759 case DT_SPARC_REGISTER: return "SPARC_REGISTER";
1760 default:
1761 return NULL;
1762 }
1763 }
1764
1765 static const char *
1766 get_ppc_dynamic_type (unsigned long type)
1767 {
1768 switch (type)
1769 {
1770 case DT_PPC_GOT: return "PPC_GOT";
1771 case DT_PPC_OPT: return "PPC_OPT";
1772 default:
1773 return NULL;
1774 }
1775 }
1776
1777 static const char *
1778 get_ppc64_dynamic_type (unsigned long type)
1779 {
1780 switch (type)
1781 {
1782 case DT_PPC64_GLINK: return "PPC64_GLINK";
1783 case DT_PPC64_OPD: return "PPC64_OPD";
1784 case DT_PPC64_OPDSZ: return "PPC64_OPDSZ";
1785 case DT_PPC64_OPT: return "PPC64_OPT";
1786 default:
1787 return NULL;
1788 }
1789 }
1790
1791 static const char *
1792 get_parisc_dynamic_type (unsigned long type)
1793 {
1794 switch (type)
1795 {
1796 case DT_HP_LOAD_MAP: return "HP_LOAD_MAP";
1797 case DT_HP_DLD_FLAGS: return "HP_DLD_FLAGS";
1798 case DT_HP_DLD_HOOK: return "HP_DLD_HOOK";
1799 case DT_HP_UX10_INIT: return "HP_UX10_INIT";
1800 case DT_HP_UX10_INITSZ: return "HP_UX10_INITSZ";
1801 case DT_HP_PREINIT: return "HP_PREINIT";
1802 case DT_HP_PREINITSZ: return "HP_PREINITSZ";
1803 case DT_HP_NEEDED: return "HP_NEEDED";
1804 case DT_HP_TIME_STAMP: return "HP_TIME_STAMP";
1805 case DT_HP_CHECKSUM: return "HP_CHECKSUM";
1806 case DT_HP_GST_SIZE: return "HP_GST_SIZE";
1807 case DT_HP_GST_VERSION: return "HP_GST_VERSION";
1808 case DT_HP_GST_HASHVAL: return "HP_GST_HASHVAL";
1809 case DT_HP_EPLTREL: return "HP_GST_EPLTREL";
1810 case DT_HP_EPLTRELSZ: return "HP_GST_EPLTRELSZ";
1811 case DT_HP_FILTERED: return "HP_FILTERED";
1812 case DT_HP_FILTER_TLS: return "HP_FILTER_TLS";
1813 case DT_HP_COMPAT_FILTERED: return "HP_COMPAT_FILTERED";
1814 case DT_HP_LAZYLOAD: return "HP_LAZYLOAD";
1815 case DT_HP_BIND_NOW_COUNT: return "HP_BIND_NOW_COUNT";
1816 case DT_PLT: return "PLT";
1817 case DT_PLT_SIZE: return "PLT_SIZE";
1818 case DT_DLT: return "DLT";
1819 case DT_DLT_SIZE: return "DLT_SIZE";
1820 default:
1821 return NULL;
1822 }
1823 }
1824
1825 static const char *
1826 get_ia64_dynamic_type (unsigned long type)
1827 {
1828 switch (type)
1829 {
1830 case DT_IA_64_PLT_RESERVE: return "IA_64_PLT_RESERVE";
1831 case DT_IA_64_VMS_SUBTYPE: return "VMS_SUBTYPE";
1832 case DT_IA_64_VMS_IMGIOCNT: return "VMS_IMGIOCNT";
1833 case DT_IA_64_VMS_LNKFLAGS: return "VMS_LNKFLAGS";
1834 case DT_IA_64_VMS_VIR_MEM_BLK_SIZ: return "VMS_VIR_MEM_BLK_SIZ";
1835 case DT_IA_64_VMS_IDENT: return "VMS_IDENT";
1836 case DT_IA_64_VMS_NEEDED_IDENT: return "VMS_NEEDED_IDENT";
1837 case DT_IA_64_VMS_IMG_RELA_CNT: return "VMS_IMG_RELA_CNT";
1838 case DT_IA_64_VMS_SEG_RELA_CNT: return "VMS_SEG_RELA_CNT";
1839 case DT_IA_64_VMS_FIXUP_RELA_CNT: return "VMS_FIXUP_RELA_CNT";
1840 case DT_IA_64_VMS_FIXUP_NEEDED: return "VMS_FIXUP_NEEDED";
1841 case DT_IA_64_VMS_SYMVEC_CNT: return "VMS_SYMVEC_CNT";
1842 case DT_IA_64_VMS_XLATED: return "VMS_XLATED";
1843 case DT_IA_64_VMS_STACKSIZE: return "VMS_STACKSIZE";
1844 case DT_IA_64_VMS_UNWINDSZ: return "VMS_UNWINDSZ";
1845 case DT_IA_64_VMS_UNWIND_CODSEG: return "VMS_UNWIND_CODSEG";
1846 case DT_IA_64_VMS_UNWIND_INFOSEG: return "VMS_UNWIND_INFOSEG";
1847 case DT_IA_64_VMS_LINKTIME: return "VMS_LINKTIME";
1848 case DT_IA_64_VMS_SEG_NO: return "VMS_SEG_NO";
1849 case DT_IA_64_VMS_SYMVEC_OFFSET: return "VMS_SYMVEC_OFFSET";
1850 case DT_IA_64_VMS_SYMVEC_SEG: return "VMS_SYMVEC_SEG";
1851 case DT_IA_64_VMS_UNWIND_OFFSET: return "VMS_UNWIND_OFFSET";
1852 case DT_IA_64_VMS_UNWIND_SEG: return "VMS_UNWIND_SEG";
1853 case DT_IA_64_VMS_STRTAB_OFFSET: return "VMS_STRTAB_OFFSET";
1854 case DT_IA_64_VMS_SYSVER_OFFSET: return "VMS_SYSVER_OFFSET";
1855 case DT_IA_64_VMS_IMG_RELA_OFF: return "VMS_IMG_RELA_OFF";
1856 case DT_IA_64_VMS_SEG_RELA_OFF: return "VMS_SEG_RELA_OFF";
1857 case DT_IA_64_VMS_FIXUP_RELA_OFF: return "VMS_FIXUP_RELA_OFF";
1858 case DT_IA_64_VMS_PLTGOT_OFFSET: return "VMS_PLTGOT_OFFSET";
1859 case DT_IA_64_VMS_PLTGOT_SEG: return "VMS_PLTGOT_SEG";
1860 case DT_IA_64_VMS_FPMODE: return "VMS_FPMODE";
1861 default:
1862 return NULL;
1863 }
1864 }
1865
1866 static const char *
1867 get_solaris_section_type (unsigned long type)
1868 {
1869 switch (type)
1870 {
1871 case 0x6fffffee: return "SUNW_ancillary";
1872 case 0x6fffffef: return "SUNW_capchain";
1873 case 0x6ffffff0: return "SUNW_capinfo";
1874 case 0x6ffffff1: return "SUNW_symsort";
1875 case 0x6ffffff2: return "SUNW_tlssort";
1876 case 0x6ffffff3: return "SUNW_LDYNSYM";
1877 case 0x6ffffff4: return "SUNW_dof";
1878 case 0x6ffffff5: return "SUNW_cap";
1879 case 0x6ffffff6: return "SUNW_SIGNATURE";
1880 case 0x6ffffff7: return "SUNW_ANNOTATE";
1881 case 0x6ffffff8: return "SUNW_DEBUGSTR";
1882 case 0x6ffffff9: return "SUNW_DEBUG";
1883 case 0x6ffffffa: return "SUNW_move";
1884 case 0x6ffffffb: return "SUNW_COMDAT";
1885 case 0x6ffffffc: return "SUNW_syminfo";
1886 case 0x6ffffffd: return "SUNW_verdef";
1887 case 0x6ffffffe: return "SUNW_verneed";
1888 case 0x6fffffff: return "SUNW_versym";
1889 case 0x70000000: return "SPARC_GOTDATA";
1890 default: return NULL;
1891 }
1892 }
1893
1894 static const char *
1895 get_alpha_dynamic_type (unsigned long type)
1896 {
1897 switch (type)
1898 {
1899 case DT_ALPHA_PLTRO: return "ALPHA_PLTRO";
1900 default:
1901 return NULL;
1902 }
1903 }
1904
1905 static const char *
1906 get_score_dynamic_type (unsigned long type)
1907 {
1908 switch (type)
1909 {
1910 case DT_SCORE_BASE_ADDRESS: return "SCORE_BASE_ADDRESS";
1911 case DT_SCORE_LOCAL_GOTNO: return "SCORE_LOCAL_GOTNO";
1912 case DT_SCORE_SYMTABNO: return "SCORE_SYMTABNO";
1913 case DT_SCORE_GOTSYM: return "SCORE_GOTSYM";
1914 case DT_SCORE_UNREFEXTNO: return "SCORE_UNREFEXTNO";
1915 case DT_SCORE_HIPAGENO: return "SCORE_HIPAGENO";
1916 default:
1917 return NULL;
1918 }
1919 }
1920
1921 static const char *
1922 get_tic6x_dynamic_type (unsigned long type)
1923 {
1924 switch (type)
1925 {
1926 case DT_C6000_GSYM_OFFSET: return "C6000_GSYM_OFFSET";
1927 case DT_C6000_GSTR_OFFSET: return "C6000_GSTR_OFFSET";
1928 case DT_C6000_DSBT_BASE: return "C6000_DSBT_BASE";
1929 case DT_C6000_DSBT_SIZE: return "C6000_DSBT_SIZE";
1930 case DT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
1931 case DT_C6000_DSBT_INDEX: return "C6000_DSBT_INDEX";
1932 default:
1933 return NULL;
1934 }
1935 }
1936
1937 static const char *
1938 get_nios2_dynamic_type (unsigned long type)
1939 {
1940 switch (type)
1941 {
1942 case DT_NIOS2_GP: return "NIOS2_GP";
1943 default:
1944 return NULL;
1945 }
1946 }
1947
1948 static const char *
1949 get_solaris_dynamic_type (unsigned long type)
1950 {
1951 switch (type)
1952 {
1953 case 0x6000000d: return "SUNW_AUXILIARY";
1954 case 0x6000000e: return "SUNW_RTLDINF";
1955 case 0x6000000f: return "SUNW_FILTER";
1956 case 0x60000010: return "SUNW_CAP";
1957 case 0x60000011: return "SUNW_SYMTAB";
1958 case 0x60000012: return "SUNW_SYMSZ";
1959 case 0x60000013: return "SUNW_SORTENT";
1960 case 0x60000014: return "SUNW_SYMSORT";
1961 case 0x60000015: return "SUNW_SYMSORTSZ";
1962 case 0x60000016: return "SUNW_TLSSORT";
1963 case 0x60000017: return "SUNW_TLSSORTSZ";
1964 case 0x60000018: return "SUNW_CAPINFO";
1965 case 0x60000019: return "SUNW_STRPAD";
1966 case 0x6000001a: return "SUNW_CAPCHAIN";
1967 case 0x6000001b: return "SUNW_LDMACH";
1968 case 0x6000001d: return "SUNW_CAPCHAINENT";
1969 case 0x6000001f: return "SUNW_CAPCHAINSZ";
1970 case 0x60000021: return "SUNW_PARENT";
1971 case 0x60000023: return "SUNW_ASLR";
1972 case 0x60000025: return "SUNW_RELAX";
1973 case 0x60000029: return "SUNW_NXHEAP";
1974 case 0x6000002b: return "SUNW_NXSTACK";
1975
1976 case 0x70000001: return "SPARC_REGISTER";
1977 case 0x7ffffffd: return "AUXILIARY";
1978 case 0x7ffffffe: return "USED";
1979 case 0x7fffffff: return "FILTER";
1980
1981 default: return NULL;
1982 }
1983 }
1984
1985 static const char *
1986 get_dynamic_type (unsigned long type)
1987 {
1988 static char buff[64];
1989
1990 switch (type)
1991 {
1992 case DT_NULL: return "NULL";
1993 case DT_NEEDED: return "NEEDED";
1994 case DT_PLTRELSZ: return "PLTRELSZ";
1995 case DT_PLTGOT: return "PLTGOT";
1996 case DT_HASH: return "HASH";
1997 case DT_STRTAB: return "STRTAB";
1998 case DT_SYMTAB: return "SYMTAB";
1999 case DT_RELA: return "RELA";
2000 case DT_RELASZ: return "RELASZ";
2001 case DT_RELAENT: return "RELAENT";
2002 case DT_STRSZ: return "STRSZ";
2003 case DT_SYMENT: return "SYMENT";
2004 case DT_INIT: return "INIT";
2005 case DT_FINI: return "FINI";
2006 case DT_SONAME: return "SONAME";
2007 case DT_RPATH: return "RPATH";
2008 case DT_SYMBOLIC: return "SYMBOLIC";
2009 case DT_REL: return "REL";
2010 case DT_RELSZ: return "RELSZ";
2011 case DT_RELENT: return "RELENT";
2012 case DT_PLTREL: return "PLTREL";
2013 case DT_DEBUG: return "DEBUG";
2014 case DT_TEXTREL: return "TEXTREL";
2015 case DT_JMPREL: return "JMPREL";
2016 case DT_BIND_NOW: return "BIND_NOW";
2017 case DT_INIT_ARRAY: return "INIT_ARRAY";
2018 case DT_FINI_ARRAY: return "FINI_ARRAY";
2019 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
2020 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
2021 case DT_RUNPATH: return "RUNPATH";
2022 case DT_FLAGS: return "FLAGS";
2023
2024 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
2025 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
2026 case DT_SYMTAB_SHNDX: return "SYMTAB_SHNDX";
2027
2028 case DT_CHECKSUM: return "CHECKSUM";
2029 case DT_PLTPADSZ: return "PLTPADSZ";
2030 case DT_MOVEENT: return "MOVEENT";
2031 case DT_MOVESZ: return "MOVESZ";
2032 case DT_FEATURE: return "FEATURE";
2033 case DT_POSFLAG_1: return "POSFLAG_1";
2034 case DT_SYMINSZ: return "SYMINSZ";
2035 case DT_SYMINENT: return "SYMINENT"; /* aka VALRNGHI */
2036
2037 case DT_ADDRRNGLO: return "ADDRRNGLO";
2038 case DT_CONFIG: return "CONFIG";
2039 case DT_DEPAUDIT: return "DEPAUDIT";
2040 case DT_AUDIT: return "AUDIT";
2041 case DT_PLTPAD: return "PLTPAD";
2042 case DT_MOVETAB: return "MOVETAB";
2043 case DT_SYMINFO: return "SYMINFO"; /* aka ADDRRNGHI */
2044
2045 case DT_VERSYM: return "VERSYM";
2046
2047 case DT_TLSDESC_GOT: return "TLSDESC_GOT";
2048 case DT_TLSDESC_PLT: return "TLSDESC_PLT";
2049 case DT_RELACOUNT: return "RELACOUNT";
2050 case DT_RELCOUNT: return "RELCOUNT";
2051 case DT_FLAGS_1: return "FLAGS_1";
2052 case DT_VERDEF: return "VERDEF";
2053 case DT_VERDEFNUM: return "VERDEFNUM";
2054 case DT_VERNEED: return "VERNEED";
2055 case DT_VERNEEDNUM: return "VERNEEDNUM";
2056
2057 case DT_AUXILIARY: return "AUXILIARY";
2058 case DT_USED: return "USED";
2059 case DT_FILTER: return "FILTER";
2060
2061 case DT_GNU_PRELINKED: return "GNU_PRELINKED";
2062 case DT_GNU_CONFLICT: return "GNU_CONFLICT";
2063 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
2064 case DT_GNU_LIBLIST: return "GNU_LIBLIST";
2065 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
2066 case DT_GNU_HASH: return "GNU_HASH";
2067
2068 default:
2069 if ((type >= DT_LOPROC) && (type <= DT_HIPROC))
2070 {
2071 const char * result;
2072
2073 switch (elf_header.e_machine)
2074 {
2075 case EM_MIPS:
2076 case EM_MIPS_RS3_LE:
2077 result = get_mips_dynamic_type (type);
2078 break;
2079 case EM_SPARCV9:
2080 result = get_sparc64_dynamic_type (type);
2081 break;
2082 case EM_PPC:
2083 result = get_ppc_dynamic_type (type);
2084 break;
2085 case EM_PPC64:
2086 result = get_ppc64_dynamic_type (type);
2087 break;
2088 case EM_IA_64:
2089 result = get_ia64_dynamic_type (type);
2090 break;
2091 case EM_ALPHA:
2092 result = get_alpha_dynamic_type (type);
2093 break;
2094 case EM_SCORE:
2095 result = get_score_dynamic_type (type);
2096 break;
2097 case EM_TI_C6000:
2098 result = get_tic6x_dynamic_type (type);
2099 break;
2100 case EM_ALTERA_NIOS2:
2101 result = get_nios2_dynamic_type (type);
2102 break;
2103 default:
2104 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2105 result = get_solaris_dynamic_type (type);
2106 else
2107 result = NULL;
2108 break;
2109 }
2110
2111 if (result != NULL)
2112 return result;
2113
2114 snprintf (buff, sizeof (buff), _("Processor Specific: %lx"), type);
2115 }
2116 else if (((type >= DT_LOOS) && (type <= DT_HIOS))
2117 || (elf_header.e_machine == EM_PARISC
2118 && (type >= OLD_DT_LOOS) && (type <= OLD_DT_HIOS)))
2119 {
2120 const char * result;
2121
2122 switch (elf_header.e_machine)
2123 {
2124 case EM_PARISC:
2125 result = get_parisc_dynamic_type (type);
2126 break;
2127 case EM_IA_64:
2128 result = get_ia64_dynamic_type (type);
2129 break;
2130 default:
2131 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2132 result = get_solaris_dynamic_type (type);
2133 else
2134 result = NULL;
2135 break;
2136 }
2137
2138 if (result != NULL)
2139 return result;
2140
2141 snprintf (buff, sizeof (buff), _("Operating System specific: %lx"),
2142 type);
2143 }
2144 else
2145 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), type);
2146
2147 return buff;
2148 }
2149 }
2150
2151 static char *
2152 get_file_type (unsigned e_type)
2153 {
2154 static char buff[32];
2155
2156 switch (e_type)
2157 {
2158 case ET_NONE: return _("NONE (None)");
2159 case ET_REL: return _("REL (Relocatable file)");
2160 case ET_EXEC: return _("EXEC (Executable file)");
2161 case ET_DYN: return _("DYN (Shared object file)");
2162 case ET_CORE: return _("CORE (Core file)");
2163
2164 default:
2165 if ((e_type >= ET_LOPROC) && (e_type <= ET_HIPROC))
2166 snprintf (buff, sizeof (buff), _("Processor Specific: (%x)"), e_type);
2167 else if ((e_type >= ET_LOOS) && (e_type <= ET_HIOS))
2168 snprintf (buff, sizeof (buff), _("OS Specific: (%x)"), e_type);
2169 else
2170 snprintf (buff, sizeof (buff), _("<unknown>: %x"), e_type);
2171 return buff;
2172 }
2173 }
2174
2175 static char *
2176 get_machine_name (unsigned e_machine)
2177 {
2178 static char buff[64]; /* XXX */
2179
2180 switch (e_machine)
2181 {
2182 case EM_NONE: return _("None");
2183 case EM_AARCH64: return "AArch64";
2184 case EM_M32: return "WE32100";
2185 case EM_SPARC: return "Sparc";
2186 case EM_SPU: return "SPU";
2187 case EM_386: return "Intel 80386";
2188 case EM_68K: return "MC68000";
2189 case EM_88K: return "MC88000";
2190 case EM_IAMCU: return "Intel MCU";
2191 case EM_860: return "Intel 80860";
2192 case EM_MIPS: return "MIPS R3000";
2193 case EM_S370: return "IBM System/370";
2194 case EM_MIPS_RS3_LE: return "MIPS R4000 big-endian";
2195 case EM_OLD_SPARCV9: return "Sparc v9 (old)";
2196 case EM_PARISC: return "HPPA";
2197 case EM_PPC_OLD: return "Power PC (old)";
2198 case EM_SPARC32PLUS: return "Sparc v8+" ;
2199 case EM_960: return "Intel 90860";
2200 case EM_PPC: return "PowerPC";
2201 case EM_PPC64: return "PowerPC64";
2202 case EM_FR20: return "Fujitsu FR20";
2203 case EM_FT32: return "FTDI FT32";
2204 case EM_RH32: return "TRW RH32";
2205 case EM_MCORE: return "MCORE";
2206 case EM_ARM: return "ARM";
2207 case EM_OLD_ALPHA: return "Digital Alpha (old)";
2208 case EM_SH: return "Renesas / SuperH SH";
2209 case EM_SPARCV9: return "Sparc v9";
2210 case EM_TRICORE: return "Siemens Tricore";
2211 case EM_ARC: return "ARC";
2212 case EM_ARC_COMPACT: return "ARCompact";
2213 case EM_ARC_COMPACT2: return "ARCv2";
2214 case EM_H8_300: return "Renesas H8/300";
2215 case EM_H8_300H: return "Renesas H8/300H";
2216 case EM_H8S: return "Renesas H8S";
2217 case EM_H8_500: return "Renesas H8/500";
2218 case EM_IA_64: return "Intel IA-64";
2219 case EM_MIPS_X: return "Stanford MIPS-X";
2220 case EM_COLDFIRE: return "Motorola Coldfire";
2221 case EM_ALPHA: return "Alpha";
2222 case EM_CYGNUS_D10V:
2223 case EM_D10V: return "d10v";
2224 case EM_CYGNUS_D30V:
2225 case EM_D30V: return "d30v";
2226 case EM_CYGNUS_M32R:
2227 case EM_M32R: return "Renesas M32R (formerly Mitsubishi M32r)";
2228 case EM_CYGNUS_V850:
2229 case EM_V800: return "Renesas V850 (using RH850 ABI)";
2230 case EM_V850: return "Renesas V850";
2231 case EM_CYGNUS_MN10300:
2232 case EM_MN10300: return "mn10300";
2233 case EM_CYGNUS_MN10200:
2234 case EM_MN10200: return "mn10200";
2235 case EM_MOXIE: return "Moxie";
2236 case EM_CYGNUS_FR30:
2237 case EM_FR30: return "Fujitsu FR30";
2238 case EM_CYGNUS_FRV: return "Fujitsu FR-V";
2239 case EM_PJ_OLD:
2240 case EM_PJ: return "picoJava";
2241 case EM_MMA: return "Fujitsu Multimedia Accelerator";
2242 case EM_PCP: return "Siemens PCP";
2243 case EM_NCPU: return "Sony nCPU embedded RISC processor";
2244 case EM_NDR1: return "Denso NDR1 microprocesspr";
2245 case EM_STARCORE: return "Motorola Star*Core processor";
2246 case EM_ME16: return "Toyota ME16 processor";
2247 case EM_ST100: return "STMicroelectronics ST100 processor";
2248 case EM_TINYJ: return "Advanced Logic Corp. TinyJ embedded processor";
2249 case EM_PDSP: return "Sony DSP processor";
2250 case EM_PDP10: return "Digital Equipment Corp. PDP-10";
2251 case EM_PDP11: return "Digital Equipment Corp. PDP-11";
2252 case EM_FX66: return "Siemens FX66 microcontroller";
2253 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 bit microcontroller";
2254 case EM_ST7: return "STMicroelectronics ST7 8-bit microcontroller";
2255 case EM_68HC16: return "Motorola MC68HC16 Microcontroller";
2256 case EM_68HC12: return "Motorola MC68HC12 Microcontroller";
2257 case EM_68HC11: return "Motorola MC68HC11 Microcontroller";
2258 case EM_68HC08: return "Motorola MC68HC08 Microcontroller";
2259 case EM_68HC05: return "Motorola MC68HC05 Microcontroller";
2260 case EM_SVX: return "Silicon Graphics SVx";
2261 case EM_ST19: return "STMicroelectronics ST19 8-bit microcontroller";
2262 case EM_VAX: return "Digital VAX";
2263 case EM_VISIUM: return "CDS VISIUMcore processor";
2264 case EM_AVR_OLD:
2265 case EM_AVR: return "Atmel AVR 8-bit microcontroller";
2266 case EM_CRIS: return "Axis Communications 32-bit embedded processor";
2267 case EM_JAVELIN: return "Infineon Technologies 32-bit embedded cpu";
2268 case EM_FIREPATH: return "Element 14 64-bit DSP processor";
2269 case EM_ZSP: return "LSI Logic's 16-bit DSP processor";
2270 case EM_MMIX: return "Donald Knuth's educational 64-bit processor";
2271 case EM_HUANY: return "Harvard Universitys's machine-independent object format";
2272 case EM_PRISM: return "Vitesse Prism";
2273 case EM_X86_64: return "Advanced Micro Devices X86-64";
2274 case EM_L1OM: return "Intel L1OM";
2275 case EM_K1OM: return "Intel K1OM";
2276 case EM_S390_OLD:
2277 case EM_S390: return "IBM S/390";
2278 case EM_SCORE: return "SUNPLUS S+Core";
2279 case EM_XSTORMY16: return "Sanyo XStormy16 CPU core";
2280 case EM_OR1K: return "OpenRISC 1000";
2281 case EM_CRX: return "National Semiconductor CRX microprocessor";
2282 case EM_ADAPTEVA_EPIPHANY: return "Adapteva EPIPHANY";
2283 case EM_DLX: return "OpenDLX";
2284 case EM_IP2K_OLD:
2285 case EM_IP2K: return "Ubicom IP2xxx 8-bit microcontrollers";
2286 case EM_IQ2000: return "Vitesse IQ2000";
2287 case EM_XTENSA_OLD:
2288 case EM_XTENSA: return "Tensilica Xtensa Processor";
2289 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
2290 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
2291 case EM_NS32K: return "National Semiconductor 32000 series";
2292 case EM_TPC: return "Tenor Network TPC processor";
2293 case EM_ST200: return "STMicroelectronics ST200 microcontroller";
2294 case EM_MAX: return "MAX Processor";
2295 case EM_CR: return "National Semiconductor CompactRISC";
2296 case EM_F2MC16: return "Fujitsu F2MC16";
2297 case EM_MSP430: return "Texas Instruments msp430 microcontroller";
2298 case EM_LATTICEMICO32: return "Lattice Mico32";
2299 case EM_M32C_OLD:
2300 case EM_M32C: return "Renesas M32c";
2301 case EM_MT: return "Morpho Techologies MT processor";
2302 case EM_BLACKFIN: return "Analog Devices Blackfin";
2303 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
2304 case EM_SEP: return "Sharp embedded microprocessor";
2305 case EM_ARCA: return "Arca RISC microprocessor";
2306 case EM_UNICORE: return "Unicore";
2307 case EM_EXCESS: return "eXcess 16/32/64-bit configurable embedded CPU";
2308 case EM_DXP: return "Icera Semiconductor Inc. Deep Execution Processor";
2309 case EM_NIOS32: return "Altera Nios";
2310 case EM_ALTERA_NIOS2: return "Altera Nios II";
2311 case EM_C166:
2312 case EM_XC16X: return "Infineon Technologies xc16x";
2313 case EM_M16C: return "Renesas M16C series microprocessors";
2314 case EM_DSPIC30F: return "Microchip Technology dsPIC30F Digital Signal Controller";
2315 case EM_CE: return "Freescale Communication Engine RISC core";
2316 case EM_TSK3000: return "Altium TSK3000 core";
2317 case EM_RS08: return "Freescale RS08 embedded processor";
2318 case EM_ECOG2: return "Cyan Technology eCOG2 microprocessor";
2319 case EM_DSP24: return "New Japan Radio (NJR) 24-bit DSP Processor";
2320 case EM_VIDEOCORE3: return "Broadcom VideoCore III processor";
2321 case EM_SE_C17: return "Seiko Epson C17 family";
2322 case EM_TI_C6000: return "Texas Instruments TMS320C6000 DSP family";
2323 case EM_TI_C2000: return "Texas Instruments TMS320C2000 DSP family";
2324 case EM_TI_C5500: return "Texas Instruments TMS320C55x DSP family";
2325 case EM_MMDSP_PLUS: return "STMicroelectronics 64bit VLIW Data Signal Processor";
2326 case EM_CYPRESS_M8C: return "Cypress M8C microprocessor";
2327 case EM_R32C: return "Renesas R32C series microprocessors";
2328 case EM_TRIMEDIA: return "NXP Semiconductors TriMedia architecture family";
2329 case EM_QDSP6: return "QUALCOMM DSP6 Processor";
2330 case EM_8051: return "Intel 8051 and variants";
2331 case EM_STXP7X: return "STMicroelectronics STxP7x family";
2332 case EM_NDS32: return "Andes Technology compact code size embedded RISC processor family";
2333 case EM_ECOG1X: return "Cyan Technology eCOG1X family";
2334 case EM_MAXQ30: return "Dallas Semiconductor MAXQ30 Core microcontrollers";
2335 case EM_XIMO16: return "New Japan Radio (NJR) 16-bit DSP Processor";
2336 case EM_MANIK: return "M2000 Reconfigurable RISC Microprocessor";
2337 case EM_CRAYNV2: return "Cray Inc. NV2 vector architecture";
2338 case EM_CYGNUS_MEP: return "Toshiba MeP Media Engine";
2339 case EM_CR16:
2340 case EM_MICROBLAZE:
2341 case EM_MICROBLAZE_OLD: return "Xilinx MicroBlaze";
2342 case EM_RISCV: return "RISC-V";
2343 case EM_RL78: return "Renesas RL78";
2344 case EM_RX: return "Renesas RX";
2345 case EM_METAG: return "Imagination Technologies Meta processor architecture";
2346 case EM_MCST_ELBRUS: return "MCST Elbrus general purpose hardware architecture";
2347 case EM_ECOG16: return "Cyan Technology eCOG16 family";
2348 case EM_ETPU: return "Freescale Extended Time Processing Unit";
2349 case EM_SLE9X: return "Infineon Technologies SLE9X core";
2350 case EM_AVR32: return "Atmel Corporation 32-bit microprocessor family";
2351 case EM_STM8: return "STMicroeletronics STM8 8-bit microcontroller";
2352 case EM_TILE64: return "Tilera TILE64 multicore architecture family";
2353 case EM_TILEPRO: return "Tilera TILEPro multicore architecture family";
2354 case EM_TILEGX: return "Tilera TILE-Gx multicore architecture family";
2355 case EM_CUDA: return "NVIDIA CUDA architecture";
2356 case EM_XGATE: return "Motorola XGATE embedded processor";
2357 case EM_CLOUDSHIELD: return "CloudShield architecture family";
2358 case EM_COREA_1ST: return "KIPO-KAIST Core-A 1st generation processor family";
2359 case EM_COREA_2ND: return "KIPO-KAIST Core-A 2nd generation processor family";
2360 case EM_OPEN8: return "Open8 8-bit RISC soft processor core";
2361 case EM_VIDEOCORE5: return "Broadcom VideoCore V processor";
2362 case EM_56800EX: return "Freescale 56800EX Digital Signal Controller (DSC)";
2363 case EM_BA1: return "Beyond BA1 CPU architecture";
2364 case EM_BA2: return "Beyond BA2 CPU architecture";
2365 case EM_XCORE: return "XMOS xCORE processor family";
2366 case EM_MCHP_PIC: return "Microchip 8-bit PIC(r) family";
2367 case EM_KM32: return "KM211 KM32 32-bit processor";
2368 case EM_KMX32: return "KM211 KMX32 32-bit processor";
2369 case EM_KMX16: return "KM211 KMX16 16-bit processor";
2370 case EM_KMX8: return "KM211 KMX8 8-bit processor";
2371 case EM_KVARC: return "KM211 KVARC processor";
2372 case EM_CDP: return "Paneve CDP architecture family";
2373 case EM_COGE: return "Cognitive Smart Memory Processor";
2374 case EM_COOL: return "Bluechip Systems CoolEngine";
2375 case EM_NORC: return "Nanoradio Optimized RISC";
2376 case EM_CSR_KALIMBA: return "CSR Kalimba architecture family";
2377 case EM_Z80: return "Zilog Z80";
2378 case EM_AMDGPU: return "AMD GPU architecture";
2379 case EM_TI_PRU: return "TI PRU I/O processor";
2380 default:
2381 snprintf (buff, sizeof (buff), _("<unknown>: 0x%x"), e_machine);
2382 return buff;
2383 }
2384 }
2385
2386 static void
2387 decode_ARC_machine_flags (unsigned e_flags, unsigned e_machine, char buf[])
2388 {
2389 /* ARC has two machine types EM_ARC_COMPACT and EM_ARC_COMPACT2. Some
2390 other compilers don't a specific architecture type in the e_flags, and
2391 instead use EM_ARC_COMPACT for old ARC600, ARC601, and ARC700
2392 architectures, and switch to EM_ARC_COMPACT2 for newer ARCEM and ARCHS
2393 architectures.
2394
2395 Th GNU tools follows this use of EM_ARC_COMPACT and EM_ARC_COMPACT2,
2396 but also sets a specific architecture type in the e_flags field.
2397
2398 However, when decoding the flags we don't worry if we see an
2399 unexpected pairing, for example EM_ARC_COMPACT machine type, with
2400 ARCEM architecture type. */
2401
2402 switch (e_flags & EF_ARC_MACH_MSK)
2403 {
2404 /* We only expect these to occur for EM_ARC_COMPACT2. */
2405 case EF_ARC_CPU_ARCV2EM:
2406 strcat (buf, ", ARC EM");
2407 break;
2408 case EF_ARC_CPU_ARCV2HS:
2409 strcat (buf, ", ARC HS");
2410 break;
2411
2412 /* We only expect these to occur for EM_ARC_COMPACT. */
2413 case E_ARC_MACH_ARC600:
2414 strcat (buf, ", ARC600");
2415 break;
2416 case E_ARC_MACH_ARC601:
2417 strcat (buf, ", ARC601");
2418 break;
2419 case E_ARC_MACH_ARC700:
2420 strcat (buf, ", ARC700");
2421 break;
2422
2423 /* The only times we should end up here are (a) A corrupt ELF, (b) A
2424 new ELF with new architecture being read by an old version of
2425 readelf, or (c) An ELF built with non-GNU compiler that does not
2426 set the architecture in the e_flags. */
2427 default:
2428 if (e_machine == EM_ARC_COMPACT)
2429 strcat (buf, ", Unknown ARCompact");
2430 else
2431 strcat (buf, ", Unknown ARC");
2432 break;
2433 }
2434
2435 switch (e_flags & EF_ARC_OSABI_MSK)
2436 {
2437 case E_ARC_OSABI_ORIG:
2438 strcat (buf, ", (ABI:legacy)");
2439 break;
2440 case E_ARC_OSABI_V2:
2441 strcat (buf, ", (ABI:v2)");
2442 break;
2443 /* Only upstream 3.9+ kernels will support ARCv2 ISA. */
2444 case E_ARC_OSABI_V3:
2445 strcat (buf, ", v3 no-legacy-syscalls ABI");
2446 break;
2447 default:
2448 strcat (buf, ", unrecognised ARC OSABI flag");
2449 break;
2450 }
2451 }
2452
2453 static void
2454 decode_ARM_machine_flags (unsigned e_flags, char buf[])
2455 {
2456 unsigned eabi;
2457 int unknown = 0;
2458
2459 eabi = EF_ARM_EABI_VERSION (e_flags);
2460 e_flags &= ~ EF_ARM_EABIMASK;
2461
2462 /* Handle "generic" ARM flags. */
2463 if (e_flags & EF_ARM_RELEXEC)
2464 {
2465 strcat (buf, ", relocatable executable");
2466 e_flags &= ~ EF_ARM_RELEXEC;
2467 }
2468
2469 /* Now handle EABI specific flags. */
2470 switch (eabi)
2471 {
2472 default:
2473 strcat (buf, ", <unrecognized EABI>");
2474 if (e_flags)
2475 unknown = 1;
2476 break;
2477
2478 case EF_ARM_EABI_VER1:
2479 strcat (buf, ", Version1 EABI");
2480 while (e_flags)
2481 {
2482 unsigned flag;
2483
2484 /* Process flags one bit at a time. */
2485 flag = e_flags & - e_flags;
2486 e_flags &= ~ flag;
2487
2488 switch (flag)
2489 {
2490 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2491 strcat (buf, ", sorted symbol tables");
2492 break;
2493
2494 default:
2495 unknown = 1;
2496 break;
2497 }
2498 }
2499 break;
2500
2501 case EF_ARM_EABI_VER2:
2502 strcat (buf, ", Version2 EABI");
2503 while (e_flags)
2504 {
2505 unsigned flag;
2506
2507 /* Process flags one bit at a time. */
2508 flag = e_flags & - e_flags;
2509 e_flags &= ~ flag;
2510
2511 switch (flag)
2512 {
2513 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2514 strcat (buf, ", sorted symbol tables");
2515 break;
2516
2517 case EF_ARM_DYNSYMSUSESEGIDX:
2518 strcat (buf, ", dynamic symbols use segment index");
2519 break;
2520
2521 case EF_ARM_MAPSYMSFIRST:
2522 strcat (buf, ", mapping symbols precede others");
2523 break;
2524
2525 default:
2526 unknown = 1;
2527 break;
2528 }
2529 }
2530 break;
2531
2532 case EF_ARM_EABI_VER3:
2533 strcat (buf, ", Version3 EABI");
2534 break;
2535
2536 case EF_ARM_EABI_VER4:
2537 strcat (buf, ", Version4 EABI");
2538 while (e_flags)
2539 {
2540 unsigned flag;
2541
2542 /* Process flags one bit at a time. */
2543 flag = e_flags & - e_flags;
2544 e_flags &= ~ flag;
2545
2546 switch (flag)
2547 {
2548 case EF_ARM_BE8:
2549 strcat (buf, ", BE8");
2550 break;
2551
2552 case EF_ARM_LE8:
2553 strcat (buf, ", LE8");
2554 break;
2555
2556 default:
2557 unknown = 1;
2558 break;
2559 }
2560 break;
2561 }
2562 break;
2563
2564 case EF_ARM_EABI_VER5:
2565 strcat (buf, ", Version5 EABI");
2566 while (e_flags)
2567 {
2568 unsigned flag;
2569
2570 /* Process flags one bit at a time. */
2571 flag = e_flags & - e_flags;
2572 e_flags &= ~ flag;
2573
2574 switch (flag)
2575 {
2576 case EF_ARM_BE8:
2577 strcat (buf, ", BE8");
2578 break;
2579
2580 case EF_ARM_LE8:
2581 strcat (buf, ", LE8");
2582 break;
2583
2584 case EF_ARM_ABI_FLOAT_SOFT: /* Conflicts with EF_ARM_SOFT_FLOAT. */
2585 strcat (buf, ", soft-float ABI");
2586 break;
2587
2588 case EF_ARM_ABI_FLOAT_HARD: /* Conflicts with EF_ARM_VFP_FLOAT. */
2589 strcat (buf, ", hard-float ABI");
2590 break;
2591
2592 default:
2593 unknown = 1;
2594 break;
2595 }
2596 }
2597 break;
2598
2599 case EF_ARM_EABI_UNKNOWN:
2600 strcat (buf, ", GNU EABI");
2601 while (e_flags)
2602 {
2603 unsigned flag;
2604
2605 /* Process flags one bit at a time. */
2606 flag = e_flags & - e_flags;
2607 e_flags &= ~ flag;
2608
2609 switch (flag)
2610 {
2611 case EF_ARM_INTERWORK:
2612 strcat (buf, ", interworking enabled");
2613 break;
2614
2615 case EF_ARM_APCS_26:
2616 strcat (buf, ", uses APCS/26");
2617 break;
2618
2619 case EF_ARM_APCS_FLOAT:
2620 strcat (buf, ", uses APCS/float");
2621 break;
2622
2623 case EF_ARM_PIC:
2624 strcat (buf, ", position independent");
2625 break;
2626
2627 case EF_ARM_ALIGN8:
2628 strcat (buf, ", 8 bit structure alignment");
2629 break;
2630
2631 case EF_ARM_NEW_ABI:
2632 strcat (buf, ", uses new ABI");
2633 break;
2634
2635 case EF_ARM_OLD_ABI:
2636 strcat (buf, ", uses old ABI");
2637 break;
2638
2639 case EF_ARM_SOFT_FLOAT:
2640 strcat (buf, ", software FP");
2641 break;
2642
2643 case EF_ARM_VFP_FLOAT:
2644 strcat (buf, ", VFP");
2645 break;
2646
2647 case EF_ARM_MAVERICK_FLOAT:
2648 strcat (buf, ", Maverick FP");
2649 break;
2650
2651 default:
2652 unknown = 1;
2653 break;
2654 }
2655 }
2656 }
2657
2658 if (unknown)
2659 strcat (buf,_(", <unknown>"));
2660 }
2661
2662 static void
2663 decode_AVR_machine_flags (unsigned e_flags, char buf[], size_t size)
2664 {
2665 --size; /* Leave space for null terminator. */
2666
2667 switch (e_flags & EF_AVR_MACH)
2668 {
2669 case E_AVR_MACH_AVR1:
2670 strncat (buf, ", avr:1", size);
2671 break;
2672 case E_AVR_MACH_AVR2:
2673 strncat (buf, ", avr:2", size);
2674 break;
2675 case E_AVR_MACH_AVR25:
2676 strncat (buf, ", avr:25", size);
2677 break;
2678 case E_AVR_MACH_AVR3:
2679 strncat (buf, ", avr:3", size);
2680 break;
2681 case E_AVR_MACH_AVR31:
2682 strncat (buf, ", avr:31", size);
2683 break;
2684 case E_AVR_MACH_AVR35:
2685 strncat (buf, ", avr:35", size);
2686 break;
2687 case E_AVR_MACH_AVR4:
2688 strncat (buf, ", avr:4", size);
2689 break;
2690 case E_AVR_MACH_AVR5:
2691 strncat (buf, ", avr:5", size);
2692 break;
2693 case E_AVR_MACH_AVR51:
2694 strncat (buf, ", avr:51", size);
2695 break;
2696 case E_AVR_MACH_AVR6:
2697 strncat (buf, ", avr:6", size);
2698 break;
2699 case E_AVR_MACH_AVRTINY:
2700 strncat (buf, ", avr:100", size);
2701 break;
2702 case E_AVR_MACH_XMEGA1:
2703 strncat (buf, ", avr:101", size);
2704 break;
2705 case E_AVR_MACH_XMEGA2:
2706 strncat (buf, ", avr:102", size);
2707 break;
2708 case E_AVR_MACH_XMEGA3:
2709 strncat (buf, ", avr:103", size);
2710 break;
2711 case E_AVR_MACH_XMEGA4:
2712 strncat (buf, ", avr:104", size);
2713 break;
2714 case E_AVR_MACH_XMEGA5:
2715 strncat (buf, ", avr:105", size);
2716 break;
2717 case E_AVR_MACH_XMEGA6:
2718 strncat (buf, ", avr:106", size);
2719 break;
2720 case E_AVR_MACH_XMEGA7:
2721 strncat (buf, ", avr:107", size);
2722 break;
2723 default:
2724 strncat (buf, ", avr:<unknown>", size);
2725 break;
2726 }
2727
2728 size -= strlen (buf);
2729 if (e_flags & EF_AVR_LINKRELAX_PREPARED)
2730 strncat (buf, ", link-relax", size);
2731 }
2732
2733 static void
2734 decode_NDS32_machine_flags (unsigned e_flags, char buf[], size_t size)
2735 {
2736 unsigned abi;
2737 unsigned arch;
2738 unsigned config;
2739 unsigned version;
2740 int has_fpu = 0;
2741 int r = 0;
2742
2743 static const char *ABI_STRINGS[] =
2744 {
2745 "ABI v0", /* use r5 as return register; only used in N1213HC */
2746 "ABI v1", /* use r0 as return register */
2747 "ABI v2", /* use r0 as return register and don't reserve 24 bytes for arguments */
2748 "ABI v2fp", /* for FPU */
2749 "AABI",
2750 "ABI2 FP+"
2751 };
2752 static const char *VER_STRINGS[] =
2753 {
2754 "Andes ELF V1.3 or older",
2755 "Andes ELF V1.3.1",
2756 "Andes ELF V1.4"
2757 };
2758 static const char *ARCH_STRINGS[] =
2759 {
2760 "",
2761 "Andes Star v1.0",
2762 "Andes Star v2.0",
2763 "Andes Star v3.0",
2764 "Andes Star v3.0m"
2765 };
2766
2767 abi = EF_NDS_ABI & e_flags;
2768 arch = EF_NDS_ARCH & e_flags;
2769 config = EF_NDS_INST & e_flags;
2770 version = EF_NDS32_ELF_VERSION & e_flags;
2771
2772 memset (buf, 0, size);
2773
2774 switch (abi)
2775 {
2776 case E_NDS_ABI_V0:
2777 case E_NDS_ABI_V1:
2778 case E_NDS_ABI_V2:
2779 case E_NDS_ABI_V2FP:
2780 case E_NDS_ABI_AABI:
2781 case E_NDS_ABI_V2FP_PLUS:
2782 /* In case there are holes in the array. */
2783 r += snprintf (buf + r, size - r, ", %s", ABI_STRINGS[abi >> EF_NDS_ABI_SHIFT]);
2784 break;
2785
2786 default:
2787 r += snprintf (buf + r, size - r, ", <unrecognized ABI>");
2788 break;
2789 }
2790
2791 switch (version)
2792 {
2793 case E_NDS32_ELF_VER_1_2:
2794 case E_NDS32_ELF_VER_1_3:
2795 case E_NDS32_ELF_VER_1_4:
2796 r += snprintf (buf + r, size - r, ", %s", VER_STRINGS[version >> EF_NDS32_ELF_VERSION_SHIFT]);
2797 break;
2798
2799 default:
2800 r += snprintf (buf + r, size - r, ", <unrecognized ELF version number>");
2801 break;
2802 }
2803
2804 if (E_NDS_ABI_V0 == abi)
2805 {
2806 /* OLD ABI; only used in N1213HC, has performance extension 1. */
2807 r += snprintf (buf + r, size - r, ", Andes Star v1.0, N1213HC, MAC, PERF1");
2808 if (arch == E_NDS_ARCH_STAR_V1_0)
2809 r += snprintf (buf + r, size -r, ", 16b"); /* has 16-bit instructions */
2810 return;
2811 }
2812
2813 switch (arch)
2814 {
2815 case E_NDS_ARCH_STAR_V1_0:
2816 case E_NDS_ARCH_STAR_V2_0:
2817 case E_NDS_ARCH_STAR_V3_0:
2818 case E_NDS_ARCH_STAR_V3_M:
2819 r += snprintf (buf + r, size - r, ", %s", ARCH_STRINGS[arch >> EF_NDS_ARCH_SHIFT]);
2820 break;
2821
2822 default:
2823 r += snprintf (buf + r, size - r, ", <unrecognized architecture>");
2824 /* ARCH version determines how the e_flags are interpreted.
2825 If it is unknown, we cannot proceed. */
2826 return;
2827 }
2828
2829 /* Newer ABI; Now handle architecture specific flags. */
2830 if (arch == E_NDS_ARCH_STAR_V1_0)
2831 {
2832 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2833 r += snprintf (buf + r, size -r, ", MFUSR_PC");
2834
2835 if (!(config & E_NDS32_HAS_NO_MAC_INST))
2836 r += snprintf (buf + r, size -r, ", MAC");
2837
2838 if (config & E_NDS32_HAS_DIV_INST)
2839 r += snprintf (buf + r, size -r, ", DIV");
2840
2841 if (config & E_NDS32_HAS_16BIT_INST)
2842 r += snprintf (buf + r, size -r, ", 16b");
2843 }
2844 else
2845 {
2846 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2847 {
2848 if (version <= E_NDS32_ELF_VER_1_3)
2849 r += snprintf (buf + r, size -r, ", [B8]");
2850 else
2851 r += snprintf (buf + r, size -r, ", EX9");
2852 }
2853
2854 if (config & E_NDS32_HAS_MAC_DX_INST)
2855 r += snprintf (buf + r, size -r, ", MAC_DX");
2856
2857 if (config & E_NDS32_HAS_DIV_DX_INST)
2858 r += snprintf (buf + r, size -r, ", DIV_DX");
2859
2860 if (config & E_NDS32_HAS_16BIT_INST)
2861 {
2862 if (version <= E_NDS32_ELF_VER_1_3)
2863 r += snprintf (buf + r, size -r, ", 16b");
2864 else
2865 r += snprintf (buf + r, size -r, ", IFC");
2866 }
2867 }
2868
2869 if (config & E_NDS32_HAS_EXT_INST)
2870 r += snprintf (buf + r, size -r, ", PERF1");
2871
2872 if (config & E_NDS32_HAS_EXT2_INST)
2873 r += snprintf (buf + r, size -r, ", PERF2");
2874
2875 if (config & E_NDS32_HAS_FPU_INST)
2876 {
2877 has_fpu = 1;
2878 r += snprintf (buf + r, size -r, ", FPU_SP");
2879 }
2880
2881 if (config & E_NDS32_HAS_FPU_DP_INST)
2882 {
2883 has_fpu = 1;
2884 r += snprintf (buf + r, size -r, ", FPU_DP");
2885 }
2886
2887 if (config & E_NDS32_HAS_FPU_MAC_INST)
2888 {
2889 has_fpu = 1;
2890 r += snprintf (buf + r, size -r, ", FPU_MAC");
2891 }
2892
2893 if (has_fpu)
2894 {
2895 switch ((config & E_NDS32_FPU_REG_CONF) >> E_NDS32_FPU_REG_CONF_SHIFT)
2896 {
2897 case E_NDS32_FPU_REG_8SP_4DP:
2898 r += snprintf (buf + r, size -r, ", FPU_REG:8/4");
2899 break;
2900 case E_NDS32_FPU_REG_16SP_8DP:
2901 r += snprintf (buf + r, size -r, ", FPU_REG:16/8");
2902 break;
2903 case E_NDS32_FPU_REG_32SP_16DP:
2904 r += snprintf (buf + r, size -r, ", FPU_REG:32/16");
2905 break;
2906 case E_NDS32_FPU_REG_32SP_32DP:
2907 r += snprintf (buf + r, size -r, ", FPU_REG:32/32");
2908 break;
2909 }
2910 }
2911
2912 if (config & E_NDS32_HAS_AUDIO_INST)
2913 r += snprintf (buf + r, size -r, ", AUDIO");
2914
2915 if (config & E_NDS32_HAS_STRING_INST)
2916 r += snprintf (buf + r, size -r, ", STR");
2917
2918 if (config & E_NDS32_HAS_REDUCED_REGS)
2919 r += snprintf (buf + r, size -r, ", 16REG");
2920
2921 if (config & E_NDS32_HAS_VIDEO_INST)
2922 {
2923 if (version <= E_NDS32_ELF_VER_1_3)
2924 r += snprintf (buf + r, size -r, ", VIDEO");
2925 else
2926 r += snprintf (buf + r, size -r, ", SATURATION");
2927 }
2928
2929 if (config & E_NDS32_HAS_ENCRIPT_INST)
2930 r += snprintf (buf + r, size -r, ", ENCRP");
2931
2932 if (config & E_NDS32_HAS_L2C_INST)
2933 r += snprintf (buf + r, size -r, ", L2C");
2934 }
2935
2936 static char *
2937 get_machine_flags (unsigned e_flags, unsigned e_machine)
2938 {
2939 static char buf[1024];
2940
2941 buf[0] = '\0';
2942
2943 if (e_flags)
2944 {
2945 switch (e_machine)
2946 {
2947 default:
2948 break;
2949
2950 case EM_ARC_COMPACT2:
2951 case EM_ARC_COMPACT:
2952 decode_ARC_machine_flags (e_flags, e_machine, buf);
2953 break;
2954
2955 case EM_ARM:
2956 decode_ARM_machine_flags (e_flags, buf);
2957 break;
2958
2959 case EM_AVR:
2960 decode_AVR_machine_flags (e_flags, buf, sizeof buf);
2961 break;
2962
2963 case EM_BLACKFIN:
2964 if (e_flags & EF_BFIN_PIC)
2965 strcat (buf, ", PIC");
2966
2967 if (e_flags & EF_BFIN_FDPIC)
2968 strcat (buf, ", FDPIC");
2969
2970 if (e_flags & EF_BFIN_CODE_IN_L1)
2971 strcat (buf, ", code in L1");
2972
2973 if (e_flags & EF_BFIN_DATA_IN_L1)
2974 strcat (buf, ", data in L1");
2975
2976 break;
2977
2978 case EM_CYGNUS_FRV:
2979 switch (e_flags & EF_FRV_CPU_MASK)
2980 {
2981 case EF_FRV_CPU_GENERIC:
2982 break;
2983
2984 default:
2985 strcat (buf, ", fr???");
2986 break;
2987
2988 case EF_FRV_CPU_FR300:
2989 strcat (buf, ", fr300");
2990 break;
2991
2992 case EF_FRV_CPU_FR400:
2993 strcat (buf, ", fr400");
2994 break;
2995 case EF_FRV_CPU_FR405:
2996 strcat (buf, ", fr405");
2997 break;
2998
2999 case EF_FRV_CPU_FR450:
3000 strcat (buf, ", fr450");
3001 break;
3002
3003 case EF_FRV_CPU_FR500:
3004 strcat (buf, ", fr500");
3005 break;
3006 case EF_FRV_CPU_FR550:
3007 strcat (buf, ", fr550");
3008 break;
3009
3010 case EF_FRV_CPU_SIMPLE:
3011 strcat (buf, ", simple");
3012 break;
3013 case EF_FRV_CPU_TOMCAT:
3014 strcat (buf, ", tomcat");
3015 break;
3016 }
3017 break;
3018
3019 case EM_68K:
3020 if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
3021 strcat (buf, ", m68000");
3022 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
3023 strcat (buf, ", cpu32");
3024 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
3025 strcat (buf, ", fido_a");
3026 else
3027 {
3028 char const * isa = _("unknown");
3029 char const * mac = _("unknown mac");
3030 char const * additional = NULL;
3031
3032 switch (e_flags & EF_M68K_CF_ISA_MASK)
3033 {
3034 case EF_M68K_CF_ISA_A_NODIV:
3035 isa = "A";
3036 additional = ", nodiv";
3037 break;
3038 case EF_M68K_CF_ISA_A:
3039 isa = "A";
3040 break;
3041 case EF_M68K_CF_ISA_A_PLUS:
3042 isa = "A+";
3043 break;
3044 case EF_M68K_CF_ISA_B_NOUSP:
3045 isa = "B";
3046 additional = ", nousp";
3047 break;
3048 case EF_M68K_CF_ISA_B:
3049 isa = "B";
3050 break;
3051 case EF_M68K_CF_ISA_C:
3052 isa = "C";
3053 break;
3054 case EF_M68K_CF_ISA_C_NODIV:
3055 isa = "C";
3056 additional = ", nodiv";
3057 break;
3058 }
3059 strcat (buf, ", cf, isa ");
3060 strcat (buf, isa);
3061 if (additional)
3062 strcat (buf, additional);
3063 if (e_flags & EF_M68K_CF_FLOAT)
3064 strcat (buf, ", float");
3065 switch (e_flags & EF_M68K_CF_MAC_MASK)
3066 {
3067 case 0:
3068 mac = NULL;
3069 break;
3070 case EF_M68K_CF_MAC:
3071 mac = "mac";
3072 break;
3073 case EF_M68K_CF_EMAC:
3074 mac = "emac";
3075 break;
3076 case EF_M68K_CF_EMAC_B:
3077 mac = "emac_b";
3078 break;
3079 }
3080 if (mac)
3081 {
3082 strcat (buf, ", ");
3083 strcat (buf, mac);
3084 }
3085 }
3086 break;
3087
3088 case EM_CYGNUS_MEP:
3089 switch (e_flags & EF_MEP_CPU_MASK)
3090 {
3091 case EF_MEP_CPU_MEP: strcat (buf, ", generic MeP"); break;
3092 case EF_MEP_CPU_C2: strcat (buf, ", MeP C2"); break;
3093 case EF_MEP_CPU_C3: strcat (buf, ", MeP C3"); break;
3094 case EF_MEP_CPU_C4: strcat (buf, ", MeP C4"); break;
3095 case EF_MEP_CPU_C5: strcat (buf, ", MeP C5"); break;
3096 case EF_MEP_CPU_H1: strcat (buf, ", MeP H1"); break;
3097 default: strcat (buf, _(", <unknown MeP cpu type>")); break;
3098 }
3099
3100 switch (e_flags & EF_MEP_COP_MASK)
3101 {
3102 case EF_MEP_COP_NONE: break;
3103 case EF_MEP_COP_AVC: strcat (buf, ", AVC coprocessor"); break;
3104 case EF_MEP_COP_AVC2: strcat (buf, ", AVC2 coprocessor"); break;
3105 case EF_MEP_COP_FMAX: strcat (buf, ", FMAX coprocessor"); break;
3106 case EF_MEP_COP_IVC2: strcat (buf, ", IVC2 coprocessor"); break;
3107 default: strcat (buf, _("<unknown MeP copro type>")); break;
3108 }
3109
3110 if (e_flags & EF_MEP_LIBRARY)
3111 strcat (buf, ", Built for Library");
3112
3113 if (e_flags & EF_MEP_INDEX_MASK)
3114 sprintf (buf + strlen (buf), ", Configuration Index: %#x",
3115 e_flags & EF_MEP_INDEX_MASK);
3116
3117 if (e_flags & ~ EF_MEP_ALL_FLAGS)
3118 sprintf (buf + strlen (buf), _(", unknown flags bits: %#x"),
3119 e_flags & ~ EF_MEP_ALL_FLAGS);
3120 break;
3121
3122 case EM_PPC:
3123 if (e_flags & EF_PPC_EMB)
3124 strcat (buf, ", emb");
3125
3126 if (e_flags & EF_PPC_RELOCATABLE)
3127 strcat (buf, _(", relocatable"));
3128
3129 if (e_flags & EF_PPC_RELOCATABLE_LIB)
3130 strcat (buf, _(", relocatable-lib"));
3131 break;
3132
3133 case EM_PPC64:
3134 if (e_flags & EF_PPC64_ABI)
3135 {
3136 char abi[] = ", abiv0";
3137
3138 abi[6] += e_flags & EF_PPC64_ABI;
3139 strcat (buf, abi);
3140 }
3141 break;
3142
3143 case EM_V800:
3144 if ((e_flags & EF_RH850_ABI) == EF_RH850_ABI)
3145 strcat (buf, ", RH850 ABI");
3146
3147 if (e_flags & EF_V800_850E3)
3148 strcat (buf, ", V3 architecture");
3149
3150 if ((e_flags & (EF_RH850_FPU_DOUBLE | EF_RH850_FPU_SINGLE)) == 0)
3151 strcat (buf, ", FPU not used");
3152
3153 if ((e_flags & (EF_RH850_REGMODE22 | EF_RH850_REGMODE32)) == 0)
3154 strcat (buf, ", regmode: COMMON");
3155
3156 if ((e_flags & (EF_RH850_GP_FIX | EF_RH850_GP_NOFIX)) == 0)
3157 strcat (buf, ", r4 not used");
3158
3159 if ((e_flags & (EF_RH850_EP_FIX | EF_RH850_EP_NOFIX)) == 0)
3160 strcat (buf, ", r30 not used");
3161
3162 if ((e_flags & (EF_RH850_TP_FIX | EF_RH850_TP_NOFIX)) == 0)
3163 strcat (buf, ", r5 not used");
3164
3165 if ((e_flags & (EF_RH850_REG2_RESERVE | EF_RH850_REG2_NORESERVE)) == 0)
3166 strcat (buf, ", r2 not used");
3167
3168 for (e_flags &= 0xFFFF; e_flags; e_flags &= ~ (e_flags & - e_flags))
3169 {
3170 switch (e_flags & - e_flags)
3171 {
3172 case EF_RH850_FPU_DOUBLE: strcat (buf, ", double precision FPU"); break;
3173 case EF_RH850_FPU_SINGLE: strcat (buf, ", single precision FPU"); break;
3174 case EF_RH850_REGMODE22: strcat (buf, ", regmode:22"); break;
3175 case EF_RH850_REGMODE32: strcat (buf, ", regmode:23"); break;
3176 case EF_RH850_GP_FIX: strcat (buf, ", r4 fixed"); break;
3177 case EF_RH850_GP_NOFIX: strcat (buf, ", r4 free"); break;
3178 case EF_RH850_EP_FIX: strcat (buf, ", r30 fixed"); break;
3179 case EF_RH850_EP_NOFIX: strcat (buf, ", r30 free"); break;
3180 case EF_RH850_TP_FIX: strcat (buf, ", r5 fixed"); break;
3181 case EF_RH850_TP_NOFIX: strcat (buf, ", r5 free"); break;
3182 case EF_RH850_REG2_RESERVE: strcat (buf, ", r2 fixed"); break;
3183 case EF_RH850_REG2_NORESERVE: strcat (buf, ", r2 free"); break;
3184 default: break;
3185 }
3186 }
3187 break;
3188
3189 case EM_V850:
3190 case EM_CYGNUS_V850:
3191 switch (e_flags & EF_V850_ARCH)
3192 {
3193 case E_V850E3V5_ARCH:
3194 strcat (buf, ", v850e3v5");
3195 break;
3196 case E_V850E2V3_ARCH:
3197 strcat (buf, ", v850e2v3");
3198 break;
3199 case E_V850E2_ARCH:
3200 strcat (buf, ", v850e2");
3201 break;
3202 case E_V850E1_ARCH:
3203 strcat (buf, ", v850e1");
3204 break;
3205 case E_V850E_ARCH:
3206 strcat (buf, ", v850e");
3207 break;
3208 case E_V850_ARCH:
3209 strcat (buf, ", v850");
3210 break;
3211 default:
3212 strcat (buf, _(", unknown v850 architecture variant"));
3213 break;
3214 }
3215 break;
3216
3217 case EM_M32R:
3218 case EM_CYGNUS_M32R:
3219 if ((e_flags & EF_M32R_ARCH) == E_M32R_ARCH)
3220 strcat (buf, ", m32r");
3221 break;
3222
3223 case EM_MIPS:
3224 case EM_MIPS_RS3_LE:
3225 if (e_flags & EF_MIPS_NOREORDER)
3226 strcat (buf, ", noreorder");
3227
3228 if (e_flags & EF_MIPS_PIC)
3229 strcat (buf, ", pic");
3230
3231 if (e_flags & EF_MIPS_CPIC)
3232 strcat (buf, ", cpic");
3233
3234 if (e_flags & EF_MIPS_UCODE)
3235 strcat (buf, ", ugen_reserved");
3236
3237 if (e_flags & EF_MIPS_ABI2)
3238 strcat (buf, ", abi2");
3239
3240 if (e_flags & EF_MIPS_OPTIONS_FIRST)
3241 strcat (buf, ", odk first");
3242
3243 if (e_flags & EF_MIPS_32BITMODE)
3244 strcat (buf, ", 32bitmode");
3245
3246 if (e_flags & EF_MIPS_NAN2008)
3247 strcat (buf, ", nan2008");
3248
3249 if (e_flags & EF_MIPS_FP64)
3250 strcat (buf, ", fp64");
3251
3252 switch ((e_flags & EF_MIPS_MACH))
3253 {
3254 case E_MIPS_MACH_3900: strcat (buf, ", 3900"); break;
3255 case E_MIPS_MACH_4010: strcat (buf, ", 4010"); break;
3256 case E_MIPS_MACH_4100: strcat (buf, ", 4100"); break;
3257 case E_MIPS_MACH_4111: strcat (buf, ", 4111"); break;
3258 case E_MIPS_MACH_4120: strcat (buf, ", 4120"); break;
3259 case E_MIPS_MACH_4650: strcat (buf, ", 4650"); break;
3260 case E_MIPS_MACH_5400: strcat (buf, ", 5400"); break;
3261 case E_MIPS_MACH_5500: strcat (buf, ", 5500"); break;
3262 case E_MIPS_MACH_SB1: strcat (buf, ", sb1"); break;
3263 case E_MIPS_MACH_9000: strcat (buf, ", 9000"); break;
3264 case E_MIPS_MACH_LS2E: strcat (buf, ", loongson-2e"); break;
3265 case E_MIPS_MACH_LS2F: strcat (buf, ", loongson-2f"); break;
3266 case E_MIPS_MACH_LS3A: strcat (buf, ", loongson-3a"); break;
3267 case E_MIPS_MACH_OCTEON: strcat (buf, ", octeon"); break;
3268 case E_MIPS_MACH_OCTEON2: strcat (buf, ", octeon2"); break;
3269 case E_MIPS_MACH_OCTEON3: strcat (buf, ", octeon3"); break;
3270 case E_MIPS_MACH_XLR: strcat (buf, ", xlr"); break;
3271 case 0:
3272 /* We simply ignore the field in this case to avoid confusion:
3273 MIPS ELF does not specify EF_MIPS_MACH, it is a GNU
3274 extension. */
3275 break;
3276 default: strcat (buf, _(", unknown CPU")); break;
3277 }
3278
3279 switch ((e_flags & EF_MIPS_ABI))
3280 {
3281 case E_MIPS_ABI_O32: strcat (buf, ", o32"); break;
3282 case E_MIPS_ABI_O64: strcat (buf, ", o64"); break;
3283 case E_MIPS_ABI_EABI32: strcat (buf, ", eabi32"); break;
3284 case E_MIPS_ABI_EABI64: strcat (buf, ", eabi64"); break;
3285 case 0:
3286 /* We simply ignore the field in this case to avoid confusion:
3287 MIPS ELF does not specify EF_MIPS_ABI, it is a GNU extension.
3288 This means it is likely to be an o32 file, but not for
3289 sure. */
3290 break;
3291 default: strcat (buf, _(", unknown ABI")); break;
3292 }
3293
3294 if (e_flags & EF_MIPS_ARCH_ASE_MDMX)
3295 strcat (buf, ", mdmx");
3296
3297 if (e_flags & EF_MIPS_ARCH_ASE_M16)
3298 strcat (buf, ", mips16");
3299
3300 if (e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
3301 strcat (buf, ", micromips");
3302
3303 switch ((e_flags & EF_MIPS_ARCH))
3304 {
3305 case E_MIPS_ARCH_1: strcat (buf, ", mips1"); break;
3306 case E_MIPS_ARCH_2: strcat (buf, ", mips2"); break;
3307 case E_MIPS_ARCH_3: strcat (buf, ", mips3"); break;
3308 case E_MIPS_ARCH_4: strcat (buf, ", mips4"); break;
3309 case E_MIPS_ARCH_5: strcat (buf, ", mips5"); break;
3310 case E_MIPS_ARCH_32: strcat (buf, ", mips32"); break;
3311 case E_MIPS_ARCH_32R2: strcat (buf, ", mips32r2"); break;
3312 case E_MIPS_ARCH_32R6: strcat (buf, ", mips32r6"); break;
3313 case E_MIPS_ARCH_64: strcat (buf, ", mips64"); break;
3314 case E_MIPS_ARCH_64R2: strcat (buf, ", mips64r2"); break;
3315 case E_MIPS_ARCH_64R6: strcat (buf, ", mips64r6"); break;
3316 default: strcat (buf, _(", unknown ISA")); break;
3317 }
3318 break;
3319
3320 case EM_NDS32:
3321 decode_NDS32_machine_flags (e_flags, buf, sizeof buf);
3322 break;
3323
3324 case EM_RISCV:
3325 if (e_flags & EF_RISCV_RVC)
3326 strcat (buf, ", RVC");
3327
3328 switch (e_flags & EF_RISCV_FLOAT_ABI)
3329 {
3330 case EF_RISCV_FLOAT_ABI_SOFT:
3331 strcat (buf, ", soft-float ABI");
3332 break;
3333
3334 case EF_RISCV_FLOAT_ABI_SINGLE:
3335 strcat (buf, ", single-float ABI");
3336 break;
3337
3338 case EF_RISCV_FLOAT_ABI_DOUBLE:
3339 strcat (buf, ", double-float ABI");
3340 break;
3341
3342 case EF_RISCV_FLOAT_ABI_QUAD:
3343 strcat (buf, ", quad-float ABI");
3344 break;
3345 }
3346 break;
3347
3348 case EM_SH:
3349 switch ((e_flags & EF_SH_MACH_MASK))
3350 {
3351 case EF_SH1: strcat (buf, ", sh1"); break;
3352 case EF_SH2: strcat (buf, ", sh2"); break;
3353 case EF_SH3: strcat (buf, ", sh3"); break;
3354 case EF_SH_DSP: strcat (buf, ", sh-dsp"); break;
3355 case EF_SH3_DSP: strcat (buf, ", sh3-dsp"); break;
3356 case EF_SH4AL_DSP: strcat (buf, ", sh4al-dsp"); break;
3357 case EF_SH3E: strcat (buf, ", sh3e"); break;
3358 case EF_SH4: strcat (buf, ", sh4"); break;
3359 case EF_SH5: strcat (buf, ", sh5"); break;
3360 case EF_SH2E: strcat (buf, ", sh2e"); break;
3361 case EF_SH4A: strcat (buf, ", sh4a"); break;
3362 case EF_SH2A: strcat (buf, ", sh2a"); break;
3363 case EF_SH4_NOFPU: strcat (buf, ", sh4-nofpu"); break;
3364 case EF_SH4A_NOFPU: strcat (buf, ", sh4a-nofpu"); break;
3365 case EF_SH2A_NOFPU: strcat (buf, ", sh2a-nofpu"); break;
3366 case EF_SH3_NOMMU: strcat (buf, ", sh3-nommu"); break;
3367 case EF_SH4_NOMMU_NOFPU: strcat (buf, ", sh4-nommu-nofpu"); break;
3368 case EF_SH2A_SH4_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh4-nommu-nofpu"); break;
3369 case EF_SH2A_SH3_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh3-nommu"); break;
3370 case EF_SH2A_SH4: strcat (buf, ", sh2a-or-sh4"); break;
3371 case EF_SH2A_SH3E: strcat (buf, ", sh2a-or-sh3e"); break;
3372 default: strcat (buf, _(", unknown ISA")); break;
3373 }
3374
3375 if (e_flags & EF_SH_PIC)
3376 strcat (buf, ", pic");
3377
3378 if (e_flags & EF_SH_FDPIC)
3379 strcat (buf, ", fdpic");
3380 break;
3381
3382 case EM_OR1K:
3383 if (e_flags & EF_OR1K_NODELAY)
3384 strcat (buf, ", no delay");
3385 break;
3386
3387 case EM_SPARCV9:
3388 if (e_flags & EF_SPARC_32PLUS)
3389 strcat (buf, ", v8+");
3390
3391 if (e_flags & EF_SPARC_SUN_US1)
3392 strcat (buf, ", ultrasparcI");
3393
3394 if (e_flags & EF_SPARC_SUN_US3)
3395 strcat (buf, ", ultrasparcIII");
3396
3397 if (e_flags & EF_SPARC_HAL_R1)
3398 strcat (buf, ", halr1");
3399
3400 if (e_flags & EF_SPARC_LEDATA)
3401 strcat (buf, ", ledata");
3402
3403 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_TSO)
3404 strcat (buf, ", tso");
3405
3406 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_PSO)
3407 strcat (buf, ", pso");
3408
3409 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_RMO)
3410 strcat (buf, ", rmo");
3411 break;
3412
3413 case EM_PARISC:
3414 switch (e_flags & EF_PARISC_ARCH)
3415 {
3416 case EFA_PARISC_1_0:
3417 strcpy (buf, ", PA-RISC 1.0");
3418 break;
3419 case EFA_PARISC_1_1:
3420 strcpy (buf, ", PA-RISC 1.1");
3421 break;
3422 case EFA_PARISC_2_0:
3423 strcpy (buf, ", PA-RISC 2.0");
3424 break;
3425 default:
3426 break;
3427 }
3428 if (e_flags & EF_PARISC_TRAPNIL)
3429 strcat (buf, ", trapnil");
3430 if (e_flags & EF_PARISC_EXT)
3431 strcat (buf, ", ext");
3432 if (e_flags & EF_PARISC_LSB)
3433 strcat (buf, ", lsb");
3434 if (e_flags & EF_PARISC_WIDE)
3435 strcat (buf, ", wide");
3436 if (e_flags & EF_PARISC_NO_KABP)
3437 strcat (buf, ", no kabp");
3438 if (e_flags & EF_PARISC_LAZYSWAP)
3439 strcat (buf, ", lazyswap");
3440 break;
3441
3442 case EM_PJ:
3443 case EM_PJ_OLD:
3444 if ((e_flags & EF_PICOJAVA_NEWCALLS) == EF_PICOJAVA_NEWCALLS)
3445 strcat (buf, ", new calling convention");
3446
3447 if ((e_flags & EF_PICOJAVA_GNUCALLS) == EF_PICOJAVA_GNUCALLS)
3448 strcat (buf, ", gnu calling convention");
3449 break;
3450
3451 case EM_IA_64:
3452 if ((e_flags & EF_IA_64_ABI64))
3453 strcat (buf, ", 64-bit");
3454 else
3455 strcat (buf, ", 32-bit");
3456 if ((e_flags & EF_IA_64_REDUCEDFP))
3457 strcat (buf, ", reduced fp model");
3458 if ((e_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
3459 strcat (buf, ", no function descriptors, constant gp");
3460 else if ((e_flags & EF_IA_64_CONS_GP))
3461 strcat (buf, ", constant gp");
3462 if ((e_flags & EF_IA_64_ABSOLUTE))
3463 strcat (buf, ", absolute");
3464 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
3465 {
3466 if ((e_flags & EF_IA_64_VMS_LINKAGES))
3467 strcat (buf, ", vms_linkages");
3468 switch ((e_flags & EF_IA_64_VMS_COMCOD))
3469 {
3470 case EF_IA_64_VMS_COMCOD_SUCCESS:
3471 break;
3472 case EF_IA_64_VMS_COMCOD_WARNING:
3473 strcat (buf, ", warning");
3474 break;
3475 case EF_IA_64_VMS_COMCOD_ERROR:
3476 strcat (buf, ", error");
3477 break;
3478 case EF_IA_64_VMS_COMCOD_ABORT:
3479 strcat (buf, ", abort");
3480 break;
3481 default:
3482 warn (_("Unrecognised IA64 VMS Command Code: %x\n"),
3483 e_flags & EF_IA_64_VMS_COMCOD);
3484 strcat (buf, ", <unknown>");
3485 }
3486 }
3487 break;
3488
3489 case EM_VAX:
3490 if ((e_flags & EF_VAX_NONPIC))
3491 strcat (buf, ", non-PIC");
3492 if ((e_flags & EF_VAX_DFLOAT))
3493 strcat (buf, ", D-Float");
3494 if ((e_flags & EF_VAX_GFLOAT))
3495 strcat (buf, ", G-Float");
3496 break;
3497
3498 case EM_VISIUM:
3499 if (e_flags & EF_VISIUM_ARCH_MCM)
3500 strcat (buf, ", mcm");
3501 else if (e_flags & EF_VISIUM_ARCH_MCM24)
3502 strcat (buf, ", mcm24");
3503 if (e_flags & EF_VISIUM_ARCH_GR6)
3504 strcat (buf, ", gr6");
3505 break;
3506
3507 case EM_RL78:
3508 switch (e_flags & E_FLAG_RL78_CPU_MASK)
3509 {
3510 case E_FLAG_RL78_ANY_CPU: break;
3511 case E_FLAG_RL78_G10: strcat (buf, ", G10"); break;
3512 case E_FLAG_RL78_G13: strcat (buf, ", G13"); break;
3513 case E_FLAG_RL78_G14: strcat (buf, ", G14"); break;
3514 }
3515 if (e_flags & E_FLAG_RL78_64BIT_DOUBLES)
3516 strcat (buf, ", 64-bit doubles");
3517 break;
3518
3519 case EM_RX:
3520 if (e_flags & E_FLAG_RX_64BIT_DOUBLES)
3521 strcat (buf, ", 64-bit doubles");
3522 if (e_flags & E_FLAG_RX_DSP)
3523 strcat (buf, ", dsp");
3524 if (e_flags & E_FLAG_RX_PID)
3525 strcat (buf, ", pid");
3526 if (e_flags & E_FLAG_RX_ABI)
3527 strcat (buf, ", RX ABI");
3528 if (e_flags & E_FLAG_RX_SINSNS_SET)
3529 strcat (buf, e_flags & E_FLAG_RX_SINSNS_YES
3530 ? ", uses String instructions" : ", bans String instructions");
3531 if (e_flags & E_FLAG_RX_V2)
3532 strcat (buf, ", V2");
3533 break;
3534
3535 case EM_S390:
3536 if (e_flags & EF_S390_HIGH_GPRS)
3537 strcat (buf, ", highgprs");
3538 break;
3539
3540 case EM_TI_C6000:
3541 if ((e_flags & EF_C6000_REL))
3542 strcat (buf, ", relocatable module");
3543 break;
3544
3545 case EM_MSP430:
3546 strcat (buf, _(": architecture variant: "));
3547 switch (e_flags & EF_MSP430_MACH)
3548 {
3549 case E_MSP430_MACH_MSP430x11: strcat (buf, "MSP430x11"); break;
3550 case E_MSP430_MACH_MSP430x11x1 : strcat (buf, "MSP430x11x1 "); break;
3551 case E_MSP430_MACH_MSP430x12: strcat (buf, "MSP430x12"); break;
3552 case E_MSP430_MACH_MSP430x13: strcat (buf, "MSP430x13"); break;
3553 case E_MSP430_MACH_MSP430x14: strcat (buf, "MSP430x14"); break;
3554 case E_MSP430_MACH_MSP430x15: strcat (buf, "MSP430x15"); break;
3555 case E_MSP430_MACH_MSP430x16: strcat (buf, "MSP430x16"); break;
3556 case E_MSP430_MACH_MSP430x31: strcat (buf, "MSP430x31"); break;
3557 case E_MSP430_MACH_MSP430x32: strcat (buf, "MSP430x32"); break;
3558 case E_MSP430_MACH_MSP430x33: strcat (buf, "MSP430x33"); break;
3559 case E_MSP430_MACH_MSP430x41: strcat (buf, "MSP430x41"); break;
3560 case E_MSP430_MACH_MSP430x42: strcat (buf, "MSP430x42"); break;
3561 case E_MSP430_MACH_MSP430x43: strcat (buf, "MSP430x43"); break;
3562 case E_MSP430_MACH_MSP430x44: strcat (buf, "MSP430x44"); break;
3563 case E_MSP430_MACH_MSP430X : strcat (buf, "MSP430X"); break;
3564 default:
3565 strcat (buf, _(": unknown")); break;
3566 }
3567
3568 if (e_flags & ~ EF_MSP430_MACH)
3569 strcat (buf, _(": unknown extra flag bits also present"));
3570 }
3571 }
3572
3573 return buf;
3574 }
3575
3576 static const char *
3577 get_osabi_name (unsigned int osabi)
3578 {
3579 static char buff[32];
3580
3581 switch (osabi)
3582 {
3583 case ELFOSABI_NONE: return "UNIX - System V";
3584 case ELFOSABI_HPUX: return "UNIX - HP-UX";
3585 case ELFOSABI_NETBSD: return "UNIX - NetBSD";
3586 case ELFOSABI_GNU: return "UNIX - GNU";
3587 case ELFOSABI_SOLARIS: return "UNIX - Solaris";
3588 case ELFOSABI_AIX: return "UNIX - AIX";
3589 case ELFOSABI_IRIX: return "UNIX - IRIX";
3590 case ELFOSABI_FREEBSD: return "UNIX - FreeBSD";
3591 case ELFOSABI_TRU64: return "UNIX - TRU64";
3592 case ELFOSABI_MODESTO: return "Novell - Modesto";
3593 case ELFOSABI_OPENBSD: return "UNIX - OpenBSD";
3594 case ELFOSABI_OPENVMS: return "VMS - OpenVMS";
3595 case ELFOSABI_NSK: return "HP - Non-Stop Kernel";
3596 case ELFOSABI_AROS: return "AROS";
3597 case ELFOSABI_FENIXOS: return "FenixOS";
3598 case ELFOSABI_CLOUDABI: return "Nuxi CloudABI";
3599 case ELFOSABI_OPENVOS: return "Stratus Technologies OpenVOS";
3600 default:
3601 if (osabi >= 64)
3602 switch (elf_header.e_machine)
3603 {
3604 case EM_ARM:
3605 switch (osabi)
3606 {
3607 case ELFOSABI_ARM: return "ARM";
3608 default:
3609 break;
3610 }
3611 break;
3612
3613 case EM_MSP430:
3614 case EM_MSP430_OLD:
3615 case EM_VISIUM:
3616 switch (osabi)
3617 {
3618 case ELFOSABI_STANDALONE: return _("Standalone App");
3619 default:
3620 break;
3621 }
3622 break;
3623
3624 case EM_TI_C6000:
3625 switch (osabi)
3626 {
3627 case ELFOSABI_C6000_ELFABI: return _("Bare-metal C6000");
3628 case ELFOSABI_C6000_LINUX: return "Linux C6000";
3629 default:
3630 break;
3631 }
3632 break;
3633
3634 default:
3635 break;
3636 }
3637 snprintf (buff, sizeof (buff), _("<unknown: %x>"), osabi);
3638 return buff;
3639 }
3640 }
3641
3642 static const char *
3643 get_aarch64_segment_type (unsigned long type)
3644 {
3645 switch (type)
3646 {
3647 case PT_AARCH64_ARCHEXT:
3648 return "AARCH64_ARCHEXT";
3649 default:
3650 break;
3651 }
3652
3653 return NULL;
3654 }
3655
3656 static const char *
3657 get_arm_segment_type (unsigned long type)
3658 {
3659 switch (type)
3660 {
3661 case PT_ARM_EXIDX:
3662 return "EXIDX";
3663 default:
3664 break;
3665 }
3666
3667 return NULL;
3668 }
3669
3670 static const char *
3671 get_mips_segment_type (unsigned long type)
3672 {
3673 switch (type)
3674 {
3675 case PT_MIPS_REGINFO:
3676 return "REGINFO";
3677 case PT_MIPS_RTPROC:
3678 return "RTPROC";
3679 case PT_MIPS_OPTIONS:
3680 return "OPTIONS";
3681 case PT_MIPS_ABIFLAGS:
3682 return "ABIFLAGS";
3683 default:
3684 break;
3685 }
3686
3687 return NULL;
3688 }
3689
3690 static const char *
3691 get_parisc_segment_type (unsigned long type)
3692 {
3693 switch (type)
3694 {
3695 case PT_HP_TLS: return "HP_TLS";
3696 case PT_HP_CORE_NONE: return "HP_CORE_NONE";
3697 case PT_HP_CORE_VERSION: return "HP_CORE_VERSION";
3698 case PT_HP_CORE_KERNEL: return "HP_CORE_KERNEL";
3699 case PT_HP_CORE_COMM: return "HP_CORE_COMM";
3700 case PT_HP_CORE_PROC: return "HP_CORE_PROC";
3701 case PT_HP_CORE_LOADABLE: return "HP_CORE_LOADABLE";
3702 case PT_HP_CORE_STACK: return "HP_CORE_STACK";
3703 case PT_HP_CORE_SHM: return "HP_CORE_SHM";
3704 case PT_HP_CORE_MMF: return "HP_CORE_MMF";
3705 case PT_HP_PARALLEL: return "HP_PARALLEL";
3706 case PT_HP_FASTBIND: return "HP_FASTBIND";
3707 case PT_HP_OPT_ANNOT: return "HP_OPT_ANNOT";
3708 case PT_HP_HSL_ANNOT: return "HP_HSL_ANNOT";
3709 case PT_HP_STACK: return "HP_STACK";
3710 case PT_HP_CORE_UTSNAME: return "HP_CORE_UTSNAME";
3711 case PT_PARISC_ARCHEXT: return "PARISC_ARCHEXT";
3712 case PT_PARISC_UNWIND: return "PARISC_UNWIND";
3713 case PT_PARISC_WEAKORDER: return "PARISC_WEAKORDER";
3714 default:
3715 break;
3716 }
3717
3718 return NULL;
3719 }
3720
3721 static const char *
3722 get_ia64_segment_type (unsigned long type)
3723 {
3724 switch (type)
3725 {
3726 case PT_IA_64_ARCHEXT: return "IA_64_ARCHEXT";
3727 case PT_IA_64_UNWIND: return "IA_64_UNWIND";
3728 case PT_HP_TLS: return "HP_TLS";
3729 case PT_IA_64_HP_OPT_ANOT: return "HP_OPT_ANNOT";
3730 case PT_IA_64_HP_HSL_ANOT: return "HP_HSL_ANNOT";
3731 case PT_IA_64_HP_STACK: return "HP_STACK";
3732 default:
3733 break;
3734 }
3735
3736 return NULL;
3737 }
3738
3739 static const char *
3740 get_tic6x_segment_type (unsigned long type)
3741 {
3742 switch (type)
3743 {
3744 case PT_C6000_PHATTR: return "C6000_PHATTR";
3745 default:
3746 break;
3747 }
3748
3749 return NULL;
3750 }
3751
3752 static const char *
3753 get_solaris_segment_type (unsigned long type)
3754 {
3755 switch (type)
3756 {
3757 case 0x6464e550: return "PT_SUNW_UNWIND";
3758 case 0x6474e550: return "PT_SUNW_EH_FRAME";
3759 case 0x6ffffff7: return "PT_LOSUNW";
3760 case 0x6ffffffa: return "PT_SUNWBSS";
3761 case 0x6ffffffb: return "PT_SUNWSTACK";
3762 case 0x6ffffffc: return "PT_SUNWDTRACE";
3763 case 0x6ffffffd: return "PT_SUNWCAP";
3764 case 0x6fffffff: return "PT_HISUNW";
3765 default: return NULL;
3766 }
3767 }
3768
3769 static const char *
3770 get_segment_type (unsigned long p_type)
3771 {
3772 static char buff[32];
3773
3774 switch (p_type)
3775 {
3776 case PT_NULL: return "NULL";
3777 case PT_LOAD: return "LOAD";
3778 case PT_DYNAMIC: return "DYNAMIC";
3779 case PT_INTERP: return "INTERP";
3780 case PT_NOTE: return "NOTE";
3781 case PT_SHLIB: return "SHLIB";
3782 case PT_PHDR: return "PHDR";
3783 case PT_TLS: return "TLS";
3784
3785 case PT_GNU_EH_FRAME:
3786 return "GNU_EH_FRAME";
3787 case PT_GNU_STACK: return "GNU_STACK";
3788 case PT_GNU_RELRO: return "GNU_RELRO";
3789
3790 default:
3791 if ((p_type >= PT_LOPROC) && (p_type <= PT_HIPROC))
3792 {
3793 const char * result;
3794
3795 switch (elf_header.e_machine)
3796 {
3797 case EM_AARCH64:
3798 result = get_aarch64_segment_type (p_type);
3799 break;
3800 case EM_ARM:
3801 result = get_arm_segment_type (p_type);
3802 break;
3803 case EM_MIPS:
3804 case EM_MIPS_RS3_LE:
3805 result = get_mips_segment_type (p_type);
3806 break;
3807 case EM_PARISC:
3808 result = get_parisc_segment_type (p_type);
3809 break;
3810 case EM_IA_64:
3811 result = get_ia64_segment_type (p_type);
3812 break;
3813 case EM_TI_C6000:
3814 result = get_tic6x_segment_type (p_type);
3815 break;
3816 default:
3817 result = NULL;
3818 break;
3819 }
3820
3821 if (result != NULL)
3822 return result;
3823
3824 sprintf (buff, "LOPROC+%#lx", p_type - PT_LOPROC);
3825 }
3826 else if ((p_type >= PT_LOOS) && (p_type <= PT_HIOS))
3827 {
3828 const char * result;
3829
3830 switch (elf_header.e_machine)
3831 {
3832 case EM_PARISC:
3833 result = get_parisc_segment_type (p_type);
3834 break;
3835 case EM_IA_64:
3836 result = get_ia64_segment_type (p_type);
3837 break;
3838 default:
3839 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
3840 result = get_solaris_segment_type (p_type);
3841 else
3842 result = NULL;
3843 break;
3844 }
3845
3846 if (result != NULL)
3847 return result;
3848
3849 sprintf (buff, "LOOS+%#lx", p_type - PT_LOOS);
3850 }
3851 else
3852 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), p_type);
3853
3854 return buff;
3855 }
3856 }
3857
3858 static const char *
3859 get_mips_section_type_name (unsigned int sh_type)
3860 {
3861 switch (sh_type)
3862 {
3863 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
3864 case SHT_MIPS_MSYM: return "MIPS_MSYM";
3865 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
3866 case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
3867 case SHT_MIPS_UCODE: return "MIPS_UCODE";
3868 case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
3869 case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
3870 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
3871 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
3872 case SHT_MIPS_RELD: return "MIPS_RELD";
3873 case SHT_MIPS_IFACE: return "MIPS_IFACE";
3874 case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
3875 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
3876 case SHT_MIPS_SHDR: return "MIPS_SHDR";
3877 case SHT_MIPS_FDESC: return "MIPS_FDESC";
3878 case SHT_MIPS_EXTSYM: return "MIPS_EXTSYM";
3879 case SHT_MIPS_DENSE: return "MIPS_DENSE";
3880 case SHT_MIPS_PDESC: return "MIPS_PDESC";
3881 case SHT_MIPS_LOCSYM: return "MIPS_LOCSYM";
3882 case SHT_MIPS_AUXSYM: return "MIPS_AUXSYM";
3883 case SHT_MIPS_OPTSYM: return "MIPS_OPTSYM";
3884 case SHT_MIPS_LOCSTR: return "MIPS_LOCSTR";
3885 case SHT_MIPS_LINE: return "MIPS_LINE";
3886 case SHT_MIPS_RFDESC: return "MIPS_RFDESC";
3887 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
3888 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
3889 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
3890 case SHT_MIPS_DWARF: return "MIPS_DWARF";
3891 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
3892 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
3893 case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
3894 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
3895 case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
3896 case SHT_MIPS_XLATE: return "MIPS_XLATE";
3897 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
3898 case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
3899 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
3900 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
3901 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
3902 case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS";
3903 default:
3904 break;
3905 }
3906 return NULL;
3907 }
3908
3909 static const char *
3910 get_parisc_section_type_name (unsigned int sh_type)
3911 {
3912 switch (sh_type)
3913 {
3914 case SHT_PARISC_EXT: return "PARISC_EXT";
3915 case SHT_PARISC_UNWIND: return "PARISC_UNWIND";
3916 case SHT_PARISC_DOC: return "PARISC_DOC";
3917 case SHT_PARISC_ANNOT: return "PARISC_ANNOT";
3918 case SHT_PARISC_SYMEXTN: return "PARISC_SYMEXTN";
3919 case SHT_PARISC_STUBS: return "PARISC_STUBS";
3920 case SHT_PARISC_DLKM: return "PARISC_DLKM";
3921 default:
3922 break;
3923 }
3924 return NULL;
3925 }
3926
3927 static const char *
3928 get_ia64_section_type_name (unsigned int sh_type)
3929 {
3930 /* If the top 8 bits are 0x78 the next 8 are the os/abi ID. */
3931 if ((sh_type & 0xFF000000) == SHT_IA_64_LOPSREG)
3932 return get_osabi_name ((sh_type & 0x00FF0000) >> 16);
3933
3934 switch (sh_type)
3935 {
3936 case SHT_IA_64_EXT: return "IA_64_EXT";
3937 case SHT_IA_64_UNWIND: return "IA_64_UNWIND";
3938 case SHT_IA_64_PRIORITY_INIT: return "IA_64_PRIORITY_INIT";
3939 case SHT_IA_64_VMS_TRACE: return "VMS_TRACE";
3940 case SHT_IA_64_VMS_TIE_SIGNATURES: return "VMS_TIE_SIGNATURES";
3941 case SHT_IA_64_VMS_DEBUG: return "VMS_DEBUG";
3942 case SHT_IA_64_VMS_DEBUG_STR: return "VMS_DEBUG_STR";
3943 case SHT_IA_64_VMS_LINKAGES: return "VMS_LINKAGES";
3944 case SHT_IA_64_VMS_SYMBOL_VECTOR: return "VMS_SYMBOL_VECTOR";
3945 case SHT_IA_64_VMS_FIXUP: return "VMS_FIXUP";
3946 default:
3947 break;
3948 }
3949 return NULL;
3950 }
3951
3952 static const char *
3953 get_x86_64_section_type_name (unsigned int sh_type)
3954 {
3955 switch (sh_type)
3956 {
3957 case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
3958 default:
3959 break;
3960 }
3961 return NULL;
3962 }
3963
3964 static const char *
3965 get_aarch64_section_type_name (unsigned int sh_type)
3966 {
3967 switch (sh_type)
3968 {
3969 case SHT_AARCH64_ATTRIBUTES:
3970 return "AARCH64_ATTRIBUTES";
3971 default:
3972 break;
3973 }
3974 return NULL;
3975 }
3976
3977 static const char *
3978 get_arm_section_type_name (unsigned int sh_type)
3979 {
3980 switch (sh_type)
3981 {
3982 case SHT_ARM_EXIDX: return "ARM_EXIDX";
3983 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP";
3984 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES";
3985 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY";
3986 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION";
3987 default:
3988 break;
3989 }
3990 return NULL;
3991 }
3992
3993 static const char *
3994 get_tic6x_section_type_name (unsigned int sh_type)
3995 {
3996 switch (sh_type)
3997 {
3998 case SHT_C6000_UNWIND:
3999 return "C6000_UNWIND";
4000 case SHT_C6000_PREEMPTMAP:
4001 return "C6000_PREEMPTMAP";
4002 case SHT_C6000_ATTRIBUTES:
4003 return "C6000_ATTRIBUTES";
4004 case SHT_TI_ICODE:
4005 return "TI_ICODE";
4006 case SHT_TI_XREF:
4007 return "TI_XREF";
4008 case SHT_TI_HANDLER:
4009 return "TI_HANDLER";
4010 case SHT_TI_INITINFO:
4011 return "TI_INITINFO";
4012 case SHT_TI_PHATTRS:
4013 return "TI_PHATTRS";
4014 default:
4015 break;
4016 }
4017 return NULL;
4018 }
4019
4020 static const char *
4021 get_msp430x_section_type_name (unsigned int sh_type)
4022 {
4023 switch (sh_type)
4024 {
4025 case SHT_MSP430_SEC_FLAGS: return "MSP430_SEC_FLAGS";
4026 case SHT_MSP430_SYM_ALIASES: return "MSP430_SYM_ALIASES";
4027 case SHT_MSP430_ATTRIBUTES: return "MSP430_ATTRIBUTES";
4028 default: return NULL;
4029 }
4030 }
4031
4032 static const char *
4033 get_v850_section_type_name (unsigned int sh_type)
4034 {
4035 switch (sh_type)
4036 {
4037 case SHT_V850_SCOMMON: return "V850 Small Common";
4038 case SHT_V850_TCOMMON: return "V850 Tiny Common";
4039 case SHT_V850_ZCOMMON: return "V850 Zero Common";
4040 case SHT_RENESAS_IOP: return "RENESAS IOP";
4041 case SHT_RENESAS_INFO: return "RENESAS INFO";
4042 default: return NULL;
4043 }
4044 }
4045
4046 static const char *
4047 get_section_type_name (unsigned int sh_type)
4048 {
4049 static char buff[32];
4050 const char * result;
4051
4052 switch (sh_type)
4053 {
4054 case SHT_NULL: return "NULL";
4055 case SHT_PROGBITS: return "PROGBITS";
4056 case SHT_SYMTAB: return "SYMTAB";
4057 case SHT_STRTAB: return "STRTAB";
4058 case SHT_RELA: return "RELA";
4059 case SHT_HASH: return "HASH";
4060 case SHT_DYNAMIC: return "DYNAMIC";
4061 case SHT_NOTE: return "NOTE";
4062 case SHT_NOBITS: return "NOBITS";
4063 case SHT_REL: return "REL";
4064 case SHT_SHLIB: return "SHLIB";
4065 case SHT_DYNSYM: return "DYNSYM";
4066 case SHT_INIT_ARRAY: return "INIT_ARRAY";
4067 case SHT_FINI_ARRAY: return "FINI_ARRAY";
4068 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
4069 case SHT_GNU_HASH: return "GNU_HASH";
4070 case SHT_GROUP: return "GROUP";
4071 case SHT_SYMTAB_SHNDX: return "SYMTAB SECTION INDICIES";
4072 case SHT_GNU_verdef: return "VERDEF";
4073 case SHT_GNU_verneed: return "VERNEED";
4074 case SHT_GNU_versym: return "VERSYM";
4075 case 0x6ffffff0: return "VERSYM";
4076 case 0x6ffffffc: return "VERDEF";
4077 case 0x7ffffffd: return "AUXILIARY";
4078 case 0x7fffffff: return "FILTER";
4079 case SHT_GNU_LIBLIST: return "GNU_LIBLIST";
4080
4081 default:
4082 if ((sh_type >= SHT_LOPROC) && (sh_type <= SHT_HIPROC))
4083 {
4084 switch (elf_header.e_machine)
4085 {
4086 case EM_MIPS:
4087 case EM_MIPS_RS3_LE:
4088 result = get_mips_section_type_name (sh_type);
4089 break;
4090 case EM_PARISC:
4091 result = get_parisc_section_type_name (sh_type);
4092 break;
4093 case EM_IA_64:
4094 result = get_ia64_section_type_name (sh_type);
4095 break;
4096 case EM_X86_64:
4097 case EM_L1OM:
4098 case EM_K1OM:
4099 result = get_x86_64_section_type_name (sh_type);
4100 break;
4101 case EM_AARCH64:
4102 result = get_aarch64_section_type_name (sh_type);
4103 break;
4104 case EM_ARM:
4105 result = get_arm_section_type_name (sh_type);
4106 break;
4107 case EM_TI_C6000:
4108 result = get_tic6x_section_type_name (sh_type);
4109 break;
4110 case EM_MSP430:
4111 result = get_msp430x_section_type_name (sh_type);
4112 break;
4113 case EM_V800:
4114 case EM_V850:
4115 case EM_CYGNUS_V850:
4116 result = get_v850_section_type_name (sh_type);
4117 break;
4118 default:
4119 result = NULL;
4120 break;
4121 }
4122
4123 if (result != NULL)
4124 return result;
4125
4126 sprintf (buff, "LOPROC+%#x", sh_type - SHT_LOPROC);
4127 }
4128 else if ((sh_type >= SHT_LOOS) && (sh_type <= SHT_HIOS))
4129 {
4130 switch (elf_header.e_machine)
4131 {
4132 case EM_IA_64:
4133 result = get_ia64_section_type_name (sh_type);
4134 break;
4135 default:
4136 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
4137 result = get_solaris_section_type (sh_type);
4138 else
4139 {
4140 switch (sh_type)
4141 {
4142 case SHT_GNU_INCREMENTAL_INPUTS: result = "GNU_INCREMENTAL_INPUTS"; break;
4143 case SHT_GNU_ATTRIBUTES: result = "GNU_ATTRIBUTES"; break;
4144 case SHT_GNU_HASH: result = "GNU_HASH"; break;
4145 case SHT_GNU_LIBLIST: result = "GNU_LIBLIST"; break;
4146 default:
4147 result = NULL;
4148 break;
4149 }
4150 }
4151 break;
4152 }
4153
4154 if (result != NULL)
4155 return result;
4156
4157 sprintf (buff, "LOOS+%#x", sh_type - SHT_LOOS);
4158 }
4159 else if ((sh_type >= SHT_LOUSER) && (sh_type <= SHT_HIUSER))
4160 {
4161 switch (elf_header.e_machine)
4162 {
4163 case EM_V800:
4164 case EM_V850:
4165 case EM_CYGNUS_V850:
4166 result = get_v850_section_type_name (sh_type);
4167 break;
4168 default:
4169 result = NULL;
4170 break;
4171 }
4172
4173 if (result != NULL)
4174 return result;
4175
4176 sprintf (buff, "LOUSER+%#x", sh_type - SHT_LOUSER);
4177 }
4178 else
4179 /* This message is probably going to be displayed in a 15
4180 character wide field, so put the hex value first. */
4181 snprintf (buff, sizeof (buff), _("%08x: <unknown>"), sh_type);
4182
4183 return buff;
4184 }
4185 }
4186
4187 #define OPTION_DEBUG_DUMP 512
4188 #define OPTION_DYN_SYMS 513
4189 #define OPTION_DWARF_DEPTH 514
4190 #define OPTION_DWARF_START 515
4191 #define OPTION_DWARF_CHECK 516
4192
4193 static struct option options[] =
4194 {
4195 {"all", no_argument, 0, 'a'},
4196 {"file-header", no_argument, 0, 'h'},
4197 {"program-headers", no_argument, 0, 'l'},
4198 {"headers", no_argument, 0, 'e'},
4199 {"histogram", no_argument, 0, 'I'},
4200 {"segments", no_argument, 0, 'l'},
4201 {"sections", no_argument, 0, 'S'},
4202 {"section-headers", no_argument, 0, 'S'},
4203 {"section-groups", no_argument, 0, 'g'},
4204 {"section-details", no_argument, 0, 't'},
4205 {"full-section-name",no_argument, 0, 'N'},
4206 {"symbols", no_argument, 0, 's'},
4207 {"syms", no_argument, 0, 's'},
4208 {"dyn-syms", no_argument, 0, OPTION_DYN_SYMS},
4209 {"relocs", no_argument, 0, 'r'},
4210 {"notes", no_argument, 0, 'n'},
4211 {"dynamic", no_argument, 0, 'd'},
4212 {"arch-specific", no_argument, 0, 'A'},
4213 {"version-info", no_argument, 0, 'V'},
4214 {"use-dynamic", no_argument, 0, 'D'},
4215 {"unwind", no_argument, 0, 'u'},
4216 {"archive-index", no_argument, 0, 'c'},
4217 {"hex-dump", required_argument, 0, 'x'},
4218 {"relocated-dump", required_argument, 0, 'R'},
4219 {"string-dump", required_argument, 0, 'p'},
4220 {"decompress", no_argument, 0, 'z'},
4221 #ifdef SUPPORT_DISASSEMBLY
4222 {"instruction-dump", required_argument, 0, 'i'},
4223 #endif
4224 {"debug-dump", optional_argument, 0, OPTION_DEBUG_DUMP},
4225
4226 {"dwarf-depth", required_argument, 0, OPTION_DWARF_DEPTH},
4227 {"dwarf-start", required_argument, 0, OPTION_DWARF_START},
4228 {"dwarf-check", no_argument, 0, OPTION_DWARF_CHECK},
4229
4230 {"version", no_argument, 0, 'v'},
4231 {"wide", no_argument, 0, 'W'},
4232 {"help", no_argument, 0, 'H'},
4233 {0, no_argument, 0, 0}
4234 };
4235
4236 static void
4237 usage (FILE * stream)
4238 {
4239 fprintf (stream, _("Usage: readelf <option(s)> elf-file(s)\n"));
4240 fprintf (stream, _(" Display information about the contents of ELF format files\n"));
4241 fprintf (stream, _(" Options are:\n\
4242 -a --all Equivalent to: -h -l -S -s -r -d -V -A -I\n\
4243 -h --file-header Display the ELF file header\n\
4244 -l --program-headers Display the program headers\n\
4245 --segments An alias for --program-headers\n\
4246 -S --section-headers Display the sections' header\n\
4247 --sections An alias for --section-headers\n\
4248 -g --section-groups Display the section groups\n\
4249 -t --section-details Display the section details\n\
4250 -e --headers Equivalent to: -h -l -S\n\
4251 -s --syms Display the symbol table\n\
4252 --symbols An alias for --syms\n\
4253 --dyn-syms Display the dynamic symbol table\n\
4254 -n --notes Display the core notes (if present)\n\
4255 -r --relocs Display the relocations (if present)\n\
4256 -u --unwind Display the unwind info (if present)\n\
4257 -d --dynamic Display the dynamic section (if present)\n\
4258 -V --version-info Display the version sections (if present)\n\
4259 -A --arch-specific Display architecture specific information (if any)\n\
4260 -c --archive-index Display the symbol/file index in an archive\n\
4261 -D --use-dynamic Use the dynamic section info when displaying symbols\n\
4262 -x --hex-dump=<number|name>\n\
4263 Dump the contents of section <number|name> as bytes\n\
4264 -p --string-dump=<number|name>\n\
4265 Dump the contents of section <number|name> as strings\n\
4266 -R --relocated-dump=<number|name>\n\
4267 Dump the contents of section <number|name> as relocated bytes\n\
4268 -z --decompress Decompress section before dumping it\n\
4269 -w[lLiaprmfFsoRt] or\n\
4270 --debug-dump[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,\n\
4271 =frames-interp,=str,=loc,=Ranges,=pubtypes,\n\
4272 =gdb_index,=trace_info,=trace_abbrev,=trace_aranges,\n\
4273 =addr,=cu_index]\n\
4274 Display the contents of DWARF2 debug sections\n"));
4275 fprintf (stream, _("\
4276 --dwarf-depth=N Do not display DIEs at depth N or greater\n\
4277 --dwarf-start=N Display DIEs starting with N, at the same depth\n\
4278 or deeper\n"));
4279 #ifdef SUPPORT_DISASSEMBLY
4280 fprintf (stream, _("\
4281 -i --instruction-dump=<number|name>\n\
4282 Disassemble the contents of section <number|name>\n"));
4283 #endif
4284 fprintf (stream, _("\
4285 -I --histogram Display histogram of bucket list lengths\n\
4286 -W --wide Allow output width to exceed 80 characters\n\
4287 @<file> Read options from <file>\n\
4288 -H --help Display this information\n\
4289 -v --version Display the version number of readelf\n"));
4290
4291 if (REPORT_BUGS_TO[0] && stream == stdout)
4292 fprintf (stdout, _("Report bugs to %s\n"), REPORT_BUGS_TO);
4293
4294 exit (stream == stdout ? 0 : 1);
4295 }
4296
4297 /* Record the fact that the user wants the contents of section number
4298 SECTION to be displayed using the method(s) encoded as flags bits
4299 in TYPE. Note, TYPE can be zero if we are creating the array for
4300 the first time. */
4301
4302 static void
4303 request_dump_bynumber (unsigned int section, dump_type type)
4304 {
4305 if (section >= num_dump_sects)
4306 {
4307 dump_type * new_dump_sects;
4308
4309 new_dump_sects = (dump_type *) calloc (section + 1,
4310 sizeof (* dump_sects));
4311
4312 if (new_dump_sects == NULL)
4313 error (_("Out of memory allocating dump request table.\n"));
4314 else
4315 {
4316 if (dump_sects)
4317 {
4318 /* Copy current flag settings. */
4319 memcpy (new_dump_sects, dump_sects, num_dump_sects * sizeof (* dump_sects));
4320
4321 free (dump_sects);
4322 }
4323
4324 dump_sects = new_dump_sects;
4325 num_dump_sects = section + 1;
4326 }
4327 }
4328
4329 if (dump_sects)
4330 dump_sects[section] |= type;
4331
4332 return;
4333 }
4334
4335 /* Request a dump by section name. */
4336
4337 static void
4338 request_dump_byname (const char * section, dump_type type)
4339 {
4340 struct dump_list_entry * new_request;
4341
4342 new_request = (struct dump_list_entry *)
4343 malloc (sizeof (struct dump_list_entry));
4344 if (!new_request)
4345 error (_("Out of memory allocating dump request table.\n"));
4346
4347 new_request->name = strdup (section);
4348 if (!new_request->name)
4349 error (_("Out of memory allocating dump request table.\n"));
4350
4351 new_request->type = type;
4352
4353 new_request->next = dump_sects_byname;
4354 dump_sects_byname = new_request;
4355 }
4356
4357 static inline void
4358 request_dump (dump_type type)
4359 {
4360 int section;
4361 char * cp;
4362
4363 do_dump++;
4364 section = strtoul (optarg, & cp, 0);
4365
4366 if (! *cp && section >= 0)
4367 request_dump_bynumber (section, type);
4368 else
4369 request_dump_byname (optarg, type);
4370 }
4371
4372
4373 static void
4374 parse_args (int argc, char ** argv)
4375 {
4376 int c;
4377
4378 if (argc < 2)
4379 usage (stderr);
4380
4381 while ((c = getopt_long
4382 (argc, argv, "ADHINR:SVWacdeghi:lnp:rstuvw::x:z", options, NULL)) != EOF)
4383 {
4384 switch (c)
4385 {
4386 case 0:
4387 /* Long options. */
4388 break;
4389 case 'H':
4390 usage (stdout);
4391 break;
4392
4393 case 'a':
4394 do_syms++;
4395 do_reloc++;
4396 do_unwind++;
4397 do_dynamic++;
4398 do_header++;
4399 do_sections++;
4400 do_section_groups++;
4401 do_segments++;
4402 do_version++;
4403 do_histogram++;
4404 do_arch++;
4405 do_notes++;
4406 break;
4407 case 'g':
4408 do_section_groups++;
4409 break;
4410 case 't':
4411 case 'N':
4412 do_sections++;
4413 do_section_details++;
4414 break;
4415 case 'e':
4416 do_header++;
4417 do_sections++;
4418 do_segments++;
4419 break;
4420 case 'A':
4421 do_arch++;
4422 break;
4423 case 'D':
4424 do_using_dynamic++;
4425 break;
4426 case 'r':
4427 do_reloc++;
4428 break;
4429 case 'u':
4430 do_unwind++;
4431 break;
4432 case 'h':
4433 do_header++;
4434 break;
4435 case 'l':
4436 do_segments++;
4437 break;
4438 case 's':
4439 do_syms++;
4440 break;
4441 case 'S':
4442 do_sections++;
4443 break;
4444 case 'd':
4445 do_dynamic++;
4446 break;
4447 case 'I':
4448 do_histogram++;
4449 break;
4450 case 'n':
4451 do_notes++;
4452 break;
4453 case 'c':
4454 do_archive_index++;
4455 break;
4456 case 'x':
4457 request_dump (HEX_DUMP);
4458 break;
4459 case 'p':
4460 request_dump (STRING_DUMP);
4461 break;
4462 case 'R':
4463 request_dump (RELOC_DUMP);
4464 break;
4465 case 'z':
4466 decompress_dumps++;
4467 break;
4468 case 'w':
4469 do_dump++;
4470 if (optarg == 0)
4471 {
4472 do_debugging = 1;
4473 dwarf_select_sections_all ();
4474 }
4475 else
4476 {
4477 do_debugging = 0;
4478 dwarf_select_sections_by_letters (optarg);
4479 }
4480 break;
4481 case OPTION_DEBUG_DUMP:
4482 do_dump++;
4483 if (optarg == 0)
4484 do_debugging = 1;
4485 else
4486 {
4487 do_debugging = 0;
4488 dwarf_select_sections_by_names (optarg);
4489 }
4490 break;
4491 case OPTION_DWARF_DEPTH:
4492 {
4493 char *cp;
4494
4495 dwarf_cutoff_level = strtoul (optarg, & cp, 0);
4496 }
4497 break;
4498 case OPTION_DWARF_START:
4499 {
4500 char *cp;
4501
4502 dwarf_start_die = strtoul (optarg, & cp, 0);
4503 }
4504 break;
4505 case OPTION_DWARF_CHECK:
4506 dwarf_check = 1;
4507 break;
4508 case OPTION_DYN_SYMS:
4509 do_dyn_syms++;
4510 break;
4511 #ifdef SUPPORT_DISASSEMBLY
4512 case 'i':
4513 request_dump (DISASS_DUMP);
4514 break;
4515 #endif
4516 case 'v':
4517 print_version (program_name);
4518 break;
4519 case 'V':
4520 do_version++;
4521 break;
4522 case 'W':
4523 do_wide++;
4524 break;
4525 default:
4526 /* xgettext:c-format */
4527 error (_("Invalid option '-%c'\n"), c);
4528 /* Fall through. */
4529 case '?':
4530 usage (stderr);
4531 }
4532 }
4533
4534 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
4535 && !do_segments && !do_header && !do_dump && !do_version
4536 && !do_histogram && !do_debugging && !do_arch && !do_notes
4537 && !do_section_groups && !do_archive_index
4538 && !do_dyn_syms)
4539 usage (stderr);
4540 }
4541
4542 static const char *
4543 get_elf_class (unsigned int elf_class)
4544 {
4545 static char buff[32];
4546
4547 switch (elf_class)
4548 {
4549 case ELFCLASSNONE: return _("none");
4550 case ELFCLASS32: return "ELF32";
4551 case ELFCLASS64: return "ELF64";
4552 default:
4553 snprintf (buff, sizeof (buff), _("<unknown: %x>"), elf_class);
4554 return buff;
4555 }
4556 }
4557
4558 static const char *
4559 get_data_encoding (unsigned int encoding)
4560 {
4561 static char buff[32];
4562
4563 switch (encoding)
4564 {
4565 case ELFDATANONE: return _("none");
4566 case ELFDATA2LSB: return _("2's complement, little endian");
4567 case ELFDATA2MSB: return _("2's complement, big endian");
4568 default:
4569 snprintf (buff, sizeof (buff), _("<unknown: %x>"), encoding);
4570 return buff;
4571 }
4572 }
4573
4574 /* Decode the data held in 'elf_header'. */
4575
4576 static int
4577 process_file_header (void)
4578 {
4579 if ( elf_header.e_ident[EI_MAG0] != ELFMAG0
4580 || elf_header.e_ident[EI_MAG1] != ELFMAG1
4581 || elf_header.e_ident[EI_MAG2] != ELFMAG2
4582 || elf_header.e_ident[EI_MAG3] != ELFMAG3)
4583 {
4584 error
4585 (_("Not an ELF file - it has the wrong magic bytes at the start\n"));
4586 return 0;
4587 }
4588
4589 init_dwarf_regnames (elf_header.e_machine);
4590
4591 if (do_header)
4592 {
4593 int i;
4594
4595 printf (_("ELF Header:\n"));
4596 printf (_(" Magic: "));
4597 for (i = 0; i < EI_NIDENT; i++)
4598 printf ("%2.2x ", elf_header.e_ident[i]);
4599 printf ("\n");
4600 printf (_(" Class: %s\n"),
4601 get_elf_class (elf_header.e_ident[EI_CLASS]));
4602 printf (_(" Data: %s\n"),
4603 get_data_encoding (elf_header.e_ident[EI_DATA]));
4604 printf (_(" Version: %d %s\n"),
4605 elf_header.e_ident[EI_VERSION],
4606 (elf_header.e_ident[EI_VERSION] == EV_CURRENT
4607 ? "(current)"
4608 : (elf_header.e_ident[EI_VERSION] != EV_NONE
4609 ? _("<unknown: %lx>")
4610 : "")));
4611 printf (_(" OS/ABI: %s\n"),
4612 get_osabi_name (elf_header.e_ident[EI_OSABI]));
4613 printf (_(" ABI Version: %d\n"),
4614 elf_header.e_ident[EI_ABIVERSION]);
4615 printf (_(" Type: %s\n"),
4616 get_file_type (elf_header.e_type));
4617 printf (_(" Machine: %s\n"),
4618 get_machine_name (elf_header.e_machine));
4619 printf (_(" Version: 0x%lx\n"),
4620 (unsigned long) elf_header.e_version);
4621
4622 printf (_(" Entry point address: "));
4623 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4624 printf (_("\n Start of program headers: "));
4625 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4626 printf (_(" (bytes into file)\n Start of section headers: "));
4627 print_vma ((bfd_vma) elf_header.e_shoff, DEC);
4628 printf (_(" (bytes into file)\n"));
4629
4630 printf (_(" Flags: 0x%lx%s\n"),
4631 (unsigned long) elf_header.e_flags,
4632 get_machine_flags (elf_header.e_flags, elf_header.e_machine));
4633 printf (_(" Size of this header: %ld (bytes)\n"),
4634 (long) elf_header.e_ehsize);
4635 printf (_(" Size of program headers: %ld (bytes)\n"),
4636 (long) elf_header.e_phentsize);
4637 printf (_(" Number of program headers: %ld"),
4638 (long) elf_header.e_phnum);
4639 if (section_headers != NULL
4640 && elf_header.e_phnum == PN_XNUM
4641 && section_headers[0].sh_info != 0)
4642 printf (" (%ld)", (long) section_headers[0].sh_info);
4643 putc ('\n', stdout);
4644 printf (_(" Size of section headers: %ld (bytes)\n"),
4645 (long) elf_header.e_shentsize);
4646 printf (_(" Number of section headers: %ld"),
4647 (long) elf_header.e_shnum);
4648 if (section_headers != NULL && elf_header.e_shnum == SHN_UNDEF)
4649 printf (" (%ld)", (long) section_headers[0].sh_size);
4650 putc ('\n', stdout);
4651 printf (_(" Section header string table index: %ld"),
4652 (long) elf_header.e_shstrndx);
4653 if (section_headers != NULL
4654 && elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4655 printf (" (%u)", section_headers[0].sh_link);
4656 else if (elf_header.e_shstrndx != SHN_UNDEF
4657 && elf_header.e_shstrndx >= elf_header.e_shnum)
4658 printf (_(" <corrupt: out of range>"));
4659 putc ('\n', stdout);
4660 }
4661
4662 if (section_headers != NULL)
4663 {
4664 if (elf_header.e_phnum == PN_XNUM
4665 && section_headers[0].sh_info != 0)
4666 elf_header.e_phnum = section_headers[0].sh_info;
4667 if (elf_header.e_shnum == SHN_UNDEF)
4668 elf_header.e_shnum = section_headers[0].sh_size;
4669 if (elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4670 elf_header.e_shstrndx = section_headers[0].sh_link;
4671 else if (elf_header.e_shstrndx >= elf_header.e_shnum)
4672 elf_header.e_shstrndx = SHN_UNDEF;
4673 free (section_headers);
4674 section_headers = NULL;
4675 }
4676
4677 return 1;
4678 }
4679
4680 static bfd_boolean
4681 get_32bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4682 {
4683 Elf32_External_Phdr * phdrs;
4684 Elf32_External_Phdr * external;
4685 Elf_Internal_Phdr * internal;
4686 unsigned int i;
4687 unsigned int size = elf_header.e_phentsize;
4688 unsigned int num = elf_header.e_phnum;
4689
4690 /* PR binutils/17531: Cope with unexpected section header sizes. */
4691 if (size == 0 || num == 0)
4692 return FALSE;
4693 if (size < sizeof * phdrs)
4694 {
4695 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4696 return FALSE;
4697 }
4698 if (size > sizeof * phdrs)
4699 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4700
4701 phdrs = (Elf32_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4702 size, num, _("program headers"));
4703 if (phdrs == NULL)
4704 return FALSE;
4705
4706 for (i = 0, internal = pheaders, external = phdrs;
4707 i < elf_header.e_phnum;
4708 i++, internal++, external++)
4709 {
4710 internal->p_type = BYTE_GET (external->p_type);
4711 internal->p_offset = BYTE_GET (external->p_offset);
4712 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4713 internal->p_paddr = BYTE_GET (external->p_paddr);
4714 internal->p_filesz = BYTE_GET (external->p_filesz);
4715 internal->p_memsz = BYTE_GET (external->p_memsz);
4716 internal->p_flags = BYTE_GET (external->p_flags);
4717 internal->p_align = BYTE_GET (external->p_align);
4718 }
4719
4720 free (phdrs);
4721 return TRUE;
4722 }
4723
4724 static bfd_boolean
4725 get_64bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4726 {
4727 Elf64_External_Phdr * phdrs;
4728 Elf64_External_Phdr * external;
4729 Elf_Internal_Phdr * internal;
4730 unsigned int i;
4731 unsigned int size = elf_header.e_phentsize;
4732 unsigned int num = elf_header.e_phnum;
4733
4734 /* PR binutils/17531: Cope with unexpected section header sizes. */
4735 if (size == 0 || num == 0)
4736 return FALSE;
4737 if (size < sizeof * phdrs)
4738 {
4739 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4740 return FALSE;
4741 }
4742 if (size > sizeof * phdrs)
4743 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4744
4745 phdrs = (Elf64_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4746 size, num, _("program headers"));
4747 if (!phdrs)
4748 return FALSE;
4749
4750 for (i = 0, internal = pheaders, external = phdrs;
4751 i < elf_header.e_phnum;
4752 i++, internal++, external++)
4753 {
4754 internal->p_type = BYTE_GET (external->p_type);
4755 internal->p_flags = BYTE_GET (external->p_flags);
4756 internal->p_offset = BYTE_GET (external->p_offset);
4757 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4758 internal->p_paddr = BYTE_GET (external->p_paddr);
4759 internal->p_filesz = BYTE_GET (external->p_filesz);
4760 internal->p_memsz = BYTE_GET (external->p_memsz);
4761 internal->p_align = BYTE_GET (external->p_align);
4762 }
4763
4764 free (phdrs);
4765 return TRUE;
4766 }
4767
4768 /* Returns 1 if the program headers were read into `program_headers'. */
4769
4770 static int
4771 get_program_headers (FILE * file)
4772 {
4773 Elf_Internal_Phdr * phdrs;
4774
4775 /* Check cache of prior read. */
4776 if (program_headers != NULL)
4777 return 1;
4778
4779 phdrs = (Elf_Internal_Phdr *) cmalloc (elf_header.e_phnum,
4780 sizeof (Elf_Internal_Phdr));
4781
4782 if (phdrs == NULL)
4783 {
4784 error (_("Out of memory reading %u program headers\n"),
4785 elf_header.e_phnum);
4786 return 0;
4787 }
4788
4789 if (is_32bit_elf
4790 ? get_32bit_program_headers (file, phdrs)
4791 : get_64bit_program_headers (file, phdrs))
4792 {
4793 program_headers = phdrs;
4794 return 1;
4795 }
4796
4797 free (phdrs);
4798 return 0;
4799 }
4800
4801 /* Returns 1 if the program headers were loaded. */
4802
4803 static int
4804 process_program_headers (FILE * file)
4805 {
4806 Elf_Internal_Phdr * segment;
4807 unsigned int i;
4808 Elf_Internal_Phdr * previous_load = NULL;
4809
4810 if (elf_header.e_phnum == 0)
4811 {
4812 /* PR binutils/12467. */
4813 if (elf_header.e_phoff != 0)
4814 warn (_("possibly corrupt ELF header - it has a non-zero program"
4815 " header offset, but no program headers\n"));
4816 else if (do_segments)
4817 printf (_("\nThere are no program headers in this file.\n"));
4818 return 0;
4819 }
4820
4821 if (do_segments && !do_header)
4822 {
4823 printf (_("\nElf file type is %s\n"), get_file_type (elf_header.e_type));
4824 printf (_("Entry point "));
4825 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4826 printf (_("\nThere are %d program headers, starting at offset "),
4827 elf_header.e_phnum);
4828 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4829 printf ("\n");
4830 }
4831
4832 if (! get_program_headers (file))
4833 return 0;
4834
4835 if (do_segments)
4836 {
4837 if (elf_header.e_phnum > 1)
4838 printf (_("\nProgram Headers:\n"));
4839 else
4840 printf (_("\nProgram Headers:\n"));
4841
4842 if (is_32bit_elf)
4843 printf
4844 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4845 else if (do_wide)
4846 printf
4847 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4848 else
4849 {
4850 printf
4851 (_(" Type Offset VirtAddr PhysAddr\n"));
4852 printf
4853 (_(" FileSiz MemSiz Flags Align\n"));
4854 }
4855 }
4856
4857 dynamic_addr = 0;
4858 dynamic_size = 0;
4859
4860 for (i = 0, segment = program_headers;
4861 i < elf_header.e_phnum;
4862 i++, segment++)
4863 {
4864 if (do_segments)
4865 {
4866 printf (" %-14.14s ", get_segment_type (segment->p_type));
4867
4868 if (is_32bit_elf)
4869 {
4870 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4871 printf ("0x%8.8lx ", (unsigned long) segment->p_vaddr);
4872 printf ("0x%8.8lx ", (unsigned long) segment->p_paddr);
4873 printf ("0x%5.5lx ", (unsigned long) segment->p_filesz);
4874 printf ("0x%5.5lx ", (unsigned long) segment->p_memsz);
4875 printf ("%c%c%c ",
4876 (segment->p_flags & PF_R ? 'R' : ' '),
4877 (segment->p_flags & PF_W ? 'W' : ' '),
4878 (segment->p_flags & PF_X ? 'E' : ' '));
4879 printf ("%#lx", (unsigned long) segment->p_align);
4880 }
4881 else if (do_wide)
4882 {
4883 if ((unsigned long) segment->p_offset == segment->p_offset)
4884 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4885 else
4886 {
4887 print_vma (segment->p_offset, FULL_HEX);
4888 putchar (' ');
4889 }
4890
4891 print_vma (segment->p_vaddr, FULL_HEX);
4892 putchar (' ');
4893 print_vma (segment->p_paddr, FULL_HEX);
4894 putchar (' ');
4895
4896 if ((unsigned long) segment->p_filesz == segment->p_filesz)
4897 printf ("0x%6.6lx ", (unsigned long) segment->p_filesz);
4898 else
4899 {
4900 print_vma (segment->p_filesz, FULL_HEX);
4901 putchar (' ');
4902 }
4903
4904 if ((unsigned long) segment->p_memsz == segment->p_memsz)
4905 printf ("0x%6.6lx", (unsigned long) segment->p_memsz);
4906 else
4907 {
4908 print_vma (segment->p_memsz, FULL_HEX);
4909 }
4910
4911 printf (" %c%c%c ",
4912 (segment->p_flags & PF_R ? 'R' : ' '),
4913 (segment->p_flags & PF_W ? 'W' : ' '),
4914 (segment->p_flags & PF_X ? 'E' : ' '));
4915
4916 if ((unsigned long) segment->p_align == segment->p_align)
4917 printf ("%#lx", (unsigned long) segment->p_align);
4918 else
4919 {
4920 print_vma (segment->p_align, PREFIX_HEX);
4921 }
4922 }
4923 else
4924 {
4925 print_vma (segment->p_offset, FULL_HEX);
4926 putchar (' ');
4927 print_vma (segment->p_vaddr, FULL_HEX);
4928 putchar (' ');
4929 print_vma (segment->p_paddr, FULL_HEX);
4930 printf ("\n ");
4931 print_vma (segment->p_filesz, FULL_HEX);
4932 putchar (' ');
4933 print_vma (segment->p_memsz, FULL_HEX);
4934 printf (" %c%c%c ",
4935 (segment->p_flags & PF_R ? 'R' : ' '),
4936 (segment->p_flags & PF_W ? 'W' : ' '),
4937 (segment->p_flags & PF_X ? 'E' : ' '));
4938 print_vma (segment->p_align, PREFIX_HEX);
4939 }
4940
4941 putc ('\n', stdout);
4942 }
4943
4944 switch (segment->p_type)
4945 {
4946 case PT_LOAD:
4947 #if 0 /* Do not warn about out of order PT_LOAD segments. Although officially
4948 required by the ELF standard, several programs, including the Linux
4949 kernel, make use of non-ordered segments. */
4950 if (previous_load
4951 && previous_load->p_vaddr > segment->p_vaddr)
4952 error (_("LOAD segments must be sorted in order of increasing VirtAddr\n"));
4953 #endif
4954 if (segment->p_memsz < segment->p_filesz)
4955 error (_("the segment's file size is larger than its memory size\n"));
4956 previous_load = segment;
4957 break;
4958
4959 case PT_PHDR:
4960 /* PR 20815 - Verify that the program header is loaded into memory. */
4961 if (i > 0 && previous_load != NULL)
4962 error (_("the PHDR segment must occur before any LOAD segment\n"));
4963 if (elf_header.e_machine != EM_PARISC)
4964 {
4965 unsigned int j;
4966
4967 for (j = 1; j < elf_header.e_phnum; j++)
4968 if (program_headers[j].p_vaddr <= segment->p_vaddr
4969 && (program_headers[j].p_vaddr + program_headers[j].p_memsz)
4970 >= (segment->p_vaddr + segment->p_filesz))
4971 break;
4972 if (j == elf_header.e_phnum)
4973 error (_("the PHDR segment is not covered by a LOAD segment\n"));
4974 }
4975 break;
4976
4977 case PT_DYNAMIC:
4978 if (dynamic_addr)
4979 error (_("more than one dynamic segment\n"));
4980
4981 /* By default, assume that the .dynamic section is the first
4982 section in the DYNAMIC segment. */
4983 dynamic_addr = segment->p_offset;
4984 dynamic_size = segment->p_filesz;
4985 /* PR binutils/17512: Avoid corrupt dynamic section info in the segment. */
4986 if (dynamic_addr + dynamic_size >= current_file_size)
4987 {
4988 error (_("the dynamic segment offset + size exceeds the size of the file\n"));
4989 dynamic_addr = dynamic_size = 0;
4990 }
4991
4992 /* Try to locate the .dynamic section. If there is
4993 a section header table, we can easily locate it. */
4994 if (section_headers != NULL)
4995 {
4996 Elf_Internal_Shdr * sec;
4997
4998 sec = find_section (".dynamic");
4999 if (sec == NULL || sec->sh_size == 0)
5000 {
5001 /* A corresponding .dynamic section is expected, but on
5002 IA-64/OpenVMS it is OK for it to be missing. */
5003 if (!is_ia64_vms ())
5004 error (_("no .dynamic section in the dynamic segment\n"));
5005 break;
5006 }
5007
5008 if (sec->sh_type == SHT_NOBITS)
5009 {
5010 dynamic_size = 0;
5011 break;
5012 }
5013
5014 dynamic_addr = sec->sh_offset;
5015 dynamic_size = sec->sh_size;
5016
5017 if (dynamic_addr < segment->p_offset
5018 || dynamic_addr > segment->p_offset + segment->p_filesz)
5019 warn (_("the .dynamic section is not contained"
5020 " within the dynamic segment\n"));
5021 else if (dynamic_addr > segment->p_offset)
5022 warn (_("the .dynamic section is not the first section"
5023 " in the dynamic segment.\n"));
5024 }
5025 break;
5026
5027 case PT_INTERP:
5028 if (fseek (file, archive_file_offset + (long) segment->p_offset,
5029 SEEK_SET))
5030 error (_("Unable to find program interpreter name\n"));
5031 else
5032 {
5033 char fmt [32];
5034 int ret = snprintf (fmt, sizeof (fmt), "%%%ds", PATH_MAX - 1);
5035
5036 if (ret >= (int) sizeof (fmt) || ret < 0)
5037 error (_("Internal error: failed to create format string to display program interpreter\n"));
5038
5039 program_interpreter[0] = 0;
5040 if (fscanf (file, fmt, program_interpreter) <= 0)
5041 error (_("Unable to read program interpreter name\n"));
5042
5043 if (do_segments)
5044 printf (_(" [Requesting program interpreter: %s]\n"),
5045 program_interpreter);
5046 }
5047 break;
5048 }
5049 }
5050
5051 if (do_segments && section_headers != NULL && string_table != NULL)
5052 {
5053 printf (_("\n Section to Segment mapping:\n"));
5054 printf (_(" Segment Sections...\n"));
5055
5056 for (i = 0; i < elf_header.e_phnum; i++)
5057 {
5058 unsigned int j;
5059 Elf_Internal_Shdr * section;
5060
5061 segment = program_headers + i;
5062 section = section_headers + 1;
5063
5064 printf (" %2.2d ", i);
5065
5066 for (j = 1; j < elf_header.e_shnum; j++, section++)
5067 {
5068 if (!ELF_TBSS_SPECIAL (section, segment)
5069 && ELF_SECTION_IN_SEGMENT_STRICT (section, segment))
5070 printf ("%s ", printable_section_name (section));
5071 }
5072
5073 putc ('\n',stdout);
5074 }
5075 }
5076
5077 return 1;
5078 }
5079
5080
5081 /* Find the file offset corresponding to VMA by using the program headers. */
5082
5083 static long
5084 offset_from_vma (FILE * file, bfd_vma vma, bfd_size_type size)
5085 {
5086 Elf_Internal_Phdr * seg;
5087
5088 if (! get_program_headers (file))
5089 {
5090 warn (_("Cannot interpret virtual addresses without program headers.\n"));
5091 return (long) vma;
5092 }
5093
5094 for (seg = program_headers;
5095 seg < program_headers + elf_header.e_phnum;
5096 ++seg)
5097 {
5098 if (seg->p_type != PT_LOAD)
5099 continue;
5100
5101 if (vma >= (seg->p_vaddr & -seg->p_align)
5102 && vma + size <= seg->p_vaddr + seg->p_filesz)
5103 return vma - seg->p_vaddr + seg->p_offset;
5104 }
5105
5106 warn (_("Virtual address 0x%lx not located in any PT_LOAD segment.\n"),
5107 (unsigned long) vma);
5108 return (long) vma;
5109 }
5110
5111
5112 /* Allocate memory and load the sections headers into the global pointer
5113 SECTION_HEADERS. If PROBE is true, this is just a probe and we do not
5114 generate any error messages if the load fails. */
5115
5116 static bfd_boolean
5117 get_32bit_section_headers (FILE * file, bfd_boolean probe)
5118 {
5119 Elf32_External_Shdr * shdrs;
5120 Elf_Internal_Shdr * internal;
5121 unsigned int i;
5122 unsigned int size = elf_header.e_shentsize;
5123 unsigned int num = probe ? 1 : elf_header.e_shnum;
5124
5125 /* PR binutils/17531: Cope with unexpected section header sizes. */
5126 if (size == 0 || num == 0)
5127 return FALSE;
5128 if (size < sizeof * shdrs)
5129 {
5130 if (! probe)
5131 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5132 return FALSE;
5133 }
5134 if (!probe && size > sizeof * shdrs)
5135 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5136
5137 shdrs = (Elf32_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
5138 size, num,
5139 probe ? NULL : _("section headers"));
5140 if (shdrs == NULL)
5141 return FALSE;
5142
5143 if (section_headers != NULL)
5144 free (section_headers);
5145 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
5146 sizeof (Elf_Internal_Shdr));
5147 if (section_headers == NULL)
5148 {
5149 if (!probe)
5150 error (_("Out of memory reading %u section headers\n"), num);
5151 return FALSE;
5152 }
5153
5154 for (i = 0, internal = section_headers;
5155 i < num;
5156 i++, internal++)
5157 {
5158 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5159 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5160 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5161 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5162 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5163 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5164 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5165 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5166 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5167 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5168 if (!probe && internal->sh_link > num)
5169 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5170 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5171 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5172 }
5173
5174 free (shdrs);
5175 return TRUE;
5176 }
5177
5178 static bfd_boolean
5179 get_64bit_section_headers (FILE * file, bfd_boolean probe)
5180 {
5181 Elf64_External_Shdr * shdrs;
5182 Elf_Internal_Shdr * internal;
5183 unsigned int i;
5184 unsigned int size = elf_header.e_shentsize;
5185 unsigned int num = probe ? 1 : elf_header.e_shnum;
5186
5187 /* PR binutils/17531: Cope with unexpected section header sizes. */
5188 if (size == 0 || num == 0)
5189 return FALSE;
5190 if (size < sizeof * shdrs)
5191 {
5192 if (! probe)
5193 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5194 return FALSE;
5195 }
5196 if (! probe && size > sizeof * shdrs)
5197 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5198
5199 shdrs = (Elf64_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
5200 size, num,
5201 probe ? NULL : _("section headers"));
5202 if (shdrs == NULL)
5203 return FALSE;
5204
5205 if (section_headers != NULL)
5206 free (section_headers);
5207 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
5208 sizeof (Elf_Internal_Shdr));
5209 if (section_headers == NULL)
5210 {
5211 if (! probe)
5212 error (_("Out of memory reading %u section headers\n"), num);
5213 return FALSE;
5214 }
5215
5216 for (i = 0, internal = section_headers;
5217 i < num;
5218 i++, internal++)
5219 {
5220 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5221 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5222 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5223 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5224 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5225 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5226 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5227 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5228 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5229 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5230 if (!probe && internal->sh_link > num)
5231 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5232 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5233 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5234 }
5235
5236 free (shdrs);
5237 return TRUE;
5238 }
5239
5240 static Elf_Internal_Sym *
5241 get_32bit_elf_symbols (FILE * file,
5242 Elf_Internal_Shdr * section,
5243 unsigned long * num_syms_return)
5244 {
5245 unsigned long number = 0;
5246 Elf32_External_Sym * esyms = NULL;
5247 Elf_External_Sym_Shndx * shndx = NULL;
5248 Elf_Internal_Sym * isyms = NULL;
5249 Elf_Internal_Sym * psym;
5250 unsigned int j;
5251
5252 if (section->sh_size == 0)
5253 {
5254 if (num_syms_return != NULL)
5255 * num_syms_return = 0;
5256 return NULL;
5257 }
5258
5259 /* Run some sanity checks first. */
5260 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5261 {
5262 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5263 printable_section_name (section), (unsigned long) section->sh_entsize);
5264 goto exit_point;
5265 }
5266
5267 if (section->sh_size > current_file_size)
5268 {
5269 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5270 printable_section_name (section), (unsigned long) section->sh_size);
5271 goto exit_point;
5272 }
5273
5274 number = section->sh_size / section->sh_entsize;
5275
5276 if (number * sizeof (Elf32_External_Sym) > section->sh_size + 1)
5277 {
5278 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5279 (unsigned long) section->sh_size,
5280 printable_section_name (section),
5281 (unsigned long) section->sh_entsize);
5282 goto exit_point;
5283 }
5284
5285 esyms = (Elf32_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
5286 section->sh_size, _("symbols"));
5287 if (esyms == NULL)
5288 goto exit_point;
5289
5290 {
5291 elf_section_list * entry;
5292
5293 shndx = NULL;
5294 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5295 if (entry->hdr->sh_link == (unsigned long) (section - section_headers))
5296 {
5297 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
5298 entry->hdr->sh_offset,
5299 1, entry->hdr->sh_size,
5300 _("symbol table section indicies"));
5301 if (shndx == NULL)
5302 goto exit_point;
5303 /* PR17531: file: heap-buffer-overflow */
5304 else if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5305 {
5306 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5307 printable_section_name (entry->hdr),
5308 (unsigned long) entry->hdr->sh_size,
5309 (unsigned long) section->sh_size);
5310 goto exit_point;
5311 }
5312 }
5313 }
5314
5315 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5316
5317 if (isyms == NULL)
5318 {
5319 error (_("Out of memory reading %lu symbols\n"),
5320 (unsigned long) number);
5321 goto exit_point;
5322 }
5323
5324 for (j = 0, psym = isyms; j < number; j++, psym++)
5325 {
5326 psym->st_name = BYTE_GET (esyms[j].st_name);
5327 psym->st_value = BYTE_GET (esyms[j].st_value);
5328 psym->st_size = BYTE_GET (esyms[j].st_size);
5329 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5330 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5331 psym->st_shndx
5332 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5333 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5334 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5335 psym->st_info = BYTE_GET (esyms[j].st_info);
5336 psym->st_other = BYTE_GET (esyms[j].st_other);
5337 }
5338
5339 exit_point:
5340 if (shndx != NULL)
5341 free (shndx);
5342 if (esyms != NULL)
5343 free (esyms);
5344
5345 if (num_syms_return != NULL)
5346 * num_syms_return = isyms == NULL ? 0 : number;
5347
5348 return isyms;
5349 }
5350
5351 static Elf_Internal_Sym *
5352 get_64bit_elf_symbols (FILE * file,
5353 Elf_Internal_Shdr * section,
5354 unsigned long * num_syms_return)
5355 {
5356 unsigned long number = 0;
5357 Elf64_External_Sym * esyms = NULL;
5358 Elf_External_Sym_Shndx * shndx = NULL;
5359 Elf_Internal_Sym * isyms = NULL;
5360 Elf_Internal_Sym * psym;
5361 unsigned int j;
5362
5363 if (section->sh_size == 0)
5364 {
5365 if (num_syms_return != NULL)
5366 * num_syms_return = 0;
5367 return NULL;
5368 }
5369
5370 /* Run some sanity checks first. */
5371 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5372 {
5373 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5374 printable_section_name (section),
5375 (unsigned long) section->sh_entsize);
5376 goto exit_point;
5377 }
5378
5379 if (section->sh_size > current_file_size)
5380 {
5381 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5382 printable_section_name (section),
5383 (unsigned long) section->sh_size);
5384 goto exit_point;
5385 }
5386
5387 number = section->sh_size / section->sh_entsize;
5388
5389 if (number * sizeof (Elf64_External_Sym) > section->sh_size + 1)
5390 {
5391 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5392 (unsigned long) section->sh_size,
5393 printable_section_name (section),
5394 (unsigned long) section->sh_entsize);
5395 goto exit_point;
5396 }
5397
5398 esyms = (Elf64_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
5399 section->sh_size, _("symbols"));
5400 if (!esyms)
5401 goto exit_point;
5402
5403 {
5404 elf_section_list * entry;
5405
5406 shndx = NULL;
5407 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5408 if (entry->hdr->sh_link == (unsigned long) (section - section_headers))
5409 {
5410 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
5411 entry->hdr->sh_offset,
5412 1, entry->hdr->sh_size,
5413 _("symbol table section indicies"));
5414 if (shndx == NULL)
5415 goto exit_point;
5416 /* PR17531: file: heap-buffer-overflow */
5417 else if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5418 {
5419 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5420 printable_section_name (entry->hdr),
5421 (unsigned long) entry->hdr->sh_size,
5422 (unsigned long) section->sh_size);
5423 goto exit_point;
5424 }
5425 }
5426 }
5427
5428 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5429
5430 if (isyms == NULL)
5431 {
5432 error (_("Out of memory reading %lu symbols\n"),
5433 (unsigned long) number);
5434 goto exit_point;
5435 }
5436
5437 for (j = 0, psym = isyms; j < number; j++, psym++)
5438 {
5439 psym->st_name = BYTE_GET (esyms[j].st_name);
5440 psym->st_info = BYTE_GET (esyms[j].st_info);
5441 psym->st_other = BYTE_GET (esyms[j].st_other);
5442 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5443
5444 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5445 psym->st_shndx
5446 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5447 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5448 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5449
5450 psym->st_value = BYTE_GET (esyms[j].st_value);
5451 psym->st_size = BYTE_GET (esyms[j].st_size);
5452 }
5453
5454 exit_point:
5455 if (shndx != NULL)
5456 free (shndx);
5457 if (esyms != NULL)
5458 free (esyms);
5459
5460 if (num_syms_return != NULL)
5461 * num_syms_return = isyms == NULL ? 0 : number;
5462
5463 return isyms;
5464 }
5465
5466 static const char *
5467 get_elf_section_flags (bfd_vma sh_flags)
5468 {
5469 static char buff[1024];
5470 char * p = buff;
5471 int field_size = is_32bit_elf ? 8 : 16;
5472 int sindex;
5473 int size = sizeof (buff) - (field_size + 4 + 1);
5474 bfd_vma os_flags = 0;
5475 bfd_vma proc_flags = 0;
5476 bfd_vma unknown_flags = 0;
5477 static const struct
5478 {
5479 const char * str;
5480 int len;
5481 }
5482 flags [] =
5483 {
5484 /* 0 */ { STRING_COMMA_LEN ("WRITE") },
5485 /* 1 */ { STRING_COMMA_LEN ("ALLOC") },
5486 /* 2 */ { STRING_COMMA_LEN ("EXEC") },
5487 /* 3 */ { STRING_COMMA_LEN ("MERGE") },
5488 /* 4 */ { STRING_COMMA_LEN ("STRINGS") },
5489 /* 5 */ { STRING_COMMA_LEN ("INFO LINK") },
5490 /* 6 */ { STRING_COMMA_LEN ("LINK ORDER") },
5491 /* 7 */ { STRING_COMMA_LEN ("OS NONCONF") },
5492 /* 8 */ { STRING_COMMA_LEN ("GROUP") },
5493 /* 9 */ { STRING_COMMA_LEN ("TLS") },
5494 /* IA-64 specific. */
5495 /* 10 */ { STRING_COMMA_LEN ("SHORT") },
5496 /* 11 */ { STRING_COMMA_LEN ("NORECOV") },
5497 /* IA-64 OpenVMS specific. */
5498 /* 12 */ { STRING_COMMA_LEN ("VMS_GLOBAL") },
5499 /* 13 */ { STRING_COMMA_LEN ("VMS_OVERLAID") },
5500 /* 14 */ { STRING_COMMA_LEN ("VMS_SHARED") },
5501 /* 15 */ { STRING_COMMA_LEN ("VMS_VECTOR") },
5502 /* 16 */ { STRING_COMMA_LEN ("VMS_ALLOC_64BIT") },
5503 /* 17 */ { STRING_COMMA_LEN ("VMS_PROTECTED") },
5504 /* Generic. */
5505 /* 18 */ { STRING_COMMA_LEN ("EXCLUDE") },
5506 /* SPARC specific. */
5507 /* 19 */ { STRING_COMMA_LEN ("ORDERED") },
5508 /* 20 */ { STRING_COMMA_LEN ("COMPRESSED") },
5509 /* ARM specific. */
5510 /* 21 */ { STRING_COMMA_LEN ("ENTRYSECT") },
5511 /* 22 */ { STRING_COMMA_LEN ("ARM_PURECODE") },
5512 /* 23 */ { STRING_COMMA_LEN ("COMDEF") }
5513 };
5514
5515 if (do_section_details)
5516 {
5517 sprintf (buff, "[%*.*lx]: ",
5518 field_size, field_size, (unsigned long) sh_flags);
5519 p += field_size + 4;
5520 }
5521
5522 while (sh_flags)
5523 {
5524 bfd_vma flag;
5525
5526 flag = sh_flags & - sh_flags;
5527 sh_flags &= ~ flag;
5528
5529 if (do_section_details)
5530 {
5531 switch (flag)
5532 {
5533 case SHF_WRITE: sindex = 0; break;
5534 case SHF_ALLOC: sindex = 1; break;
5535 case SHF_EXECINSTR: sindex = 2; break;
5536 case SHF_MERGE: sindex = 3; break;
5537 case SHF_STRINGS: sindex = 4; break;
5538 case SHF_INFO_LINK: sindex = 5; break;
5539 case SHF_LINK_ORDER: sindex = 6; break;
5540 case SHF_OS_NONCONFORMING: sindex = 7; break;
5541 case SHF_GROUP: sindex = 8; break;
5542 case SHF_TLS: sindex = 9; break;
5543 case SHF_EXCLUDE: sindex = 18; break;
5544 case SHF_COMPRESSED: sindex = 20; break;
5545
5546 default:
5547 sindex = -1;
5548 switch (elf_header.e_machine)
5549 {
5550 case EM_IA_64:
5551 if (flag == SHF_IA_64_SHORT)
5552 sindex = 10;
5553 else if (flag == SHF_IA_64_NORECOV)
5554 sindex = 11;
5555 #ifdef BFD64
5556 else if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
5557 switch (flag)
5558 {
5559 case SHF_IA_64_VMS_GLOBAL: sindex = 12; break;
5560 case SHF_IA_64_VMS_OVERLAID: sindex = 13; break;
5561 case SHF_IA_64_VMS_SHARED: sindex = 14; break;
5562 case SHF_IA_64_VMS_VECTOR: sindex = 15; break;
5563 case SHF_IA_64_VMS_ALLOC_64BIT: sindex = 16; break;
5564 case SHF_IA_64_VMS_PROTECTED: sindex = 17; break;
5565 default: break;
5566 }
5567 #endif
5568 break;
5569
5570 case EM_386:
5571 case EM_IAMCU:
5572 case EM_X86_64:
5573 case EM_L1OM:
5574 case EM_K1OM:
5575 case EM_OLD_SPARCV9:
5576 case EM_SPARC32PLUS:
5577 case EM_SPARCV9:
5578 case EM_SPARC:
5579 if (flag == SHF_ORDERED)
5580 sindex = 19;
5581 break;
5582
5583 case EM_ARM:
5584 switch (flag)
5585 {
5586 case SHF_ENTRYSECT: sindex = 21; break;
5587 case SHF_ARM_PURECODE: sindex = 22; break;
5588 case SHF_COMDEF: sindex = 23; break;
5589 default: break;
5590 }
5591 break;
5592
5593 default:
5594 break;
5595 }
5596 }
5597
5598 if (sindex != -1)
5599 {
5600 if (p != buff + field_size + 4)
5601 {
5602 if (size < (10 + 2))
5603 {
5604 warn (_("Internal error: not enough buffer room for section flag info"));
5605 return _("<unknown>");
5606 }
5607 size -= 2;
5608 *p++ = ',';
5609 *p++ = ' ';
5610 }
5611
5612 size -= flags [sindex].len;
5613 p = stpcpy (p, flags [sindex].str);
5614 }
5615 else if (flag & SHF_MASKOS)
5616 os_flags |= flag;
5617 else if (flag & SHF_MASKPROC)
5618 proc_flags |= flag;
5619 else
5620 unknown_flags |= flag;
5621 }
5622 else
5623 {
5624 switch (flag)
5625 {
5626 case SHF_WRITE: *p = 'W'; break;
5627 case SHF_ALLOC: *p = 'A'; break;
5628 case SHF_EXECINSTR: *p = 'X'; break;
5629 case SHF_MERGE: *p = 'M'; break;
5630 case SHF_STRINGS: *p = 'S'; break;
5631 case SHF_INFO_LINK: *p = 'I'; break;
5632 case SHF_LINK_ORDER: *p = 'L'; break;
5633 case SHF_OS_NONCONFORMING: *p = 'O'; break;
5634 case SHF_GROUP: *p = 'G'; break;
5635 case SHF_TLS: *p = 'T'; break;
5636 case SHF_EXCLUDE: *p = 'E'; break;
5637 case SHF_COMPRESSED: *p = 'C'; break;
5638
5639 default:
5640 if ((elf_header.e_machine == EM_X86_64
5641 || elf_header.e_machine == EM_L1OM
5642 || elf_header.e_machine == EM_K1OM)
5643 && flag == SHF_X86_64_LARGE)
5644 *p = 'l';
5645 else if (elf_header.e_machine == EM_ARM
5646 && flag == SHF_ARM_PURECODE)
5647 *p = 'y';
5648 else if (flag & SHF_MASKOS)
5649 {
5650 *p = 'o';
5651 sh_flags &= ~ SHF_MASKOS;
5652 }
5653 else if (flag & SHF_MASKPROC)
5654 {
5655 *p = 'p';
5656 sh_flags &= ~ SHF_MASKPROC;
5657 }
5658 else
5659 *p = 'x';
5660 break;
5661 }
5662 p++;
5663 }
5664 }
5665
5666 if (do_section_details)
5667 {
5668 if (os_flags)
5669 {
5670 size -= 5 + field_size;
5671 if (p != buff + field_size + 4)
5672 {
5673 if (size < (2 + 1))
5674 {
5675 warn (_("Internal error: not enough buffer room for section flag info"));
5676 return _("<unknown>");
5677 }
5678 size -= 2;
5679 *p++ = ',';
5680 *p++ = ' ';
5681 }
5682 sprintf (p, "OS (%*.*lx)", field_size, field_size,
5683 (unsigned long) os_flags);
5684 p += 5 + field_size;
5685 }
5686 if (proc_flags)
5687 {
5688 size -= 7 + field_size;
5689 if (p != buff + field_size + 4)
5690 {
5691 if (size < (2 + 1))
5692 {
5693 warn (_("Internal error: not enough buffer room for section flag info"));
5694 return _("<unknown>");
5695 }
5696 size -= 2;
5697 *p++ = ',';
5698 *p++ = ' ';
5699 }
5700 sprintf (p, "PROC (%*.*lx)", field_size, field_size,
5701 (unsigned long) proc_flags);
5702 p += 7 + field_size;
5703 }
5704 if (unknown_flags)
5705 {
5706 size -= 10 + field_size;
5707 if (p != buff + field_size + 4)
5708 {
5709 if (size < (2 + 1))
5710 {
5711 warn (_("Internal error: not enough buffer room for section flag info"));
5712 return _("<unknown>");
5713 }
5714 size -= 2;
5715 *p++ = ',';
5716 *p++ = ' ';
5717 }
5718 sprintf (p, _("UNKNOWN (%*.*lx)"), field_size, field_size,
5719 (unsigned long) unknown_flags);
5720 p += 10 + field_size;
5721 }
5722 }
5723
5724 *p = '\0';
5725 return buff;
5726 }
5727
5728 static unsigned int
5729 get_compression_header (Elf_Internal_Chdr *chdr, unsigned char *buf, bfd_size_type size)
5730 {
5731 if (is_32bit_elf)
5732 {
5733 Elf32_External_Chdr *echdr = (Elf32_External_Chdr *) buf;
5734
5735 if (size < sizeof (* echdr))
5736 {
5737 error (_("Compressed section is too small even for a compression header\n"));
5738 return 0;
5739 }
5740
5741 chdr->ch_type = BYTE_GET (echdr->ch_type);
5742 chdr->ch_size = BYTE_GET (echdr->ch_size);
5743 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
5744 return sizeof (*echdr);
5745 }
5746 else
5747 {
5748 Elf64_External_Chdr *echdr = (Elf64_External_Chdr *) buf;
5749
5750 if (size < sizeof (* echdr))
5751 {
5752 error (_("Compressed section is too small even for a compression header\n"));
5753 return 0;
5754 }
5755
5756 chdr->ch_type = BYTE_GET (echdr->ch_type);
5757 chdr->ch_size = BYTE_GET (echdr->ch_size);
5758 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
5759 return sizeof (*echdr);
5760 }
5761 }
5762
5763 static int
5764 process_section_headers (FILE * file)
5765 {
5766 Elf_Internal_Shdr * section;
5767 unsigned int i;
5768
5769 section_headers = NULL;
5770
5771 if (elf_header.e_shnum == 0)
5772 {
5773 /* PR binutils/12467. */
5774 if (elf_header.e_shoff != 0)
5775 warn (_("possibly corrupt ELF file header - it has a non-zero"
5776 " section header offset, but no section headers\n"));
5777 else if (do_sections)
5778 printf (_("\nThere are no sections in this file.\n"));
5779
5780 return 1;
5781 }
5782
5783 if (do_sections && !do_header)
5784 printf (_("There are %d section headers, starting at offset 0x%lx:\n"),
5785 elf_header.e_shnum, (unsigned long) elf_header.e_shoff);
5786
5787 if (is_32bit_elf)
5788 {
5789 if (! get_32bit_section_headers (file, FALSE))
5790 return 0;
5791 }
5792 else if (! get_64bit_section_headers (file, FALSE))
5793 return 0;
5794
5795 /* Read in the string table, so that we have names to display. */
5796 if (elf_header.e_shstrndx != SHN_UNDEF
5797 && elf_header.e_shstrndx < elf_header.e_shnum)
5798 {
5799 section = section_headers + elf_header.e_shstrndx;
5800
5801 if (section->sh_size != 0)
5802 {
5803 string_table = (char *) get_data (NULL, file, section->sh_offset,
5804 1, section->sh_size,
5805 _("string table"));
5806
5807 string_table_length = string_table != NULL ? section->sh_size : 0;
5808 }
5809 }
5810
5811 /* Scan the sections for the dynamic symbol table
5812 and dynamic string table and debug sections. */
5813 dynamic_symbols = NULL;
5814 dynamic_strings = NULL;
5815 dynamic_syminfo = NULL;
5816 symtab_shndx_list = NULL;
5817
5818 eh_addr_size = is_32bit_elf ? 4 : 8;
5819 switch (elf_header.e_machine)
5820 {
5821 case EM_MIPS:
5822 case EM_MIPS_RS3_LE:
5823 /* The 64-bit MIPS EABI uses a combination of 32-bit ELF and 64-bit
5824 FDE addresses. However, the ABI also has a semi-official ILP32
5825 variant for which the normal FDE address size rules apply.
5826
5827 GCC 4.0 marks EABI64 objects with a dummy .gcc_compiled_longXX
5828 section, where XX is the size of longs in bits. Unfortunately,
5829 earlier compilers provided no way of distinguishing ILP32 objects
5830 from LP64 objects, so if there's any doubt, we should assume that
5831 the official LP64 form is being used. */
5832 if ((elf_header.e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64
5833 && find_section (".gcc_compiled_long32") == NULL)
5834 eh_addr_size = 8;
5835 break;
5836
5837 case EM_H8_300:
5838 case EM_H8_300H:
5839 switch (elf_header.e_flags & EF_H8_MACH)
5840 {
5841 case E_H8_MACH_H8300:
5842 case E_H8_MACH_H8300HN:
5843 case E_H8_MACH_H8300SN:
5844 case E_H8_MACH_H8300SXN:
5845 eh_addr_size = 2;
5846 break;
5847 case E_H8_MACH_H8300H:
5848 case E_H8_MACH_H8300S:
5849 case E_H8_MACH_H8300SX:
5850 eh_addr_size = 4;
5851 break;
5852 }
5853 break;
5854
5855 case EM_M32C_OLD:
5856 case EM_M32C:
5857 switch (elf_header.e_flags & EF_M32C_CPU_MASK)
5858 {
5859 case EF_M32C_CPU_M16C:
5860 eh_addr_size = 2;
5861 break;
5862 }
5863 break;
5864 }
5865
5866 #define CHECK_ENTSIZE_VALUES(section, i, size32, size64) \
5867 do \
5868 { \
5869 bfd_size_type expected_entsize = is_32bit_elf ? size32 : size64; \
5870 if (section->sh_entsize != expected_entsize) \
5871 { \
5872 char buf[40]; \
5873 sprintf_vma (buf, section->sh_entsize); \
5874 /* Note: coded this way so that there is a single string for \
5875 translation. */ \
5876 error (_("Section %d has invalid sh_entsize of %s\n"), i, buf); \
5877 error (_("(Using the expected size of %u for the rest of this dump)\n"), \
5878 (unsigned) expected_entsize); \
5879 section->sh_entsize = expected_entsize; \
5880 } \
5881 } \
5882 while (0)
5883
5884 #define CHECK_ENTSIZE(section, i, type) \
5885 CHECK_ENTSIZE_VALUES (section, i, sizeof (Elf32_External_##type), \
5886 sizeof (Elf64_External_##type))
5887
5888 for (i = 0, section = section_headers;
5889 i < elf_header.e_shnum;
5890 i++, section++)
5891 {
5892 char * name = SECTION_NAME (section);
5893
5894 if (section->sh_type == SHT_DYNSYM)
5895 {
5896 if (dynamic_symbols != NULL)
5897 {
5898 error (_("File contains multiple dynamic symbol tables\n"));
5899 continue;
5900 }
5901
5902 CHECK_ENTSIZE (section, i, Sym);
5903 dynamic_symbols = GET_ELF_SYMBOLS (file, section, & num_dynamic_syms);
5904 }
5905 else if (section->sh_type == SHT_STRTAB
5906 && streq (name, ".dynstr"))
5907 {
5908 if (dynamic_strings != NULL)
5909 {
5910 error (_("File contains multiple dynamic string tables\n"));
5911 continue;
5912 }
5913
5914 dynamic_strings = (char *) get_data (NULL, file, section->sh_offset,
5915 1, section->sh_size,
5916 _("dynamic strings"));
5917 dynamic_strings_length = dynamic_strings == NULL ? 0 : section->sh_size;
5918 }
5919 else if (section->sh_type == SHT_SYMTAB_SHNDX)
5920 {
5921 elf_section_list * entry = xmalloc (sizeof * entry);
5922 entry->hdr = section;
5923 entry->next = symtab_shndx_list;
5924 symtab_shndx_list = entry;
5925 }
5926 else if (section->sh_type == SHT_SYMTAB)
5927 CHECK_ENTSIZE (section, i, Sym);
5928 else if (section->sh_type == SHT_GROUP)
5929 CHECK_ENTSIZE_VALUES (section, i, GRP_ENTRY_SIZE, GRP_ENTRY_SIZE);
5930 else if (section->sh_type == SHT_REL)
5931 CHECK_ENTSIZE (section, i, Rel);
5932 else if (section->sh_type == SHT_RELA)
5933 CHECK_ENTSIZE (section, i, Rela);
5934 else if ((do_debugging || do_debug_info || do_debug_abbrevs
5935 || do_debug_lines || do_debug_pubnames || do_debug_pubtypes
5936 || do_debug_aranges || do_debug_frames || do_debug_macinfo
5937 || do_debug_str || do_debug_loc || do_debug_ranges
5938 || do_debug_addr || do_debug_cu_index)
5939 && (const_strneq (name, ".debug_")
5940 || const_strneq (name, ".zdebug_")))
5941 {
5942 if (name[1] == 'z')
5943 name += sizeof (".zdebug_") - 1;
5944 else
5945 name += sizeof (".debug_") - 1;
5946
5947 if (do_debugging
5948 || (do_debug_info && const_strneq (name, "info"))
5949 || (do_debug_info && const_strneq (name, "types"))
5950 || (do_debug_abbrevs && const_strneq (name, "abbrev"))
5951 || (do_debug_lines && strcmp (name, "line") == 0)
5952 || (do_debug_lines && const_strneq (name, "line."))
5953 || (do_debug_pubnames && const_strneq (name, "pubnames"))
5954 || (do_debug_pubtypes && const_strneq (name, "pubtypes"))
5955 || (do_debug_pubnames && const_strneq (name, "gnu_pubnames"))
5956 || (do_debug_pubtypes && const_strneq (name, "gnu_pubtypes"))
5957 || (do_debug_aranges && const_strneq (name, "aranges"))
5958 || (do_debug_ranges && const_strneq (name, "ranges"))
5959 || (do_debug_frames && const_strneq (name, "frame"))
5960 || (do_debug_macinfo && const_strneq (name, "macinfo"))
5961 || (do_debug_macinfo && const_strneq (name, "macro"))
5962 || (do_debug_str && const_strneq (name, "str"))
5963 || (do_debug_loc && const_strneq (name, "loc"))
5964 || (do_debug_addr && const_strneq (name, "addr"))
5965 || (do_debug_cu_index && const_strneq (name, "cu_index"))
5966 || (do_debug_cu_index && const_strneq (name, "tu_index"))
5967 )
5968 request_dump_bynumber (i, DEBUG_DUMP);
5969 }
5970 /* Linkonce section to be combined with .debug_info at link time. */
5971 else if ((do_debugging || do_debug_info)
5972 && const_strneq (name, ".gnu.linkonce.wi."))
5973 request_dump_bynumber (i, DEBUG_DUMP);
5974 else if (do_debug_frames && streq (name, ".eh_frame"))
5975 request_dump_bynumber (i, DEBUG_DUMP);
5976 else if (do_gdb_index && streq (name, ".gdb_index"))
5977 request_dump_bynumber (i, DEBUG_DUMP);
5978 /* Trace sections for Itanium VMS. */
5979 else if ((do_debugging || do_trace_info || do_trace_abbrevs
5980 || do_trace_aranges)
5981 && const_strneq (name, ".trace_"))
5982 {
5983 name += sizeof (".trace_") - 1;
5984
5985 if (do_debugging
5986 || (do_trace_info && streq (name, "info"))
5987 || (do_trace_abbrevs && streq (name, "abbrev"))
5988 || (do_trace_aranges && streq (name, "aranges"))
5989 )
5990 request_dump_bynumber (i, DEBUG_DUMP);
5991 }
5992 }
5993
5994 if (! do_sections)
5995 return 1;
5996
5997 if (elf_header.e_shnum > 1)
5998 printf (_("\nSection Headers:\n"));
5999 else
6000 printf (_("\nSection Header:\n"));
6001
6002 if (is_32bit_elf)
6003 {
6004 if (do_section_details)
6005 {
6006 printf (_(" [Nr] Name\n"));
6007 printf (_(" Type Addr Off Size ES Lk Inf Al\n"));
6008 }
6009 else
6010 printf
6011 (_(" [Nr] Name Type Addr Off Size ES Flg Lk Inf Al\n"));
6012 }
6013 else if (do_wide)
6014 {
6015 if (do_section_details)
6016 {
6017 printf (_(" [Nr] Name\n"));
6018 printf (_(" Type Address Off Size ES Lk Inf Al\n"));
6019 }
6020 else
6021 printf
6022 (_(" [Nr] Name Type Address Off Size ES Flg Lk Inf Al\n"));
6023 }
6024 else
6025 {
6026 if (do_section_details)
6027 {
6028 printf (_(" [Nr] Name\n"));
6029 printf (_(" Type Address Offset Link\n"));
6030 printf (_(" Size EntSize Info Align\n"));
6031 }
6032 else
6033 {
6034 printf (_(" [Nr] Name Type Address Offset\n"));
6035 printf (_(" Size EntSize Flags Link Info Align\n"));
6036 }
6037 }
6038
6039 if (do_section_details)
6040 printf (_(" Flags\n"));
6041
6042 for (i = 0, section = section_headers;
6043 i < elf_header.e_shnum;
6044 i++, section++)
6045 {
6046 /* Run some sanity checks on the section header. */
6047
6048 /* Check the sh_link field. */
6049 switch (section->sh_type)
6050 {
6051 case SHT_SYMTAB_SHNDX:
6052 case SHT_GROUP:
6053 case SHT_HASH:
6054 case SHT_GNU_HASH:
6055 case SHT_GNU_versym:
6056 case SHT_REL:
6057 case SHT_RELA:
6058 if (section->sh_link < 1
6059 || section->sh_link >= elf_header.e_shnum
6060 || (section_headers[section->sh_link].sh_type != SHT_SYMTAB
6061 && section_headers[section->sh_link].sh_type != SHT_DYNSYM))
6062 warn (_("[%2u]: Link field (%u) should index a symtab section.\n"),
6063 i, section->sh_link);
6064 break;
6065
6066 case SHT_DYNAMIC:
6067 case SHT_SYMTAB:
6068 case SHT_DYNSYM:
6069 case SHT_GNU_verneed:
6070 case SHT_GNU_verdef:
6071 case SHT_GNU_LIBLIST:
6072 if (section->sh_link < 1
6073 || section->sh_link >= elf_header.e_shnum
6074 || section_headers[section->sh_link].sh_type != SHT_STRTAB)
6075 warn (_("[%2u]: Link field (%u) should index a string section.\n"),
6076 i, section->sh_link);
6077 break;
6078
6079 case SHT_INIT_ARRAY:
6080 case SHT_FINI_ARRAY:
6081 case SHT_PREINIT_ARRAY:
6082 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
6083 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
6084 i, section->sh_link);
6085 break;
6086
6087 default:
6088 /* FIXME: Add support for target specific section types. */
6089 #if 0 /* Currently we do not check other section types as there are too
6090 many special cases. Stab sections for example have a type
6091 of SHT_PROGBITS but an sh_link field that links to the .stabstr
6092 section. */
6093 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
6094 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
6095 i, section->sh_link);
6096 #endif
6097 break;
6098 }
6099
6100 /* Check the sh_info field. */
6101 switch (section->sh_type)
6102 {
6103 case SHT_REL:
6104 case SHT_RELA:
6105 if (section->sh_info < 1
6106 || section->sh_info >= elf_header.e_shnum
6107 || (section_headers[section->sh_info].sh_type != SHT_PROGBITS
6108 && section_headers[section->sh_info].sh_type != SHT_NOBITS
6109 && section_headers[section->sh_info].sh_type != SHT_NOTE
6110 && section_headers[section->sh_info].sh_type != SHT_INIT_ARRAY
6111 /* FIXME: Are other section types valid ? */
6112 && section_headers[section->sh_info].sh_type < SHT_LOOS))
6113 {
6114 if (section->sh_info == 0
6115 && (streq (SECTION_NAME (section), ".rel.dyn")
6116 || streq (SECTION_NAME (section), ".rela.dyn")))
6117 /* The .rel.dyn and .rela.dyn sections have an sh_info field
6118 of zero. The relocations in these sections may apply
6119 to many different sections. */
6120 ;
6121 else
6122 warn (_("[%2u]: Info field (%u) should index a relocatable section.\n"),
6123 i, section->sh_info);
6124 }
6125 break;
6126
6127 case SHT_DYNAMIC:
6128 case SHT_HASH:
6129 case SHT_SYMTAB_SHNDX:
6130 case SHT_INIT_ARRAY:
6131 case SHT_FINI_ARRAY:
6132 case SHT_PREINIT_ARRAY:
6133 if (section->sh_info != 0)
6134 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6135 i, section->sh_info);
6136 break;
6137
6138 case SHT_GROUP:
6139 case SHT_SYMTAB:
6140 case SHT_DYNSYM:
6141 /* A symbol index - we assume that it is valid. */
6142 break;
6143
6144 default:
6145 /* FIXME: Add support for target specific section types. */
6146 if (section->sh_type == SHT_NOBITS)
6147 /* NOBITS section headers with non-zero sh_info fields can be
6148 created when a binary is stripped of everything but its debug
6149 information. The stripped sections have their headers
6150 preserved but their types set to SHT_NOBITS. So do not check
6151 this type of section. */
6152 ;
6153 else if (section->sh_flags & SHF_INFO_LINK)
6154 {
6155 if (section->sh_info < 1 || section->sh_info >= elf_header.e_shnum)
6156 warn (_("[%2u]: Expected link to another section in info field"), i);
6157 }
6158 else if (section->sh_type < SHT_LOOS && section->sh_info != 0)
6159 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6160 i, section->sh_info);
6161 break;
6162 }
6163
6164 printf (" [%2u] ", i);
6165 if (do_section_details)
6166 printf ("%s\n ", printable_section_name (section));
6167 else
6168 print_symbol (-17, SECTION_NAME (section));
6169
6170 printf (do_wide ? " %-15s " : " %-15.15s ",
6171 get_section_type_name (section->sh_type));
6172
6173 if (is_32bit_elf)
6174 {
6175 const char * link_too_big = NULL;
6176
6177 print_vma (section->sh_addr, LONG_HEX);
6178
6179 printf ( " %6.6lx %6.6lx %2.2lx",
6180 (unsigned long) section->sh_offset,
6181 (unsigned long) section->sh_size,
6182 (unsigned long) section->sh_entsize);
6183
6184 if (do_section_details)
6185 fputs (" ", stdout);
6186 else
6187 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6188
6189 if (section->sh_link >= elf_header.e_shnum)
6190 {
6191 link_too_big = "";
6192 /* The sh_link value is out of range. Normally this indicates
6193 an error but it can have special values in Solaris binaries. */
6194 switch (elf_header.e_machine)
6195 {
6196 case EM_386:
6197 case EM_IAMCU:
6198 case EM_X86_64:
6199 case EM_L1OM:
6200 case EM_K1OM:
6201 case EM_OLD_SPARCV9:
6202 case EM_SPARC32PLUS:
6203 case EM_SPARCV9:
6204 case EM_SPARC:
6205 if (section->sh_link == (SHN_BEFORE & 0xffff))
6206 link_too_big = "BEFORE";
6207 else if (section->sh_link == (SHN_AFTER & 0xffff))
6208 link_too_big = "AFTER";
6209 break;
6210 default:
6211 break;
6212 }
6213 }
6214
6215 if (do_section_details)
6216 {
6217 if (link_too_big != NULL && * link_too_big)
6218 printf ("<%s> ", link_too_big);
6219 else
6220 printf ("%2u ", section->sh_link);
6221 printf ("%3u %2lu\n", section->sh_info,
6222 (unsigned long) section->sh_addralign);
6223 }
6224 else
6225 printf ("%2u %3u %2lu\n",
6226 section->sh_link,
6227 section->sh_info,
6228 (unsigned long) section->sh_addralign);
6229
6230 if (link_too_big && ! * link_too_big)
6231 warn (_("section %u: sh_link value of %u is larger than the number of sections\n"),
6232 i, section->sh_link);
6233 }
6234 else if (do_wide)
6235 {
6236 print_vma (section->sh_addr, LONG_HEX);
6237
6238 if ((long) section->sh_offset == section->sh_offset)
6239 printf (" %6.6lx", (unsigned long) section->sh_offset);
6240 else
6241 {
6242 putchar (' ');
6243 print_vma (section->sh_offset, LONG_HEX);
6244 }
6245
6246 if ((unsigned long) section->sh_size == section->sh_size)
6247 printf (" %6.6lx", (unsigned long) section->sh_size);
6248 else
6249 {
6250 putchar (' ');
6251 print_vma (section->sh_size, LONG_HEX);
6252 }
6253
6254 if ((unsigned long) section->sh_entsize == section->sh_entsize)
6255 printf (" %2.2lx", (unsigned long) section->sh_entsize);
6256 else
6257 {
6258 putchar (' ');
6259 print_vma (section->sh_entsize, LONG_HEX);
6260 }
6261
6262 if (do_section_details)
6263 fputs (" ", stdout);
6264 else
6265 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6266
6267 printf ("%2u %3u ", section->sh_link, section->sh_info);
6268
6269 if ((unsigned long) section->sh_addralign == section->sh_addralign)
6270 printf ("%2lu\n", (unsigned long) section->sh_addralign);
6271 else
6272 {
6273 print_vma (section->sh_addralign, DEC);
6274 putchar ('\n');
6275 }
6276 }
6277 else if (do_section_details)
6278 {
6279 printf (" %-15.15s ",
6280 get_section_type_name (section->sh_type));
6281 print_vma (section->sh_addr, LONG_HEX);
6282 if ((long) section->sh_offset == section->sh_offset)
6283 printf (" %16.16lx", (unsigned long) section->sh_offset);
6284 else
6285 {
6286 printf (" ");
6287 print_vma (section->sh_offset, LONG_HEX);
6288 }
6289 printf (" %u\n ", section->sh_link);
6290 print_vma (section->sh_size, LONG_HEX);
6291 putchar (' ');
6292 print_vma (section->sh_entsize, LONG_HEX);
6293
6294 printf (" %-16u %lu\n",
6295 section->sh_info,
6296 (unsigned long) section->sh_addralign);
6297 }
6298 else
6299 {
6300 putchar (' ');
6301 print_vma (section->sh_addr, LONG_HEX);
6302 if ((long) section->sh_offset == section->sh_offset)
6303 printf (" %8.8lx", (unsigned long) section->sh_offset);
6304 else
6305 {
6306 printf (" ");
6307 print_vma (section->sh_offset, LONG_HEX);
6308 }
6309 printf ("\n ");
6310 print_vma (section->sh_size, LONG_HEX);
6311 printf (" ");
6312 print_vma (section->sh_entsize, LONG_HEX);
6313
6314 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6315
6316 printf (" %2u %3u %lu\n",
6317 section->sh_link,
6318 section->sh_info,
6319 (unsigned long) section->sh_addralign);
6320 }
6321
6322 if (do_section_details)
6323 {
6324 printf (" %s\n", get_elf_section_flags (section->sh_flags));
6325 if ((section->sh_flags & SHF_COMPRESSED) != 0)
6326 {
6327 /* Minimum section size is 12 bytes for 32-bit compression
6328 header + 12 bytes for compressed data header. */
6329 unsigned char buf[24];
6330
6331 assert (sizeof (buf) >= sizeof (Elf64_External_Chdr));
6332 if (get_data (&buf, (FILE *) file, section->sh_offset, 1,
6333 sizeof (buf), _("compression header")))
6334 {
6335 Elf_Internal_Chdr chdr;
6336
6337 (void) get_compression_header (&chdr, buf, sizeof (buf));
6338
6339 if (chdr.ch_type == ELFCOMPRESS_ZLIB)
6340 printf (" ZLIB, ");
6341 else
6342 printf (_(" [<unknown>: 0x%x], "),
6343 chdr.ch_type);
6344 print_vma (chdr.ch_size, LONG_HEX);
6345 printf (", %lu\n", (unsigned long) chdr.ch_addralign);
6346 }
6347 }
6348 }
6349 }
6350
6351 if (!do_section_details)
6352 {
6353 /* The ordering of the letters shown here matches the ordering of the
6354 corresponding SHF_xxx values, and hence the order in which these
6355 letters will be displayed to the user. */
6356 printf (_("Key to Flags:\n\
6357 W (write), A (alloc), X (execute), M (merge), S (strings), I (info),\n\
6358 L (link order), O (extra OS processing required), G (group), T (TLS),\n\
6359 C (compressed), x (unknown), o (OS specific), E (exclude),\n "));
6360 if (elf_header.e_machine == EM_X86_64
6361 || elf_header.e_machine == EM_L1OM
6362 || elf_header.e_machine == EM_K1OM)
6363 printf (_("l (large), "));
6364 else if (elf_header.e_machine == EM_ARM)
6365 printf (_("y (purecode), "));
6366 printf ("p (processor specific)\n");
6367 }
6368
6369 return 1;
6370 }
6371
6372 static const char *
6373 get_group_flags (unsigned int flags)
6374 {
6375 static char buff[128];
6376
6377 if (flags == 0)
6378 return "";
6379 else if (flags == GRP_COMDAT)
6380 return "COMDAT ";
6381
6382 snprintf (buff, 14, _("[0x%x: "), flags);
6383
6384 flags &= ~ GRP_COMDAT;
6385 if (flags & GRP_MASKOS)
6386 {
6387 strcat (buff, "<OS specific>");
6388 flags &= ~ GRP_MASKOS;
6389 }
6390
6391 if (flags & GRP_MASKPROC)
6392 {
6393 strcat (buff, "<PROC specific>");
6394 flags &= ~ GRP_MASKPROC;
6395 }
6396
6397 if (flags)
6398 strcat (buff, "<unknown>");
6399
6400 strcat (buff, "]");
6401 return buff;
6402 }
6403
6404 static int
6405 process_section_groups (FILE * file)
6406 {
6407 Elf_Internal_Shdr * section;
6408 unsigned int i;
6409 struct group * group;
6410 Elf_Internal_Shdr * symtab_sec;
6411 Elf_Internal_Shdr * strtab_sec;
6412 Elf_Internal_Sym * symtab;
6413 unsigned long num_syms;
6414 char * strtab;
6415 size_t strtab_size;
6416
6417 /* Don't process section groups unless needed. */
6418 if (!do_unwind && !do_section_groups)
6419 return 1;
6420
6421 if (elf_header.e_shnum == 0)
6422 {
6423 if (do_section_groups)
6424 printf (_("\nThere are no sections to group in this file.\n"));
6425
6426 return 1;
6427 }
6428
6429 if (section_headers == NULL)
6430 {
6431 error (_("Section headers are not available!\n"));
6432 /* PR 13622: This can happen with a corrupt ELF header. */
6433 return 0;
6434 }
6435
6436 section_headers_groups = (struct group **) calloc (elf_header.e_shnum,
6437 sizeof (struct group *));
6438
6439 if (section_headers_groups == NULL)
6440 {
6441 error (_("Out of memory reading %u section group headers\n"),
6442 elf_header.e_shnum);
6443 return 0;
6444 }
6445
6446 /* Scan the sections for the group section. */
6447 group_count = 0;
6448 for (i = 0, section = section_headers;
6449 i < elf_header.e_shnum;
6450 i++, section++)
6451 if (section->sh_type == SHT_GROUP)
6452 group_count++;
6453
6454 if (group_count == 0)
6455 {
6456 if (do_section_groups)
6457 printf (_("\nThere are no section groups in this file.\n"));
6458
6459 return 1;
6460 }
6461
6462 section_groups = (struct group *) calloc (group_count, sizeof (struct group));
6463
6464 if (section_groups == NULL)
6465 {
6466 error (_("Out of memory reading %lu groups\n"),
6467 (unsigned long) group_count);
6468 return 0;
6469 }
6470
6471 symtab_sec = NULL;
6472 strtab_sec = NULL;
6473 symtab = NULL;
6474 num_syms = 0;
6475 strtab = NULL;
6476 strtab_size = 0;
6477 for (i = 0, section = section_headers, group = section_groups;
6478 i < elf_header.e_shnum;
6479 i++, section++)
6480 {
6481 if (section->sh_type == SHT_GROUP)
6482 {
6483 const char * name = printable_section_name (section);
6484 const char * group_name;
6485 unsigned char * start;
6486 unsigned char * indices;
6487 unsigned int entry, j, size;
6488 Elf_Internal_Shdr * sec;
6489 Elf_Internal_Sym * sym;
6490
6491 /* Get the symbol table. */
6492 if (section->sh_link >= elf_header.e_shnum
6493 || ((sec = section_headers + section->sh_link)->sh_type
6494 != SHT_SYMTAB))
6495 {
6496 error (_("Bad sh_link in group section `%s'\n"), name);
6497 continue;
6498 }
6499
6500 if (symtab_sec != sec)
6501 {
6502 symtab_sec = sec;
6503 if (symtab)
6504 free (symtab);
6505 symtab = GET_ELF_SYMBOLS (file, symtab_sec, & num_syms);
6506 }
6507
6508 if (symtab == NULL)
6509 {
6510 error (_("Corrupt header in group section `%s'\n"), name);
6511 continue;
6512 }
6513
6514 if (section->sh_info >= num_syms)
6515 {
6516 error (_("Bad sh_info in group section `%s'\n"), name);
6517 continue;
6518 }
6519
6520 sym = symtab + section->sh_info;
6521
6522 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6523 {
6524 if (sym->st_shndx == 0
6525 || sym->st_shndx >= elf_header.e_shnum)
6526 {
6527 error (_("Bad sh_info in group section `%s'\n"), name);
6528 continue;
6529 }
6530
6531 group_name = SECTION_NAME (section_headers + sym->st_shndx);
6532 strtab_sec = NULL;
6533 if (strtab)
6534 free (strtab);
6535 strtab = NULL;
6536 strtab_size = 0;
6537 }
6538 else
6539 {
6540 /* Get the string table. */
6541 if (symtab_sec->sh_link >= elf_header.e_shnum)
6542 {
6543 strtab_sec = NULL;
6544 if (strtab)
6545 free (strtab);
6546 strtab = NULL;
6547 strtab_size = 0;
6548 }
6549 else if (strtab_sec
6550 != (sec = section_headers + symtab_sec->sh_link))
6551 {
6552 strtab_sec = sec;
6553 if (strtab)
6554 free (strtab);
6555
6556 strtab = (char *) get_data (NULL, file, strtab_sec->sh_offset,
6557 1, strtab_sec->sh_size,
6558 _("string table"));
6559 strtab_size = strtab != NULL ? strtab_sec->sh_size : 0;
6560 }
6561 group_name = sym->st_name < strtab_size
6562 ? strtab + sym->st_name : _("<corrupt>");
6563 }
6564
6565 /* PR 17531: file: loop. */
6566 if (section->sh_entsize > section->sh_size)
6567 {
6568 error (_("Section %s has sh_entsize (0x%lx) which is larger than its size (0x%lx)\n"),
6569 printable_section_name (section),
6570 (unsigned long) section->sh_entsize,
6571 (unsigned long) section->sh_size);
6572 break;
6573 }
6574
6575 start = (unsigned char *) get_data (NULL, file, section->sh_offset,
6576 1, section->sh_size,
6577 _("section data"));
6578 if (start == NULL)
6579 continue;
6580
6581 indices = start;
6582 size = (section->sh_size / section->sh_entsize) - 1;
6583 entry = byte_get (indices, 4);
6584 indices += 4;
6585
6586 if (do_section_groups)
6587 {
6588 printf (_("\n%sgroup section [%5u] `%s' [%s] contains %u sections:\n"),
6589 get_group_flags (entry), i, name, group_name, size);
6590
6591 printf (_(" [Index] Name\n"));
6592 }
6593
6594 group->group_index = i;
6595
6596 for (j = 0; j < size; j++)
6597 {
6598 struct group_list * g;
6599
6600 entry = byte_get (indices, 4);
6601 indices += 4;
6602
6603 if (entry >= elf_header.e_shnum)
6604 {
6605 static unsigned num_group_errors = 0;
6606
6607 if (num_group_errors ++ < 10)
6608 {
6609 error (_("section [%5u] in group section [%5u] > maximum section [%5u]\n"),
6610 entry, i, elf_header.e_shnum - 1);
6611 if (num_group_errors == 10)
6612 warn (_("Futher error messages about overlarge group section indicies suppressed\n"));
6613 }
6614 continue;
6615 }
6616
6617 if (section_headers_groups [entry] != NULL)
6618 {
6619 if (entry)
6620 {
6621 static unsigned num_errs = 0;
6622
6623 if (num_errs ++ < 10)
6624 {
6625 error (_("section [%5u] in group section [%5u] already in group section [%5u]\n"),
6626 entry, i,
6627 section_headers_groups [entry]->group_index);
6628 if (num_errs == 10)
6629 warn (_("Further error messages about already contained group sections suppressed\n"));
6630 }
6631 continue;
6632 }
6633 else
6634 {
6635 /* Intel C/C++ compiler may put section 0 in a
6636 section group. We just warn it the first time
6637 and ignore it afterwards. */
6638 static int warned = 0;
6639 if (!warned)
6640 {
6641 error (_("section 0 in group section [%5u]\n"),
6642 section_headers_groups [entry]->group_index);
6643 warned++;
6644 }
6645 }
6646 }
6647
6648 section_headers_groups [entry] = group;
6649
6650 if (do_section_groups)
6651 {
6652 sec = section_headers + entry;
6653 printf (" [%5u] %s\n", entry, printable_section_name (sec));
6654 }
6655
6656 g = (struct group_list *) xmalloc (sizeof (struct group_list));
6657 g->section_index = entry;
6658 g->next = group->root;
6659 group->root = g;
6660 }
6661
6662 if (start)
6663 free (start);
6664
6665 group++;
6666 }
6667 }
6668
6669 if (symtab)
6670 free (symtab);
6671 if (strtab)
6672 free (strtab);
6673 return 1;
6674 }
6675
6676 /* Data used to display dynamic fixups. */
6677
6678 struct ia64_vms_dynfixup
6679 {
6680 bfd_vma needed_ident; /* Library ident number. */
6681 bfd_vma needed; /* Index in the dstrtab of the library name. */
6682 bfd_vma fixup_needed; /* Index of the library. */
6683 bfd_vma fixup_rela_cnt; /* Number of fixups. */
6684 bfd_vma fixup_rela_off; /* Fixups offset in the dynamic segment. */
6685 };
6686
6687 /* Data used to display dynamic relocations. */
6688
6689 struct ia64_vms_dynimgrela
6690 {
6691 bfd_vma img_rela_cnt; /* Number of relocations. */
6692 bfd_vma img_rela_off; /* Reloc offset in the dynamic segment. */
6693 };
6694
6695 /* Display IA-64 OpenVMS dynamic fixups (used to dynamically link a shared
6696 library). */
6697
6698 static void
6699 dump_ia64_vms_dynamic_fixups (FILE *file, struct ia64_vms_dynfixup *fixup,
6700 const char *strtab, unsigned int strtab_sz)
6701 {
6702 Elf64_External_VMS_IMAGE_FIXUP *imfs;
6703 long i;
6704 const char *lib_name;
6705
6706 imfs = get_data (NULL, file, dynamic_addr + fixup->fixup_rela_off,
6707 1, fixup->fixup_rela_cnt * sizeof (*imfs),
6708 _("dynamic section image fixups"));
6709 if (!imfs)
6710 return;
6711
6712 if (fixup->needed < strtab_sz)
6713 lib_name = strtab + fixup->needed;
6714 else
6715 {
6716 warn ("corrupt library name index of 0x%lx found in dynamic entry",
6717 (unsigned long) fixup->needed);
6718 lib_name = "???";
6719 }
6720 printf (_("\nImage fixups for needed library #%d: %s - ident: %lx\n"),
6721 (int) fixup->fixup_needed, lib_name, (long) fixup->needed_ident);
6722 printf
6723 (_("Seg Offset Type SymVec DataType\n"));
6724
6725 for (i = 0; i < (long) fixup->fixup_rela_cnt; i++)
6726 {
6727 unsigned int type;
6728 const char *rtype;
6729
6730 printf ("%3u ", (unsigned) BYTE_GET (imfs [i].fixup_seg));
6731 printf_vma ((bfd_vma) BYTE_GET (imfs [i].fixup_offset));
6732 type = BYTE_GET (imfs [i].type);
6733 rtype = elf_ia64_reloc_type (type);
6734 if (rtype == NULL)
6735 printf (" 0x%08x ", type);
6736 else
6737 printf (" %-32s ", rtype);
6738 printf ("%6u ", (unsigned) BYTE_GET (imfs [i].symvec_index));
6739 printf ("0x%08x\n", (unsigned) BYTE_GET (imfs [i].data_type));
6740 }
6741
6742 free (imfs);
6743 }
6744
6745 /* Display IA-64 OpenVMS dynamic relocations (used to relocate an image). */
6746
6747 static void
6748 dump_ia64_vms_dynamic_relocs (FILE *file, struct ia64_vms_dynimgrela *imgrela)
6749 {
6750 Elf64_External_VMS_IMAGE_RELA *imrs;
6751 long i;
6752
6753 imrs = get_data (NULL, file, dynamic_addr + imgrela->img_rela_off,
6754 1, imgrela->img_rela_cnt * sizeof (*imrs),
6755 _("dynamic section image relocations"));
6756 if (!imrs)
6757 return;
6758
6759 printf (_("\nImage relocs\n"));
6760 printf
6761 (_("Seg Offset Type Addend Seg Sym Off\n"));
6762
6763 for (i = 0; i < (long) imgrela->img_rela_cnt; i++)
6764 {
6765 unsigned int type;
6766 const char *rtype;
6767
6768 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].rela_seg));
6769 printf ("%08" BFD_VMA_FMT "x ",
6770 (bfd_vma) BYTE_GET (imrs [i].rela_offset));
6771 type = BYTE_GET (imrs [i].type);
6772 rtype = elf_ia64_reloc_type (type);
6773 if (rtype == NULL)
6774 printf ("0x%08x ", type);
6775 else
6776 printf ("%-31s ", rtype);
6777 print_vma (BYTE_GET (imrs [i].addend), FULL_HEX);
6778 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].sym_seg));
6779 printf ("%08" BFD_VMA_FMT "x\n",
6780 (bfd_vma) BYTE_GET (imrs [i].sym_offset));
6781 }
6782
6783 free (imrs);
6784 }
6785
6786 /* Display IA-64 OpenVMS dynamic relocations and fixups. */
6787
6788 static int
6789 process_ia64_vms_dynamic_relocs (FILE *file)
6790 {
6791 struct ia64_vms_dynfixup fixup;
6792 struct ia64_vms_dynimgrela imgrela;
6793 Elf_Internal_Dyn *entry;
6794 int res = 0;
6795 bfd_vma strtab_off = 0;
6796 bfd_vma strtab_sz = 0;
6797 char *strtab = NULL;
6798
6799 memset (&fixup, 0, sizeof (fixup));
6800 memset (&imgrela, 0, sizeof (imgrela));
6801
6802 /* Note: the order of the entries is specified by the OpenVMS specs. */
6803 for (entry = dynamic_section;
6804 entry < dynamic_section + dynamic_nent;
6805 entry++)
6806 {
6807 switch (entry->d_tag)
6808 {
6809 case DT_IA_64_VMS_STRTAB_OFFSET:
6810 strtab_off = entry->d_un.d_val;
6811 break;
6812 case DT_STRSZ:
6813 strtab_sz = entry->d_un.d_val;
6814 if (strtab == NULL)
6815 strtab = get_data (NULL, file, dynamic_addr + strtab_off,
6816 1, strtab_sz, _("dynamic string section"));
6817 break;
6818
6819 case DT_IA_64_VMS_NEEDED_IDENT:
6820 fixup.needed_ident = entry->d_un.d_val;
6821 break;
6822 case DT_NEEDED:
6823 fixup.needed = entry->d_un.d_val;
6824 break;
6825 case DT_IA_64_VMS_FIXUP_NEEDED:
6826 fixup.fixup_needed = entry->d_un.d_val;
6827 break;
6828 case DT_IA_64_VMS_FIXUP_RELA_CNT:
6829 fixup.fixup_rela_cnt = entry->d_un.d_val;
6830 break;
6831 case DT_IA_64_VMS_FIXUP_RELA_OFF:
6832 fixup.fixup_rela_off = entry->d_un.d_val;
6833 res++;
6834 dump_ia64_vms_dynamic_fixups (file, &fixup, strtab, strtab_sz);
6835 break;
6836
6837 case DT_IA_64_VMS_IMG_RELA_CNT:
6838 imgrela.img_rela_cnt = entry->d_un.d_val;
6839 break;
6840 case DT_IA_64_VMS_IMG_RELA_OFF:
6841 imgrela.img_rela_off = entry->d_un.d_val;
6842 res++;
6843 dump_ia64_vms_dynamic_relocs (file, &imgrela);
6844 break;
6845
6846 default:
6847 break;
6848 }
6849 }
6850
6851 if (strtab != NULL)
6852 free (strtab);
6853
6854 return res;
6855 }
6856
6857 static struct
6858 {
6859 const char * name;
6860 int reloc;
6861 int size;
6862 int rela;
6863 } dynamic_relocations [] =
6864 {
6865 { "REL", DT_REL, DT_RELSZ, FALSE },
6866 { "RELA", DT_RELA, DT_RELASZ, TRUE },
6867 { "PLT", DT_JMPREL, DT_PLTRELSZ, UNKNOWN }
6868 };
6869
6870 /* Process the reloc section. */
6871
6872 static int
6873 process_relocs (FILE * file)
6874 {
6875 unsigned long rel_size;
6876 unsigned long rel_offset;
6877
6878
6879 if (!do_reloc)
6880 return 1;
6881
6882 if (do_using_dynamic)
6883 {
6884 int is_rela;
6885 const char * name;
6886 int has_dynamic_reloc;
6887 unsigned int i;
6888
6889 has_dynamic_reloc = 0;
6890
6891 for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
6892 {
6893 is_rela = dynamic_relocations [i].rela;
6894 name = dynamic_relocations [i].name;
6895 rel_size = dynamic_info [dynamic_relocations [i].size];
6896 rel_offset = dynamic_info [dynamic_relocations [i].reloc];
6897
6898 has_dynamic_reloc |= rel_size;
6899
6900 if (is_rela == UNKNOWN)
6901 {
6902 if (dynamic_relocations [i].reloc == DT_JMPREL)
6903 switch (dynamic_info[DT_PLTREL])
6904 {
6905 case DT_REL:
6906 is_rela = FALSE;
6907 break;
6908 case DT_RELA:
6909 is_rela = TRUE;
6910 break;
6911 }
6912 }
6913
6914 if (rel_size)
6915 {
6916 printf
6917 (_("\n'%s' relocation section at offset 0x%lx contains %ld bytes:\n"),
6918 name, rel_offset, rel_size);
6919
6920 dump_relocations (file,
6921 offset_from_vma (file, rel_offset, rel_size),
6922 rel_size,
6923 dynamic_symbols, num_dynamic_syms,
6924 dynamic_strings, dynamic_strings_length,
6925 is_rela, 1);
6926 }
6927 }
6928
6929 if (is_ia64_vms ())
6930 has_dynamic_reloc |= process_ia64_vms_dynamic_relocs (file);
6931
6932 if (! has_dynamic_reloc)
6933 printf (_("\nThere are no dynamic relocations in this file.\n"));
6934 }
6935 else
6936 {
6937 Elf_Internal_Shdr * section;
6938 unsigned long i;
6939 int found = 0;
6940
6941 for (i = 0, section = section_headers;
6942 i < elf_header.e_shnum;
6943 i++, section++)
6944 {
6945 if ( section->sh_type != SHT_RELA
6946 && section->sh_type != SHT_REL)
6947 continue;
6948
6949 rel_offset = section->sh_offset;
6950 rel_size = section->sh_size;
6951
6952 if (rel_size)
6953 {
6954 Elf_Internal_Shdr * strsec;
6955 int is_rela;
6956
6957 printf (_("\nRelocation section "));
6958
6959 if (string_table == NULL)
6960 printf ("%d", section->sh_name);
6961 else
6962 printf ("'%s'", printable_section_name (section));
6963
6964 printf (_(" at offset 0x%lx contains %lu entries:\n"),
6965 rel_offset, (unsigned long) (rel_size / section->sh_entsize));
6966
6967 is_rela = section->sh_type == SHT_RELA;
6968
6969 if (section->sh_link != 0
6970 && section->sh_link < elf_header.e_shnum)
6971 {
6972 Elf_Internal_Shdr * symsec;
6973 Elf_Internal_Sym * symtab;
6974 unsigned long nsyms;
6975 unsigned long strtablen = 0;
6976 char * strtab = NULL;
6977
6978 symsec = section_headers + section->sh_link;
6979 if (symsec->sh_type != SHT_SYMTAB
6980 && symsec->sh_type != SHT_DYNSYM)
6981 continue;
6982
6983 symtab = GET_ELF_SYMBOLS (file, symsec, & nsyms);
6984
6985 if (symtab == NULL)
6986 continue;
6987
6988 if (symsec->sh_link != 0
6989 && symsec->sh_link < elf_header.e_shnum)
6990 {
6991 strsec = section_headers + symsec->sh_link;
6992
6993 strtab = (char *) get_data (NULL, file, strsec->sh_offset,
6994 1, strsec->sh_size,
6995 _("string table"));
6996 strtablen = strtab == NULL ? 0 : strsec->sh_size;
6997 }
6998
6999 dump_relocations (file, rel_offset, rel_size,
7000 symtab, nsyms, strtab, strtablen,
7001 is_rela,
7002 symsec->sh_type == SHT_DYNSYM);
7003 if (strtab)
7004 free (strtab);
7005 free (symtab);
7006 }
7007 else
7008 dump_relocations (file, rel_offset, rel_size,
7009 NULL, 0, NULL, 0, is_rela, 0);
7010
7011 found = 1;
7012 }
7013 }
7014
7015 if (! found)
7016 printf (_("\nThere are no relocations in this file.\n"));
7017 }
7018
7019 return 1;
7020 }
7021
7022 /* An absolute address consists of a section and an offset. If the
7023 section is NULL, the offset itself is the address, otherwise, the
7024 address equals to LOAD_ADDRESS(section) + offset. */
7025
7026 struct absaddr
7027 {
7028 unsigned short section;
7029 bfd_vma offset;
7030 };
7031
7032 #define ABSADDR(a) \
7033 ((a).section \
7034 ? section_headers [(a).section].sh_addr + (a).offset \
7035 : (a).offset)
7036
7037 /* Find the nearest symbol at or below ADDR. Returns the symbol
7038 name, if found, and the offset from the symbol to ADDR. */
7039
7040 static void
7041 find_symbol_for_address (Elf_Internal_Sym * symtab,
7042 unsigned long nsyms,
7043 const char * strtab,
7044 unsigned long strtab_size,
7045 struct absaddr addr,
7046 const char ** symname,
7047 bfd_vma * offset)
7048 {
7049 bfd_vma dist = 0x100000;
7050 Elf_Internal_Sym * sym;
7051 Elf_Internal_Sym * beg;
7052 Elf_Internal_Sym * end;
7053 Elf_Internal_Sym * best = NULL;
7054
7055 REMOVE_ARCH_BITS (addr.offset);
7056 beg = symtab;
7057 end = symtab + nsyms;
7058
7059 while (beg < end)
7060 {
7061 bfd_vma value;
7062
7063 sym = beg + (end - beg) / 2;
7064
7065 value = sym->st_value;
7066 REMOVE_ARCH_BITS (value);
7067
7068 if (sym->st_name != 0
7069 && (addr.section == SHN_UNDEF || addr.section == sym->st_shndx)
7070 && addr.offset >= value
7071 && addr.offset - value < dist)
7072 {
7073 best = sym;
7074 dist = addr.offset - value;
7075 if (!dist)
7076 break;
7077 }
7078
7079 if (addr.offset < value)
7080 end = sym;
7081 else
7082 beg = sym + 1;
7083 }
7084
7085 if (best)
7086 {
7087 *symname = (best->st_name >= strtab_size
7088 ? _("<corrupt>") : strtab + best->st_name);
7089 *offset = dist;
7090 return;
7091 }
7092
7093 *symname = NULL;
7094 *offset = addr.offset;
7095 }
7096
7097 static int
7098 symcmp (const void *p, const void *q)
7099 {
7100 Elf_Internal_Sym *sp = (Elf_Internal_Sym *) p;
7101 Elf_Internal_Sym *sq = (Elf_Internal_Sym *) q;
7102
7103 return sp->st_value > sq->st_value ? 1 : (sp->st_value < sq->st_value ? -1 : 0);
7104 }
7105
7106 /* Process the unwind section. */
7107
7108 #include "unwind-ia64.h"
7109
7110 struct ia64_unw_table_entry
7111 {
7112 struct absaddr start;
7113 struct absaddr end;
7114 struct absaddr info;
7115 };
7116
7117 struct ia64_unw_aux_info
7118 {
7119 struct ia64_unw_table_entry *table; /* Unwind table. */
7120 unsigned long table_len; /* Length of unwind table. */
7121 unsigned char * info; /* Unwind info. */
7122 unsigned long info_size; /* Size of unwind info. */
7123 bfd_vma info_addr; /* Starting address of unwind info. */
7124 bfd_vma seg_base; /* Starting address of segment. */
7125 Elf_Internal_Sym * symtab; /* The symbol table. */
7126 unsigned long nsyms; /* Number of symbols. */
7127 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7128 unsigned long nfuns; /* Number of entries in funtab. */
7129 char * strtab; /* The string table. */
7130 unsigned long strtab_size; /* Size of string table. */
7131 };
7132
7133 static void
7134 dump_ia64_unwind (struct ia64_unw_aux_info * aux)
7135 {
7136 struct ia64_unw_table_entry * tp;
7137 unsigned long j, nfuns;
7138 int in_body;
7139
7140 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
7141 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
7142 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
7143 aux->funtab[nfuns++] = aux->symtab[j];
7144 aux->nfuns = nfuns;
7145 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
7146
7147 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
7148 {
7149 bfd_vma stamp;
7150 bfd_vma offset;
7151 const unsigned char * dp;
7152 const unsigned char * head;
7153 const unsigned char * end;
7154 const char * procname;
7155
7156 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7157 aux->strtab_size, tp->start, &procname, &offset);
7158
7159 fputs ("\n<", stdout);
7160
7161 if (procname)
7162 {
7163 fputs (procname, stdout);
7164
7165 if (offset)
7166 printf ("+%lx", (unsigned long) offset);
7167 }
7168
7169 fputs (">: [", stdout);
7170 print_vma (tp->start.offset, PREFIX_HEX);
7171 fputc ('-', stdout);
7172 print_vma (tp->end.offset, PREFIX_HEX);
7173 printf ("], info at +0x%lx\n",
7174 (unsigned long) (tp->info.offset - aux->seg_base));
7175
7176 /* PR 17531: file: 86232b32. */
7177 if (aux->info == NULL)
7178 continue;
7179
7180 /* PR 17531: file: 0997b4d1. */
7181 if ((ABSADDR (tp->info) - aux->info_addr) >= aux->info_size)
7182 {
7183 warn (_("Invalid offset %lx in table entry %ld\n"),
7184 (long) tp->info.offset, (long) (tp - aux->table));
7185 continue;
7186 }
7187
7188 head = aux->info + (ABSADDR (tp->info) - aux->info_addr);
7189 stamp = byte_get ((unsigned char *) head, sizeof (stamp));
7190
7191 printf (" v%u, flags=0x%lx (%s%s), len=%lu bytes\n",
7192 (unsigned) UNW_VER (stamp),
7193 (unsigned long) ((stamp & UNW_FLAG_MASK) >> 32),
7194 UNW_FLAG_EHANDLER (stamp) ? " ehandler" : "",
7195 UNW_FLAG_UHANDLER (stamp) ? " uhandler" : "",
7196 (unsigned long) (eh_addr_size * UNW_LENGTH (stamp)));
7197
7198 if (UNW_VER (stamp) != 1)
7199 {
7200 printf (_("\tUnknown version.\n"));
7201 continue;
7202 }
7203
7204 in_body = 0;
7205 end = head + 8 + eh_addr_size * UNW_LENGTH (stamp);
7206 /* PR 17531: file: 16ceda89. */
7207 if (end > aux->info + aux->info_size)
7208 end = aux->info + aux->info_size;
7209 for (dp = head + 8; dp < end;)
7210 dp = unw_decode (dp, in_body, & in_body, end);
7211 }
7212
7213 free (aux->funtab);
7214 }
7215
7216 static bfd_boolean
7217 slurp_ia64_unwind_table (FILE * file,
7218 struct ia64_unw_aux_info * aux,
7219 Elf_Internal_Shdr * sec)
7220 {
7221 unsigned long size, nrelas, i;
7222 Elf_Internal_Phdr * seg;
7223 struct ia64_unw_table_entry * tep;
7224 Elf_Internal_Shdr * relsec;
7225 Elf_Internal_Rela * rela;
7226 Elf_Internal_Rela * rp;
7227 unsigned char * table;
7228 unsigned char * tp;
7229 Elf_Internal_Sym * sym;
7230 const char * relname;
7231
7232 aux->table_len = 0;
7233
7234 /* First, find the starting address of the segment that includes
7235 this section: */
7236
7237 if (elf_header.e_phnum)
7238 {
7239 if (! get_program_headers (file))
7240 return FALSE;
7241
7242 for (seg = program_headers;
7243 seg < program_headers + elf_header.e_phnum;
7244 ++seg)
7245 {
7246 if (seg->p_type != PT_LOAD)
7247 continue;
7248
7249 if (sec->sh_addr >= seg->p_vaddr
7250 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
7251 {
7252 aux->seg_base = seg->p_vaddr;
7253 break;
7254 }
7255 }
7256 }
7257
7258 /* Second, build the unwind table from the contents of the unwind section: */
7259 size = sec->sh_size;
7260 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
7261 _("unwind table"));
7262 if (!table)
7263 return FALSE;
7264
7265 aux->table_len = size / (3 * eh_addr_size);
7266 aux->table = (struct ia64_unw_table_entry *)
7267 xcmalloc (aux->table_len, sizeof (aux->table[0]));
7268 tep = aux->table;
7269
7270 for (tp = table; tp <= table + size - (3 * eh_addr_size); ++tep)
7271 {
7272 tep->start.section = SHN_UNDEF;
7273 tep->end.section = SHN_UNDEF;
7274 tep->info.section = SHN_UNDEF;
7275 tep->start.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7276 tep->end.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7277 tep->info.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7278 tep->start.offset += aux->seg_base;
7279 tep->end.offset += aux->seg_base;
7280 tep->info.offset += aux->seg_base;
7281 }
7282 free (table);
7283
7284 /* Third, apply any relocations to the unwind table: */
7285 for (relsec = section_headers;
7286 relsec < section_headers + elf_header.e_shnum;
7287 ++relsec)
7288 {
7289 if (relsec->sh_type != SHT_RELA
7290 || relsec->sh_info >= elf_header.e_shnum
7291 || section_headers + relsec->sh_info != sec)
7292 continue;
7293
7294 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
7295 & rela, & nrelas))
7296 {
7297 free (aux->table);
7298 aux->table = NULL;
7299 aux->table_len = 0;
7300 return FALSE;
7301 }
7302
7303 for (rp = rela; rp < rela + nrelas; ++rp)
7304 {
7305 relname = elf_ia64_reloc_type (get_reloc_type (rp->r_info));
7306 sym = aux->symtab + get_reloc_symindex (rp->r_info);
7307
7308 /* PR 17531: file: 9fa67536. */
7309 if (relname == NULL)
7310 {
7311 warn (_("Skipping unknown relocation type: %u\n"), get_reloc_type (rp->r_info));
7312 continue;
7313 }
7314
7315 if (! const_strneq (relname, "R_IA64_SEGREL"))
7316 {
7317 warn (_("Skipping unexpected relocation type: %s\n"), relname);
7318 continue;
7319 }
7320
7321 i = rp->r_offset / (3 * eh_addr_size);
7322
7323 /* PR 17531: file: 5bc8d9bf. */
7324 if (i >= aux->table_len)
7325 {
7326 warn (_("Skipping reloc with overlarge offset: %lx\n"), i);
7327 continue;
7328 }
7329
7330 switch (rp->r_offset / eh_addr_size % 3)
7331 {
7332 case 0:
7333 aux->table[i].start.section = sym->st_shndx;
7334 aux->table[i].start.offset = rp->r_addend + sym->st_value;
7335 break;
7336 case 1:
7337 aux->table[i].end.section = sym->st_shndx;
7338 aux->table[i].end.offset = rp->r_addend + sym->st_value;
7339 break;
7340 case 2:
7341 aux->table[i].info.section = sym->st_shndx;
7342 aux->table[i].info.offset = rp->r_addend + sym->st_value;
7343 break;
7344 default:
7345 break;
7346 }
7347 }
7348
7349 free (rela);
7350 }
7351
7352 return TRUE;
7353 }
7354
7355 static void
7356 ia64_process_unwind (FILE * file)
7357 {
7358 Elf_Internal_Shdr * sec;
7359 Elf_Internal_Shdr * unwsec = NULL;
7360 Elf_Internal_Shdr * strsec;
7361 unsigned long i, unwcount = 0, unwstart = 0;
7362 struct ia64_unw_aux_info aux;
7363
7364 memset (& aux, 0, sizeof (aux));
7365
7366 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7367 {
7368 if (sec->sh_type == SHT_SYMTAB
7369 && sec->sh_link < elf_header.e_shnum)
7370 {
7371 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7372
7373 strsec = section_headers + sec->sh_link;
7374 if (aux.strtab != NULL)
7375 {
7376 error (_("Multiple auxillary string tables encountered\n"));
7377 free (aux.strtab);
7378 }
7379 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7380 1, strsec->sh_size,
7381 _("string table"));
7382 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7383 }
7384 else if (sec->sh_type == SHT_IA_64_UNWIND)
7385 unwcount++;
7386 }
7387
7388 if (!unwcount)
7389 printf (_("\nThere are no unwind sections in this file.\n"));
7390
7391 while (unwcount-- > 0)
7392 {
7393 char * suffix;
7394 size_t len, len2;
7395
7396 for (i = unwstart, sec = section_headers + unwstart, unwsec = NULL;
7397 i < elf_header.e_shnum; ++i, ++sec)
7398 if (sec->sh_type == SHT_IA_64_UNWIND)
7399 {
7400 unwsec = sec;
7401 break;
7402 }
7403 /* We have already counted the number of SHT_IA64_UNWIND
7404 sections so the loop above should never fail. */
7405 assert (unwsec != NULL);
7406
7407 unwstart = i + 1;
7408 len = sizeof (ELF_STRING_ia64_unwind_once) - 1;
7409
7410 if ((unwsec->sh_flags & SHF_GROUP) != 0)
7411 {
7412 /* We need to find which section group it is in. */
7413 struct group_list * g;
7414
7415 if (section_headers_groups == NULL
7416 || section_headers_groups [i] == NULL)
7417 i = elf_header.e_shnum;
7418 else
7419 {
7420 g = section_headers_groups [i]->root;
7421
7422 for (; g != NULL; g = g->next)
7423 {
7424 sec = section_headers + g->section_index;
7425
7426 if (streq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info))
7427 break;
7428 }
7429
7430 if (g == NULL)
7431 i = elf_header.e_shnum;
7432 }
7433 }
7434 else if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind_once, len))
7435 {
7436 /* .gnu.linkonce.ia64unw.FOO -> .gnu.linkonce.ia64unwi.FOO. */
7437 len2 = sizeof (ELF_STRING_ia64_unwind_info_once) - 1;
7438 suffix = SECTION_NAME (unwsec) + len;
7439 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
7440 ++i, ++sec)
7441 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info_once, len2)
7442 && streq (SECTION_NAME (sec) + len2, suffix))
7443 break;
7444 }
7445 else
7446 {
7447 /* .IA_64.unwindFOO -> .IA_64.unwind_infoFOO
7448 .IA_64.unwind or BAR -> .IA_64.unwind_info. */
7449 len = sizeof (ELF_STRING_ia64_unwind) - 1;
7450 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
7451 suffix = "";
7452 if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind, len))
7453 suffix = SECTION_NAME (unwsec) + len;
7454 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
7455 ++i, ++sec)
7456 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info, len2)
7457 && streq (SECTION_NAME (sec) + len2, suffix))
7458 break;
7459 }
7460
7461 if (i == elf_header.e_shnum)
7462 {
7463 printf (_("\nCould not find unwind info section for "));
7464
7465 if (string_table == NULL)
7466 printf ("%d", unwsec->sh_name);
7467 else
7468 printf ("'%s'", printable_section_name (unwsec));
7469 }
7470 else
7471 {
7472 aux.info_addr = sec->sh_addr;
7473 aux.info = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1,
7474 sec->sh_size,
7475 _("unwind info"));
7476 aux.info_size = aux.info == NULL ? 0 : sec->sh_size;
7477
7478 printf (_("\nUnwind section "));
7479
7480 if (string_table == NULL)
7481 printf ("%d", unwsec->sh_name);
7482 else
7483 printf ("'%s'", printable_section_name (unwsec));
7484
7485 printf (_(" at offset 0x%lx contains %lu entries:\n"),
7486 (unsigned long) unwsec->sh_offset,
7487 (unsigned long) (unwsec->sh_size / (3 * eh_addr_size)));
7488
7489 if (slurp_ia64_unwind_table (file, & aux, unwsec)
7490 && aux.table_len > 0)
7491 dump_ia64_unwind (& aux);
7492
7493 if (aux.table)
7494 free ((char *) aux.table);
7495 if (aux.info)
7496 free ((char *) aux.info);
7497 aux.table = NULL;
7498 aux.info = NULL;
7499 }
7500 }
7501
7502 if (aux.symtab)
7503 free (aux.symtab);
7504 if (aux.strtab)
7505 free ((char *) aux.strtab);
7506 }
7507
7508 struct hppa_unw_table_entry
7509 {
7510 struct absaddr start;
7511 struct absaddr end;
7512 unsigned int Cannot_unwind:1; /* 0 */
7513 unsigned int Millicode:1; /* 1 */
7514 unsigned int Millicode_save_sr0:1; /* 2 */
7515 unsigned int Region_description:2; /* 3..4 */
7516 unsigned int reserved1:1; /* 5 */
7517 unsigned int Entry_SR:1; /* 6 */
7518 unsigned int Entry_FR:4; /* number saved */ /* 7..10 */
7519 unsigned int Entry_GR:5; /* number saved */ /* 11..15 */
7520 unsigned int Args_stored:1; /* 16 */
7521 unsigned int Variable_Frame:1; /* 17 */
7522 unsigned int Separate_Package_Body:1; /* 18 */
7523 unsigned int Frame_Extension_Millicode:1; /* 19 */
7524 unsigned int Stack_Overflow_Check:1; /* 20 */
7525 unsigned int Two_Instruction_SP_Increment:1;/* 21 */
7526 unsigned int Ada_Region:1; /* 22 */
7527 unsigned int cxx_info:1; /* 23 */
7528 unsigned int cxx_try_catch:1; /* 24 */
7529 unsigned int sched_entry_seq:1; /* 25 */
7530 unsigned int reserved2:1; /* 26 */
7531 unsigned int Save_SP:1; /* 27 */
7532 unsigned int Save_RP:1; /* 28 */
7533 unsigned int Save_MRP_in_frame:1; /* 29 */
7534 unsigned int extn_ptr_defined:1; /* 30 */
7535 unsigned int Cleanup_defined:1; /* 31 */
7536
7537 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
7538 unsigned int HP_UX_interrupt_marker:1; /* 1 */
7539 unsigned int Large_frame:1; /* 2 */
7540 unsigned int Pseudo_SP_Set:1; /* 3 */
7541 unsigned int reserved4:1; /* 4 */
7542 unsigned int Total_frame_size:27; /* 5..31 */
7543 };
7544
7545 struct hppa_unw_aux_info
7546 {
7547 struct hppa_unw_table_entry * table; /* Unwind table. */
7548 unsigned long table_len; /* Length of unwind table. */
7549 bfd_vma seg_base; /* Starting address of segment. */
7550 Elf_Internal_Sym * symtab; /* The symbol table. */
7551 unsigned long nsyms; /* Number of symbols. */
7552 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7553 unsigned long nfuns; /* Number of entries in funtab. */
7554 char * strtab; /* The string table. */
7555 unsigned long strtab_size; /* Size of string table. */
7556 };
7557
7558 static void
7559 dump_hppa_unwind (struct hppa_unw_aux_info * aux)
7560 {
7561 struct hppa_unw_table_entry * tp;
7562 unsigned long j, nfuns;
7563
7564 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
7565 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
7566 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
7567 aux->funtab[nfuns++] = aux->symtab[j];
7568 aux->nfuns = nfuns;
7569 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
7570
7571 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
7572 {
7573 bfd_vma offset;
7574 const char * procname;
7575
7576 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7577 aux->strtab_size, tp->start, &procname,
7578 &offset);
7579
7580 fputs ("\n<", stdout);
7581
7582 if (procname)
7583 {
7584 fputs (procname, stdout);
7585
7586 if (offset)
7587 printf ("+%lx", (unsigned long) offset);
7588 }
7589
7590 fputs (">: [", stdout);
7591 print_vma (tp->start.offset, PREFIX_HEX);
7592 fputc ('-', stdout);
7593 print_vma (tp->end.offset, PREFIX_HEX);
7594 printf ("]\n\t");
7595
7596 #define PF(_m) if (tp->_m) printf (#_m " ");
7597 #define PV(_m) if (tp->_m) printf (#_m "=%d ", tp->_m);
7598 PF(Cannot_unwind);
7599 PF(Millicode);
7600 PF(Millicode_save_sr0);
7601 /* PV(Region_description); */
7602 PF(Entry_SR);
7603 PV(Entry_FR);
7604 PV(Entry_GR);
7605 PF(Args_stored);
7606 PF(Variable_Frame);
7607 PF(Separate_Package_Body);
7608 PF(Frame_Extension_Millicode);
7609 PF(Stack_Overflow_Check);
7610 PF(Two_Instruction_SP_Increment);
7611 PF(Ada_Region);
7612 PF(cxx_info);
7613 PF(cxx_try_catch);
7614 PF(sched_entry_seq);
7615 PF(Save_SP);
7616 PF(Save_RP);
7617 PF(Save_MRP_in_frame);
7618 PF(extn_ptr_defined);
7619 PF(Cleanup_defined);
7620 PF(MPE_XL_interrupt_marker);
7621 PF(HP_UX_interrupt_marker);
7622 PF(Large_frame);
7623 PF(Pseudo_SP_Set);
7624 PV(Total_frame_size);
7625 #undef PF
7626 #undef PV
7627 }
7628
7629 printf ("\n");
7630
7631 free (aux->funtab);
7632 }
7633
7634 static int
7635 slurp_hppa_unwind_table (FILE * file,
7636 struct hppa_unw_aux_info * aux,
7637 Elf_Internal_Shdr * sec)
7638 {
7639 unsigned long size, unw_ent_size, nentries, nrelas, i;
7640 Elf_Internal_Phdr * seg;
7641 struct hppa_unw_table_entry * tep;
7642 Elf_Internal_Shdr * relsec;
7643 Elf_Internal_Rela * rela;
7644 Elf_Internal_Rela * rp;
7645 unsigned char * table;
7646 unsigned char * tp;
7647 Elf_Internal_Sym * sym;
7648 const char * relname;
7649
7650 /* First, find the starting address of the segment that includes
7651 this section. */
7652
7653 if (elf_header.e_phnum)
7654 {
7655 if (! get_program_headers (file))
7656 return 0;
7657
7658 for (seg = program_headers;
7659 seg < program_headers + elf_header.e_phnum;
7660 ++seg)
7661 {
7662 if (seg->p_type != PT_LOAD)
7663 continue;
7664
7665 if (sec->sh_addr >= seg->p_vaddr
7666 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
7667 {
7668 aux->seg_base = seg->p_vaddr;
7669 break;
7670 }
7671 }
7672 }
7673
7674 /* Second, build the unwind table from the contents of the unwind
7675 section. */
7676 size = sec->sh_size;
7677 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
7678 _("unwind table"));
7679 if (!table)
7680 return 0;
7681
7682 unw_ent_size = 16;
7683 nentries = size / unw_ent_size;
7684 size = unw_ent_size * nentries;
7685
7686 tep = aux->table = (struct hppa_unw_table_entry *)
7687 xcmalloc (nentries, sizeof (aux->table[0]));
7688
7689 for (tp = table; tp < table + size; tp += unw_ent_size, ++tep)
7690 {
7691 unsigned int tmp1, tmp2;
7692
7693 tep->start.section = SHN_UNDEF;
7694 tep->end.section = SHN_UNDEF;
7695
7696 tep->start.offset = byte_get ((unsigned char *) tp + 0, 4);
7697 tep->end.offset = byte_get ((unsigned char *) tp + 4, 4);
7698 tmp1 = byte_get ((unsigned char *) tp + 8, 4);
7699 tmp2 = byte_get ((unsigned char *) tp + 12, 4);
7700
7701 tep->start.offset += aux->seg_base;
7702 tep->end.offset += aux->seg_base;
7703
7704 tep->Cannot_unwind = (tmp1 >> 31) & 0x1;
7705 tep->Millicode = (tmp1 >> 30) & 0x1;
7706 tep->Millicode_save_sr0 = (tmp1 >> 29) & 0x1;
7707 tep->Region_description = (tmp1 >> 27) & 0x3;
7708 tep->reserved1 = (tmp1 >> 26) & 0x1;
7709 tep->Entry_SR = (tmp1 >> 25) & 0x1;
7710 tep->Entry_FR = (tmp1 >> 21) & 0xf;
7711 tep->Entry_GR = (tmp1 >> 16) & 0x1f;
7712 tep->Args_stored = (tmp1 >> 15) & 0x1;
7713 tep->Variable_Frame = (tmp1 >> 14) & 0x1;
7714 tep->Separate_Package_Body = (tmp1 >> 13) & 0x1;
7715 tep->Frame_Extension_Millicode = (tmp1 >> 12) & 0x1;
7716 tep->Stack_Overflow_Check = (tmp1 >> 11) & 0x1;
7717 tep->Two_Instruction_SP_Increment = (tmp1 >> 10) & 0x1;
7718 tep->Ada_Region = (tmp1 >> 9) & 0x1;
7719 tep->cxx_info = (tmp1 >> 8) & 0x1;
7720 tep->cxx_try_catch = (tmp1 >> 7) & 0x1;
7721 tep->sched_entry_seq = (tmp1 >> 6) & 0x1;
7722 tep->reserved2 = (tmp1 >> 5) & 0x1;
7723 tep->Save_SP = (tmp1 >> 4) & 0x1;
7724 tep->Save_RP = (tmp1 >> 3) & 0x1;
7725 tep->Save_MRP_in_frame = (tmp1 >> 2) & 0x1;
7726 tep->extn_ptr_defined = (tmp1 >> 1) & 0x1;
7727 tep->Cleanup_defined = tmp1 & 0x1;
7728
7729 tep->MPE_XL_interrupt_marker = (tmp2 >> 31) & 0x1;
7730 tep->HP_UX_interrupt_marker = (tmp2 >> 30) & 0x1;
7731 tep->Large_frame = (tmp2 >> 29) & 0x1;
7732 tep->Pseudo_SP_Set = (tmp2 >> 28) & 0x1;
7733 tep->reserved4 = (tmp2 >> 27) & 0x1;
7734 tep->Total_frame_size = tmp2 & 0x7ffffff;
7735 }
7736 free (table);
7737
7738 /* Third, apply any relocations to the unwind table. */
7739 for (relsec = section_headers;
7740 relsec < section_headers + elf_header.e_shnum;
7741 ++relsec)
7742 {
7743 if (relsec->sh_type != SHT_RELA
7744 || relsec->sh_info >= elf_header.e_shnum
7745 || section_headers + relsec->sh_info != sec)
7746 continue;
7747
7748 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
7749 & rela, & nrelas))
7750 return 0;
7751
7752 for (rp = rela; rp < rela + nrelas; ++rp)
7753 {
7754 relname = elf_hppa_reloc_type (get_reloc_type (rp->r_info));
7755 sym = aux->symtab + get_reloc_symindex (rp->r_info);
7756
7757 /* R_PARISC_SEGREL32 or R_PARISC_SEGREL64. */
7758 if (! const_strneq (relname, "R_PARISC_SEGREL"))
7759 {
7760 warn (_("Skipping unexpected relocation type %s\n"), relname);
7761 continue;
7762 }
7763
7764 i = rp->r_offset / unw_ent_size;
7765
7766 switch ((rp->r_offset % unw_ent_size) / eh_addr_size)
7767 {
7768 case 0:
7769 aux->table[i].start.section = sym->st_shndx;
7770 aux->table[i].start.offset = sym->st_value + rp->r_addend;
7771 break;
7772 case 1:
7773 aux->table[i].end.section = sym->st_shndx;
7774 aux->table[i].end.offset = sym->st_value + rp->r_addend;
7775 break;
7776 default:
7777 break;
7778 }
7779 }
7780
7781 free (rela);
7782 }
7783
7784 aux->table_len = nentries;
7785
7786 return 1;
7787 }
7788
7789 static void
7790 hppa_process_unwind (FILE * file)
7791 {
7792 struct hppa_unw_aux_info aux;
7793 Elf_Internal_Shdr * unwsec = NULL;
7794 Elf_Internal_Shdr * strsec;
7795 Elf_Internal_Shdr * sec;
7796 unsigned long i;
7797
7798 if (string_table == NULL)
7799 return;
7800
7801 memset (& aux, 0, sizeof (aux));
7802
7803 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7804 {
7805 if (sec->sh_type == SHT_SYMTAB
7806 && sec->sh_link < elf_header.e_shnum)
7807 {
7808 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7809
7810 strsec = section_headers + sec->sh_link;
7811 if (aux.strtab != NULL)
7812 {
7813 error (_("Multiple auxillary string tables encountered\n"));
7814 free (aux.strtab);
7815 }
7816 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7817 1, strsec->sh_size,
7818 _("string table"));
7819 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7820 }
7821 else if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
7822 unwsec = sec;
7823 }
7824
7825 if (!unwsec)
7826 printf (_("\nThere are no unwind sections in this file.\n"));
7827
7828 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7829 {
7830 if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
7831 {
7832 printf (_("\nUnwind section '%s' at offset 0x%lx contains %lu entries:\n"),
7833 printable_section_name (sec),
7834 (unsigned long) sec->sh_offset,
7835 (unsigned long) (sec->sh_size / (2 * eh_addr_size + 8)));
7836
7837 slurp_hppa_unwind_table (file, &aux, sec);
7838 if (aux.table_len > 0)
7839 dump_hppa_unwind (&aux);
7840
7841 if (aux.table)
7842 free ((char *) aux.table);
7843 aux.table = NULL;
7844 }
7845 }
7846
7847 if (aux.symtab)
7848 free (aux.symtab);
7849 if (aux.strtab)
7850 free ((char *) aux.strtab);
7851 }
7852
7853 struct arm_section
7854 {
7855 unsigned char * data; /* The unwind data. */
7856 Elf_Internal_Shdr * sec; /* The cached unwind section header. */
7857 Elf_Internal_Rela * rela; /* The cached relocations for this section. */
7858 unsigned long nrelas; /* The number of relocations. */
7859 unsigned int rel_type; /* REL or RELA ? */
7860 Elf_Internal_Rela * next_rela; /* Cyclic pointer to the next reloc to process. */
7861 };
7862
7863 struct arm_unw_aux_info
7864 {
7865 FILE * file; /* The file containing the unwind sections. */
7866 Elf_Internal_Sym * symtab; /* The file's symbol table. */
7867 unsigned long nsyms; /* Number of symbols. */
7868 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7869 unsigned long nfuns; /* Number of these symbols. */
7870 char * strtab; /* The file's string table. */
7871 unsigned long strtab_size; /* Size of string table. */
7872 };
7873
7874 static const char *
7875 arm_print_vma_and_name (struct arm_unw_aux_info *aux,
7876 bfd_vma fn, struct absaddr addr)
7877 {
7878 const char *procname;
7879 bfd_vma sym_offset;
7880
7881 if (addr.section == SHN_UNDEF)
7882 addr.offset = fn;
7883
7884 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7885 aux->strtab_size, addr, &procname,
7886 &sym_offset);
7887
7888 print_vma (fn, PREFIX_HEX);
7889
7890 if (procname)
7891 {
7892 fputs (" <", stdout);
7893 fputs (procname, stdout);
7894
7895 if (sym_offset)
7896 printf ("+0x%lx", (unsigned long) sym_offset);
7897 fputc ('>', stdout);
7898 }
7899
7900 return procname;
7901 }
7902
7903 static void
7904 arm_free_section (struct arm_section *arm_sec)
7905 {
7906 if (arm_sec->data != NULL)
7907 free (arm_sec->data);
7908
7909 if (arm_sec->rela != NULL)
7910 free (arm_sec->rela);
7911 }
7912
7913 /* 1) If SEC does not match the one cached in ARM_SEC, then free the current
7914 cached section and install SEC instead.
7915 2) Locate the 32-bit word at WORD_OFFSET in unwind section SEC
7916 and return its valued in * WORDP, relocating if necessary.
7917 3) Update the NEXT_RELA field in ARM_SEC and store the section index and
7918 relocation's offset in ADDR.
7919 4) If SYM_NAME is non-NULL and a relocation was applied, record the offset
7920 into the string table of the symbol associated with the reloc. If no
7921 reloc was applied store -1 there.
7922 5) Return TRUE upon success, FALSE otherwise. */
7923
7924 static bfd_boolean
7925 get_unwind_section_word (struct arm_unw_aux_info * aux,
7926 struct arm_section * arm_sec,
7927 Elf_Internal_Shdr * sec,
7928 bfd_vma word_offset,
7929 unsigned int * wordp,
7930 struct absaddr * addr,
7931 bfd_vma * sym_name)
7932 {
7933 Elf_Internal_Rela *rp;
7934 Elf_Internal_Sym *sym;
7935 const char * relname;
7936 unsigned int word;
7937 bfd_boolean wrapped;
7938
7939 if (sec == NULL || arm_sec == NULL)
7940 return FALSE;
7941
7942 addr->section = SHN_UNDEF;
7943 addr->offset = 0;
7944
7945 if (sym_name != NULL)
7946 *sym_name = (bfd_vma) -1;
7947
7948 /* If necessary, update the section cache. */
7949 if (sec != arm_sec->sec)
7950 {
7951 Elf_Internal_Shdr *relsec;
7952
7953 arm_free_section (arm_sec);
7954
7955 arm_sec->sec = sec;
7956 arm_sec->data = get_data (NULL, aux->file, sec->sh_offset, 1,
7957 sec->sh_size, _("unwind data"));
7958 arm_sec->rela = NULL;
7959 arm_sec->nrelas = 0;
7960
7961 for (relsec = section_headers;
7962 relsec < section_headers + elf_header.e_shnum;
7963 ++relsec)
7964 {
7965 if (relsec->sh_info >= elf_header.e_shnum
7966 || section_headers + relsec->sh_info != sec
7967 /* PR 15745: Check the section type as well. */
7968 || (relsec->sh_type != SHT_REL
7969 && relsec->sh_type != SHT_RELA))
7970 continue;
7971
7972 arm_sec->rel_type = relsec->sh_type;
7973 if (relsec->sh_type == SHT_REL)
7974 {
7975 if (!slurp_rel_relocs (aux->file, relsec->sh_offset,
7976 relsec->sh_size,
7977 & arm_sec->rela, & arm_sec->nrelas))
7978 return FALSE;
7979 }
7980 else /* relsec->sh_type == SHT_RELA */
7981 {
7982 if (!slurp_rela_relocs (aux->file, relsec->sh_offset,
7983 relsec->sh_size,
7984 & arm_sec->rela, & arm_sec->nrelas))
7985 return FALSE;
7986 }
7987 break;
7988 }
7989
7990 arm_sec->next_rela = arm_sec->rela;
7991 }
7992
7993 /* If there is no unwind data we can do nothing. */
7994 if (arm_sec->data == NULL)
7995 return FALSE;
7996
7997 /* If the offset is invalid then fail. */
7998 if (word_offset > (sec->sh_size - 4)
7999 /* PR 18879 */
8000 || (sec->sh_size < 5 && word_offset >= sec->sh_size)
8001 || ((bfd_signed_vma) word_offset) < 0)
8002 return FALSE;
8003
8004 /* Get the word at the required offset. */
8005 word = byte_get (arm_sec->data + word_offset, 4);
8006
8007 /* PR 17531: file: id:000001,src:001266+003044,op:splice,rep:128. */
8008 if (arm_sec->rela == NULL)
8009 {
8010 * wordp = word;
8011 return TRUE;
8012 }
8013
8014 /* Look through the relocs to find the one that applies to the provided offset. */
8015 wrapped = FALSE;
8016 for (rp = arm_sec->next_rela; rp != arm_sec->rela + arm_sec->nrelas; rp++)
8017 {
8018 bfd_vma prelval, offset;
8019
8020 if (rp->r_offset > word_offset && !wrapped)
8021 {
8022 rp = arm_sec->rela;
8023 wrapped = TRUE;
8024 }
8025 if (rp->r_offset > word_offset)
8026 break;
8027
8028 if (rp->r_offset & 3)
8029 {
8030 warn (_("Skipping unexpected relocation at offset 0x%lx\n"),
8031 (unsigned long) rp->r_offset);
8032 continue;
8033 }
8034
8035 if (rp->r_offset < word_offset)
8036 continue;
8037
8038 /* PR 17531: file: 027-161405-0.004 */
8039 if (aux->symtab == NULL)
8040 continue;
8041
8042 if (arm_sec->rel_type == SHT_REL)
8043 {
8044 offset = word & 0x7fffffff;
8045 if (offset & 0x40000000)
8046 offset |= ~ (bfd_vma) 0x7fffffff;
8047 }
8048 else if (arm_sec->rel_type == SHT_RELA)
8049 offset = rp->r_addend;
8050 else
8051 {
8052 error (_("Unknown section relocation type %d encountered\n"),
8053 arm_sec->rel_type);
8054 break;
8055 }
8056
8057 /* PR 17531 file: 027-1241568-0.004. */
8058 if (ELF32_R_SYM (rp->r_info) >= aux->nsyms)
8059 {
8060 error (_("Bad symbol index in unwind relocation (%lu > %lu)\n"),
8061 (unsigned long) ELF32_R_SYM (rp->r_info), aux->nsyms);
8062 break;
8063 }
8064
8065 sym = aux->symtab + ELF32_R_SYM (rp->r_info);
8066 offset += sym->st_value;
8067 prelval = offset - (arm_sec->sec->sh_addr + rp->r_offset);
8068
8069 /* Check that we are processing the expected reloc type. */
8070 if (elf_header.e_machine == EM_ARM)
8071 {
8072 relname = elf_arm_reloc_type (ELF32_R_TYPE (rp->r_info));
8073 if (relname == NULL)
8074 {
8075 warn (_("Skipping unknown ARM relocation type: %d\n"),
8076 (int) ELF32_R_TYPE (rp->r_info));
8077 continue;
8078 }
8079
8080 if (streq (relname, "R_ARM_NONE"))
8081 continue;
8082
8083 if (! streq (relname, "R_ARM_PREL31"))
8084 {
8085 warn (_("Skipping unexpected ARM relocation type %s\n"), relname);
8086 continue;
8087 }
8088 }
8089 else if (elf_header.e_machine == EM_TI_C6000)
8090 {
8091 relname = elf_tic6x_reloc_type (ELF32_R_TYPE (rp->r_info));
8092 if (relname == NULL)
8093 {
8094 warn (_("Skipping unknown C6000 relocation type: %d\n"),
8095 (int) ELF32_R_TYPE (rp->r_info));
8096 continue;
8097 }
8098
8099 if (streq (relname, "R_C6000_NONE"))
8100 continue;
8101
8102 if (! streq (relname, "R_C6000_PREL31"))
8103 {
8104 warn (_("Skipping unexpected C6000 relocation type %s\n"), relname);
8105 continue;
8106 }
8107
8108 prelval >>= 1;
8109 }
8110 else
8111 {
8112 /* This function currently only supports ARM and TI unwinders. */
8113 warn (_("Only TI and ARM unwinders are currently supported\n"));
8114 break;
8115 }
8116
8117 word = (word & ~ (bfd_vma) 0x7fffffff) | (prelval & 0x7fffffff);
8118 addr->section = sym->st_shndx;
8119 addr->offset = offset;
8120
8121 if (sym_name)
8122 * sym_name = sym->st_name;
8123 break;
8124 }
8125
8126 *wordp = word;
8127 arm_sec->next_rela = rp;
8128
8129 return TRUE;
8130 }
8131
8132 static const char *tic6x_unwind_regnames[16] =
8133 {
8134 "A15", "B15", "B14", "B13", "B12", "B11", "B10", "B3",
8135 "A14", "A13", "A12", "A11", "A10",
8136 "[invalid reg 13]", "[invalid reg 14]", "[invalid reg 15]"
8137 };
8138
8139 static void
8140 decode_tic6x_unwind_regmask (unsigned int mask)
8141 {
8142 int i;
8143
8144 for (i = 12; mask; mask >>= 1, i--)
8145 {
8146 if (mask & 1)
8147 {
8148 fputs (tic6x_unwind_regnames[i], stdout);
8149 if (mask > 1)
8150 fputs (", ", stdout);
8151 }
8152 }
8153 }
8154
8155 #define ADVANCE \
8156 if (remaining == 0 && more_words) \
8157 { \
8158 data_offset += 4; \
8159 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, \
8160 data_offset, & word, & addr, NULL)) \
8161 return; \
8162 remaining = 4; \
8163 more_words--; \
8164 } \
8165
8166 #define GET_OP(OP) \
8167 ADVANCE; \
8168 if (remaining) \
8169 { \
8170 remaining--; \
8171 (OP) = word >> 24; \
8172 word <<= 8; \
8173 } \
8174 else \
8175 { \
8176 printf (_("[Truncated opcode]\n")); \
8177 return; \
8178 } \
8179 printf ("0x%02x ", OP)
8180
8181 static void
8182 decode_arm_unwind_bytecode (struct arm_unw_aux_info * aux,
8183 unsigned int word,
8184 unsigned int remaining,
8185 unsigned int more_words,
8186 bfd_vma data_offset,
8187 Elf_Internal_Shdr * data_sec,
8188 struct arm_section * data_arm_sec)
8189 {
8190 struct absaddr addr;
8191
8192 /* Decode the unwinding instructions. */
8193 while (1)
8194 {
8195 unsigned int op, op2;
8196
8197 ADVANCE;
8198 if (remaining == 0)
8199 break;
8200 remaining--;
8201 op = word >> 24;
8202 word <<= 8;
8203
8204 printf (" 0x%02x ", op);
8205
8206 if ((op & 0xc0) == 0x00)
8207 {
8208 int offset = ((op & 0x3f) << 2) + 4;
8209
8210 printf (" vsp = vsp + %d", offset);
8211 }
8212 else if ((op & 0xc0) == 0x40)
8213 {
8214 int offset = ((op & 0x3f) << 2) + 4;
8215
8216 printf (" vsp = vsp - %d", offset);
8217 }
8218 else if ((op & 0xf0) == 0x80)
8219 {
8220 GET_OP (op2);
8221 if (op == 0x80 && op2 == 0)
8222 printf (_("Refuse to unwind"));
8223 else
8224 {
8225 unsigned int mask = ((op & 0x0f) << 8) | op2;
8226 int first = 1;
8227 int i;
8228
8229 printf ("pop {");
8230 for (i = 0; i < 12; i++)
8231 if (mask & (1 << i))
8232 {
8233 if (first)
8234 first = 0;
8235 else
8236 printf (", ");
8237 printf ("r%d", 4 + i);
8238 }
8239 printf ("}");
8240 }
8241 }
8242 else if ((op & 0xf0) == 0x90)
8243 {
8244 if (op == 0x9d || op == 0x9f)
8245 printf (_(" [Reserved]"));
8246 else
8247 printf (" vsp = r%d", op & 0x0f);
8248 }
8249 else if ((op & 0xf0) == 0xa0)
8250 {
8251 int end = 4 + (op & 0x07);
8252 int first = 1;
8253 int i;
8254
8255 printf (" pop {");
8256 for (i = 4; i <= end; i++)
8257 {
8258 if (first)
8259 first = 0;
8260 else
8261 printf (", ");
8262 printf ("r%d", i);
8263 }
8264 if (op & 0x08)
8265 {
8266 if (!first)
8267 printf (", ");
8268 printf ("r14");
8269 }
8270 printf ("}");
8271 }
8272 else if (op == 0xb0)
8273 printf (_(" finish"));
8274 else if (op == 0xb1)
8275 {
8276 GET_OP (op2);
8277 if (op2 == 0 || (op2 & 0xf0) != 0)
8278 printf (_("[Spare]"));
8279 else
8280 {
8281 unsigned int mask = op2 & 0x0f;
8282 int first = 1;
8283 int i;
8284
8285 printf ("pop {");
8286 for (i = 0; i < 12; i++)
8287 if (mask & (1 << i))
8288 {
8289 if (first)
8290 first = 0;
8291 else
8292 printf (", ");
8293 printf ("r%d", i);
8294 }
8295 printf ("}");
8296 }
8297 }
8298 else if (op == 0xb2)
8299 {
8300 unsigned char buf[9];
8301 unsigned int i, len;
8302 unsigned long offset;
8303
8304 for (i = 0; i < sizeof (buf); i++)
8305 {
8306 GET_OP (buf[i]);
8307 if ((buf[i] & 0x80) == 0)
8308 break;
8309 }
8310 if (i == sizeof (buf))
8311 printf (_("corrupt change to vsp"));
8312 else
8313 {
8314 offset = read_uleb128 (buf, &len, buf + i + 1);
8315 assert (len == i + 1);
8316 offset = offset * 4 + 0x204;
8317 printf ("vsp = vsp + %ld", offset);
8318 }
8319 }
8320 else if (op == 0xb3 || op == 0xc8 || op == 0xc9)
8321 {
8322 unsigned int first, last;
8323
8324 GET_OP (op2);
8325 first = op2 >> 4;
8326 last = op2 & 0x0f;
8327 if (op == 0xc8)
8328 first = first + 16;
8329 printf ("pop {D%d", first);
8330 if (last)
8331 printf ("-D%d", first + last);
8332 printf ("}");
8333 }
8334 else if ((op & 0xf8) == 0xb8 || (op & 0xf8) == 0xd0)
8335 {
8336 unsigned int count = op & 0x07;
8337
8338 printf ("pop {D8");
8339 if (count)
8340 printf ("-D%d", 8 + count);
8341 printf ("}");
8342 }
8343 else if (op >= 0xc0 && op <= 0xc5)
8344 {
8345 unsigned int count = op & 0x07;
8346
8347 printf (" pop {wR10");
8348 if (count)
8349 printf ("-wR%d", 10 + count);
8350 printf ("}");
8351 }
8352 else if (op == 0xc6)
8353 {
8354 unsigned int first, last;
8355
8356 GET_OP (op2);
8357 first = op2 >> 4;
8358 last = op2 & 0x0f;
8359 printf ("pop {wR%d", first);
8360 if (last)
8361 printf ("-wR%d", first + last);
8362 printf ("}");
8363 }
8364 else if (op == 0xc7)
8365 {
8366 GET_OP (op2);
8367 if (op2 == 0 || (op2 & 0xf0) != 0)
8368 printf (_("[Spare]"));
8369 else
8370 {
8371 unsigned int mask = op2 & 0x0f;
8372 int first = 1;
8373 int i;
8374
8375 printf ("pop {");
8376 for (i = 0; i < 4; i++)
8377 if (mask & (1 << i))
8378 {
8379 if (first)
8380 first = 0;
8381 else
8382 printf (", ");
8383 printf ("wCGR%d", i);
8384 }
8385 printf ("}");
8386 }
8387 }
8388 else
8389 printf (_(" [unsupported opcode]"));
8390 printf ("\n");
8391 }
8392 }
8393
8394 static void
8395 decode_tic6x_unwind_bytecode (struct arm_unw_aux_info * aux,
8396 unsigned int word,
8397 unsigned int remaining,
8398 unsigned int more_words,
8399 bfd_vma data_offset,
8400 Elf_Internal_Shdr * data_sec,
8401 struct arm_section * data_arm_sec)
8402 {
8403 struct absaddr addr;
8404
8405 /* Decode the unwinding instructions. */
8406 while (1)
8407 {
8408 unsigned int op, op2;
8409
8410 ADVANCE;
8411 if (remaining == 0)
8412 break;
8413 remaining--;
8414 op = word >> 24;
8415 word <<= 8;
8416
8417 printf (" 0x%02x ", op);
8418
8419 if ((op & 0xc0) == 0x00)
8420 {
8421 int offset = ((op & 0x3f) << 3) + 8;
8422 printf (" sp = sp + %d", offset);
8423 }
8424 else if ((op & 0xc0) == 0x80)
8425 {
8426 GET_OP (op2);
8427 if (op == 0x80 && op2 == 0)
8428 printf (_("Refuse to unwind"));
8429 else
8430 {
8431 unsigned int mask = ((op & 0x1f) << 8) | op2;
8432 if (op & 0x20)
8433 printf ("pop compact {");
8434 else
8435 printf ("pop {");
8436
8437 decode_tic6x_unwind_regmask (mask);
8438 printf("}");
8439 }
8440 }
8441 else if ((op & 0xf0) == 0xc0)
8442 {
8443 unsigned int reg;
8444 unsigned int nregs;
8445 unsigned int i;
8446 const char *name;
8447 struct
8448 {
8449 unsigned int offset;
8450 unsigned int reg;
8451 } regpos[16];
8452
8453 /* Scan entire instruction first so that GET_OP output is not
8454 interleaved with disassembly. */
8455 nregs = 0;
8456 for (i = 0; nregs < (op & 0xf); i++)
8457 {
8458 GET_OP (op2);
8459 reg = op2 >> 4;
8460 if (reg != 0xf)
8461 {
8462 regpos[nregs].offset = i * 2;
8463 regpos[nregs].reg = reg;
8464 nregs++;
8465 }
8466
8467 reg = op2 & 0xf;
8468 if (reg != 0xf)
8469 {
8470 regpos[nregs].offset = i * 2 + 1;
8471 regpos[nregs].reg = reg;
8472 nregs++;
8473 }
8474 }
8475
8476 printf (_("pop frame {"));
8477 reg = nregs - 1;
8478 for (i = i * 2; i > 0; i--)
8479 {
8480 if (regpos[reg].offset == i - 1)
8481 {
8482 name = tic6x_unwind_regnames[regpos[reg].reg];
8483 if (reg > 0)
8484 reg--;
8485 }
8486 else
8487 name = _("[pad]");
8488
8489 fputs (name, stdout);
8490 if (i > 1)
8491 printf (", ");
8492 }
8493
8494 printf ("}");
8495 }
8496 else if (op == 0xd0)
8497 printf (" MOV FP, SP");
8498 else if (op == 0xd1)
8499 printf (" __c6xabi_pop_rts");
8500 else if (op == 0xd2)
8501 {
8502 unsigned char buf[9];
8503 unsigned int i, len;
8504 unsigned long offset;
8505
8506 for (i = 0; i < sizeof (buf); i++)
8507 {
8508 GET_OP (buf[i]);
8509 if ((buf[i] & 0x80) == 0)
8510 break;
8511 }
8512 /* PR 17531: file: id:000001,src:001906+004739,op:splice,rep:2. */
8513 if (i == sizeof (buf))
8514 {
8515 printf ("<corrupt sp adjust>\n");
8516 warn (_("Corrupt stack pointer adjustment detected\n"));
8517 return;
8518 }
8519
8520 offset = read_uleb128 (buf, &len, buf + i + 1);
8521 assert (len == i + 1);
8522 offset = offset * 8 + 0x408;
8523 printf (_("sp = sp + %ld"), offset);
8524 }
8525 else if ((op & 0xf0) == 0xe0)
8526 {
8527 if ((op & 0x0f) == 7)
8528 printf (" RETURN");
8529 else
8530 printf (" MV %s, B3", tic6x_unwind_regnames[op & 0x0f]);
8531 }
8532 else
8533 {
8534 printf (_(" [unsupported opcode]"));
8535 }
8536 putchar ('\n');
8537 }
8538 }
8539
8540 static bfd_vma
8541 arm_expand_prel31 (bfd_vma word, bfd_vma where)
8542 {
8543 bfd_vma offset;
8544
8545 offset = word & 0x7fffffff;
8546 if (offset & 0x40000000)
8547 offset |= ~ (bfd_vma) 0x7fffffff;
8548
8549 if (elf_header.e_machine == EM_TI_C6000)
8550 offset <<= 1;
8551
8552 return offset + where;
8553 }
8554
8555 static void
8556 decode_arm_unwind (struct arm_unw_aux_info * aux,
8557 unsigned int word,
8558 unsigned int remaining,
8559 bfd_vma data_offset,
8560 Elf_Internal_Shdr * data_sec,
8561 struct arm_section * data_arm_sec)
8562 {
8563 int per_index;
8564 unsigned int more_words = 0;
8565 struct absaddr addr;
8566 bfd_vma sym_name = (bfd_vma) -1;
8567
8568 if (remaining == 0)
8569 {
8570 /* Fetch the first word.
8571 Note - when decoding an object file the address extracted
8572 here will always be 0. So we also pass in the sym_name
8573 parameter so that we can find the symbol associated with
8574 the personality routine. */
8575 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, data_offset,
8576 & word, & addr, & sym_name))
8577 return;
8578
8579 remaining = 4;
8580 }
8581
8582 if ((word & 0x80000000) == 0)
8583 {
8584 /* Expand prel31 for personality routine. */
8585 bfd_vma fn;
8586 const char *procname;
8587
8588 fn = arm_expand_prel31 (word, data_sec->sh_addr + data_offset);
8589 printf (_(" Personality routine: "));
8590 if (fn == 0
8591 && addr.section == SHN_UNDEF && addr.offset == 0
8592 && sym_name != (bfd_vma) -1 && sym_name < aux->strtab_size)
8593 {
8594 procname = aux->strtab + sym_name;
8595 print_vma (fn, PREFIX_HEX);
8596 if (procname)
8597 {
8598 fputs (" <", stdout);
8599 fputs (procname, stdout);
8600 fputc ('>', stdout);
8601 }
8602 }
8603 else
8604 procname = arm_print_vma_and_name (aux, fn, addr);
8605 fputc ('\n', stdout);
8606
8607 /* The GCC personality routines use the standard compact
8608 encoding, starting with one byte giving the number of
8609 words. */
8610 if (procname != NULL
8611 && (const_strneq (procname, "__gcc_personality_v0")
8612 || const_strneq (procname, "__gxx_personality_v0")
8613 || const_strneq (procname, "__gcj_personality_v0")
8614 || const_strneq (procname, "__gnu_objc_personality_v0")))
8615 {
8616 remaining = 0;
8617 more_words = 1;
8618 ADVANCE;
8619 if (!remaining)
8620 {
8621 printf (_(" [Truncated data]\n"));
8622 return;
8623 }
8624 more_words = word >> 24;
8625 word <<= 8;
8626 remaining--;
8627 per_index = -1;
8628 }
8629 else
8630 return;
8631 }
8632 else
8633 {
8634 /* ARM EHABI Section 6.3:
8635
8636 An exception-handling table entry for the compact model looks like:
8637
8638 31 30-28 27-24 23-0
8639 -- ----- ----- ----
8640 1 0 index Data for personalityRoutine[index] */
8641
8642 if (elf_header.e_machine == EM_ARM
8643 && (word & 0x70000000))
8644 warn (_("Corrupt ARM compact model table entry: %x \n"), word);
8645
8646 per_index = (word >> 24) & 0x7f;
8647 printf (_(" Compact model index: %d\n"), per_index);
8648 if (per_index == 0)
8649 {
8650 more_words = 0;
8651 word <<= 8;
8652 remaining--;
8653 }
8654 else if (per_index < 3)
8655 {
8656 more_words = (word >> 16) & 0xff;
8657 word <<= 16;
8658 remaining -= 2;
8659 }
8660 }
8661
8662 switch (elf_header.e_machine)
8663 {
8664 case EM_ARM:
8665 if (per_index < 3)
8666 {
8667 decode_arm_unwind_bytecode (aux, word, remaining, more_words,
8668 data_offset, data_sec, data_arm_sec);
8669 }
8670 else
8671 {
8672 warn (_("Unknown ARM compact model index encountered\n"));
8673 printf (_(" [reserved]\n"));
8674 }
8675 break;
8676
8677 case EM_TI_C6000:
8678 if (per_index < 3)
8679 {
8680 decode_tic6x_unwind_bytecode (aux, word, remaining, more_words,
8681 data_offset, data_sec, data_arm_sec);
8682 }
8683 else if (per_index < 5)
8684 {
8685 if (((word >> 17) & 0x7f) == 0x7f)
8686 printf (_(" Restore stack from frame pointer\n"));
8687 else
8688 printf (_(" Stack increment %d\n"), (word >> 14) & 0x1fc);
8689 printf (_(" Registers restored: "));
8690 if (per_index == 4)
8691 printf (" (compact) ");
8692 decode_tic6x_unwind_regmask ((word >> 4) & 0x1fff);
8693 putchar ('\n');
8694 printf (_(" Return register: %s\n"),
8695 tic6x_unwind_regnames[word & 0xf]);
8696 }
8697 else
8698 printf (_(" [reserved (%d)]\n"), per_index);
8699 break;
8700
8701 default:
8702 error (_("Unsupported architecture type %d encountered when decoding unwind table\n"),
8703 elf_header.e_machine);
8704 }
8705
8706 /* Decode the descriptors. Not implemented. */
8707 }
8708
8709 static void
8710 dump_arm_unwind (struct arm_unw_aux_info *aux, Elf_Internal_Shdr *exidx_sec)
8711 {
8712 struct arm_section exidx_arm_sec, extab_arm_sec;
8713 unsigned int i, exidx_len;
8714 unsigned long j, nfuns;
8715
8716 memset (&exidx_arm_sec, 0, sizeof (exidx_arm_sec));
8717 memset (&extab_arm_sec, 0, sizeof (extab_arm_sec));
8718 exidx_len = exidx_sec->sh_size / 8;
8719
8720 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
8721 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
8722 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
8723 aux->funtab[nfuns++] = aux->symtab[j];
8724 aux->nfuns = nfuns;
8725 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
8726
8727 for (i = 0; i < exidx_len; i++)
8728 {
8729 unsigned int exidx_fn, exidx_entry;
8730 struct absaddr fn_addr, entry_addr;
8731 bfd_vma fn;
8732
8733 fputc ('\n', stdout);
8734
8735 if (! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
8736 8 * i, & exidx_fn, & fn_addr, NULL)
8737 || ! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
8738 8 * i + 4, & exidx_entry, & entry_addr, NULL))
8739 {
8740 free (aux->funtab);
8741 arm_free_section (& exidx_arm_sec);
8742 arm_free_section (& extab_arm_sec);
8743 return;
8744 }
8745
8746 /* ARM EHABI, Section 5:
8747 An index table entry consists of 2 words.
8748 The first word contains a prel31 offset to the start of a function, with bit 31 clear. */
8749 if (exidx_fn & 0x80000000)
8750 warn (_("corrupt index table entry: %x\n"), exidx_fn);
8751
8752 fn = arm_expand_prel31 (exidx_fn, exidx_sec->sh_addr + 8 * i);
8753
8754 arm_print_vma_and_name (aux, fn, fn_addr);
8755 fputs (": ", stdout);
8756
8757 if (exidx_entry == 1)
8758 {
8759 print_vma (exidx_entry, PREFIX_HEX);
8760 fputs (" [cantunwind]\n", stdout);
8761 }
8762 else if (exidx_entry & 0x80000000)
8763 {
8764 print_vma (exidx_entry, PREFIX_HEX);
8765 fputc ('\n', stdout);
8766 decode_arm_unwind (aux, exidx_entry, 4, 0, NULL, NULL);
8767 }
8768 else
8769 {
8770 bfd_vma table, table_offset = 0;
8771 Elf_Internal_Shdr *table_sec;
8772
8773 fputs ("@", stdout);
8774 table = arm_expand_prel31 (exidx_entry, exidx_sec->sh_addr + 8 * i + 4);
8775 print_vma (table, PREFIX_HEX);
8776 printf ("\n");
8777
8778 /* Locate the matching .ARM.extab. */
8779 if (entry_addr.section != SHN_UNDEF
8780 && entry_addr.section < elf_header.e_shnum)
8781 {
8782 table_sec = section_headers + entry_addr.section;
8783 table_offset = entry_addr.offset;
8784 /* PR 18879 */
8785 if (table_offset > table_sec->sh_size
8786 || ((bfd_signed_vma) table_offset) < 0)
8787 {
8788 warn (_("Unwind entry contains corrupt offset (0x%lx) into section %s\n"),
8789 (unsigned long) table_offset,
8790 printable_section_name (table_sec));
8791 continue;
8792 }
8793 }
8794 else
8795 {
8796 table_sec = find_section_by_address (table);
8797 if (table_sec != NULL)
8798 table_offset = table - table_sec->sh_addr;
8799 }
8800 if (table_sec == NULL)
8801 {
8802 warn (_("Could not locate .ARM.extab section containing 0x%lx.\n"),
8803 (unsigned long) table);
8804 continue;
8805 }
8806 decode_arm_unwind (aux, 0, 0, table_offset, table_sec,
8807 &extab_arm_sec);
8808 }
8809 }
8810
8811 printf ("\n");
8812
8813 free (aux->funtab);
8814 arm_free_section (&exidx_arm_sec);
8815 arm_free_section (&extab_arm_sec);
8816 }
8817
8818 /* Used for both ARM and C6X unwinding tables. */
8819
8820 static void
8821 arm_process_unwind (FILE *file)
8822 {
8823 struct arm_unw_aux_info aux;
8824 Elf_Internal_Shdr *unwsec = NULL;
8825 Elf_Internal_Shdr *strsec;
8826 Elf_Internal_Shdr *sec;
8827 unsigned long i;
8828 unsigned int sec_type;
8829
8830 switch (elf_header.e_machine)
8831 {
8832 case EM_ARM:
8833 sec_type = SHT_ARM_EXIDX;
8834 break;
8835
8836 case EM_TI_C6000:
8837 sec_type = SHT_C6000_UNWIND;
8838 break;
8839
8840 default:
8841 error (_("Unsupported architecture type %d encountered when processing unwind table\n"),
8842 elf_header.e_machine);
8843 return;
8844 }
8845
8846 if (string_table == NULL)
8847 return;
8848
8849 memset (& aux, 0, sizeof (aux));
8850 aux.file = file;
8851
8852 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
8853 {
8854 if (sec->sh_type == SHT_SYMTAB && sec->sh_link < elf_header.e_shnum)
8855 {
8856 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
8857
8858 strsec = section_headers + sec->sh_link;
8859
8860 /* PR binutils/17531 file: 011-12666-0.004. */
8861 if (aux.strtab != NULL)
8862 {
8863 error (_("Multiple string tables found in file.\n"));
8864 free (aux.strtab);
8865 }
8866 aux.strtab = get_data (NULL, file, strsec->sh_offset,
8867 1, strsec->sh_size, _("string table"));
8868 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
8869 }
8870 else if (sec->sh_type == sec_type)
8871 unwsec = sec;
8872 }
8873
8874 if (unwsec == NULL)
8875 printf (_("\nThere are no unwind sections in this file.\n"));
8876 else
8877 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
8878 {
8879 if (sec->sh_type == sec_type)
8880 {
8881 printf (_("\nUnwind table index '%s' at offset 0x%lx contains %lu entries:\n"),
8882 printable_section_name (sec),
8883 (unsigned long) sec->sh_offset,
8884 (unsigned long) (sec->sh_size / (2 * eh_addr_size)));
8885
8886 dump_arm_unwind (&aux, sec);
8887 }
8888 }
8889
8890 if (aux.symtab)
8891 free (aux.symtab);
8892 if (aux.strtab)
8893 free ((char *) aux.strtab);
8894 }
8895
8896 static void
8897 process_unwind (FILE * file)
8898 {
8899 struct unwind_handler
8900 {
8901 int machtype;
8902 void (* handler)(FILE *);
8903 } handlers[] =
8904 {
8905 { EM_ARM, arm_process_unwind },
8906 { EM_IA_64, ia64_process_unwind },
8907 { EM_PARISC, hppa_process_unwind },
8908 { EM_TI_C6000, arm_process_unwind },
8909 { 0, 0 }
8910 };
8911 int i;
8912
8913 if (!do_unwind)
8914 return;
8915
8916 for (i = 0; handlers[i].handler != NULL; i++)
8917 if (elf_header.e_machine == handlers[i].machtype)
8918 {
8919 handlers[i].handler (file);
8920 return;
8921 }
8922
8923 printf (_("\nThe decoding of unwind sections for machine type %s is not currently supported.\n"),
8924 get_machine_name (elf_header.e_machine));
8925 }
8926
8927 static void
8928 dynamic_section_mips_val (Elf_Internal_Dyn * entry)
8929 {
8930 switch (entry->d_tag)
8931 {
8932 case DT_MIPS_FLAGS:
8933 if (entry->d_un.d_val == 0)
8934 printf (_("NONE"));
8935 else
8936 {
8937 static const char * opts[] =
8938 {
8939 "QUICKSTART", "NOTPOT", "NO_LIBRARY_REPLACEMENT",
8940 "NO_MOVE", "SGI_ONLY", "GUARANTEE_INIT", "DELTA_C_PLUS_PLUS",
8941 "GUARANTEE_START_INIT", "PIXIE", "DEFAULT_DELAY_LOAD",
8942 "REQUICKSTART", "REQUICKSTARTED", "CORD", "NO_UNRES_UNDEF",
8943 "RLD_ORDER_SAFE"
8944 };
8945 unsigned int cnt;
8946 int first = 1;
8947
8948 for (cnt = 0; cnt < ARRAY_SIZE (opts); ++cnt)
8949 if (entry->d_un.d_val & (1 << cnt))
8950 {
8951 printf ("%s%s", first ? "" : " ", opts[cnt]);
8952 first = 0;
8953 }
8954 }
8955 break;
8956
8957 case DT_MIPS_IVERSION:
8958 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
8959 printf (_("Interface Version: %s"), GET_DYNAMIC_NAME (entry->d_un.d_val));
8960 else
8961 {
8962 char buf[40];
8963 sprintf_vma (buf, entry->d_un.d_ptr);
8964 /* Note: coded this way so that there is a single string for translation. */
8965 printf (_("<corrupt: %s>"), buf);
8966 }
8967 break;
8968
8969 case DT_MIPS_TIME_STAMP:
8970 {
8971 char timebuf[128];
8972 struct tm * tmp;
8973 time_t atime = entry->d_un.d_val;
8974
8975 tmp = gmtime (&atime);
8976 /* PR 17531: file: 6accc532. */
8977 if (tmp == NULL)
8978 snprintf (timebuf, sizeof (timebuf), _("<corrupt>"));
8979 else
8980 snprintf (timebuf, sizeof (timebuf), "%04u-%02u-%02uT%02u:%02u:%02u",
8981 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
8982 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
8983 printf (_("Time Stamp: %s"), timebuf);
8984 }
8985 break;
8986
8987 case DT_MIPS_RLD_VERSION:
8988 case DT_MIPS_LOCAL_GOTNO:
8989 case DT_MIPS_CONFLICTNO:
8990 case DT_MIPS_LIBLISTNO:
8991 case DT_MIPS_SYMTABNO:
8992 case DT_MIPS_UNREFEXTNO:
8993 case DT_MIPS_HIPAGENO:
8994 case DT_MIPS_DELTA_CLASS_NO:
8995 case DT_MIPS_DELTA_INSTANCE_NO:
8996 case DT_MIPS_DELTA_RELOC_NO:
8997 case DT_MIPS_DELTA_SYM_NO:
8998 case DT_MIPS_DELTA_CLASSSYM_NO:
8999 case DT_MIPS_COMPACT_SIZE:
9000 print_vma (entry->d_un.d_val, DEC);
9001 break;
9002
9003 default:
9004 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9005 }
9006 putchar ('\n');
9007 }
9008
9009 static void
9010 dynamic_section_parisc_val (Elf_Internal_Dyn * entry)
9011 {
9012 switch (entry->d_tag)
9013 {
9014 case DT_HP_DLD_FLAGS:
9015 {
9016 static struct
9017 {
9018 long int bit;
9019 const char * str;
9020 }
9021 flags[] =
9022 {
9023 { DT_HP_DEBUG_PRIVATE, "HP_DEBUG_PRIVATE" },
9024 { DT_HP_DEBUG_CALLBACK, "HP_DEBUG_CALLBACK" },
9025 { DT_HP_DEBUG_CALLBACK_BOR, "HP_DEBUG_CALLBACK_BOR" },
9026 { DT_HP_NO_ENVVAR, "HP_NO_ENVVAR" },
9027 { DT_HP_BIND_NOW, "HP_BIND_NOW" },
9028 { DT_HP_BIND_NONFATAL, "HP_BIND_NONFATAL" },
9029 { DT_HP_BIND_VERBOSE, "HP_BIND_VERBOSE" },
9030 { DT_HP_BIND_RESTRICTED, "HP_BIND_RESTRICTED" },
9031 { DT_HP_BIND_SYMBOLIC, "HP_BIND_SYMBOLIC" },
9032 { DT_HP_RPATH_FIRST, "HP_RPATH_FIRST" },
9033 { DT_HP_BIND_DEPTH_FIRST, "HP_BIND_DEPTH_FIRST" },
9034 { DT_HP_GST, "HP_GST" },
9035 { DT_HP_SHLIB_FIXED, "HP_SHLIB_FIXED" },
9036 { DT_HP_MERGE_SHLIB_SEG, "HP_MERGE_SHLIB_SEG" },
9037 { DT_HP_NODELETE, "HP_NODELETE" },
9038 { DT_HP_GROUP, "HP_GROUP" },
9039 { DT_HP_PROTECT_LINKAGE_TABLE, "HP_PROTECT_LINKAGE_TABLE" }
9040 };
9041 int first = 1;
9042 size_t cnt;
9043 bfd_vma val = entry->d_un.d_val;
9044
9045 for (cnt = 0; cnt < ARRAY_SIZE (flags); ++cnt)
9046 if (val & flags[cnt].bit)
9047 {
9048 if (! first)
9049 putchar (' ');
9050 fputs (flags[cnt].str, stdout);
9051 first = 0;
9052 val ^= flags[cnt].bit;
9053 }
9054
9055 if (val != 0 || first)
9056 {
9057 if (! first)
9058 putchar (' ');
9059 print_vma (val, HEX);
9060 }
9061 }
9062 break;
9063
9064 default:
9065 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9066 break;
9067 }
9068 putchar ('\n');
9069 }
9070
9071 #ifdef BFD64
9072
9073 /* VMS vs Unix time offset and factor. */
9074
9075 #define VMS_EPOCH_OFFSET 35067168000000000LL
9076 #define VMS_GRANULARITY_FACTOR 10000000
9077
9078 /* Display a VMS time in a human readable format. */
9079
9080 static void
9081 print_vms_time (bfd_int64_t vmstime)
9082 {
9083 struct tm *tm;
9084 time_t unxtime;
9085
9086 unxtime = (vmstime - VMS_EPOCH_OFFSET) / VMS_GRANULARITY_FACTOR;
9087 tm = gmtime (&unxtime);
9088 printf ("%04u-%02u-%02uT%02u:%02u:%02u",
9089 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
9090 tm->tm_hour, tm->tm_min, tm->tm_sec);
9091 }
9092 #endif /* BFD64 */
9093
9094 static void
9095 dynamic_section_ia64_val (Elf_Internal_Dyn * entry)
9096 {
9097 switch (entry->d_tag)
9098 {
9099 case DT_IA_64_PLT_RESERVE:
9100 /* First 3 slots reserved. */
9101 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9102 printf (" -- ");
9103 print_vma (entry->d_un.d_ptr + (3 * 8), PREFIX_HEX);
9104 break;
9105
9106 case DT_IA_64_VMS_LINKTIME:
9107 #ifdef BFD64
9108 print_vms_time (entry->d_un.d_val);
9109 #endif
9110 break;
9111
9112 case DT_IA_64_VMS_LNKFLAGS:
9113 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9114 if (entry->d_un.d_val & VMS_LF_CALL_DEBUG)
9115 printf (" CALL_DEBUG");
9116 if (entry->d_un.d_val & VMS_LF_NOP0BUFS)
9117 printf (" NOP0BUFS");
9118 if (entry->d_un.d_val & VMS_LF_P0IMAGE)
9119 printf (" P0IMAGE");
9120 if (entry->d_un.d_val & VMS_LF_MKTHREADS)
9121 printf (" MKTHREADS");
9122 if (entry->d_un.d_val & VMS_LF_UPCALLS)
9123 printf (" UPCALLS");
9124 if (entry->d_un.d_val & VMS_LF_IMGSTA)
9125 printf (" IMGSTA");
9126 if (entry->d_un.d_val & VMS_LF_INITIALIZE)
9127 printf (" INITIALIZE");
9128 if (entry->d_un.d_val & VMS_LF_MAIN)
9129 printf (" MAIN");
9130 if (entry->d_un.d_val & VMS_LF_EXE_INIT)
9131 printf (" EXE_INIT");
9132 if (entry->d_un.d_val & VMS_LF_TBK_IN_IMG)
9133 printf (" TBK_IN_IMG");
9134 if (entry->d_un.d_val & VMS_LF_DBG_IN_IMG)
9135 printf (" DBG_IN_IMG");
9136 if (entry->d_un.d_val & VMS_LF_TBK_IN_DSF)
9137 printf (" TBK_IN_DSF");
9138 if (entry->d_un.d_val & VMS_LF_DBG_IN_DSF)
9139 printf (" DBG_IN_DSF");
9140 if (entry->d_un.d_val & VMS_LF_SIGNATURES)
9141 printf (" SIGNATURES");
9142 if (entry->d_un.d_val & VMS_LF_REL_SEG_OFF)
9143 printf (" REL_SEG_OFF");
9144 break;
9145
9146 default:
9147 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9148 break;
9149 }
9150 putchar ('\n');
9151 }
9152
9153 static int
9154 get_32bit_dynamic_section (FILE * file)
9155 {
9156 Elf32_External_Dyn * edyn;
9157 Elf32_External_Dyn * ext;
9158 Elf_Internal_Dyn * entry;
9159
9160 edyn = (Elf32_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
9161 dynamic_size, _("dynamic section"));
9162 if (!edyn)
9163 return 0;
9164
9165 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9166 might not have the luxury of section headers. Look for the DT_NULL
9167 terminator to determine the number of entries. */
9168 for (ext = edyn, dynamic_nent = 0;
9169 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9170 ext++)
9171 {
9172 dynamic_nent++;
9173 if (BYTE_GET (ext->d_tag) == DT_NULL)
9174 break;
9175 }
9176
9177 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9178 sizeof (* entry));
9179 if (dynamic_section == NULL)
9180 {
9181 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9182 (unsigned long) dynamic_nent);
9183 free (edyn);
9184 return 0;
9185 }
9186
9187 for (ext = edyn, entry = dynamic_section;
9188 entry < dynamic_section + dynamic_nent;
9189 ext++, entry++)
9190 {
9191 entry->d_tag = BYTE_GET (ext->d_tag);
9192 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9193 }
9194
9195 free (edyn);
9196
9197 return 1;
9198 }
9199
9200 static int
9201 get_64bit_dynamic_section (FILE * file)
9202 {
9203 Elf64_External_Dyn * edyn;
9204 Elf64_External_Dyn * ext;
9205 Elf_Internal_Dyn * entry;
9206
9207 /* Read in the data. */
9208 edyn = (Elf64_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
9209 dynamic_size, _("dynamic section"));
9210 if (!edyn)
9211 return 0;
9212
9213 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9214 might not have the luxury of section headers. Look for the DT_NULL
9215 terminator to determine the number of entries. */
9216 for (ext = edyn, dynamic_nent = 0;
9217 /* PR 17533 file: 033-67080-0.004 - do not read past end of buffer. */
9218 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9219 ext++)
9220 {
9221 dynamic_nent++;
9222 if (BYTE_GET (ext->d_tag) == DT_NULL)
9223 break;
9224 }
9225
9226 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9227 sizeof (* entry));
9228 if (dynamic_section == NULL)
9229 {
9230 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9231 (unsigned long) dynamic_nent);
9232 free (edyn);
9233 return 0;
9234 }
9235
9236 /* Convert from external to internal formats. */
9237 for (ext = edyn, entry = dynamic_section;
9238 entry < dynamic_section + dynamic_nent;
9239 ext++, entry++)
9240 {
9241 entry->d_tag = BYTE_GET (ext->d_tag);
9242 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9243 }
9244
9245 free (edyn);
9246
9247 return 1;
9248 }
9249
9250 static void
9251 print_dynamic_flags (bfd_vma flags)
9252 {
9253 int first = 1;
9254
9255 while (flags)
9256 {
9257 bfd_vma flag;
9258
9259 flag = flags & - flags;
9260 flags &= ~ flag;
9261
9262 if (first)
9263 first = 0;
9264 else
9265 putc (' ', stdout);
9266
9267 switch (flag)
9268 {
9269 case DF_ORIGIN: fputs ("ORIGIN", stdout); break;
9270 case DF_SYMBOLIC: fputs ("SYMBOLIC", stdout); break;
9271 case DF_TEXTREL: fputs ("TEXTREL", stdout); break;
9272 case DF_BIND_NOW: fputs ("BIND_NOW", stdout); break;
9273 case DF_STATIC_TLS: fputs ("STATIC_TLS", stdout); break;
9274 default: fputs (_("unknown"), stdout); break;
9275 }
9276 }
9277 puts ("");
9278 }
9279
9280 /* Parse and display the contents of the dynamic section. */
9281
9282 static int
9283 process_dynamic_section (FILE * file)
9284 {
9285 Elf_Internal_Dyn * entry;
9286
9287 if (dynamic_size == 0)
9288 {
9289 if (do_dynamic)
9290 printf (_("\nThere is no dynamic section in this file.\n"));
9291
9292 return 1;
9293 }
9294
9295 if (is_32bit_elf)
9296 {
9297 if (! get_32bit_dynamic_section (file))
9298 return 0;
9299 }
9300 else if (! get_64bit_dynamic_section (file))
9301 return 0;
9302
9303 /* Find the appropriate symbol table. */
9304 if (dynamic_symbols == NULL)
9305 {
9306 for (entry = dynamic_section;
9307 entry < dynamic_section + dynamic_nent;
9308 ++entry)
9309 {
9310 Elf_Internal_Shdr section;
9311
9312 if (entry->d_tag != DT_SYMTAB)
9313 continue;
9314
9315 dynamic_info[DT_SYMTAB] = entry->d_un.d_val;
9316
9317 /* Since we do not know how big the symbol table is,
9318 we default to reading in the entire file (!) and
9319 processing that. This is overkill, I know, but it
9320 should work. */
9321 section.sh_offset = offset_from_vma (file, entry->d_un.d_val, 0);
9322
9323 if (archive_file_offset != 0)
9324 section.sh_size = archive_file_size - section.sh_offset;
9325 else
9326 {
9327 if (fseek (file, 0, SEEK_END))
9328 error (_("Unable to seek to end of file!\n"));
9329
9330 section.sh_size = ftell (file) - section.sh_offset;
9331 }
9332
9333 if (is_32bit_elf)
9334 section.sh_entsize = sizeof (Elf32_External_Sym);
9335 else
9336 section.sh_entsize = sizeof (Elf64_External_Sym);
9337 section.sh_name = string_table_length;
9338
9339 dynamic_symbols = GET_ELF_SYMBOLS (file, &section, & num_dynamic_syms);
9340 if (num_dynamic_syms < 1)
9341 {
9342 error (_("Unable to determine the number of symbols to load\n"));
9343 continue;
9344 }
9345 }
9346 }
9347
9348 /* Similarly find a string table. */
9349 if (dynamic_strings == NULL)
9350 {
9351 for (entry = dynamic_section;
9352 entry < dynamic_section + dynamic_nent;
9353 ++entry)
9354 {
9355 unsigned long offset;
9356 long str_tab_len;
9357
9358 if (entry->d_tag != DT_STRTAB)
9359 continue;
9360
9361 dynamic_info[DT_STRTAB] = entry->d_un.d_val;
9362
9363 /* Since we do not know how big the string table is,
9364 we default to reading in the entire file (!) and
9365 processing that. This is overkill, I know, but it
9366 should work. */
9367
9368 offset = offset_from_vma (file, entry->d_un.d_val, 0);
9369
9370 if (archive_file_offset != 0)
9371 str_tab_len = archive_file_size - offset;
9372 else
9373 {
9374 if (fseek (file, 0, SEEK_END))
9375 error (_("Unable to seek to end of file\n"));
9376 str_tab_len = ftell (file) - offset;
9377 }
9378
9379 if (str_tab_len < 1)
9380 {
9381 error
9382 (_("Unable to determine the length of the dynamic string table\n"));
9383 continue;
9384 }
9385
9386 dynamic_strings = (char *) get_data (NULL, file, offset, 1,
9387 str_tab_len,
9388 _("dynamic string table"));
9389 dynamic_strings_length = dynamic_strings == NULL ? 0 : str_tab_len;
9390 break;
9391 }
9392 }
9393
9394 /* And find the syminfo section if available. */
9395 if (dynamic_syminfo == NULL)
9396 {
9397 unsigned long syminsz = 0;
9398
9399 for (entry = dynamic_section;
9400 entry < dynamic_section + dynamic_nent;
9401 ++entry)
9402 {
9403 if (entry->d_tag == DT_SYMINENT)
9404 {
9405 /* Note: these braces are necessary to avoid a syntax
9406 error from the SunOS4 C compiler. */
9407 /* PR binutils/17531: A corrupt file can trigger this test.
9408 So do not use an assert, instead generate an error message. */
9409 if (sizeof (Elf_External_Syminfo) != entry->d_un.d_val)
9410 error (_("Bad value (%d) for SYMINENT entry\n"),
9411 (int) entry->d_un.d_val);
9412 }
9413 else if (entry->d_tag == DT_SYMINSZ)
9414 syminsz = entry->d_un.d_val;
9415 else if (entry->d_tag == DT_SYMINFO)
9416 dynamic_syminfo_offset = offset_from_vma (file, entry->d_un.d_val,
9417 syminsz);
9418 }
9419
9420 if (dynamic_syminfo_offset != 0 && syminsz != 0)
9421 {
9422 Elf_External_Syminfo * extsyminfo;
9423 Elf_External_Syminfo * extsym;
9424 Elf_Internal_Syminfo * syminfo;
9425
9426 /* There is a syminfo section. Read the data. */
9427 extsyminfo = (Elf_External_Syminfo *)
9428 get_data (NULL, file, dynamic_syminfo_offset, 1, syminsz,
9429 _("symbol information"));
9430 if (!extsyminfo)
9431 return 0;
9432
9433 dynamic_syminfo = (Elf_Internal_Syminfo *) malloc (syminsz);
9434 if (dynamic_syminfo == NULL)
9435 {
9436 error (_("Out of memory allocating %lu byte for dynamic symbol info\n"),
9437 (unsigned long) syminsz);
9438 return 0;
9439 }
9440
9441 dynamic_syminfo_nent = syminsz / sizeof (Elf_External_Syminfo);
9442 for (syminfo = dynamic_syminfo, extsym = extsyminfo;
9443 syminfo < dynamic_syminfo + dynamic_syminfo_nent;
9444 ++syminfo, ++extsym)
9445 {
9446 syminfo->si_boundto = BYTE_GET (extsym->si_boundto);
9447 syminfo->si_flags = BYTE_GET (extsym->si_flags);
9448 }
9449
9450 free (extsyminfo);
9451 }
9452 }
9453
9454 if (do_dynamic && dynamic_addr)
9455 printf (_("\nDynamic section at offset 0x%lx contains %lu entries:\n"),
9456 dynamic_addr, (unsigned long) dynamic_nent);
9457 if (do_dynamic)
9458 printf (_(" Tag Type Name/Value\n"));
9459
9460 for (entry = dynamic_section;
9461 entry < dynamic_section + dynamic_nent;
9462 entry++)
9463 {
9464 if (do_dynamic)
9465 {
9466 const char * dtype;
9467
9468 putchar (' ');
9469 print_vma (entry->d_tag, FULL_HEX);
9470 dtype = get_dynamic_type (entry->d_tag);
9471 printf (" (%s)%*s", dtype,
9472 ((is_32bit_elf ? 27 : 19)
9473 - (int) strlen (dtype)),
9474 " ");
9475 }
9476
9477 switch (entry->d_tag)
9478 {
9479 case DT_FLAGS:
9480 if (do_dynamic)
9481 print_dynamic_flags (entry->d_un.d_val);
9482 break;
9483
9484 case DT_AUXILIARY:
9485 case DT_FILTER:
9486 case DT_CONFIG:
9487 case DT_DEPAUDIT:
9488 case DT_AUDIT:
9489 if (do_dynamic)
9490 {
9491 switch (entry->d_tag)
9492 {
9493 case DT_AUXILIARY:
9494 printf (_("Auxiliary library"));
9495 break;
9496
9497 case DT_FILTER:
9498 printf (_("Filter library"));
9499 break;
9500
9501 case DT_CONFIG:
9502 printf (_("Configuration file"));
9503 break;
9504
9505 case DT_DEPAUDIT:
9506 printf (_("Dependency audit library"));
9507 break;
9508
9509 case DT_AUDIT:
9510 printf (_("Audit library"));
9511 break;
9512 }
9513
9514 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9515 printf (": [%s]\n", GET_DYNAMIC_NAME (entry->d_un.d_val));
9516 else
9517 {
9518 printf (": ");
9519 print_vma (entry->d_un.d_val, PREFIX_HEX);
9520 putchar ('\n');
9521 }
9522 }
9523 break;
9524
9525 case DT_FEATURE:
9526 if (do_dynamic)
9527 {
9528 printf (_("Flags:"));
9529
9530 if (entry->d_un.d_val == 0)
9531 printf (_(" None\n"));
9532 else
9533 {
9534 unsigned long int val = entry->d_un.d_val;
9535
9536 if (val & DTF_1_PARINIT)
9537 {
9538 printf (" PARINIT");
9539 val ^= DTF_1_PARINIT;
9540 }
9541 if (val & DTF_1_CONFEXP)
9542 {
9543 printf (" CONFEXP");
9544 val ^= DTF_1_CONFEXP;
9545 }
9546 if (val != 0)
9547 printf (" %lx", val);
9548 puts ("");
9549 }
9550 }
9551 break;
9552
9553 case DT_POSFLAG_1:
9554 if (do_dynamic)
9555 {
9556 printf (_("Flags:"));
9557
9558 if (entry->d_un.d_val == 0)
9559 printf (_(" None\n"));
9560 else
9561 {
9562 unsigned long int val = entry->d_un.d_val;
9563
9564 if (val & DF_P1_LAZYLOAD)
9565 {
9566 printf (" LAZYLOAD");
9567 val ^= DF_P1_LAZYLOAD;
9568 }
9569 if (val & DF_P1_GROUPPERM)
9570 {
9571 printf (" GROUPPERM");
9572 val ^= DF_P1_GROUPPERM;
9573 }
9574 if (val != 0)
9575 printf (" %lx", val);
9576 puts ("");
9577 }
9578 }
9579 break;
9580
9581 case DT_FLAGS_1:
9582 if (do_dynamic)
9583 {
9584 printf (_("Flags:"));
9585 if (entry->d_un.d_val == 0)
9586 printf (_(" None\n"));
9587 else
9588 {
9589 unsigned long int val = entry->d_un.d_val;
9590
9591 if (val & DF_1_NOW)
9592 {
9593 printf (" NOW");
9594 val ^= DF_1_NOW;
9595 }
9596 if (val & DF_1_GLOBAL)
9597 {
9598 printf (" GLOBAL");
9599 val ^= DF_1_GLOBAL;
9600 }
9601 if (val & DF_1_GROUP)
9602 {
9603 printf (" GROUP");
9604 val ^= DF_1_GROUP;
9605 }
9606 if (val & DF_1_NODELETE)
9607 {
9608 printf (" NODELETE");
9609 val ^= DF_1_NODELETE;
9610 }
9611 if (val & DF_1_LOADFLTR)
9612 {
9613 printf (" LOADFLTR");
9614 val ^= DF_1_LOADFLTR;
9615 }
9616 if (val & DF_1_INITFIRST)
9617 {
9618 printf (" INITFIRST");
9619 val ^= DF_1_INITFIRST;
9620 }
9621 if (val & DF_1_NOOPEN)
9622 {
9623 printf (" NOOPEN");
9624 val ^= DF_1_NOOPEN;
9625 }
9626 if (val & DF_1_ORIGIN)
9627 {
9628 printf (" ORIGIN");
9629 val ^= DF_1_ORIGIN;
9630 }
9631 if (val & DF_1_DIRECT)
9632 {
9633 printf (" DIRECT");
9634 val ^= DF_1_DIRECT;
9635 }
9636 if (val & DF_1_TRANS)
9637 {
9638 printf (" TRANS");
9639 val ^= DF_1_TRANS;
9640 }
9641 if (val & DF_1_INTERPOSE)
9642 {
9643 printf (" INTERPOSE");
9644 val ^= DF_1_INTERPOSE;
9645 }
9646 if (val & DF_1_NODEFLIB)
9647 {
9648 printf (" NODEFLIB");
9649 val ^= DF_1_NODEFLIB;
9650 }
9651 if (val & DF_1_NODUMP)
9652 {
9653 printf (" NODUMP");
9654 val ^= DF_1_NODUMP;
9655 }
9656 if (val & DF_1_CONFALT)
9657 {
9658 printf (" CONFALT");
9659 val ^= DF_1_CONFALT;
9660 }
9661 if (val & DF_1_ENDFILTEE)
9662 {
9663 printf (" ENDFILTEE");
9664 val ^= DF_1_ENDFILTEE;
9665 }
9666 if (val & DF_1_DISPRELDNE)
9667 {
9668 printf (" DISPRELDNE");
9669 val ^= DF_1_DISPRELDNE;
9670 }
9671 if (val & DF_1_DISPRELPND)
9672 {
9673 printf (" DISPRELPND");
9674 val ^= DF_1_DISPRELPND;
9675 }
9676 if (val & DF_1_NODIRECT)
9677 {
9678 printf (" NODIRECT");
9679 val ^= DF_1_NODIRECT;
9680 }
9681 if (val & DF_1_IGNMULDEF)
9682 {
9683 printf (" IGNMULDEF");
9684 val ^= DF_1_IGNMULDEF;
9685 }
9686 if (val & DF_1_NOKSYMS)
9687 {
9688 printf (" NOKSYMS");
9689 val ^= DF_1_NOKSYMS;
9690 }
9691 if (val & DF_1_NOHDR)
9692 {
9693 printf (" NOHDR");
9694 val ^= DF_1_NOHDR;
9695 }
9696 if (val & DF_1_EDITED)
9697 {
9698 printf (" EDITED");
9699 val ^= DF_1_EDITED;
9700 }
9701 if (val & DF_1_NORELOC)
9702 {
9703 printf (" NORELOC");
9704 val ^= DF_1_NORELOC;
9705 }
9706 if (val & DF_1_SYMINTPOSE)
9707 {
9708 printf (" SYMINTPOSE");
9709 val ^= DF_1_SYMINTPOSE;
9710 }
9711 if (val & DF_1_GLOBAUDIT)
9712 {
9713 printf (" GLOBAUDIT");
9714 val ^= DF_1_GLOBAUDIT;
9715 }
9716 if (val & DF_1_SINGLETON)
9717 {
9718 printf (" SINGLETON");
9719 val ^= DF_1_SINGLETON;
9720 }
9721 if (val & DF_1_STUB)
9722 {
9723 printf (" STUB");
9724 val ^= DF_1_STUB;
9725 }
9726 if (val & DF_1_PIE)
9727 {
9728 printf (" PIE");
9729 val ^= DF_1_PIE;
9730 }
9731 if (val != 0)
9732 printf (" %lx", val);
9733 puts ("");
9734 }
9735 }
9736 break;
9737
9738 case DT_PLTREL:
9739 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9740 if (do_dynamic)
9741 puts (get_dynamic_type (entry->d_un.d_val));
9742 break;
9743
9744 case DT_NULL :
9745 case DT_NEEDED :
9746 case DT_PLTGOT :
9747 case DT_HASH :
9748 case DT_STRTAB :
9749 case DT_SYMTAB :
9750 case DT_RELA :
9751 case DT_INIT :
9752 case DT_FINI :
9753 case DT_SONAME :
9754 case DT_RPATH :
9755 case DT_SYMBOLIC:
9756 case DT_REL :
9757 case DT_DEBUG :
9758 case DT_TEXTREL :
9759 case DT_JMPREL :
9760 case DT_RUNPATH :
9761 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9762
9763 if (do_dynamic)
9764 {
9765 char * name;
9766
9767 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9768 name = GET_DYNAMIC_NAME (entry->d_un.d_val);
9769 else
9770 name = NULL;
9771
9772 if (name)
9773 {
9774 switch (entry->d_tag)
9775 {
9776 case DT_NEEDED:
9777 printf (_("Shared library: [%s]"), name);
9778
9779 if (streq (name, program_interpreter))
9780 printf (_(" program interpreter"));
9781 break;
9782
9783 case DT_SONAME:
9784 printf (_("Library soname: [%s]"), name);
9785 break;
9786
9787 case DT_RPATH:
9788 printf (_("Library rpath: [%s]"), name);
9789 break;
9790
9791 case DT_RUNPATH:
9792 printf (_("Library runpath: [%s]"), name);
9793 break;
9794
9795 default:
9796 print_vma (entry->d_un.d_val, PREFIX_HEX);
9797 break;
9798 }
9799 }
9800 else
9801 print_vma (entry->d_un.d_val, PREFIX_HEX);
9802
9803 putchar ('\n');
9804 }
9805 break;
9806
9807 case DT_PLTRELSZ:
9808 case DT_RELASZ :
9809 case DT_STRSZ :
9810 case DT_RELSZ :
9811 case DT_RELAENT :
9812 case DT_SYMENT :
9813 case DT_RELENT :
9814 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9815 /* Fall through. */
9816 case DT_PLTPADSZ:
9817 case DT_MOVEENT :
9818 case DT_MOVESZ :
9819 case DT_INIT_ARRAYSZ:
9820 case DT_FINI_ARRAYSZ:
9821 case DT_GNU_CONFLICTSZ:
9822 case DT_GNU_LIBLISTSZ:
9823 if (do_dynamic)
9824 {
9825 print_vma (entry->d_un.d_val, UNSIGNED);
9826 printf (_(" (bytes)\n"));
9827 }
9828 break;
9829
9830 case DT_VERDEFNUM:
9831 case DT_VERNEEDNUM:
9832 case DT_RELACOUNT:
9833 case DT_RELCOUNT:
9834 if (do_dynamic)
9835 {
9836 print_vma (entry->d_un.d_val, UNSIGNED);
9837 putchar ('\n');
9838 }
9839 break;
9840
9841 case DT_SYMINSZ:
9842 case DT_SYMINENT:
9843 case DT_SYMINFO:
9844 case DT_USED:
9845 case DT_INIT_ARRAY:
9846 case DT_FINI_ARRAY:
9847 if (do_dynamic)
9848 {
9849 if (entry->d_tag == DT_USED
9850 && VALID_DYNAMIC_NAME (entry->d_un.d_val))
9851 {
9852 char * name = GET_DYNAMIC_NAME (entry->d_un.d_val);
9853
9854 if (*name)
9855 {
9856 printf (_("Not needed object: [%s]\n"), name);
9857 break;
9858 }
9859 }
9860
9861 print_vma (entry->d_un.d_val, PREFIX_HEX);
9862 putchar ('\n');
9863 }
9864 break;
9865
9866 case DT_BIND_NOW:
9867 /* The value of this entry is ignored. */
9868 if (do_dynamic)
9869 putchar ('\n');
9870 break;
9871
9872 case DT_GNU_PRELINKED:
9873 if (do_dynamic)
9874 {
9875 struct tm * tmp;
9876 time_t atime = entry->d_un.d_val;
9877
9878 tmp = gmtime (&atime);
9879 /* PR 17533 file: 041-1244816-0.004. */
9880 if (tmp == NULL)
9881 printf (_("<corrupt time val: %lx"),
9882 (unsigned long) atime);
9883 else
9884 printf ("%04u-%02u-%02uT%02u:%02u:%02u\n",
9885 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
9886 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
9887
9888 }
9889 break;
9890
9891 case DT_GNU_HASH:
9892 dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
9893 if (do_dynamic)
9894 {
9895 print_vma (entry->d_un.d_val, PREFIX_HEX);
9896 putchar ('\n');
9897 }
9898 break;
9899
9900 default:
9901 if ((entry->d_tag >= DT_VERSYM) && (entry->d_tag <= DT_VERNEEDNUM))
9902 version_info[DT_VERSIONTAGIDX (entry->d_tag)] =
9903 entry->d_un.d_val;
9904
9905 if (do_dynamic)
9906 {
9907 switch (elf_header.e_machine)
9908 {
9909 case EM_MIPS:
9910 case EM_MIPS_RS3_LE:
9911 dynamic_section_mips_val (entry);
9912 break;
9913 case EM_PARISC:
9914 dynamic_section_parisc_val (entry);
9915 break;
9916 case EM_IA_64:
9917 dynamic_section_ia64_val (entry);
9918 break;
9919 default:
9920 print_vma (entry->d_un.d_val, PREFIX_HEX);
9921 putchar ('\n');
9922 }
9923 }
9924 break;
9925 }
9926 }
9927
9928 return 1;
9929 }
9930
9931 static char *
9932 get_ver_flags (unsigned int flags)
9933 {
9934 static char buff[32];
9935
9936 buff[0] = 0;
9937
9938 if (flags == 0)
9939 return _("none");
9940
9941 if (flags & VER_FLG_BASE)
9942 strcat (buff, "BASE ");
9943
9944 if (flags & VER_FLG_WEAK)
9945 {
9946 if (flags & VER_FLG_BASE)
9947 strcat (buff, "| ");
9948
9949 strcat (buff, "WEAK ");
9950 }
9951
9952 if (flags & VER_FLG_INFO)
9953 {
9954 if (flags & (VER_FLG_BASE|VER_FLG_WEAK))
9955 strcat (buff, "| ");
9956
9957 strcat (buff, "INFO ");
9958 }
9959
9960 if (flags & ~(VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
9961 strcat (buff, _("| <unknown>"));
9962
9963 return buff;
9964 }
9965
9966 /* Display the contents of the version sections. */
9967
9968 static int
9969 process_version_sections (FILE * file)
9970 {
9971 Elf_Internal_Shdr * section;
9972 unsigned i;
9973 int found = 0;
9974
9975 if (! do_version)
9976 return 1;
9977
9978 for (i = 0, section = section_headers;
9979 i < elf_header.e_shnum;
9980 i++, section++)
9981 {
9982 switch (section->sh_type)
9983 {
9984 case SHT_GNU_verdef:
9985 {
9986 Elf_External_Verdef * edefs;
9987 unsigned int idx;
9988 unsigned int cnt;
9989 char * endbuf;
9990
9991 found = 1;
9992
9993 printf (_("\nVersion definition section '%s' contains %u entries:\n"),
9994 printable_section_name (section),
9995 section->sh_info);
9996
9997 printf (_(" Addr: 0x"));
9998 printf_vma (section->sh_addr);
9999 printf (_(" Offset: %#08lx Link: %u (%s)"),
10000 (unsigned long) section->sh_offset, section->sh_link,
10001 printable_section_name_from_index (section->sh_link));
10002
10003 edefs = (Elf_External_Verdef *)
10004 get_data (NULL, file, section->sh_offset, 1,section->sh_size,
10005 _("version definition section"));
10006 if (!edefs)
10007 break;
10008 endbuf = (char *) edefs + section->sh_size;
10009
10010 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
10011 {
10012 char * vstart;
10013 Elf_External_Verdef * edef;
10014 Elf_Internal_Verdef ent;
10015 Elf_External_Verdaux * eaux;
10016 Elf_Internal_Verdaux aux;
10017 int j;
10018 int isum;
10019
10020 /* Check for very large indices. */
10021 if (idx > (size_t) (endbuf - (char *) edefs))
10022 break;
10023
10024 vstart = ((char *) edefs) + idx;
10025 if (vstart + sizeof (*edef) > endbuf)
10026 break;
10027
10028 edef = (Elf_External_Verdef *) vstart;
10029
10030 ent.vd_version = BYTE_GET (edef->vd_version);
10031 ent.vd_flags = BYTE_GET (edef->vd_flags);
10032 ent.vd_ndx = BYTE_GET (edef->vd_ndx);
10033 ent.vd_cnt = BYTE_GET (edef->vd_cnt);
10034 ent.vd_hash = BYTE_GET (edef->vd_hash);
10035 ent.vd_aux = BYTE_GET (edef->vd_aux);
10036 ent.vd_next = BYTE_GET (edef->vd_next);
10037
10038 printf (_(" %#06x: Rev: %d Flags: %s"),
10039 idx, ent.vd_version, get_ver_flags (ent.vd_flags));
10040
10041 printf (_(" Index: %d Cnt: %d "),
10042 ent.vd_ndx, ent.vd_cnt);
10043
10044 /* Check for overflow. */
10045 if (ent.vd_aux + sizeof (* eaux) > (size_t) (endbuf - vstart))
10046 break;
10047
10048 vstart += ent.vd_aux;
10049
10050 eaux = (Elf_External_Verdaux *) vstart;
10051
10052 aux.vda_name = BYTE_GET (eaux->vda_name);
10053 aux.vda_next = BYTE_GET (eaux->vda_next);
10054
10055 if (VALID_DYNAMIC_NAME (aux.vda_name))
10056 printf (_("Name: %s\n"), GET_DYNAMIC_NAME (aux.vda_name));
10057 else
10058 printf (_("Name index: %ld\n"), aux.vda_name);
10059
10060 isum = idx + ent.vd_aux;
10061
10062 for (j = 1; j < ent.vd_cnt; j++)
10063 {
10064 /* Check for overflow. */
10065 if (aux.vda_next > (size_t) (endbuf - vstart))
10066 break;
10067
10068 isum += aux.vda_next;
10069 vstart += aux.vda_next;
10070
10071 eaux = (Elf_External_Verdaux *) vstart;
10072 if (vstart + sizeof (*eaux) > endbuf)
10073 break;
10074
10075 aux.vda_name = BYTE_GET (eaux->vda_name);
10076 aux.vda_next = BYTE_GET (eaux->vda_next);
10077
10078 if (VALID_DYNAMIC_NAME (aux.vda_name))
10079 printf (_(" %#06x: Parent %d: %s\n"),
10080 isum, j, GET_DYNAMIC_NAME (aux.vda_name));
10081 else
10082 printf (_(" %#06x: Parent %d, name index: %ld\n"),
10083 isum, j, aux.vda_name);
10084 }
10085
10086 if (j < ent.vd_cnt)
10087 printf (_(" Version def aux past end of section\n"));
10088
10089 /* PR 17531: file: id:000001,src:000172+005151,op:splice,rep:2. */
10090 if (idx + ent.vd_next <= idx)
10091 break;
10092
10093 idx += ent.vd_next;
10094 }
10095
10096 if (cnt < section->sh_info)
10097 printf (_(" Version definition past end of section\n"));
10098
10099 free (edefs);
10100 }
10101 break;
10102
10103 case SHT_GNU_verneed:
10104 {
10105 Elf_External_Verneed * eneed;
10106 unsigned int idx;
10107 unsigned int cnt;
10108 char * endbuf;
10109
10110 found = 1;
10111
10112 printf (_("\nVersion needs section '%s' contains %u entries:\n"),
10113 printable_section_name (section), section->sh_info);
10114
10115 printf (_(" Addr: 0x"));
10116 printf_vma (section->sh_addr);
10117 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10118 (unsigned long) section->sh_offset, section->sh_link,
10119 printable_section_name_from_index (section->sh_link));
10120
10121 eneed = (Elf_External_Verneed *) get_data (NULL, file,
10122 section->sh_offset, 1,
10123 section->sh_size,
10124 _("Version Needs section"));
10125 if (!eneed)
10126 break;
10127 endbuf = (char *) eneed + section->sh_size;
10128
10129 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
10130 {
10131 Elf_External_Verneed * entry;
10132 Elf_Internal_Verneed ent;
10133 int j;
10134 int isum;
10135 char * vstart;
10136
10137 if (idx > (size_t) (endbuf - (char *) eneed))
10138 break;
10139
10140 vstart = ((char *) eneed) + idx;
10141 if (vstart + sizeof (*entry) > endbuf)
10142 break;
10143
10144 entry = (Elf_External_Verneed *) vstart;
10145
10146 ent.vn_version = BYTE_GET (entry->vn_version);
10147 ent.vn_cnt = BYTE_GET (entry->vn_cnt);
10148 ent.vn_file = BYTE_GET (entry->vn_file);
10149 ent.vn_aux = BYTE_GET (entry->vn_aux);
10150 ent.vn_next = BYTE_GET (entry->vn_next);
10151
10152 printf (_(" %#06x: Version: %d"), idx, ent.vn_version);
10153
10154 if (VALID_DYNAMIC_NAME (ent.vn_file))
10155 printf (_(" File: %s"), GET_DYNAMIC_NAME (ent.vn_file));
10156 else
10157 printf (_(" File: %lx"), ent.vn_file);
10158
10159 printf (_(" Cnt: %d\n"), ent.vn_cnt);
10160
10161 /* Check for overflow. */
10162 if (ent.vn_aux > (size_t) (endbuf - vstart))
10163 break;
10164 vstart += ent.vn_aux;
10165
10166 for (j = 0, isum = idx + ent.vn_aux; j < ent.vn_cnt; ++j)
10167 {
10168 Elf_External_Vernaux * eaux;
10169 Elf_Internal_Vernaux aux;
10170
10171 if (vstart + sizeof (*eaux) > endbuf)
10172 break;
10173 eaux = (Elf_External_Vernaux *) vstart;
10174
10175 aux.vna_hash = BYTE_GET (eaux->vna_hash);
10176 aux.vna_flags = BYTE_GET (eaux->vna_flags);
10177 aux.vna_other = BYTE_GET (eaux->vna_other);
10178 aux.vna_name = BYTE_GET (eaux->vna_name);
10179 aux.vna_next = BYTE_GET (eaux->vna_next);
10180
10181 if (VALID_DYNAMIC_NAME (aux.vna_name))
10182 printf (_(" %#06x: Name: %s"),
10183 isum, GET_DYNAMIC_NAME (aux.vna_name));
10184 else
10185 printf (_(" %#06x: Name index: %lx"),
10186 isum, aux.vna_name);
10187
10188 printf (_(" Flags: %s Version: %d\n"),
10189 get_ver_flags (aux.vna_flags), aux.vna_other);
10190
10191 /* Check for overflow. */
10192 if (aux.vna_next > (size_t) (endbuf - vstart)
10193 || (aux.vna_next == 0 && j < ent.vn_cnt - 1))
10194 {
10195 warn (_("Invalid vna_next field of %lx\n"),
10196 aux.vna_next);
10197 j = ent.vn_cnt;
10198 break;
10199 }
10200 isum += aux.vna_next;
10201 vstart += aux.vna_next;
10202 }
10203
10204 if (j < ent.vn_cnt)
10205 warn (_("Missing Version Needs auxillary information\n"));
10206
10207 if (ent.vn_next == 0 && cnt < section->sh_info - 1)
10208 {
10209 warn (_("Corrupt Version Needs structure - offset to next structure is zero with entries still left to be processed\n"));
10210 cnt = section->sh_info;
10211 break;
10212 }
10213 idx += ent.vn_next;
10214 }
10215
10216 if (cnt < section->sh_info)
10217 warn (_("Missing Version Needs information\n"));
10218
10219 free (eneed);
10220 }
10221 break;
10222
10223 case SHT_GNU_versym:
10224 {
10225 Elf_Internal_Shdr * link_section;
10226 size_t total;
10227 unsigned int cnt;
10228 unsigned char * edata;
10229 unsigned short * data;
10230 char * strtab;
10231 Elf_Internal_Sym * symbols;
10232 Elf_Internal_Shdr * string_sec;
10233 unsigned long num_syms;
10234 long off;
10235
10236 if (section->sh_link >= elf_header.e_shnum)
10237 break;
10238
10239 link_section = section_headers + section->sh_link;
10240 total = section->sh_size / sizeof (Elf_External_Versym);
10241
10242 if (link_section->sh_link >= elf_header.e_shnum)
10243 break;
10244
10245 found = 1;
10246
10247 symbols = GET_ELF_SYMBOLS (file, link_section, & num_syms);
10248 if (symbols == NULL)
10249 break;
10250
10251 string_sec = section_headers + link_section->sh_link;
10252
10253 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
10254 string_sec->sh_size,
10255 _("version string table"));
10256 if (!strtab)
10257 {
10258 free (symbols);
10259 break;
10260 }
10261
10262 printf (_("\nVersion symbols section '%s' contains %lu entries:\n"),
10263 printable_section_name (section), (unsigned long) total);
10264
10265 printf (_(" Addr: "));
10266 printf_vma (section->sh_addr);
10267 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10268 (unsigned long) section->sh_offset, section->sh_link,
10269 printable_section_name (link_section));
10270
10271 off = offset_from_vma (file,
10272 version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
10273 total * sizeof (short));
10274 edata = (unsigned char *) get_data (NULL, file, off, total,
10275 sizeof (short),
10276 _("version symbol data"));
10277 if (!edata)
10278 {
10279 free (strtab);
10280 free (symbols);
10281 break;
10282 }
10283
10284 data = (short unsigned int *) cmalloc (total, sizeof (short));
10285
10286 for (cnt = total; cnt --;)
10287 data[cnt] = byte_get (edata + cnt * sizeof (short),
10288 sizeof (short));
10289
10290 free (edata);
10291
10292 for (cnt = 0; cnt < total; cnt += 4)
10293 {
10294 int j, nn;
10295 char *name;
10296 char *invalid = _("*invalid*");
10297
10298 printf (" %03x:", cnt);
10299
10300 for (j = 0; (j < 4) && (cnt + j) < total; ++j)
10301 switch (data[cnt + j])
10302 {
10303 case 0:
10304 fputs (_(" 0 (*local*) "), stdout);
10305 break;
10306
10307 case 1:
10308 fputs (_(" 1 (*global*) "), stdout);
10309 break;
10310
10311 default:
10312 nn = printf ("%4x%c", data[cnt + j] & VERSYM_VERSION,
10313 data[cnt + j] & VERSYM_HIDDEN ? 'h' : ' ');
10314
10315 /* If this index value is greater than the size of the symbols
10316 array, break to avoid an out-of-bounds read. */
10317 if ((unsigned long)(cnt + j) >= num_syms)
10318 {
10319 warn (_("invalid index into symbol array\n"));
10320 break;
10321 }
10322
10323 name = NULL;
10324 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
10325 {
10326 Elf_Internal_Verneed ivn;
10327 unsigned long offset;
10328
10329 offset = offset_from_vma
10330 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
10331 sizeof (Elf_External_Verneed));
10332
10333 do
10334 {
10335 Elf_Internal_Vernaux ivna;
10336 Elf_External_Verneed evn;
10337 Elf_External_Vernaux evna;
10338 unsigned long a_off;
10339
10340 if (get_data (&evn, file, offset, sizeof (evn), 1,
10341 _("version need")) == NULL)
10342 break;
10343
10344 ivn.vn_aux = BYTE_GET (evn.vn_aux);
10345 ivn.vn_next = BYTE_GET (evn.vn_next);
10346
10347 a_off = offset + ivn.vn_aux;
10348
10349 do
10350 {
10351 if (get_data (&evna, file, a_off, sizeof (evna),
10352 1, _("version need aux (2)")) == NULL)
10353 {
10354 ivna.vna_next = 0;
10355 ivna.vna_other = 0;
10356 }
10357 else
10358 {
10359 ivna.vna_next = BYTE_GET (evna.vna_next);
10360 ivna.vna_other = BYTE_GET (evna.vna_other);
10361 }
10362
10363 a_off += ivna.vna_next;
10364 }
10365 while (ivna.vna_other != data[cnt + j]
10366 && ivna.vna_next != 0);
10367
10368 if (ivna.vna_other == data[cnt + j])
10369 {
10370 ivna.vna_name = BYTE_GET (evna.vna_name);
10371
10372 if (ivna.vna_name >= string_sec->sh_size)
10373 name = invalid;
10374 else
10375 name = strtab + ivna.vna_name;
10376 break;
10377 }
10378
10379 offset += ivn.vn_next;
10380 }
10381 while (ivn.vn_next);
10382 }
10383
10384 if (data[cnt + j] != 0x8001
10385 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
10386 {
10387 Elf_Internal_Verdef ivd;
10388 Elf_External_Verdef evd;
10389 unsigned long offset;
10390
10391 offset = offset_from_vma
10392 (file, version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
10393 sizeof evd);
10394
10395 do
10396 {
10397 if (get_data (&evd, file, offset, sizeof (evd), 1,
10398 _("version def")) == NULL)
10399 {
10400 ivd.vd_next = 0;
10401 /* PR 17531: file: 046-1082287-0.004. */
10402 ivd.vd_ndx = (data[cnt + j] & VERSYM_VERSION) + 1;
10403 break;
10404 }
10405 else
10406 {
10407 ivd.vd_next = BYTE_GET (evd.vd_next);
10408 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
10409 }
10410
10411 offset += ivd.vd_next;
10412 }
10413 while (ivd.vd_ndx != (data[cnt + j] & VERSYM_VERSION)
10414 && ivd.vd_next != 0);
10415
10416 if (ivd.vd_ndx == (data[cnt + j] & VERSYM_VERSION))
10417 {
10418 Elf_External_Verdaux evda;
10419 Elf_Internal_Verdaux ivda;
10420
10421 ivd.vd_aux = BYTE_GET (evd.vd_aux);
10422
10423 if (get_data (&evda, file,
10424 offset - ivd.vd_next + ivd.vd_aux,
10425 sizeof (evda), 1,
10426 _("version def aux")) == NULL)
10427 break;
10428
10429 ivda.vda_name = BYTE_GET (evda.vda_name);
10430
10431 if (ivda.vda_name >= string_sec->sh_size)
10432 name = invalid;
10433 else if (name != NULL && name != invalid)
10434 name = _("*both*");
10435 else
10436 name = strtab + ivda.vda_name;
10437 }
10438 }
10439 if (name != NULL)
10440 nn += printf ("(%s%-*s",
10441 name,
10442 12 - (int) strlen (name),
10443 ")");
10444
10445 if (nn < 18)
10446 printf ("%*c", 18 - nn, ' ');
10447 }
10448
10449 putchar ('\n');
10450 }
10451
10452 free (data);
10453 free (strtab);
10454 free (symbols);
10455 }
10456 break;
10457
10458 default:
10459 break;
10460 }
10461 }
10462
10463 if (! found)
10464 printf (_("\nNo version information found in this file.\n"));
10465
10466 return 1;
10467 }
10468
10469 static const char *
10470 get_symbol_binding (unsigned int binding)
10471 {
10472 static char buff[32];
10473
10474 switch (binding)
10475 {
10476 case STB_LOCAL: return "LOCAL";
10477 case STB_GLOBAL: return "GLOBAL";
10478 case STB_WEAK: return "WEAK";
10479 default:
10480 if (binding >= STB_LOPROC && binding <= STB_HIPROC)
10481 snprintf (buff, sizeof (buff), _("<processor specific>: %d"),
10482 binding);
10483 else if (binding >= STB_LOOS && binding <= STB_HIOS)
10484 {
10485 if (binding == STB_GNU_UNIQUE
10486 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
10487 /* GNU is still using the default value 0. */
10488 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
10489 return "UNIQUE";
10490 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), binding);
10491 }
10492 else
10493 snprintf (buff, sizeof (buff), _("<unknown>: %d"), binding);
10494 return buff;
10495 }
10496 }
10497
10498 static const char *
10499 get_symbol_type (unsigned int type)
10500 {
10501 static char buff[32];
10502
10503 switch (type)
10504 {
10505 case STT_NOTYPE: return "NOTYPE";
10506 case STT_OBJECT: return "OBJECT";
10507 case STT_FUNC: return "FUNC";
10508 case STT_SECTION: return "SECTION";
10509 case STT_FILE: return "FILE";
10510 case STT_COMMON: return "COMMON";
10511 case STT_TLS: return "TLS";
10512 case STT_RELC: return "RELC";
10513 case STT_SRELC: return "SRELC";
10514 default:
10515 if (type >= STT_LOPROC && type <= STT_HIPROC)
10516 {
10517 if (elf_header.e_machine == EM_ARM && type == STT_ARM_TFUNC)
10518 return "THUMB_FUNC";
10519
10520 if (elf_header.e_machine == EM_SPARCV9 && type == STT_REGISTER)
10521 return "REGISTER";
10522
10523 if (elf_header.e_machine == EM_PARISC && type == STT_PARISC_MILLI)
10524 return "PARISC_MILLI";
10525
10526 snprintf (buff, sizeof (buff), _("<processor specific>: %d"), type);
10527 }
10528 else if (type >= STT_LOOS && type <= STT_HIOS)
10529 {
10530 if (elf_header.e_machine == EM_PARISC)
10531 {
10532 if (type == STT_HP_OPAQUE)
10533 return "HP_OPAQUE";
10534 if (type == STT_HP_STUB)
10535 return "HP_STUB";
10536 }
10537
10538 if (type == STT_GNU_IFUNC
10539 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
10540 || elf_header.e_ident[EI_OSABI] == ELFOSABI_FREEBSD
10541 /* GNU is still using the default value 0. */
10542 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
10543 return "IFUNC";
10544
10545 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), type);
10546 }
10547 else
10548 snprintf (buff, sizeof (buff), _("<unknown>: %d"), type);
10549 return buff;
10550 }
10551 }
10552
10553 static const char *
10554 get_symbol_visibility (unsigned int visibility)
10555 {
10556 switch (visibility)
10557 {
10558 case STV_DEFAULT: return "DEFAULT";
10559 case STV_INTERNAL: return "INTERNAL";
10560 case STV_HIDDEN: return "HIDDEN";
10561 case STV_PROTECTED: return "PROTECTED";
10562 default:
10563 error (_("Unrecognized visibility value: %u"), visibility);
10564 return _("<unknown>");
10565 }
10566 }
10567
10568 static const char *
10569 get_solaris_symbol_visibility (unsigned int visibility)
10570 {
10571 switch (visibility)
10572 {
10573 case 4: return "EXPORTED";
10574 case 5: return "SINGLETON";
10575 case 6: return "ELIMINATE";
10576 default: return get_symbol_visibility (visibility);
10577 }
10578 }
10579
10580 static const char *
10581 get_mips_symbol_other (unsigned int other)
10582 {
10583 switch (other)
10584 {
10585 case STO_OPTIONAL:
10586 return "OPTIONAL";
10587 case STO_MIPS_PLT:
10588 return "MIPS PLT";
10589 case STO_MIPS_PIC:
10590 return "MIPS PIC";
10591 case STO_MICROMIPS:
10592 return "MICROMIPS";
10593 case STO_MICROMIPS | STO_MIPS_PIC:
10594 return "MICROMIPS, MIPS PIC";
10595 case STO_MIPS16:
10596 return "MIPS16";
10597 default:
10598 return NULL;
10599 }
10600 }
10601
10602 static const char *
10603 get_ia64_symbol_other (unsigned int other)
10604 {
10605 if (is_ia64_vms ())
10606 {
10607 static char res[32];
10608
10609 res[0] = 0;
10610
10611 /* Function types is for images and .STB files only. */
10612 switch (elf_header.e_type)
10613 {
10614 case ET_DYN:
10615 case ET_EXEC:
10616 switch (VMS_ST_FUNC_TYPE (other))
10617 {
10618 case VMS_SFT_CODE_ADDR:
10619 strcat (res, " CA");
10620 break;
10621 case VMS_SFT_SYMV_IDX:
10622 strcat (res, " VEC");
10623 break;
10624 case VMS_SFT_FD:
10625 strcat (res, " FD");
10626 break;
10627 case VMS_SFT_RESERVE:
10628 strcat (res, " RSV");
10629 break;
10630 default:
10631 warn (_("Unrecognized IA64 VMS ST Function type: %d\n"),
10632 VMS_ST_FUNC_TYPE (other));
10633 strcat (res, " <unknown>");
10634 break;
10635 }
10636 break;
10637 default:
10638 break;
10639 }
10640 switch (VMS_ST_LINKAGE (other))
10641 {
10642 case VMS_STL_IGNORE:
10643 strcat (res, " IGN");
10644 break;
10645 case VMS_STL_RESERVE:
10646 strcat (res, " RSV");
10647 break;
10648 case VMS_STL_STD:
10649 strcat (res, " STD");
10650 break;
10651 case VMS_STL_LNK:
10652 strcat (res, " LNK");
10653 break;
10654 default:
10655 warn (_("Unrecognized IA64 VMS ST Linkage: %d\n"),
10656 VMS_ST_LINKAGE (other));
10657 strcat (res, " <unknown>");
10658 break;
10659 }
10660
10661 if (res[0] != 0)
10662 return res + 1;
10663 else
10664 return res;
10665 }
10666 return NULL;
10667 }
10668
10669 static const char *
10670 get_ppc64_symbol_other (unsigned int other)
10671 {
10672 if (PPC64_LOCAL_ENTRY_OFFSET (other) != 0)
10673 {
10674 static char buf[32];
10675 snprintf (buf, sizeof buf, _("<localentry>: %d"),
10676 PPC64_LOCAL_ENTRY_OFFSET (other));
10677 return buf;
10678 }
10679 return NULL;
10680 }
10681
10682 static const char *
10683 get_symbol_other (unsigned int other)
10684 {
10685 const char * result = NULL;
10686 static char buff [32];
10687
10688 if (other == 0)
10689 return "";
10690
10691 switch (elf_header.e_machine)
10692 {
10693 case EM_MIPS:
10694 result = get_mips_symbol_other (other);
10695 break;
10696 case EM_IA_64:
10697 result = get_ia64_symbol_other (other);
10698 break;
10699 case EM_PPC64:
10700 result = get_ppc64_symbol_other (other);
10701 break;
10702 default:
10703 result = NULL;
10704 break;
10705 }
10706
10707 if (result)
10708 return result;
10709
10710 snprintf (buff, sizeof buff, _("<other>: %x"), other);
10711 return buff;
10712 }
10713
10714 static const char *
10715 get_symbol_index_type (unsigned int type)
10716 {
10717 static char buff[32];
10718
10719 switch (type)
10720 {
10721 case SHN_UNDEF: return "UND";
10722 case SHN_ABS: return "ABS";
10723 case SHN_COMMON: return "COM";
10724 default:
10725 if (type == SHN_IA_64_ANSI_COMMON
10726 && elf_header.e_machine == EM_IA_64
10727 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX)
10728 return "ANSI_COM";
10729 else if ((elf_header.e_machine == EM_X86_64
10730 || elf_header.e_machine == EM_L1OM
10731 || elf_header.e_machine == EM_K1OM)
10732 && type == SHN_X86_64_LCOMMON)
10733 return "LARGE_COM";
10734 else if ((type == SHN_MIPS_SCOMMON
10735 && elf_header.e_machine == EM_MIPS)
10736 || (type == SHN_TIC6X_SCOMMON
10737 && elf_header.e_machine == EM_TI_C6000))
10738 return "SCOM";
10739 else if (type == SHN_MIPS_SUNDEFINED
10740 && elf_header.e_machine == EM_MIPS)
10741 return "SUND";
10742 else if (type >= SHN_LOPROC && type <= SHN_HIPROC)
10743 sprintf (buff, "PRC[0x%04x]", type & 0xffff);
10744 else if (type >= SHN_LOOS && type <= SHN_HIOS)
10745 sprintf (buff, "OS [0x%04x]", type & 0xffff);
10746 else if (type >= SHN_LORESERVE)
10747 sprintf (buff, "RSV[0x%04x]", type & 0xffff);
10748 else if (type >= elf_header.e_shnum)
10749 sprintf (buff, _("bad section index[%3d]"), type);
10750 else
10751 sprintf (buff, "%3d", type);
10752 break;
10753 }
10754
10755 return buff;
10756 }
10757
10758 static bfd_vma *
10759 get_dynamic_data (FILE * file, bfd_size_type number, unsigned int ent_size)
10760 {
10761 unsigned char * e_data;
10762 bfd_vma * i_data;
10763
10764 /* If the size_t type is smaller than the bfd_size_type, eg because
10765 you are building a 32-bit tool on a 64-bit host, then make sure
10766 that when (number) is cast to (size_t) no information is lost. */
10767 if (sizeof (size_t) < sizeof (bfd_size_type)
10768 && (bfd_size_type) ((size_t) number) != number)
10769 {
10770 error (_("Size truncation prevents reading %" BFD_VMA_FMT "u"
10771 " elements of size %u\n"),
10772 number, ent_size);
10773 return NULL;
10774 }
10775
10776 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
10777 attempting to allocate memory when the read is bound to fail. */
10778 if (ent_size * number > current_file_size)
10779 {
10780 error (_("Invalid number of dynamic entries: %" BFD_VMA_FMT "u\n"),
10781 number);
10782 return NULL;
10783 }
10784
10785 e_data = (unsigned char *) cmalloc ((size_t) number, ent_size);
10786 if (e_data == NULL)
10787 {
10788 error (_("Out of memory reading %" BFD_VMA_FMT "u dynamic entries\n"),
10789 number);
10790 return NULL;
10791 }
10792
10793 if (fread (e_data, ent_size, (size_t) number, file) != number)
10794 {
10795 error (_("Unable to read in %" BFD_VMA_FMT "u bytes of dynamic data\n"),
10796 number * ent_size);
10797 free (e_data);
10798 return NULL;
10799 }
10800
10801 i_data = (bfd_vma *) cmalloc ((size_t) number, sizeof (*i_data));
10802 if (i_data == NULL)
10803 {
10804 error (_("Out of memory allocating space for %" BFD_VMA_FMT "u"
10805 " dynamic entries\n"),
10806 number);
10807 free (e_data);
10808 return NULL;
10809 }
10810
10811 while (number--)
10812 i_data[number] = byte_get (e_data + number * ent_size, ent_size);
10813
10814 free (e_data);
10815
10816 return i_data;
10817 }
10818
10819 static void
10820 print_dynamic_symbol (bfd_vma si, unsigned long hn)
10821 {
10822 Elf_Internal_Sym * psym;
10823 int n;
10824
10825 n = print_vma (si, DEC_5);
10826 if (n < 5)
10827 fputs (&" "[n], stdout);
10828 printf (" %3lu: ", hn);
10829
10830 if (dynamic_symbols == NULL || si >= num_dynamic_syms)
10831 {
10832 printf (_("<No info available for dynamic symbol number %lu>\n"),
10833 (unsigned long) si);
10834 return;
10835 }
10836
10837 psym = dynamic_symbols + si;
10838 print_vma (psym->st_value, LONG_HEX);
10839 putchar (' ');
10840 print_vma (psym->st_size, DEC_5);
10841
10842 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
10843 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
10844
10845 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
10846 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
10847 else
10848 {
10849 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
10850
10851 printf (" %-7s", get_symbol_visibility (vis));
10852 /* Check to see if any other bits in the st_other field are set.
10853 Note - displaying this information disrupts the layout of the
10854 table being generated, but for the moment this case is very
10855 rare. */
10856 if (psym->st_other ^ vis)
10857 printf (" [%s] ", get_symbol_other (psym->st_other ^ vis));
10858 }
10859
10860 printf (" %3.3s ", get_symbol_index_type (psym->st_shndx));
10861 if (VALID_DYNAMIC_NAME (psym->st_name))
10862 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
10863 else
10864 printf (_(" <corrupt: %14ld>"), psym->st_name);
10865 putchar ('\n');
10866 }
10867
10868 static const char *
10869 get_symbol_version_string (FILE * file,
10870 bfd_boolean is_dynsym,
10871 const char * strtab,
10872 unsigned long int strtab_size,
10873 unsigned int si,
10874 Elf_Internal_Sym * psym,
10875 enum versioned_symbol_info * sym_info,
10876 unsigned short * vna_other)
10877 {
10878 unsigned char data[2];
10879 unsigned short vers_data;
10880 unsigned long offset;
10881
10882 if (!is_dynsym
10883 || version_info[DT_VERSIONTAGIDX (DT_VERSYM)] == 0)
10884 return NULL;
10885
10886 offset = offset_from_vma (file, version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
10887 sizeof data + si * sizeof (vers_data));
10888
10889 if (get_data (&data, file, offset + si * sizeof (vers_data),
10890 sizeof (data), 1, _("version data")) == NULL)
10891 return NULL;
10892
10893 vers_data = byte_get (data, 2);
10894
10895 if ((vers_data & VERSYM_HIDDEN) == 0 && vers_data <= 1)
10896 return NULL;
10897
10898 /* Usually we'd only see verdef for defined symbols, and verneed for
10899 undefined symbols. However, symbols defined by the linker in
10900 .dynbss for variables copied from a shared library in order to
10901 avoid text relocations are defined yet have verneed. We could
10902 use a heuristic to detect the special case, for example, check
10903 for verneed first on symbols defined in SHT_NOBITS sections, but
10904 it is simpler and more reliable to just look for both verdef and
10905 verneed. .dynbss might not be mapped to a SHT_NOBITS section. */
10906
10907 if (psym->st_shndx != SHN_UNDEF
10908 && vers_data != 0x8001
10909 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
10910 {
10911 Elf_Internal_Verdef ivd;
10912 Elf_Internal_Verdaux ivda;
10913 Elf_External_Verdaux evda;
10914 unsigned long off;
10915
10916 off = offset_from_vma (file,
10917 version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
10918 sizeof (Elf_External_Verdef));
10919
10920 do
10921 {
10922 Elf_External_Verdef evd;
10923
10924 if (get_data (&evd, file, off, sizeof (evd), 1,
10925 _("version def")) == NULL)
10926 {
10927 ivd.vd_ndx = 0;
10928 ivd.vd_aux = 0;
10929 ivd.vd_next = 0;
10930 }
10931 else
10932 {
10933 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
10934 ivd.vd_aux = BYTE_GET (evd.vd_aux);
10935 ivd.vd_next = BYTE_GET (evd.vd_next);
10936 }
10937
10938 off += ivd.vd_next;
10939 }
10940 while (ivd.vd_ndx != (vers_data & VERSYM_VERSION) && ivd.vd_next != 0);
10941
10942 if (ivd.vd_ndx == (vers_data & VERSYM_VERSION))
10943 {
10944 off -= ivd.vd_next;
10945 off += ivd.vd_aux;
10946
10947 if (get_data (&evda, file, off, sizeof (evda), 1,
10948 _("version def aux")) != NULL)
10949 {
10950 ivda.vda_name = BYTE_GET (evda.vda_name);
10951
10952 if (psym->st_name != ivda.vda_name)
10953 {
10954 *sym_info = ((vers_data & VERSYM_HIDDEN) != 0
10955 ? symbol_hidden : symbol_public);
10956 return (ivda.vda_name < strtab_size
10957 ? strtab + ivda.vda_name : _("<corrupt>"));
10958 }
10959 }
10960 }
10961 }
10962
10963 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
10964 {
10965 Elf_External_Verneed evn;
10966 Elf_Internal_Verneed ivn;
10967 Elf_Internal_Vernaux ivna;
10968
10969 offset = offset_from_vma (file,
10970 version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
10971 sizeof evn);
10972 do
10973 {
10974 unsigned long vna_off;
10975
10976 if (get_data (&evn, file, offset, sizeof (evn), 1,
10977 _("version need")) == NULL)
10978 {
10979 ivna.vna_next = 0;
10980 ivna.vna_other = 0;
10981 ivna.vna_name = 0;
10982 break;
10983 }
10984
10985 ivn.vn_aux = BYTE_GET (evn.vn_aux);
10986 ivn.vn_next = BYTE_GET (evn.vn_next);
10987
10988 vna_off = offset + ivn.vn_aux;
10989
10990 do
10991 {
10992 Elf_External_Vernaux evna;
10993
10994 if (get_data (&evna, file, vna_off, sizeof (evna), 1,
10995 _("version need aux (3)")) == NULL)
10996 {
10997 ivna.vna_next = 0;
10998 ivna.vna_other = 0;
10999 ivna.vna_name = 0;
11000 }
11001 else
11002 {
11003 ivna.vna_other = BYTE_GET (evna.vna_other);
11004 ivna.vna_next = BYTE_GET (evna.vna_next);
11005 ivna.vna_name = BYTE_GET (evna.vna_name);
11006 }
11007
11008 vna_off += ivna.vna_next;
11009 }
11010 while (ivna.vna_other != vers_data && ivna.vna_next != 0);
11011
11012 if (ivna.vna_other == vers_data)
11013 break;
11014
11015 offset += ivn.vn_next;
11016 }
11017 while (ivn.vn_next != 0);
11018
11019 if (ivna.vna_other == vers_data)
11020 {
11021 *sym_info = symbol_undefined;
11022 *vna_other = ivna.vna_other;
11023 return (ivna.vna_name < strtab_size
11024 ? strtab + ivna.vna_name : _("<corrupt>"));
11025 }
11026 }
11027 return NULL;
11028 }
11029
11030 /* Dump the symbol table. */
11031 static int
11032 process_symbol_table (FILE * file)
11033 {
11034 Elf_Internal_Shdr * section;
11035 bfd_size_type nbuckets = 0;
11036 bfd_size_type nchains = 0;
11037 bfd_vma * buckets = NULL;
11038 bfd_vma * chains = NULL;
11039 bfd_vma ngnubuckets = 0;
11040 bfd_vma * gnubuckets = NULL;
11041 bfd_vma * gnuchains = NULL;
11042 bfd_vma gnusymidx = 0;
11043 bfd_size_type ngnuchains = 0;
11044
11045 if (!do_syms && !do_dyn_syms && !do_histogram)
11046 return 1;
11047
11048 if (dynamic_info[DT_HASH]
11049 && (do_histogram
11050 || (do_using_dynamic
11051 && !do_dyn_syms
11052 && dynamic_strings != NULL)))
11053 {
11054 unsigned char nb[8];
11055 unsigned char nc[8];
11056 unsigned int hash_ent_size = 4;
11057
11058 if ((elf_header.e_machine == EM_ALPHA
11059 || elf_header.e_machine == EM_S390
11060 || elf_header.e_machine == EM_S390_OLD)
11061 && elf_header.e_ident[EI_CLASS] == ELFCLASS64)
11062 hash_ent_size = 8;
11063
11064 if (fseek (file,
11065 (archive_file_offset
11066 + offset_from_vma (file, dynamic_info[DT_HASH],
11067 sizeof nb + sizeof nc)),
11068 SEEK_SET))
11069 {
11070 error (_("Unable to seek to start of dynamic information\n"));
11071 goto no_hash;
11072 }
11073
11074 if (fread (nb, hash_ent_size, 1, file) != 1)
11075 {
11076 error (_("Failed to read in number of buckets\n"));
11077 goto no_hash;
11078 }
11079
11080 if (fread (nc, hash_ent_size, 1, file) != 1)
11081 {
11082 error (_("Failed to read in number of chains\n"));
11083 goto no_hash;
11084 }
11085
11086 nbuckets = byte_get (nb, hash_ent_size);
11087 nchains = byte_get (nc, hash_ent_size);
11088
11089 buckets = get_dynamic_data (file, nbuckets, hash_ent_size);
11090 chains = get_dynamic_data (file, nchains, hash_ent_size);
11091
11092 no_hash:
11093 if (buckets == NULL || chains == NULL)
11094 {
11095 if (do_using_dynamic)
11096 return 0;
11097 free (buckets);
11098 free (chains);
11099 buckets = NULL;
11100 chains = NULL;
11101 nbuckets = 0;
11102 nchains = 0;
11103 }
11104 }
11105
11106 if (dynamic_info_DT_GNU_HASH
11107 && (do_histogram
11108 || (do_using_dynamic
11109 && !do_dyn_syms
11110 && dynamic_strings != NULL)))
11111 {
11112 unsigned char nb[16];
11113 bfd_vma i, maxchain = 0xffffffff, bitmaskwords;
11114 bfd_vma buckets_vma;
11115
11116 if (fseek (file,
11117 (archive_file_offset
11118 + offset_from_vma (file, dynamic_info_DT_GNU_HASH,
11119 sizeof nb)),
11120 SEEK_SET))
11121 {
11122 error (_("Unable to seek to start of dynamic information\n"));
11123 goto no_gnu_hash;
11124 }
11125
11126 if (fread (nb, 16, 1, file) != 1)
11127 {
11128 error (_("Failed to read in number of buckets\n"));
11129 goto no_gnu_hash;
11130 }
11131
11132 ngnubuckets = byte_get (nb, 4);
11133 gnusymidx = byte_get (nb + 4, 4);
11134 bitmaskwords = byte_get (nb + 8, 4);
11135 buckets_vma = dynamic_info_DT_GNU_HASH + 16;
11136 if (is_32bit_elf)
11137 buckets_vma += bitmaskwords * 4;
11138 else
11139 buckets_vma += bitmaskwords * 8;
11140
11141 if (fseek (file,
11142 (archive_file_offset
11143 + offset_from_vma (file, buckets_vma, 4)),
11144 SEEK_SET))
11145 {
11146 error (_("Unable to seek to start of dynamic information\n"));
11147 goto no_gnu_hash;
11148 }
11149
11150 gnubuckets = get_dynamic_data (file, ngnubuckets, 4);
11151
11152 if (gnubuckets == NULL)
11153 goto no_gnu_hash;
11154
11155 for (i = 0; i < ngnubuckets; i++)
11156 if (gnubuckets[i] != 0)
11157 {
11158 if (gnubuckets[i] < gnusymidx)
11159 return 0;
11160
11161 if (maxchain == 0xffffffff || gnubuckets[i] > maxchain)
11162 maxchain = gnubuckets[i];
11163 }
11164
11165 if (maxchain == 0xffffffff)
11166 goto no_gnu_hash;
11167
11168 maxchain -= gnusymidx;
11169
11170 if (fseek (file,
11171 (archive_file_offset
11172 + offset_from_vma (file, buckets_vma
11173 + 4 * (ngnubuckets + maxchain), 4)),
11174 SEEK_SET))
11175 {
11176 error (_("Unable to seek to start of dynamic information\n"));
11177 goto no_gnu_hash;
11178 }
11179
11180 do
11181 {
11182 if (fread (nb, 4, 1, file) != 1)
11183 {
11184 error (_("Failed to determine last chain length\n"));
11185 goto no_gnu_hash;
11186 }
11187
11188 if (maxchain + 1 == 0)
11189 goto no_gnu_hash;
11190
11191 ++maxchain;
11192 }
11193 while ((byte_get (nb, 4) & 1) == 0);
11194
11195 if (fseek (file,
11196 (archive_file_offset
11197 + offset_from_vma (file, buckets_vma + 4 * ngnubuckets, 4)),
11198 SEEK_SET))
11199 {
11200 error (_("Unable to seek to start of dynamic information\n"));
11201 goto no_gnu_hash;
11202 }
11203
11204 gnuchains = get_dynamic_data (file, maxchain, 4);
11205 ngnuchains = maxchain;
11206
11207 no_gnu_hash:
11208 if (gnuchains == NULL)
11209 {
11210 free (gnubuckets);
11211 gnubuckets = NULL;
11212 ngnubuckets = 0;
11213 if (do_using_dynamic)
11214 return 0;
11215 }
11216 }
11217
11218 if ((dynamic_info[DT_HASH] || dynamic_info_DT_GNU_HASH)
11219 && do_syms
11220 && do_using_dynamic
11221 && dynamic_strings != NULL
11222 && dynamic_symbols != NULL)
11223 {
11224 unsigned long hn;
11225
11226 if (dynamic_info[DT_HASH])
11227 {
11228 bfd_vma si;
11229
11230 printf (_("\nSymbol table for image:\n"));
11231 if (is_32bit_elf)
11232 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11233 else
11234 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11235
11236 for (hn = 0; hn < nbuckets; hn++)
11237 {
11238 if (! buckets[hn])
11239 continue;
11240
11241 for (si = buckets[hn]; si < nchains && si > 0; si = chains[si])
11242 print_dynamic_symbol (si, hn);
11243 }
11244 }
11245
11246 if (dynamic_info_DT_GNU_HASH)
11247 {
11248 printf (_("\nSymbol table of `.gnu.hash' for image:\n"));
11249 if (is_32bit_elf)
11250 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11251 else
11252 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11253
11254 for (hn = 0; hn < ngnubuckets; ++hn)
11255 if (gnubuckets[hn] != 0)
11256 {
11257 bfd_vma si = gnubuckets[hn];
11258 bfd_vma off = si - gnusymidx;
11259
11260 do
11261 {
11262 print_dynamic_symbol (si, hn);
11263 si++;
11264 }
11265 while (off < ngnuchains && (gnuchains[off++] & 1) == 0);
11266 }
11267 }
11268 }
11269 else if ((do_dyn_syms || (do_syms && !do_using_dynamic))
11270 && section_headers != NULL)
11271 {
11272 unsigned int i;
11273
11274 for (i = 0, section = section_headers;
11275 i < elf_header.e_shnum;
11276 i++, section++)
11277 {
11278 unsigned int si;
11279 char * strtab = NULL;
11280 unsigned long int strtab_size = 0;
11281 Elf_Internal_Sym * symtab;
11282 Elf_Internal_Sym * psym;
11283 unsigned long num_syms;
11284
11285 if ((section->sh_type != SHT_SYMTAB
11286 && section->sh_type != SHT_DYNSYM)
11287 || (!do_syms
11288 && section->sh_type == SHT_SYMTAB))
11289 continue;
11290
11291 if (section->sh_entsize == 0)
11292 {
11293 printf (_("\nSymbol table '%s' has a sh_entsize of zero!\n"),
11294 printable_section_name (section));
11295 continue;
11296 }
11297
11298 printf (_("\nSymbol table '%s' contains %lu entries:\n"),
11299 printable_section_name (section),
11300 (unsigned long) (section->sh_size / section->sh_entsize));
11301
11302 if (is_32bit_elf)
11303 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
11304 else
11305 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
11306
11307 symtab = GET_ELF_SYMBOLS (file, section, & num_syms);
11308 if (symtab == NULL)
11309 continue;
11310
11311 if (section->sh_link == elf_header.e_shstrndx)
11312 {
11313 strtab = string_table;
11314 strtab_size = string_table_length;
11315 }
11316 else if (section->sh_link < elf_header.e_shnum)
11317 {
11318 Elf_Internal_Shdr * string_sec;
11319
11320 string_sec = section_headers + section->sh_link;
11321
11322 strtab = (char *) get_data (NULL, file, string_sec->sh_offset,
11323 1, string_sec->sh_size,
11324 _("string table"));
11325 strtab_size = strtab != NULL ? string_sec->sh_size : 0;
11326 }
11327
11328 for (si = 0, psym = symtab; si < num_syms; si++, psym++)
11329 {
11330 const char *version_string;
11331 enum versioned_symbol_info sym_info;
11332 unsigned short vna_other;
11333
11334 printf ("%6d: ", si);
11335 print_vma (psym->st_value, LONG_HEX);
11336 putchar (' ');
11337 print_vma (psym->st_size, DEC_5);
11338 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
11339 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
11340 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
11341 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
11342 else
11343 {
11344 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
11345
11346 printf (" %-7s", get_symbol_visibility (vis));
11347 /* Check to see if any other bits in the st_other field are set.
11348 Note - displaying this information disrupts the layout of the
11349 table being generated, but for the moment this case is very rare. */
11350 if (psym->st_other ^ vis)
11351 printf (" [%s] ", get_symbol_other (psym->st_other ^ vis));
11352 }
11353 printf (" %4s ", get_symbol_index_type (psym->st_shndx));
11354 print_symbol (25, psym->st_name < strtab_size
11355 ? strtab + psym->st_name : _("<corrupt>"));
11356
11357 version_string
11358 = get_symbol_version_string (file,
11359 section->sh_type == SHT_DYNSYM,
11360 strtab, strtab_size, si,
11361 psym, &sym_info, &vna_other);
11362 if (version_string)
11363 {
11364 if (sym_info == symbol_undefined)
11365 printf ("@%s (%d)", version_string, vna_other);
11366 else
11367 printf (sym_info == symbol_hidden ? "@%s" : "@@%s",
11368 version_string);
11369 }
11370
11371 putchar ('\n');
11372
11373 if (ELF_ST_BIND (psym->st_info) == STB_LOCAL
11374 && si >= section->sh_info
11375 /* Irix 5 and 6 MIPS binaries are known to ignore this requirement. */
11376 && elf_header.e_machine != EM_MIPS
11377 /* Solaris binaries have been found to violate this requirement as
11378 well. Not sure if this is a bug or an ABI requirement. */
11379 && elf_header.e_ident[EI_OSABI] != ELFOSABI_SOLARIS)
11380 warn (_("local symbol %u found at index >= %s's sh_info value of %u\n"),
11381 si, printable_section_name (section), section->sh_info);
11382 }
11383
11384 free (symtab);
11385 if (strtab != string_table)
11386 free (strtab);
11387 }
11388 }
11389 else if (do_syms)
11390 printf
11391 (_("\nDynamic symbol information is not available for displaying symbols.\n"));
11392
11393 if (do_histogram && buckets != NULL)
11394 {
11395 unsigned long * lengths;
11396 unsigned long * counts;
11397 unsigned long hn;
11398 bfd_vma si;
11399 unsigned long maxlength = 0;
11400 unsigned long nzero_counts = 0;
11401 unsigned long nsyms = 0;
11402 unsigned long chained;
11403
11404 printf (_("\nHistogram for bucket list length (total of %lu buckets):\n"),
11405 (unsigned long) nbuckets);
11406
11407 lengths = (unsigned long *) calloc (nbuckets, sizeof (*lengths));
11408 if (lengths == NULL)
11409 {
11410 error (_("Out of memory allocating space for histogram buckets\n"));
11411 return 0;
11412 }
11413
11414 printf (_(" Length Number %% of total Coverage\n"));
11415 for (hn = 0; hn < nbuckets; ++hn)
11416 {
11417 for (si = buckets[hn], chained = 0;
11418 si > 0 && si < nchains && si < nbuckets && chained <= nchains;
11419 si = chains[si], ++chained)
11420 {
11421 ++nsyms;
11422 if (maxlength < ++lengths[hn])
11423 ++maxlength;
11424 }
11425
11426 /* PR binutils/17531: A corrupt binary could contain broken
11427 histogram data. Do not go into an infinite loop trying
11428 to process it. */
11429 if (chained > nchains)
11430 {
11431 error (_("histogram chain is corrupt\n"));
11432 break;
11433 }
11434 }
11435
11436 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
11437 if (counts == NULL)
11438 {
11439 free (lengths);
11440 error (_("Out of memory allocating space for histogram counts\n"));
11441 return 0;
11442 }
11443
11444 for (hn = 0; hn < nbuckets; ++hn)
11445 ++counts[lengths[hn]];
11446
11447 if (nbuckets > 0)
11448 {
11449 unsigned long i;
11450 printf (" 0 %-10lu (%5.1f%%)\n",
11451 counts[0], (counts[0] * 100.0) / nbuckets);
11452 for (i = 1; i <= maxlength; ++i)
11453 {
11454 nzero_counts += counts[i] * i;
11455 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
11456 i, counts[i], (counts[i] * 100.0) / nbuckets,
11457 (nzero_counts * 100.0) / nsyms);
11458 }
11459 }
11460
11461 free (counts);
11462 free (lengths);
11463 }
11464
11465 if (buckets != NULL)
11466 {
11467 free (buckets);
11468 free (chains);
11469 }
11470
11471 if (do_histogram && gnubuckets != NULL)
11472 {
11473 unsigned long * lengths;
11474 unsigned long * counts;
11475 unsigned long hn;
11476 unsigned long maxlength = 0;
11477 unsigned long nzero_counts = 0;
11478 unsigned long nsyms = 0;
11479
11480 printf (_("\nHistogram for `.gnu.hash' bucket list length (total of %lu buckets):\n"),
11481 (unsigned long) ngnubuckets);
11482
11483 lengths = (unsigned long *) calloc (ngnubuckets, sizeof (*lengths));
11484 if (lengths == NULL)
11485 {
11486 error (_("Out of memory allocating space for gnu histogram buckets\n"));
11487 return 0;
11488 }
11489
11490 printf (_(" Length Number %% of total Coverage\n"));
11491
11492 for (hn = 0; hn < ngnubuckets; ++hn)
11493 if (gnubuckets[hn] != 0)
11494 {
11495 bfd_vma off, length = 1;
11496
11497 for (off = gnubuckets[hn] - gnusymidx;
11498 /* PR 17531 file: 010-77222-0.004. */
11499 off < ngnuchains && (gnuchains[off] & 1) == 0;
11500 ++off)
11501 ++length;
11502 lengths[hn] = length;
11503 if (length > maxlength)
11504 maxlength = length;
11505 nsyms += length;
11506 }
11507
11508 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
11509 if (counts == NULL)
11510 {
11511 free (lengths);
11512 error (_("Out of memory allocating space for gnu histogram counts\n"));
11513 return 0;
11514 }
11515
11516 for (hn = 0; hn < ngnubuckets; ++hn)
11517 ++counts[lengths[hn]];
11518
11519 if (ngnubuckets > 0)
11520 {
11521 unsigned long j;
11522 printf (" 0 %-10lu (%5.1f%%)\n",
11523 counts[0], (counts[0] * 100.0) / ngnubuckets);
11524 for (j = 1; j <= maxlength; ++j)
11525 {
11526 nzero_counts += counts[j] * j;
11527 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
11528 j, counts[j], (counts[j] * 100.0) / ngnubuckets,
11529 (nzero_counts * 100.0) / nsyms);
11530 }
11531 }
11532
11533 free (counts);
11534 free (lengths);
11535 free (gnubuckets);
11536 free (gnuchains);
11537 }
11538
11539 return 1;
11540 }
11541
11542 static int
11543 process_syminfo (FILE * file ATTRIBUTE_UNUSED)
11544 {
11545 unsigned int i;
11546
11547 if (dynamic_syminfo == NULL
11548 || !do_dynamic)
11549 /* No syminfo, this is ok. */
11550 return 1;
11551
11552 /* There better should be a dynamic symbol section. */
11553 if (dynamic_symbols == NULL || dynamic_strings == NULL)
11554 return 0;
11555
11556 if (dynamic_addr)
11557 printf (_("\nDynamic info segment at offset 0x%lx contains %d entries:\n"),
11558 dynamic_syminfo_offset, dynamic_syminfo_nent);
11559
11560 printf (_(" Num: Name BoundTo Flags\n"));
11561 for (i = 0; i < dynamic_syminfo_nent; ++i)
11562 {
11563 unsigned short int flags = dynamic_syminfo[i].si_flags;
11564
11565 printf ("%4d: ", i);
11566 if (i >= num_dynamic_syms)
11567 printf (_("<corrupt index>"));
11568 else if (VALID_DYNAMIC_NAME (dynamic_symbols[i].st_name))
11569 print_symbol (30, GET_DYNAMIC_NAME (dynamic_symbols[i].st_name));
11570 else
11571 printf (_("<corrupt: %19ld>"), dynamic_symbols[i].st_name);
11572 putchar (' ');
11573
11574 switch (dynamic_syminfo[i].si_boundto)
11575 {
11576 case SYMINFO_BT_SELF:
11577 fputs ("SELF ", stdout);
11578 break;
11579 case SYMINFO_BT_PARENT:
11580 fputs ("PARENT ", stdout);
11581 break;
11582 default:
11583 if (dynamic_syminfo[i].si_boundto > 0
11584 && dynamic_syminfo[i].si_boundto < dynamic_nent
11585 && VALID_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val))
11586 {
11587 print_symbol (10, GET_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val));
11588 putchar (' ' );
11589 }
11590 else
11591 printf ("%-10d ", dynamic_syminfo[i].si_boundto);
11592 break;
11593 }
11594
11595 if (flags & SYMINFO_FLG_DIRECT)
11596 printf (" DIRECT");
11597 if (flags & SYMINFO_FLG_PASSTHRU)
11598 printf (" PASSTHRU");
11599 if (flags & SYMINFO_FLG_COPY)
11600 printf (" COPY");
11601 if (flags & SYMINFO_FLG_LAZYLOAD)
11602 printf (" LAZYLOAD");
11603
11604 puts ("");
11605 }
11606
11607 return 1;
11608 }
11609
11610 #define IN_RANGE(START,END,ADDR,OFF) \
11611 (((ADDR) >= (START)) && ((ADDR) + (OFF) < (END)))
11612
11613 /* Check to see if the given reloc needs to be handled in a target specific
11614 manner. If so then process the reloc and return TRUE otherwise return
11615 FALSE.
11616
11617 If called with reloc == NULL, then this is a signal that reloc processing
11618 for the current section has finished, and any saved state should be
11619 discarded. */
11620
11621 static bfd_boolean
11622 target_specific_reloc_handling (Elf_Internal_Rela * reloc,
11623 unsigned char * start,
11624 unsigned char * end,
11625 Elf_Internal_Sym * symtab,
11626 unsigned long num_syms)
11627 {
11628 unsigned int reloc_type = 0;
11629 unsigned long sym_index = 0;
11630
11631 if (reloc)
11632 {
11633 reloc_type = get_reloc_type (reloc->r_info);
11634 sym_index = get_reloc_symindex (reloc->r_info);
11635 }
11636
11637 switch (elf_header.e_machine)
11638 {
11639 case EM_MSP430:
11640 case EM_MSP430_OLD:
11641 {
11642 static Elf_Internal_Sym * saved_sym = NULL;
11643
11644 if (reloc == NULL)
11645 {
11646 saved_sym = NULL;
11647 return TRUE;
11648 }
11649
11650 switch (reloc_type)
11651 {
11652 case 10: /* R_MSP430_SYM_DIFF */
11653 if (uses_msp430x_relocs ())
11654 break;
11655 /* Fall through. */
11656 case 21: /* R_MSP430X_SYM_DIFF */
11657 /* PR 21139. */
11658 if (sym_index >= num_syms)
11659 error (_("MSP430 SYM_DIFF reloc contains invalid symbol index %lu\n"),
11660 sym_index);
11661 else
11662 saved_sym = symtab + sym_index;
11663 return TRUE;
11664
11665 case 1: /* R_MSP430_32 or R_MSP430_ABS32 */
11666 case 3: /* R_MSP430_16 or R_MSP430_ABS8 */
11667 goto handle_sym_diff;
11668
11669 case 5: /* R_MSP430_16_BYTE */
11670 case 9: /* R_MSP430_8 */
11671 if (uses_msp430x_relocs ())
11672 break;
11673 goto handle_sym_diff;
11674
11675 case 2: /* R_MSP430_ABS16 */
11676 case 15: /* R_MSP430X_ABS16 */
11677 if (! uses_msp430x_relocs ())
11678 break;
11679 goto handle_sym_diff;
11680
11681 handle_sym_diff:
11682 if (saved_sym != NULL)
11683 {
11684 int reloc_size = reloc_type == 1 ? 4 : 2;
11685 bfd_vma value;
11686
11687 if (sym_index >= num_syms)
11688 error (_("MSP430 reloc contains invalid symbol index %lu\n"),
11689 sym_index);
11690 else
11691 {
11692 value = reloc->r_addend + (symtab[sym_index].st_value
11693 - saved_sym->st_value);
11694
11695 if (IN_RANGE (start, end, start + reloc->r_offset, reloc_size))
11696 byte_put (start + reloc->r_offset, value, reloc_size);
11697 else
11698 /* PR 21137 */
11699 error (_("MSP430 sym diff reloc contains invalid offset: 0x%lx\n"),
11700 (long) reloc->r_offset);
11701 }
11702
11703 saved_sym = NULL;
11704 return TRUE;
11705 }
11706 break;
11707
11708 default:
11709 if (saved_sym != NULL)
11710 error (_("Unhandled MSP430 reloc type found after SYM_DIFF reloc\n"));
11711 break;
11712 }
11713 break;
11714 }
11715
11716 case EM_MN10300:
11717 case EM_CYGNUS_MN10300:
11718 {
11719 static Elf_Internal_Sym * saved_sym = NULL;
11720
11721 if (reloc == NULL)
11722 {
11723 saved_sym = NULL;
11724 return TRUE;
11725 }
11726
11727 switch (reloc_type)
11728 {
11729 case 34: /* R_MN10300_ALIGN */
11730 return TRUE;
11731 case 33: /* R_MN10300_SYM_DIFF */
11732 if (sym_index >= num_syms)
11733 error (_("MN10300_SYM_DIFF reloc contains invalid symbol index %lu\n"),
11734 sym_index);
11735 else
11736 saved_sym = symtab + sym_index;
11737 return TRUE;
11738
11739 case 1: /* R_MN10300_32 */
11740 case 2: /* R_MN10300_16 */
11741 if (saved_sym != NULL)
11742 {
11743 int reloc_size = reloc_type == 1 ? 4 : 2;
11744 bfd_vma value;
11745
11746 if (sym_index >= num_syms)
11747 error (_("MN10300 reloc contains invalid symbol index %lu\n"),
11748 sym_index);
11749 else
11750 {
11751 value = reloc->r_addend + (symtab[sym_index].st_value
11752 - saved_sym->st_value);
11753
11754 if (IN_RANGE (start, end, start + reloc->r_offset, reloc_size))
11755 byte_put (start + reloc->r_offset, value, reloc_size);
11756 else
11757 error (_("MN10300 sym diff reloc contains invalid offset: 0x%lx\n"),
11758 (long) reloc->r_offset);
11759 }
11760
11761 saved_sym = NULL;
11762 return TRUE;
11763 }
11764 break;
11765 default:
11766 if (saved_sym != NULL)
11767 error (_("Unhandled MN10300 reloc type found after SYM_DIFF reloc\n"));
11768 break;
11769 }
11770 break;
11771 }
11772
11773 case EM_RL78:
11774 {
11775 static bfd_vma saved_sym1 = 0;
11776 static bfd_vma saved_sym2 = 0;
11777 static bfd_vma value;
11778
11779 if (reloc == NULL)
11780 {
11781 saved_sym1 = saved_sym2 = 0;
11782 return TRUE;
11783 }
11784
11785 switch (reloc_type)
11786 {
11787 case 0x80: /* R_RL78_SYM. */
11788 saved_sym1 = saved_sym2;
11789 if (sym_index >= num_syms)
11790 error (_("RL78_SYM reloc contains invalid symbol index %lu\n"),
11791 sym_index);
11792 else
11793 {
11794 saved_sym2 = symtab[sym_index].st_value;
11795 saved_sym2 += reloc->r_addend;
11796 }
11797 return TRUE;
11798
11799 case 0x83: /* R_RL78_OPsub. */
11800 value = saved_sym1 - saved_sym2;
11801 saved_sym2 = saved_sym1 = 0;
11802 return TRUE;
11803 break;
11804
11805 case 0x41: /* R_RL78_ABS32. */
11806 if (IN_RANGE (start, end, start + reloc->r_offset, 4))
11807 byte_put (start + reloc->r_offset, value, 4);
11808 else
11809 error (_("RL78 sym diff reloc contains invalid offset: 0x%lx\n"),
11810 (long) reloc->r_offset);
11811 value = 0;
11812 return TRUE;
11813
11814 case 0x43: /* R_RL78_ABS16. */
11815 if (IN_RANGE (start, end, start + reloc->r_offset, 2))
11816 byte_put (start + reloc->r_offset, value, 2);
11817 else
11818 error (_("RL78 sym diff reloc contains invalid offset: 0x%lx\n"),
11819 (long) reloc->r_offset);
11820 value = 0;
11821 return TRUE;
11822
11823 default:
11824 break;
11825 }
11826 break;
11827 }
11828 }
11829
11830 return FALSE;
11831 }
11832
11833 /* Returns TRUE iff RELOC_TYPE is a 32-bit absolute RELA relocation used in
11834 DWARF debug sections. This is a target specific test. Note - we do not
11835 go through the whole including-target-headers-multiple-times route, (as
11836 we have already done with <elf/h8.h>) because this would become very
11837 messy and even then this function would have to contain target specific
11838 information (the names of the relocs instead of their numeric values).
11839 FIXME: This is not the correct way to solve this problem. The proper way
11840 is to have target specific reloc sizing and typing functions created by
11841 the reloc-macros.h header, in the same way that it already creates the
11842 reloc naming functions. */
11843
11844 static bfd_boolean
11845 is_32bit_abs_reloc (unsigned int reloc_type)
11846 {
11847 /* Please keep this table alpha-sorted for ease of visual lookup. */
11848 switch (elf_header.e_machine)
11849 {
11850 case EM_386:
11851 case EM_IAMCU:
11852 return reloc_type == 1; /* R_386_32. */
11853 case EM_68K:
11854 return reloc_type == 1; /* R_68K_32. */
11855 case EM_860:
11856 return reloc_type == 1; /* R_860_32. */
11857 case EM_960:
11858 return reloc_type == 2; /* R_960_32. */
11859 case EM_AARCH64:
11860 return (reloc_type == 258
11861 || reloc_type == 1); /* R_AARCH64_ABS32 || R_AARCH64_P32_ABS32 */
11862 case EM_ADAPTEVA_EPIPHANY:
11863 return reloc_type == 3;
11864 case EM_ALPHA:
11865 return reloc_type == 1; /* R_ALPHA_REFLONG. */
11866 case EM_ARC:
11867 return reloc_type == 1; /* R_ARC_32. */
11868 case EM_ARC_COMPACT:
11869 case EM_ARC_COMPACT2:
11870 return reloc_type == 4; /* R_ARC_32. */
11871 case EM_ARM:
11872 return reloc_type == 2; /* R_ARM_ABS32 */
11873 case EM_AVR_OLD:
11874 case EM_AVR:
11875 return reloc_type == 1;
11876 case EM_BLACKFIN:
11877 return reloc_type == 0x12; /* R_byte4_data. */
11878 case EM_CRIS:
11879 return reloc_type == 3; /* R_CRIS_32. */
11880 case EM_CR16:
11881 return reloc_type == 3; /* R_CR16_NUM32. */
11882 case EM_CRX:
11883 return reloc_type == 15; /* R_CRX_NUM32. */
11884 case EM_CYGNUS_FRV:
11885 return reloc_type == 1;
11886 case EM_CYGNUS_D10V:
11887 case EM_D10V:
11888 return reloc_type == 6; /* R_D10V_32. */
11889 case EM_CYGNUS_D30V:
11890 case EM_D30V:
11891 return reloc_type == 12; /* R_D30V_32_NORMAL. */
11892 case EM_DLX:
11893 return reloc_type == 3; /* R_DLX_RELOC_32. */
11894 case EM_CYGNUS_FR30:
11895 case EM_FR30:
11896 return reloc_type == 3; /* R_FR30_32. */
11897 case EM_FT32:
11898 return reloc_type == 1; /* R_FT32_32. */
11899 case EM_H8S:
11900 case EM_H8_300:
11901 case EM_H8_300H:
11902 return reloc_type == 1; /* R_H8_DIR32. */
11903 case EM_IA_64:
11904 return reloc_type == 0x65 /* R_IA64_SECREL32LSB. */
11905 || reloc_type == 0x25; /* R_IA64_DIR32LSB. */
11906 case EM_IP2K_OLD:
11907 case EM_IP2K:
11908 return reloc_type == 2; /* R_IP2K_32. */
11909 case EM_IQ2000:
11910 return reloc_type == 2; /* R_IQ2000_32. */
11911 case EM_LATTICEMICO32:
11912 return reloc_type == 3; /* R_LM32_32. */
11913 case EM_M32C_OLD:
11914 case EM_M32C:
11915 return reloc_type == 3; /* R_M32C_32. */
11916 case EM_M32R:
11917 return reloc_type == 34; /* R_M32R_32_RELA. */
11918 case EM_68HC11:
11919 case EM_68HC12:
11920 return reloc_type == 6; /* R_M68HC11_32. */
11921 case EM_MCORE:
11922 return reloc_type == 1; /* R_MCORE_ADDR32. */
11923 case EM_CYGNUS_MEP:
11924 return reloc_type == 4; /* R_MEP_32. */
11925 case EM_METAG:
11926 return reloc_type == 2; /* R_METAG_ADDR32. */
11927 case EM_MICROBLAZE:
11928 return reloc_type == 1; /* R_MICROBLAZE_32. */
11929 case EM_MIPS:
11930 return reloc_type == 2; /* R_MIPS_32. */
11931 case EM_MMIX:
11932 return reloc_type == 4; /* R_MMIX_32. */
11933 case EM_CYGNUS_MN10200:
11934 case EM_MN10200:
11935 return reloc_type == 1; /* R_MN10200_32. */
11936 case EM_CYGNUS_MN10300:
11937 case EM_MN10300:
11938 return reloc_type == 1; /* R_MN10300_32. */
11939 case EM_MOXIE:
11940 return reloc_type == 1; /* R_MOXIE_32. */
11941 case EM_MSP430_OLD:
11942 case EM_MSP430:
11943 return reloc_type == 1; /* R_MSP430_32 or R_MSP320_ABS32. */
11944 case EM_MT:
11945 return reloc_type == 2; /* R_MT_32. */
11946 case EM_NDS32:
11947 return reloc_type == 20; /* R_NDS32_RELA. */
11948 case EM_ALTERA_NIOS2:
11949 return reloc_type == 12; /* R_NIOS2_BFD_RELOC_32. */
11950 case EM_NIOS32:
11951 return reloc_type == 1; /* R_NIOS_32. */
11952 case EM_OR1K:
11953 return reloc_type == 1; /* R_OR1K_32. */
11954 case EM_PARISC:
11955 return (reloc_type == 1 /* R_PARISC_DIR32. */
11956 || reloc_type == 41); /* R_PARISC_SECREL32. */
11957 case EM_PJ:
11958 case EM_PJ_OLD:
11959 return reloc_type == 1; /* R_PJ_DATA_DIR32. */
11960 case EM_PPC64:
11961 return reloc_type == 1; /* R_PPC64_ADDR32. */
11962 case EM_PPC:
11963 return reloc_type == 1; /* R_PPC_ADDR32. */
11964 case EM_TI_PRU:
11965 return reloc_type == 11; /* R_PRU_BFD_RELOC_32. */
11966 case EM_RISCV:
11967 return reloc_type == 1; /* R_RISCV_32. */
11968 case EM_RL78:
11969 return reloc_type == 1; /* R_RL78_DIR32. */
11970 case EM_RX:
11971 return reloc_type == 1; /* R_RX_DIR32. */
11972 case EM_S370:
11973 return reloc_type == 1; /* R_I370_ADDR31. */
11974 case EM_S390_OLD:
11975 case EM_S390:
11976 return reloc_type == 4; /* R_S390_32. */
11977 case EM_SCORE:
11978 return reloc_type == 8; /* R_SCORE_ABS32. */
11979 case EM_SH:
11980 return reloc_type == 1; /* R_SH_DIR32. */
11981 case EM_SPARC32PLUS:
11982 case EM_SPARCV9:
11983 case EM_SPARC:
11984 return reloc_type == 3 /* R_SPARC_32. */
11985 || reloc_type == 23; /* R_SPARC_UA32. */
11986 case EM_SPU:
11987 return reloc_type == 6; /* R_SPU_ADDR32 */
11988 case EM_TI_C6000:
11989 return reloc_type == 1; /* R_C6000_ABS32. */
11990 case EM_TILEGX:
11991 return reloc_type == 2; /* R_TILEGX_32. */
11992 case EM_TILEPRO:
11993 return reloc_type == 1; /* R_TILEPRO_32. */
11994 case EM_CYGNUS_V850:
11995 case EM_V850:
11996 return reloc_type == 6; /* R_V850_ABS32. */
11997 case EM_V800:
11998 return reloc_type == 0x33; /* R_V810_WORD. */
11999 case EM_VAX:
12000 return reloc_type == 1; /* R_VAX_32. */
12001 case EM_VISIUM:
12002 return reloc_type == 3; /* R_VISIUM_32. */
12003 case EM_X86_64:
12004 case EM_L1OM:
12005 case EM_K1OM:
12006 return reloc_type == 10; /* R_X86_64_32. */
12007 case EM_XC16X:
12008 case EM_C166:
12009 return reloc_type == 3; /* R_XC16C_ABS_32. */
12010 case EM_XGATE:
12011 return reloc_type == 4; /* R_XGATE_32. */
12012 case EM_XSTORMY16:
12013 return reloc_type == 1; /* R_XSTROMY16_32. */
12014 case EM_XTENSA_OLD:
12015 case EM_XTENSA:
12016 return reloc_type == 1; /* R_XTENSA_32. */
12017 default:
12018 {
12019 static unsigned int prev_warn = 0;
12020
12021 /* Avoid repeating the same warning multiple times. */
12022 if (prev_warn != elf_header.e_machine)
12023 error (_("Missing knowledge of 32-bit reloc types used in DWARF sections of machine number %d\n"),
12024 elf_header.e_machine);
12025 prev_warn = elf_header.e_machine;
12026 return FALSE;
12027 }
12028 }
12029 }
12030
12031 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12032 a 32-bit pc-relative RELA relocation used in DWARF debug sections. */
12033
12034 static bfd_boolean
12035 is_32bit_pcrel_reloc (unsigned int reloc_type)
12036 {
12037 switch (elf_header.e_machine)
12038 /* Please keep this table alpha-sorted for ease of visual lookup. */
12039 {
12040 case EM_386:
12041 case EM_IAMCU:
12042 return reloc_type == 2; /* R_386_PC32. */
12043 case EM_68K:
12044 return reloc_type == 4; /* R_68K_PC32. */
12045 case EM_AARCH64:
12046 return reloc_type == 261; /* R_AARCH64_PREL32 */
12047 case EM_ADAPTEVA_EPIPHANY:
12048 return reloc_type == 6;
12049 case EM_ALPHA:
12050 return reloc_type == 10; /* R_ALPHA_SREL32. */
12051 case EM_ARC_COMPACT:
12052 case EM_ARC_COMPACT2:
12053 return reloc_type == 49; /* R_ARC_32_PCREL. */
12054 case EM_ARM:
12055 return reloc_type == 3; /* R_ARM_REL32 */
12056 case EM_AVR_OLD:
12057 case EM_AVR:
12058 return reloc_type == 36; /* R_AVR_32_PCREL. */
12059 case EM_MICROBLAZE:
12060 return reloc_type == 2; /* R_MICROBLAZE_32_PCREL. */
12061 case EM_OR1K:
12062 return reloc_type == 9; /* R_OR1K_32_PCREL. */
12063 case EM_PARISC:
12064 return reloc_type == 9; /* R_PARISC_PCREL32. */
12065 case EM_PPC:
12066 return reloc_type == 26; /* R_PPC_REL32. */
12067 case EM_PPC64:
12068 return reloc_type == 26; /* R_PPC64_REL32. */
12069 case EM_S390_OLD:
12070 case EM_S390:
12071 return reloc_type == 5; /* R_390_PC32. */
12072 case EM_SH:
12073 return reloc_type == 2; /* R_SH_REL32. */
12074 case EM_SPARC32PLUS:
12075 case EM_SPARCV9:
12076 case EM_SPARC:
12077 return reloc_type == 6; /* R_SPARC_DISP32. */
12078 case EM_SPU:
12079 return reloc_type == 13; /* R_SPU_REL32. */
12080 case EM_TILEGX:
12081 return reloc_type == 6; /* R_TILEGX_32_PCREL. */
12082 case EM_TILEPRO:
12083 return reloc_type == 4; /* R_TILEPRO_32_PCREL. */
12084 case EM_VISIUM:
12085 return reloc_type == 6; /* R_VISIUM_32_PCREL */
12086 case EM_X86_64:
12087 case EM_L1OM:
12088 case EM_K1OM:
12089 return reloc_type == 2; /* R_X86_64_PC32. */
12090 case EM_XTENSA_OLD:
12091 case EM_XTENSA:
12092 return reloc_type == 14; /* R_XTENSA_32_PCREL. */
12093 default:
12094 /* Do not abort or issue an error message here. Not all targets use
12095 pc-relative 32-bit relocs in their DWARF debug information and we
12096 have already tested for target coverage in is_32bit_abs_reloc. A
12097 more helpful warning message will be generated by apply_relocations
12098 anyway, so just return. */
12099 return FALSE;
12100 }
12101 }
12102
12103 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12104 a 64-bit absolute RELA relocation used in DWARF debug sections. */
12105
12106 static bfd_boolean
12107 is_64bit_abs_reloc (unsigned int reloc_type)
12108 {
12109 switch (elf_header.e_machine)
12110 {
12111 case EM_AARCH64:
12112 return reloc_type == 257; /* R_AARCH64_ABS64. */
12113 case EM_ALPHA:
12114 return reloc_type == 2; /* R_ALPHA_REFQUAD. */
12115 case EM_IA_64:
12116 return reloc_type == 0x27; /* R_IA64_DIR64LSB. */
12117 case EM_PARISC:
12118 return reloc_type == 80; /* R_PARISC_DIR64. */
12119 case EM_PPC64:
12120 return reloc_type == 38; /* R_PPC64_ADDR64. */
12121 case EM_RISCV:
12122 return reloc_type == 2; /* R_RISCV_64. */
12123 case EM_SPARC32PLUS:
12124 case EM_SPARCV9:
12125 case EM_SPARC:
12126 return reloc_type == 54; /* R_SPARC_UA64. */
12127 case EM_X86_64:
12128 case EM_L1OM:
12129 case EM_K1OM:
12130 return reloc_type == 1; /* R_X86_64_64. */
12131 case EM_S390_OLD:
12132 case EM_S390:
12133 return reloc_type == 22; /* R_S390_64. */
12134 case EM_TILEGX:
12135 return reloc_type == 1; /* R_TILEGX_64. */
12136 case EM_MIPS:
12137 return reloc_type == 18; /* R_MIPS_64. */
12138 default:
12139 return FALSE;
12140 }
12141 }
12142
12143 /* Like is_32bit_pcrel_reloc except that it returns TRUE iff RELOC_TYPE is
12144 a 64-bit pc-relative RELA relocation used in DWARF debug sections. */
12145
12146 static bfd_boolean
12147 is_64bit_pcrel_reloc (unsigned int reloc_type)
12148 {
12149 switch (elf_header.e_machine)
12150 {
12151 case EM_AARCH64:
12152 return reloc_type == 260; /* R_AARCH64_PREL64. */
12153 case EM_ALPHA:
12154 return reloc_type == 11; /* R_ALPHA_SREL64. */
12155 case EM_IA_64:
12156 return reloc_type == 0x4f; /* R_IA64_PCREL64LSB. */
12157 case EM_PARISC:
12158 return reloc_type == 72; /* R_PARISC_PCREL64. */
12159 case EM_PPC64:
12160 return reloc_type == 44; /* R_PPC64_REL64. */
12161 case EM_SPARC32PLUS:
12162 case EM_SPARCV9:
12163 case EM_SPARC:
12164 return reloc_type == 46; /* R_SPARC_DISP64. */
12165 case EM_X86_64:
12166 case EM_L1OM:
12167 case EM_K1OM:
12168 return reloc_type == 24; /* R_X86_64_PC64. */
12169 case EM_S390_OLD:
12170 case EM_S390:
12171 return reloc_type == 23; /* R_S390_PC64. */
12172 case EM_TILEGX:
12173 return reloc_type == 5; /* R_TILEGX_64_PCREL. */
12174 default:
12175 return FALSE;
12176 }
12177 }
12178
12179 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12180 a 24-bit absolute RELA relocation used in DWARF debug sections. */
12181
12182 static bfd_boolean
12183 is_24bit_abs_reloc (unsigned int reloc_type)
12184 {
12185 switch (elf_header.e_machine)
12186 {
12187 case EM_CYGNUS_MN10200:
12188 case EM_MN10200:
12189 return reloc_type == 4; /* R_MN10200_24. */
12190 case EM_FT32:
12191 return reloc_type == 5; /* R_FT32_20. */
12192 default:
12193 return FALSE;
12194 }
12195 }
12196
12197 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12198 a 16-bit absolute RELA relocation used in DWARF debug sections. */
12199
12200 static bfd_boolean
12201 is_16bit_abs_reloc (unsigned int reloc_type)
12202 {
12203 /* Please keep this table alpha-sorted for ease of visual lookup. */
12204 switch (elf_header.e_machine)
12205 {
12206 case EM_ARC:
12207 case EM_ARC_COMPACT:
12208 case EM_ARC_COMPACT2:
12209 return reloc_type == 2; /* R_ARC_16. */
12210 case EM_ADAPTEVA_EPIPHANY:
12211 return reloc_type == 5;
12212 case EM_AVR_OLD:
12213 case EM_AVR:
12214 return reloc_type == 4; /* R_AVR_16. */
12215 case EM_CYGNUS_D10V:
12216 case EM_D10V:
12217 return reloc_type == 3; /* R_D10V_16. */
12218 case EM_H8S:
12219 case EM_H8_300:
12220 case EM_H8_300H:
12221 return reloc_type == R_H8_DIR16;
12222 case EM_IP2K_OLD:
12223 case EM_IP2K:
12224 return reloc_type == 1; /* R_IP2K_16. */
12225 case EM_M32C_OLD:
12226 case EM_M32C:
12227 return reloc_type == 1; /* R_M32C_16 */
12228 case EM_CYGNUS_MN10200:
12229 case EM_MN10200:
12230 return reloc_type == 2; /* R_MN10200_16. */
12231 case EM_CYGNUS_MN10300:
12232 case EM_MN10300:
12233 return reloc_type == 2; /* R_MN10300_16. */
12234 case EM_MSP430:
12235 if (uses_msp430x_relocs ())
12236 return reloc_type == 2; /* R_MSP430_ABS16. */
12237 /* Fall through. */
12238 case EM_MSP430_OLD:
12239 return reloc_type == 5; /* R_MSP430_16_BYTE. */
12240 case EM_NDS32:
12241 return reloc_type == 19; /* R_NDS32_RELA. */
12242 case EM_ALTERA_NIOS2:
12243 return reloc_type == 13; /* R_NIOS2_BFD_RELOC_16. */
12244 case EM_NIOS32:
12245 return reloc_type == 9; /* R_NIOS_16. */
12246 case EM_OR1K:
12247 return reloc_type == 2; /* R_OR1K_16. */
12248 case EM_TI_PRU:
12249 return reloc_type == 8; /* R_PRU_BFD_RELOC_16. */
12250 case EM_TI_C6000:
12251 return reloc_type == 2; /* R_C6000_ABS16. */
12252 case EM_VISIUM:
12253 return reloc_type == 2; /* R_VISIUM_16. */
12254 case EM_XC16X:
12255 case EM_C166:
12256 return reloc_type == 2; /* R_XC16C_ABS_16. */
12257 case EM_XGATE:
12258 return reloc_type == 3; /* R_XGATE_16. */
12259 default:
12260 return FALSE;
12261 }
12262 }
12263
12264 /* Returns TRUE iff RELOC_TYPE is a NONE relocation used for discarded
12265 relocation entries (possibly formerly used for SHT_GROUP sections). */
12266
12267 static bfd_boolean
12268 is_none_reloc (unsigned int reloc_type)
12269 {
12270 switch (elf_header.e_machine)
12271 {
12272 case EM_386: /* R_386_NONE. */
12273 case EM_68K: /* R_68K_NONE. */
12274 case EM_ADAPTEVA_EPIPHANY:
12275 case EM_ALPHA: /* R_ALPHA_NONE. */
12276 case EM_ALTERA_NIOS2: /* R_NIOS2_NONE. */
12277 case EM_ARC: /* R_ARC_NONE. */
12278 case EM_ARC_COMPACT2: /* R_ARC_NONE. */
12279 case EM_ARC_COMPACT: /* R_ARC_NONE. */
12280 case EM_ARM: /* R_ARM_NONE. */
12281 case EM_C166: /* R_XC16X_NONE. */
12282 case EM_CRIS: /* R_CRIS_NONE. */
12283 case EM_FT32: /* R_FT32_NONE. */
12284 case EM_IA_64: /* R_IA64_NONE. */
12285 case EM_K1OM: /* R_X86_64_NONE. */
12286 case EM_L1OM: /* R_X86_64_NONE. */
12287 case EM_M32R: /* R_M32R_NONE. */
12288 case EM_MIPS: /* R_MIPS_NONE. */
12289 case EM_MN10300: /* R_MN10300_NONE. */
12290 case EM_MOXIE: /* R_MOXIE_NONE. */
12291 case EM_NIOS32: /* R_NIOS_NONE. */
12292 case EM_OR1K: /* R_OR1K_NONE. */
12293 case EM_PARISC: /* R_PARISC_NONE. */
12294 case EM_PPC64: /* R_PPC64_NONE. */
12295 case EM_PPC: /* R_PPC_NONE. */
12296 case EM_RISCV: /* R_RISCV_NONE. */
12297 case EM_S390: /* R_390_NONE. */
12298 case EM_S390_OLD:
12299 case EM_SH: /* R_SH_NONE. */
12300 case EM_SPARC32PLUS:
12301 case EM_SPARC: /* R_SPARC_NONE. */
12302 case EM_SPARCV9:
12303 case EM_TILEGX: /* R_TILEGX_NONE. */
12304 case EM_TILEPRO: /* R_TILEPRO_NONE. */
12305 case EM_TI_C6000:/* R_C6000_NONE. */
12306 case EM_X86_64: /* R_X86_64_NONE. */
12307 case EM_XC16X:
12308 return reloc_type == 0;
12309
12310 case EM_AARCH64:
12311 return reloc_type == 0 || reloc_type == 256;
12312 case EM_AVR_OLD:
12313 case EM_AVR:
12314 return (reloc_type == 0 /* R_AVR_NONE. */
12315 || reloc_type == 30 /* R_AVR_DIFF8. */
12316 || reloc_type == 31 /* R_AVR_DIFF16. */
12317 || reloc_type == 32 /* R_AVR_DIFF32. */);
12318 case EM_METAG:
12319 return reloc_type == 3; /* R_METAG_NONE. */
12320 case EM_NDS32:
12321 return (reloc_type == 0 /* R_XTENSA_NONE. */
12322 || reloc_type == 204 /* R_NDS32_DIFF8. */
12323 || reloc_type == 205 /* R_NDS32_DIFF16. */
12324 || reloc_type == 206 /* R_NDS32_DIFF32. */
12325 || reloc_type == 207 /* R_NDS32_ULEB128. */);
12326 case EM_TI_PRU:
12327 return (reloc_type == 0 /* R_PRU_NONE. */
12328 || reloc_type == 65 /* R_PRU_DIFF8. */
12329 || reloc_type == 66 /* R_PRU_DIFF16. */
12330 || reloc_type == 67 /* R_PRU_DIFF32. */);
12331 case EM_XTENSA_OLD:
12332 case EM_XTENSA:
12333 return (reloc_type == 0 /* R_XTENSA_NONE. */
12334 || reloc_type == 17 /* R_XTENSA_DIFF8. */
12335 || reloc_type == 18 /* R_XTENSA_DIFF16. */
12336 || reloc_type == 19 /* R_XTENSA_DIFF32. */);
12337 }
12338 return FALSE;
12339 }
12340
12341 /* Returns TRUE if there is a relocation against
12342 section NAME at OFFSET bytes. */
12343
12344 bfd_boolean
12345 reloc_at (struct dwarf_section * dsec, dwarf_vma offset)
12346 {
12347 Elf_Internal_Rela * relocs;
12348 Elf_Internal_Rela * rp;
12349
12350 if (dsec == NULL || dsec->reloc_info == NULL)
12351 return FALSE;
12352
12353 relocs = (Elf_Internal_Rela *) dsec->reloc_info;
12354
12355 for (rp = relocs; rp < relocs + dsec->num_relocs; ++rp)
12356 if (rp->r_offset == offset)
12357 return TRUE;
12358
12359 return FALSE;
12360 }
12361
12362 /* Apply relocations to a section.
12363 Note: So far support has been added only for those relocations
12364 which can be found in debug sections.
12365 If RELOCS_RETURN is non-NULL then returns in it a pointer to the
12366 loaded relocs. It is then the caller's responsibility to free them.
12367 FIXME: Add support for more relocations ? */
12368
12369 static void
12370 apply_relocations (void * file,
12371 const Elf_Internal_Shdr * section,
12372 unsigned char * start,
12373 bfd_size_type size,
12374 void ** relocs_return,
12375 unsigned long * num_relocs_return)
12376 {
12377 Elf_Internal_Shdr * relsec;
12378 unsigned char * end = start + size;
12379
12380 if (relocs_return != NULL)
12381 {
12382 * (Elf_Internal_Rela **) relocs_return = NULL;
12383 * num_relocs_return = 0;
12384 }
12385
12386 if (elf_header.e_type != ET_REL)
12387 return;
12388
12389 /* Find the reloc section associated with the section. */
12390 for (relsec = section_headers;
12391 relsec < section_headers + elf_header.e_shnum;
12392 ++relsec)
12393 {
12394 bfd_boolean is_rela;
12395 unsigned long num_relocs;
12396 Elf_Internal_Rela * relocs;
12397 Elf_Internal_Rela * rp;
12398 Elf_Internal_Shdr * symsec;
12399 Elf_Internal_Sym * symtab;
12400 unsigned long num_syms;
12401 Elf_Internal_Sym * sym;
12402
12403 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
12404 || relsec->sh_info >= elf_header.e_shnum
12405 || section_headers + relsec->sh_info != section
12406 || relsec->sh_size == 0
12407 || relsec->sh_link >= elf_header.e_shnum)
12408 continue;
12409
12410 is_rela = relsec->sh_type == SHT_RELA;
12411
12412 if (is_rela)
12413 {
12414 if (!slurp_rela_relocs ((FILE *) file, relsec->sh_offset,
12415 relsec->sh_size, & relocs, & num_relocs))
12416 return;
12417 }
12418 else
12419 {
12420 if (!slurp_rel_relocs ((FILE *) file, relsec->sh_offset,
12421 relsec->sh_size, & relocs, & num_relocs))
12422 return;
12423 }
12424
12425 /* SH uses RELA but uses in place value instead of the addend field. */
12426 if (elf_header.e_machine == EM_SH)
12427 is_rela = FALSE;
12428
12429 symsec = section_headers + relsec->sh_link;
12430 if (symsec->sh_type != SHT_SYMTAB
12431 && symsec->sh_type != SHT_DYNSYM)
12432 return;
12433 symtab = GET_ELF_SYMBOLS ((FILE *) file, symsec, & num_syms);
12434
12435 for (rp = relocs; rp < relocs + num_relocs; ++rp)
12436 {
12437 bfd_vma addend;
12438 unsigned int reloc_type;
12439 unsigned int reloc_size;
12440 unsigned char * rloc;
12441 unsigned long sym_index;
12442
12443 reloc_type = get_reloc_type (rp->r_info);
12444
12445 if (target_specific_reloc_handling (rp, start, end, symtab, num_syms))
12446 continue;
12447 else if (is_none_reloc (reloc_type))
12448 continue;
12449 else if (is_32bit_abs_reloc (reloc_type)
12450 || is_32bit_pcrel_reloc (reloc_type))
12451 reloc_size = 4;
12452 else if (is_64bit_abs_reloc (reloc_type)
12453 || is_64bit_pcrel_reloc (reloc_type))
12454 reloc_size = 8;
12455 else if (is_24bit_abs_reloc (reloc_type))
12456 reloc_size = 3;
12457 else if (is_16bit_abs_reloc (reloc_type))
12458 reloc_size = 2;
12459 else
12460 {
12461 static unsigned int prev_reloc = 0;
12462 if (reloc_type != prev_reloc)
12463 warn (_("unable to apply unsupported reloc type %d to section %s\n"),
12464 reloc_type, printable_section_name (section));
12465 prev_reloc = reloc_type;
12466 continue;
12467 }
12468
12469 rloc = start + rp->r_offset;
12470 if ((rloc + reloc_size) > end || (rloc < start))
12471 {
12472 warn (_("skipping invalid relocation offset 0x%lx in section %s\n"),
12473 (unsigned long) rp->r_offset,
12474 printable_section_name (section));
12475 continue;
12476 }
12477
12478 sym_index = (unsigned long) get_reloc_symindex (rp->r_info);
12479 if (sym_index >= num_syms)
12480 {
12481 warn (_("skipping invalid relocation symbol index 0x%lx in section %s\n"),
12482 sym_index, printable_section_name (section));
12483 continue;
12484 }
12485 sym = symtab + sym_index;
12486
12487 /* If the reloc has a symbol associated with it,
12488 make sure that it is of an appropriate type.
12489
12490 Relocations against symbols without type can happen.
12491 Gcc -feliminate-dwarf2-dups may generate symbols
12492 without type for debug info.
12493
12494 Icc generates relocations against function symbols
12495 instead of local labels.
12496
12497 Relocations against object symbols can happen, eg when
12498 referencing a global array. For an example of this see
12499 the _clz.o binary in libgcc.a. */
12500 if (sym != symtab
12501 && ELF_ST_TYPE (sym->st_info) != STT_COMMON
12502 && ELF_ST_TYPE (sym->st_info) > STT_SECTION)
12503 {
12504 warn (_("skipping unexpected symbol type %s in %ld'th relocation in section %s\n"),
12505 get_symbol_type (ELF_ST_TYPE (sym->st_info)),
12506 (long int)(rp - relocs),
12507 printable_section_name (relsec));
12508 continue;
12509 }
12510
12511 addend = 0;
12512 if (is_rela)
12513 addend += rp->r_addend;
12514 /* R_XTENSA_32, R_PJ_DATA_DIR32 and R_D30V_32_NORMAL are
12515 partial_inplace. */
12516 if (!is_rela
12517 || (elf_header.e_machine == EM_XTENSA
12518 && reloc_type == 1)
12519 || ((elf_header.e_machine == EM_PJ
12520 || elf_header.e_machine == EM_PJ_OLD)
12521 && reloc_type == 1)
12522 || ((elf_header.e_machine == EM_D30V
12523 || elf_header.e_machine == EM_CYGNUS_D30V)
12524 && reloc_type == 12))
12525 addend += byte_get (rloc, reloc_size);
12526
12527 if (is_32bit_pcrel_reloc (reloc_type)
12528 || is_64bit_pcrel_reloc (reloc_type))
12529 {
12530 /* On HPPA, all pc-relative relocations are biased by 8. */
12531 if (elf_header.e_machine == EM_PARISC)
12532 addend -= 8;
12533 byte_put (rloc, (addend + sym->st_value) - rp->r_offset,
12534 reloc_size);
12535 }
12536 else
12537 byte_put (rloc, addend + sym->st_value, reloc_size);
12538 }
12539
12540 free (symtab);
12541 /* Let the target specific reloc processing code know that
12542 we have finished with these relocs. */
12543 target_specific_reloc_handling (NULL, NULL, NULL, NULL, 0);
12544
12545 if (relocs_return)
12546 {
12547 * (Elf_Internal_Rela **) relocs_return = relocs;
12548 * num_relocs_return = num_relocs;
12549 }
12550 else
12551 free (relocs);
12552
12553 break;
12554 }
12555 }
12556
12557 #ifdef SUPPORT_DISASSEMBLY
12558 static int
12559 disassemble_section (Elf_Internal_Shdr * section, FILE * file)
12560 {
12561 printf (_("\nAssembly dump of section %s\n"), printable_section_name (section));
12562
12563 /* FIXME: XXX -- to be done --- XXX */
12564
12565 return 1;
12566 }
12567 #endif
12568
12569 /* Reads in the contents of SECTION from FILE, returning a pointer
12570 to a malloc'ed buffer or NULL if something went wrong. */
12571
12572 static char *
12573 get_section_contents (Elf_Internal_Shdr * section, FILE * file)
12574 {
12575 bfd_size_type num_bytes;
12576
12577 num_bytes = section->sh_size;
12578
12579 if (num_bytes == 0 || section->sh_type == SHT_NOBITS)
12580 {
12581 printf (_("\nSection '%s' has no data to dump.\n"),
12582 printable_section_name (section));
12583 return NULL;
12584 }
12585
12586 return (char *) get_data (NULL, file, section->sh_offset, 1, num_bytes,
12587 _("section contents"));
12588 }
12589
12590 /* Uncompresses a section that was compressed using zlib, in place. */
12591
12592 static bfd_boolean
12593 uncompress_section_contents (unsigned char **buffer,
12594 dwarf_size_type uncompressed_size,
12595 dwarf_size_type *size)
12596 {
12597 dwarf_size_type compressed_size = *size;
12598 unsigned char * compressed_buffer = *buffer;
12599 unsigned char * uncompressed_buffer;
12600 z_stream strm;
12601 int rc;
12602
12603 /* It is possible the section consists of several compressed
12604 buffers concatenated together, so we uncompress in a loop. */
12605 /* PR 18313: The state field in the z_stream structure is supposed
12606 to be invisible to the user (ie us), but some compilers will
12607 still complain about it being used without initialisation. So
12608 we first zero the entire z_stream structure and then set the fields
12609 that we need. */
12610 memset (& strm, 0, sizeof strm);
12611 strm.avail_in = compressed_size;
12612 strm.next_in = (Bytef *) compressed_buffer;
12613 strm.avail_out = uncompressed_size;
12614 uncompressed_buffer = (unsigned char *) xmalloc (uncompressed_size);
12615
12616 rc = inflateInit (& strm);
12617 while (strm.avail_in > 0)
12618 {
12619 if (rc != Z_OK)
12620 goto fail;
12621 strm.next_out = ((Bytef *) uncompressed_buffer
12622 + (uncompressed_size - strm.avail_out));
12623 rc = inflate (&strm, Z_FINISH);
12624 if (rc != Z_STREAM_END)
12625 goto fail;
12626 rc = inflateReset (& strm);
12627 }
12628 rc = inflateEnd (& strm);
12629 if (rc != Z_OK
12630 || strm.avail_out != 0)
12631 goto fail;
12632
12633 *buffer = uncompressed_buffer;
12634 *size = uncompressed_size;
12635 return TRUE;
12636
12637 fail:
12638 free (uncompressed_buffer);
12639 /* Indicate decompression failure. */
12640 *buffer = NULL;
12641 return FALSE;
12642 }
12643
12644 static void
12645 dump_section_as_strings (Elf_Internal_Shdr * section, FILE * file)
12646 {
12647 Elf_Internal_Shdr * relsec;
12648 bfd_size_type num_bytes;
12649 unsigned char * data;
12650 unsigned char * end;
12651 unsigned char * real_start;
12652 unsigned char * start;
12653 bfd_boolean some_strings_shown;
12654
12655 real_start = start = (unsigned char *) get_section_contents (section,
12656 file);
12657 if (start == NULL)
12658 return;
12659 num_bytes = section->sh_size;
12660
12661 printf (_("\nString dump of section '%s':\n"), printable_section_name (section));
12662
12663 if (decompress_dumps)
12664 {
12665 dwarf_size_type new_size = num_bytes;
12666 dwarf_size_type uncompressed_size = 0;
12667
12668 if ((section->sh_flags & SHF_COMPRESSED) != 0)
12669 {
12670 Elf_Internal_Chdr chdr;
12671 unsigned int compression_header_size
12672 = get_compression_header (& chdr, (unsigned char *) start,
12673 num_bytes);
12674
12675 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
12676 {
12677 warn (_("section '%s' has unsupported compress type: %d\n"),
12678 printable_section_name (section), chdr.ch_type);
12679 return;
12680 }
12681 else if (chdr.ch_addralign != section->sh_addralign)
12682 {
12683 warn (_("compressed section '%s' is corrupted\n"),
12684 printable_section_name (section));
12685 return;
12686 }
12687 uncompressed_size = chdr.ch_size;
12688 start += compression_header_size;
12689 new_size -= compression_header_size;
12690 }
12691 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
12692 {
12693 /* Read the zlib header. In this case, it should be "ZLIB"
12694 followed by the uncompressed section size, 8 bytes in
12695 big-endian order. */
12696 uncompressed_size = start[4]; uncompressed_size <<= 8;
12697 uncompressed_size += start[5]; uncompressed_size <<= 8;
12698 uncompressed_size += start[6]; uncompressed_size <<= 8;
12699 uncompressed_size += start[7]; uncompressed_size <<= 8;
12700 uncompressed_size += start[8]; uncompressed_size <<= 8;
12701 uncompressed_size += start[9]; uncompressed_size <<= 8;
12702 uncompressed_size += start[10]; uncompressed_size <<= 8;
12703 uncompressed_size += start[11];
12704 start += 12;
12705 new_size -= 12;
12706 }
12707
12708 if (uncompressed_size)
12709 {
12710 if (uncompress_section_contents (& start,
12711 uncompressed_size, & new_size))
12712 num_bytes = new_size;
12713 else
12714 {
12715 error (_("Unable to decompress section %s\n"),
12716 printable_section_name (section));
12717 return;
12718 }
12719 }
12720 else
12721 start = real_start;
12722 }
12723
12724 /* If the section being dumped has relocations against it the user might
12725 be expecting these relocations to have been applied. Check for this
12726 case and issue a warning message in order to avoid confusion.
12727 FIXME: Maybe we ought to have an option that dumps a section with
12728 relocs applied ? */
12729 for (relsec = section_headers;
12730 relsec < section_headers + elf_header.e_shnum;
12731 ++relsec)
12732 {
12733 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
12734 || relsec->sh_info >= elf_header.e_shnum
12735 || section_headers + relsec->sh_info != section
12736 || relsec->sh_size == 0
12737 || relsec->sh_link >= elf_header.e_shnum)
12738 continue;
12739
12740 printf (_(" Note: This section has relocations against it, but these have NOT been applied to this dump.\n"));
12741 break;
12742 }
12743
12744 data = start;
12745 end = start + num_bytes;
12746 some_strings_shown = FALSE;
12747
12748 while (data < end)
12749 {
12750 while (!ISPRINT (* data))
12751 if (++ data >= end)
12752 break;
12753
12754 if (data < end)
12755 {
12756 size_t maxlen = end - data;
12757
12758 #ifndef __MSVCRT__
12759 /* PR 11128: Use two separate invocations in order to work
12760 around bugs in the Solaris 8 implementation of printf. */
12761 printf (" [%6tx] ", data - start);
12762 #else
12763 printf (" [%6Ix] ", (size_t) (data - start));
12764 #endif
12765 if (maxlen > 0)
12766 {
12767 print_symbol ((int) maxlen, (const char *) data);
12768 putchar ('\n');
12769 data += strnlen ((const char *) data, maxlen);
12770 }
12771 else
12772 {
12773 printf (_("<corrupt>\n"));
12774 data = end;
12775 }
12776 some_strings_shown = TRUE;
12777 }
12778 }
12779
12780 if (! some_strings_shown)
12781 printf (_(" No strings found in this section."));
12782
12783 free (real_start);
12784
12785 putchar ('\n');
12786 }
12787
12788 static void
12789 dump_section_as_bytes (Elf_Internal_Shdr * section,
12790 FILE * file,
12791 bfd_boolean relocate)
12792 {
12793 Elf_Internal_Shdr * relsec;
12794 bfd_size_type bytes;
12795 bfd_size_type section_size;
12796 bfd_vma addr;
12797 unsigned char * data;
12798 unsigned char * real_start;
12799 unsigned char * start;
12800
12801 real_start = start = (unsigned char *) get_section_contents (section, file);
12802 if (start == NULL)
12803 return;
12804 section_size = section->sh_size;
12805
12806 printf (_("\nHex dump of section '%s':\n"), printable_section_name (section));
12807
12808 if (decompress_dumps)
12809 {
12810 dwarf_size_type new_size = section_size;
12811 dwarf_size_type uncompressed_size = 0;
12812
12813 if ((section->sh_flags & SHF_COMPRESSED) != 0)
12814 {
12815 Elf_Internal_Chdr chdr;
12816 unsigned int compression_header_size
12817 = get_compression_header (& chdr, start, section_size);
12818
12819 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
12820 {
12821 warn (_("section '%s' has unsupported compress type: %d\n"),
12822 printable_section_name (section), chdr.ch_type);
12823 return;
12824 }
12825 else if (chdr.ch_addralign != section->sh_addralign)
12826 {
12827 warn (_("compressed section '%s' is corrupted\n"),
12828 printable_section_name (section));
12829 return;
12830 }
12831 uncompressed_size = chdr.ch_size;
12832 start += compression_header_size;
12833 new_size -= compression_header_size;
12834 }
12835 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
12836 {
12837 /* Read the zlib header. In this case, it should be "ZLIB"
12838 followed by the uncompressed section size, 8 bytes in
12839 big-endian order. */
12840 uncompressed_size = start[4]; uncompressed_size <<= 8;
12841 uncompressed_size += start[5]; uncompressed_size <<= 8;
12842 uncompressed_size += start[6]; uncompressed_size <<= 8;
12843 uncompressed_size += start[7]; uncompressed_size <<= 8;
12844 uncompressed_size += start[8]; uncompressed_size <<= 8;
12845 uncompressed_size += start[9]; uncompressed_size <<= 8;
12846 uncompressed_size += start[10]; uncompressed_size <<= 8;
12847 uncompressed_size += start[11];
12848 start += 12;
12849 new_size -= 12;
12850 }
12851
12852 if (uncompressed_size)
12853 {
12854 if (uncompress_section_contents (& start, uncompressed_size,
12855 & new_size))
12856 {
12857 section_size = new_size;
12858 }
12859 else
12860 {
12861 error (_("Unable to decompress section %s\n"),
12862 printable_section_name (section));
12863 /* FIXME: Print the section anyway ? */
12864 return;
12865 }
12866 }
12867 else
12868 start = real_start;
12869 }
12870
12871 if (relocate)
12872 {
12873 apply_relocations (file, section, start, section_size, NULL, NULL);
12874 }
12875 else
12876 {
12877 /* If the section being dumped has relocations against it the user might
12878 be expecting these relocations to have been applied. Check for this
12879 case and issue a warning message in order to avoid confusion.
12880 FIXME: Maybe we ought to have an option that dumps a section with
12881 relocs applied ? */
12882 for (relsec = section_headers;
12883 relsec < section_headers + elf_header.e_shnum;
12884 ++relsec)
12885 {
12886 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
12887 || relsec->sh_info >= elf_header.e_shnum
12888 || section_headers + relsec->sh_info != section
12889 || relsec->sh_size == 0
12890 || relsec->sh_link >= elf_header.e_shnum)
12891 continue;
12892
12893 printf (_(" NOTE: This section has relocations against it, but these have NOT been applied to this dump.\n"));
12894 break;
12895 }
12896 }
12897
12898 addr = section->sh_addr;
12899 bytes = section_size;
12900 data = start;
12901
12902 while (bytes)
12903 {
12904 int j;
12905 int k;
12906 int lbytes;
12907
12908 lbytes = (bytes > 16 ? 16 : bytes);
12909
12910 printf (" 0x%8.8lx ", (unsigned long) addr);
12911
12912 for (j = 0; j < 16; j++)
12913 {
12914 if (j < lbytes)
12915 printf ("%2.2x", data[j]);
12916 else
12917 printf (" ");
12918
12919 if ((j & 3) == 3)
12920 printf (" ");
12921 }
12922
12923 for (j = 0; j < lbytes; j++)
12924 {
12925 k = data[j];
12926 if (k >= ' ' && k < 0x7f)
12927 printf ("%c", k);
12928 else
12929 printf (".");
12930 }
12931
12932 putchar ('\n');
12933
12934 data += lbytes;
12935 addr += lbytes;
12936 bytes -= lbytes;
12937 }
12938
12939 free (real_start);
12940
12941 putchar ('\n');
12942 }
12943
12944 static int
12945 load_specific_debug_section (enum dwarf_section_display_enum debug,
12946 const Elf_Internal_Shdr * sec, void * file)
12947 {
12948 struct dwarf_section * section = &debug_displays [debug].section;
12949 char buf [64];
12950
12951 /* If it is already loaded, do nothing. */
12952 if (section->start != NULL)
12953 return 1;
12954
12955 snprintf (buf, sizeof (buf), _("%s section data"), section->name);
12956 section->address = sec->sh_addr;
12957 section->user_data = NULL;
12958 section->start = (unsigned char *) get_data (NULL, (FILE *) file,
12959 sec->sh_offset, 1,
12960 sec->sh_size, buf);
12961 if (section->start == NULL)
12962 section->size = 0;
12963 else
12964 {
12965 unsigned char *start = section->start;
12966 dwarf_size_type size = sec->sh_size;
12967 dwarf_size_type uncompressed_size = 0;
12968
12969 if ((sec->sh_flags & SHF_COMPRESSED) != 0)
12970 {
12971 Elf_Internal_Chdr chdr;
12972 unsigned int compression_header_size;
12973
12974 if (size < (is_32bit_elf
12975 ? sizeof (Elf32_External_Chdr)
12976 : sizeof (Elf64_External_Chdr)))
12977 {
12978 warn (_("compressed section %s is too small to contain a compression header"),
12979 section->name);
12980 return 0;
12981 }
12982
12983 compression_header_size = get_compression_header (&chdr, start, size);
12984
12985 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
12986 {
12987 warn (_("section '%s' has unsupported compress type: %d\n"),
12988 section->name, chdr.ch_type);
12989 return 0;
12990 }
12991 else if (chdr.ch_addralign != sec->sh_addralign)
12992 {
12993 warn (_("compressed section '%s' is corrupted\n"),
12994 section->name);
12995 return 0;
12996 }
12997 uncompressed_size = chdr.ch_size;
12998 start += compression_header_size;
12999 size -= compression_header_size;
13000 }
13001 else if (size > 12 && streq ((char *) start, "ZLIB"))
13002 {
13003 /* Read the zlib header. In this case, it should be "ZLIB"
13004 followed by the uncompressed section size, 8 bytes in
13005 big-endian order. */
13006 uncompressed_size = start[4]; uncompressed_size <<= 8;
13007 uncompressed_size += start[5]; uncompressed_size <<= 8;
13008 uncompressed_size += start[6]; uncompressed_size <<= 8;
13009 uncompressed_size += start[7]; uncompressed_size <<= 8;
13010 uncompressed_size += start[8]; uncompressed_size <<= 8;
13011 uncompressed_size += start[9]; uncompressed_size <<= 8;
13012 uncompressed_size += start[10]; uncompressed_size <<= 8;
13013 uncompressed_size += start[11];
13014 start += 12;
13015 size -= 12;
13016 }
13017
13018 if (uncompressed_size)
13019 {
13020 if (uncompress_section_contents (&start, uncompressed_size,
13021 &size))
13022 {
13023 /* Free the compressed buffer, update the section buffer
13024 and the section size if uncompress is successful. */
13025 free (section->start);
13026 section->start = start;
13027 }
13028 else
13029 {
13030 error (_("Unable to decompress section %s\n"),
13031 printable_section_name (sec));
13032 return 0;
13033 }
13034 }
13035
13036 section->size = size;
13037 }
13038
13039 if (section->start == NULL)
13040 return 0;
13041
13042 if (debug_displays [debug].relocate)
13043 apply_relocations ((FILE *) file, sec, section->start, section->size,
13044 & section->reloc_info, & section->num_relocs);
13045 else
13046 {
13047 section->reloc_info = NULL;
13048 section->num_relocs = 0;
13049 }
13050
13051 return 1;
13052 }
13053
13054 /* If this is not NULL, load_debug_section will only look for sections
13055 within the list of sections given here. */
13056 unsigned int *section_subset = NULL;
13057
13058 int
13059 load_debug_section (enum dwarf_section_display_enum debug, void * file)
13060 {
13061 struct dwarf_section * section = &debug_displays [debug].section;
13062 Elf_Internal_Shdr * sec;
13063
13064 /* Locate the debug section. */
13065 sec = find_section_in_set (section->uncompressed_name, section_subset);
13066 if (sec != NULL)
13067 section->name = section->uncompressed_name;
13068 else
13069 {
13070 sec = find_section_in_set (section->compressed_name, section_subset);
13071 if (sec != NULL)
13072 section->name = section->compressed_name;
13073 }
13074 if (sec == NULL)
13075 return 0;
13076
13077 /* If we're loading from a subset of sections, and we've loaded
13078 a section matching this name before, it's likely that it's a
13079 different one. */
13080 if (section_subset != NULL)
13081 free_debug_section (debug);
13082
13083 return load_specific_debug_section (debug, sec, (FILE *) file);
13084 }
13085
13086 void
13087 free_debug_section (enum dwarf_section_display_enum debug)
13088 {
13089 struct dwarf_section * section = &debug_displays [debug].section;
13090
13091 if (section->start == NULL)
13092 return;
13093
13094 free ((char *) section->start);
13095 section->start = NULL;
13096 section->address = 0;
13097 section->size = 0;
13098 }
13099
13100 static int
13101 display_debug_section (int shndx, Elf_Internal_Shdr * section, FILE * file)
13102 {
13103 char * name = SECTION_NAME (section);
13104 const char * print_name = printable_section_name (section);
13105 bfd_size_type length;
13106 int result = 1;
13107 int i;
13108
13109 length = section->sh_size;
13110 if (length == 0)
13111 {
13112 printf (_("\nSection '%s' has no debugging data.\n"), print_name);
13113 return 0;
13114 }
13115 if (section->sh_type == SHT_NOBITS)
13116 {
13117 /* There is no point in dumping the contents of a debugging section
13118 which has the NOBITS type - the bits in the file will be random.
13119 This can happen when a file containing a .eh_frame section is
13120 stripped with the --only-keep-debug command line option. */
13121 printf (_("section '%s' has the NOBITS type - its contents are unreliable.\n"),
13122 print_name);
13123 return 0;
13124 }
13125
13126 if (const_strneq (name, ".gnu.linkonce.wi."))
13127 name = ".debug_info";
13128
13129 /* See if we know how to display the contents of this section. */
13130 for (i = 0; i < max; i++)
13131 if (streq (debug_displays[i].section.uncompressed_name, name)
13132 || (i == line && const_strneq (name, ".debug_line."))
13133 || streq (debug_displays[i].section.compressed_name, name))
13134 {
13135 struct dwarf_section * sec = &debug_displays [i].section;
13136 int secondary = (section != find_section (name));
13137
13138 if (secondary)
13139 free_debug_section ((enum dwarf_section_display_enum) i);
13140
13141 if (i == line && const_strneq (name, ".debug_line."))
13142 sec->name = name;
13143 else if (streq (sec->uncompressed_name, name))
13144 sec->name = sec->uncompressed_name;
13145 else
13146 sec->name = sec->compressed_name;
13147 if (load_specific_debug_section ((enum dwarf_section_display_enum) i,
13148 section, file))
13149 {
13150 /* If this debug section is part of a CU/TU set in a .dwp file,
13151 restrict load_debug_section to the sections in that set. */
13152 section_subset = find_cu_tu_set (file, shndx);
13153
13154 result &= debug_displays[i].display (sec, file);
13155
13156 section_subset = NULL;
13157
13158 if (secondary || (i != info && i != abbrev))
13159 free_debug_section ((enum dwarf_section_display_enum) i);
13160 }
13161
13162 break;
13163 }
13164
13165 if (i == max)
13166 {
13167 printf (_("Unrecognized debug section: %s\n"), print_name);
13168 result = 0;
13169 }
13170
13171 return result;
13172 }
13173
13174 /* Set DUMP_SECTS for all sections where dumps were requested
13175 based on section name. */
13176
13177 static void
13178 initialise_dumps_byname (void)
13179 {
13180 struct dump_list_entry * cur;
13181
13182 for (cur = dump_sects_byname; cur; cur = cur->next)
13183 {
13184 unsigned int i;
13185 int any;
13186
13187 for (i = 0, any = 0; i < elf_header.e_shnum; i++)
13188 if (streq (SECTION_NAME (section_headers + i), cur->name))
13189 {
13190 request_dump_bynumber (i, cur->type);
13191 any = 1;
13192 }
13193
13194 if (!any)
13195 warn (_("Section '%s' was not dumped because it does not exist!\n"),
13196 cur->name);
13197 }
13198 }
13199
13200 static void
13201 process_section_contents (FILE * file)
13202 {
13203 Elf_Internal_Shdr * section;
13204 unsigned int i;
13205
13206 if (! do_dump)
13207 return;
13208
13209 initialise_dumps_byname ();
13210
13211 for (i = 0, section = section_headers;
13212 i < elf_header.e_shnum && i < num_dump_sects;
13213 i++, section++)
13214 {
13215 #ifdef SUPPORT_DISASSEMBLY
13216 if (dump_sects[i] & DISASS_DUMP)
13217 disassemble_section (section, file);
13218 #endif
13219 if (dump_sects[i] & HEX_DUMP)
13220 dump_section_as_bytes (section, file, FALSE);
13221
13222 if (dump_sects[i] & RELOC_DUMP)
13223 dump_section_as_bytes (section, file, TRUE);
13224
13225 if (dump_sects[i] & STRING_DUMP)
13226 dump_section_as_strings (section, file);
13227
13228 if (dump_sects[i] & DEBUG_DUMP)
13229 display_debug_section (i, section, file);
13230 }
13231
13232 /* Check to see if the user requested a
13233 dump of a section that does not exist. */
13234 while (i < num_dump_sects)
13235 {
13236 if (dump_sects[i])
13237 warn (_("Section %d was not dumped because it does not exist!\n"), i);
13238 i++;
13239 }
13240 }
13241
13242 static void
13243 process_mips_fpe_exception (int mask)
13244 {
13245 if (mask)
13246 {
13247 int first = 1;
13248 if (mask & OEX_FPU_INEX)
13249 fputs ("INEX", stdout), first = 0;
13250 if (mask & OEX_FPU_UFLO)
13251 printf ("%sUFLO", first ? "" : "|"), first = 0;
13252 if (mask & OEX_FPU_OFLO)
13253 printf ("%sOFLO", first ? "" : "|"), first = 0;
13254 if (mask & OEX_FPU_DIV0)
13255 printf ("%sDIV0", first ? "" : "|"), first = 0;
13256 if (mask & OEX_FPU_INVAL)
13257 printf ("%sINVAL", first ? "" : "|");
13258 }
13259 else
13260 fputs ("0", stdout);
13261 }
13262
13263 /* Display's the value of TAG at location P. If TAG is
13264 greater than 0 it is assumed to be an unknown tag, and
13265 a message is printed to this effect. Otherwise it is
13266 assumed that a message has already been printed.
13267
13268 If the bottom bit of TAG is set it assumed to have a
13269 string value, otherwise it is assumed to have an integer
13270 value.
13271
13272 Returns an updated P pointing to the first unread byte
13273 beyond the end of TAG's value.
13274
13275 Reads at or beyond END will not be made. */
13276
13277 static unsigned char *
13278 display_tag_value (int tag,
13279 unsigned char * p,
13280 const unsigned char * const end)
13281 {
13282 unsigned long val;
13283
13284 if (tag > 0)
13285 printf (" Tag_unknown_%d: ", tag);
13286
13287 if (p >= end)
13288 {
13289 warn (_("<corrupt tag>\n"));
13290 }
13291 else if (tag & 1)
13292 {
13293 /* PR 17531 file: 027-19978-0.004. */
13294 size_t maxlen = (end - p) - 1;
13295
13296 putchar ('"');
13297 if (maxlen > 0)
13298 {
13299 print_symbol ((int) maxlen, (const char *) p);
13300 p += strnlen ((char *) p, maxlen) + 1;
13301 }
13302 else
13303 {
13304 printf (_("<corrupt string tag>"));
13305 p = (unsigned char *) end;
13306 }
13307 printf ("\"\n");
13308 }
13309 else
13310 {
13311 unsigned int len;
13312
13313 val = read_uleb128 (p, &len, end);
13314 p += len;
13315 printf ("%ld (0x%lx)\n", val, val);
13316 }
13317
13318 assert (p <= end);
13319 return p;
13320 }
13321
13322 /* ARM EABI attributes section. */
13323 typedef struct
13324 {
13325 unsigned int tag;
13326 const char * name;
13327 /* 0 = special, 1 = string, 2 = uleb123, > 0x80 == table lookup. */
13328 unsigned int type;
13329 const char ** table;
13330 } arm_attr_public_tag;
13331
13332 static const char * arm_attr_tag_CPU_arch[] =
13333 {"Pre-v4", "v4", "v4T", "v5T", "v5TE", "v5TEJ", "v6", "v6KZ", "v6T2",
13334 "v6K", "v7", "v6-M", "v6S-M", "v7E-M", "v8", "", "v8-M.baseline",
13335 "v8-M.mainline"};
13336 static const char * arm_attr_tag_ARM_ISA_use[] = {"No", "Yes"};
13337 static const char * arm_attr_tag_THUMB_ISA_use[] =
13338 {"No", "Thumb-1", "Thumb-2", "Yes"};
13339 static const char * arm_attr_tag_FP_arch[] =
13340 {"No", "VFPv1", "VFPv2", "VFPv3", "VFPv3-D16", "VFPv4", "VFPv4-D16",
13341 "FP for ARMv8", "FPv5/FP-D16 for ARMv8"};
13342 static const char * arm_attr_tag_WMMX_arch[] = {"No", "WMMXv1", "WMMXv2"};
13343 static const char * arm_attr_tag_Advanced_SIMD_arch[] =
13344 {"No", "NEONv1", "NEONv1 with Fused-MAC", "NEON for ARMv8",
13345 "NEON for ARMv8.1"};
13346 static const char * arm_attr_tag_PCS_config[] =
13347 {"None", "Bare platform", "Linux application", "Linux DSO", "PalmOS 2004",
13348 "PalmOS (reserved)", "SymbianOS 2004", "SymbianOS (reserved)"};
13349 static const char * arm_attr_tag_ABI_PCS_R9_use[] =
13350 {"V6", "SB", "TLS", "Unused"};
13351 static const char * arm_attr_tag_ABI_PCS_RW_data[] =
13352 {"Absolute", "PC-relative", "SB-relative", "None"};
13353 static const char * arm_attr_tag_ABI_PCS_RO_data[] =
13354 {"Absolute", "PC-relative", "None"};
13355 static const char * arm_attr_tag_ABI_PCS_GOT_use[] =
13356 {"None", "direct", "GOT-indirect"};
13357 static const char * arm_attr_tag_ABI_PCS_wchar_t[] =
13358 {"None", "??? 1", "2", "??? 3", "4"};
13359 static const char * arm_attr_tag_ABI_FP_rounding[] = {"Unused", "Needed"};
13360 static const char * arm_attr_tag_ABI_FP_denormal[] =
13361 {"Unused", "Needed", "Sign only"};
13362 static const char * arm_attr_tag_ABI_FP_exceptions[] = {"Unused", "Needed"};
13363 static const char * arm_attr_tag_ABI_FP_user_exceptions[] = {"Unused", "Needed"};
13364 static const char * arm_attr_tag_ABI_FP_number_model[] =
13365 {"Unused", "Finite", "RTABI", "IEEE 754"};
13366 static const char * arm_attr_tag_ABI_enum_size[] =
13367 {"Unused", "small", "int", "forced to int"};
13368 static const char * arm_attr_tag_ABI_HardFP_use[] =
13369 {"As Tag_FP_arch", "SP only", "Reserved", "Deprecated"};
13370 static const char * arm_attr_tag_ABI_VFP_args[] =
13371 {"AAPCS", "VFP registers", "custom", "compatible"};
13372 static const char * arm_attr_tag_ABI_WMMX_args[] =
13373 {"AAPCS", "WMMX registers", "custom"};
13374 static const char * arm_attr_tag_ABI_optimization_goals[] =
13375 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
13376 "Aggressive Size", "Prefer Debug", "Aggressive Debug"};
13377 static const char * arm_attr_tag_ABI_FP_optimization_goals[] =
13378 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
13379 "Aggressive Size", "Prefer Accuracy", "Aggressive Accuracy"};
13380 static const char * arm_attr_tag_CPU_unaligned_access[] = {"None", "v6"};
13381 static const char * arm_attr_tag_FP_HP_extension[] =
13382 {"Not Allowed", "Allowed"};
13383 static const char * arm_attr_tag_ABI_FP_16bit_format[] =
13384 {"None", "IEEE 754", "Alternative Format"};
13385 static const char * arm_attr_tag_DSP_extension[] =
13386 {"Follow architecture", "Allowed"};
13387 static const char * arm_attr_tag_MPextension_use[] =
13388 {"Not Allowed", "Allowed"};
13389 static const char * arm_attr_tag_DIV_use[] =
13390 {"Allowed in Thumb-ISA, v7-R or v7-M", "Not allowed",
13391 "Allowed in v7-A with integer division extension"};
13392 static const char * arm_attr_tag_T2EE_use[] = {"Not Allowed", "Allowed"};
13393 static const char * arm_attr_tag_Virtualization_use[] =
13394 {"Not Allowed", "TrustZone", "Virtualization Extensions",
13395 "TrustZone and Virtualization Extensions"};
13396 static const char * arm_attr_tag_MPextension_use_legacy[] =
13397 {"Not Allowed", "Allowed"};
13398
13399 #define LOOKUP(id, name) \
13400 {id, #name, 0x80 | ARRAY_SIZE(arm_attr_tag_##name), arm_attr_tag_##name}
13401 static arm_attr_public_tag arm_attr_public_tags[] =
13402 {
13403 {4, "CPU_raw_name", 1, NULL},
13404 {5, "CPU_name", 1, NULL},
13405 LOOKUP(6, CPU_arch),
13406 {7, "CPU_arch_profile", 0, NULL},
13407 LOOKUP(8, ARM_ISA_use),
13408 LOOKUP(9, THUMB_ISA_use),
13409 LOOKUP(10, FP_arch),
13410 LOOKUP(11, WMMX_arch),
13411 LOOKUP(12, Advanced_SIMD_arch),
13412 LOOKUP(13, PCS_config),
13413 LOOKUP(14, ABI_PCS_R9_use),
13414 LOOKUP(15, ABI_PCS_RW_data),
13415 LOOKUP(16, ABI_PCS_RO_data),
13416 LOOKUP(17, ABI_PCS_GOT_use),
13417 LOOKUP(18, ABI_PCS_wchar_t),
13418 LOOKUP(19, ABI_FP_rounding),
13419 LOOKUP(20, ABI_FP_denormal),
13420 LOOKUP(21, ABI_FP_exceptions),
13421 LOOKUP(22, ABI_FP_user_exceptions),
13422 LOOKUP(23, ABI_FP_number_model),
13423 {24, "ABI_align_needed", 0, NULL},
13424 {25, "ABI_align_preserved", 0, NULL},
13425 LOOKUP(26, ABI_enum_size),
13426 LOOKUP(27, ABI_HardFP_use),
13427 LOOKUP(28, ABI_VFP_args),
13428 LOOKUP(29, ABI_WMMX_args),
13429 LOOKUP(30, ABI_optimization_goals),
13430 LOOKUP(31, ABI_FP_optimization_goals),
13431 {32, "compatibility", 0, NULL},
13432 LOOKUP(34, CPU_unaligned_access),
13433 LOOKUP(36, FP_HP_extension),
13434 LOOKUP(38, ABI_FP_16bit_format),
13435 LOOKUP(42, MPextension_use),
13436 LOOKUP(44, DIV_use),
13437 LOOKUP(46, DSP_extension),
13438 {64, "nodefaults", 0, NULL},
13439 {65, "also_compatible_with", 0, NULL},
13440 LOOKUP(66, T2EE_use),
13441 {67, "conformance", 1, NULL},
13442 LOOKUP(68, Virtualization_use),
13443 LOOKUP(70, MPextension_use_legacy)
13444 };
13445 #undef LOOKUP
13446
13447 static unsigned char *
13448 display_arm_attribute (unsigned char * p,
13449 const unsigned char * const end)
13450 {
13451 unsigned int tag;
13452 unsigned int len;
13453 unsigned int val;
13454 arm_attr_public_tag * attr;
13455 unsigned i;
13456 unsigned int type;
13457
13458 tag = read_uleb128 (p, &len, end);
13459 p += len;
13460 attr = NULL;
13461 for (i = 0; i < ARRAY_SIZE (arm_attr_public_tags); i++)
13462 {
13463 if (arm_attr_public_tags[i].tag == tag)
13464 {
13465 attr = &arm_attr_public_tags[i];
13466 break;
13467 }
13468 }
13469
13470 if (attr)
13471 {
13472 printf (" Tag_%s: ", attr->name);
13473 switch (attr->type)
13474 {
13475 case 0:
13476 switch (tag)
13477 {
13478 case 7: /* Tag_CPU_arch_profile. */
13479 val = read_uleb128 (p, &len, end);
13480 p += len;
13481 switch (val)
13482 {
13483 case 0: printf (_("None\n")); break;
13484 case 'A': printf (_("Application\n")); break;
13485 case 'R': printf (_("Realtime\n")); break;
13486 case 'M': printf (_("Microcontroller\n")); break;
13487 case 'S': printf (_("Application or Realtime\n")); break;
13488 default: printf ("??? (%d)\n", val); break;
13489 }
13490 break;
13491
13492 case 24: /* Tag_align_needed. */
13493 val = read_uleb128 (p, &len, end);
13494 p += len;
13495 switch (val)
13496 {
13497 case 0: printf (_("None\n")); break;
13498 case 1: printf (_("8-byte\n")); break;
13499 case 2: printf (_("4-byte\n")); break;
13500 case 3: printf ("??? 3\n"); break;
13501 default:
13502 if (val <= 12)
13503 printf (_("8-byte and up to %d-byte extended\n"),
13504 1 << val);
13505 else
13506 printf ("??? (%d)\n", val);
13507 break;
13508 }
13509 break;
13510
13511 case 25: /* Tag_align_preserved. */
13512 val = read_uleb128 (p, &len, end);
13513 p += len;
13514 switch (val)
13515 {
13516 case 0: printf (_("None\n")); break;
13517 case 1: printf (_("8-byte, except leaf SP\n")); break;
13518 case 2: printf (_("8-byte\n")); break;
13519 case 3: printf ("??? 3\n"); break;
13520 default:
13521 if (val <= 12)
13522 printf (_("8-byte and up to %d-byte extended\n"),
13523 1 << val);
13524 else
13525 printf ("??? (%d)\n", val);
13526 break;
13527 }
13528 break;
13529
13530 case 32: /* Tag_compatibility. */
13531 {
13532 val = read_uleb128 (p, &len, end);
13533 p += len;
13534 printf (_("flag = %d, vendor = "), val);
13535 if (p < end - 1)
13536 {
13537 size_t maxlen = (end - p) - 1;
13538
13539 print_symbol ((int) maxlen, (const char *) p);
13540 p += strnlen ((char *) p, maxlen) + 1;
13541 }
13542 else
13543 {
13544 printf (_("<corrupt>"));
13545 p = (unsigned char *) end;
13546 }
13547 putchar ('\n');
13548 }
13549 break;
13550
13551 case 64: /* Tag_nodefaults. */
13552 /* PR 17531: file: 001-505008-0.01. */
13553 if (p < end)
13554 p++;
13555 printf (_("True\n"));
13556 break;
13557
13558 case 65: /* Tag_also_compatible_with. */
13559 val = read_uleb128 (p, &len, end);
13560 p += len;
13561 if (val == 6 /* Tag_CPU_arch. */)
13562 {
13563 val = read_uleb128 (p, &len, end);
13564 p += len;
13565 if ((unsigned int) val >= ARRAY_SIZE (arm_attr_tag_CPU_arch))
13566 printf ("??? (%d)\n", val);
13567 else
13568 printf ("%s\n", arm_attr_tag_CPU_arch[val]);
13569 }
13570 else
13571 printf ("???\n");
13572 while (p < end && *(p++) != '\0' /* NUL terminator. */)
13573 ;
13574 break;
13575
13576 default:
13577 printf (_("<unknown: %d>\n"), tag);
13578 break;
13579 }
13580 return p;
13581
13582 case 1:
13583 return display_tag_value (-1, p, end);
13584 case 2:
13585 return display_tag_value (0, p, end);
13586
13587 default:
13588 assert (attr->type & 0x80);
13589 val = read_uleb128 (p, &len, end);
13590 p += len;
13591 type = attr->type & 0x7f;
13592 if (val >= type)
13593 printf ("??? (%d)\n", val);
13594 else
13595 printf ("%s\n", attr->table[val]);
13596 return p;
13597 }
13598 }
13599
13600 return display_tag_value (tag, p, end);
13601 }
13602
13603 static unsigned char *
13604 display_gnu_attribute (unsigned char * p,
13605 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, int, const unsigned char * const),
13606 const unsigned char * const end)
13607 {
13608 int tag;
13609 unsigned int len;
13610 int val;
13611
13612 tag = read_uleb128 (p, &len, end);
13613 p += len;
13614
13615 /* Tag_compatibility is the only generic GNU attribute defined at
13616 present. */
13617 if (tag == 32)
13618 {
13619 val = read_uleb128 (p, &len, end);
13620 p += len;
13621
13622 printf (_("flag = %d, vendor = "), val);
13623 if (p == end)
13624 {
13625 printf (_("<corrupt>\n"));
13626 warn (_("corrupt vendor attribute\n"));
13627 }
13628 else
13629 {
13630 if (p < end - 1)
13631 {
13632 size_t maxlen = (end - p) - 1;
13633
13634 print_symbol ((int) maxlen, (const char *) p);
13635 p += strnlen ((char *) p, maxlen) + 1;
13636 }
13637 else
13638 {
13639 printf (_("<corrupt>"));
13640 p = (unsigned char *) end;
13641 }
13642 putchar ('\n');
13643 }
13644 return p;
13645 }
13646
13647 if ((tag & 2) == 0 && display_proc_gnu_attribute)
13648 return display_proc_gnu_attribute (p, tag, end);
13649
13650 return display_tag_value (tag, p, end);
13651 }
13652
13653 static unsigned char *
13654 display_power_gnu_attribute (unsigned char * p,
13655 int tag,
13656 const unsigned char * const end)
13657 {
13658 unsigned int len;
13659 unsigned int val;
13660
13661 if (tag == Tag_GNU_Power_ABI_FP)
13662 {
13663 val = read_uleb128 (p, &len, end);
13664 p += len;
13665 printf (" Tag_GNU_Power_ABI_FP: ");
13666 if (len == 0)
13667 {
13668 printf (_("<corrupt>\n"));
13669 return p;
13670 }
13671
13672 if (val > 15)
13673 printf ("(%#x), ", val);
13674
13675 switch (val & 3)
13676 {
13677 case 0:
13678 printf (_("unspecified hard/soft float, "));
13679 break;
13680 case 1:
13681 printf (_("hard float, "));
13682 break;
13683 case 2:
13684 printf (_("soft float, "));
13685 break;
13686 case 3:
13687 printf (_("single-precision hard float, "));
13688 break;
13689 }
13690
13691 switch (val & 0xC)
13692 {
13693 case 0:
13694 printf (_("unspecified long double\n"));
13695 break;
13696 case 4:
13697 printf (_("128-bit IBM long double\n"));
13698 break;
13699 case 8:
13700 printf (_("64-bit long double\n"));
13701 break;
13702 case 12:
13703 printf (_("128-bit IEEE long double\n"));
13704 break;
13705 }
13706 return p;
13707 }
13708
13709 if (tag == Tag_GNU_Power_ABI_Vector)
13710 {
13711 val = read_uleb128 (p, &len, end);
13712 p += len;
13713 printf (" Tag_GNU_Power_ABI_Vector: ");
13714 if (len == 0)
13715 {
13716 printf (_("<corrupt>\n"));
13717 return p;
13718 }
13719
13720 if (val > 3)
13721 printf ("(%#x), ", val);
13722
13723 switch (val & 3)
13724 {
13725 case 0:
13726 printf (_("unspecified\n"));
13727 break;
13728 case 1:
13729 printf (_("generic\n"));
13730 break;
13731 case 2:
13732 printf ("AltiVec\n");
13733 break;
13734 case 3:
13735 printf ("SPE\n");
13736 break;
13737 }
13738 return p;
13739 }
13740
13741 if (tag == Tag_GNU_Power_ABI_Struct_Return)
13742 {
13743 val = read_uleb128 (p, &len, end);
13744 p += len;
13745 printf (" Tag_GNU_Power_ABI_Struct_Return: ");
13746 if (len == 0)
13747 {
13748 printf (_("<corrupt>\n"));
13749 return p;
13750 }
13751
13752 if (val > 2)
13753 printf ("(%#x), ", val);
13754
13755 switch (val & 3)
13756 {
13757 case 0:
13758 printf (_("unspecified\n"));
13759 break;
13760 case 1:
13761 printf ("r3/r4\n");
13762 break;
13763 case 2:
13764 printf (_("memory\n"));
13765 break;
13766 case 3:
13767 printf ("???\n");
13768 break;
13769 }
13770 return p;
13771 }
13772
13773 return display_tag_value (tag & 1, p, end);
13774 }
13775
13776 static unsigned char *
13777 display_s390_gnu_attribute (unsigned char * p,
13778 int tag,
13779 const unsigned char * const end)
13780 {
13781 unsigned int len;
13782 int val;
13783
13784 if (tag == Tag_GNU_S390_ABI_Vector)
13785 {
13786 val = read_uleb128 (p, &len, end);
13787 p += len;
13788 printf (" Tag_GNU_S390_ABI_Vector: ");
13789
13790 switch (val)
13791 {
13792 case 0:
13793 printf (_("any\n"));
13794 break;
13795 case 1:
13796 printf (_("software\n"));
13797 break;
13798 case 2:
13799 printf (_("hardware\n"));
13800 break;
13801 default:
13802 printf ("??? (%d)\n", val);
13803 break;
13804 }
13805 return p;
13806 }
13807
13808 return display_tag_value (tag & 1, p, end);
13809 }
13810
13811 static void
13812 display_sparc_hwcaps (int mask)
13813 {
13814 if (mask)
13815 {
13816 int first = 1;
13817
13818 if (mask & ELF_SPARC_HWCAP_MUL32)
13819 fputs ("mul32", stdout), first = 0;
13820 if (mask & ELF_SPARC_HWCAP_DIV32)
13821 printf ("%sdiv32", first ? "" : "|"), first = 0;
13822 if (mask & ELF_SPARC_HWCAP_FSMULD)
13823 printf ("%sfsmuld", first ? "" : "|"), first = 0;
13824 if (mask & ELF_SPARC_HWCAP_V8PLUS)
13825 printf ("%sv8plus", first ? "" : "|"), first = 0;
13826 if (mask & ELF_SPARC_HWCAP_POPC)
13827 printf ("%spopc", first ? "" : "|"), first = 0;
13828 if (mask & ELF_SPARC_HWCAP_VIS)
13829 printf ("%svis", first ? "" : "|"), first = 0;
13830 if (mask & ELF_SPARC_HWCAP_VIS2)
13831 printf ("%svis2", first ? "" : "|"), first = 0;
13832 if (mask & ELF_SPARC_HWCAP_ASI_BLK_INIT)
13833 printf ("%sASIBlkInit", first ? "" : "|"), first = 0;
13834 if (mask & ELF_SPARC_HWCAP_FMAF)
13835 printf ("%sfmaf", first ? "" : "|"), first = 0;
13836 if (mask & ELF_SPARC_HWCAP_VIS3)
13837 printf ("%svis3", first ? "" : "|"), first = 0;
13838 if (mask & ELF_SPARC_HWCAP_HPC)
13839 printf ("%shpc", first ? "" : "|"), first = 0;
13840 if (mask & ELF_SPARC_HWCAP_RANDOM)
13841 printf ("%srandom", first ? "" : "|"), first = 0;
13842 if (mask & ELF_SPARC_HWCAP_TRANS)
13843 printf ("%strans", first ? "" : "|"), first = 0;
13844 if (mask & ELF_SPARC_HWCAP_FJFMAU)
13845 printf ("%sfjfmau", first ? "" : "|"), first = 0;
13846 if (mask & ELF_SPARC_HWCAP_IMA)
13847 printf ("%sima", first ? "" : "|"), first = 0;
13848 if (mask & ELF_SPARC_HWCAP_ASI_CACHE_SPARING)
13849 printf ("%scspare", first ? "" : "|"), first = 0;
13850 }
13851 else
13852 fputc ('0', stdout);
13853 fputc ('\n', stdout);
13854 }
13855
13856 static void
13857 display_sparc_hwcaps2 (int mask)
13858 {
13859 if (mask)
13860 {
13861 int first = 1;
13862
13863 if (mask & ELF_SPARC_HWCAP2_FJATHPLUS)
13864 fputs ("fjathplus", stdout), first = 0;
13865 if (mask & ELF_SPARC_HWCAP2_VIS3B)
13866 printf ("%svis3b", first ? "" : "|"), first = 0;
13867 if (mask & ELF_SPARC_HWCAP2_ADP)
13868 printf ("%sadp", first ? "" : "|"), first = 0;
13869 if (mask & ELF_SPARC_HWCAP2_SPARC5)
13870 printf ("%ssparc5", first ? "" : "|"), first = 0;
13871 if (mask & ELF_SPARC_HWCAP2_MWAIT)
13872 printf ("%smwait", first ? "" : "|"), first = 0;
13873 if (mask & ELF_SPARC_HWCAP2_XMPMUL)
13874 printf ("%sxmpmul", first ? "" : "|"), first = 0;
13875 if (mask & ELF_SPARC_HWCAP2_XMONT)
13876 printf ("%sxmont2", first ? "" : "|"), first = 0;
13877 if (mask & ELF_SPARC_HWCAP2_NSEC)
13878 printf ("%snsec", first ? "" : "|"), first = 0;
13879 if (mask & ELF_SPARC_HWCAP2_FJATHHPC)
13880 printf ("%sfjathhpc", first ? "" : "|"), first = 0;
13881 if (mask & ELF_SPARC_HWCAP2_FJDES)
13882 printf ("%sfjdes", first ? "" : "|"), first = 0;
13883 if (mask & ELF_SPARC_HWCAP2_FJAES)
13884 printf ("%sfjaes", first ? "" : "|"), first = 0;
13885 }
13886 else
13887 fputc ('0', stdout);
13888 fputc ('\n', stdout);
13889 }
13890
13891 static unsigned char *
13892 display_sparc_gnu_attribute (unsigned char * p,
13893 int tag,
13894 const unsigned char * const end)
13895 {
13896 unsigned int len;
13897 int val;
13898
13899 if (tag == Tag_GNU_Sparc_HWCAPS)
13900 {
13901 val = read_uleb128 (p, &len, end);
13902 p += len;
13903 printf (" Tag_GNU_Sparc_HWCAPS: ");
13904 display_sparc_hwcaps (val);
13905 return p;
13906 }
13907 if (tag == Tag_GNU_Sparc_HWCAPS2)
13908 {
13909 val = read_uleb128 (p, &len, end);
13910 p += len;
13911 printf (" Tag_GNU_Sparc_HWCAPS2: ");
13912 display_sparc_hwcaps2 (val);
13913 return p;
13914 }
13915
13916 return display_tag_value (tag, p, end);
13917 }
13918
13919 static void
13920 print_mips_fp_abi_value (int val)
13921 {
13922 switch (val)
13923 {
13924 case Val_GNU_MIPS_ABI_FP_ANY:
13925 printf (_("Hard or soft float\n"));
13926 break;
13927 case Val_GNU_MIPS_ABI_FP_DOUBLE:
13928 printf (_("Hard float (double precision)\n"));
13929 break;
13930 case Val_GNU_MIPS_ABI_FP_SINGLE:
13931 printf (_("Hard float (single precision)\n"));
13932 break;
13933 case Val_GNU_MIPS_ABI_FP_SOFT:
13934 printf (_("Soft float\n"));
13935 break;
13936 case Val_GNU_MIPS_ABI_FP_OLD_64:
13937 printf (_("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
13938 break;
13939 case Val_GNU_MIPS_ABI_FP_XX:
13940 printf (_("Hard float (32-bit CPU, Any FPU)\n"));
13941 break;
13942 case Val_GNU_MIPS_ABI_FP_64:
13943 printf (_("Hard float (32-bit CPU, 64-bit FPU)\n"));
13944 break;
13945 case Val_GNU_MIPS_ABI_FP_64A:
13946 printf (_("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
13947 break;
13948 case Val_GNU_MIPS_ABI_FP_NAN2008:
13949 printf (_("NaN 2008 compatibility\n"));
13950 break;
13951 default:
13952 printf ("??? (%d)\n", val);
13953 break;
13954 }
13955 }
13956
13957 static unsigned char *
13958 display_mips_gnu_attribute (unsigned char * p,
13959 int tag,
13960 const unsigned char * const end)
13961 {
13962 if (tag == Tag_GNU_MIPS_ABI_FP)
13963 {
13964 unsigned int len;
13965 int val;
13966
13967 val = read_uleb128 (p, &len, end);
13968 p += len;
13969 printf (" Tag_GNU_MIPS_ABI_FP: ");
13970
13971 print_mips_fp_abi_value (val);
13972
13973 return p;
13974 }
13975
13976 if (tag == Tag_GNU_MIPS_ABI_MSA)
13977 {
13978 unsigned int len;
13979 int val;
13980
13981 val = read_uleb128 (p, &len, end);
13982 p += len;
13983 printf (" Tag_GNU_MIPS_ABI_MSA: ");
13984
13985 switch (val)
13986 {
13987 case Val_GNU_MIPS_ABI_MSA_ANY:
13988 printf (_("Any MSA or not\n"));
13989 break;
13990 case Val_GNU_MIPS_ABI_MSA_128:
13991 printf (_("128-bit MSA\n"));
13992 break;
13993 default:
13994 printf ("??? (%d)\n", val);
13995 break;
13996 }
13997 return p;
13998 }
13999
14000 return display_tag_value (tag & 1, p, end);
14001 }
14002
14003 static unsigned char *
14004 display_tic6x_attribute (unsigned char * p,
14005 const unsigned char * const end)
14006 {
14007 int tag;
14008 unsigned int len;
14009 int val;
14010
14011 tag = read_uleb128 (p, &len, end);
14012 p += len;
14013
14014 switch (tag)
14015 {
14016 case Tag_ISA:
14017 val = read_uleb128 (p, &len, end);
14018 p += len;
14019 printf (" Tag_ISA: ");
14020
14021 switch (val)
14022 {
14023 case C6XABI_Tag_ISA_none:
14024 printf (_("None\n"));
14025 break;
14026 case C6XABI_Tag_ISA_C62X:
14027 printf ("C62x\n");
14028 break;
14029 case C6XABI_Tag_ISA_C67X:
14030 printf ("C67x\n");
14031 break;
14032 case C6XABI_Tag_ISA_C67XP:
14033 printf ("C67x+\n");
14034 break;
14035 case C6XABI_Tag_ISA_C64X:
14036 printf ("C64x\n");
14037 break;
14038 case C6XABI_Tag_ISA_C64XP:
14039 printf ("C64x+\n");
14040 break;
14041 case C6XABI_Tag_ISA_C674X:
14042 printf ("C674x\n");
14043 break;
14044 default:
14045 printf ("??? (%d)\n", val);
14046 break;
14047 }
14048 return p;
14049
14050 case Tag_ABI_wchar_t:
14051 val = read_uleb128 (p, &len, end);
14052 p += len;
14053 printf (" Tag_ABI_wchar_t: ");
14054 switch (val)
14055 {
14056 case 0:
14057 printf (_("Not used\n"));
14058 break;
14059 case 1:
14060 printf (_("2 bytes\n"));
14061 break;
14062 case 2:
14063 printf (_("4 bytes\n"));
14064 break;
14065 default:
14066 printf ("??? (%d)\n", val);
14067 break;
14068 }
14069 return p;
14070
14071 case Tag_ABI_stack_align_needed:
14072 val = read_uleb128 (p, &len, end);
14073 p += len;
14074 printf (" Tag_ABI_stack_align_needed: ");
14075 switch (val)
14076 {
14077 case 0:
14078 printf (_("8-byte\n"));
14079 break;
14080 case 1:
14081 printf (_("16-byte\n"));
14082 break;
14083 default:
14084 printf ("??? (%d)\n", val);
14085 break;
14086 }
14087 return p;
14088
14089 case Tag_ABI_stack_align_preserved:
14090 val = read_uleb128 (p, &len, end);
14091 p += len;
14092 printf (" Tag_ABI_stack_align_preserved: ");
14093 switch (val)
14094 {
14095 case 0:
14096 printf (_("8-byte\n"));
14097 break;
14098 case 1:
14099 printf (_("16-byte\n"));
14100 break;
14101 default:
14102 printf ("??? (%d)\n", val);
14103 break;
14104 }
14105 return p;
14106
14107 case Tag_ABI_DSBT:
14108 val = read_uleb128 (p, &len, end);
14109 p += len;
14110 printf (" Tag_ABI_DSBT: ");
14111 switch (val)
14112 {
14113 case 0:
14114 printf (_("DSBT addressing not used\n"));
14115 break;
14116 case 1:
14117 printf (_("DSBT addressing used\n"));
14118 break;
14119 default:
14120 printf ("??? (%d)\n", val);
14121 break;
14122 }
14123 return p;
14124
14125 case Tag_ABI_PID:
14126 val = read_uleb128 (p, &len, end);
14127 p += len;
14128 printf (" Tag_ABI_PID: ");
14129 switch (val)
14130 {
14131 case 0:
14132 printf (_("Data addressing position-dependent\n"));
14133 break;
14134 case 1:
14135 printf (_("Data addressing position-independent, GOT near DP\n"));
14136 break;
14137 case 2:
14138 printf (_("Data addressing position-independent, GOT far from DP\n"));
14139 break;
14140 default:
14141 printf ("??? (%d)\n", val);
14142 break;
14143 }
14144 return p;
14145
14146 case Tag_ABI_PIC:
14147 val = read_uleb128 (p, &len, end);
14148 p += len;
14149 printf (" Tag_ABI_PIC: ");
14150 switch (val)
14151 {
14152 case 0:
14153 printf (_("Code addressing position-dependent\n"));
14154 break;
14155 case 1:
14156 printf (_("Code addressing position-independent\n"));
14157 break;
14158 default:
14159 printf ("??? (%d)\n", val);
14160 break;
14161 }
14162 return p;
14163
14164 case Tag_ABI_array_object_alignment:
14165 val = read_uleb128 (p, &len, end);
14166 p += len;
14167 printf (" Tag_ABI_array_object_alignment: ");
14168 switch (val)
14169 {
14170 case 0:
14171 printf (_("8-byte\n"));
14172 break;
14173 case 1:
14174 printf (_("4-byte\n"));
14175 break;
14176 case 2:
14177 printf (_("16-byte\n"));
14178 break;
14179 default:
14180 printf ("??? (%d)\n", val);
14181 break;
14182 }
14183 return p;
14184
14185 case Tag_ABI_array_object_align_expected:
14186 val = read_uleb128 (p, &len, end);
14187 p += len;
14188 printf (" Tag_ABI_array_object_align_expected: ");
14189 switch (val)
14190 {
14191 case 0:
14192 printf (_("8-byte\n"));
14193 break;
14194 case 1:
14195 printf (_("4-byte\n"));
14196 break;
14197 case 2:
14198 printf (_("16-byte\n"));
14199 break;
14200 default:
14201 printf ("??? (%d)\n", val);
14202 break;
14203 }
14204 return p;
14205
14206 case Tag_ABI_compatibility:
14207 {
14208 val = read_uleb128 (p, &len, end);
14209 p += len;
14210 printf (" Tag_ABI_compatibility: ");
14211 printf (_("flag = %d, vendor = "), val);
14212 if (p < end - 1)
14213 {
14214 size_t maxlen = (end - p) - 1;
14215
14216 print_symbol ((int) maxlen, (const char *) p);
14217 p += strnlen ((char *) p, maxlen) + 1;
14218 }
14219 else
14220 {
14221 printf (_("<corrupt>"));
14222 p = (unsigned char *) end;
14223 }
14224 putchar ('\n');
14225 return p;
14226 }
14227
14228 case Tag_ABI_conformance:
14229 {
14230 printf (" Tag_ABI_conformance: \"");
14231 if (p < end - 1)
14232 {
14233 size_t maxlen = (end - p) - 1;
14234
14235 print_symbol ((int) maxlen, (const char *) p);
14236 p += strnlen ((char *) p, maxlen) + 1;
14237 }
14238 else
14239 {
14240 printf (_("<corrupt>"));
14241 p = (unsigned char *) end;
14242 }
14243 printf ("\"\n");
14244 return p;
14245 }
14246 }
14247
14248 return display_tag_value (tag, p, end);
14249 }
14250
14251 static void
14252 display_raw_attribute (unsigned char * p, unsigned char * end)
14253 {
14254 unsigned long addr = 0;
14255 size_t bytes = end - p;
14256
14257 assert (end > p);
14258 while (bytes)
14259 {
14260 int j;
14261 int k;
14262 int lbytes = (bytes > 16 ? 16 : bytes);
14263
14264 printf (" 0x%8.8lx ", addr);
14265
14266 for (j = 0; j < 16; j++)
14267 {
14268 if (j < lbytes)
14269 printf ("%2.2x", p[j]);
14270 else
14271 printf (" ");
14272
14273 if ((j & 3) == 3)
14274 printf (" ");
14275 }
14276
14277 for (j = 0; j < lbytes; j++)
14278 {
14279 k = p[j];
14280 if (k >= ' ' && k < 0x7f)
14281 printf ("%c", k);
14282 else
14283 printf (".");
14284 }
14285
14286 putchar ('\n');
14287
14288 p += lbytes;
14289 bytes -= lbytes;
14290 addr += lbytes;
14291 }
14292
14293 putchar ('\n');
14294 }
14295
14296 static unsigned char *
14297 display_msp430x_attribute (unsigned char * p,
14298 const unsigned char * const end)
14299 {
14300 unsigned int len;
14301 int val;
14302 int tag;
14303
14304 tag = read_uleb128 (p, & len, end);
14305 p += len;
14306
14307 switch (tag)
14308 {
14309 case OFBA_MSPABI_Tag_ISA:
14310 val = read_uleb128 (p, &len, end);
14311 p += len;
14312 printf (" Tag_ISA: ");
14313 switch (val)
14314 {
14315 case 0: printf (_("None\n")); break;
14316 case 1: printf (_("MSP430\n")); break;
14317 case 2: printf (_("MSP430X\n")); break;
14318 default: printf ("??? (%d)\n", val); break;
14319 }
14320 break;
14321
14322 case OFBA_MSPABI_Tag_Code_Model:
14323 val = read_uleb128 (p, &len, end);
14324 p += len;
14325 printf (" Tag_Code_Model: ");
14326 switch (val)
14327 {
14328 case 0: printf (_("None\n")); break;
14329 case 1: printf (_("Small\n")); break;
14330 case 2: printf (_("Large\n")); break;
14331 default: printf ("??? (%d)\n", val); break;
14332 }
14333 break;
14334
14335 case OFBA_MSPABI_Tag_Data_Model:
14336 val = read_uleb128 (p, &len, end);
14337 p += len;
14338 printf (" Tag_Data_Model: ");
14339 switch (val)
14340 {
14341 case 0: printf (_("None\n")); break;
14342 case 1: printf (_("Small\n")); break;
14343 case 2: printf (_("Large\n")); break;
14344 case 3: printf (_("Restricted Large\n")); break;
14345 default: printf ("??? (%d)\n", val); break;
14346 }
14347 break;
14348
14349 default:
14350 printf (_(" <unknown tag %d>: "), tag);
14351
14352 if (tag & 1)
14353 {
14354 putchar ('"');
14355 if (p < end - 1)
14356 {
14357 size_t maxlen = (end - p) - 1;
14358
14359 print_symbol ((int) maxlen, (const char *) p);
14360 p += strnlen ((char *) p, maxlen) + 1;
14361 }
14362 else
14363 {
14364 printf (_("<corrupt>"));
14365 p = (unsigned char *) end;
14366 }
14367 printf ("\"\n");
14368 }
14369 else
14370 {
14371 val = read_uleb128 (p, &len, end);
14372 p += len;
14373 printf ("%d (0x%x)\n", val, val);
14374 }
14375 break;
14376 }
14377
14378 assert (p <= end);
14379 return p;
14380 }
14381
14382 static int
14383 process_attributes (FILE * file,
14384 const char * public_name,
14385 unsigned int proc_type,
14386 unsigned char * (* display_pub_attribute) (unsigned char *, const unsigned char * const),
14387 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, int, const unsigned char * const))
14388 {
14389 Elf_Internal_Shdr * sect;
14390 unsigned i;
14391
14392 /* Find the section header so that we get the size. */
14393 for (i = 0, sect = section_headers;
14394 i < elf_header.e_shnum;
14395 i++, sect++)
14396 {
14397 unsigned char * contents;
14398 unsigned char * p;
14399
14400 if (sect->sh_type != proc_type && sect->sh_type != SHT_GNU_ATTRIBUTES)
14401 continue;
14402
14403 contents = (unsigned char *) get_data (NULL, file, sect->sh_offset, 1,
14404 sect->sh_size, _("attributes"));
14405 if (contents == NULL)
14406 continue;
14407
14408 p = contents;
14409 if (*p == 'A')
14410 {
14411 bfd_vma section_len;
14412
14413 section_len = sect->sh_size - 1;
14414 p++;
14415
14416 while (section_len > 0)
14417 {
14418 bfd_vma attr_len;
14419 unsigned int namelen;
14420 bfd_boolean public_section;
14421 bfd_boolean gnu_section;
14422
14423 if (section_len <= 4)
14424 {
14425 error (_("Tag section ends prematurely\n"));
14426 break;
14427 }
14428 attr_len = byte_get (p, 4);
14429 p += 4;
14430
14431 if (attr_len > section_len)
14432 {
14433 error (_("Bad attribute length (%u > %u)\n"),
14434 (unsigned) attr_len, (unsigned) section_len);
14435 attr_len = section_len;
14436 }
14437 /* PR 17531: file: 001-101425-0.004 */
14438 else if (attr_len < 5)
14439 {
14440 error (_("Attribute length of %u is too small\n"), (unsigned) attr_len);
14441 break;
14442 }
14443
14444 section_len -= attr_len;
14445 attr_len -= 4;
14446
14447 namelen = strnlen ((char *) p, attr_len) + 1;
14448 if (namelen == 0 || namelen >= attr_len)
14449 {
14450 error (_("Corrupt attribute section name\n"));
14451 break;
14452 }
14453
14454 printf (_("Attribute Section: "));
14455 print_symbol (INT_MAX, (const char *) p);
14456 putchar ('\n');
14457
14458 if (public_name && streq ((char *) p, public_name))
14459 public_section = TRUE;
14460 else
14461 public_section = FALSE;
14462
14463 if (streq ((char *) p, "gnu"))
14464 gnu_section = TRUE;
14465 else
14466 gnu_section = FALSE;
14467
14468 p += namelen;
14469 attr_len -= namelen;
14470
14471 while (attr_len > 0 && p < contents + sect->sh_size)
14472 {
14473 int tag;
14474 int val;
14475 bfd_vma size;
14476 unsigned char * end;
14477
14478 /* PR binutils/17531: Safe handling of corrupt files. */
14479 if (attr_len < 6)
14480 {
14481 error (_("Unused bytes at end of section\n"));
14482 section_len = 0;
14483 break;
14484 }
14485
14486 tag = *(p++);
14487 size = byte_get (p, 4);
14488 if (size > attr_len)
14489 {
14490 error (_("Bad subsection length (%u > %u)\n"),
14491 (unsigned) size, (unsigned) attr_len);
14492 size = attr_len;
14493 }
14494 /* PR binutils/17531: Safe handling of corrupt files. */
14495 if (size < 6)
14496 {
14497 error (_("Bad subsection length (%u < 6)\n"),
14498 (unsigned) size);
14499 section_len = 0;
14500 break;
14501 }
14502
14503 attr_len -= size;
14504 end = p + size - 1;
14505 assert (end <= contents + sect->sh_size);
14506 p += 4;
14507
14508 switch (tag)
14509 {
14510 case 1:
14511 printf (_("File Attributes\n"));
14512 break;
14513 case 2:
14514 printf (_("Section Attributes:"));
14515 goto do_numlist;
14516 case 3:
14517 printf (_("Symbol Attributes:"));
14518 /* Fall through. */
14519 do_numlist:
14520 for (;;)
14521 {
14522 unsigned int j;
14523
14524 val = read_uleb128 (p, &j, end);
14525 p += j;
14526 if (val == 0)
14527 break;
14528 printf (" %d", val);
14529 }
14530 printf ("\n");
14531 break;
14532 default:
14533 printf (_("Unknown tag: %d\n"), tag);
14534 public_section = FALSE;
14535 break;
14536 }
14537
14538 if (public_section && display_pub_attribute != NULL)
14539 {
14540 while (p < end)
14541 p = display_pub_attribute (p, end);
14542 assert (p <= end);
14543 }
14544 else if (gnu_section && display_proc_gnu_attribute != NULL)
14545 {
14546 while (p < end)
14547 p = display_gnu_attribute (p,
14548 display_proc_gnu_attribute,
14549 end);
14550 assert (p <= end);
14551 }
14552 else if (p < end)
14553 {
14554 printf (_(" Unknown attribute:\n"));
14555 display_raw_attribute (p, end);
14556 p = end;
14557 }
14558 else
14559 attr_len = 0;
14560 }
14561 }
14562 }
14563 else
14564 printf (_("Unknown format '%c' (%d)\n"), *p, *p);
14565
14566 free (contents);
14567 }
14568 return 1;
14569 }
14570
14571 static int
14572 process_arm_specific (FILE * file)
14573 {
14574 return process_attributes (file, "aeabi", SHT_ARM_ATTRIBUTES,
14575 display_arm_attribute, NULL);
14576 }
14577
14578 static int
14579 process_power_specific (FILE * file)
14580 {
14581 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
14582 display_power_gnu_attribute);
14583 }
14584
14585 static int
14586 process_s390_specific (FILE * file)
14587 {
14588 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
14589 display_s390_gnu_attribute);
14590 }
14591
14592 static int
14593 process_sparc_specific (FILE * file)
14594 {
14595 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
14596 display_sparc_gnu_attribute);
14597 }
14598
14599 static int
14600 process_tic6x_specific (FILE * file)
14601 {
14602 return process_attributes (file, "c6xabi", SHT_C6000_ATTRIBUTES,
14603 display_tic6x_attribute, NULL);
14604 }
14605
14606 static int
14607 process_msp430x_specific (FILE * file)
14608 {
14609 return process_attributes (file, "mspabi", SHT_MSP430_ATTRIBUTES,
14610 display_msp430x_attribute, NULL);
14611 }
14612
14613 /* DATA points to the contents of a MIPS GOT that starts at VMA PLTGOT.
14614 Print the Address, Access and Initial fields of an entry at VMA ADDR
14615 and return the VMA of the next entry, or -1 if there was a problem.
14616 Does not read from DATA_END or beyond. */
14617
14618 static bfd_vma
14619 print_mips_got_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr,
14620 unsigned char * data_end)
14621 {
14622 printf (" ");
14623 print_vma (addr, LONG_HEX);
14624 printf (" ");
14625 if (addr < pltgot + 0xfff0)
14626 printf ("%6d(gp)", (int) (addr - pltgot - 0x7ff0));
14627 else
14628 printf ("%10s", "");
14629 printf (" ");
14630 if (data == NULL)
14631 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
14632 else
14633 {
14634 bfd_vma entry;
14635 unsigned char * from = data + addr - pltgot;
14636
14637 if (from + (is_32bit_elf ? 4 : 8) > data_end)
14638 {
14639 warn (_("MIPS GOT entry extends beyond the end of available data\n"));
14640 printf ("%*s", is_32bit_elf ? 8 : 16, _("<corrupt>"));
14641 return (bfd_vma) -1;
14642 }
14643 else
14644 {
14645 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
14646 print_vma (entry, LONG_HEX);
14647 }
14648 }
14649 return addr + (is_32bit_elf ? 4 : 8);
14650 }
14651
14652 /* DATA points to the contents of a MIPS PLT GOT that starts at VMA
14653 PLTGOT. Print the Address and Initial fields of an entry at VMA
14654 ADDR and return the VMA of the next entry. */
14655
14656 static bfd_vma
14657 print_mips_pltgot_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
14658 {
14659 printf (" ");
14660 print_vma (addr, LONG_HEX);
14661 printf (" ");
14662 if (data == NULL)
14663 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
14664 else
14665 {
14666 bfd_vma entry;
14667
14668 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
14669 print_vma (entry, LONG_HEX);
14670 }
14671 return addr + (is_32bit_elf ? 4 : 8);
14672 }
14673
14674 static void
14675 print_mips_ases (unsigned int mask)
14676 {
14677 if (mask & AFL_ASE_DSP)
14678 fputs ("\n\tDSP ASE", stdout);
14679 if (mask & AFL_ASE_DSPR2)
14680 fputs ("\n\tDSP R2 ASE", stdout);
14681 if (mask & AFL_ASE_DSPR3)
14682 fputs ("\n\tDSP R3 ASE", stdout);
14683 if (mask & AFL_ASE_EVA)
14684 fputs ("\n\tEnhanced VA Scheme", stdout);
14685 if (mask & AFL_ASE_MCU)
14686 fputs ("\n\tMCU (MicroController) ASE", stdout);
14687 if (mask & AFL_ASE_MDMX)
14688 fputs ("\n\tMDMX ASE", stdout);
14689 if (mask & AFL_ASE_MIPS3D)
14690 fputs ("\n\tMIPS-3D ASE", stdout);
14691 if (mask & AFL_ASE_MT)
14692 fputs ("\n\tMT ASE", stdout);
14693 if (mask & AFL_ASE_SMARTMIPS)
14694 fputs ("\n\tSmartMIPS ASE", stdout);
14695 if (mask & AFL_ASE_VIRT)
14696 fputs ("\n\tVZ ASE", stdout);
14697 if (mask & AFL_ASE_MSA)
14698 fputs ("\n\tMSA ASE", stdout);
14699 if (mask & AFL_ASE_MIPS16)
14700 fputs ("\n\tMIPS16 ASE", stdout);
14701 if (mask & AFL_ASE_MICROMIPS)
14702 fputs ("\n\tMICROMIPS ASE", stdout);
14703 if (mask & AFL_ASE_XPA)
14704 fputs ("\n\tXPA ASE", stdout);
14705 if (mask == 0)
14706 fprintf (stdout, "\n\t%s", _("None"));
14707 else if ((mask & ~AFL_ASE_MASK) != 0)
14708 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
14709 }
14710
14711 static void
14712 print_mips_isa_ext (unsigned int isa_ext)
14713 {
14714 switch (isa_ext)
14715 {
14716 case 0:
14717 fputs (_("None"), stdout);
14718 break;
14719 case AFL_EXT_XLR:
14720 fputs ("RMI XLR", stdout);
14721 break;
14722 case AFL_EXT_OCTEON3:
14723 fputs ("Cavium Networks Octeon3", stdout);
14724 break;
14725 case AFL_EXT_OCTEON2:
14726 fputs ("Cavium Networks Octeon2", stdout);
14727 break;
14728 case AFL_EXT_OCTEONP:
14729 fputs ("Cavium Networks OcteonP", stdout);
14730 break;
14731 case AFL_EXT_LOONGSON_3A:
14732 fputs ("Loongson 3A", stdout);
14733 break;
14734 case AFL_EXT_OCTEON:
14735 fputs ("Cavium Networks Octeon", stdout);
14736 break;
14737 case AFL_EXT_5900:
14738 fputs ("Toshiba R5900", stdout);
14739 break;
14740 case AFL_EXT_4650:
14741 fputs ("MIPS R4650", stdout);
14742 break;
14743 case AFL_EXT_4010:
14744 fputs ("LSI R4010", stdout);
14745 break;
14746 case AFL_EXT_4100:
14747 fputs ("NEC VR4100", stdout);
14748 break;
14749 case AFL_EXT_3900:
14750 fputs ("Toshiba R3900", stdout);
14751 break;
14752 case AFL_EXT_10000:
14753 fputs ("MIPS R10000", stdout);
14754 break;
14755 case AFL_EXT_SB1:
14756 fputs ("Broadcom SB-1", stdout);
14757 break;
14758 case AFL_EXT_4111:
14759 fputs ("NEC VR4111/VR4181", stdout);
14760 break;
14761 case AFL_EXT_4120:
14762 fputs ("NEC VR4120", stdout);
14763 break;
14764 case AFL_EXT_5400:
14765 fputs ("NEC VR5400", stdout);
14766 break;
14767 case AFL_EXT_5500:
14768 fputs ("NEC VR5500", stdout);
14769 break;
14770 case AFL_EXT_LOONGSON_2E:
14771 fputs ("ST Microelectronics Loongson 2E", stdout);
14772 break;
14773 case AFL_EXT_LOONGSON_2F:
14774 fputs ("ST Microelectronics Loongson 2F", stdout);
14775 break;
14776 default:
14777 fprintf (stdout, "%s (%d)", _("Unknown"), isa_ext);
14778 }
14779 }
14780
14781 static int
14782 get_mips_reg_size (int reg_size)
14783 {
14784 return (reg_size == AFL_REG_NONE) ? 0
14785 : (reg_size == AFL_REG_32) ? 32
14786 : (reg_size == AFL_REG_64) ? 64
14787 : (reg_size == AFL_REG_128) ? 128
14788 : -1;
14789 }
14790
14791 static int
14792 process_mips_specific (FILE * file)
14793 {
14794 Elf_Internal_Dyn * entry;
14795 Elf_Internal_Shdr *sect = NULL;
14796 size_t liblist_offset = 0;
14797 size_t liblistno = 0;
14798 size_t conflictsno = 0;
14799 size_t options_offset = 0;
14800 size_t conflicts_offset = 0;
14801 size_t pltrelsz = 0;
14802 size_t pltrel = 0;
14803 bfd_vma pltgot = 0;
14804 bfd_vma mips_pltgot = 0;
14805 bfd_vma jmprel = 0;
14806 bfd_vma local_gotno = 0;
14807 bfd_vma gotsym = 0;
14808 bfd_vma symtabno = 0;
14809
14810 process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
14811 display_mips_gnu_attribute);
14812
14813 sect = find_section (".MIPS.abiflags");
14814
14815 if (sect != NULL)
14816 {
14817 Elf_External_ABIFlags_v0 *abiflags_ext;
14818 Elf_Internal_ABIFlags_v0 abiflags_in;
14819
14820 if (sizeof (Elf_External_ABIFlags_v0) != sect->sh_size)
14821 fputs ("\nCorrupt ABI Flags section.\n", stdout);
14822 else
14823 {
14824 abiflags_ext = get_data (NULL, file, sect->sh_offset, 1,
14825 sect->sh_size, _("MIPS ABI Flags section"));
14826 if (abiflags_ext)
14827 {
14828 abiflags_in.version = BYTE_GET (abiflags_ext->version);
14829 abiflags_in.isa_level = BYTE_GET (abiflags_ext->isa_level);
14830 abiflags_in.isa_rev = BYTE_GET (abiflags_ext->isa_rev);
14831 abiflags_in.gpr_size = BYTE_GET (abiflags_ext->gpr_size);
14832 abiflags_in.cpr1_size = BYTE_GET (abiflags_ext->cpr1_size);
14833 abiflags_in.cpr2_size = BYTE_GET (abiflags_ext->cpr2_size);
14834 abiflags_in.fp_abi = BYTE_GET (abiflags_ext->fp_abi);
14835 abiflags_in.isa_ext = BYTE_GET (abiflags_ext->isa_ext);
14836 abiflags_in.ases = BYTE_GET (abiflags_ext->ases);
14837 abiflags_in.flags1 = BYTE_GET (abiflags_ext->flags1);
14838 abiflags_in.flags2 = BYTE_GET (abiflags_ext->flags2);
14839
14840 printf ("\nMIPS ABI Flags Version: %d\n", abiflags_in.version);
14841 printf ("\nISA: MIPS%d", abiflags_in.isa_level);
14842 if (abiflags_in.isa_rev > 1)
14843 printf ("r%d", abiflags_in.isa_rev);
14844 printf ("\nGPR size: %d",
14845 get_mips_reg_size (abiflags_in.gpr_size));
14846 printf ("\nCPR1 size: %d",
14847 get_mips_reg_size (abiflags_in.cpr1_size));
14848 printf ("\nCPR2 size: %d",
14849 get_mips_reg_size (abiflags_in.cpr2_size));
14850 fputs ("\nFP ABI: ", stdout);
14851 print_mips_fp_abi_value (abiflags_in.fp_abi);
14852 fputs ("ISA Extension: ", stdout);
14853 print_mips_isa_ext (abiflags_in.isa_ext);
14854 fputs ("\nASEs:", stdout);
14855 print_mips_ases (abiflags_in.ases);
14856 printf ("\nFLAGS 1: %8.8lx", abiflags_in.flags1);
14857 printf ("\nFLAGS 2: %8.8lx", abiflags_in.flags2);
14858 fputc ('\n', stdout);
14859 free (abiflags_ext);
14860 }
14861 }
14862 }
14863
14864 /* We have a lot of special sections. Thanks SGI! */
14865 if (dynamic_section == NULL)
14866 /* No information available. */
14867 return 0;
14868
14869 for (entry = dynamic_section;
14870 /* PR 17531 file: 012-50589-0.004. */
14871 entry < dynamic_section + dynamic_nent && entry->d_tag != DT_NULL;
14872 ++entry)
14873 switch (entry->d_tag)
14874 {
14875 case DT_MIPS_LIBLIST:
14876 liblist_offset
14877 = offset_from_vma (file, entry->d_un.d_val,
14878 liblistno * sizeof (Elf32_External_Lib));
14879 break;
14880 case DT_MIPS_LIBLISTNO:
14881 liblistno = entry->d_un.d_val;
14882 break;
14883 case DT_MIPS_OPTIONS:
14884 options_offset = offset_from_vma (file, entry->d_un.d_val, 0);
14885 break;
14886 case DT_MIPS_CONFLICT:
14887 conflicts_offset
14888 = offset_from_vma (file, entry->d_un.d_val,
14889 conflictsno * sizeof (Elf32_External_Conflict));
14890 break;
14891 case DT_MIPS_CONFLICTNO:
14892 conflictsno = entry->d_un.d_val;
14893 break;
14894 case DT_PLTGOT:
14895 pltgot = entry->d_un.d_ptr;
14896 break;
14897 case DT_MIPS_LOCAL_GOTNO:
14898 local_gotno = entry->d_un.d_val;
14899 break;
14900 case DT_MIPS_GOTSYM:
14901 gotsym = entry->d_un.d_val;
14902 break;
14903 case DT_MIPS_SYMTABNO:
14904 symtabno = entry->d_un.d_val;
14905 break;
14906 case DT_MIPS_PLTGOT:
14907 mips_pltgot = entry->d_un.d_ptr;
14908 break;
14909 case DT_PLTREL:
14910 pltrel = entry->d_un.d_val;
14911 break;
14912 case DT_PLTRELSZ:
14913 pltrelsz = entry->d_un.d_val;
14914 break;
14915 case DT_JMPREL:
14916 jmprel = entry->d_un.d_ptr;
14917 break;
14918 default:
14919 break;
14920 }
14921
14922 if (liblist_offset != 0 && liblistno != 0 && do_dynamic)
14923 {
14924 Elf32_External_Lib * elib;
14925 size_t cnt;
14926
14927 elib = (Elf32_External_Lib *) get_data (NULL, file, liblist_offset,
14928 liblistno,
14929 sizeof (Elf32_External_Lib),
14930 _("liblist section data"));
14931 if (elib)
14932 {
14933 printf (_("\nSection '.liblist' contains %lu entries:\n"),
14934 (unsigned long) liblistno);
14935 fputs (_(" Library Time Stamp Checksum Version Flags\n"),
14936 stdout);
14937
14938 for (cnt = 0; cnt < liblistno; ++cnt)
14939 {
14940 Elf32_Lib liblist;
14941 time_t atime;
14942 char timebuf[128];
14943 struct tm * tmp;
14944
14945 liblist.l_name = BYTE_GET (elib[cnt].l_name);
14946 atime = BYTE_GET (elib[cnt].l_time_stamp);
14947 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
14948 liblist.l_version = BYTE_GET (elib[cnt].l_version);
14949 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
14950
14951 tmp = gmtime (&atime);
14952 snprintf (timebuf, sizeof (timebuf),
14953 "%04u-%02u-%02uT%02u:%02u:%02u",
14954 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
14955 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
14956
14957 printf ("%3lu: ", (unsigned long) cnt);
14958 if (VALID_DYNAMIC_NAME (liblist.l_name))
14959 print_symbol (20, GET_DYNAMIC_NAME (liblist.l_name));
14960 else
14961 printf (_("<corrupt: %9ld>"), liblist.l_name);
14962 printf (" %s %#10lx %-7ld", timebuf, liblist.l_checksum,
14963 liblist.l_version);
14964
14965 if (liblist.l_flags == 0)
14966 puts (_(" NONE"));
14967 else
14968 {
14969 static const struct
14970 {
14971 const char * name;
14972 int bit;
14973 }
14974 l_flags_vals[] =
14975 {
14976 { " EXACT_MATCH", LL_EXACT_MATCH },
14977 { " IGNORE_INT_VER", LL_IGNORE_INT_VER },
14978 { " REQUIRE_MINOR", LL_REQUIRE_MINOR },
14979 { " EXPORTS", LL_EXPORTS },
14980 { " DELAY_LOAD", LL_DELAY_LOAD },
14981 { " DELTA", LL_DELTA }
14982 };
14983 int flags = liblist.l_flags;
14984 size_t fcnt;
14985
14986 for (fcnt = 0; fcnt < ARRAY_SIZE (l_flags_vals); ++fcnt)
14987 if ((flags & l_flags_vals[fcnt].bit) != 0)
14988 {
14989 fputs (l_flags_vals[fcnt].name, stdout);
14990 flags ^= l_flags_vals[fcnt].bit;
14991 }
14992 if (flags != 0)
14993 printf (" %#x", (unsigned int) flags);
14994
14995 puts ("");
14996 }
14997 }
14998
14999 free (elib);
15000 }
15001 }
15002
15003 if (options_offset != 0)
15004 {
15005 Elf_External_Options * eopt;
15006 Elf_Internal_Options * iopt;
15007 Elf_Internal_Options * option;
15008 size_t offset;
15009 int cnt;
15010 sect = section_headers;
15011
15012 /* Find the section header so that we get the size. */
15013 sect = find_section_by_type (SHT_MIPS_OPTIONS);
15014 /* PR 17533 file: 012-277276-0.004. */
15015 if (sect == NULL)
15016 {
15017 error (_("No MIPS_OPTIONS header found\n"));
15018 return 0;
15019 }
15020
15021 eopt = (Elf_External_Options *) get_data (NULL, file, options_offset, 1,
15022 sect->sh_size, _("options"));
15023 if (eopt)
15024 {
15025 iopt = (Elf_Internal_Options *)
15026 cmalloc ((sect->sh_size / sizeof (eopt)), sizeof (* iopt));
15027 if (iopt == NULL)
15028 {
15029 error (_("Out of memory allocating space for MIPS options\n"));
15030 return 0;
15031 }
15032
15033 offset = cnt = 0;
15034 option = iopt;
15035
15036 while (offset <= sect->sh_size - sizeof (* eopt))
15037 {
15038 Elf_External_Options * eoption;
15039
15040 eoption = (Elf_External_Options *) ((char *) eopt + offset);
15041
15042 option->kind = BYTE_GET (eoption->kind);
15043 option->size = BYTE_GET (eoption->size);
15044 option->section = BYTE_GET (eoption->section);
15045 option->info = BYTE_GET (eoption->info);
15046
15047 /* PR 17531: file: ffa0fa3b. */
15048 if (option->size < sizeof (* eopt)
15049 || offset + option->size > sect->sh_size)
15050 {
15051 error (_("Invalid size (%u) for MIPS option\n"), option->size);
15052 return 0;
15053 }
15054 offset += option->size;
15055
15056 ++option;
15057 ++cnt;
15058 }
15059
15060 printf (_("\nSection '%s' contains %d entries:\n"),
15061 printable_section_name (sect), cnt);
15062
15063 option = iopt;
15064 offset = 0;
15065
15066 while (cnt-- > 0)
15067 {
15068 size_t len;
15069
15070 switch (option->kind)
15071 {
15072 case ODK_NULL:
15073 /* This shouldn't happen. */
15074 printf (" NULL %d %lx", option->section, option->info);
15075 break;
15076 case ODK_REGINFO:
15077 printf (" REGINFO ");
15078 if (elf_header.e_machine == EM_MIPS)
15079 {
15080 /* 32bit form. */
15081 Elf32_External_RegInfo * ereg;
15082 Elf32_RegInfo reginfo;
15083
15084 ereg = (Elf32_External_RegInfo *) (option + 1);
15085 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
15086 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
15087 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
15088 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
15089 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
15090 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
15091
15092 printf ("GPR %08lx GP 0x%lx\n",
15093 reginfo.ri_gprmask,
15094 (unsigned long) reginfo.ri_gp_value);
15095 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
15096 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
15097 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
15098 }
15099 else
15100 {
15101 /* 64 bit form. */
15102 Elf64_External_RegInfo * ereg;
15103 Elf64_Internal_RegInfo reginfo;
15104
15105 ereg = (Elf64_External_RegInfo *) (option + 1);
15106 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
15107 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
15108 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
15109 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
15110 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
15111 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
15112
15113 printf ("GPR %08lx GP 0x",
15114 reginfo.ri_gprmask);
15115 printf_vma (reginfo.ri_gp_value);
15116 printf ("\n");
15117
15118 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
15119 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
15120 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
15121 }
15122 ++option;
15123 continue;
15124 case ODK_EXCEPTIONS:
15125 fputs (" EXCEPTIONS fpe_min(", stdout);
15126 process_mips_fpe_exception (option->info & OEX_FPU_MIN);
15127 fputs (") fpe_max(", stdout);
15128 process_mips_fpe_exception ((option->info & OEX_FPU_MAX) >> 8);
15129 fputs (")", stdout);
15130
15131 if (option->info & OEX_PAGE0)
15132 fputs (" PAGE0", stdout);
15133 if (option->info & OEX_SMM)
15134 fputs (" SMM", stdout);
15135 if (option->info & OEX_FPDBUG)
15136 fputs (" FPDBUG", stdout);
15137 if (option->info & OEX_DISMISS)
15138 fputs (" DISMISS", stdout);
15139 break;
15140 case ODK_PAD:
15141 fputs (" PAD ", stdout);
15142 if (option->info & OPAD_PREFIX)
15143 fputs (" PREFIX", stdout);
15144 if (option->info & OPAD_POSTFIX)
15145 fputs (" POSTFIX", stdout);
15146 if (option->info & OPAD_SYMBOL)
15147 fputs (" SYMBOL", stdout);
15148 break;
15149 case ODK_HWPATCH:
15150 fputs (" HWPATCH ", stdout);
15151 if (option->info & OHW_R4KEOP)
15152 fputs (" R4KEOP", stdout);
15153 if (option->info & OHW_R8KPFETCH)
15154 fputs (" R8KPFETCH", stdout);
15155 if (option->info & OHW_R5KEOP)
15156 fputs (" R5KEOP", stdout);
15157 if (option->info & OHW_R5KCVTL)
15158 fputs (" R5KCVTL", stdout);
15159 break;
15160 case ODK_FILL:
15161 fputs (" FILL ", stdout);
15162 /* XXX Print content of info word? */
15163 break;
15164 case ODK_TAGS:
15165 fputs (" TAGS ", stdout);
15166 /* XXX Print content of info word? */
15167 break;
15168 case ODK_HWAND:
15169 fputs (" HWAND ", stdout);
15170 if (option->info & OHWA0_R4KEOP_CHECKED)
15171 fputs (" R4KEOP_CHECKED", stdout);
15172 if (option->info & OHWA0_R4KEOP_CLEAN)
15173 fputs (" R4KEOP_CLEAN", stdout);
15174 break;
15175 case ODK_HWOR:
15176 fputs (" HWOR ", stdout);
15177 if (option->info & OHWA0_R4KEOP_CHECKED)
15178 fputs (" R4KEOP_CHECKED", stdout);
15179 if (option->info & OHWA0_R4KEOP_CLEAN)
15180 fputs (" R4KEOP_CLEAN", stdout);
15181 break;
15182 case ODK_GP_GROUP:
15183 printf (" GP_GROUP %#06lx self-contained %#06lx",
15184 option->info & OGP_GROUP,
15185 (option->info & OGP_SELF) >> 16);
15186 break;
15187 case ODK_IDENT:
15188 printf (" IDENT %#06lx self-contained %#06lx",
15189 option->info & OGP_GROUP,
15190 (option->info & OGP_SELF) >> 16);
15191 break;
15192 default:
15193 /* This shouldn't happen. */
15194 printf (" %3d ??? %d %lx",
15195 option->kind, option->section, option->info);
15196 break;
15197 }
15198
15199 len = sizeof (* eopt);
15200 while (len < option->size)
15201 {
15202 unsigned char datum = * ((unsigned char *) eopt + offset + len);
15203
15204 if (ISPRINT (datum))
15205 printf ("%c", datum);
15206 else
15207 printf ("\\%03o", datum);
15208 len ++;
15209 }
15210 fputs ("\n", stdout);
15211
15212 offset += option->size;
15213 ++option;
15214 }
15215
15216 free (eopt);
15217 }
15218 }
15219
15220 if (conflicts_offset != 0 && conflictsno != 0)
15221 {
15222 Elf32_Conflict * iconf;
15223 size_t cnt;
15224
15225 if (dynamic_symbols == NULL)
15226 {
15227 error (_("conflict list found without a dynamic symbol table\n"));
15228 return 0;
15229 }
15230
15231 iconf = (Elf32_Conflict *) cmalloc (conflictsno, sizeof (* iconf));
15232 if (iconf == NULL)
15233 {
15234 error (_("Out of memory allocating space for dynamic conflicts\n"));
15235 return 0;
15236 }
15237
15238 if (is_32bit_elf)
15239 {
15240 Elf32_External_Conflict * econf32;
15241
15242 econf32 = (Elf32_External_Conflict *)
15243 get_data (NULL, file, conflicts_offset, conflictsno,
15244 sizeof (* econf32), _("conflict"));
15245 if (!econf32)
15246 return 0;
15247
15248 for (cnt = 0; cnt < conflictsno; ++cnt)
15249 iconf[cnt] = BYTE_GET (econf32[cnt]);
15250
15251 free (econf32);
15252 }
15253 else
15254 {
15255 Elf64_External_Conflict * econf64;
15256
15257 econf64 = (Elf64_External_Conflict *)
15258 get_data (NULL, file, conflicts_offset, conflictsno,
15259 sizeof (* econf64), _("conflict"));
15260 if (!econf64)
15261 return 0;
15262
15263 for (cnt = 0; cnt < conflictsno; ++cnt)
15264 iconf[cnt] = BYTE_GET (econf64[cnt]);
15265
15266 free (econf64);
15267 }
15268
15269 printf (_("\nSection '.conflict' contains %lu entries:\n"),
15270 (unsigned long) conflictsno);
15271 puts (_(" Num: Index Value Name"));
15272
15273 for (cnt = 0; cnt < conflictsno; ++cnt)
15274 {
15275 printf ("%5lu: %8lu ", (unsigned long) cnt, iconf[cnt]);
15276
15277 if (iconf[cnt] >= num_dynamic_syms)
15278 printf (_("<corrupt symbol index>"));
15279 else
15280 {
15281 Elf_Internal_Sym * psym;
15282
15283 psym = & dynamic_symbols[iconf[cnt]];
15284 print_vma (psym->st_value, FULL_HEX);
15285 putchar (' ');
15286 if (VALID_DYNAMIC_NAME (psym->st_name))
15287 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
15288 else
15289 printf (_("<corrupt: %14ld>"), psym->st_name);
15290 }
15291 putchar ('\n');
15292 }
15293
15294 free (iconf);
15295 }
15296
15297 if (pltgot != 0 && local_gotno != 0)
15298 {
15299 bfd_vma ent, local_end, global_end;
15300 size_t i, offset;
15301 unsigned char * data;
15302 unsigned char * data_end;
15303 int addr_size;
15304
15305 ent = pltgot;
15306 addr_size = (is_32bit_elf ? 4 : 8);
15307 local_end = pltgot + local_gotno * addr_size;
15308
15309 /* PR binutils/17533 file: 012-111227-0.004 */
15310 if (symtabno < gotsym)
15311 {
15312 error (_("The GOT symbol offset (%lu) is greater than the symbol table size (%lu)\n"),
15313 (unsigned long) gotsym, (unsigned long) symtabno);
15314 return 0;
15315 }
15316
15317 global_end = local_end + (symtabno - gotsym) * addr_size;
15318 /* PR 17531: file: 54c91a34. */
15319 if (global_end < local_end)
15320 {
15321 error (_("Too many GOT symbols: %lu\n"), (unsigned long) symtabno);
15322 return 0;
15323 }
15324
15325 offset = offset_from_vma (file, pltgot, global_end - pltgot);
15326 data = (unsigned char *) get_data (NULL, file, offset,
15327 global_end - pltgot, 1,
15328 _("Global Offset Table data"));
15329 if (data == NULL)
15330 return 0;
15331 data_end = data + (global_end - pltgot);
15332
15333 printf (_("\nPrimary GOT:\n"));
15334 printf (_(" Canonical gp value: "));
15335 print_vma (pltgot + 0x7ff0, LONG_HEX);
15336 printf ("\n\n");
15337
15338 printf (_(" Reserved entries:\n"));
15339 printf (_(" %*s %10s %*s Purpose\n"),
15340 addr_size * 2, _("Address"), _("Access"),
15341 addr_size * 2, _("Initial"));
15342 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15343 printf (_(" Lazy resolver\n"));
15344 if (ent == (bfd_vma) -1)
15345 goto got_print_fail;
15346 if (data
15347 && (byte_get (data + ent - pltgot, addr_size)
15348 >> (addr_size * 8 - 1)) != 0)
15349 {
15350 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15351 printf (_(" Module pointer (GNU extension)\n"));
15352 if (ent == (bfd_vma) -1)
15353 goto got_print_fail;
15354 }
15355 printf ("\n");
15356
15357 if (ent < local_end)
15358 {
15359 printf (_(" Local entries:\n"));
15360 printf (" %*s %10s %*s\n",
15361 addr_size * 2, _("Address"), _("Access"),
15362 addr_size * 2, _("Initial"));
15363 while (ent < local_end)
15364 {
15365 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15366 printf ("\n");
15367 if (ent == (bfd_vma) -1)
15368 goto got_print_fail;
15369 }
15370 printf ("\n");
15371 }
15372
15373 if (gotsym < symtabno)
15374 {
15375 int sym_width;
15376
15377 printf (_(" Global entries:\n"));
15378 printf (" %*s %10s %*s %*s %-7s %3s %s\n",
15379 addr_size * 2, _("Address"),
15380 _("Access"),
15381 addr_size * 2, _("Initial"),
15382 addr_size * 2, _("Sym.Val."),
15383 _("Type"),
15384 /* Note for translators: "Ndx" = abbreviated form of "Index". */
15385 _("Ndx"), _("Name"));
15386
15387 sym_width = (is_32bit_elf ? 80 : 160) - 28 - addr_size * 6 - 1;
15388
15389 for (i = gotsym; i < symtabno; i++)
15390 {
15391 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15392 printf (" ");
15393
15394 if (dynamic_symbols == NULL)
15395 printf (_("<no dynamic symbols>"));
15396 else if (i < num_dynamic_syms)
15397 {
15398 Elf_Internal_Sym * psym = dynamic_symbols + i;
15399
15400 print_vma (psym->st_value, LONG_HEX);
15401 printf (" %-7s %3s ",
15402 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
15403 get_symbol_index_type (psym->st_shndx));
15404
15405 if (VALID_DYNAMIC_NAME (psym->st_name))
15406 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
15407 else
15408 printf (_("<corrupt: %14ld>"), psym->st_name);
15409 }
15410 else
15411 printf (_("<symbol index %lu exceeds number of dynamic symbols>"),
15412 (unsigned long) i);
15413
15414 printf ("\n");
15415 if (ent == (bfd_vma) -1)
15416 break;
15417 }
15418 printf ("\n");
15419 }
15420
15421 got_print_fail:
15422 if (data)
15423 free (data);
15424 }
15425
15426 if (mips_pltgot != 0 && jmprel != 0 && pltrel != 0 && pltrelsz != 0)
15427 {
15428 bfd_vma ent, end;
15429 size_t offset, rel_offset;
15430 unsigned long count, i;
15431 unsigned char * data;
15432 int addr_size, sym_width;
15433 Elf_Internal_Rela * rels;
15434
15435 rel_offset = offset_from_vma (file, jmprel, pltrelsz);
15436 if (pltrel == DT_RELA)
15437 {
15438 if (!slurp_rela_relocs (file, rel_offset, pltrelsz, &rels, &count))
15439 return 0;
15440 }
15441 else
15442 {
15443 if (!slurp_rel_relocs (file, rel_offset, pltrelsz, &rels, &count))
15444 return 0;
15445 }
15446
15447 ent = mips_pltgot;
15448 addr_size = (is_32bit_elf ? 4 : 8);
15449 end = mips_pltgot + (2 + count) * addr_size;
15450
15451 offset = offset_from_vma (file, mips_pltgot, end - mips_pltgot);
15452 data = (unsigned char *) get_data (NULL, file, offset, end - mips_pltgot,
15453 1, _("Procedure Linkage Table data"));
15454 if (data == NULL)
15455 return 0;
15456
15457 printf ("\nPLT GOT:\n\n");
15458 printf (_(" Reserved entries:\n"));
15459 printf (_(" %*s %*s Purpose\n"),
15460 addr_size * 2, _("Address"), addr_size * 2, _("Initial"));
15461 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15462 printf (_(" PLT lazy resolver\n"));
15463 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15464 printf (_(" Module pointer\n"));
15465 printf ("\n");
15466
15467 printf (_(" Entries:\n"));
15468 printf (" %*s %*s %*s %-7s %3s %s\n",
15469 addr_size * 2, _("Address"),
15470 addr_size * 2, _("Initial"),
15471 addr_size * 2, _("Sym.Val."), _("Type"), _("Ndx"), _("Name"));
15472 sym_width = (is_32bit_elf ? 80 : 160) - 17 - addr_size * 6 - 1;
15473 for (i = 0; i < count; i++)
15474 {
15475 unsigned long idx = get_reloc_symindex (rels[i].r_info);
15476
15477 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15478 printf (" ");
15479
15480 if (idx >= num_dynamic_syms)
15481 printf (_("<corrupt symbol index: %lu>"), idx);
15482 else
15483 {
15484 Elf_Internal_Sym * psym = dynamic_symbols + idx;
15485
15486 print_vma (psym->st_value, LONG_HEX);
15487 printf (" %-7s %3s ",
15488 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
15489 get_symbol_index_type (psym->st_shndx));
15490 if (VALID_DYNAMIC_NAME (psym->st_name))
15491 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
15492 else
15493 printf (_("<corrupt: %14ld>"), psym->st_name);
15494 }
15495 printf ("\n");
15496 }
15497 printf ("\n");
15498
15499 if (data)
15500 free (data);
15501 free (rels);
15502 }
15503
15504 return 1;
15505 }
15506
15507 static int
15508 process_nds32_specific (FILE * file)
15509 {
15510 Elf_Internal_Shdr *sect = NULL;
15511
15512 sect = find_section (".nds32_e_flags");
15513 if (sect != NULL)
15514 {
15515 unsigned int *flag;
15516
15517 printf ("\nNDS32 elf flags section:\n");
15518 flag = get_data (NULL, file, sect->sh_offset, 1,
15519 sect->sh_size, _("NDS32 elf flags section"));
15520
15521 switch ((*flag) & 0x3)
15522 {
15523 case 0:
15524 printf ("(VEC_SIZE):\tNo entry.\n");
15525 break;
15526 case 1:
15527 printf ("(VEC_SIZE):\t4 bytes\n");
15528 break;
15529 case 2:
15530 printf ("(VEC_SIZE):\t16 bytes\n");
15531 break;
15532 case 3:
15533 printf ("(VEC_SIZE):\treserved\n");
15534 break;
15535 }
15536 }
15537
15538 return TRUE;
15539 }
15540
15541 static int
15542 process_gnu_liblist (FILE * file)
15543 {
15544 Elf_Internal_Shdr * section;
15545 Elf_Internal_Shdr * string_sec;
15546 Elf32_External_Lib * elib;
15547 char * strtab;
15548 size_t strtab_size;
15549 size_t cnt;
15550 unsigned i;
15551
15552 if (! do_arch)
15553 return 0;
15554
15555 for (i = 0, section = section_headers;
15556 i < elf_header.e_shnum;
15557 i++, section++)
15558 {
15559 switch (section->sh_type)
15560 {
15561 case SHT_GNU_LIBLIST:
15562 if (section->sh_link >= elf_header.e_shnum)
15563 break;
15564
15565 elib = (Elf32_External_Lib *)
15566 get_data (NULL, file, section->sh_offset, 1, section->sh_size,
15567 _("liblist section data"));
15568
15569 if (elib == NULL)
15570 break;
15571 string_sec = section_headers + section->sh_link;
15572
15573 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
15574 string_sec->sh_size,
15575 _("liblist string table"));
15576 if (strtab == NULL
15577 || section->sh_entsize != sizeof (Elf32_External_Lib))
15578 {
15579 free (elib);
15580 free (strtab);
15581 break;
15582 }
15583 strtab_size = string_sec->sh_size;
15584
15585 printf (_("\nLibrary list section '%s' contains %lu entries:\n"),
15586 printable_section_name (section),
15587 (unsigned long) (section->sh_size / sizeof (Elf32_External_Lib)));
15588
15589 puts (_(" Library Time Stamp Checksum Version Flags"));
15590
15591 for (cnt = 0; cnt < section->sh_size / sizeof (Elf32_External_Lib);
15592 ++cnt)
15593 {
15594 Elf32_Lib liblist;
15595 time_t atime;
15596 char timebuf[128];
15597 struct tm * tmp;
15598
15599 liblist.l_name = BYTE_GET (elib[cnt].l_name);
15600 atime = BYTE_GET (elib[cnt].l_time_stamp);
15601 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
15602 liblist.l_version = BYTE_GET (elib[cnt].l_version);
15603 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
15604
15605 tmp = gmtime (&atime);
15606 snprintf (timebuf, sizeof (timebuf),
15607 "%04u-%02u-%02uT%02u:%02u:%02u",
15608 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
15609 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
15610
15611 printf ("%3lu: ", (unsigned long) cnt);
15612 if (do_wide)
15613 printf ("%-20s", liblist.l_name < strtab_size
15614 ? strtab + liblist.l_name : _("<corrupt>"));
15615 else
15616 printf ("%-20.20s", liblist.l_name < strtab_size
15617 ? strtab + liblist.l_name : _("<corrupt>"));
15618 printf (" %s %#010lx %-7ld %-7ld\n", timebuf, liblist.l_checksum,
15619 liblist.l_version, liblist.l_flags);
15620 }
15621
15622 free (elib);
15623 free (strtab);
15624 }
15625 }
15626
15627 return 1;
15628 }
15629
15630 static const char *
15631 get_note_type (unsigned e_type)
15632 {
15633 static char buff[64];
15634
15635 if (elf_header.e_type == ET_CORE)
15636 switch (e_type)
15637 {
15638 case NT_AUXV:
15639 return _("NT_AUXV (auxiliary vector)");
15640 case NT_PRSTATUS:
15641 return _("NT_PRSTATUS (prstatus structure)");
15642 case NT_FPREGSET:
15643 return _("NT_FPREGSET (floating point registers)");
15644 case NT_PRPSINFO:
15645 return _("NT_PRPSINFO (prpsinfo structure)");
15646 case NT_TASKSTRUCT:
15647 return _("NT_TASKSTRUCT (task structure)");
15648 case NT_PRXFPREG:
15649 return _("NT_PRXFPREG (user_xfpregs structure)");
15650 case NT_PPC_VMX:
15651 return _("NT_PPC_VMX (ppc Altivec registers)");
15652 case NT_PPC_VSX:
15653 return _("NT_PPC_VSX (ppc VSX registers)");
15654 case NT_386_TLS:
15655 return _("NT_386_TLS (x86 TLS information)");
15656 case NT_386_IOPERM:
15657 return _("NT_386_IOPERM (x86 I/O permissions)");
15658 case NT_X86_XSTATE:
15659 return _("NT_X86_XSTATE (x86 XSAVE extended state)");
15660 case NT_S390_HIGH_GPRS:
15661 return _("NT_S390_HIGH_GPRS (s390 upper register halves)");
15662 case NT_S390_TIMER:
15663 return _("NT_S390_TIMER (s390 timer register)");
15664 case NT_S390_TODCMP:
15665 return _("NT_S390_TODCMP (s390 TOD comparator register)");
15666 case NT_S390_TODPREG:
15667 return _("NT_S390_TODPREG (s390 TOD programmable register)");
15668 case NT_S390_CTRS:
15669 return _("NT_S390_CTRS (s390 control registers)");
15670 case NT_S390_PREFIX:
15671 return _("NT_S390_PREFIX (s390 prefix register)");
15672 case NT_S390_LAST_BREAK:
15673 return _("NT_S390_LAST_BREAK (s390 last breaking event address)");
15674 case NT_S390_SYSTEM_CALL:
15675 return _("NT_S390_SYSTEM_CALL (s390 system call restart data)");
15676 case NT_S390_TDB:
15677 return _("NT_S390_TDB (s390 transaction diagnostic block)");
15678 case NT_S390_VXRS_LOW:
15679 return _("NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)");
15680 case NT_S390_VXRS_HIGH:
15681 return _("NT_S390_VXRS_HIGH (s390 vector registers 16-31)");
15682 case NT_ARM_VFP:
15683 return _("NT_ARM_VFP (arm VFP registers)");
15684 case NT_ARM_TLS:
15685 return _("NT_ARM_TLS (AArch TLS registers)");
15686 case NT_ARM_HW_BREAK:
15687 return _("NT_ARM_HW_BREAK (AArch hardware breakpoint registers)");
15688 case NT_ARM_HW_WATCH:
15689 return _("NT_ARM_HW_WATCH (AArch hardware watchpoint registers)");
15690 case NT_PSTATUS:
15691 return _("NT_PSTATUS (pstatus structure)");
15692 case NT_FPREGS:
15693 return _("NT_FPREGS (floating point registers)");
15694 case NT_PSINFO:
15695 return _("NT_PSINFO (psinfo structure)");
15696 case NT_LWPSTATUS:
15697 return _("NT_LWPSTATUS (lwpstatus_t structure)");
15698 case NT_LWPSINFO:
15699 return _("NT_LWPSINFO (lwpsinfo_t structure)");
15700 case NT_WIN32PSTATUS:
15701 return _("NT_WIN32PSTATUS (win32_pstatus structure)");
15702 case NT_SIGINFO:
15703 return _("NT_SIGINFO (siginfo_t data)");
15704 case NT_FILE:
15705 return _("NT_FILE (mapped files)");
15706 default:
15707 break;
15708 }
15709 else
15710 switch (e_type)
15711 {
15712 case NT_VERSION:
15713 return _("NT_VERSION (version)");
15714 case NT_ARCH:
15715 return _("NT_ARCH (architecture)");
15716 default:
15717 break;
15718 }
15719
15720 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
15721 return buff;
15722 }
15723
15724 static int
15725 print_core_note (Elf_Internal_Note *pnote)
15726 {
15727 unsigned int addr_size = is_32bit_elf ? 4 : 8;
15728 bfd_vma count, page_size;
15729 unsigned char *descdata, *filenames, *descend;
15730
15731 if (pnote->type != NT_FILE)
15732 return 1;
15733
15734 #ifndef BFD64
15735 if (!is_32bit_elf)
15736 {
15737 printf (_(" Cannot decode 64-bit note in 32-bit build\n"));
15738 /* Still "successful". */
15739 return 1;
15740 }
15741 #endif
15742
15743 if (pnote->descsz < 2 * addr_size)
15744 {
15745 printf (_(" Malformed note - too short for header\n"));
15746 return 0;
15747 }
15748
15749 descdata = (unsigned char *) pnote->descdata;
15750 descend = descdata + pnote->descsz;
15751
15752 if (descdata[pnote->descsz - 1] != '\0')
15753 {
15754 printf (_(" Malformed note - does not end with \\0\n"));
15755 return 0;
15756 }
15757
15758 count = byte_get (descdata, addr_size);
15759 descdata += addr_size;
15760
15761 page_size = byte_get (descdata, addr_size);
15762 descdata += addr_size;
15763
15764 if (pnote->descsz < 2 * addr_size + count * 3 * addr_size)
15765 {
15766 printf (_(" Malformed note - too short for supplied file count\n"));
15767 return 0;
15768 }
15769
15770 printf (_(" Page size: "));
15771 print_vma (page_size, DEC);
15772 printf ("\n");
15773
15774 printf (_(" %*s%*s%*s\n"),
15775 (int) (2 + 2 * addr_size), _("Start"),
15776 (int) (4 + 2 * addr_size), _("End"),
15777 (int) (4 + 2 * addr_size), _("Page Offset"));
15778 filenames = descdata + count * 3 * addr_size;
15779 while (count-- > 0)
15780 {
15781 bfd_vma start, end, file_ofs;
15782
15783 if (filenames == descend)
15784 {
15785 printf (_(" Malformed note - filenames end too early\n"));
15786 return 0;
15787 }
15788
15789 start = byte_get (descdata, addr_size);
15790 descdata += addr_size;
15791 end = byte_get (descdata, addr_size);
15792 descdata += addr_size;
15793 file_ofs = byte_get (descdata, addr_size);
15794 descdata += addr_size;
15795
15796 printf (" ");
15797 print_vma (start, FULL_HEX);
15798 printf (" ");
15799 print_vma (end, FULL_HEX);
15800 printf (" ");
15801 print_vma (file_ofs, FULL_HEX);
15802 printf ("\n %s\n", filenames);
15803
15804 filenames += 1 + strlen ((char *) filenames);
15805 }
15806
15807 return 1;
15808 }
15809
15810 static const char *
15811 get_gnu_elf_note_type (unsigned e_type)
15812 {
15813 /* NB/ Keep this switch statement in sync with print_gnu_note (). */
15814 switch (e_type)
15815 {
15816 case NT_GNU_ABI_TAG:
15817 return _("NT_GNU_ABI_TAG (ABI version tag)");
15818 case NT_GNU_HWCAP:
15819 return _("NT_GNU_HWCAP (DSO-supplied software HWCAP info)");
15820 case NT_GNU_BUILD_ID:
15821 return _("NT_GNU_BUILD_ID (unique build ID bitstring)");
15822 case NT_GNU_GOLD_VERSION:
15823 return _("NT_GNU_GOLD_VERSION (gold version)");
15824 default:
15825 {
15826 static char buff[64];
15827
15828 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
15829 return buff;
15830 }
15831 }
15832 }
15833
15834 static int
15835 print_gnu_note (Elf_Internal_Note *pnote)
15836 {
15837 /* NB/ Keep this switch statement in sync with get_gnu_elf_note_type (). */
15838 switch (pnote->type)
15839 {
15840 case NT_GNU_BUILD_ID:
15841 {
15842 unsigned long i;
15843
15844 printf (_(" Build ID: "));
15845 for (i = 0; i < pnote->descsz; ++i)
15846 printf ("%02x", pnote->descdata[i] & 0xff);
15847 printf ("\n");
15848 }
15849 break;
15850
15851 case NT_GNU_ABI_TAG:
15852 {
15853 unsigned long os, major, minor, subminor;
15854 const char *osname;
15855
15856 /* PR 17531: file: 030-599401-0.004. */
15857 if (pnote->descsz < 16)
15858 {
15859 printf (_(" <corrupt GNU_ABI_TAG>\n"));
15860 break;
15861 }
15862
15863 os = byte_get ((unsigned char *) pnote->descdata, 4);
15864 major = byte_get ((unsigned char *) pnote->descdata + 4, 4);
15865 minor = byte_get ((unsigned char *) pnote->descdata + 8, 4);
15866 subminor = byte_get ((unsigned char *) pnote->descdata + 12, 4);
15867
15868 switch (os)
15869 {
15870 case GNU_ABI_TAG_LINUX:
15871 osname = "Linux";
15872 break;
15873 case GNU_ABI_TAG_HURD:
15874 osname = "Hurd";
15875 break;
15876 case GNU_ABI_TAG_SOLARIS:
15877 osname = "Solaris";
15878 break;
15879 case GNU_ABI_TAG_FREEBSD:
15880 osname = "FreeBSD";
15881 break;
15882 case GNU_ABI_TAG_NETBSD:
15883 osname = "NetBSD";
15884 break;
15885 case GNU_ABI_TAG_SYLLABLE:
15886 osname = "Syllable";
15887 break;
15888 case GNU_ABI_TAG_NACL:
15889 osname = "NaCl";
15890 break;
15891 default:
15892 osname = "Unknown";
15893 break;
15894 }
15895
15896 printf (_(" OS: %s, ABI: %ld.%ld.%ld\n"), osname,
15897 major, minor, subminor);
15898 }
15899 break;
15900
15901 case NT_GNU_GOLD_VERSION:
15902 {
15903 unsigned long i;
15904
15905 printf (_(" Version: "));
15906 for (i = 0; i < pnote->descsz && pnote->descdata[i] != '\0'; ++i)
15907 printf ("%c", pnote->descdata[i]);
15908 printf ("\n");
15909 }
15910 break;
15911
15912 case NT_GNU_HWCAP:
15913 {
15914 unsigned long num_entries, mask;
15915
15916 /* Hardware capabilities information. Word 0 is the number of entries.
15917 Word 1 is a bitmask of enabled entries. The rest of the descriptor
15918 is a series of entries, where each entry is a single byte followed
15919 by a nul terminated string. The byte gives the bit number to test
15920 if enabled in the bitmask. */
15921 printf (_(" Hardware Capabilities: "));
15922 if (pnote->descsz < 8)
15923 {
15924 printf (_("<corrupt GNU_HWCAP>\n"));
15925 break;
15926 }
15927 num_entries = byte_get ((unsigned char *) pnote->descdata, 4);
15928 mask = byte_get ((unsigned char *) pnote->descdata + 4, 4);
15929 printf (_("num entries: %ld, enabled mask: %lx\n"), num_entries, mask);
15930 /* FIXME: Add code to display the entries... */
15931 }
15932 break;
15933
15934 default:
15935 /* Handle unrecognised types. An error message should have already been
15936 created by get_gnu_elf_note_type(), so all that we need to do is to
15937 display the data. */
15938 {
15939 unsigned long i;
15940
15941 printf (_(" Description data: "));
15942 for (i = 0; i < pnote->descsz; ++i)
15943 printf ("%02x ", pnote->descdata[i] & 0xff);
15944 printf ("\n");
15945 }
15946 break;
15947 }
15948
15949 return 1;
15950 }
15951
15952 static const char *
15953 get_v850_elf_note_type (enum v850_notes n_type)
15954 {
15955 static char buff[64];
15956
15957 switch (n_type)
15958 {
15959 case V850_NOTE_ALIGNMENT: return _("Alignment of 8-byte objects");
15960 case V850_NOTE_DATA_SIZE: return _("Sizeof double and long double");
15961 case V850_NOTE_FPU_INFO: return _("Type of FPU support needed");
15962 case V850_NOTE_SIMD_INFO: return _("Use of SIMD instructions");
15963 case V850_NOTE_CACHE_INFO: return _("Use of cache");
15964 case V850_NOTE_MMU_INFO: return _("Use of MMU");
15965 default:
15966 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), n_type);
15967 return buff;
15968 }
15969 }
15970
15971 static int
15972 print_v850_note (Elf_Internal_Note * pnote)
15973 {
15974 unsigned int val;
15975
15976 if (pnote->descsz != 4)
15977 return 0;
15978 val = byte_get ((unsigned char *) pnote->descdata, pnote->descsz);
15979
15980 if (val == 0)
15981 {
15982 printf (_("not set\n"));
15983 return 1;
15984 }
15985
15986 switch (pnote->type)
15987 {
15988 case V850_NOTE_ALIGNMENT:
15989 switch (val)
15990 {
15991 case EF_RH850_DATA_ALIGN4: printf (_("4-byte\n")); return 1;
15992 case EF_RH850_DATA_ALIGN8: printf (_("8-byte\n")); return 1;
15993 }
15994 break;
15995
15996 case V850_NOTE_DATA_SIZE:
15997 switch (val)
15998 {
15999 case EF_RH850_DOUBLE32: printf (_("4-bytes\n")); return 1;
16000 case EF_RH850_DOUBLE64: printf (_("8-bytes\n")); return 1;
16001 }
16002 break;
16003
16004 case V850_NOTE_FPU_INFO:
16005 switch (val)
16006 {
16007 case EF_RH850_FPU20: printf (_("FPU-2.0\n")); return 1;
16008 case EF_RH850_FPU30: printf (_("FPU-3.0\n")); return 1;
16009 }
16010 break;
16011
16012 case V850_NOTE_MMU_INFO:
16013 case V850_NOTE_CACHE_INFO:
16014 case V850_NOTE_SIMD_INFO:
16015 if (val == EF_RH850_SIMD)
16016 {
16017 printf (_("yes\n"));
16018 return 1;
16019 }
16020 break;
16021
16022 default:
16023 /* An 'unknown note type' message will already have been displayed. */
16024 break;
16025 }
16026
16027 printf (_("unknown value: %x\n"), val);
16028 return 0;
16029 }
16030
16031 static int
16032 process_netbsd_elf_note (Elf_Internal_Note * pnote)
16033 {
16034 unsigned int version;
16035
16036 switch (pnote->type)
16037 {
16038 case NT_NETBSD_IDENT:
16039 version = byte_get ((unsigned char *) pnote->descdata, sizeof (version));
16040 if ((version / 10000) % 100)
16041 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u%s%c)\n", pnote->descsz,
16042 version, version / 100000000, (version / 1000000) % 100,
16043 (version / 10000) % 100 > 26 ? "Z" : "",
16044 'A' + (version / 10000) % 26);
16045 else
16046 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u.%u)\n", pnote->descsz,
16047 version, version / 100000000, (version / 1000000) % 100,
16048 (version / 100) % 100);
16049 return 1;
16050
16051 case NT_NETBSD_MARCH:
16052 printf (" NetBSD\t0x%08lx\tMARCH <%s>\n", pnote->descsz,
16053 pnote->descdata);
16054 return 1;
16055
16056 default:
16057 break;
16058 }
16059
16060 printf (" NetBSD\t0x%08lx\tUnknown note type: (0x%08lx)\n", pnote->descsz,
16061 pnote->type);
16062 return 1;
16063 }
16064
16065 static const char *
16066 get_freebsd_elfcore_note_type (unsigned e_type)
16067 {
16068 switch (e_type)
16069 {
16070 case NT_FREEBSD_THRMISC:
16071 return _("NT_THRMISC (thrmisc structure)");
16072 case NT_FREEBSD_PROCSTAT_PROC:
16073 return _("NT_PROCSTAT_PROC (proc data)");
16074 case NT_FREEBSD_PROCSTAT_FILES:
16075 return _("NT_PROCSTAT_FILES (files data)");
16076 case NT_FREEBSD_PROCSTAT_VMMAP:
16077 return _("NT_PROCSTAT_VMMAP (vmmap data)");
16078 case NT_FREEBSD_PROCSTAT_GROUPS:
16079 return _("NT_PROCSTAT_GROUPS (groups data)");
16080 case NT_FREEBSD_PROCSTAT_UMASK:
16081 return _("NT_PROCSTAT_UMASK (umask data)");
16082 case NT_FREEBSD_PROCSTAT_RLIMIT:
16083 return _("NT_PROCSTAT_RLIMIT (rlimit data)");
16084 case NT_FREEBSD_PROCSTAT_OSREL:
16085 return _("NT_PROCSTAT_OSREL (osreldate data)");
16086 case NT_FREEBSD_PROCSTAT_PSSTRINGS:
16087 return _("NT_PROCSTAT_PSSTRINGS (ps_strings data)");
16088 case NT_FREEBSD_PROCSTAT_AUXV:
16089 return _("NT_PROCSTAT_AUXV (auxv data)");
16090 }
16091 return get_note_type (e_type);
16092 }
16093
16094 static const char *
16095 get_netbsd_elfcore_note_type (unsigned e_type)
16096 {
16097 static char buff[64];
16098
16099 if (e_type == NT_NETBSDCORE_PROCINFO)
16100 {
16101 /* NetBSD core "procinfo" structure. */
16102 return _("NetBSD procinfo structure");
16103 }
16104
16105 /* As of Jan 2002 there are no other machine-independent notes
16106 defined for NetBSD core files. If the note type is less
16107 than the start of the machine-dependent note types, we don't
16108 understand it. */
16109
16110 if (e_type < NT_NETBSDCORE_FIRSTMACH)
16111 {
16112 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16113 return buff;
16114 }
16115
16116 switch (elf_header.e_machine)
16117 {
16118 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0
16119 and PT_GETFPREGS == mach+2. */
16120
16121 case EM_OLD_ALPHA:
16122 case EM_ALPHA:
16123 case EM_SPARC:
16124 case EM_SPARC32PLUS:
16125 case EM_SPARCV9:
16126 switch (e_type)
16127 {
16128 case NT_NETBSDCORE_FIRSTMACH + 0:
16129 return _("PT_GETREGS (reg structure)");
16130 case NT_NETBSDCORE_FIRSTMACH + 2:
16131 return _("PT_GETFPREGS (fpreg structure)");
16132 default:
16133 break;
16134 }
16135 break;
16136
16137 /* On all other arch's, PT_GETREGS == mach+1 and
16138 PT_GETFPREGS == mach+3. */
16139 default:
16140 switch (e_type)
16141 {
16142 case NT_NETBSDCORE_FIRSTMACH + 1:
16143 return _("PT_GETREGS (reg structure)");
16144 case NT_NETBSDCORE_FIRSTMACH + 3:
16145 return _("PT_GETFPREGS (fpreg structure)");
16146 default:
16147 break;
16148 }
16149 }
16150
16151 snprintf (buff, sizeof (buff), "PT_FIRSTMACH+%d",
16152 e_type - NT_NETBSDCORE_FIRSTMACH);
16153 return buff;
16154 }
16155
16156 static const char *
16157 get_stapsdt_note_type (unsigned e_type)
16158 {
16159 static char buff[64];
16160
16161 switch (e_type)
16162 {
16163 case NT_STAPSDT:
16164 return _("NT_STAPSDT (SystemTap probe descriptors)");
16165
16166 default:
16167 break;
16168 }
16169
16170 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16171 return buff;
16172 }
16173
16174 static int
16175 print_stapsdt_note (Elf_Internal_Note *pnote)
16176 {
16177 int addr_size = is_32bit_elf ? 4 : 8;
16178 char *data = pnote->descdata;
16179 char *data_end = pnote->descdata + pnote->descsz;
16180 bfd_vma pc, base_addr, semaphore;
16181 char *provider, *probe, *arg_fmt;
16182
16183 pc = byte_get ((unsigned char *) data, addr_size);
16184 data += addr_size;
16185 base_addr = byte_get ((unsigned char *) data, addr_size);
16186 data += addr_size;
16187 semaphore = byte_get ((unsigned char *) data, addr_size);
16188 data += addr_size;
16189
16190 provider = data;
16191 data += strlen (data) + 1;
16192 probe = data;
16193 data += strlen (data) + 1;
16194 arg_fmt = data;
16195 data += strlen (data) + 1;
16196
16197 printf (_(" Provider: %s\n"), provider);
16198 printf (_(" Name: %s\n"), probe);
16199 printf (_(" Location: "));
16200 print_vma (pc, FULL_HEX);
16201 printf (_(", Base: "));
16202 print_vma (base_addr, FULL_HEX);
16203 printf (_(", Semaphore: "));
16204 print_vma (semaphore, FULL_HEX);
16205 printf ("\n");
16206 printf (_(" Arguments: %s\n"), arg_fmt);
16207
16208 return data == data_end;
16209 }
16210
16211 static const char *
16212 get_ia64_vms_note_type (unsigned e_type)
16213 {
16214 static char buff[64];
16215
16216 switch (e_type)
16217 {
16218 case NT_VMS_MHD:
16219 return _("NT_VMS_MHD (module header)");
16220 case NT_VMS_LNM:
16221 return _("NT_VMS_LNM (language name)");
16222 case NT_VMS_SRC:
16223 return _("NT_VMS_SRC (source files)");
16224 case NT_VMS_TITLE:
16225 return "NT_VMS_TITLE";
16226 case NT_VMS_EIDC:
16227 return _("NT_VMS_EIDC (consistency check)");
16228 case NT_VMS_FPMODE:
16229 return _("NT_VMS_FPMODE (FP mode)");
16230 case NT_VMS_LINKTIME:
16231 return "NT_VMS_LINKTIME";
16232 case NT_VMS_IMGNAM:
16233 return _("NT_VMS_IMGNAM (image name)");
16234 case NT_VMS_IMGID:
16235 return _("NT_VMS_IMGID (image id)");
16236 case NT_VMS_LINKID:
16237 return _("NT_VMS_LINKID (link id)");
16238 case NT_VMS_IMGBID:
16239 return _("NT_VMS_IMGBID (build id)");
16240 case NT_VMS_GSTNAM:
16241 return _("NT_VMS_GSTNAM (sym table name)");
16242 case NT_VMS_ORIG_DYN:
16243 return "NT_VMS_ORIG_DYN";
16244 case NT_VMS_PATCHTIME:
16245 return "NT_VMS_PATCHTIME";
16246 default:
16247 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16248 return buff;
16249 }
16250 }
16251
16252 static int
16253 print_ia64_vms_note (Elf_Internal_Note * pnote)
16254 {
16255 switch (pnote->type)
16256 {
16257 case NT_VMS_MHD:
16258 if (pnote->descsz > 36)
16259 {
16260 size_t l = strlen (pnote->descdata + 34);
16261 printf (_(" Creation date : %.17s\n"), pnote->descdata);
16262 printf (_(" Last patch date: %.17s\n"), pnote->descdata + 17);
16263 printf (_(" Module name : %s\n"), pnote->descdata + 34);
16264 printf (_(" Module version : %s\n"), pnote->descdata + 34 + l + 1);
16265 }
16266 else
16267 printf (_(" Invalid size\n"));
16268 break;
16269 case NT_VMS_LNM:
16270 printf (_(" Language: %s\n"), pnote->descdata);
16271 break;
16272 #ifdef BFD64
16273 case NT_VMS_FPMODE:
16274 printf (_(" Floating Point mode: "));
16275 printf ("0x%016" BFD_VMA_FMT "x\n",
16276 (bfd_vma) byte_get ((unsigned char *)pnote->descdata, 8));
16277 break;
16278 case NT_VMS_LINKTIME:
16279 printf (_(" Link time: "));
16280 print_vms_time
16281 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
16282 printf ("\n");
16283 break;
16284 case NT_VMS_PATCHTIME:
16285 printf (_(" Patch time: "));
16286 print_vms_time
16287 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
16288 printf ("\n");
16289 break;
16290 case NT_VMS_ORIG_DYN:
16291 printf (_(" Major id: %u, minor id: %u\n"),
16292 (unsigned) byte_get ((unsigned char *)pnote->descdata, 4),
16293 (unsigned) byte_get ((unsigned char *)pnote->descdata + 4, 4));
16294 printf (_(" Last modified : "));
16295 print_vms_time
16296 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata + 8, 8));
16297 printf (_("\n Link flags : "));
16298 printf ("0x%016" BFD_VMA_FMT "x\n",
16299 (bfd_vma) byte_get ((unsigned char *)pnote->descdata + 16, 8));
16300 printf (_(" Header flags: 0x%08x\n"),
16301 (unsigned) byte_get ((unsigned char *)pnote->descdata + 24, 4));
16302 printf (_(" Image id : %s\n"), pnote->descdata + 32);
16303 break;
16304 #endif
16305 case NT_VMS_IMGNAM:
16306 printf (_(" Image name: %s\n"), pnote->descdata);
16307 break;
16308 case NT_VMS_GSTNAM:
16309 printf (_(" Global symbol table name: %s\n"), pnote->descdata);
16310 break;
16311 case NT_VMS_IMGID:
16312 printf (_(" Image id: %s\n"), pnote->descdata);
16313 break;
16314 case NT_VMS_LINKID:
16315 printf (_(" Linker id: %s\n"), pnote->descdata);
16316 break;
16317 default:
16318 break;
16319 }
16320 return 1;
16321 }
16322
16323 /* Note that by the ELF standard, the name field is already null byte
16324 terminated, and namesz includes the terminating null byte.
16325 I.E. the value of namesz for the name "FSF" is 4.
16326
16327 If the value of namesz is zero, there is no name present. */
16328 static int
16329 process_note (Elf_Internal_Note * pnote,
16330 FILE * file ATTRIBUTE_UNUSED,
16331 Elf_Internal_Shdr * section ATTRIBUTE_UNUSED)
16332 {
16333 const char * name = pnote->namesz ? pnote->namedata : "(NONE)";
16334 const char * nt;
16335
16336 if (pnote->namesz == 0)
16337 /* If there is no note name, then use the default set of
16338 note type strings. */
16339 nt = get_note_type (pnote->type);
16340
16341 else if (const_strneq (pnote->namedata, "GNU"))
16342 /* GNU-specific object file notes. */
16343 nt = get_gnu_elf_note_type (pnote->type);
16344
16345 else if (const_strneq (pnote->namedata, "FreeBSD"))
16346 /* FreeBSD-specific core file notes. */
16347 nt = get_freebsd_elfcore_note_type (pnote->type);
16348
16349 else if (const_strneq (pnote->namedata, "NetBSD-CORE"))
16350 /* NetBSD-specific core file notes. */
16351 nt = get_netbsd_elfcore_note_type (pnote->type);
16352
16353 else if (const_strneq (pnote->namedata, "NetBSD"))
16354 /* NetBSD-specific core file notes. */
16355 return process_netbsd_elf_note (pnote);
16356
16357 else if (strneq (pnote->namedata, "SPU/", 4))
16358 {
16359 /* SPU-specific core file notes. */
16360 nt = pnote->namedata + 4;
16361 name = "SPU";
16362 }
16363
16364 else if (const_strneq (pnote->namedata, "IPF/VMS"))
16365 /* VMS/ia64-specific file notes. */
16366 nt = get_ia64_vms_note_type (pnote->type);
16367
16368 else if (const_strneq (pnote->namedata, "stapsdt"))
16369 nt = get_stapsdt_note_type (pnote->type);
16370
16371 else
16372 /* Don't recognize this note name; just use the default set of
16373 note type strings. */
16374 nt = get_note_type (pnote->type);
16375
16376 printf (" ");
16377 print_symbol (-20, name);
16378 printf (" 0x%08lx\t%s\n", pnote->descsz, nt);
16379
16380 if (const_strneq (pnote->namedata, "IPF/VMS"))
16381 return print_ia64_vms_note (pnote);
16382 else if (const_strneq (pnote->namedata, "GNU"))
16383 return print_gnu_note (pnote);
16384 else if (const_strneq (pnote->namedata, "stapsdt"))
16385 return print_stapsdt_note (pnote);
16386 else if (const_strneq (pnote->namedata, "CORE"))
16387 return print_core_note (pnote);
16388
16389 else if (pnote->descsz)
16390 {
16391 unsigned long i;
16392
16393 printf (_(" description data: "));
16394 for (i = 0; i < pnote->descsz; i++)
16395 printf ("%02x ", pnote->descdata[i]);
16396 printf ("\n");
16397 }
16398
16399 return 1;
16400 }
16401
16402 static int
16403 process_notes_at (FILE * file,
16404 Elf_Internal_Shdr * section,
16405 bfd_vma offset,
16406 bfd_vma length)
16407 {
16408 Elf_External_Note * pnotes;
16409 Elf_External_Note * external;
16410 char * end;
16411 int res = 1;
16412
16413 if (length <= 0)
16414 return 0;
16415
16416 if (section)
16417 {
16418 pnotes = (Elf_External_Note *) get_section_contents (section, file);
16419 if (pnotes)
16420 apply_relocations (file, section, (unsigned char *) pnotes, length, NULL, NULL);
16421 }
16422 else
16423 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
16424 _("notes"));
16425 if (pnotes == NULL)
16426 return 0;
16427
16428 external = pnotes;
16429
16430 if (section)
16431 printf (_("\nDisplaying notes found in: %s\n"), printable_section_name (section));
16432 else
16433 printf (_("\nDisplaying notes found at file offset 0x%08lx with length 0x%08lx:\n"),
16434 (unsigned long) offset, (unsigned long) length);
16435
16436 printf (_(" %-20s %10s\tDescription\n"), _("Owner"), _("Data size"));
16437
16438 end = (char *) pnotes + length;
16439 while ((char *) external < end)
16440 {
16441 Elf_Internal_Note inote;
16442 size_t min_notesz;
16443 char *next;
16444 char * temp = NULL;
16445 size_t data_remaining = end - (char *) external;
16446
16447 if (!is_ia64_vms ())
16448 {
16449 /* PR binutils/15191
16450 Make sure that there is enough data to read. */
16451 min_notesz = offsetof (Elf_External_Note, name);
16452 if (data_remaining < min_notesz)
16453 {
16454 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
16455 (int) data_remaining);
16456 break;
16457 }
16458 inote.type = BYTE_GET (external->type);
16459 inote.namesz = BYTE_GET (external->namesz);
16460 inote.namedata = external->name;
16461 inote.descsz = BYTE_GET (external->descsz);
16462 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
16463 /* PR 17531: file: 3443835e. */
16464 if (inote.descdata < (char *) pnotes || inote.descdata > end)
16465 {
16466 warn (_("Corrupt note: name size is too big: %lx\n"), inote.namesz);
16467 inote.descdata = inote.namedata;
16468 inote.namesz = 0;
16469 }
16470
16471 inote.descpos = offset + (inote.descdata - (char *) pnotes);
16472 next = inote.descdata + align_power (inote.descsz, 2);
16473 }
16474 else
16475 {
16476 Elf64_External_VMS_Note *vms_external;
16477
16478 /* PR binutils/15191
16479 Make sure that there is enough data to read. */
16480 min_notesz = offsetof (Elf64_External_VMS_Note, name);
16481 if (data_remaining < min_notesz)
16482 {
16483 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
16484 (int) data_remaining);
16485 break;
16486 }
16487
16488 vms_external = (Elf64_External_VMS_Note *) external;
16489 inote.type = BYTE_GET (vms_external->type);
16490 inote.namesz = BYTE_GET (vms_external->namesz);
16491 inote.namedata = vms_external->name;
16492 inote.descsz = BYTE_GET (vms_external->descsz);
16493 inote.descdata = inote.namedata + align_power (inote.namesz, 3);
16494 inote.descpos = offset + (inote.descdata - (char *) pnotes);
16495 next = inote.descdata + align_power (inote.descsz, 3);
16496 }
16497
16498 if (inote.descdata < (char *) external + min_notesz
16499 || next < (char *) external + min_notesz
16500 /* PR binutils/17531: file: id:000000,sig:11,src:006986,op:havoc,rep:4. */
16501 || inote.namedata + inote.namesz < inote.namedata
16502 || inote.descdata + inote.descsz < inote.descdata
16503 || data_remaining < (size_t)(next - (char *) external))
16504 {
16505 warn (_("note with invalid namesz and/or descsz found at offset 0x%lx\n"),
16506 (unsigned long) ((char *) external - (char *) pnotes));
16507 warn (_(" type: 0x%lx, namesize: 0x%08lx, descsize: 0x%08lx\n"),
16508 inote.type, inote.namesz, inote.descsz);
16509 break;
16510 }
16511
16512 external = (Elf_External_Note *) next;
16513
16514 /* Verify that name is null terminated. It appears that at least
16515 one version of Linux (RedHat 6.0) generates corefiles that don't
16516 comply with the ELF spec by failing to include the null byte in
16517 namesz. */
16518 if (inote.namedata[inote.namesz - 1] != '\0')
16519 {
16520 temp = (char *) malloc (inote.namesz + 1);
16521 if (temp == NULL)
16522 {
16523 error (_("Out of memory allocating space for inote name\n"));
16524 res = 0;
16525 break;
16526 }
16527
16528 strncpy (temp, inote.namedata, inote.namesz);
16529 temp[inote.namesz] = 0;
16530
16531 /* warn (_("'%s' NOTE name not properly null terminated\n"), temp); */
16532 inote.namedata = temp;
16533 }
16534
16535 res &= process_note (& inote, file, section);
16536
16537 if (temp != NULL)
16538 {
16539 free (temp);
16540 temp = NULL;
16541 }
16542 }
16543
16544 free (pnotes);
16545
16546 return res;
16547 }
16548
16549 static int
16550 process_corefile_note_segments (FILE * file)
16551 {
16552 Elf_Internal_Phdr * segment;
16553 unsigned int i;
16554 int res = 1;
16555
16556 if (! get_program_headers (file))
16557 return 0;
16558
16559 for (i = 0, segment = program_headers;
16560 i < elf_header.e_phnum;
16561 i++, segment++)
16562 {
16563 if (segment->p_type == PT_NOTE)
16564 res &= process_notes_at (file, NULL,
16565 (bfd_vma) segment->p_offset,
16566 (bfd_vma) segment->p_filesz);
16567 }
16568
16569 return res;
16570 }
16571
16572 static int
16573 process_v850_notes (FILE * file, bfd_vma offset, bfd_vma length)
16574 {
16575 Elf_External_Note * pnotes;
16576 Elf_External_Note * external;
16577 char * end;
16578 int res = 1;
16579
16580 if (length <= 0)
16581 return 0;
16582
16583 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
16584 _("v850 notes"));
16585 if (pnotes == NULL)
16586 return 0;
16587
16588 external = pnotes;
16589 end = (char*) pnotes + length;
16590
16591 printf (_("\nDisplaying contents of Renesas V850 notes section at offset 0x%lx with length 0x%lx:\n"),
16592 (unsigned long) offset, (unsigned long) length);
16593
16594 while ((char *) external + sizeof (Elf_External_Note) < end)
16595 {
16596 Elf_External_Note * next;
16597 Elf_Internal_Note inote;
16598
16599 inote.type = BYTE_GET (external->type);
16600 inote.namesz = BYTE_GET (external->namesz);
16601 inote.namedata = external->name;
16602 inote.descsz = BYTE_GET (external->descsz);
16603 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
16604 inote.descpos = offset + (inote.descdata - (char *) pnotes);
16605
16606 if (inote.descdata < (char *) pnotes || inote.descdata >= end)
16607 {
16608 warn (_("Corrupt note: name size is too big: %lx\n"), inote.namesz);
16609 inote.descdata = inote.namedata;
16610 inote.namesz = 0;
16611 }
16612
16613 next = (Elf_External_Note *) (inote.descdata + align_power (inote.descsz, 2));
16614
16615 if ( ((char *) next > end)
16616 || ((char *) next < (char *) pnotes))
16617 {
16618 warn (_("corrupt descsz found in note at offset 0x%lx\n"),
16619 (unsigned long) ((char *) external - (char *) pnotes));
16620 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
16621 inote.type, inote.namesz, inote.descsz);
16622 break;
16623 }
16624
16625 external = next;
16626
16627 /* Prevent out-of-bounds indexing. */
16628 if ( inote.namedata + inote.namesz > end
16629 || inote.namedata + inote.namesz < inote.namedata)
16630 {
16631 warn (_("corrupt namesz found in note at offset 0x%lx\n"),
16632 (unsigned long) ((char *) external - (char *) pnotes));
16633 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
16634 inote.type, inote.namesz, inote.descsz);
16635 break;
16636 }
16637
16638 printf (" %s: ", get_v850_elf_note_type (inote.type));
16639
16640 if (! print_v850_note (& inote))
16641 {
16642 res = 0;
16643 printf ("<corrupt sizes: namesz: %lx, descsz: %lx>\n",
16644 inote.namesz, inote.descsz);
16645 }
16646 }
16647
16648 free (pnotes);
16649
16650 return res;
16651 }
16652
16653 static int
16654 process_note_sections (FILE * file)
16655 {
16656 Elf_Internal_Shdr * section;
16657 unsigned long i;
16658 int n = 0;
16659 int res = 1;
16660
16661 for (i = 0, section = section_headers;
16662 i < elf_header.e_shnum && section != NULL;
16663 i++, section++)
16664 {
16665 if (section->sh_type == SHT_NOTE)
16666 {
16667 res &= process_notes_at (file, section,
16668 (bfd_vma) section->sh_offset,
16669 (bfd_vma) section->sh_size);
16670 n++;
16671 }
16672
16673 if (( elf_header.e_machine == EM_V800
16674 || elf_header.e_machine == EM_V850
16675 || elf_header.e_machine == EM_CYGNUS_V850)
16676 && section->sh_type == SHT_RENESAS_INFO)
16677 {
16678 res &= process_v850_notes (file,
16679 (bfd_vma) section->sh_offset,
16680 (bfd_vma) section->sh_size);
16681 n++;
16682 }
16683 }
16684
16685 if (n == 0)
16686 /* Try processing NOTE segments instead. */
16687 return process_corefile_note_segments (file);
16688
16689 return res;
16690 }
16691
16692 static int
16693 process_notes (FILE * file)
16694 {
16695 /* If we have not been asked to display the notes then do nothing. */
16696 if (! do_notes)
16697 return 1;
16698
16699 if (elf_header.e_type != ET_CORE)
16700 return process_note_sections (file);
16701
16702 /* No program headers means no NOTE segment. */
16703 if (elf_header.e_phnum > 0)
16704 return process_corefile_note_segments (file);
16705
16706 printf (_("No note segments present in the core file.\n"));
16707 return 1;
16708 }
16709
16710 static int
16711 process_arch_specific (FILE * file)
16712 {
16713 if (! do_arch)
16714 return 1;
16715
16716 switch (elf_header.e_machine)
16717 {
16718 case EM_ARM:
16719 return process_arm_specific (file);
16720 case EM_MIPS:
16721 case EM_MIPS_RS3_LE:
16722 return process_mips_specific (file);
16723 break;
16724 case EM_NDS32:
16725 return process_nds32_specific (file);
16726 break;
16727 case EM_PPC:
16728 case EM_PPC64:
16729 return process_power_specific (file);
16730 break;
16731 case EM_S390:
16732 case EM_S390_OLD:
16733 return process_s390_specific (file);
16734 break;
16735 case EM_SPARC:
16736 case EM_SPARC32PLUS:
16737 case EM_SPARCV9:
16738 return process_sparc_specific (file);
16739 break;
16740 case EM_TI_C6000:
16741 return process_tic6x_specific (file);
16742 break;
16743 case EM_MSP430:
16744 return process_msp430x_specific (file);
16745 default:
16746 break;
16747 }
16748 return 1;
16749 }
16750
16751 static int
16752 get_file_header (FILE * file)
16753 {
16754 /* Read in the identity array. */
16755 if (fread (elf_header.e_ident, EI_NIDENT, 1, file) != 1)
16756 return 0;
16757
16758 /* Determine how to read the rest of the header. */
16759 switch (elf_header.e_ident[EI_DATA])
16760 {
16761 default:
16762 case ELFDATANONE:
16763 case ELFDATA2LSB:
16764 byte_get = byte_get_little_endian;
16765 byte_put = byte_put_little_endian;
16766 break;
16767 case ELFDATA2MSB:
16768 byte_get = byte_get_big_endian;
16769 byte_put = byte_put_big_endian;
16770 break;
16771 }
16772
16773 /* For now we only support 32 bit and 64 bit ELF files. */
16774 is_32bit_elf = (elf_header.e_ident[EI_CLASS] != ELFCLASS64);
16775
16776 /* Read in the rest of the header. */
16777 if (is_32bit_elf)
16778 {
16779 Elf32_External_Ehdr ehdr32;
16780
16781 if (fread (ehdr32.e_type, sizeof (ehdr32) - EI_NIDENT, 1, file) != 1)
16782 return 0;
16783
16784 elf_header.e_type = BYTE_GET (ehdr32.e_type);
16785 elf_header.e_machine = BYTE_GET (ehdr32.e_machine);
16786 elf_header.e_version = BYTE_GET (ehdr32.e_version);
16787 elf_header.e_entry = BYTE_GET (ehdr32.e_entry);
16788 elf_header.e_phoff = BYTE_GET (ehdr32.e_phoff);
16789 elf_header.e_shoff = BYTE_GET (ehdr32.e_shoff);
16790 elf_header.e_flags = BYTE_GET (ehdr32.e_flags);
16791 elf_header.e_ehsize = BYTE_GET (ehdr32.e_ehsize);
16792 elf_header.e_phentsize = BYTE_GET (ehdr32.e_phentsize);
16793 elf_header.e_phnum = BYTE_GET (ehdr32.e_phnum);
16794 elf_header.e_shentsize = BYTE_GET (ehdr32.e_shentsize);
16795 elf_header.e_shnum = BYTE_GET (ehdr32.e_shnum);
16796 elf_header.e_shstrndx = BYTE_GET (ehdr32.e_shstrndx);
16797 }
16798 else
16799 {
16800 Elf64_External_Ehdr ehdr64;
16801
16802 /* If we have been compiled with sizeof (bfd_vma) == 4, then
16803 we will not be able to cope with the 64bit data found in
16804 64 ELF files. Detect this now and abort before we start
16805 overwriting things. */
16806 if (sizeof (bfd_vma) < 8)
16807 {
16808 error (_("This instance of readelf has been built without support for a\n\
16809 64 bit data type and so it cannot read 64 bit ELF files.\n"));
16810 return 0;
16811 }
16812
16813 if (fread (ehdr64.e_type, sizeof (ehdr64) - EI_NIDENT, 1, file) != 1)
16814 return 0;
16815
16816 elf_header.e_type = BYTE_GET (ehdr64.e_type);
16817 elf_header.e_machine = BYTE_GET (ehdr64.e_machine);
16818 elf_header.e_version = BYTE_GET (ehdr64.e_version);
16819 elf_header.e_entry = BYTE_GET (ehdr64.e_entry);
16820 elf_header.e_phoff = BYTE_GET (ehdr64.e_phoff);
16821 elf_header.e_shoff = BYTE_GET (ehdr64.e_shoff);
16822 elf_header.e_flags = BYTE_GET (ehdr64.e_flags);
16823 elf_header.e_ehsize = BYTE_GET (ehdr64.e_ehsize);
16824 elf_header.e_phentsize = BYTE_GET (ehdr64.e_phentsize);
16825 elf_header.e_phnum = BYTE_GET (ehdr64.e_phnum);
16826 elf_header.e_shentsize = BYTE_GET (ehdr64.e_shentsize);
16827 elf_header.e_shnum = BYTE_GET (ehdr64.e_shnum);
16828 elf_header.e_shstrndx = BYTE_GET (ehdr64.e_shstrndx);
16829 }
16830
16831 if (elf_header.e_shoff)
16832 {
16833 /* There may be some extensions in the first section header. Don't
16834 bomb if we can't read it. */
16835 if (is_32bit_elf)
16836 get_32bit_section_headers (file, TRUE);
16837 else
16838 get_64bit_section_headers (file, TRUE);
16839 }
16840
16841 return 1;
16842 }
16843
16844 /* Process one ELF object file according to the command line options.
16845 This file may actually be stored in an archive. The file is
16846 positioned at the start of the ELF object. */
16847
16848 static int
16849 process_object (char * file_name, FILE * file)
16850 {
16851 unsigned int i;
16852
16853 if (! get_file_header (file))
16854 {
16855 error (_("%s: Failed to read file header\n"), file_name);
16856 return 1;
16857 }
16858
16859 /* Initialise per file variables. */
16860 for (i = ARRAY_SIZE (version_info); i--;)
16861 version_info[i] = 0;
16862
16863 for (i = ARRAY_SIZE (dynamic_info); i--;)
16864 dynamic_info[i] = 0;
16865 dynamic_info_DT_GNU_HASH = 0;
16866
16867 /* Process the file. */
16868 if (show_name)
16869 printf (_("\nFile: %s\n"), file_name);
16870
16871 /* Initialise the dump_sects array from the cmdline_dump_sects array.
16872 Note we do this even if cmdline_dump_sects is empty because we
16873 must make sure that the dump_sets array is zeroed out before each
16874 object file is processed. */
16875 if (num_dump_sects > num_cmdline_dump_sects)
16876 memset (dump_sects, 0, num_dump_sects * sizeof (* dump_sects));
16877
16878 if (num_cmdline_dump_sects > 0)
16879 {
16880 if (num_dump_sects == 0)
16881 /* A sneaky way of allocating the dump_sects array. */
16882 request_dump_bynumber (num_cmdline_dump_sects, 0);
16883
16884 assert (num_dump_sects >= num_cmdline_dump_sects);
16885 memcpy (dump_sects, cmdline_dump_sects,
16886 num_cmdline_dump_sects * sizeof (* dump_sects));
16887 }
16888
16889 if (! process_file_header ())
16890 return 1;
16891
16892 if (! process_section_headers (file))
16893 {
16894 /* Without loaded section headers we cannot process lots of
16895 things. */
16896 do_unwind = do_version = do_dump = do_arch = 0;
16897
16898 if (! do_using_dynamic)
16899 do_syms = do_dyn_syms = do_reloc = 0;
16900 }
16901
16902 if (! process_section_groups (file))
16903 {
16904 /* Without loaded section groups we cannot process unwind. */
16905 do_unwind = 0;
16906 }
16907
16908 if (process_program_headers (file))
16909 process_dynamic_section (file);
16910
16911 process_relocs (file);
16912
16913 process_unwind (file);
16914
16915 process_symbol_table (file);
16916
16917 process_syminfo (file);
16918
16919 process_version_sections (file);
16920
16921 process_section_contents (file);
16922
16923 process_notes (file);
16924
16925 process_gnu_liblist (file);
16926
16927 process_arch_specific (file);
16928
16929 if (program_headers)
16930 {
16931 free (program_headers);
16932 program_headers = NULL;
16933 }
16934
16935 if (section_headers)
16936 {
16937 free (section_headers);
16938 section_headers = NULL;
16939 }
16940
16941 if (string_table)
16942 {
16943 free (string_table);
16944 string_table = NULL;
16945 string_table_length = 0;
16946 }
16947
16948 if (dynamic_strings)
16949 {
16950 free (dynamic_strings);
16951 dynamic_strings = NULL;
16952 dynamic_strings_length = 0;
16953 }
16954
16955 if (dynamic_symbols)
16956 {
16957 free (dynamic_symbols);
16958 dynamic_symbols = NULL;
16959 num_dynamic_syms = 0;
16960 }
16961
16962 if (dynamic_syminfo)
16963 {
16964 free (dynamic_syminfo);
16965 dynamic_syminfo = NULL;
16966 }
16967
16968 if (dynamic_section)
16969 {
16970 free (dynamic_section);
16971 dynamic_section = NULL;
16972 }
16973
16974 if (section_headers_groups)
16975 {
16976 free (section_headers_groups);
16977 section_headers_groups = NULL;
16978 }
16979
16980 if (section_groups)
16981 {
16982 struct group_list * g;
16983 struct group_list * next;
16984
16985 for (i = 0; i < group_count; i++)
16986 {
16987 for (g = section_groups [i].root; g != NULL; g = next)
16988 {
16989 next = g->next;
16990 free (g);
16991 }
16992 }
16993
16994 free (section_groups);
16995 section_groups = NULL;
16996 }
16997
16998 free_debug_memory ();
16999
17000 return 0;
17001 }
17002
17003 /* Process an ELF archive.
17004 On entry the file is positioned just after the ARMAG string. */
17005
17006 static int
17007 process_archive (char * file_name, FILE * file, bfd_boolean is_thin_archive)
17008 {
17009 struct archive_info arch;
17010 struct archive_info nested_arch;
17011 size_t got;
17012 int ret;
17013
17014 show_name = 1;
17015
17016 /* The ARCH structure is used to hold information about this archive. */
17017 arch.file_name = NULL;
17018 arch.file = NULL;
17019 arch.index_array = NULL;
17020 arch.sym_table = NULL;
17021 arch.longnames = NULL;
17022
17023 /* The NESTED_ARCH structure is used as a single-item cache of information
17024 about a nested archive (when members of a thin archive reside within
17025 another regular archive file). */
17026 nested_arch.file_name = NULL;
17027 nested_arch.file = NULL;
17028 nested_arch.index_array = NULL;
17029 nested_arch.sym_table = NULL;
17030 nested_arch.longnames = NULL;
17031
17032 if (setup_archive (&arch, file_name, file, is_thin_archive, do_archive_index) != 0)
17033 {
17034 ret = 1;
17035 goto out;
17036 }
17037
17038 if (do_archive_index)
17039 {
17040 if (arch.sym_table == NULL)
17041 error (_("%s: unable to dump the index as none was found\n"), file_name);
17042 else
17043 {
17044 unsigned long i, l;
17045 unsigned long current_pos;
17046
17047 printf (_("Index of archive %s: (%lu entries, 0x%lx bytes in the symbol table)\n"),
17048 file_name, (unsigned long) arch.index_num, arch.sym_size);
17049 current_pos = ftell (file);
17050
17051 for (i = l = 0; i < arch.index_num; i++)
17052 {
17053 if ((i == 0) || ((i > 0) && (arch.index_array[i] != arch.index_array[i - 1])))
17054 {
17055 char * member_name;
17056
17057 member_name = get_archive_member_name_at (&arch, arch.index_array[i], &nested_arch);
17058
17059 if (member_name != NULL)
17060 {
17061 char * qualified_name = make_qualified_name (&arch, &nested_arch, member_name);
17062
17063 if (qualified_name != NULL)
17064 {
17065 printf (_("Contents of binary %s at offset "), qualified_name);
17066 (void) print_vma (arch.index_array[i], PREFIX_HEX);
17067 putchar ('\n');
17068 free (qualified_name);
17069 }
17070 }
17071 }
17072
17073 if (l >= arch.sym_size)
17074 {
17075 error (_("%s: end of the symbol table reached before the end of the index\n"),
17076 file_name);
17077 break;
17078 }
17079 /* PR 17531: file: 0b6630b2. */
17080 printf ("\t%.*s\n", (int) (arch.sym_size - l), arch.sym_table + l);
17081 l += strnlen (arch.sym_table + l, arch.sym_size - l) + 1;
17082 }
17083
17084 if (arch.uses_64bit_indicies)
17085 l = (l + 7) & ~ 7;
17086 else
17087 l += l & 1;
17088
17089 if (l < arch.sym_size)
17090 error (_("%s: %ld bytes remain in the symbol table, but without corresponding entries in the index table\n"),
17091 file_name, arch.sym_size - l);
17092
17093 if (fseek (file, current_pos, SEEK_SET) != 0)
17094 {
17095 error (_("%s: failed to seek back to start of object files in the archive\n"), file_name);
17096 ret = 1;
17097 goto out;
17098 }
17099 }
17100
17101 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
17102 && !do_segments && !do_header && !do_dump && !do_version
17103 && !do_histogram && !do_debugging && !do_arch && !do_notes
17104 && !do_section_groups && !do_dyn_syms)
17105 {
17106 ret = 0; /* Archive index only. */
17107 goto out;
17108 }
17109 }
17110
17111 ret = 0;
17112
17113 while (1)
17114 {
17115 char * name;
17116 size_t namelen;
17117 char * qualified_name;
17118
17119 /* Read the next archive header. */
17120 if (fseek (file, arch.next_arhdr_offset, SEEK_SET) != 0)
17121 {
17122 error (_("%s: failed to seek to next archive header\n"), file_name);
17123 return 1;
17124 }
17125 got = fread (&arch.arhdr, 1, sizeof arch.arhdr, file);
17126 if (got != sizeof arch.arhdr)
17127 {
17128 if (got == 0)
17129 break;
17130 error (_("%s: failed to read archive header\n"), file_name);
17131 ret = 1;
17132 break;
17133 }
17134 if (memcmp (arch.arhdr.ar_fmag, ARFMAG, 2) != 0)
17135 {
17136 error (_("%s: did not find a valid archive header\n"), arch.file_name);
17137 ret = 1;
17138 break;
17139 }
17140
17141 arch.next_arhdr_offset += sizeof arch.arhdr;
17142
17143 archive_file_size = strtoul (arch.arhdr.ar_size, NULL, 10);
17144 if (archive_file_size & 01)
17145 ++archive_file_size;
17146
17147 name = get_archive_member_name (&arch, &nested_arch);
17148 if (name == NULL)
17149 {
17150 error (_("%s: bad archive file name\n"), file_name);
17151 ret = 1;
17152 break;
17153 }
17154 namelen = strlen (name);
17155
17156 qualified_name = make_qualified_name (&arch, &nested_arch, name);
17157 if (qualified_name == NULL)
17158 {
17159 error (_("%s: bad archive file name\n"), file_name);
17160 ret = 1;
17161 break;
17162 }
17163
17164 if (is_thin_archive && arch.nested_member_origin == 0)
17165 {
17166 /* This is a proxy for an external member of a thin archive. */
17167 FILE * member_file;
17168 char * member_file_name = adjust_relative_path (file_name, name, namelen);
17169 if (member_file_name == NULL)
17170 {
17171 ret = 1;
17172 break;
17173 }
17174
17175 member_file = fopen (member_file_name, "rb");
17176 if (member_file == NULL)
17177 {
17178 error (_("Input file '%s' is not readable.\n"), member_file_name);
17179 free (member_file_name);
17180 ret = 1;
17181 break;
17182 }
17183
17184 archive_file_offset = arch.nested_member_origin;
17185
17186 ret |= process_object (qualified_name, member_file);
17187
17188 fclose (member_file);
17189 free (member_file_name);
17190 }
17191 else if (is_thin_archive)
17192 {
17193 /* PR 15140: Allow for corrupt thin archives. */
17194 if (nested_arch.file == NULL)
17195 {
17196 error (_("%s: contains corrupt thin archive: %s\n"),
17197 file_name, name);
17198 ret = 1;
17199 break;
17200 }
17201
17202 /* This is a proxy for a member of a nested archive. */
17203 archive_file_offset = arch.nested_member_origin + sizeof arch.arhdr;
17204
17205 /* The nested archive file will have been opened and setup by
17206 get_archive_member_name. */
17207 if (fseek (nested_arch.file, archive_file_offset, SEEK_SET) != 0)
17208 {
17209 error (_("%s: failed to seek to archive member.\n"), nested_arch.file_name);
17210 ret = 1;
17211 break;
17212 }
17213
17214 ret |= process_object (qualified_name, nested_arch.file);
17215 }
17216 else
17217 {
17218 archive_file_offset = arch.next_arhdr_offset;
17219 arch.next_arhdr_offset += archive_file_size;
17220
17221 ret |= process_object (qualified_name, file);
17222 }
17223
17224 if (dump_sects != NULL)
17225 {
17226 free (dump_sects);
17227 dump_sects = NULL;
17228 num_dump_sects = 0;
17229 }
17230
17231 free (qualified_name);
17232 }
17233
17234 out:
17235 if (nested_arch.file != NULL)
17236 fclose (nested_arch.file);
17237 release_archive (&nested_arch);
17238 release_archive (&arch);
17239
17240 return ret;
17241 }
17242
17243 static int
17244 process_file (char * file_name)
17245 {
17246 FILE * file;
17247 struct stat statbuf;
17248 char armag[SARMAG];
17249 int ret;
17250
17251 if (stat (file_name, &statbuf) < 0)
17252 {
17253 if (errno == ENOENT)
17254 error (_("'%s': No such file\n"), file_name);
17255 else
17256 error (_("Could not locate '%s'. System error message: %s\n"),
17257 file_name, strerror (errno));
17258 return 1;
17259 }
17260
17261 if (! S_ISREG (statbuf.st_mode))
17262 {
17263 error (_("'%s' is not an ordinary file\n"), file_name);
17264 return 1;
17265 }
17266
17267 file = fopen (file_name, "rb");
17268 if (file == NULL)
17269 {
17270 error (_("Input file '%s' is not readable.\n"), file_name);
17271 return 1;
17272 }
17273
17274 if (fread (armag, SARMAG, 1, file) != 1)
17275 {
17276 error (_("%s: Failed to read file's magic number\n"), file_name);
17277 fclose (file);
17278 return 1;
17279 }
17280
17281 current_file_size = (bfd_size_type) statbuf.st_size;
17282
17283 if (memcmp (armag, ARMAG, SARMAG) == 0)
17284 ret = process_archive (file_name, file, FALSE);
17285 else if (memcmp (armag, ARMAGT, SARMAG) == 0)
17286 ret = process_archive (file_name, file, TRUE);
17287 else
17288 {
17289 if (do_archive_index)
17290 error (_("File %s is not an archive so its index cannot be displayed.\n"),
17291 file_name);
17292
17293 rewind (file);
17294 archive_file_size = archive_file_offset = 0;
17295 ret = process_object (file_name, file);
17296 }
17297
17298 fclose (file);
17299
17300 current_file_size = 0;
17301 return ret;
17302 }
17303
17304 #ifdef SUPPORT_DISASSEMBLY
17305 /* Needed by the i386 disassembler. For extra credit, someone could
17306 fix this so that we insert symbolic addresses here, esp for GOT/PLT
17307 symbols. */
17308
17309 void
17310 print_address (unsigned int addr, FILE * outfile)
17311 {
17312 fprintf (outfile,"0x%8.8x", addr);
17313 }
17314
17315 /* Needed by the i386 disassembler. */
17316 void
17317 db_task_printsym (unsigned int addr)
17318 {
17319 print_address (addr, stderr);
17320 }
17321 #endif
17322
17323 int
17324 main (int argc, char ** argv)
17325 {
17326 int err;
17327
17328 #if defined (HAVE_SETLOCALE) && defined (HAVE_LC_MESSAGES)
17329 setlocale (LC_MESSAGES, "");
17330 #endif
17331 #if defined (HAVE_SETLOCALE)
17332 setlocale (LC_CTYPE, "");
17333 #endif
17334 bindtextdomain (PACKAGE, LOCALEDIR);
17335 textdomain (PACKAGE);
17336
17337 expandargv (&argc, &argv);
17338
17339 parse_args (argc, argv);
17340
17341 if (num_dump_sects > 0)
17342 {
17343 /* Make a copy of the dump_sects array. */
17344 cmdline_dump_sects = (dump_type *)
17345 malloc (num_dump_sects * sizeof (* dump_sects));
17346 if (cmdline_dump_sects == NULL)
17347 error (_("Out of memory allocating dump request table.\n"));
17348 else
17349 {
17350 memcpy (cmdline_dump_sects, dump_sects,
17351 num_dump_sects * sizeof (* dump_sects));
17352 num_cmdline_dump_sects = num_dump_sects;
17353 }
17354 }
17355
17356 if (optind < (argc - 1))
17357 show_name = 1;
17358 else if (optind >= argc)
17359 {
17360 warn (_("Nothing to do.\n"));
17361 usage (stderr);
17362 }
17363
17364 err = 0;
17365 while (optind < argc)
17366 err |= process_file (argv[optind++]);
17367
17368 if (dump_sects != NULL)
17369 free (dump_sects);
17370 if (cmdline_dump_sects != NULL)
17371 free (cmdline_dump_sects);
17372
17373 return err;
17374 }