PR binutils/13219
[binutils-gdb.git] / binutils / readelf.c
1 /* readelf.c -- display contents of an ELF format file
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 Originally developed by Eric Youngdale <eric@andante.jic.com>
7 Modifications by Nick Clifton <nickc@redhat.com>
8
9 This file is part of GNU Binutils.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25 \f
26 /* The difference between readelf and objdump:
27
28 Both programs are capable of displaying the contents of ELF format files,
29 so why does the binutils project have two file dumpers ?
30
31 The reason is that objdump sees an ELF file through a BFD filter of the
32 world; if BFD has a bug where, say, it disagrees about a machine constant
33 in e_flags, then the odds are good that it will remain internally
34 consistent. The linker sees it the BFD way, objdump sees it the BFD way,
35 GAS sees it the BFD way. There was need for a tool to go find out what
36 the file actually says.
37
38 This is why the readelf program does not link against the BFD library - it
39 exists as an independent program to help verify the correct working of BFD.
40
41 There is also the case that readelf can provide more information about an
42 ELF file than is provided by objdump. In particular it can display DWARF
43 debugging information which (at the moment) objdump cannot. */
44 \f
45 #include "config.h"
46 #include "sysdep.h"
47 #include <assert.h>
48 #include <sys/stat.h>
49 #include <time.h>
50 #ifdef HAVE_ZLIB_H
51 #include <zlib.h>
52 #endif
53
54 #if __GNUC__ >= 2
55 /* Define BFD64 here, even if our default architecture is 32 bit ELF
56 as this will allow us to read in and parse 64bit and 32bit ELF files.
57 Only do this if we believe that the compiler can support a 64 bit
58 data type. For now we only rely on GCC being able to do this. */
59 #define BFD64
60 #endif
61
62 #include "bfd.h"
63 #include "bucomm.h"
64 #include "elfcomm.h"
65 #include "dwarf.h"
66
67 #include "elf/common.h"
68 #include "elf/external.h"
69 #include "elf/internal.h"
70
71
72 /* Included here, before RELOC_MACROS_GEN_FUNC is defined, so that
73 we can obtain the H8 reloc numbers. We need these for the
74 get_reloc_size() function. We include h8.h again after defining
75 RELOC_MACROS_GEN_FUNC so that we get the naming function as well. */
76
77 #include "elf/h8.h"
78 #undef _ELF_H8_H
79
80 /* Undo the effects of #including reloc-macros.h. */
81
82 #undef START_RELOC_NUMBERS
83 #undef RELOC_NUMBER
84 #undef FAKE_RELOC
85 #undef EMPTY_RELOC
86 #undef END_RELOC_NUMBERS
87 #undef _RELOC_MACROS_H
88
89 /* The following headers use the elf/reloc-macros.h file to
90 automatically generate relocation recognition functions
91 such as elf_mips_reloc_type() */
92
93 #define RELOC_MACROS_GEN_FUNC
94
95 #include "elf/alpha.h"
96 #include "elf/arc.h"
97 #include "elf/arm.h"
98 #include "elf/avr.h"
99 #include "elf/bfin.h"
100 #include "elf/cr16.h"
101 #include "elf/cris.h"
102 #include "elf/crx.h"
103 #include "elf/d10v.h"
104 #include "elf/d30v.h"
105 #include "elf/dlx.h"
106 #include "elf/fr30.h"
107 #include "elf/frv.h"
108 #include "elf/h8.h"
109 #include "elf/hppa.h"
110 #include "elf/i386.h"
111 #include "elf/i370.h"
112 #include "elf/i860.h"
113 #include "elf/i960.h"
114 #include "elf/ia64.h"
115 #include "elf/ip2k.h"
116 #include "elf/lm32.h"
117 #include "elf/iq2000.h"
118 #include "elf/m32c.h"
119 #include "elf/m32r.h"
120 #include "elf/m68k.h"
121 #include "elf/m68hc11.h"
122 #include "elf/mcore.h"
123 #include "elf/mep.h"
124 #include "elf/microblaze.h"
125 #include "elf/mips.h"
126 #include "elf/mmix.h"
127 #include "elf/mn10200.h"
128 #include "elf/mn10300.h"
129 #include "elf/moxie.h"
130 #include "elf/mt.h"
131 #include "elf/msp430.h"
132 #include "elf/or32.h"
133 #include "elf/pj.h"
134 #include "elf/ppc.h"
135 #include "elf/ppc64.h"
136 #include "elf/rx.h"
137 #include "elf/s390.h"
138 #include "elf/score.h"
139 #include "elf/sh.h"
140 #include "elf/sparc.h"
141 #include "elf/spu.h"
142 #include "elf/tic6x.h"
143 #include "elf/tilegx.h"
144 #include "elf/tilepro.h"
145 #include "elf/v850.h"
146 #include "elf/vax.h"
147 #include "elf/x86-64.h"
148 #include "elf/xc16x.h"
149 #include "elf/xstormy16.h"
150 #include "elf/xtensa.h"
151
152 #include "getopt.h"
153 #include "libiberty.h"
154 #include "safe-ctype.h"
155 #include "filenames.h"
156
157 char * program_name = "readelf";
158 static long archive_file_offset;
159 static unsigned long archive_file_size;
160 static unsigned long dynamic_addr;
161 static bfd_size_type dynamic_size;
162 static unsigned int dynamic_nent;
163 static char * dynamic_strings;
164 static unsigned long dynamic_strings_length;
165 static char * string_table;
166 static unsigned long string_table_length;
167 static unsigned long num_dynamic_syms;
168 static Elf_Internal_Sym * dynamic_symbols;
169 static Elf_Internal_Syminfo * dynamic_syminfo;
170 static unsigned long dynamic_syminfo_offset;
171 static unsigned int dynamic_syminfo_nent;
172 static char program_interpreter[PATH_MAX];
173 static bfd_vma dynamic_info[DT_ENCODING];
174 static bfd_vma dynamic_info_DT_GNU_HASH;
175 static bfd_vma version_info[16];
176 static Elf_Internal_Ehdr elf_header;
177 static Elf_Internal_Shdr * section_headers;
178 static Elf_Internal_Phdr * program_headers;
179 static Elf_Internal_Dyn * dynamic_section;
180 static Elf_Internal_Shdr * symtab_shndx_hdr;
181 static int show_name;
182 static int do_dynamic;
183 static int do_syms;
184 static int do_dyn_syms;
185 static int do_reloc;
186 static int do_sections;
187 static int do_section_groups;
188 static int do_section_details;
189 static int do_segments;
190 static int do_unwind;
191 static int do_using_dynamic;
192 static int do_header;
193 static int do_dump;
194 static int do_version;
195 static int do_histogram;
196 static int do_debugging;
197 static int do_arch;
198 static int do_notes;
199 static int do_archive_index;
200 static int is_32bit_elf;
201
202 struct group_list
203 {
204 struct group_list * next;
205 unsigned int section_index;
206 };
207
208 struct group
209 {
210 struct group_list * root;
211 unsigned int group_index;
212 };
213
214 static size_t group_count;
215 static struct group * section_groups;
216 static struct group ** section_headers_groups;
217
218
219 /* Flag bits indicating particular types of dump. */
220 #define HEX_DUMP (1 << 0) /* The -x command line switch. */
221 #define DISASS_DUMP (1 << 1) /* The -i command line switch. */
222 #define DEBUG_DUMP (1 << 2) /* The -w command line switch. */
223 #define STRING_DUMP (1 << 3) /* The -p command line switch. */
224 #define RELOC_DUMP (1 << 4) /* The -R command line switch. */
225
226 typedef unsigned char dump_type;
227
228 /* A linked list of the section names for which dumps were requested. */
229 struct dump_list_entry
230 {
231 char * name;
232 dump_type type;
233 struct dump_list_entry * next;
234 };
235 static struct dump_list_entry * dump_sects_byname;
236
237 /* A dynamic array of flags indicating for which sections a dump
238 has been requested via command line switches. */
239 static dump_type * cmdline_dump_sects = NULL;
240 static unsigned int num_cmdline_dump_sects = 0;
241
242 /* A dynamic array of flags indicating for which sections a dump of
243 some kind has been requested. It is reset on a per-object file
244 basis and then initialised from the cmdline_dump_sects array,
245 the results of interpreting the -w switch, and the
246 dump_sects_byname list. */
247 static dump_type * dump_sects = NULL;
248 static unsigned int num_dump_sects = 0;
249
250
251 /* How to print a vma value. */
252 typedef enum print_mode
253 {
254 HEX,
255 DEC,
256 DEC_5,
257 UNSIGNED,
258 PREFIX_HEX,
259 FULL_HEX,
260 LONG_HEX
261 }
262 print_mode;
263
264 #define UNKNOWN -1
265
266 #define SECTION_NAME(X) \
267 ((X) == NULL ? _("<none>") \
268 : string_table == NULL ? _("<no-name>") \
269 : ((X)->sh_name >= string_table_length ? _("<corrupt>") \
270 : string_table + (X)->sh_name))
271
272 #define DT_VERSIONTAGIDX(tag) (DT_VERNEEDNUM - (tag)) /* Reverse order! */
273
274 #define GET_ELF_SYMBOLS(file, section, sym_count) \
275 (is_32bit_elf ? get_32bit_elf_symbols (file, section, sym_count) \
276 : get_64bit_elf_symbols (file, section, sym_count))
277
278 #define VALID_DYNAMIC_NAME(offset) ((dynamic_strings != NULL) && (offset < dynamic_strings_length))
279 /* GET_DYNAMIC_NAME asssumes that VALID_DYNAMIC_NAME has
280 already been called and verified that the string exists. */
281 #define GET_DYNAMIC_NAME(offset) (dynamic_strings + offset)
282
283 #define REMOVE_ARCH_BITS(ADDR) \
284 do \
285 { \
286 if (elf_header.e_machine == EM_ARM) \
287 (ADDR) &= ~1; \
288 } \
289 while (0)
290 \f
291 /* Retrieve NMEMB structures, each SIZE bytes long from FILE starting at OFFSET.
292 Put the retrieved data into VAR, if it is not NULL. Otherwise allocate a buffer
293 using malloc and fill that. In either case return the pointer to the start of
294 the retrieved data or NULL if something went wrong. If something does go wrong
295 emit an error message using REASON as part of the context. */
296
297 static void *
298 get_data (void * var, FILE * file, long offset, size_t size, size_t nmemb,
299 const char * reason)
300 {
301 void * mvar;
302
303 if (size == 0 || nmemb == 0)
304 return NULL;
305
306 if (fseek (file, archive_file_offset + offset, SEEK_SET))
307 {
308 error (_("Unable to seek to 0x%lx for %s\n"),
309 (unsigned long) archive_file_offset + offset, reason);
310 return NULL;
311 }
312
313 mvar = var;
314 if (mvar == NULL)
315 {
316 /* Check for overflow. */
317 if (nmemb < (~(size_t) 0 - 1) / size)
318 /* + 1 so that we can '\0' terminate invalid string table sections. */
319 mvar = malloc (size * nmemb + 1);
320
321 if (mvar == NULL)
322 {
323 error (_("Out of memory allocating 0x%lx bytes for %s\n"),
324 (unsigned long)(size * nmemb), reason);
325 return NULL;
326 }
327
328 ((char *) mvar)[size * nmemb] = '\0';
329 }
330
331 if (fread (mvar, size, nmemb, file) != nmemb)
332 {
333 error (_("Unable to read in 0x%lx bytes of %s\n"),
334 (unsigned long)(size * nmemb), reason);
335 if (mvar != var)
336 free (mvar);
337 return NULL;
338 }
339
340 return mvar;
341 }
342
343 /* Print a VMA value. */
344
345 static int
346 print_vma (bfd_vma vma, print_mode mode)
347 {
348 int nc = 0;
349
350 switch (mode)
351 {
352 case FULL_HEX:
353 nc = printf ("0x");
354 /* Drop through. */
355
356 case LONG_HEX:
357 #ifdef BFD64
358 if (is_32bit_elf)
359 return nc + printf ("%8.8" BFD_VMA_FMT "x", vma);
360 #endif
361 printf_vma (vma);
362 return nc + 16;
363
364 case DEC_5:
365 if (vma <= 99999)
366 return printf ("%5" BFD_VMA_FMT "d", vma);
367 /* Drop through. */
368
369 case PREFIX_HEX:
370 nc = printf ("0x");
371 /* Drop through. */
372
373 case HEX:
374 return nc + printf ("%" BFD_VMA_FMT "x", vma);
375
376 case DEC:
377 return printf ("%" BFD_VMA_FMT "d", vma);
378
379 case UNSIGNED:
380 return printf ("%" BFD_VMA_FMT "u", vma);
381 }
382 return 0;
383 }
384
385 /* Display a symbol on stdout. Handles the display of non-printing characters.
386
387 If DO_WIDE is not true then format the symbol to be at most WIDTH characters,
388 truncating as necessary. If WIDTH is negative then format the string to be
389 exactly - WIDTH characters, truncating or padding as necessary.
390
391 Returns the number of emitted characters. */
392
393 static unsigned int
394 print_symbol (int width, const char *symbol)
395 {
396 const char *c;
397 bfd_boolean extra_padding = FALSE;
398 unsigned int num_printed = 0;
399
400 if (do_wide)
401 {
402 /* Set the width to a very large value. This simplifies the
403 code below. */
404 width = INT_MAX;
405 }
406 else if (width < 0)
407 {
408 /* Keep the width positive. This also helps. */
409 width = - width;
410 extra_padding = TRUE;
411 }
412
413 while (width)
414 {
415 int len;
416
417 c = symbol;
418
419 /* Look for non-printing symbols inside the symbol's name.
420 This test is triggered in particular by the names generated
421 by the assembler for local labels. */
422 while (ISPRINT (*c))
423 c++;
424
425 len = c - symbol;
426
427 if (len)
428 {
429 if (len > width)
430 len = width;
431
432 printf ("%.*s", len, symbol);
433
434 width -= len;
435 num_printed += len;
436 }
437
438 if (*c == 0 || width == 0)
439 break;
440
441 /* Now display the non-printing character, if
442 there is room left in which to dipslay it. */
443 if ((unsigned char) *c < 32)
444 {
445 if (width < 2)
446 break;
447
448 printf ("^%c", *c + 0x40);
449
450 width -= 2;
451 num_printed += 2;
452 }
453 else
454 {
455 if (width < 6)
456 break;
457
458 printf ("<0x%.2x>", (unsigned char) *c);
459
460 width -= 6;
461 num_printed += 6;
462 }
463
464 symbol = c + 1;
465 }
466
467 if (extra_padding && width > 0)
468 {
469 /* Fill in the remaining spaces. */
470 printf ("%-*s", width, " ");
471 num_printed += 2;
472 }
473
474 return num_printed;
475 }
476
477 /* Return a pointer to section NAME, or NULL if no such section exists. */
478
479 static Elf_Internal_Shdr *
480 find_section (const char * name)
481 {
482 unsigned int i;
483
484 for (i = 0; i < elf_header.e_shnum; i++)
485 if (streq (SECTION_NAME (section_headers + i), name))
486 return section_headers + i;
487
488 return NULL;
489 }
490
491 /* Return a pointer to a section containing ADDR, or NULL if no such
492 section exists. */
493
494 static Elf_Internal_Shdr *
495 find_section_by_address (bfd_vma addr)
496 {
497 unsigned int i;
498
499 for (i = 0; i < elf_header.e_shnum; i++)
500 {
501 Elf_Internal_Shdr *sec = section_headers + i;
502 if (addr >= sec->sh_addr && addr < sec->sh_addr + sec->sh_size)
503 return sec;
504 }
505
506 return NULL;
507 }
508
509 /* Read an unsigned LEB128 encoded value from p. Set *PLEN to the number of
510 bytes read. */
511
512 static unsigned long
513 read_uleb128 (unsigned char *data, unsigned int *length_return)
514 {
515 return read_leb128 (data, length_return, 0);
516 }
517
518 /* Return true if the current file is for IA-64 machine and OpenVMS ABI.
519 This OS has so many departures from the ELF standard that we test it at
520 many places. */
521
522 static inline int
523 is_ia64_vms (void)
524 {
525 return elf_header.e_machine == EM_IA_64
526 && elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS;
527 }
528
529 /* Guess the relocation size commonly used by the specific machines. */
530
531 static int
532 guess_is_rela (unsigned int e_machine)
533 {
534 switch (e_machine)
535 {
536 /* Targets that use REL relocations. */
537 case EM_386:
538 case EM_486:
539 case EM_960:
540 case EM_ARM:
541 case EM_D10V:
542 case EM_CYGNUS_D10V:
543 case EM_DLX:
544 case EM_MIPS:
545 case EM_MIPS_RS3_LE:
546 case EM_CYGNUS_M32R:
547 case EM_OPENRISC:
548 case EM_OR32:
549 case EM_SCORE:
550 return FALSE;
551
552 /* Targets that use RELA relocations. */
553 case EM_68K:
554 case EM_860:
555 case EM_ALPHA:
556 case EM_ALTERA_NIOS2:
557 case EM_AVR:
558 case EM_AVR_OLD:
559 case EM_BLACKFIN:
560 case EM_CR16:
561 case EM_CR16_OLD:
562 case EM_CRIS:
563 case EM_CRX:
564 case EM_D30V:
565 case EM_CYGNUS_D30V:
566 case EM_FR30:
567 case EM_CYGNUS_FR30:
568 case EM_CYGNUS_FRV:
569 case EM_H8S:
570 case EM_H8_300:
571 case EM_H8_300H:
572 case EM_IA_64:
573 case EM_IP2K:
574 case EM_IP2K_OLD:
575 case EM_IQ2000:
576 case EM_LATTICEMICO32:
577 case EM_M32C_OLD:
578 case EM_M32C:
579 case EM_M32R:
580 case EM_MCORE:
581 case EM_CYGNUS_MEP:
582 case EM_MMIX:
583 case EM_MN10200:
584 case EM_CYGNUS_MN10200:
585 case EM_MN10300:
586 case EM_CYGNUS_MN10300:
587 case EM_MOXIE:
588 case EM_MSP430:
589 case EM_MSP430_OLD:
590 case EM_MT:
591 case EM_NIOS32:
592 case EM_PPC64:
593 case EM_PPC:
594 case EM_RX:
595 case EM_S390:
596 case EM_S390_OLD:
597 case EM_SH:
598 case EM_SPARC:
599 case EM_SPARC32PLUS:
600 case EM_SPARCV9:
601 case EM_SPU:
602 case EM_TI_C6000:
603 case EM_TILEGX:
604 case EM_TILEPRO:
605 case EM_V850:
606 case EM_CYGNUS_V850:
607 case EM_VAX:
608 case EM_X86_64:
609 case EM_L1OM:
610 case EM_K1OM:
611 case EM_XSTORMY16:
612 case EM_XTENSA:
613 case EM_XTENSA_OLD:
614 case EM_MICROBLAZE:
615 case EM_MICROBLAZE_OLD:
616 return TRUE;
617
618 case EM_68HC05:
619 case EM_68HC08:
620 case EM_68HC11:
621 case EM_68HC16:
622 case EM_FX66:
623 case EM_ME16:
624 case EM_MMA:
625 case EM_NCPU:
626 case EM_NDR1:
627 case EM_PCP:
628 case EM_ST100:
629 case EM_ST19:
630 case EM_ST7:
631 case EM_ST9PLUS:
632 case EM_STARCORE:
633 case EM_SVX:
634 case EM_TINYJ:
635 default:
636 warn (_("Don't know about relocations on this machine architecture\n"));
637 return FALSE;
638 }
639 }
640
641 static int
642 slurp_rela_relocs (FILE * file,
643 unsigned long rel_offset,
644 unsigned long rel_size,
645 Elf_Internal_Rela ** relasp,
646 unsigned long * nrelasp)
647 {
648 Elf_Internal_Rela * relas;
649 unsigned long nrelas;
650 unsigned int i;
651
652 if (is_32bit_elf)
653 {
654 Elf32_External_Rela * erelas;
655
656 erelas = (Elf32_External_Rela *) get_data (NULL, file, rel_offset, 1,
657 rel_size, _("relocs"));
658 if (!erelas)
659 return 0;
660
661 nrelas = rel_size / sizeof (Elf32_External_Rela);
662
663 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
664 sizeof (Elf_Internal_Rela));
665
666 if (relas == NULL)
667 {
668 free (erelas);
669 error (_("out of memory parsing relocs\n"));
670 return 0;
671 }
672
673 for (i = 0; i < nrelas; i++)
674 {
675 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
676 relas[i].r_info = BYTE_GET (erelas[i].r_info);
677 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
678 }
679
680 free (erelas);
681 }
682 else
683 {
684 Elf64_External_Rela * erelas;
685
686 erelas = (Elf64_External_Rela *) get_data (NULL, file, rel_offset, 1,
687 rel_size, _("relocs"));
688 if (!erelas)
689 return 0;
690
691 nrelas = rel_size / sizeof (Elf64_External_Rela);
692
693 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
694 sizeof (Elf_Internal_Rela));
695
696 if (relas == NULL)
697 {
698 free (erelas);
699 error (_("out of memory parsing relocs\n"));
700 return 0;
701 }
702
703 for (i = 0; i < nrelas; i++)
704 {
705 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
706 relas[i].r_info = BYTE_GET (erelas[i].r_info);
707 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
708
709 /* The #ifdef BFD64 below is to prevent a compile time
710 warning. We know that if we do not have a 64 bit data
711 type that we will never execute this code anyway. */
712 #ifdef BFD64
713 if (elf_header.e_machine == EM_MIPS
714 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
715 {
716 /* In little-endian objects, r_info isn't really a
717 64-bit little-endian value: it has a 32-bit
718 little-endian symbol index followed by four
719 individual byte fields. Reorder INFO
720 accordingly. */
721 bfd_vma inf = relas[i].r_info;
722 inf = (((inf & 0xffffffff) << 32)
723 | ((inf >> 56) & 0xff)
724 | ((inf >> 40) & 0xff00)
725 | ((inf >> 24) & 0xff0000)
726 | ((inf >> 8) & 0xff000000));
727 relas[i].r_info = inf;
728 }
729 #endif /* BFD64 */
730 }
731
732 free (erelas);
733 }
734 *relasp = relas;
735 *nrelasp = nrelas;
736 return 1;
737 }
738
739 static int
740 slurp_rel_relocs (FILE * file,
741 unsigned long rel_offset,
742 unsigned long rel_size,
743 Elf_Internal_Rela ** relsp,
744 unsigned long * nrelsp)
745 {
746 Elf_Internal_Rela * rels;
747 unsigned long nrels;
748 unsigned int i;
749
750 if (is_32bit_elf)
751 {
752 Elf32_External_Rel * erels;
753
754 erels = (Elf32_External_Rel *) get_data (NULL, file, rel_offset, 1,
755 rel_size, _("relocs"));
756 if (!erels)
757 return 0;
758
759 nrels = rel_size / sizeof (Elf32_External_Rel);
760
761 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
762
763 if (rels == NULL)
764 {
765 free (erels);
766 error (_("out of memory parsing relocs\n"));
767 return 0;
768 }
769
770 for (i = 0; i < nrels; i++)
771 {
772 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
773 rels[i].r_info = BYTE_GET (erels[i].r_info);
774 rels[i].r_addend = 0;
775 }
776
777 free (erels);
778 }
779 else
780 {
781 Elf64_External_Rel * erels;
782
783 erels = (Elf64_External_Rel *) get_data (NULL, file, rel_offset, 1,
784 rel_size, _("relocs"));
785 if (!erels)
786 return 0;
787
788 nrels = rel_size / sizeof (Elf64_External_Rel);
789
790 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
791
792 if (rels == NULL)
793 {
794 free (erels);
795 error (_("out of memory parsing relocs\n"));
796 return 0;
797 }
798
799 for (i = 0; i < nrels; i++)
800 {
801 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
802 rels[i].r_info = BYTE_GET (erels[i].r_info);
803 rels[i].r_addend = 0;
804
805 /* The #ifdef BFD64 below is to prevent a compile time
806 warning. We know that if we do not have a 64 bit data
807 type that we will never execute this code anyway. */
808 #ifdef BFD64
809 if (elf_header.e_machine == EM_MIPS
810 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
811 {
812 /* In little-endian objects, r_info isn't really a
813 64-bit little-endian value: it has a 32-bit
814 little-endian symbol index followed by four
815 individual byte fields. Reorder INFO
816 accordingly. */
817 bfd_vma inf = rels[i].r_info;
818 inf = (((inf & 0xffffffff) << 32)
819 | ((inf >> 56) & 0xff)
820 | ((inf >> 40) & 0xff00)
821 | ((inf >> 24) & 0xff0000)
822 | ((inf >> 8) & 0xff000000));
823 rels[i].r_info = inf;
824 }
825 #endif /* BFD64 */
826 }
827
828 free (erels);
829 }
830 *relsp = rels;
831 *nrelsp = nrels;
832 return 1;
833 }
834
835 /* Returns the reloc type extracted from the reloc info field. */
836
837 static unsigned int
838 get_reloc_type (bfd_vma reloc_info)
839 {
840 if (is_32bit_elf)
841 return ELF32_R_TYPE (reloc_info);
842
843 switch (elf_header.e_machine)
844 {
845 case EM_MIPS:
846 /* Note: We assume that reloc_info has already been adjusted for us. */
847 return ELF64_MIPS_R_TYPE (reloc_info);
848
849 case EM_SPARCV9:
850 return ELF64_R_TYPE_ID (reloc_info);
851
852 default:
853 return ELF64_R_TYPE (reloc_info);
854 }
855 }
856
857 /* Return the symbol index extracted from the reloc info field. */
858
859 static bfd_vma
860 get_reloc_symindex (bfd_vma reloc_info)
861 {
862 return is_32bit_elf ? ELF32_R_SYM (reloc_info) : ELF64_R_SYM (reloc_info);
863 }
864
865 /* Display the contents of the relocation data found at the specified
866 offset. */
867
868 static void
869 dump_relocations (FILE * file,
870 unsigned long rel_offset,
871 unsigned long rel_size,
872 Elf_Internal_Sym * symtab,
873 unsigned long nsyms,
874 char * strtab,
875 unsigned long strtablen,
876 int is_rela)
877 {
878 unsigned int i;
879 Elf_Internal_Rela * rels;
880
881 if (is_rela == UNKNOWN)
882 is_rela = guess_is_rela (elf_header.e_machine);
883
884 if (is_rela)
885 {
886 if (!slurp_rela_relocs (file, rel_offset, rel_size, &rels, &rel_size))
887 return;
888 }
889 else
890 {
891 if (!slurp_rel_relocs (file, rel_offset, rel_size, &rels, &rel_size))
892 return;
893 }
894
895 if (is_32bit_elf)
896 {
897 if (is_rela)
898 {
899 if (do_wide)
900 printf (_(" Offset Info Type Sym. Value Symbol's Name + Addend\n"));
901 else
902 printf (_(" Offset Info Type Sym.Value Sym. Name + Addend\n"));
903 }
904 else
905 {
906 if (do_wide)
907 printf (_(" Offset Info Type Sym. Value Symbol's Name\n"));
908 else
909 printf (_(" Offset Info Type Sym.Value Sym. Name\n"));
910 }
911 }
912 else
913 {
914 if (is_rela)
915 {
916 if (do_wide)
917 printf (_(" Offset Info Type Symbol's Value Symbol's Name + Addend\n"));
918 else
919 printf (_(" Offset Info Type Sym. Value Sym. Name + Addend\n"));
920 }
921 else
922 {
923 if (do_wide)
924 printf (_(" Offset Info Type Symbol's Value Symbol's Name\n"));
925 else
926 printf (_(" Offset Info Type Sym. Value Sym. Name\n"));
927 }
928 }
929
930 for (i = 0; i < rel_size; i++)
931 {
932 const char * rtype;
933 bfd_vma offset;
934 bfd_vma inf;
935 bfd_vma symtab_index;
936 bfd_vma type;
937
938 offset = rels[i].r_offset;
939 inf = rels[i].r_info;
940
941 type = get_reloc_type (inf);
942 symtab_index = get_reloc_symindex (inf);
943
944 if (is_32bit_elf)
945 {
946 printf ("%8.8lx %8.8lx ",
947 (unsigned long) offset & 0xffffffff,
948 (unsigned long) inf & 0xffffffff);
949 }
950 else
951 {
952 #if BFD_HOST_64BIT_LONG
953 printf (do_wide
954 ? "%16.16lx %16.16lx "
955 : "%12.12lx %12.12lx ",
956 offset, inf);
957 #elif BFD_HOST_64BIT_LONG_LONG
958 #ifndef __MSVCRT__
959 printf (do_wide
960 ? "%16.16llx %16.16llx "
961 : "%12.12llx %12.12llx ",
962 offset, inf);
963 #else
964 printf (do_wide
965 ? "%16.16I64x %16.16I64x "
966 : "%12.12I64x %12.12I64x ",
967 offset, inf);
968 #endif
969 #else
970 printf (do_wide
971 ? "%8.8lx%8.8lx %8.8lx%8.8lx "
972 : "%4.4lx%8.8lx %4.4lx%8.8lx ",
973 _bfd_int64_high (offset),
974 _bfd_int64_low (offset),
975 _bfd_int64_high (inf),
976 _bfd_int64_low (inf));
977 #endif
978 }
979
980 switch (elf_header.e_machine)
981 {
982 default:
983 rtype = NULL;
984 break;
985
986 case EM_M32R:
987 case EM_CYGNUS_M32R:
988 rtype = elf_m32r_reloc_type (type);
989 break;
990
991 case EM_386:
992 case EM_486:
993 rtype = elf_i386_reloc_type (type);
994 break;
995
996 case EM_68HC11:
997 case EM_68HC12:
998 rtype = elf_m68hc11_reloc_type (type);
999 break;
1000
1001 case EM_68K:
1002 rtype = elf_m68k_reloc_type (type);
1003 break;
1004
1005 case EM_960:
1006 rtype = elf_i960_reloc_type (type);
1007 break;
1008
1009 case EM_AVR:
1010 case EM_AVR_OLD:
1011 rtype = elf_avr_reloc_type (type);
1012 break;
1013
1014 case EM_OLD_SPARCV9:
1015 case EM_SPARC32PLUS:
1016 case EM_SPARCV9:
1017 case EM_SPARC:
1018 rtype = elf_sparc_reloc_type (type);
1019 break;
1020
1021 case EM_SPU:
1022 rtype = elf_spu_reloc_type (type);
1023 break;
1024
1025 case EM_V850:
1026 case EM_CYGNUS_V850:
1027 rtype = v850_reloc_type (type);
1028 break;
1029
1030 case EM_D10V:
1031 case EM_CYGNUS_D10V:
1032 rtype = elf_d10v_reloc_type (type);
1033 break;
1034
1035 case EM_D30V:
1036 case EM_CYGNUS_D30V:
1037 rtype = elf_d30v_reloc_type (type);
1038 break;
1039
1040 case EM_DLX:
1041 rtype = elf_dlx_reloc_type (type);
1042 break;
1043
1044 case EM_SH:
1045 rtype = elf_sh_reloc_type (type);
1046 break;
1047
1048 case EM_MN10300:
1049 case EM_CYGNUS_MN10300:
1050 rtype = elf_mn10300_reloc_type (type);
1051 break;
1052
1053 case EM_MN10200:
1054 case EM_CYGNUS_MN10200:
1055 rtype = elf_mn10200_reloc_type (type);
1056 break;
1057
1058 case EM_FR30:
1059 case EM_CYGNUS_FR30:
1060 rtype = elf_fr30_reloc_type (type);
1061 break;
1062
1063 case EM_CYGNUS_FRV:
1064 rtype = elf_frv_reloc_type (type);
1065 break;
1066
1067 case EM_MCORE:
1068 rtype = elf_mcore_reloc_type (type);
1069 break;
1070
1071 case EM_MMIX:
1072 rtype = elf_mmix_reloc_type (type);
1073 break;
1074
1075 case EM_MOXIE:
1076 rtype = elf_moxie_reloc_type (type);
1077 break;
1078
1079 case EM_MSP430:
1080 case EM_MSP430_OLD:
1081 rtype = elf_msp430_reloc_type (type);
1082 break;
1083
1084 case EM_PPC:
1085 rtype = elf_ppc_reloc_type (type);
1086 break;
1087
1088 case EM_PPC64:
1089 rtype = elf_ppc64_reloc_type (type);
1090 break;
1091
1092 case EM_MIPS:
1093 case EM_MIPS_RS3_LE:
1094 rtype = elf_mips_reloc_type (type);
1095 break;
1096
1097 case EM_ALPHA:
1098 rtype = elf_alpha_reloc_type (type);
1099 break;
1100
1101 case EM_ARM:
1102 rtype = elf_arm_reloc_type (type);
1103 break;
1104
1105 case EM_ARC:
1106 rtype = elf_arc_reloc_type (type);
1107 break;
1108
1109 case EM_PARISC:
1110 rtype = elf_hppa_reloc_type (type);
1111 break;
1112
1113 case EM_H8_300:
1114 case EM_H8_300H:
1115 case EM_H8S:
1116 rtype = elf_h8_reloc_type (type);
1117 break;
1118
1119 case EM_OPENRISC:
1120 case EM_OR32:
1121 rtype = elf_or32_reloc_type (type);
1122 break;
1123
1124 case EM_PJ:
1125 case EM_PJ_OLD:
1126 rtype = elf_pj_reloc_type (type);
1127 break;
1128 case EM_IA_64:
1129 rtype = elf_ia64_reloc_type (type);
1130 break;
1131
1132 case EM_CRIS:
1133 rtype = elf_cris_reloc_type (type);
1134 break;
1135
1136 case EM_860:
1137 rtype = elf_i860_reloc_type (type);
1138 break;
1139
1140 case EM_X86_64:
1141 case EM_L1OM:
1142 case EM_K1OM:
1143 rtype = elf_x86_64_reloc_type (type);
1144 break;
1145
1146 case EM_S370:
1147 rtype = i370_reloc_type (type);
1148 break;
1149
1150 case EM_S390_OLD:
1151 case EM_S390:
1152 rtype = elf_s390_reloc_type (type);
1153 break;
1154
1155 case EM_SCORE:
1156 rtype = elf_score_reloc_type (type);
1157 break;
1158
1159 case EM_XSTORMY16:
1160 rtype = elf_xstormy16_reloc_type (type);
1161 break;
1162
1163 case EM_CRX:
1164 rtype = elf_crx_reloc_type (type);
1165 break;
1166
1167 case EM_VAX:
1168 rtype = elf_vax_reloc_type (type);
1169 break;
1170
1171 case EM_IP2K:
1172 case EM_IP2K_OLD:
1173 rtype = elf_ip2k_reloc_type (type);
1174 break;
1175
1176 case EM_IQ2000:
1177 rtype = elf_iq2000_reloc_type (type);
1178 break;
1179
1180 case EM_XTENSA_OLD:
1181 case EM_XTENSA:
1182 rtype = elf_xtensa_reloc_type (type);
1183 break;
1184
1185 case EM_LATTICEMICO32:
1186 rtype = elf_lm32_reloc_type (type);
1187 break;
1188
1189 case EM_M32C_OLD:
1190 case EM_M32C:
1191 rtype = elf_m32c_reloc_type (type);
1192 break;
1193
1194 case EM_MT:
1195 rtype = elf_mt_reloc_type (type);
1196 break;
1197
1198 case EM_BLACKFIN:
1199 rtype = elf_bfin_reloc_type (type);
1200 break;
1201
1202 case EM_CYGNUS_MEP:
1203 rtype = elf_mep_reloc_type (type);
1204 break;
1205
1206 case EM_CR16:
1207 case EM_CR16_OLD:
1208 rtype = elf_cr16_reloc_type (type);
1209 break;
1210
1211 case EM_MICROBLAZE:
1212 case EM_MICROBLAZE_OLD:
1213 rtype = elf_microblaze_reloc_type (type);
1214 break;
1215
1216 case EM_RX:
1217 rtype = elf_rx_reloc_type (type);
1218 break;
1219
1220 case EM_XC16X:
1221 case EM_C166:
1222 rtype = elf_xc16x_reloc_type (type);
1223 break;
1224
1225 case EM_TI_C6000:
1226 rtype = elf_tic6x_reloc_type (type);
1227 break;
1228
1229 case EM_TILEGX:
1230 rtype = elf_tilegx_reloc_type (type);
1231 break;
1232
1233 case EM_TILEPRO:
1234 rtype = elf_tilepro_reloc_type (type);
1235 break;
1236 }
1237
1238 if (rtype == NULL)
1239 printf (_("unrecognized: %-7lx"), (unsigned long) type & 0xffffffff);
1240 else
1241 printf (do_wide ? "%-22.22s" : "%-17.17s", rtype);
1242
1243 if (elf_header.e_machine == EM_ALPHA
1244 && rtype != NULL
1245 && streq (rtype, "R_ALPHA_LITUSE")
1246 && is_rela)
1247 {
1248 switch (rels[i].r_addend)
1249 {
1250 case LITUSE_ALPHA_ADDR: rtype = "ADDR"; break;
1251 case LITUSE_ALPHA_BASE: rtype = "BASE"; break;
1252 case LITUSE_ALPHA_BYTOFF: rtype = "BYTOFF"; break;
1253 case LITUSE_ALPHA_JSR: rtype = "JSR"; break;
1254 case LITUSE_ALPHA_TLSGD: rtype = "TLSGD"; break;
1255 case LITUSE_ALPHA_TLSLDM: rtype = "TLSLDM"; break;
1256 case LITUSE_ALPHA_JSRDIRECT: rtype = "JSRDIRECT"; break;
1257 default: rtype = NULL;
1258 }
1259 if (rtype)
1260 printf (" (%s)", rtype);
1261 else
1262 {
1263 putchar (' ');
1264 printf (_("<unknown addend: %lx>"),
1265 (unsigned long) rels[i].r_addend);
1266 }
1267 }
1268 else if (symtab_index)
1269 {
1270 if (symtab == NULL || symtab_index >= nsyms)
1271 printf (_(" bad symbol index: %08lx"), (unsigned long) symtab_index);
1272 else
1273 {
1274 Elf_Internal_Sym * psym;
1275
1276 psym = symtab + symtab_index;
1277
1278 printf (" ");
1279
1280 if (ELF_ST_TYPE (psym->st_info) == STT_GNU_IFUNC)
1281 {
1282 const char * name;
1283 unsigned int len;
1284 unsigned int width = is_32bit_elf ? 8 : 14;
1285
1286 /* Relocations against GNU_IFUNC symbols do not use the value
1287 of the symbol as the address to relocate against. Instead
1288 they invoke the function named by the symbol and use its
1289 result as the address for relocation.
1290
1291 To indicate this to the user, do not display the value of
1292 the symbol in the "Symbols's Value" field. Instead show
1293 its name followed by () as a hint that the symbol is
1294 invoked. */
1295
1296 if (strtab == NULL
1297 || psym->st_name == 0
1298 || psym->st_name >= strtablen)
1299 name = "??";
1300 else
1301 name = strtab + psym->st_name;
1302
1303 len = print_symbol (width, name);
1304 printf ("()%-*s", len <= width ? (width + 1) - len : 1, " ");
1305 }
1306 else
1307 {
1308 print_vma (psym->st_value, LONG_HEX);
1309
1310 printf (is_32bit_elf ? " " : " ");
1311 }
1312
1313 if (psym->st_name == 0)
1314 {
1315 const char * sec_name = "<null>";
1316 char name_buf[40];
1317
1318 if (ELF_ST_TYPE (psym->st_info) == STT_SECTION)
1319 {
1320 if (psym->st_shndx < elf_header.e_shnum)
1321 sec_name
1322 = SECTION_NAME (section_headers + psym->st_shndx);
1323 else if (psym->st_shndx == SHN_ABS)
1324 sec_name = "ABS";
1325 else if (psym->st_shndx == SHN_COMMON)
1326 sec_name = "COMMON";
1327 else if ((elf_header.e_machine == EM_MIPS
1328 && psym->st_shndx == SHN_MIPS_SCOMMON)
1329 || (elf_header.e_machine == EM_TI_C6000
1330 && psym->st_shndx == SHN_TIC6X_SCOMMON))
1331 sec_name = "SCOMMON";
1332 else if (elf_header.e_machine == EM_MIPS
1333 && psym->st_shndx == SHN_MIPS_SUNDEFINED)
1334 sec_name = "SUNDEF";
1335 else if ((elf_header.e_machine == EM_X86_64
1336 || elf_header.e_machine == EM_L1OM
1337 || elf_header.e_machine == EM_K1OM)
1338 && psym->st_shndx == SHN_X86_64_LCOMMON)
1339 sec_name = "LARGE_COMMON";
1340 else if (elf_header.e_machine == EM_IA_64
1341 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX
1342 && psym->st_shndx == SHN_IA_64_ANSI_COMMON)
1343 sec_name = "ANSI_COM";
1344 else if (is_ia64_vms ()
1345 && psym->st_shndx == SHN_IA_64_VMS_SYMVEC)
1346 sec_name = "VMS_SYMVEC";
1347 else
1348 {
1349 sprintf (name_buf, "<section 0x%x>",
1350 (unsigned int) psym->st_shndx);
1351 sec_name = name_buf;
1352 }
1353 }
1354 print_symbol (22, sec_name);
1355 }
1356 else if (strtab == NULL)
1357 printf (_("<string table index: %3ld>"), psym->st_name);
1358 else if (psym->st_name >= strtablen)
1359 printf (_("<corrupt string table index: %3ld>"), psym->st_name);
1360 else
1361 print_symbol (22, strtab + psym->st_name);
1362
1363 if (is_rela)
1364 {
1365 bfd_signed_vma off = rels[i].r_addend;
1366
1367 if (off < 0)
1368 printf (" - %" BFD_VMA_FMT "x", - off);
1369 else
1370 printf (" + %" BFD_VMA_FMT "x", off);
1371 }
1372 }
1373 }
1374 else if (is_rela)
1375 {
1376 printf ("%*c", is_32bit_elf ?
1377 (do_wide ? 34 : 28) : (do_wide ? 26 : 20), ' ');
1378 print_vma (rels[i].r_addend, LONG_HEX);
1379 }
1380
1381 if (elf_header.e_machine == EM_SPARCV9
1382 && rtype != NULL
1383 && streq (rtype, "R_SPARC_OLO10"))
1384 printf (" + %lx", (unsigned long) ELF64_R_TYPE_DATA (inf));
1385
1386 putchar ('\n');
1387
1388 #ifdef BFD64
1389 if (! is_32bit_elf && elf_header.e_machine == EM_MIPS)
1390 {
1391 bfd_vma type2 = ELF64_MIPS_R_TYPE2 (inf);
1392 bfd_vma type3 = ELF64_MIPS_R_TYPE3 (inf);
1393 const char * rtype2 = elf_mips_reloc_type (type2);
1394 const char * rtype3 = elf_mips_reloc_type (type3);
1395
1396 printf (" Type2: ");
1397
1398 if (rtype2 == NULL)
1399 printf (_("unrecognized: %-7lx"),
1400 (unsigned long) type2 & 0xffffffff);
1401 else
1402 printf ("%-17.17s", rtype2);
1403
1404 printf ("\n Type3: ");
1405
1406 if (rtype3 == NULL)
1407 printf (_("unrecognized: %-7lx"),
1408 (unsigned long) type3 & 0xffffffff);
1409 else
1410 printf ("%-17.17s", rtype3);
1411
1412 putchar ('\n');
1413 }
1414 #endif /* BFD64 */
1415 }
1416
1417 free (rels);
1418 }
1419
1420 static const char *
1421 get_mips_dynamic_type (unsigned long type)
1422 {
1423 switch (type)
1424 {
1425 case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION";
1426 case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP";
1427 case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM";
1428 case DT_MIPS_IVERSION: return "MIPS_IVERSION";
1429 case DT_MIPS_FLAGS: return "MIPS_FLAGS";
1430 case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS";
1431 case DT_MIPS_MSYM: return "MIPS_MSYM";
1432 case DT_MIPS_CONFLICT: return "MIPS_CONFLICT";
1433 case DT_MIPS_LIBLIST: return "MIPS_LIBLIST";
1434 case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO";
1435 case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO";
1436 case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO";
1437 case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO";
1438 case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO";
1439 case DT_MIPS_GOTSYM: return "MIPS_GOTSYM";
1440 case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO";
1441 case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP";
1442 case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS";
1443 case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO";
1444 case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE";
1445 case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO";
1446 case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC";
1447 case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO";
1448 case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM";
1449 case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO";
1450 case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM";
1451 case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO";
1452 case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS";
1453 case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT";
1454 case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
1455 case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX";
1456 case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX";
1457 case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX";
1458 case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX";
1459 case DT_MIPS_OPTIONS: return "MIPS_OPTIONS";
1460 case DT_MIPS_INTERFACE: return "MIPS_INTERFACE";
1461 case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN";
1462 case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE";
1463 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR";
1464 case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX";
1465 case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE";
1466 case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE";
1467 case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC";
1468 case DT_MIPS_PLTGOT: return "MIPS_PLTGOT";
1469 case DT_MIPS_RWPLT: return "MIPS_RWPLT";
1470 default:
1471 return NULL;
1472 }
1473 }
1474
1475 static const char *
1476 get_sparc64_dynamic_type (unsigned long type)
1477 {
1478 switch (type)
1479 {
1480 case DT_SPARC_REGISTER: return "SPARC_REGISTER";
1481 default:
1482 return NULL;
1483 }
1484 }
1485
1486 static const char *
1487 get_ppc_dynamic_type (unsigned long type)
1488 {
1489 switch (type)
1490 {
1491 case DT_PPC_GOT: return "PPC_GOT";
1492 case DT_PPC_TLSOPT: return "PPC_TLSOPT";
1493 default:
1494 return NULL;
1495 }
1496 }
1497
1498 static const char *
1499 get_ppc64_dynamic_type (unsigned long type)
1500 {
1501 switch (type)
1502 {
1503 case DT_PPC64_GLINK: return "PPC64_GLINK";
1504 case DT_PPC64_OPD: return "PPC64_OPD";
1505 case DT_PPC64_OPDSZ: return "PPC64_OPDSZ";
1506 case DT_PPC64_TLSOPT: return "PPC64_TLSOPT";
1507 default:
1508 return NULL;
1509 }
1510 }
1511
1512 static const char *
1513 get_parisc_dynamic_type (unsigned long type)
1514 {
1515 switch (type)
1516 {
1517 case DT_HP_LOAD_MAP: return "HP_LOAD_MAP";
1518 case DT_HP_DLD_FLAGS: return "HP_DLD_FLAGS";
1519 case DT_HP_DLD_HOOK: return "HP_DLD_HOOK";
1520 case DT_HP_UX10_INIT: return "HP_UX10_INIT";
1521 case DT_HP_UX10_INITSZ: return "HP_UX10_INITSZ";
1522 case DT_HP_PREINIT: return "HP_PREINIT";
1523 case DT_HP_PREINITSZ: return "HP_PREINITSZ";
1524 case DT_HP_NEEDED: return "HP_NEEDED";
1525 case DT_HP_TIME_STAMP: return "HP_TIME_STAMP";
1526 case DT_HP_CHECKSUM: return "HP_CHECKSUM";
1527 case DT_HP_GST_SIZE: return "HP_GST_SIZE";
1528 case DT_HP_GST_VERSION: return "HP_GST_VERSION";
1529 case DT_HP_GST_HASHVAL: return "HP_GST_HASHVAL";
1530 case DT_HP_EPLTREL: return "HP_GST_EPLTREL";
1531 case DT_HP_EPLTRELSZ: return "HP_GST_EPLTRELSZ";
1532 case DT_HP_FILTERED: return "HP_FILTERED";
1533 case DT_HP_FILTER_TLS: return "HP_FILTER_TLS";
1534 case DT_HP_COMPAT_FILTERED: return "HP_COMPAT_FILTERED";
1535 case DT_HP_LAZYLOAD: return "HP_LAZYLOAD";
1536 case DT_HP_BIND_NOW_COUNT: return "HP_BIND_NOW_COUNT";
1537 case DT_PLT: return "PLT";
1538 case DT_PLT_SIZE: return "PLT_SIZE";
1539 case DT_DLT: return "DLT";
1540 case DT_DLT_SIZE: return "DLT_SIZE";
1541 default:
1542 return NULL;
1543 }
1544 }
1545
1546 static const char *
1547 get_ia64_dynamic_type (unsigned long type)
1548 {
1549 switch (type)
1550 {
1551 case DT_IA_64_PLT_RESERVE: return "IA_64_PLT_RESERVE";
1552 case DT_IA_64_VMS_SUBTYPE: return "VMS_SUBTYPE";
1553 case DT_IA_64_VMS_IMGIOCNT: return "VMS_IMGIOCNT";
1554 case DT_IA_64_VMS_LNKFLAGS: return "VMS_LNKFLAGS";
1555 case DT_IA_64_VMS_VIR_MEM_BLK_SIZ: return "VMS_VIR_MEM_BLK_SIZ";
1556 case DT_IA_64_VMS_IDENT: return "VMS_IDENT";
1557 case DT_IA_64_VMS_NEEDED_IDENT: return "VMS_NEEDED_IDENT";
1558 case DT_IA_64_VMS_IMG_RELA_CNT: return "VMS_IMG_RELA_CNT";
1559 case DT_IA_64_VMS_SEG_RELA_CNT: return "VMS_SEG_RELA_CNT";
1560 case DT_IA_64_VMS_FIXUP_RELA_CNT: return "VMS_FIXUP_RELA_CNT";
1561 case DT_IA_64_VMS_FIXUP_NEEDED: return "VMS_FIXUP_NEEDED";
1562 case DT_IA_64_VMS_SYMVEC_CNT: return "VMS_SYMVEC_CNT";
1563 case DT_IA_64_VMS_XLATED: return "VMS_XLATED";
1564 case DT_IA_64_VMS_STACKSIZE: return "VMS_STACKSIZE";
1565 case DT_IA_64_VMS_UNWINDSZ: return "VMS_UNWINDSZ";
1566 case DT_IA_64_VMS_UNWIND_CODSEG: return "VMS_UNWIND_CODSEG";
1567 case DT_IA_64_VMS_UNWIND_INFOSEG: return "VMS_UNWIND_INFOSEG";
1568 case DT_IA_64_VMS_LINKTIME: return "VMS_LINKTIME";
1569 case DT_IA_64_VMS_SEG_NO: return "VMS_SEG_NO";
1570 case DT_IA_64_VMS_SYMVEC_OFFSET: return "VMS_SYMVEC_OFFSET";
1571 case DT_IA_64_VMS_SYMVEC_SEG: return "VMS_SYMVEC_SEG";
1572 case DT_IA_64_VMS_UNWIND_OFFSET: return "VMS_UNWIND_OFFSET";
1573 case DT_IA_64_VMS_UNWIND_SEG: return "VMS_UNWIND_SEG";
1574 case DT_IA_64_VMS_STRTAB_OFFSET: return "VMS_STRTAB_OFFSET";
1575 case DT_IA_64_VMS_SYSVER_OFFSET: return "VMS_SYSVER_OFFSET";
1576 case DT_IA_64_VMS_IMG_RELA_OFF: return "VMS_IMG_RELA_OFF";
1577 case DT_IA_64_VMS_SEG_RELA_OFF: return "VMS_SEG_RELA_OFF";
1578 case DT_IA_64_VMS_FIXUP_RELA_OFF: return "VMS_FIXUP_RELA_OFF";
1579 case DT_IA_64_VMS_PLTGOT_OFFSET: return "VMS_PLTGOT_OFFSET";
1580 case DT_IA_64_VMS_PLTGOT_SEG: return "VMS_PLTGOT_SEG";
1581 case DT_IA_64_VMS_FPMODE: return "VMS_FPMODE";
1582 default:
1583 return NULL;
1584 }
1585 }
1586
1587 static const char *
1588 get_alpha_dynamic_type (unsigned long type)
1589 {
1590 switch (type)
1591 {
1592 case DT_ALPHA_PLTRO: return "ALPHA_PLTRO";
1593 default:
1594 return NULL;
1595 }
1596 }
1597
1598 static const char *
1599 get_score_dynamic_type (unsigned long type)
1600 {
1601 switch (type)
1602 {
1603 case DT_SCORE_BASE_ADDRESS: return "SCORE_BASE_ADDRESS";
1604 case DT_SCORE_LOCAL_GOTNO: return "SCORE_LOCAL_GOTNO";
1605 case DT_SCORE_SYMTABNO: return "SCORE_SYMTABNO";
1606 case DT_SCORE_GOTSYM: return "SCORE_GOTSYM";
1607 case DT_SCORE_UNREFEXTNO: return "SCORE_UNREFEXTNO";
1608 case DT_SCORE_HIPAGENO: return "SCORE_HIPAGENO";
1609 default:
1610 return NULL;
1611 }
1612 }
1613
1614 static const char *
1615 get_tic6x_dynamic_type (unsigned long type)
1616 {
1617 switch (type)
1618 {
1619 case DT_C6000_GSYM_OFFSET: return "C6000_GSYM_OFFSET";
1620 case DT_C6000_GSTR_OFFSET: return "C6000_GSTR_OFFSET";
1621 case DT_C6000_DSBT_BASE: return "C6000_DSBT_BASE";
1622 case DT_C6000_DSBT_SIZE: return "C6000_DSBT_SIZE";
1623 case DT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
1624 case DT_C6000_DSBT_INDEX: return "C6000_DSBT_INDEX";
1625 default:
1626 return NULL;
1627 }
1628 }
1629
1630 static const char *
1631 get_dynamic_type (unsigned long type)
1632 {
1633 static char buff[64];
1634
1635 switch (type)
1636 {
1637 case DT_NULL: return "NULL";
1638 case DT_NEEDED: return "NEEDED";
1639 case DT_PLTRELSZ: return "PLTRELSZ";
1640 case DT_PLTGOT: return "PLTGOT";
1641 case DT_HASH: return "HASH";
1642 case DT_STRTAB: return "STRTAB";
1643 case DT_SYMTAB: return "SYMTAB";
1644 case DT_RELA: return "RELA";
1645 case DT_RELASZ: return "RELASZ";
1646 case DT_RELAENT: return "RELAENT";
1647 case DT_STRSZ: return "STRSZ";
1648 case DT_SYMENT: return "SYMENT";
1649 case DT_INIT: return "INIT";
1650 case DT_FINI: return "FINI";
1651 case DT_SONAME: return "SONAME";
1652 case DT_RPATH: return "RPATH";
1653 case DT_SYMBOLIC: return "SYMBOLIC";
1654 case DT_REL: return "REL";
1655 case DT_RELSZ: return "RELSZ";
1656 case DT_RELENT: return "RELENT";
1657 case DT_PLTREL: return "PLTREL";
1658 case DT_DEBUG: return "DEBUG";
1659 case DT_TEXTREL: return "TEXTREL";
1660 case DT_JMPREL: return "JMPREL";
1661 case DT_BIND_NOW: return "BIND_NOW";
1662 case DT_INIT_ARRAY: return "INIT_ARRAY";
1663 case DT_FINI_ARRAY: return "FINI_ARRAY";
1664 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
1665 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
1666 case DT_RUNPATH: return "RUNPATH";
1667 case DT_FLAGS: return "FLAGS";
1668
1669 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
1670 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
1671
1672 case DT_CHECKSUM: return "CHECKSUM";
1673 case DT_PLTPADSZ: return "PLTPADSZ";
1674 case DT_MOVEENT: return "MOVEENT";
1675 case DT_MOVESZ: return "MOVESZ";
1676 case DT_FEATURE: return "FEATURE";
1677 case DT_POSFLAG_1: return "POSFLAG_1";
1678 case DT_SYMINSZ: return "SYMINSZ";
1679 case DT_SYMINENT: return "SYMINENT"; /* aka VALRNGHI */
1680
1681 case DT_ADDRRNGLO: return "ADDRRNGLO";
1682 case DT_CONFIG: return "CONFIG";
1683 case DT_DEPAUDIT: return "DEPAUDIT";
1684 case DT_AUDIT: return "AUDIT";
1685 case DT_PLTPAD: return "PLTPAD";
1686 case DT_MOVETAB: return "MOVETAB";
1687 case DT_SYMINFO: return "SYMINFO"; /* aka ADDRRNGHI */
1688
1689 case DT_VERSYM: return "VERSYM";
1690
1691 case DT_TLSDESC_GOT: return "TLSDESC_GOT";
1692 case DT_TLSDESC_PLT: return "TLSDESC_PLT";
1693 case DT_RELACOUNT: return "RELACOUNT";
1694 case DT_RELCOUNT: return "RELCOUNT";
1695 case DT_FLAGS_1: return "FLAGS_1";
1696 case DT_VERDEF: return "VERDEF";
1697 case DT_VERDEFNUM: return "VERDEFNUM";
1698 case DT_VERNEED: return "VERNEED";
1699 case DT_VERNEEDNUM: return "VERNEEDNUM";
1700
1701 case DT_AUXILIARY: return "AUXILIARY";
1702 case DT_USED: return "USED";
1703 case DT_FILTER: return "FILTER";
1704
1705 case DT_GNU_PRELINKED: return "GNU_PRELINKED";
1706 case DT_GNU_CONFLICT: return "GNU_CONFLICT";
1707 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
1708 case DT_GNU_LIBLIST: return "GNU_LIBLIST";
1709 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
1710 case DT_GNU_HASH: return "GNU_HASH";
1711
1712 default:
1713 if ((type >= DT_LOPROC) && (type <= DT_HIPROC))
1714 {
1715 const char * result;
1716
1717 switch (elf_header.e_machine)
1718 {
1719 case EM_MIPS:
1720 case EM_MIPS_RS3_LE:
1721 result = get_mips_dynamic_type (type);
1722 break;
1723 case EM_SPARCV9:
1724 result = get_sparc64_dynamic_type (type);
1725 break;
1726 case EM_PPC:
1727 result = get_ppc_dynamic_type (type);
1728 break;
1729 case EM_PPC64:
1730 result = get_ppc64_dynamic_type (type);
1731 break;
1732 case EM_IA_64:
1733 result = get_ia64_dynamic_type (type);
1734 break;
1735 case EM_ALPHA:
1736 result = get_alpha_dynamic_type (type);
1737 break;
1738 case EM_SCORE:
1739 result = get_score_dynamic_type (type);
1740 break;
1741 case EM_TI_C6000:
1742 result = get_tic6x_dynamic_type (type);
1743 break;
1744 default:
1745 result = NULL;
1746 break;
1747 }
1748
1749 if (result != NULL)
1750 return result;
1751
1752 snprintf (buff, sizeof (buff), _("Processor Specific: %lx"), type);
1753 }
1754 else if (((type >= DT_LOOS) && (type <= DT_HIOS))
1755 || (elf_header.e_machine == EM_PARISC
1756 && (type >= OLD_DT_LOOS) && (type <= OLD_DT_HIOS)))
1757 {
1758 const char * result;
1759
1760 switch (elf_header.e_machine)
1761 {
1762 case EM_PARISC:
1763 result = get_parisc_dynamic_type (type);
1764 break;
1765 case EM_IA_64:
1766 result = get_ia64_dynamic_type (type);
1767 break;
1768 default:
1769 result = NULL;
1770 break;
1771 }
1772
1773 if (result != NULL)
1774 return result;
1775
1776 snprintf (buff, sizeof (buff), _("Operating System specific: %lx"),
1777 type);
1778 }
1779 else
1780 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), type);
1781
1782 return buff;
1783 }
1784 }
1785
1786 static char *
1787 get_file_type (unsigned e_type)
1788 {
1789 static char buff[32];
1790
1791 switch (e_type)
1792 {
1793 case ET_NONE: return _("NONE (None)");
1794 case ET_REL: return _("REL (Relocatable file)");
1795 case ET_EXEC: return _("EXEC (Executable file)");
1796 case ET_DYN: return _("DYN (Shared object file)");
1797 case ET_CORE: return _("CORE (Core file)");
1798
1799 default:
1800 if ((e_type >= ET_LOPROC) && (e_type <= ET_HIPROC))
1801 snprintf (buff, sizeof (buff), _("Processor Specific: (%x)"), e_type);
1802 else if ((e_type >= ET_LOOS) && (e_type <= ET_HIOS))
1803 snprintf (buff, sizeof (buff), _("OS Specific: (%x)"), e_type);
1804 else
1805 snprintf (buff, sizeof (buff), _("<unknown>: %x"), e_type);
1806 return buff;
1807 }
1808 }
1809
1810 static char *
1811 get_machine_name (unsigned e_machine)
1812 {
1813 static char buff[64]; /* XXX */
1814
1815 switch (e_machine)
1816 {
1817 case EM_NONE: return _("None");
1818 case EM_M32: return "WE32100";
1819 case EM_SPARC: return "Sparc";
1820 case EM_SPU: return "SPU";
1821 case EM_386: return "Intel 80386";
1822 case EM_68K: return "MC68000";
1823 case EM_88K: return "MC88000";
1824 case EM_486: return "Intel 80486";
1825 case EM_860: return "Intel 80860";
1826 case EM_MIPS: return "MIPS R3000";
1827 case EM_S370: return "IBM System/370";
1828 case EM_MIPS_RS3_LE: return "MIPS R4000 big-endian";
1829 case EM_OLD_SPARCV9: return "Sparc v9 (old)";
1830 case EM_PARISC: return "HPPA";
1831 case EM_PPC_OLD: return "Power PC (old)";
1832 case EM_SPARC32PLUS: return "Sparc v8+" ;
1833 case EM_960: return "Intel 90860";
1834 case EM_PPC: return "PowerPC";
1835 case EM_PPC64: return "PowerPC64";
1836 case EM_V800: return "NEC V800";
1837 case EM_FR20: return "Fujitsu FR20";
1838 case EM_RH32: return "TRW RH32";
1839 case EM_MCORE: return "MCORE";
1840 case EM_ARM: return "ARM";
1841 case EM_OLD_ALPHA: return "Digital Alpha (old)";
1842 case EM_SH: return "Renesas / SuperH SH";
1843 case EM_SPARCV9: return "Sparc v9";
1844 case EM_TRICORE: return "Siemens Tricore";
1845 case EM_ARC: return "ARC";
1846 case EM_H8_300: return "Renesas H8/300";
1847 case EM_H8_300H: return "Renesas H8/300H";
1848 case EM_H8S: return "Renesas H8S";
1849 case EM_H8_500: return "Renesas H8/500";
1850 case EM_IA_64: return "Intel IA-64";
1851 case EM_MIPS_X: return "Stanford MIPS-X";
1852 case EM_COLDFIRE: return "Motorola Coldfire";
1853 case EM_68HC12: return "Motorola M68HC12";
1854 case EM_ALPHA: return "Alpha";
1855 case EM_CYGNUS_D10V:
1856 case EM_D10V: return "d10v";
1857 case EM_CYGNUS_D30V:
1858 case EM_D30V: return "d30v";
1859 case EM_CYGNUS_M32R:
1860 case EM_M32R: return "Renesas M32R (formerly Mitsubishi M32r)";
1861 case EM_CYGNUS_V850:
1862 case EM_V850: return "Renesas v850";
1863 case EM_CYGNUS_MN10300:
1864 case EM_MN10300: return "mn10300";
1865 case EM_CYGNUS_MN10200:
1866 case EM_MN10200: return "mn10200";
1867 case EM_MOXIE: return "Moxie";
1868 case EM_CYGNUS_FR30:
1869 case EM_FR30: return "Fujitsu FR30";
1870 case EM_CYGNUS_FRV: return "Fujitsu FR-V";
1871 case EM_PJ_OLD:
1872 case EM_PJ: return "picoJava";
1873 case EM_MMA: return "Fujitsu Multimedia Accelerator";
1874 case EM_PCP: return "Siemens PCP";
1875 case EM_NCPU: return "Sony nCPU embedded RISC processor";
1876 case EM_NDR1: return "Denso NDR1 microprocesspr";
1877 case EM_STARCORE: return "Motorola Star*Core processor";
1878 case EM_ME16: return "Toyota ME16 processor";
1879 case EM_ST100: return "STMicroelectronics ST100 processor";
1880 case EM_TINYJ: return "Advanced Logic Corp. TinyJ embedded processor";
1881 case EM_PDSP: return "Sony DSP processor";
1882 case EM_PDP10: return "Digital Equipment Corp. PDP-10";
1883 case EM_PDP11: return "Digital Equipment Corp. PDP-11";
1884 case EM_FX66: return "Siemens FX66 microcontroller";
1885 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 bit microcontroller";
1886 case EM_ST7: return "STMicroelectronics ST7 8-bit microcontroller";
1887 case EM_68HC16: return "Motorola MC68HC16 Microcontroller";
1888 case EM_68HC11: return "Motorola MC68HC11 Microcontroller";
1889 case EM_68HC08: return "Motorola MC68HC08 Microcontroller";
1890 case EM_68HC05: return "Motorola MC68HC05 Microcontroller";
1891 case EM_SVX: return "Silicon Graphics SVx";
1892 case EM_ST19: return "STMicroelectronics ST19 8-bit microcontroller";
1893 case EM_VAX: return "Digital VAX";
1894 case EM_AVR_OLD:
1895 case EM_AVR: return "Atmel AVR 8-bit microcontroller";
1896 case EM_CRIS: return "Axis Communications 32-bit embedded processor";
1897 case EM_JAVELIN: return "Infineon Technologies 32-bit embedded cpu";
1898 case EM_FIREPATH: return "Element 14 64-bit DSP processor";
1899 case EM_ZSP: return "LSI Logic's 16-bit DSP processor";
1900 case EM_MMIX: return "Donald Knuth's educational 64-bit processor";
1901 case EM_HUANY: return "Harvard Universitys's machine-independent object format";
1902 case EM_PRISM: return "Vitesse Prism";
1903 case EM_X86_64: return "Advanced Micro Devices X86-64";
1904 case EM_L1OM: return "Intel L1OM";
1905 case EM_K1OM: return "Intel K1OM";
1906 case EM_S390_OLD:
1907 case EM_S390: return "IBM S/390";
1908 case EM_SCORE: return "SUNPLUS S+Core";
1909 case EM_XSTORMY16: return "Sanyo XStormy16 CPU core";
1910 case EM_OPENRISC:
1911 case EM_OR32: return "OpenRISC";
1912 case EM_ARC_A5: return "ARC International ARCompact processor";
1913 case EM_CRX: return "National Semiconductor CRX microprocessor";
1914 case EM_DLX: return "OpenDLX";
1915 case EM_IP2K_OLD:
1916 case EM_IP2K: return "Ubicom IP2xxx 8-bit microcontrollers";
1917 case EM_IQ2000: return "Vitesse IQ2000";
1918 case EM_XTENSA_OLD:
1919 case EM_XTENSA: return "Tensilica Xtensa Processor";
1920 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
1921 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
1922 case EM_NS32K: return "National Semiconductor 32000 series";
1923 case EM_TPC: return "Tenor Network TPC processor";
1924 case EM_ST200: return "STMicroelectronics ST200 microcontroller";
1925 case EM_MAX: return "MAX Processor";
1926 case EM_CR: return "National Semiconductor CompactRISC";
1927 case EM_F2MC16: return "Fujitsu F2MC16";
1928 case EM_MSP430: return "Texas Instruments msp430 microcontroller";
1929 case EM_LATTICEMICO32: return "Lattice Mico32";
1930 case EM_M32C_OLD:
1931 case EM_M32C: return "Renesas M32c";
1932 case EM_MT: return "Morpho Techologies MT processor";
1933 case EM_BLACKFIN: return "Analog Devices Blackfin";
1934 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
1935 case EM_SEP: return "Sharp embedded microprocessor";
1936 case EM_ARCA: return "Arca RISC microprocessor";
1937 case EM_UNICORE: return "Unicore";
1938 case EM_EXCESS: return "eXcess 16/32/64-bit configurable embedded CPU";
1939 case EM_DXP: return "Icera Semiconductor Inc. Deep Execution Processor";
1940 case EM_NIOS32: return "Altera Nios";
1941 case EM_ALTERA_NIOS2: return "Altera Nios II";
1942 case EM_C166:
1943 case EM_XC16X: return "Infineon Technologies xc16x";
1944 case EM_M16C: return "Renesas M16C series microprocessors";
1945 case EM_DSPIC30F: return "Microchip Technology dsPIC30F Digital Signal Controller";
1946 case EM_CE: return "Freescale Communication Engine RISC core";
1947 case EM_TSK3000: return "Altium TSK3000 core";
1948 case EM_RS08: return "Freescale RS08 embedded processor";
1949 case EM_ECOG2: return "Cyan Technology eCOG2 microprocessor";
1950 case EM_DSP24: return "New Japan Radio (NJR) 24-bit DSP Processor";
1951 case EM_VIDEOCORE3: return "Broadcom VideoCore III processor";
1952 case EM_SE_C17: return "Seiko Epson C17 family";
1953 case EM_TI_C6000: return "Texas Instruments TMS320C6000 DSP family";
1954 case EM_TI_C2000: return "Texas Instruments TMS320C2000 DSP family";
1955 case EM_TI_C5500: return "Texas Instruments TMS320C55x DSP family";
1956 case EM_MMDSP_PLUS: return "STMicroelectronics 64bit VLIW Data Signal Processor";
1957 case EM_CYPRESS_M8C: return "Cypress M8C microprocessor";
1958 case EM_R32C: return "Renesas R32C series microprocessors";
1959 case EM_TRIMEDIA: return "NXP Semiconductors TriMedia architecture family";
1960 case EM_QDSP6: return "QUALCOMM DSP6 Processor";
1961 case EM_8051: return "Intel 8051 and variants";
1962 case EM_STXP7X: return "STMicroelectronics STxP7x family";
1963 case EM_NDS32: return "Andes Technology compact code size embedded RISC processor family";
1964 case EM_ECOG1X: return "Cyan Technology eCOG1X family";
1965 case EM_MAXQ30: return "Dallas Semiconductor MAXQ30 Core microcontrollers";
1966 case EM_XIMO16: return "New Japan Radio (NJR) 16-bit DSP Processor";
1967 case EM_MANIK: return "M2000 Reconfigurable RISC Microprocessor";
1968 case EM_CRAYNV2: return "Cray Inc. NV2 vector architecture";
1969 case EM_CYGNUS_MEP: return "Toshiba MeP Media Engine";
1970 case EM_CR16:
1971 case EM_CR16_OLD: return "National Semiconductor's CR16";
1972 case EM_MICROBLAZE: return "Xilinx MicroBlaze";
1973 case EM_MICROBLAZE_OLD: return "Xilinx MicroBlaze";
1974 case EM_RX: return "Renesas RX";
1975 case EM_METAG: return "Imagination Technologies META processor architecture";
1976 case EM_MCST_ELBRUS: return "MCST Elbrus general purpose hardware architecture";
1977 case EM_ECOG16: return "Cyan Technology eCOG16 family";
1978 case EM_ETPU: return "Freescale Extended Time Processing Unit";
1979 case EM_SLE9X: return "Infineon Technologies SLE9X core";
1980 case EM_AVR32: return "Atmel Corporation 32-bit microprocessor family";
1981 case EM_STM8: return "STMicroeletronics STM8 8-bit microcontroller";
1982 case EM_TILE64: return "Tilera TILE64 multicore architecture family";
1983 case EM_TILEPRO: return "Tilera TILEPro multicore architecture family";
1984 case EM_TILEGX: return "Tilera TILE-Gx multicore architecture family";
1985 case EM_CUDA: return "NVIDIA CUDA architecture";
1986 default:
1987 snprintf (buff, sizeof (buff), _("<unknown>: 0x%x"), e_machine);
1988 return buff;
1989 }
1990 }
1991
1992 static void
1993 decode_ARM_machine_flags (unsigned e_flags, char buf[])
1994 {
1995 unsigned eabi;
1996 int unknown = 0;
1997
1998 eabi = EF_ARM_EABI_VERSION (e_flags);
1999 e_flags &= ~ EF_ARM_EABIMASK;
2000
2001 /* Handle "generic" ARM flags. */
2002 if (e_flags & EF_ARM_RELEXEC)
2003 {
2004 strcat (buf, ", relocatable executable");
2005 e_flags &= ~ EF_ARM_RELEXEC;
2006 }
2007
2008 if (e_flags & EF_ARM_HASENTRY)
2009 {
2010 strcat (buf, ", has entry point");
2011 e_flags &= ~ EF_ARM_HASENTRY;
2012 }
2013
2014 /* Now handle EABI specific flags. */
2015 switch (eabi)
2016 {
2017 default:
2018 strcat (buf, ", <unrecognized EABI>");
2019 if (e_flags)
2020 unknown = 1;
2021 break;
2022
2023 case EF_ARM_EABI_VER1:
2024 strcat (buf, ", Version1 EABI");
2025 while (e_flags)
2026 {
2027 unsigned flag;
2028
2029 /* Process flags one bit at a time. */
2030 flag = e_flags & - e_flags;
2031 e_flags &= ~ flag;
2032
2033 switch (flag)
2034 {
2035 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2036 strcat (buf, ", sorted symbol tables");
2037 break;
2038
2039 default:
2040 unknown = 1;
2041 break;
2042 }
2043 }
2044 break;
2045
2046 case EF_ARM_EABI_VER2:
2047 strcat (buf, ", Version2 EABI");
2048 while (e_flags)
2049 {
2050 unsigned flag;
2051
2052 /* Process flags one bit at a time. */
2053 flag = e_flags & - e_flags;
2054 e_flags &= ~ flag;
2055
2056 switch (flag)
2057 {
2058 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2059 strcat (buf, ", sorted symbol tables");
2060 break;
2061
2062 case EF_ARM_DYNSYMSUSESEGIDX:
2063 strcat (buf, ", dynamic symbols use segment index");
2064 break;
2065
2066 case EF_ARM_MAPSYMSFIRST:
2067 strcat (buf, ", mapping symbols precede others");
2068 break;
2069
2070 default:
2071 unknown = 1;
2072 break;
2073 }
2074 }
2075 break;
2076
2077 case EF_ARM_EABI_VER3:
2078 strcat (buf, ", Version3 EABI");
2079 break;
2080
2081 case EF_ARM_EABI_VER4:
2082 strcat (buf, ", Version4 EABI");
2083 goto eabi;
2084
2085 case EF_ARM_EABI_VER5:
2086 strcat (buf, ", Version5 EABI");
2087 eabi:
2088 while (e_flags)
2089 {
2090 unsigned flag;
2091
2092 /* Process flags one bit at a time. */
2093 flag = e_flags & - e_flags;
2094 e_flags &= ~ flag;
2095
2096 switch (flag)
2097 {
2098 case EF_ARM_BE8:
2099 strcat (buf, ", BE8");
2100 break;
2101
2102 case EF_ARM_LE8:
2103 strcat (buf, ", LE8");
2104 break;
2105
2106 default:
2107 unknown = 1;
2108 break;
2109 }
2110 }
2111 break;
2112
2113 case EF_ARM_EABI_UNKNOWN:
2114 strcat (buf, ", GNU EABI");
2115 while (e_flags)
2116 {
2117 unsigned flag;
2118
2119 /* Process flags one bit at a time. */
2120 flag = e_flags & - e_flags;
2121 e_flags &= ~ flag;
2122
2123 switch (flag)
2124 {
2125 case EF_ARM_INTERWORK:
2126 strcat (buf, ", interworking enabled");
2127 break;
2128
2129 case EF_ARM_APCS_26:
2130 strcat (buf, ", uses APCS/26");
2131 break;
2132
2133 case EF_ARM_APCS_FLOAT:
2134 strcat (buf, ", uses APCS/float");
2135 break;
2136
2137 case EF_ARM_PIC:
2138 strcat (buf, ", position independent");
2139 break;
2140
2141 case EF_ARM_ALIGN8:
2142 strcat (buf, ", 8 bit structure alignment");
2143 break;
2144
2145 case EF_ARM_NEW_ABI:
2146 strcat (buf, ", uses new ABI");
2147 break;
2148
2149 case EF_ARM_OLD_ABI:
2150 strcat (buf, ", uses old ABI");
2151 break;
2152
2153 case EF_ARM_SOFT_FLOAT:
2154 strcat (buf, ", software FP");
2155 break;
2156
2157 case EF_ARM_VFP_FLOAT:
2158 strcat (buf, ", VFP");
2159 break;
2160
2161 case EF_ARM_MAVERICK_FLOAT:
2162 strcat (buf, ", Maverick FP");
2163 break;
2164
2165 default:
2166 unknown = 1;
2167 break;
2168 }
2169 }
2170 }
2171
2172 if (unknown)
2173 strcat (buf,_(", <unknown>"));
2174 }
2175
2176 static char *
2177 get_machine_flags (unsigned e_flags, unsigned e_machine)
2178 {
2179 static char buf[1024];
2180
2181 buf[0] = '\0';
2182
2183 if (e_flags)
2184 {
2185 switch (e_machine)
2186 {
2187 default:
2188 break;
2189
2190 case EM_ARM:
2191 decode_ARM_machine_flags (e_flags, buf);
2192 break;
2193
2194 case EM_BLACKFIN:
2195 if (e_flags & EF_BFIN_PIC)
2196 strcat (buf, ", PIC");
2197
2198 if (e_flags & EF_BFIN_FDPIC)
2199 strcat (buf, ", FDPIC");
2200
2201 if (e_flags & EF_BFIN_CODE_IN_L1)
2202 strcat (buf, ", code in L1");
2203
2204 if (e_flags & EF_BFIN_DATA_IN_L1)
2205 strcat (buf, ", data in L1");
2206
2207 break;
2208
2209 case EM_CYGNUS_FRV:
2210 switch (e_flags & EF_FRV_CPU_MASK)
2211 {
2212 case EF_FRV_CPU_GENERIC:
2213 break;
2214
2215 default:
2216 strcat (buf, ", fr???");
2217 break;
2218
2219 case EF_FRV_CPU_FR300:
2220 strcat (buf, ", fr300");
2221 break;
2222
2223 case EF_FRV_CPU_FR400:
2224 strcat (buf, ", fr400");
2225 break;
2226 case EF_FRV_CPU_FR405:
2227 strcat (buf, ", fr405");
2228 break;
2229
2230 case EF_FRV_CPU_FR450:
2231 strcat (buf, ", fr450");
2232 break;
2233
2234 case EF_FRV_CPU_FR500:
2235 strcat (buf, ", fr500");
2236 break;
2237 case EF_FRV_CPU_FR550:
2238 strcat (buf, ", fr550");
2239 break;
2240
2241 case EF_FRV_CPU_SIMPLE:
2242 strcat (buf, ", simple");
2243 break;
2244 case EF_FRV_CPU_TOMCAT:
2245 strcat (buf, ", tomcat");
2246 break;
2247 }
2248 break;
2249
2250 case EM_68K:
2251 if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
2252 strcat (buf, ", m68000");
2253 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
2254 strcat (buf, ", cpu32");
2255 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
2256 strcat (buf, ", fido_a");
2257 else
2258 {
2259 char const * isa = _("unknown");
2260 char const * mac = _("unknown mac");
2261 char const * additional = NULL;
2262
2263 switch (e_flags & EF_M68K_CF_ISA_MASK)
2264 {
2265 case EF_M68K_CF_ISA_A_NODIV:
2266 isa = "A";
2267 additional = ", nodiv";
2268 break;
2269 case EF_M68K_CF_ISA_A:
2270 isa = "A";
2271 break;
2272 case EF_M68K_CF_ISA_A_PLUS:
2273 isa = "A+";
2274 break;
2275 case EF_M68K_CF_ISA_B_NOUSP:
2276 isa = "B";
2277 additional = ", nousp";
2278 break;
2279 case EF_M68K_CF_ISA_B:
2280 isa = "B";
2281 break;
2282 case EF_M68K_CF_ISA_C:
2283 isa = "C";
2284 break;
2285 case EF_M68K_CF_ISA_C_NODIV:
2286 isa = "C";
2287 additional = ", nodiv";
2288 break;
2289 }
2290 strcat (buf, ", cf, isa ");
2291 strcat (buf, isa);
2292 if (additional)
2293 strcat (buf, additional);
2294 if (e_flags & EF_M68K_CF_FLOAT)
2295 strcat (buf, ", float");
2296 switch (e_flags & EF_M68K_CF_MAC_MASK)
2297 {
2298 case 0:
2299 mac = NULL;
2300 break;
2301 case EF_M68K_CF_MAC:
2302 mac = "mac";
2303 break;
2304 case EF_M68K_CF_EMAC:
2305 mac = "emac";
2306 break;
2307 case EF_M68K_CF_EMAC_B:
2308 mac = "emac_b";
2309 break;
2310 }
2311 if (mac)
2312 {
2313 strcat (buf, ", ");
2314 strcat (buf, mac);
2315 }
2316 }
2317 break;
2318
2319 case EM_PPC:
2320 if (e_flags & EF_PPC_EMB)
2321 strcat (buf, ", emb");
2322
2323 if (e_flags & EF_PPC_RELOCATABLE)
2324 strcat (buf, _(", relocatable"));
2325
2326 if (e_flags & EF_PPC_RELOCATABLE_LIB)
2327 strcat (buf, _(", relocatable-lib"));
2328 break;
2329
2330 case EM_V850:
2331 case EM_CYGNUS_V850:
2332 switch (e_flags & EF_V850_ARCH)
2333 {
2334 case E_V850E2V3_ARCH:
2335 strcat (buf, ", v850e2v3");
2336 break;
2337 case E_V850E2_ARCH:
2338 strcat (buf, ", v850e2");
2339 break;
2340 case E_V850E1_ARCH:
2341 strcat (buf, ", v850e1");
2342 break;
2343 case E_V850E_ARCH:
2344 strcat (buf, ", v850e");
2345 break;
2346 case E_V850_ARCH:
2347 strcat (buf, ", v850");
2348 break;
2349 default:
2350 strcat (buf, _(", unknown v850 architecture variant"));
2351 break;
2352 }
2353 break;
2354
2355 case EM_M32R:
2356 case EM_CYGNUS_M32R:
2357 if ((e_flags & EF_M32R_ARCH) == E_M32R_ARCH)
2358 strcat (buf, ", m32r");
2359 break;
2360
2361 case EM_MIPS:
2362 case EM_MIPS_RS3_LE:
2363 if (e_flags & EF_MIPS_NOREORDER)
2364 strcat (buf, ", noreorder");
2365
2366 if (e_flags & EF_MIPS_PIC)
2367 strcat (buf, ", pic");
2368
2369 if (e_flags & EF_MIPS_CPIC)
2370 strcat (buf, ", cpic");
2371
2372 if (e_flags & EF_MIPS_UCODE)
2373 strcat (buf, ", ugen_reserved");
2374
2375 if (e_flags & EF_MIPS_ABI2)
2376 strcat (buf, ", abi2");
2377
2378 if (e_flags & EF_MIPS_OPTIONS_FIRST)
2379 strcat (buf, ", odk first");
2380
2381 if (e_flags & EF_MIPS_32BITMODE)
2382 strcat (buf, ", 32bitmode");
2383
2384 switch ((e_flags & EF_MIPS_MACH))
2385 {
2386 case E_MIPS_MACH_3900: strcat (buf, ", 3900"); break;
2387 case E_MIPS_MACH_4010: strcat (buf, ", 4010"); break;
2388 case E_MIPS_MACH_4100: strcat (buf, ", 4100"); break;
2389 case E_MIPS_MACH_4111: strcat (buf, ", 4111"); break;
2390 case E_MIPS_MACH_4120: strcat (buf, ", 4120"); break;
2391 case E_MIPS_MACH_4650: strcat (buf, ", 4650"); break;
2392 case E_MIPS_MACH_5400: strcat (buf, ", 5400"); break;
2393 case E_MIPS_MACH_5500: strcat (buf, ", 5500"); break;
2394 case E_MIPS_MACH_SB1: strcat (buf, ", sb1"); break;
2395 case E_MIPS_MACH_9000: strcat (buf, ", 9000"); break;
2396 case E_MIPS_MACH_LS2E: strcat (buf, ", loongson-2e"); break;
2397 case E_MIPS_MACH_LS2F: strcat (buf, ", loongson-2f"); break;
2398 case E_MIPS_MACH_LS3A: strcat (buf, ", loongson-3a"); break;
2399 case E_MIPS_MACH_OCTEON: strcat (buf, ", octeon"); break;
2400 case E_MIPS_MACH_OCTEON2: strcat (buf, ", octeon2"); break;
2401 case E_MIPS_MACH_XLR: strcat (buf, ", xlr"); break;
2402 case 0:
2403 /* We simply ignore the field in this case to avoid confusion:
2404 MIPS ELF does not specify EF_MIPS_MACH, it is a GNU
2405 extension. */
2406 break;
2407 default: strcat (buf, _(", unknown CPU")); break;
2408 }
2409
2410 switch ((e_flags & EF_MIPS_ABI))
2411 {
2412 case E_MIPS_ABI_O32: strcat (buf, ", o32"); break;
2413 case E_MIPS_ABI_O64: strcat (buf, ", o64"); break;
2414 case E_MIPS_ABI_EABI32: strcat (buf, ", eabi32"); break;
2415 case E_MIPS_ABI_EABI64: strcat (buf, ", eabi64"); break;
2416 case 0:
2417 /* We simply ignore the field in this case to avoid confusion:
2418 MIPS ELF does not specify EF_MIPS_ABI, it is a GNU extension.
2419 This means it is likely to be an o32 file, but not for
2420 sure. */
2421 break;
2422 default: strcat (buf, _(", unknown ABI")); break;
2423 }
2424
2425 if (e_flags & EF_MIPS_ARCH_ASE_MDMX)
2426 strcat (buf, ", mdmx");
2427
2428 if (e_flags & EF_MIPS_ARCH_ASE_M16)
2429 strcat (buf, ", mips16");
2430
2431 if (e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
2432 strcat (buf, ", micromips");
2433
2434 switch ((e_flags & EF_MIPS_ARCH))
2435 {
2436 case E_MIPS_ARCH_1: strcat (buf, ", mips1"); break;
2437 case E_MIPS_ARCH_2: strcat (buf, ", mips2"); break;
2438 case E_MIPS_ARCH_3: strcat (buf, ", mips3"); break;
2439 case E_MIPS_ARCH_4: strcat (buf, ", mips4"); break;
2440 case E_MIPS_ARCH_5: strcat (buf, ", mips5"); break;
2441 case E_MIPS_ARCH_32: strcat (buf, ", mips32"); break;
2442 case E_MIPS_ARCH_32R2: strcat (buf, ", mips32r2"); break;
2443 case E_MIPS_ARCH_64: strcat (buf, ", mips64"); break;
2444 case E_MIPS_ARCH_64R2: strcat (buf, ", mips64r2"); break;
2445 default: strcat (buf, _(", unknown ISA")); break;
2446 }
2447
2448 if (e_flags & EF_SH_PIC)
2449 strcat (buf, ", pic");
2450
2451 if (e_flags & EF_SH_FDPIC)
2452 strcat (buf, ", fdpic");
2453 break;
2454
2455 case EM_SH:
2456 switch ((e_flags & EF_SH_MACH_MASK))
2457 {
2458 case EF_SH1: strcat (buf, ", sh1"); break;
2459 case EF_SH2: strcat (buf, ", sh2"); break;
2460 case EF_SH3: strcat (buf, ", sh3"); break;
2461 case EF_SH_DSP: strcat (buf, ", sh-dsp"); break;
2462 case EF_SH3_DSP: strcat (buf, ", sh3-dsp"); break;
2463 case EF_SH4AL_DSP: strcat (buf, ", sh4al-dsp"); break;
2464 case EF_SH3E: strcat (buf, ", sh3e"); break;
2465 case EF_SH4: strcat (buf, ", sh4"); break;
2466 case EF_SH5: strcat (buf, ", sh5"); break;
2467 case EF_SH2E: strcat (buf, ", sh2e"); break;
2468 case EF_SH4A: strcat (buf, ", sh4a"); break;
2469 case EF_SH2A: strcat (buf, ", sh2a"); break;
2470 case EF_SH4_NOFPU: strcat (buf, ", sh4-nofpu"); break;
2471 case EF_SH4A_NOFPU: strcat (buf, ", sh4a-nofpu"); break;
2472 case EF_SH2A_NOFPU: strcat (buf, ", sh2a-nofpu"); break;
2473 case EF_SH3_NOMMU: strcat (buf, ", sh3-nommu"); break;
2474 case EF_SH4_NOMMU_NOFPU: strcat (buf, ", sh4-nommu-nofpu"); break;
2475 case EF_SH2A_SH4_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh4-nommu-nofpu"); break;
2476 case EF_SH2A_SH3_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh3-nommu"); break;
2477 case EF_SH2A_SH4: strcat (buf, ", sh2a-or-sh4"); break;
2478 case EF_SH2A_SH3E: strcat (buf, ", sh2a-or-sh3e"); break;
2479 default: strcat (buf, _(", unknown ISA")); break;
2480 }
2481
2482 break;
2483
2484 case EM_SPARCV9:
2485 if (e_flags & EF_SPARC_32PLUS)
2486 strcat (buf, ", v8+");
2487
2488 if (e_flags & EF_SPARC_SUN_US1)
2489 strcat (buf, ", ultrasparcI");
2490
2491 if (e_flags & EF_SPARC_SUN_US3)
2492 strcat (buf, ", ultrasparcIII");
2493
2494 if (e_flags & EF_SPARC_HAL_R1)
2495 strcat (buf, ", halr1");
2496
2497 if (e_flags & EF_SPARC_LEDATA)
2498 strcat (buf, ", ledata");
2499
2500 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_TSO)
2501 strcat (buf, ", tso");
2502
2503 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_PSO)
2504 strcat (buf, ", pso");
2505
2506 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_RMO)
2507 strcat (buf, ", rmo");
2508 break;
2509
2510 case EM_PARISC:
2511 switch (e_flags & EF_PARISC_ARCH)
2512 {
2513 case EFA_PARISC_1_0:
2514 strcpy (buf, ", PA-RISC 1.0");
2515 break;
2516 case EFA_PARISC_1_1:
2517 strcpy (buf, ", PA-RISC 1.1");
2518 break;
2519 case EFA_PARISC_2_0:
2520 strcpy (buf, ", PA-RISC 2.0");
2521 break;
2522 default:
2523 break;
2524 }
2525 if (e_flags & EF_PARISC_TRAPNIL)
2526 strcat (buf, ", trapnil");
2527 if (e_flags & EF_PARISC_EXT)
2528 strcat (buf, ", ext");
2529 if (e_flags & EF_PARISC_LSB)
2530 strcat (buf, ", lsb");
2531 if (e_flags & EF_PARISC_WIDE)
2532 strcat (buf, ", wide");
2533 if (e_flags & EF_PARISC_NO_KABP)
2534 strcat (buf, ", no kabp");
2535 if (e_flags & EF_PARISC_LAZYSWAP)
2536 strcat (buf, ", lazyswap");
2537 break;
2538
2539 case EM_PJ:
2540 case EM_PJ_OLD:
2541 if ((e_flags & EF_PICOJAVA_NEWCALLS) == EF_PICOJAVA_NEWCALLS)
2542 strcat (buf, ", new calling convention");
2543
2544 if ((e_flags & EF_PICOJAVA_GNUCALLS) == EF_PICOJAVA_GNUCALLS)
2545 strcat (buf, ", gnu calling convention");
2546 break;
2547
2548 case EM_IA_64:
2549 if ((e_flags & EF_IA_64_ABI64))
2550 strcat (buf, ", 64-bit");
2551 else
2552 strcat (buf, ", 32-bit");
2553 if ((e_flags & EF_IA_64_REDUCEDFP))
2554 strcat (buf, ", reduced fp model");
2555 if ((e_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
2556 strcat (buf, ", no function descriptors, constant gp");
2557 else if ((e_flags & EF_IA_64_CONS_GP))
2558 strcat (buf, ", constant gp");
2559 if ((e_flags & EF_IA_64_ABSOLUTE))
2560 strcat (buf, ", absolute");
2561 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
2562 {
2563 if ((e_flags & EF_IA_64_VMS_LINKAGES))
2564 strcat (buf, ", vms_linkages");
2565 switch ((e_flags & EF_IA_64_VMS_COMCOD))
2566 {
2567 case EF_IA_64_VMS_COMCOD_SUCCESS:
2568 break;
2569 case EF_IA_64_VMS_COMCOD_WARNING:
2570 strcat (buf, ", warning");
2571 break;
2572 case EF_IA_64_VMS_COMCOD_ERROR:
2573 strcat (buf, ", error");
2574 break;
2575 case EF_IA_64_VMS_COMCOD_ABORT:
2576 strcat (buf, ", abort");
2577 break;
2578 default:
2579 abort ();
2580 }
2581 }
2582 break;
2583
2584 case EM_VAX:
2585 if ((e_flags & EF_VAX_NONPIC))
2586 strcat (buf, ", non-PIC");
2587 if ((e_flags & EF_VAX_DFLOAT))
2588 strcat (buf, ", D-Float");
2589 if ((e_flags & EF_VAX_GFLOAT))
2590 strcat (buf, ", G-Float");
2591 break;
2592
2593 case EM_RX:
2594 if (e_flags & E_FLAG_RX_64BIT_DOUBLES)
2595 strcat (buf, ", 64-bit doubles");
2596 if (e_flags & E_FLAG_RX_DSP)
2597 strcat (buf, ", dsp");
2598 if (e_flags & E_FLAG_RX_PID)
2599 strcat (buf, ", pid");
2600 break;
2601
2602 case EM_S390:
2603 if (e_flags & EF_S390_HIGH_GPRS)
2604 strcat (buf, ", highgprs");
2605 break;
2606
2607 case EM_TI_C6000:
2608 if ((e_flags & EF_C6000_REL))
2609 strcat (buf, ", relocatable module");
2610 break;
2611 }
2612 }
2613
2614 return buf;
2615 }
2616
2617 static const char *
2618 get_osabi_name (unsigned int osabi)
2619 {
2620 static char buff[32];
2621
2622 switch (osabi)
2623 {
2624 case ELFOSABI_NONE: return "UNIX - System V";
2625 case ELFOSABI_HPUX: return "UNIX - HP-UX";
2626 case ELFOSABI_NETBSD: return "UNIX - NetBSD";
2627 case ELFOSABI_GNU: return "UNIX - GNU";
2628 case ELFOSABI_SOLARIS: return "UNIX - Solaris";
2629 case ELFOSABI_AIX: return "UNIX - AIX";
2630 case ELFOSABI_IRIX: return "UNIX - IRIX";
2631 case ELFOSABI_FREEBSD: return "UNIX - FreeBSD";
2632 case ELFOSABI_TRU64: return "UNIX - TRU64";
2633 case ELFOSABI_MODESTO: return "Novell - Modesto";
2634 case ELFOSABI_OPENBSD: return "UNIX - OpenBSD";
2635 case ELFOSABI_OPENVMS: return "VMS - OpenVMS";
2636 case ELFOSABI_NSK: return "HP - Non-Stop Kernel";
2637 case ELFOSABI_AROS: return "AROS";
2638 case ELFOSABI_FENIXOS: return "FenixOS";
2639 default:
2640 if (osabi >= 64)
2641 switch (elf_header.e_machine)
2642 {
2643 case EM_ARM:
2644 switch (osabi)
2645 {
2646 case ELFOSABI_ARM: return "ARM";
2647 default:
2648 break;
2649 }
2650 break;
2651
2652 case EM_MSP430:
2653 case EM_MSP430_OLD:
2654 switch (osabi)
2655 {
2656 case ELFOSABI_STANDALONE: return _("Standalone App");
2657 default:
2658 break;
2659 }
2660 break;
2661
2662 case EM_TI_C6000:
2663 switch (osabi)
2664 {
2665 case ELFOSABI_C6000_ELFABI: return _("Bare-metal C6000");
2666 case ELFOSABI_C6000_LINUX: return "Linux C6000";
2667 default:
2668 break;
2669 }
2670 break;
2671
2672 default:
2673 break;
2674 }
2675 snprintf (buff, sizeof (buff), _("<unknown: %x>"), osabi);
2676 return buff;
2677 }
2678 }
2679
2680 static const char *
2681 get_arm_segment_type (unsigned long type)
2682 {
2683 switch (type)
2684 {
2685 case PT_ARM_EXIDX:
2686 return "EXIDX";
2687 default:
2688 break;
2689 }
2690
2691 return NULL;
2692 }
2693
2694 static const char *
2695 get_mips_segment_type (unsigned long type)
2696 {
2697 switch (type)
2698 {
2699 case PT_MIPS_REGINFO:
2700 return "REGINFO";
2701 case PT_MIPS_RTPROC:
2702 return "RTPROC";
2703 case PT_MIPS_OPTIONS:
2704 return "OPTIONS";
2705 default:
2706 break;
2707 }
2708
2709 return NULL;
2710 }
2711
2712 static const char *
2713 get_parisc_segment_type (unsigned long type)
2714 {
2715 switch (type)
2716 {
2717 case PT_HP_TLS: return "HP_TLS";
2718 case PT_HP_CORE_NONE: return "HP_CORE_NONE";
2719 case PT_HP_CORE_VERSION: return "HP_CORE_VERSION";
2720 case PT_HP_CORE_KERNEL: return "HP_CORE_KERNEL";
2721 case PT_HP_CORE_COMM: return "HP_CORE_COMM";
2722 case PT_HP_CORE_PROC: return "HP_CORE_PROC";
2723 case PT_HP_CORE_LOADABLE: return "HP_CORE_LOADABLE";
2724 case PT_HP_CORE_STACK: return "HP_CORE_STACK";
2725 case PT_HP_CORE_SHM: return "HP_CORE_SHM";
2726 case PT_HP_CORE_MMF: return "HP_CORE_MMF";
2727 case PT_HP_PARALLEL: return "HP_PARALLEL";
2728 case PT_HP_FASTBIND: return "HP_FASTBIND";
2729 case PT_HP_OPT_ANNOT: return "HP_OPT_ANNOT";
2730 case PT_HP_HSL_ANNOT: return "HP_HSL_ANNOT";
2731 case PT_HP_STACK: return "HP_STACK";
2732 case PT_HP_CORE_UTSNAME: return "HP_CORE_UTSNAME";
2733 case PT_PARISC_ARCHEXT: return "PARISC_ARCHEXT";
2734 case PT_PARISC_UNWIND: return "PARISC_UNWIND";
2735 case PT_PARISC_WEAKORDER: return "PARISC_WEAKORDER";
2736 default:
2737 break;
2738 }
2739
2740 return NULL;
2741 }
2742
2743 static const char *
2744 get_ia64_segment_type (unsigned long type)
2745 {
2746 switch (type)
2747 {
2748 case PT_IA_64_ARCHEXT: return "IA_64_ARCHEXT";
2749 case PT_IA_64_UNWIND: return "IA_64_UNWIND";
2750 case PT_HP_TLS: return "HP_TLS";
2751 case PT_IA_64_HP_OPT_ANOT: return "HP_OPT_ANNOT";
2752 case PT_IA_64_HP_HSL_ANOT: return "HP_HSL_ANNOT";
2753 case PT_IA_64_HP_STACK: return "HP_STACK";
2754 default:
2755 break;
2756 }
2757
2758 return NULL;
2759 }
2760
2761 static const char *
2762 get_tic6x_segment_type (unsigned long type)
2763 {
2764 switch (type)
2765 {
2766 case PT_C6000_PHATTR: return "C6000_PHATTR";
2767 default:
2768 break;
2769 }
2770
2771 return NULL;
2772 }
2773
2774 static const char *
2775 get_segment_type (unsigned long p_type)
2776 {
2777 static char buff[32];
2778
2779 switch (p_type)
2780 {
2781 case PT_NULL: return "NULL";
2782 case PT_LOAD: return "LOAD";
2783 case PT_DYNAMIC: return "DYNAMIC";
2784 case PT_INTERP: return "INTERP";
2785 case PT_NOTE: return "NOTE";
2786 case PT_SHLIB: return "SHLIB";
2787 case PT_PHDR: return "PHDR";
2788 case PT_TLS: return "TLS";
2789
2790 case PT_GNU_EH_FRAME:
2791 return "GNU_EH_FRAME";
2792 case PT_GNU_STACK: return "GNU_STACK";
2793 case PT_GNU_RELRO: return "GNU_RELRO";
2794
2795 default:
2796 if ((p_type >= PT_LOPROC) && (p_type <= PT_HIPROC))
2797 {
2798 const char * result;
2799
2800 switch (elf_header.e_machine)
2801 {
2802 case EM_ARM:
2803 result = get_arm_segment_type (p_type);
2804 break;
2805 case EM_MIPS:
2806 case EM_MIPS_RS3_LE:
2807 result = get_mips_segment_type (p_type);
2808 break;
2809 case EM_PARISC:
2810 result = get_parisc_segment_type (p_type);
2811 break;
2812 case EM_IA_64:
2813 result = get_ia64_segment_type (p_type);
2814 break;
2815 case EM_TI_C6000:
2816 result = get_tic6x_segment_type (p_type);
2817 break;
2818 default:
2819 result = NULL;
2820 break;
2821 }
2822
2823 if (result != NULL)
2824 return result;
2825
2826 sprintf (buff, "LOPROC+%lx", p_type - PT_LOPROC);
2827 }
2828 else if ((p_type >= PT_LOOS) && (p_type <= PT_HIOS))
2829 {
2830 const char * result;
2831
2832 switch (elf_header.e_machine)
2833 {
2834 case EM_PARISC:
2835 result = get_parisc_segment_type (p_type);
2836 break;
2837 case EM_IA_64:
2838 result = get_ia64_segment_type (p_type);
2839 break;
2840 default:
2841 result = NULL;
2842 break;
2843 }
2844
2845 if (result != NULL)
2846 return result;
2847
2848 sprintf (buff, "LOOS+%lx", p_type - PT_LOOS);
2849 }
2850 else
2851 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), p_type);
2852
2853 return buff;
2854 }
2855 }
2856
2857 static const char *
2858 get_mips_section_type_name (unsigned int sh_type)
2859 {
2860 switch (sh_type)
2861 {
2862 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
2863 case SHT_MIPS_MSYM: return "MIPS_MSYM";
2864 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
2865 case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
2866 case SHT_MIPS_UCODE: return "MIPS_UCODE";
2867 case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
2868 case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
2869 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
2870 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
2871 case SHT_MIPS_RELD: return "MIPS_RELD";
2872 case SHT_MIPS_IFACE: return "MIPS_IFACE";
2873 case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
2874 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
2875 case SHT_MIPS_SHDR: return "MIPS_SHDR";
2876 case SHT_MIPS_FDESC: return "MIPS_FDESC";
2877 case SHT_MIPS_EXTSYM: return "MIPS_EXTSYM";
2878 case SHT_MIPS_DENSE: return "MIPS_DENSE";
2879 case SHT_MIPS_PDESC: return "MIPS_PDESC";
2880 case SHT_MIPS_LOCSYM: return "MIPS_LOCSYM";
2881 case SHT_MIPS_AUXSYM: return "MIPS_AUXSYM";
2882 case SHT_MIPS_OPTSYM: return "MIPS_OPTSYM";
2883 case SHT_MIPS_LOCSTR: return "MIPS_LOCSTR";
2884 case SHT_MIPS_LINE: return "MIPS_LINE";
2885 case SHT_MIPS_RFDESC: return "MIPS_RFDESC";
2886 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
2887 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
2888 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
2889 case SHT_MIPS_DWARF: return "MIPS_DWARF";
2890 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
2891 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
2892 case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
2893 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
2894 case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
2895 case SHT_MIPS_XLATE: return "MIPS_XLATE";
2896 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
2897 case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
2898 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
2899 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
2900 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
2901 default:
2902 break;
2903 }
2904 return NULL;
2905 }
2906
2907 static const char *
2908 get_parisc_section_type_name (unsigned int sh_type)
2909 {
2910 switch (sh_type)
2911 {
2912 case SHT_PARISC_EXT: return "PARISC_EXT";
2913 case SHT_PARISC_UNWIND: return "PARISC_UNWIND";
2914 case SHT_PARISC_DOC: return "PARISC_DOC";
2915 case SHT_PARISC_ANNOT: return "PARISC_ANNOT";
2916 case SHT_PARISC_SYMEXTN: return "PARISC_SYMEXTN";
2917 case SHT_PARISC_STUBS: return "PARISC_STUBS";
2918 case SHT_PARISC_DLKM: return "PARISC_DLKM";
2919 default:
2920 break;
2921 }
2922 return NULL;
2923 }
2924
2925 static const char *
2926 get_ia64_section_type_name (unsigned int sh_type)
2927 {
2928 /* If the top 8 bits are 0x78 the next 8 are the os/abi ID. */
2929 if ((sh_type & 0xFF000000) == SHT_IA_64_LOPSREG)
2930 return get_osabi_name ((sh_type & 0x00FF0000) >> 16);
2931
2932 switch (sh_type)
2933 {
2934 case SHT_IA_64_EXT: return "IA_64_EXT";
2935 case SHT_IA_64_UNWIND: return "IA_64_UNWIND";
2936 case SHT_IA_64_PRIORITY_INIT: return "IA_64_PRIORITY_INIT";
2937 case SHT_IA_64_VMS_TRACE: return "VMS_TRACE";
2938 case SHT_IA_64_VMS_TIE_SIGNATURES: return "VMS_TIE_SIGNATURES";
2939 case SHT_IA_64_VMS_DEBUG: return "VMS_DEBUG";
2940 case SHT_IA_64_VMS_DEBUG_STR: return "VMS_DEBUG_STR";
2941 case SHT_IA_64_VMS_LINKAGES: return "VMS_LINKAGES";
2942 case SHT_IA_64_VMS_SYMBOL_VECTOR: return "VMS_SYMBOL_VECTOR";
2943 case SHT_IA_64_VMS_FIXUP: return "VMS_FIXUP";
2944 default:
2945 break;
2946 }
2947 return NULL;
2948 }
2949
2950 static const char *
2951 get_x86_64_section_type_name (unsigned int sh_type)
2952 {
2953 switch (sh_type)
2954 {
2955 case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
2956 default:
2957 break;
2958 }
2959 return NULL;
2960 }
2961
2962 static const char *
2963 get_arm_section_type_name (unsigned int sh_type)
2964 {
2965 switch (sh_type)
2966 {
2967 case SHT_ARM_EXIDX: return "ARM_EXIDX";
2968 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP";
2969 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES";
2970 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY";
2971 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION";
2972 default:
2973 break;
2974 }
2975 return NULL;
2976 }
2977
2978 static const char *
2979 get_tic6x_section_type_name (unsigned int sh_type)
2980 {
2981 switch (sh_type)
2982 {
2983 case SHT_C6000_UNWIND:
2984 return "C6000_UNWIND";
2985 case SHT_C6000_PREEMPTMAP:
2986 return "C6000_PREEMPTMAP";
2987 case SHT_C6000_ATTRIBUTES:
2988 return "C6000_ATTRIBUTES";
2989 case SHT_TI_ICODE:
2990 return "TI_ICODE";
2991 case SHT_TI_XREF:
2992 return "TI_XREF";
2993 case SHT_TI_HANDLER:
2994 return "TI_HANDLER";
2995 case SHT_TI_INITINFO:
2996 return "TI_INITINFO";
2997 case SHT_TI_PHATTRS:
2998 return "TI_PHATTRS";
2999 default:
3000 break;
3001 }
3002 return NULL;
3003 }
3004
3005 static const char *
3006 get_section_type_name (unsigned int sh_type)
3007 {
3008 static char buff[32];
3009
3010 switch (sh_type)
3011 {
3012 case SHT_NULL: return "NULL";
3013 case SHT_PROGBITS: return "PROGBITS";
3014 case SHT_SYMTAB: return "SYMTAB";
3015 case SHT_STRTAB: return "STRTAB";
3016 case SHT_RELA: return "RELA";
3017 case SHT_HASH: return "HASH";
3018 case SHT_DYNAMIC: return "DYNAMIC";
3019 case SHT_NOTE: return "NOTE";
3020 case SHT_NOBITS: return "NOBITS";
3021 case SHT_REL: return "REL";
3022 case SHT_SHLIB: return "SHLIB";
3023 case SHT_DYNSYM: return "DYNSYM";
3024 case SHT_INIT_ARRAY: return "INIT_ARRAY";
3025 case SHT_FINI_ARRAY: return "FINI_ARRAY";
3026 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
3027 case SHT_GNU_HASH: return "GNU_HASH";
3028 case SHT_GROUP: return "GROUP";
3029 case SHT_SYMTAB_SHNDX: return "SYMTAB SECTION INDICIES";
3030 case SHT_GNU_verdef: return "VERDEF";
3031 case SHT_GNU_verneed: return "VERNEED";
3032 case SHT_GNU_versym: return "VERSYM";
3033 case 0x6ffffff0: return "VERSYM";
3034 case 0x6ffffffc: return "VERDEF";
3035 case 0x7ffffffd: return "AUXILIARY";
3036 case 0x7fffffff: return "FILTER";
3037 case SHT_GNU_LIBLIST: return "GNU_LIBLIST";
3038
3039 default:
3040 if ((sh_type >= SHT_LOPROC) && (sh_type <= SHT_HIPROC))
3041 {
3042 const char * result;
3043
3044 switch (elf_header.e_machine)
3045 {
3046 case EM_MIPS:
3047 case EM_MIPS_RS3_LE:
3048 result = get_mips_section_type_name (sh_type);
3049 break;
3050 case EM_PARISC:
3051 result = get_parisc_section_type_name (sh_type);
3052 break;
3053 case EM_IA_64:
3054 result = get_ia64_section_type_name (sh_type);
3055 break;
3056 case EM_X86_64:
3057 case EM_L1OM:
3058 case EM_K1OM:
3059 result = get_x86_64_section_type_name (sh_type);
3060 break;
3061 case EM_ARM:
3062 result = get_arm_section_type_name (sh_type);
3063 break;
3064 case EM_TI_C6000:
3065 result = get_tic6x_section_type_name (sh_type);
3066 break;
3067 default:
3068 result = NULL;
3069 break;
3070 }
3071
3072 if (result != NULL)
3073 return result;
3074
3075 sprintf (buff, "LOPROC+%x", sh_type - SHT_LOPROC);
3076 }
3077 else if ((sh_type >= SHT_LOOS) && (sh_type <= SHT_HIOS))
3078 {
3079 const char * result;
3080
3081 switch (elf_header.e_machine)
3082 {
3083 case EM_IA_64:
3084 result = get_ia64_section_type_name (sh_type);
3085 break;
3086 default:
3087 result = NULL;
3088 break;
3089 }
3090
3091 if (result != NULL)
3092 return result;
3093
3094 sprintf (buff, "LOOS+%x", sh_type - SHT_LOOS);
3095 }
3096 else if ((sh_type >= SHT_LOUSER) && (sh_type <= SHT_HIUSER))
3097 sprintf (buff, "LOUSER+%x", sh_type - SHT_LOUSER);
3098 else
3099 /* This message is probably going to be displayed in a 15
3100 character wide field, so put the hex value first. */
3101 snprintf (buff, sizeof (buff), _("%08x: <unknown>"), sh_type);
3102
3103 return buff;
3104 }
3105 }
3106
3107 #define OPTION_DEBUG_DUMP 512
3108 #define OPTION_DYN_SYMS 513
3109 #define OPTION_DWARF_DEPTH 514
3110 #define OPTION_DWARF_START 515
3111
3112 static struct option options[] =
3113 {
3114 {"all", no_argument, 0, 'a'},
3115 {"file-header", no_argument, 0, 'h'},
3116 {"program-headers", no_argument, 0, 'l'},
3117 {"headers", no_argument, 0, 'e'},
3118 {"histogram", no_argument, 0, 'I'},
3119 {"segments", no_argument, 0, 'l'},
3120 {"sections", no_argument, 0, 'S'},
3121 {"section-headers", no_argument, 0, 'S'},
3122 {"section-groups", no_argument, 0, 'g'},
3123 {"section-details", no_argument, 0, 't'},
3124 {"full-section-name",no_argument, 0, 'N'},
3125 {"symbols", no_argument, 0, 's'},
3126 {"syms", no_argument, 0, 's'},
3127 {"dyn-syms", no_argument, 0, OPTION_DYN_SYMS},
3128 {"relocs", no_argument, 0, 'r'},
3129 {"notes", no_argument, 0, 'n'},
3130 {"dynamic", no_argument, 0, 'd'},
3131 {"arch-specific", no_argument, 0, 'A'},
3132 {"version-info", no_argument, 0, 'V'},
3133 {"use-dynamic", no_argument, 0, 'D'},
3134 {"unwind", no_argument, 0, 'u'},
3135 {"archive-index", no_argument, 0, 'c'},
3136 {"hex-dump", required_argument, 0, 'x'},
3137 {"relocated-dump", required_argument, 0, 'R'},
3138 {"string-dump", required_argument, 0, 'p'},
3139 #ifdef SUPPORT_DISASSEMBLY
3140 {"instruction-dump", required_argument, 0, 'i'},
3141 #endif
3142 {"debug-dump", optional_argument, 0, OPTION_DEBUG_DUMP},
3143
3144 {"dwarf-depth", required_argument, 0, OPTION_DWARF_DEPTH},
3145 {"dwarf-start", required_argument, 0, OPTION_DWARF_START},
3146
3147 {"version", no_argument, 0, 'v'},
3148 {"wide", no_argument, 0, 'W'},
3149 {"help", no_argument, 0, 'H'},
3150 {0, no_argument, 0, 0}
3151 };
3152
3153 static void
3154 usage (FILE * stream)
3155 {
3156 fprintf (stream, _("Usage: readelf <option(s)> elf-file(s)\n"));
3157 fprintf (stream, _(" Display information about the contents of ELF format files\n"));
3158 fprintf (stream, _(" Options are:\n\
3159 -a --all Equivalent to: -h -l -S -s -r -d -V -A -I\n\
3160 -h --file-header Display the ELF file header\n\
3161 -l --program-headers Display the program headers\n\
3162 --segments An alias for --program-headers\n\
3163 -S --section-headers Display the sections' header\n\
3164 --sections An alias for --section-headers\n\
3165 -g --section-groups Display the section groups\n\
3166 -t --section-details Display the section details\n\
3167 -e --headers Equivalent to: -h -l -S\n\
3168 -s --syms Display the symbol table\n\
3169 --symbols An alias for --syms\n\
3170 --dyn-syms Display the dynamic symbol table\n\
3171 -n --notes Display the core notes (if present)\n\
3172 -r --relocs Display the relocations (if present)\n\
3173 -u --unwind Display the unwind info (if present)\n\
3174 -d --dynamic Display the dynamic section (if present)\n\
3175 -V --version-info Display the version sections (if present)\n\
3176 -A --arch-specific Display architecture specific information (if any).\n\
3177 -c --archive-index Display the symbol/file index in an archive\n\
3178 -D --use-dynamic Use the dynamic section info when displaying symbols\n\
3179 -x --hex-dump=<number|name>\n\
3180 Dump the contents of section <number|name> as bytes\n\
3181 -p --string-dump=<number|name>\n\
3182 Dump the contents of section <number|name> as strings\n\
3183 -R --relocated-dump=<number|name>\n\
3184 Dump the contents of section <number|name> as relocated bytes\n\
3185 -w[lLiaprmfFsoRt] or\n\
3186 --debug-dump[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,\n\
3187 =frames-interp,=str,=loc,=Ranges,=pubtypes,\n\
3188 =gdb_index,=trace_info,=trace_abbrev,=trace_aranges]\n\
3189 Display the contents of DWARF2 debug sections\n"));
3190 fprintf (stream, _("\
3191 --dwarf-depth=N Do not display DIEs at depth N or greater\n\
3192 --dwarf-start=N Display DIEs starting with N, at the same depth\n\
3193 or deeper\n"));
3194 #ifdef SUPPORT_DISASSEMBLY
3195 fprintf (stream, _("\
3196 -i --instruction-dump=<number|name>\n\
3197 Disassemble the contents of section <number|name>\n"));
3198 #endif
3199 fprintf (stream, _("\
3200 -I --histogram Display histogram of bucket list lengths\n\
3201 -W --wide Allow output width to exceed 80 characters\n\
3202 @<file> Read options from <file>\n\
3203 -H --help Display this information\n\
3204 -v --version Display the version number of readelf\n"));
3205
3206 if (REPORT_BUGS_TO[0] && stream == stdout)
3207 fprintf (stdout, _("Report bugs to %s\n"), REPORT_BUGS_TO);
3208
3209 exit (stream == stdout ? 0 : 1);
3210 }
3211
3212 /* Record the fact that the user wants the contents of section number
3213 SECTION to be displayed using the method(s) encoded as flags bits
3214 in TYPE. Note, TYPE can be zero if we are creating the array for
3215 the first time. */
3216
3217 static void
3218 request_dump_bynumber (unsigned int section, dump_type type)
3219 {
3220 if (section >= num_dump_sects)
3221 {
3222 dump_type * new_dump_sects;
3223
3224 new_dump_sects = (dump_type *) calloc (section + 1,
3225 sizeof (* dump_sects));
3226
3227 if (new_dump_sects == NULL)
3228 error (_("Out of memory allocating dump request table.\n"));
3229 else
3230 {
3231 /* Copy current flag settings. */
3232 memcpy (new_dump_sects, dump_sects, num_dump_sects * sizeof (* dump_sects));
3233
3234 free (dump_sects);
3235
3236 dump_sects = new_dump_sects;
3237 num_dump_sects = section + 1;
3238 }
3239 }
3240
3241 if (dump_sects)
3242 dump_sects[section] |= type;
3243
3244 return;
3245 }
3246
3247 /* Request a dump by section name. */
3248
3249 static void
3250 request_dump_byname (const char * section, dump_type type)
3251 {
3252 struct dump_list_entry * new_request;
3253
3254 new_request = (struct dump_list_entry *)
3255 malloc (sizeof (struct dump_list_entry));
3256 if (!new_request)
3257 error (_("Out of memory allocating dump request table.\n"));
3258
3259 new_request->name = strdup (section);
3260 if (!new_request->name)
3261 error (_("Out of memory allocating dump request table.\n"));
3262
3263 new_request->type = type;
3264
3265 new_request->next = dump_sects_byname;
3266 dump_sects_byname = new_request;
3267 }
3268
3269 static inline void
3270 request_dump (dump_type type)
3271 {
3272 int section;
3273 char * cp;
3274
3275 do_dump++;
3276 section = strtoul (optarg, & cp, 0);
3277
3278 if (! *cp && section >= 0)
3279 request_dump_bynumber (section, type);
3280 else
3281 request_dump_byname (optarg, type);
3282 }
3283
3284
3285 static void
3286 parse_args (int argc, char ** argv)
3287 {
3288 int c;
3289
3290 if (argc < 2)
3291 usage (stderr);
3292
3293 while ((c = getopt_long
3294 (argc, argv, "ADHINR:SVWacdeghi:lnp:rstuvw::x:", options, NULL)) != EOF)
3295 {
3296 switch (c)
3297 {
3298 case 0:
3299 /* Long options. */
3300 break;
3301 case 'H':
3302 usage (stdout);
3303 break;
3304
3305 case 'a':
3306 do_syms++;
3307 do_reloc++;
3308 do_unwind++;
3309 do_dynamic++;
3310 do_header++;
3311 do_sections++;
3312 do_section_groups++;
3313 do_segments++;
3314 do_version++;
3315 do_histogram++;
3316 do_arch++;
3317 do_notes++;
3318 break;
3319 case 'g':
3320 do_section_groups++;
3321 break;
3322 case 't':
3323 case 'N':
3324 do_sections++;
3325 do_section_details++;
3326 break;
3327 case 'e':
3328 do_header++;
3329 do_sections++;
3330 do_segments++;
3331 break;
3332 case 'A':
3333 do_arch++;
3334 break;
3335 case 'D':
3336 do_using_dynamic++;
3337 break;
3338 case 'r':
3339 do_reloc++;
3340 break;
3341 case 'u':
3342 do_unwind++;
3343 break;
3344 case 'h':
3345 do_header++;
3346 break;
3347 case 'l':
3348 do_segments++;
3349 break;
3350 case 's':
3351 do_syms++;
3352 break;
3353 case 'S':
3354 do_sections++;
3355 break;
3356 case 'd':
3357 do_dynamic++;
3358 break;
3359 case 'I':
3360 do_histogram++;
3361 break;
3362 case 'n':
3363 do_notes++;
3364 break;
3365 case 'c':
3366 do_archive_index++;
3367 break;
3368 case 'x':
3369 request_dump (HEX_DUMP);
3370 break;
3371 case 'p':
3372 request_dump (STRING_DUMP);
3373 break;
3374 case 'R':
3375 request_dump (RELOC_DUMP);
3376 break;
3377 case 'w':
3378 do_dump++;
3379 if (optarg == 0)
3380 {
3381 do_debugging = 1;
3382 dwarf_select_sections_all ();
3383 }
3384 else
3385 {
3386 do_debugging = 0;
3387 dwarf_select_sections_by_letters (optarg);
3388 }
3389 break;
3390 case OPTION_DEBUG_DUMP:
3391 do_dump++;
3392 if (optarg == 0)
3393 do_debugging = 1;
3394 else
3395 {
3396 do_debugging = 0;
3397 dwarf_select_sections_by_names (optarg);
3398 }
3399 break;
3400 case OPTION_DWARF_DEPTH:
3401 {
3402 char *cp;
3403
3404 dwarf_cutoff_level = strtoul (optarg, & cp, 0);
3405 }
3406 break;
3407 case OPTION_DWARF_START:
3408 {
3409 char *cp;
3410
3411 dwarf_start_die = strtoul (optarg, & cp, 0);
3412 }
3413 break;
3414 case OPTION_DYN_SYMS:
3415 do_dyn_syms++;
3416 break;
3417 #ifdef SUPPORT_DISASSEMBLY
3418 case 'i':
3419 request_dump (DISASS_DUMP);
3420 break;
3421 #endif
3422 case 'v':
3423 print_version (program_name);
3424 break;
3425 case 'V':
3426 do_version++;
3427 break;
3428 case 'W':
3429 do_wide++;
3430 break;
3431 default:
3432 /* xgettext:c-format */
3433 error (_("Invalid option '-%c'\n"), c);
3434 /* Drop through. */
3435 case '?':
3436 usage (stderr);
3437 }
3438 }
3439
3440 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
3441 && !do_segments && !do_header && !do_dump && !do_version
3442 && !do_histogram && !do_debugging && !do_arch && !do_notes
3443 && !do_section_groups && !do_archive_index
3444 && !do_dyn_syms)
3445 usage (stderr);
3446 else if (argc < 3)
3447 {
3448 warn (_("Nothing to do.\n"));
3449 usage (stderr);
3450 }
3451 }
3452
3453 static const char *
3454 get_elf_class (unsigned int elf_class)
3455 {
3456 static char buff[32];
3457
3458 switch (elf_class)
3459 {
3460 case ELFCLASSNONE: return _("none");
3461 case ELFCLASS32: return "ELF32";
3462 case ELFCLASS64: return "ELF64";
3463 default:
3464 snprintf (buff, sizeof (buff), _("<unknown: %x>"), elf_class);
3465 return buff;
3466 }
3467 }
3468
3469 static const char *
3470 get_data_encoding (unsigned int encoding)
3471 {
3472 static char buff[32];
3473
3474 switch (encoding)
3475 {
3476 case ELFDATANONE: return _("none");
3477 case ELFDATA2LSB: return _("2's complement, little endian");
3478 case ELFDATA2MSB: return _("2's complement, big endian");
3479 default:
3480 snprintf (buff, sizeof (buff), _("<unknown: %x>"), encoding);
3481 return buff;
3482 }
3483 }
3484
3485 /* Decode the data held in 'elf_header'. */
3486
3487 static int
3488 process_file_header (void)
3489 {
3490 if ( elf_header.e_ident[EI_MAG0] != ELFMAG0
3491 || elf_header.e_ident[EI_MAG1] != ELFMAG1
3492 || elf_header.e_ident[EI_MAG2] != ELFMAG2
3493 || elf_header.e_ident[EI_MAG3] != ELFMAG3)
3494 {
3495 error
3496 (_("Not an ELF file - it has the wrong magic bytes at the start\n"));
3497 return 0;
3498 }
3499
3500 init_dwarf_regnames (elf_header.e_machine);
3501
3502 if (do_header)
3503 {
3504 int i;
3505
3506 printf (_("ELF Header:\n"));
3507 printf (_(" Magic: "));
3508 for (i = 0; i < EI_NIDENT; i++)
3509 printf ("%2.2x ", elf_header.e_ident[i]);
3510 printf ("\n");
3511 printf (_(" Class: %s\n"),
3512 get_elf_class (elf_header.e_ident[EI_CLASS]));
3513 printf (_(" Data: %s\n"),
3514 get_data_encoding (elf_header.e_ident[EI_DATA]));
3515 printf (_(" Version: %d %s\n"),
3516 elf_header.e_ident[EI_VERSION],
3517 (elf_header.e_ident[EI_VERSION] == EV_CURRENT
3518 ? "(current)"
3519 : (elf_header.e_ident[EI_VERSION] != EV_NONE
3520 ? _("<unknown: %lx>")
3521 : "")));
3522 printf (_(" OS/ABI: %s\n"),
3523 get_osabi_name (elf_header.e_ident[EI_OSABI]));
3524 printf (_(" ABI Version: %d\n"),
3525 elf_header.e_ident[EI_ABIVERSION]);
3526 printf (_(" Type: %s\n"),
3527 get_file_type (elf_header.e_type));
3528 printf (_(" Machine: %s\n"),
3529 get_machine_name (elf_header.e_machine));
3530 printf (_(" Version: 0x%lx\n"),
3531 (unsigned long) elf_header.e_version);
3532
3533 printf (_(" Entry point address: "));
3534 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
3535 printf (_("\n Start of program headers: "));
3536 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
3537 printf (_(" (bytes into file)\n Start of section headers: "));
3538 print_vma ((bfd_vma) elf_header.e_shoff, DEC);
3539 printf (_(" (bytes into file)\n"));
3540
3541 printf (_(" Flags: 0x%lx%s\n"),
3542 (unsigned long) elf_header.e_flags,
3543 get_machine_flags (elf_header.e_flags, elf_header.e_machine));
3544 printf (_(" Size of this header: %ld (bytes)\n"),
3545 (long) elf_header.e_ehsize);
3546 printf (_(" Size of program headers: %ld (bytes)\n"),
3547 (long) elf_header.e_phentsize);
3548 printf (_(" Number of program headers: %ld"),
3549 (long) elf_header.e_phnum);
3550 if (section_headers != NULL
3551 && elf_header.e_phnum == PN_XNUM
3552 && section_headers[0].sh_info != 0)
3553 printf (" (%ld)", (long) section_headers[0].sh_info);
3554 putc ('\n', stdout);
3555 printf (_(" Size of section headers: %ld (bytes)\n"),
3556 (long) elf_header.e_shentsize);
3557 printf (_(" Number of section headers: %ld"),
3558 (long) elf_header.e_shnum);
3559 if (section_headers != NULL && elf_header.e_shnum == SHN_UNDEF)
3560 printf (" (%ld)", (long) section_headers[0].sh_size);
3561 putc ('\n', stdout);
3562 printf (_(" Section header string table index: %ld"),
3563 (long) elf_header.e_shstrndx);
3564 if (section_headers != NULL
3565 && elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
3566 printf (" (%u)", section_headers[0].sh_link);
3567 else if (elf_header.e_shstrndx != SHN_UNDEF
3568 && elf_header.e_shstrndx >= elf_header.e_shnum)
3569 printf (_(" <corrupt: out of range>"));
3570 putc ('\n', stdout);
3571 }
3572
3573 if (section_headers != NULL)
3574 {
3575 if (elf_header.e_phnum == PN_XNUM
3576 && section_headers[0].sh_info != 0)
3577 elf_header.e_phnum = section_headers[0].sh_info;
3578 if (elf_header.e_shnum == SHN_UNDEF)
3579 elf_header.e_shnum = section_headers[0].sh_size;
3580 if (elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
3581 elf_header.e_shstrndx = section_headers[0].sh_link;
3582 else if (elf_header.e_shstrndx >= elf_header.e_shnum)
3583 elf_header.e_shstrndx = SHN_UNDEF;
3584 free (section_headers);
3585 section_headers = NULL;
3586 }
3587
3588 return 1;
3589 }
3590
3591
3592 static int
3593 get_32bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
3594 {
3595 Elf32_External_Phdr * phdrs;
3596 Elf32_External_Phdr * external;
3597 Elf_Internal_Phdr * internal;
3598 unsigned int i;
3599
3600 phdrs = (Elf32_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
3601 elf_header.e_phentsize,
3602 elf_header.e_phnum,
3603 _("program headers"));
3604 if (!phdrs)
3605 return 0;
3606
3607 for (i = 0, internal = pheaders, external = phdrs;
3608 i < elf_header.e_phnum;
3609 i++, internal++, external++)
3610 {
3611 internal->p_type = BYTE_GET (external->p_type);
3612 internal->p_offset = BYTE_GET (external->p_offset);
3613 internal->p_vaddr = BYTE_GET (external->p_vaddr);
3614 internal->p_paddr = BYTE_GET (external->p_paddr);
3615 internal->p_filesz = BYTE_GET (external->p_filesz);
3616 internal->p_memsz = BYTE_GET (external->p_memsz);
3617 internal->p_flags = BYTE_GET (external->p_flags);
3618 internal->p_align = BYTE_GET (external->p_align);
3619 }
3620
3621 free (phdrs);
3622
3623 return 1;
3624 }
3625
3626 static int
3627 get_64bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
3628 {
3629 Elf64_External_Phdr * phdrs;
3630 Elf64_External_Phdr * external;
3631 Elf_Internal_Phdr * internal;
3632 unsigned int i;
3633
3634 phdrs = (Elf64_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
3635 elf_header.e_phentsize,
3636 elf_header.e_phnum,
3637 _("program headers"));
3638 if (!phdrs)
3639 return 0;
3640
3641 for (i = 0, internal = pheaders, external = phdrs;
3642 i < elf_header.e_phnum;
3643 i++, internal++, external++)
3644 {
3645 internal->p_type = BYTE_GET (external->p_type);
3646 internal->p_flags = BYTE_GET (external->p_flags);
3647 internal->p_offset = BYTE_GET (external->p_offset);
3648 internal->p_vaddr = BYTE_GET (external->p_vaddr);
3649 internal->p_paddr = BYTE_GET (external->p_paddr);
3650 internal->p_filesz = BYTE_GET (external->p_filesz);
3651 internal->p_memsz = BYTE_GET (external->p_memsz);
3652 internal->p_align = BYTE_GET (external->p_align);
3653 }
3654
3655 free (phdrs);
3656
3657 return 1;
3658 }
3659
3660 /* Returns 1 if the program headers were read into `program_headers'. */
3661
3662 static int
3663 get_program_headers (FILE * file)
3664 {
3665 Elf_Internal_Phdr * phdrs;
3666
3667 /* Check cache of prior read. */
3668 if (program_headers != NULL)
3669 return 1;
3670
3671 phdrs = (Elf_Internal_Phdr *) cmalloc (elf_header.e_phnum,
3672 sizeof (Elf_Internal_Phdr));
3673
3674 if (phdrs == NULL)
3675 {
3676 error (_("Out of memory\n"));
3677 return 0;
3678 }
3679
3680 if (is_32bit_elf
3681 ? get_32bit_program_headers (file, phdrs)
3682 : get_64bit_program_headers (file, phdrs))
3683 {
3684 program_headers = phdrs;
3685 return 1;
3686 }
3687
3688 free (phdrs);
3689 return 0;
3690 }
3691
3692 /* Returns 1 if the program headers were loaded. */
3693
3694 static int
3695 process_program_headers (FILE * file)
3696 {
3697 Elf_Internal_Phdr * segment;
3698 unsigned int i;
3699
3700 if (elf_header.e_phnum == 0)
3701 {
3702 /* PR binutils/12467. */
3703 if (elf_header.e_phoff != 0)
3704 warn (_("possibly corrupt ELF header - it has a non-zero program"
3705 " header offset, but no program headers"));
3706 else if (do_segments)
3707 printf (_("\nThere are no program headers in this file.\n"));
3708 return 0;
3709 }
3710
3711 if (do_segments && !do_header)
3712 {
3713 printf (_("\nElf file type is %s\n"), get_file_type (elf_header.e_type));
3714 printf (_("Entry point "));
3715 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
3716 printf (_("\nThere are %d program headers, starting at offset "),
3717 elf_header.e_phnum);
3718 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
3719 printf ("\n");
3720 }
3721
3722 if (! get_program_headers (file))
3723 return 0;
3724
3725 if (do_segments)
3726 {
3727 if (elf_header.e_phnum > 1)
3728 printf (_("\nProgram Headers:\n"));
3729 else
3730 printf (_("\nProgram Headers:\n"));
3731
3732 if (is_32bit_elf)
3733 printf
3734 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
3735 else if (do_wide)
3736 printf
3737 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
3738 else
3739 {
3740 printf
3741 (_(" Type Offset VirtAddr PhysAddr\n"));
3742 printf
3743 (_(" FileSiz MemSiz Flags Align\n"));
3744 }
3745 }
3746
3747 dynamic_addr = 0;
3748 dynamic_size = 0;
3749
3750 for (i = 0, segment = program_headers;
3751 i < elf_header.e_phnum;
3752 i++, segment++)
3753 {
3754 if (do_segments)
3755 {
3756 printf (" %-14.14s ", get_segment_type (segment->p_type));
3757
3758 if (is_32bit_elf)
3759 {
3760 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
3761 printf ("0x%8.8lx ", (unsigned long) segment->p_vaddr);
3762 printf ("0x%8.8lx ", (unsigned long) segment->p_paddr);
3763 printf ("0x%5.5lx ", (unsigned long) segment->p_filesz);
3764 printf ("0x%5.5lx ", (unsigned long) segment->p_memsz);
3765 printf ("%c%c%c ",
3766 (segment->p_flags & PF_R ? 'R' : ' '),
3767 (segment->p_flags & PF_W ? 'W' : ' '),
3768 (segment->p_flags & PF_X ? 'E' : ' '));
3769 printf ("%#lx", (unsigned long) segment->p_align);
3770 }
3771 else if (do_wide)
3772 {
3773 if ((unsigned long) segment->p_offset == segment->p_offset)
3774 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
3775 else
3776 {
3777 print_vma (segment->p_offset, FULL_HEX);
3778 putchar (' ');
3779 }
3780
3781 print_vma (segment->p_vaddr, FULL_HEX);
3782 putchar (' ');
3783 print_vma (segment->p_paddr, FULL_HEX);
3784 putchar (' ');
3785
3786 if ((unsigned long) segment->p_filesz == segment->p_filesz)
3787 printf ("0x%6.6lx ", (unsigned long) segment->p_filesz);
3788 else
3789 {
3790 print_vma (segment->p_filesz, FULL_HEX);
3791 putchar (' ');
3792 }
3793
3794 if ((unsigned long) segment->p_memsz == segment->p_memsz)
3795 printf ("0x%6.6lx", (unsigned long) segment->p_memsz);
3796 else
3797 {
3798 print_vma (segment->p_offset, FULL_HEX);
3799 }
3800
3801 printf (" %c%c%c ",
3802 (segment->p_flags & PF_R ? 'R' : ' '),
3803 (segment->p_flags & PF_W ? 'W' : ' '),
3804 (segment->p_flags & PF_X ? 'E' : ' '));
3805
3806 if ((unsigned long) segment->p_align == segment->p_align)
3807 printf ("%#lx", (unsigned long) segment->p_align);
3808 else
3809 {
3810 print_vma (segment->p_align, PREFIX_HEX);
3811 }
3812 }
3813 else
3814 {
3815 print_vma (segment->p_offset, FULL_HEX);
3816 putchar (' ');
3817 print_vma (segment->p_vaddr, FULL_HEX);
3818 putchar (' ');
3819 print_vma (segment->p_paddr, FULL_HEX);
3820 printf ("\n ");
3821 print_vma (segment->p_filesz, FULL_HEX);
3822 putchar (' ');
3823 print_vma (segment->p_memsz, FULL_HEX);
3824 printf (" %c%c%c ",
3825 (segment->p_flags & PF_R ? 'R' : ' '),
3826 (segment->p_flags & PF_W ? 'W' : ' '),
3827 (segment->p_flags & PF_X ? 'E' : ' '));
3828 print_vma (segment->p_align, HEX);
3829 }
3830 }
3831
3832 switch (segment->p_type)
3833 {
3834 case PT_DYNAMIC:
3835 if (dynamic_addr)
3836 error (_("more than one dynamic segment\n"));
3837
3838 /* By default, assume that the .dynamic section is the first
3839 section in the DYNAMIC segment. */
3840 dynamic_addr = segment->p_offset;
3841 dynamic_size = segment->p_filesz;
3842
3843 /* Try to locate the .dynamic section. If there is
3844 a section header table, we can easily locate it. */
3845 if (section_headers != NULL)
3846 {
3847 Elf_Internal_Shdr * sec;
3848
3849 sec = find_section (".dynamic");
3850 if (sec == NULL || sec->sh_size == 0)
3851 {
3852 /* A corresponding .dynamic section is expected, but on
3853 IA-64/OpenVMS it is OK for it to be missing. */
3854 if (!is_ia64_vms ())
3855 error (_("no .dynamic section in the dynamic segment\n"));
3856 break;
3857 }
3858
3859 if (sec->sh_type == SHT_NOBITS)
3860 {
3861 dynamic_size = 0;
3862 break;
3863 }
3864
3865 dynamic_addr = sec->sh_offset;
3866 dynamic_size = sec->sh_size;
3867
3868 if (dynamic_addr < segment->p_offset
3869 || dynamic_addr > segment->p_offset + segment->p_filesz)
3870 warn (_("the .dynamic section is not contained"
3871 " within the dynamic segment\n"));
3872 else if (dynamic_addr > segment->p_offset)
3873 warn (_("the .dynamic section is not the first section"
3874 " in the dynamic segment.\n"));
3875 }
3876 break;
3877
3878 case PT_INTERP:
3879 if (fseek (file, archive_file_offset + (long) segment->p_offset,
3880 SEEK_SET))
3881 error (_("Unable to find program interpreter name\n"));
3882 else
3883 {
3884 char fmt [32];
3885 int ret = snprintf (fmt, sizeof (fmt), "%%%ds", PATH_MAX);
3886
3887 if (ret >= (int) sizeof (fmt) || ret < 0)
3888 error (_("Internal error: failed to create format string to display program interpreter\n"));
3889
3890 program_interpreter[0] = 0;
3891 if (fscanf (file, fmt, program_interpreter) <= 0)
3892 error (_("Unable to read program interpreter name\n"));
3893
3894 if (do_segments)
3895 printf (_("\n [Requesting program interpreter: %s]"),
3896 program_interpreter);
3897 }
3898 break;
3899 }
3900
3901 if (do_segments)
3902 putc ('\n', stdout);
3903 }
3904
3905 if (do_segments && section_headers != NULL && string_table != NULL)
3906 {
3907 printf (_("\n Section to Segment mapping:\n"));
3908 printf (_(" Segment Sections...\n"));
3909
3910 for (i = 0; i < elf_header.e_phnum; i++)
3911 {
3912 unsigned int j;
3913 Elf_Internal_Shdr * section;
3914
3915 segment = program_headers + i;
3916 section = section_headers + 1;
3917
3918 printf (" %2.2d ", i);
3919
3920 for (j = 1; j < elf_header.e_shnum; j++, section++)
3921 {
3922 if (!ELF_TBSS_SPECIAL (section, segment)
3923 && ELF_SECTION_IN_SEGMENT_STRICT (section, segment))
3924 printf ("%s ", SECTION_NAME (section));
3925 }
3926
3927 putc ('\n',stdout);
3928 }
3929 }
3930
3931 return 1;
3932 }
3933
3934
3935 /* Find the file offset corresponding to VMA by using the program headers. */
3936
3937 static long
3938 offset_from_vma (FILE * file, bfd_vma vma, bfd_size_type size)
3939 {
3940 Elf_Internal_Phdr * seg;
3941
3942 if (! get_program_headers (file))
3943 {
3944 warn (_("Cannot interpret virtual addresses without program headers.\n"));
3945 return (long) vma;
3946 }
3947
3948 for (seg = program_headers;
3949 seg < program_headers + elf_header.e_phnum;
3950 ++seg)
3951 {
3952 if (seg->p_type != PT_LOAD)
3953 continue;
3954
3955 if (vma >= (seg->p_vaddr & -seg->p_align)
3956 && vma + size <= seg->p_vaddr + seg->p_filesz)
3957 return vma - seg->p_vaddr + seg->p_offset;
3958 }
3959
3960 warn (_("Virtual address 0x%lx not located in any PT_LOAD segment.\n"),
3961 (unsigned long) vma);
3962 return (long) vma;
3963 }
3964
3965
3966 static int
3967 get_32bit_section_headers (FILE * file, unsigned int num)
3968 {
3969 Elf32_External_Shdr * shdrs;
3970 Elf_Internal_Shdr * internal;
3971 unsigned int i;
3972
3973 shdrs = (Elf32_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
3974 elf_header.e_shentsize, num,
3975 _("section headers"));
3976 if (!shdrs)
3977 return 0;
3978
3979 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
3980 sizeof (Elf_Internal_Shdr));
3981
3982 if (section_headers == NULL)
3983 {
3984 error (_("Out of memory\n"));
3985 return 0;
3986 }
3987
3988 for (i = 0, internal = section_headers;
3989 i < num;
3990 i++, internal++)
3991 {
3992 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
3993 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
3994 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
3995 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
3996 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
3997 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
3998 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
3999 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
4000 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
4001 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
4002 }
4003
4004 free (shdrs);
4005
4006 return 1;
4007 }
4008
4009 static int
4010 get_64bit_section_headers (FILE * file, unsigned int num)
4011 {
4012 Elf64_External_Shdr * shdrs;
4013 Elf_Internal_Shdr * internal;
4014 unsigned int i;
4015
4016 shdrs = (Elf64_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
4017 elf_header.e_shentsize, num,
4018 _("section headers"));
4019 if (!shdrs)
4020 return 0;
4021
4022 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
4023 sizeof (Elf_Internal_Shdr));
4024
4025 if (section_headers == NULL)
4026 {
4027 error (_("Out of memory\n"));
4028 return 0;
4029 }
4030
4031 for (i = 0, internal = section_headers;
4032 i < num;
4033 i++, internal++)
4034 {
4035 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
4036 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
4037 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
4038 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
4039 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
4040 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
4041 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
4042 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
4043 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
4044 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
4045 }
4046
4047 free (shdrs);
4048
4049 return 1;
4050 }
4051
4052 static Elf_Internal_Sym *
4053 get_32bit_elf_symbols (FILE * file,
4054 Elf_Internal_Shdr * section,
4055 unsigned long * num_syms_return)
4056 {
4057 unsigned long number = 0;
4058 Elf32_External_Sym * esyms = NULL;
4059 Elf_External_Sym_Shndx * shndx = NULL;
4060 Elf_Internal_Sym * isyms = NULL;
4061 Elf_Internal_Sym * psym;
4062 unsigned int j;
4063
4064 /* Run some sanity checks first. */
4065 if (section->sh_entsize == 0)
4066 {
4067 error (_("sh_entsize is zero\n"));
4068 goto exit_point;
4069 }
4070
4071 number = section->sh_size / section->sh_entsize;
4072
4073 if (number * sizeof (Elf32_External_Sym) > section->sh_size + 1)
4074 {
4075 error (_("Invalid sh_entsize\n"));
4076 goto exit_point;
4077 }
4078
4079 esyms = (Elf32_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
4080 section->sh_size, _("symbols"));
4081 if (esyms == NULL)
4082 goto exit_point;
4083
4084 shndx = NULL;
4085 if (symtab_shndx_hdr != NULL
4086 && (symtab_shndx_hdr->sh_link
4087 == (unsigned long) (section - section_headers)))
4088 {
4089 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
4090 symtab_shndx_hdr->sh_offset,
4091 1, symtab_shndx_hdr->sh_size,
4092 _("symtab shndx"));
4093 if (shndx == NULL)
4094 goto exit_point;
4095 }
4096
4097 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
4098
4099 if (isyms == NULL)
4100 {
4101 error (_("Out of memory\n"));
4102 goto exit_point;
4103 }
4104
4105 for (j = 0, psym = isyms; j < number; j++, psym++)
4106 {
4107 psym->st_name = BYTE_GET (esyms[j].st_name);
4108 psym->st_value = BYTE_GET (esyms[j].st_value);
4109 psym->st_size = BYTE_GET (esyms[j].st_size);
4110 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
4111 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
4112 psym->st_shndx
4113 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
4114 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
4115 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
4116 psym->st_info = BYTE_GET (esyms[j].st_info);
4117 psym->st_other = BYTE_GET (esyms[j].st_other);
4118 }
4119
4120 exit_point:
4121 if (shndx != NULL)
4122 free (shndx);
4123 if (esyms != NULL)
4124 free (esyms);
4125
4126 if (num_syms_return != NULL)
4127 * num_syms_return = isyms == NULL ? 0 : number;
4128
4129 return isyms;
4130 }
4131
4132 static Elf_Internal_Sym *
4133 get_64bit_elf_symbols (FILE * file,
4134 Elf_Internal_Shdr * section,
4135 unsigned long * num_syms_return)
4136 {
4137 unsigned long number = 0;
4138 Elf64_External_Sym * esyms = NULL;
4139 Elf_External_Sym_Shndx * shndx = NULL;
4140 Elf_Internal_Sym * isyms = NULL;
4141 Elf_Internal_Sym * psym;
4142 unsigned int j;
4143
4144 /* Run some sanity checks first. */
4145 if (section->sh_entsize == 0)
4146 {
4147 error (_("sh_entsize is zero\n"));
4148 goto exit_point;
4149 }
4150
4151 number = section->sh_size / section->sh_entsize;
4152
4153 if (number * sizeof (Elf64_External_Sym) > section->sh_size + 1)
4154 {
4155 error (_("Invalid sh_entsize\n"));
4156 goto exit_point;
4157 }
4158
4159 esyms = (Elf64_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
4160 section->sh_size, _("symbols"));
4161 if (!esyms)
4162 goto exit_point;
4163
4164 if (symtab_shndx_hdr != NULL
4165 && (symtab_shndx_hdr->sh_link
4166 == (unsigned long) (section - section_headers)))
4167 {
4168 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
4169 symtab_shndx_hdr->sh_offset,
4170 1, symtab_shndx_hdr->sh_size,
4171 _("symtab shndx"));
4172 if (shndx == NULL)
4173 goto exit_point;
4174 }
4175
4176 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
4177
4178 if (isyms == NULL)
4179 {
4180 error (_("Out of memory\n"));
4181 goto exit_point;
4182 }
4183
4184 for (j = 0, psym = isyms; j < number; j++, psym++)
4185 {
4186 psym->st_name = BYTE_GET (esyms[j].st_name);
4187 psym->st_info = BYTE_GET (esyms[j].st_info);
4188 psym->st_other = BYTE_GET (esyms[j].st_other);
4189 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
4190
4191 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
4192 psym->st_shndx
4193 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
4194 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
4195 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
4196
4197 psym->st_value = BYTE_GET (esyms[j].st_value);
4198 psym->st_size = BYTE_GET (esyms[j].st_size);
4199 }
4200
4201 exit_point:
4202 if (shndx != NULL)
4203 free (shndx);
4204 if (esyms != NULL)
4205 free (esyms);
4206
4207 if (num_syms_return != NULL)
4208 * num_syms_return = isyms == NULL ? 0 : number;
4209
4210 return isyms;
4211 }
4212
4213 static const char *
4214 get_elf_section_flags (bfd_vma sh_flags)
4215 {
4216 static char buff[1024];
4217 char * p = buff;
4218 int field_size = is_32bit_elf ? 8 : 16;
4219 int sindex;
4220 int size = sizeof (buff) - (field_size + 4 + 1);
4221 bfd_vma os_flags = 0;
4222 bfd_vma proc_flags = 0;
4223 bfd_vma unknown_flags = 0;
4224 static const struct
4225 {
4226 const char * str;
4227 int len;
4228 }
4229 flags [] =
4230 {
4231 /* 0 */ { STRING_COMMA_LEN ("WRITE") },
4232 /* 1 */ { STRING_COMMA_LEN ("ALLOC") },
4233 /* 2 */ { STRING_COMMA_LEN ("EXEC") },
4234 /* 3 */ { STRING_COMMA_LEN ("MERGE") },
4235 /* 4 */ { STRING_COMMA_LEN ("STRINGS") },
4236 /* 5 */ { STRING_COMMA_LEN ("INFO LINK") },
4237 /* 6 */ { STRING_COMMA_LEN ("LINK ORDER") },
4238 /* 7 */ { STRING_COMMA_LEN ("OS NONCONF") },
4239 /* 8 */ { STRING_COMMA_LEN ("GROUP") },
4240 /* 9 */ { STRING_COMMA_LEN ("TLS") },
4241 /* IA-64 specific. */
4242 /* 10 */ { STRING_COMMA_LEN ("SHORT") },
4243 /* 11 */ { STRING_COMMA_LEN ("NORECOV") },
4244 /* IA-64 OpenVMS specific. */
4245 /* 12 */ { STRING_COMMA_LEN ("VMS_GLOBAL") },
4246 /* 13 */ { STRING_COMMA_LEN ("VMS_OVERLAID") },
4247 /* 14 */ { STRING_COMMA_LEN ("VMS_SHARED") },
4248 /* 15 */ { STRING_COMMA_LEN ("VMS_VECTOR") },
4249 /* 16 */ { STRING_COMMA_LEN ("VMS_ALLOC_64BIT") },
4250 /* 17 */ { STRING_COMMA_LEN ("VMS_PROTECTED") },
4251 /* Generic. */
4252 /* 18 */ { STRING_COMMA_LEN ("EXCLUDE") },
4253 /* SPARC specific. */
4254 /* 19 */ { STRING_COMMA_LEN ("ORDERED") }
4255 };
4256
4257 if (do_section_details)
4258 {
4259 sprintf (buff, "[%*.*lx]: ",
4260 field_size, field_size, (unsigned long) sh_flags);
4261 p += field_size + 4;
4262 }
4263
4264 while (sh_flags)
4265 {
4266 bfd_vma flag;
4267
4268 flag = sh_flags & - sh_flags;
4269 sh_flags &= ~ flag;
4270
4271 if (do_section_details)
4272 {
4273 switch (flag)
4274 {
4275 case SHF_WRITE: sindex = 0; break;
4276 case SHF_ALLOC: sindex = 1; break;
4277 case SHF_EXECINSTR: sindex = 2; break;
4278 case SHF_MERGE: sindex = 3; break;
4279 case SHF_STRINGS: sindex = 4; break;
4280 case SHF_INFO_LINK: sindex = 5; break;
4281 case SHF_LINK_ORDER: sindex = 6; break;
4282 case SHF_OS_NONCONFORMING: sindex = 7; break;
4283 case SHF_GROUP: sindex = 8; break;
4284 case SHF_TLS: sindex = 9; break;
4285 case SHF_EXCLUDE: sindex = 18; break;
4286
4287 default:
4288 sindex = -1;
4289 switch (elf_header.e_machine)
4290 {
4291 case EM_IA_64:
4292 if (flag == SHF_IA_64_SHORT)
4293 sindex = 10;
4294 else if (flag == SHF_IA_64_NORECOV)
4295 sindex = 11;
4296 #ifdef BFD64
4297 else if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
4298 switch (flag)
4299 {
4300 case SHF_IA_64_VMS_GLOBAL: sindex = 12; break;
4301 case SHF_IA_64_VMS_OVERLAID: sindex = 13; break;
4302 case SHF_IA_64_VMS_SHARED: sindex = 14; break;
4303 case SHF_IA_64_VMS_VECTOR: sindex = 15; break;
4304 case SHF_IA_64_VMS_ALLOC_64BIT: sindex = 16; break;
4305 case SHF_IA_64_VMS_PROTECTED: sindex = 17; break;
4306 default: break;
4307 }
4308 #endif
4309 break;
4310
4311 case EM_386:
4312 case EM_486:
4313 case EM_X86_64:
4314 case EM_L1OM:
4315 case EM_K1OM:
4316 case EM_OLD_SPARCV9:
4317 case EM_SPARC32PLUS:
4318 case EM_SPARCV9:
4319 case EM_SPARC:
4320 if (flag == SHF_ORDERED)
4321 sindex = 19;
4322 break;
4323 default:
4324 break;
4325 }
4326 }
4327
4328 if (sindex != -1)
4329 {
4330 if (p != buff + field_size + 4)
4331 {
4332 if (size < (10 + 2))
4333 abort ();
4334 size -= 2;
4335 *p++ = ',';
4336 *p++ = ' ';
4337 }
4338
4339 size -= flags [sindex].len;
4340 p = stpcpy (p, flags [sindex].str);
4341 }
4342 else if (flag & SHF_MASKOS)
4343 os_flags |= flag;
4344 else if (flag & SHF_MASKPROC)
4345 proc_flags |= flag;
4346 else
4347 unknown_flags |= flag;
4348 }
4349 else
4350 {
4351 switch (flag)
4352 {
4353 case SHF_WRITE: *p = 'W'; break;
4354 case SHF_ALLOC: *p = 'A'; break;
4355 case SHF_EXECINSTR: *p = 'X'; break;
4356 case SHF_MERGE: *p = 'M'; break;
4357 case SHF_STRINGS: *p = 'S'; break;
4358 case SHF_INFO_LINK: *p = 'I'; break;
4359 case SHF_LINK_ORDER: *p = 'L'; break;
4360 case SHF_OS_NONCONFORMING: *p = 'O'; break;
4361 case SHF_GROUP: *p = 'G'; break;
4362 case SHF_TLS: *p = 'T'; break;
4363 case SHF_EXCLUDE: *p = 'E'; break;
4364
4365 default:
4366 if ((elf_header.e_machine == EM_X86_64
4367 || elf_header.e_machine == EM_L1OM
4368 || elf_header.e_machine == EM_K1OM)
4369 && flag == SHF_X86_64_LARGE)
4370 *p = 'l';
4371 else if (flag & SHF_MASKOS)
4372 {
4373 *p = 'o';
4374 sh_flags &= ~ SHF_MASKOS;
4375 }
4376 else if (flag & SHF_MASKPROC)
4377 {
4378 *p = 'p';
4379 sh_flags &= ~ SHF_MASKPROC;
4380 }
4381 else
4382 *p = 'x';
4383 break;
4384 }
4385 p++;
4386 }
4387 }
4388
4389 if (do_section_details)
4390 {
4391 if (os_flags)
4392 {
4393 size -= 5 + field_size;
4394 if (p != buff + field_size + 4)
4395 {
4396 if (size < (2 + 1))
4397 abort ();
4398 size -= 2;
4399 *p++ = ',';
4400 *p++ = ' ';
4401 }
4402 sprintf (p, "OS (%*.*lx)", field_size, field_size,
4403 (unsigned long) os_flags);
4404 p += 5 + field_size;
4405 }
4406 if (proc_flags)
4407 {
4408 size -= 7 + field_size;
4409 if (p != buff + field_size + 4)
4410 {
4411 if (size < (2 + 1))
4412 abort ();
4413 size -= 2;
4414 *p++ = ',';
4415 *p++ = ' ';
4416 }
4417 sprintf (p, "PROC (%*.*lx)", field_size, field_size,
4418 (unsigned long) proc_flags);
4419 p += 7 + field_size;
4420 }
4421 if (unknown_flags)
4422 {
4423 size -= 10 + field_size;
4424 if (p != buff + field_size + 4)
4425 {
4426 if (size < (2 + 1))
4427 abort ();
4428 size -= 2;
4429 *p++ = ',';
4430 *p++ = ' ';
4431 }
4432 sprintf (p, _("UNKNOWN (%*.*lx)"), field_size, field_size,
4433 (unsigned long) unknown_flags);
4434 p += 10 + field_size;
4435 }
4436 }
4437
4438 *p = '\0';
4439 return buff;
4440 }
4441
4442 static int
4443 process_section_headers (FILE * file)
4444 {
4445 Elf_Internal_Shdr * section;
4446 unsigned int i;
4447
4448 section_headers = NULL;
4449
4450 if (elf_header.e_shnum == 0)
4451 {
4452 /* PR binutils/12467. */
4453 if (elf_header.e_shoff != 0)
4454 warn (_("possibly corrupt ELF file header - it has a non-zero"
4455 " section header offset, but no section headers\n"));
4456 else if (do_sections)
4457 printf (_("\nThere are no sections in this file.\n"));
4458
4459 return 1;
4460 }
4461
4462 if (do_sections && !do_header)
4463 printf (_("There are %d section headers, starting at offset 0x%lx:\n"),
4464 elf_header.e_shnum, (unsigned long) elf_header.e_shoff);
4465
4466 if (is_32bit_elf)
4467 {
4468 if (! get_32bit_section_headers (file, elf_header.e_shnum))
4469 return 0;
4470 }
4471 else if (! get_64bit_section_headers (file, elf_header.e_shnum))
4472 return 0;
4473
4474 /* Read in the string table, so that we have names to display. */
4475 if (elf_header.e_shstrndx != SHN_UNDEF
4476 && elf_header.e_shstrndx < elf_header.e_shnum)
4477 {
4478 section = section_headers + elf_header.e_shstrndx;
4479
4480 if (section->sh_size != 0)
4481 {
4482 string_table = (char *) get_data (NULL, file, section->sh_offset,
4483 1, section->sh_size,
4484 _("string table"));
4485
4486 string_table_length = string_table != NULL ? section->sh_size : 0;
4487 }
4488 }
4489
4490 /* Scan the sections for the dynamic symbol table
4491 and dynamic string table and debug sections. */
4492 dynamic_symbols = NULL;
4493 dynamic_strings = NULL;
4494 dynamic_syminfo = NULL;
4495 symtab_shndx_hdr = NULL;
4496
4497 eh_addr_size = is_32bit_elf ? 4 : 8;
4498 switch (elf_header.e_machine)
4499 {
4500 case EM_MIPS:
4501 case EM_MIPS_RS3_LE:
4502 /* The 64-bit MIPS EABI uses a combination of 32-bit ELF and 64-bit
4503 FDE addresses. However, the ABI also has a semi-official ILP32
4504 variant for which the normal FDE address size rules apply.
4505
4506 GCC 4.0 marks EABI64 objects with a dummy .gcc_compiled_longXX
4507 section, where XX is the size of longs in bits. Unfortunately,
4508 earlier compilers provided no way of distinguishing ILP32 objects
4509 from LP64 objects, so if there's any doubt, we should assume that
4510 the official LP64 form is being used. */
4511 if ((elf_header.e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64
4512 && find_section (".gcc_compiled_long32") == NULL)
4513 eh_addr_size = 8;
4514 break;
4515
4516 case EM_H8_300:
4517 case EM_H8_300H:
4518 switch (elf_header.e_flags & EF_H8_MACH)
4519 {
4520 case E_H8_MACH_H8300:
4521 case E_H8_MACH_H8300HN:
4522 case E_H8_MACH_H8300SN:
4523 case E_H8_MACH_H8300SXN:
4524 eh_addr_size = 2;
4525 break;
4526 case E_H8_MACH_H8300H:
4527 case E_H8_MACH_H8300S:
4528 case E_H8_MACH_H8300SX:
4529 eh_addr_size = 4;
4530 break;
4531 }
4532 break;
4533
4534 case EM_M32C_OLD:
4535 case EM_M32C:
4536 switch (elf_header.e_flags & EF_M32C_CPU_MASK)
4537 {
4538 case EF_M32C_CPU_M16C:
4539 eh_addr_size = 2;
4540 break;
4541 }
4542 break;
4543 }
4544
4545 #define CHECK_ENTSIZE_VALUES(section, i, size32, size64) \
4546 do \
4547 { \
4548 size_t expected_entsize \
4549 = is_32bit_elf ? size32 : size64; \
4550 if (section->sh_entsize != expected_entsize) \
4551 error (_("Section %d has invalid sh_entsize %lx (expected %lx)\n"), \
4552 i, (unsigned long int) section->sh_entsize, \
4553 (unsigned long int) expected_entsize); \
4554 section->sh_entsize = expected_entsize; \
4555 } \
4556 while (0)
4557 #define CHECK_ENTSIZE(section, i, type) \
4558 CHECK_ENTSIZE_VALUES (section, i, sizeof (Elf32_External_##type), \
4559 sizeof (Elf64_External_##type))
4560
4561 for (i = 0, section = section_headers;
4562 i < elf_header.e_shnum;
4563 i++, section++)
4564 {
4565 char * name = SECTION_NAME (section);
4566
4567 if (section->sh_type == SHT_DYNSYM)
4568 {
4569 if (dynamic_symbols != NULL)
4570 {
4571 error (_("File contains multiple dynamic symbol tables\n"));
4572 continue;
4573 }
4574
4575 CHECK_ENTSIZE (section, i, Sym);
4576 dynamic_symbols = GET_ELF_SYMBOLS (file, section, & num_dynamic_syms);
4577 }
4578 else if (section->sh_type == SHT_STRTAB
4579 && streq (name, ".dynstr"))
4580 {
4581 if (dynamic_strings != NULL)
4582 {
4583 error (_("File contains multiple dynamic string tables\n"));
4584 continue;
4585 }
4586
4587 dynamic_strings = (char *) get_data (NULL, file, section->sh_offset,
4588 1, section->sh_size,
4589 _("dynamic strings"));
4590 dynamic_strings_length = dynamic_strings == NULL ? 0 : section->sh_size;
4591 }
4592 else if (section->sh_type == SHT_SYMTAB_SHNDX)
4593 {
4594 if (symtab_shndx_hdr != NULL)
4595 {
4596 error (_("File contains multiple symtab shndx tables\n"));
4597 continue;
4598 }
4599 symtab_shndx_hdr = section;
4600 }
4601 else if (section->sh_type == SHT_SYMTAB)
4602 CHECK_ENTSIZE (section, i, Sym);
4603 else if (section->sh_type == SHT_GROUP)
4604 CHECK_ENTSIZE_VALUES (section, i, GRP_ENTRY_SIZE, GRP_ENTRY_SIZE);
4605 else if (section->sh_type == SHT_REL)
4606 CHECK_ENTSIZE (section, i, Rel);
4607 else if (section->sh_type == SHT_RELA)
4608 CHECK_ENTSIZE (section, i, Rela);
4609 else if ((do_debugging || do_debug_info || do_debug_abbrevs
4610 || do_debug_lines || do_debug_pubnames || do_debug_pubtypes
4611 || do_debug_aranges || do_debug_frames || do_debug_macinfo
4612 || do_debug_str || do_debug_loc || do_debug_ranges)
4613 && (const_strneq (name, ".debug_")
4614 || const_strneq (name, ".zdebug_")))
4615 {
4616 if (name[1] == 'z')
4617 name += sizeof (".zdebug_") - 1;
4618 else
4619 name += sizeof (".debug_") - 1;
4620
4621 if (do_debugging
4622 || (do_debug_info && streq (name, "info"))
4623 || (do_debug_info && streq (name, "types"))
4624 || (do_debug_abbrevs && streq (name, "abbrev"))
4625 || (do_debug_lines && streq (name, "line"))
4626 || (do_debug_pubnames && streq (name, "pubnames"))
4627 || (do_debug_pubtypes && streq (name, "pubtypes"))
4628 || (do_debug_aranges && streq (name, "aranges"))
4629 || (do_debug_ranges && streq (name, "ranges"))
4630 || (do_debug_frames && streq (name, "frame"))
4631 || (do_debug_macinfo && streq (name, "macinfo"))
4632 || (do_debug_macinfo && streq (name, "macro"))
4633 || (do_debug_str && streq (name, "str"))
4634 || (do_debug_loc && streq (name, "loc"))
4635 )
4636 request_dump_bynumber (i, DEBUG_DUMP);
4637 }
4638 /* Linkonce section to be combined with .debug_info at link time. */
4639 else if ((do_debugging || do_debug_info)
4640 && const_strneq (name, ".gnu.linkonce.wi."))
4641 request_dump_bynumber (i, DEBUG_DUMP);
4642 else if (do_debug_frames && streq (name, ".eh_frame"))
4643 request_dump_bynumber (i, DEBUG_DUMP);
4644 else if (do_gdb_index && streq (name, ".gdb_index"))
4645 request_dump_bynumber (i, DEBUG_DUMP);
4646 /* Trace sections for Itanium VMS. */
4647 else if ((do_debugging || do_trace_info || do_trace_abbrevs
4648 || do_trace_aranges)
4649 && const_strneq (name, ".trace_"))
4650 {
4651 name += sizeof (".trace_") - 1;
4652
4653 if (do_debugging
4654 || (do_trace_info && streq (name, "info"))
4655 || (do_trace_abbrevs && streq (name, "abbrev"))
4656 || (do_trace_aranges && streq (name, "aranges"))
4657 )
4658 request_dump_bynumber (i, DEBUG_DUMP);
4659 }
4660
4661 }
4662
4663 if (! do_sections)
4664 return 1;
4665
4666 if (elf_header.e_shnum > 1)
4667 printf (_("\nSection Headers:\n"));
4668 else
4669 printf (_("\nSection Header:\n"));
4670
4671 if (is_32bit_elf)
4672 {
4673 if (do_section_details)
4674 {
4675 printf (_(" [Nr] Name\n"));
4676 printf (_(" Type Addr Off Size ES Lk Inf Al\n"));
4677 }
4678 else
4679 printf
4680 (_(" [Nr] Name Type Addr Off Size ES Flg Lk Inf Al\n"));
4681 }
4682 else if (do_wide)
4683 {
4684 if (do_section_details)
4685 {
4686 printf (_(" [Nr] Name\n"));
4687 printf (_(" Type Address Off Size ES Lk Inf Al\n"));
4688 }
4689 else
4690 printf
4691 (_(" [Nr] Name Type Address Off Size ES Flg Lk Inf Al\n"));
4692 }
4693 else
4694 {
4695 if (do_section_details)
4696 {
4697 printf (_(" [Nr] Name\n"));
4698 printf (_(" Type Address Offset Link\n"));
4699 printf (_(" Size EntSize Info Align\n"));
4700 }
4701 else
4702 {
4703 printf (_(" [Nr] Name Type Address Offset\n"));
4704 printf (_(" Size EntSize Flags Link Info Align\n"));
4705 }
4706 }
4707
4708 if (do_section_details)
4709 printf (_(" Flags\n"));
4710
4711 for (i = 0, section = section_headers;
4712 i < elf_header.e_shnum;
4713 i++, section++)
4714 {
4715 if (do_section_details)
4716 {
4717 printf (" [%2u] %s\n",
4718 i,
4719 SECTION_NAME (section));
4720 if (is_32bit_elf || do_wide)
4721 printf (" %-15.15s ",
4722 get_section_type_name (section->sh_type));
4723 }
4724 else
4725 printf ((do_wide ? " [%2u] %-17s %-15s "
4726 : " [%2u] %-17.17s %-15.15s "),
4727 i,
4728 SECTION_NAME (section),
4729 get_section_type_name (section->sh_type));
4730
4731 if (is_32bit_elf)
4732 {
4733 const char * link_too_big = NULL;
4734
4735 print_vma (section->sh_addr, LONG_HEX);
4736
4737 printf ( " %6.6lx %6.6lx %2.2lx",
4738 (unsigned long) section->sh_offset,
4739 (unsigned long) section->sh_size,
4740 (unsigned long) section->sh_entsize);
4741
4742 if (do_section_details)
4743 fputs (" ", stdout);
4744 else
4745 printf (" %3s ", get_elf_section_flags (section->sh_flags));
4746
4747 if (section->sh_link >= elf_header.e_shnum)
4748 {
4749 link_too_big = "";
4750 /* The sh_link value is out of range. Normally this indicates
4751 an error but it can have special values in Solaris binaries. */
4752 switch (elf_header.e_machine)
4753 {
4754 case EM_386:
4755 case EM_486:
4756 case EM_X86_64:
4757 case EM_L1OM:
4758 case EM_K1OM:
4759 case EM_OLD_SPARCV9:
4760 case EM_SPARC32PLUS:
4761 case EM_SPARCV9:
4762 case EM_SPARC:
4763 if (section->sh_link == (SHN_BEFORE & 0xffff))
4764 link_too_big = "BEFORE";
4765 else if (section->sh_link == (SHN_AFTER & 0xffff))
4766 link_too_big = "AFTER";
4767 break;
4768 default:
4769 break;
4770 }
4771 }
4772
4773 if (do_section_details)
4774 {
4775 if (link_too_big != NULL && * link_too_big)
4776 printf ("<%s> ", link_too_big);
4777 else
4778 printf ("%2u ", section->sh_link);
4779 printf ("%3u %2lu\n", section->sh_info,
4780 (unsigned long) section->sh_addralign);
4781 }
4782 else
4783 printf ("%2u %3u %2lu\n",
4784 section->sh_link,
4785 section->sh_info,
4786 (unsigned long) section->sh_addralign);
4787
4788 if (link_too_big && ! * link_too_big)
4789 warn (_("section %u: sh_link value of %u is larger than the number of sections\n"),
4790 i, section->sh_link);
4791 }
4792 else if (do_wide)
4793 {
4794 print_vma (section->sh_addr, LONG_HEX);
4795
4796 if ((long) section->sh_offset == section->sh_offset)
4797 printf (" %6.6lx", (unsigned long) section->sh_offset);
4798 else
4799 {
4800 putchar (' ');
4801 print_vma (section->sh_offset, LONG_HEX);
4802 }
4803
4804 if ((unsigned long) section->sh_size == section->sh_size)
4805 printf (" %6.6lx", (unsigned long) section->sh_size);
4806 else
4807 {
4808 putchar (' ');
4809 print_vma (section->sh_size, LONG_HEX);
4810 }
4811
4812 if ((unsigned long) section->sh_entsize == section->sh_entsize)
4813 printf (" %2.2lx", (unsigned long) section->sh_entsize);
4814 else
4815 {
4816 putchar (' ');
4817 print_vma (section->sh_entsize, LONG_HEX);
4818 }
4819
4820 if (do_section_details)
4821 fputs (" ", stdout);
4822 else
4823 printf (" %3s ", get_elf_section_flags (section->sh_flags));
4824
4825 printf ("%2u %3u ", section->sh_link, section->sh_info);
4826
4827 if ((unsigned long) section->sh_addralign == section->sh_addralign)
4828 printf ("%2lu\n", (unsigned long) section->sh_addralign);
4829 else
4830 {
4831 print_vma (section->sh_addralign, DEC);
4832 putchar ('\n');
4833 }
4834 }
4835 else if (do_section_details)
4836 {
4837 printf (" %-15.15s ",
4838 get_section_type_name (section->sh_type));
4839 print_vma (section->sh_addr, LONG_HEX);
4840 if ((long) section->sh_offset == section->sh_offset)
4841 printf (" %16.16lx", (unsigned long) section->sh_offset);
4842 else
4843 {
4844 printf (" ");
4845 print_vma (section->sh_offset, LONG_HEX);
4846 }
4847 printf (" %u\n ", section->sh_link);
4848 print_vma (section->sh_size, LONG_HEX);
4849 putchar (' ');
4850 print_vma (section->sh_entsize, LONG_HEX);
4851
4852 printf (" %-16u %lu\n",
4853 section->sh_info,
4854 (unsigned long) section->sh_addralign);
4855 }
4856 else
4857 {
4858 putchar (' ');
4859 print_vma (section->sh_addr, LONG_HEX);
4860 if ((long) section->sh_offset == section->sh_offset)
4861 printf (" %8.8lx", (unsigned long) section->sh_offset);
4862 else
4863 {
4864 printf (" ");
4865 print_vma (section->sh_offset, LONG_HEX);
4866 }
4867 printf ("\n ");
4868 print_vma (section->sh_size, LONG_HEX);
4869 printf (" ");
4870 print_vma (section->sh_entsize, LONG_HEX);
4871
4872 printf (" %3s ", get_elf_section_flags (section->sh_flags));
4873
4874 printf (" %2u %3u %lu\n",
4875 section->sh_link,
4876 section->sh_info,
4877 (unsigned long) section->sh_addralign);
4878 }
4879
4880 if (do_section_details)
4881 printf (" %s\n", get_elf_section_flags (section->sh_flags));
4882 }
4883
4884 if (!do_section_details)
4885 {
4886 if (elf_header.e_machine == EM_X86_64
4887 || elf_header.e_machine == EM_L1OM
4888 || elf_header.e_machine == EM_K1OM)
4889 printf (_("Key to Flags:\n\
4890 W (write), A (alloc), X (execute), M (merge), S (strings), l (large)\n\
4891 I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)\n\
4892 O (extra OS processing required) o (OS specific), p (processor specific)\n"));
4893 else
4894 printf (_("Key to Flags:\n\
4895 W (write), A (alloc), X (execute), M (merge), S (strings)\n\
4896 I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)\n\
4897 O (extra OS processing required) o (OS specific), p (processor specific)\n"));
4898 }
4899
4900 return 1;
4901 }
4902
4903 static const char *
4904 get_group_flags (unsigned int flags)
4905 {
4906 static char buff[32];
4907 switch (flags)
4908 {
4909 case 0:
4910 return "";
4911
4912 case GRP_COMDAT:
4913 return "COMDAT ";
4914
4915 default:
4916 snprintf (buff, sizeof (buff), _("[<unknown>: 0x%x] "), flags);
4917 break;
4918 }
4919 return buff;
4920 }
4921
4922 static int
4923 process_section_groups (FILE * file)
4924 {
4925 Elf_Internal_Shdr * section;
4926 unsigned int i;
4927 struct group * group;
4928 Elf_Internal_Shdr * symtab_sec;
4929 Elf_Internal_Shdr * strtab_sec;
4930 Elf_Internal_Sym * symtab;
4931 unsigned long num_syms;
4932 char * strtab;
4933 size_t strtab_size;
4934
4935 /* Don't process section groups unless needed. */
4936 if (!do_unwind && !do_section_groups)
4937 return 1;
4938
4939 if (elf_header.e_shnum == 0)
4940 {
4941 if (do_section_groups)
4942 printf (_("\nThere are no sections to group in this file.\n"));
4943
4944 return 1;
4945 }
4946
4947 if (section_headers == NULL)
4948 {
4949 error (_("Section headers are not available!\n"));
4950 abort ();
4951 }
4952
4953 section_headers_groups = (struct group **) calloc (elf_header.e_shnum,
4954 sizeof (struct group *));
4955
4956 if (section_headers_groups == NULL)
4957 {
4958 error (_("Out of memory\n"));
4959 return 0;
4960 }
4961
4962 /* Scan the sections for the group section. */
4963 group_count = 0;
4964 for (i = 0, section = section_headers;
4965 i < elf_header.e_shnum;
4966 i++, section++)
4967 if (section->sh_type == SHT_GROUP)
4968 group_count++;
4969
4970 if (group_count == 0)
4971 {
4972 if (do_section_groups)
4973 printf (_("\nThere are no section groups in this file.\n"));
4974
4975 return 1;
4976 }
4977
4978 section_groups = (struct group *) calloc (group_count, sizeof (struct group));
4979
4980 if (section_groups == NULL)
4981 {
4982 error (_("Out of memory\n"));
4983 return 0;
4984 }
4985
4986 symtab_sec = NULL;
4987 strtab_sec = NULL;
4988 symtab = NULL;
4989 num_syms = 0;
4990 strtab = NULL;
4991 strtab_size = 0;
4992 for (i = 0, section = section_headers, group = section_groups;
4993 i < elf_header.e_shnum;
4994 i++, section++)
4995 {
4996 if (section->sh_type == SHT_GROUP)
4997 {
4998 char * name = SECTION_NAME (section);
4999 char * group_name;
5000 unsigned char * start;
5001 unsigned char * indices;
5002 unsigned int entry, j, size;
5003 Elf_Internal_Shdr * sec;
5004 Elf_Internal_Sym * sym;
5005
5006 /* Get the symbol table. */
5007 if (section->sh_link >= elf_header.e_shnum
5008 || ((sec = section_headers + section->sh_link)->sh_type
5009 != SHT_SYMTAB))
5010 {
5011 error (_("Bad sh_link in group section `%s'\n"), name);
5012 continue;
5013 }
5014
5015 if (symtab_sec != sec)
5016 {
5017 symtab_sec = sec;
5018 if (symtab)
5019 free (symtab);
5020 symtab = GET_ELF_SYMBOLS (file, symtab_sec, & num_syms);
5021 }
5022
5023 if (symtab == NULL)
5024 {
5025 error (_("Corrupt header in group section `%s'\n"), name);
5026 continue;
5027 }
5028
5029 if (section->sh_info >= num_syms)
5030 {
5031 error (_("Bad sh_info in group section `%s'\n"), name);
5032 continue;
5033 }
5034
5035 sym = symtab + section->sh_info;
5036
5037 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5038 {
5039 if (sym->st_shndx == 0
5040 || sym->st_shndx >= elf_header.e_shnum)
5041 {
5042 error (_("Bad sh_info in group section `%s'\n"), name);
5043 continue;
5044 }
5045
5046 group_name = SECTION_NAME (section_headers + sym->st_shndx);
5047 strtab_sec = NULL;
5048 if (strtab)
5049 free (strtab);
5050 strtab = NULL;
5051 strtab_size = 0;
5052 }
5053 else
5054 {
5055 /* Get the string table. */
5056 if (symtab_sec->sh_link >= elf_header.e_shnum)
5057 {
5058 strtab_sec = NULL;
5059 if (strtab)
5060 free (strtab);
5061 strtab = NULL;
5062 strtab_size = 0;
5063 }
5064 else if (strtab_sec
5065 != (sec = section_headers + symtab_sec->sh_link))
5066 {
5067 strtab_sec = sec;
5068 if (strtab)
5069 free (strtab);
5070 strtab = (char *) get_data (NULL, file, strtab_sec->sh_offset,
5071 1, strtab_sec->sh_size,
5072 _("string table"));
5073 strtab_size = strtab != NULL ? strtab_sec->sh_size : 0;
5074 }
5075 group_name = sym->st_name < strtab_size
5076 ? strtab + sym->st_name : _("<corrupt>");
5077 }
5078
5079 start = (unsigned char *) get_data (NULL, file, section->sh_offset,
5080 1, section->sh_size,
5081 _("section data"));
5082 if (start == NULL)
5083 continue;
5084
5085 indices = start;
5086 size = (section->sh_size / section->sh_entsize) - 1;
5087 entry = byte_get (indices, 4);
5088 indices += 4;
5089
5090 if (do_section_groups)
5091 {
5092 printf (_("\n%sgroup section [%5u] `%s' [%s] contains %u sections:\n"),
5093 get_group_flags (entry), i, name, group_name, size);
5094
5095 printf (_(" [Index] Name\n"));
5096 }
5097
5098 group->group_index = i;
5099
5100 for (j = 0; j < size; j++)
5101 {
5102 struct group_list * g;
5103
5104 entry = byte_get (indices, 4);
5105 indices += 4;
5106
5107 if (entry >= elf_header.e_shnum)
5108 {
5109 error (_("section [%5u] in group section [%5u] > maximum section [%5u]\n"),
5110 entry, i, elf_header.e_shnum - 1);
5111 continue;
5112 }
5113
5114 if (section_headers_groups [entry] != NULL)
5115 {
5116 if (entry)
5117 {
5118 error (_("section [%5u] in group section [%5u] already in group section [%5u]\n"),
5119 entry, i,
5120 section_headers_groups [entry]->group_index);
5121 continue;
5122 }
5123 else
5124 {
5125 /* Intel C/C++ compiler may put section 0 in a
5126 section group. We just warn it the first time
5127 and ignore it afterwards. */
5128 static int warned = 0;
5129 if (!warned)
5130 {
5131 error (_("section 0 in group section [%5u]\n"),
5132 section_headers_groups [entry]->group_index);
5133 warned++;
5134 }
5135 }
5136 }
5137
5138 section_headers_groups [entry] = group;
5139
5140 if (do_section_groups)
5141 {
5142 sec = section_headers + entry;
5143 printf (" [%5u] %s\n", entry, SECTION_NAME (sec));
5144 }
5145
5146 g = (struct group_list *) xmalloc (sizeof (struct group_list));
5147 g->section_index = entry;
5148 g->next = group->root;
5149 group->root = g;
5150 }
5151
5152 if (start)
5153 free (start);
5154
5155 group++;
5156 }
5157 }
5158
5159 if (symtab)
5160 free (symtab);
5161 if (strtab)
5162 free (strtab);
5163 return 1;
5164 }
5165
5166 /* Data used to display dynamic fixups. */
5167
5168 struct ia64_vms_dynfixup
5169 {
5170 bfd_vma needed_ident; /* Library ident number. */
5171 bfd_vma needed; /* Index in the dstrtab of the library name. */
5172 bfd_vma fixup_needed; /* Index of the library. */
5173 bfd_vma fixup_rela_cnt; /* Number of fixups. */
5174 bfd_vma fixup_rela_off; /* Fixups offset in the dynamic segment. */
5175 };
5176
5177 /* Data used to display dynamic relocations. */
5178
5179 struct ia64_vms_dynimgrela
5180 {
5181 bfd_vma img_rela_cnt; /* Number of relocations. */
5182 bfd_vma img_rela_off; /* Reloc offset in the dynamic segment. */
5183 };
5184
5185 /* Display IA-64 OpenVMS dynamic fixups (used to dynamically link a shared
5186 library). */
5187
5188 static void
5189 dump_ia64_vms_dynamic_fixups (FILE *file, struct ia64_vms_dynfixup *fixup,
5190 const char *strtab, unsigned int strtab_sz)
5191 {
5192 Elf64_External_VMS_IMAGE_FIXUP *imfs;
5193 long i;
5194 const char *lib_name;
5195
5196 imfs = get_data (NULL, file, dynamic_addr + fixup->fixup_rela_off,
5197 1, fixup->fixup_rela_cnt * sizeof (*imfs),
5198 _("dynamic section image fixups"));
5199 if (!imfs)
5200 return;
5201
5202 if (fixup->needed < strtab_sz)
5203 lib_name = strtab + fixup->needed;
5204 else
5205 {
5206 warn ("corrupt library name index of 0x%lx found in dynamic entry",
5207 (unsigned long) fixup->needed);
5208 lib_name = "???";
5209 }
5210 printf (_("\nImage fixups for needed library #%d: %s - ident: %lx\n"),
5211 (int) fixup->fixup_needed, lib_name, (long) fixup->needed_ident);
5212 printf
5213 (_("Seg Offset Type SymVec DataType\n"));
5214
5215 for (i = 0; i < (long) fixup->fixup_rela_cnt; i++)
5216 {
5217 unsigned int type;
5218 const char *rtype;
5219
5220 printf ("%3u ", (unsigned) BYTE_GET (imfs [i].fixup_seg));
5221 printf_vma ((bfd_vma) BYTE_GET (imfs [i].fixup_offset));
5222 type = BYTE_GET (imfs [i].type);
5223 rtype = elf_ia64_reloc_type (type);
5224 if (rtype == NULL)
5225 printf (" 0x%08x ", type);
5226 else
5227 printf (" %-32s ", rtype);
5228 printf ("%6u ", (unsigned) BYTE_GET (imfs [i].symvec_index));
5229 printf ("0x%08x\n", (unsigned) BYTE_GET (imfs [i].data_type));
5230 }
5231
5232 free (imfs);
5233 }
5234
5235 /* Display IA-64 OpenVMS dynamic relocations (used to relocate an image). */
5236
5237 static void
5238 dump_ia64_vms_dynamic_relocs (FILE *file, struct ia64_vms_dynimgrela *imgrela)
5239 {
5240 Elf64_External_VMS_IMAGE_RELA *imrs;
5241 long i;
5242
5243 imrs = get_data (NULL, file, dynamic_addr + imgrela->img_rela_off,
5244 1, imgrela->img_rela_cnt * sizeof (*imrs),
5245 _("dynamic section image relas"));
5246 if (!imrs)
5247 return;
5248
5249 printf (_("\nImage relocs\n"));
5250 printf
5251 (_("Seg Offset Type Addend Seg Sym Off\n"));
5252
5253 for (i = 0; i < (long) imgrela->img_rela_cnt; i++)
5254 {
5255 unsigned int type;
5256 const char *rtype;
5257
5258 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].rela_seg));
5259 printf ("%08" BFD_VMA_FMT "x ",
5260 (bfd_vma) BYTE_GET (imrs [i].rela_offset));
5261 type = BYTE_GET (imrs [i].type);
5262 rtype = elf_ia64_reloc_type (type);
5263 if (rtype == NULL)
5264 printf ("0x%08x ", type);
5265 else
5266 printf ("%-31s ", rtype);
5267 print_vma (BYTE_GET (imrs [i].addend), FULL_HEX);
5268 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].sym_seg));
5269 printf ("%08" BFD_VMA_FMT "x\n",
5270 (bfd_vma) BYTE_GET (imrs [i].sym_offset));
5271 }
5272
5273 free (imrs);
5274 }
5275
5276 /* Display IA-64 OpenVMS dynamic relocations and fixups. */
5277
5278 static int
5279 process_ia64_vms_dynamic_relocs (FILE *file)
5280 {
5281 struct ia64_vms_dynfixup fixup;
5282 struct ia64_vms_dynimgrela imgrela;
5283 Elf_Internal_Dyn *entry;
5284 int res = 0;
5285 bfd_vma strtab_off = 0;
5286 bfd_vma strtab_sz = 0;
5287 char *strtab = NULL;
5288
5289 memset (&fixup, 0, sizeof (fixup));
5290 memset (&imgrela, 0, sizeof (imgrela));
5291
5292 /* Note: the order of the entries is specified by the OpenVMS specs. */
5293 for (entry = dynamic_section;
5294 entry < dynamic_section + dynamic_nent;
5295 entry++)
5296 {
5297 switch (entry->d_tag)
5298 {
5299 case DT_IA_64_VMS_STRTAB_OFFSET:
5300 strtab_off = entry->d_un.d_val;
5301 break;
5302 case DT_STRSZ:
5303 strtab_sz = entry->d_un.d_val;
5304 if (strtab == NULL)
5305 strtab = get_data (NULL, file, dynamic_addr + strtab_off,
5306 1, strtab_sz, _("dynamic string section"));
5307 break;
5308
5309 case DT_IA_64_VMS_NEEDED_IDENT:
5310 fixup.needed_ident = entry->d_un.d_val;
5311 break;
5312 case DT_NEEDED:
5313 fixup.needed = entry->d_un.d_val;
5314 break;
5315 case DT_IA_64_VMS_FIXUP_NEEDED:
5316 fixup.fixup_needed = entry->d_un.d_val;
5317 break;
5318 case DT_IA_64_VMS_FIXUP_RELA_CNT:
5319 fixup.fixup_rela_cnt = entry->d_un.d_val;
5320 break;
5321 case DT_IA_64_VMS_FIXUP_RELA_OFF:
5322 fixup.fixup_rela_off = entry->d_un.d_val;
5323 res++;
5324 dump_ia64_vms_dynamic_fixups (file, &fixup, strtab, strtab_sz);
5325 break;
5326
5327 case DT_IA_64_VMS_IMG_RELA_CNT:
5328 imgrela.img_rela_cnt = entry->d_un.d_val;
5329 break;
5330 case DT_IA_64_VMS_IMG_RELA_OFF:
5331 imgrela.img_rela_off = entry->d_un.d_val;
5332 res++;
5333 dump_ia64_vms_dynamic_relocs (file, &imgrela);
5334 break;
5335
5336 default:
5337 break;
5338 }
5339 }
5340
5341 if (strtab != NULL)
5342 free (strtab);
5343
5344 return res;
5345 }
5346
5347 static struct
5348 {
5349 const char * name;
5350 int reloc;
5351 int size;
5352 int rela;
5353 } dynamic_relocations [] =
5354 {
5355 { "REL", DT_REL, DT_RELSZ, FALSE },
5356 { "RELA", DT_RELA, DT_RELASZ, TRUE },
5357 { "PLT", DT_JMPREL, DT_PLTRELSZ, UNKNOWN }
5358 };
5359
5360 /* Process the reloc section. */
5361
5362 static int
5363 process_relocs (FILE * file)
5364 {
5365 unsigned long rel_size;
5366 unsigned long rel_offset;
5367
5368
5369 if (!do_reloc)
5370 return 1;
5371
5372 if (do_using_dynamic)
5373 {
5374 int is_rela;
5375 const char * name;
5376 int has_dynamic_reloc;
5377 unsigned int i;
5378
5379 has_dynamic_reloc = 0;
5380
5381 for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
5382 {
5383 is_rela = dynamic_relocations [i].rela;
5384 name = dynamic_relocations [i].name;
5385 rel_size = dynamic_info [dynamic_relocations [i].size];
5386 rel_offset = dynamic_info [dynamic_relocations [i].reloc];
5387
5388 has_dynamic_reloc |= rel_size;
5389
5390 if (is_rela == UNKNOWN)
5391 {
5392 if (dynamic_relocations [i].reloc == DT_JMPREL)
5393 switch (dynamic_info[DT_PLTREL])
5394 {
5395 case DT_REL:
5396 is_rela = FALSE;
5397 break;
5398 case DT_RELA:
5399 is_rela = TRUE;
5400 break;
5401 }
5402 }
5403
5404 if (rel_size)
5405 {
5406 printf
5407 (_("\n'%s' relocation section at offset 0x%lx contains %ld bytes:\n"),
5408 name, rel_offset, rel_size);
5409
5410 dump_relocations (file,
5411 offset_from_vma (file, rel_offset, rel_size),
5412 rel_size,
5413 dynamic_symbols, num_dynamic_syms,
5414 dynamic_strings, dynamic_strings_length, is_rela);
5415 }
5416 }
5417
5418 if (is_ia64_vms ())
5419 has_dynamic_reloc |= process_ia64_vms_dynamic_relocs (file);
5420
5421 if (! has_dynamic_reloc)
5422 printf (_("\nThere are no dynamic relocations in this file.\n"));
5423 }
5424 else
5425 {
5426 Elf_Internal_Shdr * section;
5427 unsigned long i;
5428 int found = 0;
5429
5430 for (i = 0, section = section_headers;
5431 i < elf_header.e_shnum;
5432 i++, section++)
5433 {
5434 if ( section->sh_type != SHT_RELA
5435 && section->sh_type != SHT_REL)
5436 continue;
5437
5438 rel_offset = section->sh_offset;
5439 rel_size = section->sh_size;
5440
5441 if (rel_size)
5442 {
5443 Elf_Internal_Shdr * strsec;
5444 int is_rela;
5445
5446 printf (_("\nRelocation section "));
5447
5448 if (string_table == NULL)
5449 printf ("%d", section->sh_name);
5450 else
5451 printf (_("'%s'"), SECTION_NAME (section));
5452
5453 printf (_(" at offset 0x%lx contains %lu entries:\n"),
5454 rel_offset, (unsigned long) (rel_size / section->sh_entsize));
5455
5456 is_rela = section->sh_type == SHT_RELA;
5457
5458 if (section->sh_link != 0
5459 && section->sh_link < elf_header.e_shnum)
5460 {
5461 Elf_Internal_Shdr * symsec;
5462 Elf_Internal_Sym * symtab;
5463 unsigned long nsyms;
5464 unsigned long strtablen = 0;
5465 char * strtab = NULL;
5466
5467 symsec = section_headers + section->sh_link;
5468 if (symsec->sh_type != SHT_SYMTAB
5469 && symsec->sh_type != SHT_DYNSYM)
5470 continue;
5471
5472 symtab = GET_ELF_SYMBOLS (file, symsec, & nsyms);
5473
5474 if (symtab == NULL)
5475 continue;
5476
5477 if (symsec->sh_link != 0
5478 && symsec->sh_link < elf_header.e_shnum)
5479 {
5480 strsec = section_headers + symsec->sh_link;
5481
5482 strtab = (char *) get_data (NULL, file, strsec->sh_offset,
5483 1, strsec->sh_size,
5484 _("string table"));
5485 strtablen = strtab == NULL ? 0 : strsec->sh_size;
5486 }
5487
5488 dump_relocations (file, rel_offset, rel_size,
5489 symtab, nsyms, strtab, strtablen, is_rela);
5490 if (strtab)
5491 free (strtab);
5492 free (symtab);
5493 }
5494 else
5495 dump_relocations (file, rel_offset, rel_size,
5496 NULL, 0, NULL, 0, is_rela);
5497
5498 found = 1;
5499 }
5500 }
5501
5502 if (! found)
5503 printf (_("\nThere are no relocations in this file.\n"));
5504 }
5505
5506 return 1;
5507 }
5508
5509 /* Process the unwind section. */
5510
5511 #include "unwind-ia64.h"
5512
5513 /* An absolute address consists of a section and an offset. If the
5514 section is NULL, the offset itself is the address, otherwise, the
5515 address equals to LOAD_ADDRESS(section) + offset. */
5516
5517 struct absaddr
5518 {
5519 unsigned short section;
5520 bfd_vma offset;
5521 };
5522
5523 #define ABSADDR(a) \
5524 ((a).section \
5525 ? section_headers [(a).section].sh_addr + (a).offset \
5526 : (a).offset)
5527
5528 struct ia64_unw_table_entry
5529 {
5530 struct absaddr start;
5531 struct absaddr end;
5532 struct absaddr info;
5533 };
5534
5535 struct ia64_unw_aux_info
5536 {
5537
5538 struct ia64_unw_table_entry *table; /* Unwind table. */
5539 unsigned long table_len; /* Length of unwind table. */
5540 unsigned char * info; /* Unwind info. */
5541 unsigned long info_size; /* Size of unwind info. */
5542 bfd_vma info_addr; /* starting address of unwind info. */
5543 bfd_vma seg_base; /* Starting address of segment. */
5544 Elf_Internal_Sym * symtab; /* The symbol table. */
5545 unsigned long nsyms; /* Number of symbols. */
5546 char * strtab; /* The string table. */
5547 unsigned long strtab_size; /* Size of string table. */
5548 };
5549
5550 static void
5551 find_symbol_for_address (Elf_Internal_Sym * symtab,
5552 unsigned long nsyms,
5553 const char * strtab,
5554 unsigned long strtab_size,
5555 struct absaddr addr,
5556 const char ** symname,
5557 bfd_vma * offset)
5558 {
5559 bfd_vma dist = 0x100000;
5560 Elf_Internal_Sym * sym;
5561 Elf_Internal_Sym * best = NULL;
5562 unsigned long i;
5563
5564 REMOVE_ARCH_BITS (addr.offset);
5565
5566 for (i = 0, sym = symtab; i < nsyms; ++i, ++sym)
5567 {
5568 bfd_vma value = sym->st_value;
5569
5570 REMOVE_ARCH_BITS (value);
5571
5572 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC
5573 && sym->st_name != 0
5574 && (addr.section == SHN_UNDEF || addr.section == sym->st_shndx)
5575 && addr.offset >= value
5576 && addr.offset - value < dist)
5577 {
5578 best = sym;
5579 dist = addr.offset - value;
5580 if (!dist)
5581 break;
5582 }
5583 }
5584 if (best)
5585 {
5586 *symname = (best->st_name >= strtab_size
5587 ? _("<corrupt>") : strtab + best->st_name);
5588 *offset = dist;
5589 return;
5590 }
5591 *symname = NULL;
5592 *offset = addr.offset;
5593 }
5594
5595 static void
5596 dump_ia64_unwind (struct ia64_unw_aux_info * aux)
5597 {
5598 struct ia64_unw_table_entry * tp;
5599 int in_body;
5600
5601 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
5602 {
5603 bfd_vma stamp;
5604 bfd_vma offset;
5605 const unsigned char * dp;
5606 const unsigned char * head;
5607 const char * procname;
5608
5609 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
5610 aux->strtab_size, tp->start, &procname, &offset);
5611
5612 fputs ("\n<", stdout);
5613
5614 if (procname)
5615 {
5616 fputs (procname, stdout);
5617
5618 if (offset)
5619 printf ("+%lx", (unsigned long) offset);
5620 }
5621
5622 fputs (">: [", stdout);
5623 print_vma (tp->start.offset, PREFIX_HEX);
5624 fputc ('-', stdout);
5625 print_vma (tp->end.offset, PREFIX_HEX);
5626 printf ("], info at +0x%lx\n",
5627 (unsigned long) (tp->info.offset - aux->seg_base));
5628
5629 head = aux->info + (ABSADDR (tp->info) - aux->info_addr);
5630 stamp = byte_get ((unsigned char *) head, sizeof (stamp));
5631
5632 printf (" v%u, flags=0x%lx (%s%s), len=%lu bytes\n",
5633 (unsigned) UNW_VER (stamp),
5634 (unsigned long) ((stamp & UNW_FLAG_MASK) >> 32),
5635 UNW_FLAG_EHANDLER (stamp) ? " ehandler" : "",
5636 UNW_FLAG_UHANDLER (stamp) ? " uhandler" : "",
5637 (unsigned long) (eh_addr_size * UNW_LENGTH (stamp)));
5638
5639 if (UNW_VER (stamp) != 1)
5640 {
5641 printf (_("\tUnknown version.\n"));
5642 continue;
5643 }
5644
5645 in_body = 0;
5646 for (dp = head + 8; dp < head + 8 + eh_addr_size * UNW_LENGTH (stamp);)
5647 dp = unw_decode (dp, in_body, & in_body);
5648 }
5649 }
5650
5651 static int
5652 slurp_ia64_unwind_table (FILE * file,
5653 struct ia64_unw_aux_info * aux,
5654 Elf_Internal_Shdr * sec)
5655 {
5656 unsigned long size, nrelas, i;
5657 Elf_Internal_Phdr * seg;
5658 struct ia64_unw_table_entry * tep;
5659 Elf_Internal_Shdr * relsec;
5660 Elf_Internal_Rela * rela;
5661 Elf_Internal_Rela * rp;
5662 unsigned char * table;
5663 unsigned char * tp;
5664 Elf_Internal_Sym * sym;
5665 const char * relname;
5666
5667 /* First, find the starting address of the segment that includes
5668 this section: */
5669
5670 if (elf_header.e_phnum)
5671 {
5672 if (! get_program_headers (file))
5673 return 0;
5674
5675 for (seg = program_headers;
5676 seg < program_headers + elf_header.e_phnum;
5677 ++seg)
5678 {
5679 if (seg->p_type != PT_LOAD)
5680 continue;
5681
5682 if (sec->sh_addr >= seg->p_vaddr
5683 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
5684 {
5685 aux->seg_base = seg->p_vaddr;
5686 break;
5687 }
5688 }
5689 }
5690
5691 /* Second, build the unwind table from the contents of the unwind section: */
5692 size = sec->sh_size;
5693 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
5694 _("unwind table"));
5695 if (!table)
5696 return 0;
5697
5698 aux->table = (struct ia64_unw_table_entry *)
5699 xcmalloc (size / (3 * eh_addr_size), sizeof (aux->table[0]));
5700 tep = aux->table;
5701 for (tp = table; tp < table + size; ++tep)
5702 {
5703 tep->start.section = SHN_UNDEF;
5704 tep->end.section = SHN_UNDEF;
5705 tep->info.section = SHN_UNDEF;
5706 tep->start.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
5707 tep->end.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
5708 tep->info.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
5709 tep->start.offset += aux->seg_base;
5710 tep->end.offset += aux->seg_base;
5711 tep->info.offset += aux->seg_base;
5712 }
5713 free (table);
5714
5715 /* Third, apply any relocations to the unwind table: */
5716 for (relsec = section_headers;
5717 relsec < section_headers + elf_header.e_shnum;
5718 ++relsec)
5719 {
5720 if (relsec->sh_type != SHT_RELA
5721 || relsec->sh_info >= elf_header.e_shnum
5722 || section_headers + relsec->sh_info != sec)
5723 continue;
5724
5725 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
5726 & rela, & nrelas))
5727 return 0;
5728
5729 for (rp = rela; rp < rela + nrelas; ++rp)
5730 {
5731 relname = elf_ia64_reloc_type (get_reloc_type (rp->r_info));
5732 sym = aux->symtab + get_reloc_symindex (rp->r_info);
5733
5734 if (! const_strneq (relname, "R_IA64_SEGREL"))
5735 {
5736 warn (_("Skipping unexpected relocation type %s\n"), relname);
5737 continue;
5738 }
5739
5740 i = rp->r_offset / (3 * eh_addr_size);
5741
5742 switch (rp->r_offset/eh_addr_size % 3)
5743 {
5744 case 0:
5745 aux->table[i].start.section = sym->st_shndx;
5746 aux->table[i].start.offset = rp->r_addend + sym->st_value;
5747 break;
5748 case 1:
5749 aux->table[i].end.section = sym->st_shndx;
5750 aux->table[i].end.offset = rp->r_addend + sym->st_value;
5751 break;
5752 case 2:
5753 aux->table[i].info.section = sym->st_shndx;
5754 aux->table[i].info.offset = rp->r_addend + sym->st_value;
5755 break;
5756 default:
5757 break;
5758 }
5759 }
5760
5761 free (rela);
5762 }
5763
5764 aux->table_len = size / (3 * eh_addr_size);
5765 return 1;
5766 }
5767
5768 static int
5769 ia64_process_unwind (FILE * file)
5770 {
5771 Elf_Internal_Shdr * sec;
5772 Elf_Internal_Shdr * unwsec = NULL;
5773 Elf_Internal_Shdr * strsec;
5774 unsigned long i, unwcount = 0, unwstart = 0;
5775 struct ia64_unw_aux_info aux;
5776
5777 memset (& aux, 0, sizeof (aux));
5778
5779 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
5780 {
5781 if (sec->sh_type == SHT_SYMTAB
5782 && sec->sh_link < elf_header.e_shnum)
5783 {
5784 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
5785
5786 strsec = section_headers + sec->sh_link;
5787 assert (aux.strtab == NULL);
5788 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
5789 1, strsec->sh_size,
5790 _("string table"));
5791 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
5792 }
5793 else if (sec->sh_type == SHT_IA_64_UNWIND)
5794 unwcount++;
5795 }
5796
5797 if (!unwcount)
5798 printf (_("\nThere are no unwind sections in this file.\n"));
5799
5800 while (unwcount-- > 0)
5801 {
5802 char * suffix;
5803 size_t len, len2;
5804
5805 for (i = unwstart, sec = section_headers + unwstart;
5806 i < elf_header.e_shnum; ++i, ++sec)
5807 if (sec->sh_type == SHT_IA_64_UNWIND)
5808 {
5809 unwsec = sec;
5810 break;
5811 }
5812
5813 unwstart = i + 1;
5814 len = sizeof (ELF_STRING_ia64_unwind_once) - 1;
5815
5816 if ((unwsec->sh_flags & SHF_GROUP) != 0)
5817 {
5818 /* We need to find which section group it is in. */
5819 struct group_list * g = section_headers_groups [i]->root;
5820
5821 for (; g != NULL; g = g->next)
5822 {
5823 sec = section_headers + g->section_index;
5824
5825 if (streq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info))
5826 break;
5827 }
5828
5829 if (g == NULL)
5830 i = elf_header.e_shnum;
5831 }
5832 else if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind_once, len))
5833 {
5834 /* .gnu.linkonce.ia64unw.FOO -> .gnu.linkonce.ia64unwi.FOO. */
5835 len2 = sizeof (ELF_STRING_ia64_unwind_info_once) - 1;
5836 suffix = SECTION_NAME (unwsec) + len;
5837 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
5838 ++i, ++sec)
5839 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info_once, len2)
5840 && streq (SECTION_NAME (sec) + len2, suffix))
5841 break;
5842 }
5843 else
5844 {
5845 /* .IA_64.unwindFOO -> .IA_64.unwind_infoFOO
5846 .IA_64.unwind or BAR -> .IA_64.unwind_info. */
5847 len = sizeof (ELF_STRING_ia64_unwind) - 1;
5848 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
5849 suffix = "";
5850 if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind, len))
5851 suffix = SECTION_NAME (unwsec) + len;
5852 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
5853 ++i, ++sec)
5854 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info, len2)
5855 && streq (SECTION_NAME (sec) + len2, suffix))
5856 break;
5857 }
5858
5859 if (i == elf_header.e_shnum)
5860 {
5861 printf (_("\nCould not find unwind info section for "));
5862
5863 if (string_table == NULL)
5864 printf ("%d", unwsec->sh_name);
5865 else
5866 printf (_("'%s'"), SECTION_NAME (unwsec));
5867 }
5868 else
5869 {
5870 aux.info_addr = sec->sh_addr;
5871 aux.info = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1,
5872 sec->sh_size,
5873 _("unwind info"));
5874 aux.info_size = aux.info == NULL ? 0 : sec->sh_size;
5875
5876 printf (_("\nUnwind section "));
5877
5878 if (string_table == NULL)
5879 printf ("%d", unwsec->sh_name);
5880 else
5881 printf (_("'%s'"), SECTION_NAME (unwsec));
5882
5883 printf (_(" at offset 0x%lx contains %lu entries:\n"),
5884 (unsigned long) unwsec->sh_offset,
5885 (unsigned long) (unwsec->sh_size / (3 * eh_addr_size)));
5886
5887 (void) slurp_ia64_unwind_table (file, & aux, unwsec);
5888
5889 if (aux.table_len > 0)
5890 dump_ia64_unwind (& aux);
5891
5892 if (aux.table)
5893 free ((char *) aux.table);
5894 if (aux.info)
5895 free ((char *) aux.info);
5896 aux.table = NULL;
5897 aux.info = NULL;
5898 }
5899 }
5900
5901 if (aux.symtab)
5902 free (aux.symtab);
5903 if (aux.strtab)
5904 free ((char *) aux.strtab);
5905
5906 return 1;
5907 }
5908
5909 struct hppa_unw_table_entry
5910 {
5911 struct absaddr start;
5912 struct absaddr end;
5913 unsigned int Cannot_unwind:1; /* 0 */
5914 unsigned int Millicode:1; /* 1 */
5915 unsigned int Millicode_save_sr0:1; /* 2 */
5916 unsigned int Region_description:2; /* 3..4 */
5917 unsigned int reserved1:1; /* 5 */
5918 unsigned int Entry_SR:1; /* 6 */
5919 unsigned int Entry_FR:4; /* number saved */ /* 7..10 */
5920 unsigned int Entry_GR:5; /* number saved */ /* 11..15 */
5921 unsigned int Args_stored:1; /* 16 */
5922 unsigned int Variable_Frame:1; /* 17 */
5923 unsigned int Separate_Package_Body:1; /* 18 */
5924 unsigned int Frame_Extension_Millicode:1; /* 19 */
5925 unsigned int Stack_Overflow_Check:1; /* 20 */
5926 unsigned int Two_Instruction_SP_Increment:1; /* 21 */
5927 unsigned int Ada_Region:1; /* 22 */
5928 unsigned int cxx_info:1; /* 23 */
5929 unsigned int cxx_try_catch:1; /* 24 */
5930 unsigned int sched_entry_seq:1; /* 25 */
5931 unsigned int reserved2:1; /* 26 */
5932 unsigned int Save_SP:1; /* 27 */
5933 unsigned int Save_RP:1; /* 28 */
5934 unsigned int Save_MRP_in_frame:1; /* 29 */
5935 unsigned int extn_ptr_defined:1; /* 30 */
5936 unsigned int Cleanup_defined:1; /* 31 */
5937
5938 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
5939 unsigned int HP_UX_interrupt_marker:1; /* 1 */
5940 unsigned int Large_frame:1; /* 2 */
5941 unsigned int Pseudo_SP_Set:1; /* 3 */
5942 unsigned int reserved4:1; /* 4 */
5943 unsigned int Total_frame_size:27; /* 5..31 */
5944 };
5945
5946 struct hppa_unw_aux_info
5947 {
5948 struct hppa_unw_table_entry *table; /* Unwind table. */
5949 unsigned long table_len; /* Length of unwind table. */
5950 bfd_vma seg_base; /* Starting address of segment. */
5951 Elf_Internal_Sym * symtab; /* The symbol table. */
5952 unsigned long nsyms; /* Number of symbols. */
5953 char * strtab; /* The string table. */
5954 unsigned long strtab_size; /* Size of string table. */
5955 };
5956
5957 static void
5958 dump_hppa_unwind (struct hppa_unw_aux_info * aux)
5959 {
5960 struct hppa_unw_table_entry * tp;
5961
5962 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
5963 {
5964 bfd_vma offset;
5965 const char * procname;
5966
5967 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
5968 aux->strtab_size, tp->start, &procname,
5969 &offset);
5970
5971 fputs ("\n<", stdout);
5972
5973 if (procname)
5974 {
5975 fputs (procname, stdout);
5976
5977 if (offset)
5978 printf ("+%lx", (unsigned long) offset);
5979 }
5980
5981 fputs (">: [", stdout);
5982 print_vma (tp->start.offset, PREFIX_HEX);
5983 fputc ('-', stdout);
5984 print_vma (tp->end.offset, PREFIX_HEX);
5985 printf ("]\n\t");
5986
5987 #define PF(_m) if (tp->_m) printf (#_m " ");
5988 #define PV(_m) if (tp->_m) printf (#_m "=%d ", tp->_m);
5989 PF(Cannot_unwind);
5990 PF(Millicode);
5991 PF(Millicode_save_sr0);
5992 /* PV(Region_description); */
5993 PF(Entry_SR);
5994 PV(Entry_FR);
5995 PV(Entry_GR);
5996 PF(Args_stored);
5997 PF(Variable_Frame);
5998 PF(Separate_Package_Body);
5999 PF(Frame_Extension_Millicode);
6000 PF(Stack_Overflow_Check);
6001 PF(Two_Instruction_SP_Increment);
6002 PF(Ada_Region);
6003 PF(cxx_info);
6004 PF(cxx_try_catch);
6005 PF(sched_entry_seq);
6006 PF(Save_SP);
6007 PF(Save_RP);
6008 PF(Save_MRP_in_frame);
6009 PF(extn_ptr_defined);
6010 PF(Cleanup_defined);
6011 PF(MPE_XL_interrupt_marker);
6012 PF(HP_UX_interrupt_marker);
6013 PF(Large_frame);
6014 PF(Pseudo_SP_Set);
6015 PV(Total_frame_size);
6016 #undef PF
6017 #undef PV
6018 }
6019
6020 printf ("\n");
6021 }
6022
6023 static int
6024 slurp_hppa_unwind_table (FILE * file,
6025 struct hppa_unw_aux_info * aux,
6026 Elf_Internal_Shdr * sec)
6027 {
6028 unsigned long size, unw_ent_size, nentries, nrelas, i;
6029 Elf_Internal_Phdr * seg;
6030 struct hppa_unw_table_entry * tep;
6031 Elf_Internal_Shdr * relsec;
6032 Elf_Internal_Rela * rela;
6033 Elf_Internal_Rela * rp;
6034 unsigned char * table;
6035 unsigned char * tp;
6036 Elf_Internal_Sym * sym;
6037 const char * relname;
6038
6039 /* First, find the starting address of the segment that includes
6040 this section. */
6041
6042 if (elf_header.e_phnum)
6043 {
6044 if (! get_program_headers (file))
6045 return 0;
6046
6047 for (seg = program_headers;
6048 seg < program_headers + elf_header.e_phnum;
6049 ++seg)
6050 {
6051 if (seg->p_type != PT_LOAD)
6052 continue;
6053
6054 if (sec->sh_addr >= seg->p_vaddr
6055 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
6056 {
6057 aux->seg_base = seg->p_vaddr;
6058 break;
6059 }
6060 }
6061 }
6062
6063 /* Second, build the unwind table from the contents of the unwind
6064 section. */
6065 size = sec->sh_size;
6066 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
6067 _("unwind table"));
6068 if (!table)
6069 return 0;
6070
6071 unw_ent_size = 16;
6072 nentries = size / unw_ent_size;
6073 size = unw_ent_size * nentries;
6074
6075 tep = aux->table = (struct hppa_unw_table_entry *)
6076 xcmalloc (nentries, sizeof (aux->table[0]));
6077
6078 for (tp = table; tp < table + size; tp += unw_ent_size, ++tep)
6079 {
6080 unsigned int tmp1, tmp2;
6081
6082 tep->start.section = SHN_UNDEF;
6083 tep->end.section = SHN_UNDEF;
6084
6085 tep->start.offset = byte_get ((unsigned char *) tp + 0, 4);
6086 tep->end.offset = byte_get ((unsigned char *) tp + 4, 4);
6087 tmp1 = byte_get ((unsigned char *) tp + 8, 4);
6088 tmp2 = byte_get ((unsigned char *) tp + 12, 4);
6089
6090 tep->start.offset += aux->seg_base;
6091 tep->end.offset += aux->seg_base;
6092
6093 tep->Cannot_unwind = (tmp1 >> 31) & 0x1;
6094 tep->Millicode = (tmp1 >> 30) & 0x1;
6095 tep->Millicode_save_sr0 = (tmp1 >> 29) & 0x1;
6096 tep->Region_description = (tmp1 >> 27) & 0x3;
6097 tep->reserved1 = (tmp1 >> 26) & 0x1;
6098 tep->Entry_SR = (tmp1 >> 25) & 0x1;
6099 tep->Entry_FR = (tmp1 >> 21) & 0xf;
6100 tep->Entry_GR = (tmp1 >> 16) & 0x1f;
6101 tep->Args_stored = (tmp1 >> 15) & 0x1;
6102 tep->Variable_Frame = (tmp1 >> 14) & 0x1;
6103 tep->Separate_Package_Body = (tmp1 >> 13) & 0x1;
6104 tep->Frame_Extension_Millicode = (tmp1 >> 12) & 0x1;
6105 tep->Stack_Overflow_Check = (tmp1 >> 11) & 0x1;
6106 tep->Two_Instruction_SP_Increment = (tmp1 >> 10) & 0x1;
6107 tep->Ada_Region = (tmp1 >> 9) & 0x1;
6108 tep->cxx_info = (tmp1 >> 8) & 0x1;
6109 tep->cxx_try_catch = (tmp1 >> 7) & 0x1;
6110 tep->sched_entry_seq = (tmp1 >> 6) & 0x1;
6111 tep->reserved2 = (tmp1 >> 5) & 0x1;
6112 tep->Save_SP = (tmp1 >> 4) & 0x1;
6113 tep->Save_RP = (tmp1 >> 3) & 0x1;
6114 tep->Save_MRP_in_frame = (tmp1 >> 2) & 0x1;
6115 tep->extn_ptr_defined = (tmp1 >> 1) & 0x1;
6116 tep->Cleanup_defined = tmp1 & 0x1;
6117
6118 tep->MPE_XL_interrupt_marker = (tmp2 >> 31) & 0x1;
6119 tep->HP_UX_interrupt_marker = (tmp2 >> 30) & 0x1;
6120 tep->Large_frame = (tmp2 >> 29) & 0x1;
6121 tep->Pseudo_SP_Set = (tmp2 >> 28) & 0x1;
6122 tep->reserved4 = (tmp2 >> 27) & 0x1;
6123 tep->Total_frame_size = tmp2 & 0x7ffffff;
6124 }
6125 free (table);
6126
6127 /* Third, apply any relocations to the unwind table. */
6128 for (relsec = section_headers;
6129 relsec < section_headers + elf_header.e_shnum;
6130 ++relsec)
6131 {
6132 if (relsec->sh_type != SHT_RELA
6133 || relsec->sh_info >= elf_header.e_shnum
6134 || section_headers + relsec->sh_info != sec)
6135 continue;
6136
6137 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
6138 & rela, & nrelas))
6139 return 0;
6140
6141 for (rp = rela; rp < rela + nrelas; ++rp)
6142 {
6143 relname = elf_hppa_reloc_type (get_reloc_type (rp->r_info));
6144 sym = aux->symtab + get_reloc_symindex (rp->r_info);
6145
6146 /* R_PARISC_SEGREL32 or R_PARISC_SEGREL64. */
6147 if (! const_strneq (relname, "R_PARISC_SEGREL"))
6148 {
6149 warn (_("Skipping unexpected relocation type %s\n"), relname);
6150 continue;
6151 }
6152
6153 i = rp->r_offset / unw_ent_size;
6154
6155 switch ((rp->r_offset % unw_ent_size) / eh_addr_size)
6156 {
6157 case 0:
6158 aux->table[i].start.section = sym->st_shndx;
6159 aux->table[i].start.offset = sym->st_value + rp->r_addend;
6160 break;
6161 case 1:
6162 aux->table[i].end.section = sym->st_shndx;
6163 aux->table[i].end.offset = sym->st_value + rp->r_addend;
6164 break;
6165 default:
6166 break;
6167 }
6168 }
6169
6170 free (rela);
6171 }
6172
6173 aux->table_len = nentries;
6174
6175 return 1;
6176 }
6177
6178 static int
6179 hppa_process_unwind (FILE * file)
6180 {
6181 struct hppa_unw_aux_info aux;
6182 Elf_Internal_Shdr * unwsec = NULL;
6183 Elf_Internal_Shdr * strsec;
6184 Elf_Internal_Shdr * sec;
6185 unsigned long i;
6186
6187 memset (& aux, 0, sizeof (aux));
6188
6189 if (string_table == NULL)
6190 return 1;
6191
6192 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
6193 {
6194 if (sec->sh_type == SHT_SYMTAB
6195 && sec->sh_link < elf_header.e_shnum)
6196 {
6197 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
6198
6199 strsec = section_headers + sec->sh_link;
6200 assert (aux.strtab == NULL);
6201 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
6202 1, strsec->sh_size,
6203 _("string table"));
6204 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
6205 }
6206 else if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
6207 unwsec = sec;
6208 }
6209
6210 if (!unwsec)
6211 printf (_("\nThere are no unwind sections in this file.\n"));
6212
6213 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
6214 {
6215 if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
6216 {
6217 printf (_("\nUnwind section "));
6218 printf (_("'%s'"), SECTION_NAME (sec));
6219
6220 printf (_(" at offset 0x%lx contains %lu entries:\n"),
6221 (unsigned long) sec->sh_offset,
6222 (unsigned long) (sec->sh_size / (2 * eh_addr_size + 8)));
6223
6224 slurp_hppa_unwind_table (file, &aux, sec);
6225 if (aux.table_len > 0)
6226 dump_hppa_unwind (&aux);
6227
6228 if (aux.table)
6229 free ((char *) aux.table);
6230 aux.table = NULL;
6231 }
6232 }
6233
6234 if (aux.symtab)
6235 free (aux.symtab);
6236 if (aux.strtab)
6237 free ((char *) aux.strtab);
6238
6239 return 1;
6240 }
6241
6242 struct arm_section
6243 {
6244 unsigned char *data;
6245
6246 Elf_Internal_Shdr *sec;
6247 Elf_Internal_Rela *rela;
6248 unsigned long nrelas;
6249 unsigned int rel_type;
6250
6251 Elf_Internal_Rela *next_rela;
6252 };
6253
6254 struct arm_unw_aux_info
6255 {
6256 FILE *file;
6257
6258 Elf_Internal_Sym *symtab; /* The symbol table. */
6259 unsigned long nsyms; /* Number of symbols. */
6260 char *strtab; /* The string table. */
6261 unsigned long strtab_size; /* Size of string table. */
6262 };
6263
6264 static const char *
6265 arm_print_vma_and_name (struct arm_unw_aux_info *aux,
6266 bfd_vma fn, struct absaddr addr)
6267 {
6268 const char *procname;
6269 bfd_vma sym_offset;
6270
6271 if (addr.section == SHN_UNDEF)
6272 addr.offset = fn;
6273
6274 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
6275 aux->strtab_size, addr, &procname,
6276 &sym_offset);
6277
6278 print_vma (fn, PREFIX_HEX);
6279
6280 if (procname)
6281 {
6282 fputs (" <", stdout);
6283 fputs (procname, stdout);
6284
6285 if (sym_offset)
6286 printf ("+0x%lx", (unsigned long) sym_offset);
6287 fputc ('>', stdout);
6288 }
6289
6290 return procname;
6291 }
6292
6293 static void
6294 arm_free_section (struct arm_section *arm_sec)
6295 {
6296 if (arm_sec->data != NULL)
6297 free (arm_sec->data);
6298
6299 if (arm_sec->rela != NULL)
6300 free (arm_sec->rela);
6301 }
6302
6303 static int
6304 arm_section_get_word (struct arm_unw_aux_info *aux,
6305 struct arm_section *arm_sec,
6306 Elf_Internal_Shdr *sec, bfd_vma word_offset,
6307 unsigned int *wordp, struct absaddr *addr)
6308 {
6309 Elf_Internal_Rela *rp;
6310 Elf_Internal_Sym *sym;
6311 const char * relname;
6312 unsigned int word;
6313 bfd_boolean wrapped;
6314
6315 addr->section = SHN_UNDEF;
6316 addr->offset = 0;
6317
6318 if (sec != arm_sec->sec)
6319 {
6320 Elf_Internal_Shdr *relsec;
6321
6322 arm_free_section (arm_sec);
6323
6324 arm_sec->sec = sec;
6325 arm_sec->data = get_data (NULL, aux->file, sec->sh_offset, 1,
6326 sec->sh_size, _("unwind data"));
6327 arm_sec->rela = NULL;
6328 arm_sec->nrelas = 0;
6329
6330 for (relsec = section_headers;
6331 relsec < section_headers + elf_header.e_shnum;
6332 ++relsec)
6333 {
6334 if (relsec->sh_info >= elf_header.e_shnum
6335 || section_headers + relsec->sh_info != sec)
6336 continue;
6337
6338 if (relsec->sh_type == SHT_REL)
6339 {
6340 if (!slurp_rel_relocs (aux->file, relsec->sh_offset,
6341 relsec->sh_size,
6342 & arm_sec->rela, & arm_sec->nrelas))
6343 return 0;
6344 break;
6345 }
6346 else if (relsec->sh_type == SHT_RELA)
6347 {
6348 if (!slurp_rela_relocs (aux->file, relsec->sh_offset,
6349 relsec->sh_size,
6350 & arm_sec->rela, & arm_sec->nrelas))
6351 return 0;
6352 break;
6353 }
6354 }
6355
6356 arm_sec->next_rela = arm_sec->rela;
6357 }
6358
6359 if (arm_sec->data == NULL)
6360 return 0;
6361
6362 word = byte_get (arm_sec->data + word_offset, 4);
6363
6364 wrapped = FALSE;
6365 for (rp = arm_sec->next_rela; rp != arm_sec->rela + arm_sec->nrelas; rp++)
6366 {
6367 bfd_vma prelval, offset;
6368
6369 if (rp->r_offset > word_offset && !wrapped)
6370 {
6371 rp = arm_sec->rela;
6372 wrapped = TRUE;
6373 }
6374 if (rp->r_offset > word_offset)
6375 break;
6376
6377 if (rp->r_offset & 3)
6378 {
6379 warn (_("Skipping unexpected relocation at offset 0x%lx\n"),
6380 (unsigned long) rp->r_offset);
6381 continue;
6382 }
6383
6384 if (rp->r_offset < word_offset)
6385 continue;
6386
6387 switch (elf_header.e_machine)
6388 {
6389 case EM_ARM:
6390 relname = elf_arm_reloc_type (ELF32_R_TYPE (rp->r_info));
6391 break;
6392
6393 case EM_TI_C6000:
6394 relname = elf_tic6x_reloc_type (ELF32_R_TYPE (rp->r_info));
6395 break;
6396
6397 default:
6398 abort();
6399 }
6400
6401 if (streq (relname, "R_ARM_NONE")
6402 || streq (relname, "R_C6000_NONE"))
6403 continue;
6404
6405 if (!(streq (relname, "R_ARM_PREL31")
6406 || streq (relname, "R_C6000_PREL31")))
6407 {
6408 warn (_("Skipping unexpected relocation type %s\n"), relname);
6409 continue;
6410 }
6411
6412 sym = aux->symtab + ELF32_R_SYM (rp->r_info);
6413
6414 if (arm_sec->rel_type == SHT_REL)
6415 {
6416 offset = word & 0x7fffffff;
6417 if (offset & 0x40000000)
6418 offset |= ~ (bfd_vma) 0x7fffffff;
6419 }
6420 else
6421 offset = rp->r_addend;
6422
6423 offset += sym->st_value;
6424 prelval = offset - (arm_sec->sec->sh_addr + rp->r_offset);
6425
6426 if (streq (relname, "R_C6000_PREL31"))
6427 prelval >>= 1;
6428
6429 word = (word & ~ (bfd_vma) 0x7fffffff) | (prelval & 0x7fffffff);
6430 addr->section = sym->st_shndx;
6431 addr->offset = offset;
6432 break;
6433 }
6434
6435 *wordp = word;
6436 arm_sec->next_rela = rp;
6437
6438 return 1;
6439 }
6440
6441 static const char *tic6x_unwind_regnames[16] = {
6442 "A15", "B15", "B14", "B13", "B12", "B11", "B10", "B3",
6443 "A14", "A13", "A12", "A11", "A10",
6444 "[invalid reg 13]", "[invalid reg 14]", "[invalid reg 15]"};
6445
6446 static void
6447 decode_tic6x_unwind_regmask (unsigned int mask)
6448 {
6449 int i;
6450
6451 for (i = 12; mask; mask >>= 1, i--)
6452 {
6453 if (mask & 1)
6454 {
6455 fputs (tic6x_unwind_regnames[i], stdout);
6456 if (mask > 1)
6457 fputs (", ", stdout);
6458 }
6459 }
6460 }
6461
6462 #define ADVANCE \
6463 if (remaining == 0 && more_words) \
6464 { \
6465 data_offset += 4; \
6466 if (!arm_section_get_word (aux, data_arm_sec, data_sec, \
6467 data_offset, &word, &addr)) \
6468 return; \
6469 remaining = 4; \
6470 more_words--; \
6471 } \
6472
6473 #define GET_OP(OP) \
6474 ADVANCE; \
6475 if (remaining) \
6476 { \
6477 remaining--; \
6478 (OP) = word >> 24; \
6479 word <<= 8; \
6480 } \
6481 else \
6482 { \
6483 printf (_("[Truncated opcode]\n")); \
6484 return; \
6485 } \
6486 printf ("0x%02x ", OP)
6487
6488 static void
6489 decode_arm_unwind_bytecode (struct arm_unw_aux_info *aux,
6490 unsigned int word, unsigned int remaining,
6491 unsigned int more_words,
6492 bfd_vma data_offset, Elf_Internal_Shdr *data_sec,
6493 struct arm_section *data_arm_sec)
6494 {
6495 struct absaddr addr;
6496
6497 /* Decode the unwinding instructions. */
6498 while (1)
6499 {
6500 unsigned int op, op2;
6501
6502 ADVANCE;
6503 if (remaining == 0)
6504 break;
6505 remaining--;
6506 op = word >> 24;
6507 word <<= 8;
6508
6509 printf (" 0x%02x ", op);
6510
6511 if ((op & 0xc0) == 0x00)
6512 {
6513 int offset = ((op & 0x3f) << 2) + 4;
6514
6515 printf (" vsp = vsp + %d", offset);
6516 }
6517 else if ((op & 0xc0) == 0x40)
6518 {
6519 int offset = ((op & 0x3f) << 2) + 4;
6520
6521 printf (" vsp = vsp - %d", offset);
6522 }
6523 else if ((op & 0xf0) == 0x80)
6524 {
6525 GET_OP (op2);
6526 if (op == 0x80 && op2 == 0)
6527 printf (_("Refuse to unwind"));
6528 else
6529 {
6530 unsigned int mask = ((op & 0x0f) << 8) | op2;
6531 int first = 1;
6532 int i;
6533
6534 printf ("pop {");
6535 for (i = 0; i < 12; i++)
6536 if (mask & (1 << i))
6537 {
6538 if (first)
6539 first = 0;
6540 else
6541 printf (", ");
6542 printf ("r%d", 4 + i);
6543 }
6544 printf ("}");
6545 }
6546 }
6547 else if ((op & 0xf0) == 0x90)
6548 {
6549 if (op == 0x9d || op == 0x9f)
6550 printf (_(" [Reserved]"));
6551 else
6552 printf (" vsp = r%d", op & 0x0f);
6553 }
6554 else if ((op & 0xf0) == 0xa0)
6555 {
6556 int end = 4 + (op & 0x07);
6557 int first = 1;
6558 int i;
6559
6560 printf (" pop {");
6561 for (i = 4; i <= end; i++)
6562 {
6563 if (first)
6564 first = 0;
6565 else
6566 printf (", ");
6567 printf ("r%d", i);
6568 }
6569 if (op & 0x08)
6570 {
6571 if (first)
6572 printf (", ");
6573 printf ("r14");
6574 }
6575 printf ("}");
6576 }
6577 else if (op == 0xb0)
6578 printf (_(" finish"));
6579 else if (op == 0xb1)
6580 {
6581 GET_OP (op2);
6582 if (op2 == 0 || (op2 & 0xf0) != 0)
6583 printf (_("[Spare]"));
6584 else
6585 {
6586 unsigned int mask = op2 & 0x0f;
6587 int first = 1;
6588 int i;
6589
6590 printf ("pop {");
6591 for (i = 0; i < 12; i++)
6592 if (mask & (1 << i))
6593 {
6594 if (first)
6595 first = 0;
6596 else
6597 printf (", ");
6598 printf ("r%d", i);
6599 }
6600 printf ("}");
6601 }
6602 }
6603 else if (op == 0xb2)
6604 {
6605 unsigned char buf[9];
6606 unsigned int i, len;
6607 unsigned long offset;
6608
6609 for (i = 0; i < sizeof (buf); i++)
6610 {
6611 GET_OP (buf[i]);
6612 if ((buf[i] & 0x80) == 0)
6613 break;
6614 }
6615 assert (i < sizeof (buf));
6616 offset = read_uleb128 (buf, &len);
6617 assert (len == i + 1);
6618 offset = offset * 4 + 0x204;
6619 printf ("vsp = vsp + %ld", offset);
6620 }
6621 else if (op == 0xb3 || op == 0xc8 || op == 0xc9)
6622 {
6623 unsigned int first, last;
6624
6625 GET_OP (op2);
6626 first = op2 >> 4;
6627 last = op2 & 0x0f;
6628 if (op == 0xc8)
6629 first = first + 16;
6630 printf ("pop {D%d", first);
6631 if (last)
6632 printf ("-D%d", first + last);
6633 printf ("}");
6634 }
6635 else if ((op & 0xf8) == 0xb8 || (op & 0xf8) == 0xd0)
6636 {
6637 unsigned int count = op & 0x07;
6638
6639 printf ("pop {D8");
6640 if (count)
6641 printf ("-D%d", 8 + count);
6642 printf ("}");
6643 }
6644 else if (op >= 0xc0 && op <= 0xc5)
6645 {
6646 unsigned int count = op & 0x07;
6647
6648 printf (" pop {wR10");
6649 if (count)
6650 printf ("-wR%d", 10 + count);
6651 printf ("}");
6652 }
6653 else if (op == 0xc6)
6654 {
6655 unsigned int first, last;
6656
6657 GET_OP (op2);
6658 first = op2 >> 4;
6659 last = op2 & 0x0f;
6660 printf ("pop {wR%d", first);
6661 if (last)
6662 printf ("-wR%d", first + last);
6663 printf ("}");
6664 }
6665 else if (op == 0xc7)
6666 {
6667 GET_OP (op2);
6668 if (op2 == 0 || (op2 & 0xf0) != 0)
6669 printf (_("[Spare]"));
6670 else
6671 {
6672 unsigned int mask = op2 & 0x0f;
6673 int first = 1;
6674 int i;
6675
6676 printf ("pop {");
6677 for (i = 0; i < 4; i++)
6678 if (mask & (1 << i))
6679 {
6680 if (first)
6681 first = 0;
6682 else
6683 printf (", ");
6684 printf ("wCGR%d", i);
6685 }
6686 printf ("}");
6687 }
6688 }
6689 else
6690 printf (_(" [unsupported opcode]"));
6691 printf ("\n");
6692 }
6693 }
6694
6695 static void
6696 decode_tic6x_unwind_bytecode (struct arm_unw_aux_info *aux,
6697 unsigned int word, unsigned int remaining,
6698 unsigned int more_words,
6699 bfd_vma data_offset, Elf_Internal_Shdr *data_sec,
6700 struct arm_section *data_arm_sec)
6701 {
6702 struct absaddr addr;
6703
6704 /* Decode the unwinding instructions. */
6705 while (1)
6706 {
6707 unsigned int op, op2;
6708
6709 ADVANCE;
6710 if (remaining == 0)
6711 break;
6712 remaining--;
6713 op = word >> 24;
6714 word <<= 8;
6715
6716 printf (_(" 0x%02x "), op);
6717
6718 if ((op & 0xc0) == 0x00)
6719 {
6720 int offset = ((op & 0x3f) << 3) + 8;
6721 printf (_(" sp = sp + %d"), offset);
6722 }
6723 else if ((op & 0xc0) == 0x80)
6724 {
6725 GET_OP (op2);
6726 if (op == 0x80 && op2 == 0)
6727 printf (_("Refuse to unwind"));
6728 else
6729 {
6730 unsigned int mask = ((op & 0x1f) << 8) | op2;
6731 if (op & 0x20)
6732 printf ("pop compact {");
6733 else
6734 printf ("pop {");
6735
6736 decode_tic6x_unwind_regmask (mask);
6737 printf("}");
6738 }
6739 }
6740 else if ((op & 0xf0) == 0xc0)
6741 {
6742 unsigned int reg;
6743 unsigned int nregs;
6744 unsigned int i;
6745 const char *name;
6746 struct {
6747 unsigned int offset;
6748 unsigned int reg;
6749 } regpos[16];
6750
6751 /* Scan entire instruction first so that GET_OP output is not
6752 interleaved with disassembly. */
6753 nregs = 0;
6754 for (i = 0; nregs < (op & 0xf); i++)
6755 {
6756 GET_OP (op2);
6757 reg = op2 >> 4;
6758 if (reg != 0xf)
6759 {
6760 regpos[nregs].offset = i * 2;
6761 regpos[nregs].reg = reg;
6762 nregs++;
6763 }
6764
6765 reg = op2 & 0xf;
6766 if (reg != 0xf)
6767 {
6768 regpos[nregs].offset = i * 2 + 1;
6769 regpos[nregs].reg = reg;
6770 nregs++;
6771 }
6772 }
6773
6774 printf (_("pop frame {"));
6775 reg = nregs - 1;
6776 for (i = i * 2; i > 0; i--)
6777 {
6778 if (regpos[reg].offset == i - 1)
6779 {
6780 name = tic6x_unwind_regnames[regpos[reg].reg];
6781 if (reg > 0)
6782 reg--;
6783 }
6784 else
6785 name = _("[pad]");
6786
6787 fputs (name, stdout);
6788 if (i > 1)
6789 printf (", ");
6790 }
6791
6792 printf ("}");
6793 }
6794 else if (op == 0xd0)
6795 printf (" MOV FP, SP");
6796 else if (op == 0xd1)
6797 printf (" __c6xabi_pop_rts");
6798 else if (op == 0xd2)
6799 {
6800 unsigned char buf[9];
6801 unsigned int i, len;
6802 unsigned long offset;
6803 for (i = 0; i < sizeof (buf); i++)
6804 {
6805 GET_OP (buf[i]);
6806 if ((buf[i] & 0x80) == 0)
6807 break;
6808 }
6809 assert (i < sizeof (buf));
6810 offset = read_uleb128 (buf, &len);
6811 assert (len == i + 1);
6812 offset = offset * 8 + 0x408;
6813 printf (_("sp = sp + %ld"), offset);
6814 }
6815 else if ((op & 0xf0) == 0xe0)
6816 {
6817 if ((op & 0x0f) == 7)
6818 printf (" RETURN");
6819 else
6820 printf (" MV %s, B3", tic6x_unwind_regnames[op & 0x0f]);
6821 }
6822 else
6823 {
6824 printf (_(" [unsupported opcode]"));
6825 }
6826 putchar ('\n');
6827 }
6828 }
6829
6830 static bfd_vma
6831 expand_prel31 (bfd_vma word, bfd_vma where)
6832 {
6833 bfd_vma offset;
6834
6835 offset = word & 0x7fffffff;
6836 if (offset & 0x40000000)
6837 offset |= ~ (bfd_vma) 0x7fffffff;
6838
6839 if (elf_header.e_machine == EM_TI_C6000)
6840 offset <<= 1;
6841
6842 return offset + where;
6843 }
6844
6845 static void
6846 decode_arm_unwind (struct arm_unw_aux_info *aux,
6847 unsigned int word, unsigned int remaining,
6848 bfd_vma data_offset, Elf_Internal_Shdr *data_sec,
6849 struct arm_section *data_arm_sec)
6850 {
6851 int per_index;
6852 unsigned int more_words = 0;
6853 struct absaddr addr;
6854
6855 if (remaining == 0)
6856 {
6857 /* Fetch the first word. */
6858 if (!arm_section_get_word (aux, data_arm_sec, data_sec, data_offset,
6859 &word, &addr))
6860 return;
6861 remaining = 4;
6862 }
6863
6864 if ((word & 0x80000000) == 0)
6865 {
6866 /* Expand prel31 for personality routine. */
6867 bfd_vma fn;
6868 const char *procname;
6869
6870 fn = expand_prel31 (word, data_sec->sh_addr + data_offset);
6871 printf (_(" Personality routine: "));
6872 procname = arm_print_vma_and_name (aux, fn, addr);
6873 fputc ('\n', stdout);
6874
6875 /* The GCC personality routines use the standard compact
6876 encoding, starting with one byte giving the number of
6877 words. */
6878 if (procname != NULL
6879 && (const_strneq (procname, "__gcc_personality_v0")
6880 || const_strneq (procname, "__gxx_personality_v0")
6881 || const_strneq (procname, "__gcj_personality_v0")
6882 || const_strneq (procname, "__gnu_objc_personality_v0")))
6883 {
6884 remaining = 0;
6885 more_words = 1;
6886 ADVANCE;
6887 if (!remaining)
6888 {
6889 printf (_(" [Truncated data]\n"));
6890 return;
6891 }
6892 more_words = word >> 24;
6893 word <<= 8;
6894 remaining--;
6895 per_index = -1;
6896 }
6897 else
6898 return;
6899 }
6900 else
6901 {
6902
6903 per_index = (word >> 24) & 0x7f;
6904 printf (_(" Compact model %d\n"), per_index);
6905 if (per_index == 0)
6906 {
6907 more_words = 0;
6908 word <<= 8;
6909 remaining--;
6910 }
6911 else if (per_index < 3)
6912 {
6913 more_words = (word >> 16) & 0xff;
6914 word <<= 16;
6915 remaining -= 2;
6916 }
6917 }
6918
6919 switch (elf_header.e_machine)
6920 {
6921 case EM_ARM:
6922 if (per_index < 3)
6923 {
6924 decode_arm_unwind_bytecode (aux, word, remaining, more_words,
6925 data_offset, data_sec, data_arm_sec);
6926 }
6927 else
6928 printf (" [reserved]\n");
6929 break;
6930
6931 case EM_TI_C6000:
6932 if (per_index < 3)
6933 {
6934 decode_tic6x_unwind_bytecode (aux, word, remaining, more_words,
6935 data_offset, data_sec, data_arm_sec);
6936 }
6937 else if (per_index < 5)
6938 {
6939 if (((word >> 17) & 0x7f) == 0x7f)
6940 printf (_(" Restore stack from frame pointer\n"));
6941 else
6942 printf (_(" Stack increment %d\n"), (word >> 14) & 0x1fc);
6943 printf (_(" Registers restored: "));
6944 if (per_index == 4)
6945 printf (" (compact) ");
6946 decode_tic6x_unwind_regmask ((word >> 4) & 0x1fff);
6947 putchar ('\n');
6948 printf (_(" Return register: %s\n"),
6949 tic6x_unwind_regnames[word & 0xf]);
6950 }
6951 else
6952 printf (" [reserved]\n");
6953 break;
6954
6955 default:
6956 abort ();
6957 }
6958
6959 /* Decode the descriptors. Not implemented. */
6960 }
6961
6962 static void
6963 dump_arm_unwind (struct arm_unw_aux_info *aux, Elf_Internal_Shdr *exidx_sec)
6964 {
6965 struct arm_section exidx_arm_sec, extab_arm_sec;
6966 unsigned int i, exidx_len;
6967
6968 memset (&exidx_arm_sec, 0, sizeof (exidx_arm_sec));
6969 memset (&extab_arm_sec, 0, sizeof (extab_arm_sec));
6970 exidx_len = exidx_sec->sh_size / 8;
6971
6972 for (i = 0; i < exidx_len; i++)
6973 {
6974 unsigned int exidx_fn, exidx_entry;
6975 struct absaddr fn_addr, entry_addr;
6976 bfd_vma fn;
6977
6978 fputc ('\n', stdout);
6979
6980 if (!arm_section_get_word (aux, &exidx_arm_sec, exidx_sec,
6981 8 * i, &exidx_fn, &fn_addr)
6982 || !arm_section_get_word (aux, &exidx_arm_sec, exidx_sec,
6983 8 * i + 4, &exidx_entry, &entry_addr))
6984 {
6985 arm_free_section (&exidx_arm_sec);
6986 arm_free_section (&extab_arm_sec);
6987 return;
6988 }
6989
6990 fn = expand_prel31 (exidx_fn, exidx_sec->sh_addr + 8 * i);
6991
6992 arm_print_vma_and_name (aux, fn, entry_addr);
6993 fputs (": ", stdout);
6994
6995 if (exidx_entry == 1)
6996 {
6997 print_vma (exidx_entry, PREFIX_HEX);
6998 fputs (" [cantunwind]\n", stdout);
6999 }
7000 else if (exidx_entry & 0x80000000)
7001 {
7002 print_vma (exidx_entry, PREFIX_HEX);
7003 fputc ('\n', stdout);
7004 decode_arm_unwind (aux, exidx_entry, 4, 0, NULL, NULL);
7005 }
7006 else
7007 {
7008 bfd_vma table, table_offset = 0;
7009 Elf_Internal_Shdr *table_sec;
7010
7011 fputs ("@", stdout);
7012 table = expand_prel31 (exidx_entry, exidx_sec->sh_addr + 8 * i + 4);
7013 print_vma (table, PREFIX_HEX);
7014 printf ("\n");
7015
7016 /* Locate the matching .ARM.extab. */
7017 if (entry_addr.section != SHN_UNDEF
7018 && entry_addr.section < elf_header.e_shnum)
7019 {
7020 table_sec = section_headers + entry_addr.section;
7021 table_offset = entry_addr.offset;
7022 }
7023 else
7024 {
7025 table_sec = find_section_by_address (table);
7026 if (table_sec != NULL)
7027 table_offset = table - table_sec->sh_addr;
7028 }
7029 if (table_sec == NULL)
7030 {
7031 warn (_("Could not locate .ARM.extab section containing 0x%lx.\n"),
7032 (unsigned long) table);
7033 continue;
7034 }
7035 decode_arm_unwind (aux, 0, 0, table_offset, table_sec,
7036 &extab_arm_sec);
7037 }
7038 }
7039
7040 printf ("\n");
7041
7042 arm_free_section (&exidx_arm_sec);
7043 arm_free_section (&extab_arm_sec);
7044 }
7045
7046 /* Used for both ARM and C6X unwinding tables. */
7047 static int
7048 arm_process_unwind (FILE *file)
7049 {
7050 struct arm_unw_aux_info aux;
7051 Elf_Internal_Shdr *unwsec = NULL;
7052 Elf_Internal_Shdr *strsec;
7053 Elf_Internal_Shdr *sec;
7054 unsigned long i;
7055 unsigned int sec_type;
7056
7057 memset (& aux, 0, sizeof (aux));
7058 aux.file = file;
7059
7060 switch (elf_header.e_machine)
7061 {
7062 case EM_ARM:
7063 sec_type = SHT_ARM_EXIDX;
7064 break;
7065
7066 case EM_TI_C6000:
7067 sec_type = SHT_C6000_UNWIND;
7068 break;
7069
7070 default:
7071 abort();
7072 }
7073
7074 if (string_table == NULL)
7075 return 1;
7076
7077 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7078 {
7079 if (sec->sh_type == SHT_SYMTAB && sec->sh_link < elf_header.e_shnum)
7080 {
7081 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7082
7083 strsec = section_headers + sec->sh_link;
7084 assert (aux.strtab == NULL);
7085 aux.strtab = get_data (NULL, file, strsec->sh_offset,
7086 1, strsec->sh_size, _("string table"));
7087 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7088 }
7089 else if (sec->sh_type == sec_type)
7090 unwsec = sec;
7091 }
7092
7093 if (!unwsec)
7094 printf (_("\nThere are no unwind sections in this file.\n"));
7095
7096 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7097 {
7098 if (sec->sh_type == sec_type)
7099 {
7100 printf (_("\nUnwind table index '%s' at offset 0x%lx contains %lu entries:\n"),
7101 SECTION_NAME (sec),
7102 (unsigned long) sec->sh_offset,
7103 (unsigned long) (sec->sh_size / (2 * eh_addr_size)));
7104
7105 dump_arm_unwind (&aux, sec);
7106 }
7107 }
7108
7109 if (aux.symtab)
7110 free (aux.symtab);
7111 if (aux.strtab)
7112 free ((char *) aux.strtab);
7113
7114 return 1;
7115 }
7116
7117 static int
7118 process_unwind (FILE * file)
7119 {
7120 struct unwind_handler
7121 {
7122 int machtype;
7123 int (* handler)(FILE *);
7124 } handlers[] =
7125 {
7126 { EM_ARM, arm_process_unwind },
7127 { EM_IA_64, ia64_process_unwind },
7128 { EM_PARISC, hppa_process_unwind },
7129 { EM_TI_C6000, arm_process_unwind },
7130 { 0, 0 }
7131 };
7132 int i;
7133
7134 if (!do_unwind)
7135 return 1;
7136
7137 for (i = 0; handlers[i].handler != NULL; i++)
7138 if (elf_header.e_machine == handlers[i].machtype)
7139 return handlers[i].handler (file);
7140
7141 printf (_("\nThere are no unwind sections in this file.\n"));
7142 return 1;
7143 }
7144
7145 static void
7146 dynamic_section_mips_val (Elf_Internal_Dyn * entry)
7147 {
7148 switch (entry->d_tag)
7149 {
7150 case DT_MIPS_FLAGS:
7151 if (entry->d_un.d_val == 0)
7152 printf (_("NONE\n"));
7153 else
7154 {
7155 static const char * opts[] =
7156 {
7157 "QUICKSTART", "NOTPOT", "NO_LIBRARY_REPLACEMENT",
7158 "NO_MOVE", "SGI_ONLY", "GUARANTEE_INIT", "DELTA_C_PLUS_PLUS",
7159 "GUARANTEE_START_INIT", "PIXIE", "DEFAULT_DELAY_LOAD",
7160 "REQUICKSTART", "REQUICKSTARTED", "CORD", "NO_UNRES_UNDEF",
7161 "RLD_ORDER_SAFE"
7162 };
7163 unsigned int cnt;
7164 int first = 1;
7165
7166 for (cnt = 0; cnt < ARRAY_SIZE (opts); ++cnt)
7167 if (entry->d_un.d_val & (1 << cnt))
7168 {
7169 printf ("%s%s", first ? "" : " ", opts[cnt]);
7170 first = 0;
7171 }
7172 puts ("");
7173 }
7174 break;
7175
7176 case DT_MIPS_IVERSION:
7177 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
7178 printf (_("Interface Version: %s\n"), GET_DYNAMIC_NAME (entry->d_un.d_val));
7179 else
7180 printf (_("<corrupt: %ld>\n"), (long) entry->d_un.d_ptr);
7181 break;
7182
7183 case DT_MIPS_TIME_STAMP:
7184 {
7185 char timebuf[20];
7186 struct tm * tmp;
7187
7188 time_t atime = entry->d_un.d_val;
7189 tmp = gmtime (&atime);
7190 snprintf (timebuf, sizeof (timebuf), "%04u-%02u-%02uT%02u:%02u:%02u",
7191 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
7192 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
7193 printf (_("Time Stamp: %s\n"), timebuf);
7194 }
7195 break;
7196
7197 case DT_MIPS_RLD_VERSION:
7198 case DT_MIPS_LOCAL_GOTNO:
7199 case DT_MIPS_CONFLICTNO:
7200 case DT_MIPS_LIBLISTNO:
7201 case DT_MIPS_SYMTABNO:
7202 case DT_MIPS_UNREFEXTNO:
7203 case DT_MIPS_HIPAGENO:
7204 case DT_MIPS_DELTA_CLASS_NO:
7205 case DT_MIPS_DELTA_INSTANCE_NO:
7206 case DT_MIPS_DELTA_RELOC_NO:
7207 case DT_MIPS_DELTA_SYM_NO:
7208 case DT_MIPS_DELTA_CLASSSYM_NO:
7209 case DT_MIPS_COMPACT_SIZE:
7210 printf ("%ld\n", (long) entry->d_un.d_ptr);
7211 break;
7212
7213 default:
7214 printf ("%#lx\n", (unsigned long) entry->d_un.d_ptr);
7215 }
7216 }
7217
7218 static void
7219 dynamic_section_parisc_val (Elf_Internal_Dyn * entry)
7220 {
7221 switch (entry->d_tag)
7222 {
7223 case DT_HP_DLD_FLAGS:
7224 {
7225 static struct
7226 {
7227 long int bit;
7228 const char * str;
7229 }
7230 flags[] =
7231 {
7232 { DT_HP_DEBUG_PRIVATE, "HP_DEBUG_PRIVATE" },
7233 { DT_HP_DEBUG_CALLBACK, "HP_DEBUG_CALLBACK" },
7234 { DT_HP_DEBUG_CALLBACK_BOR, "HP_DEBUG_CALLBACK_BOR" },
7235 { DT_HP_NO_ENVVAR, "HP_NO_ENVVAR" },
7236 { DT_HP_BIND_NOW, "HP_BIND_NOW" },
7237 { DT_HP_BIND_NONFATAL, "HP_BIND_NONFATAL" },
7238 { DT_HP_BIND_VERBOSE, "HP_BIND_VERBOSE" },
7239 { DT_HP_BIND_RESTRICTED, "HP_BIND_RESTRICTED" },
7240 { DT_HP_BIND_SYMBOLIC, "HP_BIND_SYMBOLIC" },
7241 { DT_HP_RPATH_FIRST, "HP_RPATH_FIRST" },
7242 { DT_HP_BIND_DEPTH_FIRST, "HP_BIND_DEPTH_FIRST" },
7243 { DT_HP_GST, "HP_GST" },
7244 { DT_HP_SHLIB_FIXED, "HP_SHLIB_FIXED" },
7245 { DT_HP_MERGE_SHLIB_SEG, "HP_MERGE_SHLIB_SEG" },
7246 { DT_HP_NODELETE, "HP_NODELETE" },
7247 { DT_HP_GROUP, "HP_GROUP" },
7248 { DT_HP_PROTECT_LINKAGE_TABLE, "HP_PROTECT_LINKAGE_TABLE" }
7249 };
7250 int first = 1;
7251 size_t cnt;
7252 bfd_vma val = entry->d_un.d_val;
7253
7254 for (cnt = 0; cnt < ARRAY_SIZE (flags); ++cnt)
7255 if (val & flags[cnt].bit)
7256 {
7257 if (! first)
7258 putchar (' ');
7259 fputs (flags[cnt].str, stdout);
7260 first = 0;
7261 val ^= flags[cnt].bit;
7262 }
7263
7264 if (val != 0 || first)
7265 {
7266 if (! first)
7267 putchar (' ');
7268 print_vma (val, HEX);
7269 }
7270 }
7271 break;
7272
7273 default:
7274 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7275 break;
7276 }
7277 putchar ('\n');
7278 }
7279
7280 #ifdef BFD64
7281
7282 /* VMS vs Unix time offset and factor. */
7283
7284 #define VMS_EPOCH_OFFSET 35067168000000000LL
7285 #define VMS_GRANULARITY_FACTOR 10000000
7286
7287 /* Display a VMS time in a human readable format. */
7288
7289 static void
7290 print_vms_time (bfd_int64_t vmstime)
7291 {
7292 struct tm *tm;
7293 time_t unxtime;
7294
7295 unxtime = (vmstime - VMS_EPOCH_OFFSET) / VMS_GRANULARITY_FACTOR;
7296 tm = gmtime (&unxtime);
7297 printf ("%04u-%02u-%02uT%02u:%02u:%02u",
7298 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
7299 tm->tm_hour, tm->tm_min, tm->tm_sec);
7300 }
7301 #endif /* BFD64 */
7302
7303 static void
7304 dynamic_section_ia64_val (Elf_Internal_Dyn * entry)
7305 {
7306 switch (entry->d_tag)
7307 {
7308 case DT_IA_64_PLT_RESERVE:
7309 /* First 3 slots reserved. */
7310 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7311 printf (" -- ");
7312 print_vma (entry->d_un.d_ptr + (3 * 8), PREFIX_HEX);
7313 break;
7314
7315 case DT_IA_64_VMS_LINKTIME:
7316 #ifdef BFD64
7317 print_vms_time (entry->d_un.d_val);
7318 #endif
7319 break;
7320
7321 case DT_IA_64_VMS_LNKFLAGS:
7322 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7323 if (entry->d_un.d_val & VMS_LF_CALL_DEBUG)
7324 printf (" CALL_DEBUG");
7325 if (entry->d_un.d_val & VMS_LF_NOP0BUFS)
7326 printf (" NOP0BUFS");
7327 if (entry->d_un.d_val & VMS_LF_P0IMAGE)
7328 printf (" P0IMAGE");
7329 if (entry->d_un.d_val & VMS_LF_MKTHREADS)
7330 printf (" MKTHREADS");
7331 if (entry->d_un.d_val & VMS_LF_UPCALLS)
7332 printf (" UPCALLS");
7333 if (entry->d_un.d_val & VMS_LF_IMGSTA)
7334 printf (" IMGSTA");
7335 if (entry->d_un.d_val & VMS_LF_INITIALIZE)
7336 printf (" INITIALIZE");
7337 if (entry->d_un.d_val & VMS_LF_MAIN)
7338 printf (" MAIN");
7339 if (entry->d_un.d_val & VMS_LF_EXE_INIT)
7340 printf (" EXE_INIT");
7341 if (entry->d_un.d_val & VMS_LF_TBK_IN_IMG)
7342 printf (" TBK_IN_IMG");
7343 if (entry->d_un.d_val & VMS_LF_DBG_IN_IMG)
7344 printf (" DBG_IN_IMG");
7345 if (entry->d_un.d_val & VMS_LF_TBK_IN_DSF)
7346 printf (" TBK_IN_DSF");
7347 if (entry->d_un.d_val & VMS_LF_DBG_IN_DSF)
7348 printf (" DBG_IN_DSF");
7349 if (entry->d_un.d_val & VMS_LF_SIGNATURES)
7350 printf (" SIGNATURES");
7351 if (entry->d_un.d_val & VMS_LF_REL_SEG_OFF)
7352 printf (" REL_SEG_OFF");
7353 break;
7354
7355 default:
7356 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7357 break;
7358 }
7359 putchar ('\n');
7360 }
7361
7362 static int
7363 get_32bit_dynamic_section (FILE * file)
7364 {
7365 Elf32_External_Dyn * edyn;
7366 Elf32_External_Dyn * ext;
7367 Elf_Internal_Dyn * entry;
7368
7369 edyn = (Elf32_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
7370 dynamic_size, _("dynamic section"));
7371 if (!edyn)
7372 return 0;
7373
7374 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
7375 might not have the luxury of section headers. Look for the DT_NULL
7376 terminator to determine the number of entries. */
7377 for (ext = edyn, dynamic_nent = 0;
7378 (char *) ext < (char *) edyn + dynamic_size;
7379 ext++)
7380 {
7381 dynamic_nent++;
7382 if (BYTE_GET (ext->d_tag) == DT_NULL)
7383 break;
7384 }
7385
7386 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
7387 sizeof (* entry));
7388 if (dynamic_section == NULL)
7389 {
7390 error (_("Out of memory\n"));
7391 free (edyn);
7392 return 0;
7393 }
7394
7395 for (ext = edyn, entry = dynamic_section;
7396 entry < dynamic_section + dynamic_nent;
7397 ext++, entry++)
7398 {
7399 entry->d_tag = BYTE_GET (ext->d_tag);
7400 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
7401 }
7402
7403 free (edyn);
7404
7405 return 1;
7406 }
7407
7408 static int
7409 get_64bit_dynamic_section (FILE * file)
7410 {
7411 Elf64_External_Dyn * edyn;
7412 Elf64_External_Dyn * ext;
7413 Elf_Internal_Dyn * entry;
7414
7415 edyn = (Elf64_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
7416 dynamic_size, _("dynamic section"));
7417 if (!edyn)
7418 return 0;
7419
7420 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
7421 might not have the luxury of section headers. Look for the DT_NULL
7422 terminator to determine the number of entries. */
7423 for (ext = edyn, dynamic_nent = 0;
7424 (char *) ext < (char *) edyn + dynamic_size;
7425 ext++)
7426 {
7427 dynamic_nent++;
7428 if (BYTE_GET (ext->d_tag) == DT_NULL)
7429 break;
7430 }
7431
7432 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
7433 sizeof (* entry));
7434 if (dynamic_section == NULL)
7435 {
7436 error (_("Out of memory\n"));
7437 free (edyn);
7438 return 0;
7439 }
7440
7441 for (ext = edyn, entry = dynamic_section;
7442 entry < dynamic_section + dynamic_nent;
7443 ext++, entry++)
7444 {
7445 entry->d_tag = BYTE_GET (ext->d_tag);
7446 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
7447 }
7448
7449 free (edyn);
7450
7451 return 1;
7452 }
7453
7454 static void
7455 print_dynamic_flags (bfd_vma flags)
7456 {
7457 int first = 1;
7458
7459 while (flags)
7460 {
7461 bfd_vma flag;
7462
7463 flag = flags & - flags;
7464 flags &= ~ flag;
7465
7466 if (first)
7467 first = 0;
7468 else
7469 putc (' ', stdout);
7470
7471 switch (flag)
7472 {
7473 case DF_ORIGIN: fputs ("ORIGIN", stdout); break;
7474 case DF_SYMBOLIC: fputs ("SYMBOLIC", stdout); break;
7475 case DF_TEXTREL: fputs ("TEXTREL", stdout); break;
7476 case DF_BIND_NOW: fputs ("BIND_NOW", stdout); break;
7477 case DF_STATIC_TLS: fputs ("STATIC_TLS", stdout); break;
7478 default: fputs (_("unknown"), stdout); break;
7479 }
7480 }
7481 puts ("");
7482 }
7483
7484 /* Parse and display the contents of the dynamic section. */
7485
7486 static int
7487 process_dynamic_section (FILE * file)
7488 {
7489 Elf_Internal_Dyn * entry;
7490
7491 if (dynamic_size == 0)
7492 {
7493 if (do_dynamic)
7494 printf (_("\nThere is no dynamic section in this file.\n"));
7495
7496 return 1;
7497 }
7498
7499 if (is_32bit_elf)
7500 {
7501 if (! get_32bit_dynamic_section (file))
7502 return 0;
7503 }
7504 else if (! get_64bit_dynamic_section (file))
7505 return 0;
7506
7507 /* Find the appropriate symbol table. */
7508 if (dynamic_symbols == NULL)
7509 {
7510 for (entry = dynamic_section;
7511 entry < dynamic_section + dynamic_nent;
7512 ++entry)
7513 {
7514 Elf_Internal_Shdr section;
7515
7516 if (entry->d_tag != DT_SYMTAB)
7517 continue;
7518
7519 dynamic_info[DT_SYMTAB] = entry->d_un.d_val;
7520
7521 /* Since we do not know how big the symbol table is,
7522 we default to reading in the entire file (!) and
7523 processing that. This is overkill, I know, but it
7524 should work. */
7525 section.sh_offset = offset_from_vma (file, entry->d_un.d_val, 0);
7526
7527 if (archive_file_offset != 0)
7528 section.sh_size = archive_file_size - section.sh_offset;
7529 else
7530 {
7531 if (fseek (file, 0, SEEK_END))
7532 error (_("Unable to seek to end of file!\n"));
7533
7534 section.sh_size = ftell (file) - section.sh_offset;
7535 }
7536
7537 if (is_32bit_elf)
7538 section.sh_entsize = sizeof (Elf32_External_Sym);
7539 else
7540 section.sh_entsize = sizeof (Elf64_External_Sym);
7541
7542 dynamic_symbols = GET_ELF_SYMBOLS (file, &section, & num_dynamic_syms);
7543 if (num_dynamic_syms < 1)
7544 {
7545 error (_("Unable to determine the number of symbols to load\n"));
7546 continue;
7547 }
7548 }
7549 }
7550
7551 /* Similarly find a string table. */
7552 if (dynamic_strings == NULL)
7553 {
7554 for (entry = dynamic_section;
7555 entry < dynamic_section + dynamic_nent;
7556 ++entry)
7557 {
7558 unsigned long offset;
7559 long str_tab_len;
7560
7561 if (entry->d_tag != DT_STRTAB)
7562 continue;
7563
7564 dynamic_info[DT_STRTAB] = entry->d_un.d_val;
7565
7566 /* Since we do not know how big the string table is,
7567 we default to reading in the entire file (!) and
7568 processing that. This is overkill, I know, but it
7569 should work. */
7570
7571 offset = offset_from_vma (file, entry->d_un.d_val, 0);
7572
7573 if (archive_file_offset != 0)
7574 str_tab_len = archive_file_size - offset;
7575 else
7576 {
7577 if (fseek (file, 0, SEEK_END))
7578 error (_("Unable to seek to end of file\n"));
7579 str_tab_len = ftell (file) - offset;
7580 }
7581
7582 if (str_tab_len < 1)
7583 {
7584 error
7585 (_("Unable to determine the length of the dynamic string table\n"));
7586 continue;
7587 }
7588
7589 dynamic_strings = (char *) get_data (NULL, file, offset, 1,
7590 str_tab_len,
7591 _("dynamic string table"));
7592 dynamic_strings_length = dynamic_strings == NULL ? 0 : str_tab_len;
7593 break;
7594 }
7595 }
7596
7597 /* And find the syminfo section if available. */
7598 if (dynamic_syminfo == NULL)
7599 {
7600 unsigned long syminsz = 0;
7601
7602 for (entry = dynamic_section;
7603 entry < dynamic_section + dynamic_nent;
7604 ++entry)
7605 {
7606 if (entry->d_tag == DT_SYMINENT)
7607 {
7608 /* Note: these braces are necessary to avoid a syntax
7609 error from the SunOS4 C compiler. */
7610 assert (sizeof (Elf_External_Syminfo) == entry->d_un.d_val);
7611 }
7612 else if (entry->d_tag == DT_SYMINSZ)
7613 syminsz = entry->d_un.d_val;
7614 else if (entry->d_tag == DT_SYMINFO)
7615 dynamic_syminfo_offset = offset_from_vma (file, entry->d_un.d_val,
7616 syminsz);
7617 }
7618
7619 if (dynamic_syminfo_offset != 0 && syminsz != 0)
7620 {
7621 Elf_External_Syminfo * extsyminfo;
7622 Elf_External_Syminfo * extsym;
7623 Elf_Internal_Syminfo * syminfo;
7624
7625 /* There is a syminfo section. Read the data. */
7626 extsyminfo = (Elf_External_Syminfo *)
7627 get_data (NULL, file, dynamic_syminfo_offset, 1, syminsz,
7628 _("symbol information"));
7629 if (!extsyminfo)
7630 return 0;
7631
7632 dynamic_syminfo = (Elf_Internal_Syminfo *) malloc (syminsz);
7633 if (dynamic_syminfo == NULL)
7634 {
7635 error (_("Out of memory\n"));
7636 return 0;
7637 }
7638
7639 dynamic_syminfo_nent = syminsz / sizeof (Elf_External_Syminfo);
7640 for (syminfo = dynamic_syminfo, extsym = extsyminfo;
7641 syminfo < dynamic_syminfo + dynamic_syminfo_nent;
7642 ++syminfo, ++extsym)
7643 {
7644 syminfo->si_boundto = BYTE_GET (extsym->si_boundto);
7645 syminfo->si_flags = BYTE_GET (extsym->si_flags);
7646 }
7647
7648 free (extsyminfo);
7649 }
7650 }
7651
7652 if (do_dynamic && dynamic_addr)
7653 printf (_("\nDynamic section at offset 0x%lx contains %u entries:\n"),
7654 dynamic_addr, dynamic_nent);
7655 if (do_dynamic)
7656 printf (_(" Tag Type Name/Value\n"));
7657
7658 for (entry = dynamic_section;
7659 entry < dynamic_section + dynamic_nent;
7660 entry++)
7661 {
7662 if (do_dynamic)
7663 {
7664 const char * dtype;
7665
7666 putchar (' ');
7667 print_vma (entry->d_tag, FULL_HEX);
7668 dtype = get_dynamic_type (entry->d_tag);
7669 printf (" (%s)%*s", dtype,
7670 ((is_32bit_elf ? 27 : 19)
7671 - (int) strlen (dtype)),
7672 " ");
7673 }
7674
7675 switch (entry->d_tag)
7676 {
7677 case DT_FLAGS:
7678 if (do_dynamic)
7679 print_dynamic_flags (entry->d_un.d_val);
7680 break;
7681
7682 case DT_AUXILIARY:
7683 case DT_FILTER:
7684 case DT_CONFIG:
7685 case DT_DEPAUDIT:
7686 case DT_AUDIT:
7687 if (do_dynamic)
7688 {
7689 switch (entry->d_tag)
7690 {
7691 case DT_AUXILIARY:
7692 printf (_("Auxiliary library"));
7693 break;
7694
7695 case DT_FILTER:
7696 printf (_("Filter library"));
7697 break;
7698
7699 case DT_CONFIG:
7700 printf (_("Configuration file"));
7701 break;
7702
7703 case DT_DEPAUDIT:
7704 printf (_("Dependency audit library"));
7705 break;
7706
7707 case DT_AUDIT:
7708 printf (_("Audit library"));
7709 break;
7710 }
7711
7712 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
7713 printf (": [%s]\n", GET_DYNAMIC_NAME (entry->d_un.d_val));
7714 else
7715 {
7716 printf (": ");
7717 print_vma (entry->d_un.d_val, PREFIX_HEX);
7718 putchar ('\n');
7719 }
7720 }
7721 break;
7722
7723 case DT_FEATURE:
7724 if (do_dynamic)
7725 {
7726 printf (_("Flags:"));
7727
7728 if (entry->d_un.d_val == 0)
7729 printf (_(" None\n"));
7730 else
7731 {
7732 unsigned long int val = entry->d_un.d_val;
7733
7734 if (val & DTF_1_PARINIT)
7735 {
7736 printf (" PARINIT");
7737 val ^= DTF_1_PARINIT;
7738 }
7739 if (val & DTF_1_CONFEXP)
7740 {
7741 printf (" CONFEXP");
7742 val ^= DTF_1_CONFEXP;
7743 }
7744 if (val != 0)
7745 printf (" %lx", val);
7746 puts ("");
7747 }
7748 }
7749 break;
7750
7751 case DT_POSFLAG_1:
7752 if (do_dynamic)
7753 {
7754 printf (_("Flags:"));
7755
7756 if (entry->d_un.d_val == 0)
7757 printf (_(" None\n"));
7758 else
7759 {
7760 unsigned long int val = entry->d_un.d_val;
7761
7762 if (val & DF_P1_LAZYLOAD)
7763 {
7764 printf (" LAZYLOAD");
7765 val ^= DF_P1_LAZYLOAD;
7766 }
7767 if (val & DF_P1_GROUPPERM)
7768 {
7769 printf (" GROUPPERM");
7770 val ^= DF_P1_GROUPPERM;
7771 }
7772 if (val != 0)
7773 printf (" %lx", val);
7774 puts ("");
7775 }
7776 }
7777 break;
7778
7779 case DT_FLAGS_1:
7780 if (do_dynamic)
7781 {
7782 printf (_("Flags:"));
7783 if (entry->d_un.d_val == 0)
7784 printf (_(" None\n"));
7785 else
7786 {
7787 unsigned long int val = entry->d_un.d_val;
7788
7789 if (val & DF_1_NOW)
7790 {
7791 printf (" NOW");
7792 val ^= DF_1_NOW;
7793 }
7794 if (val & DF_1_GLOBAL)
7795 {
7796 printf (" GLOBAL");
7797 val ^= DF_1_GLOBAL;
7798 }
7799 if (val & DF_1_GROUP)
7800 {
7801 printf (" GROUP");
7802 val ^= DF_1_GROUP;
7803 }
7804 if (val & DF_1_NODELETE)
7805 {
7806 printf (" NODELETE");
7807 val ^= DF_1_NODELETE;
7808 }
7809 if (val & DF_1_LOADFLTR)
7810 {
7811 printf (" LOADFLTR");
7812 val ^= DF_1_LOADFLTR;
7813 }
7814 if (val & DF_1_INITFIRST)
7815 {
7816 printf (" INITFIRST");
7817 val ^= DF_1_INITFIRST;
7818 }
7819 if (val & DF_1_NOOPEN)
7820 {
7821 printf (" NOOPEN");
7822 val ^= DF_1_NOOPEN;
7823 }
7824 if (val & DF_1_ORIGIN)
7825 {
7826 printf (" ORIGIN");
7827 val ^= DF_1_ORIGIN;
7828 }
7829 if (val & DF_1_DIRECT)
7830 {
7831 printf (" DIRECT");
7832 val ^= DF_1_DIRECT;
7833 }
7834 if (val & DF_1_TRANS)
7835 {
7836 printf (" TRANS");
7837 val ^= DF_1_TRANS;
7838 }
7839 if (val & DF_1_INTERPOSE)
7840 {
7841 printf (" INTERPOSE");
7842 val ^= DF_1_INTERPOSE;
7843 }
7844 if (val & DF_1_NODEFLIB)
7845 {
7846 printf (" NODEFLIB");
7847 val ^= DF_1_NODEFLIB;
7848 }
7849 if (val & DF_1_NODUMP)
7850 {
7851 printf (" NODUMP");
7852 val ^= DF_1_NODUMP;
7853 }
7854 if (val & DF_1_CONLFAT)
7855 {
7856 printf (" CONLFAT");
7857 val ^= DF_1_CONLFAT;
7858 }
7859 if (val != 0)
7860 printf (" %lx", val);
7861 puts ("");
7862 }
7863 }
7864 break;
7865
7866 case DT_PLTREL:
7867 dynamic_info[entry->d_tag] = entry->d_un.d_val;
7868 if (do_dynamic)
7869 puts (get_dynamic_type (entry->d_un.d_val));
7870 break;
7871
7872 case DT_NULL :
7873 case DT_NEEDED :
7874 case DT_PLTGOT :
7875 case DT_HASH :
7876 case DT_STRTAB :
7877 case DT_SYMTAB :
7878 case DT_RELA :
7879 case DT_INIT :
7880 case DT_FINI :
7881 case DT_SONAME :
7882 case DT_RPATH :
7883 case DT_SYMBOLIC:
7884 case DT_REL :
7885 case DT_DEBUG :
7886 case DT_TEXTREL :
7887 case DT_JMPREL :
7888 case DT_RUNPATH :
7889 dynamic_info[entry->d_tag] = entry->d_un.d_val;
7890
7891 if (do_dynamic)
7892 {
7893 char * name;
7894
7895 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
7896 name = GET_DYNAMIC_NAME (entry->d_un.d_val);
7897 else
7898 name = NULL;
7899
7900 if (name)
7901 {
7902 switch (entry->d_tag)
7903 {
7904 case DT_NEEDED:
7905 printf (_("Shared library: [%s]"), name);
7906
7907 if (streq (name, program_interpreter))
7908 printf (_(" program interpreter"));
7909 break;
7910
7911 case DT_SONAME:
7912 printf (_("Library soname: [%s]"), name);
7913 break;
7914
7915 case DT_RPATH:
7916 printf (_("Library rpath: [%s]"), name);
7917 break;
7918
7919 case DT_RUNPATH:
7920 printf (_("Library runpath: [%s]"), name);
7921 break;
7922
7923 default:
7924 print_vma (entry->d_un.d_val, PREFIX_HEX);
7925 break;
7926 }
7927 }
7928 else
7929 print_vma (entry->d_un.d_val, PREFIX_HEX);
7930
7931 putchar ('\n');
7932 }
7933 break;
7934
7935 case DT_PLTRELSZ:
7936 case DT_RELASZ :
7937 case DT_STRSZ :
7938 case DT_RELSZ :
7939 case DT_RELAENT :
7940 case DT_SYMENT :
7941 case DT_RELENT :
7942 dynamic_info[entry->d_tag] = entry->d_un.d_val;
7943 case DT_PLTPADSZ:
7944 case DT_MOVEENT :
7945 case DT_MOVESZ :
7946 case DT_INIT_ARRAYSZ:
7947 case DT_FINI_ARRAYSZ:
7948 case DT_GNU_CONFLICTSZ:
7949 case DT_GNU_LIBLISTSZ:
7950 if (do_dynamic)
7951 {
7952 print_vma (entry->d_un.d_val, UNSIGNED);
7953 printf (_(" (bytes)\n"));
7954 }
7955 break;
7956
7957 case DT_VERDEFNUM:
7958 case DT_VERNEEDNUM:
7959 case DT_RELACOUNT:
7960 case DT_RELCOUNT:
7961 if (do_dynamic)
7962 {
7963 print_vma (entry->d_un.d_val, UNSIGNED);
7964 putchar ('\n');
7965 }
7966 break;
7967
7968 case DT_SYMINSZ:
7969 case DT_SYMINENT:
7970 case DT_SYMINFO:
7971 case DT_USED:
7972 case DT_INIT_ARRAY:
7973 case DT_FINI_ARRAY:
7974 if (do_dynamic)
7975 {
7976 if (entry->d_tag == DT_USED
7977 && VALID_DYNAMIC_NAME (entry->d_un.d_val))
7978 {
7979 char * name = GET_DYNAMIC_NAME (entry->d_un.d_val);
7980
7981 if (*name)
7982 {
7983 printf (_("Not needed object: [%s]\n"), name);
7984 break;
7985 }
7986 }
7987
7988 print_vma (entry->d_un.d_val, PREFIX_HEX);
7989 putchar ('\n');
7990 }
7991 break;
7992
7993 case DT_BIND_NOW:
7994 /* The value of this entry is ignored. */
7995 if (do_dynamic)
7996 putchar ('\n');
7997 break;
7998
7999 case DT_GNU_PRELINKED:
8000 if (do_dynamic)
8001 {
8002 struct tm * tmp;
8003 time_t atime = entry->d_un.d_val;
8004
8005 tmp = gmtime (&atime);
8006 printf ("%04u-%02u-%02uT%02u:%02u:%02u\n",
8007 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
8008 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
8009
8010 }
8011 break;
8012
8013 case DT_GNU_HASH:
8014 dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
8015 if (do_dynamic)
8016 {
8017 print_vma (entry->d_un.d_val, PREFIX_HEX);
8018 putchar ('\n');
8019 }
8020 break;
8021
8022 default:
8023 if ((entry->d_tag >= DT_VERSYM) && (entry->d_tag <= DT_VERNEEDNUM))
8024 version_info[DT_VERSIONTAGIDX (entry->d_tag)] =
8025 entry->d_un.d_val;
8026
8027 if (do_dynamic)
8028 {
8029 switch (elf_header.e_machine)
8030 {
8031 case EM_MIPS:
8032 case EM_MIPS_RS3_LE:
8033 dynamic_section_mips_val (entry);
8034 break;
8035 case EM_PARISC:
8036 dynamic_section_parisc_val (entry);
8037 break;
8038 case EM_IA_64:
8039 dynamic_section_ia64_val (entry);
8040 break;
8041 default:
8042 print_vma (entry->d_un.d_val, PREFIX_HEX);
8043 putchar ('\n');
8044 }
8045 }
8046 break;
8047 }
8048 }
8049
8050 return 1;
8051 }
8052
8053 static char *
8054 get_ver_flags (unsigned int flags)
8055 {
8056 static char buff[32];
8057
8058 buff[0] = 0;
8059
8060 if (flags == 0)
8061 return _("none");
8062
8063 if (flags & VER_FLG_BASE)
8064 strcat (buff, "BASE ");
8065
8066 if (flags & VER_FLG_WEAK)
8067 {
8068 if (flags & VER_FLG_BASE)
8069 strcat (buff, "| ");
8070
8071 strcat (buff, "WEAK ");
8072 }
8073
8074 if (flags & VER_FLG_INFO)
8075 {
8076 if (flags & (VER_FLG_BASE|VER_FLG_WEAK))
8077 strcat (buff, "| ");
8078
8079 strcat (buff, "INFO ");
8080 }
8081
8082 if (flags & ~(VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
8083 strcat (buff, _("| <unknown>"));
8084
8085 return buff;
8086 }
8087
8088 /* Display the contents of the version sections. */
8089
8090 static int
8091 process_version_sections (FILE * file)
8092 {
8093 Elf_Internal_Shdr * section;
8094 unsigned i;
8095 int found = 0;
8096
8097 if (! do_version)
8098 return 1;
8099
8100 for (i = 0, section = section_headers;
8101 i < elf_header.e_shnum;
8102 i++, section++)
8103 {
8104 switch (section->sh_type)
8105 {
8106 case SHT_GNU_verdef:
8107 {
8108 Elf_External_Verdef * edefs;
8109 unsigned int idx;
8110 unsigned int cnt;
8111 char * endbuf;
8112
8113 found = 1;
8114
8115 printf
8116 (_("\nVersion definition section '%s' contains %u entries:\n"),
8117 SECTION_NAME (section), section->sh_info);
8118
8119 printf (_(" Addr: 0x"));
8120 printf_vma (section->sh_addr);
8121 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
8122 (unsigned long) section->sh_offset, section->sh_link,
8123 section->sh_link < elf_header.e_shnum
8124 ? SECTION_NAME (section_headers + section->sh_link)
8125 : _("<corrupt>"));
8126
8127 edefs = (Elf_External_Verdef *)
8128 get_data (NULL, file, section->sh_offset, 1,section->sh_size,
8129 _("version definition section"));
8130 if (!edefs)
8131 break;
8132 endbuf = (char *) edefs + section->sh_size;
8133
8134 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
8135 {
8136 char * vstart;
8137 Elf_External_Verdef * edef;
8138 Elf_Internal_Verdef ent;
8139 Elf_External_Verdaux * eaux;
8140 Elf_Internal_Verdaux aux;
8141 int j;
8142 int isum;
8143
8144 /* Check for negative or very large indicies. */
8145 if ((unsigned char *) edefs + idx < (unsigned char *) edefs)
8146 break;
8147
8148 vstart = ((char *) edefs) + idx;
8149 if (vstart + sizeof (*edef) > endbuf)
8150 break;
8151
8152 edef = (Elf_External_Verdef *) vstart;
8153
8154 ent.vd_version = BYTE_GET (edef->vd_version);
8155 ent.vd_flags = BYTE_GET (edef->vd_flags);
8156 ent.vd_ndx = BYTE_GET (edef->vd_ndx);
8157 ent.vd_cnt = BYTE_GET (edef->vd_cnt);
8158 ent.vd_hash = BYTE_GET (edef->vd_hash);
8159 ent.vd_aux = BYTE_GET (edef->vd_aux);
8160 ent.vd_next = BYTE_GET (edef->vd_next);
8161
8162 printf (_(" %#06x: Rev: %d Flags: %s"),
8163 idx, ent.vd_version, get_ver_flags (ent.vd_flags));
8164
8165 printf (_(" Index: %d Cnt: %d "),
8166 ent.vd_ndx, ent.vd_cnt);
8167
8168 /* Check for overflow. */
8169 if ((unsigned char *)(vstart + ent.vd_aux) < (unsigned char *) vstart
8170 || (unsigned char *)(vstart + ent.vd_aux) > (unsigned char *) endbuf)
8171 break;
8172
8173 vstart += ent.vd_aux;
8174
8175 eaux = (Elf_External_Verdaux *) vstart;
8176
8177 aux.vda_name = BYTE_GET (eaux->vda_name);
8178 aux.vda_next = BYTE_GET (eaux->vda_next);
8179
8180 if (VALID_DYNAMIC_NAME (aux.vda_name))
8181 printf (_("Name: %s\n"), GET_DYNAMIC_NAME (aux.vda_name));
8182 else
8183 printf (_("Name index: %ld\n"), aux.vda_name);
8184
8185 isum = idx + ent.vd_aux;
8186
8187 for (j = 1; j < ent.vd_cnt; j++)
8188 {
8189 /* Check for overflow. */
8190 if ((unsigned char *)(vstart + aux.vda_next) < (unsigned char *) vstart
8191 || (unsigned char *)(vstart + aux.vda_next) > (unsigned char *) endbuf)
8192 break;
8193
8194 isum += aux.vda_next;
8195 vstart += aux.vda_next;
8196
8197 eaux = (Elf_External_Verdaux *) vstart;
8198 if (vstart + sizeof (*eaux) > endbuf)
8199 break;
8200
8201 aux.vda_name = BYTE_GET (eaux->vda_name);
8202 aux.vda_next = BYTE_GET (eaux->vda_next);
8203
8204 if (VALID_DYNAMIC_NAME (aux.vda_name))
8205 printf (_(" %#06x: Parent %d: %s\n"),
8206 isum, j, GET_DYNAMIC_NAME (aux.vda_name));
8207 else
8208 printf (_(" %#06x: Parent %d, name index: %ld\n"),
8209 isum, j, aux.vda_name);
8210 }
8211
8212 if (j < ent.vd_cnt)
8213 printf (_(" Version def aux past end of section\n"));
8214
8215 idx += ent.vd_next;
8216 }
8217
8218 if (cnt < section->sh_info)
8219 printf (_(" Version definition past end of section\n"));
8220
8221 free (edefs);
8222 }
8223 break;
8224
8225 case SHT_GNU_verneed:
8226 {
8227 Elf_External_Verneed * eneed;
8228 unsigned int idx;
8229 unsigned int cnt;
8230 char * endbuf;
8231
8232 found = 1;
8233
8234 printf (_("\nVersion needs section '%s' contains %u entries:\n"),
8235 SECTION_NAME (section), section->sh_info);
8236
8237 printf (_(" Addr: 0x"));
8238 printf_vma (section->sh_addr);
8239 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
8240 (unsigned long) section->sh_offset, section->sh_link,
8241 section->sh_link < elf_header.e_shnum
8242 ? SECTION_NAME (section_headers + section->sh_link)
8243 : _("<corrupt>"));
8244
8245 eneed = (Elf_External_Verneed *) get_data (NULL, file,
8246 section->sh_offset, 1,
8247 section->sh_size,
8248 _("version need section"));
8249 if (!eneed)
8250 break;
8251 endbuf = (char *) eneed + section->sh_size;
8252
8253 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
8254 {
8255 Elf_External_Verneed * entry;
8256 Elf_Internal_Verneed ent;
8257 int j;
8258 int isum;
8259 char * vstart;
8260
8261 if ((unsigned char *) eneed + idx < (unsigned char *) eneed)
8262 break;
8263
8264 vstart = ((char *) eneed) + idx;
8265 if (vstart + sizeof (*entry) > endbuf)
8266 break;
8267
8268 entry = (Elf_External_Verneed *) vstart;
8269
8270 ent.vn_version = BYTE_GET (entry->vn_version);
8271 ent.vn_cnt = BYTE_GET (entry->vn_cnt);
8272 ent.vn_file = BYTE_GET (entry->vn_file);
8273 ent.vn_aux = BYTE_GET (entry->vn_aux);
8274 ent.vn_next = BYTE_GET (entry->vn_next);
8275
8276 printf (_(" %#06x: Version: %d"), idx, ent.vn_version);
8277
8278 if (VALID_DYNAMIC_NAME (ent.vn_file))
8279 printf (_(" File: %s"), GET_DYNAMIC_NAME (ent.vn_file));
8280 else
8281 printf (_(" File: %lx"), ent.vn_file);
8282
8283 printf (_(" Cnt: %d\n"), ent.vn_cnt);
8284
8285 /* Check for overflow. */
8286 if ((unsigned char *)(vstart + ent.vn_aux) < (unsigned char *) vstart
8287 || (unsigned char *)(vstart + ent.vn_aux) > (unsigned char *) endbuf)
8288 break;
8289
8290 vstart += ent.vn_aux;
8291
8292 for (j = 0, isum = idx + ent.vn_aux; j < ent.vn_cnt; ++j)
8293 {
8294 Elf_External_Vernaux * eaux;
8295 Elf_Internal_Vernaux aux;
8296
8297 if (vstart + sizeof (*eaux) > endbuf)
8298 break;
8299 eaux = (Elf_External_Vernaux *) vstart;
8300
8301 aux.vna_hash = BYTE_GET (eaux->vna_hash);
8302 aux.vna_flags = BYTE_GET (eaux->vna_flags);
8303 aux.vna_other = BYTE_GET (eaux->vna_other);
8304 aux.vna_name = BYTE_GET (eaux->vna_name);
8305 aux.vna_next = BYTE_GET (eaux->vna_next);
8306
8307 if (VALID_DYNAMIC_NAME (aux.vna_name))
8308 printf (_(" %#06x: Name: %s"),
8309 isum, GET_DYNAMIC_NAME (aux.vna_name));
8310 else
8311 printf (_(" %#06x: Name index: %lx"),
8312 isum, aux.vna_name);
8313
8314 printf (_(" Flags: %s Version: %d\n"),
8315 get_ver_flags (aux.vna_flags), aux.vna_other);
8316
8317 /* Check for overflow. */
8318 if ((unsigned char *)(vstart + aux.vna_next) < (unsigned char *) vstart
8319 || (unsigned char *)(vstart + aux.vna_next) > (unsigned char *) endbuf)
8320 break;
8321
8322 isum += aux.vna_next;
8323 vstart += aux.vna_next;
8324 }
8325 if (j < ent.vn_cnt)
8326 printf (_(" Version need aux past end of section\n"));
8327
8328 idx += ent.vn_next;
8329 }
8330 if (cnt < section->sh_info)
8331 printf (_(" Version need past end of section\n"));
8332
8333 free (eneed);
8334 }
8335 break;
8336
8337 case SHT_GNU_versym:
8338 {
8339 Elf_Internal_Shdr * link_section;
8340 int total;
8341 int cnt;
8342 unsigned char * edata;
8343 unsigned short * data;
8344 char * strtab;
8345 Elf_Internal_Sym * symbols;
8346 Elf_Internal_Shdr * string_sec;
8347 unsigned long num_syms;
8348 long off;
8349
8350 if (section->sh_link >= elf_header.e_shnum)
8351 break;
8352
8353 link_section = section_headers + section->sh_link;
8354 total = section->sh_size / sizeof (Elf_External_Versym);
8355
8356 if (link_section->sh_link >= elf_header.e_shnum)
8357 break;
8358
8359 found = 1;
8360
8361 symbols = GET_ELF_SYMBOLS (file, link_section, & num_syms);
8362 if (symbols == NULL)
8363 break;
8364
8365 string_sec = section_headers + link_section->sh_link;
8366
8367 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
8368 string_sec->sh_size,
8369 _("version string table"));
8370 if (!strtab)
8371 {
8372 free (symbols);
8373 break;
8374 }
8375
8376 printf (_("\nVersion symbols section '%s' contains %d entries:\n"),
8377 SECTION_NAME (section), total);
8378
8379 printf (_(" Addr: "));
8380 printf_vma (section->sh_addr);
8381 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
8382 (unsigned long) section->sh_offset, section->sh_link,
8383 SECTION_NAME (link_section));
8384
8385 off = offset_from_vma (file,
8386 version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
8387 total * sizeof (short));
8388 edata = (unsigned char *) get_data (NULL, file, off, total,
8389 sizeof (short),
8390 _("version symbol data"));
8391 if (!edata)
8392 {
8393 free (strtab);
8394 free (symbols);
8395 break;
8396 }
8397
8398 data = (short unsigned int *) cmalloc (total, sizeof (short));
8399
8400 for (cnt = total; cnt --;)
8401 data[cnt] = byte_get (edata + cnt * sizeof (short),
8402 sizeof (short));
8403
8404 free (edata);
8405
8406 for (cnt = 0; cnt < total; cnt += 4)
8407 {
8408 int j, nn;
8409 int check_def, check_need;
8410 char * name;
8411
8412 printf (" %03x:", cnt);
8413
8414 for (j = 0; (j < 4) && (cnt + j) < total; ++j)
8415 switch (data[cnt + j])
8416 {
8417 case 0:
8418 fputs (_(" 0 (*local*) "), stdout);
8419 break;
8420
8421 case 1:
8422 fputs (_(" 1 (*global*) "), stdout);
8423 break;
8424
8425 default:
8426 nn = printf ("%4x%c", data[cnt + j] & VERSYM_VERSION,
8427 data[cnt + j] & VERSYM_HIDDEN ? 'h' : ' ');
8428
8429 /* If this index value is greater than the size of the symbols
8430 array, break to avoid an out-of-bounds read. */
8431 if ((unsigned long)(cnt + j) >= num_syms)
8432 {
8433 warn (_("invalid index into symbol array\n"));
8434 break;
8435 }
8436
8437 check_def = 1;
8438 check_need = 1;
8439 if (symbols[cnt + j].st_shndx >= elf_header.e_shnum
8440 || section_headers[symbols[cnt + j].st_shndx].sh_type
8441 != SHT_NOBITS)
8442 {
8443 if (symbols[cnt + j].st_shndx == SHN_UNDEF)
8444 check_def = 0;
8445 else
8446 check_need = 0;
8447 }
8448
8449 if (check_need
8450 && version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
8451 {
8452 Elf_Internal_Verneed ivn;
8453 unsigned long offset;
8454
8455 offset = offset_from_vma
8456 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
8457 sizeof (Elf_External_Verneed));
8458
8459 do
8460 {
8461 Elf_Internal_Vernaux ivna;
8462 Elf_External_Verneed evn;
8463 Elf_External_Vernaux evna;
8464 unsigned long a_off;
8465
8466 if (get_data (&evn, file, offset, sizeof (evn), 1,
8467 _("version need")) == NULL)
8468 break;
8469
8470 ivn.vn_aux = BYTE_GET (evn.vn_aux);
8471 ivn.vn_next = BYTE_GET (evn.vn_next);
8472
8473 a_off = offset + ivn.vn_aux;
8474
8475 do
8476 {
8477 if (get_data (&evna, file, a_off, sizeof (evna),
8478 1, _("version need aux (2)")) == NULL)
8479 {
8480 ivna.vna_next = 0;
8481 ivna.vna_other = 0;
8482 }
8483 else
8484 {
8485 ivna.vna_next = BYTE_GET (evna.vna_next);
8486 ivna.vna_other = BYTE_GET (evna.vna_other);
8487 }
8488
8489 a_off += ivna.vna_next;
8490 }
8491 while (ivna.vna_other != data[cnt + j]
8492 && ivna.vna_next != 0);
8493
8494 if (ivna.vna_other == data[cnt + j])
8495 {
8496 ivna.vna_name = BYTE_GET (evna.vna_name);
8497
8498 if (ivna.vna_name >= string_sec->sh_size)
8499 name = _("*invalid*");
8500 else
8501 name = strtab + ivna.vna_name;
8502 nn += printf ("(%s%-*s",
8503 name,
8504 12 - (int) strlen (name),
8505 ")");
8506 check_def = 0;
8507 break;
8508 }
8509
8510 offset += ivn.vn_next;
8511 }
8512 while (ivn.vn_next);
8513 }
8514
8515 if (check_def && data[cnt + j] != 0x8001
8516 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
8517 {
8518 Elf_Internal_Verdef ivd;
8519 Elf_External_Verdef evd;
8520 unsigned long offset;
8521
8522 offset = offset_from_vma
8523 (file, version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
8524 sizeof evd);
8525
8526 do
8527 {
8528 if (get_data (&evd, file, offset, sizeof (evd), 1,
8529 _("version def")) == NULL)
8530 {
8531 ivd.vd_next = 0;
8532 ivd.vd_ndx = 0;
8533 }
8534 else
8535 {
8536 ivd.vd_next = BYTE_GET (evd.vd_next);
8537 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
8538 }
8539
8540 offset += ivd.vd_next;
8541 }
8542 while (ivd.vd_ndx != (data[cnt + j] & VERSYM_VERSION)
8543 && ivd.vd_next != 0);
8544
8545 if (ivd.vd_ndx == (data[cnt + j] & VERSYM_VERSION))
8546 {
8547 Elf_External_Verdaux evda;
8548 Elf_Internal_Verdaux ivda;
8549
8550 ivd.vd_aux = BYTE_GET (evd.vd_aux);
8551
8552 if (get_data (&evda, file,
8553 offset - ivd.vd_next + ivd.vd_aux,
8554 sizeof (evda), 1,
8555 _("version def aux")) == NULL)
8556 break;
8557
8558 ivda.vda_name = BYTE_GET (evda.vda_name);
8559
8560 if (ivda.vda_name >= string_sec->sh_size)
8561 name = _("*invalid*");
8562 else
8563 name = strtab + ivda.vda_name;
8564 nn += printf ("(%s%-*s",
8565 name,
8566 12 - (int) strlen (name),
8567 ")");
8568 }
8569 }
8570
8571 if (nn < 18)
8572 printf ("%*c", 18 - nn, ' ');
8573 }
8574
8575 putchar ('\n');
8576 }
8577
8578 free (data);
8579 free (strtab);
8580 free (symbols);
8581 }
8582 break;
8583
8584 default:
8585 break;
8586 }
8587 }
8588
8589 if (! found)
8590 printf (_("\nNo version information found in this file.\n"));
8591
8592 return 1;
8593 }
8594
8595 static const char *
8596 get_symbol_binding (unsigned int binding)
8597 {
8598 static char buff[32];
8599
8600 switch (binding)
8601 {
8602 case STB_LOCAL: return "LOCAL";
8603 case STB_GLOBAL: return "GLOBAL";
8604 case STB_WEAK: return "WEAK";
8605 default:
8606 if (binding >= STB_LOPROC && binding <= STB_HIPROC)
8607 snprintf (buff, sizeof (buff), _("<processor specific>: %d"),
8608 binding);
8609 else if (binding >= STB_LOOS && binding <= STB_HIOS)
8610 {
8611 if (binding == STB_GNU_UNIQUE
8612 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
8613 /* GNU is still using the default value 0. */
8614 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
8615 return "UNIQUE";
8616 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), binding);
8617 }
8618 else
8619 snprintf (buff, sizeof (buff), _("<unknown>: %d"), binding);
8620 return buff;
8621 }
8622 }
8623
8624 static const char *
8625 get_symbol_type (unsigned int type)
8626 {
8627 static char buff[32];
8628
8629 switch (type)
8630 {
8631 case STT_NOTYPE: return "NOTYPE";
8632 case STT_OBJECT: return "OBJECT";
8633 case STT_FUNC: return "FUNC";
8634 case STT_SECTION: return "SECTION";
8635 case STT_FILE: return "FILE";
8636 case STT_COMMON: return "COMMON";
8637 case STT_TLS: return "TLS";
8638 case STT_RELC: return "RELC";
8639 case STT_SRELC: return "SRELC";
8640 default:
8641 if (type >= STT_LOPROC && type <= STT_HIPROC)
8642 {
8643 if (elf_header.e_machine == EM_ARM && type == STT_ARM_TFUNC)
8644 return "THUMB_FUNC";
8645
8646 if (elf_header.e_machine == EM_SPARCV9 && type == STT_REGISTER)
8647 return "REGISTER";
8648
8649 if (elf_header.e_machine == EM_PARISC && type == STT_PARISC_MILLI)
8650 return "PARISC_MILLI";
8651
8652 snprintf (buff, sizeof (buff), _("<processor specific>: %d"), type);
8653 }
8654 else if (type >= STT_LOOS && type <= STT_HIOS)
8655 {
8656 if (elf_header.e_machine == EM_PARISC)
8657 {
8658 if (type == STT_HP_OPAQUE)
8659 return "HP_OPAQUE";
8660 if (type == STT_HP_STUB)
8661 return "HP_STUB";
8662 }
8663
8664 if (type == STT_GNU_IFUNC
8665 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
8666 /* GNU is still using the default value 0. */
8667 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
8668 return "IFUNC";
8669
8670 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), type);
8671 }
8672 else
8673 snprintf (buff, sizeof (buff), _("<unknown>: %d"), type);
8674 return buff;
8675 }
8676 }
8677
8678 static const char *
8679 get_symbol_visibility (unsigned int visibility)
8680 {
8681 switch (visibility)
8682 {
8683 case STV_DEFAULT: return "DEFAULT";
8684 case STV_INTERNAL: return "INTERNAL";
8685 case STV_HIDDEN: return "HIDDEN";
8686 case STV_PROTECTED: return "PROTECTED";
8687 default: abort ();
8688 }
8689 }
8690
8691 static const char *
8692 get_mips_symbol_other (unsigned int other)
8693 {
8694 switch (other)
8695 {
8696 case STO_OPTIONAL:
8697 return "OPTIONAL";
8698 case STO_MIPS_PLT:
8699 return "MIPS PLT";
8700 case STO_MIPS_PIC:
8701 return "MIPS PIC";
8702 case STO_MICROMIPS:
8703 return "MICROMIPS";
8704 case STO_MICROMIPS | STO_MIPS_PIC:
8705 return "MICROMIPS, MIPS PIC";
8706 case STO_MIPS16:
8707 return "MIPS16";
8708 default:
8709 return NULL;
8710 }
8711 }
8712
8713 static const char *
8714 get_ia64_symbol_other (unsigned int other)
8715 {
8716 if (is_ia64_vms ())
8717 {
8718 static char res[32];
8719
8720 res[0] = 0;
8721
8722 /* Function types is for images and .STB files only. */
8723 switch (elf_header.e_type)
8724 {
8725 case ET_DYN:
8726 case ET_EXEC:
8727 switch (VMS_ST_FUNC_TYPE (other))
8728 {
8729 case VMS_SFT_CODE_ADDR:
8730 strcat (res, " CA");
8731 break;
8732 case VMS_SFT_SYMV_IDX:
8733 strcat (res, " VEC");
8734 break;
8735 case VMS_SFT_FD:
8736 strcat (res, " FD");
8737 break;
8738 case VMS_SFT_RESERVE:
8739 strcat (res, " RSV");
8740 break;
8741 default:
8742 abort ();
8743 }
8744 break;
8745 default:
8746 break;
8747 }
8748 switch (VMS_ST_LINKAGE (other))
8749 {
8750 case VMS_STL_IGNORE:
8751 strcat (res, " IGN");
8752 break;
8753 case VMS_STL_RESERVE:
8754 strcat (res, " RSV");
8755 break;
8756 case VMS_STL_STD:
8757 strcat (res, " STD");
8758 break;
8759 case VMS_STL_LNK:
8760 strcat (res, " LNK");
8761 break;
8762 default:
8763 abort ();
8764 }
8765
8766 if (res[0] != 0)
8767 return res + 1;
8768 else
8769 return res;
8770 }
8771 return NULL;
8772 }
8773
8774 static const char *
8775 get_symbol_other (unsigned int other)
8776 {
8777 const char * result = NULL;
8778 static char buff [32];
8779
8780 if (other == 0)
8781 return "";
8782
8783 switch (elf_header.e_machine)
8784 {
8785 case EM_MIPS:
8786 result = get_mips_symbol_other (other);
8787 break;
8788 case EM_IA_64:
8789 result = get_ia64_symbol_other (other);
8790 break;
8791 default:
8792 break;
8793 }
8794
8795 if (result)
8796 return result;
8797
8798 snprintf (buff, sizeof buff, _("<other>: %x"), other);
8799 return buff;
8800 }
8801
8802 static const char *
8803 get_symbol_index_type (unsigned int type)
8804 {
8805 static char buff[32];
8806
8807 switch (type)
8808 {
8809 case SHN_UNDEF: return "UND";
8810 case SHN_ABS: return "ABS";
8811 case SHN_COMMON: return "COM";
8812 default:
8813 if (type == SHN_IA_64_ANSI_COMMON
8814 && elf_header.e_machine == EM_IA_64
8815 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX)
8816 return "ANSI_COM";
8817 else if ((elf_header.e_machine == EM_X86_64
8818 || elf_header.e_machine == EM_L1OM
8819 || elf_header.e_machine == EM_K1OM)
8820 && type == SHN_X86_64_LCOMMON)
8821 return "LARGE_COM";
8822 else if ((type == SHN_MIPS_SCOMMON
8823 && elf_header.e_machine == EM_MIPS)
8824 || (type == SHN_TIC6X_SCOMMON
8825 && elf_header.e_machine == EM_TI_C6000))
8826 return "SCOM";
8827 else if (type == SHN_MIPS_SUNDEFINED
8828 && elf_header.e_machine == EM_MIPS)
8829 return "SUND";
8830 else if (type >= SHN_LOPROC && type <= SHN_HIPROC)
8831 sprintf (buff, "PRC[0x%04x]", type & 0xffff);
8832 else if (type >= SHN_LOOS && type <= SHN_HIOS)
8833 sprintf (buff, "OS [0x%04x]", type & 0xffff);
8834 else if (type >= SHN_LORESERVE)
8835 sprintf (buff, "RSV[0x%04x]", type & 0xffff);
8836 else
8837 sprintf (buff, "%3d", type);
8838 break;
8839 }
8840
8841 return buff;
8842 }
8843
8844 static bfd_vma *
8845 get_dynamic_data (FILE * file, unsigned int number, unsigned int ent_size)
8846 {
8847 unsigned char * e_data;
8848 bfd_vma * i_data;
8849
8850 e_data = (unsigned char *) cmalloc (number, ent_size);
8851
8852 if (e_data == NULL)
8853 {
8854 error (_("Out of memory\n"));
8855 return NULL;
8856 }
8857
8858 if (fread (e_data, ent_size, number, file) != number)
8859 {
8860 error (_("Unable to read in dynamic data\n"));
8861 return NULL;
8862 }
8863
8864 i_data = (bfd_vma *) cmalloc (number, sizeof (*i_data));
8865
8866 if (i_data == NULL)
8867 {
8868 error (_("Out of memory\n"));
8869 free (e_data);
8870 return NULL;
8871 }
8872
8873 while (number--)
8874 i_data[number] = byte_get (e_data + number * ent_size, ent_size);
8875
8876 free (e_data);
8877
8878 return i_data;
8879 }
8880
8881 static void
8882 print_dynamic_symbol (bfd_vma si, unsigned long hn)
8883 {
8884 Elf_Internal_Sym * psym;
8885 int n;
8886
8887 psym = dynamic_symbols + si;
8888
8889 n = print_vma (si, DEC_5);
8890 if (n < 5)
8891 fputs (" " + n, stdout);
8892 printf (" %3lu: ", hn);
8893 print_vma (psym->st_value, LONG_HEX);
8894 putchar (' ');
8895 print_vma (psym->st_size, DEC_5);
8896
8897 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
8898 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
8899 printf (" %-7s", get_symbol_visibility (ELF_ST_VISIBILITY (psym->st_other)));
8900 /* Check to see if any other bits in the st_other field are set.
8901 Note - displaying this information disrupts the layout of the
8902 table being generated, but for the moment this case is very
8903 rare. */
8904 if (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other))
8905 printf (" [%s] ", get_symbol_other (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other)));
8906 printf (" %3.3s ", get_symbol_index_type (psym->st_shndx));
8907 if (VALID_DYNAMIC_NAME (psym->st_name))
8908 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
8909 else
8910 printf (_(" <corrupt: %14ld>"), psym->st_name);
8911 putchar ('\n');
8912 }
8913
8914 /* Dump the symbol table. */
8915 static int
8916 process_symbol_table (FILE * file)
8917 {
8918 Elf_Internal_Shdr * section;
8919 bfd_vma nbuckets = 0;
8920 bfd_vma nchains = 0;
8921 bfd_vma * buckets = NULL;
8922 bfd_vma * chains = NULL;
8923 bfd_vma ngnubuckets = 0;
8924 bfd_vma * gnubuckets = NULL;
8925 bfd_vma * gnuchains = NULL;
8926 bfd_vma gnusymidx = 0;
8927
8928 if (!do_syms && !do_dyn_syms && !do_histogram)
8929 return 1;
8930
8931 if (dynamic_info[DT_HASH]
8932 && (do_histogram
8933 || (do_using_dynamic
8934 && !do_dyn_syms
8935 && dynamic_strings != NULL)))
8936 {
8937 unsigned char nb[8];
8938 unsigned char nc[8];
8939 int hash_ent_size = 4;
8940
8941 if ((elf_header.e_machine == EM_ALPHA
8942 || elf_header.e_machine == EM_S390
8943 || elf_header.e_machine == EM_S390_OLD)
8944 && elf_header.e_ident[EI_CLASS] == ELFCLASS64)
8945 hash_ent_size = 8;
8946
8947 if (fseek (file,
8948 (archive_file_offset
8949 + offset_from_vma (file, dynamic_info[DT_HASH],
8950 sizeof nb + sizeof nc)),
8951 SEEK_SET))
8952 {
8953 error (_("Unable to seek to start of dynamic information\n"));
8954 goto no_hash;
8955 }
8956
8957 if (fread (nb, hash_ent_size, 1, file) != 1)
8958 {
8959 error (_("Failed to read in number of buckets\n"));
8960 goto no_hash;
8961 }
8962
8963 if (fread (nc, hash_ent_size, 1, file) != 1)
8964 {
8965 error (_("Failed to read in number of chains\n"));
8966 goto no_hash;
8967 }
8968
8969 nbuckets = byte_get (nb, hash_ent_size);
8970 nchains = byte_get (nc, hash_ent_size);
8971
8972 buckets = get_dynamic_data (file, nbuckets, hash_ent_size);
8973 chains = get_dynamic_data (file, nchains, hash_ent_size);
8974
8975 no_hash:
8976 if (buckets == NULL || chains == NULL)
8977 {
8978 if (do_using_dynamic)
8979 return 0;
8980 free (buckets);
8981 free (chains);
8982 buckets = NULL;
8983 chains = NULL;
8984 nbuckets = 0;
8985 nchains = 0;
8986 }
8987 }
8988
8989 if (dynamic_info_DT_GNU_HASH
8990 && (do_histogram
8991 || (do_using_dynamic
8992 && !do_dyn_syms
8993 && dynamic_strings != NULL)))
8994 {
8995 unsigned char nb[16];
8996 bfd_vma i, maxchain = 0xffffffff, bitmaskwords;
8997 bfd_vma buckets_vma;
8998
8999 if (fseek (file,
9000 (archive_file_offset
9001 + offset_from_vma (file, dynamic_info_DT_GNU_HASH,
9002 sizeof nb)),
9003 SEEK_SET))
9004 {
9005 error (_("Unable to seek to start of dynamic information\n"));
9006 goto no_gnu_hash;
9007 }
9008
9009 if (fread (nb, 16, 1, file) != 1)
9010 {
9011 error (_("Failed to read in number of buckets\n"));
9012 goto no_gnu_hash;
9013 }
9014
9015 ngnubuckets = byte_get (nb, 4);
9016 gnusymidx = byte_get (nb + 4, 4);
9017 bitmaskwords = byte_get (nb + 8, 4);
9018 buckets_vma = dynamic_info_DT_GNU_HASH + 16;
9019 if (is_32bit_elf)
9020 buckets_vma += bitmaskwords * 4;
9021 else
9022 buckets_vma += bitmaskwords * 8;
9023
9024 if (fseek (file,
9025 (archive_file_offset
9026 + offset_from_vma (file, buckets_vma, 4)),
9027 SEEK_SET))
9028 {
9029 error (_("Unable to seek to start of dynamic information\n"));
9030 goto no_gnu_hash;
9031 }
9032
9033 gnubuckets = get_dynamic_data (file, ngnubuckets, 4);
9034
9035 if (gnubuckets == NULL)
9036 goto no_gnu_hash;
9037
9038 for (i = 0; i < ngnubuckets; i++)
9039 if (gnubuckets[i] != 0)
9040 {
9041 if (gnubuckets[i] < gnusymidx)
9042 return 0;
9043
9044 if (maxchain == 0xffffffff || gnubuckets[i] > maxchain)
9045 maxchain = gnubuckets[i];
9046 }
9047
9048 if (maxchain == 0xffffffff)
9049 goto no_gnu_hash;
9050
9051 maxchain -= gnusymidx;
9052
9053 if (fseek (file,
9054 (archive_file_offset
9055 + offset_from_vma (file, buckets_vma
9056 + 4 * (ngnubuckets + maxchain), 4)),
9057 SEEK_SET))
9058 {
9059 error (_("Unable to seek to start of dynamic information\n"));
9060 goto no_gnu_hash;
9061 }
9062
9063 do
9064 {
9065 if (fread (nb, 4, 1, file) != 1)
9066 {
9067 error (_("Failed to determine last chain length\n"));
9068 goto no_gnu_hash;
9069 }
9070
9071 if (maxchain + 1 == 0)
9072 goto no_gnu_hash;
9073
9074 ++maxchain;
9075 }
9076 while ((byte_get (nb, 4) & 1) == 0);
9077
9078 if (fseek (file,
9079 (archive_file_offset
9080 + offset_from_vma (file, buckets_vma + 4 * ngnubuckets, 4)),
9081 SEEK_SET))
9082 {
9083 error (_("Unable to seek to start of dynamic information\n"));
9084 goto no_gnu_hash;
9085 }
9086
9087 gnuchains = get_dynamic_data (file, maxchain, 4);
9088
9089 no_gnu_hash:
9090 if (gnuchains == NULL)
9091 {
9092 free (gnubuckets);
9093 gnubuckets = NULL;
9094 ngnubuckets = 0;
9095 if (do_using_dynamic)
9096 return 0;
9097 }
9098 }
9099
9100 if ((dynamic_info[DT_HASH] || dynamic_info_DT_GNU_HASH)
9101 && do_syms
9102 && do_using_dynamic
9103 && dynamic_strings != NULL)
9104 {
9105 unsigned long hn;
9106
9107 if (dynamic_info[DT_HASH])
9108 {
9109 bfd_vma si;
9110
9111 printf (_("\nSymbol table for image:\n"));
9112 if (is_32bit_elf)
9113 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9114 else
9115 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9116
9117 for (hn = 0; hn < nbuckets; hn++)
9118 {
9119 if (! buckets[hn])
9120 continue;
9121
9122 for (si = buckets[hn]; si < nchains && si > 0; si = chains[si])
9123 print_dynamic_symbol (si, hn);
9124 }
9125 }
9126
9127 if (dynamic_info_DT_GNU_HASH)
9128 {
9129 printf (_("\nSymbol table of `.gnu.hash' for image:\n"));
9130 if (is_32bit_elf)
9131 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9132 else
9133 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9134
9135 for (hn = 0; hn < ngnubuckets; ++hn)
9136 if (gnubuckets[hn] != 0)
9137 {
9138 bfd_vma si = gnubuckets[hn];
9139 bfd_vma off = si - gnusymidx;
9140
9141 do
9142 {
9143 print_dynamic_symbol (si, hn);
9144 si++;
9145 }
9146 while ((gnuchains[off++] & 1) == 0);
9147 }
9148 }
9149 }
9150 else if (do_dyn_syms || (do_syms && !do_using_dynamic))
9151 {
9152 unsigned int i;
9153
9154 for (i = 0, section = section_headers;
9155 i < elf_header.e_shnum;
9156 i++, section++)
9157 {
9158 unsigned int si;
9159 char * strtab = NULL;
9160 unsigned long int strtab_size = 0;
9161 Elf_Internal_Sym * symtab;
9162 Elf_Internal_Sym * psym;
9163 unsigned long num_syms;
9164
9165 if ((section->sh_type != SHT_SYMTAB
9166 && section->sh_type != SHT_DYNSYM)
9167 || (!do_syms
9168 && section->sh_type == SHT_SYMTAB))
9169 continue;
9170
9171 if (section->sh_entsize == 0)
9172 {
9173 printf (_("\nSymbol table '%s' has a sh_entsize of zero!\n"),
9174 SECTION_NAME (section));
9175 continue;
9176 }
9177
9178 printf (_("\nSymbol table '%s' contains %lu entries:\n"),
9179 SECTION_NAME (section),
9180 (unsigned long) (section->sh_size / section->sh_entsize));
9181
9182 if (is_32bit_elf)
9183 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
9184 else
9185 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
9186
9187 symtab = GET_ELF_SYMBOLS (file, section, & num_syms);
9188 if (symtab == NULL)
9189 continue;
9190
9191 if (section->sh_link == elf_header.e_shstrndx)
9192 {
9193 strtab = string_table;
9194 strtab_size = string_table_length;
9195 }
9196 else if (section->sh_link < elf_header.e_shnum)
9197 {
9198 Elf_Internal_Shdr * string_sec;
9199
9200 string_sec = section_headers + section->sh_link;
9201
9202 strtab = (char *) get_data (NULL, file, string_sec->sh_offset,
9203 1, string_sec->sh_size,
9204 _("string table"));
9205 strtab_size = strtab != NULL ? string_sec->sh_size : 0;
9206 }
9207
9208 for (si = 0, psym = symtab; si < num_syms; si++, psym++)
9209 {
9210 printf ("%6d: ", si);
9211 print_vma (psym->st_value, LONG_HEX);
9212 putchar (' ');
9213 print_vma (psym->st_size, DEC_5);
9214 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
9215 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
9216 printf (" %-7s", get_symbol_visibility (ELF_ST_VISIBILITY (psym->st_other)));
9217 /* Check to see if any other bits in the st_other field are set.
9218 Note - displaying this information disrupts the layout of the
9219 table being generated, but for the moment this case is very rare. */
9220 if (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other))
9221 printf (" [%s] ", get_symbol_other (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other)));
9222 printf (" %4s ", get_symbol_index_type (psym->st_shndx));
9223 print_symbol (25, psym->st_name < strtab_size
9224 ? strtab + psym->st_name : _("<corrupt>"));
9225
9226 if (section->sh_type == SHT_DYNSYM
9227 && version_info[DT_VERSIONTAGIDX (DT_VERSYM)] != 0)
9228 {
9229 unsigned char data[2];
9230 unsigned short vers_data;
9231 unsigned long offset;
9232 int is_nobits;
9233 int check_def;
9234
9235 offset = offset_from_vma
9236 (file, version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
9237 sizeof data + si * sizeof (vers_data));
9238
9239 if (get_data (&data, file, offset + si * sizeof (vers_data),
9240 sizeof (data), 1, _("version data")) == NULL)
9241 break;
9242
9243 vers_data = byte_get (data, 2);
9244
9245 is_nobits = (psym->st_shndx < elf_header.e_shnum
9246 && section_headers[psym->st_shndx].sh_type
9247 == SHT_NOBITS);
9248
9249 check_def = (psym->st_shndx != SHN_UNDEF);
9250
9251 if ((vers_data & VERSYM_HIDDEN) || vers_data > 1)
9252 {
9253 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)]
9254 && (is_nobits || ! check_def))
9255 {
9256 Elf_External_Verneed evn;
9257 Elf_Internal_Verneed ivn;
9258 Elf_Internal_Vernaux ivna;
9259
9260 /* We must test both. */
9261 offset = offset_from_vma
9262 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
9263 sizeof evn);
9264
9265 do
9266 {
9267 unsigned long vna_off;
9268
9269 if (get_data (&evn, file, offset, sizeof (evn), 1,
9270 _("version need")) == NULL)
9271 {
9272 ivna.vna_next = 0;
9273 ivna.vna_other = 0;
9274 ivna.vna_name = 0;
9275 break;
9276 }
9277
9278 ivn.vn_aux = BYTE_GET (evn.vn_aux);
9279 ivn.vn_next = BYTE_GET (evn.vn_next);
9280
9281 vna_off = offset + ivn.vn_aux;
9282
9283 do
9284 {
9285 Elf_External_Vernaux evna;
9286
9287 if (get_data (&evna, file, vna_off,
9288 sizeof (evna), 1,
9289 _("version need aux (3)")) == NULL)
9290 {
9291 ivna.vna_next = 0;
9292 ivna.vna_other = 0;
9293 ivna.vna_name = 0;
9294 }
9295 else
9296 {
9297 ivna.vna_other = BYTE_GET (evna.vna_other);
9298 ivna.vna_next = BYTE_GET (evna.vna_next);
9299 ivna.vna_name = BYTE_GET (evna.vna_name);
9300 }
9301
9302 vna_off += ivna.vna_next;
9303 }
9304 while (ivna.vna_other != vers_data
9305 && ivna.vna_next != 0);
9306
9307 if (ivna.vna_other == vers_data)
9308 break;
9309
9310 offset += ivn.vn_next;
9311 }
9312 while (ivn.vn_next != 0);
9313
9314 if (ivna.vna_other == vers_data)
9315 {
9316 printf ("@%s (%d)",
9317 ivna.vna_name < strtab_size
9318 ? strtab + ivna.vna_name : _("<corrupt>"),
9319 ivna.vna_other);
9320 check_def = 0;
9321 }
9322 else if (! is_nobits)
9323 error (_("bad dynamic symbol\n"));
9324 else
9325 check_def = 1;
9326 }
9327
9328 if (check_def)
9329 {
9330 if (vers_data != 0x8001
9331 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
9332 {
9333 Elf_Internal_Verdef ivd;
9334 Elf_Internal_Verdaux ivda;
9335 Elf_External_Verdaux evda;
9336 unsigned long off;
9337
9338 off = offset_from_vma
9339 (file,
9340 version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
9341 sizeof (Elf_External_Verdef));
9342
9343 do
9344 {
9345 Elf_External_Verdef evd;
9346
9347 if (get_data (&evd, file, off, sizeof (evd),
9348 1, _("version def")) == NULL)
9349 {
9350 ivd.vd_ndx = 0;
9351 ivd.vd_aux = 0;
9352 ivd.vd_next = 0;
9353 }
9354 else
9355 {
9356 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
9357 ivd.vd_aux = BYTE_GET (evd.vd_aux);
9358 ivd.vd_next = BYTE_GET (evd.vd_next);
9359 }
9360
9361 off += ivd.vd_next;
9362 }
9363 while (ivd.vd_ndx != (vers_data & VERSYM_VERSION)
9364 && ivd.vd_next != 0);
9365
9366 off -= ivd.vd_next;
9367 off += ivd.vd_aux;
9368
9369 if (get_data (&evda, file, off, sizeof (evda),
9370 1, _("version def aux")) == NULL)
9371 break;
9372
9373 ivda.vda_name = BYTE_GET (evda.vda_name);
9374
9375 if (psym->st_name != ivda.vda_name)
9376 printf ((vers_data & VERSYM_HIDDEN)
9377 ? "@%s" : "@@%s",
9378 ivda.vda_name < strtab_size
9379 ? strtab + ivda.vda_name : _("<corrupt>"));
9380 }
9381 }
9382 }
9383 }
9384
9385 putchar ('\n');
9386 }
9387
9388 free (symtab);
9389 if (strtab != string_table)
9390 free (strtab);
9391 }
9392 }
9393 else if (do_syms)
9394 printf
9395 (_("\nDynamic symbol information is not available for displaying symbols.\n"));
9396
9397 if (do_histogram && buckets != NULL)
9398 {
9399 unsigned long * lengths;
9400 unsigned long * counts;
9401 unsigned long hn;
9402 bfd_vma si;
9403 unsigned long maxlength = 0;
9404 unsigned long nzero_counts = 0;
9405 unsigned long nsyms = 0;
9406
9407 printf (_("\nHistogram for bucket list length (total of %lu buckets):\n"),
9408 (unsigned long) nbuckets);
9409 printf (_(" Length Number %% of total Coverage\n"));
9410
9411 lengths = (unsigned long *) calloc (nbuckets, sizeof (*lengths));
9412 if (lengths == NULL)
9413 {
9414 error (_("Out of memory\n"));
9415 return 0;
9416 }
9417 for (hn = 0; hn < nbuckets; ++hn)
9418 {
9419 for (si = buckets[hn]; si > 0 && si < nchains; si = chains[si])
9420 {
9421 ++nsyms;
9422 if (maxlength < ++lengths[hn])
9423 ++maxlength;
9424 }
9425 }
9426
9427 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
9428 if (counts == NULL)
9429 {
9430 error (_("Out of memory\n"));
9431 return 0;
9432 }
9433
9434 for (hn = 0; hn < nbuckets; ++hn)
9435 ++counts[lengths[hn]];
9436
9437 if (nbuckets > 0)
9438 {
9439 unsigned long i;
9440 printf (" 0 %-10lu (%5.1f%%)\n",
9441 counts[0], (counts[0] * 100.0) / nbuckets);
9442 for (i = 1; i <= maxlength; ++i)
9443 {
9444 nzero_counts += counts[i] * i;
9445 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
9446 i, counts[i], (counts[i] * 100.0) / nbuckets,
9447 (nzero_counts * 100.0) / nsyms);
9448 }
9449 }
9450
9451 free (counts);
9452 free (lengths);
9453 }
9454
9455 if (buckets != NULL)
9456 {
9457 free (buckets);
9458 free (chains);
9459 }
9460
9461 if (do_histogram && gnubuckets != NULL)
9462 {
9463 unsigned long * lengths;
9464 unsigned long * counts;
9465 unsigned long hn;
9466 unsigned long maxlength = 0;
9467 unsigned long nzero_counts = 0;
9468 unsigned long nsyms = 0;
9469
9470 lengths = (unsigned long *) calloc (ngnubuckets, sizeof (*lengths));
9471 if (lengths == NULL)
9472 {
9473 error (_("Out of memory\n"));
9474 return 0;
9475 }
9476
9477 printf (_("\nHistogram for `.gnu.hash' bucket list length (total of %lu buckets):\n"),
9478 (unsigned long) ngnubuckets);
9479 printf (_(" Length Number %% of total Coverage\n"));
9480
9481 for (hn = 0; hn < ngnubuckets; ++hn)
9482 if (gnubuckets[hn] != 0)
9483 {
9484 bfd_vma off, length = 1;
9485
9486 for (off = gnubuckets[hn] - gnusymidx;
9487 (gnuchains[off] & 1) == 0; ++off)
9488 ++length;
9489 lengths[hn] = length;
9490 if (length > maxlength)
9491 maxlength = length;
9492 nsyms += length;
9493 }
9494
9495 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
9496 if (counts == NULL)
9497 {
9498 error (_("Out of memory\n"));
9499 return 0;
9500 }
9501
9502 for (hn = 0; hn < ngnubuckets; ++hn)
9503 ++counts[lengths[hn]];
9504
9505 if (ngnubuckets > 0)
9506 {
9507 unsigned long j;
9508 printf (" 0 %-10lu (%5.1f%%)\n",
9509 counts[0], (counts[0] * 100.0) / ngnubuckets);
9510 for (j = 1; j <= maxlength; ++j)
9511 {
9512 nzero_counts += counts[j] * j;
9513 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
9514 j, counts[j], (counts[j] * 100.0) / ngnubuckets,
9515 (nzero_counts * 100.0) / nsyms);
9516 }
9517 }
9518
9519 free (counts);
9520 free (lengths);
9521 free (gnubuckets);
9522 free (gnuchains);
9523 }
9524
9525 return 1;
9526 }
9527
9528 static int
9529 process_syminfo (FILE * file ATTRIBUTE_UNUSED)
9530 {
9531 unsigned int i;
9532
9533 if (dynamic_syminfo == NULL
9534 || !do_dynamic)
9535 /* No syminfo, this is ok. */
9536 return 1;
9537
9538 /* There better should be a dynamic symbol section. */
9539 if (dynamic_symbols == NULL || dynamic_strings == NULL)
9540 return 0;
9541
9542 if (dynamic_addr)
9543 printf (_("\nDynamic info segment at offset 0x%lx contains %d entries:\n"),
9544 dynamic_syminfo_offset, dynamic_syminfo_nent);
9545
9546 printf (_(" Num: Name BoundTo Flags\n"));
9547 for (i = 0; i < dynamic_syminfo_nent; ++i)
9548 {
9549 unsigned short int flags = dynamic_syminfo[i].si_flags;
9550
9551 printf ("%4d: ", i);
9552 if (VALID_DYNAMIC_NAME (dynamic_symbols[i].st_name))
9553 print_symbol (30, GET_DYNAMIC_NAME (dynamic_symbols[i].st_name));
9554 else
9555 printf (_("<corrupt: %19ld>"), dynamic_symbols[i].st_name);
9556 putchar (' ');
9557
9558 switch (dynamic_syminfo[i].si_boundto)
9559 {
9560 case SYMINFO_BT_SELF:
9561 fputs ("SELF ", stdout);
9562 break;
9563 case SYMINFO_BT_PARENT:
9564 fputs ("PARENT ", stdout);
9565 break;
9566 default:
9567 if (dynamic_syminfo[i].si_boundto > 0
9568 && dynamic_syminfo[i].si_boundto < dynamic_nent
9569 && VALID_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val))
9570 {
9571 print_symbol (10, GET_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val));
9572 putchar (' ' );
9573 }
9574 else
9575 printf ("%-10d ", dynamic_syminfo[i].si_boundto);
9576 break;
9577 }
9578
9579 if (flags & SYMINFO_FLG_DIRECT)
9580 printf (" DIRECT");
9581 if (flags & SYMINFO_FLG_PASSTHRU)
9582 printf (" PASSTHRU");
9583 if (flags & SYMINFO_FLG_COPY)
9584 printf (" COPY");
9585 if (flags & SYMINFO_FLG_LAZYLOAD)
9586 printf (" LAZYLOAD");
9587
9588 puts ("");
9589 }
9590
9591 return 1;
9592 }
9593
9594 /* Check to see if the given reloc needs to be handled in a target specific
9595 manner. If so then process the reloc and return TRUE otherwise return
9596 FALSE. */
9597
9598 static bfd_boolean
9599 target_specific_reloc_handling (Elf_Internal_Rela * reloc,
9600 unsigned char * start,
9601 Elf_Internal_Sym * symtab)
9602 {
9603 unsigned int reloc_type = get_reloc_type (reloc->r_info);
9604
9605 switch (elf_header.e_machine)
9606 {
9607 case EM_MN10300:
9608 case EM_CYGNUS_MN10300:
9609 {
9610 static Elf_Internal_Sym * saved_sym = NULL;
9611
9612 switch (reloc_type)
9613 {
9614 case 34: /* R_MN10300_ALIGN */
9615 return TRUE;
9616 case 33: /* R_MN10300_SYM_DIFF */
9617 saved_sym = symtab + get_reloc_symindex (reloc->r_info);
9618 return TRUE;
9619 case 1: /* R_MN10300_32 */
9620 case 2: /* R_MN10300_16 */
9621 if (saved_sym != NULL)
9622 {
9623 bfd_vma value;
9624
9625 value = reloc->r_addend
9626 + (symtab[get_reloc_symindex (reloc->r_info)].st_value
9627 - saved_sym->st_value);
9628
9629 byte_put (start + reloc->r_offset, value, reloc_type == 1 ? 4 : 2);
9630
9631 saved_sym = NULL;
9632 return TRUE;
9633 }
9634 break;
9635 default:
9636 if (saved_sym != NULL)
9637 error (_("Unhandled MN10300 reloc type found after SYM_DIFF reloc"));
9638 break;
9639 }
9640 break;
9641 }
9642 }
9643
9644 return FALSE;
9645 }
9646
9647 /* Returns TRUE iff RELOC_TYPE is a 32-bit absolute RELA relocation used in
9648 DWARF debug sections. This is a target specific test. Note - we do not
9649 go through the whole including-target-headers-multiple-times route, (as
9650 we have already done with <elf/h8.h>) because this would become very
9651 messy and even then this function would have to contain target specific
9652 information (the names of the relocs instead of their numeric values).
9653 FIXME: This is not the correct way to solve this problem. The proper way
9654 is to have target specific reloc sizing and typing functions created by
9655 the reloc-macros.h header, in the same way that it already creates the
9656 reloc naming functions. */
9657
9658 static bfd_boolean
9659 is_32bit_abs_reloc (unsigned int reloc_type)
9660 {
9661 switch (elf_header.e_machine)
9662 {
9663 case EM_386:
9664 case EM_486:
9665 return reloc_type == 1; /* R_386_32. */
9666 case EM_68K:
9667 return reloc_type == 1; /* R_68K_32. */
9668 case EM_860:
9669 return reloc_type == 1; /* R_860_32. */
9670 case EM_960:
9671 return reloc_type == 2; /* R_960_32. */
9672 case EM_ALPHA:
9673 return reloc_type == 1; /* R_ALPHA_REFLONG. */
9674 case EM_ARC:
9675 return reloc_type == 1; /* R_ARC_32. */
9676 case EM_ARM:
9677 return reloc_type == 2; /* R_ARM_ABS32 */
9678 case EM_AVR_OLD:
9679 case EM_AVR:
9680 return reloc_type == 1;
9681 case EM_BLACKFIN:
9682 return reloc_type == 0x12; /* R_byte4_data. */
9683 case EM_CRIS:
9684 return reloc_type == 3; /* R_CRIS_32. */
9685 case EM_CR16:
9686 case EM_CR16_OLD:
9687 return reloc_type == 3; /* R_CR16_NUM32. */
9688 case EM_CRX:
9689 return reloc_type == 15; /* R_CRX_NUM32. */
9690 case EM_CYGNUS_FRV:
9691 return reloc_type == 1;
9692 case EM_CYGNUS_D10V:
9693 case EM_D10V:
9694 return reloc_type == 6; /* R_D10V_32. */
9695 case EM_CYGNUS_D30V:
9696 case EM_D30V:
9697 return reloc_type == 12; /* R_D30V_32_NORMAL. */
9698 case EM_DLX:
9699 return reloc_type == 3; /* R_DLX_RELOC_32. */
9700 case EM_CYGNUS_FR30:
9701 case EM_FR30:
9702 return reloc_type == 3; /* R_FR30_32. */
9703 case EM_H8S:
9704 case EM_H8_300:
9705 case EM_H8_300H:
9706 return reloc_type == 1; /* R_H8_DIR32. */
9707 case EM_IA_64:
9708 return reloc_type == 0x65; /* R_IA64_SECREL32LSB. */
9709 case EM_IP2K_OLD:
9710 case EM_IP2K:
9711 return reloc_type == 2; /* R_IP2K_32. */
9712 case EM_IQ2000:
9713 return reloc_type == 2; /* R_IQ2000_32. */
9714 case EM_LATTICEMICO32:
9715 return reloc_type == 3; /* R_LM32_32. */
9716 case EM_M32C_OLD:
9717 case EM_M32C:
9718 return reloc_type == 3; /* R_M32C_32. */
9719 case EM_M32R:
9720 return reloc_type == 34; /* R_M32R_32_RELA. */
9721 case EM_MCORE:
9722 return reloc_type == 1; /* R_MCORE_ADDR32. */
9723 case EM_CYGNUS_MEP:
9724 return reloc_type == 4; /* R_MEP_32. */
9725 case EM_MICROBLAZE:
9726 return reloc_type == 1; /* R_MICROBLAZE_32. */
9727 case EM_MIPS:
9728 return reloc_type == 2; /* R_MIPS_32. */
9729 case EM_MMIX:
9730 return reloc_type == 4; /* R_MMIX_32. */
9731 case EM_CYGNUS_MN10200:
9732 case EM_MN10200:
9733 return reloc_type == 1; /* R_MN10200_32. */
9734 case EM_CYGNUS_MN10300:
9735 case EM_MN10300:
9736 return reloc_type == 1; /* R_MN10300_32. */
9737 case EM_MOXIE:
9738 return reloc_type == 1; /* R_MOXIE_32. */
9739 case EM_MSP430_OLD:
9740 case EM_MSP430:
9741 return reloc_type == 1; /* R_MSP43_32. */
9742 case EM_MT:
9743 return reloc_type == 2; /* R_MT_32. */
9744 case EM_ALTERA_NIOS2:
9745 case EM_NIOS32:
9746 return reloc_type == 1; /* R_NIOS_32. */
9747 case EM_OPENRISC:
9748 case EM_OR32:
9749 return reloc_type == 1; /* R_OR32_32. */
9750 case EM_PARISC:
9751 return (reloc_type == 1 /* R_PARISC_DIR32. */
9752 || reloc_type == 41); /* R_PARISC_SECREL32. */
9753 case EM_PJ:
9754 case EM_PJ_OLD:
9755 return reloc_type == 1; /* R_PJ_DATA_DIR32. */
9756 case EM_PPC64:
9757 return reloc_type == 1; /* R_PPC64_ADDR32. */
9758 case EM_PPC:
9759 return reloc_type == 1; /* R_PPC_ADDR32. */
9760 case EM_RX:
9761 return reloc_type == 1; /* R_RX_DIR32. */
9762 case EM_S370:
9763 return reloc_type == 1; /* R_I370_ADDR31. */
9764 case EM_S390_OLD:
9765 case EM_S390:
9766 return reloc_type == 4; /* R_S390_32. */
9767 case EM_SCORE:
9768 return reloc_type == 8; /* R_SCORE_ABS32. */
9769 case EM_SH:
9770 return reloc_type == 1; /* R_SH_DIR32. */
9771 case EM_SPARC32PLUS:
9772 case EM_SPARCV9:
9773 case EM_SPARC:
9774 return reloc_type == 3 /* R_SPARC_32. */
9775 || reloc_type == 23; /* R_SPARC_UA32. */
9776 case EM_SPU:
9777 return reloc_type == 6; /* R_SPU_ADDR32 */
9778 case EM_TI_C6000:
9779 return reloc_type == 1; /* R_C6000_ABS32. */
9780 case EM_TILEGX:
9781 return reloc_type == 2; /* R_TILEGX_32. */
9782 case EM_TILEPRO:
9783 return reloc_type == 1; /* R_TILEPRO_32. */
9784 case EM_CYGNUS_V850:
9785 case EM_V850:
9786 return reloc_type == 6; /* R_V850_ABS32. */
9787 case EM_VAX:
9788 return reloc_type == 1; /* R_VAX_32. */
9789 case EM_X86_64:
9790 case EM_L1OM:
9791 case EM_K1OM:
9792 return reloc_type == 10; /* R_X86_64_32. */
9793 case EM_XC16X:
9794 case EM_C166:
9795 return reloc_type == 3; /* R_XC16C_ABS_32. */
9796 case EM_XSTORMY16:
9797 return reloc_type == 1; /* R_XSTROMY16_32. */
9798 case EM_XTENSA_OLD:
9799 case EM_XTENSA:
9800 return reloc_type == 1; /* R_XTENSA_32. */
9801 default:
9802 error (_("Missing knowledge of 32-bit reloc types used in DWARF sections of machine number %d\n"),
9803 elf_header.e_machine);
9804 abort ();
9805 }
9806 }
9807
9808 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
9809 a 32-bit pc-relative RELA relocation used in DWARF debug sections. */
9810
9811 static bfd_boolean
9812 is_32bit_pcrel_reloc (unsigned int reloc_type)
9813 {
9814 switch (elf_header.e_machine)
9815 {
9816 case EM_386:
9817 case EM_486:
9818 return reloc_type == 2; /* R_386_PC32. */
9819 case EM_68K:
9820 return reloc_type == 4; /* R_68K_PC32. */
9821 case EM_ALPHA:
9822 return reloc_type == 10; /* R_ALPHA_SREL32. */
9823 case EM_ARM:
9824 return reloc_type == 3; /* R_ARM_REL32 */
9825 case EM_MICROBLAZE:
9826 return reloc_type == 2; /* R_MICROBLAZE_32_PCREL. */
9827 case EM_PARISC:
9828 return reloc_type == 9; /* R_PARISC_PCREL32. */
9829 case EM_PPC:
9830 return reloc_type == 26; /* R_PPC_REL32. */
9831 case EM_PPC64:
9832 return reloc_type == 26; /* R_PPC64_REL32. */
9833 case EM_S390_OLD:
9834 case EM_S390:
9835 return reloc_type == 5; /* R_390_PC32. */
9836 case EM_SH:
9837 return reloc_type == 2; /* R_SH_REL32. */
9838 case EM_SPARC32PLUS:
9839 case EM_SPARCV9:
9840 case EM_SPARC:
9841 return reloc_type == 6; /* R_SPARC_DISP32. */
9842 case EM_SPU:
9843 return reloc_type == 13; /* R_SPU_REL32. */
9844 case EM_TILEGX:
9845 return reloc_type == 6; /* R_TILEGX_32_PCREL. */
9846 case EM_TILEPRO:
9847 return reloc_type == 4; /* R_TILEPRO_32_PCREL. */
9848 case EM_X86_64:
9849 case EM_L1OM:
9850 case EM_K1OM:
9851 return reloc_type == 2; /* R_X86_64_PC32. */
9852 case EM_XTENSA_OLD:
9853 case EM_XTENSA:
9854 return reloc_type == 14; /* R_XTENSA_32_PCREL. */
9855 default:
9856 /* Do not abort or issue an error message here. Not all targets use
9857 pc-relative 32-bit relocs in their DWARF debug information and we
9858 have already tested for target coverage in is_32bit_abs_reloc. A
9859 more helpful warning message will be generated by apply_relocations
9860 anyway, so just return. */
9861 return FALSE;
9862 }
9863 }
9864
9865 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
9866 a 64-bit absolute RELA relocation used in DWARF debug sections. */
9867
9868 static bfd_boolean
9869 is_64bit_abs_reloc (unsigned int reloc_type)
9870 {
9871 switch (elf_header.e_machine)
9872 {
9873 case EM_ALPHA:
9874 return reloc_type == 2; /* R_ALPHA_REFQUAD. */
9875 case EM_IA_64:
9876 return reloc_type == 0x27; /* R_IA64_DIR64LSB. */
9877 case EM_PARISC:
9878 return reloc_type == 80; /* R_PARISC_DIR64. */
9879 case EM_PPC64:
9880 return reloc_type == 38; /* R_PPC64_ADDR64. */
9881 case EM_SPARC32PLUS:
9882 case EM_SPARCV9:
9883 case EM_SPARC:
9884 return reloc_type == 54; /* R_SPARC_UA64. */
9885 case EM_X86_64:
9886 case EM_L1OM:
9887 case EM_K1OM:
9888 return reloc_type == 1; /* R_X86_64_64. */
9889 case EM_S390_OLD:
9890 case EM_S390:
9891 return reloc_type == 22; /* R_S390_64. */
9892 case EM_TILEGX:
9893 return reloc_type == 1; /* R_TILEGX_64. */
9894 case EM_MIPS:
9895 return reloc_type == 18; /* R_MIPS_64. */
9896 default:
9897 return FALSE;
9898 }
9899 }
9900
9901 /* Like is_32bit_pcrel_reloc except that it returns TRUE iff RELOC_TYPE is
9902 a 64-bit pc-relative RELA relocation used in DWARF debug sections. */
9903
9904 static bfd_boolean
9905 is_64bit_pcrel_reloc (unsigned int reloc_type)
9906 {
9907 switch (elf_header.e_machine)
9908 {
9909 case EM_ALPHA:
9910 return reloc_type == 11; /* R_ALPHA_SREL64. */
9911 case EM_IA_64:
9912 return reloc_type == 0x4f; /* R_IA64_PCREL64LSB. */
9913 case EM_PARISC:
9914 return reloc_type == 72; /* R_PARISC_PCREL64. */
9915 case EM_PPC64:
9916 return reloc_type == 44; /* R_PPC64_REL64. */
9917 case EM_SPARC32PLUS:
9918 case EM_SPARCV9:
9919 case EM_SPARC:
9920 return reloc_type == 46; /* R_SPARC_DISP64. */
9921 case EM_X86_64:
9922 case EM_L1OM:
9923 case EM_K1OM:
9924 return reloc_type == 24; /* R_X86_64_PC64. */
9925 case EM_S390_OLD:
9926 case EM_S390:
9927 return reloc_type == 23; /* R_S390_PC64. */
9928 case EM_TILEGX:
9929 return reloc_type == 5; /* R_TILEGX_64_PCREL. */
9930 default:
9931 return FALSE;
9932 }
9933 }
9934
9935 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
9936 a 24-bit absolute RELA relocation used in DWARF debug sections. */
9937
9938 static bfd_boolean
9939 is_24bit_abs_reloc (unsigned int reloc_type)
9940 {
9941 switch (elf_header.e_machine)
9942 {
9943 case EM_CYGNUS_MN10200:
9944 case EM_MN10200:
9945 return reloc_type == 4; /* R_MN10200_24. */
9946 default:
9947 return FALSE;
9948 }
9949 }
9950
9951 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
9952 a 16-bit absolute RELA relocation used in DWARF debug sections. */
9953
9954 static bfd_boolean
9955 is_16bit_abs_reloc (unsigned int reloc_type)
9956 {
9957 switch (elf_header.e_machine)
9958 {
9959 case EM_AVR_OLD:
9960 case EM_AVR:
9961 return reloc_type == 4; /* R_AVR_16. */
9962 case EM_CYGNUS_D10V:
9963 case EM_D10V:
9964 return reloc_type == 3; /* R_D10V_16. */
9965 case EM_H8S:
9966 case EM_H8_300:
9967 case EM_H8_300H:
9968 return reloc_type == R_H8_DIR16;
9969 case EM_IP2K_OLD:
9970 case EM_IP2K:
9971 return reloc_type == 1; /* R_IP2K_16. */
9972 case EM_M32C_OLD:
9973 case EM_M32C:
9974 return reloc_type == 1; /* R_M32C_16 */
9975 case EM_MSP430_OLD:
9976 case EM_MSP430:
9977 return reloc_type == 5; /* R_MSP430_16_BYTE. */
9978 case EM_ALTERA_NIOS2:
9979 case EM_NIOS32:
9980 return reloc_type == 9; /* R_NIOS_16. */
9981 case EM_TI_C6000:
9982 return reloc_type == 2; /* R_C6000_ABS16. */
9983 case EM_XC16X:
9984 case EM_C166:
9985 return reloc_type == 2; /* R_XC16C_ABS_16. */
9986 default:
9987 return FALSE;
9988 }
9989 }
9990
9991 /* Returns TRUE iff RELOC_TYPE is a NONE relocation used for discarded
9992 relocation entries (possibly formerly used for SHT_GROUP sections). */
9993
9994 static bfd_boolean
9995 is_none_reloc (unsigned int reloc_type)
9996 {
9997 switch (elf_header.e_machine)
9998 {
9999 case EM_68K: /* R_68K_NONE. */
10000 case EM_386: /* R_386_NONE. */
10001 case EM_SPARC32PLUS:
10002 case EM_SPARCV9:
10003 case EM_SPARC: /* R_SPARC_NONE. */
10004 case EM_MIPS: /* R_MIPS_NONE. */
10005 case EM_PARISC: /* R_PARISC_NONE. */
10006 case EM_ALPHA: /* R_ALPHA_NONE. */
10007 case EM_PPC: /* R_PPC_NONE. */
10008 case EM_PPC64: /* R_PPC64_NONE. */
10009 case EM_ARM: /* R_ARM_NONE. */
10010 case EM_IA_64: /* R_IA64_NONE. */
10011 case EM_SH: /* R_SH_NONE. */
10012 case EM_S390_OLD:
10013 case EM_S390: /* R_390_NONE. */
10014 case EM_CRIS: /* R_CRIS_NONE. */
10015 case EM_X86_64: /* R_X86_64_NONE. */
10016 case EM_L1OM: /* R_X86_64_NONE. */
10017 case EM_K1OM: /* R_X86_64_NONE. */
10018 case EM_MN10300: /* R_MN10300_NONE. */
10019 case EM_MOXIE: /* R_MOXIE_NONE. */
10020 case EM_M32R: /* R_M32R_NONE. */
10021 case EM_TI_C6000:/* R_C6000_NONE. */
10022 case EM_TILEGX: /* R_TILEGX_NONE. */
10023 case EM_TILEPRO: /* R_TILEPRO_NONE. */
10024 case EM_XC16X:
10025 case EM_C166: /* R_XC16X_NONE. */
10026 return reloc_type == 0;
10027 case EM_XTENSA_OLD:
10028 case EM_XTENSA:
10029 return (reloc_type == 0 /* R_XTENSA_NONE. */
10030 || reloc_type == 17 /* R_XTENSA_DIFF8. */
10031 || reloc_type == 18 /* R_XTENSA_DIFF16. */
10032 || reloc_type == 19 /* R_XTENSA_DIFF32. */);
10033 }
10034 return FALSE;
10035 }
10036
10037 /* Apply relocations to a section.
10038 Note: So far support has been added only for those relocations
10039 which can be found in debug sections.
10040 FIXME: Add support for more relocations ? */
10041
10042 static void
10043 apply_relocations (void * file,
10044 Elf_Internal_Shdr * section,
10045 unsigned char * start)
10046 {
10047 Elf_Internal_Shdr * relsec;
10048 unsigned char * end = start + section->sh_size;
10049
10050 if (elf_header.e_type != ET_REL)
10051 return;
10052
10053 /* Find the reloc section associated with the section. */
10054 for (relsec = section_headers;
10055 relsec < section_headers + elf_header.e_shnum;
10056 ++relsec)
10057 {
10058 bfd_boolean is_rela;
10059 unsigned long num_relocs;
10060 Elf_Internal_Rela * relocs;
10061 Elf_Internal_Rela * rp;
10062 Elf_Internal_Shdr * symsec;
10063 Elf_Internal_Sym * symtab;
10064 unsigned long num_syms;
10065 Elf_Internal_Sym * sym;
10066
10067 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
10068 || relsec->sh_info >= elf_header.e_shnum
10069 || section_headers + relsec->sh_info != section
10070 || relsec->sh_size == 0
10071 || relsec->sh_link >= elf_header.e_shnum)
10072 continue;
10073
10074 is_rela = relsec->sh_type == SHT_RELA;
10075
10076 if (is_rela)
10077 {
10078 if (!slurp_rela_relocs ((FILE *) file, relsec->sh_offset,
10079 relsec->sh_size, & relocs, & num_relocs))
10080 return;
10081 }
10082 else
10083 {
10084 if (!slurp_rel_relocs ((FILE *) file, relsec->sh_offset,
10085 relsec->sh_size, & relocs, & num_relocs))
10086 return;
10087 }
10088
10089 /* SH uses RELA but uses in place value instead of the addend field. */
10090 if (elf_header.e_machine == EM_SH)
10091 is_rela = FALSE;
10092
10093 symsec = section_headers + relsec->sh_link;
10094 symtab = GET_ELF_SYMBOLS ((FILE *) file, symsec, & num_syms);
10095
10096 for (rp = relocs; rp < relocs + num_relocs; ++rp)
10097 {
10098 bfd_vma addend;
10099 unsigned int reloc_type;
10100 unsigned int reloc_size;
10101 unsigned char * rloc;
10102 unsigned long sym_index;
10103
10104 reloc_type = get_reloc_type (rp->r_info);
10105
10106 if (target_specific_reloc_handling (rp, start, symtab))
10107 continue;
10108 else if (is_none_reloc (reloc_type))
10109 continue;
10110 else if (is_32bit_abs_reloc (reloc_type)
10111 || is_32bit_pcrel_reloc (reloc_type))
10112 reloc_size = 4;
10113 else if (is_64bit_abs_reloc (reloc_type)
10114 || is_64bit_pcrel_reloc (reloc_type))
10115 reloc_size = 8;
10116 else if (is_24bit_abs_reloc (reloc_type))
10117 reloc_size = 3;
10118 else if (is_16bit_abs_reloc (reloc_type))
10119 reloc_size = 2;
10120 else
10121 {
10122 warn (_("unable to apply unsupported reloc type %d to section %s\n"),
10123 reloc_type, SECTION_NAME (section));
10124 continue;
10125 }
10126
10127 rloc = start + rp->r_offset;
10128 if ((rloc + reloc_size) > end)
10129 {
10130 warn (_("skipping invalid relocation offset 0x%lx in section %s\n"),
10131 (unsigned long) rp->r_offset,
10132 SECTION_NAME (section));
10133 continue;
10134 }
10135
10136 sym_index = (unsigned long) get_reloc_symindex (rp->r_info);
10137 if (sym_index >= num_syms)
10138 {
10139 warn (_("skipping invalid relocation symbol index 0x%lx in section %s\n"),
10140 sym_index, SECTION_NAME (section));
10141 continue;
10142 }
10143 sym = symtab + sym_index;
10144
10145 /* If the reloc has a symbol associated with it,
10146 make sure that it is of an appropriate type.
10147
10148 Relocations against symbols without type can happen.
10149 Gcc -feliminate-dwarf2-dups may generate symbols
10150 without type for debug info.
10151
10152 Icc generates relocations against function symbols
10153 instead of local labels.
10154
10155 Relocations against object symbols can happen, eg when
10156 referencing a global array. For an example of this see
10157 the _clz.o binary in libgcc.a. */
10158 if (sym != symtab
10159 && ELF_ST_TYPE (sym->st_info) > STT_SECTION)
10160 {
10161 warn (_("skipping unexpected symbol type %s in %ld'th relocation in section %s\n"),
10162 get_symbol_type (ELF_ST_TYPE (sym->st_info)),
10163 (long int)(rp - relocs),
10164 SECTION_NAME (relsec));
10165 continue;
10166 }
10167
10168 addend = 0;
10169 if (is_rela)
10170 addend += rp->r_addend;
10171 /* R_XTENSA_32, R_PJ_DATA_DIR32 and R_D30V_32_NORMAL are
10172 partial_inplace. */
10173 if (!is_rela
10174 || (elf_header.e_machine == EM_XTENSA
10175 && reloc_type == 1)
10176 || ((elf_header.e_machine == EM_PJ
10177 || elf_header.e_machine == EM_PJ_OLD)
10178 && reloc_type == 1)
10179 || ((elf_header.e_machine == EM_D30V
10180 || elf_header.e_machine == EM_CYGNUS_D30V)
10181 && reloc_type == 12))
10182 addend += byte_get (rloc, reloc_size);
10183
10184 if (is_32bit_pcrel_reloc (reloc_type)
10185 || is_64bit_pcrel_reloc (reloc_type))
10186 {
10187 /* On HPPA, all pc-relative relocations are biased by 8. */
10188 if (elf_header.e_machine == EM_PARISC)
10189 addend -= 8;
10190 byte_put (rloc, (addend + sym->st_value) - rp->r_offset,
10191 reloc_size);
10192 }
10193 else
10194 byte_put (rloc, addend + sym->st_value, reloc_size);
10195 }
10196
10197 free (symtab);
10198 free (relocs);
10199 break;
10200 }
10201 }
10202
10203 #ifdef SUPPORT_DISASSEMBLY
10204 static int
10205 disassemble_section (Elf_Internal_Shdr * section, FILE * file)
10206 {
10207 printf (_("\nAssembly dump of section %s\n"),
10208 SECTION_NAME (section));
10209
10210 /* XXX -- to be done --- XXX */
10211
10212 return 1;
10213 }
10214 #endif
10215
10216 /* Reads in the contents of SECTION from FILE, returning a pointer
10217 to a malloc'ed buffer or NULL if something went wrong. */
10218
10219 static char *
10220 get_section_contents (Elf_Internal_Shdr * section, FILE * file)
10221 {
10222 bfd_size_type num_bytes;
10223
10224 num_bytes = section->sh_size;
10225
10226 if (num_bytes == 0 || section->sh_type == SHT_NOBITS)
10227 {
10228 printf (_("\nSection '%s' has no data to dump.\n"),
10229 SECTION_NAME (section));
10230 return NULL;
10231 }
10232
10233 return (char *) get_data (NULL, file, section->sh_offset, 1, num_bytes,
10234 _("section contents"));
10235 }
10236
10237
10238 static void
10239 dump_section_as_strings (Elf_Internal_Shdr * section, FILE * file)
10240 {
10241 Elf_Internal_Shdr * relsec;
10242 bfd_size_type num_bytes;
10243 char * data;
10244 char * end;
10245 char * start;
10246 char * name = SECTION_NAME (section);
10247 bfd_boolean some_strings_shown;
10248
10249 start = get_section_contents (section, file);
10250 if (start == NULL)
10251 return;
10252
10253 printf (_("\nString dump of section '%s':\n"), name);
10254
10255 /* If the section being dumped has relocations against it the user might
10256 be expecting these relocations to have been applied. Check for this
10257 case and issue a warning message in order to avoid confusion.
10258 FIXME: Maybe we ought to have an option that dumps a section with
10259 relocs applied ? */
10260 for (relsec = section_headers;
10261 relsec < section_headers + elf_header.e_shnum;
10262 ++relsec)
10263 {
10264 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
10265 || relsec->sh_info >= elf_header.e_shnum
10266 || section_headers + relsec->sh_info != section
10267 || relsec->sh_size == 0
10268 || relsec->sh_link >= elf_header.e_shnum)
10269 continue;
10270
10271 printf (_(" Note: This section has relocations against it, but these have NOT been applied to this dump.\n"));
10272 break;
10273 }
10274
10275 num_bytes = section->sh_size;
10276 data = start;
10277 end = start + num_bytes;
10278 some_strings_shown = FALSE;
10279
10280 while (data < end)
10281 {
10282 while (!ISPRINT (* data))
10283 if (++ data >= end)
10284 break;
10285
10286 if (data < end)
10287 {
10288 #ifndef __MSVCRT__
10289 /* PR 11128: Use two separate invocations in order to work
10290 around bugs in the Solaris 8 implementation of printf. */
10291 printf (" [%6tx] ", data - start);
10292 printf ("%s\n", data);
10293 #else
10294 printf (" [%6Ix] %s\n", (size_t) (data - start), data);
10295 #endif
10296 data += strlen (data);
10297 some_strings_shown = TRUE;
10298 }
10299 }
10300
10301 if (! some_strings_shown)
10302 printf (_(" No strings found in this section."));
10303
10304 free (start);
10305
10306 putchar ('\n');
10307 }
10308
10309 static void
10310 dump_section_as_bytes (Elf_Internal_Shdr * section,
10311 FILE * file,
10312 bfd_boolean relocate)
10313 {
10314 Elf_Internal_Shdr * relsec;
10315 bfd_size_type bytes;
10316 bfd_vma addr;
10317 unsigned char * data;
10318 unsigned char * start;
10319
10320 start = (unsigned char *) get_section_contents (section, file);
10321 if (start == NULL)
10322 return;
10323
10324 printf (_("\nHex dump of section '%s':\n"), SECTION_NAME (section));
10325
10326 if (relocate)
10327 {
10328 apply_relocations (file, section, start);
10329 }
10330 else
10331 {
10332 /* If the section being dumped has relocations against it the user might
10333 be expecting these relocations to have been applied. Check for this
10334 case and issue a warning message in order to avoid confusion.
10335 FIXME: Maybe we ought to have an option that dumps a section with
10336 relocs applied ? */
10337 for (relsec = section_headers;
10338 relsec < section_headers + elf_header.e_shnum;
10339 ++relsec)
10340 {
10341 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
10342 || relsec->sh_info >= elf_header.e_shnum
10343 || section_headers + relsec->sh_info != section
10344 || relsec->sh_size == 0
10345 || relsec->sh_link >= elf_header.e_shnum)
10346 continue;
10347
10348 printf (_(" NOTE: This section has relocations against it, but these have NOT been applied to this dump.\n"));
10349 break;
10350 }
10351 }
10352
10353 addr = section->sh_addr;
10354 bytes = section->sh_size;
10355 data = start;
10356
10357 while (bytes)
10358 {
10359 int j;
10360 int k;
10361 int lbytes;
10362
10363 lbytes = (bytes > 16 ? 16 : bytes);
10364
10365 printf (" 0x%8.8lx ", (unsigned long) addr);
10366
10367 for (j = 0; j < 16; j++)
10368 {
10369 if (j < lbytes)
10370 printf ("%2.2x", data[j]);
10371 else
10372 printf (" ");
10373
10374 if ((j & 3) == 3)
10375 printf (" ");
10376 }
10377
10378 for (j = 0; j < lbytes; j++)
10379 {
10380 k = data[j];
10381 if (k >= ' ' && k < 0x7f)
10382 printf ("%c", k);
10383 else
10384 printf (".");
10385 }
10386
10387 putchar ('\n');
10388
10389 data += lbytes;
10390 addr += lbytes;
10391 bytes -= lbytes;
10392 }
10393
10394 free (start);
10395
10396 putchar ('\n');
10397 }
10398
10399 /* Uncompresses a section that was compressed using zlib, in place. */
10400
10401 static int
10402 uncompress_section_contents (unsigned char **buffer ATTRIBUTE_UNUSED,
10403 dwarf_size_type *size ATTRIBUTE_UNUSED)
10404 {
10405 #ifndef HAVE_ZLIB_H
10406 return FALSE;
10407 #else
10408 dwarf_size_type compressed_size = *size;
10409 unsigned char * compressed_buffer = *buffer;
10410 dwarf_size_type uncompressed_size;
10411 unsigned char * uncompressed_buffer;
10412 z_stream strm;
10413 int rc;
10414 dwarf_size_type header_size = 12;
10415
10416 /* Read the zlib header. In this case, it should be "ZLIB" followed
10417 by the uncompressed section size, 8 bytes in big-endian order. */
10418 if (compressed_size < header_size
10419 || ! streq ((char *) compressed_buffer, "ZLIB"))
10420 return 0;
10421
10422 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
10423 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
10424 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
10425 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
10426 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
10427 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
10428 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
10429 uncompressed_size += compressed_buffer[11];
10430
10431 /* It is possible the section consists of several compressed
10432 buffers concatenated together, so we uncompress in a loop. */
10433 strm.zalloc = NULL;
10434 strm.zfree = NULL;
10435 strm.opaque = NULL;
10436 strm.avail_in = compressed_size - header_size;
10437 strm.next_in = (Bytef *) compressed_buffer + header_size;
10438 strm.avail_out = uncompressed_size;
10439 uncompressed_buffer = (unsigned char *) xmalloc (uncompressed_size);
10440
10441 rc = inflateInit (& strm);
10442 while (strm.avail_in > 0)
10443 {
10444 if (rc != Z_OK)
10445 goto fail;
10446 strm.next_out = ((Bytef *) uncompressed_buffer
10447 + (uncompressed_size - strm.avail_out));
10448 rc = inflate (&strm, Z_FINISH);
10449 if (rc != Z_STREAM_END)
10450 goto fail;
10451 rc = inflateReset (& strm);
10452 }
10453 rc = inflateEnd (& strm);
10454 if (rc != Z_OK
10455 || strm.avail_out != 0)
10456 goto fail;
10457
10458 free (compressed_buffer);
10459 *buffer = uncompressed_buffer;
10460 *size = uncompressed_size;
10461 return 1;
10462
10463 fail:
10464 free (uncompressed_buffer);
10465 /* Indicate decompression failure. */
10466 *buffer = NULL;
10467 return 0;
10468 #endif /* HAVE_ZLIB_H */
10469 }
10470
10471 static int
10472 load_specific_debug_section (enum dwarf_section_display_enum debug,
10473 Elf_Internal_Shdr * sec, void * file)
10474 {
10475 struct dwarf_section * section = &debug_displays [debug].section;
10476 char buf [64];
10477
10478 /* If it is already loaded, do nothing. */
10479 if (section->start != NULL)
10480 return 1;
10481
10482 snprintf (buf, sizeof (buf), _("%s section data"), section->name);
10483 section->address = sec->sh_addr;
10484 section->start = (unsigned char *) get_data (NULL, (FILE *) file,
10485 sec->sh_offset, 1,
10486 sec->sh_size, buf);
10487 if (section->start == NULL)
10488 section->size = 0;
10489 else
10490 {
10491 section->size = sec->sh_size;
10492 if (uncompress_section_contents (&section->start, &section->size))
10493 sec->sh_size = section->size;
10494 }
10495
10496 if (section->start == NULL)
10497 return 0;
10498
10499 if (debug_displays [debug].relocate)
10500 apply_relocations ((FILE *) file, sec, section->start);
10501
10502 return 1;
10503 }
10504
10505 int
10506 load_debug_section (enum dwarf_section_display_enum debug, void * file)
10507 {
10508 struct dwarf_section * section = &debug_displays [debug].section;
10509 Elf_Internal_Shdr * sec;
10510
10511 /* Locate the debug section. */
10512 sec = find_section (section->uncompressed_name);
10513 if (sec != NULL)
10514 section->name = section->uncompressed_name;
10515 else
10516 {
10517 sec = find_section (section->compressed_name);
10518 if (sec != NULL)
10519 section->name = section->compressed_name;
10520 }
10521 if (sec == NULL)
10522 return 0;
10523
10524 return load_specific_debug_section (debug, sec, (FILE *) file);
10525 }
10526
10527 void
10528 free_debug_section (enum dwarf_section_display_enum debug)
10529 {
10530 struct dwarf_section * section = &debug_displays [debug].section;
10531
10532 if (section->start == NULL)
10533 return;
10534
10535 free ((char *) section->start);
10536 section->start = NULL;
10537 section->address = 0;
10538 section->size = 0;
10539 }
10540
10541 static int
10542 display_debug_section (Elf_Internal_Shdr * section, FILE * file)
10543 {
10544 char * name = SECTION_NAME (section);
10545 bfd_size_type length;
10546 int result = 1;
10547 int i;
10548
10549 length = section->sh_size;
10550 if (length == 0)
10551 {
10552 printf (_("\nSection '%s' has no debugging data.\n"), name);
10553 return 0;
10554 }
10555 if (section->sh_type == SHT_NOBITS)
10556 {
10557 /* There is no point in dumping the contents of a debugging section
10558 which has the NOBITS type - the bits in the file will be random.
10559 This can happen when a file containing a .eh_frame section is
10560 stripped with the --only-keep-debug command line option. */
10561 printf (_("section '%s' has the NOBITS type - its contents are unreliable.\n"), name);
10562 return 0;
10563 }
10564
10565 if (const_strneq (name, ".gnu.linkonce.wi."))
10566 name = ".debug_info";
10567
10568 /* See if we know how to display the contents of this section. */
10569 for (i = 0; i < max; i++)
10570 if (streq (debug_displays[i].section.uncompressed_name, name)
10571 || streq (debug_displays[i].section.compressed_name, name))
10572 {
10573 struct dwarf_section * sec = &debug_displays [i].section;
10574 int secondary = (section != find_section (name));
10575
10576 if (secondary)
10577 free_debug_section ((enum dwarf_section_display_enum) i);
10578
10579 if (streq (sec->uncompressed_name, name))
10580 sec->name = sec->uncompressed_name;
10581 else
10582 sec->name = sec->compressed_name;
10583 if (load_specific_debug_section ((enum dwarf_section_display_enum) i,
10584 section, file))
10585 {
10586 result &= debug_displays[i].display (sec, file);
10587
10588 if (secondary || (i != info && i != abbrev))
10589 free_debug_section ((enum dwarf_section_display_enum) i);
10590 }
10591
10592 break;
10593 }
10594
10595 if (i == max)
10596 {
10597 printf (_("Unrecognized debug section: %s\n"), name);
10598 result = 0;
10599 }
10600
10601 return result;
10602 }
10603
10604 /* Set DUMP_SECTS for all sections where dumps were requested
10605 based on section name. */
10606
10607 static void
10608 initialise_dumps_byname (void)
10609 {
10610 struct dump_list_entry * cur;
10611
10612 for (cur = dump_sects_byname; cur; cur = cur->next)
10613 {
10614 unsigned int i;
10615 int any;
10616
10617 for (i = 0, any = 0; i < elf_header.e_shnum; i++)
10618 if (streq (SECTION_NAME (section_headers + i), cur->name))
10619 {
10620 request_dump_bynumber (i, cur->type);
10621 any = 1;
10622 }
10623
10624 if (!any)
10625 warn (_("Section '%s' was not dumped because it does not exist!\n"),
10626 cur->name);
10627 }
10628 }
10629
10630 static void
10631 process_section_contents (FILE * file)
10632 {
10633 Elf_Internal_Shdr * section;
10634 unsigned int i;
10635
10636 if (! do_dump)
10637 return;
10638
10639 initialise_dumps_byname ();
10640
10641 for (i = 0, section = section_headers;
10642 i < elf_header.e_shnum && i < num_dump_sects;
10643 i++, section++)
10644 {
10645 #ifdef SUPPORT_DISASSEMBLY
10646 if (dump_sects[i] & DISASS_DUMP)
10647 disassemble_section (section, file);
10648 #endif
10649 if (dump_sects[i] & HEX_DUMP)
10650 dump_section_as_bytes (section, file, FALSE);
10651
10652 if (dump_sects[i] & RELOC_DUMP)
10653 dump_section_as_bytes (section, file, TRUE);
10654
10655 if (dump_sects[i] & STRING_DUMP)
10656 dump_section_as_strings (section, file);
10657
10658 if (dump_sects[i] & DEBUG_DUMP)
10659 display_debug_section (section, file);
10660 }
10661
10662 /* Check to see if the user requested a
10663 dump of a section that does not exist. */
10664 while (i++ < num_dump_sects)
10665 if (dump_sects[i])
10666 warn (_("Section %d was not dumped because it does not exist!\n"), i);
10667 }
10668
10669 static void
10670 process_mips_fpe_exception (int mask)
10671 {
10672 if (mask)
10673 {
10674 int first = 1;
10675 if (mask & OEX_FPU_INEX)
10676 fputs ("INEX", stdout), first = 0;
10677 if (mask & OEX_FPU_UFLO)
10678 printf ("%sUFLO", first ? "" : "|"), first = 0;
10679 if (mask & OEX_FPU_OFLO)
10680 printf ("%sOFLO", first ? "" : "|"), first = 0;
10681 if (mask & OEX_FPU_DIV0)
10682 printf ("%sDIV0", first ? "" : "|"), first = 0;
10683 if (mask & OEX_FPU_INVAL)
10684 printf ("%sINVAL", first ? "" : "|");
10685 }
10686 else
10687 fputs ("0", stdout);
10688 }
10689
10690 /* ARM EABI attributes section. */
10691 typedef struct
10692 {
10693 int tag;
10694 const char * name;
10695 /* 0 = special, 1 = string, 2 = uleb123, > 0x80 == table lookup. */
10696 int type;
10697 const char ** table;
10698 } arm_attr_public_tag;
10699
10700 static const char * arm_attr_tag_CPU_arch[] =
10701 {"Pre-v4", "v4", "v4T", "v5T", "v5TE", "v5TEJ", "v6", "v6KZ", "v6T2",
10702 "v6K", "v7", "v6-M", "v6S-M", "v7E-M"};
10703 static const char * arm_attr_tag_ARM_ISA_use[] = {"No", "Yes"};
10704 static const char * arm_attr_tag_THUMB_ISA_use[] =
10705 {"No", "Thumb-1", "Thumb-2"};
10706 static const char * arm_attr_tag_FP_arch[] =
10707 {"No", "VFPv1", "VFPv2", "VFPv3", "VFPv3-D16", "VFPv4", "VFPv4-D16"};
10708 static const char * arm_attr_tag_WMMX_arch[] = {"No", "WMMXv1", "WMMXv2"};
10709 static const char * arm_attr_tag_Advanced_SIMD_arch[] =
10710 {"No", "NEONv1", "NEONv1 with Fused-MAC"};
10711 static const char * arm_attr_tag_PCS_config[] =
10712 {"None", "Bare platform", "Linux application", "Linux DSO", "PalmOS 2004",
10713 "PalmOS (reserved)", "SymbianOS 2004", "SymbianOS (reserved)"};
10714 static const char * arm_attr_tag_ABI_PCS_R9_use[] =
10715 {"V6", "SB", "TLS", "Unused"};
10716 static const char * arm_attr_tag_ABI_PCS_RW_data[] =
10717 {"Absolute", "PC-relative", "SB-relative", "None"};
10718 static const char * arm_attr_tag_ABI_PCS_RO_data[] =
10719 {"Absolute", "PC-relative", "None"};
10720 static const char * arm_attr_tag_ABI_PCS_GOT_use[] =
10721 {"None", "direct", "GOT-indirect"};
10722 static const char * arm_attr_tag_ABI_PCS_wchar_t[] =
10723 {"None", "??? 1", "2", "??? 3", "4"};
10724 static const char * arm_attr_tag_ABI_FP_rounding[] = {"Unused", "Needed"};
10725 static const char * arm_attr_tag_ABI_FP_denormal[] =
10726 {"Unused", "Needed", "Sign only"};
10727 static const char * arm_attr_tag_ABI_FP_exceptions[] = {"Unused", "Needed"};
10728 static const char * arm_attr_tag_ABI_FP_user_exceptions[] = {"Unused", "Needed"};
10729 static const char * arm_attr_tag_ABI_FP_number_model[] =
10730 {"Unused", "Finite", "RTABI", "IEEE 754"};
10731 static const char * arm_attr_tag_ABI_enum_size[] =
10732 {"Unused", "small", "int", "forced to int"};
10733 static const char * arm_attr_tag_ABI_HardFP_use[] =
10734 {"As Tag_FP_arch", "SP only", "DP only", "SP and DP"};
10735 static const char * arm_attr_tag_ABI_VFP_args[] =
10736 {"AAPCS", "VFP registers", "custom"};
10737 static const char * arm_attr_tag_ABI_WMMX_args[] =
10738 {"AAPCS", "WMMX registers", "custom"};
10739 static const char * arm_attr_tag_ABI_optimization_goals[] =
10740 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
10741 "Aggressive Size", "Prefer Debug", "Aggressive Debug"};
10742 static const char * arm_attr_tag_ABI_FP_optimization_goals[] =
10743 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
10744 "Aggressive Size", "Prefer Accuracy", "Aggressive Accuracy"};
10745 static const char * arm_attr_tag_CPU_unaligned_access[] = {"None", "v6"};
10746 static const char * arm_attr_tag_FP_HP_extension[] =
10747 {"Not Allowed", "Allowed"};
10748 static const char * arm_attr_tag_ABI_FP_16bit_format[] =
10749 {"None", "IEEE 754", "Alternative Format"};
10750 static const char * arm_attr_tag_MPextension_use[] =
10751 {"Not Allowed", "Allowed"};
10752 static const char * arm_attr_tag_DIV_use[] =
10753 {"Allowed in Thumb-ISA, v7-R or v7-M", "Not allowed",
10754 "Allowed in v7-A with integer division extension"};
10755 static const char * arm_attr_tag_T2EE_use[] = {"Not Allowed", "Allowed"};
10756 static const char * arm_attr_tag_Virtualization_use[] =
10757 {"Not Allowed", "TrustZone", "Virtualization Extensions",
10758 "TrustZone and Virtualization Extensions"};
10759 static const char * arm_attr_tag_MPextension_use_legacy[] =
10760 {"Not Allowed", "Allowed"};
10761
10762 #define LOOKUP(id, name) \
10763 {id, #name, 0x80 | ARRAY_SIZE(arm_attr_tag_##name), arm_attr_tag_##name}
10764 static arm_attr_public_tag arm_attr_public_tags[] =
10765 {
10766 {4, "CPU_raw_name", 1, NULL},
10767 {5, "CPU_name", 1, NULL},
10768 LOOKUP(6, CPU_arch),
10769 {7, "CPU_arch_profile", 0, NULL},
10770 LOOKUP(8, ARM_ISA_use),
10771 LOOKUP(9, THUMB_ISA_use),
10772 LOOKUP(10, FP_arch),
10773 LOOKUP(11, WMMX_arch),
10774 LOOKUP(12, Advanced_SIMD_arch),
10775 LOOKUP(13, PCS_config),
10776 LOOKUP(14, ABI_PCS_R9_use),
10777 LOOKUP(15, ABI_PCS_RW_data),
10778 LOOKUP(16, ABI_PCS_RO_data),
10779 LOOKUP(17, ABI_PCS_GOT_use),
10780 LOOKUP(18, ABI_PCS_wchar_t),
10781 LOOKUP(19, ABI_FP_rounding),
10782 LOOKUP(20, ABI_FP_denormal),
10783 LOOKUP(21, ABI_FP_exceptions),
10784 LOOKUP(22, ABI_FP_user_exceptions),
10785 LOOKUP(23, ABI_FP_number_model),
10786 {24, "ABI_align_needed", 0, NULL},
10787 {25, "ABI_align_preserved", 0, NULL},
10788 LOOKUP(26, ABI_enum_size),
10789 LOOKUP(27, ABI_HardFP_use),
10790 LOOKUP(28, ABI_VFP_args),
10791 LOOKUP(29, ABI_WMMX_args),
10792 LOOKUP(30, ABI_optimization_goals),
10793 LOOKUP(31, ABI_FP_optimization_goals),
10794 {32, "compatibility", 0, NULL},
10795 LOOKUP(34, CPU_unaligned_access),
10796 LOOKUP(36, FP_HP_extension),
10797 LOOKUP(38, ABI_FP_16bit_format),
10798 LOOKUP(42, MPextension_use),
10799 LOOKUP(44, DIV_use),
10800 {64, "nodefaults", 0, NULL},
10801 {65, "also_compatible_with", 0, NULL},
10802 LOOKUP(66, T2EE_use),
10803 {67, "conformance", 1, NULL},
10804 LOOKUP(68, Virtualization_use),
10805 LOOKUP(70, MPextension_use_legacy)
10806 };
10807 #undef LOOKUP
10808
10809 static unsigned char *
10810 display_arm_attribute (unsigned char * p)
10811 {
10812 int tag;
10813 unsigned int len;
10814 int val;
10815 arm_attr_public_tag * attr;
10816 unsigned i;
10817 int type;
10818
10819 tag = read_uleb128 (p, &len);
10820 p += len;
10821 attr = NULL;
10822 for (i = 0; i < ARRAY_SIZE (arm_attr_public_tags); i++)
10823 {
10824 if (arm_attr_public_tags[i].tag == tag)
10825 {
10826 attr = &arm_attr_public_tags[i];
10827 break;
10828 }
10829 }
10830
10831 if (attr)
10832 {
10833 printf (" Tag_%s: ", attr->name);
10834 switch (attr->type)
10835 {
10836 case 0:
10837 switch (tag)
10838 {
10839 case 7: /* Tag_CPU_arch_profile. */
10840 val = read_uleb128 (p, &len);
10841 p += len;
10842 switch (val)
10843 {
10844 case 0: printf (_("None\n")); break;
10845 case 'A': printf (_("Application\n")); break;
10846 case 'R': printf (_("Realtime\n")); break;
10847 case 'M': printf (_("Microcontroller\n")); break;
10848 case 'S': printf (_("Application or Realtime\n")); break;
10849 default: printf ("??? (%d)\n", val); break;
10850 }
10851 break;
10852
10853 case 24: /* Tag_align_needed. */
10854 val = read_uleb128 (p, &len);
10855 p += len;
10856 switch (val)
10857 {
10858 case 0: printf (_("None\n")); break;
10859 case 1: printf (_("8-byte\n")); break;
10860 case 2: printf (_("4-byte\n")); break;
10861 case 3: printf ("??? 3\n"); break;
10862 default:
10863 if (val <= 12)
10864 printf (_("8-byte and up to %d-byte extended\n"),
10865 1 << val);
10866 else
10867 printf ("??? (%d)\n", val);
10868 break;
10869 }
10870 break;
10871
10872 case 25: /* Tag_align_preserved. */
10873 val = read_uleb128 (p, &len);
10874 p += len;
10875 switch (val)
10876 {
10877 case 0: printf (_("None\n")); break;
10878 case 1: printf (_("8-byte, except leaf SP\n")); break;
10879 case 2: printf (_("8-byte\n")); break;
10880 case 3: printf ("??? 3\n"); break;
10881 default:
10882 if (val <= 12)
10883 printf (_("8-byte and up to %d-byte extended\n"),
10884 1 << val);
10885 else
10886 printf ("??? (%d)\n", val);
10887 break;
10888 }
10889 break;
10890
10891 case 32: /* Tag_compatibility. */
10892 val = read_uleb128 (p, &len);
10893 p += len;
10894 printf (_("flag = %d, vendor = %s\n"), val, p);
10895 p += strlen ((char *) p) + 1;
10896 break;
10897
10898 case 64: /* Tag_nodefaults. */
10899 p++;
10900 printf (_("True\n"));
10901 break;
10902
10903 case 65: /* Tag_also_compatible_with. */
10904 val = read_uleb128 (p, &len);
10905 p += len;
10906 if (val == 6 /* Tag_CPU_arch. */)
10907 {
10908 val = read_uleb128 (p, &len);
10909 p += len;
10910 if ((unsigned int)val >= ARRAY_SIZE (arm_attr_tag_CPU_arch))
10911 printf ("??? (%d)\n", val);
10912 else
10913 printf ("%s\n", arm_attr_tag_CPU_arch[val]);
10914 }
10915 else
10916 printf ("???\n");
10917 while (*(p++) != '\0' /* NUL terminator. */);
10918 break;
10919
10920 default:
10921 abort ();
10922 }
10923 return p;
10924
10925 case 1:
10926 case 2:
10927 type = attr->type;
10928 break;
10929
10930 default:
10931 assert (attr->type & 0x80);
10932 val = read_uleb128 (p, &len);
10933 p += len;
10934 type = attr->type & 0x7f;
10935 if (val >= type)
10936 printf ("??? (%d)\n", val);
10937 else
10938 printf ("%s\n", attr->table[val]);
10939 return p;
10940 }
10941 }
10942 else
10943 {
10944 if (tag & 1)
10945 type = 1; /* String. */
10946 else
10947 type = 2; /* uleb128. */
10948 printf (" Tag_unknown_%d: ", tag);
10949 }
10950
10951 if (type == 1)
10952 {
10953 printf ("\"%s\"\n", p);
10954 p += strlen ((char *) p) + 1;
10955 }
10956 else
10957 {
10958 val = read_uleb128 (p, &len);
10959 p += len;
10960 printf ("%d (0x%x)\n", val, val);
10961 }
10962
10963 return p;
10964 }
10965
10966 static unsigned char *
10967 display_gnu_attribute (unsigned char * p,
10968 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, int))
10969 {
10970 int tag;
10971 unsigned int len;
10972 int val;
10973 int type;
10974
10975 tag = read_uleb128 (p, &len);
10976 p += len;
10977
10978 /* Tag_compatibility is the only generic GNU attribute defined at
10979 present. */
10980 if (tag == 32)
10981 {
10982 val = read_uleb128 (p, &len);
10983 p += len;
10984 printf (_("flag = %d, vendor = %s\n"), val, p);
10985 p += strlen ((char *) p) + 1;
10986 return p;
10987 }
10988
10989 if ((tag & 2) == 0 && display_proc_gnu_attribute)
10990 return display_proc_gnu_attribute (p, tag);
10991
10992 if (tag & 1)
10993 type = 1; /* String. */
10994 else
10995 type = 2; /* uleb128. */
10996 printf (" Tag_unknown_%d: ", tag);
10997
10998 if (type == 1)
10999 {
11000 printf ("\"%s\"\n", p);
11001 p += strlen ((char *) p) + 1;
11002 }
11003 else
11004 {
11005 val = read_uleb128 (p, &len);
11006 p += len;
11007 printf ("%d (0x%x)\n", val, val);
11008 }
11009
11010 return p;
11011 }
11012
11013 static unsigned char *
11014 display_power_gnu_attribute (unsigned char * p, int tag)
11015 {
11016 int type;
11017 unsigned int len;
11018 int val;
11019
11020 if (tag == Tag_GNU_Power_ABI_FP)
11021 {
11022 val = read_uleb128 (p, &len);
11023 p += len;
11024 printf (" Tag_GNU_Power_ABI_FP: ");
11025
11026 switch (val)
11027 {
11028 case 0:
11029 printf (_("Hard or soft float\n"));
11030 break;
11031 case 1:
11032 printf (_("Hard float\n"));
11033 break;
11034 case 2:
11035 printf (_("Soft float\n"));
11036 break;
11037 case 3:
11038 printf (_("Single-precision hard float\n"));
11039 break;
11040 default:
11041 printf ("??? (%d)\n", val);
11042 break;
11043 }
11044 return p;
11045 }
11046
11047 if (tag == Tag_GNU_Power_ABI_Vector)
11048 {
11049 val = read_uleb128 (p, &len);
11050 p += len;
11051 printf (" Tag_GNU_Power_ABI_Vector: ");
11052 switch (val)
11053 {
11054 case 0:
11055 printf (_("Any\n"));
11056 break;
11057 case 1:
11058 printf (_("Generic\n"));
11059 break;
11060 case 2:
11061 printf ("AltiVec\n");
11062 break;
11063 case 3:
11064 printf ("SPE\n");
11065 break;
11066 default:
11067 printf ("??? (%d)\n", val);
11068 break;
11069 }
11070 return p;
11071 }
11072
11073 if (tag == Tag_GNU_Power_ABI_Struct_Return)
11074 {
11075 val = read_uleb128 (p, &len);
11076 p += len;
11077 printf (" Tag_GNU_Power_ABI_Struct_Return: ");
11078 switch (val)
11079 {
11080 case 0:
11081 printf (_("Any\n"));
11082 break;
11083 case 1:
11084 printf ("r3/r4\n");
11085 break;
11086 case 2:
11087 printf (_("Memory\n"));
11088 break;
11089 default:
11090 printf ("??? (%d)\n", val);
11091 break;
11092 }
11093 return p;
11094 }
11095
11096 if (tag & 1)
11097 type = 1; /* String. */
11098 else
11099 type = 2; /* uleb128. */
11100 printf (" Tag_unknown_%d: ", tag);
11101
11102 if (type == 1)
11103 {
11104 printf ("\"%s\"\n", p);
11105 p += strlen ((char *) p) + 1;
11106 }
11107 else
11108 {
11109 val = read_uleb128 (p, &len);
11110 p += len;
11111 printf ("%d (0x%x)\n", val, val);
11112 }
11113
11114 return p;
11115 }
11116
11117 static void
11118 display_sparc_hwcaps (int mask)
11119 {
11120 if (mask)
11121 {
11122 int first = 1;
11123 if (mask & ELF_SPARC_HWCAP_MUL32)
11124 fputs ("mul32", stdout), first = 0;
11125 if (mask & ELF_SPARC_HWCAP_DIV32)
11126 printf ("%sdiv32", first ? "" : "|"), first = 0;
11127 if (mask & ELF_SPARC_HWCAP_FSMULD)
11128 printf ("%sfsmuld", first ? "" : "|"), first = 0;
11129 if (mask & ELF_SPARC_HWCAP_V8PLUS)
11130 printf ("%sv8plus", first ? "" : "|"), first = 0;
11131 if (mask & ELF_SPARC_HWCAP_POPC)
11132 printf ("%spopc", first ? "" : "|"), first = 0;
11133 if (mask & ELF_SPARC_HWCAP_VIS)
11134 printf ("%svis", first ? "" : "|"), first = 0;
11135 if (mask & ELF_SPARC_HWCAP_VIS2)
11136 printf ("%svis2", first ? "" : "|"), first = 0;
11137 if (mask & ELF_SPARC_HWCAP_ASI_BLK_INIT)
11138 printf ("%sASIBlkInit", first ? "" : "|"), first = 0;
11139 if (mask & ELF_SPARC_HWCAP_FMAF)
11140 printf ("%sfmaf", first ? "" : "|"), first = 0;
11141 if (mask & ELF_SPARC_HWCAP_VIS3)
11142 printf ("%svis3", first ? "" : "|"), first = 0;
11143 if (mask & ELF_SPARC_HWCAP_HPC)
11144 printf ("%shpc", first ? "" : "|"), first = 0;
11145 if (mask & ELF_SPARC_HWCAP_RANDOM)
11146 printf ("%srandom", first ? "" : "|"), first = 0;
11147 if (mask & ELF_SPARC_HWCAP_TRANS)
11148 printf ("%strans", first ? "" : "|"), first = 0;
11149 if (mask & ELF_SPARC_HWCAP_FJFMAU)
11150 printf ("%sfjfmau", first ? "" : "|"), first = 0;
11151 if (mask & ELF_SPARC_HWCAP_IMA)
11152 printf ("%sima", first ? "" : "|"), first = 0;
11153 if (mask & ELF_SPARC_HWCAP_ASI_CACHE_SPARING)
11154 printf ("%scspare", first ? "" : "|"), first = 0;
11155 }
11156 else
11157 fputc('0', stdout);
11158 fputc('\n', stdout);
11159 }
11160
11161 static unsigned char *
11162 display_sparc_gnu_attribute (unsigned char * p, int tag)
11163 {
11164 int type;
11165 unsigned int len;
11166 int val;
11167
11168 if (tag == Tag_GNU_Sparc_HWCAPS)
11169 {
11170 val = read_uleb128 (p, &len);
11171 p += len;
11172 printf (" Tag_GNU_Sparc_HWCAPS: ");
11173
11174 display_sparc_hwcaps (val);
11175 return p;
11176 }
11177
11178 if (tag & 1)
11179 type = 1; /* String. */
11180 else
11181 type = 2; /* uleb128. */
11182 printf (" Tag_unknown_%d: ", tag);
11183
11184 if (type == 1)
11185 {
11186 printf ("\"%s\"\n", p);
11187 p += strlen ((char *) p) + 1;
11188 }
11189 else
11190 {
11191 val = read_uleb128 (p, &len);
11192 p += len;
11193 printf ("%d (0x%x)\n", val, val);
11194 }
11195
11196 return p;
11197 }
11198
11199 static unsigned char *
11200 display_mips_gnu_attribute (unsigned char * p, int tag)
11201 {
11202 int type;
11203 unsigned int len;
11204 int val;
11205
11206 if (tag == Tag_GNU_MIPS_ABI_FP)
11207 {
11208 val = read_uleb128 (p, &len);
11209 p += len;
11210 printf (" Tag_GNU_MIPS_ABI_FP: ");
11211
11212 switch (val)
11213 {
11214 case 0:
11215 printf (_("Hard or soft float\n"));
11216 break;
11217 case 1:
11218 printf (_("Hard float (double precision)\n"));
11219 break;
11220 case 2:
11221 printf (_("Hard float (single precision)\n"));
11222 break;
11223 case 3:
11224 printf (_("Soft float\n"));
11225 break;
11226 case 4:
11227 printf (_("Hard float (MIPS32r2 64-bit FPU)\n"));
11228 break;
11229 default:
11230 printf ("??? (%d)\n", val);
11231 break;
11232 }
11233 return p;
11234 }
11235
11236 if (tag & 1)
11237 type = 1; /* String. */
11238 else
11239 type = 2; /* uleb128. */
11240 printf (" Tag_unknown_%d: ", tag);
11241
11242 if (type == 1)
11243 {
11244 printf ("\"%s\"\n", p);
11245 p += strlen ((char *) p) + 1;
11246 }
11247 else
11248 {
11249 val = read_uleb128 (p, &len);
11250 p += len;
11251 printf ("%d (0x%x)\n", val, val);
11252 }
11253
11254 return p;
11255 }
11256
11257 static unsigned char *
11258 display_tic6x_attribute (unsigned char * p)
11259 {
11260 int tag;
11261 unsigned int len;
11262 int val;
11263
11264 tag = read_uleb128 (p, &len);
11265 p += len;
11266
11267 switch (tag)
11268 {
11269 case Tag_ISA:
11270 val = read_uleb128 (p, &len);
11271 p += len;
11272 printf (" Tag_ISA: ");
11273
11274 switch (val)
11275 {
11276 case C6XABI_Tag_ISA_none:
11277 printf (_("None\n"));
11278 break;
11279 case C6XABI_Tag_ISA_C62X:
11280 printf ("C62x\n");
11281 break;
11282 case C6XABI_Tag_ISA_C67X:
11283 printf ("C67x\n");
11284 break;
11285 case C6XABI_Tag_ISA_C67XP:
11286 printf ("C67x+\n");
11287 break;
11288 case C6XABI_Tag_ISA_C64X:
11289 printf ("C64x\n");
11290 break;
11291 case C6XABI_Tag_ISA_C64XP:
11292 printf ("C64x+\n");
11293 break;
11294 case C6XABI_Tag_ISA_C674X:
11295 printf ("C674x\n");
11296 break;
11297 default:
11298 printf ("??? (%d)\n", val);
11299 break;
11300 }
11301 return p;
11302
11303 case Tag_ABI_wchar_t:
11304 val = read_uleb128 (p, &len);
11305 p += len;
11306 printf (" Tag_ABI_wchar_t: ");
11307 switch (val)
11308 {
11309 case 0:
11310 printf (_("Not used\n"));
11311 break;
11312 case 1:
11313 printf (_("2 bytes\n"));
11314 break;
11315 case 2:
11316 printf (_("4 bytes\n"));
11317 break;
11318 default:
11319 printf ("??? (%d)\n", val);
11320 break;
11321 }
11322 return p;
11323
11324 case Tag_ABI_stack_align_needed:
11325 val = read_uleb128 (p, &len);
11326 p += len;
11327 printf (" Tag_ABI_stack_align_needed: ");
11328 switch (val)
11329 {
11330 case 0:
11331 printf (_("8-byte\n"));
11332 break;
11333 case 1:
11334 printf (_("16-byte\n"));
11335 break;
11336 default:
11337 printf ("??? (%d)\n", val);
11338 break;
11339 }
11340 return p;
11341
11342 case Tag_ABI_stack_align_preserved:
11343 val = read_uleb128 (p, &len);
11344 p += len;
11345 printf (" Tag_ABI_stack_align_preserved: ");
11346 switch (val)
11347 {
11348 case 0:
11349 printf (_("8-byte\n"));
11350 break;
11351 case 1:
11352 printf (_("16-byte\n"));
11353 break;
11354 default:
11355 printf ("??? (%d)\n", val);
11356 break;
11357 }
11358 return p;
11359
11360 case Tag_ABI_DSBT:
11361 val = read_uleb128 (p, &len);
11362 p += len;
11363 printf (" Tag_ABI_DSBT: ");
11364 switch (val)
11365 {
11366 case 0:
11367 printf (_("DSBT addressing not used\n"));
11368 break;
11369 case 1:
11370 printf (_("DSBT addressing used\n"));
11371 break;
11372 default:
11373 printf ("??? (%d)\n", val);
11374 break;
11375 }
11376 return p;
11377
11378 case Tag_ABI_PID:
11379 val = read_uleb128 (p, &len);
11380 p += len;
11381 printf (" Tag_ABI_PID: ");
11382 switch (val)
11383 {
11384 case 0:
11385 printf (_("Data addressing position-dependent\n"));
11386 break;
11387 case 1:
11388 printf (_("Data addressing position-independent, GOT near DP\n"));
11389 break;
11390 case 2:
11391 printf (_("Data addressing position-independent, GOT far from DP\n"));
11392 break;
11393 default:
11394 printf ("??? (%d)\n", val);
11395 break;
11396 }
11397 return p;
11398
11399 case Tag_ABI_PIC:
11400 val = read_uleb128 (p, &len);
11401 p += len;
11402 printf (" Tag_ABI_PIC: ");
11403 switch (val)
11404 {
11405 case 0:
11406 printf (_("Code addressing position-dependent\n"));
11407 break;
11408 case 1:
11409 printf (_("Code addressing position-independent\n"));
11410 break;
11411 default:
11412 printf ("??? (%d)\n", val);
11413 break;
11414 }
11415 return p;
11416
11417 case Tag_ABI_array_object_alignment:
11418 val = read_uleb128 (p, &len);
11419 p += len;
11420 printf (" Tag_ABI_array_object_alignment: ");
11421 switch (val)
11422 {
11423 case 0:
11424 printf (_("8-byte\n"));
11425 break;
11426 case 1:
11427 printf (_("4-byte\n"));
11428 break;
11429 case 2:
11430 printf (_("16-byte\n"));
11431 break;
11432 default:
11433 printf ("??? (%d)\n", val);
11434 break;
11435 }
11436 return p;
11437
11438 case Tag_ABI_array_object_align_expected:
11439 val = read_uleb128 (p, &len);
11440 p += len;
11441 printf (" Tag_ABI_array_object_align_expected: ");
11442 switch (val)
11443 {
11444 case 0:
11445 printf (_("8-byte\n"));
11446 break;
11447 case 1:
11448 printf (_("4-byte\n"));
11449 break;
11450 case 2:
11451 printf (_("16-byte\n"));
11452 break;
11453 default:
11454 printf ("??? (%d)\n", val);
11455 break;
11456 }
11457 return p;
11458
11459 case Tag_ABI_compatibility:
11460 val = read_uleb128 (p, &len);
11461 p += len;
11462 printf (" Tag_ABI_compatibility: ");
11463 printf (_("flag = %d, vendor = %s\n"), val, p);
11464 p += strlen ((char *) p) + 1;
11465 return p;
11466
11467 case Tag_ABI_conformance:
11468 printf (" Tag_ABI_conformance: ");
11469 printf ("\"%s\"\n", p);
11470 p += strlen ((char *) p) + 1;
11471 return p;
11472 }
11473
11474 printf (" Tag_unknown_%d: ", tag);
11475
11476 if (tag & 1)
11477 {
11478 printf ("\"%s\"\n", p);
11479 p += strlen ((char *) p) + 1;
11480 }
11481 else
11482 {
11483 val = read_uleb128 (p, &len);
11484 p += len;
11485 printf ("%d (0x%x)\n", val, val);
11486 }
11487
11488 return p;
11489 }
11490
11491 static int
11492 process_attributes (FILE * file,
11493 const char * public_name,
11494 unsigned int proc_type,
11495 unsigned char * (* display_pub_attribute) (unsigned char *),
11496 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, int))
11497 {
11498 Elf_Internal_Shdr * sect;
11499 unsigned char * contents;
11500 unsigned char * p;
11501 unsigned char * end;
11502 bfd_vma section_len;
11503 bfd_vma len;
11504 unsigned i;
11505
11506 /* Find the section header so that we get the size. */
11507 for (i = 0, sect = section_headers;
11508 i < elf_header.e_shnum;
11509 i++, sect++)
11510 {
11511 if (sect->sh_type != proc_type && sect->sh_type != SHT_GNU_ATTRIBUTES)
11512 continue;
11513
11514 contents = (unsigned char *) get_data (NULL, file, sect->sh_offset, 1,
11515 sect->sh_size, _("attributes"));
11516 if (contents == NULL)
11517 continue;
11518
11519 p = contents;
11520 if (*p == 'A')
11521 {
11522 len = sect->sh_size - 1;
11523 p++;
11524
11525 while (len > 0)
11526 {
11527 int namelen;
11528 bfd_boolean public_section;
11529 bfd_boolean gnu_section;
11530
11531 section_len = byte_get (p, 4);
11532 p += 4;
11533
11534 if (section_len > len)
11535 {
11536 printf (_("ERROR: Bad section length (%d > %d)\n"),
11537 (int) section_len, (int) len);
11538 section_len = len;
11539 }
11540
11541 len -= section_len;
11542 printf (_("Attribute Section: %s\n"), p);
11543
11544 if (public_name && streq ((char *) p, public_name))
11545 public_section = TRUE;
11546 else
11547 public_section = FALSE;
11548
11549 if (streq ((char *) p, "gnu"))
11550 gnu_section = TRUE;
11551 else
11552 gnu_section = FALSE;
11553
11554 namelen = strlen ((char *) p) + 1;
11555 p += namelen;
11556 section_len -= namelen + 4;
11557
11558 while (section_len > 0)
11559 {
11560 int tag = *(p++);
11561 int val;
11562 bfd_vma size;
11563
11564 size = byte_get (p, 4);
11565 if (size > section_len)
11566 {
11567 printf (_("ERROR: Bad subsection length (%d > %d)\n"),
11568 (int) size, (int) section_len);
11569 size = section_len;
11570 }
11571
11572 section_len -= size;
11573 end = p + size - 1;
11574 p += 4;
11575
11576 switch (tag)
11577 {
11578 case 1:
11579 printf (_("File Attributes\n"));
11580 break;
11581 case 2:
11582 printf (_("Section Attributes:"));
11583 goto do_numlist;
11584 case 3:
11585 printf (_("Symbol Attributes:"));
11586 do_numlist:
11587 for (;;)
11588 {
11589 unsigned int j;
11590
11591 val = read_uleb128 (p, &j);
11592 p += j;
11593 if (val == 0)
11594 break;
11595 printf (" %d", val);
11596 }
11597 printf ("\n");
11598 break;
11599 default:
11600 printf (_("Unknown tag: %d\n"), tag);
11601 public_section = FALSE;
11602 break;
11603 }
11604
11605 if (public_section)
11606 {
11607 while (p < end)
11608 p = display_pub_attribute (p);
11609 }
11610 else if (gnu_section)
11611 {
11612 while (p < end)
11613 p = display_gnu_attribute (p,
11614 display_proc_gnu_attribute);
11615 }
11616 else
11617 {
11618 /* ??? Do something sensible, like dump hex. */
11619 printf (_(" Unknown section contexts\n"));
11620 p = end;
11621 }
11622 }
11623 }
11624 }
11625 else
11626 printf (_("Unknown format '%c'\n"), *p);
11627
11628 free (contents);
11629 }
11630 return 1;
11631 }
11632
11633 static int
11634 process_arm_specific (FILE * file)
11635 {
11636 return process_attributes (file, "aeabi", SHT_ARM_ATTRIBUTES,
11637 display_arm_attribute, NULL);
11638 }
11639
11640 static int
11641 process_power_specific (FILE * file)
11642 {
11643 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
11644 display_power_gnu_attribute);
11645 }
11646
11647 static int
11648 process_sparc_specific (FILE * file)
11649 {
11650 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
11651 display_sparc_gnu_attribute);
11652 }
11653
11654 static int
11655 process_tic6x_specific (FILE * file)
11656 {
11657 return process_attributes (file, "c6xabi", SHT_C6000_ATTRIBUTES,
11658 display_tic6x_attribute, NULL);
11659 }
11660
11661 /* DATA points to the contents of a MIPS GOT that starts at VMA PLTGOT.
11662 Print the Address, Access and Initial fields of an entry at VMA ADDR
11663 and return the VMA of the next entry. */
11664
11665 static bfd_vma
11666 print_mips_got_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
11667 {
11668 printf (" ");
11669 print_vma (addr, LONG_HEX);
11670 printf (" ");
11671 if (addr < pltgot + 0xfff0)
11672 printf ("%6d(gp)", (int) (addr - pltgot - 0x7ff0));
11673 else
11674 printf ("%10s", "");
11675 printf (" ");
11676 if (data == NULL)
11677 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
11678 else
11679 {
11680 bfd_vma entry;
11681
11682 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
11683 print_vma (entry, LONG_HEX);
11684 }
11685 return addr + (is_32bit_elf ? 4 : 8);
11686 }
11687
11688 /* DATA points to the contents of a MIPS PLT GOT that starts at VMA
11689 PLTGOT. Print the Address and Initial fields of an entry at VMA
11690 ADDR and return the VMA of the next entry. */
11691
11692 static bfd_vma
11693 print_mips_pltgot_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
11694 {
11695 printf (" ");
11696 print_vma (addr, LONG_HEX);
11697 printf (" ");
11698 if (data == NULL)
11699 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
11700 else
11701 {
11702 bfd_vma entry;
11703
11704 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
11705 print_vma (entry, LONG_HEX);
11706 }
11707 return addr + (is_32bit_elf ? 4 : 8);
11708 }
11709
11710 static int
11711 process_mips_specific (FILE * file)
11712 {
11713 Elf_Internal_Dyn * entry;
11714 size_t liblist_offset = 0;
11715 size_t liblistno = 0;
11716 size_t conflictsno = 0;
11717 size_t options_offset = 0;
11718 size_t conflicts_offset = 0;
11719 size_t pltrelsz = 0;
11720 size_t pltrel = 0;
11721 bfd_vma pltgot = 0;
11722 bfd_vma mips_pltgot = 0;
11723 bfd_vma jmprel = 0;
11724 bfd_vma local_gotno = 0;
11725 bfd_vma gotsym = 0;
11726 bfd_vma symtabno = 0;
11727
11728 process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
11729 display_mips_gnu_attribute);
11730
11731 /* We have a lot of special sections. Thanks SGI! */
11732 if (dynamic_section == NULL)
11733 /* No information available. */
11734 return 0;
11735
11736 for (entry = dynamic_section; entry->d_tag != DT_NULL; ++entry)
11737 switch (entry->d_tag)
11738 {
11739 case DT_MIPS_LIBLIST:
11740 liblist_offset
11741 = offset_from_vma (file, entry->d_un.d_val,
11742 liblistno * sizeof (Elf32_External_Lib));
11743 break;
11744 case DT_MIPS_LIBLISTNO:
11745 liblistno = entry->d_un.d_val;
11746 break;
11747 case DT_MIPS_OPTIONS:
11748 options_offset = offset_from_vma (file, entry->d_un.d_val, 0);
11749 break;
11750 case DT_MIPS_CONFLICT:
11751 conflicts_offset
11752 = offset_from_vma (file, entry->d_un.d_val,
11753 conflictsno * sizeof (Elf32_External_Conflict));
11754 break;
11755 case DT_MIPS_CONFLICTNO:
11756 conflictsno = entry->d_un.d_val;
11757 break;
11758 case DT_PLTGOT:
11759 pltgot = entry->d_un.d_ptr;
11760 break;
11761 case DT_MIPS_LOCAL_GOTNO:
11762 local_gotno = entry->d_un.d_val;
11763 break;
11764 case DT_MIPS_GOTSYM:
11765 gotsym = entry->d_un.d_val;
11766 break;
11767 case DT_MIPS_SYMTABNO:
11768 symtabno = entry->d_un.d_val;
11769 break;
11770 case DT_MIPS_PLTGOT:
11771 mips_pltgot = entry->d_un.d_ptr;
11772 break;
11773 case DT_PLTREL:
11774 pltrel = entry->d_un.d_val;
11775 break;
11776 case DT_PLTRELSZ:
11777 pltrelsz = entry->d_un.d_val;
11778 break;
11779 case DT_JMPREL:
11780 jmprel = entry->d_un.d_ptr;
11781 break;
11782 default:
11783 break;
11784 }
11785
11786 if (liblist_offset != 0 && liblistno != 0 && do_dynamic)
11787 {
11788 Elf32_External_Lib * elib;
11789 size_t cnt;
11790
11791 elib = (Elf32_External_Lib *) get_data (NULL, file, liblist_offset,
11792 liblistno,
11793 sizeof (Elf32_External_Lib),
11794 _("liblist"));
11795 if (elib)
11796 {
11797 printf (_("\nSection '.liblist' contains %lu entries:\n"),
11798 (unsigned long) liblistno);
11799 fputs (_(" Library Time Stamp Checksum Version Flags\n"),
11800 stdout);
11801
11802 for (cnt = 0; cnt < liblistno; ++cnt)
11803 {
11804 Elf32_Lib liblist;
11805 time_t atime;
11806 char timebuf[20];
11807 struct tm * tmp;
11808
11809 liblist.l_name = BYTE_GET (elib[cnt].l_name);
11810 atime = BYTE_GET (elib[cnt].l_time_stamp);
11811 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
11812 liblist.l_version = BYTE_GET (elib[cnt].l_version);
11813 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
11814
11815 tmp = gmtime (&atime);
11816 snprintf (timebuf, sizeof (timebuf),
11817 "%04u-%02u-%02uT%02u:%02u:%02u",
11818 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
11819 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
11820
11821 printf ("%3lu: ", (unsigned long) cnt);
11822 if (VALID_DYNAMIC_NAME (liblist.l_name))
11823 print_symbol (20, GET_DYNAMIC_NAME (liblist.l_name));
11824 else
11825 printf (_("<corrupt: %9ld>"), liblist.l_name);
11826 printf (" %s %#10lx %-7ld", timebuf, liblist.l_checksum,
11827 liblist.l_version);
11828
11829 if (liblist.l_flags == 0)
11830 puts (_(" NONE"));
11831 else
11832 {
11833 static const struct
11834 {
11835 const char * name;
11836 int bit;
11837 }
11838 l_flags_vals[] =
11839 {
11840 { " EXACT_MATCH", LL_EXACT_MATCH },
11841 { " IGNORE_INT_VER", LL_IGNORE_INT_VER },
11842 { " REQUIRE_MINOR", LL_REQUIRE_MINOR },
11843 { " EXPORTS", LL_EXPORTS },
11844 { " DELAY_LOAD", LL_DELAY_LOAD },
11845 { " DELTA", LL_DELTA }
11846 };
11847 int flags = liblist.l_flags;
11848 size_t fcnt;
11849
11850 for (fcnt = 0; fcnt < ARRAY_SIZE (l_flags_vals); ++fcnt)
11851 if ((flags & l_flags_vals[fcnt].bit) != 0)
11852 {
11853 fputs (l_flags_vals[fcnt].name, stdout);
11854 flags ^= l_flags_vals[fcnt].bit;
11855 }
11856 if (flags != 0)
11857 printf (" %#x", (unsigned int) flags);
11858
11859 puts ("");
11860 }
11861 }
11862
11863 free (elib);
11864 }
11865 }
11866
11867 if (options_offset != 0)
11868 {
11869 Elf_External_Options * eopt;
11870 Elf_Internal_Shdr * sect = section_headers;
11871 Elf_Internal_Options * iopt;
11872 Elf_Internal_Options * option;
11873 size_t offset;
11874 int cnt;
11875
11876 /* Find the section header so that we get the size. */
11877 while (sect->sh_type != SHT_MIPS_OPTIONS)
11878 ++sect;
11879
11880 eopt = (Elf_External_Options *) get_data (NULL, file, options_offset, 1,
11881 sect->sh_size, _("options"));
11882 if (eopt)
11883 {
11884 iopt = (Elf_Internal_Options *)
11885 cmalloc ((sect->sh_size / sizeof (eopt)), sizeof (* iopt));
11886 if (iopt == NULL)
11887 {
11888 error (_("Out of memory\n"));
11889 return 0;
11890 }
11891
11892 offset = cnt = 0;
11893 option = iopt;
11894
11895 while (offset < sect->sh_size)
11896 {
11897 Elf_External_Options * eoption;
11898
11899 eoption = (Elf_External_Options *) ((char *) eopt + offset);
11900
11901 option->kind = BYTE_GET (eoption->kind);
11902 option->size = BYTE_GET (eoption->size);
11903 option->section = BYTE_GET (eoption->section);
11904 option->info = BYTE_GET (eoption->info);
11905
11906 offset += option->size;
11907
11908 ++option;
11909 ++cnt;
11910 }
11911
11912 printf (_("\nSection '%s' contains %d entries:\n"),
11913 SECTION_NAME (sect), cnt);
11914
11915 option = iopt;
11916
11917 while (cnt-- > 0)
11918 {
11919 size_t len;
11920
11921 switch (option->kind)
11922 {
11923 case ODK_NULL:
11924 /* This shouldn't happen. */
11925 printf (" NULL %d %lx", option->section, option->info);
11926 break;
11927 case ODK_REGINFO:
11928 printf (" REGINFO ");
11929 if (elf_header.e_machine == EM_MIPS)
11930 {
11931 /* 32bit form. */
11932 Elf32_External_RegInfo * ereg;
11933 Elf32_RegInfo reginfo;
11934
11935 ereg = (Elf32_External_RegInfo *) (option + 1);
11936 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
11937 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
11938 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
11939 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
11940 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
11941 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
11942
11943 printf ("GPR %08lx GP 0x%lx\n",
11944 reginfo.ri_gprmask,
11945 (unsigned long) reginfo.ri_gp_value);
11946 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
11947 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
11948 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
11949 }
11950 else
11951 {
11952 /* 64 bit form. */
11953 Elf64_External_RegInfo * ereg;
11954 Elf64_Internal_RegInfo reginfo;
11955
11956 ereg = (Elf64_External_RegInfo *) (option + 1);
11957 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
11958 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
11959 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
11960 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
11961 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
11962 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
11963
11964 printf ("GPR %08lx GP 0x",
11965 reginfo.ri_gprmask);
11966 printf_vma (reginfo.ri_gp_value);
11967 printf ("\n");
11968
11969 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
11970 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
11971 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
11972 }
11973 ++option;
11974 continue;
11975 case ODK_EXCEPTIONS:
11976 fputs (" EXCEPTIONS fpe_min(", stdout);
11977 process_mips_fpe_exception (option->info & OEX_FPU_MIN);
11978 fputs (") fpe_max(", stdout);
11979 process_mips_fpe_exception ((option->info & OEX_FPU_MAX) >> 8);
11980 fputs (")", stdout);
11981
11982 if (option->info & OEX_PAGE0)
11983 fputs (" PAGE0", stdout);
11984 if (option->info & OEX_SMM)
11985 fputs (" SMM", stdout);
11986 if (option->info & OEX_FPDBUG)
11987 fputs (" FPDBUG", stdout);
11988 if (option->info & OEX_DISMISS)
11989 fputs (" DISMISS", stdout);
11990 break;
11991 case ODK_PAD:
11992 fputs (" PAD ", stdout);
11993 if (option->info & OPAD_PREFIX)
11994 fputs (" PREFIX", stdout);
11995 if (option->info & OPAD_POSTFIX)
11996 fputs (" POSTFIX", stdout);
11997 if (option->info & OPAD_SYMBOL)
11998 fputs (" SYMBOL", stdout);
11999 break;
12000 case ODK_HWPATCH:
12001 fputs (" HWPATCH ", stdout);
12002 if (option->info & OHW_R4KEOP)
12003 fputs (" R4KEOP", stdout);
12004 if (option->info & OHW_R8KPFETCH)
12005 fputs (" R8KPFETCH", stdout);
12006 if (option->info & OHW_R5KEOP)
12007 fputs (" R5KEOP", stdout);
12008 if (option->info & OHW_R5KCVTL)
12009 fputs (" R5KCVTL", stdout);
12010 break;
12011 case ODK_FILL:
12012 fputs (" FILL ", stdout);
12013 /* XXX Print content of info word? */
12014 break;
12015 case ODK_TAGS:
12016 fputs (" TAGS ", stdout);
12017 /* XXX Print content of info word? */
12018 break;
12019 case ODK_HWAND:
12020 fputs (" HWAND ", stdout);
12021 if (option->info & OHWA0_R4KEOP_CHECKED)
12022 fputs (" R4KEOP_CHECKED", stdout);
12023 if (option->info & OHWA0_R4KEOP_CLEAN)
12024 fputs (" R4KEOP_CLEAN", stdout);
12025 break;
12026 case ODK_HWOR:
12027 fputs (" HWOR ", stdout);
12028 if (option->info & OHWA0_R4KEOP_CHECKED)
12029 fputs (" R4KEOP_CHECKED", stdout);
12030 if (option->info & OHWA0_R4KEOP_CLEAN)
12031 fputs (" R4KEOP_CLEAN", stdout);
12032 break;
12033 case ODK_GP_GROUP:
12034 printf (" GP_GROUP %#06lx self-contained %#06lx",
12035 option->info & OGP_GROUP,
12036 (option->info & OGP_SELF) >> 16);
12037 break;
12038 case ODK_IDENT:
12039 printf (" IDENT %#06lx self-contained %#06lx",
12040 option->info & OGP_GROUP,
12041 (option->info & OGP_SELF) >> 16);
12042 break;
12043 default:
12044 /* This shouldn't happen. */
12045 printf (" %3d ??? %d %lx",
12046 option->kind, option->section, option->info);
12047 break;
12048 }
12049
12050 len = sizeof (* eopt);
12051 while (len < option->size)
12052 if (((char *) option)[len] >= ' '
12053 && ((char *) option)[len] < 0x7f)
12054 printf ("%c", ((char *) option)[len++]);
12055 else
12056 printf ("\\%03o", ((char *) option)[len++]);
12057
12058 fputs ("\n", stdout);
12059 ++option;
12060 }
12061
12062 free (eopt);
12063 }
12064 }
12065
12066 if (conflicts_offset != 0 && conflictsno != 0)
12067 {
12068 Elf32_Conflict * iconf;
12069 size_t cnt;
12070
12071 if (dynamic_symbols == NULL)
12072 {
12073 error (_("conflict list found without a dynamic symbol table\n"));
12074 return 0;
12075 }
12076
12077 iconf = (Elf32_Conflict *) cmalloc (conflictsno, sizeof (* iconf));
12078 if (iconf == NULL)
12079 {
12080 error (_("Out of memory\n"));
12081 return 0;
12082 }
12083
12084 if (is_32bit_elf)
12085 {
12086 Elf32_External_Conflict * econf32;
12087
12088 econf32 = (Elf32_External_Conflict *)
12089 get_data (NULL, file, conflicts_offset, conflictsno,
12090 sizeof (* econf32), _("conflict"));
12091 if (!econf32)
12092 return 0;
12093
12094 for (cnt = 0; cnt < conflictsno; ++cnt)
12095 iconf[cnt] = BYTE_GET (econf32[cnt]);
12096
12097 free (econf32);
12098 }
12099 else
12100 {
12101 Elf64_External_Conflict * econf64;
12102
12103 econf64 = (Elf64_External_Conflict *)
12104 get_data (NULL, file, conflicts_offset, conflictsno,
12105 sizeof (* econf64), _("conflict"));
12106 if (!econf64)
12107 return 0;
12108
12109 for (cnt = 0; cnt < conflictsno; ++cnt)
12110 iconf[cnt] = BYTE_GET (econf64[cnt]);
12111
12112 free (econf64);
12113 }
12114
12115 printf (_("\nSection '.conflict' contains %lu entries:\n"),
12116 (unsigned long) conflictsno);
12117 puts (_(" Num: Index Value Name"));
12118
12119 for (cnt = 0; cnt < conflictsno; ++cnt)
12120 {
12121 Elf_Internal_Sym * psym = & dynamic_symbols[iconf[cnt]];
12122
12123 printf ("%5lu: %8lu ", (unsigned long) cnt, iconf[cnt]);
12124 print_vma (psym->st_value, FULL_HEX);
12125 putchar (' ');
12126 if (VALID_DYNAMIC_NAME (psym->st_name))
12127 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
12128 else
12129 printf (_("<corrupt: %14ld>"), psym->st_name);
12130 putchar ('\n');
12131 }
12132
12133 free (iconf);
12134 }
12135
12136 if (pltgot != 0 && local_gotno != 0)
12137 {
12138 bfd_vma ent, local_end, global_end;
12139 size_t i, offset;
12140 unsigned char * data;
12141 int addr_size;
12142
12143 ent = pltgot;
12144 addr_size = (is_32bit_elf ? 4 : 8);
12145 local_end = pltgot + local_gotno * addr_size;
12146 global_end = local_end + (symtabno - gotsym) * addr_size;
12147
12148 offset = offset_from_vma (file, pltgot, global_end - pltgot);
12149 data = (unsigned char *) get_data (NULL, file, offset,
12150 global_end - pltgot, 1, _("GOT"));
12151 if (data == NULL)
12152 return 0;
12153
12154 printf (_("\nPrimary GOT:\n"));
12155 printf (_(" Canonical gp value: "));
12156 print_vma (pltgot + 0x7ff0, LONG_HEX);
12157 printf ("\n\n");
12158
12159 printf (_(" Reserved entries:\n"));
12160 printf (_(" %*s %10s %*s Purpose\n"),
12161 addr_size * 2, _("Address"), _("Access"),
12162 addr_size * 2, _("Initial"));
12163 ent = print_mips_got_entry (data, pltgot, ent);
12164 printf (_(" Lazy resolver\n"));
12165 if (data
12166 && (byte_get (data + ent - pltgot, addr_size)
12167 >> (addr_size * 8 - 1)) != 0)
12168 {
12169 ent = print_mips_got_entry (data, pltgot, ent);
12170 printf (_(" Module pointer (GNU extension)\n"));
12171 }
12172 printf ("\n");
12173
12174 if (ent < local_end)
12175 {
12176 printf (_(" Local entries:\n"));
12177 printf (" %*s %10s %*s\n",
12178 addr_size * 2, _("Address"), _("Access"),
12179 addr_size * 2, _("Initial"));
12180 while (ent < local_end)
12181 {
12182 ent = print_mips_got_entry (data, pltgot, ent);
12183 printf ("\n");
12184 }
12185 printf ("\n");
12186 }
12187
12188 if (gotsym < symtabno)
12189 {
12190 int sym_width;
12191
12192 printf (_(" Global entries:\n"));
12193 printf (" %*s %10s %*s %*s %-7s %3s %s\n",
12194 addr_size * 2, _("Address"), _("Access"),
12195 addr_size * 2, _("Initial"),
12196 addr_size * 2, _("Sym.Val."), _("Type"), _("Ndx"), _("Name"));
12197 sym_width = (is_32bit_elf ? 80 : 160) - 28 - addr_size * 6 - 1;
12198 for (i = gotsym; i < symtabno; i++)
12199 {
12200 Elf_Internal_Sym * psym;
12201
12202 psym = dynamic_symbols + i;
12203 ent = print_mips_got_entry (data, pltgot, ent);
12204 printf (" ");
12205 print_vma (psym->st_value, LONG_HEX);
12206 printf (" %-7s %3s ",
12207 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
12208 get_symbol_index_type (psym->st_shndx));
12209 if (VALID_DYNAMIC_NAME (psym->st_name))
12210 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
12211 else
12212 printf (_("<corrupt: %14ld>"), psym->st_name);
12213 printf ("\n");
12214 }
12215 printf ("\n");
12216 }
12217
12218 if (data)
12219 free (data);
12220 }
12221
12222 if (mips_pltgot != 0 && jmprel != 0 && pltrel != 0 && pltrelsz != 0)
12223 {
12224 bfd_vma ent, end;
12225 size_t offset, rel_offset;
12226 unsigned long count, i;
12227 unsigned char * data;
12228 int addr_size, sym_width;
12229 Elf_Internal_Rela * rels;
12230
12231 rel_offset = offset_from_vma (file, jmprel, pltrelsz);
12232 if (pltrel == DT_RELA)
12233 {
12234 if (!slurp_rela_relocs (file, rel_offset, pltrelsz, &rels, &count))
12235 return 0;
12236 }
12237 else
12238 {
12239 if (!slurp_rel_relocs (file, rel_offset, pltrelsz, &rels, &count))
12240 return 0;
12241 }
12242
12243 ent = mips_pltgot;
12244 addr_size = (is_32bit_elf ? 4 : 8);
12245 end = mips_pltgot + (2 + count) * addr_size;
12246
12247 offset = offset_from_vma (file, mips_pltgot, end - mips_pltgot);
12248 data = (unsigned char *) get_data (NULL, file, offset, end - mips_pltgot,
12249 1, _("PLT GOT"));
12250 if (data == NULL)
12251 return 0;
12252
12253 printf (_("\nPLT GOT:\n\n"));
12254 printf (_(" Reserved entries:\n"));
12255 printf (_(" %*s %*s Purpose\n"),
12256 addr_size * 2, _("Address"), addr_size * 2, _("Initial"));
12257 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
12258 printf (_(" PLT lazy resolver\n"));
12259 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
12260 printf (_(" Module pointer\n"));
12261 printf ("\n");
12262
12263 printf (_(" Entries:\n"));
12264 printf (" %*s %*s %*s %-7s %3s %s\n",
12265 addr_size * 2, _("Address"),
12266 addr_size * 2, _("Initial"),
12267 addr_size * 2, _("Sym.Val."), _("Type"), _("Ndx"), _("Name"));
12268 sym_width = (is_32bit_elf ? 80 : 160) - 17 - addr_size * 6 - 1;
12269 for (i = 0; i < count; i++)
12270 {
12271 Elf_Internal_Sym * psym;
12272
12273 psym = dynamic_symbols + get_reloc_symindex (rels[i].r_info);
12274 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
12275 printf (" ");
12276 print_vma (psym->st_value, LONG_HEX);
12277 printf (" %-7s %3s ",
12278 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
12279 get_symbol_index_type (psym->st_shndx));
12280 if (VALID_DYNAMIC_NAME (psym->st_name))
12281 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
12282 else
12283 printf (_("<corrupt: %14ld>"), psym->st_name);
12284 printf ("\n");
12285 }
12286 printf ("\n");
12287
12288 if (data)
12289 free (data);
12290 free (rels);
12291 }
12292
12293 return 1;
12294 }
12295
12296 static int
12297 process_gnu_liblist (FILE * file)
12298 {
12299 Elf_Internal_Shdr * section;
12300 Elf_Internal_Shdr * string_sec;
12301 Elf32_External_Lib * elib;
12302 char * strtab;
12303 size_t strtab_size;
12304 size_t cnt;
12305 unsigned i;
12306
12307 if (! do_arch)
12308 return 0;
12309
12310 for (i = 0, section = section_headers;
12311 i < elf_header.e_shnum;
12312 i++, section++)
12313 {
12314 switch (section->sh_type)
12315 {
12316 case SHT_GNU_LIBLIST:
12317 if (section->sh_link >= elf_header.e_shnum)
12318 break;
12319
12320 elib = (Elf32_External_Lib *)
12321 get_data (NULL, file, section->sh_offset, 1, section->sh_size,
12322 _("liblist"));
12323
12324 if (elib == NULL)
12325 break;
12326 string_sec = section_headers + section->sh_link;
12327
12328 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
12329 string_sec->sh_size,
12330 _("liblist string table"));
12331 if (strtab == NULL
12332 || section->sh_entsize != sizeof (Elf32_External_Lib))
12333 {
12334 free (elib);
12335 free (strtab);
12336 break;
12337 }
12338 strtab_size = string_sec->sh_size;
12339
12340 printf (_("\nLibrary list section '%s' contains %lu entries:\n"),
12341 SECTION_NAME (section),
12342 (unsigned long) (section->sh_size / sizeof (Elf32_External_Lib)));
12343
12344 puts (_(" Library Time Stamp Checksum Version Flags"));
12345
12346 for (cnt = 0; cnt < section->sh_size / sizeof (Elf32_External_Lib);
12347 ++cnt)
12348 {
12349 Elf32_Lib liblist;
12350 time_t atime;
12351 char timebuf[20];
12352 struct tm * tmp;
12353
12354 liblist.l_name = BYTE_GET (elib[cnt].l_name);
12355 atime = BYTE_GET (elib[cnt].l_time_stamp);
12356 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
12357 liblist.l_version = BYTE_GET (elib[cnt].l_version);
12358 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
12359
12360 tmp = gmtime (&atime);
12361 snprintf (timebuf, sizeof (timebuf),
12362 "%04u-%02u-%02uT%02u:%02u:%02u",
12363 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
12364 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
12365
12366 printf ("%3lu: ", (unsigned long) cnt);
12367 if (do_wide)
12368 printf ("%-20s", liblist.l_name < strtab_size
12369 ? strtab + liblist.l_name : _("<corrupt>"));
12370 else
12371 printf ("%-20.20s", liblist.l_name < strtab_size
12372 ? strtab + liblist.l_name : _("<corrupt>"));
12373 printf (" %s %#010lx %-7ld %-7ld\n", timebuf, liblist.l_checksum,
12374 liblist.l_version, liblist.l_flags);
12375 }
12376
12377 free (elib);
12378 free (strtab);
12379 }
12380 }
12381
12382 return 1;
12383 }
12384
12385 static const char *
12386 get_note_type (unsigned e_type)
12387 {
12388 static char buff[64];
12389
12390 if (elf_header.e_type == ET_CORE)
12391 switch (e_type)
12392 {
12393 case NT_AUXV:
12394 return _("NT_AUXV (auxiliary vector)");
12395 case NT_PRSTATUS:
12396 return _("NT_PRSTATUS (prstatus structure)");
12397 case NT_FPREGSET:
12398 return _("NT_FPREGSET (floating point registers)");
12399 case NT_PRPSINFO:
12400 return _("NT_PRPSINFO (prpsinfo structure)");
12401 case NT_TASKSTRUCT:
12402 return _("NT_TASKSTRUCT (task structure)");
12403 case NT_PRXFPREG:
12404 return _("NT_PRXFPREG (user_xfpregs structure)");
12405 case NT_PPC_VMX:
12406 return _("NT_PPC_VMX (ppc Altivec registers)");
12407 case NT_PPC_VSX:
12408 return _("NT_PPC_VSX (ppc VSX registers)");
12409 case NT_X86_XSTATE:
12410 return _("NT_X86_XSTATE (x86 XSAVE extended state)");
12411 case NT_S390_HIGH_GPRS:
12412 return _("NT_S390_HIGH_GPRS (s390 upper register halves)");
12413 case NT_S390_TIMER:
12414 return _("NT_S390_TIMER (s390 timer register)");
12415 case NT_S390_TODCMP:
12416 return _("NT_S390_TODCMP (s390 TOD comparator register)");
12417 case NT_S390_TODPREG:
12418 return _("NT_S390_TODPREG (s390 TOD programmable register)");
12419 case NT_S390_CTRS:
12420 return _("NT_S390_CTRS (s390 control registers)");
12421 case NT_S390_PREFIX:
12422 return _("NT_S390_PREFIX (s390 prefix register)");
12423 case NT_ARM_VFP:
12424 return _("NT_ARM_VFP (arm VFP registers)");
12425 case NT_PSTATUS:
12426 return _("NT_PSTATUS (pstatus structure)");
12427 case NT_FPREGS:
12428 return _("NT_FPREGS (floating point registers)");
12429 case NT_PSINFO:
12430 return _("NT_PSINFO (psinfo structure)");
12431 case NT_LWPSTATUS:
12432 return _("NT_LWPSTATUS (lwpstatus_t structure)");
12433 case NT_LWPSINFO:
12434 return _("NT_LWPSINFO (lwpsinfo_t structure)");
12435 case NT_WIN32PSTATUS:
12436 return _("NT_WIN32PSTATUS (win32_pstatus structure)");
12437 default:
12438 break;
12439 }
12440 else
12441 switch (e_type)
12442 {
12443 case NT_VERSION:
12444 return _("NT_VERSION (version)");
12445 case NT_ARCH:
12446 return _("NT_ARCH (architecture)");
12447 default:
12448 break;
12449 }
12450
12451 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
12452 return buff;
12453 }
12454
12455 static const char *
12456 get_gnu_elf_note_type (unsigned e_type)
12457 {
12458 static char buff[64];
12459
12460 switch (e_type)
12461 {
12462 case NT_GNU_ABI_TAG:
12463 return _("NT_GNU_ABI_TAG (ABI version tag)");
12464 case NT_GNU_HWCAP:
12465 return _("NT_GNU_HWCAP (DSO-supplied software HWCAP info)");
12466 case NT_GNU_BUILD_ID:
12467 return _("NT_GNU_BUILD_ID (unique build ID bitstring)");
12468 case NT_GNU_GOLD_VERSION:
12469 return _("NT_GNU_GOLD_VERSION (gold version)");
12470 default:
12471 break;
12472 }
12473
12474 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
12475 return buff;
12476 }
12477
12478 static int
12479 print_gnu_note (Elf_Internal_Note *pnote)
12480 {
12481 switch (pnote->type)
12482 {
12483 case NT_GNU_BUILD_ID:
12484 {
12485 unsigned long i;
12486
12487 printf (_(" Build ID: "));
12488 for (i = 0; i < pnote->descsz; ++i)
12489 printf ("%02x", pnote->descdata[i] & 0xff);
12490 printf (_("\n"));
12491 }
12492 break;
12493
12494 case NT_GNU_ABI_TAG:
12495 {
12496 unsigned long os, major, minor, subminor;
12497 const char *osname;
12498
12499 os = byte_get ((unsigned char *) pnote->descdata, 4);
12500 major = byte_get ((unsigned char *) pnote->descdata + 4, 4);
12501 minor = byte_get ((unsigned char *) pnote->descdata + 8, 4);
12502 subminor = byte_get ((unsigned char *) pnote->descdata + 12, 4);
12503
12504 switch (os)
12505 {
12506 case GNU_ABI_TAG_LINUX:
12507 osname = "Linux";
12508 break;
12509 case GNU_ABI_TAG_HURD:
12510 osname = "Hurd";
12511 break;
12512 case GNU_ABI_TAG_SOLARIS:
12513 osname = "Solaris";
12514 break;
12515 case GNU_ABI_TAG_FREEBSD:
12516 osname = "FreeBSD";
12517 break;
12518 case GNU_ABI_TAG_NETBSD:
12519 osname = "NetBSD";
12520 break;
12521 default:
12522 osname = "Unknown";
12523 break;
12524 }
12525
12526 printf (_(" OS: %s, ABI: %ld.%ld.%ld\n"), osname,
12527 major, minor, subminor);
12528 }
12529 break;
12530 }
12531
12532 return 1;
12533 }
12534
12535 static const char *
12536 get_netbsd_elfcore_note_type (unsigned e_type)
12537 {
12538 static char buff[64];
12539
12540 if (e_type == NT_NETBSDCORE_PROCINFO)
12541 {
12542 /* NetBSD core "procinfo" structure. */
12543 return _("NetBSD procinfo structure");
12544 }
12545
12546 /* As of Jan 2002 there are no other machine-independent notes
12547 defined for NetBSD core files. If the note type is less
12548 than the start of the machine-dependent note types, we don't
12549 understand it. */
12550
12551 if (e_type < NT_NETBSDCORE_FIRSTMACH)
12552 {
12553 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
12554 return buff;
12555 }
12556
12557 switch (elf_header.e_machine)
12558 {
12559 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0
12560 and PT_GETFPREGS == mach+2. */
12561
12562 case EM_OLD_ALPHA:
12563 case EM_ALPHA:
12564 case EM_SPARC:
12565 case EM_SPARC32PLUS:
12566 case EM_SPARCV9:
12567 switch (e_type)
12568 {
12569 case NT_NETBSDCORE_FIRSTMACH + 0:
12570 return _("PT_GETREGS (reg structure)");
12571 case NT_NETBSDCORE_FIRSTMACH + 2:
12572 return _("PT_GETFPREGS (fpreg structure)");
12573 default:
12574 break;
12575 }
12576 break;
12577
12578 /* On all other arch's, PT_GETREGS == mach+1 and
12579 PT_GETFPREGS == mach+3. */
12580 default:
12581 switch (e_type)
12582 {
12583 case NT_NETBSDCORE_FIRSTMACH + 1:
12584 return _("PT_GETREGS (reg structure)");
12585 case NT_NETBSDCORE_FIRSTMACH + 3:
12586 return _("PT_GETFPREGS (fpreg structure)");
12587 default:
12588 break;
12589 }
12590 }
12591
12592 snprintf (buff, sizeof (buff), _("PT_FIRSTMACH+%d"),
12593 e_type - NT_NETBSDCORE_FIRSTMACH);
12594 return buff;
12595 }
12596
12597 static const char *
12598 get_stapsdt_note_type (unsigned e_type)
12599 {
12600 static char buff[64];
12601
12602 switch (e_type)
12603 {
12604 case NT_STAPSDT:
12605 return _("NT_STAPSDT (SystemTap probe descriptors)");
12606
12607 default:
12608 break;
12609 }
12610
12611 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
12612 return buff;
12613 }
12614
12615 static int
12616 print_stapsdt_note (Elf_Internal_Note *pnote)
12617 {
12618 int addr_size = is_32bit_elf ? 4 : 8;
12619 char *data = pnote->descdata;
12620 char *data_end = pnote->descdata + pnote->descsz;
12621 bfd_vma pc, base_addr, semaphore;
12622 char *provider, *probe, *arg_fmt;
12623
12624 pc = byte_get ((unsigned char *) data, addr_size);
12625 data += addr_size;
12626 base_addr = byte_get ((unsigned char *) data, addr_size);
12627 data += addr_size;
12628 semaphore = byte_get ((unsigned char *) data, addr_size);
12629 data += addr_size;
12630
12631 provider = data;
12632 data += strlen (data) + 1;
12633 probe = data;
12634 data += strlen (data) + 1;
12635 arg_fmt = data;
12636 data += strlen (data) + 1;
12637
12638 printf (_(" Provider: %s\n"), provider);
12639 printf (_(" Name: %s\n"), probe);
12640 printf (_(" Location: "));
12641 print_vma (pc, FULL_HEX);
12642 printf (_(", Base: "));
12643 print_vma (base_addr, FULL_HEX);
12644 printf (_(", Semaphore: "));
12645 print_vma (semaphore, FULL_HEX);
12646 printf (_("\n"));
12647 printf (_(" Arguments: %s\n"), arg_fmt);
12648
12649 return data == data_end;
12650 }
12651
12652 static const char *
12653 get_ia64_vms_note_type (unsigned e_type)
12654 {
12655 static char buff[64];
12656
12657 switch (e_type)
12658 {
12659 case NT_VMS_MHD:
12660 return _("NT_VMS_MHD (module header)");
12661 case NT_VMS_LNM:
12662 return _("NT_VMS_LNM (language name)");
12663 case NT_VMS_SRC:
12664 return _("NT_VMS_SRC (source files)");
12665 case NT_VMS_TITLE:
12666 return _("NT_VMS_TITLE");
12667 case NT_VMS_EIDC:
12668 return _("NT_VMS_EIDC (consistency check)");
12669 case NT_VMS_FPMODE:
12670 return _("NT_VMS_FPMODE (FP mode)");
12671 case NT_VMS_LINKTIME:
12672 return _("NT_VMS_LINKTIME");
12673 case NT_VMS_IMGNAM:
12674 return _("NT_VMS_IMGNAM (image name)");
12675 case NT_VMS_IMGID:
12676 return _("NT_VMS_IMGID (image id)");
12677 case NT_VMS_LINKID:
12678 return _("NT_VMS_LINKID (link id)");
12679 case NT_VMS_IMGBID:
12680 return _("NT_VMS_IMGBID (build id)");
12681 case NT_VMS_GSTNAM:
12682 return _("NT_VMS_GSTNAM (sym table name)");
12683 case NT_VMS_ORIG_DYN:
12684 return _("NT_VMS_ORIG_DYN");
12685 case NT_VMS_PATCHTIME:
12686 return _("NT_VMS_PATCHTIME");
12687 default:
12688 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
12689 return buff;
12690 }
12691 }
12692
12693 static int
12694 print_ia64_vms_note (Elf_Internal_Note * pnote)
12695 {
12696 switch (pnote->type)
12697 {
12698 case NT_VMS_MHD:
12699 if (pnote->descsz > 36)
12700 {
12701 size_t l = strlen (pnote->descdata + 34);
12702 printf (_(" Creation date : %.17s\n"), pnote->descdata);
12703 printf (_(" Last patch date: %.17s\n"), pnote->descdata + 17);
12704 printf (_(" Module name : %s\n"), pnote->descdata + 34);
12705 printf (_(" Module version : %s\n"), pnote->descdata + 34 + l + 1);
12706 }
12707 else
12708 printf (_(" Invalid size\n"));
12709 break;
12710 case NT_VMS_LNM:
12711 printf (_(" Language: %s\n"), pnote->descdata);
12712 break;
12713 #ifdef BFD64
12714 case NT_VMS_FPMODE:
12715 printf (_(" FP mode: "));
12716 printf ("0x%016" BFD_VMA_FMT "x\n",
12717 (bfd_vma)byte_get ((unsigned char *)pnote->descdata, 8));
12718 break;
12719 case NT_VMS_LINKTIME:
12720 printf (_(" Link time: "));
12721 print_vms_time
12722 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
12723 printf ("\n");
12724 break;
12725 case NT_VMS_PATCHTIME:
12726 printf (_(" Patch time: "));
12727 print_vms_time
12728 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
12729 printf ("\n");
12730 break;
12731 case NT_VMS_ORIG_DYN:
12732 printf (_(" Major id: %u, minor id: %u\n"),
12733 (unsigned) byte_get ((unsigned char *)pnote->descdata, 4),
12734 (unsigned) byte_get ((unsigned char *)pnote->descdata + 4, 4));
12735 printf (_(" Manip date : "));
12736 print_vms_time
12737 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata + 8, 8));
12738 printf (_("\n"
12739 " Link flags : "));
12740 printf ("0x%016" BFD_VMA_FMT "x\n",
12741 (bfd_vma)byte_get ((unsigned char *)pnote->descdata + 16, 8));
12742 printf (_(" Header flags: 0x%08x\n"),
12743 (unsigned)byte_get ((unsigned char *)pnote->descdata + 24, 4));
12744 printf (_(" Image id : %s\n"), pnote->descdata + 32);
12745 break;
12746 #endif
12747 case NT_VMS_IMGNAM:
12748 printf (_(" Image name: %s\n"), pnote->descdata);
12749 break;
12750 case NT_VMS_GSTNAM:
12751 printf (_(" Global symbol table name: %s\n"), pnote->descdata);
12752 break;
12753 case NT_VMS_IMGID:
12754 printf (_(" Image id: %s\n"), pnote->descdata);
12755 break;
12756 case NT_VMS_LINKID:
12757 printf (_(" Linker id: %s\n"), pnote->descdata);
12758 break;
12759 default:
12760 break;
12761 }
12762 return 1;
12763 }
12764
12765 /* Note that by the ELF standard, the name field is already null byte
12766 terminated, and namesz includes the terminating null byte.
12767 I.E. the value of namesz for the name "FSF" is 4.
12768
12769 If the value of namesz is zero, there is no name present. */
12770 static int
12771 process_note (Elf_Internal_Note * pnote)
12772 {
12773 const char * name = pnote->namesz ? pnote->namedata : "(NONE)";
12774 const char * nt;
12775
12776 if (pnote->namesz == 0)
12777 /* If there is no note name, then use the default set of
12778 note type strings. */
12779 nt = get_note_type (pnote->type);
12780
12781 else if (const_strneq (pnote->namedata, "GNU"))
12782 /* GNU-specific object file notes. */
12783 nt = get_gnu_elf_note_type (pnote->type);
12784
12785 else if (const_strneq (pnote->namedata, "NetBSD-CORE"))
12786 /* NetBSD-specific core file notes. */
12787 nt = get_netbsd_elfcore_note_type (pnote->type);
12788
12789 else if (strneq (pnote->namedata, "SPU/", 4))
12790 {
12791 /* SPU-specific core file notes. */
12792 nt = pnote->namedata + 4;
12793 name = "SPU";
12794 }
12795
12796 else if (const_strneq (pnote->namedata, "IPF/VMS"))
12797 /* VMS/ia64-specific file notes. */
12798 nt = get_ia64_vms_note_type (pnote->type);
12799
12800 else if (const_strneq (pnote->namedata, "stapsdt"))
12801 nt = get_stapsdt_note_type (pnote->type);
12802
12803 else
12804 /* Don't recognize this note name; just use the default set of
12805 note type strings. */
12806 nt = get_note_type (pnote->type);
12807
12808 printf (" %-20s 0x%08lx\t%s\n", name, pnote->descsz, nt);
12809
12810 if (const_strneq (pnote->namedata, "IPF/VMS"))
12811 return print_ia64_vms_note (pnote);
12812 else if (const_strneq (pnote->namedata, "GNU"))
12813 return print_gnu_note (pnote);
12814 else if (const_strneq (pnote->namedata, "stapsdt"))
12815 return print_stapsdt_note (pnote);
12816 else
12817 return 1;
12818 }
12819
12820
12821 static int
12822 process_corefile_note_segment (FILE * file, bfd_vma offset, bfd_vma length)
12823 {
12824 Elf_External_Note * pnotes;
12825 Elf_External_Note * external;
12826 int res = 1;
12827
12828 if (length <= 0)
12829 return 0;
12830
12831 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
12832 _("notes"));
12833 if (pnotes == NULL)
12834 return 0;
12835
12836 external = pnotes;
12837
12838 printf (_("\nNotes at offset 0x%08lx with length 0x%08lx:\n"),
12839 (unsigned long) offset, (unsigned long) length);
12840 printf (_(" %-20s %10s\tDescription\n"), _("Owner"), _("Data size"));
12841
12842 while (external < (Elf_External_Note *) ((char *) pnotes + length))
12843 {
12844 Elf_External_Note * next;
12845 Elf_Internal_Note inote;
12846 char * temp = NULL;
12847
12848 if (!is_ia64_vms ())
12849 {
12850 inote.type = BYTE_GET (external->type);
12851 inote.namesz = BYTE_GET (external->namesz);
12852 inote.namedata = external->name;
12853 inote.descsz = BYTE_GET (external->descsz);
12854 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
12855 inote.descpos = offset + (inote.descdata - (char *) pnotes);
12856
12857 next = (Elf_External_Note *) (inote.descdata + align_power (inote.descsz, 2));
12858 }
12859 else
12860 {
12861 Elf64_External_VMS_Note *vms_external;
12862
12863 vms_external = (Elf64_External_VMS_Note *)external;
12864 inote.type = BYTE_GET (vms_external->type);
12865 inote.namesz = BYTE_GET (vms_external->namesz);
12866 inote.namedata = vms_external->name;
12867 inote.descsz = BYTE_GET (vms_external->descsz);
12868 inote.descdata = inote.namedata + align_power (inote.namesz, 3);
12869 inote.descpos = offset + (inote.descdata - (char *) pnotes);
12870
12871 next = (Elf_External_Note *)
12872 (inote.descdata + align_power (inote.descsz, 3));
12873 }
12874
12875 if ( ((char *) next > ((char *) pnotes) + length)
12876 || ((char *) next < (char *) pnotes))
12877 {
12878 warn (_("corrupt note found at offset %lx into core notes\n"),
12879 (unsigned long) ((char *) external - (char *) pnotes));
12880 warn (_(" type: %lx, namesize: %08lx, descsize: %08lx\n"),
12881 inote.type, inote.namesz, inote.descsz);
12882 break;
12883 }
12884
12885 external = next;
12886
12887 /* Prevent out-of-bounds indexing. */
12888 if (inote.namedata + inote.namesz >= (char *) pnotes + length
12889 || inote.namedata + inote.namesz < inote.namedata)
12890 {
12891 warn (_("corrupt note found at offset %lx into core notes\n"),
12892 (unsigned long) ((char *) external - (char *) pnotes));
12893 warn (_(" type: %lx, namesize: %08lx, descsize: %08lx\n"),
12894 inote.type, inote.namesz, inote.descsz);
12895 break;
12896 }
12897
12898 /* Verify that name is null terminated. It appears that at least
12899 one version of Linux (RedHat 6.0) generates corefiles that don't
12900 comply with the ELF spec by failing to include the null byte in
12901 namesz. */
12902 if (inote.namedata[inote.namesz] != '\0')
12903 {
12904 temp = (char *) malloc (inote.namesz + 1);
12905
12906 if (temp == NULL)
12907 {
12908 error (_("Out of memory\n"));
12909 res = 0;
12910 break;
12911 }
12912
12913 strncpy (temp, inote.namedata, inote.namesz);
12914 temp[inote.namesz] = 0;
12915
12916 /* warn (_("'%s' NOTE name not properly null terminated\n"), temp); */
12917 inote.namedata = temp;
12918 }
12919
12920 res &= process_note (& inote);
12921
12922 if (temp != NULL)
12923 {
12924 free (temp);
12925 temp = NULL;
12926 }
12927 }
12928
12929 free (pnotes);
12930
12931 return res;
12932 }
12933
12934 static int
12935 process_corefile_note_segments (FILE * file)
12936 {
12937 Elf_Internal_Phdr * segment;
12938 unsigned int i;
12939 int res = 1;
12940
12941 if (! get_program_headers (file))
12942 return 0;
12943
12944 for (i = 0, segment = program_headers;
12945 i < elf_header.e_phnum;
12946 i++, segment++)
12947 {
12948 if (segment->p_type == PT_NOTE)
12949 res &= process_corefile_note_segment (file,
12950 (bfd_vma) segment->p_offset,
12951 (bfd_vma) segment->p_filesz);
12952 }
12953
12954 return res;
12955 }
12956
12957 static int
12958 process_note_sections (FILE * file)
12959 {
12960 Elf_Internal_Shdr * section;
12961 unsigned long i;
12962 int res = 1;
12963
12964 for (i = 0, section = section_headers;
12965 i < elf_header.e_shnum;
12966 i++, section++)
12967 if (section->sh_type == SHT_NOTE)
12968 res &= process_corefile_note_segment (file,
12969 (bfd_vma) section->sh_offset,
12970 (bfd_vma) section->sh_size);
12971
12972 return res;
12973 }
12974
12975 static int
12976 process_notes (FILE * file)
12977 {
12978 /* If we have not been asked to display the notes then do nothing. */
12979 if (! do_notes)
12980 return 1;
12981
12982 if (elf_header.e_type != ET_CORE)
12983 return process_note_sections (file);
12984
12985 /* No program headers means no NOTE segment. */
12986 if (elf_header.e_phnum > 0)
12987 return process_corefile_note_segments (file);
12988
12989 printf (_("No note segments present in the core file.\n"));
12990 return 1;
12991 }
12992
12993 static int
12994 process_arch_specific (FILE * file)
12995 {
12996 if (! do_arch)
12997 return 1;
12998
12999 switch (elf_header.e_machine)
13000 {
13001 case EM_ARM:
13002 return process_arm_specific (file);
13003 case EM_MIPS:
13004 case EM_MIPS_RS3_LE:
13005 return process_mips_specific (file);
13006 break;
13007 case EM_PPC:
13008 return process_power_specific (file);
13009 break;
13010 case EM_SPARC:
13011 case EM_SPARC32PLUS:
13012 case EM_SPARCV9:
13013 return process_sparc_specific (file);
13014 break;
13015 case EM_TI_C6000:
13016 return process_tic6x_specific (file);
13017 break;
13018 default:
13019 break;
13020 }
13021 return 1;
13022 }
13023
13024 static int
13025 get_file_header (FILE * file)
13026 {
13027 /* Read in the identity array. */
13028 if (fread (elf_header.e_ident, EI_NIDENT, 1, file) != 1)
13029 return 0;
13030
13031 /* Determine how to read the rest of the header. */
13032 switch (elf_header.e_ident[EI_DATA])
13033 {
13034 default: /* fall through */
13035 case ELFDATANONE: /* fall through */
13036 case ELFDATA2LSB:
13037 byte_get = byte_get_little_endian;
13038 byte_put = byte_put_little_endian;
13039 break;
13040 case ELFDATA2MSB:
13041 byte_get = byte_get_big_endian;
13042 byte_put = byte_put_big_endian;
13043 break;
13044 }
13045
13046 /* For now we only support 32 bit and 64 bit ELF files. */
13047 is_32bit_elf = (elf_header.e_ident[EI_CLASS] != ELFCLASS64);
13048
13049 /* Read in the rest of the header. */
13050 if (is_32bit_elf)
13051 {
13052 Elf32_External_Ehdr ehdr32;
13053
13054 if (fread (ehdr32.e_type, sizeof (ehdr32) - EI_NIDENT, 1, file) != 1)
13055 return 0;
13056
13057 elf_header.e_type = BYTE_GET (ehdr32.e_type);
13058 elf_header.e_machine = BYTE_GET (ehdr32.e_machine);
13059 elf_header.e_version = BYTE_GET (ehdr32.e_version);
13060 elf_header.e_entry = BYTE_GET (ehdr32.e_entry);
13061 elf_header.e_phoff = BYTE_GET (ehdr32.e_phoff);
13062 elf_header.e_shoff = BYTE_GET (ehdr32.e_shoff);
13063 elf_header.e_flags = BYTE_GET (ehdr32.e_flags);
13064 elf_header.e_ehsize = BYTE_GET (ehdr32.e_ehsize);
13065 elf_header.e_phentsize = BYTE_GET (ehdr32.e_phentsize);
13066 elf_header.e_phnum = BYTE_GET (ehdr32.e_phnum);
13067 elf_header.e_shentsize = BYTE_GET (ehdr32.e_shentsize);
13068 elf_header.e_shnum = BYTE_GET (ehdr32.e_shnum);
13069 elf_header.e_shstrndx = BYTE_GET (ehdr32.e_shstrndx);
13070 }
13071 else
13072 {
13073 Elf64_External_Ehdr ehdr64;
13074
13075 /* If we have been compiled with sizeof (bfd_vma) == 4, then
13076 we will not be able to cope with the 64bit data found in
13077 64 ELF files. Detect this now and abort before we start
13078 overwriting things. */
13079 if (sizeof (bfd_vma) < 8)
13080 {
13081 error (_("This instance of readelf has been built without support for a\n\
13082 64 bit data type and so it cannot read 64 bit ELF files.\n"));
13083 return 0;
13084 }
13085
13086 if (fread (ehdr64.e_type, sizeof (ehdr64) - EI_NIDENT, 1, file) != 1)
13087 return 0;
13088
13089 elf_header.e_type = BYTE_GET (ehdr64.e_type);
13090 elf_header.e_machine = BYTE_GET (ehdr64.e_machine);
13091 elf_header.e_version = BYTE_GET (ehdr64.e_version);
13092 elf_header.e_entry = BYTE_GET (ehdr64.e_entry);
13093 elf_header.e_phoff = BYTE_GET (ehdr64.e_phoff);
13094 elf_header.e_shoff = BYTE_GET (ehdr64.e_shoff);
13095 elf_header.e_flags = BYTE_GET (ehdr64.e_flags);
13096 elf_header.e_ehsize = BYTE_GET (ehdr64.e_ehsize);
13097 elf_header.e_phentsize = BYTE_GET (ehdr64.e_phentsize);
13098 elf_header.e_phnum = BYTE_GET (ehdr64.e_phnum);
13099 elf_header.e_shentsize = BYTE_GET (ehdr64.e_shentsize);
13100 elf_header.e_shnum = BYTE_GET (ehdr64.e_shnum);
13101 elf_header.e_shstrndx = BYTE_GET (ehdr64.e_shstrndx);
13102 }
13103
13104 if (elf_header.e_shoff)
13105 {
13106 /* There may be some extensions in the first section header. Don't
13107 bomb if we can't read it. */
13108 if (is_32bit_elf)
13109 get_32bit_section_headers (file, 1);
13110 else
13111 get_64bit_section_headers (file, 1);
13112 }
13113
13114 return 1;
13115 }
13116
13117 /* Process one ELF object file according to the command line options.
13118 This file may actually be stored in an archive. The file is
13119 positioned at the start of the ELF object. */
13120
13121 static int
13122 process_object (char * file_name, FILE * file)
13123 {
13124 unsigned int i;
13125
13126 if (! get_file_header (file))
13127 {
13128 error (_("%s: Failed to read file header\n"), file_name);
13129 return 1;
13130 }
13131
13132 /* Initialise per file variables. */
13133 for (i = ARRAY_SIZE (version_info); i--;)
13134 version_info[i] = 0;
13135
13136 for (i = ARRAY_SIZE (dynamic_info); i--;)
13137 dynamic_info[i] = 0;
13138 dynamic_info_DT_GNU_HASH = 0;
13139
13140 /* Process the file. */
13141 if (show_name)
13142 printf (_("\nFile: %s\n"), file_name);
13143
13144 /* Initialise the dump_sects array from the cmdline_dump_sects array.
13145 Note we do this even if cmdline_dump_sects is empty because we
13146 must make sure that the dump_sets array is zeroed out before each
13147 object file is processed. */
13148 if (num_dump_sects > num_cmdline_dump_sects)
13149 memset (dump_sects, 0, num_dump_sects * sizeof (* dump_sects));
13150
13151 if (num_cmdline_dump_sects > 0)
13152 {
13153 if (num_dump_sects == 0)
13154 /* A sneaky way of allocating the dump_sects array. */
13155 request_dump_bynumber (num_cmdline_dump_sects, 0);
13156
13157 assert (num_dump_sects >= num_cmdline_dump_sects);
13158 memcpy (dump_sects, cmdline_dump_sects,
13159 num_cmdline_dump_sects * sizeof (* dump_sects));
13160 }
13161
13162 if (! process_file_header ())
13163 return 1;
13164
13165 if (! process_section_headers (file))
13166 {
13167 /* Without loaded section headers we cannot process lots of
13168 things. */
13169 do_unwind = do_version = do_dump = do_arch = 0;
13170
13171 if (! do_using_dynamic)
13172 do_syms = do_dyn_syms = do_reloc = 0;
13173 }
13174
13175 if (! process_section_groups (file))
13176 {
13177 /* Without loaded section groups we cannot process unwind. */
13178 do_unwind = 0;
13179 }
13180
13181 if (process_program_headers (file))
13182 process_dynamic_section (file);
13183
13184 process_relocs (file);
13185
13186 process_unwind (file);
13187
13188 process_symbol_table (file);
13189
13190 process_syminfo (file);
13191
13192 process_version_sections (file);
13193
13194 process_section_contents (file);
13195
13196 process_notes (file);
13197
13198 process_gnu_liblist (file);
13199
13200 process_arch_specific (file);
13201
13202 if (program_headers)
13203 {
13204 free (program_headers);
13205 program_headers = NULL;
13206 }
13207
13208 if (section_headers)
13209 {
13210 free (section_headers);
13211 section_headers = NULL;
13212 }
13213
13214 if (string_table)
13215 {
13216 free (string_table);
13217 string_table = NULL;
13218 string_table_length = 0;
13219 }
13220
13221 if (dynamic_strings)
13222 {
13223 free (dynamic_strings);
13224 dynamic_strings = NULL;
13225 dynamic_strings_length = 0;
13226 }
13227
13228 if (dynamic_symbols)
13229 {
13230 free (dynamic_symbols);
13231 dynamic_symbols = NULL;
13232 num_dynamic_syms = 0;
13233 }
13234
13235 if (dynamic_syminfo)
13236 {
13237 free (dynamic_syminfo);
13238 dynamic_syminfo = NULL;
13239 }
13240
13241 if (dynamic_section)
13242 {
13243 free (dynamic_section);
13244 dynamic_section = NULL;
13245 }
13246
13247 if (section_headers_groups)
13248 {
13249 free (section_headers_groups);
13250 section_headers_groups = NULL;
13251 }
13252
13253 if (section_groups)
13254 {
13255 struct group_list * g;
13256 struct group_list * next;
13257
13258 for (i = 0; i < group_count; i++)
13259 {
13260 for (g = section_groups [i].root; g != NULL; g = next)
13261 {
13262 next = g->next;
13263 free (g);
13264 }
13265 }
13266
13267 free (section_groups);
13268 section_groups = NULL;
13269 }
13270
13271 free_debug_memory ();
13272
13273 return 0;
13274 }
13275
13276 /* Process an ELF archive.
13277 On entry the file is positioned just after the ARMAG string. */
13278
13279 static int
13280 process_archive (char * file_name, FILE * file, bfd_boolean is_thin_archive)
13281 {
13282 struct archive_info arch;
13283 struct archive_info nested_arch;
13284 size_t got;
13285 int ret;
13286
13287 show_name = 1;
13288
13289 /* The ARCH structure is used to hold information about this archive. */
13290 arch.file_name = NULL;
13291 arch.file = NULL;
13292 arch.index_array = NULL;
13293 arch.sym_table = NULL;
13294 arch.longnames = NULL;
13295
13296 /* The NESTED_ARCH structure is used as a single-item cache of information
13297 about a nested archive (when members of a thin archive reside within
13298 another regular archive file). */
13299 nested_arch.file_name = NULL;
13300 nested_arch.file = NULL;
13301 nested_arch.index_array = NULL;
13302 nested_arch.sym_table = NULL;
13303 nested_arch.longnames = NULL;
13304
13305 if (setup_archive (&arch, file_name, file, is_thin_archive, do_archive_index) != 0)
13306 {
13307 ret = 1;
13308 goto out;
13309 }
13310
13311 if (do_archive_index)
13312 {
13313 if (arch.sym_table == NULL)
13314 error (_("%s: unable to dump the index as none was found\n"), file_name);
13315 else
13316 {
13317 unsigned int i, l;
13318 unsigned long current_pos;
13319
13320 printf (_("Index of archive %s: (%ld entries, 0x%lx bytes in the symbol table)\n"),
13321 file_name, arch.index_num, arch.sym_size);
13322 current_pos = ftell (file);
13323
13324 for (i = l = 0; i < arch.index_num; i++)
13325 {
13326 if ((i == 0) || ((i > 0) && (arch.index_array[i] != arch.index_array[i - 1])))
13327 {
13328 char * member_name;
13329
13330 member_name = get_archive_member_name_at (&arch, arch.index_array[i], &nested_arch);
13331
13332 if (member_name != NULL)
13333 {
13334 char * qualified_name = make_qualified_name (&arch, &nested_arch, member_name);
13335
13336 if (qualified_name != NULL)
13337 {
13338 printf (_("Binary %s contains:\n"), qualified_name);
13339 free (qualified_name);
13340 }
13341 }
13342 }
13343
13344 if (l >= arch.sym_size)
13345 {
13346 error (_("%s: end of the symbol table reached before the end of the index\n"),
13347 file_name);
13348 break;
13349 }
13350 printf ("\t%s\n", arch.sym_table + l);
13351 l += strlen (arch.sym_table + l) + 1;
13352 }
13353
13354 if (l & 01)
13355 ++l;
13356 if (l < arch.sym_size)
13357 error (_("%s: symbols remain in the index symbol table, but without corresponding entries in the index table\n"),
13358 file_name);
13359
13360 if (fseek (file, current_pos, SEEK_SET) != 0)
13361 {
13362 error (_("%s: failed to seek back to start of object files in the archive\n"), file_name);
13363 ret = 1;
13364 goto out;
13365 }
13366 }
13367
13368 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
13369 && !do_segments && !do_header && !do_dump && !do_version
13370 && !do_histogram && !do_debugging && !do_arch && !do_notes
13371 && !do_section_groups && !do_dyn_syms)
13372 {
13373 ret = 0; /* Archive index only. */
13374 goto out;
13375 }
13376 }
13377
13378 ret = 0;
13379
13380 while (1)
13381 {
13382 char * name;
13383 size_t namelen;
13384 char * qualified_name;
13385
13386 /* Read the next archive header. */
13387 if (fseek (file, arch.next_arhdr_offset, SEEK_SET) != 0)
13388 {
13389 error (_("%s: failed to seek to next archive header\n"), file_name);
13390 return 1;
13391 }
13392 got = fread (&arch.arhdr, 1, sizeof arch.arhdr, file);
13393 if (got != sizeof arch.arhdr)
13394 {
13395 if (got == 0)
13396 break;
13397 error (_("%s: failed to read archive header\n"), file_name);
13398 ret = 1;
13399 break;
13400 }
13401 if (memcmp (arch.arhdr.ar_fmag, ARFMAG, 2) != 0)
13402 {
13403 error (_("%s: did not find a valid archive header\n"), arch.file_name);
13404 ret = 1;
13405 break;
13406 }
13407
13408 arch.next_arhdr_offset += sizeof arch.arhdr;
13409
13410 archive_file_size = strtoul (arch.arhdr.ar_size, NULL, 10);
13411 if (archive_file_size & 01)
13412 ++archive_file_size;
13413
13414 name = get_archive_member_name (&arch, &nested_arch);
13415 if (name == NULL)
13416 {
13417 error (_("%s: bad archive file name\n"), file_name);
13418 ret = 1;
13419 break;
13420 }
13421 namelen = strlen (name);
13422
13423 qualified_name = make_qualified_name (&arch, &nested_arch, name);
13424 if (qualified_name == NULL)
13425 {
13426 error (_("%s: bad archive file name\n"), file_name);
13427 ret = 1;
13428 break;
13429 }
13430
13431 if (is_thin_archive && arch.nested_member_origin == 0)
13432 {
13433 /* This is a proxy for an external member of a thin archive. */
13434 FILE * member_file;
13435 char * member_file_name = adjust_relative_path (file_name, name, namelen);
13436 if (member_file_name == NULL)
13437 {
13438 ret = 1;
13439 break;
13440 }
13441
13442 member_file = fopen (member_file_name, "rb");
13443 if (member_file == NULL)
13444 {
13445 error (_("Input file '%s' is not readable.\n"), member_file_name);
13446 free (member_file_name);
13447 ret = 1;
13448 break;
13449 }
13450
13451 archive_file_offset = arch.nested_member_origin;
13452
13453 ret |= process_object (qualified_name, member_file);
13454
13455 fclose (member_file);
13456 free (member_file_name);
13457 }
13458 else if (is_thin_archive)
13459 {
13460 /* This is a proxy for a member of a nested archive. */
13461 archive_file_offset = arch.nested_member_origin + sizeof arch.arhdr;
13462
13463 /* The nested archive file will have been opened and setup by
13464 get_archive_member_name. */
13465 if (fseek (nested_arch.file, archive_file_offset, SEEK_SET) != 0)
13466 {
13467 error (_("%s: failed to seek to archive member.\n"), nested_arch.file_name);
13468 ret = 1;
13469 break;
13470 }
13471
13472 ret |= process_object (qualified_name, nested_arch.file);
13473 }
13474 else
13475 {
13476 archive_file_offset = arch.next_arhdr_offset;
13477 arch.next_arhdr_offset += archive_file_size;
13478
13479 ret |= process_object (qualified_name, file);
13480 }
13481
13482 if (dump_sects != NULL)
13483 {
13484 free (dump_sects);
13485 dump_sects = NULL;
13486 num_dump_sects = 0;
13487 }
13488
13489 free (qualified_name);
13490 }
13491
13492 out:
13493 if (nested_arch.file != NULL)
13494 fclose (nested_arch.file);
13495 release_archive (&nested_arch);
13496 release_archive (&arch);
13497
13498 return ret;
13499 }
13500
13501 static int
13502 process_file (char * file_name)
13503 {
13504 FILE * file;
13505 struct stat statbuf;
13506 char armag[SARMAG];
13507 int ret;
13508
13509 if (stat (file_name, &statbuf) < 0)
13510 {
13511 if (errno == ENOENT)
13512 error (_("'%s': No such file\n"), file_name);
13513 else
13514 error (_("Could not locate '%s'. System error message: %s\n"),
13515 file_name, strerror (errno));
13516 return 1;
13517 }
13518
13519 if (! S_ISREG (statbuf.st_mode))
13520 {
13521 error (_("'%s' is not an ordinary file\n"), file_name);
13522 return 1;
13523 }
13524
13525 file = fopen (file_name, "rb");
13526 if (file == NULL)
13527 {
13528 error (_("Input file '%s' is not readable.\n"), file_name);
13529 return 1;
13530 }
13531
13532 if (fread (armag, SARMAG, 1, file) != 1)
13533 {
13534 error (_("%s: Failed to read file's magic number\n"), file_name);
13535 fclose (file);
13536 return 1;
13537 }
13538
13539 if (memcmp (armag, ARMAG, SARMAG) == 0)
13540 ret = process_archive (file_name, file, FALSE);
13541 else if (memcmp (armag, ARMAGT, SARMAG) == 0)
13542 ret = process_archive (file_name, file, TRUE);
13543 else
13544 {
13545 if (do_archive_index)
13546 error (_("File %s is not an archive so its index cannot be displayed.\n"),
13547 file_name);
13548
13549 rewind (file);
13550 archive_file_size = archive_file_offset = 0;
13551 ret = process_object (file_name, file);
13552 }
13553
13554 fclose (file);
13555
13556 return ret;
13557 }
13558
13559 #ifdef SUPPORT_DISASSEMBLY
13560 /* Needed by the i386 disassembler. For extra credit, someone could
13561 fix this so that we insert symbolic addresses here, esp for GOT/PLT
13562 symbols. */
13563
13564 void
13565 print_address (unsigned int addr, FILE * outfile)
13566 {
13567 fprintf (outfile,"0x%8.8x", addr);
13568 }
13569
13570 /* Needed by the i386 disassembler. */
13571 void
13572 db_task_printsym (unsigned int addr)
13573 {
13574 print_address (addr, stderr);
13575 }
13576 #endif
13577
13578 int
13579 main (int argc, char ** argv)
13580 {
13581 int err;
13582
13583 #if defined (HAVE_SETLOCALE) && defined (HAVE_LC_MESSAGES)
13584 setlocale (LC_MESSAGES, "");
13585 #endif
13586 #if defined (HAVE_SETLOCALE)
13587 setlocale (LC_CTYPE, "");
13588 #endif
13589 bindtextdomain (PACKAGE, LOCALEDIR);
13590 textdomain (PACKAGE);
13591
13592 expandargv (&argc, &argv);
13593
13594 parse_args (argc, argv);
13595
13596 if (num_dump_sects > 0)
13597 {
13598 /* Make a copy of the dump_sects array. */
13599 cmdline_dump_sects = (dump_type *)
13600 malloc (num_dump_sects * sizeof (* dump_sects));
13601 if (cmdline_dump_sects == NULL)
13602 error (_("Out of memory allocating dump request table.\n"));
13603 else
13604 {
13605 memcpy (cmdline_dump_sects, dump_sects,
13606 num_dump_sects * sizeof (* dump_sects));
13607 num_cmdline_dump_sects = num_dump_sects;
13608 }
13609 }
13610
13611 if (optind < (argc - 1))
13612 show_name = 1;
13613
13614 err = 0;
13615 while (optind < argc)
13616 err |= process_file (argv[optind++]);
13617
13618 if (dump_sects != NULL)
13619 free (dump_sects);
13620 if (cmdline_dump_sects != NULL)
13621 free (cmdline_dump_sects);
13622
13623 return err;
13624 }