DWARF-5 basic functionality
[binutils-gdb.git] / binutils / readelf.c
1 /* readelf.c -- display contents of an ELF format file
2 Copyright (C) 1998-2017 Free Software Foundation, Inc.
3
4 Originally developed by Eric Youngdale <eric@andante.jic.com>
5 Modifications by Nick Clifton <nickc@redhat.com>
6
7 This file is part of GNU Binutils.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
22 02110-1301, USA. */
23 \f
24 /* The difference between readelf and objdump:
25
26 Both programs are capable of displaying the contents of ELF format files,
27 so why does the binutils project have two file dumpers ?
28
29 The reason is that objdump sees an ELF file through a BFD filter of the
30 world; if BFD has a bug where, say, it disagrees about a machine constant
31 in e_flags, then the odds are good that it will remain internally
32 consistent. The linker sees it the BFD way, objdump sees it the BFD way,
33 GAS sees it the BFD way. There was need for a tool to go find out what
34 the file actually says.
35
36 This is why the readelf program does not link against the BFD library - it
37 exists as an independent program to help verify the correct working of BFD.
38
39 There is also the case that readelf can provide more information about an
40 ELF file than is provided by objdump. In particular it can display DWARF
41 debugging information which (at the moment) objdump cannot. */
42 \f
43 #include "sysdep.h"
44 #include <assert.h>
45 #include <time.h>
46 #include <zlib.h>
47 #ifdef HAVE_WCHAR_H
48 #include <wchar.h>
49 #endif
50
51 #if __GNUC__ >= 2
52 /* Define BFD64 here, even if our default architecture is 32 bit ELF
53 as this will allow us to read in and parse 64bit and 32bit ELF files.
54 Only do this if we believe that the compiler can support a 64 bit
55 data type. For now we only rely on GCC being able to do this. */
56 #define BFD64
57 #endif
58
59 #include "bfd.h"
60 #include "bucomm.h"
61 #include "elfcomm.h"
62 #include "dwarf.h"
63
64 #include "elf/common.h"
65 #include "elf/external.h"
66 #include "elf/internal.h"
67
68
69 /* Included here, before RELOC_MACROS_GEN_FUNC is defined, so that
70 we can obtain the H8 reloc numbers. We need these for the
71 get_reloc_size() function. We include h8.h again after defining
72 RELOC_MACROS_GEN_FUNC so that we get the naming function as well. */
73
74 #include "elf/h8.h"
75 #undef _ELF_H8_H
76
77 /* Undo the effects of #including reloc-macros.h. */
78
79 #undef START_RELOC_NUMBERS
80 #undef RELOC_NUMBER
81 #undef FAKE_RELOC
82 #undef EMPTY_RELOC
83 #undef END_RELOC_NUMBERS
84 #undef _RELOC_MACROS_H
85
86 /* The following headers use the elf/reloc-macros.h file to
87 automatically generate relocation recognition functions
88 such as elf_mips_reloc_type() */
89
90 #define RELOC_MACROS_GEN_FUNC
91
92 #include "elf/aarch64.h"
93 #include "elf/alpha.h"
94 #include "elf/arc.h"
95 #include "elf/arm.h"
96 #include "elf/avr.h"
97 #include "elf/bfin.h"
98 #include "elf/cr16.h"
99 #include "elf/cris.h"
100 #include "elf/crx.h"
101 #include "elf/d10v.h"
102 #include "elf/d30v.h"
103 #include "elf/dlx.h"
104 #include "elf/epiphany.h"
105 #include "elf/fr30.h"
106 #include "elf/frv.h"
107 #include "elf/ft32.h"
108 #include "elf/h8.h"
109 #include "elf/hppa.h"
110 #include "elf/i386.h"
111 #include "elf/i370.h"
112 #include "elf/i860.h"
113 #include "elf/i960.h"
114 #include "elf/ia64.h"
115 #include "elf/ip2k.h"
116 #include "elf/lm32.h"
117 #include "elf/iq2000.h"
118 #include "elf/m32c.h"
119 #include "elf/m32r.h"
120 #include "elf/m68k.h"
121 #include "elf/m68hc11.h"
122 #include "elf/mcore.h"
123 #include "elf/mep.h"
124 #include "elf/metag.h"
125 #include "elf/microblaze.h"
126 #include "elf/mips.h"
127 #include "elf/riscv.h"
128 #include "elf/mmix.h"
129 #include "elf/mn10200.h"
130 #include "elf/mn10300.h"
131 #include "elf/moxie.h"
132 #include "elf/mt.h"
133 #include "elf/msp430.h"
134 #include "elf/nds32.h"
135 #include "elf/nios2.h"
136 #include "elf/or1k.h"
137 #include "elf/pj.h"
138 #include "elf/ppc.h"
139 #include "elf/ppc64.h"
140 #include "elf/pru.h"
141 #include "elf/rl78.h"
142 #include "elf/rx.h"
143 #include "elf/s390.h"
144 #include "elf/score.h"
145 #include "elf/sh.h"
146 #include "elf/sparc.h"
147 #include "elf/spu.h"
148 #include "elf/tic6x.h"
149 #include "elf/tilegx.h"
150 #include "elf/tilepro.h"
151 #include "elf/v850.h"
152 #include "elf/vax.h"
153 #include "elf/visium.h"
154 #include "elf/x86-64.h"
155 #include "elf/xc16x.h"
156 #include "elf/xgate.h"
157 #include "elf/xstormy16.h"
158 #include "elf/xtensa.h"
159
160 #include "getopt.h"
161 #include "libiberty.h"
162 #include "safe-ctype.h"
163 #include "filenames.h"
164
165 #ifndef offsetof
166 #define offsetof(TYPE, MEMBER) ((size_t) &(((TYPE *) 0)->MEMBER))
167 #endif
168
169 typedef struct elf_section_list
170 {
171 Elf_Internal_Shdr * hdr;
172 struct elf_section_list * next;
173 } elf_section_list;
174
175 char * program_name = "readelf";
176 static unsigned long archive_file_offset;
177 static unsigned long archive_file_size;
178 static bfd_size_type current_file_size;
179 static unsigned long dynamic_addr;
180 static bfd_size_type dynamic_size;
181 static size_t dynamic_nent;
182 static char * dynamic_strings;
183 static unsigned long dynamic_strings_length;
184 static char * string_table;
185 static unsigned long string_table_length;
186 static unsigned long num_dynamic_syms;
187 static Elf_Internal_Sym * dynamic_symbols;
188 static Elf_Internal_Syminfo * dynamic_syminfo;
189 static unsigned long dynamic_syminfo_offset;
190 static unsigned int dynamic_syminfo_nent;
191 static char program_interpreter[PATH_MAX];
192 static bfd_vma dynamic_info[DT_ENCODING];
193 static bfd_vma dynamic_info_DT_GNU_HASH;
194 static bfd_vma version_info[16];
195 static Elf_Internal_Ehdr elf_header;
196 static Elf_Internal_Shdr * section_headers;
197 static Elf_Internal_Phdr * program_headers;
198 static Elf_Internal_Dyn * dynamic_section;
199 static elf_section_list * symtab_shndx_list;
200 static int show_name;
201 static int do_dynamic;
202 static int do_syms;
203 static int do_dyn_syms;
204 static int do_reloc;
205 static int do_sections;
206 static int do_section_groups;
207 static int do_section_details;
208 static int do_segments;
209 static int do_unwind;
210 static int do_using_dynamic;
211 static int do_header;
212 static int do_dump;
213 static int do_version;
214 static int do_histogram;
215 static int do_debugging;
216 static int do_arch;
217 static int do_notes;
218 static int do_archive_index;
219 static int is_32bit_elf;
220 static int decompress_dumps;
221
222 struct group_list
223 {
224 struct group_list * next;
225 unsigned int section_index;
226 };
227
228 struct group
229 {
230 struct group_list * root;
231 unsigned int group_index;
232 };
233
234 static size_t group_count;
235 static struct group * section_groups;
236 static struct group ** section_headers_groups;
237
238
239 /* Flag bits indicating particular types of dump. */
240 #define HEX_DUMP (1 << 0) /* The -x command line switch. */
241 #define DISASS_DUMP (1 << 1) /* The -i command line switch. */
242 #define DEBUG_DUMP (1 << 2) /* The -w command line switch. */
243 #define STRING_DUMP (1 << 3) /* The -p command line switch. */
244 #define RELOC_DUMP (1 << 4) /* The -R command line switch. */
245
246 typedef unsigned char dump_type;
247
248 /* A linked list of the section names for which dumps were requested. */
249 struct dump_list_entry
250 {
251 char * name;
252 dump_type type;
253 struct dump_list_entry * next;
254 };
255 static struct dump_list_entry * dump_sects_byname;
256
257 /* A dynamic array of flags indicating for which sections a dump
258 has been requested via command line switches. */
259 static dump_type * cmdline_dump_sects = NULL;
260 static unsigned int num_cmdline_dump_sects = 0;
261
262 /* A dynamic array of flags indicating for which sections a dump of
263 some kind has been requested. It is reset on a per-object file
264 basis and then initialised from the cmdline_dump_sects array,
265 the results of interpreting the -w switch, and the
266 dump_sects_byname list. */
267 static dump_type * dump_sects = NULL;
268 static unsigned int num_dump_sects = 0;
269
270
271 /* How to print a vma value. */
272 typedef enum print_mode
273 {
274 HEX,
275 DEC,
276 DEC_5,
277 UNSIGNED,
278 PREFIX_HEX,
279 FULL_HEX,
280 LONG_HEX
281 }
282 print_mode;
283
284 /* Versioned symbol info. */
285 enum versioned_symbol_info
286 {
287 symbol_undefined,
288 symbol_hidden,
289 symbol_public
290 };
291
292 static const char *get_symbol_version_string
293 (FILE *file, int is_dynsym, const char *strtab,
294 unsigned long int strtab_size, unsigned int si,
295 Elf_Internal_Sym *psym, enum versioned_symbol_info *sym_info,
296 unsigned short *vna_other);
297
298 #define UNKNOWN -1
299
300 #define SECTION_NAME(X) \
301 ((X) == NULL ? _("<none>") \
302 : string_table == NULL ? _("<no-name>") \
303 : ((X)->sh_name >= string_table_length ? _("<corrupt>") \
304 : string_table + (X)->sh_name))
305
306 #define DT_VERSIONTAGIDX(tag) (DT_VERNEEDNUM - (tag)) /* Reverse order! */
307
308 #define GET_ELF_SYMBOLS(file, section, sym_count) \
309 (is_32bit_elf ? get_32bit_elf_symbols (file, section, sym_count) \
310 : get_64bit_elf_symbols (file, section, sym_count))
311
312 #define VALID_DYNAMIC_NAME(offset) ((dynamic_strings != NULL) && (offset < dynamic_strings_length))
313 /* GET_DYNAMIC_NAME asssumes that VALID_DYNAMIC_NAME has
314 already been called and verified that the string exists. */
315 #define GET_DYNAMIC_NAME(offset) (dynamic_strings + offset)
316
317 #define REMOVE_ARCH_BITS(ADDR) \
318 do \
319 { \
320 if (elf_header.e_machine == EM_ARM) \
321 (ADDR) &= ~1; \
322 } \
323 while (0)
324 \f
325 /* Retrieve NMEMB structures, each SIZE bytes long from FILE starting at OFFSET +
326 the offset of the current archive member, if we are examining an archive.
327 Put the retrieved data into VAR, if it is not NULL. Otherwise allocate a buffer
328 using malloc and fill that. In either case return the pointer to the start of
329 the retrieved data or NULL if something went wrong. If something does go wrong
330 and REASON is not NULL then emit an error message using REASON as part of the
331 context. */
332
333 static void *
334 get_data (void * var, FILE * file, unsigned long offset, bfd_size_type size,
335 bfd_size_type nmemb, const char * reason)
336 {
337 void * mvar;
338 bfd_size_type amt = size * nmemb;
339
340 if (size == 0 || nmemb == 0)
341 return NULL;
342
343 /* If the size_t type is smaller than the bfd_size_type, eg because
344 you are building a 32-bit tool on a 64-bit host, then make sure
345 that when the sizes are cast to (size_t) no information is lost. */
346 if (sizeof (size_t) < sizeof (bfd_size_type)
347 && ( (bfd_size_type) ((size_t) size) != size
348 || (bfd_size_type) ((size_t) nmemb) != nmemb))
349 {
350 if (reason)
351 error (_("Size truncation prevents reading 0x%" BFD_VMA_FMT "x"
352 " elements of size 0x%" BFD_VMA_FMT "x for %s\n"),
353 nmemb, size, reason);
354 return NULL;
355 }
356
357 /* Check for size overflow. */
358 if (amt < nmemb)
359 {
360 if (reason)
361 error (_("Size overflow prevents reading 0x%" BFD_VMA_FMT "x"
362 " elements of size 0x%" BFD_VMA_FMT "x for %s\n"),
363 nmemb, size, reason);
364 return NULL;
365 }
366
367 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
368 attempting to allocate memory when the read is bound to fail. */
369 if (amt > current_file_size
370 || offset + archive_file_offset + amt > current_file_size)
371 {
372 if (reason)
373 error (_("Reading 0x%" BFD_VMA_FMT "x"
374 " bytes extends past end of file for %s\n"),
375 amt, reason);
376 return NULL;
377 }
378
379 if (fseek (file, archive_file_offset + offset, SEEK_SET))
380 {
381 if (reason)
382 error (_("Unable to seek to 0x%lx for %s\n"),
383 archive_file_offset + offset, reason);
384 return NULL;
385 }
386
387 mvar = var;
388 if (mvar == NULL)
389 {
390 /* Check for overflow. */
391 if (nmemb < (~(bfd_size_type) 0 - 1) / size)
392 /* + 1 so that we can '\0' terminate invalid string table sections. */
393 mvar = malloc ((size_t) amt + 1);
394
395 if (mvar == NULL)
396 {
397 if (reason)
398 error (_("Out of memory allocating 0x%" BFD_VMA_FMT "x"
399 " bytes for %s\n"),
400 amt, reason);
401 return NULL;
402 }
403
404 ((char *) mvar)[amt] = '\0';
405 }
406
407 if (fread (mvar, (size_t) size, (size_t) nmemb, file) != nmemb)
408 {
409 if (reason)
410 error (_("Unable to read in 0x%" BFD_VMA_FMT "x bytes of %s\n"),
411 amt, reason);
412 if (mvar != var)
413 free (mvar);
414 return NULL;
415 }
416
417 return mvar;
418 }
419
420 /* Print a VMA value. */
421
422 static int
423 print_vma (bfd_vma vma, print_mode mode)
424 {
425 int nc = 0;
426
427 switch (mode)
428 {
429 case FULL_HEX:
430 nc = printf ("0x");
431 /* Fall through. */
432
433 case LONG_HEX:
434 #ifdef BFD64
435 if (is_32bit_elf)
436 return nc + printf ("%8.8" BFD_VMA_FMT "x", vma);
437 #endif
438 printf_vma (vma);
439 return nc + 16;
440
441 case DEC_5:
442 if (vma <= 99999)
443 return printf ("%5" BFD_VMA_FMT "d", vma);
444 /* Fall through. */
445
446 case PREFIX_HEX:
447 nc = printf ("0x");
448 /* Fall through. */
449
450 case HEX:
451 return nc + printf ("%" BFD_VMA_FMT "x", vma);
452
453 case DEC:
454 return printf ("%" BFD_VMA_FMT "d", vma);
455
456 case UNSIGNED:
457 return printf ("%" BFD_VMA_FMT "u", vma);
458 }
459 return 0;
460 }
461
462 /* Display a symbol on stdout. Handles the display of control characters and
463 multibye characters (assuming the host environment supports them).
464
465 Display at most abs(WIDTH) characters, truncating as necessary, unless do_wide is true.
466
467 If WIDTH is negative then ensure that the output is at least (- WIDTH) characters,
468 padding as necessary.
469
470 Returns the number of emitted characters. */
471
472 static unsigned int
473 print_symbol (int width, const char *symbol)
474 {
475 bfd_boolean extra_padding = FALSE;
476 int num_printed = 0;
477 #ifdef HAVE_MBSTATE_T
478 mbstate_t state;
479 #endif
480 int width_remaining;
481
482 if (width < 0)
483 {
484 /* Keep the width positive. This also helps. */
485 width = - width;
486 extra_padding = TRUE;
487 }
488 assert (width != 0);
489
490 if (do_wide)
491 /* Set the remaining width to a very large value.
492 This simplifies the code below. */
493 width_remaining = INT_MAX;
494 else
495 width_remaining = width;
496
497 #ifdef HAVE_MBSTATE_T
498 /* Initialise the multibyte conversion state. */
499 memset (& state, 0, sizeof (state));
500 #endif
501
502 while (width_remaining)
503 {
504 size_t n;
505 const char c = *symbol++;
506
507 if (c == 0)
508 break;
509
510 /* Do not print control characters directly as they can affect terminal
511 settings. Such characters usually appear in the names generated
512 by the assembler for local labels. */
513 if (ISCNTRL (c))
514 {
515 if (width_remaining < 2)
516 break;
517
518 printf ("^%c", c + 0x40);
519 width_remaining -= 2;
520 num_printed += 2;
521 }
522 else if (ISPRINT (c))
523 {
524 putchar (c);
525 width_remaining --;
526 num_printed ++;
527 }
528 else
529 {
530 #ifdef HAVE_MBSTATE_T
531 wchar_t w;
532 #endif
533 /* Let printf do the hard work of displaying multibyte characters. */
534 printf ("%.1s", symbol - 1);
535 width_remaining --;
536 num_printed ++;
537
538 #ifdef HAVE_MBSTATE_T
539 /* Try to find out how many bytes made up the character that was
540 just printed. Advance the symbol pointer past the bytes that
541 were displayed. */
542 n = mbrtowc (& w, symbol - 1, MB_CUR_MAX, & state);
543 #else
544 n = 1;
545 #endif
546 if (n != (size_t) -1 && n != (size_t) -2 && n > 0)
547 symbol += (n - 1);
548 }
549 }
550
551 if (extra_padding && num_printed < width)
552 {
553 /* Fill in the remaining spaces. */
554 printf ("%-*s", width - num_printed, " ");
555 num_printed = width;
556 }
557
558 return num_printed;
559 }
560
561 /* Returns a pointer to a static buffer containing a printable version of
562 the given section's name. Like print_symbol, except that it does not try
563 to print multibyte characters, it just interprets them as hex values. */
564
565 static const char *
566 printable_section_name (const Elf_Internal_Shdr * sec)
567 {
568 #define MAX_PRINT_SEC_NAME_LEN 128
569 static char sec_name_buf [MAX_PRINT_SEC_NAME_LEN + 1];
570 const char * name = SECTION_NAME (sec);
571 char * buf = sec_name_buf;
572 char c;
573 unsigned int remaining = MAX_PRINT_SEC_NAME_LEN;
574
575 while ((c = * name ++) != 0)
576 {
577 if (ISCNTRL (c))
578 {
579 if (remaining < 2)
580 break;
581
582 * buf ++ = '^';
583 * buf ++ = c + 0x40;
584 remaining -= 2;
585 }
586 else if (ISPRINT (c))
587 {
588 * buf ++ = c;
589 remaining -= 1;
590 }
591 else
592 {
593 static char hex[17] = "0123456789ABCDEF";
594
595 if (remaining < 4)
596 break;
597 * buf ++ = '<';
598 * buf ++ = hex[(c & 0xf0) >> 4];
599 * buf ++ = hex[c & 0x0f];
600 * buf ++ = '>';
601 remaining -= 4;
602 }
603
604 if (remaining == 0)
605 break;
606 }
607
608 * buf = 0;
609 return sec_name_buf;
610 }
611
612 static const char *
613 printable_section_name_from_index (unsigned long ndx)
614 {
615 if (ndx >= elf_header.e_shnum)
616 return _("<corrupt>");
617
618 return printable_section_name (section_headers + ndx);
619 }
620
621 /* Return a pointer to section NAME, or NULL if no such section exists. */
622
623 static Elf_Internal_Shdr *
624 find_section (const char * name)
625 {
626 unsigned int i;
627
628 for (i = 0; i < elf_header.e_shnum; i++)
629 if (streq (SECTION_NAME (section_headers + i), name))
630 return section_headers + i;
631
632 return NULL;
633 }
634
635 /* Return a pointer to a section containing ADDR, or NULL if no such
636 section exists. */
637
638 static Elf_Internal_Shdr *
639 find_section_by_address (bfd_vma addr)
640 {
641 unsigned int i;
642
643 for (i = 0; i < elf_header.e_shnum; i++)
644 {
645 Elf_Internal_Shdr *sec = section_headers + i;
646 if (addr >= sec->sh_addr && addr < sec->sh_addr + sec->sh_size)
647 return sec;
648 }
649
650 return NULL;
651 }
652
653 static Elf_Internal_Shdr *
654 find_section_by_type (unsigned int type)
655 {
656 unsigned int i;
657
658 for (i = 0; i < elf_header.e_shnum; i++)
659 {
660 Elf_Internal_Shdr *sec = section_headers + i;
661 if (sec->sh_type == type)
662 return sec;
663 }
664
665 return NULL;
666 }
667
668 /* Return a pointer to section NAME, or NULL if no such section exists,
669 restricted to the list of sections given in SET. */
670
671 static Elf_Internal_Shdr *
672 find_section_in_set (const char * name, unsigned int * set)
673 {
674 unsigned int i;
675
676 if (set != NULL)
677 {
678 while ((i = *set++) > 0)
679 {
680 /* See PR 21156 for a reproducer. */
681 if (i >= elf_header.e_shnum)
682 continue; /* FIXME: Should we issue an error message ? */
683
684 if (streq (SECTION_NAME (section_headers + i), name))
685 return section_headers + i;
686 }
687 }
688
689 return find_section (name);
690 }
691
692 /* Read an unsigned LEB128 encoded value from p. Set *PLEN to the number of
693 bytes read. */
694
695 static inline unsigned long
696 read_uleb128 (unsigned char *data,
697 unsigned int *length_return,
698 const unsigned char * const end)
699 {
700 return read_leb128 (data, length_return, FALSE, end);
701 }
702
703 /* Return true if the current file is for IA-64 machine and OpenVMS ABI.
704 This OS has so many departures from the ELF standard that we test it at
705 many places. */
706
707 static inline int
708 is_ia64_vms (void)
709 {
710 return elf_header.e_machine == EM_IA_64
711 && elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS;
712 }
713
714 /* Guess the relocation size commonly used by the specific machines. */
715
716 static int
717 guess_is_rela (unsigned int e_machine)
718 {
719 switch (e_machine)
720 {
721 /* Targets that use REL relocations. */
722 case EM_386:
723 case EM_IAMCU:
724 case EM_960:
725 case EM_ARM:
726 case EM_D10V:
727 case EM_CYGNUS_D10V:
728 case EM_DLX:
729 case EM_MIPS:
730 case EM_MIPS_RS3_LE:
731 case EM_CYGNUS_M32R:
732 case EM_SCORE:
733 case EM_XGATE:
734 return FALSE;
735
736 /* Targets that use RELA relocations. */
737 case EM_68K:
738 case EM_860:
739 case EM_AARCH64:
740 case EM_ADAPTEVA_EPIPHANY:
741 case EM_ALPHA:
742 case EM_ALTERA_NIOS2:
743 case EM_ARC:
744 case EM_ARC_COMPACT:
745 case EM_ARC_COMPACT2:
746 case EM_AVR:
747 case EM_AVR_OLD:
748 case EM_BLACKFIN:
749 case EM_CR16:
750 case EM_CRIS:
751 case EM_CRX:
752 case EM_D30V:
753 case EM_CYGNUS_D30V:
754 case EM_FR30:
755 case EM_FT32:
756 case EM_CYGNUS_FR30:
757 case EM_CYGNUS_FRV:
758 case EM_H8S:
759 case EM_H8_300:
760 case EM_H8_300H:
761 case EM_IA_64:
762 case EM_IP2K:
763 case EM_IP2K_OLD:
764 case EM_IQ2000:
765 case EM_LATTICEMICO32:
766 case EM_M32C_OLD:
767 case EM_M32C:
768 case EM_M32R:
769 case EM_MCORE:
770 case EM_CYGNUS_MEP:
771 case EM_METAG:
772 case EM_MMIX:
773 case EM_MN10200:
774 case EM_CYGNUS_MN10200:
775 case EM_MN10300:
776 case EM_CYGNUS_MN10300:
777 case EM_MOXIE:
778 case EM_MSP430:
779 case EM_MSP430_OLD:
780 case EM_MT:
781 case EM_NDS32:
782 case EM_NIOS32:
783 case EM_OR1K:
784 case EM_PPC64:
785 case EM_PPC:
786 case EM_TI_PRU:
787 case EM_RISCV:
788 case EM_RL78:
789 case EM_RX:
790 case EM_S390:
791 case EM_S390_OLD:
792 case EM_SH:
793 case EM_SPARC:
794 case EM_SPARC32PLUS:
795 case EM_SPARCV9:
796 case EM_SPU:
797 case EM_TI_C6000:
798 case EM_TILEGX:
799 case EM_TILEPRO:
800 case EM_V800:
801 case EM_V850:
802 case EM_CYGNUS_V850:
803 case EM_VAX:
804 case EM_VISIUM:
805 case EM_X86_64:
806 case EM_L1OM:
807 case EM_K1OM:
808 case EM_XSTORMY16:
809 case EM_XTENSA:
810 case EM_XTENSA_OLD:
811 case EM_MICROBLAZE:
812 case EM_MICROBLAZE_OLD:
813 return TRUE;
814
815 case EM_68HC05:
816 case EM_68HC08:
817 case EM_68HC11:
818 case EM_68HC16:
819 case EM_FX66:
820 case EM_ME16:
821 case EM_MMA:
822 case EM_NCPU:
823 case EM_NDR1:
824 case EM_PCP:
825 case EM_ST100:
826 case EM_ST19:
827 case EM_ST7:
828 case EM_ST9PLUS:
829 case EM_STARCORE:
830 case EM_SVX:
831 case EM_TINYJ:
832 default:
833 warn (_("Don't know about relocations on this machine architecture\n"));
834 return FALSE;
835 }
836 }
837
838 static int
839 slurp_rela_relocs (FILE * file,
840 unsigned long rel_offset,
841 unsigned long rel_size,
842 Elf_Internal_Rela ** relasp,
843 unsigned long * nrelasp)
844 {
845 Elf_Internal_Rela * relas;
846 size_t nrelas;
847 unsigned int i;
848
849 if (is_32bit_elf)
850 {
851 Elf32_External_Rela * erelas;
852
853 erelas = (Elf32_External_Rela *) get_data (NULL, file, rel_offset, 1,
854 rel_size, _("32-bit relocation data"));
855 if (!erelas)
856 return 0;
857
858 nrelas = rel_size / sizeof (Elf32_External_Rela);
859
860 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
861 sizeof (Elf_Internal_Rela));
862
863 if (relas == NULL)
864 {
865 free (erelas);
866 error (_("out of memory parsing relocs\n"));
867 return 0;
868 }
869
870 for (i = 0; i < nrelas; i++)
871 {
872 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
873 relas[i].r_info = BYTE_GET (erelas[i].r_info);
874 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
875 }
876
877 free (erelas);
878 }
879 else
880 {
881 Elf64_External_Rela * erelas;
882
883 erelas = (Elf64_External_Rela *) get_data (NULL, file, rel_offset, 1,
884 rel_size, _("64-bit relocation data"));
885 if (!erelas)
886 return 0;
887
888 nrelas = rel_size / sizeof (Elf64_External_Rela);
889
890 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
891 sizeof (Elf_Internal_Rela));
892
893 if (relas == NULL)
894 {
895 free (erelas);
896 error (_("out of memory parsing relocs\n"));
897 return 0;
898 }
899
900 for (i = 0; i < nrelas; i++)
901 {
902 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
903 relas[i].r_info = BYTE_GET (erelas[i].r_info);
904 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
905
906 /* The #ifdef BFD64 below is to prevent a compile time
907 warning. We know that if we do not have a 64 bit data
908 type that we will never execute this code anyway. */
909 #ifdef BFD64
910 if (elf_header.e_machine == EM_MIPS
911 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
912 {
913 /* In little-endian objects, r_info isn't really a
914 64-bit little-endian value: it has a 32-bit
915 little-endian symbol index followed by four
916 individual byte fields. Reorder INFO
917 accordingly. */
918 bfd_vma inf = relas[i].r_info;
919 inf = (((inf & 0xffffffff) << 32)
920 | ((inf >> 56) & 0xff)
921 | ((inf >> 40) & 0xff00)
922 | ((inf >> 24) & 0xff0000)
923 | ((inf >> 8) & 0xff000000));
924 relas[i].r_info = inf;
925 }
926 #endif /* BFD64 */
927 }
928
929 free (erelas);
930 }
931 *relasp = relas;
932 *nrelasp = nrelas;
933 return 1;
934 }
935
936 static int
937 slurp_rel_relocs (FILE * file,
938 unsigned long rel_offset,
939 unsigned long rel_size,
940 Elf_Internal_Rela ** relsp,
941 unsigned long * nrelsp)
942 {
943 Elf_Internal_Rela * rels;
944 size_t nrels;
945 unsigned int i;
946
947 if (is_32bit_elf)
948 {
949 Elf32_External_Rel * erels;
950
951 erels = (Elf32_External_Rel *) get_data (NULL, file, rel_offset, 1,
952 rel_size, _("32-bit relocation data"));
953 if (!erels)
954 return 0;
955
956 nrels = rel_size / sizeof (Elf32_External_Rel);
957
958 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
959
960 if (rels == NULL)
961 {
962 free (erels);
963 error (_("out of memory parsing relocs\n"));
964 return 0;
965 }
966
967 for (i = 0; i < nrels; i++)
968 {
969 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
970 rels[i].r_info = BYTE_GET (erels[i].r_info);
971 rels[i].r_addend = 0;
972 }
973
974 free (erels);
975 }
976 else
977 {
978 Elf64_External_Rel * erels;
979
980 erels = (Elf64_External_Rel *) get_data (NULL, file, rel_offset, 1,
981 rel_size, _("64-bit relocation data"));
982 if (!erels)
983 return 0;
984
985 nrels = rel_size / sizeof (Elf64_External_Rel);
986
987 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
988
989 if (rels == NULL)
990 {
991 free (erels);
992 error (_("out of memory parsing relocs\n"));
993 return 0;
994 }
995
996 for (i = 0; i < nrels; i++)
997 {
998 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
999 rels[i].r_info = BYTE_GET (erels[i].r_info);
1000 rels[i].r_addend = 0;
1001
1002 /* The #ifdef BFD64 below is to prevent a compile time
1003 warning. We know that if we do not have a 64 bit data
1004 type that we will never execute this code anyway. */
1005 #ifdef BFD64
1006 if (elf_header.e_machine == EM_MIPS
1007 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
1008 {
1009 /* In little-endian objects, r_info isn't really a
1010 64-bit little-endian value: it has a 32-bit
1011 little-endian symbol index followed by four
1012 individual byte fields. Reorder INFO
1013 accordingly. */
1014 bfd_vma inf = rels[i].r_info;
1015 inf = (((inf & 0xffffffff) << 32)
1016 | ((inf >> 56) & 0xff)
1017 | ((inf >> 40) & 0xff00)
1018 | ((inf >> 24) & 0xff0000)
1019 | ((inf >> 8) & 0xff000000));
1020 rels[i].r_info = inf;
1021 }
1022 #endif /* BFD64 */
1023 }
1024
1025 free (erels);
1026 }
1027 *relsp = rels;
1028 *nrelsp = nrels;
1029 return 1;
1030 }
1031
1032 /* Returns the reloc type extracted from the reloc info field. */
1033
1034 static unsigned int
1035 get_reloc_type (bfd_vma reloc_info)
1036 {
1037 if (is_32bit_elf)
1038 return ELF32_R_TYPE (reloc_info);
1039
1040 switch (elf_header.e_machine)
1041 {
1042 case EM_MIPS:
1043 /* Note: We assume that reloc_info has already been adjusted for us. */
1044 return ELF64_MIPS_R_TYPE (reloc_info);
1045
1046 case EM_SPARCV9:
1047 return ELF64_R_TYPE_ID (reloc_info);
1048
1049 default:
1050 return ELF64_R_TYPE (reloc_info);
1051 }
1052 }
1053
1054 /* Return the symbol index extracted from the reloc info field. */
1055
1056 static bfd_vma
1057 get_reloc_symindex (bfd_vma reloc_info)
1058 {
1059 return is_32bit_elf ? ELF32_R_SYM (reloc_info) : ELF64_R_SYM (reloc_info);
1060 }
1061
1062 static inline bfd_boolean
1063 uses_msp430x_relocs (void)
1064 {
1065 return
1066 elf_header.e_machine == EM_MSP430 /* Paranoia. */
1067 /* GCC uses osabi == ELFOSBI_STANDALONE. */
1068 && (((elf_header.e_flags & EF_MSP430_MACH) == E_MSP430_MACH_MSP430X)
1069 /* TI compiler uses ELFOSABI_NONE. */
1070 || (elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE));
1071 }
1072
1073 /* Display the contents of the relocation data found at the specified
1074 offset. */
1075
1076 static void
1077 dump_relocations (FILE * file,
1078 unsigned long rel_offset,
1079 unsigned long rel_size,
1080 Elf_Internal_Sym * symtab,
1081 unsigned long nsyms,
1082 char * strtab,
1083 unsigned long strtablen,
1084 int is_rela,
1085 int is_dynsym)
1086 {
1087 unsigned int i;
1088 Elf_Internal_Rela * rels;
1089
1090 if (is_rela == UNKNOWN)
1091 is_rela = guess_is_rela (elf_header.e_machine);
1092
1093 if (is_rela)
1094 {
1095 if (!slurp_rela_relocs (file, rel_offset, rel_size, &rels, &rel_size))
1096 return;
1097 }
1098 else
1099 {
1100 if (!slurp_rel_relocs (file, rel_offset, rel_size, &rels, &rel_size))
1101 return;
1102 }
1103
1104 if (is_32bit_elf)
1105 {
1106 if (is_rela)
1107 {
1108 if (do_wide)
1109 printf (_(" Offset Info Type Sym. Value Symbol's Name + Addend\n"));
1110 else
1111 printf (_(" Offset Info Type Sym.Value Sym. Name + Addend\n"));
1112 }
1113 else
1114 {
1115 if (do_wide)
1116 printf (_(" Offset Info Type Sym. Value Symbol's Name\n"));
1117 else
1118 printf (_(" Offset Info Type Sym.Value Sym. Name\n"));
1119 }
1120 }
1121 else
1122 {
1123 if (is_rela)
1124 {
1125 if (do_wide)
1126 printf (_(" Offset Info Type Symbol's Value Symbol's Name + Addend\n"));
1127 else
1128 printf (_(" Offset Info Type Sym. Value Sym. Name + Addend\n"));
1129 }
1130 else
1131 {
1132 if (do_wide)
1133 printf (_(" Offset Info Type Symbol's Value Symbol's Name\n"));
1134 else
1135 printf (_(" Offset Info Type Sym. Value Sym. Name\n"));
1136 }
1137 }
1138
1139 for (i = 0; i < rel_size; i++)
1140 {
1141 const char * rtype;
1142 bfd_vma offset;
1143 bfd_vma inf;
1144 bfd_vma symtab_index;
1145 bfd_vma type;
1146
1147 offset = rels[i].r_offset;
1148 inf = rels[i].r_info;
1149
1150 type = get_reloc_type (inf);
1151 symtab_index = get_reloc_symindex (inf);
1152
1153 if (is_32bit_elf)
1154 {
1155 printf ("%8.8lx %8.8lx ",
1156 (unsigned long) offset & 0xffffffff,
1157 (unsigned long) inf & 0xffffffff);
1158 }
1159 else
1160 {
1161 #if BFD_HOST_64BIT_LONG
1162 printf (do_wide
1163 ? "%16.16lx %16.16lx "
1164 : "%12.12lx %12.12lx ",
1165 offset, inf);
1166 #elif BFD_HOST_64BIT_LONG_LONG
1167 #ifndef __MSVCRT__
1168 printf (do_wide
1169 ? "%16.16llx %16.16llx "
1170 : "%12.12llx %12.12llx ",
1171 offset, inf);
1172 #else
1173 printf (do_wide
1174 ? "%16.16I64x %16.16I64x "
1175 : "%12.12I64x %12.12I64x ",
1176 offset, inf);
1177 #endif
1178 #else
1179 printf (do_wide
1180 ? "%8.8lx%8.8lx %8.8lx%8.8lx "
1181 : "%4.4lx%8.8lx %4.4lx%8.8lx ",
1182 _bfd_int64_high (offset),
1183 _bfd_int64_low (offset),
1184 _bfd_int64_high (inf),
1185 _bfd_int64_low (inf));
1186 #endif
1187 }
1188
1189 switch (elf_header.e_machine)
1190 {
1191 default:
1192 rtype = NULL;
1193 break;
1194
1195 case EM_AARCH64:
1196 rtype = elf_aarch64_reloc_type (type);
1197 break;
1198
1199 case EM_M32R:
1200 case EM_CYGNUS_M32R:
1201 rtype = elf_m32r_reloc_type (type);
1202 break;
1203
1204 case EM_386:
1205 case EM_IAMCU:
1206 rtype = elf_i386_reloc_type (type);
1207 break;
1208
1209 case EM_68HC11:
1210 case EM_68HC12:
1211 rtype = elf_m68hc11_reloc_type (type);
1212 break;
1213
1214 case EM_68K:
1215 rtype = elf_m68k_reloc_type (type);
1216 break;
1217
1218 case EM_960:
1219 rtype = elf_i960_reloc_type (type);
1220 break;
1221
1222 case EM_AVR:
1223 case EM_AVR_OLD:
1224 rtype = elf_avr_reloc_type (type);
1225 break;
1226
1227 case EM_OLD_SPARCV9:
1228 case EM_SPARC32PLUS:
1229 case EM_SPARCV9:
1230 case EM_SPARC:
1231 rtype = elf_sparc_reloc_type (type);
1232 break;
1233
1234 case EM_SPU:
1235 rtype = elf_spu_reloc_type (type);
1236 break;
1237
1238 case EM_V800:
1239 rtype = v800_reloc_type (type);
1240 break;
1241 case EM_V850:
1242 case EM_CYGNUS_V850:
1243 rtype = v850_reloc_type (type);
1244 break;
1245
1246 case EM_D10V:
1247 case EM_CYGNUS_D10V:
1248 rtype = elf_d10v_reloc_type (type);
1249 break;
1250
1251 case EM_D30V:
1252 case EM_CYGNUS_D30V:
1253 rtype = elf_d30v_reloc_type (type);
1254 break;
1255
1256 case EM_DLX:
1257 rtype = elf_dlx_reloc_type (type);
1258 break;
1259
1260 case EM_SH:
1261 rtype = elf_sh_reloc_type (type);
1262 break;
1263
1264 case EM_MN10300:
1265 case EM_CYGNUS_MN10300:
1266 rtype = elf_mn10300_reloc_type (type);
1267 break;
1268
1269 case EM_MN10200:
1270 case EM_CYGNUS_MN10200:
1271 rtype = elf_mn10200_reloc_type (type);
1272 break;
1273
1274 case EM_FR30:
1275 case EM_CYGNUS_FR30:
1276 rtype = elf_fr30_reloc_type (type);
1277 break;
1278
1279 case EM_CYGNUS_FRV:
1280 rtype = elf_frv_reloc_type (type);
1281 break;
1282
1283 case EM_FT32:
1284 rtype = elf_ft32_reloc_type (type);
1285 break;
1286
1287 case EM_MCORE:
1288 rtype = elf_mcore_reloc_type (type);
1289 break;
1290
1291 case EM_MMIX:
1292 rtype = elf_mmix_reloc_type (type);
1293 break;
1294
1295 case EM_MOXIE:
1296 rtype = elf_moxie_reloc_type (type);
1297 break;
1298
1299 case EM_MSP430:
1300 if (uses_msp430x_relocs ())
1301 {
1302 rtype = elf_msp430x_reloc_type (type);
1303 break;
1304 }
1305 /* Fall through. */
1306 case EM_MSP430_OLD:
1307 rtype = elf_msp430_reloc_type (type);
1308 break;
1309
1310 case EM_NDS32:
1311 rtype = elf_nds32_reloc_type (type);
1312 break;
1313
1314 case EM_PPC:
1315 rtype = elf_ppc_reloc_type (type);
1316 break;
1317
1318 case EM_PPC64:
1319 rtype = elf_ppc64_reloc_type (type);
1320 break;
1321
1322 case EM_MIPS:
1323 case EM_MIPS_RS3_LE:
1324 rtype = elf_mips_reloc_type (type);
1325 break;
1326
1327 case EM_RISCV:
1328 rtype = elf_riscv_reloc_type (type);
1329 break;
1330
1331 case EM_ALPHA:
1332 rtype = elf_alpha_reloc_type (type);
1333 break;
1334
1335 case EM_ARM:
1336 rtype = elf_arm_reloc_type (type);
1337 break;
1338
1339 case EM_ARC:
1340 case EM_ARC_COMPACT:
1341 case EM_ARC_COMPACT2:
1342 rtype = elf_arc_reloc_type (type);
1343 break;
1344
1345 case EM_PARISC:
1346 rtype = elf_hppa_reloc_type (type);
1347 break;
1348
1349 case EM_H8_300:
1350 case EM_H8_300H:
1351 case EM_H8S:
1352 rtype = elf_h8_reloc_type (type);
1353 break;
1354
1355 case EM_OR1K:
1356 rtype = elf_or1k_reloc_type (type);
1357 break;
1358
1359 case EM_PJ:
1360 case EM_PJ_OLD:
1361 rtype = elf_pj_reloc_type (type);
1362 break;
1363 case EM_IA_64:
1364 rtype = elf_ia64_reloc_type (type);
1365 break;
1366
1367 case EM_CRIS:
1368 rtype = elf_cris_reloc_type (type);
1369 break;
1370
1371 case EM_860:
1372 rtype = elf_i860_reloc_type (type);
1373 break;
1374
1375 case EM_X86_64:
1376 case EM_L1OM:
1377 case EM_K1OM:
1378 rtype = elf_x86_64_reloc_type (type);
1379 break;
1380
1381 case EM_S370:
1382 rtype = i370_reloc_type (type);
1383 break;
1384
1385 case EM_S390_OLD:
1386 case EM_S390:
1387 rtype = elf_s390_reloc_type (type);
1388 break;
1389
1390 case EM_SCORE:
1391 rtype = elf_score_reloc_type (type);
1392 break;
1393
1394 case EM_XSTORMY16:
1395 rtype = elf_xstormy16_reloc_type (type);
1396 break;
1397
1398 case EM_CRX:
1399 rtype = elf_crx_reloc_type (type);
1400 break;
1401
1402 case EM_VAX:
1403 rtype = elf_vax_reloc_type (type);
1404 break;
1405
1406 case EM_VISIUM:
1407 rtype = elf_visium_reloc_type (type);
1408 break;
1409
1410 case EM_ADAPTEVA_EPIPHANY:
1411 rtype = elf_epiphany_reloc_type (type);
1412 break;
1413
1414 case EM_IP2K:
1415 case EM_IP2K_OLD:
1416 rtype = elf_ip2k_reloc_type (type);
1417 break;
1418
1419 case EM_IQ2000:
1420 rtype = elf_iq2000_reloc_type (type);
1421 break;
1422
1423 case EM_XTENSA_OLD:
1424 case EM_XTENSA:
1425 rtype = elf_xtensa_reloc_type (type);
1426 break;
1427
1428 case EM_LATTICEMICO32:
1429 rtype = elf_lm32_reloc_type (type);
1430 break;
1431
1432 case EM_M32C_OLD:
1433 case EM_M32C:
1434 rtype = elf_m32c_reloc_type (type);
1435 break;
1436
1437 case EM_MT:
1438 rtype = elf_mt_reloc_type (type);
1439 break;
1440
1441 case EM_BLACKFIN:
1442 rtype = elf_bfin_reloc_type (type);
1443 break;
1444
1445 case EM_CYGNUS_MEP:
1446 rtype = elf_mep_reloc_type (type);
1447 break;
1448
1449 case EM_CR16:
1450 rtype = elf_cr16_reloc_type (type);
1451 break;
1452
1453 case EM_MICROBLAZE:
1454 case EM_MICROBLAZE_OLD:
1455 rtype = elf_microblaze_reloc_type (type);
1456 break;
1457
1458 case EM_RL78:
1459 rtype = elf_rl78_reloc_type (type);
1460 break;
1461
1462 case EM_RX:
1463 rtype = elf_rx_reloc_type (type);
1464 break;
1465
1466 case EM_METAG:
1467 rtype = elf_metag_reloc_type (type);
1468 break;
1469
1470 case EM_XC16X:
1471 case EM_C166:
1472 rtype = elf_xc16x_reloc_type (type);
1473 break;
1474
1475 case EM_TI_C6000:
1476 rtype = elf_tic6x_reloc_type (type);
1477 break;
1478
1479 case EM_TILEGX:
1480 rtype = elf_tilegx_reloc_type (type);
1481 break;
1482
1483 case EM_TILEPRO:
1484 rtype = elf_tilepro_reloc_type (type);
1485 break;
1486
1487 case EM_XGATE:
1488 rtype = elf_xgate_reloc_type (type);
1489 break;
1490
1491 case EM_ALTERA_NIOS2:
1492 rtype = elf_nios2_reloc_type (type);
1493 break;
1494
1495 case EM_TI_PRU:
1496 rtype = elf_pru_reloc_type (type);
1497 break;
1498 }
1499
1500 if (rtype == NULL)
1501 printf (_("unrecognized: %-7lx"), (unsigned long) type & 0xffffffff);
1502 else
1503 printf (do_wide ? "%-22.22s" : "%-17.17s", rtype);
1504
1505 if (elf_header.e_machine == EM_ALPHA
1506 && rtype != NULL
1507 && streq (rtype, "R_ALPHA_LITUSE")
1508 && is_rela)
1509 {
1510 switch (rels[i].r_addend)
1511 {
1512 case LITUSE_ALPHA_ADDR: rtype = "ADDR"; break;
1513 case LITUSE_ALPHA_BASE: rtype = "BASE"; break;
1514 case LITUSE_ALPHA_BYTOFF: rtype = "BYTOFF"; break;
1515 case LITUSE_ALPHA_JSR: rtype = "JSR"; break;
1516 case LITUSE_ALPHA_TLSGD: rtype = "TLSGD"; break;
1517 case LITUSE_ALPHA_TLSLDM: rtype = "TLSLDM"; break;
1518 case LITUSE_ALPHA_JSRDIRECT: rtype = "JSRDIRECT"; break;
1519 default: rtype = NULL;
1520 }
1521 if (rtype)
1522 printf (" (%s)", rtype);
1523 else
1524 {
1525 putchar (' ');
1526 printf (_("<unknown addend: %lx>"),
1527 (unsigned long) rels[i].r_addend);
1528 }
1529 }
1530 else if (symtab_index)
1531 {
1532 if (symtab == NULL || symtab_index >= nsyms)
1533 printf (_(" bad symbol index: %08lx"), (unsigned long) symtab_index);
1534 else
1535 {
1536 Elf_Internal_Sym * psym;
1537 const char * version_string;
1538 enum versioned_symbol_info sym_info;
1539 unsigned short vna_other;
1540
1541 psym = symtab + symtab_index;
1542
1543 version_string
1544 = get_symbol_version_string (file, is_dynsym,
1545 strtab, strtablen,
1546 symtab_index,
1547 psym,
1548 &sym_info,
1549 &vna_other);
1550
1551 printf (" ");
1552
1553 if (ELF_ST_TYPE (psym->st_info) == STT_GNU_IFUNC)
1554 {
1555 const char * name;
1556 unsigned int len;
1557 unsigned int width = is_32bit_elf ? 8 : 14;
1558
1559 /* Relocations against GNU_IFUNC symbols do not use the value
1560 of the symbol as the address to relocate against. Instead
1561 they invoke the function named by the symbol and use its
1562 result as the address for relocation.
1563
1564 To indicate this to the user, do not display the value of
1565 the symbol in the "Symbols's Value" field. Instead show
1566 its name followed by () as a hint that the symbol is
1567 invoked. */
1568
1569 if (strtab == NULL
1570 || psym->st_name == 0
1571 || psym->st_name >= strtablen)
1572 name = "??";
1573 else
1574 name = strtab + psym->st_name;
1575
1576 len = print_symbol (width, name);
1577 if (version_string)
1578 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1579 version_string);
1580 printf ("()%-*s", len <= width ? (width + 1) - len : 1, " ");
1581 }
1582 else
1583 {
1584 print_vma (psym->st_value, LONG_HEX);
1585
1586 printf (is_32bit_elf ? " " : " ");
1587 }
1588
1589 if (psym->st_name == 0)
1590 {
1591 const char * sec_name = "<null>";
1592 char name_buf[40];
1593
1594 if (ELF_ST_TYPE (psym->st_info) == STT_SECTION)
1595 {
1596 if (psym->st_shndx < elf_header.e_shnum)
1597 sec_name = SECTION_NAME (section_headers + psym->st_shndx);
1598 else if (psym->st_shndx == SHN_ABS)
1599 sec_name = "ABS";
1600 else if (psym->st_shndx == SHN_COMMON)
1601 sec_name = "COMMON";
1602 else if ((elf_header.e_machine == EM_MIPS
1603 && psym->st_shndx == SHN_MIPS_SCOMMON)
1604 || (elf_header.e_machine == EM_TI_C6000
1605 && psym->st_shndx == SHN_TIC6X_SCOMMON))
1606 sec_name = "SCOMMON";
1607 else if (elf_header.e_machine == EM_MIPS
1608 && psym->st_shndx == SHN_MIPS_SUNDEFINED)
1609 sec_name = "SUNDEF";
1610 else if ((elf_header.e_machine == EM_X86_64
1611 || elf_header.e_machine == EM_L1OM
1612 || elf_header.e_machine == EM_K1OM)
1613 && psym->st_shndx == SHN_X86_64_LCOMMON)
1614 sec_name = "LARGE_COMMON";
1615 else if (elf_header.e_machine == EM_IA_64
1616 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX
1617 && psym->st_shndx == SHN_IA_64_ANSI_COMMON)
1618 sec_name = "ANSI_COM";
1619 else if (is_ia64_vms ()
1620 && psym->st_shndx == SHN_IA_64_VMS_SYMVEC)
1621 sec_name = "VMS_SYMVEC";
1622 else
1623 {
1624 sprintf (name_buf, "<section 0x%x>",
1625 (unsigned int) psym->st_shndx);
1626 sec_name = name_buf;
1627 }
1628 }
1629 print_symbol (22, sec_name);
1630 }
1631 else if (strtab == NULL)
1632 printf (_("<string table index: %3ld>"), psym->st_name);
1633 else if (psym->st_name >= strtablen)
1634 printf (_("<corrupt string table index: %3ld>"), psym->st_name);
1635 else
1636 {
1637 print_symbol (22, strtab + psym->st_name);
1638 if (version_string)
1639 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1640 version_string);
1641 }
1642
1643 if (is_rela)
1644 {
1645 bfd_vma off = rels[i].r_addend;
1646
1647 if ((bfd_signed_vma) off < 0)
1648 printf (" - %" BFD_VMA_FMT "x", - off);
1649 else
1650 printf (" + %" BFD_VMA_FMT "x", off);
1651 }
1652 }
1653 }
1654 else if (is_rela)
1655 {
1656 bfd_vma off = rels[i].r_addend;
1657
1658 printf ("%*c", is_32bit_elf ? 12 : 20, ' ');
1659 if ((bfd_signed_vma) off < 0)
1660 printf ("-%" BFD_VMA_FMT "x", - off);
1661 else
1662 printf ("%" BFD_VMA_FMT "x", off);
1663 }
1664
1665 if (elf_header.e_machine == EM_SPARCV9
1666 && rtype != NULL
1667 && streq (rtype, "R_SPARC_OLO10"))
1668 printf (" + %lx", (unsigned long) ELF64_R_TYPE_DATA (inf));
1669
1670 putchar ('\n');
1671
1672 #ifdef BFD64
1673 if (! is_32bit_elf && elf_header.e_machine == EM_MIPS)
1674 {
1675 bfd_vma type2 = ELF64_MIPS_R_TYPE2 (inf);
1676 bfd_vma type3 = ELF64_MIPS_R_TYPE3 (inf);
1677 const char * rtype2 = elf_mips_reloc_type (type2);
1678 const char * rtype3 = elf_mips_reloc_type (type3);
1679
1680 printf (" Type2: ");
1681
1682 if (rtype2 == NULL)
1683 printf (_("unrecognized: %-7lx"),
1684 (unsigned long) type2 & 0xffffffff);
1685 else
1686 printf ("%-17.17s", rtype2);
1687
1688 printf ("\n Type3: ");
1689
1690 if (rtype3 == NULL)
1691 printf (_("unrecognized: %-7lx"),
1692 (unsigned long) type3 & 0xffffffff);
1693 else
1694 printf ("%-17.17s", rtype3);
1695
1696 putchar ('\n');
1697 }
1698 #endif /* BFD64 */
1699 }
1700
1701 free (rels);
1702 }
1703
1704 static const char *
1705 get_mips_dynamic_type (unsigned long type)
1706 {
1707 switch (type)
1708 {
1709 case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION";
1710 case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP";
1711 case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM";
1712 case DT_MIPS_IVERSION: return "MIPS_IVERSION";
1713 case DT_MIPS_FLAGS: return "MIPS_FLAGS";
1714 case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS";
1715 case DT_MIPS_MSYM: return "MIPS_MSYM";
1716 case DT_MIPS_CONFLICT: return "MIPS_CONFLICT";
1717 case DT_MIPS_LIBLIST: return "MIPS_LIBLIST";
1718 case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO";
1719 case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO";
1720 case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO";
1721 case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO";
1722 case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO";
1723 case DT_MIPS_GOTSYM: return "MIPS_GOTSYM";
1724 case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO";
1725 case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP";
1726 case DT_MIPS_RLD_MAP_REL: return "MIPS_RLD_MAP_REL";
1727 case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS";
1728 case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO";
1729 case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE";
1730 case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO";
1731 case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC";
1732 case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO";
1733 case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM";
1734 case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO";
1735 case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM";
1736 case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO";
1737 case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS";
1738 case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT";
1739 case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
1740 case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX";
1741 case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX";
1742 case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX";
1743 case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX";
1744 case DT_MIPS_OPTIONS: return "MIPS_OPTIONS";
1745 case DT_MIPS_INTERFACE: return "MIPS_INTERFACE";
1746 case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN";
1747 case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE";
1748 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR";
1749 case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX";
1750 case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE";
1751 case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE";
1752 case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC";
1753 case DT_MIPS_PLTGOT: return "MIPS_PLTGOT";
1754 case DT_MIPS_RWPLT: return "MIPS_RWPLT";
1755 default:
1756 return NULL;
1757 }
1758 }
1759
1760 static const char *
1761 get_sparc64_dynamic_type (unsigned long type)
1762 {
1763 switch (type)
1764 {
1765 case DT_SPARC_REGISTER: return "SPARC_REGISTER";
1766 default:
1767 return NULL;
1768 }
1769 }
1770
1771 static const char *
1772 get_ppc_dynamic_type (unsigned long type)
1773 {
1774 switch (type)
1775 {
1776 case DT_PPC_GOT: return "PPC_GOT";
1777 case DT_PPC_OPT: return "PPC_OPT";
1778 default:
1779 return NULL;
1780 }
1781 }
1782
1783 static const char *
1784 get_ppc64_dynamic_type (unsigned long type)
1785 {
1786 switch (type)
1787 {
1788 case DT_PPC64_GLINK: return "PPC64_GLINK";
1789 case DT_PPC64_OPD: return "PPC64_OPD";
1790 case DT_PPC64_OPDSZ: return "PPC64_OPDSZ";
1791 case DT_PPC64_OPT: return "PPC64_OPT";
1792 default:
1793 return NULL;
1794 }
1795 }
1796
1797 static const char *
1798 get_parisc_dynamic_type (unsigned long type)
1799 {
1800 switch (type)
1801 {
1802 case DT_HP_LOAD_MAP: return "HP_LOAD_MAP";
1803 case DT_HP_DLD_FLAGS: return "HP_DLD_FLAGS";
1804 case DT_HP_DLD_HOOK: return "HP_DLD_HOOK";
1805 case DT_HP_UX10_INIT: return "HP_UX10_INIT";
1806 case DT_HP_UX10_INITSZ: return "HP_UX10_INITSZ";
1807 case DT_HP_PREINIT: return "HP_PREINIT";
1808 case DT_HP_PREINITSZ: return "HP_PREINITSZ";
1809 case DT_HP_NEEDED: return "HP_NEEDED";
1810 case DT_HP_TIME_STAMP: return "HP_TIME_STAMP";
1811 case DT_HP_CHECKSUM: return "HP_CHECKSUM";
1812 case DT_HP_GST_SIZE: return "HP_GST_SIZE";
1813 case DT_HP_GST_VERSION: return "HP_GST_VERSION";
1814 case DT_HP_GST_HASHVAL: return "HP_GST_HASHVAL";
1815 case DT_HP_EPLTREL: return "HP_GST_EPLTREL";
1816 case DT_HP_EPLTRELSZ: return "HP_GST_EPLTRELSZ";
1817 case DT_HP_FILTERED: return "HP_FILTERED";
1818 case DT_HP_FILTER_TLS: return "HP_FILTER_TLS";
1819 case DT_HP_COMPAT_FILTERED: return "HP_COMPAT_FILTERED";
1820 case DT_HP_LAZYLOAD: return "HP_LAZYLOAD";
1821 case DT_HP_BIND_NOW_COUNT: return "HP_BIND_NOW_COUNT";
1822 case DT_PLT: return "PLT";
1823 case DT_PLT_SIZE: return "PLT_SIZE";
1824 case DT_DLT: return "DLT";
1825 case DT_DLT_SIZE: return "DLT_SIZE";
1826 default:
1827 return NULL;
1828 }
1829 }
1830
1831 static const char *
1832 get_ia64_dynamic_type (unsigned long type)
1833 {
1834 switch (type)
1835 {
1836 case DT_IA_64_PLT_RESERVE: return "IA_64_PLT_RESERVE";
1837 case DT_IA_64_VMS_SUBTYPE: return "VMS_SUBTYPE";
1838 case DT_IA_64_VMS_IMGIOCNT: return "VMS_IMGIOCNT";
1839 case DT_IA_64_VMS_LNKFLAGS: return "VMS_LNKFLAGS";
1840 case DT_IA_64_VMS_VIR_MEM_BLK_SIZ: return "VMS_VIR_MEM_BLK_SIZ";
1841 case DT_IA_64_VMS_IDENT: return "VMS_IDENT";
1842 case DT_IA_64_VMS_NEEDED_IDENT: return "VMS_NEEDED_IDENT";
1843 case DT_IA_64_VMS_IMG_RELA_CNT: return "VMS_IMG_RELA_CNT";
1844 case DT_IA_64_VMS_SEG_RELA_CNT: return "VMS_SEG_RELA_CNT";
1845 case DT_IA_64_VMS_FIXUP_RELA_CNT: return "VMS_FIXUP_RELA_CNT";
1846 case DT_IA_64_VMS_FIXUP_NEEDED: return "VMS_FIXUP_NEEDED";
1847 case DT_IA_64_VMS_SYMVEC_CNT: return "VMS_SYMVEC_CNT";
1848 case DT_IA_64_VMS_XLATED: return "VMS_XLATED";
1849 case DT_IA_64_VMS_STACKSIZE: return "VMS_STACKSIZE";
1850 case DT_IA_64_VMS_UNWINDSZ: return "VMS_UNWINDSZ";
1851 case DT_IA_64_VMS_UNWIND_CODSEG: return "VMS_UNWIND_CODSEG";
1852 case DT_IA_64_VMS_UNWIND_INFOSEG: return "VMS_UNWIND_INFOSEG";
1853 case DT_IA_64_VMS_LINKTIME: return "VMS_LINKTIME";
1854 case DT_IA_64_VMS_SEG_NO: return "VMS_SEG_NO";
1855 case DT_IA_64_VMS_SYMVEC_OFFSET: return "VMS_SYMVEC_OFFSET";
1856 case DT_IA_64_VMS_SYMVEC_SEG: return "VMS_SYMVEC_SEG";
1857 case DT_IA_64_VMS_UNWIND_OFFSET: return "VMS_UNWIND_OFFSET";
1858 case DT_IA_64_VMS_UNWIND_SEG: return "VMS_UNWIND_SEG";
1859 case DT_IA_64_VMS_STRTAB_OFFSET: return "VMS_STRTAB_OFFSET";
1860 case DT_IA_64_VMS_SYSVER_OFFSET: return "VMS_SYSVER_OFFSET";
1861 case DT_IA_64_VMS_IMG_RELA_OFF: return "VMS_IMG_RELA_OFF";
1862 case DT_IA_64_VMS_SEG_RELA_OFF: return "VMS_SEG_RELA_OFF";
1863 case DT_IA_64_VMS_FIXUP_RELA_OFF: return "VMS_FIXUP_RELA_OFF";
1864 case DT_IA_64_VMS_PLTGOT_OFFSET: return "VMS_PLTGOT_OFFSET";
1865 case DT_IA_64_VMS_PLTGOT_SEG: return "VMS_PLTGOT_SEG";
1866 case DT_IA_64_VMS_FPMODE: return "VMS_FPMODE";
1867 default:
1868 return NULL;
1869 }
1870 }
1871
1872 static const char *
1873 get_solaris_section_type (unsigned long type)
1874 {
1875 switch (type)
1876 {
1877 case 0x6fffffee: return "SUNW_ancillary";
1878 case 0x6fffffef: return "SUNW_capchain";
1879 case 0x6ffffff0: return "SUNW_capinfo";
1880 case 0x6ffffff1: return "SUNW_symsort";
1881 case 0x6ffffff2: return "SUNW_tlssort";
1882 case 0x6ffffff3: return "SUNW_LDYNSYM";
1883 case 0x6ffffff4: return "SUNW_dof";
1884 case 0x6ffffff5: return "SUNW_cap";
1885 case 0x6ffffff6: return "SUNW_SIGNATURE";
1886 case 0x6ffffff7: return "SUNW_ANNOTATE";
1887 case 0x6ffffff8: return "SUNW_DEBUGSTR";
1888 case 0x6ffffff9: return "SUNW_DEBUG";
1889 case 0x6ffffffa: return "SUNW_move";
1890 case 0x6ffffffb: return "SUNW_COMDAT";
1891 case 0x6ffffffc: return "SUNW_syminfo";
1892 case 0x6ffffffd: return "SUNW_verdef";
1893 case 0x6ffffffe: return "SUNW_verneed";
1894 case 0x6fffffff: return "SUNW_versym";
1895 case 0x70000000: return "SPARC_GOTDATA";
1896 default: return NULL;
1897 }
1898 }
1899
1900 static const char *
1901 get_alpha_dynamic_type (unsigned long type)
1902 {
1903 switch (type)
1904 {
1905 case DT_ALPHA_PLTRO: return "ALPHA_PLTRO";
1906 default:
1907 return NULL;
1908 }
1909 }
1910
1911 static const char *
1912 get_score_dynamic_type (unsigned long type)
1913 {
1914 switch (type)
1915 {
1916 case DT_SCORE_BASE_ADDRESS: return "SCORE_BASE_ADDRESS";
1917 case DT_SCORE_LOCAL_GOTNO: return "SCORE_LOCAL_GOTNO";
1918 case DT_SCORE_SYMTABNO: return "SCORE_SYMTABNO";
1919 case DT_SCORE_GOTSYM: return "SCORE_GOTSYM";
1920 case DT_SCORE_UNREFEXTNO: return "SCORE_UNREFEXTNO";
1921 case DT_SCORE_HIPAGENO: return "SCORE_HIPAGENO";
1922 default:
1923 return NULL;
1924 }
1925 }
1926
1927 static const char *
1928 get_tic6x_dynamic_type (unsigned long type)
1929 {
1930 switch (type)
1931 {
1932 case DT_C6000_GSYM_OFFSET: return "C6000_GSYM_OFFSET";
1933 case DT_C6000_GSTR_OFFSET: return "C6000_GSTR_OFFSET";
1934 case DT_C6000_DSBT_BASE: return "C6000_DSBT_BASE";
1935 case DT_C6000_DSBT_SIZE: return "C6000_DSBT_SIZE";
1936 case DT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
1937 case DT_C6000_DSBT_INDEX: return "C6000_DSBT_INDEX";
1938 default:
1939 return NULL;
1940 }
1941 }
1942
1943 static const char *
1944 get_nios2_dynamic_type (unsigned long type)
1945 {
1946 switch (type)
1947 {
1948 case DT_NIOS2_GP: return "NIOS2_GP";
1949 default:
1950 return NULL;
1951 }
1952 }
1953
1954 static const char *
1955 get_solaris_dynamic_type (unsigned long type)
1956 {
1957 switch (type)
1958 {
1959 case 0x6000000d: return "SUNW_AUXILIARY";
1960 case 0x6000000e: return "SUNW_RTLDINF";
1961 case 0x6000000f: return "SUNW_FILTER";
1962 case 0x60000010: return "SUNW_CAP";
1963 case 0x60000011: return "SUNW_SYMTAB";
1964 case 0x60000012: return "SUNW_SYMSZ";
1965 case 0x60000013: return "SUNW_SORTENT";
1966 case 0x60000014: return "SUNW_SYMSORT";
1967 case 0x60000015: return "SUNW_SYMSORTSZ";
1968 case 0x60000016: return "SUNW_TLSSORT";
1969 case 0x60000017: return "SUNW_TLSSORTSZ";
1970 case 0x60000018: return "SUNW_CAPINFO";
1971 case 0x60000019: return "SUNW_STRPAD";
1972 case 0x6000001a: return "SUNW_CAPCHAIN";
1973 case 0x6000001b: return "SUNW_LDMACH";
1974 case 0x6000001d: return "SUNW_CAPCHAINENT";
1975 case 0x6000001f: return "SUNW_CAPCHAINSZ";
1976 case 0x60000021: return "SUNW_PARENT";
1977 case 0x60000023: return "SUNW_ASLR";
1978 case 0x60000025: return "SUNW_RELAX";
1979 case 0x60000029: return "SUNW_NXHEAP";
1980 case 0x6000002b: return "SUNW_NXSTACK";
1981
1982 case 0x70000001: return "SPARC_REGISTER";
1983 case 0x7ffffffd: return "AUXILIARY";
1984 case 0x7ffffffe: return "USED";
1985 case 0x7fffffff: return "FILTER";
1986
1987 default: return NULL;
1988 }
1989 }
1990
1991 static const char *
1992 get_dynamic_type (unsigned long type)
1993 {
1994 static char buff[64];
1995
1996 switch (type)
1997 {
1998 case DT_NULL: return "NULL";
1999 case DT_NEEDED: return "NEEDED";
2000 case DT_PLTRELSZ: return "PLTRELSZ";
2001 case DT_PLTGOT: return "PLTGOT";
2002 case DT_HASH: return "HASH";
2003 case DT_STRTAB: return "STRTAB";
2004 case DT_SYMTAB: return "SYMTAB";
2005 case DT_RELA: return "RELA";
2006 case DT_RELASZ: return "RELASZ";
2007 case DT_RELAENT: return "RELAENT";
2008 case DT_STRSZ: return "STRSZ";
2009 case DT_SYMENT: return "SYMENT";
2010 case DT_INIT: return "INIT";
2011 case DT_FINI: return "FINI";
2012 case DT_SONAME: return "SONAME";
2013 case DT_RPATH: return "RPATH";
2014 case DT_SYMBOLIC: return "SYMBOLIC";
2015 case DT_REL: return "REL";
2016 case DT_RELSZ: return "RELSZ";
2017 case DT_RELENT: return "RELENT";
2018 case DT_PLTREL: return "PLTREL";
2019 case DT_DEBUG: return "DEBUG";
2020 case DT_TEXTREL: return "TEXTREL";
2021 case DT_JMPREL: return "JMPREL";
2022 case DT_BIND_NOW: return "BIND_NOW";
2023 case DT_INIT_ARRAY: return "INIT_ARRAY";
2024 case DT_FINI_ARRAY: return "FINI_ARRAY";
2025 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
2026 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
2027 case DT_RUNPATH: return "RUNPATH";
2028 case DT_FLAGS: return "FLAGS";
2029
2030 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
2031 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
2032 case DT_SYMTAB_SHNDX: return "SYMTAB_SHNDX";
2033
2034 case DT_CHECKSUM: return "CHECKSUM";
2035 case DT_PLTPADSZ: return "PLTPADSZ";
2036 case DT_MOVEENT: return "MOVEENT";
2037 case DT_MOVESZ: return "MOVESZ";
2038 case DT_FEATURE: return "FEATURE";
2039 case DT_POSFLAG_1: return "POSFLAG_1";
2040 case DT_SYMINSZ: return "SYMINSZ";
2041 case DT_SYMINENT: return "SYMINENT"; /* aka VALRNGHI */
2042
2043 case DT_ADDRRNGLO: return "ADDRRNGLO";
2044 case DT_CONFIG: return "CONFIG";
2045 case DT_DEPAUDIT: return "DEPAUDIT";
2046 case DT_AUDIT: return "AUDIT";
2047 case DT_PLTPAD: return "PLTPAD";
2048 case DT_MOVETAB: return "MOVETAB";
2049 case DT_SYMINFO: return "SYMINFO"; /* aka ADDRRNGHI */
2050
2051 case DT_VERSYM: return "VERSYM";
2052
2053 case DT_TLSDESC_GOT: return "TLSDESC_GOT";
2054 case DT_TLSDESC_PLT: return "TLSDESC_PLT";
2055 case DT_RELACOUNT: return "RELACOUNT";
2056 case DT_RELCOUNT: return "RELCOUNT";
2057 case DT_FLAGS_1: return "FLAGS_1";
2058 case DT_VERDEF: return "VERDEF";
2059 case DT_VERDEFNUM: return "VERDEFNUM";
2060 case DT_VERNEED: return "VERNEED";
2061 case DT_VERNEEDNUM: return "VERNEEDNUM";
2062
2063 case DT_AUXILIARY: return "AUXILIARY";
2064 case DT_USED: return "USED";
2065 case DT_FILTER: return "FILTER";
2066
2067 case DT_GNU_PRELINKED: return "GNU_PRELINKED";
2068 case DT_GNU_CONFLICT: return "GNU_CONFLICT";
2069 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
2070 case DT_GNU_LIBLIST: return "GNU_LIBLIST";
2071 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
2072 case DT_GNU_HASH: return "GNU_HASH";
2073
2074 default:
2075 if ((type >= DT_LOPROC) && (type <= DT_HIPROC))
2076 {
2077 const char * result;
2078
2079 switch (elf_header.e_machine)
2080 {
2081 case EM_MIPS:
2082 case EM_MIPS_RS3_LE:
2083 result = get_mips_dynamic_type (type);
2084 break;
2085 case EM_SPARCV9:
2086 result = get_sparc64_dynamic_type (type);
2087 break;
2088 case EM_PPC:
2089 result = get_ppc_dynamic_type (type);
2090 break;
2091 case EM_PPC64:
2092 result = get_ppc64_dynamic_type (type);
2093 break;
2094 case EM_IA_64:
2095 result = get_ia64_dynamic_type (type);
2096 break;
2097 case EM_ALPHA:
2098 result = get_alpha_dynamic_type (type);
2099 break;
2100 case EM_SCORE:
2101 result = get_score_dynamic_type (type);
2102 break;
2103 case EM_TI_C6000:
2104 result = get_tic6x_dynamic_type (type);
2105 break;
2106 case EM_ALTERA_NIOS2:
2107 result = get_nios2_dynamic_type (type);
2108 break;
2109 default:
2110 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2111 result = get_solaris_dynamic_type (type);
2112 else
2113 result = NULL;
2114 break;
2115 }
2116
2117 if (result != NULL)
2118 return result;
2119
2120 snprintf (buff, sizeof (buff), _("Processor Specific: %lx"), type);
2121 }
2122 else if (((type >= DT_LOOS) && (type <= DT_HIOS))
2123 || (elf_header.e_machine == EM_PARISC
2124 && (type >= OLD_DT_LOOS) && (type <= OLD_DT_HIOS)))
2125 {
2126 const char * result;
2127
2128 switch (elf_header.e_machine)
2129 {
2130 case EM_PARISC:
2131 result = get_parisc_dynamic_type (type);
2132 break;
2133 case EM_IA_64:
2134 result = get_ia64_dynamic_type (type);
2135 break;
2136 default:
2137 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2138 result = get_solaris_dynamic_type (type);
2139 else
2140 result = NULL;
2141 break;
2142 }
2143
2144 if (result != NULL)
2145 return result;
2146
2147 snprintf (buff, sizeof (buff), _("Operating System specific: %lx"),
2148 type);
2149 }
2150 else
2151 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), type);
2152
2153 return buff;
2154 }
2155 }
2156
2157 static char *
2158 get_file_type (unsigned e_type)
2159 {
2160 static char buff[32];
2161
2162 switch (e_type)
2163 {
2164 case ET_NONE: return _("NONE (None)");
2165 case ET_REL: return _("REL (Relocatable file)");
2166 case ET_EXEC: return _("EXEC (Executable file)");
2167 case ET_DYN: return _("DYN (Shared object file)");
2168 case ET_CORE: return _("CORE (Core file)");
2169
2170 default:
2171 if ((e_type >= ET_LOPROC) && (e_type <= ET_HIPROC))
2172 snprintf (buff, sizeof (buff), _("Processor Specific: (%x)"), e_type);
2173 else if ((e_type >= ET_LOOS) && (e_type <= ET_HIOS))
2174 snprintf (buff, sizeof (buff), _("OS Specific: (%x)"), e_type);
2175 else
2176 snprintf (buff, sizeof (buff), _("<unknown>: %x"), e_type);
2177 return buff;
2178 }
2179 }
2180
2181 static char *
2182 get_machine_name (unsigned e_machine)
2183 {
2184 static char buff[64]; /* XXX */
2185
2186 switch (e_machine)
2187 {
2188 case EM_NONE: return _("None");
2189 case EM_AARCH64: return "AArch64";
2190 case EM_M32: return "WE32100";
2191 case EM_SPARC: return "Sparc";
2192 case EM_SPU: return "SPU";
2193 case EM_386: return "Intel 80386";
2194 case EM_68K: return "MC68000";
2195 case EM_88K: return "MC88000";
2196 case EM_IAMCU: return "Intel MCU";
2197 case EM_860: return "Intel 80860";
2198 case EM_MIPS: return "MIPS R3000";
2199 case EM_S370: return "IBM System/370";
2200 case EM_MIPS_RS3_LE: return "MIPS R4000 big-endian";
2201 case EM_OLD_SPARCV9: return "Sparc v9 (old)";
2202 case EM_PARISC: return "HPPA";
2203 case EM_PPC_OLD: return "Power PC (old)";
2204 case EM_SPARC32PLUS: return "Sparc v8+" ;
2205 case EM_960: return "Intel 90860";
2206 case EM_PPC: return "PowerPC";
2207 case EM_PPC64: return "PowerPC64";
2208 case EM_FR20: return "Fujitsu FR20";
2209 case EM_FT32: return "FTDI FT32";
2210 case EM_RH32: return "TRW RH32";
2211 case EM_MCORE: return "MCORE";
2212 case EM_ARM: return "ARM";
2213 case EM_OLD_ALPHA: return "Digital Alpha (old)";
2214 case EM_SH: return "Renesas / SuperH SH";
2215 case EM_SPARCV9: return "Sparc v9";
2216 case EM_TRICORE: return "Siemens Tricore";
2217 case EM_ARC: return "ARC";
2218 case EM_ARC_COMPACT: return "ARCompact";
2219 case EM_ARC_COMPACT2: return "ARCv2";
2220 case EM_H8_300: return "Renesas H8/300";
2221 case EM_H8_300H: return "Renesas H8/300H";
2222 case EM_H8S: return "Renesas H8S";
2223 case EM_H8_500: return "Renesas H8/500";
2224 case EM_IA_64: return "Intel IA-64";
2225 case EM_MIPS_X: return "Stanford MIPS-X";
2226 case EM_COLDFIRE: return "Motorola Coldfire";
2227 case EM_ALPHA: return "Alpha";
2228 case EM_CYGNUS_D10V:
2229 case EM_D10V: return "d10v";
2230 case EM_CYGNUS_D30V:
2231 case EM_D30V: return "d30v";
2232 case EM_CYGNUS_M32R:
2233 case EM_M32R: return "Renesas M32R (formerly Mitsubishi M32r)";
2234 case EM_CYGNUS_V850:
2235 case EM_V800: return "Renesas V850 (using RH850 ABI)";
2236 case EM_V850: return "Renesas V850";
2237 case EM_CYGNUS_MN10300:
2238 case EM_MN10300: return "mn10300";
2239 case EM_CYGNUS_MN10200:
2240 case EM_MN10200: return "mn10200";
2241 case EM_MOXIE: return "Moxie";
2242 case EM_CYGNUS_FR30:
2243 case EM_FR30: return "Fujitsu FR30";
2244 case EM_CYGNUS_FRV: return "Fujitsu FR-V";
2245 case EM_PJ_OLD:
2246 case EM_PJ: return "picoJava";
2247 case EM_MMA: return "Fujitsu Multimedia Accelerator";
2248 case EM_PCP: return "Siemens PCP";
2249 case EM_NCPU: return "Sony nCPU embedded RISC processor";
2250 case EM_NDR1: return "Denso NDR1 microprocesspr";
2251 case EM_STARCORE: return "Motorola Star*Core processor";
2252 case EM_ME16: return "Toyota ME16 processor";
2253 case EM_ST100: return "STMicroelectronics ST100 processor";
2254 case EM_TINYJ: return "Advanced Logic Corp. TinyJ embedded processor";
2255 case EM_PDSP: return "Sony DSP processor";
2256 case EM_PDP10: return "Digital Equipment Corp. PDP-10";
2257 case EM_PDP11: return "Digital Equipment Corp. PDP-11";
2258 case EM_FX66: return "Siemens FX66 microcontroller";
2259 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 bit microcontroller";
2260 case EM_ST7: return "STMicroelectronics ST7 8-bit microcontroller";
2261 case EM_68HC16: return "Motorola MC68HC16 Microcontroller";
2262 case EM_68HC12: return "Motorola MC68HC12 Microcontroller";
2263 case EM_68HC11: return "Motorola MC68HC11 Microcontroller";
2264 case EM_68HC08: return "Motorola MC68HC08 Microcontroller";
2265 case EM_68HC05: return "Motorola MC68HC05 Microcontroller";
2266 case EM_SVX: return "Silicon Graphics SVx";
2267 case EM_ST19: return "STMicroelectronics ST19 8-bit microcontroller";
2268 case EM_VAX: return "Digital VAX";
2269 case EM_VISIUM: return "CDS VISIUMcore processor";
2270 case EM_AVR_OLD:
2271 case EM_AVR: return "Atmel AVR 8-bit microcontroller";
2272 case EM_CRIS: return "Axis Communications 32-bit embedded processor";
2273 case EM_JAVELIN: return "Infineon Technologies 32-bit embedded cpu";
2274 case EM_FIREPATH: return "Element 14 64-bit DSP processor";
2275 case EM_ZSP: return "LSI Logic's 16-bit DSP processor";
2276 case EM_MMIX: return "Donald Knuth's educational 64-bit processor";
2277 case EM_HUANY: return "Harvard Universitys's machine-independent object format";
2278 case EM_PRISM: return "Vitesse Prism";
2279 case EM_X86_64: return "Advanced Micro Devices X86-64";
2280 case EM_L1OM: return "Intel L1OM";
2281 case EM_K1OM: return "Intel K1OM";
2282 case EM_S390_OLD:
2283 case EM_S390: return "IBM S/390";
2284 case EM_SCORE: return "SUNPLUS S+Core";
2285 case EM_XSTORMY16: return "Sanyo XStormy16 CPU core";
2286 case EM_OR1K: return "OpenRISC 1000";
2287 case EM_CRX: return "National Semiconductor CRX microprocessor";
2288 case EM_ADAPTEVA_EPIPHANY: return "Adapteva EPIPHANY";
2289 case EM_DLX: return "OpenDLX";
2290 case EM_IP2K_OLD:
2291 case EM_IP2K: return "Ubicom IP2xxx 8-bit microcontrollers";
2292 case EM_IQ2000: return "Vitesse IQ2000";
2293 case EM_XTENSA_OLD:
2294 case EM_XTENSA: return "Tensilica Xtensa Processor";
2295 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
2296 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
2297 case EM_NS32K: return "National Semiconductor 32000 series";
2298 case EM_TPC: return "Tenor Network TPC processor";
2299 case EM_ST200: return "STMicroelectronics ST200 microcontroller";
2300 case EM_MAX: return "MAX Processor";
2301 case EM_CR: return "National Semiconductor CompactRISC";
2302 case EM_F2MC16: return "Fujitsu F2MC16";
2303 case EM_MSP430: return "Texas Instruments msp430 microcontroller";
2304 case EM_LATTICEMICO32: return "Lattice Mico32";
2305 case EM_M32C_OLD:
2306 case EM_M32C: return "Renesas M32c";
2307 case EM_MT: return "Morpho Techologies MT processor";
2308 case EM_BLACKFIN: return "Analog Devices Blackfin";
2309 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
2310 case EM_SEP: return "Sharp embedded microprocessor";
2311 case EM_ARCA: return "Arca RISC microprocessor";
2312 case EM_UNICORE: return "Unicore";
2313 case EM_EXCESS: return "eXcess 16/32/64-bit configurable embedded CPU";
2314 case EM_DXP: return "Icera Semiconductor Inc. Deep Execution Processor";
2315 case EM_NIOS32: return "Altera Nios";
2316 case EM_ALTERA_NIOS2: return "Altera Nios II";
2317 case EM_C166:
2318 case EM_XC16X: return "Infineon Technologies xc16x";
2319 case EM_M16C: return "Renesas M16C series microprocessors";
2320 case EM_DSPIC30F: return "Microchip Technology dsPIC30F Digital Signal Controller";
2321 case EM_CE: return "Freescale Communication Engine RISC core";
2322 case EM_TSK3000: return "Altium TSK3000 core";
2323 case EM_RS08: return "Freescale RS08 embedded processor";
2324 case EM_ECOG2: return "Cyan Technology eCOG2 microprocessor";
2325 case EM_DSP24: return "New Japan Radio (NJR) 24-bit DSP Processor";
2326 case EM_VIDEOCORE3: return "Broadcom VideoCore III processor";
2327 case EM_SE_C17: return "Seiko Epson C17 family";
2328 case EM_TI_C6000: return "Texas Instruments TMS320C6000 DSP family";
2329 case EM_TI_C2000: return "Texas Instruments TMS320C2000 DSP family";
2330 case EM_TI_C5500: return "Texas Instruments TMS320C55x DSP family";
2331 case EM_MMDSP_PLUS: return "STMicroelectronics 64bit VLIW Data Signal Processor";
2332 case EM_CYPRESS_M8C: return "Cypress M8C microprocessor";
2333 case EM_R32C: return "Renesas R32C series microprocessors";
2334 case EM_TRIMEDIA: return "NXP Semiconductors TriMedia architecture family";
2335 case EM_QDSP6: return "QUALCOMM DSP6 Processor";
2336 case EM_8051: return "Intel 8051 and variants";
2337 case EM_STXP7X: return "STMicroelectronics STxP7x family";
2338 case EM_NDS32: return "Andes Technology compact code size embedded RISC processor family";
2339 case EM_ECOG1X: return "Cyan Technology eCOG1X family";
2340 case EM_MAXQ30: return "Dallas Semiconductor MAXQ30 Core microcontrollers";
2341 case EM_XIMO16: return "New Japan Radio (NJR) 16-bit DSP Processor";
2342 case EM_MANIK: return "M2000 Reconfigurable RISC Microprocessor";
2343 case EM_CRAYNV2: return "Cray Inc. NV2 vector architecture";
2344 case EM_CYGNUS_MEP: return "Toshiba MeP Media Engine";
2345 case EM_CR16:
2346 case EM_MICROBLAZE:
2347 case EM_MICROBLAZE_OLD: return "Xilinx MicroBlaze";
2348 case EM_RISCV: return "RISC-V";
2349 case EM_RL78: return "Renesas RL78";
2350 case EM_RX: return "Renesas RX";
2351 case EM_METAG: return "Imagination Technologies Meta processor architecture";
2352 case EM_MCST_ELBRUS: return "MCST Elbrus general purpose hardware architecture";
2353 case EM_ECOG16: return "Cyan Technology eCOG16 family";
2354 case EM_ETPU: return "Freescale Extended Time Processing Unit";
2355 case EM_SLE9X: return "Infineon Technologies SLE9X core";
2356 case EM_AVR32: return "Atmel Corporation 32-bit microprocessor family";
2357 case EM_STM8: return "STMicroeletronics STM8 8-bit microcontroller";
2358 case EM_TILE64: return "Tilera TILE64 multicore architecture family";
2359 case EM_TILEPRO: return "Tilera TILEPro multicore architecture family";
2360 case EM_TILEGX: return "Tilera TILE-Gx multicore architecture family";
2361 case EM_CUDA: return "NVIDIA CUDA architecture";
2362 case EM_XGATE: return "Motorola XGATE embedded processor";
2363 case EM_CLOUDSHIELD: return "CloudShield architecture family";
2364 case EM_COREA_1ST: return "KIPO-KAIST Core-A 1st generation processor family";
2365 case EM_COREA_2ND: return "KIPO-KAIST Core-A 2nd generation processor family";
2366 case EM_OPEN8: return "Open8 8-bit RISC soft processor core";
2367 case EM_VIDEOCORE5: return "Broadcom VideoCore V processor";
2368 case EM_56800EX: return "Freescale 56800EX Digital Signal Controller (DSC)";
2369 case EM_BA1: return "Beyond BA1 CPU architecture";
2370 case EM_BA2: return "Beyond BA2 CPU architecture";
2371 case EM_XCORE: return "XMOS xCORE processor family";
2372 case EM_MCHP_PIC: return "Microchip 8-bit PIC(r) family";
2373 case EM_KM32: return "KM211 KM32 32-bit processor";
2374 case EM_KMX32: return "KM211 KMX32 32-bit processor";
2375 case EM_KMX16: return "KM211 KMX16 16-bit processor";
2376 case EM_KMX8: return "KM211 KMX8 8-bit processor";
2377 case EM_KVARC: return "KM211 KVARC processor";
2378 case EM_CDP: return "Paneve CDP architecture family";
2379 case EM_COGE: return "Cognitive Smart Memory Processor";
2380 case EM_COOL: return "Bluechip Systems CoolEngine";
2381 case EM_NORC: return "Nanoradio Optimized RISC";
2382 case EM_CSR_KALIMBA: return "CSR Kalimba architecture family";
2383 case EM_Z80: return "Zilog Z80";
2384 case EM_AMDGPU: return "AMD GPU architecture";
2385 case EM_TI_PRU: return "TI PRU I/O processor";
2386 default:
2387 snprintf (buff, sizeof (buff), _("<unknown>: 0x%x"), e_machine);
2388 return buff;
2389 }
2390 }
2391
2392 static void
2393 decode_ARC_machine_flags (unsigned e_flags, unsigned e_machine, char buf[])
2394 {
2395 /* ARC has two machine types EM_ARC_COMPACT and EM_ARC_COMPACT2. Some
2396 other compilers don't a specific architecture type in the e_flags, and
2397 instead use EM_ARC_COMPACT for old ARC600, ARC601, and ARC700
2398 architectures, and switch to EM_ARC_COMPACT2 for newer ARCEM and ARCHS
2399 architectures.
2400
2401 Th GNU tools follows this use of EM_ARC_COMPACT and EM_ARC_COMPACT2,
2402 but also sets a specific architecture type in the e_flags field.
2403
2404 However, when decoding the flags we don't worry if we see an
2405 unexpected pairing, for example EM_ARC_COMPACT machine type, with
2406 ARCEM architecture type. */
2407
2408 switch (e_flags & EF_ARC_MACH_MSK)
2409 {
2410 /* We only expect these to occur for EM_ARC_COMPACT2. */
2411 case EF_ARC_CPU_ARCV2EM:
2412 strcat (buf, ", ARC EM");
2413 break;
2414 case EF_ARC_CPU_ARCV2HS:
2415 strcat (buf, ", ARC HS");
2416 break;
2417
2418 /* We only expect these to occur for EM_ARC_COMPACT. */
2419 case E_ARC_MACH_ARC600:
2420 strcat (buf, ", ARC600");
2421 break;
2422 case E_ARC_MACH_ARC601:
2423 strcat (buf, ", ARC601");
2424 break;
2425 case E_ARC_MACH_ARC700:
2426 strcat (buf, ", ARC700");
2427 break;
2428
2429 /* The only times we should end up here are (a) A corrupt ELF, (b) A
2430 new ELF with new architecture being read by an old version of
2431 readelf, or (c) An ELF built with non-GNU compiler that does not
2432 set the architecture in the e_flags. */
2433 default:
2434 if (e_machine == EM_ARC_COMPACT)
2435 strcat (buf, ", Unknown ARCompact");
2436 else
2437 strcat (buf, ", Unknown ARC");
2438 break;
2439 }
2440
2441 switch (e_flags & EF_ARC_OSABI_MSK)
2442 {
2443 case E_ARC_OSABI_ORIG:
2444 strcat (buf, ", (ABI:legacy)");
2445 break;
2446 case E_ARC_OSABI_V2:
2447 strcat (buf, ", (ABI:v2)");
2448 break;
2449 /* Only upstream 3.9+ kernels will support ARCv2 ISA. */
2450 case E_ARC_OSABI_V3:
2451 strcat (buf, ", v3 no-legacy-syscalls ABI");
2452 break;
2453 default:
2454 strcat (buf, ", unrecognised ARC OSABI flag");
2455 break;
2456 }
2457 }
2458
2459 static void
2460 decode_ARM_machine_flags (unsigned e_flags, char buf[])
2461 {
2462 unsigned eabi;
2463 int unknown = 0;
2464
2465 eabi = EF_ARM_EABI_VERSION (e_flags);
2466 e_flags &= ~ EF_ARM_EABIMASK;
2467
2468 /* Handle "generic" ARM flags. */
2469 if (e_flags & EF_ARM_RELEXEC)
2470 {
2471 strcat (buf, ", relocatable executable");
2472 e_flags &= ~ EF_ARM_RELEXEC;
2473 }
2474
2475 /* Now handle EABI specific flags. */
2476 switch (eabi)
2477 {
2478 default:
2479 strcat (buf, ", <unrecognized EABI>");
2480 if (e_flags)
2481 unknown = 1;
2482 break;
2483
2484 case EF_ARM_EABI_VER1:
2485 strcat (buf, ", Version1 EABI");
2486 while (e_flags)
2487 {
2488 unsigned flag;
2489
2490 /* Process flags one bit at a time. */
2491 flag = e_flags & - e_flags;
2492 e_flags &= ~ flag;
2493
2494 switch (flag)
2495 {
2496 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2497 strcat (buf, ", sorted symbol tables");
2498 break;
2499
2500 default:
2501 unknown = 1;
2502 break;
2503 }
2504 }
2505 break;
2506
2507 case EF_ARM_EABI_VER2:
2508 strcat (buf, ", Version2 EABI");
2509 while (e_flags)
2510 {
2511 unsigned flag;
2512
2513 /* Process flags one bit at a time. */
2514 flag = e_flags & - e_flags;
2515 e_flags &= ~ flag;
2516
2517 switch (flag)
2518 {
2519 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2520 strcat (buf, ", sorted symbol tables");
2521 break;
2522
2523 case EF_ARM_DYNSYMSUSESEGIDX:
2524 strcat (buf, ", dynamic symbols use segment index");
2525 break;
2526
2527 case EF_ARM_MAPSYMSFIRST:
2528 strcat (buf, ", mapping symbols precede others");
2529 break;
2530
2531 default:
2532 unknown = 1;
2533 break;
2534 }
2535 }
2536 break;
2537
2538 case EF_ARM_EABI_VER3:
2539 strcat (buf, ", Version3 EABI");
2540 break;
2541
2542 case EF_ARM_EABI_VER4:
2543 strcat (buf, ", Version4 EABI");
2544 while (e_flags)
2545 {
2546 unsigned flag;
2547
2548 /* Process flags one bit at a time. */
2549 flag = e_flags & - e_flags;
2550 e_flags &= ~ flag;
2551
2552 switch (flag)
2553 {
2554 case EF_ARM_BE8:
2555 strcat (buf, ", BE8");
2556 break;
2557
2558 case EF_ARM_LE8:
2559 strcat (buf, ", LE8");
2560 break;
2561
2562 default:
2563 unknown = 1;
2564 break;
2565 }
2566 break;
2567 }
2568 break;
2569
2570 case EF_ARM_EABI_VER5:
2571 strcat (buf, ", Version5 EABI");
2572 while (e_flags)
2573 {
2574 unsigned flag;
2575
2576 /* Process flags one bit at a time. */
2577 flag = e_flags & - e_flags;
2578 e_flags &= ~ flag;
2579
2580 switch (flag)
2581 {
2582 case EF_ARM_BE8:
2583 strcat (buf, ", BE8");
2584 break;
2585
2586 case EF_ARM_LE8:
2587 strcat (buf, ", LE8");
2588 break;
2589
2590 case EF_ARM_ABI_FLOAT_SOFT: /* Conflicts with EF_ARM_SOFT_FLOAT. */
2591 strcat (buf, ", soft-float ABI");
2592 break;
2593
2594 case EF_ARM_ABI_FLOAT_HARD: /* Conflicts with EF_ARM_VFP_FLOAT. */
2595 strcat (buf, ", hard-float ABI");
2596 break;
2597
2598 default:
2599 unknown = 1;
2600 break;
2601 }
2602 }
2603 break;
2604
2605 case EF_ARM_EABI_UNKNOWN:
2606 strcat (buf, ", GNU EABI");
2607 while (e_flags)
2608 {
2609 unsigned flag;
2610
2611 /* Process flags one bit at a time. */
2612 flag = e_flags & - e_flags;
2613 e_flags &= ~ flag;
2614
2615 switch (flag)
2616 {
2617 case EF_ARM_INTERWORK:
2618 strcat (buf, ", interworking enabled");
2619 break;
2620
2621 case EF_ARM_APCS_26:
2622 strcat (buf, ", uses APCS/26");
2623 break;
2624
2625 case EF_ARM_APCS_FLOAT:
2626 strcat (buf, ", uses APCS/float");
2627 break;
2628
2629 case EF_ARM_PIC:
2630 strcat (buf, ", position independent");
2631 break;
2632
2633 case EF_ARM_ALIGN8:
2634 strcat (buf, ", 8 bit structure alignment");
2635 break;
2636
2637 case EF_ARM_NEW_ABI:
2638 strcat (buf, ", uses new ABI");
2639 break;
2640
2641 case EF_ARM_OLD_ABI:
2642 strcat (buf, ", uses old ABI");
2643 break;
2644
2645 case EF_ARM_SOFT_FLOAT:
2646 strcat (buf, ", software FP");
2647 break;
2648
2649 case EF_ARM_VFP_FLOAT:
2650 strcat (buf, ", VFP");
2651 break;
2652
2653 case EF_ARM_MAVERICK_FLOAT:
2654 strcat (buf, ", Maverick FP");
2655 break;
2656
2657 default:
2658 unknown = 1;
2659 break;
2660 }
2661 }
2662 }
2663
2664 if (unknown)
2665 strcat (buf,_(", <unknown>"));
2666 }
2667
2668 static void
2669 decode_AVR_machine_flags (unsigned e_flags, char buf[], size_t size)
2670 {
2671 --size; /* Leave space for null terminator. */
2672
2673 switch (e_flags & EF_AVR_MACH)
2674 {
2675 case E_AVR_MACH_AVR1:
2676 strncat (buf, ", avr:1", size);
2677 break;
2678 case E_AVR_MACH_AVR2:
2679 strncat (buf, ", avr:2", size);
2680 break;
2681 case E_AVR_MACH_AVR25:
2682 strncat (buf, ", avr:25", size);
2683 break;
2684 case E_AVR_MACH_AVR3:
2685 strncat (buf, ", avr:3", size);
2686 break;
2687 case E_AVR_MACH_AVR31:
2688 strncat (buf, ", avr:31", size);
2689 break;
2690 case E_AVR_MACH_AVR35:
2691 strncat (buf, ", avr:35", size);
2692 break;
2693 case E_AVR_MACH_AVR4:
2694 strncat (buf, ", avr:4", size);
2695 break;
2696 case E_AVR_MACH_AVR5:
2697 strncat (buf, ", avr:5", size);
2698 break;
2699 case E_AVR_MACH_AVR51:
2700 strncat (buf, ", avr:51", size);
2701 break;
2702 case E_AVR_MACH_AVR6:
2703 strncat (buf, ", avr:6", size);
2704 break;
2705 case E_AVR_MACH_AVRTINY:
2706 strncat (buf, ", avr:100", size);
2707 break;
2708 case E_AVR_MACH_XMEGA1:
2709 strncat (buf, ", avr:101", size);
2710 break;
2711 case E_AVR_MACH_XMEGA2:
2712 strncat (buf, ", avr:102", size);
2713 break;
2714 case E_AVR_MACH_XMEGA3:
2715 strncat (buf, ", avr:103", size);
2716 break;
2717 case E_AVR_MACH_XMEGA4:
2718 strncat (buf, ", avr:104", size);
2719 break;
2720 case E_AVR_MACH_XMEGA5:
2721 strncat (buf, ", avr:105", size);
2722 break;
2723 case E_AVR_MACH_XMEGA6:
2724 strncat (buf, ", avr:106", size);
2725 break;
2726 case E_AVR_MACH_XMEGA7:
2727 strncat (buf, ", avr:107", size);
2728 break;
2729 default:
2730 strncat (buf, ", avr:<unknown>", size);
2731 break;
2732 }
2733
2734 size -= strlen (buf);
2735 if (e_flags & EF_AVR_LINKRELAX_PREPARED)
2736 strncat (buf, ", link-relax", size);
2737 }
2738
2739 static void
2740 decode_NDS32_machine_flags (unsigned e_flags, char buf[], size_t size)
2741 {
2742 unsigned abi;
2743 unsigned arch;
2744 unsigned config;
2745 unsigned version;
2746 int has_fpu = 0;
2747 int r = 0;
2748
2749 static const char *ABI_STRINGS[] =
2750 {
2751 "ABI v0", /* use r5 as return register; only used in N1213HC */
2752 "ABI v1", /* use r0 as return register */
2753 "ABI v2", /* use r0 as return register and don't reserve 24 bytes for arguments */
2754 "ABI v2fp", /* for FPU */
2755 "AABI",
2756 "ABI2 FP+"
2757 };
2758 static const char *VER_STRINGS[] =
2759 {
2760 "Andes ELF V1.3 or older",
2761 "Andes ELF V1.3.1",
2762 "Andes ELF V1.4"
2763 };
2764 static const char *ARCH_STRINGS[] =
2765 {
2766 "",
2767 "Andes Star v1.0",
2768 "Andes Star v2.0",
2769 "Andes Star v3.0",
2770 "Andes Star v3.0m"
2771 };
2772
2773 abi = EF_NDS_ABI & e_flags;
2774 arch = EF_NDS_ARCH & e_flags;
2775 config = EF_NDS_INST & e_flags;
2776 version = EF_NDS32_ELF_VERSION & e_flags;
2777
2778 memset (buf, 0, size);
2779
2780 switch (abi)
2781 {
2782 case E_NDS_ABI_V0:
2783 case E_NDS_ABI_V1:
2784 case E_NDS_ABI_V2:
2785 case E_NDS_ABI_V2FP:
2786 case E_NDS_ABI_AABI:
2787 case E_NDS_ABI_V2FP_PLUS:
2788 /* In case there are holes in the array. */
2789 r += snprintf (buf + r, size - r, ", %s", ABI_STRINGS[abi >> EF_NDS_ABI_SHIFT]);
2790 break;
2791
2792 default:
2793 r += snprintf (buf + r, size - r, ", <unrecognized ABI>");
2794 break;
2795 }
2796
2797 switch (version)
2798 {
2799 case E_NDS32_ELF_VER_1_2:
2800 case E_NDS32_ELF_VER_1_3:
2801 case E_NDS32_ELF_VER_1_4:
2802 r += snprintf (buf + r, size - r, ", %s", VER_STRINGS[version >> EF_NDS32_ELF_VERSION_SHIFT]);
2803 break;
2804
2805 default:
2806 r += snprintf (buf + r, size - r, ", <unrecognized ELF version number>");
2807 break;
2808 }
2809
2810 if (E_NDS_ABI_V0 == abi)
2811 {
2812 /* OLD ABI; only used in N1213HC, has performance extension 1. */
2813 r += snprintf (buf + r, size - r, ", Andes Star v1.0, N1213HC, MAC, PERF1");
2814 if (arch == E_NDS_ARCH_STAR_V1_0)
2815 r += snprintf (buf + r, size -r, ", 16b"); /* has 16-bit instructions */
2816 return;
2817 }
2818
2819 switch (arch)
2820 {
2821 case E_NDS_ARCH_STAR_V1_0:
2822 case E_NDS_ARCH_STAR_V2_0:
2823 case E_NDS_ARCH_STAR_V3_0:
2824 case E_NDS_ARCH_STAR_V3_M:
2825 r += snprintf (buf + r, size - r, ", %s", ARCH_STRINGS[arch >> EF_NDS_ARCH_SHIFT]);
2826 break;
2827
2828 default:
2829 r += snprintf (buf + r, size - r, ", <unrecognized architecture>");
2830 /* ARCH version determines how the e_flags are interpreted.
2831 If it is unknown, we cannot proceed. */
2832 return;
2833 }
2834
2835 /* Newer ABI; Now handle architecture specific flags. */
2836 if (arch == E_NDS_ARCH_STAR_V1_0)
2837 {
2838 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2839 r += snprintf (buf + r, size -r, ", MFUSR_PC");
2840
2841 if (!(config & E_NDS32_HAS_NO_MAC_INST))
2842 r += snprintf (buf + r, size -r, ", MAC");
2843
2844 if (config & E_NDS32_HAS_DIV_INST)
2845 r += snprintf (buf + r, size -r, ", DIV");
2846
2847 if (config & E_NDS32_HAS_16BIT_INST)
2848 r += snprintf (buf + r, size -r, ", 16b");
2849 }
2850 else
2851 {
2852 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2853 {
2854 if (version <= E_NDS32_ELF_VER_1_3)
2855 r += snprintf (buf + r, size -r, ", [B8]");
2856 else
2857 r += snprintf (buf + r, size -r, ", EX9");
2858 }
2859
2860 if (config & E_NDS32_HAS_MAC_DX_INST)
2861 r += snprintf (buf + r, size -r, ", MAC_DX");
2862
2863 if (config & E_NDS32_HAS_DIV_DX_INST)
2864 r += snprintf (buf + r, size -r, ", DIV_DX");
2865
2866 if (config & E_NDS32_HAS_16BIT_INST)
2867 {
2868 if (version <= E_NDS32_ELF_VER_1_3)
2869 r += snprintf (buf + r, size -r, ", 16b");
2870 else
2871 r += snprintf (buf + r, size -r, ", IFC");
2872 }
2873 }
2874
2875 if (config & E_NDS32_HAS_EXT_INST)
2876 r += snprintf (buf + r, size -r, ", PERF1");
2877
2878 if (config & E_NDS32_HAS_EXT2_INST)
2879 r += snprintf (buf + r, size -r, ", PERF2");
2880
2881 if (config & E_NDS32_HAS_FPU_INST)
2882 {
2883 has_fpu = 1;
2884 r += snprintf (buf + r, size -r, ", FPU_SP");
2885 }
2886
2887 if (config & E_NDS32_HAS_FPU_DP_INST)
2888 {
2889 has_fpu = 1;
2890 r += snprintf (buf + r, size -r, ", FPU_DP");
2891 }
2892
2893 if (config & E_NDS32_HAS_FPU_MAC_INST)
2894 {
2895 has_fpu = 1;
2896 r += snprintf (buf + r, size -r, ", FPU_MAC");
2897 }
2898
2899 if (has_fpu)
2900 {
2901 switch ((config & E_NDS32_FPU_REG_CONF) >> E_NDS32_FPU_REG_CONF_SHIFT)
2902 {
2903 case E_NDS32_FPU_REG_8SP_4DP:
2904 r += snprintf (buf + r, size -r, ", FPU_REG:8/4");
2905 break;
2906 case E_NDS32_FPU_REG_16SP_8DP:
2907 r += snprintf (buf + r, size -r, ", FPU_REG:16/8");
2908 break;
2909 case E_NDS32_FPU_REG_32SP_16DP:
2910 r += snprintf (buf + r, size -r, ", FPU_REG:32/16");
2911 break;
2912 case E_NDS32_FPU_REG_32SP_32DP:
2913 r += snprintf (buf + r, size -r, ", FPU_REG:32/32");
2914 break;
2915 }
2916 }
2917
2918 if (config & E_NDS32_HAS_AUDIO_INST)
2919 r += snprintf (buf + r, size -r, ", AUDIO");
2920
2921 if (config & E_NDS32_HAS_STRING_INST)
2922 r += snprintf (buf + r, size -r, ", STR");
2923
2924 if (config & E_NDS32_HAS_REDUCED_REGS)
2925 r += snprintf (buf + r, size -r, ", 16REG");
2926
2927 if (config & E_NDS32_HAS_VIDEO_INST)
2928 {
2929 if (version <= E_NDS32_ELF_VER_1_3)
2930 r += snprintf (buf + r, size -r, ", VIDEO");
2931 else
2932 r += snprintf (buf + r, size -r, ", SATURATION");
2933 }
2934
2935 if (config & E_NDS32_HAS_ENCRIPT_INST)
2936 r += snprintf (buf + r, size -r, ", ENCRP");
2937
2938 if (config & E_NDS32_HAS_L2C_INST)
2939 r += snprintf (buf + r, size -r, ", L2C");
2940 }
2941
2942 static char *
2943 get_machine_flags (unsigned e_flags, unsigned e_machine)
2944 {
2945 static char buf[1024];
2946
2947 buf[0] = '\0';
2948
2949 if (e_flags)
2950 {
2951 switch (e_machine)
2952 {
2953 default:
2954 break;
2955
2956 case EM_ARC_COMPACT2:
2957 case EM_ARC_COMPACT:
2958 decode_ARC_machine_flags (e_flags, e_machine, buf);
2959 break;
2960
2961 case EM_ARM:
2962 decode_ARM_machine_flags (e_flags, buf);
2963 break;
2964
2965 case EM_AVR:
2966 decode_AVR_machine_flags (e_flags, buf, sizeof buf);
2967 break;
2968
2969 case EM_BLACKFIN:
2970 if (e_flags & EF_BFIN_PIC)
2971 strcat (buf, ", PIC");
2972
2973 if (e_flags & EF_BFIN_FDPIC)
2974 strcat (buf, ", FDPIC");
2975
2976 if (e_flags & EF_BFIN_CODE_IN_L1)
2977 strcat (buf, ", code in L1");
2978
2979 if (e_flags & EF_BFIN_DATA_IN_L1)
2980 strcat (buf, ", data in L1");
2981
2982 break;
2983
2984 case EM_CYGNUS_FRV:
2985 switch (e_flags & EF_FRV_CPU_MASK)
2986 {
2987 case EF_FRV_CPU_GENERIC:
2988 break;
2989
2990 default:
2991 strcat (buf, ", fr???");
2992 break;
2993
2994 case EF_FRV_CPU_FR300:
2995 strcat (buf, ", fr300");
2996 break;
2997
2998 case EF_FRV_CPU_FR400:
2999 strcat (buf, ", fr400");
3000 break;
3001 case EF_FRV_CPU_FR405:
3002 strcat (buf, ", fr405");
3003 break;
3004
3005 case EF_FRV_CPU_FR450:
3006 strcat (buf, ", fr450");
3007 break;
3008
3009 case EF_FRV_CPU_FR500:
3010 strcat (buf, ", fr500");
3011 break;
3012 case EF_FRV_CPU_FR550:
3013 strcat (buf, ", fr550");
3014 break;
3015
3016 case EF_FRV_CPU_SIMPLE:
3017 strcat (buf, ", simple");
3018 break;
3019 case EF_FRV_CPU_TOMCAT:
3020 strcat (buf, ", tomcat");
3021 break;
3022 }
3023 break;
3024
3025 case EM_68K:
3026 if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
3027 strcat (buf, ", m68000");
3028 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
3029 strcat (buf, ", cpu32");
3030 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
3031 strcat (buf, ", fido_a");
3032 else
3033 {
3034 char const * isa = _("unknown");
3035 char const * mac = _("unknown mac");
3036 char const * additional = NULL;
3037
3038 switch (e_flags & EF_M68K_CF_ISA_MASK)
3039 {
3040 case EF_M68K_CF_ISA_A_NODIV:
3041 isa = "A";
3042 additional = ", nodiv";
3043 break;
3044 case EF_M68K_CF_ISA_A:
3045 isa = "A";
3046 break;
3047 case EF_M68K_CF_ISA_A_PLUS:
3048 isa = "A+";
3049 break;
3050 case EF_M68K_CF_ISA_B_NOUSP:
3051 isa = "B";
3052 additional = ", nousp";
3053 break;
3054 case EF_M68K_CF_ISA_B:
3055 isa = "B";
3056 break;
3057 case EF_M68K_CF_ISA_C:
3058 isa = "C";
3059 break;
3060 case EF_M68K_CF_ISA_C_NODIV:
3061 isa = "C";
3062 additional = ", nodiv";
3063 break;
3064 }
3065 strcat (buf, ", cf, isa ");
3066 strcat (buf, isa);
3067 if (additional)
3068 strcat (buf, additional);
3069 if (e_flags & EF_M68K_CF_FLOAT)
3070 strcat (buf, ", float");
3071 switch (e_flags & EF_M68K_CF_MAC_MASK)
3072 {
3073 case 0:
3074 mac = NULL;
3075 break;
3076 case EF_M68K_CF_MAC:
3077 mac = "mac";
3078 break;
3079 case EF_M68K_CF_EMAC:
3080 mac = "emac";
3081 break;
3082 case EF_M68K_CF_EMAC_B:
3083 mac = "emac_b";
3084 break;
3085 }
3086 if (mac)
3087 {
3088 strcat (buf, ", ");
3089 strcat (buf, mac);
3090 }
3091 }
3092 break;
3093
3094 case EM_CYGNUS_MEP:
3095 switch (e_flags & EF_MEP_CPU_MASK)
3096 {
3097 case EF_MEP_CPU_MEP: strcat (buf, ", generic MeP"); break;
3098 case EF_MEP_CPU_C2: strcat (buf, ", MeP C2"); break;
3099 case EF_MEP_CPU_C3: strcat (buf, ", MeP C3"); break;
3100 case EF_MEP_CPU_C4: strcat (buf, ", MeP C4"); break;
3101 case EF_MEP_CPU_C5: strcat (buf, ", MeP C5"); break;
3102 case EF_MEP_CPU_H1: strcat (buf, ", MeP H1"); break;
3103 default: strcat (buf, _(", <unknown MeP cpu type>")); break;
3104 }
3105
3106 switch (e_flags & EF_MEP_COP_MASK)
3107 {
3108 case EF_MEP_COP_NONE: break;
3109 case EF_MEP_COP_AVC: strcat (buf, ", AVC coprocessor"); break;
3110 case EF_MEP_COP_AVC2: strcat (buf, ", AVC2 coprocessor"); break;
3111 case EF_MEP_COP_FMAX: strcat (buf, ", FMAX coprocessor"); break;
3112 case EF_MEP_COP_IVC2: strcat (buf, ", IVC2 coprocessor"); break;
3113 default: strcat (buf, _("<unknown MeP copro type>")); break;
3114 }
3115
3116 if (e_flags & EF_MEP_LIBRARY)
3117 strcat (buf, ", Built for Library");
3118
3119 if (e_flags & EF_MEP_INDEX_MASK)
3120 sprintf (buf + strlen (buf), ", Configuration Index: %#x",
3121 e_flags & EF_MEP_INDEX_MASK);
3122
3123 if (e_flags & ~ EF_MEP_ALL_FLAGS)
3124 sprintf (buf + strlen (buf), _(", unknown flags bits: %#x"),
3125 e_flags & ~ EF_MEP_ALL_FLAGS);
3126 break;
3127
3128 case EM_PPC:
3129 if (e_flags & EF_PPC_EMB)
3130 strcat (buf, ", emb");
3131
3132 if (e_flags & EF_PPC_RELOCATABLE)
3133 strcat (buf, _(", relocatable"));
3134
3135 if (e_flags & EF_PPC_RELOCATABLE_LIB)
3136 strcat (buf, _(", relocatable-lib"));
3137 break;
3138
3139 case EM_PPC64:
3140 if (e_flags & EF_PPC64_ABI)
3141 {
3142 char abi[] = ", abiv0";
3143
3144 abi[6] += e_flags & EF_PPC64_ABI;
3145 strcat (buf, abi);
3146 }
3147 break;
3148
3149 case EM_V800:
3150 if ((e_flags & EF_RH850_ABI) == EF_RH850_ABI)
3151 strcat (buf, ", RH850 ABI");
3152
3153 if (e_flags & EF_V800_850E3)
3154 strcat (buf, ", V3 architecture");
3155
3156 if ((e_flags & (EF_RH850_FPU_DOUBLE | EF_RH850_FPU_SINGLE)) == 0)
3157 strcat (buf, ", FPU not used");
3158
3159 if ((e_flags & (EF_RH850_REGMODE22 | EF_RH850_REGMODE32)) == 0)
3160 strcat (buf, ", regmode: COMMON");
3161
3162 if ((e_flags & (EF_RH850_GP_FIX | EF_RH850_GP_NOFIX)) == 0)
3163 strcat (buf, ", r4 not used");
3164
3165 if ((e_flags & (EF_RH850_EP_FIX | EF_RH850_EP_NOFIX)) == 0)
3166 strcat (buf, ", r30 not used");
3167
3168 if ((e_flags & (EF_RH850_TP_FIX | EF_RH850_TP_NOFIX)) == 0)
3169 strcat (buf, ", r5 not used");
3170
3171 if ((e_flags & (EF_RH850_REG2_RESERVE | EF_RH850_REG2_NORESERVE)) == 0)
3172 strcat (buf, ", r2 not used");
3173
3174 for (e_flags &= 0xFFFF; e_flags; e_flags &= ~ (e_flags & - e_flags))
3175 {
3176 switch (e_flags & - e_flags)
3177 {
3178 case EF_RH850_FPU_DOUBLE: strcat (buf, ", double precision FPU"); break;
3179 case EF_RH850_FPU_SINGLE: strcat (buf, ", single precision FPU"); break;
3180 case EF_RH850_REGMODE22: strcat (buf, ", regmode:22"); break;
3181 case EF_RH850_REGMODE32: strcat (buf, ", regmode:23"); break;
3182 case EF_RH850_GP_FIX: strcat (buf, ", r4 fixed"); break;
3183 case EF_RH850_GP_NOFIX: strcat (buf, ", r4 free"); break;
3184 case EF_RH850_EP_FIX: strcat (buf, ", r30 fixed"); break;
3185 case EF_RH850_EP_NOFIX: strcat (buf, ", r30 free"); break;
3186 case EF_RH850_TP_FIX: strcat (buf, ", r5 fixed"); break;
3187 case EF_RH850_TP_NOFIX: strcat (buf, ", r5 free"); break;
3188 case EF_RH850_REG2_RESERVE: strcat (buf, ", r2 fixed"); break;
3189 case EF_RH850_REG2_NORESERVE: strcat (buf, ", r2 free"); break;
3190 default: break;
3191 }
3192 }
3193 break;
3194
3195 case EM_V850:
3196 case EM_CYGNUS_V850:
3197 switch (e_flags & EF_V850_ARCH)
3198 {
3199 case E_V850E3V5_ARCH:
3200 strcat (buf, ", v850e3v5");
3201 break;
3202 case E_V850E2V3_ARCH:
3203 strcat (buf, ", v850e2v3");
3204 break;
3205 case E_V850E2_ARCH:
3206 strcat (buf, ", v850e2");
3207 break;
3208 case E_V850E1_ARCH:
3209 strcat (buf, ", v850e1");
3210 break;
3211 case E_V850E_ARCH:
3212 strcat (buf, ", v850e");
3213 break;
3214 case E_V850_ARCH:
3215 strcat (buf, ", v850");
3216 break;
3217 default:
3218 strcat (buf, _(", unknown v850 architecture variant"));
3219 break;
3220 }
3221 break;
3222
3223 case EM_M32R:
3224 case EM_CYGNUS_M32R:
3225 if ((e_flags & EF_M32R_ARCH) == E_M32R_ARCH)
3226 strcat (buf, ", m32r");
3227 break;
3228
3229 case EM_MIPS:
3230 case EM_MIPS_RS3_LE:
3231 if (e_flags & EF_MIPS_NOREORDER)
3232 strcat (buf, ", noreorder");
3233
3234 if (e_flags & EF_MIPS_PIC)
3235 strcat (buf, ", pic");
3236
3237 if (e_flags & EF_MIPS_CPIC)
3238 strcat (buf, ", cpic");
3239
3240 if (e_flags & EF_MIPS_UCODE)
3241 strcat (buf, ", ugen_reserved");
3242
3243 if (e_flags & EF_MIPS_ABI2)
3244 strcat (buf, ", abi2");
3245
3246 if (e_flags & EF_MIPS_OPTIONS_FIRST)
3247 strcat (buf, ", odk first");
3248
3249 if (e_flags & EF_MIPS_32BITMODE)
3250 strcat (buf, ", 32bitmode");
3251
3252 if (e_flags & EF_MIPS_NAN2008)
3253 strcat (buf, ", nan2008");
3254
3255 if (e_flags & EF_MIPS_FP64)
3256 strcat (buf, ", fp64");
3257
3258 switch ((e_flags & EF_MIPS_MACH))
3259 {
3260 case E_MIPS_MACH_3900: strcat (buf, ", 3900"); break;
3261 case E_MIPS_MACH_4010: strcat (buf, ", 4010"); break;
3262 case E_MIPS_MACH_4100: strcat (buf, ", 4100"); break;
3263 case E_MIPS_MACH_4111: strcat (buf, ", 4111"); break;
3264 case E_MIPS_MACH_4120: strcat (buf, ", 4120"); break;
3265 case E_MIPS_MACH_4650: strcat (buf, ", 4650"); break;
3266 case E_MIPS_MACH_5400: strcat (buf, ", 5400"); break;
3267 case E_MIPS_MACH_5500: strcat (buf, ", 5500"); break;
3268 case E_MIPS_MACH_SB1: strcat (buf, ", sb1"); break;
3269 case E_MIPS_MACH_9000: strcat (buf, ", 9000"); break;
3270 case E_MIPS_MACH_LS2E: strcat (buf, ", loongson-2e"); break;
3271 case E_MIPS_MACH_LS2F: strcat (buf, ", loongson-2f"); break;
3272 case E_MIPS_MACH_LS3A: strcat (buf, ", loongson-3a"); break;
3273 case E_MIPS_MACH_OCTEON: strcat (buf, ", octeon"); break;
3274 case E_MIPS_MACH_OCTEON2: strcat (buf, ", octeon2"); break;
3275 case E_MIPS_MACH_OCTEON3: strcat (buf, ", octeon3"); break;
3276 case E_MIPS_MACH_XLR: strcat (buf, ", xlr"); break;
3277 case 0:
3278 /* We simply ignore the field in this case to avoid confusion:
3279 MIPS ELF does not specify EF_MIPS_MACH, it is a GNU
3280 extension. */
3281 break;
3282 default: strcat (buf, _(", unknown CPU")); break;
3283 }
3284
3285 switch ((e_flags & EF_MIPS_ABI))
3286 {
3287 case E_MIPS_ABI_O32: strcat (buf, ", o32"); break;
3288 case E_MIPS_ABI_O64: strcat (buf, ", o64"); break;
3289 case E_MIPS_ABI_EABI32: strcat (buf, ", eabi32"); break;
3290 case E_MIPS_ABI_EABI64: strcat (buf, ", eabi64"); break;
3291 case 0:
3292 /* We simply ignore the field in this case to avoid confusion:
3293 MIPS ELF does not specify EF_MIPS_ABI, it is a GNU extension.
3294 This means it is likely to be an o32 file, but not for
3295 sure. */
3296 break;
3297 default: strcat (buf, _(", unknown ABI")); break;
3298 }
3299
3300 if (e_flags & EF_MIPS_ARCH_ASE_MDMX)
3301 strcat (buf, ", mdmx");
3302
3303 if (e_flags & EF_MIPS_ARCH_ASE_M16)
3304 strcat (buf, ", mips16");
3305
3306 if (e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
3307 strcat (buf, ", micromips");
3308
3309 switch ((e_flags & EF_MIPS_ARCH))
3310 {
3311 case E_MIPS_ARCH_1: strcat (buf, ", mips1"); break;
3312 case E_MIPS_ARCH_2: strcat (buf, ", mips2"); break;
3313 case E_MIPS_ARCH_3: strcat (buf, ", mips3"); break;
3314 case E_MIPS_ARCH_4: strcat (buf, ", mips4"); break;
3315 case E_MIPS_ARCH_5: strcat (buf, ", mips5"); break;
3316 case E_MIPS_ARCH_32: strcat (buf, ", mips32"); break;
3317 case E_MIPS_ARCH_32R2: strcat (buf, ", mips32r2"); break;
3318 case E_MIPS_ARCH_32R6: strcat (buf, ", mips32r6"); break;
3319 case E_MIPS_ARCH_64: strcat (buf, ", mips64"); break;
3320 case E_MIPS_ARCH_64R2: strcat (buf, ", mips64r2"); break;
3321 case E_MIPS_ARCH_64R6: strcat (buf, ", mips64r6"); break;
3322 default: strcat (buf, _(", unknown ISA")); break;
3323 }
3324 break;
3325
3326 case EM_NDS32:
3327 decode_NDS32_machine_flags (e_flags, buf, sizeof buf);
3328 break;
3329
3330 case EM_RISCV:
3331 if (e_flags & EF_RISCV_RVC)
3332 strcat (buf, ", RVC");
3333
3334 switch (e_flags & EF_RISCV_FLOAT_ABI)
3335 {
3336 case EF_RISCV_FLOAT_ABI_SOFT:
3337 strcat (buf, ", soft-float ABI");
3338 break;
3339
3340 case EF_RISCV_FLOAT_ABI_SINGLE:
3341 strcat (buf, ", single-float ABI");
3342 break;
3343
3344 case EF_RISCV_FLOAT_ABI_DOUBLE:
3345 strcat (buf, ", double-float ABI");
3346 break;
3347
3348 case EF_RISCV_FLOAT_ABI_QUAD:
3349 strcat (buf, ", quad-float ABI");
3350 break;
3351 }
3352 break;
3353
3354 case EM_SH:
3355 switch ((e_flags & EF_SH_MACH_MASK))
3356 {
3357 case EF_SH1: strcat (buf, ", sh1"); break;
3358 case EF_SH2: strcat (buf, ", sh2"); break;
3359 case EF_SH3: strcat (buf, ", sh3"); break;
3360 case EF_SH_DSP: strcat (buf, ", sh-dsp"); break;
3361 case EF_SH3_DSP: strcat (buf, ", sh3-dsp"); break;
3362 case EF_SH4AL_DSP: strcat (buf, ", sh4al-dsp"); break;
3363 case EF_SH3E: strcat (buf, ", sh3e"); break;
3364 case EF_SH4: strcat (buf, ", sh4"); break;
3365 case EF_SH5: strcat (buf, ", sh5"); break;
3366 case EF_SH2E: strcat (buf, ", sh2e"); break;
3367 case EF_SH4A: strcat (buf, ", sh4a"); break;
3368 case EF_SH2A: strcat (buf, ", sh2a"); break;
3369 case EF_SH4_NOFPU: strcat (buf, ", sh4-nofpu"); break;
3370 case EF_SH4A_NOFPU: strcat (buf, ", sh4a-nofpu"); break;
3371 case EF_SH2A_NOFPU: strcat (buf, ", sh2a-nofpu"); break;
3372 case EF_SH3_NOMMU: strcat (buf, ", sh3-nommu"); break;
3373 case EF_SH4_NOMMU_NOFPU: strcat (buf, ", sh4-nommu-nofpu"); break;
3374 case EF_SH2A_SH4_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh4-nommu-nofpu"); break;
3375 case EF_SH2A_SH3_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh3-nommu"); break;
3376 case EF_SH2A_SH4: strcat (buf, ", sh2a-or-sh4"); break;
3377 case EF_SH2A_SH3E: strcat (buf, ", sh2a-or-sh3e"); break;
3378 default: strcat (buf, _(", unknown ISA")); break;
3379 }
3380
3381 if (e_flags & EF_SH_PIC)
3382 strcat (buf, ", pic");
3383
3384 if (e_flags & EF_SH_FDPIC)
3385 strcat (buf, ", fdpic");
3386 break;
3387
3388 case EM_OR1K:
3389 if (e_flags & EF_OR1K_NODELAY)
3390 strcat (buf, ", no delay");
3391 break;
3392
3393 case EM_SPARCV9:
3394 if (e_flags & EF_SPARC_32PLUS)
3395 strcat (buf, ", v8+");
3396
3397 if (e_flags & EF_SPARC_SUN_US1)
3398 strcat (buf, ", ultrasparcI");
3399
3400 if (e_flags & EF_SPARC_SUN_US3)
3401 strcat (buf, ", ultrasparcIII");
3402
3403 if (e_flags & EF_SPARC_HAL_R1)
3404 strcat (buf, ", halr1");
3405
3406 if (e_flags & EF_SPARC_LEDATA)
3407 strcat (buf, ", ledata");
3408
3409 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_TSO)
3410 strcat (buf, ", tso");
3411
3412 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_PSO)
3413 strcat (buf, ", pso");
3414
3415 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_RMO)
3416 strcat (buf, ", rmo");
3417 break;
3418
3419 case EM_PARISC:
3420 switch (e_flags & EF_PARISC_ARCH)
3421 {
3422 case EFA_PARISC_1_0:
3423 strcpy (buf, ", PA-RISC 1.0");
3424 break;
3425 case EFA_PARISC_1_1:
3426 strcpy (buf, ", PA-RISC 1.1");
3427 break;
3428 case EFA_PARISC_2_0:
3429 strcpy (buf, ", PA-RISC 2.0");
3430 break;
3431 default:
3432 break;
3433 }
3434 if (e_flags & EF_PARISC_TRAPNIL)
3435 strcat (buf, ", trapnil");
3436 if (e_flags & EF_PARISC_EXT)
3437 strcat (buf, ", ext");
3438 if (e_flags & EF_PARISC_LSB)
3439 strcat (buf, ", lsb");
3440 if (e_flags & EF_PARISC_WIDE)
3441 strcat (buf, ", wide");
3442 if (e_flags & EF_PARISC_NO_KABP)
3443 strcat (buf, ", no kabp");
3444 if (e_flags & EF_PARISC_LAZYSWAP)
3445 strcat (buf, ", lazyswap");
3446 break;
3447
3448 case EM_PJ:
3449 case EM_PJ_OLD:
3450 if ((e_flags & EF_PICOJAVA_NEWCALLS) == EF_PICOJAVA_NEWCALLS)
3451 strcat (buf, ", new calling convention");
3452
3453 if ((e_flags & EF_PICOJAVA_GNUCALLS) == EF_PICOJAVA_GNUCALLS)
3454 strcat (buf, ", gnu calling convention");
3455 break;
3456
3457 case EM_IA_64:
3458 if ((e_flags & EF_IA_64_ABI64))
3459 strcat (buf, ", 64-bit");
3460 else
3461 strcat (buf, ", 32-bit");
3462 if ((e_flags & EF_IA_64_REDUCEDFP))
3463 strcat (buf, ", reduced fp model");
3464 if ((e_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
3465 strcat (buf, ", no function descriptors, constant gp");
3466 else if ((e_flags & EF_IA_64_CONS_GP))
3467 strcat (buf, ", constant gp");
3468 if ((e_flags & EF_IA_64_ABSOLUTE))
3469 strcat (buf, ", absolute");
3470 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
3471 {
3472 if ((e_flags & EF_IA_64_VMS_LINKAGES))
3473 strcat (buf, ", vms_linkages");
3474 switch ((e_flags & EF_IA_64_VMS_COMCOD))
3475 {
3476 case EF_IA_64_VMS_COMCOD_SUCCESS:
3477 break;
3478 case EF_IA_64_VMS_COMCOD_WARNING:
3479 strcat (buf, ", warning");
3480 break;
3481 case EF_IA_64_VMS_COMCOD_ERROR:
3482 strcat (buf, ", error");
3483 break;
3484 case EF_IA_64_VMS_COMCOD_ABORT:
3485 strcat (buf, ", abort");
3486 break;
3487 default:
3488 warn (_("Unrecognised IA64 VMS Command Code: %x\n"),
3489 e_flags & EF_IA_64_VMS_COMCOD);
3490 strcat (buf, ", <unknown>");
3491 }
3492 }
3493 break;
3494
3495 case EM_VAX:
3496 if ((e_flags & EF_VAX_NONPIC))
3497 strcat (buf, ", non-PIC");
3498 if ((e_flags & EF_VAX_DFLOAT))
3499 strcat (buf, ", D-Float");
3500 if ((e_flags & EF_VAX_GFLOAT))
3501 strcat (buf, ", G-Float");
3502 break;
3503
3504 case EM_VISIUM:
3505 if (e_flags & EF_VISIUM_ARCH_MCM)
3506 strcat (buf, ", mcm");
3507 else if (e_flags & EF_VISIUM_ARCH_MCM24)
3508 strcat (buf, ", mcm24");
3509 if (e_flags & EF_VISIUM_ARCH_GR6)
3510 strcat (buf, ", gr6");
3511 break;
3512
3513 case EM_RL78:
3514 switch (e_flags & E_FLAG_RL78_CPU_MASK)
3515 {
3516 case E_FLAG_RL78_ANY_CPU: break;
3517 case E_FLAG_RL78_G10: strcat (buf, ", G10"); break;
3518 case E_FLAG_RL78_G13: strcat (buf, ", G13"); break;
3519 case E_FLAG_RL78_G14: strcat (buf, ", G14"); break;
3520 }
3521 if (e_flags & E_FLAG_RL78_64BIT_DOUBLES)
3522 strcat (buf, ", 64-bit doubles");
3523 break;
3524
3525 case EM_RX:
3526 if (e_flags & E_FLAG_RX_64BIT_DOUBLES)
3527 strcat (buf, ", 64-bit doubles");
3528 if (e_flags & E_FLAG_RX_DSP)
3529 strcat (buf, ", dsp");
3530 if (e_flags & E_FLAG_RX_PID)
3531 strcat (buf, ", pid");
3532 if (e_flags & E_FLAG_RX_ABI)
3533 strcat (buf, ", RX ABI");
3534 if (e_flags & E_FLAG_RX_SINSNS_SET)
3535 strcat (buf, e_flags & E_FLAG_RX_SINSNS_YES
3536 ? ", uses String instructions" : ", bans String instructions");
3537 if (e_flags & E_FLAG_RX_V2)
3538 strcat (buf, ", V2");
3539 break;
3540
3541 case EM_S390:
3542 if (e_flags & EF_S390_HIGH_GPRS)
3543 strcat (buf, ", highgprs");
3544 break;
3545
3546 case EM_TI_C6000:
3547 if ((e_flags & EF_C6000_REL))
3548 strcat (buf, ", relocatable module");
3549 break;
3550
3551 case EM_MSP430:
3552 strcat (buf, _(": architecture variant: "));
3553 switch (e_flags & EF_MSP430_MACH)
3554 {
3555 case E_MSP430_MACH_MSP430x11: strcat (buf, "MSP430x11"); break;
3556 case E_MSP430_MACH_MSP430x11x1 : strcat (buf, "MSP430x11x1 "); break;
3557 case E_MSP430_MACH_MSP430x12: strcat (buf, "MSP430x12"); break;
3558 case E_MSP430_MACH_MSP430x13: strcat (buf, "MSP430x13"); break;
3559 case E_MSP430_MACH_MSP430x14: strcat (buf, "MSP430x14"); break;
3560 case E_MSP430_MACH_MSP430x15: strcat (buf, "MSP430x15"); break;
3561 case E_MSP430_MACH_MSP430x16: strcat (buf, "MSP430x16"); break;
3562 case E_MSP430_MACH_MSP430x31: strcat (buf, "MSP430x31"); break;
3563 case E_MSP430_MACH_MSP430x32: strcat (buf, "MSP430x32"); break;
3564 case E_MSP430_MACH_MSP430x33: strcat (buf, "MSP430x33"); break;
3565 case E_MSP430_MACH_MSP430x41: strcat (buf, "MSP430x41"); break;
3566 case E_MSP430_MACH_MSP430x42: strcat (buf, "MSP430x42"); break;
3567 case E_MSP430_MACH_MSP430x43: strcat (buf, "MSP430x43"); break;
3568 case E_MSP430_MACH_MSP430x44: strcat (buf, "MSP430x44"); break;
3569 case E_MSP430_MACH_MSP430X : strcat (buf, "MSP430X"); break;
3570 default:
3571 strcat (buf, _(": unknown")); break;
3572 }
3573
3574 if (e_flags & ~ EF_MSP430_MACH)
3575 strcat (buf, _(": unknown extra flag bits also present"));
3576 }
3577 }
3578
3579 return buf;
3580 }
3581
3582 static const char *
3583 get_osabi_name (unsigned int osabi)
3584 {
3585 static char buff[32];
3586
3587 switch (osabi)
3588 {
3589 case ELFOSABI_NONE: return "UNIX - System V";
3590 case ELFOSABI_HPUX: return "UNIX - HP-UX";
3591 case ELFOSABI_NETBSD: return "UNIX - NetBSD";
3592 case ELFOSABI_GNU: return "UNIX - GNU";
3593 case ELFOSABI_SOLARIS: return "UNIX - Solaris";
3594 case ELFOSABI_AIX: return "UNIX - AIX";
3595 case ELFOSABI_IRIX: return "UNIX - IRIX";
3596 case ELFOSABI_FREEBSD: return "UNIX - FreeBSD";
3597 case ELFOSABI_TRU64: return "UNIX - TRU64";
3598 case ELFOSABI_MODESTO: return "Novell - Modesto";
3599 case ELFOSABI_OPENBSD: return "UNIX - OpenBSD";
3600 case ELFOSABI_OPENVMS: return "VMS - OpenVMS";
3601 case ELFOSABI_NSK: return "HP - Non-Stop Kernel";
3602 case ELFOSABI_AROS: return "AROS";
3603 case ELFOSABI_FENIXOS: return "FenixOS";
3604 case ELFOSABI_CLOUDABI: return "Nuxi CloudABI";
3605 case ELFOSABI_OPENVOS: return "Stratus Technologies OpenVOS";
3606 default:
3607 if (osabi >= 64)
3608 switch (elf_header.e_machine)
3609 {
3610 case EM_ARM:
3611 switch (osabi)
3612 {
3613 case ELFOSABI_ARM: return "ARM";
3614 default:
3615 break;
3616 }
3617 break;
3618
3619 case EM_MSP430:
3620 case EM_MSP430_OLD:
3621 case EM_VISIUM:
3622 switch (osabi)
3623 {
3624 case ELFOSABI_STANDALONE: return _("Standalone App");
3625 default:
3626 break;
3627 }
3628 break;
3629
3630 case EM_TI_C6000:
3631 switch (osabi)
3632 {
3633 case ELFOSABI_C6000_ELFABI: return _("Bare-metal C6000");
3634 case ELFOSABI_C6000_LINUX: return "Linux C6000";
3635 default:
3636 break;
3637 }
3638 break;
3639
3640 default:
3641 break;
3642 }
3643 snprintf (buff, sizeof (buff), _("<unknown: %x>"), osabi);
3644 return buff;
3645 }
3646 }
3647
3648 static const char *
3649 get_aarch64_segment_type (unsigned long type)
3650 {
3651 switch (type)
3652 {
3653 case PT_AARCH64_ARCHEXT:
3654 return "AARCH64_ARCHEXT";
3655 default:
3656 break;
3657 }
3658
3659 return NULL;
3660 }
3661
3662 static const char *
3663 get_arm_segment_type (unsigned long type)
3664 {
3665 switch (type)
3666 {
3667 case PT_ARM_EXIDX:
3668 return "EXIDX";
3669 default:
3670 break;
3671 }
3672
3673 return NULL;
3674 }
3675
3676 static const char *
3677 get_mips_segment_type (unsigned long type)
3678 {
3679 switch (type)
3680 {
3681 case PT_MIPS_REGINFO:
3682 return "REGINFO";
3683 case PT_MIPS_RTPROC:
3684 return "RTPROC";
3685 case PT_MIPS_OPTIONS:
3686 return "OPTIONS";
3687 case PT_MIPS_ABIFLAGS:
3688 return "ABIFLAGS";
3689 default:
3690 break;
3691 }
3692
3693 return NULL;
3694 }
3695
3696 static const char *
3697 get_parisc_segment_type (unsigned long type)
3698 {
3699 switch (type)
3700 {
3701 case PT_HP_TLS: return "HP_TLS";
3702 case PT_HP_CORE_NONE: return "HP_CORE_NONE";
3703 case PT_HP_CORE_VERSION: return "HP_CORE_VERSION";
3704 case PT_HP_CORE_KERNEL: return "HP_CORE_KERNEL";
3705 case PT_HP_CORE_COMM: return "HP_CORE_COMM";
3706 case PT_HP_CORE_PROC: return "HP_CORE_PROC";
3707 case PT_HP_CORE_LOADABLE: return "HP_CORE_LOADABLE";
3708 case PT_HP_CORE_STACK: return "HP_CORE_STACK";
3709 case PT_HP_CORE_SHM: return "HP_CORE_SHM";
3710 case PT_HP_CORE_MMF: return "HP_CORE_MMF";
3711 case PT_HP_PARALLEL: return "HP_PARALLEL";
3712 case PT_HP_FASTBIND: return "HP_FASTBIND";
3713 case PT_HP_OPT_ANNOT: return "HP_OPT_ANNOT";
3714 case PT_HP_HSL_ANNOT: return "HP_HSL_ANNOT";
3715 case PT_HP_STACK: return "HP_STACK";
3716 case PT_HP_CORE_UTSNAME: return "HP_CORE_UTSNAME";
3717 case PT_PARISC_ARCHEXT: return "PARISC_ARCHEXT";
3718 case PT_PARISC_UNWIND: return "PARISC_UNWIND";
3719 case PT_PARISC_WEAKORDER: return "PARISC_WEAKORDER";
3720 default:
3721 break;
3722 }
3723
3724 return NULL;
3725 }
3726
3727 static const char *
3728 get_ia64_segment_type (unsigned long type)
3729 {
3730 switch (type)
3731 {
3732 case PT_IA_64_ARCHEXT: return "IA_64_ARCHEXT";
3733 case PT_IA_64_UNWIND: return "IA_64_UNWIND";
3734 case PT_HP_TLS: return "HP_TLS";
3735 case PT_IA_64_HP_OPT_ANOT: return "HP_OPT_ANNOT";
3736 case PT_IA_64_HP_HSL_ANOT: return "HP_HSL_ANNOT";
3737 case PT_IA_64_HP_STACK: return "HP_STACK";
3738 default:
3739 break;
3740 }
3741
3742 return NULL;
3743 }
3744
3745 static const char *
3746 get_tic6x_segment_type (unsigned long type)
3747 {
3748 switch (type)
3749 {
3750 case PT_C6000_PHATTR: return "C6000_PHATTR";
3751 default:
3752 break;
3753 }
3754
3755 return NULL;
3756 }
3757
3758 static const char *
3759 get_solaris_segment_type (unsigned long type)
3760 {
3761 switch (type)
3762 {
3763 case 0x6464e550: return "PT_SUNW_UNWIND";
3764 case 0x6474e550: return "PT_SUNW_EH_FRAME";
3765 case 0x6ffffff7: return "PT_LOSUNW";
3766 case 0x6ffffffa: return "PT_SUNWBSS";
3767 case 0x6ffffffb: return "PT_SUNWSTACK";
3768 case 0x6ffffffc: return "PT_SUNWDTRACE";
3769 case 0x6ffffffd: return "PT_SUNWCAP";
3770 case 0x6fffffff: return "PT_HISUNW";
3771 default: return NULL;
3772 }
3773 }
3774
3775 static const char *
3776 get_segment_type (unsigned long p_type)
3777 {
3778 static char buff[32];
3779
3780 switch (p_type)
3781 {
3782 case PT_NULL: return "NULL";
3783 case PT_LOAD: return "LOAD";
3784 case PT_DYNAMIC: return "DYNAMIC";
3785 case PT_INTERP: return "INTERP";
3786 case PT_NOTE: return "NOTE";
3787 case PT_SHLIB: return "SHLIB";
3788 case PT_PHDR: return "PHDR";
3789 case PT_TLS: return "TLS";
3790
3791 case PT_GNU_EH_FRAME:
3792 return "GNU_EH_FRAME";
3793 case PT_GNU_STACK: return "GNU_STACK";
3794 case PT_GNU_RELRO: return "GNU_RELRO";
3795
3796 default:
3797 if ((p_type >= PT_LOPROC) && (p_type <= PT_HIPROC))
3798 {
3799 const char * result;
3800
3801 switch (elf_header.e_machine)
3802 {
3803 case EM_AARCH64:
3804 result = get_aarch64_segment_type (p_type);
3805 break;
3806 case EM_ARM:
3807 result = get_arm_segment_type (p_type);
3808 break;
3809 case EM_MIPS:
3810 case EM_MIPS_RS3_LE:
3811 result = get_mips_segment_type (p_type);
3812 break;
3813 case EM_PARISC:
3814 result = get_parisc_segment_type (p_type);
3815 break;
3816 case EM_IA_64:
3817 result = get_ia64_segment_type (p_type);
3818 break;
3819 case EM_TI_C6000:
3820 result = get_tic6x_segment_type (p_type);
3821 break;
3822 default:
3823 result = NULL;
3824 break;
3825 }
3826
3827 if (result != NULL)
3828 return result;
3829
3830 sprintf (buff, "LOPROC+%#lx", p_type - PT_LOPROC);
3831 }
3832 else if ((p_type >= PT_LOOS) && (p_type <= PT_HIOS))
3833 {
3834 const char * result;
3835
3836 switch (elf_header.e_machine)
3837 {
3838 case EM_PARISC:
3839 result = get_parisc_segment_type (p_type);
3840 break;
3841 case EM_IA_64:
3842 result = get_ia64_segment_type (p_type);
3843 break;
3844 default:
3845 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
3846 result = get_solaris_segment_type (p_type);
3847 else
3848 result = NULL;
3849 break;
3850 }
3851
3852 if (result != NULL)
3853 return result;
3854
3855 sprintf (buff, "LOOS+%#lx", p_type - PT_LOOS);
3856 }
3857 else
3858 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), p_type);
3859
3860 return buff;
3861 }
3862 }
3863
3864 static const char *
3865 get_mips_section_type_name (unsigned int sh_type)
3866 {
3867 switch (sh_type)
3868 {
3869 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
3870 case SHT_MIPS_MSYM: return "MIPS_MSYM";
3871 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
3872 case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
3873 case SHT_MIPS_UCODE: return "MIPS_UCODE";
3874 case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
3875 case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
3876 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
3877 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
3878 case SHT_MIPS_RELD: return "MIPS_RELD";
3879 case SHT_MIPS_IFACE: return "MIPS_IFACE";
3880 case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
3881 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
3882 case SHT_MIPS_SHDR: return "MIPS_SHDR";
3883 case SHT_MIPS_FDESC: return "MIPS_FDESC";
3884 case SHT_MIPS_EXTSYM: return "MIPS_EXTSYM";
3885 case SHT_MIPS_DENSE: return "MIPS_DENSE";
3886 case SHT_MIPS_PDESC: return "MIPS_PDESC";
3887 case SHT_MIPS_LOCSYM: return "MIPS_LOCSYM";
3888 case SHT_MIPS_AUXSYM: return "MIPS_AUXSYM";
3889 case SHT_MIPS_OPTSYM: return "MIPS_OPTSYM";
3890 case SHT_MIPS_LOCSTR: return "MIPS_LOCSTR";
3891 case SHT_MIPS_LINE: return "MIPS_LINE";
3892 case SHT_MIPS_RFDESC: return "MIPS_RFDESC";
3893 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
3894 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
3895 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
3896 case SHT_MIPS_DWARF: return "MIPS_DWARF";
3897 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
3898 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
3899 case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
3900 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
3901 case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
3902 case SHT_MIPS_XLATE: return "MIPS_XLATE";
3903 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
3904 case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
3905 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
3906 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
3907 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
3908 case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS";
3909 default:
3910 break;
3911 }
3912 return NULL;
3913 }
3914
3915 static const char *
3916 get_parisc_section_type_name (unsigned int sh_type)
3917 {
3918 switch (sh_type)
3919 {
3920 case SHT_PARISC_EXT: return "PARISC_EXT";
3921 case SHT_PARISC_UNWIND: return "PARISC_UNWIND";
3922 case SHT_PARISC_DOC: return "PARISC_DOC";
3923 case SHT_PARISC_ANNOT: return "PARISC_ANNOT";
3924 case SHT_PARISC_SYMEXTN: return "PARISC_SYMEXTN";
3925 case SHT_PARISC_STUBS: return "PARISC_STUBS";
3926 case SHT_PARISC_DLKM: return "PARISC_DLKM";
3927 default:
3928 break;
3929 }
3930 return NULL;
3931 }
3932
3933 static const char *
3934 get_ia64_section_type_name (unsigned int sh_type)
3935 {
3936 /* If the top 8 bits are 0x78 the next 8 are the os/abi ID. */
3937 if ((sh_type & 0xFF000000) == SHT_IA_64_LOPSREG)
3938 return get_osabi_name ((sh_type & 0x00FF0000) >> 16);
3939
3940 switch (sh_type)
3941 {
3942 case SHT_IA_64_EXT: return "IA_64_EXT";
3943 case SHT_IA_64_UNWIND: return "IA_64_UNWIND";
3944 case SHT_IA_64_PRIORITY_INIT: return "IA_64_PRIORITY_INIT";
3945 case SHT_IA_64_VMS_TRACE: return "VMS_TRACE";
3946 case SHT_IA_64_VMS_TIE_SIGNATURES: return "VMS_TIE_SIGNATURES";
3947 case SHT_IA_64_VMS_DEBUG: return "VMS_DEBUG";
3948 case SHT_IA_64_VMS_DEBUG_STR: return "VMS_DEBUG_STR";
3949 case SHT_IA_64_VMS_LINKAGES: return "VMS_LINKAGES";
3950 case SHT_IA_64_VMS_SYMBOL_VECTOR: return "VMS_SYMBOL_VECTOR";
3951 case SHT_IA_64_VMS_FIXUP: return "VMS_FIXUP";
3952 default:
3953 break;
3954 }
3955 return NULL;
3956 }
3957
3958 static const char *
3959 get_x86_64_section_type_name (unsigned int sh_type)
3960 {
3961 switch (sh_type)
3962 {
3963 case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
3964 default:
3965 break;
3966 }
3967 return NULL;
3968 }
3969
3970 static const char *
3971 get_aarch64_section_type_name (unsigned int sh_type)
3972 {
3973 switch (sh_type)
3974 {
3975 case SHT_AARCH64_ATTRIBUTES:
3976 return "AARCH64_ATTRIBUTES";
3977 default:
3978 break;
3979 }
3980 return NULL;
3981 }
3982
3983 static const char *
3984 get_arm_section_type_name (unsigned int sh_type)
3985 {
3986 switch (sh_type)
3987 {
3988 case SHT_ARM_EXIDX: return "ARM_EXIDX";
3989 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP";
3990 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES";
3991 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY";
3992 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION";
3993 default:
3994 break;
3995 }
3996 return NULL;
3997 }
3998
3999 static const char *
4000 get_tic6x_section_type_name (unsigned int sh_type)
4001 {
4002 switch (sh_type)
4003 {
4004 case SHT_C6000_UNWIND:
4005 return "C6000_UNWIND";
4006 case SHT_C6000_PREEMPTMAP:
4007 return "C6000_PREEMPTMAP";
4008 case SHT_C6000_ATTRIBUTES:
4009 return "C6000_ATTRIBUTES";
4010 case SHT_TI_ICODE:
4011 return "TI_ICODE";
4012 case SHT_TI_XREF:
4013 return "TI_XREF";
4014 case SHT_TI_HANDLER:
4015 return "TI_HANDLER";
4016 case SHT_TI_INITINFO:
4017 return "TI_INITINFO";
4018 case SHT_TI_PHATTRS:
4019 return "TI_PHATTRS";
4020 default:
4021 break;
4022 }
4023 return NULL;
4024 }
4025
4026 static const char *
4027 get_msp430x_section_type_name (unsigned int sh_type)
4028 {
4029 switch (sh_type)
4030 {
4031 case SHT_MSP430_SEC_FLAGS: return "MSP430_SEC_FLAGS";
4032 case SHT_MSP430_SYM_ALIASES: return "MSP430_SYM_ALIASES";
4033 case SHT_MSP430_ATTRIBUTES: return "MSP430_ATTRIBUTES";
4034 default: return NULL;
4035 }
4036 }
4037
4038 static const char *
4039 get_v850_section_type_name (unsigned int sh_type)
4040 {
4041 switch (sh_type)
4042 {
4043 case SHT_V850_SCOMMON: return "V850 Small Common";
4044 case SHT_V850_TCOMMON: return "V850 Tiny Common";
4045 case SHT_V850_ZCOMMON: return "V850 Zero Common";
4046 case SHT_RENESAS_IOP: return "RENESAS IOP";
4047 case SHT_RENESAS_INFO: return "RENESAS INFO";
4048 default: return NULL;
4049 }
4050 }
4051
4052 static const char *
4053 get_section_type_name (unsigned int sh_type)
4054 {
4055 static char buff[32];
4056 const char * result;
4057
4058 switch (sh_type)
4059 {
4060 case SHT_NULL: return "NULL";
4061 case SHT_PROGBITS: return "PROGBITS";
4062 case SHT_SYMTAB: return "SYMTAB";
4063 case SHT_STRTAB: return "STRTAB";
4064 case SHT_RELA: return "RELA";
4065 case SHT_HASH: return "HASH";
4066 case SHT_DYNAMIC: return "DYNAMIC";
4067 case SHT_NOTE: return "NOTE";
4068 case SHT_NOBITS: return "NOBITS";
4069 case SHT_REL: return "REL";
4070 case SHT_SHLIB: return "SHLIB";
4071 case SHT_DYNSYM: return "DYNSYM";
4072 case SHT_INIT_ARRAY: return "INIT_ARRAY";
4073 case SHT_FINI_ARRAY: return "FINI_ARRAY";
4074 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
4075 case SHT_GNU_HASH: return "GNU_HASH";
4076 case SHT_GROUP: return "GROUP";
4077 case SHT_SYMTAB_SHNDX: return "SYMTAB SECTION INDICIES";
4078 case SHT_GNU_verdef: return "VERDEF";
4079 case SHT_GNU_verneed: return "VERNEED";
4080 case SHT_GNU_versym: return "VERSYM";
4081 case 0x6ffffff0: return "VERSYM";
4082 case 0x6ffffffc: return "VERDEF";
4083 case 0x7ffffffd: return "AUXILIARY";
4084 case 0x7fffffff: return "FILTER";
4085 case SHT_GNU_LIBLIST: return "GNU_LIBLIST";
4086
4087 default:
4088 if ((sh_type >= SHT_LOPROC) && (sh_type <= SHT_HIPROC))
4089 {
4090 switch (elf_header.e_machine)
4091 {
4092 case EM_MIPS:
4093 case EM_MIPS_RS3_LE:
4094 result = get_mips_section_type_name (sh_type);
4095 break;
4096 case EM_PARISC:
4097 result = get_parisc_section_type_name (sh_type);
4098 break;
4099 case EM_IA_64:
4100 result = get_ia64_section_type_name (sh_type);
4101 break;
4102 case EM_X86_64:
4103 case EM_L1OM:
4104 case EM_K1OM:
4105 result = get_x86_64_section_type_name (sh_type);
4106 break;
4107 case EM_AARCH64:
4108 result = get_aarch64_section_type_name (sh_type);
4109 break;
4110 case EM_ARM:
4111 result = get_arm_section_type_name (sh_type);
4112 break;
4113 case EM_TI_C6000:
4114 result = get_tic6x_section_type_name (sh_type);
4115 break;
4116 case EM_MSP430:
4117 result = get_msp430x_section_type_name (sh_type);
4118 break;
4119 case EM_V800:
4120 case EM_V850:
4121 case EM_CYGNUS_V850:
4122 result = get_v850_section_type_name (sh_type);
4123 break;
4124 default:
4125 result = NULL;
4126 break;
4127 }
4128
4129 if (result != NULL)
4130 return result;
4131
4132 sprintf (buff, "LOPROC+%#x", sh_type - SHT_LOPROC);
4133 }
4134 else if ((sh_type >= SHT_LOOS) && (sh_type <= SHT_HIOS))
4135 {
4136 switch (elf_header.e_machine)
4137 {
4138 case EM_IA_64:
4139 result = get_ia64_section_type_name (sh_type);
4140 break;
4141 default:
4142 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
4143 result = get_solaris_section_type (sh_type);
4144 else
4145 {
4146 switch (sh_type)
4147 {
4148 case SHT_GNU_INCREMENTAL_INPUTS: result = "GNU_INCREMENTAL_INPUTS"; break;
4149 case SHT_GNU_ATTRIBUTES: result = "GNU_ATTRIBUTES"; break;
4150 case SHT_GNU_HASH: result = "GNU_HASH"; break;
4151 case SHT_GNU_LIBLIST: result = "GNU_LIBLIST"; break;
4152 default:
4153 result = NULL;
4154 break;
4155 }
4156 }
4157 break;
4158 }
4159
4160 if (result != NULL)
4161 return result;
4162
4163 sprintf (buff, "LOOS+%#x", sh_type - SHT_LOOS);
4164 }
4165 else if ((sh_type >= SHT_LOUSER) && (sh_type <= SHT_HIUSER))
4166 {
4167 switch (elf_header.e_machine)
4168 {
4169 case EM_V800:
4170 case EM_V850:
4171 case EM_CYGNUS_V850:
4172 result = get_v850_section_type_name (sh_type);
4173 break;
4174 default:
4175 result = NULL;
4176 break;
4177 }
4178
4179 if (result != NULL)
4180 return result;
4181
4182 sprintf (buff, "LOUSER+%#x", sh_type - SHT_LOUSER);
4183 }
4184 else
4185 /* This message is probably going to be displayed in a 15
4186 character wide field, so put the hex value first. */
4187 snprintf (buff, sizeof (buff), _("%08x: <unknown>"), sh_type);
4188
4189 return buff;
4190 }
4191 }
4192
4193 #define OPTION_DEBUG_DUMP 512
4194 #define OPTION_DYN_SYMS 513
4195 #define OPTION_DWARF_DEPTH 514
4196 #define OPTION_DWARF_START 515
4197 #define OPTION_DWARF_CHECK 516
4198
4199 static struct option options[] =
4200 {
4201 {"all", no_argument, 0, 'a'},
4202 {"file-header", no_argument, 0, 'h'},
4203 {"program-headers", no_argument, 0, 'l'},
4204 {"headers", no_argument, 0, 'e'},
4205 {"histogram", no_argument, 0, 'I'},
4206 {"segments", no_argument, 0, 'l'},
4207 {"sections", no_argument, 0, 'S'},
4208 {"section-headers", no_argument, 0, 'S'},
4209 {"section-groups", no_argument, 0, 'g'},
4210 {"section-details", no_argument, 0, 't'},
4211 {"full-section-name",no_argument, 0, 'N'},
4212 {"symbols", no_argument, 0, 's'},
4213 {"syms", no_argument, 0, 's'},
4214 {"dyn-syms", no_argument, 0, OPTION_DYN_SYMS},
4215 {"relocs", no_argument, 0, 'r'},
4216 {"notes", no_argument, 0, 'n'},
4217 {"dynamic", no_argument, 0, 'd'},
4218 {"arch-specific", no_argument, 0, 'A'},
4219 {"version-info", no_argument, 0, 'V'},
4220 {"use-dynamic", no_argument, 0, 'D'},
4221 {"unwind", no_argument, 0, 'u'},
4222 {"archive-index", no_argument, 0, 'c'},
4223 {"hex-dump", required_argument, 0, 'x'},
4224 {"relocated-dump", required_argument, 0, 'R'},
4225 {"string-dump", required_argument, 0, 'p'},
4226 {"decompress", no_argument, 0, 'z'},
4227 #ifdef SUPPORT_DISASSEMBLY
4228 {"instruction-dump", required_argument, 0, 'i'},
4229 #endif
4230 {"debug-dump", optional_argument, 0, OPTION_DEBUG_DUMP},
4231
4232 {"dwarf-depth", required_argument, 0, OPTION_DWARF_DEPTH},
4233 {"dwarf-start", required_argument, 0, OPTION_DWARF_START},
4234 {"dwarf-check", no_argument, 0, OPTION_DWARF_CHECK},
4235
4236 {"version", no_argument, 0, 'v'},
4237 {"wide", no_argument, 0, 'W'},
4238 {"help", no_argument, 0, 'H'},
4239 {0, no_argument, 0, 0}
4240 };
4241
4242 static void
4243 usage (FILE * stream)
4244 {
4245 fprintf (stream, _("Usage: readelf <option(s)> elf-file(s)\n"));
4246 fprintf (stream, _(" Display information about the contents of ELF format files\n"));
4247 fprintf (stream, _(" Options are:\n\
4248 -a --all Equivalent to: -h -l -S -s -r -d -V -A -I\n\
4249 -h --file-header Display the ELF file header\n\
4250 -l --program-headers Display the program headers\n\
4251 --segments An alias for --program-headers\n\
4252 -S --section-headers Display the sections' header\n\
4253 --sections An alias for --section-headers\n\
4254 -g --section-groups Display the section groups\n\
4255 -t --section-details Display the section details\n\
4256 -e --headers Equivalent to: -h -l -S\n\
4257 -s --syms Display the symbol table\n\
4258 --symbols An alias for --syms\n\
4259 --dyn-syms Display the dynamic symbol table\n\
4260 -n --notes Display the core notes (if present)\n\
4261 -r --relocs Display the relocations (if present)\n\
4262 -u --unwind Display the unwind info (if present)\n\
4263 -d --dynamic Display the dynamic section (if present)\n\
4264 -V --version-info Display the version sections (if present)\n\
4265 -A --arch-specific Display architecture specific information (if any)\n\
4266 -c --archive-index Display the symbol/file index in an archive\n\
4267 -D --use-dynamic Use the dynamic section info when displaying symbols\n\
4268 -x --hex-dump=<number|name>\n\
4269 Dump the contents of section <number|name> as bytes\n\
4270 -p --string-dump=<number|name>\n\
4271 Dump the contents of section <number|name> as strings\n\
4272 -R --relocated-dump=<number|name>\n\
4273 Dump the contents of section <number|name> as relocated bytes\n\
4274 -z --decompress Decompress section before dumping it\n\
4275 -w[lLiaprmfFsoRt] or\n\
4276 --debug-dump[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,\n\
4277 =frames-interp,=str,=loc,=Ranges,=pubtypes,\n\
4278 =gdb_index,=trace_info,=trace_abbrev,=trace_aranges,\n\
4279 =addr,=cu_index]\n\
4280 Display the contents of DWARF2 debug sections\n"));
4281 fprintf (stream, _("\
4282 --dwarf-depth=N Do not display DIEs at depth N or greater\n\
4283 --dwarf-start=N Display DIEs starting with N, at the same depth\n\
4284 or deeper\n"));
4285 #ifdef SUPPORT_DISASSEMBLY
4286 fprintf (stream, _("\
4287 -i --instruction-dump=<number|name>\n\
4288 Disassemble the contents of section <number|name>\n"));
4289 #endif
4290 fprintf (stream, _("\
4291 -I --histogram Display histogram of bucket list lengths\n\
4292 -W --wide Allow output width to exceed 80 characters\n\
4293 @<file> Read options from <file>\n\
4294 -H --help Display this information\n\
4295 -v --version Display the version number of readelf\n"));
4296
4297 if (REPORT_BUGS_TO[0] && stream == stdout)
4298 fprintf (stdout, _("Report bugs to %s\n"), REPORT_BUGS_TO);
4299
4300 exit (stream == stdout ? 0 : 1);
4301 }
4302
4303 /* Record the fact that the user wants the contents of section number
4304 SECTION to be displayed using the method(s) encoded as flags bits
4305 in TYPE. Note, TYPE can be zero if we are creating the array for
4306 the first time. */
4307
4308 static void
4309 request_dump_bynumber (unsigned int section, dump_type type)
4310 {
4311 if (section >= num_dump_sects)
4312 {
4313 dump_type * new_dump_sects;
4314
4315 new_dump_sects = (dump_type *) calloc (section + 1,
4316 sizeof (* dump_sects));
4317
4318 if (new_dump_sects == NULL)
4319 error (_("Out of memory allocating dump request table.\n"));
4320 else
4321 {
4322 if (dump_sects)
4323 {
4324 /* Copy current flag settings. */
4325 memcpy (new_dump_sects, dump_sects, num_dump_sects * sizeof (* dump_sects));
4326
4327 free (dump_sects);
4328 }
4329
4330 dump_sects = new_dump_sects;
4331 num_dump_sects = section + 1;
4332 }
4333 }
4334
4335 if (dump_sects)
4336 dump_sects[section] |= type;
4337
4338 return;
4339 }
4340
4341 /* Request a dump by section name. */
4342
4343 static void
4344 request_dump_byname (const char * section, dump_type type)
4345 {
4346 struct dump_list_entry * new_request;
4347
4348 new_request = (struct dump_list_entry *)
4349 malloc (sizeof (struct dump_list_entry));
4350 if (!new_request)
4351 error (_("Out of memory allocating dump request table.\n"));
4352
4353 new_request->name = strdup (section);
4354 if (!new_request->name)
4355 error (_("Out of memory allocating dump request table.\n"));
4356
4357 new_request->type = type;
4358
4359 new_request->next = dump_sects_byname;
4360 dump_sects_byname = new_request;
4361 }
4362
4363 static inline void
4364 request_dump (dump_type type)
4365 {
4366 int section;
4367 char * cp;
4368
4369 do_dump++;
4370 section = strtoul (optarg, & cp, 0);
4371
4372 if (! *cp && section >= 0)
4373 request_dump_bynumber (section, type);
4374 else
4375 request_dump_byname (optarg, type);
4376 }
4377
4378
4379 static void
4380 parse_args (int argc, char ** argv)
4381 {
4382 int c;
4383
4384 if (argc < 2)
4385 usage (stderr);
4386
4387 while ((c = getopt_long
4388 (argc, argv, "ADHINR:SVWacdeghi:lnp:rstuvw::x:z", options, NULL)) != EOF)
4389 {
4390 switch (c)
4391 {
4392 case 0:
4393 /* Long options. */
4394 break;
4395 case 'H':
4396 usage (stdout);
4397 break;
4398
4399 case 'a':
4400 do_syms++;
4401 do_reloc++;
4402 do_unwind++;
4403 do_dynamic++;
4404 do_header++;
4405 do_sections++;
4406 do_section_groups++;
4407 do_segments++;
4408 do_version++;
4409 do_histogram++;
4410 do_arch++;
4411 do_notes++;
4412 break;
4413 case 'g':
4414 do_section_groups++;
4415 break;
4416 case 't':
4417 case 'N':
4418 do_sections++;
4419 do_section_details++;
4420 break;
4421 case 'e':
4422 do_header++;
4423 do_sections++;
4424 do_segments++;
4425 break;
4426 case 'A':
4427 do_arch++;
4428 break;
4429 case 'D':
4430 do_using_dynamic++;
4431 break;
4432 case 'r':
4433 do_reloc++;
4434 break;
4435 case 'u':
4436 do_unwind++;
4437 break;
4438 case 'h':
4439 do_header++;
4440 break;
4441 case 'l':
4442 do_segments++;
4443 break;
4444 case 's':
4445 do_syms++;
4446 break;
4447 case 'S':
4448 do_sections++;
4449 break;
4450 case 'd':
4451 do_dynamic++;
4452 break;
4453 case 'I':
4454 do_histogram++;
4455 break;
4456 case 'n':
4457 do_notes++;
4458 break;
4459 case 'c':
4460 do_archive_index++;
4461 break;
4462 case 'x':
4463 request_dump (HEX_DUMP);
4464 break;
4465 case 'p':
4466 request_dump (STRING_DUMP);
4467 break;
4468 case 'R':
4469 request_dump (RELOC_DUMP);
4470 break;
4471 case 'z':
4472 decompress_dumps++;
4473 break;
4474 case 'w':
4475 do_dump++;
4476 if (optarg == 0)
4477 {
4478 do_debugging = 1;
4479 dwarf_select_sections_all ();
4480 }
4481 else
4482 {
4483 do_debugging = 0;
4484 dwarf_select_sections_by_letters (optarg);
4485 }
4486 break;
4487 case OPTION_DEBUG_DUMP:
4488 do_dump++;
4489 if (optarg == 0)
4490 do_debugging = 1;
4491 else
4492 {
4493 do_debugging = 0;
4494 dwarf_select_sections_by_names (optarg);
4495 }
4496 break;
4497 case OPTION_DWARF_DEPTH:
4498 {
4499 char *cp;
4500
4501 dwarf_cutoff_level = strtoul (optarg, & cp, 0);
4502 }
4503 break;
4504 case OPTION_DWARF_START:
4505 {
4506 char *cp;
4507
4508 dwarf_start_die = strtoul (optarg, & cp, 0);
4509 }
4510 break;
4511 case OPTION_DWARF_CHECK:
4512 dwarf_check = 1;
4513 break;
4514 case OPTION_DYN_SYMS:
4515 do_dyn_syms++;
4516 break;
4517 #ifdef SUPPORT_DISASSEMBLY
4518 case 'i':
4519 request_dump (DISASS_DUMP);
4520 break;
4521 #endif
4522 case 'v':
4523 print_version (program_name);
4524 break;
4525 case 'V':
4526 do_version++;
4527 break;
4528 case 'W':
4529 do_wide++;
4530 break;
4531 default:
4532 /* xgettext:c-format */
4533 error (_("Invalid option '-%c'\n"), c);
4534 /* Fall through. */
4535 case '?':
4536 usage (stderr);
4537 }
4538 }
4539
4540 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
4541 && !do_segments && !do_header && !do_dump && !do_version
4542 && !do_histogram && !do_debugging && !do_arch && !do_notes
4543 && !do_section_groups && !do_archive_index
4544 && !do_dyn_syms)
4545 usage (stderr);
4546 }
4547
4548 static const char *
4549 get_elf_class (unsigned int elf_class)
4550 {
4551 static char buff[32];
4552
4553 switch (elf_class)
4554 {
4555 case ELFCLASSNONE: return _("none");
4556 case ELFCLASS32: return "ELF32";
4557 case ELFCLASS64: return "ELF64";
4558 default:
4559 snprintf (buff, sizeof (buff), _("<unknown: %x>"), elf_class);
4560 return buff;
4561 }
4562 }
4563
4564 static const char *
4565 get_data_encoding (unsigned int encoding)
4566 {
4567 static char buff[32];
4568
4569 switch (encoding)
4570 {
4571 case ELFDATANONE: return _("none");
4572 case ELFDATA2LSB: return _("2's complement, little endian");
4573 case ELFDATA2MSB: return _("2's complement, big endian");
4574 default:
4575 snprintf (buff, sizeof (buff), _("<unknown: %x>"), encoding);
4576 return buff;
4577 }
4578 }
4579
4580 /* Decode the data held in 'elf_header'. */
4581
4582 static int
4583 process_file_header (void)
4584 {
4585 if ( elf_header.e_ident[EI_MAG0] != ELFMAG0
4586 || elf_header.e_ident[EI_MAG1] != ELFMAG1
4587 || elf_header.e_ident[EI_MAG2] != ELFMAG2
4588 || elf_header.e_ident[EI_MAG3] != ELFMAG3)
4589 {
4590 error
4591 (_("Not an ELF file - it has the wrong magic bytes at the start\n"));
4592 return 0;
4593 }
4594
4595 init_dwarf_regnames (elf_header.e_machine);
4596
4597 if (do_header)
4598 {
4599 int i;
4600
4601 printf (_("ELF Header:\n"));
4602 printf (_(" Magic: "));
4603 for (i = 0; i < EI_NIDENT; i++)
4604 printf ("%2.2x ", elf_header.e_ident[i]);
4605 printf ("\n");
4606 printf (_(" Class: %s\n"),
4607 get_elf_class (elf_header.e_ident[EI_CLASS]));
4608 printf (_(" Data: %s\n"),
4609 get_data_encoding (elf_header.e_ident[EI_DATA]));
4610 printf (_(" Version: %d %s\n"),
4611 elf_header.e_ident[EI_VERSION],
4612 (elf_header.e_ident[EI_VERSION] == EV_CURRENT
4613 ? "(current)"
4614 : (elf_header.e_ident[EI_VERSION] != EV_NONE
4615 ? _("<unknown: %lx>")
4616 : "")));
4617 printf (_(" OS/ABI: %s\n"),
4618 get_osabi_name (elf_header.e_ident[EI_OSABI]));
4619 printf (_(" ABI Version: %d\n"),
4620 elf_header.e_ident[EI_ABIVERSION]);
4621 printf (_(" Type: %s\n"),
4622 get_file_type (elf_header.e_type));
4623 printf (_(" Machine: %s\n"),
4624 get_machine_name (elf_header.e_machine));
4625 printf (_(" Version: 0x%lx\n"),
4626 (unsigned long) elf_header.e_version);
4627
4628 printf (_(" Entry point address: "));
4629 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4630 printf (_("\n Start of program headers: "));
4631 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4632 printf (_(" (bytes into file)\n Start of section headers: "));
4633 print_vma ((bfd_vma) elf_header.e_shoff, DEC);
4634 printf (_(" (bytes into file)\n"));
4635
4636 printf (_(" Flags: 0x%lx%s\n"),
4637 (unsigned long) elf_header.e_flags,
4638 get_machine_flags (elf_header.e_flags, elf_header.e_machine));
4639 printf (_(" Size of this header: %ld (bytes)\n"),
4640 (long) elf_header.e_ehsize);
4641 printf (_(" Size of program headers: %ld (bytes)\n"),
4642 (long) elf_header.e_phentsize);
4643 printf (_(" Number of program headers: %ld"),
4644 (long) elf_header.e_phnum);
4645 if (section_headers != NULL
4646 && elf_header.e_phnum == PN_XNUM
4647 && section_headers[0].sh_info != 0)
4648 printf (" (%ld)", (long) section_headers[0].sh_info);
4649 putc ('\n', stdout);
4650 printf (_(" Size of section headers: %ld (bytes)\n"),
4651 (long) elf_header.e_shentsize);
4652 printf (_(" Number of section headers: %ld"),
4653 (long) elf_header.e_shnum);
4654 if (section_headers != NULL && elf_header.e_shnum == SHN_UNDEF)
4655 printf (" (%ld)", (long) section_headers[0].sh_size);
4656 putc ('\n', stdout);
4657 printf (_(" Section header string table index: %ld"),
4658 (long) elf_header.e_shstrndx);
4659 if (section_headers != NULL
4660 && elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4661 printf (" (%u)", section_headers[0].sh_link);
4662 else if (elf_header.e_shstrndx != SHN_UNDEF
4663 && elf_header.e_shstrndx >= elf_header.e_shnum)
4664 printf (_(" <corrupt: out of range>"));
4665 putc ('\n', stdout);
4666 }
4667
4668 if (section_headers != NULL)
4669 {
4670 if (elf_header.e_phnum == PN_XNUM
4671 && section_headers[0].sh_info != 0)
4672 elf_header.e_phnum = section_headers[0].sh_info;
4673 if (elf_header.e_shnum == SHN_UNDEF)
4674 elf_header.e_shnum = section_headers[0].sh_size;
4675 if (elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4676 elf_header.e_shstrndx = section_headers[0].sh_link;
4677 else if (elf_header.e_shstrndx >= elf_header.e_shnum)
4678 elf_header.e_shstrndx = SHN_UNDEF;
4679 free (section_headers);
4680 section_headers = NULL;
4681 }
4682
4683 return 1;
4684 }
4685
4686 static bfd_boolean
4687 get_32bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4688 {
4689 Elf32_External_Phdr * phdrs;
4690 Elf32_External_Phdr * external;
4691 Elf_Internal_Phdr * internal;
4692 unsigned int i;
4693 unsigned int size = elf_header.e_phentsize;
4694 unsigned int num = elf_header.e_phnum;
4695
4696 /* PR binutils/17531: Cope with unexpected section header sizes. */
4697 if (size == 0 || num == 0)
4698 return FALSE;
4699 if (size < sizeof * phdrs)
4700 {
4701 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4702 return FALSE;
4703 }
4704 if (size > sizeof * phdrs)
4705 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4706
4707 phdrs = (Elf32_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4708 size, num, _("program headers"));
4709 if (phdrs == NULL)
4710 return FALSE;
4711
4712 for (i = 0, internal = pheaders, external = phdrs;
4713 i < elf_header.e_phnum;
4714 i++, internal++, external++)
4715 {
4716 internal->p_type = BYTE_GET (external->p_type);
4717 internal->p_offset = BYTE_GET (external->p_offset);
4718 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4719 internal->p_paddr = BYTE_GET (external->p_paddr);
4720 internal->p_filesz = BYTE_GET (external->p_filesz);
4721 internal->p_memsz = BYTE_GET (external->p_memsz);
4722 internal->p_flags = BYTE_GET (external->p_flags);
4723 internal->p_align = BYTE_GET (external->p_align);
4724 }
4725
4726 free (phdrs);
4727 return TRUE;
4728 }
4729
4730 static bfd_boolean
4731 get_64bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4732 {
4733 Elf64_External_Phdr * phdrs;
4734 Elf64_External_Phdr * external;
4735 Elf_Internal_Phdr * internal;
4736 unsigned int i;
4737 unsigned int size = elf_header.e_phentsize;
4738 unsigned int num = elf_header.e_phnum;
4739
4740 /* PR binutils/17531: Cope with unexpected section header sizes. */
4741 if (size == 0 || num == 0)
4742 return FALSE;
4743 if (size < sizeof * phdrs)
4744 {
4745 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4746 return FALSE;
4747 }
4748 if (size > sizeof * phdrs)
4749 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4750
4751 phdrs = (Elf64_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4752 size, num, _("program headers"));
4753 if (!phdrs)
4754 return FALSE;
4755
4756 for (i = 0, internal = pheaders, external = phdrs;
4757 i < elf_header.e_phnum;
4758 i++, internal++, external++)
4759 {
4760 internal->p_type = BYTE_GET (external->p_type);
4761 internal->p_flags = BYTE_GET (external->p_flags);
4762 internal->p_offset = BYTE_GET (external->p_offset);
4763 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4764 internal->p_paddr = BYTE_GET (external->p_paddr);
4765 internal->p_filesz = BYTE_GET (external->p_filesz);
4766 internal->p_memsz = BYTE_GET (external->p_memsz);
4767 internal->p_align = BYTE_GET (external->p_align);
4768 }
4769
4770 free (phdrs);
4771 return TRUE;
4772 }
4773
4774 /* Returns 1 if the program headers were read into `program_headers'. */
4775
4776 static int
4777 get_program_headers (FILE * file)
4778 {
4779 Elf_Internal_Phdr * phdrs;
4780
4781 /* Check cache of prior read. */
4782 if (program_headers != NULL)
4783 return 1;
4784
4785 phdrs = (Elf_Internal_Phdr *) cmalloc (elf_header.e_phnum,
4786 sizeof (Elf_Internal_Phdr));
4787
4788 if (phdrs == NULL)
4789 {
4790 error (_("Out of memory reading %u program headers\n"),
4791 elf_header.e_phnum);
4792 return 0;
4793 }
4794
4795 if (is_32bit_elf
4796 ? get_32bit_program_headers (file, phdrs)
4797 : get_64bit_program_headers (file, phdrs))
4798 {
4799 program_headers = phdrs;
4800 return 1;
4801 }
4802
4803 free (phdrs);
4804 return 0;
4805 }
4806
4807 /* Returns 1 if the program headers were loaded. */
4808
4809 static int
4810 process_program_headers (FILE * file)
4811 {
4812 Elf_Internal_Phdr * segment;
4813 unsigned int i;
4814 Elf_Internal_Phdr * previous_load = NULL;
4815
4816 if (elf_header.e_phnum == 0)
4817 {
4818 /* PR binutils/12467. */
4819 if (elf_header.e_phoff != 0)
4820 warn (_("possibly corrupt ELF header - it has a non-zero program"
4821 " header offset, but no program headers\n"));
4822 else if (do_segments)
4823 printf (_("\nThere are no program headers in this file.\n"));
4824 return 0;
4825 }
4826
4827 if (do_segments && !do_header)
4828 {
4829 printf (_("\nElf file type is %s\n"), get_file_type (elf_header.e_type));
4830 printf (_("Entry point "));
4831 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4832 printf (_("\nThere are %d program headers, starting at offset "),
4833 elf_header.e_phnum);
4834 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4835 printf ("\n");
4836 }
4837
4838 if (! get_program_headers (file))
4839 return 0;
4840
4841 if (do_segments)
4842 {
4843 if (elf_header.e_phnum > 1)
4844 printf (_("\nProgram Headers:\n"));
4845 else
4846 printf (_("\nProgram Headers:\n"));
4847
4848 if (is_32bit_elf)
4849 printf
4850 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4851 else if (do_wide)
4852 printf
4853 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4854 else
4855 {
4856 printf
4857 (_(" Type Offset VirtAddr PhysAddr\n"));
4858 printf
4859 (_(" FileSiz MemSiz Flags Align\n"));
4860 }
4861 }
4862
4863 dynamic_addr = 0;
4864 dynamic_size = 0;
4865
4866 for (i = 0, segment = program_headers;
4867 i < elf_header.e_phnum;
4868 i++, segment++)
4869 {
4870 if (do_segments)
4871 {
4872 printf (" %-14.14s ", get_segment_type (segment->p_type));
4873
4874 if (is_32bit_elf)
4875 {
4876 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4877 printf ("0x%8.8lx ", (unsigned long) segment->p_vaddr);
4878 printf ("0x%8.8lx ", (unsigned long) segment->p_paddr);
4879 printf ("0x%5.5lx ", (unsigned long) segment->p_filesz);
4880 printf ("0x%5.5lx ", (unsigned long) segment->p_memsz);
4881 printf ("%c%c%c ",
4882 (segment->p_flags & PF_R ? 'R' : ' '),
4883 (segment->p_flags & PF_W ? 'W' : ' '),
4884 (segment->p_flags & PF_X ? 'E' : ' '));
4885 printf ("%#lx", (unsigned long) segment->p_align);
4886 }
4887 else if (do_wide)
4888 {
4889 if ((unsigned long) segment->p_offset == segment->p_offset)
4890 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4891 else
4892 {
4893 print_vma (segment->p_offset, FULL_HEX);
4894 putchar (' ');
4895 }
4896
4897 print_vma (segment->p_vaddr, FULL_HEX);
4898 putchar (' ');
4899 print_vma (segment->p_paddr, FULL_HEX);
4900 putchar (' ');
4901
4902 if ((unsigned long) segment->p_filesz == segment->p_filesz)
4903 printf ("0x%6.6lx ", (unsigned long) segment->p_filesz);
4904 else
4905 {
4906 print_vma (segment->p_filesz, FULL_HEX);
4907 putchar (' ');
4908 }
4909
4910 if ((unsigned long) segment->p_memsz == segment->p_memsz)
4911 printf ("0x%6.6lx", (unsigned long) segment->p_memsz);
4912 else
4913 {
4914 print_vma (segment->p_memsz, FULL_HEX);
4915 }
4916
4917 printf (" %c%c%c ",
4918 (segment->p_flags & PF_R ? 'R' : ' '),
4919 (segment->p_flags & PF_W ? 'W' : ' '),
4920 (segment->p_flags & PF_X ? 'E' : ' '));
4921
4922 if ((unsigned long) segment->p_align == segment->p_align)
4923 printf ("%#lx", (unsigned long) segment->p_align);
4924 else
4925 {
4926 print_vma (segment->p_align, PREFIX_HEX);
4927 }
4928 }
4929 else
4930 {
4931 print_vma (segment->p_offset, FULL_HEX);
4932 putchar (' ');
4933 print_vma (segment->p_vaddr, FULL_HEX);
4934 putchar (' ');
4935 print_vma (segment->p_paddr, FULL_HEX);
4936 printf ("\n ");
4937 print_vma (segment->p_filesz, FULL_HEX);
4938 putchar (' ');
4939 print_vma (segment->p_memsz, FULL_HEX);
4940 printf (" %c%c%c ",
4941 (segment->p_flags & PF_R ? 'R' : ' '),
4942 (segment->p_flags & PF_W ? 'W' : ' '),
4943 (segment->p_flags & PF_X ? 'E' : ' '));
4944 print_vma (segment->p_align, PREFIX_HEX);
4945 }
4946
4947 putc ('\n', stdout);
4948 }
4949
4950 switch (segment->p_type)
4951 {
4952 case PT_LOAD:
4953 #if 0 /* Do not warn about out of order PT_LOAD segments. Although officially
4954 required by the ELF standard, several programs, including the Linux
4955 kernel, make use of non-ordered segments. */
4956 if (previous_load
4957 && previous_load->p_vaddr > segment->p_vaddr)
4958 error (_("LOAD segments must be sorted in order of increasing VirtAddr\n"));
4959 #endif
4960 if (segment->p_memsz < segment->p_filesz)
4961 error (_("the segment's file size is larger than its memory size\n"));
4962 previous_load = segment;
4963 break;
4964
4965 case PT_PHDR:
4966 /* PR 20815 - Verify that the program header is loaded into memory. */
4967 if (i > 0 && previous_load != NULL)
4968 error (_("the PHDR segment must occur before any LOAD segment\n"));
4969 if (elf_header.e_machine != EM_PARISC)
4970 {
4971 unsigned int j;
4972
4973 for (j = 1; j < elf_header.e_phnum; j++)
4974 if (program_headers[j].p_vaddr <= segment->p_vaddr
4975 && (program_headers[j].p_vaddr + program_headers[j].p_memsz)
4976 >= (segment->p_vaddr + segment->p_filesz))
4977 break;
4978 if (j == elf_header.e_phnum)
4979 error (_("the PHDR segment is not covered by a LOAD segment\n"));
4980 }
4981 break;
4982
4983 case PT_DYNAMIC:
4984 if (dynamic_addr)
4985 error (_("more than one dynamic segment\n"));
4986
4987 /* By default, assume that the .dynamic section is the first
4988 section in the DYNAMIC segment. */
4989 dynamic_addr = segment->p_offset;
4990 dynamic_size = segment->p_filesz;
4991 /* PR binutils/17512: Avoid corrupt dynamic section info in the segment. */
4992 if (dynamic_addr + dynamic_size >= current_file_size)
4993 {
4994 error (_("the dynamic segment offset + size exceeds the size of the file\n"));
4995 dynamic_addr = dynamic_size = 0;
4996 }
4997
4998 /* Try to locate the .dynamic section. If there is
4999 a section header table, we can easily locate it. */
5000 if (section_headers != NULL)
5001 {
5002 Elf_Internal_Shdr * sec;
5003
5004 sec = find_section (".dynamic");
5005 if (sec == NULL || sec->sh_size == 0)
5006 {
5007 /* A corresponding .dynamic section is expected, but on
5008 IA-64/OpenVMS it is OK for it to be missing. */
5009 if (!is_ia64_vms ())
5010 error (_("no .dynamic section in the dynamic segment\n"));
5011 break;
5012 }
5013
5014 if (sec->sh_type == SHT_NOBITS)
5015 {
5016 dynamic_size = 0;
5017 break;
5018 }
5019
5020 dynamic_addr = sec->sh_offset;
5021 dynamic_size = sec->sh_size;
5022
5023 if (dynamic_addr < segment->p_offset
5024 || dynamic_addr > segment->p_offset + segment->p_filesz)
5025 warn (_("the .dynamic section is not contained"
5026 " within the dynamic segment\n"));
5027 else if (dynamic_addr > segment->p_offset)
5028 warn (_("the .dynamic section is not the first section"
5029 " in the dynamic segment.\n"));
5030 }
5031 break;
5032
5033 case PT_INTERP:
5034 if (fseek (file, archive_file_offset + (long) segment->p_offset,
5035 SEEK_SET))
5036 error (_("Unable to find program interpreter name\n"));
5037 else
5038 {
5039 char fmt [32];
5040 int ret = snprintf (fmt, sizeof (fmt), "%%%ds", PATH_MAX - 1);
5041
5042 if (ret >= (int) sizeof (fmt) || ret < 0)
5043 error (_("Internal error: failed to create format string to display program interpreter\n"));
5044
5045 program_interpreter[0] = 0;
5046 if (fscanf (file, fmt, program_interpreter) <= 0)
5047 error (_("Unable to read program interpreter name\n"));
5048
5049 if (do_segments)
5050 printf (_(" [Requesting program interpreter: %s]\n"),
5051 program_interpreter);
5052 }
5053 break;
5054 }
5055 }
5056
5057 if (do_segments && section_headers != NULL && string_table != NULL)
5058 {
5059 printf (_("\n Section to Segment mapping:\n"));
5060 printf (_(" Segment Sections...\n"));
5061
5062 for (i = 0; i < elf_header.e_phnum; i++)
5063 {
5064 unsigned int j;
5065 Elf_Internal_Shdr * section;
5066
5067 segment = program_headers + i;
5068 section = section_headers + 1;
5069
5070 printf (" %2.2d ", i);
5071
5072 for (j = 1; j < elf_header.e_shnum; j++, section++)
5073 {
5074 if (!ELF_TBSS_SPECIAL (section, segment)
5075 && ELF_SECTION_IN_SEGMENT_STRICT (section, segment))
5076 printf ("%s ", printable_section_name (section));
5077 }
5078
5079 putc ('\n',stdout);
5080 }
5081 }
5082
5083 return 1;
5084 }
5085
5086
5087 /* Find the file offset corresponding to VMA by using the program headers. */
5088
5089 static long
5090 offset_from_vma (FILE * file, bfd_vma vma, bfd_size_type size)
5091 {
5092 Elf_Internal_Phdr * seg;
5093
5094 if (! get_program_headers (file))
5095 {
5096 warn (_("Cannot interpret virtual addresses without program headers.\n"));
5097 return (long) vma;
5098 }
5099
5100 for (seg = program_headers;
5101 seg < program_headers + elf_header.e_phnum;
5102 ++seg)
5103 {
5104 if (seg->p_type != PT_LOAD)
5105 continue;
5106
5107 if (vma >= (seg->p_vaddr & -seg->p_align)
5108 && vma + size <= seg->p_vaddr + seg->p_filesz)
5109 return vma - seg->p_vaddr + seg->p_offset;
5110 }
5111
5112 warn (_("Virtual address 0x%lx not located in any PT_LOAD segment.\n"),
5113 (unsigned long) vma);
5114 return (long) vma;
5115 }
5116
5117
5118 /* Allocate memory and load the sections headers into the global pointer
5119 SECTION_HEADERS. If PROBE is true, this is just a probe and we do not
5120 generate any error messages if the load fails. */
5121
5122 static bfd_boolean
5123 get_32bit_section_headers (FILE * file, bfd_boolean probe)
5124 {
5125 Elf32_External_Shdr * shdrs;
5126 Elf_Internal_Shdr * internal;
5127 unsigned int i;
5128 unsigned int size = elf_header.e_shentsize;
5129 unsigned int num = probe ? 1 : elf_header.e_shnum;
5130
5131 /* PR binutils/17531: Cope with unexpected section header sizes. */
5132 if (size == 0 || num == 0)
5133 return FALSE;
5134 if (size < sizeof * shdrs)
5135 {
5136 if (! probe)
5137 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5138 return FALSE;
5139 }
5140 if (!probe && size > sizeof * shdrs)
5141 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5142
5143 shdrs = (Elf32_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
5144 size, num,
5145 probe ? NULL : _("section headers"));
5146 if (shdrs == NULL)
5147 return FALSE;
5148
5149 if (section_headers != NULL)
5150 free (section_headers);
5151 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
5152 sizeof (Elf_Internal_Shdr));
5153 if (section_headers == NULL)
5154 {
5155 if (!probe)
5156 error (_("Out of memory reading %u section headers\n"), num);
5157 return FALSE;
5158 }
5159
5160 for (i = 0, internal = section_headers;
5161 i < num;
5162 i++, internal++)
5163 {
5164 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5165 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5166 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5167 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5168 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5169 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5170 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5171 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5172 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5173 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5174 if (!probe && internal->sh_link > num)
5175 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5176 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5177 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5178 }
5179
5180 free (shdrs);
5181 return TRUE;
5182 }
5183
5184 static bfd_boolean
5185 get_64bit_section_headers (FILE * file, bfd_boolean probe)
5186 {
5187 Elf64_External_Shdr * shdrs;
5188 Elf_Internal_Shdr * internal;
5189 unsigned int i;
5190 unsigned int size = elf_header.e_shentsize;
5191 unsigned int num = probe ? 1 : elf_header.e_shnum;
5192
5193 /* PR binutils/17531: Cope with unexpected section header sizes. */
5194 if (size == 0 || num == 0)
5195 return FALSE;
5196 if (size < sizeof * shdrs)
5197 {
5198 if (! probe)
5199 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5200 return FALSE;
5201 }
5202 if (! probe && size > sizeof * shdrs)
5203 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5204
5205 shdrs = (Elf64_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
5206 size, num,
5207 probe ? NULL : _("section headers"));
5208 if (shdrs == NULL)
5209 return FALSE;
5210
5211 if (section_headers != NULL)
5212 free (section_headers);
5213 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
5214 sizeof (Elf_Internal_Shdr));
5215 if (section_headers == NULL)
5216 {
5217 if (! probe)
5218 error (_("Out of memory reading %u section headers\n"), num);
5219 return FALSE;
5220 }
5221
5222 for (i = 0, internal = section_headers;
5223 i < num;
5224 i++, internal++)
5225 {
5226 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5227 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5228 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5229 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5230 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5231 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5232 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5233 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5234 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5235 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5236 if (!probe && internal->sh_link > num)
5237 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5238 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5239 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5240 }
5241
5242 free (shdrs);
5243 return TRUE;
5244 }
5245
5246 static Elf_Internal_Sym *
5247 get_32bit_elf_symbols (FILE * file,
5248 Elf_Internal_Shdr * section,
5249 unsigned long * num_syms_return)
5250 {
5251 unsigned long number = 0;
5252 Elf32_External_Sym * esyms = NULL;
5253 Elf_External_Sym_Shndx * shndx = NULL;
5254 Elf_Internal_Sym * isyms = NULL;
5255 Elf_Internal_Sym * psym;
5256 unsigned int j;
5257
5258 if (section->sh_size == 0)
5259 {
5260 if (num_syms_return != NULL)
5261 * num_syms_return = 0;
5262 return NULL;
5263 }
5264
5265 /* Run some sanity checks first. */
5266 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5267 {
5268 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5269 printable_section_name (section), (unsigned long) section->sh_entsize);
5270 goto exit_point;
5271 }
5272
5273 if (section->sh_size > current_file_size)
5274 {
5275 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5276 printable_section_name (section), (unsigned long) section->sh_size);
5277 goto exit_point;
5278 }
5279
5280 number = section->sh_size / section->sh_entsize;
5281
5282 if (number * sizeof (Elf32_External_Sym) > section->sh_size + 1)
5283 {
5284 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5285 (unsigned long) section->sh_size,
5286 printable_section_name (section),
5287 (unsigned long) section->sh_entsize);
5288 goto exit_point;
5289 }
5290
5291 esyms = (Elf32_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
5292 section->sh_size, _("symbols"));
5293 if (esyms == NULL)
5294 goto exit_point;
5295
5296 {
5297 elf_section_list * entry;
5298
5299 shndx = NULL;
5300 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5301 if (entry->hdr->sh_link == (unsigned long) (section - section_headers))
5302 {
5303 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
5304 entry->hdr->sh_offset,
5305 1, entry->hdr->sh_size,
5306 _("symbol table section indicies"));
5307 if (shndx == NULL)
5308 goto exit_point;
5309 /* PR17531: file: heap-buffer-overflow */
5310 else if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5311 {
5312 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5313 printable_section_name (entry->hdr),
5314 (unsigned long) entry->hdr->sh_size,
5315 (unsigned long) section->sh_size);
5316 goto exit_point;
5317 }
5318 }
5319 }
5320
5321 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5322
5323 if (isyms == NULL)
5324 {
5325 error (_("Out of memory reading %lu symbols\n"),
5326 (unsigned long) number);
5327 goto exit_point;
5328 }
5329
5330 for (j = 0, psym = isyms; j < number; j++, psym++)
5331 {
5332 psym->st_name = BYTE_GET (esyms[j].st_name);
5333 psym->st_value = BYTE_GET (esyms[j].st_value);
5334 psym->st_size = BYTE_GET (esyms[j].st_size);
5335 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5336 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5337 psym->st_shndx
5338 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5339 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5340 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5341 psym->st_info = BYTE_GET (esyms[j].st_info);
5342 psym->st_other = BYTE_GET (esyms[j].st_other);
5343 }
5344
5345 exit_point:
5346 if (shndx != NULL)
5347 free (shndx);
5348 if (esyms != NULL)
5349 free (esyms);
5350
5351 if (num_syms_return != NULL)
5352 * num_syms_return = isyms == NULL ? 0 : number;
5353
5354 return isyms;
5355 }
5356
5357 static Elf_Internal_Sym *
5358 get_64bit_elf_symbols (FILE * file,
5359 Elf_Internal_Shdr * section,
5360 unsigned long * num_syms_return)
5361 {
5362 unsigned long number = 0;
5363 Elf64_External_Sym * esyms = NULL;
5364 Elf_External_Sym_Shndx * shndx = NULL;
5365 Elf_Internal_Sym * isyms = NULL;
5366 Elf_Internal_Sym * psym;
5367 unsigned int j;
5368
5369 if (section->sh_size == 0)
5370 {
5371 if (num_syms_return != NULL)
5372 * num_syms_return = 0;
5373 return NULL;
5374 }
5375
5376 /* Run some sanity checks first. */
5377 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5378 {
5379 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5380 printable_section_name (section),
5381 (unsigned long) section->sh_entsize);
5382 goto exit_point;
5383 }
5384
5385 if (section->sh_size > current_file_size)
5386 {
5387 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5388 printable_section_name (section),
5389 (unsigned long) section->sh_size);
5390 goto exit_point;
5391 }
5392
5393 number = section->sh_size / section->sh_entsize;
5394
5395 if (number * sizeof (Elf64_External_Sym) > section->sh_size + 1)
5396 {
5397 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5398 (unsigned long) section->sh_size,
5399 printable_section_name (section),
5400 (unsigned long) section->sh_entsize);
5401 goto exit_point;
5402 }
5403
5404 esyms = (Elf64_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
5405 section->sh_size, _("symbols"));
5406 if (!esyms)
5407 goto exit_point;
5408
5409 {
5410 elf_section_list * entry;
5411
5412 shndx = NULL;
5413 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5414 if (entry->hdr->sh_link == (unsigned long) (section - section_headers))
5415 {
5416 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
5417 entry->hdr->sh_offset,
5418 1, entry->hdr->sh_size,
5419 _("symbol table section indicies"));
5420 if (shndx == NULL)
5421 goto exit_point;
5422 /* PR17531: file: heap-buffer-overflow */
5423 else if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5424 {
5425 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5426 printable_section_name (entry->hdr),
5427 (unsigned long) entry->hdr->sh_size,
5428 (unsigned long) section->sh_size);
5429 goto exit_point;
5430 }
5431 }
5432 }
5433
5434 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5435
5436 if (isyms == NULL)
5437 {
5438 error (_("Out of memory reading %lu symbols\n"),
5439 (unsigned long) number);
5440 goto exit_point;
5441 }
5442
5443 for (j = 0, psym = isyms; j < number; j++, psym++)
5444 {
5445 psym->st_name = BYTE_GET (esyms[j].st_name);
5446 psym->st_info = BYTE_GET (esyms[j].st_info);
5447 psym->st_other = BYTE_GET (esyms[j].st_other);
5448 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5449
5450 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5451 psym->st_shndx
5452 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5453 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5454 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5455
5456 psym->st_value = BYTE_GET (esyms[j].st_value);
5457 psym->st_size = BYTE_GET (esyms[j].st_size);
5458 }
5459
5460 exit_point:
5461 if (shndx != NULL)
5462 free (shndx);
5463 if (esyms != NULL)
5464 free (esyms);
5465
5466 if (num_syms_return != NULL)
5467 * num_syms_return = isyms == NULL ? 0 : number;
5468
5469 return isyms;
5470 }
5471
5472 static const char *
5473 get_elf_section_flags (bfd_vma sh_flags)
5474 {
5475 static char buff[1024];
5476 char * p = buff;
5477 int field_size = is_32bit_elf ? 8 : 16;
5478 int sindex;
5479 int size = sizeof (buff) - (field_size + 4 + 1);
5480 bfd_vma os_flags = 0;
5481 bfd_vma proc_flags = 0;
5482 bfd_vma unknown_flags = 0;
5483 static const struct
5484 {
5485 const char * str;
5486 int len;
5487 }
5488 flags [] =
5489 {
5490 /* 0 */ { STRING_COMMA_LEN ("WRITE") },
5491 /* 1 */ { STRING_COMMA_LEN ("ALLOC") },
5492 /* 2 */ { STRING_COMMA_LEN ("EXEC") },
5493 /* 3 */ { STRING_COMMA_LEN ("MERGE") },
5494 /* 4 */ { STRING_COMMA_LEN ("STRINGS") },
5495 /* 5 */ { STRING_COMMA_LEN ("INFO LINK") },
5496 /* 6 */ { STRING_COMMA_LEN ("LINK ORDER") },
5497 /* 7 */ { STRING_COMMA_LEN ("OS NONCONF") },
5498 /* 8 */ { STRING_COMMA_LEN ("GROUP") },
5499 /* 9 */ { STRING_COMMA_LEN ("TLS") },
5500 /* IA-64 specific. */
5501 /* 10 */ { STRING_COMMA_LEN ("SHORT") },
5502 /* 11 */ { STRING_COMMA_LEN ("NORECOV") },
5503 /* IA-64 OpenVMS specific. */
5504 /* 12 */ { STRING_COMMA_LEN ("VMS_GLOBAL") },
5505 /* 13 */ { STRING_COMMA_LEN ("VMS_OVERLAID") },
5506 /* 14 */ { STRING_COMMA_LEN ("VMS_SHARED") },
5507 /* 15 */ { STRING_COMMA_LEN ("VMS_VECTOR") },
5508 /* 16 */ { STRING_COMMA_LEN ("VMS_ALLOC_64BIT") },
5509 /* 17 */ { STRING_COMMA_LEN ("VMS_PROTECTED") },
5510 /* Generic. */
5511 /* 18 */ { STRING_COMMA_LEN ("EXCLUDE") },
5512 /* SPARC specific. */
5513 /* 19 */ { STRING_COMMA_LEN ("ORDERED") },
5514 /* 20 */ { STRING_COMMA_LEN ("COMPRESSED") },
5515 /* ARM specific. */
5516 /* 21 */ { STRING_COMMA_LEN ("ENTRYSECT") },
5517 /* 22 */ { STRING_COMMA_LEN ("ARM_PURECODE") },
5518 /* 23 */ { STRING_COMMA_LEN ("COMDEF") }
5519 };
5520
5521 if (do_section_details)
5522 {
5523 sprintf (buff, "[%*.*lx]: ",
5524 field_size, field_size, (unsigned long) sh_flags);
5525 p += field_size + 4;
5526 }
5527
5528 while (sh_flags)
5529 {
5530 bfd_vma flag;
5531
5532 flag = sh_flags & - sh_flags;
5533 sh_flags &= ~ flag;
5534
5535 if (do_section_details)
5536 {
5537 switch (flag)
5538 {
5539 case SHF_WRITE: sindex = 0; break;
5540 case SHF_ALLOC: sindex = 1; break;
5541 case SHF_EXECINSTR: sindex = 2; break;
5542 case SHF_MERGE: sindex = 3; break;
5543 case SHF_STRINGS: sindex = 4; break;
5544 case SHF_INFO_LINK: sindex = 5; break;
5545 case SHF_LINK_ORDER: sindex = 6; break;
5546 case SHF_OS_NONCONFORMING: sindex = 7; break;
5547 case SHF_GROUP: sindex = 8; break;
5548 case SHF_TLS: sindex = 9; break;
5549 case SHF_EXCLUDE: sindex = 18; break;
5550 case SHF_COMPRESSED: sindex = 20; break;
5551
5552 default:
5553 sindex = -1;
5554 switch (elf_header.e_machine)
5555 {
5556 case EM_IA_64:
5557 if (flag == SHF_IA_64_SHORT)
5558 sindex = 10;
5559 else if (flag == SHF_IA_64_NORECOV)
5560 sindex = 11;
5561 #ifdef BFD64
5562 else if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
5563 switch (flag)
5564 {
5565 case SHF_IA_64_VMS_GLOBAL: sindex = 12; break;
5566 case SHF_IA_64_VMS_OVERLAID: sindex = 13; break;
5567 case SHF_IA_64_VMS_SHARED: sindex = 14; break;
5568 case SHF_IA_64_VMS_VECTOR: sindex = 15; break;
5569 case SHF_IA_64_VMS_ALLOC_64BIT: sindex = 16; break;
5570 case SHF_IA_64_VMS_PROTECTED: sindex = 17; break;
5571 default: break;
5572 }
5573 #endif
5574 break;
5575
5576 case EM_386:
5577 case EM_IAMCU:
5578 case EM_X86_64:
5579 case EM_L1OM:
5580 case EM_K1OM:
5581 case EM_OLD_SPARCV9:
5582 case EM_SPARC32PLUS:
5583 case EM_SPARCV9:
5584 case EM_SPARC:
5585 if (flag == SHF_ORDERED)
5586 sindex = 19;
5587 break;
5588
5589 case EM_ARM:
5590 switch (flag)
5591 {
5592 case SHF_ENTRYSECT: sindex = 21; break;
5593 case SHF_ARM_PURECODE: sindex = 22; break;
5594 case SHF_COMDEF: sindex = 23; break;
5595 default: break;
5596 }
5597 break;
5598
5599 default:
5600 break;
5601 }
5602 }
5603
5604 if (sindex != -1)
5605 {
5606 if (p != buff + field_size + 4)
5607 {
5608 if (size < (10 + 2))
5609 {
5610 warn (_("Internal error: not enough buffer room for section flag info"));
5611 return _("<unknown>");
5612 }
5613 size -= 2;
5614 *p++ = ',';
5615 *p++ = ' ';
5616 }
5617
5618 size -= flags [sindex].len;
5619 p = stpcpy (p, flags [sindex].str);
5620 }
5621 else if (flag & SHF_MASKOS)
5622 os_flags |= flag;
5623 else if (flag & SHF_MASKPROC)
5624 proc_flags |= flag;
5625 else
5626 unknown_flags |= flag;
5627 }
5628 else
5629 {
5630 switch (flag)
5631 {
5632 case SHF_WRITE: *p = 'W'; break;
5633 case SHF_ALLOC: *p = 'A'; break;
5634 case SHF_EXECINSTR: *p = 'X'; break;
5635 case SHF_MERGE: *p = 'M'; break;
5636 case SHF_STRINGS: *p = 'S'; break;
5637 case SHF_INFO_LINK: *p = 'I'; break;
5638 case SHF_LINK_ORDER: *p = 'L'; break;
5639 case SHF_OS_NONCONFORMING: *p = 'O'; break;
5640 case SHF_GROUP: *p = 'G'; break;
5641 case SHF_TLS: *p = 'T'; break;
5642 case SHF_EXCLUDE: *p = 'E'; break;
5643 case SHF_COMPRESSED: *p = 'C'; break;
5644
5645 default:
5646 if ((elf_header.e_machine == EM_X86_64
5647 || elf_header.e_machine == EM_L1OM
5648 || elf_header.e_machine == EM_K1OM)
5649 && flag == SHF_X86_64_LARGE)
5650 *p = 'l';
5651 else if (elf_header.e_machine == EM_ARM
5652 && flag == SHF_ARM_PURECODE)
5653 *p = 'y';
5654 else if (flag & SHF_MASKOS)
5655 {
5656 *p = 'o';
5657 sh_flags &= ~ SHF_MASKOS;
5658 }
5659 else if (flag & SHF_MASKPROC)
5660 {
5661 *p = 'p';
5662 sh_flags &= ~ SHF_MASKPROC;
5663 }
5664 else
5665 *p = 'x';
5666 break;
5667 }
5668 p++;
5669 }
5670 }
5671
5672 if (do_section_details)
5673 {
5674 if (os_flags)
5675 {
5676 size -= 5 + field_size;
5677 if (p != buff + field_size + 4)
5678 {
5679 if (size < (2 + 1))
5680 {
5681 warn (_("Internal error: not enough buffer room for section flag info"));
5682 return _("<unknown>");
5683 }
5684 size -= 2;
5685 *p++ = ',';
5686 *p++ = ' ';
5687 }
5688 sprintf (p, "OS (%*.*lx)", field_size, field_size,
5689 (unsigned long) os_flags);
5690 p += 5 + field_size;
5691 }
5692 if (proc_flags)
5693 {
5694 size -= 7 + field_size;
5695 if (p != buff + field_size + 4)
5696 {
5697 if (size < (2 + 1))
5698 {
5699 warn (_("Internal error: not enough buffer room for section flag info"));
5700 return _("<unknown>");
5701 }
5702 size -= 2;
5703 *p++ = ',';
5704 *p++ = ' ';
5705 }
5706 sprintf (p, "PROC (%*.*lx)", field_size, field_size,
5707 (unsigned long) proc_flags);
5708 p += 7 + field_size;
5709 }
5710 if (unknown_flags)
5711 {
5712 size -= 10 + field_size;
5713 if (p != buff + field_size + 4)
5714 {
5715 if (size < (2 + 1))
5716 {
5717 warn (_("Internal error: not enough buffer room for section flag info"));
5718 return _("<unknown>");
5719 }
5720 size -= 2;
5721 *p++ = ',';
5722 *p++ = ' ';
5723 }
5724 sprintf (p, _("UNKNOWN (%*.*lx)"), field_size, field_size,
5725 (unsigned long) unknown_flags);
5726 p += 10 + field_size;
5727 }
5728 }
5729
5730 *p = '\0';
5731 return buff;
5732 }
5733
5734 static unsigned int
5735 get_compression_header (Elf_Internal_Chdr *chdr, unsigned char *buf, bfd_size_type size)
5736 {
5737 if (is_32bit_elf)
5738 {
5739 Elf32_External_Chdr *echdr = (Elf32_External_Chdr *) buf;
5740
5741 if (size < sizeof (* echdr))
5742 {
5743 error (_("Compressed section is too small even for a compression header\n"));
5744 return 0;
5745 }
5746
5747 chdr->ch_type = BYTE_GET (echdr->ch_type);
5748 chdr->ch_size = BYTE_GET (echdr->ch_size);
5749 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
5750 return sizeof (*echdr);
5751 }
5752 else
5753 {
5754 Elf64_External_Chdr *echdr = (Elf64_External_Chdr *) buf;
5755
5756 if (size < sizeof (* echdr))
5757 {
5758 error (_("Compressed section is too small even for a compression header\n"));
5759 return 0;
5760 }
5761
5762 chdr->ch_type = BYTE_GET (echdr->ch_type);
5763 chdr->ch_size = BYTE_GET (echdr->ch_size);
5764 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
5765 return sizeof (*echdr);
5766 }
5767 }
5768
5769 static int
5770 process_section_headers (FILE * file)
5771 {
5772 Elf_Internal_Shdr * section;
5773 unsigned int i;
5774
5775 section_headers = NULL;
5776
5777 if (elf_header.e_shnum == 0)
5778 {
5779 /* PR binutils/12467. */
5780 if (elf_header.e_shoff != 0)
5781 warn (_("possibly corrupt ELF file header - it has a non-zero"
5782 " section header offset, but no section headers\n"));
5783 else if (do_sections)
5784 printf (_("\nThere are no sections in this file.\n"));
5785
5786 return 1;
5787 }
5788
5789 if (do_sections && !do_header)
5790 printf (_("There are %d section headers, starting at offset 0x%lx:\n"),
5791 elf_header.e_shnum, (unsigned long) elf_header.e_shoff);
5792
5793 if (is_32bit_elf)
5794 {
5795 if (! get_32bit_section_headers (file, FALSE))
5796 return 0;
5797 }
5798 else if (! get_64bit_section_headers (file, FALSE))
5799 return 0;
5800
5801 /* Read in the string table, so that we have names to display. */
5802 if (elf_header.e_shstrndx != SHN_UNDEF
5803 && elf_header.e_shstrndx < elf_header.e_shnum)
5804 {
5805 section = section_headers + elf_header.e_shstrndx;
5806
5807 if (section->sh_size != 0)
5808 {
5809 string_table = (char *) get_data (NULL, file, section->sh_offset,
5810 1, section->sh_size,
5811 _("string table"));
5812
5813 string_table_length = string_table != NULL ? section->sh_size : 0;
5814 }
5815 }
5816
5817 /* Scan the sections for the dynamic symbol table
5818 and dynamic string table and debug sections. */
5819 dynamic_symbols = NULL;
5820 dynamic_strings = NULL;
5821 dynamic_syminfo = NULL;
5822 symtab_shndx_list = NULL;
5823
5824 eh_addr_size = is_32bit_elf ? 4 : 8;
5825 switch (elf_header.e_machine)
5826 {
5827 case EM_MIPS:
5828 case EM_MIPS_RS3_LE:
5829 /* The 64-bit MIPS EABI uses a combination of 32-bit ELF and 64-bit
5830 FDE addresses. However, the ABI also has a semi-official ILP32
5831 variant for which the normal FDE address size rules apply.
5832
5833 GCC 4.0 marks EABI64 objects with a dummy .gcc_compiled_longXX
5834 section, where XX is the size of longs in bits. Unfortunately,
5835 earlier compilers provided no way of distinguishing ILP32 objects
5836 from LP64 objects, so if there's any doubt, we should assume that
5837 the official LP64 form is being used. */
5838 if ((elf_header.e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64
5839 && find_section (".gcc_compiled_long32") == NULL)
5840 eh_addr_size = 8;
5841 break;
5842
5843 case EM_H8_300:
5844 case EM_H8_300H:
5845 switch (elf_header.e_flags & EF_H8_MACH)
5846 {
5847 case E_H8_MACH_H8300:
5848 case E_H8_MACH_H8300HN:
5849 case E_H8_MACH_H8300SN:
5850 case E_H8_MACH_H8300SXN:
5851 eh_addr_size = 2;
5852 break;
5853 case E_H8_MACH_H8300H:
5854 case E_H8_MACH_H8300S:
5855 case E_H8_MACH_H8300SX:
5856 eh_addr_size = 4;
5857 break;
5858 }
5859 break;
5860
5861 case EM_M32C_OLD:
5862 case EM_M32C:
5863 switch (elf_header.e_flags & EF_M32C_CPU_MASK)
5864 {
5865 case EF_M32C_CPU_M16C:
5866 eh_addr_size = 2;
5867 break;
5868 }
5869 break;
5870 }
5871
5872 #define CHECK_ENTSIZE_VALUES(section, i, size32, size64) \
5873 do \
5874 { \
5875 bfd_size_type expected_entsize = is_32bit_elf ? size32 : size64; \
5876 if (section->sh_entsize != expected_entsize) \
5877 { \
5878 char buf[40]; \
5879 sprintf_vma (buf, section->sh_entsize); \
5880 /* Note: coded this way so that there is a single string for \
5881 translation. */ \
5882 error (_("Section %d has invalid sh_entsize of %s\n"), i, buf); \
5883 error (_("(Using the expected size of %u for the rest of this dump)\n"), \
5884 (unsigned) expected_entsize); \
5885 section->sh_entsize = expected_entsize; \
5886 } \
5887 } \
5888 while (0)
5889
5890 #define CHECK_ENTSIZE(section, i, type) \
5891 CHECK_ENTSIZE_VALUES (section, i, sizeof (Elf32_External_##type), \
5892 sizeof (Elf64_External_##type))
5893
5894 for (i = 0, section = section_headers;
5895 i < elf_header.e_shnum;
5896 i++, section++)
5897 {
5898 char * name = SECTION_NAME (section);
5899
5900 if (section->sh_type == SHT_DYNSYM)
5901 {
5902 if (dynamic_symbols != NULL)
5903 {
5904 error (_("File contains multiple dynamic symbol tables\n"));
5905 continue;
5906 }
5907
5908 CHECK_ENTSIZE (section, i, Sym);
5909 dynamic_symbols = GET_ELF_SYMBOLS (file, section, & num_dynamic_syms);
5910 }
5911 else if (section->sh_type == SHT_STRTAB
5912 && streq (name, ".dynstr"))
5913 {
5914 if (dynamic_strings != NULL)
5915 {
5916 error (_("File contains multiple dynamic string tables\n"));
5917 continue;
5918 }
5919
5920 dynamic_strings = (char *) get_data (NULL, file, section->sh_offset,
5921 1, section->sh_size,
5922 _("dynamic strings"));
5923 dynamic_strings_length = dynamic_strings == NULL ? 0 : section->sh_size;
5924 }
5925 else if (section->sh_type == SHT_SYMTAB_SHNDX)
5926 {
5927 elf_section_list * entry = xmalloc (sizeof * entry);
5928 entry->hdr = section;
5929 entry->next = symtab_shndx_list;
5930 symtab_shndx_list = entry;
5931 }
5932 else if (section->sh_type == SHT_SYMTAB)
5933 CHECK_ENTSIZE (section, i, Sym);
5934 else if (section->sh_type == SHT_GROUP)
5935 CHECK_ENTSIZE_VALUES (section, i, GRP_ENTRY_SIZE, GRP_ENTRY_SIZE);
5936 else if (section->sh_type == SHT_REL)
5937 CHECK_ENTSIZE (section, i, Rel);
5938 else if (section->sh_type == SHT_RELA)
5939 CHECK_ENTSIZE (section, i, Rela);
5940 else if ((do_debugging || do_debug_info || do_debug_abbrevs
5941 || do_debug_lines || do_debug_pubnames || do_debug_pubtypes
5942 || do_debug_aranges || do_debug_frames || do_debug_macinfo
5943 || do_debug_str || do_debug_loc || do_debug_ranges
5944 || do_debug_addr || do_debug_cu_index)
5945 && (const_strneq (name, ".debug_")
5946 || const_strneq (name, ".zdebug_")))
5947 {
5948 if (name[1] == 'z')
5949 name += sizeof (".zdebug_") - 1;
5950 else
5951 name += sizeof (".debug_") - 1;
5952
5953 if (do_debugging
5954 || (do_debug_info && const_strneq (name, "info"))
5955 || (do_debug_info && const_strneq (name, "types"))
5956 || (do_debug_abbrevs && const_strneq (name, "abbrev"))
5957 || (do_debug_lines && strcmp (name, "line") == 0)
5958 || (do_debug_lines && const_strneq (name, "line."))
5959 || (do_debug_pubnames && const_strneq (name, "pubnames"))
5960 || (do_debug_pubtypes && const_strneq (name, "pubtypes"))
5961 || (do_debug_pubnames && const_strneq (name, "gnu_pubnames"))
5962 || (do_debug_pubtypes && const_strneq (name, "gnu_pubtypes"))
5963 || (do_debug_aranges && const_strneq (name, "aranges"))
5964 || (do_debug_ranges && const_strneq (name, "ranges"))
5965 || (do_debug_ranges && const_strneq (name, "rnglists"))
5966 || (do_debug_frames && const_strneq (name, "frame"))
5967 || (do_debug_macinfo && const_strneq (name, "macinfo"))
5968 || (do_debug_macinfo && const_strneq (name, "macro"))
5969 || (do_debug_str && const_strneq (name, "str"))
5970 || (do_debug_loc && const_strneq (name, "loc"))
5971 || (do_debug_loc && const_strneq (name, "loclists"))
5972 || (do_debug_addr && const_strneq (name, "addr"))
5973 || (do_debug_cu_index && const_strneq (name, "cu_index"))
5974 || (do_debug_cu_index && const_strneq (name, "tu_index"))
5975 )
5976 request_dump_bynumber (i, DEBUG_DUMP);
5977 }
5978 /* Linkonce section to be combined with .debug_info at link time. */
5979 else if ((do_debugging || do_debug_info)
5980 && const_strneq (name, ".gnu.linkonce.wi."))
5981 request_dump_bynumber (i, DEBUG_DUMP);
5982 else if (do_debug_frames && streq (name, ".eh_frame"))
5983 request_dump_bynumber (i, DEBUG_DUMP);
5984 else if (do_gdb_index && streq (name, ".gdb_index"))
5985 request_dump_bynumber (i, DEBUG_DUMP);
5986 /* Trace sections for Itanium VMS. */
5987 else if ((do_debugging || do_trace_info || do_trace_abbrevs
5988 || do_trace_aranges)
5989 && const_strneq (name, ".trace_"))
5990 {
5991 name += sizeof (".trace_") - 1;
5992
5993 if (do_debugging
5994 || (do_trace_info && streq (name, "info"))
5995 || (do_trace_abbrevs && streq (name, "abbrev"))
5996 || (do_trace_aranges && streq (name, "aranges"))
5997 )
5998 request_dump_bynumber (i, DEBUG_DUMP);
5999 }
6000 }
6001
6002 if (! do_sections)
6003 return 1;
6004
6005 if (elf_header.e_shnum > 1)
6006 printf (_("\nSection Headers:\n"));
6007 else
6008 printf (_("\nSection Header:\n"));
6009
6010 if (is_32bit_elf)
6011 {
6012 if (do_section_details)
6013 {
6014 printf (_(" [Nr] Name\n"));
6015 printf (_(" Type Addr Off Size ES Lk Inf Al\n"));
6016 }
6017 else
6018 printf
6019 (_(" [Nr] Name Type Addr Off Size ES Flg Lk Inf Al\n"));
6020 }
6021 else if (do_wide)
6022 {
6023 if (do_section_details)
6024 {
6025 printf (_(" [Nr] Name\n"));
6026 printf (_(" Type Address Off Size ES Lk Inf Al\n"));
6027 }
6028 else
6029 printf
6030 (_(" [Nr] Name Type Address Off Size ES Flg Lk Inf Al\n"));
6031 }
6032 else
6033 {
6034 if (do_section_details)
6035 {
6036 printf (_(" [Nr] Name\n"));
6037 printf (_(" Type Address Offset Link\n"));
6038 printf (_(" Size EntSize Info Align\n"));
6039 }
6040 else
6041 {
6042 printf (_(" [Nr] Name Type Address Offset\n"));
6043 printf (_(" Size EntSize Flags Link Info Align\n"));
6044 }
6045 }
6046
6047 if (do_section_details)
6048 printf (_(" Flags\n"));
6049
6050 for (i = 0, section = section_headers;
6051 i < elf_header.e_shnum;
6052 i++, section++)
6053 {
6054 /* Run some sanity checks on the section header. */
6055
6056 /* Check the sh_link field. */
6057 switch (section->sh_type)
6058 {
6059 case SHT_SYMTAB_SHNDX:
6060 case SHT_GROUP:
6061 case SHT_HASH:
6062 case SHT_GNU_HASH:
6063 case SHT_GNU_versym:
6064 case SHT_REL:
6065 case SHT_RELA:
6066 if (section->sh_link < 1
6067 || section->sh_link >= elf_header.e_shnum
6068 || (section_headers[section->sh_link].sh_type != SHT_SYMTAB
6069 && section_headers[section->sh_link].sh_type != SHT_DYNSYM))
6070 warn (_("[%2u]: Link field (%u) should index a symtab section.\n"),
6071 i, section->sh_link);
6072 break;
6073
6074 case SHT_DYNAMIC:
6075 case SHT_SYMTAB:
6076 case SHT_DYNSYM:
6077 case SHT_GNU_verneed:
6078 case SHT_GNU_verdef:
6079 case SHT_GNU_LIBLIST:
6080 if (section->sh_link < 1
6081 || section->sh_link >= elf_header.e_shnum
6082 || section_headers[section->sh_link].sh_type != SHT_STRTAB)
6083 warn (_("[%2u]: Link field (%u) should index a string section.\n"),
6084 i, section->sh_link);
6085 break;
6086
6087 case SHT_INIT_ARRAY:
6088 case SHT_FINI_ARRAY:
6089 case SHT_PREINIT_ARRAY:
6090 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
6091 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
6092 i, section->sh_link);
6093 break;
6094
6095 default:
6096 /* FIXME: Add support for target specific section types. */
6097 #if 0 /* Currently we do not check other section types as there are too
6098 many special cases. Stab sections for example have a type
6099 of SHT_PROGBITS but an sh_link field that links to the .stabstr
6100 section. */
6101 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
6102 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
6103 i, section->sh_link);
6104 #endif
6105 break;
6106 }
6107
6108 /* Check the sh_info field. */
6109 switch (section->sh_type)
6110 {
6111 case SHT_REL:
6112 case SHT_RELA:
6113 if (section->sh_info < 1
6114 || section->sh_info >= elf_header.e_shnum
6115 || (section_headers[section->sh_info].sh_type != SHT_PROGBITS
6116 && section_headers[section->sh_info].sh_type != SHT_NOBITS
6117 && section_headers[section->sh_info].sh_type != SHT_NOTE
6118 && section_headers[section->sh_info].sh_type != SHT_INIT_ARRAY
6119 /* FIXME: Are other section types valid ? */
6120 && section_headers[section->sh_info].sh_type < SHT_LOOS))
6121 {
6122 if (section->sh_info == 0
6123 && (streq (SECTION_NAME (section), ".rel.dyn")
6124 || streq (SECTION_NAME (section), ".rela.dyn")))
6125 /* The .rel.dyn and .rela.dyn sections have an sh_info field
6126 of zero. The relocations in these sections may apply
6127 to many different sections. */
6128 ;
6129 else
6130 warn (_("[%2u]: Info field (%u) should index a relocatable section.\n"),
6131 i, section->sh_info);
6132 }
6133 break;
6134
6135 case SHT_DYNAMIC:
6136 case SHT_HASH:
6137 case SHT_SYMTAB_SHNDX:
6138 case SHT_INIT_ARRAY:
6139 case SHT_FINI_ARRAY:
6140 case SHT_PREINIT_ARRAY:
6141 if (section->sh_info != 0)
6142 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6143 i, section->sh_info);
6144 break;
6145
6146 case SHT_GROUP:
6147 case SHT_SYMTAB:
6148 case SHT_DYNSYM:
6149 /* A symbol index - we assume that it is valid. */
6150 break;
6151
6152 default:
6153 /* FIXME: Add support for target specific section types. */
6154 if (section->sh_type == SHT_NOBITS)
6155 /* NOBITS section headers with non-zero sh_info fields can be
6156 created when a binary is stripped of everything but its debug
6157 information. The stripped sections have their headers
6158 preserved but their types set to SHT_NOBITS. So do not check
6159 this type of section. */
6160 ;
6161 else if (section->sh_flags & SHF_INFO_LINK)
6162 {
6163 if (section->sh_info < 1 || section->sh_info >= elf_header.e_shnum)
6164 warn (_("[%2u]: Expected link to another section in info field"), i);
6165 }
6166 else if (section->sh_type < SHT_LOOS && section->sh_info != 0)
6167 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6168 i, section->sh_info);
6169 break;
6170 }
6171
6172 printf (" [%2u] ", i);
6173 if (do_section_details)
6174 printf ("%s\n ", printable_section_name (section));
6175 else
6176 print_symbol (-17, SECTION_NAME (section));
6177
6178 printf (do_wide ? " %-15s " : " %-15.15s ",
6179 get_section_type_name (section->sh_type));
6180
6181 if (is_32bit_elf)
6182 {
6183 const char * link_too_big = NULL;
6184
6185 print_vma (section->sh_addr, LONG_HEX);
6186
6187 printf ( " %6.6lx %6.6lx %2.2lx",
6188 (unsigned long) section->sh_offset,
6189 (unsigned long) section->sh_size,
6190 (unsigned long) section->sh_entsize);
6191
6192 if (do_section_details)
6193 fputs (" ", stdout);
6194 else
6195 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6196
6197 if (section->sh_link >= elf_header.e_shnum)
6198 {
6199 link_too_big = "";
6200 /* The sh_link value is out of range. Normally this indicates
6201 an error but it can have special values in Solaris binaries. */
6202 switch (elf_header.e_machine)
6203 {
6204 case EM_386:
6205 case EM_IAMCU:
6206 case EM_X86_64:
6207 case EM_L1OM:
6208 case EM_K1OM:
6209 case EM_OLD_SPARCV9:
6210 case EM_SPARC32PLUS:
6211 case EM_SPARCV9:
6212 case EM_SPARC:
6213 if (section->sh_link == (SHN_BEFORE & 0xffff))
6214 link_too_big = "BEFORE";
6215 else if (section->sh_link == (SHN_AFTER & 0xffff))
6216 link_too_big = "AFTER";
6217 break;
6218 default:
6219 break;
6220 }
6221 }
6222
6223 if (do_section_details)
6224 {
6225 if (link_too_big != NULL && * link_too_big)
6226 printf ("<%s> ", link_too_big);
6227 else
6228 printf ("%2u ", section->sh_link);
6229 printf ("%3u %2lu\n", section->sh_info,
6230 (unsigned long) section->sh_addralign);
6231 }
6232 else
6233 printf ("%2u %3u %2lu\n",
6234 section->sh_link,
6235 section->sh_info,
6236 (unsigned long) section->sh_addralign);
6237
6238 if (link_too_big && ! * link_too_big)
6239 warn (_("section %u: sh_link value of %u is larger than the number of sections\n"),
6240 i, section->sh_link);
6241 }
6242 else if (do_wide)
6243 {
6244 print_vma (section->sh_addr, LONG_HEX);
6245
6246 if ((long) section->sh_offset == section->sh_offset)
6247 printf (" %6.6lx", (unsigned long) section->sh_offset);
6248 else
6249 {
6250 putchar (' ');
6251 print_vma (section->sh_offset, LONG_HEX);
6252 }
6253
6254 if ((unsigned long) section->sh_size == section->sh_size)
6255 printf (" %6.6lx", (unsigned long) section->sh_size);
6256 else
6257 {
6258 putchar (' ');
6259 print_vma (section->sh_size, LONG_HEX);
6260 }
6261
6262 if ((unsigned long) section->sh_entsize == section->sh_entsize)
6263 printf (" %2.2lx", (unsigned long) section->sh_entsize);
6264 else
6265 {
6266 putchar (' ');
6267 print_vma (section->sh_entsize, LONG_HEX);
6268 }
6269
6270 if (do_section_details)
6271 fputs (" ", stdout);
6272 else
6273 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6274
6275 printf ("%2u %3u ", section->sh_link, section->sh_info);
6276
6277 if ((unsigned long) section->sh_addralign == section->sh_addralign)
6278 printf ("%2lu\n", (unsigned long) section->sh_addralign);
6279 else
6280 {
6281 print_vma (section->sh_addralign, DEC);
6282 putchar ('\n');
6283 }
6284 }
6285 else if (do_section_details)
6286 {
6287 printf (" %-15.15s ",
6288 get_section_type_name (section->sh_type));
6289 print_vma (section->sh_addr, LONG_HEX);
6290 if ((long) section->sh_offset == section->sh_offset)
6291 printf (" %16.16lx", (unsigned long) section->sh_offset);
6292 else
6293 {
6294 printf (" ");
6295 print_vma (section->sh_offset, LONG_HEX);
6296 }
6297 printf (" %u\n ", section->sh_link);
6298 print_vma (section->sh_size, LONG_HEX);
6299 putchar (' ');
6300 print_vma (section->sh_entsize, LONG_HEX);
6301
6302 printf (" %-16u %lu\n",
6303 section->sh_info,
6304 (unsigned long) section->sh_addralign);
6305 }
6306 else
6307 {
6308 putchar (' ');
6309 print_vma (section->sh_addr, LONG_HEX);
6310 if ((long) section->sh_offset == section->sh_offset)
6311 printf (" %8.8lx", (unsigned long) section->sh_offset);
6312 else
6313 {
6314 printf (" ");
6315 print_vma (section->sh_offset, LONG_HEX);
6316 }
6317 printf ("\n ");
6318 print_vma (section->sh_size, LONG_HEX);
6319 printf (" ");
6320 print_vma (section->sh_entsize, LONG_HEX);
6321
6322 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6323
6324 printf (" %2u %3u %lu\n",
6325 section->sh_link,
6326 section->sh_info,
6327 (unsigned long) section->sh_addralign);
6328 }
6329
6330 if (do_section_details)
6331 {
6332 printf (" %s\n", get_elf_section_flags (section->sh_flags));
6333 if ((section->sh_flags & SHF_COMPRESSED) != 0)
6334 {
6335 /* Minimum section size is 12 bytes for 32-bit compression
6336 header + 12 bytes for compressed data header. */
6337 unsigned char buf[24];
6338
6339 assert (sizeof (buf) >= sizeof (Elf64_External_Chdr));
6340 if (get_data (&buf, (FILE *) file, section->sh_offset, 1,
6341 sizeof (buf), _("compression header")))
6342 {
6343 Elf_Internal_Chdr chdr;
6344
6345 (void) get_compression_header (&chdr, buf, sizeof (buf));
6346
6347 if (chdr.ch_type == ELFCOMPRESS_ZLIB)
6348 printf (" ZLIB, ");
6349 else
6350 printf (_(" [<unknown>: 0x%x], "),
6351 chdr.ch_type);
6352 print_vma (chdr.ch_size, LONG_HEX);
6353 printf (", %lu\n", (unsigned long) chdr.ch_addralign);
6354 }
6355 }
6356 }
6357 }
6358
6359 if (!do_section_details)
6360 {
6361 /* The ordering of the letters shown here matches the ordering of the
6362 corresponding SHF_xxx values, and hence the order in which these
6363 letters will be displayed to the user. */
6364 printf (_("Key to Flags:\n\
6365 W (write), A (alloc), X (execute), M (merge), S (strings), I (info),\n\
6366 L (link order), O (extra OS processing required), G (group), T (TLS),\n\
6367 C (compressed), x (unknown), o (OS specific), E (exclude),\n "));
6368 if (elf_header.e_machine == EM_X86_64
6369 || elf_header.e_machine == EM_L1OM
6370 || elf_header.e_machine == EM_K1OM)
6371 printf (_("l (large), "));
6372 else if (elf_header.e_machine == EM_ARM)
6373 printf (_("y (purecode), "));
6374 printf ("p (processor specific)\n");
6375 }
6376
6377 return 1;
6378 }
6379
6380 static const char *
6381 get_group_flags (unsigned int flags)
6382 {
6383 static char buff[128];
6384
6385 if (flags == 0)
6386 return "";
6387 else if (flags == GRP_COMDAT)
6388 return "COMDAT ";
6389
6390 snprintf (buff, 14, _("[0x%x: "), flags);
6391
6392 flags &= ~ GRP_COMDAT;
6393 if (flags & GRP_MASKOS)
6394 {
6395 strcat (buff, "<OS specific>");
6396 flags &= ~ GRP_MASKOS;
6397 }
6398
6399 if (flags & GRP_MASKPROC)
6400 {
6401 strcat (buff, "<PROC specific>");
6402 flags &= ~ GRP_MASKPROC;
6403 }
6404
6405 if (flags)
6406 strcat (buff, "<unknown>");
6407
6408 strcat (buff, "]");
6409 return buff;
6410 }
6411
6412 static int
6413 process_section_groups (FILE * file)
6414 {
6415 Elf_Internal_Shdr * section;
6416 unsigned int i;
6417 struct group * group;
6418 Elf_Internal_Shdr * symtab_sec;
6419 Elf_Internal_Shdr * strtab_sec;
6420 Elf_Internal_Sym * symtab;
6421 unsigned long num_syms;
6422 char * strtab;
6423 size_t strtab_size;
6424
6425 /* Don't process section groups unless needed. */
6426 if (!do_unwind && !do_section_groups)
6427 return 1;
6428
6429 if (elf_header.e_shnum == 0)
6430 {
6431 if (do_section_groups)
6432 printf (_("\nThere are no sections to group in this file.\n"));
6433
6434 return 1;
6435 }
6436
6437 if (section_headers == NULL)
6438 {
6439 error (_("Section headers are not available!\n"));
6440 /* PR 13622: This can happen with a corrupt ELF header. */
6441 return 0;
6442 }
6443
6444 section_headers_groups = (struct group **) calloc (elf_header.e_shnum,
6445 sizeof (struct group *));
6446
6447 if (section_headers_groups == NULL)
6448 {
6449 error (_("Out of memory reading %u section group headers\n"),
6450 elf_header.e_shnum);
6451 return 0;
6452 }
6453
6454 /* Scan the sections for the group section. */
6455 group_count = 0;
6456 for (i = 0, section = section_headers;
6457 i < elf_header.e_shnum;
6458 i++, section++)
6459 if (section->sh_type == SHT_GROUP)
6460 group_count++;
6461
6462 if (group_count == 0)
6463 {
6464 if (do_section_groups)
6465 printf (_("\nThere are no section groups in this file.\n"));
6466
6467 return 1;
6468 }
6469
6470 section_groups = (struct group *) calloc (group_count, sizeof (struct group));
6471
6472 if (section_groups == NULL)
6473 {
6474 error (_("Out of memory reading %lu groups\n"),
6475 (unsigned long) group_count);
6476 return 0;
6477 }
6478
6479 symtab_sec = NULL;
6480 strtab_sec = NULL;
6481 symtab = NULL;
6482 num_syms = 0;
6483 strtab = NULL;
6484 strtab_size = 0;
6485 for (i = 0, section = section_headers, group = section_groups;
6486 i < elf_header.e_shnum;
6487 i++, section++)
6488 {
6489 if (section->sh_type == SHT_GROUP)
6490 {
6491 const char * name = printable_section_name (section);
6492 const char * group_name;
6493 unsigned char * start;
6494 unsigned char * indices;
6495 unsigned int entry, j, size;
6496 Elf_Internal_Shdr * sec;
6497 Elf_Internal_Sym * sym;
6498
6499 /* Get the symbol table. */
6500 if (section->sh_link >= elf_header.e_shnum
6501 || ((sec = section_headers + section->sh_link)->sh_type
6502 != SHT_SYMTAB))
6503 {
6504 error (_("Bad sh_link in group section `%s'\n"), name);
6505 continue;
6506 }
6507
6508 if (symtab_sec != sec)
6509 {
6510 symtab_sec = sec;
6511 if (symtab)
6512 free (symtab);
6513 symtab = GET_ELF_SYMBOLS (file, symtab_sec, & num_syms);
6514 }
6515
6516 if (symtab == NULL)
6517 {
6518 error (_("Corrupt header in group section `%s'\n"), name);
6519 continue;
6520 }
6521
6522 if (section->sh_info >= num_syms)
6523 {
6524 error (_("Bad sh_info in group section `%s'\n"), name);
6525 continue;
6526 }
6527
6528 sym = symtab + section->sh_info;
6529
6530 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6531 {
6532 if (sym->st_shndx == 0
6533 || sym->st_shndx >= elf_header.e_shnum)
6534 {
6535 error (_("Bad sh_info in group section `%s'\n"), name);
6536 continue;
6537 }
6538
6539 group_name = SECTION_NAME (section_headers + sym->st_shndx);
6540 strtab_sec = NULL;
6541 if (strtab)
6542 free (strtab);
6543 strtab = NULL;
6544 strtab_size = 0;
6545 }
6546 else
6547 {
6548 /* Get the string table. */
6549 if (symtab_sec->sh_link >= elf_header.e_shnum)
6550 {
6551 strtab_sec = NULL;
6552 if (strtab)
6553 free (strtab);
6554 strtab = NULL;
6555 strtab_size = 0;
6556 }
6557 else if (strtab_sec
6558 != (sec = section_headers + symtab_sec->sh_link))
6559 {
6560 strtab_sec = sec;
6561 if (strtab)
6562 free (strtab);
6563
6564 strtab = (char *) get_data (NULL, file, strtab_sec->sh_offset,
6565 1, strtab_sec->sh_size,
6566 _("string table"));
6567 strtab_size = strtab != NULL ? strtab_sec->sh_size : 0;
6568 }
6569 group_name = sym->st_name < strtab_size
6570 ? strtab + sym->st_name : _("<corrupt>");
6571 }
6572
6573 /* PR 17531: file: loop. */
6574 if (section->sh_entsize > section->sh_size)
6575 {
6576 error (_("Section %s has sh_entsize (0x%lx) which is larger than its size (0x%lx)\n"),
6577 printable_section_name (section),
6578 (unsigned long) section->sh_entsize,
6579 (unsigned long) section->sh_size);
6580 break;
6581 }
6582
6583 start = (unsigned char *) get_data (NULL, file, section->sh_offset,
6584 1, section->sh_size,
6585 _("section data"));
6586 if (start == NULL)
6587 continue;
6588
6589 indices = start;
6590 size = (section->sh_size / section->sh_entsize) - 1;
6591 entry = byte_get (indices, 4);
6592 indices += 4;
6593
6594 if (do_section_groups)
6595 {
6596 printf (_("\n%sgroup section [%5u] `%s' [%s] contains %u sections:\n"),
6597 get_group_flags (entry), i, name, group_name, size);
6598
6599 printf (_(" [Index] Name\n"));
6600 }
6601
6602 group->group_index = i;
6603
6604 for (j = 0; j < size; j++)
6605 {
6606 struct group_list * g;
6607
6608 entry = byte_get (indices, 4);
6609 indices += 4;
6610
6611 if (entry >= elf_header.e_shnum)
6612 {
6613 static unsigned num_group_errors = 0;
6614
6615 if (num_group_errors ++ < 10)
6616 {
6617 error (_("section [%5u] in group section [%5u] > maximum section [%5u]\n"),
6618 entry, i, elf_header.e_shnum - 1);
6619 if (num_group_errors == 10)
6620 warn (_("Futher error messages about overlarge group section indicies suppressed\n"));
6621 }
6622 continue;
6623 }
6624
6625 if (section_headers_groups [entry] != NULL)
6626 {
6627 if (entry)
6628 {
6629 static unsigned num_errs = 0;
6630
6631 if (num_errs ++ < 10)
6632 {
6633 error (_("section [%5u] in group section [%5u] already in group section [%5u]\n"),
6634 entry, i,
6635 section_headers_groups [entry]->group_index);
6636 if (num_errs == 10)
6637 warn (_("Further error messages about already contained group sections suppressed\n"));
6638 }
6639 continue;
6640 }
6641 else
6642 {
6643 /* Intel C/C++ compiler may put section 0 in a
6644 section group. We just warn it the first time
6645 and ignore it afterwards. */
6646 static int warned = 0;
6647 if (!warned)
6648 {
6649 error (_("section 0 in group section [%5u]\n"),
6650 section_headers_groups [entry]->group_index);
6651 warned++;
6652 }
6653 }
6654 }
6655
6656 section_headers_groups [entry] = group;
6657
6658 if (do_section_groups)
6659 {
6660 sec = section_headers + entry;
6661 printf (" [%5u] %s\n", entry, printable_section_name (sec));
6662 }
6663
6664 g = (struct group_list *) xmalloc (sizeof (struct group_list));
6665 g->section_index = entry;
6666 g->next = group->root;
6667 group->root = g;
6668 }
6669
6670 if (start)
6671 free (start);
6672
6673 group++;
6674 }
6675 }
6676
6677 if (symtab)
6678 free (symtab);
6679 if (strtab)
6680 free (strtab);
6681 return 1;
6682 }
6683
6684 /* Data used to display dynamic fixups. */
6685
6686 struct ia64_vms_dynfixup
6687 {
6688 bfd_vma needed_ident; /* Library ident number. */
6689 bfd_vma needed; /* Index in the dstrtab of the library name. */
6690 bfd_vma fixup_needed; /* Index of the library. */
6691 bfd_vma fixup_rela_cnt; /* Number of fixups. */
6692 bfd_vma fixup_rela_off; /* Fixups offset in the dynamic segment. */
6693 };
6694
6695 /* Data used to display dynamic relocations. */
6696
6697 struct ia64_vms_dynimgrela
6698 {
6699 bfd_vma img_rela_cnt; /* Number of relocations. */
6700 bfd_vma img_rela_off; /* Reloc offset in the dynamic segment. */
6701 };
6702
6703 /* Display IA-64 OpenVMS dynamic fixups (used to dynamically link a shared
6704 library). */
6705
6706 static void
6707 dump_ia64_vms_dynamic_fixups (FILE *file, struct ia64_vms_dynfixup *fixup,
6708 const char *strtab, unsigned int strtab_sz)
6709 {
6710 Elf64_External_VMS_IMAGE_FIXUP *imfs;
6711 long i;
6712 const char *lib_name;
6713
6714 imfs = get_data (NULL, file, dynamic_addr + fixup->fixup_rela_off,
6715 1, fixup->fixup_rela_cnt * sizeof (*imfs),
6716 _("dynamic section image fixups"));
6717 if (!imfs)
6718 return;
6719
6720 if (fixup->needed < strtab_sz)
6721 lib_name = strtab + fixup->needed;
6722 else
6723 {
6724 warn ("corrupt library name index of 0x%lx found in dynamic entry",
6725 (unsigned long) fixup->needed);
6726 lib_name = "???";
6727 }
6728 printf (_("\nImage fixups for needed library #%d: %s - ident: %lx\n"),
6729 (int) fixup->fixup_needed, lib_name, (long) fixup->needed_ident);
6730 printf
6731 (_("Seg Offset Type SymVec DataType\n"));
6732
6733 for (i = 0; i < (long) fixup->fixup_rela_cnt; i++)
6734 {
6735 unsigned int type;
6736 const char *rtype;
6737
6738 printf ("%3u ", (unsigned) BYTE_GET (imfs [i].fixup_seg));
6739 printf_vma ((bfd_vma) BYTE_GET (imfs [i].fixup_offset));
6740 type = BYTE_GET (imfs [i].type);
6741 rtype = elf_ia64_reloc_type (type);
6742 if (rtype == NULL)
6743 printf (" 0x%08x ", type);
6744 else
6745 printf (" %-32s ", rtype);
6746 printf ("%6u ", (unsigned) BYTE_GET (imfs [i].symvec_index));
6747 printf ("0x%08x\n", (unsigned) BYTE_GET (imfs [i].data_type));
6748 }
6749
6750 free (imfs);
6751 }
6752
6753 /* Display IA-64 OpenVMS dynamic relocations (used to relocate an image). */
6754
6755 static void
6756 dump_ia64_vms_dynamic_relocs (FILE *file, struct ia64_vms_dynimgrela *imgrela)
6757 {
6758 Elf64_External_VMS_IMAGE_RELA *imrs;
6759 long i;
6760
6761 imrs = get_data (NULL, file, dynamic_addr + imgrela->img_rela_off,
6762 1, imgrela->img_rela_cnt * sizeof (*imrs),
6763 _("dynamic section image relocations"));
6764 if (!imrs)
6765 return;
6766
6767 printf (_("\nImage relocs\n"));
6768 printf
6769 (_("Seg Offset Type Addend Seg Sym Off\n"));
6770
6771 for (i = 0; i < (long) imgrela->img_rela_cnt; i++)
6772 {
6773 unsigned int type;
6774 const char *rtype;
6775
6776 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].rela_seg));
6777 printf ("%08" BFD_VMA_FMT "x ",
6778 (bfd_vma) BYTE_GET (imrs [i].rela_offset));
6779 type = BYTE_GET (imrs [i].type);
6780 rtype = elf_ia64_reloc_type (type);
6781 if (rtype == NULL)
6782 printf ("0x%08x ", type);
6783 else
6784 printf ("%-31s ", rtype);
6785 print_vma (BYTE_GET (imrs [i].addend), FULL_HEX);
6786 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].sym_seg));
6787 printf ("%08" BFD_VMA_FMT "x\n",
6788 (bfd_vma) BYTE_GET (imrs [i].sym_offset));
6789 }
6790
6791 free (imrs);
6792 }
6793
6794 /* Display IA-64 OpenVMS dynamic relocations and fixups. */
6795
6796 static int
6797 process_ia64_vms_dynamic_relocs (FILE *file)
6798 {
6799 struct ia64_vms_dynfixup fixup;
6800 struct ia64_vms_dynimgrela imgrela;
6801 Elf_Internal_Dyn *entry;
6802 int res = 0;
6803 bfd_vma strtab_off = 0;
6804 bfd_vma strtab_sz = 0;
6805 char *strtab = NULL;
6806
6807 memset (&fixup, 0, sizeof (fixup));
6808 memset (&imgrela, 0, sizeof (imgrela));
6809
6810 /* Note: the order of the entries is specified by the OpenVMS specs. */
6811 for (entry = dynamic_section;
6812 entry < dynamic_section + dynamic_nent;
6813 entry++)
6814 {
6815 switch (entry->d_tag)
6816 {
6817 case DT_IA_64_VMS_STRTAB_OFFSET:
6818 strtab_off = entry->d_un.d_val;
6819 break;
6820 case DT_STRSZ:
6821 strtab_sz = entry->d_un.d_val;
6822 if (strtab == NULL)
6823 strtab = get_data (NULL, file, dynamic_addr + strtab_off,
6824 1, strtab_sz, _("dynamic string section"));
6825 break;
6826
6827 case DT_IA_64_VMS_NEEDED_IDENT:
6828 fixup.needed_ident = entry->d_un.d_val;
6829 break;
6830 case DT_NEEDED:
6831 fixup.needed = entry->d_un.d_val;
6832 break;
6833 case DT_IA_64_VMS_FIXUP_NEEDED:
6834 fixup.fixup_needed = entry->d_un.d_val;
6835 break;
6836 case DT_IA_64_VMS_FIXUP_RELA_CNT:
6837 fixup.fixup_rela_cnt = entry->d_un.d_val;
6838 break;
6839 case DT_IA_64_VMS_FIXUP_RELA_OFF:
6840 fixup.fixup_rela_off = entry->d_un.d_val;
6841 res++;
6842 dump_ia64_vms_dynamic_fixups (file, &fixup, strtab, strtab_sz);
6843 break;
6844
6845 case DT_IA_64_VMS_IMG_RELA_CNT:
6846 imgrela.img_rela_cnt = entry->d_un.d_val;
6847 break;
6848 case DT_IA_64_VMS_IMG_RELA_OFF:
6849 imgrela.img_rela_off = entry->d_un.d_val;
6850 res++;
6851 dump_ia64_vms_dynamic_relocs (file, &imgrela);
6852 break;
6853
6854 default:
6855 break;
6856 }
6857 }
6858
6859 if (strtab != NULL)
6860 free (strtab);
6861
6862 return res;
6863 }
6864
6865 static struct
6866 {
6867 const char * name;
6868 int reloc;
6869 int size;
6870 int rela;
6871 } dynamic_relocations [] =
6872 {
6873 { "REL", DT_REL, DT_RELSZ, FALSE },
6874 { "RELA", DT_RELA, DT_RELASZ, TRUE },
6875 { "PLT", DT_JMPREL, DT_PLTRELSZ, UNKNOWN }
6876 };
6877
6878 /* Process the reloc section. */
6879
6880 static int
6881 process_relocs (FILE * file)
6882 {
6883 unsigned long rel_size;
6884 unsigned long rel_offset;
6885
6886
6887 if (!do_reloc)
6888 return 1;
6889
6890 if (do_using_dynamic)
6891 {
6892 int is_rela;
6893 const char * name;
6894 int has_dynamic_reloc;
6895 unsigned int i;
6896
6897 has_dynamic_reloc = 0;
6898
6899 for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
6900 {
6901 is_rela = dynamic_relocations [i].rela;
6902 name = dynamic_relocations [i].name;
6903 rel_size = dynamic_info [dynamic_relocations [i].size];
6904 rel_offset = dynamic_info [dynamic_relocations [i].reloc];
6905
6906 has_dynamic_reloc |= rel_size;
6907
6908 if (is_rela == UNKNOWN)
6909 {
6910 if (dynamic_relocations [i].reloc == DT_JMPREL)
6911 switch (dynamic_info[DT_PLTREL])
6912 {
6913 case DT_REL:
6914 is_rela = FALSE;
6915 break;
6916 case DT_RELA:
6917 is_rela = TRUE;
6918 break;
6919 }
6920 }
6921
6922 if (rel_size)
6923 {
6924 printf
6925 (_("\n'%s' relocation section at offset 0x%lx contains %ld bytes:\n"),
6926 name, rel_offset, rel_size);
6927
6928 dump_relocations (file,
6929 offset_from_vma (file, rel_offset, rel_size),
6930 rel_size,
6931 dynamic_symbols, num_dynamic_syms,
6932 dynamic_strings, dynamic_strings_length,
6933 is_rela, 1);
6934 }
6935 }
6936
6937 if (is_ia64_vms ())
6938 has_dynamic_reloc |= process_ia64_vms_dynamic_relocs (file);
6939
6940 if (! has_dynamic_reloc)
6941 printf (_("\nThere are no dynamic relocations in this file.\n"));
6942 }
6943 else
6944 {
6945 Elf_Internal_Shdr * section;
6946 unsigned long i;
6947 int found = 0;
6948
6949 for (i = 0, section = section_headers;
6950 i < elf_header.e_shnum;
6951 i++, section++)
6952 {
6953 if ( section->sh_type != SHT_RELA
6954 && section->sh_type != SHT_REL)
6955 continue;
6956
6957 rel_offset = section->sh_offset;
6958 rel_size = section->sh_size;
6959
6960 if (rel_size)
6961 {
6962 Elf_Internal_Shdr * strsec;
6963 int is_rela;
6964
6965 printf (_("\nRelocation section "));
6966
6967 if (string_table == NULL)
6968 printf ("%d", section->sh_name);
6969 else
6970 printf ("'%s'", printable_section_name (section));
6971
6972 printf (_(" at offset 0x%lx contains %lu entries:\n"),
6973 rel_offset, (unsigned long) (rel_size / section->sh_entsize));
6974
6975 is_rela = section->sh_type == SHT_RELA;
6976
6977 if (section->sh_link != 0
6978 && section->sh_link < elf_header.e_shnum)
6979 {
6980 Elf_Internal_Shdr * symsec;
6981 Elf_Internal_Sym * symtab;
6982 unsigned long nsyms;
6983 unsigned long strtablen = 0;
6984 char * strtab = NULL;
6985
6986 symsec = section_headers + section->sh_link;
6987 if (symsec->sh_type != SHT_SYMTAB
6988 && symsec->sh_type != SHT_DYNSYM)
6989 continue;
6990
6991 symtab = GET_ELF_SYMBOLS (file, symsec, & nsyms);
6992
6993 if (symtab == NULL)
6994 continue;
6995
6996 if (symsec->sh_link != 0
6997 && symsec->sh_link < elf_header.e_shnum)
6998 {
6999 strsec = section_headers + symsec->sh_link;
7000
7001 strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7002 1, strsec->sh_size,
7003 _("string table"));
7004 strtablen = strtab == NULL ? 0 : strsec->sh_size;
7005 }
7006
7007 dump_relocations (file, rel_offset, rel_size,
7008 symtab, nsyms, strtab, strtablen,
7009 is_rela,
7010 symsec->sh_type == SHT_DYNSYM);
7011 if (strtab)
7012 free (strtab);
7013 free (symtab);
7014 }
7015 else
7016 dump_relocations (file, rel_offset, rel_size,
7017 NULL, 0, NULL, 0, is_rela, 0);
7018
7019 found = 1;
7020 }
7021 }
7022
7023 if (! found)
7024 printf (_("\nThere are no relocations in this file.\n"));
7025 }
7026
7027 return 1;
7028 }
7029
7030 /* An absolute address consists of a section and an offset. If the
7031 section is NULL, the offset itself is the address, otherwise, the
7032 address equals to LOAD_ADDRESS(section) + offset. */
7033
7034 struct absaddr
7035 {
7036 unsigned short section;
7037 bfd_vma offset;
7038 };
7039
7040 #define ABSADDR(a) \
7041 ((a).section \
7042 ? section_headers [(a).section].sh_addr + (a).offset \
7043 : (a).offset)
7044
7045 /* Find the nearest symbol at or below ADDR. Returns the symbol
7046 name, if found, and the offset from the symbol to ADDR. */
7047
7048 static void
7049 find_symbol_for_address (Elf_Internal_Sym * symtab,
7050 unsigned long nsyms,
7051 const char * strtab,
7052 unsigned long strtab_size,
7053 struct absaddr addr,
7054 const char ** symname,
7055 bfd_vma * offset)
7056 {
7057 bfd_vma dist = 0x100000;
7058 Elf_Internal_Sym * sym;
7059 Elf_Internal_Sym * beg;
7060 Elf_Internal_Sym * end;
7061 Elf_Internal_Sym * best = NULL;
7062
7063 REMOVE_ARCH_BITS (addr.offset);
7064 beg = symtab;
7065 end = symtab + nsyms;
7066
7067 while (beg < end)
7068 {
7069 bfd_vma value;
7070
7071 sym = beg + (end - beg) / 2;
7072
7073 value = sym->st_value;
7074 REMOVE_ARCH_BITS (value);
7075
7076 if (sym->st_name != 0
7077 && (addr.section == SHN_UNDEF || addr.section == sym->st_shndx)
7078 && addr.offset >= value
7079 && addr.offset - value < dist)
7080 {
7081 best = sym;
7082 dist = addr.offset - value;
7083 if (!dist)
7084 break;
7085 }
7086
7087 if (addr.offset < value)
7088 end = sym;
7089 else
7090 beg = sym + 1;
7091 }
7092
7093 if (best)
7094 {
7095 *symname = (best->st_name >= strtab_size
7096 ? _("<corrupt>") : strtab + best->st_name);
7097 *offset = dist;
7098 return;
7099 }
7100
7101 *symname = NULL;
7102 *offset = addr.offset;
7103 }
7104
7105 static int
7106 symcmp (const void *p, const void *q)
7107 {
7108 Elf_Internal_Sym *sp = (Elf_Internal_Sym *) p;
7109 Elf_Internal_Sym *sq = (Elf_Internal_Sym *) q;
7110
7111 return sp->st_value > sq->st_value ? 1 : (sp->st_value < sq->st_value ? -1 : 0);
7112 }
7113
7114 /* Process the unwind section. */
7115
7116 #include "unwind-ia64.h"
7117
7118 struct ia64_unw_table_entry
7119 {
7120 struct absaddr start;
7121 struct absaddr end;
7122 struct absaddr info;
7123 };
7124
7125 struct ia64_unw_aux_info
7126 {
7127 struct ia64_unw_table_entry *table; /* Unwind table. */
7128 unsigned long table_len; /* Length of unwind table. */
7129 unsigned char * info; /* Unwind info. */
7130 unsigned long info_size; /* Size of unwind info. */
7131 bfd_vma info_addr; /* Starting address of unwind info. */
7132 bfd_vma seg_base; /* Starting address of segment. */
7133 Elf_Internal_Sym * symtab; /* The symbol table. */
7134 unsigned long nsyms; /* Number of symbols. */
7135 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7136 unsigned long nfuns; /* Number of entries in funtab. */
7137 char * strtab; /* The string table. */
7138 unsigned long strtab_size; /* Size of string table. */
7139 };
7140
7141 static void
7142 dump_ia64_unwind (struct ia64_unw_aux_info * aux)
7143 {
7144 struct ia64_unw_table_entry * tp;
7145 unsigned long j, nfuns;
7146 int in_body;
7147
7148 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
7149 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
7150 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
7151 aux->funtab[nfuns++] = aux->symtab[j];
7152 aux->nfuns = nfuns;
7153 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
7154
7155 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
7156 {
7157 bfd_vma stamp;
7158 bfd_vma offset;
7159 const unsigned char * dp;
7160 const unsigned char * head;
7161 const unsigned char * end;
7162 const char * procname;
7163
7164 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7165 aux->strtab_size, tp->start, &procname, &offset);
7166
7167 fputs ("\n<", stdout);
7168
7169 if (procname)
7170 {
7171 fputs (procname, stdout);
7172
7173 if (offset)
7174 printf ("+%lx", (unsigned long) offset);
7175 }
7176
7177 fputs (">: [", stdout);
7178 print_vma (tp->start.offset, PREFIX_HEX);
7179 fputc ('-', stdout);
7180 print_vma (tp->end.offset, PREFIX_HEX);
7181 printf ("], info at +0x%lx\n",
7182 (unsigned long) (tp->info.offset - aux->seg_base));
7183
7184 /* PR 17531: file: 86232b32. */
7185 if (aux->info == NULL)
7186 continue;
7187
7188 /* PR 17531: file: 0997b4d1. */
7189 if ((ABSADDR (tp->info) - aux->info_addr) >= aux->info_size)
7190 {
7191 warn (_("Invalid offset %lx in table entry %ld\n"),
7192 (long) tp->info.offset, (long) (tp - aux->table));
7193 continue;
7194 }
7195
7196 head = aux->info + (ABSADDR (tp->info) - aux->info_addr);
7197 stamp = byte_get ((unsigned char *) head, sizeof (stamp));
7198
7199 printf (" v%u, flags=0x%lx (%s%s), len=%lu bytes\n",
7200 (unsigned) UNW_VER (stamp),
7201 (unsigned long) ((stamp & UNW_FLAG_MASK) >> 32),
7202 UNW_FLAG_EHANDLER (stamp) ? " ehandler" : "",
7203 UNW_FLAG_UHANDLER (stamp) ? " uhandler" : "",
7204 (unsigned long) (eh_addr_size * UNW_LENGTH (stamp)));
7205
7206 if (UNW_VER (stamp) != 1)
7207 {
7208 printf (_("\tUnknown version.\n"));
7209 continue;
7210 }
7211
7212 in_body = 0;
7213 end = head + 8 + eh_addr_size * UNW_LENGTH (stamp);
7214 /* PR 17531: file: 16ceda89. */
7215 if (end > aux->info + aux->info_size)
7216 end = aux->info + aux->info_size;
7217 for (dp = head + 8; dp < end;)
7218 dp = unw_decode (dp, in_body, & in_body, end);
7219 }
7220
7221 free (aux->funtab);
7222 }
7223
7224 static bfd_boolean
7225 slurp_ia64_unwind_table (FILE * file,
7226 struct ia64_unw_aux_info * aux,
7227 Elf_Internal_Shdr * sec)
7228 {
7229 unsigned long size, nrelas, i;
7230 Elf_Internal_Phdr * seg;
7231 struct ia64_unw_table_entry * tep;
7232 Elf_Internal_Shdr * relsec;
7233 Elf_Internal_Rela * rela;
7234 Elf_Internal_Rela * rp;
7235 unsigned char * table;
7236 unsigned char * tp;
7237 Elf_Internal_Sym * sym;
7238 const char * relname;
7239
7240 aux->table_len = 0;
7241
7242 /* First, find the starting address of the segment that includes
7243 this section: */
7244
7245 if (elf_header.e_phnum)
7246 {
7247 if (! get_program_headers (file))
7248 return FALSE;
7249
7250 for (seg = program_headers;
7251 seg < program_headers + elf_header.e_phnum;
7252 ++seg)
7253 {
7254 if (seg->p_type != PT_LOAD)
7255 continue;
7256
7257 if (sec->sh_addr >= seg->p_vaddr
7258 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
7259 {
7260 aux->seg_base = seg->p_vaddr;
7261 break;
7262 }
7263 }
7264 }
7265
7266 /* Second, build the unwind table from the contents of the unwind section: */
7267 size = sec->sh_size;
7268 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
7269 _("unwind table"));
7270 if (!table)
7271 return FALSE;
7272
7273 aux->table_len = size / (3 * eh_addr_size);
7274 aux->table = (struct ia64_unw_table_entry *)
7275 xcmalloc (aux->table_len, sizeof (aux->table[0]));
7276 tep = aux->table;
7277
7278 for (tp = table; tp <= table + size - (3 * eh_addr_size); ++tep)
7279 {
7280 tep->start.section = SHN_UNDEF;
7281 tep->end.section = SHN_UNDEF;
7282 tep->info.section = SHN_UNDEF;
7283 tep->start.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7284 tep->end.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7285 tep->info.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7286 tep->start.offset += aux->seg_base;
7287 tep->end.offset += aux->seg_base;
7288 tep->info.offset += aux->seg_base;
7289 }
7290 free (table);
7291
7292 /* Third, apply any relocations to the unwind table: */
7293 for (relsec = section_headers;
7294 relsec < section_headers + elf_header.e_shnum;
7295 ++relsec)
7296 {
7297 if (relsec->sh_type != SHT_RELA
7298 || relsec->sh_info >= elf_header.e_shnum
7299 || section_headers + relsec->sh_info != sec)
7300 continue;
7301
7302 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
7303 & rela, & nrelas))
7304 {
7305 free (aux->table);
7306 aux->table = NULL;
7307 aux->table_len = 0;
7308 return FALSE;
7309 }
7310
7311 for (rp = rela; rp < rela + nrelas; ++rp)
7312 {
7313 relname = elf_ia64_reloc_type (get_reloc_type (rp->r_info));
7314 sym = aux->symtab + get_reloc_symindex (rp->r_info);
7315
7316 /* PR 17531: file: 9fa67536. */
7317 if (relname == NULL)
7318 {
7319 warn (_("Skipping unknown relocation type: %u\n"), get_reloc_type (rp->r_info));
7320 continue;
7321 }
7322
7323 if (! const_strneq (relname, "R_IA64_SEGREL"))
7324 {
7325 warn (_("Skipping unexpected relocation type: %s\n"), relname);
7326 continue;
7327 }
7328
7329 i = rp->r_offset / (3 * eh_addr_size);
7330
7331 /* PR 17531: file: 5bc8d9bf. */
7332 if (i >= aux->table_len)
7333 {
7334 warn (_("Skipping reloc with overlarge offset: %lx\n"), i);
7335 continue;
7336 }
7337
7338 switch (rp->r_offset / eh_addr_size % 3)
7339 {
7340 case 0:
7341 aux->table[i].start.section = sym->st_shndx;
7342 aux->table[i].start.offset = rp->r_addend + sym->st_value;
7343 break;
7344 case 1:
7345 aux->table[i].end.section = sym->st_shndx;
7346 aux->table[i].end.offset = rp->r_addend + sym->st_value;
7347 break;
7348 case 2:
7349 aux->table[i].info.section = sym->st_shndx;
7350 aux->table[i].info.offset = rp->r_addend + sym->st_value;
7351 break;
7352 default:
7353 break;
7354 }
7355 }
7356
7357 free (rela);
7358 }
7359
7360 return TRUE;
7361 }
7362
7363 static void
7364 ia64_process_unwind (FILE * file)
7365 {
7366 Elf_Internal_Shdr * sec;
7367 Elf_Internal_Shdr * unwsec = NULL;
7368 Elf_Internal_Shdr * strsec;
7369 unsigned long i, unwcount = 0, unwstart = 0;
7370 struct ia64_unw_aux_info aux;
7371
7372 memset (& aux, 0, sizeof (aux));
7373
7374 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7375 {
7376 if (sec->sh_type == SHT_SYMTAB
7377 && sec->sh_link < elf_header.e_shnum)
7378 {
7379 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7380
7381 strsec = section_headers + sec->sh_link;
7382 if (aux.strtab != NULL)
7383 {
7384 error (_("Multiple auxillary string tables encountered\n"));
7385 free (aux.strtab);
7386 }
7387 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7388 1, strsec->sh_size,
7389 _("string table"));
7390 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7391 }
7392 else if (sec->sh_type == SHT_IA_64_UNWIND)
7393 unwcount++;
7394 }
7395
7396 if (!unwcount)
7397 printf (_("\nThere are no unwind sections in this file.\n"));
7398
7399 while (unwcount-- > 0)
7400 {
7401 char * suffix;
7402 size_t len, len2;
7403
7404 for (i = unwstart, sec = section_headers + unwstart, unwsec = NULL;
7405 i < elf_header.e_shnum; ++i, ++sec)
7406 if (sec->sh_type == SHT_IA_64_UNWIND)
7407 {
7408 unwsec = sec;
7409 break;
7410 }
7411 /* We have already counted the number of SHT_IA64_UNWIND
7412 sections so the loop above should never fail. */
7413 assert (unwsec != NULL);
7414
7415 unwstart = i + 1;
7416 len = sizeof (ELF_STRING_ia64_unwind_once) - 1;
7417
7418 if ((unwsec->sh_flags & SHF_GROUP) != 0)
7419 {
7420 /* We need to find which section group it is in. */
7421 struct group_list * g;
7422
7423 if (section_headers_groups == NULL
7424 || section_headers_groups [i] == NULL)
7425 i = elf_header.e_shnum;
7426 else
7427 {
7428 g = section_headers_groups [i]->root;
7429
7430 for (; g != NULL; g = g->next)
7431 {
7432 sec = section_headers + g->section_index;
7433
7434 if (streq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info))
7435 break;
7436 }
7437
7438 if (g == NULL)
7439 i = elf_header.e_shnum;
7440 }
7441 }
7442 else if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind_once, len))
7443 {
7444 /* .gnu.linkonce.ia64unw.FOO -> .gnu.linkonce.ia64unwi.FOO. */
7445 len2 = sizeof (ELF_STRING_ia64_unwind_info_once) - 1;
7446 suffix = SECTION_NAME (unwsec) + len;
7447 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
7448 ++i, ++sec)
7449 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info_once, len2)
7450 && streq (SECTION_NAME (sec) + len2, suffix))
7451 break;
7452 }
7453 else
7454 {
7455 /* .IA_64.unwindFOO -> .IA_64.unwind_infoFOO
7456 .IA_64.unwind or BAR -> .IA_64.unwind_info. */
7457 len = sizeof (ELF_STRING_ia64_unwind) - 1;
7458 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
7459 suffix = "";
7460 if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind, len))
7461 suffix = SECTION_NAME (unwsec) + len;
7462 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
7463 ++i, ++sec)
7464 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info, len2)
7465 && streq (SECTION_NAME (sec) + len2, suffix))
7466 break;
7467 }
7468
7469 if (i == elf_header.e_shnum)
7470 {
7471 printf (_("\nCould not find unwind info section for "));
7472
7473 if (string_table == NULL)
7474 printf ("%d", unwsec->sh_name);
7475 else
7476 printf ("'%s'", printable_section_name (unwsec));
7477 }
7478 else
7479 {
7480 aux.info_addr = sec->sh_addr;
7481 aux.info = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1,
7482 sec->sh_size,
7483 _("unwind info"));
7484 aux.info_size = aux.info == NULL ? 0 : sec->sh_size;
7485
7486 printf (_("\nUnwind section "));
7487
7488 if (string_table == NULL)
7489 printf ("%d", unwsec->sh_name);
7490 else
7491 printf ("'%s'", printable_section_name (unwsec));
7492
7493 printf (_(" at offset 0x%lx contains %lu entries:\n"),
7494 (unsigned long) unwsec->sh_offset,
7495 (unsigned long) (unwsec->sh_size / (3 * eh_addr_size)));
7496
7497 if (slurp_ia64_unwind_table (file, & aux, unwsec)
7498 && aux.table_len > 0)
7499 dump_ia64_unwind (& aux);
7500
7501 if (aux.table)
7502 free ((char *) aux.table);
7503 if (aux.info)
7504 free ((char *) aux.info);
7505 aux.table = NULL;
7506 aux.info = NULL;
7507 }
7508 }
7509
7510 if (aux.symtab)
7511 free (aux.symtab);
7512 if (aux.strtab)
7513 free ((char *) aux.strtab);
7514 }
7515
7516 struct hppa_unw_table_entry
7517 {
7518 struct absaddr start;
7519 struct absaddr end;
7520 unsigned int Cannot_unwind:1; /* 0 */
7521 unsigned int Millicode:1; /* 1 */
7522 unsigned int Millicode_save_sr0:1; /* 2 */
7523 unsigned int Region_description:2; /* 3..4 */
7524 unsigned int reserved1:1; /* 5 */
7525 unsigned int Entry_SR:1; /* 6 */
7526 unsigned int Entry_FR:4; /* number saved */ /* 7..10 */
7527 unsigned int Entry_GR:5; /* number saved */ /* 11..15 */
7528 unsigned int Args_stored:1; /* 16 */
7529 unsigned int Variable_Frame:1; /* 17 */
7530 unsigned int Separate_Package_Body:1; /* 18 */
7531 unsigned int Frame_Extension_Millicode:1; /* 19 */
7532 unsigned int Stack_Overflow_Check:1; /* 20 */
7533 unsigned int Two_Instruction_SP_Increment:1;/* 21 */
7534 unsigned int Ada_Region:1; /* 22 */
7535 unsigned int cxx_info:1; /* 23 */
7536 unsigned int cxx_try_catch:1; /* 24 */
7537 unsigned int sched_entry_seq:1; /* 25 */
7538 unsigned int reserved2:1; /* 26 */
7539 unsigned int Save_SP:1; /* 27 */
7540 unsigned int Save_RP:1; /* 28 */
7541 unsigned int Save_MRP_in_frame:1; /* 29 */
7542 unsigned int extn_ptr_defined:1; /* 30 */
7543 unsigned int Cleanup_defined:1; /* 31 */
7544
7545 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
7546 unsigned int HP_UX_interrupt_marker:1; /* 1 */
7547 unsigned int Large_frame:1; /* 2 */
7548 unsigned int Pseudo_SP_Set:1; /* 3 */
7549 unsigned int reserved4:1; /* 4 */
7550 unsigned int Total_frame_size:27; /* 5..31 */
7551 };
7552
7553 struct hppa_unw_aux_info
7554 {
7555 struct hppa_unw_table_entry * table; /* Unwind table. */
7556 unsigned long table_len; /* Length of unwind table. */
7557 bfd_vma seg_base; /* Starting address of segment. */
7558 Elf_Internal_Sym * symtab; /* The symbol table. */
7559 unsigned long nsyms; /* Number of symbols. */
7560 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7561 unsigned long nfuns; /* Number of entries in funtab. */
7562 char * strtab; /* The string table. */
7563 unsigned long strtab_size; /* Size of string table. */
7564 };
7565
7566 static void
7567 dump_hppa_unwind (struct hppa_unw_aux_info * aux)
7568 {
7569 struct hppa_unw_table_entry * tp;
7570 unsigned long j, nfuns;
7571
7572 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
7573 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
7574 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
7575 aux->funtab[nfuns++] = aux->symtab[j];
7576 aux->nfuns = nfuns;
7577 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
7578
7579 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
7580 {
7581 bfd_vma offset;
7582 const char * procname;
7583
7584 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7585 aux->strtab_size, tp->start, &procname,
7586 &offset);
7587
7588 fputs ("\n<", stdout);
7589
7590 if (procname)
7591 {
7592 fputs (procname, stdout);
7593
7594 if (offset)
7595 printf ("+%lx", (unsigned long) offset);
7596 }
7597
7598 fputs (">: [", stdout);
7599 print_vma (tp->start.offset, PREFIX_HEX);
7600 fputc ('-', stdout);
7601 print_vma (tp->end.offset, PREFIX_HEX);
7602 printf ("]\n\t");
7603
7604 #define PF(_m) if (tp->_m) printf (#_m " ");
7605 #define PV(_m) if (tp->_m) printf (#_m "=%d ", tp->_m);
7606 PF(Cannot_unwind);
7607 PF(Millicode);
7608 PF(Millicode_save_sr0);
7609 /* PV(Region_description); */
7610 PF(Entry_SR);
7611 PV(Entry_FR);
7612 PV(Entry_GR);
7613 PF(Args_stored);
7614 PF(Variable_Frame);
7615 PF(Separate_Package_Body);
7616 PF(Frame_Extension_Millicode);
7617 PF(Stack_Overflow_Check);
7618 PF(Two_Instruction_SP_Increment);
7619 PF(Ada_Region);
7620 PF(cxx_info);
7621 PF(cxx_try_catch);
7622 PF(sched_entry_seq);
7623 PF(Save_SP);
7624 PF(Save_RP);
7625 PF(Save_MRP_in_frame);
7626 PF(extn_ptr_defined);
7627 PF(Cleanup_defined);
7628 PF(MPE_XL_interrupt_marker);
7629 PF(HP_UX_interrupt_marker);
7630 PF(Large_frame);
7631 PF(Pseudo_SP_Set);
7632 PV(Total_frame_size);
7633 #undef PF
7634 #undef PV
7635 }
7636
7637 printf ("\n");
7638
7639 free (aux->funtab);
7640 }
7641
7642 static int
7643 slurp_hppa_unwind_table (FILE * file,
7644 struct hppa_unw_aux_info * aux,
7645 Elf_Internal_Shdr * sec)
7646 {
7647 unsigned long size, unw_ent_size, nentries, nrelas, i;
7648 Elf_Internal_Phdr * seg;
7649 struct hppa_unw_table_entry * tep;
7650 Elf_Internal_Shdr * relsec;
7651 Elf_Internal_Rela * rela;
7652 Elf_Internal_Rela * rp;
7653 unsigned char * table;
7654 unsigned char * tp;
7655 Elf_Internal_Sym * sym;
7656 const char * relname;
7657
7658 /* First, find the starting address of the segment that includes
7659 this section. */
7660
7661 if (elf_header.e_phnum)
7662 {
7663 if (! get_program_headers (file))
7664 return 0;
7665
7666 for (seg = program_headers;
7667 seg < program_headers + elf_header.e_phnum;
7668 ++seg)
7669 {
7670 if (seg->p_type != PT_LOAD)
7671 continue;
7672
7673 if (sec->sh_addr >= seg->p_vaddr
7674 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
7675 {
7676 aux->seg_base = seg->p_vaddr;
7677 break;
7678 }
7679 }
7680 }
7681
7682 /* Second, build the unwind table from the contents of the unwind
7683 section. */
7684 size = sec->sh_size;
7685 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
7686 _("unwind table"));
7687 if (!table)
7688 return 0;
7689
7690 unw_ent_size = 16;
7691 nentries = size / unw_ent_size;
7692 size = unw_ent_size * nentries;
7693
7694 tep = aux->table = (struct hppa_unw_table_entry *)
7695 xcmalloc (nentries, sizeof (aux->table[0]));
7696
7697 for (tp = table; tp < table + size; tp += unw_ent_size, ++tep)
7698 {
7699 unsigned int tmp1, tmp2;
7700
7701 tep->start.section = SHN_UNDEF;
7702 tep->end.section = SHN_UNDEF;
7703
7704 tep->start.offset = byte_get ((unsigned char *) tp + 0, 4);
7705 tep->end.offset = byte_get ((unsigned char *) tp + 4, 4);
7706 tmp1 = byte_get ((unsigned char *) tp + 8, 4);
7707 tmp2 = byte_get ((unsigned char *) tp + 12, 4);
7708
7709 tep->start.offset += aux->seg_base;
7710 tep->end.offset += aux->seg_base;
7711
7712 tep->Cannot_unwind = (tmp1 >> 31) & 0x1;
7713 tep->Millicode = (tmp1 >> 30) & 0x1;
7714 tep->Millicode_save_sr0 = (tmp1 >> 29) & 0x1;
7715 tep->Region_description = (tmp1 >> 27) & 0x3;
7716 tep->reserved1 = (tmp1 >> 26) & 0x1;
7717 tep->Entry_SR = (tmp1 >> 25) & 0x1;
7718 tep->Entry_FR = (tmp1 >> 21) & 0xf;
7719 tep->Entry_GR = (tmp1 >> 16) & 0x1f;
7720 tep->Args_stored = (tmp1 >> 15) & 0x1;
7721 tep->Variable_Frame = (tmp1 >> 14) & 0x1;
7722 tep->Separate_Package_Body = (tmp1 >> 13) & 0x1;
7723 tep->Frame_Extension_Millicode = (tmp1 >> 12) & 0x1;
7724 tep->Stack_Overflow_Check = (tmp1 >> 11) & 0x1;
7725 tep->Two_Instruction_SP_Increment = (tmp1 >> 10) & 0x1;
7726 tep->Ada_Region = (tmp1 >> 9) & 0x1;
7727 tep->cxx_info = (tmp1 >> 8) & 0x1;
7728 tep->cxx_try_catch = (tmp1 >> 7) & 0x1;
7729 tep->sched_entry_seq = (tmp1 >> 6) & 0x1;
7730 tep->reserved2 = (tmp1 >> 5) & 0x1;
7731 tep->Save_SP = (tmp1 >> 4) & 0x1;
7732 tep->Save_RP = (tmp1 >> 3) & 0x1;
7733 tep->Save_MRP_in_frame = (tmp1 >> 2) & 0x1;
7734 tep->extn_ptr_defined = (tmp1 >> 1) & 0x1;
7735 tep->Cleanup_defined = tmp1 & 0x1;
7736
7737 tep->MPE_XL_interrupt_marker = (tmp2 >> 31) & 0x1;
7738 tep->HP_UX_interrupt_marker = (tmp2 >> 30) & 0x1;
7739 tep->Large_frame = (tmp2 >> 29) & 0x1;
7740 tep->Pseudo_SP_Set = (tmp2 >> 28) & 0x1;
7741 tep->reserved4 = (tmp2 >> 27) & 0x1;
7742 tep->Total_frame_size = tmp2 & 0x7ffffff;
7743 }
7744 free (table);
7745
7746 /* Third, apply any relocations to the unwind table. */
7747 for (relsec = section_headers;
7748 relsec < section_headers + elf_header.e_shnum;
7749 ++relsec)
7750 {
7751 if (relsec->sh_type != SHT_RELA
7752 || relsec->sh_info >= elf_header.e_shnum
7753 || section_headers + relsec->sh_info != sec)
7754 continue;
7755
7756 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
7757 & rela, & nrelas))
7758 return 0;
7759
7760 for (rp = rela; rp < rela + nrelas; ++rp)
7761 {
7762 relname = elf_hppa_reloc_type (get_reloc_type (rp->r_info));
7763 sym = aux->symtab + get_reloc_symindex (rp->r_info);
7764
7765 /* R_PARISC_SEGREL32 or R_PARISC_SEGREL64. */
7766 if (! const_strneq (relname, "R_PARISC_SEGREL"))
7767 {
7768 warn (_("Skipping unexpected relocation type %s\n"), relname);
7769 continue;
7770 }
7771
7772 i = rp->r_offset / unw_ent_size;
7773
7774 switch ((rp->r_offset % unw_ent_size) / eh_addr_size)
7775 {
7776 case 0:
7777 aux->table[i].start.section = sym->st_shndx;
7778 aux->table[i].start.offset = sym->st_value + rp->r_addend;
7779 break;
7780 case 1:
7781 aux->table[i].end.section = sym->st_shndx;
7782 aux->table[i].end.offset = sym->st_value + rp->r_addend;
7783 break;
7784 default:
7785 break;
7786 }
7787 }
7788
7789 free (rela);
7790 }
7791
7792 aux->table_len = nentries;
7793
7794 return 1;
7795 }
7796
7797 static void
7798 hppa_process_unwind (FILE * file)
7799 {
7800 struct hppa_unw_aux_info aux;
7801 Elf_Internal_Shdr * unwsec = NULL;
7802 Elf_Internal_Shdr * strsec;
7803 Elf_Internal_Shdr * sec;
7804 unsigned long i;
7805
7806 if (string_table == NULL)
7807 return;
7808
7809 memset (& aux, 0, sizeof (aux));
7810
7811 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7812 {
7813 if (sec->sh_type == SHT_SYMTAB
7814 && sec->sh_link < elf_header.e_shnum)
7815 {
7816 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7817
7818 strsec = section_headers + sec->sh_link;
7819 if (aux.strtab != NULL)
7820 {
7821 error (_("Multiple auxillary string tables encountered\n"));
7822 free (aux.strtab);
7823 }
7824 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7825 1, strsec->sh_size,
7826 _("string table"));
7827 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7828 }
7829 else if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
7830 unwsec = sec;
7831 }
7832
7833 if (!unwsec)
7834 printf (_("\nThere are no unwind sections in this file.\n"));
7835
7836 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7837 {
7838 if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
7839 {
7840 printf (_("\nUnwind section '%s' at offset 0x%lx contains %lu entries:\n"),
7841 printable_section_name (sec),
7842 (unsigned long) sec->sh_offset,
7843 (unsigned long) (sec->sh_size / (2 * eh_addr_size + 8)));
7844
7845 slurp_hppa_unwind_table (file, &aux, sec);
7846 if (aux.table_len > 0)
7847 dump_hppa_unwind (&aux);
7848
7849 if (aux.table)
7850 free ((char *) aux.table);
7851 aux.table = NULL;
7852 }
7853 }
7854
7855 if (aux.symtab)
7856 free (aux.symtab);
7857 if (aux.strtab)
7858 free ((char *) aux.strtab);
7859 }
7860
7861 struct arm_section
7862 {
7863 unsigned char * data; /* The unwind data. */
7864 Elf_Internal_Shdr * sec; /* The cached unwind section header. */
7865 Elf_Internal_Rela * rela; /* The cached relocations for this section. */
7866 unsigned long nrelas; /* The number of relocations. */
7867 unsigned int rel_type; /* REL or RELA ? */
7868 Elf_Internal_Rela * next_rela; /* Cyclic pointer to the next reloc to process. */
7869 };
7870
7871 struct arm_unw_aux_info
7872 {
7873 FILE * file; /* The file containing the unwind sections. */
7874 Elf_Internal_Sym * symtab; /* The file's symbol table. */
7875 unsigned long nsyms; /* Number of symbols. */
7876 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7877 unsigned long nfuns; /* Number of these symbols. */
7878 char * strtab; /* The file's string table. */
7879 unsigned long strtab_size; /* Size of string table. */
7880 };
7881
7882 static const char *
7883 arm_print_vma_and_name (struct arm_unw_aux_info *aux,
7884 bfd_vma fn, struct absaddr addr)
7885 {
7886 const char *procname;
7887 bfd_vma sym_offset;
7888
7889 if (addr.section == SHN_UNDEF)
7890 addr.offset = fn;
7891
7892 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7893 aux->strtab_size, addr, &procname,
7894 &sym_offset);
7895
7896 print_vma (fn, PREFIX_HEX);
7897
7898 if (procname)
7899 {
7900 fputs (" <", stdout);
7901 fputs (procname, stdout);
7902
7903 if (sym_offset)
7904 printf ("+0x%lx", (unsigned long) sym_offset);
7905 fputc ('>', stdout);
7906 }
7907
7908 return procname;
7909 }
7910
7911 static void
7912 arm_free_section (struct arm_section *arm_sec)
7913 {
7914 if (arm_sec->data != NULL)
7915 free (arm_sec->data);
7916
7917 if (arm_sec->rela != NULL)
7918 free (arm_sec->rela);
7919 }
7920
7921 /* 1) If SEC does not match the one cached in ARM_SEC, then free the current
7922 cached section and install SEC instead.
7923 2) Locate the 32-bit word at WORD_OFFSET in unwind section SEC
7924 and return its valued in * WORDP, relocating if necessary.
7925 3) Update the NEXT_RELA field in ARM_SEC and store the section index and
7926 relocation's offset in ADDR.
7927 4) If SYM_NAME is non-NULL and a relocation was applied, record the offset
7928 into the string table of the symbol associated with the reloc. If no
7929 reloc was applied store -1 there.
7930 5) Return TRUE upon success, FALSE otherwise. */
7931
7932 static bfd_boolean
7933 get_unwind_section_word (struct arm_unw_aux_info * aux,
7934 struct arm_section * arm_sec,
7935 Elf_Internal_Shdr * sec,
7936 bfd_vma word_offset,
7937 unsigned int * wordp,
7938 struct absaddr * addr,
7939 bfd_vma * sym_name)
7940 {
7941 Elf_Internal_Rela *rp;
7942 Elf_Internal_Sym *sym;
7943 const char * relname;
7944 unsigned int word;
7945 bfd_boolean wrapped;
7946
7947 if (sec == NULL || arm_sec == NULL)
7948 return FALSE;
7949
7950 addr->section = SHN_UNDEF;
7951 addr->offset = 0;
7952
7953 if (sym_name != NULL)
7954 *sym_name = (bfd_vma) -1;
7955
7956 /* If necessary, update the section cache. */
7957 if (sec != arm_sec->sec)
7958 {
7959 Elf_Internal_Shdr *relsec;
7960
7961 arm_free_section (arm_sec);
7962
7963 arm_sec->sec = sec;
7964 arm_sec->data = get_data (NULL, aux->file, sec->sh_offset, 1,
7965 sec->sh_size, _("unwind data"));
7966 arm_sec->rela = NULL;
7967 arm_sec->nrelas = 0;
7968
7969 for (relsec = section_headers;
7970 relsec < section_headers + elf_header.e_shnum;
7971 ++relsec)
7972 {
7973 if (relsec->sh_info >= elf_header.e_shnum
7974 || section_headers + relsec->sh_info != sec
7975 /* PR 15745: Check the section type as well. */
7976 || (relsec->sh_type != SHT_REL
7977 && relsec->sh_type != SHT_RELA))
7978 continue;
7979
7980 arm_sec->rel_type = relsec->sh_type;
7981 if (relsec->sh_type == SHT_REL)
7982 {
7983 if (!slurp_rel_relocs (aux->file, relsec->sh_offset,
7984 relsec->sh_size,
7985 & arm_sec->rela, & arm_sec->nrelas))
7986 return FALSE;
7987 }
7988 else /* relsec->sh_type == SHT_RELA */
7989 {
7990 if (!slurp_rela_relocs (aux->file, relsec->sh_offset,
7991 relsec->sh_size,
7992 & arm_sec->rela, & arm_sec->nrelas))
7993 return FALSE;
7994 }
7995 break;
7996 }
7997
7998 arm_sec->next_rela = arm_sec->rela;
7999 }
8000
8001 /* If there is no unwind data we can do nothing. */
8002 if (arm_sec->data == NULL)
8003 return FALSE;
8004
8005 /* If the offset is invalid then fail. */
8006 if (word_offset > (sec->sh_size - 4)
8007 /* PR 18879 */
8008 || (sec->sh_size < 5 && word_offset >= sec->sh_size)
8009 || ((bfd_signed_vma) word_offset) < 0)
8010 return FALSE;
8011
8012 /* Get the word at the required offset. */
8013 word = byte_get (arm_sec->data + word_offset, 4);
8014
8015 /* PR 17531: file: id:000001,src:001266+003044,op:splice,rep:128. */
8016 if (arm_sec->rela == NULL)
8017 {
8018 * wordp = word;
8019 return TRUE;
8020 }
8021
8022 /* Look through the relocs to find the one that applies to the provided offset. */
8023 wrapped = FALSE;
8024 for (rp = arm_sec->next_rela; rp != arm_sec->rela + arm_sec->nrelas; rp++)
8025 {
8026 bfd_vma prelval, offset;
8027
8028 if (rp->r_offset > word_offset && !wrapped)
8029 {
8030 rp = arm_sec->rela;
8031 wrapped = TRUE;
8032 }
8033 if (rp->r_offset > word_offset)
8034 break;
8035
8036 if (rp->r_offset & 3)
8037 {
8038 warn (_("Skipping unexpected relocation at offset 0x%lx\n"),
8039 (unsigned long) rp->r_offset);
8040 continue;
8041 }
8042
8043 if (rp->r_offset < word_offset)
8044 continue;
8045
8046 /* PR 17531: file: 027-161405-0.004 */
8047 if (aux->symtab == NULL)
8048 continue;
8049
8050 if (arm_sec->rel_type == SHT_REL)
8051 {
8052 offset = word & 0x7fffffff;
8053 if (offset & 0x40000000)
8054 offset |= ~ (bfd_vma) 0x7fffffff;
8055 }
8056 else if (arm_sec->rel_type == SHT_RELA)
8057 offset = rp->r_addend;
8058 else
8059 {
8060 error (_("Unknown section relocation type %d encountered\n"),
8061 arm_sec->rel_type);
8062 break;
8063 }
8064
8065 /* PR 17531 file: 027-1241568-0.004. */
8066 if (ELF32_R_SYM (rp->r_info) >= aux->nsyms)
8067 {
8068 error (_("Bad symbol index in unwind relocation (%lu > %lu)\n"),
8069 (unsigned long) ELF32_R_SYM (rp->r_info), aux->nsyms);
8070 break;
8071 }
8072
8073 sym = aux->symtab + ELF32_R_SYM (rp->r_info);
8074 offset += sym->st_value;
8075 prelval = offset - (arm_sec->sec->sh_addr + rp->r_offset);
8076
8077 /* Check that we are processing the expected reloc type. */
8078 if (elf_header.e_machine == EM_ARM)
8079 {
8080 relname = elf_arm_reloc_type (ELF32_R_TYPE (rp->r_info));
8081 if (relname == NULL)
8082 {
8083 warn (_("Skipping unknown ARM relocation type: %d\n"),
8084 (int) ELF32_R_TYPE (rp->r_info));
8085 continue;
8086 }
8087
8088 if (streq (relname, "R_ARM_NONE"))
8089 continue;
8090
8091 if (! streq (relname, "R_ARM_PREL31"))
8092 {
8093 warn (_("Skipping unexpected ARM relocation type %s\n"), relname);
8094 continue;
8095 }
8096 }
8097 else if (elf_header.e_machine == EM_TI_C6000)
8098 {
8099 relname = elf_tic6x_reloc_type (ELF32_R_TYPE (rp->r_info));
8100 if (relname == NULL)
8101 {
8102 warn (_("Skipping unknown C6000 relocation type: %d\n"),
8103 (int) ELF32_R_TYPE (rp->r_info));
8104 continue;
8105 }
8106
8107 if (streq (relname, "R_C6000_NONE"))
8108 continue;
8109
8110 if (! streq (relname, "R_C6000_PREL31"))
8111 {
8112 warn (_("Skipping unexpected C6000 relocation type %s\n"), relname);
8113 continue;
8114 }
8115
8116 prelval >>= 1;
8117 }
8118 else
8119 {
8120 /* This function currently only supports ARM and TI unwinders. */
8121 warn (_("Only TI and ARM unwinders are currently supported\n"));
8122 break;
8123 }
8124
8125 word = (word & ~ (bfd_vma) 0x7fffffff) | (prelval & 0x7fffffff);
8126 addr->section = sym->st_shndx;
8127 addr->offset = offset;
8128
8129 if (sym_name)
8130 * sym_name = sym->st_name;
8131 break;
8132 }
8133
8134 *wordp = word;
8135 arm_sec->next_rela = rp;
8136
8137 return TRUE;
8138 }
8139
8140 static const char *tic6x_unwind_regnames[16] =
8141 {
8142 "A15", "B15", "B14", "B13", "B12", "B11", "B10", "B3",
8143 "A14", "A13", "A12", "A11", "A10",
8144 "[invalid reg 13]", "[invalid reg 14]", "[invalid reg 15]"
8145 };
8146
8147 static void
8148 decode_tic6x_unwind_regmask (unsigned int mask)
8149 {
8150 int i;
8151
8152 for (i = 12; mask; mask >>= 1, i--)
8153 {
8154 if (mask & 1)
8155 {
8156 fputs (tic6x_unwind_regnames[i], stdout);
8157 if (mask > 1)
8158 fputs (", ", stdout);
8159 }
8160 }
8161 }
8162
8163 #define ADVANCE \
8164 if (remaining == 0 && more_words) \
8165 { \
8166 data_offset += 4; \
8167 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, \
8168 data_offset, & word, & addr, NULL)) \
8169 return; \
8170 remaining = 4; \
8171 more_words--; \
8172 } \
8173
8174 #define GET_OP(OP) \
8175 ADVANCE; \
8176 if (remaining) \
8177 { \
8178 remaining--; \
8179 (OP) = word >> 24; \
8180 word <<= 8; \
8181 } \
8182 else \
8183 { \
8184 printf (_("[Truncated opcode]\n")); \
8185 return; \
8186 } \
8187 printf ("0x%02x ", OP)
8188
8189 static void
8190 decode_arm_unwind_bytecode (struct arm_unw_aux_info * aux,
8191 unsigned int word,
8192 unsigned int remaining,
8193 unsigned int more_words,
8194 bfd_vma data_offset,
8195 Elf_Internal_Shdr * data_sec,
8196 struct arm_section * data_arm_sec)
8197 {
8198 struct absaddr addr;
8199
8200 /* Decode the unwinding instructions. */
8201 while (1)
8202 {
8203 unsigned int op, op2;
8204
8205 ADVANCE;
8206 if (remaining == 0)
8207 break;
8208 remaining--;
8209 op = word >> 24;
8210 word <<= 8;
8211
8212 printf (" 0x%02x ", op);
8213
8214 if ((op & 0xc0) == 0x00)
8215 {
8216 int offset = ((op & 0x3f) << 2) + 4;
8217
8218 printf (" vsp = vsp + %d", offset);
8219 }
8220 else if ((op & 0xc0) == 0x40)
8221 {
8222 int offset = ((op & 0x3f) << 2) + 4;
8223
8224 printf (" vsp = vsp - %d", offset);
8225 }
8226 else if ((op & 0xf0) == 0x80)
8227 {
8228 GET_OP (op2);
8229 if (op == 0x80 && op2 == 0)
8230 printf (_("Refuse to unwind"));
8231 else
8232 {
8233 unsigned int mask = ((op & 0x0f) << 8) | op2;
8234 int first = 1;
8235 int i;
8236
8237 printf ("pop {");
8238 for (i = 0; i < 12; i++)
8239 if (mask & (1 << i))
8240 {
8241 if (first)
8242 first = 0;
8243 else
8244 printf (", ");
8245 printf ("r%d", 4 + i);
8246 }
8247 printf ("}");
8248 }
8249 }
8250 else if ((op & 0xf0) == 0x90)
8251 {
8252 if (op == 0x9d || op == 0x9f)
8253 printf (_(" [Reserved]"));
8254 else
8255 printf (" vsp = r%d", op & 0x0f);
8256 }
8257 else if ((op & 0xf0) == 0xa0)
8258 {
8259 int end = 4 + (op & 0x07);
8260 int first = 1;
8261 int i;
8262
8263 printf (" pop {");
8264 for (i = 4; i <= end; i++)
8265 {
8266 if (first)
8267 first = 0;
8268 else
8269 printf (", ");
8270 printf ("r%d", i);
8271 }
8272 if (op & 0x08)
8273 {
8274 if (!first)
8275 printf (", ");
8276 printf ("r14");
8277 }
8278 printf ("}");
8279 }
8280 else if (op == 0xb0)
8281 printf (_(" finish"));
8282 else if (op == 0xb1)
8283 {
8284 GET_OP (op2);
8285 if (op2 == 0 || (op2 & 0xf0) != 0)
8286 printf (_("[Spare]"));
8287 else
8288 {
8289 unsigned int mask = op2 & 0x0f;
8290 int first = 1;
8291 int i;
8292
8293 printf ("pop {");
8294 for (i = 0; i < 12; i++)
8295 if (mask & (1 << i))
8296 {
8297 if (first)
8298 first = 0;
8299 else
8300 printf (", ");
8301 printf ("r%d", i);
8302 }
8303 printf ("}");
8304 }
8305 }
8306 else if (op == 0xb2)
8307 {
8308 unsigned char buf[9];
8309 unsigned int i, len;
8310 unsigned long offset;
8311
8312 for (i = 0; i < sizeof (buf); i++)
8313 {
8314 GET_OP (buf[i]);
8315 if ((buf[i] & 0x80) == 0)
8316 break;
8317 }
8318 if (i == sizeof (buf))
8319 printf (_("corrupt change to vsp"));
8320 else
8321 {
8322 offset = read_uleb128 (buf, &len, buf + i + 1);
8323 assert (len == i + 1);
8324 offset = offset * 4 + 0x204;
8325 printf ("vsp = vsp + %ld", offset);
8326 }
8327 }
8328 else if (op == 0xb3 || op == 0xc8 || op == 0xc9)
8329 {
8330 unsigned int first, last;
8331
8332 GET_OP (op2);
8333 first = op2 >> 4;
8334 last = op2 & 0x0f;
8335 if (op == 0xc8)
8336 first = first + 16;
8337 printf ("pop {D%d", first);
8338 if (last)
8339 printf ("-D%d", first + last);
8340 printf ("}");
8341 }
8342 else if ((op & 0xf8) == 0xb8 || (op & 0xf8) == 0xd0)
8343 {
8344 unsigned int count = op & 0x07;
8345
8346 printf ("pop {D8");
8347 if (count)
8348 printf ("-D%d", 8 + count);
8349 printf ("}");
8350 }
8351 else if (op >= 0xc0 && op <= 0xc5)
8352 {
8353 unsigned int count = op & 0x07;
8354
8355 printf (" pop {wR10");
8356 if (count)
8357 printf ("-wR%d", 10 + count);
8358 printf ("}");
8359 }
8360 else if (op == 0xc6)
8361 {
8362 unsigned int first, last;
8363
8364 GET_OP (op2);
8365 first = op2 >> 4;
8366 last = op2 & 0x0f;
8367 printf ("pop {wR%d", first);
8368 if (last)
8369 printf ("-wR%d", first + last);
8370 printf ("}");
8371 }
8372 else if (op == 0xc7)
8373 {
8374 GET_OP (op2);
8375 if (op2 == 0 || (op2 & 0xf0) != 0)
8376 printf (_("[Spare]"));
8377 else
8378 {
8379 unsigned int mask = op2 & 0x0f;
8380 int first = 1;
8381 int i;
8382
8383 printf ("pop {");
8384 for (i = 0; i < 4; i++)
8385 if (mask & (1 << i))
8386 {
8387 if (first)
8388 first = 0;
8389 else
8390 printf (", ");
8391 printf ("wCGR%d", i);
8392 }
8393 printf ("}");
8394 }
8395 }
8396 else
8397 printf (_(" [unsupported opcode]"));
8398 printf ("\n");
8399 }
8400 }
8401
8402 static void
8403 decode_tic6x_unwind_bytecode (struct arm_unw_aux_info * aux,
8404 unsigned int word,
8405 unsigned int remaining,
8406 unsigned int more_words,
8407 bfd_vma data_offset,
8408 Elf_Internal_Shdr * data_sec,
8409 struct arm_section * data_arm_sec)
8410 {
8411 struct absaddr addr;
8412
8413 /* Decode the unwinding instructions. */
8414 while (1)
8415 {
8416 unsigned int op, op2;
8417
8418 ADVANCE;
8419 if (remaining == 0)
8420 break;
8421 remaining--;
8422 op = word >> 24;
8423 word <<= 8;
8424
8425 printf (" 0x%02x ", op);
8426
8427 if ((op & 0xc0) == 0x00)
8428 {
8429 int offset = ((op & 0x3f) << 3) + 8;
8430 printf (" sp = sp + %d", offset);
8431 }
8432 else if ((op & 0xc0) == 0x80)
8433 {
8434 GET_OP (op2);
8435 if (op == 0x80 && op2 == 0)
8436 printf (_("Refuse to unwind"));
8437 else
8438 {
8439 unsigned int mask = ((op & 0x1f) << 8) | op2;
8440 if (op & 0x20)
8441 printf ("pop compact {");
8442 else
8443 printf ("pop {");
8444
8445 decode_tic6x_unwind_regmask (mask);
8446 printf("}");
8447 }
8448 }
8449 else if ((op & 0xf0) == 0xc0)
8450 {
8451 unsigned int reg;
8452 unsigned int nregs;
8453 unsigned int i;
8454 const char *name;
8455 struct
8456 {
8457 unsigned int offset;
8458 unsigned int reg;
8459 } regpos[16];
8460
8461 /* Scan entire instruction first so that GET_OP output is not
8462 interleaved with disassembly. */
8463 nregs = 0;
8464 for (i = 0; nregs < (op & 0xf); i++)
8465 {
8466 GET_OP (op2);
8467 reg = op2 >> 4;
8468 if (reg != 0xf)
8469 {
8470 regpos[nregs].offset = i * 2;
8471 regpos[nregs].reg = reg;
8472 nregs++;
8473 }
8474
8475 reg = op2 & 0xf;
8476 if (reg != 0xf)
8477 {
8478 regpos[nregs].offset = i * 2 + 1;
8479 regpos[nregs].reg = reg;
8480 nregs++;
8481 }
8482 }
8483
8484 printf (_("pop frame {"));
8485 reg = nregs - 1;
8486 for (i = i * 2; i > 0; i--)
8487 {
8488 if (regpos[reg].offset == i - 1)
8489 {
8490 name = tic6x_unwind_regnames[regpos[reg].reg];
8491 if (reg > 0)
8492 reg--;
8493 }
8494 else
8495 name = _("[pad]");
8496
8497 fputs (name, stdout);
8498 if (i > 1)
8499 printf (", ");
8500 }
8501
8502 printf ("}");
8503 }
8504 else if (op == 0xd0)
8505 printf (" MOV FP, SP");
8506 else if (op == 0xd1)
8507 printf (" __c6xabi_pop_rts");
8508 else if (op == 0xd2)
8509 {
8510 unsigned char buf[9];
8511 unsigned int i, len;
8512 unsigned long offset;
8513
8514 for (i = 0; i < sizeof (buf); i++)
8515 {
8516 GET_OP (buf[i]);
8517 if ((buf[i] & 0x80) == 0)
8518 break;
8519 }
8520 /* PR 17531: file: id:000001,src:001906+004739,op:splice,rep:2. */
8521 if (i == sizeof (buf))
8522 {
8523 printf ("<corrupt sp adjust>\n");
8524 warn (_("Corrupt stack pointer adjustment detected\n"));
8525 return;
8526 }
8527
8528 offset = read_uleb128 (buf, &len, buf + i + 1);
8529 assert (len == i + 1);
8530 offset = offset * 8 + 0x408;
8531 printf (_("sp = sp + %ld"), offset);
8532 }
8533 else if ((op & 0xf0) == 0xe0)
8534 {
8535 if ((op & 0x0f) == 7)
8536 printf (" RETURN");
8537 else
8538 printf (" MV %s, B3", tic6x_unwind_regnames[op & 0x0f]);
8539 }
8540 else
8541 {
8542 printf (_(" [unsupported opcode]"));
8543 }
8544 putchar ('\n');
8545 }
8546 }
8547
8548 static bfd_vma
8549 arm_expand_prel31 (bfd_vma word, bfd_vma where)
8550 {
8551 bfd_vma offset;
8552
8553 offset = word & 0x7fffffff;
8554 if (offset & 0x40000000)
8555 offset |= ~ (bfd_vma) 0x7fffffff;
8556
8557 if (elf_header.e_machine == EM_TI_C6000)
8558 offset <<= 1;
8559
8560 return offset + where;
8561 }
8562
8563 static void
8564 decode_arm_unwind (struct arm_unw_aux_info * aux,
8565 unsigned int word,
8566 unsigned int remaining,
8567 bfd_vma data_offset,
8568 Elf_Internal_Shdr * data_sec,
8569 struct arm_section * data_arm_sec)
8570 {
8571 int per_index;
8572 unsigned int more_words = 0;
8573 struct absaddr addr;
8574 bfd_vma sym_name = (bfd_vma) -1;
8575
8576 if (remaining == 0)
8577 {
8578 /* Fetch the first word.
8579 Note - when decoding an object file the address extracted
8580 here will always be 0. So we also pass in the sym_name
8581 parameter so that we can find the symbol associated with
8582 the personality routine. */
8583 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, data_offset,
8584 & word, & addr, & sym_name))
8585 return;
8586
8587 remaining = 4;
8588 }
8589
8590 if ((word & 0x80000000) == 0)
8591 {
8592 /* Expand prel31 for personality routine. */
8593 bfd_vma fn;
8594 const char *procname;
8595
8596 fn = arm_expand_prel31 (word, data_sec->sh_addr + data_offset);
8597 printf (_(" Personality routine: "));
8598 if (fn == 0
8599 && addr.section == SHN_UNDEF && addr.offset == 0
8600 && sym_name != (bfd_vma) -1 && sym_name < aux->strtab_size)
8601 {
8602 procname = aux->strtab + sym_name;
8603 print_vma (fn, PREFIX_HEX);
8604 if (procname)
8605 {
8606 fputs (" <", stdout);
8607 fputs (procname, stdout);
8608 fputc ('>', stdout);
8609 }
8610 }
8611 else
8612 procname = arm_print_vma_and_name (aux, fn, addr);
8613 fputc ('\n', stdout);
8614
8615 /* The GCC personality routines use the standard compact
8616 encoding, starting with one byte giving the number of
8617 words. */
8618 if (procname != NULL
8619 && (const_strneq (procname, "__gcc_personality_v0")
8620 || const_strneq (procname, "__gxx_personality_v0")
8621 || const_strneq (procname, "__gcj_personality_v0")
8622 || const_strneq (procname, "__gnu_objc_personality_v0")))
8623 {
8624 remaining = 0;
8625 more_words = 1;
8626 ADVANCE;
8627 if (!remaining)
8628 {
8629 printf (_(" [Truncated data]\n"));
8630 return;
8631 }
8632 more_words = word >> 24;
8633 word <<= 8;
8634 remaining--;
8635 per_index = -1;
8636 }
8637 else
8638 return;
8639 }
8640 else
8641 {
8642 /* ARM EHABI Section 6.3:
8643
8644 An exception-handling table entry for the compact model looks like:
8645
8646 31 30-28 27-24 23-0
8647 -- ----- ----- ----
8648 1 0 index Data for personalityRoutine[index] */
8649
8650 if (elf_header.e_machine == EM_ARM
8651 && (word & 0x70000000))
8652 warn (_("Corrupt ARM compact model table entry: %x \n"), word);
8653
8654 per_index = (word >> 24) & 0x7f;
8655 printf (_(" Compact model index: %d\n"), per_index);
8656 if (per_index == 0)
8657 {
8658 more_words = 0;
8659 word <<= 8;
8660 remaining--;
8661 }
8662 else if (per_index < 3)
8663 {
8664 more_words = (word >> 16) & 0xff;
8665 word <<= 16;
8666 remaining -= 2;
8667 }
8668 }
8669
8670 switch (elf_header.e_machine)
8671 {
8672 case EM_ARM:
8673 if (per_index < 3)
8674 {
8675 decode_arm_unwind_bytecode (aux, word, remaining, more_words,
8676 data_offset, data_sec, data_arm_sec);
8677 }
8678 else
8679 {
8680 warn (_("Unknown ARM compact model index encountered\n"));
8681 printf (_(" [reserved]\n"));
8682 }
8683 break;
8684
8685 case EM_TI_C6000:
8686 if (per_index < 3)
8687 {
8688 decode_tic6x_unwind_bytecode (aux, word, remaining, more_words,
8689 data_offset, data_sec, data_arm_sec);
8690 }
8691 else if (per_index < 5)
8692 {
8693 if (((word >> 17) & 0x7f) == 0x7f)
8694 printf (_(" Restore stack from frame pointer\n"));
8695 else
8696 printf (_(" Stack increment %d\n"), (word >> 14) & 0x1fc);
8697 printf (_(" Registers restored: "));
8698 if (per_index == 4)
8699 printf (" (compact) ");
8700 decode_tic6x_unwind_regmask ((word >> 4) & 0x1fff);
8701 putchar ('\n');
8702 printf (_(" Return register: %s\n"),
8703 tic6x_unwind_regnames[word & 0xf]);
8704 }
8705 else
8706 printf (_(" [reserved (%d)]\n"), per_index);
8707 break;
8708
8709 default:
8710 error (_("Unsupported architecture type %d encountered when decoding unwind table\n"),
8711 elf_header.e_machine);
8712 }
8713
8714 /* Decode the descriptors. Not implemented. */
8715 }
8716
8717 static void
8718 dump_arm_unwind (struct arm_unw_aux_info *aux, Elf_Internal_Shdr *exidx_sec)
8719 {
8720 struct arm_section exidx_arm_sec, extab_arm_sec;
8721 unsigned int i, exidx_len;
8722 unsigned long j, nfuns;
8723
8724 memset (&exidx_arm_sec, 0, sizeof (exidx_arm_sec));
8725 memset (&extab_arm_sec, 0, sizeof (extab_arm_sec));
8726 exidx_len = exidx_sec->sh_size / 8;
8727
8728 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
8729 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
8730 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
8731 aux->funtab[nfuns++] = aux->symtab[j];
8732 aux->nfuns = nfuns;
8733 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
8734
8735 for (i = 0; i < exidx_len; i++)
8736 {
8737 unsigned int exidx_fn, exidx_entry;
8738 struct absaddr fn_addr, entry_addr;
8739 bfd_vma fn;
8740
8741 fputc ('\n', stdout);
8742
8743 if (! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
8744 8 * i, & exidx_fn, & fn_addr, NULL)
8745 || ! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
8746 8 * i + 4, & exidx_entry, & entry_addr, NULL))
8747 {
8748 free (aux->funtab);
8749 arm_free_section (& exidx_arm_sec);
8750 arm_free_section (& extab_arm_sec);
8751 return;
8752 }
8753
8754 /* ARM EHABI, Section 5:
8755 An index table entry consists of 2 words.
8756 The first word contains a prel31 offset to the start of a function, with bit 31 clear. */
8757 if (exidx_fn & 0x80000000)
8758 warn (_("corrupt index table entry: %x\n"), exidx_fn);
8759
8760 fn = arm_expand_prel31 (exidx_fn, exidx_sec->sh_addr + 8 * i);
8761
8762 arm_print_vma_and_name (aux, fn, fn_addr);
8763 fputs (": ", stdout);
8764
8765 if (exidx_entry == 1)
8766 {
8767 print_vma (exidx_entry, PREFIX_HEX);
8768 fputs (" [cantunwind]\n", stdout);
8769 }
8770 else if (exidx_entry & 0x80000000)
8771 {
8772 print_vma (exidx_entry, PREFIX_HEX);
8773 fputc ('\n', stdout);
8774 decode_arm_unwind (aux, exidx_entry, 4, 0, NULL, NULL);
8775 }
8776 else
8777 {
8778 bfd_vma table, table_offset = 0;
8779 Elf_Internal_Shdr *table_sec;
8780
8781 fputs ("@", stdout);
8782 table = arm_expand_prel31 (exidx_entry, exidx_sec->sh_addr + 8 * i + 4);
8783 print_vma (table, PREFIX_HEX);
8784 printf ("\n");
8785
8786 /* Locate the matching .ARM.extab. */
8787 if (entry_addr.section != SHN_UNDEF
8788 && entry_addr.section < elf_header.e_shnum)
8789 {
8790 table_sec = section_headers + entry_addr.section;
8791 table_offset = entry_addr.offset;
8792 /* PR 18879 */
8793 if (table_offset > table_sec->sh_size
8794 || ((bfd_signed_vma) table_offset) < 0)
8795 {
8796 warn (_("Unwind entry contains corrupt offset (0x%lx) into section %s\n"),
8797 (unsigned long) table_offset,
8798 printable_section_name (table_sec));
8799 continue;
8800 }
8801 }
8802 else
8803 {
8804 table_sec = find_section_by_address (table);
8805 if (table_sec != NULL)
8806 table_offset = table - table_sec->sh_addr;
8807 }
8808 if (table_sec == NULL)
8809 {
8810 warn (_("Could not locate .ARM.extab section containing 0x%lx.\n"),
8811 (unsigned long) table);
8812 continue;
8813 }
8814 decode_arm_unwind (aux, 0, 0, table_offset, table_sec,
8815 &extab_arm_sec);
8816 }
8817 }
8818
8819 printf ("\n");
8820
8821 free (aux->funtab);
8822 arm_free_section (&exidx_arm_sec);
8823 arm_free_section (&extab_arm_sec);
8824 }
8825
8826 /* Used for both ARM and C6X unwinding tables. */
8827
8828 static void
8829 arm_process_unwind (FILE *file)
8830 {
8831 struct arm_unw_aux_info aux;
8832 Elf_Internal_Shdr *unwsec = NULL;
8833 Elf_Internal_Shdr *strsec;
8834 Elf_Internal_Shdr *sec;
8835 unsigned long i;
8836 unsigned int sec_type;
8837
8838 switch (elf_header.e_machine)
8839 {
8840 case EM_ARM:
8841 sec_type = SHT_ARM_EXIDX;
8842 break;
8843
8844 case EM_TI_C6000:
8845 sec_type = SHT_C6000_UNWIND;
8846 break;
8847
8848 default:
8849 error (_("Unsupported architecture type %d encountered when processing unwind table\n"),
8850 elf_header.e_machine);
8851 return;
8852 }
8853
8854 if (string_table == NULL)
8855 return;
8856
8857 memset (& aux, 0, sizeof (aux));
8858 aux.file = file;
8859
8860 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
8861 {
8862 if (sec->sh_type == SHT_SYMTAB && sec->sh_link < elf_header.e_shnum)
8863 {
8864 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
8865
8866 strsec = section_headers + sec->sh_link;
8867
8868 /* PR binutils/17531 file: 011-12666-0.004. */
8869 if (aux.strtab != NULL)
8870 {
8871 error (_("Multiple string tables found in file.\n"));
8872 free (aux.strtab);
8873 }
8874 aux.strtab = get_data (NULL, file, strsec->sh_offset,
8875 1, strsec->sh_size, _("string table"));
8876 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
8877 }
8878 else if (sec->sh_type == sec_type)
8879 unwsec = sec;
8880 }
8881
8882 if (unwsec == NULL)
8883 printf (_("\nThere are no unwind sections in this file.\n"));
8884 else
8885 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
8886 {
8887 if (sec->sh_type == sec_type)
8888 {
8889 printf (_("\nUnwind table index '%s' at offset 0x%lx contains %lu entries:\n"),
8890 printable_section_name (sec),
8891 (unsigned long) sec->sh_offset,
8892 (unsigned long) (sec->sh_size / (2 * eh_addr_size)));
8893
8894 dump_arm_unwind (&aux, sec);
8895 }
8896 }
8897
8898 if (aux.symtab)
8899 free (aux.symtab);
8900 if (aux.strtab)
8901 free ((char *) aux.strtab);
8902 }
8903
8904 static void
8905 process_unwind (FILE * file)
8906 {
8907 struct unwind_handler
8908 {
8909 int machtype;
8910 void (* handler)(FILE *);
8911 } handlers[] =
8912 {
8913 { EM_ARM, arm_process_unwind },
8914 { EM_IA_64, ia64_process_unwind },
8915 { EM_PARISC, hppa_process_unwind },
8916 { EM_TI_C6000, arm_process_unwind },
8917 { 0, 0 }
8918 };
8919 int i;
8920
8921 if (!do_unwind)
8922 return;
8923
8924 for (i = 0; handlers[i].handler != NULL; i++)
8925 if (elf_header.e_machine == handlers[i].machtype)
8926 {
8927 handlers[i].handler (file);
8928 return;
8929 }
8930
8931 printf (_("\nThe decoding of unwind sections for machine type %s is not currently supported.\n"),
8932 get_machine_name (elf_header.e_machine));
8933 }
8934
8935 static void
8936 dynamic_section_mips_val (Elf_Internal_Dyn * entry)
8937 {
8938 switch (entry->d_tag)
8939 {
8940 case DT_MIPS_FLAGS:
8941 if (entry->d_un.d_val == 0)
8942 printf (_("NONE"));
8943 else
8944 {
8945 static const char * opts[] =
8946 {
8947 "QUICKSTART", "NOTPOT", "NO_LIBRARY_REPLACEMENT",
8948 "NO_MOVE", "SGI_ONLY", "GUARANTEE_INIT", "DELTA_C_PLUS_PLUS",
8949 "GUARANTEE_START_INIT", "PIXIE", "DEFAULT_DELAY_LOAD",
8950 "REQUICKSTART", "REQUICKSTARTED", "CORD", "NO_UNRES_UNDEF",
8951 "RLD_ORDER_SAFE"
8952 };
8953 unsigned int cnt;
8954 int first = 1;
8955
8956 for (cnt = 0; cnt < ARRAY_SIZE (opts); ++cnt)
8957 if (entry->d_un.d_val & (1 << cnt))
8958 {
8959 printf ("%s%s", first ? "" : " ", opts[cnt]);
8960 first = 0;
8961 }
8962 }
8963 break;
8964
8965 case DT_MIPS_IVERSION:
8966 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
8967 printf (_("Interface Version: %s"), GET_DYNAMIC_NAME (entry->d_un.d_val));
8968 else
8969 {
8970 char buf[40];
8971 sprintf_vma (buf, entry->d_un.d_ptr);
8972 /* Note: coded this way so that there is a single string for translation. */
8973 printf (_("<corrupt: %s>"), buf);
8974 }
8975 break;
8976
8977 case DT_MIPS_TIME_STAMP:
8978 {
8979 char timebuf[128];
8980 struct tm * tmp;
8981 time_t atime = entry->d_un.d_val;
8982
8983 tmp = gmtime (&atime);
8984 /* PR 17531: file: 6accc532. */
8985 if (tmp == NULL)
8986 snprintf (timebuf, sizeof (timebuf), _("<corrupt>"));
8987 else
8988 snprintf (timebuf, sizeof (timebuf), "%04u-%02u-%02uT%02u:%02u:%02u",
8989 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
8990 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
8991 printf (_("Time Stamp: %s"), timebuf);
8992 }
8993 break;
8994
8995 case DT_MIPS_RLD_VERSION:
8996 case DT_MIPS_LOCAL_GOTNO:
8997 case DT_MIPS_CONFLICTNO:
8998 case DT_MIPS_LIBLISTNO:
8999 case DT_MIPS_SYMTABNO:
9000 case DT_MIPS_UNREFEXTNO:
9001 case DT_MIPS_HIPAGENO:
9002 case DT_MIPS_DELTA_CLASS_NO:
9003 case DT_MIPS_DELTA_INSTANCE_NO:
9004 case DT_MIPS_DELTA_RELOC_NO:
9005 case DT_MIPS_DELTA_SYM_NO:
9006 case DT_MIPS_DELTA_CLASSSYM_NO:
9007 case DT_MIPS_COMPACT_SIZE:
9008 print_vma (entry->d_un.d_val, DEC);
9009 break;
9010
9011 default:
9012 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9013 }
9014 putchar ('\n');
9015 }
9016
9017 static void
9018 dynamic_section_parisc_val (Elf_Internal_Dyn * entry)
9019 {
9020 switch (entry->d_tag)
9021 {
9022 case DT_HP_DLD_FLAGS:
9023 {
9024 static struct
9025 {
9026 long int bit;
9027 const char * str;
9028 }
9029 flags[] =
9030 {
9031 { DT_HP_DEBUG_PRIVATE, "HP_DEBUG_PRIVATE" },
9032 { DT_HP_DEBUG_CALLBACK, "HP_DEBUG_CALLBACK" },
9033 { DT_HP_DEBUG_CALLBACK_BOR, "HP_DEBUG_CALLBACK_BOR" },
9034 { DT_HP_NO_ENVVAR, "HP_NO_ENVVAR" },
9035 { DT_HP_BIND_NOW, "HP_BIND_NOW" },
9036 { DT_HP_BIND_NONFATAL, "HP_BIND_NONFATAL" },
9037 { DT_HP_BIND_VERBOSE, "HP_BIND_VERBOSE" },
9038 { DT_HP_BIND_RESTRICTED, "HP_BIND_RESTRICTED" },
9039 { DT_HP_BIND_SYMBOLIC, "HP_BIND_SYMBOLIC" },
9040 { DT_HP_RPATH_FIRST, "HP_RPATH_FIRST" },
9041 { DT_HP_BIND_DEPTH_FIRST, "HP_BIND_DEPTH_FIRST" },
9042 { DT_HP_GST, "HP_GST" },
9043 { DT_HP_SHLIB_FIXED, "HP_SHLIB_FIXED" },
9044 { DT_HP_MERGE_SHLIB_SEG, "HP_MERGE_SHLIB_SEG" },
9045 { DT_HP_NODELETE, "HP_NODELETE" },
9046 { DT_HP_GROUP, "HP_GROUP" },
9047 { DT_HP_PROTECT_LINKAGE_TABLE, "HP_PROTECT_LINKAGE_TABLE" }
9048 };
9049 int first = 1;
9050 size_t cnt;
9051 bfd_vma val = entry->d_un.d_val;
9052
9053 for (cnt = 0; cnt < ARRAY_SIZE (flags); ++cnt)
9054 if (val & flags[cnt].bit)
9055 {
9056 if (! first)
9057 putchar (' ');
9058 fputs (flags[cnt].str, stdout);
9059 first = 0;
9060 val ^= flags[cnt].bit;
9061 }
9062
9063 if (val != 0 || first)
9064 {
9065 if (! first)
9066 putchar (' ');
9067 print_vma (val, HEX);
9068 }
9069 }
9070 break;
9071
9072 default:
9073 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9074 break;
9075 }
9076 putchar ('\n');
9077 }
9078
9079 #ifdef BFD64
9080
9081 /* VMS vs Unix time offset and factor. */
9082
9083 #define VMS_EPOCH_OFFSET 35067168000000000LL
9084 #define VMS_GRANULARITY_FACTOR 10000000
9085
9086 /* Display a VMS time in a human readable format. */
9087
9088 static void
9089 print_vms_time (bfd_int64_t vmstime)
9090 {
9091 struct tm *tm;
9092 time_t unxtime;
9093
9094 unxtime = (vmstime - VMS_EPOCH_OFFSET) / VMS_GRANULARITY_FACTOR;
9095 tm = gmtime (&unxtime);
9096 printf ("%04u-%02u-%02uT%02u:%02u:%02u",
9097 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
9098 tm->tm_hour, tm->tm_min, tm->tm_sec);
9099 }
9100 #endif /* BFD64 */
9101
9102 static void
9103 dynamic_section_ia64_val (Elf_Internal_Dyn * entry)
9104 {
9105 switch (entry->d_tag)
9106 {
9107 case DT_IA_64_PLT_RESERVE:
9108 /* First 3 slots reserved. */
9109 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9110 printf (" -- ");
9111 print_vma (entry->d_un.d_ptr + (3 * 8), PREFIX_HEX);
9112 break;
9113
9114 case DT_IA_64_VMS_LINKTIME:
9115 #ifdef BFD64
9116 print_vms_time (entry->d_un.d_val);
9117 #endif
9118 break;
9119
9120 case DT_IA_64_VMS_LNKFLAGS:
9121 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9122 if (entry->d_un.d_val & VMS_LF_CALL_DEBUG)
9123 printf (" CALL_DEBUG");
9124 if (entry->d_un.d_val & VMS_LF_NOP0BUFS)
9125 printf (" NOP0BUFS");
9126 if (entry->d_un.d_val & VMS_LF_P0IMAGE)
9127 printf (" P0IMAGE");
9128 if (entry->d_un.d_val & VMS_LF_MKTHREADS)
9129 printf (" MKTHREADS");
9130 if (entry->d_un.d_val & VMS_LF_UPCALLS)
9131 printf (" UPCALLS");
9132 if (entry->d_un.d_val & VMS_LF_IMGSTA)
9133 printf (" IMGSTA");
9134 if (entry->d_un.d_val & VMS_LF_INITIALIZE)
9135 printf (" INITIALIZE");
9136 if (entry->d_un.d_val & VMS_LF_MAIN)
9137 printf (" MAIN");
9138 if (entry->d_un.d_val & VMS_LF_EXE_INIT)
9139 printf (" EXE_INIT");
9140 if (entry->d_un.d_val & VMS_LF_TBK_IN_IMG)
9141 printf (" TBK_IN_IMG");
9142 if (entry->d_un.d_val & VMS_LF_DBG_IN_IMG)
9143 printf (" DBG_IN_IMG");
9144 if (entry->d_un.d_val & VMS_LF_TBK_IN_DSF)
9145 printf (" TBK_IN_DSF");
9146 if (entry->d_un.d_val & VMS_LF_DBG_IN_DSF)
9147 printf (" DBG_IN_DSF");
9148 if (entry->d_un.d_val & VMS_LF_SIGNATURES)
9149 printf (" SIGNATURES");
9150 if (entry->d_un.d_val & VMS_LF_REL_SEG_OFF)
9151 printf (" REL_SEG_OFF");
9152 break;
9153
9154 default:
9155 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9156 break;
9157 }
9158 putchar ('\n');
9159 }
9160
9161 static int
9162 get_32bit_dynamic_section (FILE * file)
9163 {
9164 Elf32_External_Dyn * edyn;
9165 Elf32_External_Dyn * ext;
9166 Elf_Internal_Dyn * entry;
9167
9168 edyn = (Elf32_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
9169 dynamic_size, _("dynamic section"));
9170 if (!edyn)
9171 return 0;
9172
9173 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9174 might not have the luxury of section headers. Look for the DT_NULL
9175 terminator to determine the number of entries. */
9176 for (ext = edyn, dynamic_nent = 0;
9177 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9178 ext++)
9179 {
9180 dynamic_nent++;
9181 if (BYTE_GET (ext->d_tag) == DT_NULL)
9182 break;
9183 }
9184
9185 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9186 sizeof (* entry));
9187 if (dynamic_section == NULL)
9188 {
9189 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9190 (unsigned long) dynamic_nent);
9191 free (edyn);
9192 return 0;
9193 }
9194
9195 for (ext = edyn, entry = dynamic_section;
9196 entry < dynamic_section + dynamic_nent;
9197 ext++, entry++)
9198 {
9199 entry->d_tag = BYTE_GET (ext->d_tag);
9200 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9201 }
9202
9203 free (edyn);
9204
9205 return 1;
9206 }
9207
9208 static int
9209 get_64bit_dynamic_section (FILE * file)
9210 {
9211 Elf64_External_Dyn * edyn;
9212 Elf64_External_Dyn * ext;
9213 Elf_Internal_Dyn * entry;
9214
9215 /* Read in the data. */
9216 edyn = (Elf64_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
9217 dynamic_size, _("dynamic section"));
9218 if (!edyn)
9219 return 0;
9220
9221 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9222 might not have the luxury of section headers. Look for the DT_NULL
9223 terminator to determine the number of entries. */
9224 for (ext = edyn, dynamic_nent = 0;
9225 /* PR 17533 file: 033-67080-0.004 - do not read past end of buffer. */
9226 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9227 ext++)
9228 {
9229 dynamic_nent++;
9230 if (BYTE_GET (ext->d_tag) == DT_NULL)
9231 break;
9232 }
9233
9234 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9235 sizeof (* entry));
9236 if (dynamic_section == NULL)
9237 {
9238 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9239 (unsigned long) dynamic_nent);
9240 free (edyn);
9241 return 0;
9242 }
9243
9244 /* Convert from external to internal formats. */
9245 for (ext = edyn, entry = dynamic_section;
9246 entry < dynamic_section + dynamic_nent;
9247 ext++, entry++)
9248 {
9249 entry->d_tag = BYTE_GET (ext->d_tag);
9250 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9251 }
9252
9253 free (edyn);
9254
9255 return 1;
9256 }
9257
9258 static void
9259 print_dynamic_flags (bfd_vma flags)
9260 {
9261 int first = 1;
9262
9263 while (flags)
9264 {
9265 bfd_vma flag;
9266
9267 flag = flags & - flags;
9268 flags &= ~ flag;
9269
9270 if (first)
9271 first = 0;
9272 else
9273 putc (' ', stdout);
9274
9275 switch (flag)
9276 {
9277 case DF_ORIGIN: fputs ("ORIGIN", stdout); break;
9278 case DF_SYMBOLIC: fputs ("SYMBOLIC", stdout); break;
9279 case DF_TEXTREL: fputs ("TEXTREL", stdout); break;
9280 case DF_BIND_NOW: fputs ("BIND_NOW", stdout); break;
9281 case DF_STATIC_TLS: fputs ("STATIC_TLS", stdout); break;
9282 default: fputs (_("unknown"), stdout); break;
9283 }
9284 }
9285 puts ("");
9286 }
9287
9288 /* Parse and display the contents of the dynamic section. */
9289
9290 static int
9291 process_dynamic_section (FILE * file)
9292 {
9293 Elf_Internal_Dyn * entry;
9294
9295 if (dynamic_size == 0)
9296 {
9297 if (do_dynamic)
9298 printf (_("\nThere is no dynamic section in this file.\n"));
9299
9300 return 1;
9301 }
9302
9303 if (is_32bit_elf)
9304 {
9305 if (! get_32bit_dynamic_section (file))
9306 return 0;
9307 }
9308 else if (! get_64bit_dynamic_section (file))
9309 return 0;
9310
9311 /* Find the appropriate symbol table. */
9312 if (dynamic_symbols == NULL)
9313 {
9314 for (entry = dynamic_section;
9315 entry < dynamic_section + dynamic_nent;
9316 ++entry)
9317 {
9318 Elf_Internal_Shdr section;
9319
9320 if (entry->d_tag != DT_SYMTAB)
9321 continue;
9322
9323 dynamic_info[DT_SYMTAB] = entry->d_un.d_val;
9324
9325 /* Since we do not know how big the symbol table is,
9326 we default to reading in the entire file (!) and
9327 processing that. This is overkill, I know, but it
9328 should work. */
9329 section.sh_offset = offset_from_vma (file, entry->d_un.d_val, 0);
9330
9331 if (archive_file_offset != 0)
9332 section.sh_size = archive_file_size - section.sh_offset;
9333 else
9334 {
9335 if (fseek (file, 0, SEEK_END))
9336 error (_("Unable to seek to end of file!\n"));
9337
9338 section.sh_size = ftell (file) - section.sh_offset;
9339 }
9340
9341 if (is_32bit_elf)
9342 section.sh_entsize = sizeof (Elf32_External_Sym);
9343 else
9344 section.sh_entsize = sizeof (Elf64_External_Sym);
9345 section.sh_name = string_table_length;
9346
9347 dynamic_symbols = GET_ELF_SYMBOLS (file, &section, & num_dynamic_syms);
9348 if (num_dynamic_syms < 1)
9349 {
9350 error (_("Unable to determine the number of symbols to load\n"));
9351 continue;
9352 }
9353 }
9354 }
9355
9356 /* Similarly find a string table. */
9357 if (dynamic_strings == NULL)
9358 {
9359 for (entry = dynamic_section;
9360 entry < dynamic_section + dynamic_nent;
9361 ++entry)
9362 {
9363 unsigned long offset;
9364 long str_tab_len;
9365
9366 if (entry->d_tag != DT_STRTAB)
9367 continue;
9368
9369 dynamic_info[DT_STRTAB] = entry->d_un.d_val;
9370
9371 /* Since we do not know how big the string table is,
9372 we default to reading in the entire file (!) and
9373 processing that. This is overkill, I know, but it
9374 should work. */
9375
9376 offset = offset_from_vma (file, entry->d_un.d_val, 0);
9377
9378 if (archive_file_offset != 0)
9379 str_tab_len = archive_file_size - offset;
9380 else
9381 {
9382 if (fseek (file, 0, SEEK_END))
9383 error (_("Unable to seek to end of file\n"));
9384 str_tab_len = ftell (file) - offset;
9385 }
9386
9387 if (str_tab_len < 1)
9388 {
9389 error
9390 (_("Unable to determine the length of the dynamic string table\n"));
9391 continue;
9392 }
9393
9394 dynamic_strings = (char *) get_data (NULL, file, offset, 1,
9395 str_tab_len,
9396 _("dynamic string table"));
9397 dynamic_strings_length = dynamic_strings == NULL ? 0 : str_tab_len;
9398 break;
9399 }
9400 }
9401
9402 /* And find the syminfo section if available. */
9403 if (dynamic_syminfo == NULL)
9404 {
9405 unsigned long syminsz = 0;
9406
9407 for (entry = dynamic_section;
9408 entry < dynamic_section + dynamic_nent;
9409 ++entry)
9410 {
9411 if (entry->d_tag == DT_SYMINENT)
9412 {
9413 /* Note: these braces are necessary to avoid a syntax
9414 error from the SunOS4 C compiler. */
9415 /* PR binutils/17531: A corrupt file can trigger this test.
9416 So do not use an assert, instead generate an error message. */
9417 if (sizeof (Elf_External_Syminfo) != entry->d_un.d_val)
9418 error (_("Bad value (%d) for SYMINENT entry\n"),
9419 (int) entry->d_un.d_val);
9420 }
9421 else if (entry->d_tag == DT_SYMINSZ)
9422 syminsz = entry->d_un.d_val;
9423 else if (entry->d_tag == DT_SYMINFO)
9424 dynamic_syminfo_offset = offset_from_vma (file, entry->d_un.d_val,
9425 syminsz);
9426 }
9427
9428 if (dynamic_syminfo_offset != 0 && syminsz != 0)
9429 {
9430 Elf_External_Syminfo * extsyminfo;
9431 Elf_External_Syminfo * extsym;
9432 Elf_Internal_Syminfo * syminfo;
9433
9434 /* There is a syminfo section. Read the data. */
9435 extsyminfo = (Elf_External_Syminfo *)
9436 get_data (NULL, file, dynamic_syminfo_offset, 1, syminsz,
9437 _("symbol information"));
9438 if (!extsyminfo)
9439 return 0;
9440
9441 dynamic_syminfo = (Elf_Internal_Syminfo *) malloc (syminsz);
9442 if (dynamic_syminfo == NULL)
9443 {
9444 error (_("Out of memory allocating %lu byte for dynamic symbol info\n"),
9445 (unsigned long) syminsz);
9446 return 0;
9447 }
9448
9449 dynamic_syminfo_nent = syminsz / sizeof (Elf_External_Syminfo);
9450 for (syminfo = dynamic_syminfo, extsym = extsyminfo;
9451 syminfo < dynamic_syminfo + dynamic_syminfo_nent;
9452 ++syminfo, ++extsym)
9453 {
9454 syminfo->si_boundto = BYTE_GET (extsym->si_boundto);
9455 syminfo->si_flags = BYTE_GET (extsym->si_flags);
9456 }
9457
9458 free (extsyminfo);
9459 }
9460 }
9461
9462 if (do_dynamic && dynamic_addr)
9463 printf (_("\nDynamic section at offset 0x%lx contains %lu entries:\n"),
9464 dynamic_addr, (unsigned long) dynamic_nent);
9465 if (do_dynamic)
9466 printf (_(" Tag Type Name/Value\n"));
9467
9468 for (entry = dynamic_section;
9469 entry < dynamic_section + dynamic_nent;
9470 entry++)
9471 {
9472 if (do_dynamic)
9473 {
9474 const char * dtype;
9475
9476 putchar (' ');
9477 print_vma (entry->d_tag, FULL_HEX);
9478 dtype = get_dynamic_type (entry->d_tag);
9479 printf (" (%s)%*s", dtype,
9480 ((is_32bit_elf ? 27 : 19)
9481 - (int) strlen (dtype)),
9482 " ");
9483 }
9484
9485 switch (entry->d_tag)
9486 {
9487 case DT_FLAGS:
9488 if (do_dynamic)
9489 print_dynamic_flags (entry->d_un.d_val);
9490 break;
9491
9492 case DT_AUXILIARY:
9493 case DT_FILTER:
9494 case DT_CONFIG:
9495 case DT_DEPAUDIT:
9496 case DT_AUDIT:
9497 if (do_dynamic)
9498 {
9499 switch (entry->d_tag)
9500 {
9501 case DT_AUXILIARY:
9502 printf (_("Auxiliary library"));
9503 break;
9504
9505 case DT_FILTER:
9506 printf (_("Filter library"));
9507 break;
9508
9509 case DT_CONFIG:
9510 printf (_("Configuration file"));
9511 break;
9512
9513 case DT_DEPAUDIT:
9514 printf (_("Dependency audit library"));
9515 break;
9516
9517 case DT_AUDIT:
9518 printf (_("Audit library"));
9519 break;
9520 }
9521
9522 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9523 printf (": [%s]\n", GET_DYNAMIC_NAME (entry->d_un.d_val));
9524 else
9525 {
9526 printf (": ");
9527 print_vma (entry->d_un.d_val, PREFIX_HEX);
9528 putchar ('\n');
9529 }
9530 }
9531 break;
9532
9533 case DT_FEATURE:
9534 if (do_dynamic)
9535 {
9536 printf (_("Flags:"));
9537
9538 if (entry->d_un.d_val == 0)
9539 printf (_(" None\n"));
9540 else
9541 {
9542 unsigned long int val = entry->d_un.d_val;
9543
9544 if (val & DTF_1_PARINIT)
9545 {
9546 printf (" PARINIT");
9547 val ^= DTF_1_PARINIT;
9548 }
9549 if (val & DTF_1_CONFEXP)
9550 {
9551 printf (" CONFEXP");
9552 val ^= DTF_1_CONFEXP;
9553 }
9554 if (val != 0)
9555 printf (" %lx", val);
9556 puts ("");
9557 }
9558 }
9559 break;
9560
9561 case DT_POSFLAG_1:
9562 if (do_dynamic)
9563 {
9564 printf (_("Flags:"));
9565
9566 if (entry->d_un.d_val == 0)
9567 printf (_(" None\n"));
9568 else
9569 {
9570 unsigned long int val = entry->d_un.d_val;
9571
9572 if (val & DF_P1_LAZYLOAD)
9573 {
9574 printf (" LAZYLOAD");
9575 val ^= DF_P1_LAZYLOAD;
9576 }
9577 if (val & DF_P1_GROUPPERM)
9578 {
9579 printf (" GROUPPERM");
9580 val ^= DF_P1_GROUPPERM;
9581 }
9582 if (val != 0)
9583 printf (" %lx", val);
9584 puts ("");
9585 }
9586 }
9587 break;
9588
9589 case DT_FLAGS_1:
9590 if (do_dynamic)
9591 {
9592 printf (_("Flags:"));
9593 if (entry->d_un.d_val == 0)
9594 printf (_(" None\n"));
9595 else
9596 {
9597 unsigned long int val = entry->d_un.d_val;
9598
9599 if (val & DF_1_NOW)
9600 {
9601 printf (" NOW");
9602 val ^= DF_1_NOW;
9603 }
9604 if (val & DF_1_GLOBAL)
9605 {
9606 printf (" GLOBAL");
9607 val ^= DF_1_GLOBAL;
9608 }
9609 if (val & DF_1_GROUP)
9610 {
9611 printf (" GROUP");
9612 val ^= DF_1_GROUP;
9613 }
9614 if (val & DF_1_NODELETE)
9615 {
9616 printf (" NODELETE");
9617 val ^= DF_1_NODELETE;
9618 }
9619 if (val & DF_1_LOADFLTR)
9620 {
9621 printf (" LOADFLTR");
9622 val ^= DF_1_LOADFLTR;
9623 }
9624 if (val & DF_1_INITFIRST)
9625 {
9626 printf (" INITFIRST");
9627 val ^= DF_1_INITFIRST;
9628 }
9629 if (val & DF_1_NOOPEN)
9630 {
9631 printf (" NOOPEN");
9632 val ^= DF_1_NOOPEN;
9633 }
9634 if (val & DF_1_ORIGIN)
9635 {
9636 printf (" ORIGIN");
9637 val ^= DF_1_ORIGIN;
9638 }
9639 if (val & DF_1_DIRECT)
9640 {
9641 printf (" DIRECT");
9642 val ^= DF_1_DIRECT;
9643 }
9644 if (val & DF_1_TRANS)
9645 {
9646 printf (" TRANS");
9647 val ^= DF_1_TRANS;
9648 }
9649 if (val & DF_1_INTERPOSE)
9650 {
9651 printf (" INTERPOSE");
9652 val ^= DF_1_INTERPOSE;
9653 }
9654 if (val & DF_1_NODEFLIB)
9655 {
9656 printf (" NODEFLIB");
9657 val ^= DF_1_NODEFLIB;
9658 }
9659 if (val & DF_1_NODUMP)
9660 {
9661 printf (" NODUMP");
9662 val ^= DF_1_NODUMP;
9663 }
9664 if (val & DF_1_CONFALT)
9665 {
9666 printf (" CONFALT");
9667 val ^= DF_1_CONFALT;
9668 }
9669 if (val & DF_1_ENDFILTEE)
9670 {
9671 printf (" ENDFILTEE");
9672 val ^= DF_1_ENDFILTEE;
9673 }
9674 if (val & DF_1_DISPRELDNE)
9675 {
9676 printf (" DISPRELDNE");
9677 val ^= DF_1_DISPRELDNE;
9678 }
9679 if (val & DF_1_DISPRELPND)
9680 {
9681 printf (" DISPRELPND");
9682 val ^= DF_1_DISPRELPND;
9683 }
9684 if (val & DF_1_NODIRECT)
9685 {
9686 printf (" NODIRECT");
9687 val ^= DF_1_NODIRECT;
9688 }
9689 if (val & DF_1_IGNMULDEF)
9690 {
9691 printf (" IGNMULDEF");
9692 val ^= DF_1_IGNMULDEF;
9693 }
9694 if (val & DF_1_NOKSYMS)
9695 {
9696 printf (" NOKSYMS");
9697 val ^= DF_1_NOKSYMS;
9698 }
9699 if (val & DF_1_NOHDR)
9700 {
9701 printf (" NOHDR");
9702 val ^= DF_1_NOHDR;
9703 }
9704 if (val & DF_1_EDITED)
9705 {
9706 printf (" EDITED");
9707 val ^= DF_1_EDITED;
9708 }
9709 if (val & DF_1_NORELOC)
9710 {
9711 printf (" NORELOC");
9712 val ^= DF_1_NORELOC;
9713 }
9714 if (val & DF_1_SYMINTPOSE)
9715 {
9716 printf (" SYMINTPOSE");
9717 val ^= DF_1_SYMINTPOSE;
9718 }
9719 if (val & DF_1_GLOBAUDIT)
9720 {
9721 printf (" GLOBAUDIT");
9722 val ^= DF_1_GLOBAUDIT;
9723 }
9724 if (val & DF_1_SINGLETON)
9725 {
9726 printf (" SINGLETON");
9727 val ^= DF_1_SINGLETON;
9728 }
9729 if (val & DF_1_STUB)
9730 {
9731 printf (" STUB");
9732 val ^= DF_1_STUB;
9733 }
9734 if (val & DF_1_PIE)
9735 {
9736 printf (" PIE");
9737 val ^= DF_1_PIE;
9738 }
9739 if (val != 0)
9740 printf (" %lx", val);
9741 puts ("");
9742 }
9743 }
9744 break;
9745
9746 case DT_PLTREL:
9747 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9748 if (do_dynamic)
9749 puts (get_dynamic_type (entry->d_un.d_val));
9750 break;
9751
9752 case DT_NULL :
9753 case DT_NEEDED :
9754 case DT_PLTGOT :
9755 case DT_HASH :
9756 case DT_STRTAB :
9757 case DT_SYMTAB :
9758 case DT_RELA :
9759 case DT_INIT :
9760 case DT_FINI :
9761 case DT_SONAME :
9762 case DT_RPATH :
9763 case DT_SYMBOLIC:
9764 case DT_REL :
9765 case DT_DEBUG :
9766 case DT_TEXTREL :
9767 case DT_JMPREL :
9768 case DT_RUNPATH :
9769 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9770
9771 if (do_dynamic)
9772 {
9773 char * name;
9774
9775 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9776 name = GET_DYNAMIC_NAME (entry->d_un.d_val);
9777 else
9778 name = NULL;
9779
9780 if (name)
9781 {
9782 switch (entry->d_tag)
9783 {
9784 case DT_NEEDED:
9785 printf (_("Shared library: [%s]"), name);
9786
9787 if (streq (name, program_interpreter))
9788 printf (_(" program interpreter"));
9789 break;
9790
9791 case DT_SONAME:
9792 printf (_("Library soname: [%s]"), name);
9793 break;
9794
9795 case DT_RPATH:
9796 printf (_("Library rpath: [%s]"), name);
9797 break;
9798
9799 case DT_RUNPATH:
9800 printf (_("Library runpath: [%s]"), name);
9801 break;
9802
9803 default:
9804 print_vma (entry->d_un.d_val, PREFIX_HEX);
9805 break;
9806 }
9807 }
9808 else
9809 print_vma (entry->d_un.d_val, PREFIX_HEX);
9810
9811 putchar ('\n');
9812 }
9813 break;
9814
9815 case DT_PLTRELSZ:
9816 case DT_RELASZ :
9817 case DT_STRSZ :
9818 case DT_RELSZ :
9819 case DT_RELAENT :
9820 case DT_SYMENT :
9821 case DT_RELENT :
9822 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9823 /* Fall through. */
9824 case DT_PLTPADSZ:
9825 case DT_MOVEENT :
9826 case DT_MOVESZ :
9827 case DT_INIT_ARRAYSZ:
9828 case DT_FINI_ARRAYSZ:
9829 case DT_GNU_CONFLICTSZ:
9830 case DT_GNU_LIBLISTSZ:
9831 if (do_dynamic)
9832 {
9833 print_vma (entry->d_un.d_val, UNSIGNED);
9834 printf (_(" (bytes)\n"));
9835 }
9836 break;
9837
9838 case DT_VERDEFNUM:
9839 case DT_VERNEEDNUM:
9840 case DT_RELACOUNT:
9841 case DT_RELCOUNT:
9842 if (do_dynamic)
9843 {
9844 print_vma (entry->d_un.d_val, UNSIGNED);
9845 putchar ('\n');
9846 }
9847 break;
9848
9849 case DT_SYMINSZ:
9850 case DT_SYMINENT:
9851 case DT_SYMINFO:
9852 case DT_USED:
9853 case DT_INIT_ARRAY:
9854 case DT_FINI_ARRAY:
9855 if (do_dynamic)
9856 {
9857 if (entry->d_tag == DT_USED
9858 && VALID_DYNAMIC_NAME (entry->d_un.d_val))
9859 {
9860 char * name = GET_DYNAMIC_NAME (entry->d_un.d_val);
9861
9862 if (*name)
9863 {
9864 printf (_("Not needed object: [%s]\n"), name);
9865 break;
9866 }
9867 }
9868
9869 print_vma (entry->d_un.d_val, PREFIX_HEX);
9870 putchar ('\n');
9871 }
9872 break;
9873
9874 case DT_BIND_NOW:
9875 /* The value of this entry is ignored. */
9876 if (do_dynamic)
9877 putchar ('\n');
9878 break;
9879
9880 case DT_GNU_PRELINKED:
9881 if (do_dynamic)
9882 {
9883 struct tm * tmp;
9884 time_t atime = entry->d_un.d_val;
9885
9886 tmp = gmtime (&atime);
9887 /* PR 17533 file: 041-1244816-0.004. */
9888 if (tmp == NULL)
9889 printf (_("<corrupt time val: %lx"),
9890 (unsigned long) atime);
9891 else
9892 printf ("%04u-%02u-%02uT%02u:%02u:%02u\n",
9893 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
9894 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
9895
9896 }
9897 break;
9898
9899 case DT_GNU_HASH:
9900 dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
9901 if (do_dynamic)
9902 {
9903 print_vma (entry->d_un.d_val, PREFIX_HEX);
9904 putchar ('\n');
9905 }
9906 break;
9907
9908 default:
9909 if ((entry->d_tag >= DT_VERSYM) && (entry->d_tag <= DT_VERNEEDNUM))
9910 version_info[DT_VERSIONTAGIDX (entry->d_tag)] =
9911 entry->d_un.d_val;
9912
9913 if (do_dynamic)
9914 {
9915 switch (elf_header.e_machine)
9916 {
9917 case EM_MIPS:
9918 case EM_MIPS_RS3_LE:
9919 dynamic_section_mips_val (entry);
9920 break;
9921 case EM_PARISC:
9922 dynamic_section_parisc_val (entry);
9923 break;
9924 case EM_IA_64:
9925 dynamic_section_ia64_val (entry);
9926 break;
9927 default:
9928 print_vma (entry->d_un.d_val, PREFIX_HEX);
9929 putchar ('\n');
9930 }
9931 }
9932 break;
9933 }
9934 }
9935
9936 return 1;
9937 }
9938
9939 static char *
9940 get_ver_flags (unsigned int flags)
9941 {
9942 static char buff[32];
9943
9944 buff[0] = 0;
9945
9946 if (flags == 0)
9947 return _("none");
9948
9949 if (flags & VER_FLG_BASE)
9950 strcat (buff, "BASE ");
9951
9952 if (flags & VER_FLG_WEAK)
9953 {
9954 if (flags & VER_FLG_BASE)
9955 strcat (buff, "| ");
9956
9957 strcat (buff, "WEAK ");
9958 }
9959
9960 if (flags & VER_FLG_INFO)
9961 {
9962 if (flags & (VER_FLG_BASE|VER_FLG_WEAK))
9963 strcat (buff, "| ");
9964
9965 strcat (buff, "INFO ");
9966 }
9967
9968 if (flags & ~(VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
9969 strcat (buff, _("| <unknown>"));
9970
9971 return buff;
9972 }
9973
9974 /* Display the contents of the version sections. */
9975
9976 static int
9977 process_version_sections (FILE * file)
9978 {
9979 Elf_Internal_Shdr * section;
9980 unsigned i;
9981 int found = 0;
9982
9983 if (! do_version)
9984 return 1;
9985
9986 for (i = 0, section = section_headers;
9987 i < elf_header.e_shnum;
9988 i++, section++)
9989 {
9990 switch (section->sh_type)
9991 {
9992 case SHT_GNU_verdef:
9993 {
9994 Elf_External_Verdef * edefs;
9995 unsigned int idx;
9996 unsigned int cnt;
9997 char * endbuf;
9998
9999 found = 1;
10000
10001 printf (_("\nVersion definition section '%s' contains %u entries:\n"),
10002 printable_section_name (section),
10003 section->sh_info);
10004
10005 printf (_(" Addr: 0x"));
10006 printf_vma (section->sh_addr);
10007 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10008 (unsigned long) section->sh_offset, section->sh_link,
10009 printable_section_name_from_index (section->sh_link));
10010
10011 edefs = (Elf_External_Verdef *)
10012 get_data (NULL, file, section->sh_offset, 1,section->sh_size,
10013 _("version definition section"));
10014 if (!edefs)
10015 break;
10016 endbuf = (char *) edefs + section->sh_size;
10017
10018 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
10019 {
10020 char * vstart;
10021 Elf_External_Verdef * edef;
10022 Elf_Internal_Verdef ent;
10023 Elf_External_Verdaux * eaux;
10024 Elf_Internal_Verdaux aux;
10025 int j;
10026 int isum;
10027
10028 /* Check for very large indices. */
10029 if (idx > (size_t) (endbuf - (char *) edefs))
10030 break;
10031
10032 vstart = ((char *) edefs) + idx;
10033 if (vstart + sizeof (*edef) > endbuf)
10034 break;
10035
10036 edef = (Elf_External_Verdef *) vstart;
10037
10038 ent.vd_version = BYTE_GET (edef->vd_version);
10039 ent.vd_flags = BYTE_GET (edef->vd_flags);
10040 ent.vd_ndx = BYTE_GET (edef->vd_ndx);
10041 ent.vd_cnt = BYTE_GET (edef->vd_cnt);
10042 ent.vd_hash = BYTE_GET (edef->vd_hash);
10043 ent.vd_aux = BYTE_GET (edef->vd_aux);
10044 ent.vd_next = BYTE_GET (edef->vd_next);
10045
10046 printf (_(" %#06x: Rev: %d Flags: %s"),
10047 idx, ent.vd_version, get_ver_flags (ent.vd_flags));
10048
10049 printf (_(" Index: %d Cnt: %d "),
10050 ent.vd_ndx, ent.vd_cnt);
10051
10052 /* Check for overflow. */
10053 if (ent.vd_aux + sizeof (* eaux) > (size_t) (endbuf - vstart))
10054 break;
10055
10056 vstart += ent.vd_aux;
10057
10058 eaux = (Elf_External_Verdaux *) vstart;
10059
10060 aux.vda_name = BYTE_GET (eaux->vda_name);
10061 aux.vda_next = BYTE_GET (eaux->vda_next);
10062
10063 if (VALID_DYNAMIC_NAME (aux.vda_name))
10064 printf (_("Name: %s\n"), GET_DYNAMIC_NAME (aux.vda_name));
10065 else
10066 printf (_("Name index: %ld\n"), aux.vda_name);
10067
10068 isum = idx + ent.vd_aux;
10069
10070 for (j = 1; j < ent.vd_cnt; j++)
10071 {
10072 /* Check for overflow. */
10073 if (aux.vda_next > (size_t) (endbuf - vstart))
10074 break;
10075
10076 isum += aux.vda_next;
10077 vstart += aux.vda_next;
10078
10079 eaux = (Elf_External_Verdaux *) vstart;
10080 if (vstart + sizeof (*eaux) > endbuf)
10081 break;
10082
10083 aux.vda_name = BYTE_GET (eaux->vda_name);
10084 aux.vda_next = BYTE_GET (eaux->vda_next);
10085
10086 if (VALID_DYNAMIC_NAME (aux.vda_name))
10087 printf (_(" %#06x: Parent %d: %s\n"),
10088 isum, j, GET_DYNAMIC_NAME (aux.vda_name));
10089 else
10090 printf (_(" %#06x: Parent %d, name index: %ld\n"),
10091 isum, j, aux.vda_name);
10092 }
10093
10094 if (j < ent.vd_cnt)
10095 printf (_(" Version def aux past end of section\n"));
10096
10097 /* PR 17531: file: id:000001,src:000172+005151,op:splice,rep:2. */
10098 if (idx + ent.vd_next <= idx)
10099 break;
10100
10101 idx += ent.vd_next;
10102 }
10103
10104 if (cnt < section->sh_info)
10105 printf (_(" Version definition past end of section\n"));
10106
10107 free (edefs);
10108 }
10109 break;
10110
10111 case SHT_GNU_verneed:
10112 {
10113 Elf_External_Verneed * eneed;
10114 unsigned int idx;
10115 unsigned int cnt;
10116 char * endbuf;
10117
10118 found = 1;
10119
10120 printf (_("\nVersion needs section '%s' contains %u entries:\n"),
10121 printable_section_name (section), section->sh_info);
10122
10123 printf (_(" Addr: 0x"));
10124 printf_vma (section->sh_addr);
10125 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10126 (unsigned long) section->sh_offset, section->sh_link,
10127 printable_section_name_from_index (section->sh_link));
10128
10129 eneed = (Elf_External_Verneed *) get_data (NULL, file,
10130 section->sh_offset, 1,
10131 section->sh_size,
10132 _("Version Needs section"));
10133 if (!eneed)
10134 break;
10135 endbuf = (char *) eneed + section->sh_size;
10136
10137 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
10138 {
10139 Elf_External_Verneed * entry;
10140 Elf_Internal_Verneed ent;
10141 int j;
10142 int isum;
10143 char * vstart;
10144
10145 if (idx > (size_t) (endbuf - (char *) eneed))
10146 break;
10147
10148 vstart = ((char *) eneed) + idx;
10149 if (vstart + sizeof (*entry) > endbuf)
10150 break;
10151
10152 entry = (Elf_External_Verneed *) vstart;
10153
10154 ent.vn_version = BYTE_GET (entry->vn_version);
10155 ent.vn_cnt = BYTE_GET (entry->vn_cnt);
10156 ent.vn_file = BYTE_GET (entry->vn_file);
10157 ent.vn_aux = BYTE_GET (entry->vn_aux);
10158 ent.vn_next = BYTE_GET (entry->vn_next);
10159
10160 printf (_(" %#06x: Version: %d"), idx, ent.vn_version);
10161
10162 if (VALID_DYNAMIC_NAME (ent.vn_file))
10163 printf (_(" File: %s"), GET_DYNAMIC_NAME (ent.vn_file));
10164 else
10165 printf (_(" File: %lx"), ent.vn_file);
10166
10167 printf (_(" Cnt: %d\n"), ent.vn_cnt);
10168
10169 /* Check for overflow. */
10170 if (ent.vn_aux > (size_t) (endbuf - vstart))
10171 break;
10172 vstart += ent.vn_aux;
10173
10174 for (j = 0, isum = idx + ent.vn_aux; j < ent.vn_cnt; ++j)
10175 {
10176 Elf_External_Vernaux * eaux;
10177 Elf_Internal_Vernaux aux;
10178
10179 if (vstart + sizeof (*eaux) > endbuf)
10180 break;
10181 eaux = (Elf_External_Vernaux *) vstart;
10182
10183 aux.vna_hash = BYTE_GET (eaux->vna_hash);
10184 aux.vna_flags = BYTE_GET (eaux->vna_flags);
10185 aux.vna_other = BYTE_GET (eaux->vna_other);
10186 aux.vna_name = BYTE_GET (eaux->vna_name);
10187 aux.vna_next = BYTE_GET (eaux->vna_next);
10188
10189 if (VALID_DYNAMIC_NAME (aux.vna_name))
10190 printf (_(" %#06x: Name: %s"),
10191 isum, GET_DYNAMIC_NAME (aux.vna_name));
10192 else
10193 printf (_(" %#06x: Name index: %lx"),
10194 isum, aux.vna_name);
10195
10196 printf (_(" Flags: %s Version: %d\n"),
10197 get_ver_flags (aux.vna_flags), aux.vna_other);
10198
10199 /* Check for overflow. */
10200 if (aux.vna_next > (size_t) (endbuf - vstart)
10201 || (aux.vna_next == 0 && j < ent.vn_cnt - 1))
10202 {
10203 warn (_("Invalid vna_next field of %lx\n"),
10204 aux.vna_next);
10205 j = ent.vn_cnt;
10206 break;
10207 }
10208 isum += aux.vna_next;
10209 vstart += aux.vna_next;
10210 }
10211
10212 if (j < ent.vn_cnt)
10213 warn (_("Missing Version Needs auxillary information\n"));
10214
10215 if (ent.vn_next == 0 && cnt < section->sh_info - 1)
10216 {
10217 warn (_("Corrupt Version Needs structure - offset to next structure is zero with entries still left to be processed\n"));
10218 cnt = section->sh_info;
10219 break;
10220 }
10221 idx += ent.vn_next;
10222 }
10223
10224 if (cnt < section->sh_info)
10225 warn (_("Missing Version Needs information\n"));
10226
10227 free (eneed);
10228 }
10229 break;
10230
10231 case SHT_GNU_versym:
10232 {
10233 Elf_Internal_Shdr * link_section;
10234 size_t total;
10235 unsigned int cnt;
10236 unsigned char * edata;
10237 unsigned short * data;
10238 char * strtab;
10239 Elf_Internal_Sym * symbols;
10240 Elf_Internal_Shdr * string_sec;
10241 unsigned long num_syms;
10242 long off;
10243
10244 if (section->sh_link >= elf_header.e_shnum)
10245 break;
10246
10247 link_section = section_headers + section->sh_link;
10248 total = section->sh_size / sizeof (Elf_External_Versym);
10249
10250 if (link_section->sh_link >= elf_header.e_shnum)
10251 break;
10252
10253 found = 1;
10254
10255 symbols = GET_ELF_SYMBOLS (file, link_section, & num_syms);
10256 if (symbols == NULL)
10257 break;
10258
10259 string_sec = section_headers + link_section->sh_link;
10260
10261 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
10262 string_sec->sh_size,
10263 _("version string table"));
10264 if (!strtab)
10265 {
10266 free (symbols);
10267 break;
10268 }
10269
10270 printf (_("\nVersion symbols section '%s' contains %lu entries:\n"),
10271 printable_section_name (section), (unsigned long) total);
10272
10273 printf (_(" Addr: "));
10274 printf_vma (section->sh_addr);
10275 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10276 (unsigned long) section->sh_offset, section->sh_link,
10277 printable_section_name (link_section));
10278
10279 off = offset_from_vma (file,
10280 version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
10281 total * sizeof (short));
10282 edata = (unsigned char *) get_data (NULL, file, off, total,
10283 sizeof (short),
10284 _("version symbol data"));
10285 if (!edata)
10286 {
10287 free (strtab);
10288 free (symbols);
10289 break;
10290 }
10291
10292 data = (short unsigned int *) cmalloc (total, sizeof (short));
10293
10294 for (cnt = total; cnt --;)
10295 data[cnt] = byte_get (edata + cnt * sizeof (short),
10296 sizeof (short));
10297
10298 free (edata);
10299
10300 for (cnt = 0; cnt < total; cnt += 4)
10301 {
10302 int j, nn;
10303 char *name;
10304 char *invalid = _("*invalid*");
10305
10306 printf (" %03x:", cnt);
10307
10308 for (j = 0; (j < 4) && (cnt + j) < total; ++j)
10309 switch (data[cnt + j])
10310 {
10311 case 0:
10312 fputs (_(" 0 (*local*) "), stdout);
10313 break;
10314
10315 case 1:
10316 fputs (_(" 1 (*global*) "), stdout);
10317 break;
10318
10319 default:
10320 nn = printf ("%4x%c", data[cnt + j] & VERSYM_VERSION,
10321 data[cnt + j] & VERSYM_HIDDEN ? 'h' : ' ');
10322
10323 /* If this index value is greater than the size of the symbols
10324 array, break to avoid an out-of-bounds read. */
10325 if ((unsigned long)(cnt + j) >= num_syms)
10326 {
10327 warn (_("invalid index into symbol array\n"));
10328 break;
10329 }
10330
10331 name = NULL;
10332 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
10333 {
10334 Elf_Internal_Verneed ivn;
10335 unsigned long offset;
10336
10337 offset = offset_from_vma
10338 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
10339 sizeof (Elf_External_Verneed));
10340
10341 do
10342 {
10343 Elf_Internal_Vernaux ivna;
10344 Elf_External_Verneed evn;
10345 Elf_External_Vernaux evna;
10346 unsigned long a_off;
10347
10348 if (get_data (&evn, file, offset, sizeof (evn), 1,
10349 _("version need")) == NULL)
10350 break;
10351
10352 ivn.vn_aux = BYTE_GET (evn.vn_aux);
10353 ivn.vn_next = BYTE_GET (evn.vn_next);
10354
10355 a_off = offset + ivn.vn_aux;
10356
10357 do
10358 {
10359 if (get_data (&evna, file, a_off, sizeof (evna),
10360 1, _("version need aux (2)")) == NULL)
10361 {
10362 ivna.vna_next = 0;
10363 ivna.vna_other = 0;
10364 }
10365 else
10366 {
10367 ivna.vna_next = BYTE_GET (evna.vna_next);
10368 ivna.vna_other = BYTE_GET (evna.vna_other);
10369 }
10370
10371 a_off += ivna.vna_next;
10372 }
10373 while (ivna.vna_other != data[cnt + j]
10374 && ivna.vna_next != 0);
10375
10376 if (ivna.vna_other == data[cnt + j])
10377 {
10378 ivna.vna_name = BYTE_GET (evna.vna_name);
10379
10380 if (ivna.vna_name >= string_sec->sh_size)
10381 name = invalid;
10382 else
10383 name = strtab + ivna.vna_name;
10384 break;
10385 }
10386
10387 offset += ivn.vn_next;
10388 }
10389 while (ivn.vn_next);
10390 }
10391
10392 if (data[cnt + j] != 0x8001
10393 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
10394 {
10395 Elf_Internal_Verdef ivd;
10396 Elf_External_Verdef evd;
10397 unsigned long offset;
10398
10399 offset = offset_from_vma
10400 (file, version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
10401 sizeof evd);
10402
10403 do
10404 {
10405 if (get_data (&evd, file, offset, sizeof (evd), 1,
10406 _("version def")) == NULL)
10407 {
10408 ivd.vd_next = 0;
10409 /* PR 17531: file: 046-1082287-0.004. */
10410 ivd.vd_ndx = (data[cnt + j] & VERSYM_VERSION) + 1;
10411 break;
10412 }
10413 else
10414 {
10415 ivd.vd_next = BYTE_GET (evd.vd_next);
10416 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
10417 }
10418
10419 offset += ivd.vd_next;
10420 }
10421 while (ivd.vd_ndx != (data[cnt + j] & VERSYM_VERSION)
10422 && ivd.vd_next != 0);
10423
10424 if (ivd.vd_ndx == (data[cnt + j] & VERSYM_VERSION))
10425 {
10426 Elf_External_Verdaux evda;
10427 Elf_Internal_Verdaux ivda;
10428
10429 ivd.vd_aux = BYTE_GET (evd.vd_aux);
10430
10431 if (get_data (&evda, file,
10432 offset - ivd.vd_next + ivd.vd_aux,
10433 sizeof (evda), 1,
10434 _("version def aux")) == NULL)
10435 break;
10436
10437 ivda.vda_name = BYTE_GET (evda.vda_name);
10438
10439 if (ivda.vda_name >= string_sec->sh_size)
10440 name = invalid;
10441 else if (name != NULL && name != invalid)
10442 name = _("*both*");
10443 else
10444 name = strtab + ivda.vda_name;
10445 }
10446 }
10447 if (name != NULL)
10448 nn += printf ("(%s%-*s",
10449 name,
10450 12 - (int) strlen (name),
10451 ")");
10452
10453 if (nn < 18)
10454 printf ("%*c", 18 - nn, ' ');
10455 }
10456
10457 putchar ('\n');
10458 }
10459
10460 free (data);
10461 free (strtab);
10462 free (symbols);
10463 }
10464 break;
10465
10466 default:
10467 break;
10468 }
10469 }
10470
10471 if (! found)
10472 printf (_("\nNo version information found in this file.\n"));
10473
10474 return 1;
10475 }
10476
10477 static const char *
10478 get_symbol_binding (unsigned int binding)
10479 {
10480 static char buff[32];
10481
10482 switch (binding)
10483 {
10484 case STB_LOCAL: return "LOCAL";
10485 case STB_GLOBAL: return "GLOBAL";
10486 case STB_WEAK: return "WEAK";
10487 default:
10488 if (binding >= STB_LOPROC && binding <= STB_HIPROC)
10489 snprintf (buff, sizeof (buff), _("<processor specific>: %d"),
10490 binding);
10491 else if (binding >= STB_LOOS && binding <= STB_HIOS)
10492 {
10493 if (binding == STB_GNU_UNIQUE
10494 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
10495 /* GNU is still using the default value 0. */
10496 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
10497 return "UNIQUE";
10498 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), binding);
10499 }
10500 else
10501 snprintf (buff, sizeof (buff), _("<unknown>: %d"), binding);
10502 return buff;
10503 }
10504 }
10505
10506 static const char *
10507 get_symbol_type (unsigned int type)
10508 {
10509 static char buff[32];
10510
10511 switch (type)
10512 {
10513 case STT_NOTYPE: return "NOTYPE";
10514 case STT_OBJECT: return "OBJECT";
10515 case STT_FUNC: return "FUNC";
10516 case STT_SECTION: return "SECTION";
10517 case STT_FILE: return "FILE";
10518 case STT_COMMON: return "COMMON";
10519 case STT_TLS: return "TLS";
10520 case STT_RELC: return "RELC";
10521 case STT_SRELC: return "SRELC";
10522 default:
10523 if (type >= STT_LOPROC && type <= STT_HIPROC)
10524 {
10525 if (elf_header.e_machine == EM_ARM && type == STT_ARM_TFUNC)
10526 return "THUMB_FUNC";
10527
10528 if (elf_header.e_machine == EM_SPARCV9 && type == STT_REGISTER)
10529 return "REGISTER";
10530
10531 if (elf_header.e_machine == EM_PARISC && type == STT_PARISC_MILLI)
10532 return "PARISC_MILLI";
10533
10534 snprintf (buff, sizeof (buff), _("<processor specific>: %d"), type);
10535 }
10536 else if (type >= STT_LOOS && type <= STT_HIOS)
10537 {
10538 if (elf_header.e_machine == EM_PARISC)
10539 {
10540 if (type == STT_HP_OPAQUE)
10541 return "HP_OPAQUE";
10542 if (type == STT_HP_STUB)
10543 return "HP_STUB";
10544 }
10545
10546 if (type == STT_GNU_IFUNC
10547 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
10548 || elf_header.e_ident[EI_OSABI] == ELFOSABI_FREEBSD
10549 /* GNU is still using the default value 0. */
10550 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
10551 return "IFUNC";
10552
10553 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), type);
10554 }
10555 else
10556 snprintf (buff, sizeof (buff), _("<unknown>: %d"), type);
10557 return buff;
10558 }
10559 }
10560
10561 static const char *
10562 get_symbol_visibility (unsigned int visibility)
10563 {
10564 switch (visibility)
10565 {
10566 case STV_DEFAULT: return "DEFAULT";
10567 case STV_INTERNAL: return "INTERNAL";
10568 case STV_HIDDEN: return "HIDDEN";
10569 case STV_PROTECTED: return "PROTECTED";
10570 default:
10571 error (_("Unrecognized visibility value: %u"), visibility);
10572 return _("<unknown>");
10573 }
10574 }
10575
10576 static const char *
10577 get_solaris_symbol_visibility (unsigned int visibility)
10578 {
10579 switch (visibility)
10580 {
10581 case 4: return "EXPORTED";
10582 case 5: return "SINGLETON";
10583 case 6: return "ELIMINATE";
10584 default: return get_symbol_visibility (visibility);
10585 }
10586 }
10587
10588 static const char *
10589 get_mips_symbol_other (unsigned int other)
10590 {
10591 switch (other)
10592 {
10593 case STO_OPTIONAL:
10594 return "OPTIONAL";
10595 case STO_MIPS_PLT:
10596 return "MIPS PLT";
10597 case STO_MIPS_PIC:
10598 return "MIPS PIC";
10599 case STO_MICROMIPS:
10600 return "MICROMIPS";
10601 case STO_MICROMIPS | STO_MIPS_PIC:
10602 return "MICROMIPS, MIPS PIC";
10603 case STO_MIPS16:
10604 return "MIPS16";
10605 default:
10606 return NULL;
10607 }
10608 }
10609
10610 static const char *
10611 get_ia64_symbol_other (unsigned int other)
10612 {
10613 if (is_ia64_vms ())
10614 {
10615 static char res[32];
10616
10617 res[0] = 0;
10618
10619 /* Function types is for images and .STB files only. */
10620 switch (elf_header.e_type)
10621 {
10622 case ET_DYN:
10623 case ET_EXEC:
10624 switch (VMS_ST_FUNC_TYPE (other))
10625 {
10626 case VMS_SFT_CODE_ADDR:
10627 strcat (res, " CA");
10628 break;
10629 case VMS_SFT_SYMV_IDX:
10630 strcat (res, " VEC");
10631 break;
10632 case VMS_SFT_FD:
10633 strcat (res, " FD");
10634 break;
10635 case VMS_SFT_RESERVE:
10636 strcat (res, " RSV");
10637 break;
10638 default:
10639 warn (_("Unrecognized IA64 VMS ST Function type: %d\n"),
10640 VMS_ST_FUNC_TYPE (other));
10641 strcat (res, " <unknown>");
10642 break;
10643 }
10644 break;
10645 default:
10646 break;
10647 }
10648 switch (VMS_ST_LINKAGE (other))
10649 {
10650 case VMS_STL_IGNORE:
10651 strcat (res, " IGN");
10652 break;
10653 case VMS_STL_RESERVE:
10654 strcat (res, " RSV");
10655 break;
10656 case VMS_STL_STD:
10657 strcat (res, " STD");
10658 break;
10659 case VMS_STL_LNK:
10660 strcat (res, " LNK");
10661 break;
10662 default:
10663 warn (_("Unrecognized IA64 VMS ST Linkage: %d\n"),
10664 VMS_ST_LINKAGE (other));
10665 strcat (res, " <unknown>");
10666 break;
10667 }
10668
10669 if (res[0] != 0)
10670 return res + 1;
10671 else
10672 return res;
10673 }
10674 return NULL;
10675 }
10676
10677 static const char *
10678 get_ppc64_symbol_other (unsigned int other)
10679 {
10680 if (PPC64_LOCAL_ENTRY_OFFSET (other) != 0)
10681 {
10682 static char buf[32];
10683 snprintf (buf, sizeof buf, _("<localentry>: %d"),
10684 PPC64_LOCAL_ENTRY_OFFSET (other));
10685 return buf;
10686 }
10687 return NULL;
10688 }
10689
10690 static const char *
10691 get_symbol_other (unsigned int other)
10692 {
10693 const char * result = NULL;
10694 static char buff [32];
10695
10696 if (other == 0)
10697 return "";
10698
10699 switch (elf_header.e_machine)
10700 {
10701 case EM_MIPS:
10702 result = get_mips_symbol_other (other);
10703 break;
10704 case EM_IA_64:
10705 result = get_ia64_symbol_other (other);
10706 break;
10707 case EM_PPC64:
10708 result = get_ppc64_symbol_other (other);
10709 break;
10710 default:
10711 result = NULL;
10712 break;
10713 }
10714
10715 if (result)
10716 return result;
10717
10718 snprintf (buff, sizeof buff, _("<other>: %x"), other);
10719 return buff;
10720 }
10721
10722 static const char *
10723 get_symbol_index_type (unsigned int type)
10724 {
10725 static char buff[32];
10726
10727 switch (type)
10728 {
10729 case SHN_UNDEF: return "UND";
10730 case SHN_ABS: return "ABS";
10731 case SHN_COMMON: return "COM";
10732 default:
10733 if (type == SHN_IA_64_ANSI_COMMON
10734 && elf_header.e_machine == EM_IA_64
10735 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX)
10736 return "ANSI_COM";
10737 else if ((elf_header.e_machine == EM_X86_64
10738 || elf_header.e_machine == EM_L1OM
10739 || elf_header.e_machine == EM_K1OM)
10740 && type == SHN_X86_64_LCOMMON)
10741 return "LARGE_COM";
10742 else if ((type == SHN_MIPS_SCOMMON
10743 && elf_header.e_machine == EM_MIPS)
10744 || (type == SHN_TIC6X_SCOMMON
10745 && elf_header.e_machine == EM_TI_C6000))
10746 return "SCOM";
10747 else if (type == SHN_MIPS_SUNDEFINED
10748 && elf_header.e_machine == EM_MIPS)
10749 return "SUND";
10750 else if (type >= SHN_LOPROC && type <= SHN_HIPROC)
10751 sprintf (buff, "PRC[0x%04x]", type & 0xffff);
10752 else if (type >= SHN_LOOS && type <= SHN_HIOS)
10753 sprintf (buff, "OS [0x%04x]", type & 0xffff);
10754 else if (type >= SHN_LORESERVE)
10755 sprintf (buff, "RSV[0x%04x]", type & 0xffff);
10756 else if (type >= elf_header.e_shnum)
10757 sprintf (buff, _("bad section index[%3d]"), type);
10758 else
10759 sprintf (buff, "%3d", type);
10760 break;
10761 }
10762
10763 return buff;
10764 }
10765
10766 static bfd_vma *
10767 get_dynamic_data (FILE * file, bfd_size_type number, unsigned int ent_size)
10768 {
10769 unsigned char * e_data;
10770 bfd_vma * i_data;
10771
10772 /* If the size_t type is smaller than the bfd_size_type, eg because
10773 you are building a 32-bit tool on a 64-bit host, then make sure
10774 that when (number) is cast to (size_t) no information is lost. */
10775 if (sizeof (size_t) < sizeof (bfd_size_type)
10776 && (bfd_size_type) ((size_t) number) != number)
10777 {
10778 error (_("Size truncation prevents reading %" BFD_VMA_FMT "u"
10779 " elements of size %u\n"),
10780 number, ent_size);
10781 return NULL;
10782 }
10783
10784 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
10785 attempting to allocate memory when the read is bound to fail. */
10786 if (ent_size * number > current_file_size)
10787 {
10788 error (_("Invalid number of dynamic entries: %" BFD_VMA_FMT "u\n"),
10789 number);
10790 return NULL;
10791 }
10792
10793 e_data = (unsigned char *) cmalloc ((size_t) number, ent_size);
10794 if (e_data == NULL)
10795 {
10796 error (_("Out of memory reading %" BFD_VMA_FMT "u dynamic entries\n"),
10797 number);
10798 return NULL;
10799 }
10800
10801 if (fread (e_data, ent_size, (size_t) number, file) != number)
10802 {
10803 error (_("Unable to read in %" BFD_VMA_FMT "u bytes of dynamic data\n"),
10804 number * ent_size);
10805 free (e_data);
10806 return NULL;
10807 }
10808
10809 i_data = (bfd_vma *) cmalloc ((size_t) number, sizeof (*i_data));
10810 if (i_data == NULL)
10811 {
10812 error (_("Out of memory allocating space for %" BFD_VMA_FMT "u"
10813 " dynamic entries\n"),
10814 number);
10815 free (e_data);
10816 return NULL;
10817 }
10818
10819 while (number--)
10820 i_data[number] = byte_get (e_data + number * ent_size, ent_size);
10821
10822 free (e_data);
10823
10824 return i_data;
10825 }
10826
10827 static void
10828 print_dynamic_symbol (bfd_vma si, unsigned long hn)
10829 {
10830 Elf_Internal_Sym * psym;
10831 int n;
10832
10833 n = print_vma (si, DEC_5);
10834 if (n < 5)
10835 fputs (&" "[n], stdout);
10836 printf (" %3lu: ", hn);
10837
10838 if (dynamic_symbols == NULL || si >= num_dynamic_syms)
10839 {
10840 printf (_("<No info available for dynamic symbol number %lu>\n"),
10841 (unsigned long) si);
10842 return;
10843 }
10844
10845 psym = dynamic_symbols + si;
10846 print_vma (psym->st_value, LONG_HEX);
10847 putchar (' ');
10848 print_vma (psym->st_size, DEC_5);
10849
10850 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
10851 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
10852
10853 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
10854 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
10855 else
10856 {
10857 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
10858
10859 printf (" %-7s", get_symbol_visibility (vis));
10860 /* Check to see if any other bits in the st_other field are set.
10861 Note - displaying this information disrupts the layout of the
10862 table being generated, but for the moment this case is very
10863 rare. */
10864 if (psym->st_other ^ vis)
10865 printf (" [%s] ", get_symbol_other (psym->st_other ^ vis));
10866 }
10867
10868 printf (" %3.3s ", get_symbol_index_type (psym->st_shndx));
10869 if (VALID_DYNAMIC_NAME (psym->st_name))
10870 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
10871 else
10872 printf (_(" <corrupt: %14ld>"), psym->st_name);
10873 putchar ('\n');
10874 }
10875
10876 static const char *
10877 get_symbol_version_string (FILE * file,
10878 bfd_boolean is_dynsym,
10879 const char * strtab,
10880 unsigned long int strtab_size,
10881 unsigned int si,
10882 Elf_Internal_Sym * psym,
10883 enum versioned_symbol_info * sym_info,
10884 unsigned short * vna_other)
10885 {
10886 unsigned char data[2];
10887 unsigned short vers_data;
10888 unsigned long offset;
10889
10890 if (!is_dynsym
10891 || version_info[DT_VERSIONTAGIDX (DT_VERSYM)] == 0)
10892 return NULL;
10893
10894 offset = offset_from_vma (file, version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
10895 sizeof data + si * sizeof (vers_data));
10896
10897 if (get_data (&data, file, offset + si * sizeof (vers_data),
10898 sizeof (data), 1, _("version data")) == NULL)
10899 return NULL;
10900
10901 vers_data = byte_get (data, 2);
10902
10903 if ((vers_data & VERSYM_HIDDEN) == 0 && vers_data <= 1)
10904 return NULL;
10905
10906 /* Usually we'd only see verdef for defined symbols, and verneed for
10907 undefined symbols. However, symbols defined by the linker in
10908 .dynbss for variables copied from a shared library in order to
10909 avoid text relocations are defined yet have verneed. We could
10910 use a heuristic to detect the special case, for example, check
10911 for verneed first on symbols defined in SHT_NOBITS sections, but
10912 it is simpler and more reliable to just look for both verdef and
10913 verneed. .dynbss might not be mapped to a SHT_NOBITS section. */
10914
10915 if (psym->st_shndx != SHN_UNDEF
10916 && vers_data != 0x8001
10917 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
10918 {
10919 Elf_Internal_Verdef ivd;
10920 Elf_Internal_Verdaux ivda;
10921 Elf_External_Verdaux evda;
10922 unsigned long off;
10923
10924 off = offset_from_vma (file,
10925 version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
10926 sizeof (Elf_External_Verdef));
10927
10928 do
10929 {
10930 Elf_External_Verdef evd;
10931
10932 if (get_data (&evd, file, off, sizeof (evd), 1,
10933 _("version def")) == NULL)
10934 {
10935 ivd.vd_ndx = 0;
10936 ivd.vd_aux = 0;
10937 ivd.vd_next = 0;
10938 }
10939 else
10940 {
10941 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
10942 ivd.vd_aux = BYTE_GET (evd.vd_aux);
10943 ivd.vd_next = BYTE_GET (evd.vd_next);
10944 }
10945
10946 off += ivd.vd_next;
10947 }
10948 while (ivd.vd_ndx != (vers_data & VERSYM_VERSION) && ivd.vd_next != 0);
10949
10950 if (ivd.vd_ndx == (vers_data & VERSYM_VERSION))
10951 {
10952 off -= ivd.vd_next;
10953 off += ivd.vd_aux;
10954
10955 if (get_data (&evda, file, off, sizeof (evda), 1,
10956 _("version def aux")) != NULL)
10957 {
10958 ivda.vda_name = BYTE_GET (evda.vda_name);
10959
10960 if (psym->st_name != ivda.vda_name)
10961 {
10962 *sym_info = ((vers_data & VERSYM_HIDDEN) != 0
10963 ? symbol_hidden : symbol_public);
10964 return (ivda.vda_name < strtab_size
10965 ? strtab + ivda.vda_name : _("<corrupt>"));
10966 }
10967 }
10968 }
10969 }
10970
10971 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
10972 {
10973 Elf_External_Verneed evn;
10974 Elf_Internal_Verneed ivn;
10975 Elf_Internal_Vernaux ivna;
10976
10977 offset = offset_from_vma (file,
10978 version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
10979 sizeof evn);
10980 do
10981 {
10982 unsigned long vna_off;
10983
10984 if (get_data (&evn, file, offset, sizeof (evn), 1,
10985 _("version need")) == NULL)
10986 {
10987 ivna.vna_next = 0;
10988 ivna.vna_other = 0;
10989 ivna.vna_name = 0;
10990 break;
10991 }
10992
10993 ivn.vn_aux = BYTE_GET (evn.vn_aux);
10994 ivn.vn_next = BYTE_GET (evn.vn_next);
10995
10996 vna_off = offset + ivn.vn_aux;
10997
10998 do
10999 {
11000 Elf_External_Vernaux evna;
11001
11002 if (get_data (&evna, file, vna_off, sizeof (evna), 1,
11003 _("version need aux (3)")) == NULL)
11004 {
11005 ivna.vna_next = 0;
11006 ivna.vna_other = 0;
11007 ivna.vna_name = 0;
11008 }
11009 else
11010 {
11011 ivna.vna_other = BYTE_GET (evna.vna_other);
11012 ivna.vna_next = BYTE_GET (evna.vna_next);
11013 ivna.vna_name = BYTE_GET (evna.vna_name);
11014 }
11015
11016 vna_off += ivna.vna_next;
11017 }
11018 while (ivna.vna_other != vers_data && ivna.vna_next != 0);
11019
11020 if (ivna.vna_other == vers_data)
11021 break;
11022
11023 offset += ivn.vn_next;
11024 }
11025 while (ivn.vn_next != 0);
11026
11027 if (ivna.vna_other == vers_data)
11028 {
11029 *sym_info = symbol_undefined;
11030 *vna_other = ivna.vna_other;
11031 return (ivna.vna_name < strtab_size
11032 ? strtab + ivna.vna_name : _("<corrupt>"));
11033 }
11034 }
11035 return NULL;
11036 }
11037
11038 /* Dump the symbol table. */
11039 static int
11040 process_symbol_table (FILE * file)
11041 {
11042 Elf_Internal_Shdr * section;
11043 bfd_size_type nbuckets = 0;
11044 bfd_size_type nchains = 0;
11045 bfd_vma * buckets = NULL;
11046 bfd_vma * chains = NULL;
11047 bfd_vma ngnubuckets = 0;
11048 bfd_vma * gnubuckets = NULL;
11049 bfd_vma * gnuchains = NULL;
11050 bfd_vma gnusymidx = 0;
11051 bfd_size_type ngnuchains = 0;
11052
11053 if (!do_syms && !do_dyn_syms && !do_histogram)
11054 return 1;
11055
11056 if (dynamic_info[DT_HASH]
11057 && (do_histogram
11058 || (do_using_dynamic
11059 && !do_dyn_syms
11060 && dynamic_strings != NULL)))
11061 {
11062 unsigned char nb[8];
11063 unsigned char nc[8];
11064 unsigned int hash_ent_size = 4;
11065
11066 if ((elf_header.e_machine == EM_ALPHA
11067 || elf_header.e_machine == EM_S390
11068 || elf_header.e_machine == EM_S390_OLD)
11069 && elf_header.e_ident[EI_CLASS] == ELFCLASS64)
11070 hash_ent_size = 8;
11071
11072 if (fseek (file,
11073 (archive_file_offset
11074 + offset_from_vma (file, dynamic_info[DT_HASH],
11075 sizeof nb + sizeof nc)),
11076 SEEK_SET))
11077 {
11078 error (_("Unable to seek to start of dynamic information\n"));
11079 goto no_hash;
11080 }
11081
11082 if (fread (nb, hash_ent_size, 1, file) != 1)
11083 {
11084 error (_("Failed to read in number of buckets\n"));
11085 goto no_hash;
11086 }
11087
11088 if (fread (nc, hash_ent_size, 1, file) != 1)
11089 {
11090 error (_("Failed to read in number of chains\n"));
11091 goto no_hash;
11092 }
11093
11094 nbuckets = byte_get (nb, hash_ent_size);
11095 nchains = byte_get (nc, hash_ent_size);
11096
11097 buckets = get_dynamic_data (file, nbuckets, hash_ent_size);
11098 chains = get_dynamic_data (file, nchains, hash_ent_size);
11099
11100 no_hash:
11101 if (buckets == NULL || chains == NULL)
11102 {
11103 if (do_using_dynamic)
11104 return 0;
11105 free (buckets);
11106 free (chains);
11107 buckets = NULL;
11108 chains = NULL;
11109 nbuckets = 0;
11110 nchains = 0;
11111 }
11112 }
11113
11114 if (dynamic_info_DT_GNU_HASH
11115 && (do_histogram
11116 || (do_using_dynamic
11117 && !do_dyn_syms
11118 && dynamic_strings != NULL)))
11119 {
11120 unsigned char nb[16];
11121 bfd_vma i, maxchain = 0xffffffff, bitmaskwords;
11122 bfd_vma buckets_vma;
11123
11124 if (fseek (file,
11125 (archive_file_offset
11126 + offset_from_vma (file, dynamic_info_DT_GNU_HASH,
11127 sizeof nb)),
11128 SEEK_SET))
11129 {
11130 error (_("Unable to seek to start of dynamic information\n"));
11131 goto no_gnu_hash;
11132 }
11133
11134 if (fread (nb, 16, 1, file) != 1)
11135 {
11136 error (_("Failed to read in number of buckets\n"));
11137 goto no_gnu_hash;
11138 }
11139
11140 ngnubuckets = byte_get (nb, 4);
11141 gnusymidx = byte_get (nb + 4, 4);
11142 bitmaskwords = byte_get (nb + 8, 4);
11143 buckets_vma = dynamic_info_DT_GNU_HASH + 16;
11144 if (is_32bit_elf)
11145 buckets_vma += bitmaskwords * 4;
11146 else
11147 buckets_vma += bitmaskwords * 8;
11148
11149 if (fseek (file,
11150 (archive_file_offset
11151 + offset_from_vma (file, buckets_vma, 4)),
11152 SEEK_SET))
11153 {
11154 error (_("Unable to seek to start of dynamic information\n"));
11155 goto no_gnu_hash;
11156 }
11157
11158 gnubuckets = get_dynamic_data (file, ngnubuckets, 4);
11159
11160 if (gnubuckets == NULL)
11161 goto no_gnu_hash;
11162
11163 for (i = 0; i < ngnubuckets; i++)
11164 if (gnubuckets[i] != 0)
11165 {
11166 if (gnubuckets[i] < gnusymidx)
11167 return 0;
11168
11169 if (maxchain == 0xffffffff || gnubuckets[i] > maxchain)
11170 maxchain = gnubuckets[i];
11171 }
11172
11173 if (maxchain == 0xffffffff)
11174 goto no_gnu_hash;
11175
11176 maxchain -= gnusymidx;
11177
11178 if (fseek (file,
11179 (archive_file_offset
11180 + offset_from_vma (file, buckets_vma
11181 + 4 * (ngnubuckets + maxchain), 4)),
11182 SEEK_SET))
11183 {
11184 error (_("Unable to seek to start of dynamic information\n"));
11185 goto no_gnu_hash;
11186 }
11187
11188 do
11189 {
11190 if (fread (nb, 4, 1, file) != 1)
11191 {
11192 error (_("Failed to determine last chain length\n"));
11193 goto no_gnu_hash;
11194 }
11195
11196 if (maxchain + 1 == 0)
11197 goto no_gnu_hash;
11198
11199 ++maxchain;
11200 }
11201 while ((byte_get (nb, 4) & 1) == 0);
11202
11203 if (fseek (file,
11204 (archive_file_offset
11205 + offset_from_vma (file, buckets_vma + 4 * ngnubuckets, 4)),
11206 SEEK_SET))
11207 {
11208 error (_("Unable to seek to start of dynamic information\n"));
11209 goto no_gnu_hash;
11210 }
11211
11212 gnuchains = get_dynamic_data (file, maxchain, 4);
11213 ngnuchains = maxchain;
11214
11215 no_gnu_hash:
11216 if (gnuchains == NULL)
11217 {
11218 free (gnubuckets);
11219 gnubuckets = NULL;
11220 ngnubuckets = 0;
11221 if (do_using_dynamic)
11222 return 0;
11223 }
11224 }
11225
11226 if ((dynamic_info[DT_HASH] || dynamic_info_DT_GNU_HASH)
11227 && do_syms
11228 && do_using_dynamic
11229 && dynamic_strings != NULL
11230 && dynamic_symbols != NULL)
11231 {
11232 unsigned long hn;
11233
11234 if (dynamic_info[DT_HASH])
11235 {
11236 bfd_vma si;
11237
11238 printf (_("\nSymbol table for image:\n"));
11239 if (is_32bit_elf)
11240 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11241 else
11242 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11243
11244 for (hn = 0; hn < nbuckets; hn++)
11245 {
11246 if (! buckets[hn])
11247 continue;
11248
11249 for (si = buckets[hn]; si < nchains && si > 0; si = chains[si])
11250 print_dynamic_symbol (si, hn);
11251 }
11252 }
11253
11254 if (dynamic_info_DT_GNU_HASH)
11255 {
11256 printf (_("\nSymbol table of `.gnu.hash' for image:\n"));
11257 if (is_32bit_elf)
11258 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11259 else
11260 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11261
11262 for (hn = 0; hn < ngnubuckets; ++hn)
11263 if (gnubuckets[hn] != 0)
11264 {
11265 bfd_vma si = gnubuckets[hn];
11266 bfd_vma off = si - gnusymidx;
11267
11268 do
11269 {
11270 print_dynamic_symbol (si, hn);
11271 si++;
11272 }
11273 while (off < ngnuchains && (gnuchains[off++] & 1) == 0);
11274 }
11275 }
11276 }
11277 else if ((do_dyn_syms || (do_syms && !do_using_dynamic))
11278 && section_headers != NULL)
11279 {
11280 unsigned int i;
11281
11282 for (i = 0, section = section_headers;
11283 i < elf_header.e_shnum;
11284 i++, section++)
11285 {
11286 unsigned int si;
11287 char * strtab = NULL;
11288 unsigned long int strtab_size = 0;
11289 Elf_Internal_Sym * symtab;
11290 Elf_Internal_Sym * psym;
11291 unsigned long num_syms;
11292
11293 if ((section->sh_type != SHT_SYMTAB
11294 && section->sh_type != SHT_DYNSYM)
11295 || (!do_syms
11296 && section->sh_type == SHT_SYMTAB))
11297 continue;
11298
11299 if (section->sh_entsize == 0)
11300 {
11301 printf (_("\nSymbol table '%s' has a sh_entsize of zero!\n"),
11302 printable_section_name (section));
11303 continue;
11304 }
11305
11306 printf (_("\nSymbol table '%s' contains %lu entries:\n"),
11307 printable_section_name (section),
11308 (unsigned long) (section->sh_size / section->sh_entsize));
11309
11310 if (is_32bit_elf)
11311 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
11312 else
11313 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
11314
11315 symtab = GET_ELF_SYMBOLS (file, section, & num_syms);
11316 if (symtab == NULL)
11317 continue;
11318
11319 if (section->sh_link == elf_header.e_shstrndx)
11320 {
11321 strtab = string_table;
11322 strtab_size = string_table_length;
11323 }
11324 else if (section->sh_link < elf_header.e_shnum)
11325 {
11326 Elf_Internal_Shdr * string_sec;
11327
11328 string_sec = section_headers + section->sh_link;
11329
11330 strtab = (char *) get_data (NULL, file, string_sec->sh_offset,
11331 1, string_sec->sh_size,
11332 _("string table"));
11333 strtab_size = strtab != NULL ? string_sec->sh_size : 0;
11334 }
11335
11336 for (si = 0, psym = symtab; si < num_syms; si++, psym++)
11337 {
11338 const char *version_string;
11339 enum versioned_symbol_info sym_info;
11340 unsigned short vna_other;
11341
11342 printf ("%6d: ", si);
11343 print_vma (psym->st_value, LONG_HEX);
11344 putchar (' ');
11345 print_vma (psym->st_size, DEC_5);
11346 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
11347 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
11348 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
11349 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
11350 else
11351 {
11352 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
11353
11354 printf (" %-7s", get_symbol_visibility (vis));
11355 /* Check to see if any other bits in the st_other field are set.
11356 Note - displaying this information disrupts the layout of the
11357 table being generated, but for the moment this case is very rare. */
11358 if (psym->st_other ^ vis)
11359 printf (" [%s] ", get_symbol_other (psym->st_other ^ vis));
11360 }
11361 printf (" %4s ", get_symbol_index_type (psym->st_shndx));
11362 print_symbol (25, psym->st_name < strtab_size
11363 ? strtab + psym->st_name : _("<corrupt>"));
11364
11365 version_string
11366 = get_symbol_version_string (file,
11367 section->sh_type == SHT_DYNSYM,
11368 strtab, strtab_size, si,
11369 psym, &sym_info, &vna_other);
11370 if (version_string)
11371 {
11372 if (sym_info == symbol_undefined)
11373 printf ("@%s (%d)", version_string, vna_other);
11374 else
11375 printf (sym_info == symbol_hidden ? "@%s" : "@@%s",
11376 version_string);
11377 }
11378
11379 putchar ('\n');
11380
11381 if (ELF_ST_BIND (psym->st_info) == STB_LOCAL
11382 && si >= section->sh_info
11383 /* Irix 5 and 6 MIPS binaries are known to ignore this requirement. */
11384 && elf_header.e_machine != EM_MIPS
11385 /* Solaris binaries have been found to violate this requirement as
11386 well. Not sure if this is a bug or an ABI requirement. */
11387 && elf_header.e_ident[EI_OSABI] != ELFOSABI_SOLARIS)
11388 warn (_("local symbol %u found at index >= %s's sh_info value of %u\n"),
11389 si, printable_section_name (section), section->sh_info);
11390 }
11391
11392 free (symtab);
11393 if (strtab != string_table)
11394 free (strtab);
11395 }
11396 }
11397 else if (do_syms)
11398 printf
11399 (_("\nDynamic symbol information is not available for displaying symbols.\n"));
11400
11401 if (do_histogram && buckets != NULL)
11402 {
11403 unsigned long * lengths;
11404 unsigned long * counts;
11405 unsigned long hn;
11406 bfd_vma si;
11407 unsigned long maxlength = 0;
11408 unsigned long nzero_counts = 0;
11409 unsigned long nsyms = 0;
11410 unsigned long chained;
11411
11412 printf (_("\nHistogram for bucket list length (total of %lu buckets):\n"),
11413 (unsigned long) nbuckets);
11414
11415 lengths = (unsigned long *) calloc (nbuckets, sizeof (*lengths));
11416 if (lengths == NULL)
11417 {
11418 error (_("Out of memory allocating space for histogram buckets\n"));
11419 return 0;
11420 }
11421
11422 printf (_(" Length Number %% of total Coverage\n"));
11423 for (hn = 0; hn < nbuckets; ++hn)
11424 {
11425 for (si = buckets[hn], chained = 0;
11426 si > 0 && si < nchains && si < nbuckets && chained <= nchains;
11427 si = chains[si], ++chained)
11428 {
11429 ++nsyms;
11430 if (maxlength < ++lengths[hn])
11431 ++maxlength;
11432 }
11433
11434 /* PR binutils/17531: A corrupt binary could contain broken
11435 histogram data. Do not go into an infinite loop trying
11436 to process it. */
11437 if (chained > nchains)
11438 {
11439 error (_("histogram chain is corrupt\n"));
11440 break;
11441 }
11442 }
11443
11444 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
11445 if (counts == NULL)
11446 {
11447 free (lengths);
11448 error (_("Out of memory allocating space for histogram counts\n"));
11449 return 0;
11450 }
11451
11452 for (hn = 0; hn < nbuckets; ++hn)
11453 ++counts[lengths[hn]];
11454
11455 if (nbuckets > 0)
11456 {
11457 unsigned long i;
11458 printf (" 0 %-10lu (%5.1f%%)\n",
11459 counts[0], (counts[0] * 100.0) / nbuckets);
11460 for (i = 1; i <= maxlength; ++i)
11461 {
11462 nzero_counts += counts[i] * i;
11463 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
11464 i, counts[i], (counts[i] * 100.0) / nbuckets,
11465 (nzero_counts * 100.0) / nsyms);
11466 }
11467 }
11468
11469 free (counts);
11470 free (lengths);
11471 }
11472
11473 if (buckets != NULL)
11474 {
11475 free (buckets);
11476 free (chains);
11477 }
11478
11479 if (do_histogram && gnubuckets != NULL)
11480 {
11481 unsigned long * lengths;
11482 unsigned long * counts;
11483 unsigned long hn;
11484 unsigned long maxlength = 0;
11485 unsigned long nzero_counts = 0;
11486 unsigned long nsyms = 0;
11487
11488 printf (_("\nHistogram for `.gnu.hash' bucket list length (total of %lu buckets):\n"),
11489 (unsigned long) ngnubuckets);
11490
11491 lengths = (unsigned long *) calloc (ngnubuckets, sizeof (*lengths));
11492 if (lengths == NULL)
11493 {
11494 error (_("Out of memory allocating space for gnu histogram buckets\n"));
11495 return 0;
11496 }
11497
11498 printf (_(" Length Number %% of total Coverage\n"));
11499
11500 for (hn = 0; hn < ngnubuckets; ++hn)
11501 if (gnubuckets[hn] != 0)
11502 {
11503 bfd_vma off, length = 1;
11504
11505 for (off = gnubuckets[hn] - gnusymidx;
11506 /* PR 17531 file: 010-77222-0.004. */
11507 off < ngnuchains && (gnuchains[off] & 1) == 0;
11508 ++off)
11509 ++length;
11510 lengths[hn] = length;
11511 if (length > maxlength)
11512 maxlength = length;
11513 nsyms += length;
11514 }
11515
11516 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
11517 if (counts == NULL)
11518 {
11519 free (lengths);
11520 error (_("Out of memory allocating space for gnu histogram counts\n"));
11521 return 0;
11522 }
11523
11524 for (hn = 0; hn < ngnubuckets; ++hn)
11525 ++counts[lengths[hn]];
11526
11527 if (ngnubuckets > 0)
11528 {
11529 unsigned long j;
11530 printf (" 0 %-10lu (%5.1f%%)\n",
11531 counts[0], (counts[0] * 100.0) / ngnubuckets);
11532 for (j = 1; j <= maxlength; ++j)
11533 {
11534 nzero_counts += counts[j] * j;
11535 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
11536 j, counts[j], (counts[j] * 100.0) / ngnubuckets,
11537 (nzero_counts * 100.0) / nsyms);
11538 }
11539 }
11540
11541 free (counts);
11542 free (lengths);
11543 free (gnubuckets);
11544 free (gnuchains);
11545 }
11546
11547 return 1;
11548 }
11549
11550 static int
11551 process_syminfo (FILE * file ATTRIBUTE_UNUSED)
11552 {
11553 unsigned int i;
11554
11555 if (dynamic_syminfo == NULL
11556 || !do_dynamic)
11557 /* No syminfo, this is ok. */
11558 return 1;
11559
11560 /* There better should be a dynamic symbol section. */
11561 if (dynamic_symbols == NULL || dynamic_strings == NULL)
11562 return 0;
11563
11564 if (dynamic_addr)
11565 printf (_("\nDynamic info segment at offset 0x%lx contains %d entries:\n"),
11566 dynamic_syminfo_offset, dynamic_syminfo_nent);
11567
11568 printf (_(" Num: Name BoundTo Flags\n"));
11569 for (i = 0; i < dynamic_syminfo_nent; ++i)
11570 {
11571 unsigned short int flags = dynamic_syminfo[i].si_flags;
11572
11573 printf ("%4d: ", i);
11574 if (i >= num_dynamic_syms)
11575 printf (_("<corrupt index>"));
11576 else if (VALID_DYNAMIC_NAME (dynamic_symbols[i].st_name))
11577 print_symbol (30, GET_DYNAMIC_NAME (dynamic_symbols[i].st_name));
11578 else
11579 printf (_("<corrupt: %19ld>"), dynamic_symbols[i].st_name);
11580 putchar (' ');
11581
11582 switch (dynamic_syminfo[i].si_boundto)
11583 {
11584 case SYMINFO_BT_SELF:
11585 fputs ("SELF ", stdout);
11586 break;
11587 case SYMINFO_BT_PARENT:
11588 fputs ("PARENT ", stdout);
11589 break;
11590 default:
11591 if (dynamic_syminfo[i].si_boundto > 0
11592 && dynamic_syminfo[i].si_boundto < dynamic_nent
11593 && VALID_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val))
11594 {
11595 print_symbol (10, GET_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val));
11596 putchar (' ' );
11597 }
11598 else
11599 printf ("%-10d ", dynamic_syminfo[i].si_boundto);
11600 break;
11601 }
11602
11603 if (flags & SYMINFO_FLG_DIRECT)
11604 printf (" DIRECT");
11605 if (flags & SYMINFO_FLG_PASSTHRU)
11606 printf (" PASSTHRU");
11607 if (flags & SYMINFO_FLG_COPY)
11608 printf (" COPY");
11609 if (flags & SYMINFO_FLG_LAZYLOAD)
11610 printf (" LAZYLOAD");
11611
11612 puts ("");
11613 }
11614
11615 return 1;
11616 }
11617
11618 #define IN_RANGE(START,END,ADDR,OFF) \
11619 (((ADDR) >= (START)) && ((ADDR) + (OFF) < (END)))
11620
11621 /* Check to see if the given reloc needs to be handled in a target specific
11622 manner. If so then process the reloc and return TRUE otherwise return
11623 FALSE.
11624
11625 If called with reloc == NULL, then this is a signal that reloc processing
11626 for the current section has finished, and any saved state should be
11627 discarded. */
11628
11629 static bfd_boolean
11630 target_specific_reloc_handling (Elf_Internal_Rela * reloc,
11631 unsigned char * start,
11632 unsigned char * end,
11633 Elf_Internal_Sym * symtab,
11634 unsigned long num_syms)
11635 {
11636 unsigned int reloc_type = 0;
11637 unsigned long sym_index = 0;
11638
11639 if (reloc)
11640 {
11641 reloc_type = get_reloc_type (reloc->r_info);
11642 sym_index = get_reloc_symindex (reloc->r_info);
11643 }
11644
11645 switch (elf_header.e_machine)
11646 {
11647 case EM_MSP430:
11648 case EM_MSP430_OLD:
11649 {
11650 static Elf_Internal_Sym * saved_sym = NULL;
11651
11652 if (reloc == NULL)
11653 {
11654 saved_sym = NULL;
11655 return TRUE;
11656 }
11657
11658 switch (reloc_type)
11659 {
11660 case 10: /* R_MSP430_SYM_DIFF */
11661 if (uses_msp430x_relocs ())
11662 break;
11663 /* Fall through. */
11664 case 21: /* R_MSP430X_SYM_DIFF */
11665 /* PR 21139. */
11666 if (sym_index >= num_syms)
11667 error (_("MSP430 SYM_DIFF reloc contains invalid symbol index %lu\n"),
11668 sym_index);
11669 else
11670 saved_sym = symtab + sym_index;
11671 return TRUE;
11672
11673 case 1: /* R_MSP430_32 or R_MSP430_ABS32 */
11674 case 3: /* R_MSP430_16 or R_MSP430_ABS8 */
11675 goto handle_sym_diff;
11676
11677 case 5: /* R_MSP430_16_BYTE */
11678 case 9: /* R_MSP430_8 */
11679 if (uses_msp430x_relocs ())
11680 break;
11681 goto handle_sym_diff;
11682
11683 case 2: /* R_MSP430_ABS16 */
11684 case 15: /* R_MSP430X_ABS16 */
11685 if (! uses_msp430x_relocs ())
11686 break;
11687 goto handle_sym_diff;
11688
11689 handle_sym_diff:
11690 if (saved_sym != NULL)
11691 {
11692 int reloc_size = reloc_type == 1 ? 4 : 2;
11693 bfd_vma value;
11694
11695 if (sym_index >= num_syms)
11696 error (_("MSP430 reloc contains invalid symbol index %lu\n"),
11697 sym_index);
11698 else
11699 {
11700 value = reloc->r_addend + (symtab[sym_index].st_value
11701 - saved_sym->st_value);
11702
11703 if (IN_RANGE (start, end, start + reloc->r_offset, reloc_size))
11704 byte_put (start + reloc->r_offset, value, reloc_size);
11705 else
11706 /* PR 21137 */
11707 error (_("MSP430 sym diff reloc contains invalid offset: 0x%lx\n"),
11708 (long) reloc->r_offset);
11709 }
11710
11711 saved_sym = NULL;
11712 return TRUE;
11713 }
11714 break;
11715
11716 default:
11717 if (saved_sym != NULL)
11718 error (_("Unhandled MSP430 reloc type found after SYM_DIFF reloc\n"));
11719 break;
11720 }
11721 break;
11722 }
11723
11724 case EM_MN10300:
11725 case EM_CYGNUS_MN10300:
11726 {
11727 static Elf_Internal_Sym * saved_sym = NULL;
11728
11729 if (reloc == NULL)
11730 {
11731 saved_sym = NULL;
11732 return TRUE;
11733 }
11734
11735 switch (reloc_type)
11736 {
11737 case 34: /* R_MN10300_ALIGN */
11738 return TRUE;
11739 case 33: /* R_MN10300_SYM_DIFF */
11740 if (sym_index >= num_syms)
11741 error (_("MN10300_SYM_DIFF reloc contains invalid symbol index %lu\n"),
11742 sym_index);
11743 else
11744 saved_sym = symtab + sym_index;
11745 return TRUE;
11746
11747 case 1: /* R_MN10300_32 */
11748 case 2: /* R_MN10300_16 */
11749 if (saved_sym != NULL)
11750 {
11751 int reloc_size = reloc_type == 1 ? 4 : 2;
11752 bfd_vma value;
11753
11754 if (sym_index >= num_syms)
11755 error (_("MN10300 reloc contains invalid symbol index %lu\n"),
11756 sym_index);
11757 else
11758 {
11759 value = reloc->r_addend + (symtab[sym_index].st_value
11760 - saved_sym->st_value);
11761
11762 if (IN_RANGE (start, end, start + reloc->r_offset, reloc_size))
11763 byte_put (start + reloc->r_offset, value, reloc_size);
11764 else
11765 error (_("MN10300 sym diff reloc contains invalid offset: 0x%lx\n"),
11766 (long) reloc->r_offset);
11767 }
11768
11769 saved_sym = NULL;
11770 return TRUE;
11771 }
11772 break;
11773 default:
11774 if (saved_sym != NULL)
11775 error (_("Unhandled MN10300 reloc type found after SYM_DIFF reloc\n"));
11776 break;
11777 }
11778 break;
11779 }
11780
11781 case EM_RL78:
11782 {
11783 static bfd_vma saved_sym1 = 0;
11784 static bfd_vma saved_sym2 = 0;
11785 static bfd_vma value;
11786
11787 if (reloc == NULL)
11788 {
11789 saved_sym1 = saved_sym2 = 0;
11790 return TRUE;
11791 }
11792
11793 switch (reloc_type)
11794 {
11795 case 0x80: /* R_RL78_SYM. */
11796 saved_sym1 = saved_sym2;
11797 if (sym_index >= num_syms)
11798 error (_("RL78_SYM reloc contains invalid symbol index %lu\n"),
11799 sym_index);
11800 else
11801 {
11802 saved_sym2 = symtab[sym_index].st_value;
11803 saved_sym2 += reloc->r_addend;
11804 }
11805 return TRUE;
11806
11807 case 0x83: /* R_RL78_OPsub. */
11808 value = saved_sym1 - saved_sym2;
11809 saved_sym2 = saved_sym1 = 0;
11810 return TRUE;
11811 break;
11812
11813 case 0x41: /* R_RL78_ABS32. */
11814 if (IN_RANGE (start, end, start + reloc->r_offset, 4))
11815 byte_put (start + reloc->r_offset, value, 4);
11816 else
11817 error (_("RL78 sym diff reloc contains invalid offset: 0x%lx\n"),
11818 (long) reloc->r_offset);
11819 value = 0;
11820 return TRUE;
11821
11822 case 0x43: /* R_RL78_ABS16. */
11823 if (IN_RANGE (start, end, start + reloc->r_offset, 2))
11824 byte_put (start + reloc->r_offset, value, 2);
11825 else
11826 error (_("RL78 sym diff reloc contains invalid offset: 0x%lx\n"),
11827 (long) reloc->r_offset);
11828 value = 0;
11829 return TRUE;
11830
11831 default:
11832 break;
11833 }
11834 break;
11835 }
11836 }
11837
11838 return FALSE;
11839 }
11840
11841 /* Returns TRUE iff RELOC_TYPE is a 32-bit absolute RELA relocation used in
11842 DWARF debug sections. This is a target specific test. Note - we do not
11843 go through the whole including-target-headers-multiple-times route, (as
11844 we have already done with <elf/h8.h>) because this would become very
11845 messy and even then this function would have to contain target specific
11846 information (the names of the relocs instead of their numeric values).
11847 FIXME: This is not the correct way to solve this problem. The proper way
11848 is to have target specific reloc sizing and typing functions created by
11849 the reloc-macros.h header, in the same way that it already creates the
11850 reloc naming functions. */
11851
11852 static bfd_boolean
11853 is_32bit_abs_reloc (unsigned int reloc_type)
11854 {
11855 /* Please keep this table alpha-sorted for ease of visual lookup. */
11856 switch (elf_header.e_machine)
11857 {
11858 case EM_386:
11859 case EM_IAMCU:
11860 return reloc_type == 1; /* R_386_32. */
11861 case EM_68K:
11862 return reloc_type == 1; /* R_68K_32. */
11863 case EM_860:
11864 return reloc_type == 1; /* R_860_32. */
11865 case EM_960:
11866 return reloc_type == 2; /* R_960_32. */
11867 case EM_AARCH64:
11868 return (reloc_type == 258
11869 || reloc_type == 1); /* R_AARCH64_ABS32 || R_AARCH64_P32_ABS32 */
11870 case EM_ADAPTEVA_EPIPHANY:
11871 return reloc_type == 3;
11872 case EM_ALPHA:
11873 return reloc_type == 1; /* R_ALPHA_REFLONG. */
11874 case EM_ARC:
11875 return reloc_type == 1; /* R_ARC_32. */
11876 case EM_ARC_COMPACT:
11877 case EM_ARC_COMPACT2:
11878 return reloc_type == 4; /* R_ARC_32. */
11879 case EM_ARM:
11880 return reloc_type == 2; /* R_ARM_ABS32 */
11881 case EM_AVR_OLD:
11882 case EM_AVR:
11883 return reloc_type == 1;
11884 case EM_BLACKFIN:
11885 return reloc_type == 0x12; /* R_byte4_data. */
11886 case EM_CRIS:
11887 return reloc_type == 3; /* R_CRIS_32. */
11888 case EM_CR16:
11889 return reloc_type == 3; /* R_CR16_NUM32. */
11890 case EM_CRX:
11891 return reloc_type == 15; /* R_CRX_NUM32. */
11892 case EM_CYGNUS_FRV:
11893 return reloc_type == 1;
11894 case EM_CYGNUS_D10V:
11895 case EM_D10V:
11896 return reloc_type == 6; /* R_D10V_32. */
11897 case EM_CYGNUS_D30V:
11898 case EM_D30V:
11899 return reloc_type == 12; /* R_D30V_32_NORMAL. */
11900 case EM_DLX:
11901 return reloc_type == 3; /* R_DLX_RELOC_32. */
11902 case EM_CYGNUS_FR30:
11903 case EM_FR30:
11904 return reloc_type == 3; /* R_FR30_32. */
11905 case EM_FT32:
11906 return reloc_type == 1; /* R_FT32_32. */
11907 case EM_H8S:
11908 case EM_H8_300:
11909 case EM_H8_300H:
11910 return reloc_type == 1; /* R_H8_DIR32. */
11911 case EM_IA_64:
11912 return reloc_type == 0x65 /* R_IA64_SECREL32LSB. */
11913 || reloc_type == 0x25; /* R_IA64_DIR32LSB. */
11914 case EM_IP2K_OLD:
11915 case EM_IP2K:
11916 return reloc_type == 2; /* R_IP2K_32. */
11917 case EM_IQ2000:
11918 return reloc_type == 2; /* R_IQ2000_32. */
11919 case EM_LATTICEMICO32:
11920 return reloc_type == 3; /* R_LM32_32. */
11921 case EM_M32C_OLD:
11922 case EM_M32C:
11923 return reloc_type == 3; /* R_M32C_32. */
11924 case EM_M32R:
11925 return reloc_type == 34; /* R_M32R_32_RELA. */
11926 case EM_68HC11:
11927 case EM_68HC12:
11928 return reloc_type == 6; /* R_M68HC11_32. */
11929 case EM_MCORE:
11930 return reloc_type == 1; /* R_MCORE_ADDR32. */
11931 case EM_CYGNUS_MEP:
11932 return reloc_type == 4; /* R_MEP_32. */
11933 case EM_METAG:
11934 return reloc_type == 2; /* R_METAG_ADDR32. */
11935 case EM_MICROBLAZE:
11936 return reloc_type == 1; /* R_MICROBLAZE_32. */
11937 case EM_MIPS:
11938 return reloc_type == 2; /* R_MIPS_32. */
11939 case EM_MMIX:
11940 return reloc_type == 4; /* R_MMIX_32. */
11941 case EM_CYGNUS_MN10200:
11942 case EM_MN10200:
11943 return reloc_type == 1; /* R_MN10200_32. */
11944 case EM_CYGNUS_MN10300:
11945 case EM_MN10300:
11946 return reloc_type == 1; /* R_MN10300_32. */
11947 case EM_MOXIE:
11948 return reloc_type == 1; /* R_MOXIE_32. */
11949 case EM_MSP430_OLD:
11950 case EM_MSP430:
11951 return reloc_type == 1; /* R_MSP430_32 or R_MSP320_ABS32. */
11952 case EM_MT:
11953 return reloc_type == 2; /* R_MT_32. */
11954 case EM_NDS32:
11955 return reloc_type == 20; /* R_NDS32_RELA. */
11956 case EM_ALTERA_NIOS2:
11957 return reloc_type == 12; /* R_NIOS2_BFD_RELOC_32. */
11958 case EM_NIOS32:
11959 return reloc_type == 1; /* R_NIOS_32. */
11960 case EM_OR1K:
11961 return reloc_type == 1; /* R_OR1K_32. */
11962 case EM_PARISC:
11963 return (reloc_type == 1 /* R_PARISC_DIR32. */
11964 || reloc_type == 41); /* R_PARISC_SECREL32. */
11965 case EM_PJ:
11966 case EM_PJ_OLD:
11967 return reloc_type == 1; /* R_PJ_DATA_DIR32. */
11968 case EM_PPC64:
11969 return reloc_type == 1; /* R_PPC64_ADDR32. */
11970 case EM_PPC:
11971 return reloc_type == 1; /* R_PPC_ADDR32. */
11972 case EM_TI_PRU:
11973 return reloc_type == 11; /* R_PRU_BFD_RELOC_32. */
11974 case EM_RISCV:
11975 return reloc_type == 1; /* R_RISCV_32. */
11976 case EM_RL78:
11977 return reloc_type == 1; /* R_RL78_DIR32. */
11978 case EM_RX:
11979 return reloc_type == 1; /* R_RX_DIR32. */
11980 case EM_S370:
11981 return reloc_type == 1; /* R_I370_ADDR31. */
11982 case EM_S390_OLD:
11983 case EM_S390:
11984 return reloc_type == 4; /* R_S390_32. */
11985 case EM_SCORE:
11986 return reloc_type == 8; /* R_SCORE_ABS32. */
11987 case EM_SH:
11988 return reloc_type == 1; /* R_SH_DIR32. */
11989 case EM_SPARC32PLUS:
11990 case EM_SPARCV9:
11991 case EM_SPARC:
11992 return reloc_type == 3 /* R_SPARC_32. */
11993 || reloc_type == 23; /* R_SPARC_UA32. */
11994 case EM_SPU:
11995 return reloc_type == 6; /* R_SPU_ADDR32 */
11996 case EM_TI_C6000:
11997 return reloc_type == 1; /* R_C6000_ABS32. */
11998 case EM_TILEGX:
11999 return reloc_type == 2; /* R_TILEGX_32. */
12000 case EM_TILEPRO:
12001 return reloc_type == 1; /* R_TILEPRO_32. */
12002 case EM_CYGNUS_V850:
12003 case EM_V850:
12004 return reloc_type == 6; /* R_V850_ABS32. */
12005 case EM_V800:
12006 return reloc_type == 0x33; /* R_V810_WORD. */
12007 case EM_VAX:
12008 return reloc_type == 1; /* R_VAX_32. */
12009 case EM_VISIUM:
12010 return reloc_type == 3; /* R_VISIUM_32. */
12011 case EM_X86_64:
12012 case EM_L1OM:
12013 case EM_K1OM:
12014 return reloc_type == 10; /* R_X86_64_32. */
12015 case EM_XC16X:
12016 case EM_C166:
12017 return reloc_type == 3; /* R_XC16C_ABS_32. */
12018 case EM_XGATE:
12019 return reloc_type == 4; /* R_XGATE_32. */
12020 case EM_XSTORMY16:
12021 return reloc_type == 1; /* R_XSTROMY16_32. */
12022 case EM_XTENSA_OLD:
12023 case EM_XTENSA:
12024 return reloc_type == 1; /* R_XTENSA_32. */
12025 default:
12026 {
12027 static unsigned int prev_warn = 0;
12028
12029 /* Avoid repeating the same warning multiple times. */
12030 if (prev_warn != elf_header.e_machine)
12031 error (_("Missing knowledge of 32-bit reloc types used in DWARF sections of machine number %d\n"),
12032 elf_header.e_machine);
12033 prev_warn = elf_header.e_machine;
12034 return FALSE;
12035 }
12036 }
12037 }
12038
12039 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12040 a 32-bit pc-relative RELA relocation used in DWARF debug sections. */
12041
12042 static bfd_boolean
12043 is_32bit_pcrel_reloc (unsigned int reloc_type)
12044 {
12045 switch (elf_header.e_machine)
12046 /* Please keep this table alpha-sorted for ease of visual lookup. */
12047 {
12048 case EM_386:
12049 case EM_IAMCU:
12050 return reloc_type == 2; /* R_386_PC32. */
12051 case EM_68K:
12052 return reloc_type == 4; /* R_68K_PC32. */
12053 case EM_AARCH64:
12054 return reloc_type == 261; /* R_AARCH64_PREL32 */
12055 case EM_ADAPTEVA_EPIPHANY:
12056 return reloc_type == 6;
12057 case EM_ALPHA:
12058 return reloc_type == 10; /* R_ALPHA_SREL32. */
12059 case EM_ARC_COMPACT:
12060 case EM_ARC_COMPACT2:
12061 return reloc_type == 49; /* R_ARC_32_PCREL. */
12062 case EM_ARM:
12063 return reloc_type == 3; /* R_ARM_REL32 */
12064 case EM_AVR_OLD:
12065 case EM_AVR:
12066 return reloc_type == 36; /* R_AVR_32_PCREL. */
12067 case EM_MICROBLAZE:
12068 return reloc_type == 2; /* R_MICROBLAZE_32_PCREL. */
12069 case EM_OR1K:
12070 return reloc_type == 9; /* R_OR1K_32_PCREL. */
12071 case EM_PARISC:
12072 return reloc_type == 9; /* R_PARISC_PCREL32. */
12073 case EM_PPC:
12074 return reloc_type == 26; /* R_PPC_REL32. */
12075 case EM_PPC64:
12076 return reloc_type == 26; /* R_PPC64_REL32. */
12077 case EM_S390_OLD:
12078 case EM_S390:
12079 return reloc_type == 5; /* R_390_PC32. */
12080 case EM_SH:
12081 return reloc_type == 2; /* R_SH_REL32. */
12082 case EM_SPARC32PLUS:
12083 case EM_SPARCV9:
12084 case EM_SPARC:
12085 return reloc_type == 6; /* R_SPARC_DISP32. */
12086 case EM_SPU:
12087 return reloc_type == 13; /* R_SPU_REL32. */
12088 case EM_TILEGX:
12089 return reloc_type == 6; /* R_TILEGX_32_PCREL. */
12090 case EM_TILEPRO:
12091 return reloc_type == 4; /* R_TILEPRO_32_PCREL. */
12092 case EM_VISIUM:
12093 return reloc_type == 6; /* R_VISIUM_32_PCREL */
12094 case EM_X86_64:
12095 case EM_L1OM:
12096 case EM_K1OM:
12097 return reloc_type == 2; /* R_X86_64_PC32. */
12098 case EM_XTENSA_OLD:
12099 case EM_XTENSA:
12100 return reloc_type == 14; /* R_XTENSA_32_PCREL. */
12101 default:
12102 /* Do not abort or issue an error message here. Not all targets use
12103 pc-relative 32-bit relocs in their DWARF debug information and we
12104 have already tested for target coverage in is_32bit_abs_reloc. A
12105 more helpful warning message will be generated by apply_relocations
12106 anyway, so just return. */
12107 return FALSE;
12108 }
12109 }
12110
12111 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12112 a 64-bit absolute RELA relocation used in DWARF debug sections. */
12113
12114 static bfd_boolean
12115 is_64bit_abs_reloc (unsigned int reloc_type)
12116 {
12117 switch (elf_header.e_machine)
12118 {
12119 case EM_AARCH64:
12120 return reloc_type == 257; /* R_AARCH64_ABS64. */
12121 case EM_ALPHA:
12122 return reloc_type == 2; /* R_ALPHA_REFQUAD. */
12123 case EM_IA_64:
12124 return reloc_type == 0x27; /* R_IA64_DIR64LSB. */
12125 case EM_PARISC:
12126 return reloc_type == 80; /* R_PARISC_DIR64. */
12127 case EM_PPC64:
12128 return reloc_type == 38; /* R_PPC64_ADDR64. */
12129 case EM_RISCV:
12130 return reloc_type == 2; /* R_RISCV_64. */
12131 case EM_SPARC32PLUS:
12132 case EM_SPARCV9:
12133 case EM_SPARC:
12134 return reloc_type == 54; /* R_SPARC_UA64. */
12135 case EM_X86_64:
12136 case EM_L1OM:
12137 case EM_K1OM:
12138 return reloc_type == 1; /* R_X86_64_64. */
12139 case EM_S390_OLD:
12140 case EM_S390:
12141 return reloc_type == 22; /* R_S390_64. */
12142 case EM_TILEGX:
12143 return reloc_type == 1; /* R_TILEGX_64. */
12144 case EM_MIPS:
12145 return reloc_type == 18; /* R_MIPS_64. */
12146 default:
12147 return FALSE;
12148 }
12149 }
12150
12151 /* Like is_32bit_pcrel_reloc except that it returns TRUE iff RELOC_TYPE is
12152 a 64-bit pc-relative RELA relocation used in DWARF debug sections. */
12153
12154 static bfd_boolean
12155 is_64bit_pcrel_reloc (unsigned int reloc_type)
12156 {
12157 switch (elf_header.e_machine)
12158 {
12159 case EM_AARCH64:
12160 return reloc_type == 260; /* R_AARCH64_PREL64. */
12161 case EM_ALPHA:
12162 return reloc_type == 11; /* R_ALPHA_SREL64. */
12163 case EM_IA_64:
12164 return reloc_type == 0x4f; /* R_IA64_PCREL64LSB. */
12165 case EM_PARISC:
12166 return reloc_type == 72; /* R_PARISC_PCREL64. */
12167 case EM_PPC64:
12168 return reloc_type == 44; /* R_PPC64_REL64. */
12169 case EM_SPARC32PLUS:
12170 case EM_SPARCV9:
12171 case EM_SPARC:
12172 return reloc_type == 46; /* R_SPARC_DISP64. */
12173 case EM_X86_64:
12174 case EM_L1OM:
12175 case EM_K1OM:
12176 return reloc_type == 24; /* R_X86_64_PC64. */
12177 case EM_S390_OLD:
12178 case EM_S390:
12179 return reloc_type == 23; /* R_S390_PC64. */
12180 case EM_TILEGX:
12181 return reloc_type == 5; /* R_TILEGX_64_PCREL. */
12182 default:
12183 return FALSE;
12184 }
12185 }
12186
12187 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12188 a 24-bit absolute RELA relocation used in DWARF debug sections. */
12189
12190 static bfd_boolean
12191 is_24bit_abs_reloc (unsigned int reloc_type)
12192 {
12193 switch (elf_header.e_machine)
12194 {
12195 case EM_CYGNUS_MN10200:
12196 case EM_MN10200:
12197 return reloc_type == 4; /* R_MN10200_24. */
12198 case EM_FT32:
12199 return reloc_type == 5; /* R_FT32_20. */
12200 default:
12201 return FALSE;
12202 }
12203 }
12204
12205 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12206 a 16-bit absolute RELA relocation used in DWARF debug sections. */
12207
12208 static bfd_boolean
12209 is_16bit_abs_reloc (unsigned int reloc_type)
12210 {
12211 /* Please keep this table alpha-sorted for ease of visual lookup. */
12212 switch (elf_header.e_machine)
12213 {
12214 case EM_ARC:
12215 case EM_ARC_COMPACT:
12216 case EM_ARC_COMPACT2:
12217 return reloc_type == 2; /* R_ARC_16. */
12218 case EM_ADAPTEVA_EPIPHANY:
12219 return reloc_type == 5;
12220 case EM_AVR_OLD:
12221 case EM_AVR:
12222 return reloc_type == 4; /* R_AVR_16. */
12223 case EM_CYGNUS_D10V:
12224 case EM_D10V:
12225 return reloc_type == 3; /* R_D10V_16. */
12226 case EM_H8S:
12227 case EM_H8_300:
12228 case EM_H8_300H:
12229 return reloc_type == R_H8_DIR16;
12230 case EM_IP2K_OLD:
12231 case EM_IP2K:
12232 return reloc_type == 1; /* R_IP2K_16. */
12233 case EM_M32C_OLD:
12234 case EM_M32C:
12235 return reloc_type == 1; /* R_M32C_16 */
12236 case EM_CYGNUS_MN10200:
12237 case EM_MN10200:
12238 return reloc_type == 2; /* R_MN10200_16. */
12239 case EM_CYGNUS_MN10300:
12240 case EM_MN10300:
12241 return reloc_type == 2; /* R_MN10300_16. */
12242 case EM_MSP430:
12243 if (uses_msp430x_relocs ())
12244 return reloc_type == 2; /* R_MSP430_ABS16. */
12245 /* Fall through. */
12246 case EM_MSP430_OLD:
12247 return reloc_type == 5; /* R_MSP430_16_BYTE. */
12248 case EM_NDS32:
12249 return reloc_type == 19; /* R_NDS32_RELA. */
12250 case EM_ALTERA_NIOS2:
12251 return reloc_type == 13; /* R_NIOS2_BFD_RELOC_16. */
12252 case EM_NIOS32:
12253 return reloc_type == 9; /* R_NIOS_16. */
12254 case EM_OR1K:
12255 return reloc_type == 2; /* R_OR1K_16. */
12256 case EM_TI_PRU:
12257 return reloc_type == 8; /* R_PRU_BFD_RELOC_16. */
12258 case EM_TI_C6000:
12259 return reloc_type == 2; /* R_C6000_ABS16. */
12260 case EM_VISIUM:
12261 return reloc_type == 2; /* R_VISIUM_16. */
12262 case EM_XC16X:
12263 case EM_C166:
12264 return reloc_type == 2; /* R_XC16C_ABS_16. */
12265 case EM_XGATE:
12266 return reloc_type == 3; /* R_XGATE_16. */
12267 default:
12268 return FALSE;
12269 }
12270 }
12271
12272 /* Returns TRUE iff RELOC_TYPE is a NONE relocation used for discarded
12273 relocation entries (possibly formerly used for SHT_GROUP sections). */
12274
12275 static bfd_boolean
12276 is_none_reloc (unsigned int reloc_type)
12277 {
12278 switch (elf_header.e_machine)
12279 {
12280 case EM_386: /* R_386_NONE. */
12281 case EM_68K: /* R_68K_NONE. */
12282 case EM_ADAPTEVA_EPIPHANY:
12283 case EM_ALPHA: /* R_ALPHA_NONE. */
12284 case EM_ALTERA_NIOS2: /* R_NIOS2_NONE. */
12285 case EM_ARC: /* R_ARC_NONE. */
12286 case EM_ARC_COMPACT2: /* R_ARC_NONE. */
12287 case EM_ARC_COMPACT: /* R_ARC_NONE. */
12288 case EM_ARM: /* R_ARM_NONE. */
12289 case EM_C166: /* R_XC16X_NONE. */
12290 case EM_CRIS: /* R_CRIS_NONE. */
12291 case EM_FT32: /* R_FT32_NONE. */
12292 case EM_IA_64: /* R_IA64_NONE. */
12293 case EM_K1OM: /* R_X86_64_NONE. */
12294 case EM_L1OM: /* R_X86_64_NONE. */
12295 case EM_M32R: /* R_M32R_NONE. */
12296 case EM_MIPS: /* R_MIPS_NONE. */
12297 case EM_MN10300: /* R_MN10300_NONE. */
12298 case EM_MOXIE: /* R_MOXIE_NONE. */
12299 case EM_NIOS32: /* R_NIOS_NONE. */
12300 case EM_OR1K: /* R_OR1K_NONE. */
12301 case EM_PARISC: /* R_PARISC_NONE. */
12302 case EM_PPC64: /* R_PPC64_NONE. */
12303 case EM_PPC: /* R_PPC_NONE. */
12304 case EM_RISCV: /* R_RISCV_NONE. */
12305 case EM_S390: /* R_390_NONE. */
12306 case EM_S390_OLD:
12307 case EM_SH: /* R_SH_NONE. */
12308 case EM_SPARC32PLUS:
12309 case EM_SPARC: /* R_SPARC_NONE. */
12310 case EM_SPARCV9:
12311 case EM_TILEGX: /* R_TILEGX_NONE. */
12312 case EM_TILEPRO: /* R_TILEPRO_NONE. */
12313 case EM_TI_C6000:/* R_C6000_NONE. */
12314 case EM_X86_64: /* R_X86_64_NONE. */
12315 case EM_XC16X:
12316 return reloc_type == 0;
12317
12318 case EM_AARCH64:
12319 return reloc_type == 0 || reloc_type == 256;
12320 case EM_AVR_OLD:
12321 case EM_AVR:
12322 return (reloc_type == 0 /* R_AVR_NONE. */
12323 || reloc_type == 30 /* R_AVR_DIFF8. */
12324 || reloc_type == 31 /* R_AVR_DIFF16. */
12325 || reloc_type == 32 /* R_AVR_DIFF32. */);
12326 case EM_METAG:
12327 return reloc_type == 3; /* R_METAG_NONE. */
12328 case EM_NDS32:
12329 return (reloc_type == 0 /* R_XTENSA_NONE. */
12330 || reloc_type == 204 /* R_NDS32_DIFF8. */
12331 || reloc_type == 205 /* R_NDS32_DIFF16. */
12332 || reloc_type == 206 /* R_NDS32_DIFF32. */
12333 || reloc_type == 207 /* R_NDS32_ULEB128. */);
12334 case EM_TI_PRU:
12335 return (reloc_type == 0 /* R_PRU_NONE. */
12336 || reloc_type == 65 /* R_PRU_DIFF8. */
12337 || reloc_type == 66 /* R_PRU_DIFF16. */
12338 || reloc_type == 67 /* R_PRU_DIFF32. */);
12339 case EM_XTENSA_OLD:
12340 case EM_XTENSA:
12341 return (reloc_type == 0 /* R_XTENSA_NONE. */
12342 || reloc_type == 17 /* R_XTENSA_DIFF8. */
12343 || reloc_type == 18 /* R_XTENSA_DIFF16. */
12344 || reloc_type == 19 /* R_XTENSA_DIFF32. */);
12345 }
12346 return FALSE;
12347 }
12348
12349 /* Returns TRUE if there is a relocation against
12350 section NAME at OFFSET bytes. */
12351
12352 bfd_boolean
12353 reloc_at (struct dwarf_section * dsec, dwarf_vma offset)
12354 {
12355 Elf_Internal_Rela * relocs;
12356 Elf_Internal_Rela * rp;
12357
12358 if (dsec == NULL || dsec->reloc_info == NULL)
12359 return FALSE;
12360
12361 relocs = (Elf_Internal_Rela *) dsec->reloc_info;
12362
12363 for (rp = relocs; rp < relocs + dsec->num_relocs; ++rp)
12364 if (rp->r_offset == offset)
12365 return TRUE;
12366
12367 return FALSE;
12368 }
12369
12370 /* Apply relocations to a section.
12371 Note: So far support has been added only for those relocations
12372 which can be found in debug sections.
12373 If RELOCS_RETURN is non-NULL then returns in it a pointer to the
12374 loaded relocs. It is then the caller's responsibility to free them.
12375 FIXME: Add support for more relocations ? */
12376
12377 static void
12378 apply_relocations (void * file,
12379 const Elf_Internal_Shdr * section,
12380 unsigned char * start,
12381 bfd_size_type size,
12382 void ** relocs_return,
12383 unsigned long * num_relocs_return)
12384 {
12385 Elf_Internal_Shdr * relsec;
12386 unsigned char * end = start + size;
12387
12388 if (relocs_return != NULL)
12389 {
12390 * (Elf_Internal_Rela **) relocs_return = NULL;
12391 * num_relocs_return = 0;
12392 }
12393
12394 if (elf_header.e_type != ET_REL)
12395 return;
12396
12397 /* Find the reloc section associated with the section. */
12398 for (relsec = section_headers;
12399 relsec < section_headers + elf_header.e_shnum;
12400 ++relsec)
12401 {
12402 bfd_boolean is_rela;
12403 unsigned long num_relocs;
12404 Elf_Internal_Rela * relocs;
12405 Elf_Internal_Rela * rp;
12406 Elf_Internal_Shdr * symsec;
12407 Elf_Internal_Sym * symtab;
12408 unsigned long num_syms;
12409 Elf_Internal_Sym * sym;
12410
12411 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
12412 || relsec->sh_info >= elf_header.e_shnum
12413 || section_headers + relsec->sh_info != section
12414 || relsec->sh_size == 0
12415 || relsec->sh_link >= elf_header.e_shnum)
12416 continue;
12417
12418 is_rela = relsec->sh_type == SHT_RELA;
12419
12420 if (is_rela)
12421 {
12422 if (!slurp_rela_relocs ((FILE *) file, relsec->sh_offset,
12423 relsec->sh_size, & relocs, & num_relocs))
12424 return;
12425 }
12426 else
12427 {
12428 if (!slurp_rel_relocs ((FILE *) file, relsec->sh_offset,
12429 relsec->sh_size, & relocs, & num_relocs))
12430 return;
12431 }
12432
12433 /* SH uses RELA but uses in place value instead of the addend field. */
12434 if (elf_header.e_machine == EM_SH)
12435 is_rela = FALSE;
12436
12437 symsec = section_headers + relsec->sh_link;
12438 if (symsec->sh_type != SHT_SYMTAB
12439 && symsec->sh_type != SHT_DYNSYM)
12440 return;
12441 symtab = GET_ELF_SYMBOLS ((FILE *) file, symsec, & num_syms);
12442
12443 for (rp = relocs; rp < relocs + num_relocs; ++rp)
12444 {
12445 bfd_vma addend;
12446 unsigned int reloc_type;
12447 unsigned int reloc_size;
12448 unsigned char * rloc;
12449 unsigned long sym_index;
12450
12451 reloc_type = get_reloc_type (rp->r_info);
12452
12453 if (target_specific_reloc_handling (rp, start, end, symtab, num_syms))
12454 continue;
12455 else if (is_none_reloc (reloc_type))
12456 continue;
12457 else if (is_32bit_abs_reloc (reloc_type)
12458 || is_32bit_pcrel_reloc (reloc_type))
12459 reloc_size = 4;
12460 else if (is_64bit_abs_reloc (reloc_type)
12461 || is_64bit_pcrel_reloc (reloc_type))
12462 reloc_size = 8;
12463 else if (is_24bit_abs_reloc (reloc_type))
12464 reloc_size = 3;
12465 else if (is_16bit_abs_reloc (reloc_type))
12466 reloc_size = 2;
12467 else
12468 {
12469 static unsigned int prev_reloc = 0;
12470 if (reloc_type != prev_reloc)
12471 warn (_("unable to apply unsupported reloc type %d to section %s\n"),
12472 reloc_type, printable_section_name (section));
12473 prev_reloc = reloc_type;
12474 continue;
12475 }
12476
12477 rloc = start + rp->r_offset;
12478 if ((rloc + reloc_size) > end || (rloc < start))
12479 {
12480 warn (_("skipping invalid relocation offset 0x%lx in section %s\n"),
12481 (unsigned long) rp->r_offset,
12482 printable_section_name (section));
12483 continue;
12484 }
12485
12486 sym_index = (unsigned long) get_reloc_symindex (rp->r_info);
12487 if (sym_index >= num_syms)
12488 {
12489 warn (_("skipping invalid relocation symbol index 0x%lx in section %s\n"),
12490 sym_index, printable_section_name (section));
12491 continue;
12492 }
12493 sym = symtab + sym_index;
12494
12495 /* If the reloc has a symbol associated with it,
12496 make sure that it is of an appropriate type.
12497
12498 Relocations against symbols without type can happen.
12499 Gcc -feliminate-dwarf2-dups may generate symbols
12500 without type for debug info.
12501
12502 Icc generates relocations against function symbols
12503 instead of local labels.
12504
12505 Relocations against object symbols can happen, eg when
12506 referencing a global array. For an example of this see
12507 the _clz.o binary in libgcc.a. */
12508 if (sym != symtab
12509 && ELF_ST_TYPE (sym->st_info) != STT_COMMON
12510 && ELF_ST_TYPE (sym->st_info) > STT_SECTION)
12511 {
12512 warn (_("skipping unexpected symbol type %s in %ld'th relocation in section %s\n"),
12513 get_symbol_type (ELF_ST_TYPE (sym->st_info)),
12514 (long int)(rp - relocs),
12515 printable_section_name (relsec));
12516 continue;
12517 }
12518
12519 addend = 0;
12520 if (is_rela)
12521 addend += rp->r_addend;
12522 /* R_XTENSA_32, R_PJ_DATA_DIR32 and R_D30V_32_NORMAL are
12523 partial_inplace. */
12524 if (!is_rela
12525 || (elf_header.e_machine == EM_XTENSA
12526 && reloc_type == 1)
12527 || ((elf_header.e_machine == EM_PJ
12528 || elf_header.e_machine == EM_PJ_OLD)
12529 && reloc_type == 1)
12530 || ((elf_header.e_machine == EM_D30V
12531 || elf_header.e_machine == EM_CYGNUS_D30V)
12532 && reloc_type == 12))
12533 addend += byte_get (rloc, reloc_size);
12534
12535 if (is_32bit_pcrel_reloc (reloc_type)
12536 || is_64bit_pcrel_reloc (reloc_type))
12537 {
12538 /* On HPPA, all pc-relative relocations are biased by 8. */
12539 if (elf_header.e_machine == EM_PARISC)
12540 addend -= 8;
12541 byte_put (rloc, (addend + sym->st_value) - rp->r_offset,
12542 reloc_size);
12543 }
12544 else
12545 byte_put (rloc, addend + sym->st_value, reloc_size);
12546 }
12547
12548 free (symtab);
12549 /* Let the target specific reloc processing code know that
12550 we have finished with these relocs. */
12551 target_specific_reloc_handling (NULL, NULL, NULL, NULL, 0);
12552
12553 if (relocs_return)
12554 {
12555 * (Elf_Internal_Rela **) relocs_return = relocs;
12556 * num_relocs_return = num_relocs;
12557 }
12558 else
12559 free (relocs);
12560
12561 break;
12562 }
12563 }
12564
12565 #ifdef SUPPORT_DISASSEMBLY
12566 static int
12567 disassemble_section (Elf_Internal_Shdr * section, FILE * file)
12568 {
12569 printf (_("\nAssembly dump of section %s\n"), printable_section_name (section));
12570
12571 /* FIXME: XXX -- to be done --- XXX */
12572
12573 return 1;
12574 }
12575 #endif
12576
12577 /* Reads in the contents of SECTION from FILE, returning a pointer
12578 to a malloc'ed buffer or NULL if something went wrong. */
12579
12580 static char *
12581 get_section_contents (Elf_Internal_Shdr * section, FILE * file)
12582 {
12583 bfd_size_type num_bytes;
12584
12585 num_bytes = section->sh_size;
12586
12587 if (num_bytes == 0 || section->sh_type == SHT_NOBITS)
12588 {
12589 printf (_("\nSection '%s' has no data to dump.\n"),
12590 printable_section_name (section));
12591 return NULL;
12592 }
12593
12594 return (char *) get_data (NULL, file, section->sh_offset, 1, num_bytes,
12595 _("section contents"));
12596 }
12597
12598 /* Uncompresses a section that was compressed using zlib, in place. */
12599
12600 static bfd_boolean
12601 uncompress_section_contents (unsigned char **buffer,
12602 dwarf_size_type uncompressed_size,
12603 dwarf_size_type *size)
12604 {
12605 dwarf_size_type compressed_size = *size;
12606 unsigned char * compressed_buffer = *buffer;
12607 unsigned char * uncompressed_buffer;
12608 z_stream strm;
12609 int rc;
12610
12611 /* It is possible the section consists of several compressed
12612 buffers concatenated together, so we uncompress in a loop. */
12613 /* PR 18313: The state field in the z_stream structure is supposed
12614 to be invisible to the user (ie us), but some compilers will
12615 still complain about it being used without initialisation. So
12616 we first zero the entire z_stream structure and then set the fields
12617 that we need. */
12618 memset (& strm, 0, sizeof strm);
12619 strm.avail_in = compressed_size;
12620 strm.next_in = (Bytef *) compressed_buffer;
12621 strm.avail_out = uncompressed_size;
12622 uncompressed_buffer = (unsigned char *) xmalloc (uncompressed_size);
12623
12624 rc = inflateInit (& strm);
12625 while (strm.avail_in > 0)
12626 {
12627 if (rc != Z_OK)
12628 goto fail;
12629 strm.next_out = ((Bytef *) uncompressed_buffer
12630 + (uncompressed_size - strm.avail_out));
12631 rc = inflate (&strm, Z_FINISH);
12632 if (rc != Z_STREAM_END)
12633 goto fail;
12634 rc = inflateReset (& strm);
12635 }
12636 rc = inflateEnd (& strm);
12637 if (rc != Z_OK
12638 || strm.avail_out != 0)
12639 goto fail;
12640
12641 *buffer = uncompressed_buffer;
12642 *size = uncompressed_size;
12643 return TRUE;
12644
12645 fail:
12646 free (uncompressed_buffer);
12647 /* Indicate decompression failure. */
12648 *buffer = NULL;
12649 return FALSE;
12650 }
12651
12652 static void
12653 dump_section_as_strings (Elf_Internal_Shdr * section, FILE * file)
12654 {
12655 Elf_Internal_Shdr * relsec;
12656 bfd_size_type num_bytes;
12657 unsigned char * data;
12658 unsigned char * end;
12659 unsigned char * real_start;
12660 unsigned char * start;
12661 bfd_boolean some_strings_shown;
12662
12663 real_start = start = (unsigned char *) get_section_contents (section,
12664 file);
12665 if (start == NULL)
12666 return;
12667 num_bytes = section->sh_size;
12668
12669 printf (_("\nString dump of section '%s':\n"), printable_section_name (section));
12670
12671 if (decompress_dumps)
12672 {
12673 dwarf_size_type new_size = num_bytes;
12674 dwarf_size_type uncompressed_size = 0;
12675
12676 if ((section->sh_flags & SHF_COMPRESSED) != 0)
12677 {
12678 Elf_Internal_Chdr chdr;
12679 unsigned int compression_header_size
12680 = get_compression_header (& chdr, (unsigned char *) start,
12681 num_bytes);
12682
12683 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
12684 {
12685 warn (_("section '%s' has unsupported compress type: %d\n"),
12686 printable_section_name (section), chdr.ch_type);
12687 return;
12688 }
12689 else if (chdr.ch_addralign != section->sh_addralign)
12690 {
12691 warn (_("compressed section '%s' is corrupted\n"),
12692 printable_section_name (section));
12693 return;
12694 }
12695 uncompressed_size = chdr.ch_size;
12696 start += compression_header_size;
12697 new_size -= compression_header_size;
12698 }
12699 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
12700 {
12701 /* Read the zlib header. In this case, it should be "ZLIB"
12702 followed by the uncompressed section size, 8 bytes in
12703 big-endian order. */
12704 uncompressed_size = start[4]; uncompressed_size <<= 8;
12705 uncompressed_size += start[5]; uncompressed_size <<= 8;
12706 uncompressed_size += start[6]; uncompressed_size <<= 8;
12707 uncompressed_size += start[7]; uncompressed_size <<= 8;
12708 uncompressed_size += start[8]; uncompressed_size <<= 8;
12709 uncompressed_size += start[9]; uncompressed_size <<= 8;
12710 uncompressed_size += start[10]; uncompressed_size <<= 8;
12711 uncompressed_size += start[11];
12712 start += 12;
12713 new_size -= 12;
12714 }
12715
12716 if (uncompressed_size)
12717 {
12718 if (uncompress_section_contents (& start,
12719 uncompressed_size, & new_size))
12720 num_bytes = new_size;
12721 else
12722 {
12723 error (_("Unable to decompress section %s\n"),
12724 printable_section_name (section));
12725 return;
12726 }
12727 }
12728 else
12729 start = real_start;
12730 }
12731
12732 /* If the section being dumped has relocations against it the user might
12733 be expecting these relocations to have been applied. Check for this
12734 case and issue a warning message in order to avoid confusion.
12735 FIXME: Maybe we ought to have an option that dumps a section with
12736 relocs applied ? */
12737 for (relsec = section_headers;
12738 relsec < section_headers + elf_header.e_shnum;
12739 ++relsec)
12740 {
12741 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
12742 || relsec->sh_info >= elf_header.e_shnum
12743 || section_headers + relsec->sh_info != section
12744 || relsec->sh_size == 0
12745 || relsec->sh_link >= elf_header.e_shnum)
12746 continue;
12747
12748 printf (_(" Note: This section has relocations against it, but these have NOT been applied to this dump.\n"));
12749 break;
12750 }
12751
12752 data = start;
12753 end = start + num_bytes;
12754 some_strings_shown = FALSE;
12755
12756 while (data < end)
12757 {
12758 while (!ISPRINT (* data))
12759 if (++ data >= end)
12760 break;
12761
12762 if (data < end)
12763 {
12764 size_t maxlen = end - data;
12765
12766 #ifndef __MSVCRT__
12767 /* PR 11128: Use two separate invocations in order to work
12768 around bugs in the Solaris 8 implementation of printf. */
12769 printf (" [%6tx] ", data - start);
12770 #else
12771 printf (" [%6Ix] ", (size_t) (data - start));
12772 #endif
12773 if (maxlen > 0)
12774 {
12775 print_symbol ((int) maxlen, (const char *) data);
12776 putchar ('\n');
12777 data += strnlen ((const char *) data, maxlen);
12778 }
12779 else
12780 {
12781 printf (_("<corrupt>\n"));
12782 data = end;
12783 }
12784 some_strings_shown = TRUE;
12785 }
12786 }
12787
12788 if (! some_strings_shown)
12789 printf (_(" No strings found in this section."));
12790
12791 free (real_start);
12792
12793 putchar ('\n');
12794 }
12795
12796 static void
12797 dump_section_as_bytes (Elf_Internal_Shdr * section,
12798 FILE * file,
12799 bfd_boolean relocate)
12800 {
12801 Elf_Internal_Shdr * relsec;
12802 bfd_size_type bytes;
12803 bfd_size_type section_size;
12804 bfd_vma addr;
12805 unsigned char * data;
12806 unsigned char * real_start;
12807 unsigned char * start;
12808
12809 real_start = start = (unsigned char *) get_section_contents (section, file);
12810 if (start == NULL)
12811 return;
12812 section_size = section->sh_size;
12813
12814 printf (_("\nHex dump of section '%s':\n"), printable_section_name (section));
12815
12816 if (decompress_dumps)
12817 {
12818 dwarf_size_type new_size = section_size;
12819 dwarf_size_type uncompressed_size = 0;
12820
12821 if ((section->sh_flags & SHF_COMPRESSED) != 0)
12822 {
12823 Elf_Internal_Chdr chdr;
12824 unsigned int compression_header_size
12825 = get_compression_header (& chdr, start, section_size);
12826
12827 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
12828 {
12829 warn (_("section '%s' has unsupported compress type: %d\n"),
12830 printable_section_name (section), chdr.ch_type);
12831 return;
12832 }
12833 else if (chdr.ch_addralign != section->sh_addralign)
12834 {
12835 warn (_("compressed section '%s' is corrupted\n"),
12836 printable_section_name (section));
12837 return;
12838 }
12839 uncompressed_size = chdr.ch_size;
12840 start += compression_header_size;
12841 new_size -= compression_header_size;
12842 }
12843 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
12844 {
12845 /* Read the zlib header. In this case, it should be "ZLIB"
12846 followed by the uncompressed section size, 8 bytes in
12847 big-endian order. */
12848 uncompressed_size = start[4]; uncompressed_size <<= 8;
12849 uncompressed_size += start[5]; uncompressed_size <<= 8;
12850 uncompressed_size += start[6]; uncompressed_size <<= 8;
12851 uncompressed_size += start[7]; uncompressed_size <<= 8;
12852 uncompressed_size += start[8]; uncompressed_size <<= 8;
12853 uncompressed_size += start[9]; uncompressed_size <<= 8;
12854 uncompressed_size += start[10]; uncompressed_size <<= 8;
12855 uncompressed_size += start[11];
12856 start += 12;
12857 new_size -= 12;
12858 }
12859
12860 if (uncompressed_size)
12861 {
12862 if (uncompress_section_contents (& start, uncompressed_size,
12863 & new_size))
12864 {
12865 section_size = new_size;
12866 }
12867 else
12868 {
12869 error (_("Unable to decompress section %s\n"),
12870 printable_section_name (section));
12871 /* FIXME: Print the section anyway ? */
12872 return;
12873 }
12874 }
12875 else
12876 start = real_start;
12877 }
12878
12879 if (relocate)
12880 {
12881 apply_relocations (file, section, start, section_size, NULL, NULL);
12882 }
12883 else
12884 {
12885 /* If the section being dumped has relocations against it the user might
12886 be expecting these relocations to have been applied. Check for this
12887 case and issue a warning message in order to avoid confusion.
12888 FIXME: Maybe we ought to have an option that dumps a section with
12889 relocs applied ? */
12890 for (relsec = section_headers;
12891 relsec < section_headers + elf_header.e_shnum;
12892 ++relsec)
12893 {
12894 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
12895 || relsec->sh_info >= elf_header.e_shnum
12896 || section_headers + relsec->sh_info != section
12897 || relsec->sh_size == 0
12898 || relsec->sh_link >= elf_header.e_shnum)
12899 continue;
12900
12901 printf (_(" NOTE: This section has relocations against it, but these have NOT been applied to this dump.\n"));
12902 break;
12903 }
12904 }
12905
12906 addr = section->sh_addr;
12907 bytes = section_size;
12908 data = start;
12909
12910 while (bytes)
12911 {
12912 int j;
12913 int k;
12914 int lbytes;
12915
12916 lbytes = (bytes > 16 ? 16 : bytes);
12917
12918 printf (" 0x%8.8lx ", (unsigned long) addr);
12919
12920 for (j = 0; j < 16; j++)
12921 {
12922 if (j < lbytes)
12923 printf ("%2.2x", data[j]);
12924 else
12925 printf (" ");
12926
12927 if ((j & 3) == 3)
12928 printf (" ");
12929 }
12930
12931 for (j = 0; j < lbytes; j++)
12932 {
12933 k = data[j];
12934 if (k >= ' ' && k < 0x7f)
12935 printf ("%c", k);
12936 else
12937 printf (".");
12938 }
12939
12940 putchar ('\n');
12941
12942 data += lbytes;
12943 addr += lbytes;
12944 bytes -= lbytes;
12945 }
12946
12947 free (real_start);
12948
12949 putchar ('\n');
12950 }
12951
12952 static int
12953 load_specific_debug_section (enum dwarf_section_display_enum debug,
12954 const Elf_Internal_Shdr * sec, void * file)
12955 {
12956 struct dwarf_section * section = &debug_displays [debug].section;
12957 char buf [64];
12958
12959 /* If it is already loaded, do nothing. */
12960 if (section->start != NULL)
12961 return 1;
12962
12963 snprintf (buf, sizeof (buf), _("%s section data"), section->name);
12964 section->address = sec->sh_addr;
12965 section->user_data = NULL;
12966 section->start = (unsigned char *) get_data (NULL, (FILE *) file,
12967 sec->sh_offset, 1,
12968 sec->sh_size, buf);
12969 if (section->start == NULL)
12970 section->size = 0;
12971 else
12972 {
12973 unsigned char *start = section->start;
12974 dwarf_size_type size = sec->sh_size;
12975 dwarf_size_type uncompressed_size = 0;
12976
12977 if ((sec->sh_flags & SHF_COMPRESSED) != 0)
12978 {
12979 Elf_Internal_Chdr chdr;
12980 unsigned int compression_header_size;
12981
12982 if (size < (is_32bit_elf
12983 ? sizeof (Elf32_External_Chdr)
12984 : sizeof (Elf64_External_Chdr)))
12985 {
12986 warn (_("compressed section %s is too small to contain a compression header"),
12987 section->name);
12988 return 0;
12989 }
12990
12991 compression_header_size = get_compression_header (&chdr, start, size);
12992
12993 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
12994 {
12995 warn (_("section '%s' has unsupported compress type: %d\n"),
12996 section->name, chdr.ch_type);
12997 return 0;
12998 }
12999 else if (chdr.ch_addralign != sec->sh_addralign)
13000 {
13001 warn (_("compressed section '%s' is corrupted\n"),
13002 section->name);
13003 return 0;
13004 }
13005 uncompressed_size = chdr.ch_size;
13006 start += compression_header_size;
13007 size -= compression_header_size;
13008 }
13009 else if (size > 12 && streq ((char *) start, "ZLIB"))
13010 {
13011 /* Read the zlib header. In this case, it should be "ZLIB"
13012 followed by the uncompressed section size, 8 bytes in
13013 big-endian order. */
13014 uncompressed_size = start[4]; uncompressed_size <<= 8;
13015 uncompressed_size += start[5]; uncompressed_size <<= 8;
13016 uncompressed_size += start[6]; uncompressed_size <<= 8;
13017 uncompressed_size += start[7]; uncompressed_size <<= 8;
13018 uncompressed_size += start[8]; uncompressed_size <<= 8;
13019 uncompressed_size += start[9]; uncompressed_size <<= 8;
13020 uncompressed_size += start[10]; uncompressed_size <<= 8;
13021 uncompressed_size += start[11];
13022 start += 12;
13023 size -= 12;
13024 }
13025
13026 if (uncompressed_size)
13027 {
13028 if (uncompress_section_contents (&start, uncompressed_size,
13029 &size))
13030 {
13031 /* Free the compressed buffer, update the section buffer
13032 and the section size if uncompress is successful. */
13033 free (section->start);
13034 section->start = start;
13035 }
13036 else
13037 {
13038 error (_("Unable to decompress section %s\n"),
13039 printable_section_name (sec));
13040 return 0;
13041 }
13042 }
13043
13044 section->size = size;
13045 }
13046
13047 if (section->start == NULL)
13048 return 0;
13049
13050 if (debug_displays [debug].relocate)
13051 apply_relocations ((FILE *) file, sec, section->start, section->size,
13052 & section->reloc_info, & section->num_relocs);
13053 else
13054 {
13055 section->reloc_info = NULL;
13056 section->num_relocs = 0;
13057 }
13058
13059 return 1;
13060 }
13061
13062 /* If this is not NULL, load_debug_section will only look for sections
13063 within the list of sections given here. */
13064 unsigned int *section_subset = NULL;
13065
13066 int
13067 load_debug_section (enum dwarf_section_display_enum debug, void * file)
13068 {
13069 struct dwarf_section * section = &debug_displays [debug].section;
13070 Elf_Internal_Shdr * sec;
13071
13072 /* Locate the debug section. */
13073 sec = find_section_in_set (section->uncompressed_name, section_subset);
13074 if (sec != NULL)
13075 section->name = section->uncompressed_name;
13076 else
13077 {
13078 sec = find_section_in_set (section->compressed_name, section_subset);
13079 if (sec != NULL)
13080 section->name = section->compressed_name;
13081 }
13082 if (sec == NULL)
13083 return 0;
13084
13085 /* If we're loading from a subset of sections, and we've loaded
13086 a section matching this name before, it's likely that it's a
13087 different one. */
13088 if (section_subset != NULL)
13089 free_debug_section (debug);
13090
13091 return load_specific_debug_section (debug, sec, (FILE *) file);
13092 }
13093
13094 void
13095 free_debug_section (enum dwarf_section_display_enum debug)
13096 {
13097 struct dwarf_section * section = &debug_displays [debug].section;
13098
13099 if (section->start == NULL)
13100 return;
13101
13102 free ((char *) section->start);
13103 section->start = NULL;
13104 section->address = 0;
13105 section->size = 0;
13106 }
13107
13108 static int
13109 display_debug_section (int shndx, Elf_Internal_Shdr * section, FILE * file)
13110 {
13111 char * name = SECTION_NAME (section);
13112 const char * print_name = printable_section_name (section);
13113 bfd_size_type length;
13114 int result = 1;
13115 int i;
13116
13117 length = section->sh_size;
13118 if (length == 0)
13119 {
13120 printf (_("\nSection '%s' has no debugging data.\n"), print_name);
13121 return 0;
13122 }
13123 if (section->sh_type == SHT_NOBITS)
13124 {
13125 /* There is no point in dumping the contents of a debugging section
13126 which has the NOBITS type - the bits in the file will be random.
13127 This can happen when a file containing a .eh_frame section is
13128 stripped with the --only-keep-debug command line option. */
13129 printf (_("section '%s' has the NOBITS type - its contents are unreliable.\n"),
13130 print_name);
13131 return 0;
13132 }
13133
13134 if (const_strneq (name, ".gnu.linkonce.wi."))
13135 name = ".debug_info";
13136
13137 /* See if we know how to display the contents of this section. */
13138 for (i = 0; i < max; i++)
13139 if (streq (debug_displays[i].section.uncompressed_name, name)
13140 || (i == line && const_strneq (name, ".debug_line."))
13141 || streq (debug_displays[i].section.compressed_name, name))
13142 {
13143 struct dwarf_section * sec = &debug_displays [i].section;
13144 int secondary = (section != find_section (name));
13145
13146 if (secondary)
13147 free_debug_section ((enum dwarf_section_display_enum) i);
13148
13149 if (i == line && const_strneq (name, ".debug_line."))
13150 sec->name = name;
13151 else if (streq (sec->uncompressed_name, name))
13152 sec->name = sec->uncompressed_name;
13153 else
13154 sec->name = sec->compressed_name;
13155 if (load_specific_debug_section ((enum dwarf_section_display_enum) i,
13156 section, file))
13157 {
13158 /* If this debug section is part of a CU/TU set in a .dwp file,
13159 restrict load_debug_section to the sections in that set. */
13160 section_subset = find_cu_tu_set (file, shndx);
13161
13162 result &= debug_displays[i].display (sec, file);
13163
13164 section_subset = NULL;
13165
13166 if (secondary || (i != info && i != abbrev))
13167 free_debug_section ((enum dwarf_section_display_enum) i);
13168 }
13169
13170 break;
13171 }
13172
13173 if (i == max)
13174 {
13175 printf (_("Unrecognized debug section: %s\n"), print_name);
13176 result = 0;
13177 }
13178
13179 return result;
13180 }
13181
13182 /* Set DUMP_SECTS for all sections where dumps were requested
13183 based on section name. */
13184
13185 static void
13186 initialise_dumps_byname (void)
13187 {
13188 struct dump_list_entry * cur;
13189
13190 for (cur = dump_sects_byname; cur; cur = cur->next)
13191 {
13192 unsigned int i;
13193 int any;
13194
13195 for (i = 0, any = 0; i < elf_header.e_shnum; i++)
13196 if (streq (SECTION_NAME (section_headers + i), cur->name))
13197 {
13198 request_dump_bynumber (i, cur->type);
13199 any = 1;
13200 }
13201
13202 if (!any)
13203 warn (_("Section '%s' was not dumped because it does not exist!\n"),
13204 cur->name);
13205 }
13206 }
13207
13208 static void
13209 process_section_contents (FILE * file)
13210 {
13211 Elf_Internal_Shdr * section;
13212 unsigned int i;
13213
13214 if (! do_dump)
13215 return;
13216
13217 initialise_dumps_byname ();
13218
13219 for (i = 0, section = section_headers;
13220 i < elf_header.e_shnum && i < num_dump_sects;
13221 i++, section++)
13222 {
13223 #ifdef SUPPORT_DISASSEMBLY
13224 if (dump_sects[i] & DISASS_DUMP)
13225 disassemble_section (section, file);
13226 #endif
13227 if (dump_sects[i] & HEX_DUMP)
13228 dump_section_as_bytes (section, file, FALSE);
13229
13230 if (dump_sects[i] & RELOC_DUMP)
13231 dump_section_as_bytes (section, file, TRUE);
13232
13233 if (dump_sects[i] & STRING_DUMP)
13234 dump_section_as_strings (section, file);
13235
13236 if (dump_sects[i] & DEBUG_DUMP)
13237 display_debug_section (i, section, file);
13238 }
13239
13240 /* Check to see if the user requested a
13241 dump of a section that does not exist. */
13242 while (i < num_dump_sects)
13243 {
13244 if (dump_sects[i])
13245 warn (_("Section %d was not dumped because it does not exist!\n"), i);
13246 i++;
13247 }
13248 }
13249
13250 static void
13251 process_mips_fpe_exception (int mask)
13252 {
13253 if (mask)
13254 {
13255 int first = 1;
13256 if (mask & OEX_FPU_INEX)
13257 fputs ("INEX", stdout), first = 0;
13258 if (mask & OEX_FPU_UFLO)
13259 printf ("%sUFLO", first ? "" : "|"), first = 0;
13260 if (mask & OEX_FPU_OFLO)
13261 printf ("%sOFLO", first ? "" : "|"), first = 0;
13262 if (mask & OEX_FPU_DIV0)
13263 printf ("%sDIV0", first ? "" : "|"), first = 0;
13264 if (mask & OEX_FPU_INVAL)
13265 printf ("%sINVAL", first ? "" : "|");
13266 }
13267 else
13268 fputs ("0", stdout);
13269 }
13270
13271 /* Display's the value of TAG at location P. If TAG is
13272 greater than 0 it is assumed to be an unknown tag, and
13273 a message is printed to this effect. Otherwise it is
13274 assumed that a message has already been printed.
13275
13276 If the bottom bit of TAG is set it assumed to have a
13277 string value, otherwise it is assumed to have an integer
13278 value.
13279
13280 Returns an updated P pointing to the first unread byte
13281 beyond the end of TAG's value.
13282
13283 Reads at or beyond END will not be made. */
13284
13285 static unsigned char *
13286 display_tag_value (signed int tag,
13287 unsigned char * p,
13288 const unsigned char * const end)
13289 {
13290 unsigned long val;
13291
13292 if (tag > 0)
13293 printf (" Tag_unknown_%d: ", tag);
13294
13295 if (p >= end)
13296 {
13297 warn (_("<corrupt tag>\n"));
13298 }
13299 else if (tag & 1)
13300 {
13301 /* PR 17531 file: 027-19978-0.004. */
13302 size_t maxlen = (end - p) - 1;
13303
13304 putchar ('"');
13305 if (maxlen > 0)
13306 {
13307 print_symbol ((int) maxlen, (const char *) p);
13308 p += strnlen ((char *) p, maxlen) + 1;
13309 }
13310 else
13311 {
13312 printf (_("<corrupt string tag>"));
13313 p = (unsigned char *) end;
13314 }
13315 printf ("\"\n");
13316 }
13317 else
13318 {
13319 unsigned int len;
13320
13321 val = read_uleb128 (p, &len, end);
13322 p += len;
13323 printf ("%ld (0x%lx)\n", val, val);
13324 }
13325
13326 assert (p <= end);
13327 return p;
13328 }
13329
13330 /* ARM EABI attributes section. */
13331 typedef struct
13332 {
13333 unsigned int tag;
13334 const char * name;
13335 /* 0 = special, 1 = string, 2 = uleb123, > 0x80 == table lookup. */
13336 unsigned int type;
13337 const char ** table;
13338 } arm_attr_public_tag;
13339
13340 static const char * arm_attr_tag_CPU_arch[] =
13341 {"Pre-v4", "v4", "v4T", "v5T", "v5TE", "v5TEJ", "v6", "v6KZ", "v6T2",
13342 "v6K", "v7", "v6-M", "v6S-M", "v7E-M", "v8", "", "v8-M.baseline",
13343 "v8-M.mainline"};
13344 static const char * arm_attr_tag_ARM_ISA_use[] = {"No", "Yes"};
13345 static const char * arm_attr_tag_THUMB_ISA_use[] =
13346 {"No", "Thumb-1", "Thumb-2", "Yes"};
13347 static const char * arm_attr_tag_FP_arch[] =
13348 {"No", "VFPv1", "VFPv2", "VFPv3", "VFPv3-D16", "VFPv4", "VFPv4-D16",
13349 "FP for ARMv8", "FPv5/FP-D16 for ARMv8"};
13350 static const char * arm_attr_tag_WMMX_arch[] = {"No", "WMMXv1", "WMMXv2"};
13351 static const char * arm_attr_tag_Advanced_SIMD_arch[] =
13352 {"No", "NEONv1", "NEONv1 with Fused-MAC", "NEON for ARMv8",
13353 "NEON for ARMv8.1"};
13354 static const char * arm_attr_tag_PCS_config[] =
13355 {"None", "Bare platform", "Linux application", "Linux DSO", "PalmOS 2004",
13356 "PalmOS (reserved)", "SymbianOS 2004", "SymbianOS (reserved)"};
13357 static const char * arm_attr_tag_ABI_PCS_R9_use[] =
13358 {"V6", "SB", "TLS", "Unused"};
13359 static const char * arm_attr_tag_ABI_PCS_RW_data[] =
13360 {"Absolute", "PC-relative", "SB-relative", "None"};
13361 static const char * arm_attr_tag_ABI_PCS_RO_data[] =
13362 {"Absolute", "PC-relative", "None"};
13363 static const char * arm_attr_tag_ABI_PCS_GOT_use[] =
13364 {"None", "direct", "GOT-indirect"};
13365 static const char * arm_attr_tag_ABI_PCS_wchar_t[] =
13366 {"None", "??? 1", "2", "??? 3", "4"};
13367 static const char * arm_attr_tag_ABI_FP_rounding[] = {"Unused", "Needed"};
13368 static const char * arm_attr_tag_ABI_FP_denormal[] =
13369 {"Unused", "Needed", "Sign only"};
13370 static const char * arm_attr_tag_ABI_FP_exceptions[] = {"Unused", "Needed"};
13371 static const char * arm_attr_tag_ABI_FP_user_exceptions[] = {"Unused", "Needed"};
13372 static const char * arm_attr_tag_ABI_FP_number_model[] =
13373 {"Unused", "Finite", "RTABI", "IEEE 754"};
13374 static const char * arm_attr_tag_ABI_enum_size[] =
13375 {"Unused", "small", "int", "forced to int"};
13376 static const char * arm_attr_tag_ABI_HardFP_use[] =
13377 {"As Tag_FP_arch", "SP only", "Reserved", "Deprecated"};
13378 static const char * arm_attr_tag_ABI_VFP_args[] =
13379 {"AAPCS", "VFP registers", "custom", "compatible"};
13380 static const char * arm_attr_tag_ABI_WMMX_args[] =
13381 {"AAPCS", "WMMX registers", "custom"};
13382 static const char * arm_attr_tag_ABI_optimization_goals[] =
13383 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
13384 "Aggressive Size", "Prefer Debug", "Aggressive Debug"};
13385 static const char * arm_attr_tag_ABI_FP_optimization_goals[] =
13386 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
13387 "Aggressive Size", "Prefer Accuracy", "Aggressive Accuracy"};
13388 static const char * arm_attr_tag_CPU_unaligned_access[] = {"None", "v6"};
13389 static const char * arm_attr_tag_FP_HP_extension[] =
13390 {"Not Allowed", "Allowed"};
13391 static const char * arm_attr_tag_ABI_FP_16bit_format[] =
13392 {"None", "IEEE 754", "Alternative Format"};
13393 static const char * arm_attr_tag_DSP_extension[] =
13394 {"Follow architecture", "Allowed"};
13395 static const char * arm_attr_tag_MPextension_use[] =
13396 {"Not Allowed", "Allowed"};
13397 static const char * arm_attr_tag_DIV_use[] =
13398 {"Allowed in Thumb-ISA, v7-R or v7-M", "Not allowed",
13399 "Allowed in v7-A with integer division extension"};
13400 static const char * arm_attr_tag_T2EE_use[] = {"Not Allowed", "Allowed"};
13401 static const char * arm_attr_tag_Virtualization_use[] =
13402 {"Not Allowed", "TrustZone", "Virtualization Extensions",
13403 "TrustZone and Virtualization Extensions"};
13404 static const char * arm_attr_tag_MPextension_use_legacy[] =
13405 {"Not Allowed", "Allowed"};
13406
13407 #define LOOKUP(id, name) \
13408 {id, #name, 0x80 | ARRAY_SIZE(arm_attr_tag_##name), arm_attr_tag_##name}
13409 static arm_attr_public_tag arm_attr_public_tags[] =
13410 {
13411 {4, "CPU_raw_name", 1, NULL},
13412 {5, "CPU_name", 1, NULL},
13413 LOOKUP(6, CPU_arch),
13414 {7, "CPU_arch_profile", 0, NULL},
13415 LOOKUP(8, ARM_ISA_use),
13416 LOOKUP(9, THUMB_ISA_use),
13417 LOOKUP(10, FP_arch),
13418 LOOKUP(11, WMMX_arch),
13419 LOOKUP(12, Advanced_SIMD_arch),
13420 LOOKUP(13, PCS_config),
13421 LOOKUP(14, ABI_PCS_R9_use),
13422 LOOKUP(15, ABI_PCS_RW_data),
13423 LOOKUP(16, ABI_PCS_RO_data),
13424 LOOKUP(17, ABI_PCS_GOT_use),
13425 LOOKUP(18, ABI_PCS_wchar_t),
13426 LOOKUP(19, ABI_FP_rounding),
13427 LOOKUP(20, ABI_FP_denormal),
13428 LOOKUP(21, ABI_FP_exceptions),
13429 LOOKUP(22, ABI_FP_user_exceptions),
13430 LOOKUP(23, ABI_FP_number_model),
13431 {24, "ABI_align_needed", 0, NULL},
13432 {25, "ABI_align_preserved", 0, NULL},
13433 LOOKUP(26, ABI_enum_size),
13434 LOOKUP(27, ABI_HardFP_use),
13435 LOOKUP(28, ABI_VFP_args),
13436 LOOKUP(29, ABI_WMMX_args),
13437 LOOKUP(30, ABI_optimization_goals),
13438 LOOKUP(31, ABI_FP_optimization_goals),
13439 {32, "compatibility", 0, NULL},
13440 LOOKUP(34, CPU_unaligned_access),
13441 LOOKUP(36, FP_HP_extension),
13442 LOOKUP(38, ABI_FP_16bit_format),
13443 LOOKUP(42, MPextension_use),
13444 LOOKUP(44, DIV_use),
13445 LOOKUP(46, DSP_extension),
13446 {64, "nodefaults", 0, NULL},
13447 {65, "also_compatible_with", 0, NULL},
13448 LOOKUP(66, T2EE_use),
13449 {67, "conformance", 1, NULL},
13450 LOOKUP(68, Virtualization_use),
13451 LOOKUP(70, MPextension_use_legacy)
13452 };
13453 #undef LOOKUP
13454
13455 static unsigned char *
13456 display_arm_attribute (unsigned char * p,
13457 const unsigned char * const end)
13458 {
13459 unsigned int tag;
13460 unsigned int len;
13461 unsigned int val;
13462 arm_attr_public_tag * attr;
13463 unsigned i;
13464 unsigned int type;
13465
13466 tag = read_uleb128 (p, &len, end);
13467 p += len;
13468 attr = NULL;
13469 for (i = 0; i < ARRAY_SIZE (arm_attr_public_tags); i++)
13470 {
13471 if (arm_attr_public_tags[i].tag == tag)
13472 {
13473 attr = &arm_attr_public_tags[i];
13474 break;
13475 }
13476 }
13477
13478 if (attr)
13479 {
13480 printf (" Tag_%s: ", attr->name);
13481 switch (attr->type)
13482 {
13483 case 0:
13484 switch (tag)
13485 {
13486 case 7: /* Tag_CPU_arch_profile. */
13487 val = read_uleb128 (p, &len, end);
13488 p += len;
13489 switch (val)
13490 {
13491 case 0: printf (_("None\n")); break;
13492 case 'A': printf (_("Application\n")); break;
13493 case 'R': printf (_("Realtime\n")); break;
13494 case 'M': printf (_("Microcontroller\n")); break;
13495 case 'S': printf (_("Application or Realtime\n")); break;
13496 default: printf ("??? (%d)\n", val); break;
13497 }
13498 break;
13499
13500 case 24: /* Tag_align_needed. */
13501 val = read_uleb128 (p, &len, end);
13502 p += len;
13503 switch (val)
13504 {
13505 case 0: printf (_("None\n")); break;
13506 case 1: printf (_("8-byte\n")); break;
13507 case 2: printf (_("4-byte\n")); break;
13508 case 3: printf ("??? 3\n"); break;
13509 default:
13510 if (val <= 12)
13511 printf (_("8-byte and up to %d-byte extended\n"),
13512 1 << val);
13513 else
13514 printf ("??? (%d)\n", val);
13515 break;
13516 }
13517 break;
13518
13519 case 25: /* Tag_align_preserved. */
13520 val = read_uleb128 (p, &len, end);
13521 p += len;
13522 switch (val)
13523 {
13524 case 0: printf (_("None\n")); break;
13525 case 1: printf (_("8-byte, except leaf SP\n")); break;
13526 case 2: printf (_("8-byte\n")); break;
13527 case 3: printf ("??? 3\n"); break;
13528 default:
13529 if (val <= 12)
13530 printf (_("8-byte and up to %d-byte extended\n"),
13531 1 << val);
13532 else
13533 printf ("??? (%d)\n", val);
13534 break;
13535 }
13536 break;
13537
13538 case 32: /* Tag_compatibility. */
13539 {
13540 val = read_uleb128 (p, &len, end);
13541 p += len;
13542 printf (_("flag = %d, vendor = "), val);
13543 if (p < end - 1)
13544 {
13545 size_t maxlen = (end - p) - 1;
13546
13547 print_symbol ((int) maxlen, (const char *) p);
13548 p += strnlen ((char *) p, maxlen) + 1;
13549 }
13550 else
13551 {
13552 printf (_("<corrupt>"));
13553 p = (unsigned char *) end;
13554 }
13555 putchar ('\n');
13556 }
13557 break;
13558
13559 case 64: /* Tag_nodefaults. */
13560 /* PR 17531: file: 001-505008-0.01. */
13561 if (p < end)
13562 p++;
13563 printf (_("True\n"));
13564 break;
13565
13566 case 65: /* Tag_also_compatible_with. */
13567 val = read_uleb128 (p, &len, end);
13568 p += len;
13569 if (val == 6 /* Tag_CPU_arch. */)
13570 {
13571 val = read_uleb128 (p, &len, end);
13572 p += len;
13573 if ((unsigned int) val >= ARRAY_SIZE (arm_attr_tag_CPU_arch))
13574 printf ("??? (%d)\n", val);
13575 else
13576 printf ("%s\n", arm_attr_tag_CPU_arch[val]);
13577 }
13578 else
13579 printf ("???\n");
13580 while (p < end && *(p++) != '\0' /* NUL terminator. */)
13581 ;
13582 break;
13583
13584 default:
13585 printf (_("<unknown: %d>\n"), tag);
13586 break;
13587 }
13588 return p;
13589
13590 case 1:
13591 return display_tag_value (-1, p, end);
13592 case 2:
13593 return display_tag_value (0, p, end);
13594
13595 default:
13596 assert (attr->type & 0x80);
13597 val = read_uleb128 (p, &len, end);
13598 p += len;
13599 type = attr->type & 0x7f;
13600 if (val >= type)
13601 printf ("??? (%d)\n", val);
13602 else
13603 printf ("%s\n", attr->table[val]);
13604 return p;
13605 }
13606 }
13607
13608 return display_tag_value (tag, p, end);
13609 }
13610
13611 static unsigned char *
13612 display_gnu_attribute (unsigned char * p,
13613 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, unsigned int, const unsigned char * const),
13614 const unsigned char * const end)
13615 {
13616 int tag;
13617 unsigned int len;
13618 unsigned int val;
13619
13620 tag = read_uleb128 (p, &len, end);
13621 p += len;
13622
13623 /* Tag_compatibility is the only generic GNU attribute defined at
13624 present. */
13625 if (tag == 32)
13626 {
13627 val = read_uleb128 (p, &len, end);
13628 p += len;
13629
13630 printf (_("flag = %d, vendor = "), val);
13631 if (p == end)
13632 {
13633 printf (_("<corrupt>\n"));
13634 warn (_("corrupt vendor attribute\n"));
13635 }
13636 else
13637 {
13638 if (p < end - 1)
13639 {
13640 size_t maxlen = (end - p) - 1;
13641
13642 print_symbol ((int) maxlen, (const char *) p);
13643 p += strnlen ((char *) p, maxlen) + 1;
13644 }
13645 else
13646 {
13647 printf (_("<corrupt>"));
13648 p = (unsigned char *) end;
13649 }
13650 putchar ('\n');
13651 }
13652 return p;
13653 }
13654
13655 if ((tag & 2) == 0 && display_proc_gnu_attribute)
13656 return display_proc_gnu_attribute (p, tag, end);
13657
13658 return display_tag_value (tag, p, end);
13659 }
13660
13661 static unsigned char *
13662 display_power_gnu_attribute (unsigned char * p,
13663 unsigned int tag,
13664 const unsigned char * const end)
13665 {
13666 unsigned int len;
13667 unsigned int val;
13668
13669 if (tag == Tag_GNU_Power_ABI_FP)
13670 {
13671 val = read_uleb128 (p, &len, end);
13672 p += len;
13673 printf (" Tag_GNU_Power_ABI_FP: ");
13674 if (len == 0)
13675 {
13676 printf (_("<corrupt>\n"));
13677 return p;
13678 }
13679
13680 if (val > 15)
13681 printf ("(%#x), ", val);
13682
13683 switch (val & 3)
13684 {
13685 case 0:
13686 printf (_("unspecified hard/soft float, "));
13687 break;
13688 case 1:
13689 printf (_("hard float, "));
13690 break;
13691 case 2:
13692 printf (_("soft float, "));
13693 break;
13694 case 3:
13695 printf (_("single-precision hard float, "));
13696 break;
13697 }
13698
13699 switch (val & 0xC)
13700 {
13701 case 0:
13702 printf (_("unspecified long double\n"));
13703 break;
13704 case 4:
13705 printf (_("128-bit IBM long double\n"));
13706 break;
13707 case 8:
13708 printf (_("64-bit long double\n"));
13709 break;
13710 case 12:
13711 printf (_("128-bit IEEE long double\n"));
13712 break;
13713 }
13714 return p;
13715 }
13716
13717 if (tag == Tag_GNU_Power_ABI_Vector)
13718 {
13719 val = read_uleb128 (p, &len, end);
13720 p += len;
13721 printf (" Tag_GNU_Power_ABI_Vector: ");
13722 if (len == 0)
13723 {
13724 printf (_("<corrupt>\n"));
13725 return p;
13726 }
13727
13728 if (val > 3)
13729 printf ("(%#x), ", val);
13730
13731 switch (val & 3)
13732 {
13733 case 0:
13734 printf (_("unspecified\n"));
13735 break;
13736 case 1:
13737 printf (_("generic\n"));
13738 break;
13739 case 2:
13740 printf ("AltiVec\n");
13741 break;
13742 case 3:
13743 printf ("SPE\n");
13744 break;
13745 }
13746 return p;
13747 }
13748
13749 if (tag == Tag_GNU_Power_ABI_Struct_Return)
13750 {
13751 val = read_uleb128 (p, &len, end);
13752 p += len;
13753 printf (" Tag_GNU_Power_ABI_Struct_Return: ");
13754 if (len == 0)
13755 {
13756 printf (_("<corrupt>\n"));
13757 return p;
13758 }
13759
13760 if (val > 2)
13761 printf ("(%#x), ", val);
13762
13763 switch (val & 3)
13764 {
13765 case 0:
13766 printf (_("unspecified\n"));
13767 break;
13768 case 1:
13769 printf ("r3/r4\n");
13770 break;
13771 case 2:
13772 printf (_("memory\n"));
13773 break;
13774 case 3:
13775 printf ("???\n");
13776 break;
13777 }
13778 return p;
13779 }
13780
13781 return display_tag_value (tag & 1, p, end);
13782 }
13783
13784 static unsigned char *
13785 display_s390_gnu_attribute (unsigned char * p,
13786 unsigned int tag,
13787 const unsigned char * const end)
13788 {
13789 unsigned int len;
13790 int val;
13791
13792 if (tag == Tag_GNU_S390_ABI_Vector)
13793 {
13794 val = read_uleb128 (p, &len, end);
13795 p += len;
13796 printf (" Tag_GNU_S390_ABI_Vector: ");
13797
13798 switch (val)
13799 {
13800 case 0:
13801 printf (_("any\n"));
13802 break;
13803 case 1:
13804 printf (_("software\n"));
13805 break;
13806 case 2:
13807 printf (_("hardware\n"));
13808 break;
13809 default:
13810 printf ("??? (%d)\n", val);
13811 break;
13812 }
13813 return p;
13814 }
13815
13816 return display_tag_value (tag & 1, p, end);
13817 }
13818
13819 static void
13820 display_sparc_hwcaps (unsigned int mask)
13821 {
13822 if (mask)
13823 {
13824 int first = 1;
13825
13826 if (mask & ELF_SPARC_HWCAP_MUL32)
13827 fputs ("mul32", stdout), first = 0;
13828 if (mask & ELF_SPARC_HWCAP_DIV32)
13829 printf ("%sdiv32", first ? "" : "|"), first = 0;
13830 if (mask & ELF_SPARC_HWCAP_FSMULD)
13831 printf ("%sfsmuld", first ? "" : "|"), first = 0;
13832 if (mask & ELF_SPARC_HWCAP_V8PLUS)
13833 printf ("%sv8plus", first ? "" : "|"), first = 0;
13834 if (mask & ELF_SPARC_HWCAP_POPC)
13835 printf ("%spopc", first ? "" : "|"), first = 0;
13836 if (mask & ELF_SPARC_HWCAP_VIS)
13837 printf ("%svis", first ? "" : "|"), first = 0;
13838 if (mask & ELF_SPARC_HWCAP_VIS2)
13839 printf ("%svis2", first ? "" : "|"), first = 0;
13840 if (mask & ELF_SPARC_HWCAP_ASI_BLK_INIT)
13841 printf ("%sASIBlkInit", first ? "" : "|"), first = 0;
13842 if (mask & ELF_SPARC_HWCAP_FMAF)
13843 printf ("%sfmaf", first ? "" : "|"), first = 0;
13844 if (mask & ELF_SPARC_HWCAP_VIS3)
13845 printf ("%svis3", first ? "" : "|"), first = 0;
13846 if (mask & ELF_SPARC_HWCAP_HPC)
13847 printf ("%shpc", first ? "" : "|"), first = 0;
13848 if (mask & ELF_SPARC_HWCAP_RANDOM)
13849 printf ("%srandom", first ? "" : "|"), first = 0;
13850 if (mask & ELF_SPARC_HWCAP_TRANS)
13851 printf ("%strans", first ? "" : "|"), first = 0;
13852 if (mask & ELF_SPARC_HWCAP_FJFMAU)
13853 printf ("%sfjfmau", first ? "" : "|"), first = 0;
13854 if (mask & ELF_SPARC_HWCAP_IMA)
13855 printf ("%sima", first ? "" : "|"), first = 0;
13856 if (mask & ELF_SPARC_HWCAP_ASI_CACHE_SPARING)
13857 printf ("%scspare", first ? "" : "|"), first = 0;
13858 }
13859 else
13860 fputc ('0', stdout);
13861 fputc ('\n', stdout);
13862 }
13863
13864 static void
13865 display_sparc_hwcaps2 (unsigned int mask)
13866 {
13867 if (mask)
13868 {
13869 int first = 1;
13870
13871 if (mask & ELF_SPARC_HWCAP2_FJATHPLUS)
13872 fputs ("fjathplus", stdout), first = 0;
13873 if (mask & ELF_SPARC_HWCAP2_VIS3B)
13874 printf ("%svis3b", first ? "" : "|"), first = 0;
13875 if (mask & ELF_SPARC_HWCAP2_ADP)
13876 printf ("%sadp", first ? "" : "|"), first = 0;
13877 if (mask & ELF_SPARC_HWCAP2_SPARC5)
13878 printf ("%ssparc5", first ? "" : "|"), first = 0;
13879 if (mask & ELF_SPARC_HWCAP2_MWAIT)
13880 printf ("%smwait", first ? "" : "|"), first = 0;
13881 if (mask & ELF_SPARC_HWCAP2_XMPMUL)
13882 printf ("%sxmpmul", first ? "" : "|"), first = 0;
13883 if (mask & ELF_SPARC_HWCAP2_XMONT)
13884 printf ("%sxmont2", first ? "" : "|"), first = 0;
13885 if (mask & ELF_SPARC_HWCAP2_NSEC)
13886 printf ("%snsec", first ? "" : "|"), first = 0;
13887 if (mask & ELF_SPARC_HWCAP2_FJATHHPC)
13888 printf ("%sfjathhpc", first ? "" : "|"), first = 0;
13889 if (mask & ELF_SPARC_HWCAP2_FJDES)
13890 printf ("%sfjdes", first ? "" : "|"), first = 0;
13891 if (mask & ELF_SPARC_HWCAP2_FJAES)
13892 printf ("%sfjaes", first ? "" : "|"), first = 0;
13893 }
13894 else
13895 fputc ('0', stdout);
13896 fputc ('\n', stdout);
13897 }
13898
13899 static unsigned char *
13900 display_sparc_gnu_attribute (unsigned char * p,
13901 unsigned int tag,
13902 const unsigned char * const end)
13903 {
13904 unsigned int len;
13905 int val;
13906
13907 if (tag == Tag_GNU_Sparc_HWCAPS)
13908 {
13909 val = read_uleb128 (p, &len, end);
13910 p += len;
13911 printf (" Tag_GNU_Sparc_HWCAPS: ");
13912 display_sparc_hwcaps (val);
13913 return p;
13914 }
13915 if (tag == Tag_GNU_Sparc_HWCAPS2)
13916 {
13917 val = read_uleb128 (p, &len, end);
13918 p += len;
13919 printf (" Tag_GNU_Sparc_HWCAPS2: ");
13920 display_sparc_hwcaps2 (val);
13921 return p;
13922 }
13923
13924 return display_tag_value (tag, p, end);
13925 }
13926
13927 static void
13928 print_mips_fp_abi_value (int val)
13929 {
13930 switch (val)
13931 {
13932 case Val_GNU_MIPS_ABI_FP_ANY:
13933 printf (_("Hard or soft float\n"));
13934 break;
13935 case Val_GNU_MIPS_ABI_FP_DOUBLE:
13936 printf (_("Hard float (double precision)\n"));
13937 break;
13938 case Val_GNU_MIPS_ABI_FP_SINGLE:
13939 printf (_("Hard float (single precision)\n"));
13940 break;
13941 case Val_GNU_MIPS_ABI_FP_SOFT:
13942 printf (_("Soft float\n"));
13943 break;
13944 case Val_GNU_MIPS_ABI_FP_OLD_64:
13945 printf (_("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
13946 break;
13947 case Val_GNU_MIPS_ABI_FP_XX:
13948 printf (_("Hard float (32-bit CPU, Any FPU)\n"));
13949 break;
13950 case Val_GNU_MIPS_ABI_FP_64:
13951 printf (_("Hard float (32-bit CPU, 64-bit FPU)\n"));
13952 break;
13953 case Val_GNU_MIPS_ABI_FP_64A:
13954 printf (_("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
13955 break;
13956 case Val_GNU_MIPS_ABI_FP_NAN2008:
13957 printf (_("NaN 2008 compatibility\n"));
13958 break;
13959 default:
13960 printf ("??? (%d)\n", val);
13961 break;
13962 }
13963 }
13964
13965 static unsigned char *
13966 display_mips_gnu_attribute (unsigned char * p,
13967 unsigned int tag,
13968 const unsigned char * const end)
13969 {
13970 if (tag == Tag_GNU_MIPS_ABI_FP)
13971 {
13972 unsigned int len;
13973 int val;
13974
13975 val = read_uleb128 (p, &len, end);
13976 p += len;
13977 printf (" Tag_GNU_MIPS_ABI_FP: ");
13978
13979 print_mips_fp_abi_value (val);
13980
13981 return p;
13982 }
13983
13984 if (tag == Tag_GNU_MIPS_ABI_MSA)
13985 {
13986 unsigned int len;
13987 int val;
13988
13989 val = read_uleb128 (p, &len, end);
13990 p += len;
13991 printf (" Tag_GNU_MIPS_ABI_MSA: ");
13992
13993 switch (val)
13994 {
13995 case Val_GNU_MIPS_ABI_MSA_ANY:
13996 printf (_("Any MSA or not\n"));
13997 break;
13998 case Val_GNU_MIPS_ABI_MSA_128:
13999 printf (_("128-bit MSA\n"));
14000 break;
14001 default:
14002 printf ("??? (%d)\n", val);
14003 break;
14004 }
14005 return p;
14006 }
14007
14008 return display_tag_value (tag & 1, p, end);
14009 }
14010
14011 static unsigned char *
14012 display_tic6x_attribute (unsigned char * p,
14013 const unsigned char * const end)
14014 {
14015 unsigned int tag;
14016 unsigned int len;
14017 int val;
14018
14019 tag = read_uleb128 (p, &len, end);
14020 p += len;
14021
14022 switch (tag)
14023 {
14024 case Tag_ISA:
14025 val = read_uleb128 (p, &len, end);
14026 p += len;
14027 printf (" Tag_ISA: ");
14028
14029 switch (val)
14030 {
14031 case C6XABI_Tag_ISA_none:
14032 printf (_("None\n"));
14033 break;
14034 case C6XABI_Tag_ISA_C62X:
14035 printf ("C62x\n");
14036 break;
14037 case C6XABI_Tag_ISA_C67X:
14038 printf ("C67x\n");
14039 break;
14040 case C6XABI_Tag_ISA_C67XP:
14041 printf ("C67x+\n");
14042 break;
14043 case C6XABI_Tag_ISA_C64X:
14044 printf ("C64x\n");
14045 break;
14046 case C6XABI_Tag_ISA_C64XP:
14047 printf ("C64x+\n");
14048 break;
14049 case C6XABI_Tag_ISA_C674X:
14050 printf ("C674x\n");
14051 break;
14052 default:
14053 printf ("??? (%d)\n", val);
14054 break;
14055 }
14056 return p;
14057
14058 case Tag_ABI_wchar_t:
14059 val = read_uleb128 (p, &len, end);
14060 p += len;
14061 printf (" Tag_ABI_wchar_t: ");
14062 switch (val)
14063 {
14064 case 0:
14065 printf (_("Not used\n"));
14066 break;
14067 case 1:
14068 printf (_("2 bytes\n"));
14069 break;
14070 case 2:
14071 printf (_("4 bytes\n"));
14072 break;
14073 default:
14074 printf ("??? (%d)\n", val);
14075 break;
14076 }
14077 return p;
14078
14079 case Tag_ABI_stack_align_needed:
14080 val = read_uleb128 (p, &len, end);
14081 p += len;
14082 printf (" Tag_ABI_stack_align_needed: ");
14083 switch (val)
14084 {
14085 case 0:
14086 printf (_("8-byte\n"));
14087 break;
14088 case 1:
14089 printf (_("16-byte\n"));
14090 break;
14091 default:
14092 printf ("??? (%d)\n", val);
14093 break;
14094 }
14095 return p;
14096
14097 case Tag_ABI_stack_align_preserved:
14098 val = read_uleb128 (p, &len, end);
14099 p += len;
14100 printf (" Tag_ABI_stack_align_preserved: ");
14101 switch (val)
14102 {
14103 case 0:
14104 printf (_("8-byte\n"));
14105 break;
14106 case 1:
14107 printf (_("16-byte\n"));
14108 break;
14109 default:
14110 printf ("??? (%d)\n", val);
14111 break;
14112 }
14113 return p;
14114
14115 case Tag_ABI_DSBT:
14116 val = read_uleb128 (p, &len, end);
14117 p += len;
14118 printf (" Tag_ABI_DSBT: ");
14119 switch (val)
14120 {
14121 case 0:
14122 printf (_("DSBT addressing not used\n"));
14123 break;
14124 case 1:
14125 printf (_("DSBT addressing used\n"));
14126 break;
14127 default:
14128 printf ("??? (%d)\n", val);
14129 break;
14130 }
14131 return p;
14132
14133 case Tag_ABI_PID:
14134 val = read_uleb128 (p, &len, end);
14135 p += len;
14136 printf (" Tag_ABI_PID: ");
14137 switch (val)
14138 {
14139 case 0:
14140 printf (_("Data addressing position-dependent\n"));
14141 break;
14142 case 1:
14143 printf (_("Data addressing position-independent, GOT near DP\n"));
14144 break;
14145 case 2:
14146 printf (_("Data addressing position-independent, GOT far from DP\n"));
14147 break;
14148 default:
14149 printf ("??? (%d)\n", val);
14150 break;
14151 }
14152 return p;
14153
14154 case Tag_ABI_PIC:
14155 val = read_uleb128 (p, &len, end);
14156 p += len;
14157 printf (" Tag_ABI_PIC: ");
14158 switch (val)
14159 {
14160 case 0:
14161 printf (_("Code addressing position-dependent\n"));
14162 break;
14163 case 1:
14164 printf (_("Code addressing position-independent\n"));
14165 break;
14166 default:
14167 printf ("??? (%d)\n", val);
14168 break;
14169 }
14170 return p;
14171
14172 case Tag_ABI_array_object_alignment:
14173 val = read_uleb128 (p, &len, end);
14174 p += len;
14175 printf (" Tag_ABI_array_object_alignment: ");
14176 switch (val)
14177 {
14178 case 0:
14179 printf (_("8-byte\n"));
14180 break;
14181 case 1:
14182 printf (_("4-byte\n"));
14183 break;
14184 case 2:
14185 printf (_("16-byte\n"));
14186 break;
14187 default:
14188 printf ("??? (%d)\n", val);
14189 break;
14190 }
14191 return p;
14192
14193 case Tag_ABI_array_object_align_expected:
14194 val = read_uleb128 (p, &len, end);
14195 p += len;
14196 printf (" Tag_ABI_array_object_align_expected: ");
14197 switch (val)
14198 {
14199 case 0:
14200 printf (_("8-byte\n"));
14201 break;
14202 case 1:
14203 printf (_("4-byte\n"));
14204 break;
14205 case 2:
14206 printf (_("16-byte\n"));
14207 break;
14208 default:
14209 printf ("??? (%d)\n", val);
14210 break;
14211 }
14212 return p;
14213
14214 case Tag_ABI_compatibility:
14215 {
14216 val = read_uleb128 (p, &len, end);
14217 p += len;
14218 printf (" Tag_ABI_compatibility: ");
14219 printf (_("flag = %d, vendor = "), val);
14220 if (p < end - 1)
14221 {
14222 size_t maxlen = (end - p) - 1;
14223
14224 print_symbol ((int) maxlen, (const char *) p);
14225 p += strnlen ((char *) p, maxlen) + 1;
14226 }
14227 else
14228 {
14229 printf (_("<corrupt>"));
14230 p = (unsigned char *) end;
14231 }
14232 putchar ('\n');
14233 return p;
14234 }
14235
14236 case Tag_ABI_conformance:
14237 {
14238 printf (" Tag_ABI_conformance: \"");
14239 if (p < end - 1)
14240 {
14241 size_t maxlen = (end - p) - 1;
14242
14243 print_symbol ((int) maxlen, (const char *) p);
14244 p += strnlen ((char *) p, maxlen) + 1;
14245 }
14246 else
14247 {
14248 printf (_("<corrupt>"));
14249 p = (unsigned char *) end;
14250 }
14251 printf ("\"\n");
14252 return p;
14253 }
14254 }
14255
14256 return display_tag_value (tag, p, end);
14257 }
14258
14259 static void
14260 display_raw_attribute (unsigned char * p, unsigned char const * const end)
14261 {
14262 unsigned long addr = 0;
14263 size_t bytes = end - p;
14264
14265 assert (end > p);
14266 while (bytes)
14267 {
14268 int j;
14269 int k;
14270 int lbytes = (bytes > 16 ? 16 : bytes);
14271
14272 printf (" 0x%8.8lx ", addr);
14273
14274 for (j = 0; j < 16; j++)
14275 {
14276 if (j < lbytes)
14277 printf ("%2.2x", p[j]);
14278 else
14279 printf (" ");
14280
14281 if ((j & 3) == 3)
14282 printf (" ");
14283 }
14284
14285 for (j = 0; j < lbytes; j++)
14286 {
14287 k = p[j];
14288 if (k >= ' ' && k < 0x7f)
14289 printf ("%c", k);
14290 else
14291 printf (".");
14292 }
14293
14294 putchar ('\n');
14295
14296 p += lbytes;
14297 bytes -= lbytes;
14298 addr += lbytes;
14299 }
14300
14301 putchar ('\n');
14302 }
14303
14304 static unsigned char *
14305 display_msp430x_attribute (unsigned char * p,
14306 const unsigned char * const end)
14307 {
14308 unsigned int len;
14309 unsigned int val;
14310 unsigned int tag;
14311
14312 tag = read_uleb128 (p, & len, end);
14313 p += len;
14314
14315 switch (tag)
14316 {
14317 case OFBA_MSPABI_Tag_ISA:
14318 val = read_uleb128 (p, &len, end);
14319 p += len;
14320 printf (" Tag_ISA: ");
14321 switch (val)
14322 {
14323 case 0: printf (_("None\n")); break;
14324 case 1: printf (_("MSP430\n")); break;
14325 case 2: printf (_("MSP430X\n")); break;
14326 default: printf ("??? (%d)\n", val); break;
14327 }
14328 break;
14329
14330 case OFBA_MSPABI_Tag_Code_Model:
14331 val = read_uleb128 (p, &len, end);
14332 p += len;
14333 printf (" Tag_Code_Model: ");
14334 switch (val)
14335 {
14336 case 0: printf (_("None\n")); break;
14337 case 1: printf (_("Small\n")); break;
14338 case 2: printf (_("Large\n")); break;
14339 default: printf ("??? (%d)\n", val); break;
14340 }
14341 break;
14342
14343 case OFBA_MSPABI_Tag_Data_Model:
14344 val = read_uleb128 (p, &len, end);
14345 p += len;
14346 printf (" Tag_Data_Model: ");
14347 switch (val)
14348 {
14349 case 0: printf (_("None\n")); break;
14350 case 1: printf (_("Small\n")); break;
14351 case 2: printf (_("Large\n")); break;
14352 case 3: printf (_("Restricted Large\n")); break;
14353 default: printf ("??? (%d)\n", val); break;
14354 }
14355 break;
14356
14357 default:
14358 printf (_(" <unknown tag %d>: "), tag);
14359
14360 if (tag & 1)
14361 {
14362 putchar ('"');
14363 if (p < end - 1)
14364 {
14365 size_t maxlen = (end - p) - 1;
14366
14367 print_symbol ((int) maxlen, (const char *) p);
14368 p += strnlen ((char *) p, maxlen) + 1;
14369 }
14370 else
14371 {
14372 printf (_("<corrupt>"));
14373 p = (unsigned char *) end;
14374 }
14375 printf ("\"\n");
14376 }
14377 else
14378 {
14379 val = read_uleb128 (p, &len, end);
14380 p += len;
14381 printf ("%d (0x%x)\n", val, val);
14382 }
14383 break;
14384 }
14385
14386 assert (p <= end);
14387 return p;
14388 }
14389
14390 static int
14391 process_attributes (FILE * file,
14392 const char * public_name,
14393 unsigned int proc_type,
14394 unsigned char * (* display_pub_attribute) (unsigned char *, const unsigned char * const),
14395 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, unsigned int, const unsigned char * const))
14396 {
14397 Elf_Internal_Shdr * sect;
14398 unsigned i;
14399
14400 /* Find the section header so that we get the size. */
14401 for (i = 0, sect = section_headers;
14402 i < elf_header.e_shnum;
14403 i++, sect++)
14404 {
14405 unsigned char * contents;
14406 unsigned char * p;
14407
14408 if (sect->sh_type != proc_type && sect->sh_type != SHT_GNU_ATTRIBUTES)
14409 continue;
14410
14411 contents = (unsigned char *) get_data (NULL, file, sect->sh_offset, 1,
14412 sect->sh_size, _("attributes"));
14413 if (contents == NULL)
14414 continue;
14415
14416 p = contents;
14417 /* The first character is the version of the attributes.
14418 Currently only version 1, (aka 'A') is recognised here. */
14419 if (*p != 'A')
14420 printf (_("Unknown attributes version '%c'(%d) - expecting 'A'\n"), *p, *p);
14421 else
14422 {
14423 bfd_vma section_len;
14424
14425 section_len = sect->sh_size - 1;
14426 p++;
14427
14428 while (section_len > 0)
14429 {
14430 bfd_vma attr_len;
14431 unsigned int namelen;
14432 bfd_boolean public_section;
14433 bfd_boolean gnu_section;
14434
14435 if (section_len <= 4)
14436 {
14437 error (_("Tag section ends prematurely\n"));
14438 break;
14439 }
14440 attr_len = byte_get (p, 4);
14441 p += 4;
14442
14443 if (attr_len > section_len)
14444 {
14445 error (_("Bad attribute length (%u > %u)\n"),
14446 (unsigned) attr_len, (unsigned) section_len);
14447 attr_len = section_len;
14448 }
14449 /* PR 17531: file: 001-101425-0.004 */
14450 else if (attr_len < 5)
14451 {
14452 error (_("Attribute length of %u is too small\n"), (unsigned) attr_len);
14453 break;
14454 }
14455
14456 section_len -= attr_len;
14457 attr_len -= 4;
14458
14459 namelen = strnlen ((char *) p, attr_len) + 1;
14460 if (namelen == 0 || namelen >= attr_len)
14461 {
14462 error (_("Corrupt attribute section name\n"));
14463 break;
14464 }
14465
14466 printf (_("Attribute Section: "));
14467 print_symbol (INT_MAX, (const char *) p);
14468 putchar ('\n');
14469
14470 if (public_name && streq ((char *) p, public_name))
14471 public_section = TRUE;
14472 else
14473 public_section = FALSE;
14474
14475 if (streq ((char *) p, "gnu"))
14476 gnu_section = TRUE;
14477 else
14478 gnu_section = FALSE;
14479
14480 p += namelen;
14481 attr_len -= namelen;
14482
14483 while (attr_len > 0 && p < contents + sect->sh_size)
14484 {
14485 int tag;
14486 int val;
14487 bfd_vma size;
14488 unsigned char * end;
14489
14490 /* PR binutils/17531: Safe handling of corrupt files. */
14491 if (attr_len < 6)
14492 {
14493 error (_("Unused bytes at end of section\n"));
14494 section_len = 0;
14495 break;
14496 }
14497
14498 tag = *(p++);
14499 size = byte_get (p, 4);
14500 if (size > attr_len)
14501 {
14502 error (_("Bad subsection length (%u > %u)\n"),
14503 (unsigned) size, (unsigned) attr_len);
14504 size = attr_len;
14505 }
14506 /* PR binutils/17531: Safe handling of corrupt files. */
14507 if (size < 6)
14508 {
14509 error (_("Bad subsection length (%u < 6)\n"),
14510 (unsigned) size);
14511 section_len = 0;
14512 break;
14513 }
14514
14515 attr_len -= size;
14516 end = p + size - 1;
14517 assert (end <= contents + sect->sh_size);
14518 p += 4;
14519
14520 switch (tag)
14521 {
14522 case 1:
14523 printf (_("File Attributes\n"));
14524 break;
14525 case 2:
14526 printf (_("Section Attributes:"));
14527 goto do_numlist;
14528 case 3:
14529 printf (_("Symbol Attributes:"));
14530 /* Fall through. */
14531 do_numlist:
14532 for (;;)
14533 {
14534 unsigned int j;
14535
14536 val = read_uleb128 (p, &j, end);
14537 p += j;
14538 if (val == 0)
14539 break;
14540 printf (" %d", val);
14541 }
14542 printf ("\n");
14543 break;
14544 default:
14545 printf (_("Unknown tag: %d\n"), tag);
14546 public_section = FALSE;
14547 break;
14548 }
14549
14550 if (public_section && display_pub_attribute != NULL)
14551 {
14552 while (p < end)
14553 p = display_pub_attribute (p, end);
14554 assert (p == end);
14555 }
14556 else if (gnu_section && display_proc_gnu_attribute != NULL)
14557 {
14558 while (p < end)
14559 p = display_gnu_attribute (p,
14560 display_proc_gnu_attribute,
14561 end);
14562 assert (p == end);
14563 }
14564 else if (p < end)
14565 {
14566 printf (_(" Unknown attribute:\n"));
14567 display_raw_attribute (p, end);
14568 p = end;
14569 }
14570 else
14571 attr_len = 0;
14572 }
14573 }
14574 }
14575
14576 free (contents);
14577 }
14578 return 1;
14579 }
14580
14581 /* DATA points to the contents of a MIPS GOT that starts at VMA PLTGOT.
14582 Print the Address, Access and Initial fields of an entry at VMA ADDR
14583 and return the VMA of the next entry, or -1 if there was a problem.
14584 Does not read from DATA_END or beyond. */
14585
14586 static bfd_vma
14587 print_mips_got_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr,
14588 unsigned char * data_end)
14589 {
14590 printf (" ");
14591 print_vma (addr, LONG_HEX);
14592 printf (" ");
14593 if (addr < pltgot + 0xfff0)
14594 printf ("%6d(gp)", (int) (addr - pltgot - 0x7ff0));
14595 else
14596 printf ("%10s", "");
14597 printf (" ");
14598 if (data == NULL)
14599 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
14600 else
14601 {
14602 bfd_vma entry;
14603 unsigned char * from = data + addr - pltgot;
14604
14605 if (from + (is_32bit_elf ? 4 : 8) > data_end)
14606 {
14607 warn (_("MIPS GOT entry extends beyond the end of available data\n"));
14608 printf ("%*s", is_32bit_elf ? 8 : 16, _("<corrupt>"));
14609 return (bfd_vma) -1;
14610 }
14611 else
14612 {
14613 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
14614 print_vma (entry, LONG_HEX);
14615 }
14616 }
14617 return addr + (is_32bit_elf ? 4 : 8);
14618 }
14619
14620 /* DATA points to the contents of a MIPS PLT GOT that starts at VMA
14621 PLTGOT. Print the Address and Initial fields of an entry at VMA
14622 ADDR and return the VMA of the next entry. */
14623
14624 static bfd_vma
14625 print_mips_pltgot_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
14626 {
14627 printf (" ");
14628 print_vma (addr, LONG_HEX);
14629 printf (" ");
14630 if (data == NULL)
14631 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
14632 else
14633 {
14634 bfd_vma entry;
14635
14636 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
14637 print_vma (entry, LONG_HEX);
14638 }
14639 return addr + (is_32bit_elf ? 4 : 8);
14640 }
14641
14642 static void
14643 print_mips_ases (unsigned int mask)
14644 {
14645 if (mask & AFL_ASE_DSP)
14646 fputs ("\n\tDSP ASE", stdout);
14647 if (mask & AFL_ASE_DSPR2)
14648 fputs ("\n\tDSP R2 ASE", stdout);
14649 if (mask & AFL_ASE_DSPR3)
14650 fputs ("\n\tDSP R3 ASE", stdout);
14651 if (mask & AFL_ASE_EVA)
14652 fputs ("\n\tEnhanced VA Scheme", stdout);
14653 if (mask & AFL_ASE_MCU)
14654 fputs ("\n\tMCU (MicroController) ASE", stdout);
14655 if (mask & AFL_ASE_MDMX)
14656 fputs ("\n\tMDMX ASE", stdout);
14657 if (mask & AFL_ASE_MIPS3D)
14658 fputs ("\n\tMIPS-3D ASE", stdout);
14659 if (mask & AFL_ASE_MT)
14660 fputs ("\n\tMT ASE", stdout);
14661 if (mask & AFL_ASE_SMARTMIPS)
14662 fputs ("\n\tSmartMIPS ASE", stdout);
14663 if (mask & AFL_ASE_VIRT)
14664 fputs ("\n\tVZ ASE", stdout);
14665 if (mask & AFL_ASE_MSA)
14666 fputs ("\n\tMSA ASE", stdout);
14667 if (mask & AFL_ASE_MIPS16)
14668 fputs ("\n\tMIPS16 ASE", stdout);
14669 if (mask & AFL_ASE_MICROMIPS)
14670 fputs ("\n\tMICROMIPS ASE", stdout);
14671 if (mask & AFL_ASE_XPA)
14672 fputs ("\n\tXPA ASE", stdout);
14673 if (mask == 0)
14674 fprintf (stdout, "\n\t%s", _("None"));
14675 else if ((mask & ~AFL_ASE_MASK) != 0)
14676 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
14677 }
14678
14679 static void
14680 print_mips_isa_ext (unsigned int isa_ext)
14681 {
14682 switch (isa_ext)
14683 {
14684 case 0:
14685 fputs (_("None"), stdout);
14686 break;
14687 case AFL_EXT_XLR:
14688 fputs ("RMI XLR", stdout);
14689 break;
14690 case AFL_EXT_OCTEON3:
14691 fputs ("Cavium Networks Octeon3", stdout);
14692 break;
14693 case AFL_EXT_OCTEON2:
14694 fputs ("Cavium Networks Octeon2", stdout);
14695 break;
14696 case AFL_EXT_OCTEONP:
14697 fputs ("Cavium Networks OcteonP", stdout);
14698 break;
14699 case AFL_EXT_LOONGSON_3A:
14700 fputs ("Loongson 3A", stdout);
14701 break;
14702 case AFL_EXT_OCTEON:
14703 fputs ("Cavium Networks Octeon", stdout);
14704 break;
14705 case AFL_EXT_5900:
14706 fputs ("Toshiba R5900", stdout);
14707 break;
14708 case AFL_EXT_4650:
14709 fputs ("MIPS R4650", stdout);
14710 break;
14711 case AFL_EXT_4010:
14712 fputs ("LSI R4010", stdout);
14713 break;
14714 case AFL_EXT_4100:
14715 fputs ("NEC VR4100", stdout);
14716 break;
14717 case AFL_EXT_3900:
14718 fputs ("Toshiba R3900", stdout);
14719 break;
14720 case AFL_EXT_10000:
14721 fputs ("MIPS R10000", stdout);
14722 break;
14723 case AFL_EXT_SB1:
14724 fputs ("Broadcom SB-1", stdout);
14725 break;
14726 case AFL_EXT_4111:
14727 fputs ("NEC VR4111/VR4181", stdout);
14728 break;
14729 case AFL_EXT_4120:
14730 fputs ("NEC VR4120", stdout);
14731 break;
14732 case AFL_EXT_5400:
14733 fputs ("NEC VR5400", stdout);
14734 break;
14735 case AFL_EXT_5500:
14736 fputs ("NEC VR5500", stdout);
14737 break;
14738 case AFL_EXT_LOONGSON_2E:
14739 fputs ("ST Microelectronics Loongson 2E", stdout);
14740 break;
14741 case AFL_EXT_LOONGSON_2F:
14742 fputs ("ST Microelectronics Loongson 2F", stdout);
14743 break;
14744 default:
14745 fprintf (stdout, "%s (%d)", _("Unknown"), isa_ext);
14746 }
14747 }
14748
14749 static int
14750 get_mips_reg_size (int reg_size)
14751 {
14752 return (reg_size == AFL_REG_NONE) ? 0
14753 : (reg_size == AFL_REG_32) ? 32
14754 : (reg_size == AFL_REG_64) ? 64
14755 : (reg_size == AFL_REG_128) ? 128
14756 : -1;
14757 }
14758
14759 static int
14760 process_mips_specific (FILE * file)
14761 {
14762 Elf_Internal_Dyn * entry;
14763 Elf_Internal_Shdr *sect = NULL;
14764 size_t liblist_offset = 0;
14765 size_t liblistno = 0;
14766 size_t conflictsno = 0;
14767 size_t options_offset = 0;
14768 size_t conflicts_offset = 0;
14769 size_t pltrelsz = 0;
14770 size_t pltrel = 0;
14771 bfd_vma pltgot = 0;
14772 bfd_vma mips_pltgot = 0;
14773 bfd_vma jmprel = 0;
14774 bfd_vma local_gotno = 0;
14775 bfd_vma gotsym = 0;
14776 bfd_vma symtabno = 0;
14777
14778 process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
14779 display_mips_gnu_attribute);
14780
14781 sect = find_section (".MIPS.abiflags");
14782
14783 if (sect != NULL)
14784 {
14785 Elf_External_ABIFlags_v0 *abiflags_ext;
14786 Elf_Internal_ABIFlags_v0 abiflags_in;
14787
14788 if (sizeof (Elf_External_ABIFlags_v0) != sect->sh_size)
14789 fputs ("\nCorrupt ABI Flags section.\n", stdout);
14790 else
14791 {
14792 abiflags_ext = get_data (NULL, file, sect->sh_offset, 1,
14793 sect->sh_size, _("MIPS ABI Flags section"));
14794 if (abiflags_ext)
14795 {
14796 abiflags_in.version = BYTE_GET (abiflags_ext->version);
14797 abiflags_in.isa_level = BYTE_GET (abiflags_ext->isa_level);
14798 abiflags_in.isa_rev = BYTE_GET (abiflags_ext->isa_rev);
14799 abiflags_in.gpr_size = BYTE_GET (abiflags_ext->gpr_size);
14800 abiflags_in.cpr1_size = BYTE_GET (abiflags_ext->cpr1_size);
14801 abiflags_in.cpr2_size = BYTE_GET (abiflags_ext->cpr2_size);
14802 abiflags_in.fp_abi = BYTE_GET (abiflags_ext->fp_abi);
14803 abiflags_in.isa_ext = BYTE_GET (abiflags_ext->isa_ext);
14804 abiflags_in.ases = BYTE_GET (abiflags_ext->ases);
14805 abiflags_in.flags1 = BYTE_GET (abiflags_ext->flags1);
14806 abiflags_in.flags2 = BYTE_GET (abiflags_ext->flags2);
14807
14808 printf ("\nMIPS ABI Flags Version: %d\n", abiflags_in.version);
14809 printf ("\nISA: MIPS%d", abiflags_in.isa_level);
14810 if (abiflags_in.isa_rev > 1)
14811 printf ("r%d", abiflags_in.isa_rev);
14812 printf ("\nGPR size: %d",
14813 get_mips_reg_size (abiflags_in.gpr_size));
14814 printf ("\nCPR1 size: %d",
14815 get_mips_reg_size (abiflags_in.cpr1_size));
14816 printf ("\nCPR2 size: %d",
14817 get_mips_reg_size (abiflags_in.cpr2_size));
14818 fputs ("\nFP ABI: ", stdout);
14819 print_mips_fp_abi_value (abiflags_in.fp_abi);
14820 fputs ("ISA Extension: ", stdout);
14821 print_mips_isa_ext (abiflags_in.isa_ext);
14822 fputs ("\nASEs:", stdout);
14823 print_mips_ases (abiflags_in.ases);
14824 printf ("\nFLAGS 1: %8.8lx", abiflags_in.flags1);
14825 printf ("\nFLAGS 2: %8.8lx", abiflags_in.flags2);
14826 fputc ('\n', stdout);
14827 free (abiflags_ext);
14828 }
14829 }
14830 }
14831
14832 /* We have a lot of special sections. Thanks SGI! */
14833 if (dynamic_section == NULL)
14834 /* No information available. */
14835 return 0;
14836
14837 for (entry = dynamic_section;
14838 /* PR 17531 file: 012-50589-0.004. */
14839 entry < dynamic_section + dynamic_nent && entry->d_tag != DT_NULL;
14840 ++entry)
14841 switch (entry->d_tag)
14842 {
14843 case DT_MIPS_LIBLIST:
14844 liblist_offset
14845 = offset_from_vma (file, entry->d_un.d_val,
14846 liblistno * sizeof (Elf32_External_Lib));
14847 break;
14848 case DT_MIPS_LIBLISTNO:
14849 liblistno = entry->d_un.d_val;
14850 break;
14851 case DT_MIPS_OPTIONS:
14852 options_offset = offset_from_vma (file, entry->d_un.d_val, 0);
14853 break;
14854 case DT_MIPS_CONFLICT:
14855 conflicts_offset
14856 = offset_from_vma (file, entry->d_un.d_val,
14857 conflictsno * sizeof (Elf32_External_Conflict));
14858 break;
14859 case DT_MIPS_CONFLICTNO:
14860 conflictsno = entry->d_un.d_val;
14861 break;
14862 case DT_PLTGOT:
14863 pltgot = entry->d_un.d_ptr;
14864 break;
14865 case DT_MIPS_LOCAL_GOTNO:
14866 local_gotno = entry->d_un.d_val;
14867 break;
14868 case DT_MIPS_GOTSYM:
14869 gotsym = entry->d_un.d_val;
14870 break;
14871 case DT_MIPS_SYMTABNO:
14872 symtabno = entry->d_un.d_val;
14873 break;
14874 case DT_MIPS_PLTGOT:
14875 mips_pltgot = entry->d_un.d_ptr;
14876 break;
14877 case DT_PLTREL:
14878 pltrel = entry->d_un.d_val;
14879 break;
14880 case DT_PLTRELSZ:
14881 pltrelsz = entry->d_un.d_val;
14882 break;
14883 case DT_JMPREL:
14884 jmprel = entry->d_un.d_ptr;
14885 break;
14886 default:
14887 break;
14888 }
14889
14890 if (liblist_offset != 0 && liblistno != 0 && do_dynamic)
14891 {
14892 Elf32_External_Lib * elib;
14893 size_t cnt;
14894
14895 elib = (Elf32_External_Lib *) get_data (NULL, file, liblist_offset,
14896 liblistno,
14897 sizeof (Elf32_External_Lib),
14898 _("liblist section data"));
14899 if (elib)
14900 {
14901 printf (_("\nSection '.liblist' contains %lu entries:\n"),
14902 (unsigned long) liblistno);
14903 fputs (_(" Library Time Stamp Checksum Version Flags\n"),
14904 stdout);
14905
14906 for (cnt = 0; cnt < liblistno; ++cnt)
14907 {
14908 Elf32_Lib liblist;
14909 time_t atime;
14910 char timebuf[128];
14911 struct tm * tmp;
14912
14913 liblist.l_name = BYTE_GET (elib[cnt].l_name);
14914 atime = BYTE_GET (elib[cnt].l_time_stamp);
14915 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
14916 liblist.l_version = BYTE_GET (elib[cnt].l_version);
14917 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
14918
14919 tmp = gmtime (&atime);
14920 snprintf (timebuf, sizeof (timebuf),
14921 "%04u-%02u-%02uT%02u:%02u:%02u",
14922 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
14923 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
14924
14925 printf ("%3lu: ", (unsigned long) cnt);
14926 if (VALID_DYNAMIC_NAME (liblist.l_name))
14927 print_symbol (20, GET_DYNAMIC_NAME (liblist.l_name));
14928 else
14929 printf (_("<corrupt: %9ld>"), liblist.l_name);
14930 printf (" %s %#10lx %-7ld", timebuf, liblist.l_checksum,
14931 liblist.l_version);
14932
14933 if (liblist.l_flags == 0)
14934 puts (_(" NONE"));
14935 else
14936 {
14937 static const struct
14938 {
14939 const char * name;
14940 int bit;
14941 }
14942 l_flags_vals[] =
14943 {
14944 { " EXACT_MATCH", LL_EXACT_MATCH },
14945 { " IGNORE_INT_VER", LL_IGNORE_INT_VER },
14946 { " REQUIRE_MINOR", LL_REQUIRE_MINOR },
14947 { " EXPORTS", LL_EXPORTS },
14948 { " DELAY_LOAD", LL_DELAY_LOAD },
14949 { " DELTA", LL_DELTA }
14950 };
14951 int flags = liblist.l_flags;
14952 size_t fcnt;
14953
14954 for (fcnt = 0; fcnt < ARRAY_SIZE (l_flags_vals); ++fcnt)
14955 if ((flags & l_flags_vals[fcnt].bit) != 0)
14956 {
14957 fputs (l_flags_vals[fcnt].name, stdout);
14958 flags ^= l_flags_vals[fcnt].bit;
14959 }
14960 if (flags != 0)
14961 printf (" %#x", (unsigned int) flags);
14962
14963 puts ("");
14964 }
14965 }
14966
14967 free (elib);
14968 }
14969 }
14970
14971 if (options_offset != 0)
14972 {
14973 Elf_External_Options * eopt;
14974 Elf_Internal_Options * iopt;
14975 Elf_Internal_Options * option;
14976 size_t offset;
14977 int cnt;
14978 sect = section_headers;
14979
14980 /* Find the section header so that we get the size. */
14981 sect = find_section_by_type (SHT_MIPS_OPTIONS);
14982 /* PR 17533 file: 012-277276-0.004. */
14983 if (sect == NULL)
14984 {
14985 error (_("No MIPS_OPTIONS header found\n"));
14986 return 0;
14987 }
14988
14989 eopt = (Elf_External_Options *) get_data (NULL, file, options_offset, 1,
14990 sect->sh_size, _("options"));
14991 if (eopt)
14992 {
14993 iopt = (Elf_Internal_Options *)
14994 cmalloc ((sect->sh_size / sizeof (eopt)), sizeof (* iopt));
14995 if (iopt == NULL)
14996 {
14997 error (_("Out of memory allocating space for MIPS options\n"));
14998 return 0;
14999 }
15000
15001 offset = cnt = 0;
15002 option = iopt;
15003
15004 while (offset <= sect->sh_size - sizeof (* eopt))
15005 {
15006 Elf_External_Options * eoption;
15007
15008 eoption = (Elf_External_Options *) ((char *) eopt + offset);
15009
15010 option->kind = BYTE_GET (eoption->kind);
15011 option->size = BYTE_GET (eoption->size);
15012 option->section = BYTE_GET (eoption->section);
15013 option->info = BYTE_GET (eoption->info);
15014
15015 /* PR 17531: file: ffa0fa3b. */
15016 if (option->size < sizeof (* eopt)
15017 || offset + option->size > sect->sh_size)
15018 {
15019 error (_("Invalid size (%u) for MIPS option\n"), option->size);
15020 return 0;
15021 }
15022 offset += option->size;
15023
15024 ++option;
15025 ++cnt;
15026 }
15027
15028 printf (_("\nSection '%s' contains %d entries:\n"),
15029 printable_section_name (sect), cnt);
15030
15031 option = iopt;
15032 offset = 0;
15033
15034 while (cnt-- > 0)
15035 {
15036 size_t len;
15037
15038 switch (option->kind)
15039 {
15040 case ODK_NULL:
15041 /* This shouldn't happen. */
15042 printf (" NULL %d %lx", option->section, option->info);
15043 break;
15044 case ODK_REGINFO:
15045 printf (" REGINFO ");
15046 if (elf_header.e_machine == EM_MIPS)
15047 {
15048 /* 32bit form. */
15049 Elf32_External_RegInfo * ereg;
15050 Elf32_RegInfo reginfo;
15051
15052 ereg = (Elf32_External_RegInfo *) (option + 1);
15053 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
15054 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
15055 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
15056 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
15057 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
15058 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
15059
15060 printf ("GPR %08lx GP 0x%lx\n",
15061 reginfo.ri_gprmask,
15062 (unsigned long) reginfo.ri_gp_value);
15063 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
15064 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
15065 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
15066 }
15067 else
15068 {
15069 /* 64 bit form. */
15070 Elf64_External_RegInfo * ereg;
15071 Elf64_Internal_RegInfo reginfo;
15072
15073 ereg = (Elf64_External_RegInfo *) (option + 1);
15074 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
15075 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
15076 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
15077 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
15078 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
15079 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
15080
15081 printf ("GPR %08lx GP 0x",
15082 reginfo.ri_gprmask);
15083 printf_vma (reginfo.ri_gp_value);
15084 printf ("\n");
15085
15086 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
15087 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
15088 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
15089 }
15090 ++option;
15091 continue;
15092 case ODK_EXCEPTIONS:
15093 fputs (" EXCEPTIONS fpe_min(", stdout);
15094 process_mips_fpe_exception (option->info & OEX_FPU_MIN);
15095 fputs (") fpe_max(", stdout);
15096 process_mips_fpe_exception ((option->info & OEX_FPU_MAX) >> 8);
15097 fputs (")", stdout);
15098
15099 if (option->info & OEX_PAGE0)
15100 fputs (" PAGE0", stdout);
15101 if (option->info & OEX_SMM)
15102 fputs (" SMM", stdout);
15103 if (option->info & OEX_FPDBUG)
15104 fputs (" FPDBUG", stdout);
15105 if (option->info & OEX_DISMISS)
15106 fputs (" DISMISS", stdout);
15107 break;
15108 case ODK_PAD:
15109 fputs (" PAD ", stdout);
15110 if (option->info & OPAD_PREFIX)
15111 fputs (" PREFIX", stdout);
15112 if (option->info & OPAD_POSTFIX)
15113 fputs (" POSTFIX", stdout);
15114 if (option->info & OPAD_SYMBOL)
15115 fputs (" SYMBOL", stdout);
15116 break;
15117 case ODK_HWPATCH:
15118 fputs (" HWPATCH ", stdout);
15119 if (option->info & OHW_R4KEOP)
15120 fputs (" R4KEOP", stdout);
15121 if (option->info & OHW_R8KPFETCH)
15122 fputs (" R8KPFETCH", stdout);
15123 if (option->info & OHW_R5KEOP)
15124 fputs (" R5KEOP", stdout);
15125 if (option->info & OHW_R5KCVTL)
15126 fputs (" R5KCVTL", stdout);
15127 break;
15128 case ODK_FILL:
15129 fputs (" FILL ", stdout);
15130 /* XXX Print content of info word? */
15131 break;
15132 case ODK_TAGS:
15133 fputs (" TAGS ", stdout);
15134 /* XXX Print content of info word? */
15135 break;
15136 case ODK_HWAND:
15137 fputs (" HWAND ", stdout);
15138 if (option->info & OHWA0_R4KEOP_CHECKED)
15139 fputs (" R4KEOP_CHECKED", stdout);
15140 if (option->info & OHWA0_R4KEOP_CLEAN)
15141 fputs (" R4KEOP_CLEAN", stdout);
15142 break;
15143 case ODK_HWOR:
15144 fputs (" HWOR ", stdout);
15145 if (option->info & OHWA0_R4KEOP_CHECKED)
15146 fputs (" R4KEOP_CHECKED", stdout);
15147 if (option->info & OHWA0_R4KEOP_CLEAN)
15148 fputs (" R4KEOP_CLEAN", stdout);
15149 break;
15150 case ODK_GP_GROUP:
15151 printf (" GP_GROUP %#06lx self-contained %#06lx",
15152 option->info & OGP_GROUP,
15153 (option->info & OGP_SELF) >> 16);
15154 break;
15155 case ODK_IDENT:
15156 printf (" IDENT %#06lx self-contained %#06lx",
15157 option->info & OGP_GROUP,
15158 (option->info & OGP_SELF) >> 16);
15159 break;
15160 default:
15161 /* This shouldn't happen. */
15162 printf (" %3d ??? %d %lx",
15163 option->kind, option->section, option->info);
15164 break;
15165 }
15166
15167 len = sizeof (* eopt);
15168 while (len < option->size)
15169 {
15170 unsigned char datum = * ((unsigned char *) eopt + offset + len);
15171
15172 if (ISPRINT (datum))
15173 printf ("%c", datum);
15174 else
15175 printf ("\\%03o", datum);
15176 len ++;
15177 }
15178 fputs ("\n", stdout);
15179
15180 offset += option->size;
15181 ++option;
15182 }
15183
15184 free (eopt);
15185 }
15186 }
15187
15188 if (conflicts_offset != 0 && conflictsno != 0)
15189 {
15190 Elf32_Conflict * iconf;
15191 size_t cnt;
15192
15193 if (dynamic_symbols == NULL)
15194 {
15195 error (_("conflict list found without a dynamic symbol table\n"));
15196 return 0;
15197 }
15198
15199 iconf = (Elf32_Conflict *) cmalloc (conflictsno, sizeof (* iconf));
15200 if (iconf == NULL)
15201 {
15202 error (_("Out of memory allocating space for dynamic conflicts\n"));
15203 return 0;
15204 }
15205
15206 if (is_32bit_elf)
15207 {
15208 Elf32_External_Conflict * econf32;
15209
15210 econf32 = (Elf32_External_Conflict *)
15211 get_data (NULL, file, conflicts_offset, conflictsno,
15212 sizeof (* econf32), _("conflict"));
15213 if (!econf32)
15214 return 0;
15215
15216 for (cnt = 0; cnt < conflictsno; ++cnt)
15217 iconf[cnt] = BYTE_GET (econf32[cnt]);
15218
15219 free (econf32);
15220 }
15221 else
15222 {
15223 Elf64_External_Conflict * econf64;
15224
15225 econf64 = (Elf64_External_Conflict *)
15226 get_data (NULL, file, conflicts_offset, conflictsno,
15227 sizeof (* econf64), _("conflict"));
15228 if (!econf64)
15229 return 0;
15230
15231 for (cnt = 0; cnt < conflictsno; ++cnt)
15232 iconf[cnt] = BYTE_GET (econf64[cnt]);
15233
15234 free (econf64);
15235 }
15236
15237 printf (_("\nSection '.conflict' contains %lu entries:\n"),
15238 (unsigned long) conflictsno);
15239 puts (_(" Num: Index Value Name"));
15240
15241 for (cnt = 0; cnt < conflictsno; ++cnt)
15242 {
15243 printf ("%5lu: %8lu ", (unsigned long) cnt, iconf[cnt]);
15244
15245 if (iconf[cnt] >= num_dynamic_syms)
15246 printf (_("<corrupt symbol index>"));
15247 else
15248 {
15249 Elf_Internal_Sym * psym;
15250
15251 psym = & dynamic_symbols[iconf[cnt]];
15252 print_vma (psym->st_value, FULL_HEX);
15253 putchar (' ');
15254 if (VALID_DYNAMIC_NAME (psym->st_name))
15255 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
15256 else
15257 printf (_("<corrupt: %14ld>"), psym->st_name);
15258 }
15259 putchar ('\n');
15260 }
15261
15262 free (iconf);
15263 }
15264
15265 if (pltgot != 0 && local_gotno != 0)
15266 {
15267 bfd_vma ent, local_end, global_end;
15268 size_t i, offset;
15269 unsigned char * data;
15270 unsigned char * data_end;
15271 int addr_size;
15272
15273 ent = pltgot;
15274 addr_size = (is_32bit_elf ? 4 : 8);
15275 local_end = pltgot + local_gotno * addr_size;
15276
15277 /* PR binutils/17533 file: 012-111227-0.004 */
15278 if (symtabno < gotsym)
15279 {
15280 error (_("The GOT symbol offset (%lu) is greater than the symbol table size (%lu)\n"),
15281 (unsigned long) gotsym, (unsigned long) symtabno);
15282 return 0;
15283 }
15284
15285 global_end = local_end + (symtabno - gotsym) * addr_size;
15286 /* PR 17531: file: 54c91a34. */
15287 if (global_end < local_end)
15288 {
15289 error (_("Too many GOT symbols: %lu\n"), (unsigned long) symtabno);
15290 return 0;
15291 }
15292
15293 offset = offset_from_vma (file, pltgot, global_end - pltgot);
15294 data = (unsigned char *) get_data (NULL, file, offset,
15295 global_end - pltgot, 1,
15296 _("Global Offset Table data"));
15297 if (data == NULL)
15298 return 0;
15299 data_end = data + (global_end - pltgot);
15300
15301 printf (_("\nPrimary GOT:\n"));
15302 printf (_(" Canonical gp value: "));
15303 print_vma (pltgot + 0x7ff0, LONG_HEX);
15304 printf ("\n\n");
15305
15306 printf (_(" Reserved entries:\n"));
15307 printf (_(" %*s %10s %*s Purpose\n"),
15308 addr_size * 2, _("Address"), _("Access"),
15309 addr_size * 2, _("Initial"));
15310 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15311 printf (_(" Lazy resolver\n"));
15312 if (ent == (bfd_vma) -1)
15313 goto got_print_fail;
15314 if (data
15315 && (byte_get (data + ent - pltgot, addr_size)
15316 >> (addr_size * 8 - 1)) != 0)
15317 {
15318 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15319 printf (_(" Module pointer (GNU extension)\n"));
15320 if (ent == (bfd_vma) -1)
15321 goto got_print_fail;
15322 }
15323 printf ("\n");
15324
15325 if (ent < local_end)
15326 {
15327 printf (_(" Local entries:\n"));
15328 printf (" %*s %10s %*s\n",
15329 addr_size * 2, _("Address"), _("Access"),
15330 addr_size * 2, _("Initial"));
15331 while (ent < local_end)
15332 {
15333 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15334 printf ("\n");
15335 if (ent == (bfd_vma) -1)
15336 goto got_print_fail;
15337 }
15338 printf ("\n");
15339 }
15340
15341 if (gotsym < symtabno)
15342 {
15343 int sym_width;
15344
15345 printf (_(" Global entries:\n"));
15346 printf (" %*s %10s %*s %*s %-7s %3s %s\n",
15347 addr_size * 2, _("Address"),
15348 _("Access"),
15349 addr_size * 2, _("Initial"),
15350 addr_size * 2, _("Sym.Val."),
15351 _("Type"),
15352 /* Note for translators: "Ndx" = abbreviated form of "Index". */
15353 _("Ndx"), _("Name"));
15354
15355 sym_width = (is_32bit_elf ? 80 : 160) - 28 - addr_size * 6 - 1;
15356
15357 for (i = gotsym; i < symtabno; i++)
15358 {
15359 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15360 printf (" ");
15361
15362 if (dynamic_symbols == NULL)
15363 printf (_("<no dynamic symbols>"));
15364 else if (i < num_dynamic_syms)
15365 {
15366 Elf_Internal_Sym * psym = dynamic_symbols + i;
15367
15368 print_vma (psym->st_value, LONG_HEX);
15369 printf (" %-7s %3s ",
15370 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
15371 get_symbol_index_type (psym->st_shndx));
15372
15373 if (VALID_DYNAMIC_NAME (psym->st_name))
15374 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
15375 else
15376 printf (_("<corrupt: %14ld>"), psym->st_name);
15377 }
15378 else
15379 printf (_("<symbol index %lu exceeds number of dynamic symbols>"),
15380 (unsigned long) i);
15381
15382 printf ("\n");
15383 if (ent == (bfd_vma) -1)
15384 break;
15385 }
15386 printf ("\n");
15387 }
15388
15389 got_print_fail:
15390 if (data)
15391 free (data);
15392 }
15393
15394 if (mips_pltgot != 0 && jmprel != 0 && pltrel != 0 && pltrelsz != 0)
15395 {
15396 bfd_vma ent, end;
15397 size_t offset, rel_offset;
15398 unsigned long count, i;
15399 unsigned char * data;
15400 int addr_size, sym_width;
15401 Elf_Internal_Rela * rels;
15402
15403 rel_offset = offset_from_vma (file, jmprel, pltrelsz);
15404 if (pltrel == DT_RELA)
15405 {
15406 if (!slurp_rela_relocs (file, rel_offset, pltrelsz, &rels, &count))
15407 return 0;
15408 }
15409 else
15410 {
15411 if (!slurp_rel_relocs (file, rel_offset, pltrelsz, &rels, &count))
15412 return 0;
15413 }
15414
15415 ent = mips_pltgot;
15416 addr_size = (is_32bit_elf ? 4 : 8);
15417 end = mips_pltgot + (2 + count) * addr_size;
15418
15419 offset = offset_from_vma (file, mips_pltgot, end - mips_pltgot);
15420 data = (unsigned char *) get_data (NULL, file, offset, end - mips_pltgot,
15421 1, _("Procedure Linkage Table data"));
15422 if (data == NULL)
15423 return 0;
15424
15425 printf ("\nPLT GOT:\n\n");
15426 printf (_(" Reserved entries:\n"));
15427 printf (_(" %*s %*s Purpose\n"),
15428 addr_size * 2, _("Address"), addr_size * 2, _("Initial"));
15429 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15430 printf (_(" PLT lazy resolver\n"));
15431 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15432 printf (_(" Module pointer\n"));
15433 printf ("\n");
15434
15435 printf (_(" Entries:\n"));
15436 printf (" %*s %*s %*s %-7s %3s %s\n",
15437 addr_size * 2, _("Address"),
15438 addr_size * 2, _("Initial"),
15439 addr_size * 2, _("Sym.Val."), _("Type"), _("Ndx"), _("Name"));
15440 sym_width = (is_32bit_elf ? 80 : 160) - 17 - addr_size * 6 - 1;
15441 for (i = 0; i < count; i++)
15442 {
15443 unsigned long idx = get_reloc_symindex (rels[i].r_info);
15444
15445 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15446 printf (" ");
15447
15448 if (idx >= num_dynamic_syms)
15449 printf (_("<corrupt symbol index: %lu>"), idx);
15450 else
15451 {
15452 Elf_Internal_Sym * psym = dynamic_symbols + idx;
15453
15454 print_vma (psym->st_value, LONG_HEX);
15455 printf (" %-7s %3s ",
15456 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
15457 get_symbol_index_type (psym->st_shndx));
15458 if (VALID_DYNAMIC_NAME (psym->st_name))
15459 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
15460 else
15461 printf (_("<corrupt: %14ld>"), psym->st_name);
15462 }
15463 printf ("\n");
15464 }
15465 printf ("\n");
15466
15467 if (data)
15468 free (data);
15469 free (rels);
15470 }
15471
15472 return 1;
15473 }
15474
15475 static int
15476 process_nds32_specific (FILE * file)
15477 {
15478 Elf_Internal_Shdr *sect = NULL;
15479
15480 sect = find_section (".nds32_e_flags");
15481 if (sect != NULL)
15482 {
15483 unsigned int *flag;
15484
15485 printf ("\nNDS32 elf flags section:\n");
15486 flag = get_data (NULL, file, sect->sh_offset, 1,
15487 sect->sh_size, _("NDS32 elf flags section"));
15488
15489 switch ((*flag) & 0x3)
15490 {
15491 case 0:
15492 printf ("(VEC_SIZE):\tNo entry.\n");
15493 break;
15494 case 1:
15495 printf ("(VEC_SIZE):\t4 bytes\n");
15496 break;
15497 case 2:
15498 printf ("(VEC_SIZE):\t16 bytes\n");
15499 break;
15500 case 3:
15501 printf ("(VEC_SIZE):\treserved\n");
15502 break;
15503 }
15504 }
15505
15506 return TRUE;
15507 }
15508
15509 static int
15510 process_gnu_liblist (FILE * file)
15511 {
15512 Elf_Internal_Shdr * section;
15513 Elf_Internal_Shdr * string_sec;
15514 Elf32_External_Lib * elib;
15515 char * strtab;
15516 size_t strtab_size;
15517 size_t cnt;
15518 unsigned i;
15519
15520 if (! do_arch)
15521 return 0;
15522
15523 for (i = 0, section = section_headers;
15524 i < elf_header.e_shnum;
15525 i++, section++)
15526 {
15527 switch (section->sh_type)
15528 {
15529 case SHT_GNU_LIBLIST:
15530 if (section->sh_link >= elf_header.e_shnum)
15531 break;
15532
15533 elib = (Elf32_External_Lib *)
15534 get_data (NULL, file, section->sh_offset, 1, section->sh_size,
15535 _("liblist section data"));
15536
15537 if (elib == NULL)
15538 break;
15539 string_sec = section_headers + section->sh_link;
15540
15541 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
15542 string_sec->sh_size,
15543 _("liblist string table"));
15544 if (strtab == NULL
15545 || section->sh_entsize != sizeof (Elf32_External_Lib))
15546 {
15547 free (elib);
15548 free (strtab);
15549 break;
15550 }
15551 strtab_size = string_sec->sh_size;
15552
15553 printf (_("\nLibrary list section '%s' contains %lu entries:\n"),
15554 printable_section_name (section),
15555 (unsigned long) (section->sh_size / sizeof (Elf32_External_Lib)));
15556
15557 puts (_(" Library Time Stamp Checksum Version Flags"));
15558
15559 for (cnt = 0; cnt < section->sh_size / sizeof (Elf32_External_Lib);
15560 ++cnt)
15561 {
15562 Elf32_Lib liblist;
15563 time_t atime;
15564 char timebuf[128];
15565 struct tm * tmp;
15566
15567 liblist.l_name = BYTE_GET (elib[cnt].l_name);
15568 atime = BYTE_GET (elib[cnt].l_time_stamp);
15569 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
15570 liblist.l_version = BYTE_GET (elib[cnt].l_version);
15571 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
15572
15573 tmp = gmtime (&atime);
15574 snprintf (timebuf, sizeof (timebuf),
15575 "%04u-%02u-%02uT%02u:%02u:%02u",
15576 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
15577 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
15578
15579 printf ("%3lu: ", (unsigned long) cnt);
15580 if (do_wide)
15581 printf ("%-20s", liblist.l_name < strtab_size
15582 ? strtab + liblist.l_name : _("<corrupt>"));
15583 else
15584 printf ("%-20.20s", liblist.l_name < strtab_size
15585 ? strtab + liblist.l_name : _("<corrupt>"));
15586 printf (" %s %#010lx %-7ld %-7ld\n", timebuf, liblist.l_checksum,
15587 liblist.l_version, liblist.l_flags);
15588 }
15589
15590 free (elib);
15591 free (strtab);
15592 }
15593 }
15594
15595 return 1;
15596 }
15597
15598 static const char *
15599 get_note_type (unsigned e_type)
15600 {
15601 static char buff[64];
15602
15603 if (elf_header.e_type == ET_CORE)
15604 switch (e_type)
15605 {
15606 case NT_AUXV:
15607 return _("NT_AUXV (auxiliary vector)");
15608 case NT_PRSTATUS:
15609 return _("NT_PRSTATUS (prstatus structure)");
15610 case NT_FPREGSET:
15611 return _("NT_FPREGSET (floating point registers)");
15612 case NT_PRPSINFO:
15613 return _("NT_PRPSINFO (prpsinfo structure)");
15614 case NT_TASKSTRUCT:
15615 return _("NT_TASKSTRUCT (task structure)");
15616 case NT_PRXFPREG:
15617 return _("NT_PRXFPREG (user_xfpregs structure)");
15618 case NT_PPC_VMX:
15619 return _("NT_PPC_VMX (ppc Altivec registers)");
15620 case NT_PPC_VSX:
15621 return _("NT_PPC_VSX (ppc VSX registers)");
15622 case NT_386_TLS:
15623 return _("NT_386_TLS (x86 TLS information)");
15624 case NT_386_IOPERM:
15625 return _("NT_386_IOPERM (x86 I/O permissions)");
15626 case NT_X86_XSTATE:
15627 return _("NT_X86_XSTATE (x86 XSAVE extended state)");
15628 case NT_S390_HIGH_GPRS:
15629 return _("NT_S390_HIGH_GPRS (s390 upper register halves)");
15630 case NT_S390_TIMER:
15631 return _("NT_S390_TIMER (s390 timer register)");
15632 case NT_S390_TODCMP:
15633 return _("NT_S390_TODCMP (s390 TOD comparator register)");
15634 case NT_S390_TODPREG:
15635 return _("NT_S390_TODPREG (s390 TOD programmable register)");
15636 case NT_S390_CTRS:
15637 return _("NT_S390_CTRS (s390 control registers)");
15638 case NT_S390_PREFIX:
15639 return _("NT_S390_PREFIX (s390 prefix register)");
15640 case NT_S390_LAST_BREAK:
15641 return _("NT_S390_LAST_BREAK (s390 last breaking event address)");
15642 case NT_S390_SYSTEM_CALL:
15643 return _("NT_S390_SYSTEM_CALL (s390 system call restart data)");
15644 case NT_S390_TDB:
15645 return _("NT_S390_TDB (s390 transaction diagnostic block)");
15646 case NT_S390_VXRS_LOW:
15647 return _("NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)");
15648 case NT_S390_VXRS_HIGH:
15649 return _("NT_S390_VXRS_HIGH (s390 vector registers 16-31)");
15650 case NT_ARM_VFP:
15651 return _("NT_ARM_VFP (arm VFP registers)");
15652 case NT_ARM_TLS:
15653 return _("NT_ARM_TLS (AArch TLS registers)");
15654 case NT_ARM_HW_BREAK:
15655 return _("NT_ARM_HW_BREAK (AArch hardware breakpoint registers)");
15656 case NT_ARM_HW_WATCH:
15657 return _("NT_ARM_HW_WATCH (AArch hardware watchpoint registers)");
15658 case NT_PSTATUS:
15659 return _("NT_PSTATUS (pstatus structure)");
15660 case NT_FPREGS:
15661 return _("NT_FPREGS (floating point registers)");
15662 case NT_PSINFO:
15663 return _("NT_PSINFO (psinfo structure)");
15664 case NT_LWPSTATUS:
15665 return _("NT_LWPSTATUS (lwpstatus_t structure)");
15666 case NT_LWPSINFO:
15667 return _("NT_LWPSINFO (lwpsinfo_t structure)");
15668 case NT_WIN32PSTATUS:
15669 return _("NT_WIN32PSTATUS (win32_pstatus structure)");
15670 case NT_SIGINFO:
15671 return _("NT_SIGINFO (siginfo_t data)");
15672 case NT_FILE:
15673 return _("NT_FILE (mapped files)");
15674 default:
15675 break;
15676 }
15677 else
15678 switch (e_type)
15679 {
15680 case NT_VERSION:
15681 return _("NT_VERSION (version)");
15682 case NT_ARCH:
15683 return _("NT_ARCH (architecture)");
15684 default:
15685 break;
15686 }
15687
15688 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
15689 return buff;
15690 }
15691
15692 static int
15693 print_core_note (Elf_Internal_Note *pnote)
15694 {
15695 unsigned int addr_size = is_32bit_elf ? 4 : 8;
15696 bfd_vma count, page_size;
15697 unsigned char *descdata, *filenames, *descend;
15698
15699 if (pnote->type != NT_FILE)
15700 return 1;
15701
15702 #ifndef BFD64
15703 if (!is_32bit_elf)
15704 {
15705 printf (_(" Cannot decode 64-bit note in 32-bit build\n"));
15706 /* Still "successful". */
15707 return 1;
15708 }
15709 #endif
15710
15711 if (pnote->descsz < 2 * addr_size)
15712 {
15713 printf (_(" Malformed note - too short for header\n"));
15714 return 0;
15715 }
15716
15717 descdata = (unsigned char *) pnote->descdata;
15718 descend = descdata + pnote->descsz;
15719
15720 if (descdata[pnote->descsz - 1] != '\0')
15721 {
15722 printf (_(" Malformed note - does not end with \\0\n"));
15723 return 0;
15724 }
15725
15726 count = byte_get (descdata, addr_size);
15727 descdata += addr_size;
15728
15729 page_size = byte_get (descdata, addr_size);
15730 descdata += addr_size;
15731
15732 if (pnote->descsz < 2 * addr_size + count * 3 * addr_size)
15733 {
15734 printf (_(" Malformed note - too short for supplied file count\n"));
15735 return 0;
15736 }
15737
15738 printf (_(" Page size: "));
15739 print_vma (page_size, DEC);
15740 printf ("\n");
15741
15742 printf (_(" %*s%*s%*s\n"),
15743 (int) (2 + 2 * addr_size), _("Start"),
15744 (int) (4 + 2 * addr_size), _("End"),
15745 (int) (4 + 2 * addr_size), _("Page Offset"));
15746 filenames = descdata + count * 3 * addr_size;
15747 while (count-- > 0)
15748 {
15749 bfd_vma start, end, file_ofs;
15750
15751 if (filenames == descend)
15752 {
15753 printf (_(" Malformed note - filenames end too early\n"));
15754 return 0;
15755 }
15756
15757 start = byte_get (descdata, addr_size);
15758 descdata += addr_size;
15759 end = byte_get (descdata, addr_size);
15760 descdata += addr_size;
15761 file_ofs = byte_get (descdata, addr_size);
15762 descdata += addr_size;
15763
15764 printf (" ");
15765 print_vma (start, FULL_HEX);
15766 printf (" ");
15767 print_vma (end, FULL_HEX);
15768 printf (" ");
15769 print_vma (file_ofs, FULL_HEX);
15770 printf ("\n %s\n", filenames);
15771
15772 filenames += 1 + strlen ((char *) filenames);
15773 }
15774
15775 return 1;
15776 }
15777
15778 static const char *
15779 get_gnu_elf_note_type (unsigned e_type)
15780 {
15781 /* NB/ Keep this switch statement in sync with print_gnu_note (). */
15782 switch (e_type)
15783 {
15784 case NT_GNU_ABI_TAG:
15785 return _("NT_GNU_ABI_TAG (ABI version tag)");
15786 case NT_GNU_HWCAP:
15787 return _("NT_GNU_HWCAP (DSO-supplied software HWCAP info)");
15788 case NT_GNU_BUILD_ID:
15789 return _("NT_GNU_BUILD_ID (unique build ID bitstring)");
15790 case NT_GNU_GOLD_VERSION:
15791 return _("NT_GNU_GOLD_VERSION (gold version)");
15792 default:
15793 {
15794 static char buff[64];
15795
15796 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
15797 return buff;
15798 }
15799 }
15800 }
15801
15802 static int
15803 print_gnu_note (Elf_Internal_Note *pnote)
15804 {
15805 /* NB/ Keep this switch statement in sync with get_gnu_elf_note_type (). */
15806 switch (pnote->type)
15807 {
15808 case NT_GNU_BUILD_ID:
15809 {
15810 unsigned long i;
15811
15812 printf (_(" Build ID: "));
15813 for (i = 0; i < pnote->descsz; ++i)
15814 printf ("%02x", pnote->descdata[i] & 0xff);
15815 printf ("\n");
15816 }
15817 break;
15818
15819 case NT_GNU_ABI_TAG:
15820 {
15821 unsigned long os, major, minor, subminor;
15822 const char *osname;
15823
15824 /* PR 17531: file: 030-599401-0.004. */
15825 if (pnote->descsz < 16)
15826 {
15827 printf (_(" <corrupt GNU_ABI_TAG>\n"));
15828 break;
15829 }
15830
15831 os = byte_get ((unsigned char *) pnote->descdata, 4);
15832 major = byte_get ((unsigned char *) pnote->descdata + 4, 4);
15833 minor = byte_get ((unsigned char *) pnote->descdata + 8, 4);
15834 subminor = byte_get ((unsigned char *) pnote->descdata + 12, 4);
15835
15836 switch (os)
15837 {
15838 case GNU_ABI_TAG_LINUX:
15839 osname = "Linux";
15840 break;
15841 case GNU_ABI_TAG_HURD:
15842 osname = "Hurd";
15843 break;
15844 case GNU_ABI_TAG_SOLARIS:
15845 osname = "Solaris";
15846 break;
15847 case GNU_ABI_TAG_FREEBSD:
15848 osname = "FreeBSD";
15849 break;
15850 case GNU_ABI_TAG_NETBSD:
15851 osname = "NetBSD";
15852 break;
15853 case GNU_ABI_TAG_SYLLABLE:
15854 osname = "Syllable";
15855 break;
15856 case GNU_ABI_TAG_NACL:
15857 osname = "NaCl";
15858 break;
15859 default:
15860 osname = "Unknown";
15861 break;
15862 }
15863
15864 printf (_(" OS: %s, ABI: %ld.%ld.%ld\n"), osname,
15865 major, minor, subminor);
15866 }
15867 break;
15868
15869 case NT_GNU_GOLD_VERSION:
15870 {
15871 unsigned long i;
15872
15873 printf (_(" Version: "));
15874 for (i = 0; i < pnote->descsz && pnote->descdata[i] != '\0'; ++i)
15875 printf ("%c", pnote->descdata[i]);
15876 printf ("\n");
15877 }
15878 break;
15879
15880 case NT_GNU_HWCAP:
15881 {
15882 unsigned long num_entries, mask;
15883
15884 /* Hardware capabilities information. Word 0 is the number of entries.
15885 Word 1 is a bitmask of enabled entries. The rest of the descriptor
15886 is a series of entries, where each entry is a single byte followed
15887 by a nul terminated string. The byte gives the bit number to test
15888 if enabled in the bitmask. */
15889 printf (_(" Hardware Capabilities: "));
15890 if (pnote->descsz < 8)
15891 {
15892 printf (_("<corrupt GNU_HWCAP>\n"));
15893 break;
15894 }
15895 num_entries = byte_get ((unsigned char *) pnote->descdata, 4);
15896 mask = byte_get ((unsigned char *) pnote->descdata + 4, 4);
15897 printf (_("num entries: %ld, enabled mask: %lx\n"), num_entries, mask);
15898 /* FIXME: Add code to display the entries... */
15899 }
15900 break;
15901
15902 default:
15903 /* Handle unrecognised types. An error message should have already been
15904 created by get_gnu_elf_note_type(), so all that we need to do is to
15905 display the data. */
15906 {
15907 unsigned long i;
15908
15909 printf (_(" Description data: "));
15910 for (i = 0; i < pnote->descsz; ++i)
15911 printf ("%02x ", pnote->descdata[i] & 0xff);
15912 printf ("\n");
15913 }
15914 break;
15915 }
15916
15917 return 1;
15918 }
15919
15920 static const char *
15921 get_v850_elf_note_type (enum v850_notes n_type)
15922 {
15923 static char buff[64];
15924
15925 switch (n_type)
15926 {
15927 case V850_NOTE_ALIGNMENT: return _("Alignment of 8-byte objects");
15928 case V850_NOTE_DATA_SIZE: return _("Sizeof double and long double");
15929 case V850_NOTE_FPU_INFO: return _("Type of FPU support needed");
15930 case V850_NOTE_SIMD_INFO: return _("Use of SIMD instructions");
15931 case V850_NOTE_CACHE_INFO: return _("Use of cache");
15932 case V850_NOTE_MMU_INFO: return _("Use of MMU");
15933 default:
15934 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), n_type);
15935 return buff;
15936 }
15937 }
15938
15939 static int
15940 print_v850_note (Elf_Internal_Note * pnote)
15941 {
15942 unsigned int val;
15943
15944 if (pnote->descsz != 4)
15945 return 0;
15946 val = byte_get ((unsigned char *) pnote->descdata, pnote->descsz);
15947
15948 if (val == 0)
15949 {
15950 printf (_("not set\n"));
15951 return 1;
15952 }
15953
15954 switch (pnote->type)
15955 {
15956 case V850_NOTE_ALIGNMENT:
15957 switch (val)
15958 {
15959 case EF_RH850_DATA_ALIGN4: printf (_("4-byte\n")); return 1;
15960 case EF_RH850_DATA_ALIGN8: printf (_("8-byte\n")); return 1;
15961 }
15962 break;
15963
15964 case V850_NOTE_DATA_SIZE:
15965 switch (val)
15966 {
15967 case EF_RH850_DOUBLE32: printf (_("4-bytes\n")); return 1;
15968 case EF_RH850_DOUBLE64: printf (_("8-bytes\n")); return 1;
15969 }
15970 break;
15971
15972 case V850_NOTE_FPU_INFO:
15973 switch (val)
15974 {
15975 case EF_RH850_FPU20: printf (_("FPU-2.0\n")); return 1;
15976 case EF_RH850_FPU30: printf (_("FPU-3.0\n")); return 1;
15977 }
15978 break;
15979
15980 case V850_NOTE_MMU_INFO:
15981 case V850_NOTE_CACHE_INFO:
15982 case V850_NOTE_SIMD_INFO:
15983 if (val == EF_RH850_SIMD)
15984 {
15985 printf (_("yes\n"));
15986 return 1;
15987 }
15988 break;
15989
15990 default:
15991 /* An 'unknown note type' message will already have been displayed. */
15992 break;
15993 }
15994
15995 printf (_("unknown value: %x\n"), val);
15996 return 0;
15997 }
15998
15999 static int
16000 process_netbsd_elf_note (Elf_Internal_Note * pnote)
16001 {
16002 unsigned int version;
16003
16004 switch (pnote->type)
16005 {
16006 case NT_NETBSD_IDENT:
16007 version = byte_get ((unsigned char *) pnote->descdata, sizeof (version));
16008 if ((version / 10000) % 100)
16009 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u%s%c)\n", pnote->descsz,
16010 version, version / 100000000, (version / 1000000) % 100,
16011 (version / 10000) % 100 > 26 ? "Z" : "",
16012 'A' + (version / 10000) % 26);
16013 else
16014 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u.%u)\n", pnote->descsz,
16015 version, version / 100000000, (version / 1000000) % 100,
16016 (version / 100) % 100);
16017 return 1;
16018
16019 case NT_NETBSD_MARCH:
16020 printf (" NetBSD\t0x%08lx\tMARCH <%s>\n", pnote->descsz,
16021 pnote->descdata);
16022 return 1;
16023
16024 default:
16025 break;
16026 }
16027
16028 printf (" NetBSD\t0x%08lx\tUnknown note type: (0x%08lx)\n", pnote->descsz,
16029 pnote->type);
16030 return 1;
16031 }
16032
16033 static const char *
16034 get_freebsd_elfcore_note_type (unsigned e_type)
16035 {
16036 switch (e_type)
16037 {
16038 case NT_FREEBSD_THRMISC:
16039 return _("NT_THRMISC (thrmisc structure)");
16040 case NT_FREEBSD_PROCSTAT_PROC:
16041 return _("NT_PROCSTAT_PROC (proc data)");
16042 case NT_FREEBSD_PROCSTAT_FILES:
16043 return _("NT_PROCSTAT_FILES (files data)");
16044 case NT_FREEBSD_PROCSTAT_VMMAP:
16045 return _("NT_PROCSTAT_VMMAP (vmmap data)");
16046 case NT_FREEBSD_PROCSTAT_GROUPS:
16047 return _("NT_PROCSTAT_GROUPS (groups data)");
16048 case NT_FREEBSD_PROCSTAT_UMASK:
16049 return _("NT_PROCSTAT_UMASK (umask data)");
16050 case NT_FREEBSD_PROCSTAT_RLIMIT:
16051 return _("NT_PROCSTAT_RLIMIT (rlimit data)");
16052 case NT_FREEBSD_PROCSTAT_OSREL:
16053 return _("NT_PROCSTAT_OSREL (osreldate data)");
16054 case NT_FREEBSD_PROCSTAT_PSSTRINGS:
16055 return _("NT_PROCSTAT_PSSTRINGS (ps_strings data)");
16056 case NT_FREEBSD_PROCSTAT_AUXV:
16057 return _("NT_PROCSTAT_AUXV (auxv data)");
16058 }
16059 return get_note_type (e_type);
16060 }
16061
16062 static const char *
16063 get_netbsd_elfcore_note_type (unsigned e_type)
16064 {
16065 static char buff[64];
16066
16067 if (e_type == NT_NETBSDCORE_PROCINFO)
16068 {
16069 /* NetBSD core "procinfo" structure. */
16070 return _("NetBSD procinfo structure");
16071 }
16072
16073 /* As of Jan 2002 there are no other machine-independent notes
16074 defined for NetBSD core files. If the note type is less
16075 than the start of the machine-dependent note types, we don't
16076 understand it. */
16077
16078 if (e_type < NT_NETBSDCORE_FIRSTMACH)
16079 {
16080 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16081 return buff;
16082 }
16083
16084 switch (elf_header.e_machine)
16085 {
16086 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0
16087 and PT_GETFPREGS == mach+2. */
16088
16089 case EM_OLD_ALPHA:
16090 case EM_ALPHA:
16091 case EM_SPARC:
16092 case EM_SPARC32PLUS:
16093 case EM_SPARCV9:
16094 switch (e_type)
16095 {
16096 case NT_NETBSDCORE_FIRSTMACH + 0:
16097 return _("PT_GETREGS (reg structure)");
16098 case NT_NETBSDCORE_FIRSTMACH + 2:
16099 return _("PT_GETFPREGS (fpreg structure)");
16100 default:
16101 break;
16102 }
16103 break;
16104
16105 /* On all other arch's, PT_GETREGS == mach+1 and
16106 PT_GETFPREGS == mach+3. */
16107 default:
16108 switch (e_type)
16109 {
16110 case NT_NETBSDCORE_FIRSTMACH + 1:
16111 return _("PT_GETREGS (reg structure)");
16112 case NT_NETBSDCORE_FIRSTMACH + 3:
16113 return _("PT_GETFPREGS (fpreg structure)");
16114 default:
16115 break;
16116 }
16117 }
16118
16119 snprintf (buff, sizeof (buff), "PT_FIRSTMACH+%d",
16120 e_type - NT_NETBSDCORE_FIRSTMACH);
16121 return buff;
16122 }
16123
16124 static const char *
16125 get_stapsdt_note_type (unsigned e_type)
16126 {
16127 static char buff[64];
16128
16129 switch (e_type)
16130 {
16131 case NT_STAPSDT:
16132 return _("NT_STAPSDT (SystemTap probe descriptors)");
16133
16134 default:
16135 break;
16136 }
16137
16138 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16139 return buff;
16140 }
16141
16142 static int
16143 print_stapsdt_note (Elf_Internal_Note *pnote)
16144 {
16145 int addr_size = is_32bit_elf ? 4 : 8;
16146 char *data = pnote->descdata;
16147 char *data_end = pnote->descdata + pnote->descsz;
16148 bfd_vma pc, base_addr, semaphore;
16149 char *provider, *probe, *arg_fmt;
16150
16151 pc = byte_get ((unsigned char *) data, addr_size);
16152 data += addr_size;
16153 base_addr = byte_get ((unsigned char *) data, addr_size);
16154 data += addr_size;
16155 semaphore = byte_get ((unsigned char *) data, addr_size);
16156 data += addr_size;
16157
16158 provider = data;
16159 data += strlen (data) + 1;
16160 probe = data;
16161 data += strlen (data) + 1;
16162 arg_fmt = data;
16163 data += strlen (data) + 1;
16164
16165 printf (_(" Provider: %s\n"), provider);
16166 printf (_(" Name: %s\n"), probe);
16167 printf (_(" Location: "));
16168 print_vma (pc, FULL_HEX);
16169 printf (_(", Base: "));
16170 print_vma (base_addr, FULL_HEX);
16171 printf (_(", Semaphore: "));
16172 print_vma (semaphore, FULL_HEX);
16173 printf ("\n");
16174 printf (_(" Arguments: %s\n"), arg_fmt);
16175
16176 return data == data_end;
16177 }
16178
16179 static const char *
16180 get_ia64_vms_note_type (unsigned e_type)
16181 {
16182 static char buff[64];
16183
16184 switch (e_type)
16185 {
16186 case NT_VMS_MHD:
16187 return _("NT_VMS_MHD (module header)");
16188 case NT_VMS_LNM:
16189 return _("NT_VMS_LNM (language name)");
16190 case NT_VMS_SRC:
16191 return _("NT_VMS_SRC (source files)");
16192 case NT_VMS_TITLE:
16193 return "NT_VMS_TITLE";
16194 case NT_VMS_EIDC:
16195 return _("NT_VMS_EIDC (consistency check)");
16196 case NT_VMS_FPMODE:
16197 return _("NT_VMS_FPMODE (FP mode)");
16198 case NT_VMS_LINKTIME:
16199 return "NT_VMS_LINKTIME";
16200 case NT_VMS_IMGNAM:
16201 return _("NT_VMS_IMGNAM (image name)");
16202 case NT_VMS_IMGID:
16203 return _("NT_VMS_IMGID (image id)");
16204 case NT_VMS_LINKID:
16205 return _("NT_VMS_LINKID (link id)");
16206 case NT_VMS_IMGBID:
16207 return _("NT_VMS_IMGBID (build id)");
16208 case NT_VMS_GSTNAM:
16209 return _("NT_VMS_GSTNAM (sym table name)");
16210 case NT_VMS_ORIG_DYN:
16211 return "NT_VMS_ORIG_DYN";
16212 case NT_VMS_PATCHTIME:
16213 return "NT_VMS_PATCHTIME";
16214 default:
16215 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16216 return buff;
16217 }
16218 }
16219
16220 static int
16221 print_ia64_vms_note (Elf_Internal_Note * pnote)
16222 {
16223 switch (pnote->type)
16224 {
16225 case NT_VMS_MHD:
16226 if (pnote->descsz > 36)
16227 {
16228 size_t l = strlen (pnote->descdata + 34);
16229 printf (_(" Creation date : %.17s\n"), pnote->descdata);
16230 printf (_(" Last patch date: %.17s\n"), pnote->descdata + 17);
16231 printf (_(" Module name : %s\n"), pnote->descdata + 34);
16232 printf (_(" Module version : %s\n"), pnote->descdata + 34 + l + 1);
16233 }
16234 else
16235 printf (_(" Invalid size\n"));
16236 break;
16237 case NT_VMS_LNM:
16238 printf (_(" Language: %s\n"), pnote->descdata);
16239 break;
16240 #ifdef BFD64
16241 case NT_VMS_FPMODE:
16242 printf (_(" Floating Point mode: "));
16243 printf ("0x%016" BFD_VMA_FMT "x\n",
16244 (bfd_vma) byte_get ((unsigned char *)pnote->descdata, 8));
16245 break;
16246 case NT_VMS_LINKTIME:
16247 printf (_(" Link time: "));
16248 print_vms_time
16249 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
16250 printf ("\n");
16251 break;
16252 case NT_VMS_PATCHTIME:
16253 printf (_(" Patch time: "));
16254 print_vms_time
16255 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
16256 printf ("\n");
16257 break;
16258 case NT_VMS_ORIG_DYN:
16259 printf (_(" Major id: %u, minor id: %u\n"),
16260 (unsigned) byte_get ((unsigned char *)pnote->descdata, 4),
16261 (unsigned) byte_get ((unsigned char *)pnote->descdata + 4, 4));
16262 printf (_(" Last modified : "));
16263 print_vms_time
16264 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata + 8, 8));
16265 printf (_("\n Link flags : "));
16266 printf ("0x%016" BFD_VMA_FMT "x\n",
16267 (bfd_vma) byte_get ((unsigned char *)pnote->descdata + 16, 8));
16268 printf (_(" Header flags: 0x%08x\n"),
16269 (unsigned) byte_get ((unsigned char *)pnote->descdata + 24, 4));
16270 printf (_(" Image id : %s\n"), pnote->descdata + 32);
16271 break;
16272 #endif
16273 case NT_VMS_IMGNAM:
16274 printf (_(" Image name: %s\n"), pnote->descdata);
16275 break;
16276 case NT_VMS_GSTNAM:
16277 printf (_(" Global symbol table name: %s\n"), pnote->descdata);
16278 break;
16279 case NT_VMS_IMGID:
16280 printf (_(" Image id: %s\n"), pnote->descdata);
16281 break;
16282 case NT_VMS_LINKID:
16283 printf (_(" Linker id: %s\n"), pnote->descdata);
16284 break;
16285 default:
16286 break;
16287 }
16288 return 1;
16289 }
16290
16291 /* Note that by the ELF standard, the name field is already null byte
16292 terminated, and namesz includes the terminating null byte.
16293 I.E. the value of namesz for the name "FSF" is 4.
16294
16295 If the value of namesz is zero, there is no name present. */
16296 static int
16297 process_note (Elf_Internal_Note * pnote,
16298 FILE * file ATTRIBUTE_UNUSED,
16299 Elf_Internal_Shdr * section ATTRIBUTE_UNUSED)
16300 {
16301 const char * name = pnote->namesz ? pnote->namedata : "(NONE)";
16302 const char * nt;
16303
16304 if (pnote->namesz == 0)
16305 /* If there is no note name, then use the default set of
16306 note type strings. */
16307 nt = get_note_type (pnote->type);
16308
16309 else if (const_strneq (pnote->namedata, "GNU"))
16310 /* GNU-specific object file notes. */
16311 nt = get_gnu_elf_note_type (pnote->type);
16312
16313 else if (const_strneq (pnote->namedata, "FreeBSD"))
16314 /* FreeBSD-specific core file notes. */
16315 nt = get_freebsd_elfcore_note_type (pnote->type);
16316
16317 else if (const_strneq (pnote->namedata, "NetBSD-CORE"))
16318 /* NetBSD-specific core file notes. */
16319 nt = get_netbsd_elfcore_note_type (pnote->type);
16320
16321 else if (const_strneq (pnote->namedata, "NetBSD"))
16322 /* NetBSD-specific core file notes. */
16323 return process_netbsd_elf_note (pnote);
16324
16325 else if (strneq (pnote->namedata, "SPU/", 4))
16326 {
16327 /* SPU-specific core file notes. */
16328 nt = pnote->namedata + 4;
16329 name = "SPU";
16330 }
16331
16332 else if (const_strneq (pnote->namedata, "IPF/VMS"))
16333 /* VMS/ia64-specific file notes. */
16334 nt = get_ia64_vms_note_type (pnote->type);
16335
16336 else if (const_strneq (pnote->namedata, "stapsdt"))
16337 nt = get_stapsdt_note_type (pnote->type);
16338
16339 else
16340 /* Don't recognize this note name; just use the default set of
16341 note type strings. */
16342 nt = get_note_type (pnote->type);
16343
16344 printf (" ");
16345 print_symbol (-20, name);
16346 printf (" 0x%08lx\t%s\n", pnote->descsz, nt);
16347
16348 if (const_strneq (pnote->namedata, "IPF/VMS"))
16349 return print_ia64_vms_note (pnote);
16350 else if (const_strneq (pnote->namedata, "GNU"))
16351 return print_gnu_note (pnote);
16352 else if (const_strneq (pnote->namedata, "stapsdt"))
16353 return print_stapsdt_note (pnote);
16354 else if (const_strneq (pnote->namedata, "CORE"))
16355 return print_core_note (pnote);
16356
16357 else if (pnote->descsz)
16358 {
16359 unsigned long i;
16360
16361 printf (_(" description data: "));
16362 for (i = 0; i < pnote->descsz; i++)
16363 printf ("%02x ", pnote->descdata[i]);
16364 printf ("\n");
16365 }
16366
16367 return 1;
16368 }
16369
16370 static int
16371 process_notes_at (FILE * file,
16372 Elf_Internal_Shdr * section,
16373 bfd_vma offset,
16374 bfd_vma length)
16375 {
16376 Elf_External_Note * pnotes;
16377 Elf_External_Note * external;
16378 char * end;
16379 int res = 1;
16380
16381 if (length <= 0)
16382 return 0;
16383
16384 if (section)
16385 {
16386 pnotes = (Elf_External_Note *) get_section_contents (section, file);
16387 if (pnotes)
16388 apply_relocations (file, section, (unsigned char *) pnotes, length, NULL, NULL);
16389 }
16390 else
16391 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
16392 _("notes"));
16393 if (pnotes == NULL)
16394 return 0;
16395
16396 external = pnotes;
16397
16398 if (section)
16399 printf (_("\nDisplaying notes found in: %s\n"), printable_section_name (section));
16400 else
16401 printf (_("\nDisplaying notes found at file offset 0x%08lx with length 0x%08lx:\n"),
16402 (unsigned long) offset, (unsigned long) length);
16403
16404 printf (_(" %-20s %10s\tDescription\n"), _("Owner"), _("Data size"));
16405
16406 end = (char *) pnotes + length;
16407 while ((char *) external < end)
16408 {
16409 Elf_Internal_Note inote;
16410 size_t min_notesz;
16411 char *next;
16412 char * temp = NULL;
16413 size_t data_remaining = end - (char *) external;
16414
16415 if (!is_ia64_vms ())
16416 {
16417 /* PR binutils/15191
16418 Make sure that there is enough data to read. */
16419 min_notesz = offsetof (Elf_External_Note, name);
16420 if (data_remaining < min_notesz)
16421 {
16422 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
16423 (int) data_remaining);
16424 break;
16425 }
16426 inote.type = BYTE_GET (external->type);
16427 inote.namesz = BYTE_GET (external->namesz);
16428 inote.namedata = external->name;
16429 inote.descsz = BYTE_GET (external->descsz);
16430 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
16431 /* PR 17531: file: 3443835e. */
16432 if (inote.descdata < (char *) pnotes || inote.descdata > end)
16433 {
16434 warn (_("Corrupt note: name size is too big: %lx\n"), inote.namesz);
16435 inote.descdata = inote.namedata;
16436 inote.namesz = 0;
16437 }
16438
16439 inote.descpos = offset + (inote.descdata - (char *) pnotes);
16440 next = inote.descdata + align_power (inote.descsz, 2);
16441 }
16442 else
16443 {
16444 Elf64_External_VMS_Note *vms_external;
16445
16446 /* PR binutils/15191
16447 Make sure that there is enough data to read. */
16448 min_notesz = offsetof (Elf64_External_VMS_Note, name);
16449 if (data_remaining < min_notesz)
16450 {
16451 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
16452 (int) data_remaining);
16453 break;
16454 }
16455
16456 vms_external = (Elf64_External_VMS_Note *) external;
16457 inote.type = BYTE_GET (vms_external->type);
16458 inote.namesz = BYTE_GET (vms_external->namesz);
16459 inote.namedata = vms_external->name;
16460 inote.descsz = BYTE_GET (vms_external->descsz);
16461 inote.descdata = inote.namedata + align_power (inote.namesz, 3);
16462 inote.descpos = offset + (inote.descdata - (char *) pnotes);
16463 next = inote.descdata + align_power (inote.descsz, 3);
16464 }
16465
16466 if (inote.descdata < (char *) external + min_notesz
16467 || next < (char *) external + min_notesz
16468 /* PR binutils/17531: file: id:000000,sig:11,src:006986,op:havoc,rep:4. */
16469 || inote.namedata + inote.namesz < inote.namedata
16470 || inote.descdata + inote.descsz < inote.descdata
16471 || data_remaining < (size_t)(next - (char *) external))
16472 {
16473 warn (_("note with invalid namesz and/or descsz found at offset 0x%lx\n"),
16474 (unsigned long) ((char *) external - (char *) pnotes));
16475 warn (_(" type: 0x%lx, namesize: 0x%08lx, descsize: 0x%08lx\n"),
16476 inote.type, inote.namesz, inote.descsz);
16477 break;
16478 }
16479
16480 external = (Elf_External_Note *) next;
16481
16482 /* Verify that name is null terminated. It appears that at least
16483 one version of Linux (RedHat 6.0) generates corefiles that don't
16484 comply with the ELF spec by failing to include the null byte in
16485 namesz. */
16486 if (inote.namedata[inote.namesz - 1] != '\0')
16487 {
16488 temp = (char *) malloc (inote.namesz + 1);
16489 if (temp == NULL)
16490 {
16491 error (_("Out of memory allocating space for inote name\n"));
16492 res = 0;
16493 break;
16494 }
16495
16496 strncpy (temp, inote.namedata, inote.namesz);
16497 temp[inote.namesz] = 0;
16498
16499 /* warn (_("'%s' NOTE name not properly null terminated\n"), temp); */
16500 inote.namedata = temp;
16501 }
16502
16503 res &= process_note (& inote, file, section);
16504
16505 if (temp != NULL)
16506 {
16507 free (temp);
16508 temp = NULL;
16509 }
16510 }
16511
16512 free (pnotes);
16513
16514 return res;
16515 }
16516
16517 static int
16518 process_corefile_note_segments (FILE * file)
16519 {
16520 Elf_Internal_Phdr * segment;
16521 unsigned int i;
16522 int res = 1;
16523
16524 if (! get_program_headers (file))
16525 return 0;
16526
16527 for (i = 0, segment = program_headers;
16528 i < elf_header.e_phnum;
16529 i++, segment++)
16530 {
16531 if (segment->p_type == PT_NOTE)
16532 res &= process_notes_at (file, NULL,
16533 (bfd_vma) segment->p_offset,
16534 (bfd_vma) segment->p_filesz);
16535 }
16536
16537 return res;
16538 }
16539
16540 static int
16541 process_v850_notes (FILE * file, bfd_vma offset, bfd_vma length)
16542 {
16543 Elf_External_Note * pnotes;
16544 Elf_External_Note * external;
16545 char * end;
16546 int res = 1;
16547
16548 if (length <= 0)
16549 return 0;
16550
16551 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
16552 _("v850 notes"));
16553 if (pnotes == NULL)
16554 return 0;
16555
16556 external = pnotes;
16557 end = (char*) pnotes + length;
16558
16559 printf (_("\nDisplaying contents of Renesas V850 notes section at offset 0x%lx with length 0x%lx:\n"),
16560 (unsigned long) offset, (unsigned long) length);
16561
16562 while ((char *) external + sizeof (Elf_External_Note) < end)
16563 {
16564 Elf_External_Note * next;
16565 Elf_Internal_Note inote;
16566
16567 inote.type = BYTE_GET (external->type);
16568 inote.namesz = BYTE_GET (external->namesz);
16569 inote.namedata = external->name;
16570 inote.descsz = BYTE_GET (external->descsz);
16571 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
16572 inote.descpos = offset + (inote.descdata - (char *) pnotes);
16573
16574 if (inote.descdata < (char *) pnotes || inote.descdata >= end)
16575 {
16576 warn (_("Corrupt note: name size is too big: %lx\n"), inote.namesz);
16577 inote.descdata = inote.namedata;
16578 inote.namesz = 0;
16579 }
16580
16581 next = (Elf_External_Note *) (inote.descdata + align_power (inote.descsz, 2));
16582
16583 if ( ((char *) next > end)
16584 || ((char *) next < (char *) pnotes))
16585 {
16586 warn (_("corrupt descsz found in note at offset 0x%lx\n"),
16587 (unsigned long) ((char *) external - (char *) pnotes));
16588 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
16589 inote.type, inote.namesz, inote.descsz);
16590 break;
16591 }
16592
16593 external = next;
16594
16595 /* Prevent out-of-bounds indexing. */
16596 if ( inote.namedata + inote.namesz > end
16597 || inote.namedata + inote.namesz < inote.namedata)
16598 {
16599 warn (_("corrupt namesz found in note at offset 0x%lx\n"),
16600 (unsigned long) ((char *) external - (char *) pnotes));
16601 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
16602 inote.type, inote.namesz, inote.descsz);
16603 break;
16604 }
16605
16606 printf (" %s: ", get_v850_elf_note_type (inote.type));
16607
16608 if (! print_v850_note (& inote))
16609 {
16610 res = 0;
16611 printf ("<corrupt sizes: namesz: %lx, descsz: %lx>\n",
16612 inote.namesz, inote.descsz);
16613 }
16614 }
16615
16616 free (pnotes);
16617
16618 return res;
16619 }
16620
16621 static int
16622 process_note_sections (FILE * file)
16623 {
16624 Elf_Internal_Shdr * section;
16625 unsigned long i;
16626 int n = 0;
16627 int res = 1;
16628
16629 for (i = 0, section = section_headers;
16630 i < elf_header.e_shnum && section != NULL;
16631 i++, section++)
16632 {
16633 if (section->sh_type == SHT_NOTE)
16634 {
16635 res &= process_notes_at (file, section,
16636 (bfd_vma) section->sh_offset,
16637 (bfd_vma) section->sh_size);
16638 n++;
16639 }
16640
16641 if (( elf_header.e_machine == EM_V800
16642 || elf_header.e_machine == EM_V850
16643 || elf_header.e_machine == EM_CYGNUS_V850)
16644 && section->sh_type == SHT_RENESAS_INFO)
16645 {
16646 res &= process_v850_notes (file,
16647 (bfd_vma) section->sh_offset,
16648 (bfd_vma) section->sh_size);
16649 n++;
16650 }
16651 }
16652
16653 if (n == 0)
16654 /* Try processing NOTE segments instead. */
16655 return process_corefile_note_segments (file);
16656
16657 return res;
16658 }
16659
16660 static int
16661 process_notes (FILE * file)
16662 {
16663 /* If we have not been asked to display the notes then do nothing. */
16664 if (! do_notes)
16665 return 1;
16666
16667 if (elf_header.e_type != ET_CORE)
16668 return process_note_sections (file);
16669
16670 /* No program headers means no NOTE segment. */
16671 if (elf_header.e_phnum > 0)
16672 return process_corefile_note_segments (file);
16673
16674 printf (_("No note segments present in the core file.\n"));
16675 return 1;
16676 }
16677
16678 static unsigned char *
16679 display_public_gnu_attributes (unsigned char * start,
16680 const unsigned char * const end)
16681 {
16682 printf (_(" Unknown GNU attribute: %s\n"), start);
16683
16684 start += strnlen ((char *) start, end - start);
16685 display_raw_attribute (start, end);
16686
16687 return (unsigned char *) end;
16688 }
16689
16690 static unsigned char *
16691 display_generic_attribute (unsigned char * start,
16692 unsigned int tag,
16693 const unsigned char * const end)
16694 {
16695 if (tag == 0)
16696 return (unsigned char *) end;
16697
16698 return display_tag_value (tag, start, end);
16699 }
16700
16701 static int
16702 process_arch_specific (FILE * file)
16703 {
16704 if (! do_arch)
16705 return 1;
16706
16707 switch (elf_header.e_machine)
16708 {
16709 case EM_ARM:
16710 return process_attributes (file, "aeabi", SHT_ARM_ATTRIBUTES,
16711 display_arm_attribute,
16712 display_generic_attribute);
16713
16714 case EM_MIPS:
16715 case EM_MIPS_RS3_LE:
16716 return process_mips_specific (file);
16717
16718 case EM_MSP430:
16719 return process_attributes (file, "mspabi", SHT_MSP430_ATTRIBUTES,
16720 display_msp430x_attribute,
16721 display_generic_attribute);
16722
16723 case EM_NDS32:
16724 return process_nds32_specific (file);
16725
16726 case EM_PPC:
16727 case EM_PPC64:
16728 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
16729 display_power_gnu_attribute);
16730
16731 case EM_S390:
16732 case EM_S390_OLD:
16733 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
16734 display_s390_gnu_attribute);
16735
16736 case EM_SPARC:
16737 case EM_SPARC32PLUS:
16738 case EM_SPARCV9:
16739 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
16740 display_sparc_gnu_attribute);
16741
16742 case EM_TI_C6000:
16743 return process_attributes (file, "c6xabi", SHT_C6000_ATTRIBUTES,
16744 display_tic6x_attribute,
16745 display_generic_attribute);
16746
16747 default:
16748 return process_attributes (file, "gnu", SHT_GNU_ATTRIBUTES,
16749 display_public_gnu_attributes,
16750 display_generic_attribute);
16751 }
16752 }
16753
16754 static int
16755 get_file_header (FILE * file)
16756 {
16757 /* Read in the identity array. */
16758 if (fread (elf_header.e_ident, EI_NIDENT, 1, file) != 1)
16759 return 0;
16760
16761 /* Determine how to read the rest of the header. */
16762 switch (elf_header.e_ident[EI_DATA])
16763 {
16764 default:
16765 case ELFDATANONE:
16766 case ELFDATA2LSB:
16767 byte_get = byte_get_little_endian;
16768 byte_put = byte_put_little_endian;
16769 break;
16770 case ELFDATA2MSB:
16771 byte_get = byte_get_big_endian;
16772 byte_put = byte_put_big_endian;
16773 break;
16774 }
16775
16776 /* For now we only support 32 bit and 64 bit ELF files. */
16777 is_32bit_elf = (elf_header.e_ident[EI_CLASS] != ELFCLASS64);
16778
16779 /* Read in the rest of the header. */
16780 if (is_32bit_elf)
16781 {
16782 Elf32_External_Ehdr ehdr32;
16783
16784 if (fread (ehdr32.e_type, sizeof (ehdr32) - EI_NIDENT, 1, file) != 1)
16785 return 0;
16786
16787 elf_header.e_type = BYTE_GET (ehdr32.e_type);
16788 elf_header.e_machine = BYTE_GET (ehdr32.e_machine);
16789 elf_header.e_version = BYTE_GET (ehdr32.e_version);
16790 elf_header.e_entry = BYTE_GET (ehdr32.e_entry);
16791 elf_header.e_phoff = BYTE_GET (ehdr32.e_phoff);
16792 elf_header.e_shoff = BYTE_GET (ehdr32.e_shoff);
16793 elf_header.e_flags = BYTE_GET (ehdr32.e_flags);
16794 elf_header.e_ehsize = BYTE_GET (ehdr32.e_ehsize);
16795 elf_header.e_phentsize = BYTE_GET (ehdr32.e_phentsize);
16796 elf_header.e_phnum = BYTE_GET (ehdr32.e_phnum);
16797 elf_header.e_shentsize = BYTE_GET (ehdr32.e_shentsize);
16798 elf_header.e_shnum = BYTE_GET (ehdr32.e_shnum);
16799 elf_header.e_shstrndx = BYTE_GET (ehdr32.e_shstrndx);
16800 }
16801 else
16802 {
16803 Elf64_External_Ehdr ehdr64;
16804
16805 /* If we have been compiled with sizeof (bfd_vma) == 4, then
16806 we will not be able to cope with the 64bit data found in
16807 64 ELF files. Detect this now and abort before we start
16808 overwriting things. */
16809 if (sizeof (bfd_vma) < 8)
16810 {
16811 error (_("This instance of readelf has been built without support for a\n\
16812 64 bit data type and so it cannot read 64 bit ELF files.\n"));
16813 return 0;
16814 }
16815
16816 if (fread (ehdr64.e_type, sizeof (ehdr64) - EI_NIDENT, 1, file) != 1)
16817 return 0;
16818
16819 elf_header.e_type = BYTE_GET (ehdr64.e_type);
16820 elf_header.e_machine = BYTE_GET (ehdr64.e_machine);
16821 elf_header.e_version = BYTE_GET (ehdr64.e_version);
16822 elf_header.e_entry = BYTE_GET (ehdr64.e_entry);
16823 elf_header.e_phoff = BYTE_GET (ehdr64.e_phoff);
16824 elf_header.e_shoff = BYTE_GET (ehdr64.e_shoff);
16825 elf_header.e_flags = BYTE_GET (ehdr64.e_flags);
16826 elf_header.e_ehsize = BYTE_GET (ehdr64.e_ehsize);
16827 elf_header.e_phentsize = BYTE_GET (ehdr64.e_phentsize);
16828 elf_header.e_phnum = BYTE_GET (ehdr64.e_phnum);
16829 elf_header.e_shentsize = BYTE_GET (ehdr64.e_shentsize);
16830 elf_header.e_shnum = BYTE_GET (ehdr64.e_shnum);
16831 elf_header.e_shstrndx = BYTE_GET (ehdr64.e_shstrndx);
16832 }
16833
16834 if (elf_header.e_shoff)
16835 {
16836 /* There may be some extensions in the first section header. Don't
16837 bomb if we can't read it. */
16838 if (is_32bit_elf)
16839 get_32bit_section_headers (file, TRUE);
16840 else
16841 get_64bit_section_headers (file, TRUE);
16842 }
16843
16844 return 1;
16845 }
16846
16847 /* Process one ELF object file according to the command line options.
16848 This file may actually be stored in an archive. The file is
16849 positioned at the start of the ELF object. */
16850
16851 static int
16852 process_object (char * file_name, FILE * file)
16853 {
16854 unsigned int i;
16855
16856 if (! get_file_header (file))
16857 {
16858 error (_("%s: Failed to read file header\n"), file_name);
16859 return 1;
16860 }
16861
16862 /* Initialise per file variables. */
16863 for (i = ARRAY_SIZE (version_info); i--;)
16864 version_info[i] = 0;
16865
16866 for (i = ARRAY_SIZE (dynamic_info); i--;)
16867 dynamic_info[i] = 0;
16868 dynamic_info_DT_GNU_HASH = 0;
16869
16870 /* Process the file. */
16871 if (show_name)
16872 printf (_("\nFile: %s\n"), file_name);
16873
16874 /* Initialise the dump_sects array from the cmdline_dump_sects array.
16875 Note we do this even if cmdline_dump_sects is empty because we
16876 must make sure that the dump_sets array is zeroed out before each
16877 object file is processed. */
16878 if (num_dump_sects > num_cmdline_dump_sects)
16879 memset (dump_sects, 0, num_dump_sects * sizeof (* dump_sects));
16880
16881 if (num_cmdline_dump_sects > 0)
16882 {
16883 if (num_dump_sects == 0)
16884 /* A sneaky way of allocating the dump_sects array. */
16885 request_dump_bynumber (num_cmdline_dump_sects, 0);
16886
16887 assert (num_dump_sects >= num_cmdline_dump_sects);
16888 memcpy (dump_sects, cmdline_dump_sects,
16889 num_cmdline_dump_sects * sizeof (* dump_sects));
16890 }
16891
16892 if (! process_file_header ())
16893 return 1;
16894
16895 if (! process_section_headers (file))
16896 {
16897 /* Without loaded section headers we cannot process lots of
16898 things. */
16899 do_unwind = do_version = do_dump = do_arch = 0;
16900
16901 if (! do_using_dynamic)
16902 do_syms = do_dyn_syms = do_reloc = 0;
16903 }
16904
16905 if (! process_section_groups (file))
16906 {
16907 /* Without loaded section groups we cannot process unwind. */
16908 do_unwind = 0;
16909 }
16910
16911 if (process_program_headers (file))
16912 process_dynamic_section (file);
16913
16914 process_relocs (file);
16915
16916 process_unwind (file);
16917
16918 process_symbol_table (file);
16919
16920 process_syminfo (file);
16921
16922 process_version_sections (file);
16923
16924 process_section_contents (file);
16925
16926 process_notes (file);
16927
16928 process_gnu_liblist (file);
16929
16930 process_arch_specific (file);
16931
16932 if (program_headers)
16933 {
16934 free (program_headers);
16935 program_headers = NULL;
16936 }
16937
16938 if (section_headers)
16939 {
16940 free (section_headers);
16941 section_headers = NULL;
16942 }
16943
16944 if (string_table)
16945 {
16946 free (string_table);
16947 string_table = NULL;
16948 string_table_length = 0;
16949 }
16950
16951 if (dynamic_strings)
16952 {
16953 free (dynamic_strings);
16954 dynamic_strings = NULL;
16955 dynamic_strings_length = 0;
16956 }
16957
16958 if (dynamic_symbols)
16959 {
16960 free (dynamic_symbols);
16961 dynamic_symbols = NULL;
16962 num_dynamic_syms = 0;
16963 }
16964
16965 if (dynamic_syminfo)
16966 {
16967 free (dynamic_syminfo);
16968 dynamic_syminfo = NULL;
16969 }
16970
16971 if (dynamic_section)
16972 {
16973 free (dynamic_section);
16974 dynamic_section = NULL;
16975 }
16976
16977 if (section_headers_groups)
16978 {
16979 free (section_headers_groups);
16980 section_headers_groups = NULL;
16981 }
16982
16983 if (section_groups)
16984 {
16985 struct group_list * g;
16986 struct group_list * next;
16987
16988 for (i = 0; i < group_count; i++)
16989 {
16990 for (g = section_groups [i].root; g != NULL; g = next)
16991 {
16992 next = g->next;
16993 free (g);
16994 }
16995 }
16996
16997 free (section_groups);
16998 section_groups = NULL;
16999 }
17000
17001 free_debug_memory ();
17002
17003 return 0;
17004 }
17005
17006 /* Process an ELF archive.
17007 On entry the file is positioned just after the ARMAG string. */
17008
17009 static int
17010 process_archive (char * file_name, FILE * file, bfd_boolean is_thin_archive)
17011 {
17012 struct archive_info arch;
17013 struct archive_info nested_arch;
17014 size_t got;
17015 int ret;
17016
17017 show_name = 1;
17018
17019 /* The ARCH structure is used to hold information about this archive. */
17020 arch.file_name = NULL;
17021 arch.file = NULL;
17022 arch.index_array = NULL;
17023 arch.sym_table = NULL;
17024 arch.longnames = NULL;
17025
17026 /* The NESTED_ARCH structure is used as a single-item cache of information
17027 about a nested archive (when members of a thin archive reside within
17028 another regular archive file). */
17029 nested_arch.file_name = NULL;
17030 nested_arch.file = NULL;
17031 nested_arch.index_array = NULL;
17032 nested_arch.sym_table = NULL;
17033 nested_arch.longnames = NULL;
17034
17035 if (setup_archive (&arch, file_name, file, is_thin_archive, do_archive_index) != 0)
17036 {
17037 ret = 1;
17038 goto out;
17039 }
17040
17041 if (do_archive_index)
17042 {
17043 if (arch.sym_table == NULL)
17044 error (_("%s: unable to dump the index as none was found\n"), file_name);
17045 else
17046 {
17047 unsigned long i, l;
17048 unsigned long current_pos;
17049
17050 printf (_("Index of archive %s: (%lu entries, 0x%lx bytes in the symbol table)\n"),
17051 file_name, (unsigned long) arch.index_num, arch.sym_size);
17052 current_pos = ftell (file);
17053
17054 for (i = l = 0; i < arch.index_num; i++)
17055 {
17056 if ((i == 0) || ((i > 0) && (arch.index_array[i] != arch.index_array[i - 1])))
17057 {
17058 char * member_name;
17059
17060 member_name = get_archive_member_name_at (&arch, arch.index_array[i], &nested_arch);
17061
17062 if (member_name != NULL)
17063 {
17064 char * qualified_name = make_qualified_name (&arch, &nested_arch, member_name);
17065
17066 if (qualified_name != NULL)
17067 {
17068 printf (_("Contents of binary %s at offset "), qualified_name);
17069 (void) print_vma (arch.index_array[i], PREFIX_HEX);
17070 putchar ('\n');
17071 free (qualified_name);
17072 }
17073 }
17074 }
17075
17076 if (l >= arch.sym_size)
17077 {
17078 error (_("%s: end of the symbol table reached before the end of the index\n"),
17079 file_name);
17080 break;
17081 }
17082 /* PR 17531: file: 0b6630b2. */
17083 printf ("\t%.*s\n", (int) (arch.sym_size - l), arch.sym_table + l);
17084 l += strnlen (arch.sym_table + l, arch.sym_size - l) + 1;
17085 }
17086
17087 if (arch.uses_64bit_indicies)
17088 l = (l + 7) & ~ 7;
17089 else
17090 l += l & 1;
17091
17092 if (l < arch.sym_size)
17093 error (_("%s: %ld bytes remain in the symbol table, but without corresponding entries in the index table\n"),
17094 file_name, arch.sym_size - l);
17095
17096 if (fseek (file, current_pos, SEEK_SET) != 0)
17097 {
17098 error (_("%s: failed to seek back to start of object files in the archive\n"), file_name);
17099 ret = 1;
17100 goto out;
17101 }
17102 }
17103
17104 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
17105 && !do_segments && !do_header && !do_dump && !do_version
17106 && !do_histogram && !do_debugging && !do_arch && !do_notes
17107 && !do_section_groups && !do_dyn_syms)
17108 {
17109 ret = 0; /* Archive index only. */
17110 goto out;
17111 }
17112 }
17113
17114 ret = 0;
17115
17116 while (1)
17117 {
17118 char * name;
17119 size_t namelen;
17120 char * qualified_name;
17121
17122 /* Read the next archive header. */
17123 if (fseek (file, arch.next_arhdr_offset, SEEK_SET) != 0)
17124 {
17125 error (_("%s: failed to seek to next archive header\n"), file_name);
17126 return 1;
17127 }
17128 got = fread (&arch.arhdr, 1, sizeof arch.arhdr, file);
17129 if (got != sizeof arch.arhdr)
17130 {
17131 if (got == 0)
17132 break;
17133 error (_("%s: failed to read archive header\n"), file_name);
17134 ret = 1;
17135 break;
17136 }
17137 if (memcmp (arch.arhdr.ar_fmag, ARFMAG, 2) != 0)
17138 {
17139 error (_("%s: did not find a valid archive header\n"), arch.file_name);
17140 ret = 1;
17141 break;
17142 }
17143
17144 arch.next_arhdr_offset += sizeof arch.arhdr;
17145
17146 archive_file_size = strtoul (arch.arhdr.ar_size, NULL, 10);
17147 if (archive_file_size & 01)
17148 ++archive_file_size;
17149
17150 name = get_archive_member_name (&arch, &nested_arch);
17151 if (name == NULL)
17152 {
17153 error (_("%s: bad archive file name\n"), file_name);
17154 ret = 1;
17155 break;
17156 }
17157 namelen = strlen (name);
17158
17159 qualified_name = make_qualified_name (&arch, &nested_arch, name);
17160 if (qualified_name == NULL)
17161 {
17162 error (_("%s: bad archive file name\n"), file_name);
17163 ret = 1;
17164 break;
17165 }
17166
17167 if (is_thin_archive && arch.nested_member_origin == 0)
17168 {
17169 /* This is a proxy for an external member of a thin archive. */
17170 FILE * member_file;
17171 char * member_file_name = adjust_relative_path (file_name, name, namelen);
17172 if (member_file_name == NULL)
17173 {
17174 ret = 1;
17175 break;
17176 }
17177
17178 member_file = fopen (member_file_name, "rb");
17179 if (member_file == NULL)
17180 {
17181 error (_("Input file '%s' is not readable.\n"), member_file_name);
17182 free (member_file_name);
17183 ret = 1;
17184 break;
17185 }
17186
17187 archive_file_offset = arch.nested_member_origin;
17188
17189 ret |= process_object (qualified_name, member_file);
17190
17191 fclose (member_file);
17192 free (member_file_name);
17193 }
17194 else if (is_thin_archive)
17195 {
17196 /* PR 15140: Allow for corrupt thin archives. */
17197 if (nested_arch.file == NULL)
17198 {
17199 error (_("%s: contains corrupt thin archive: %s\n"),
17200 file_name, name);
17201 ret = 1;
17202 break;
17203 }
17204
17205 /* This is a proxy for a member of a nested archive. */
17206 archive_file_offset = arch.nested_member_origin + sizeof arch.arhdr;
17207
17208 /* The nested archive file will have been opened and setup by
17209 get_archive_member_name. */
17210 if (fseek (nested_arch.file, archive_file_offset, SEEK_SET) != 0)
17211 {
17212 error (_("%s: failed to seek to archive member.\n"), nested_arch.file_name);
17213 ret = 1;
17214 break;
17215 }
17216
17217 ret |= process_object (qualified_name, nested_arch.file);
17218 }
17219 else
17220 {
17221 archive_file_offset = arch.next_arhdr_offset;
17222 arch.next_arhdr_offset += archive_file_size;
17223
17224 ret |= process_object (qualified_name, file);
17225 }
17226
17227 if (dump_sects != NULL)
17228 {
17229 free (dump_sects);
17230 dump_sects = NULL;
17231 num_dump_sects = 0;
17232 }
17233
17234 free (qualified_name);
17235 }
17236
17237 out:
17238 if (nested_arch.file != NULL)
17239 fclose (nested_arch.file);
17240 release_archive (&nested_arch);
17241 release_archive (&arch);
17242
17243 return ret;
17244 }
17245
17246 static int
17247 process_file (char * file_name)
17248 {
17249 FILE * file;
17250 struct stat statbuf;
17251 char armag[SARMAG];
17252 int ret;
17253
17254 if (stat (file_name, &statbuf) < 0)
17255 {
17256 if (errno == ENOENT)
17257 error (_("'%s': No such file\n"), file_name);
17258 else
17259 error (_("Could not locate '%s'. System error message: %s\n"),
17260 file_name, strerror (errno));
17261 return 1;
17262 }
17263
17264 if (! S_ISREG (statbuf.st_mode))
17265 {
17266 error (_("'%s' is not an ordinary file\n"), file_name);
17267 return 1;
17268 }
17269
17270 file = fopen (file_name, "rb");
17271 if (file == NULL)
17272 {
17273 error (_("Input file '%s' is not readable.\n"), file_name);
17274 return 1;
17275 }
17276
17277 if (fread (armag, SARMAG, 1, file) != 1)
17278 {
17279 error (_("%s: Failed to read file's magic number\n"), file_name);
17280 fclose (file);
17281 return 1;
17282 }
17283
17284 current_file_size = (bfd_size_type) statbuf.st_size;
17285
17286 if (memcmp (armag, ARMAG, SARMAG) == 0)
17287 ret = process_archive (file_name, file, FALSE);
17288 else if (memcmp (armag, ARMAGT, SARMAG) == 0)
17289 ret = process_archive (file_name, file, TRUE);
17290 else
17291 {
17292 if (do_archive_index)
17293 error (_("File %s is not an archive so its index cannot be displayed.\n"),
17294 file_name);
17295
17296 rewind (file);
17297 archive_file_size = archive_file_offset = 0;
17298 ret = process_object (file_name, file);
17299 }
17300
17301 fclose (file);
17302
17303 current_file_size = 0;
17304 return ret;
17305 }
17306
17307 #ifdef SUPPORT_DISASSEMBLY
17308 /* Needed by the i386 disassembler. For extra credit, someone could
17309 fix this so that we insert symbolic addresses here, esp for GOT/PLT
17310 symbols. */
17311
17312 void
17313 print_address (unsigned int addr, FILE * outfile)
17314 {
17315 fprintf (outfile,"0x%8.8x", addr);
17316 }
17317
17318 /* Needed by the i386 disassembler. */
17319 void
17320 db_task_printsym (unsigned int addr)
17321 {
17322 print_address (addr, stderr);
17323 }
17324 #endif
17325
17326 int
17327 main (int argc, char ** argv)
17328 {
17329 int err;
17330
17331 #if defined (HAVE_SETLOCALE) && defined (HAVE_LC_MESSAGES)
17332 setlocale (LC_MESSAGES, "");
17333 #endif
17334 #if defined (HAVE_SETLOCALE)
17335 setlocale (LC_CTYPE, "");
17336 #endif
17337 bindtextdomain (PACKAGE, LOCALEDIR);
17338 textdomain (PACKAGE);
17339
17340 expandargv (&argc, &argv);
17341
17342 parse_args (argc, argv);
17343
17344 if (num_dump_sects > 0)
17345 {
17346 /* Make a copy of the dump_sects array. */
17347 cmdline_dump_sects = (dump_type *)
17348 malloc (num_dump_sects * sizeof (* dump_sects));
17349 if (cmdline_dump_sects == NULL)
17350 error (_("Out of memory allocating dump request table.\n"));
17351 else
17352 {
17353 memcpy (cmdline_dump_sects, dump_sects,
17354 num_dump_sects * sizeof (* dump_sects));
17355 num_cmdline_dump_sects = num_dump_sects;
17356 }
17357 }
17358
17359 if (optind < (argc - 1))
17360 show_name = 1;
17361 else if (optind >= argc)
17362 {
17363 warn (_("Nothing to do.\n"));
17364 usage (stderr);
17365 }
17366
17367 err = 0;
17368 while (optind < argc)
17369 err |= process_file (argv[optind++]);
17370
17371 if (dump_sects != NULL)
17372 free (dump_sects);
17373 if (cmdline_dump_sects != NULL)
17374 free (cmdline_dump_sects);
17375
17376 return err;
17377 }