configure.in (GCINCS): Don't use "boehm-cflags".
[gcc.git] / boehm-gc / alloc.c
1 /*
2 * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
3 * Copyright (c) 1991-1996 by Xerox Corporation. All rights reserved.
4 * Copyright (c) 1998 by Silicon Graphics. All rights reserved.
5 * Copyright (c) 1999 by Hewlett-Packard Company. All rights reserved.
6 *
7 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
8 * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
9 *
10 * Permission is hereby granted to use or copy this program
11 * for any purpose, provided the above notices are retained on all copies.
12 * Permission to modify the code and to distribute modified code is granted,
13 * provided the above notices are retained, and a notice that the code was
14 * modified is included with the above copyright notice.
15 *
16 */
17
18
19 # include "private/gc_priv.h"
20
21 # include <stdio.h>
22 # if !defined(MACOS) && !defined(MSWINCE)
23 # include <signal.h>
24 # include <sys/types.h>
25 # endif
26
27 /*
28 * Separate free lists are maintained for different sized objects
29 * up to MAXOBJSZ.
30 * The call GC_allocobj(i,k) ensures that the freelist for
31 * kind k objects of size i points to a non-empty
32 * free list. It returns a pointer to the first entry on the free list.
33 * In a single-threaded world, GC_allocobj may be called to allocate
34 * an object of (small) size i as follows:
35 *
36 * opp = &(GC_objfreelist[i]);
37 * if (*opp == 0) GC_allocobj(i, NORMAL);
38 * ptr = *opp;
39 * *opp = obj_link(ptr);
40 *
41 * Note that this is very fast if the free list is non-empty; it should
42 * only involve the execution of 4 or 5 simple instructions.
43 * All composite objects on freelists are cleared, except for
44 * their first word.
45 */
46
47 /*
48 * The allocator uses GC_allochblk to allocate large chunks of objects.
49 * These chunks all start on addresses which are multiples of
50 * HBLKSZ. Each allocated chunk has an associated header,
51 * which can be located quickly based on the address of the chunk.
52 * (See headers.c for details.)
53 * This makes it possible to check quickly whether an
54 * arbitrary address corresponds to an object administered by the
55 * allocator.
56 */
57
58 word GC_non_gc_bytes = 0; /* Number of bytes not intended to be collected */
59
60 word GC_gc_no = 0;
61
62 #ifndef SMALL_CONFIG
63 int GC_incremental = 0; /* By default, stop the world. */
64 #endif
65
66 int GC_parallel = FALSE; /* By default, parallel GC is off. */
67
68 int GC_full_freq = 19; /* Every 20th collection is a full */
69 /* collection, whether we need it */
70 /* or not. */
71
72 GC_bool GC_need_full_gc = FALSE;
73 /* Need full GC do to heap growth. */
74
75 #ifdef THREADS
76 GC_bool GC_world_stopped = FALSE;
77 # define IF_THREADS(x) x
78 #else
79 # define IF_THREADS(x)
80 #endif
81
82 word GC_used_heap_size_after_full = 0;
83
84 char * GC_copyright[] =
85 {"Copyright 1988,1989 Hans-J. Boehm and Alan J. Demers ",
86 "Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved. ",
87 "Copyright (c) 1996-1998 by Silicon Graphics. All rights reserved. ",
88 "Copyright (c) 1999-2001 by Hewlett-Packard Company. All rights reserved. ",
89 "THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY",
90 " EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.",
91 "See source code for details." };
92
93 # include "version.h"
94
95 /* some more variables */
96
97 extern signed_word GC_mem_found; /* Number of reclaimed longwords */
98 /* after garbage collection */
99
100 GC_bool GC_dont_expand = 0;
101
102 word GC_free_space_divisor = 3;
103
104 extern GC_bool GC_collection_in_progress();
105 /* Collection is in progress, or was abandoned. */
106
107 extern GC_bool GC_print_back_height;
108
109 int GC_never_stop_func GC_PROTO((void)) { return(0); }
110
111 unsigned long GC_time_limit = TIME_LIMIT;
112
113 CLOCK_TYPE GC_start_time; /* Time at which we stopped world. */
114 /* used only in GC_timeout_stop_func. */
115
116 int GC_n_attempts = 0; /* Number of attempts at finishing */
117 /* collection within GC_time_limit. */
118
119 #if defined(SMALL_CONFIG) || defined(NO_CLOCK)
120 # define GC_timeout_stop_func GC_never_stop_func
121 #else
122 int GC_timeout_stop_func GC_PROTO((void))
123 {
124 CLOCK_TYPE current_time;
125 static unsigned count = 0;
126 unsigned long time_diff;
127
128 if ((count++ & 3) != 0) return(0);
129 GET_TIME(current_time);
130 time_diff = MS_TIME_DIFF(current_time,GC_start_time);
131 if (time_diff >= GC_time_limit) {
132 # ifdef CONDPRINT
133 if (GC_print_stats) {
134 GC_printf0("Abandoning stopped marking after ");
135 GC_printf1("%lu msecs", (unsigned long)time_diff);
136 GC_printf1("(attempt %ld)\n", (unsigned long) GC_n_attempts);
137 }
138 # endif
139 return(1);
140 }
141 return(0);
142 }
143 #endif /* !SMALL_CONFIG */
144
145 /* Return the minimum number of words that must be allocated between */
146 /* collections to amortize the collection cost. */
147 static word min_words_allocd()
148 {
149 # ifdef THREADS
150 /* We punt, for now. */
151 register signed_word stack_size = 10000;
152 # else
153 int dummy;
154 register signed_word stack_size = (ptr_t)(&dummy) - GC_stackbottom;
155 # endif
156 word total_root_size; /* includes double stack size, */
157 /* since the stack is expensive */
158 /* to scan. */
159 word scan_size; /* Estimate of memory to be scanned */
160 /* during normal GC. */
161
162 if (stack_size < 0) stack_size = -stack_size;
163 total_root_size = 2 * stack_size + GC_root_size;
164 scan_size = BYTES_TO_WORDS(GC_heapsize - GC_large_free_bytes
165 + (GC_large_free_bytes >> 2)
166 /* use a bit more of large empty heap */
167 + total_root_size);
168 if (TRUE_INCREMENTAL) {
169 return scan_size / (2 * GC_free_space_divisor);
170 } else {
171 return scan_size / GC_free_space_divisor;
172 }
173 }
174
175 /* Return the number of words allocated, adjusted for explicit storage */
176 /* management, etc.. This number is used in deciding when to trigger */
177 /* collections. */
178 word GC_adj_words_allocd()
179 {
180 register signed_word result;
181 register signed_word expl_managed =
182 BYTES_TO_WORDS((long)GC_non_gc_bytes
183 - (long)GC_non_gc_bytes_at_gc);
184
185 /* Don't count what was explicitly freed, or newly allocated for */
186 /* explicit management. Note that deallocating an explicitly */
187 /* managed object should not alter result, assuming the client */
188 /* is playing by the rules. */
189 result = (signed_word)GC_words_allocd
190 - (signed_word)GC_mem_freed
191 + (signed_word)GC_finalizer_mem_freed - expl_managed;
192 if (result > (signed_word)GC_words_allocd) {
193 result = GC_words_allocd;
194 /* probably client bug or unfortunate scheduling */
195 }
196 result += GC_words_finalized;
197 /* We count objects enqueued for finalization as though they */
198 /* had been reallocated this round. Finalization is user */
199 /* visible progress. And if we don't count this, we have */
200 /* stability problems for programs that finalize all objects. */
201 result += GC_words_wasted;
202 /* This doesn't reflect useful work. But if there is lots of */
203 /* new fragmentation, the same is probably true of the heap, */
204 /* and the collection will be correspondingly cheaper. */
205 if (result < (signed_word)(GC_words_allocd >> 3)) {
206 /* Always count at least 1/8 of the allocations. We don't want */
207 /* to collect too infrequently, since that would inhibit */
208 /* coalescing of free storage blocks. */
209 /* This also makes us partially robust against client bugs. */
210 return(GC_words_allocd >> 3);
211 } else {
212 return(result);
213 }
214 }
215
216
217 /* Clear up a few frames worth of garbage left at the top of the stack. */
218 /* This is used to prevent us from accidentally treating garbade left */
219 /* on the stack by other parts of the collector as roots. This */
220 /* differs from the code in misc.c, which actually tries to keep the */
221 /* stack clear of long-lived, client-generated garbage. */
222 void GC_clear_a_few_frames()
223 {
224 # define NWORDS 64
225 word frames[NWORDS];
226 register int i;
227
228 for (i = 0; i < NWORDS; i++) frames[i] = 0;
229 }
230
231 /* Heap size at which we need a collection to avoid expanding past */
232 /* limits used by blacklisting. */
233 static word GC_collect_at_heapsize = (word)(-1);
234
235 /* Have we allocated enough to amortize a collection? */
236 GC_bool GC_should_collect()
237 {
238 return(GC_adj_words_allocd() >= min_words_allocd()
239 || GC_heapsize >= GC_collect_at_heapsize);
240 }
241
242
243 void GC_notify_full_gc()
244 {
245 if (GC_start_call_back != (void (*) GC_PROTO((void)))0) {
246 (*GC_start_call_back)();
247 }
248 }
249
250 GC_bool GC_is_full_gc = FALSE;
251
252 /*
253 * Initiate a garbage collection if appropriate.
254 * Choose judiciously
255 * between partial, full, and stop-world collections.
256 * Assumes lock held, signals disabled.
257 */
258 void GC_maybe_gc()
259 {
260 static int n_partial_gcs = 0;
261
262 if (GC_should_collect()) {
263 if (!GC_incremental) {
264 GC_gcollect_inner();
265 n_partial_gcs = 0;
266 return;
267 } else {
268 # ifdef PARALLEL_MARK
269 GC_wait_for_reclaim();
270 # endif
271 if (GC_need_full_gc || n_partial_gcs >= GC_full_freq) {
272 # ifdef CONDPRINT
273 if (GC_print_stats) {
274 GC_printf2(
275 "***>Full mark for collection %lu after %ld allocd bytes\n",
276 (unsigned long) GC_gc_no+1,
277 (long)WORDS_TO_BYTES(GC_words_allocd));
278 }
279 # endif
280 GC_promote_black_lists();
281 (void)GC_reclaim_all((GC_stop_func)0, TRUE);
282 GC_clear_marks();
283 n_partial_gcs = 0;
284 GC_notify_full_gc();
285 GC_is_full_gc = TRUE;
286 } else {
287 n_partial_gcs++;
288 }
289 }
290 /* We try to mark with the world stopped. */
291 /* If we run out of time, this turns into */
292 /* incremental marking. */
293 # ifndef NO_CLOCK
294 if (GC_time_limit != GC_TIME_UNLIMITED) { GET_TIME(GC_start_time); }
295 # endif
296 if (GC_stopped_mark(GC_time_limit == GC_TIME_UNLIMITED?
297 GC_never_stop_func : GC_timeout_stop_func)) {
298 # ifdef SAVE_CALL_CHAIN
299 GC_save_callers(GC_last_stack);
300 # endif
301 GC_finish_collection();
302 } else {
303 if (!GC_is_full_gc) {
304 /* Count this as the first attempt */
305 GC_n_attempts++;
306 }
307 }
308 }
309 }
310
311
312 /*
313 * Stop the world garbage collection. Assumes lock held, signals disabled.
314 * If stop_func is not GC_never_stop_func, then abort if stop_func returns TRUE.
315 * Return TRUE if we successfully completed the collection.
316 */
317 GC_bool GC_try_to_collect_inner(stop_func)
318 GC_stop_func stop_func;
319 {
320 # ifdef CONDPRINT
321 CLOCK_TYPE start_time, current_time;
322 # endif
323 if (GC_dont_gc) return FALSE;
324 if (GC_incremental && GC_collection_in_progress()) {
325 # ifdef CONDPRINT
326 if (GC_print_stats) {
327 GC_printf0(
328 "GC_try_to_collect_inner: finishing collection in progress\n");
329 }
330 # endif /* CONDPRINT */
331 /* Just finish collection already in progress. */
332 while(GC_collection_in_progress()) {
333 if (stop_func()) return(FALSE);
334 GC_collect_a_little_inner(1);
335 }
336 }
337 if (stop_func == GC_never_stop_func) GC_notify_full_gc();
338 # ifdef CONDPRINT
339 if (GC_print_stats) {
340 if (GC_print_stats) GET_TIME(start_time);
341 GC_printf2(
342 "Initiating full world-stop collection %lu after %ld allocd bytes\n",
343 (unsigned long) GC_gc_no+1,
344 (long)WORDS_TO_BYTES(GC_words_allocd));
345 }
346 # endif
347 GC_promote_black_lists();
348 /* Make sure all blocks have been reclaimed, so sweep routines */
349 /* don't see cleared mark bits. */
350 /* If we're guaranteed to finish, then this is unnecessary. */
351 /* In the find_leak case, we have to finish to guarantee that */
352 /* previously unmarked objects are not reported as leaks. */
353 # ifdef PARALLEL_MARK
354 GC_wait_for_reclaim();
355 # endif
356 if ((GC_find_leak || stop_func != GC_never_stop_func)
357 && !GC_reclaim_all(stop_func, FALSE)) {
358 /* Aborted. So far everything is still consistent. */
359 return(FALSE);
360 }
361 GC_invalidate_mark_state(); /* Flush mark stack. */
362 GC_clear_marks();
363 # ifdef SAVE_CALL_CHAIN
364 GC_save_callers(GC_last_stack);
365 # endif
366 GC_is_full_gc = TRUE;
367 if (!GC_stopped_mark(stop_func)) {
368 if (!GC_incremental) {
369 /* We're partially done and have no way to complete or use */
370 /* current work. Reestablish invariants as cheaply as */
371 /* possible. */
372 GC_invalidate_mark_state();
373 GC_unpromote_black_lists();
374 } /* else we claim the world is already still consistent. We'll */
375 /* finish incrementally. */
376 return(FALSE);
377 }
378 GC_finish_collection();
379 # if defined(CONDPRINT)
380 if (GC_print_stats) {
381 GET_TIME(current_time);
382 GC_printf1("Complete collection took %lu msecs\n",
383 MS_TIME_DIFF(current_time,start_time));
384 }
385 # endif
386 return(TRUE);
387 }
388
389
390
391 /*
392 * Perform n units of garbage collection work. A unit is intended to touch
393 * roughly GC_RATE pages. Every once in a while, we do more than that.
394 * This needa to be a fairly large number with our current incremental
395 * GC strategy, since otherwise we allocate too much during GC, and the
396 * cleanup gets expensive.
397 */
398 # define GC_RATE 10
399 # define MAX_PRIOR_ATTEMPTS 1
400 /* Maximum number of prior attempts at world stop marking */
401 /* A value of 1 means that we finish the second time, no matter */
402 /* how long it takes. Doesn't count the initial root scan */
403 /* for a full GC. */
404
405 int GC_deficit = 0; /* The number of extra calls to GC_mark_some */
406 /* that we have made. */
407
408 void GC_collect_a_little_inner(n)
409 int n;
410 {
411 register int i;
412
413 if (GC_dont_gc) return;
414 if (GC_incremental && GC_collection_in_progress()) {
415 for (i = GC_deficit; i < GC_RATE*n; i++) {
416 if (GC_mark_some((ptr_t)0)) {
417 /* Need to finish a collection */
418 # ifdef SAVE_CALL_CHAIN
419 GC_save_callers(GC_last_stack);
420 # endif
421 # ifdef PARALLEL_MARK
422 GC_wait_for_reclaim();
423 # endif
424 if (GC_n_attempts < MAX_PRIOR_ATTEMPTS
425 && GC_time_limit != GC_TIME_UNLIMITED) {
426 GET_TIME(GC_start_time);
427 if (!GC_stopped_mark(GC_timeout_stop_func)) {
428 GC_n_attempts++;
429 break;
430 }
431 } else {
432 (void)GC_stopped_mark(GC_never_stop_func);
433 }
434 GC_finish_collection();
435 break;
436 }
437 }
438 if (GC_deficit > 0) GC_deficit -= GC_RATE*n;
439 if (GC_deficit < 0) GC_deficit = 0;
440 } else {
441 GC_maybe_gc();
442 }
443 }
444
445 int GC_collect_a_little GC_PROTO(())
446 {
447 int result;
448 DCL_LOCK_STATE;
449
450 DISABLE_SIGNALS();
451 LOCK();
452 GC_collect_a_little_inner(1);
453 result = (int)GC_collection_in_progress();
454 UNLOCK();
455 ENABLE_SIGNALS();
456 if (!result && GC_debugging_started) GC_print_all_smashed();
457 return(result);
458 }
459
460 /*
461 * Assumes lock is held, signals are disabled.
462 * We stop the world.
463 * If stop_func() ever returns TRUE, we may fail and return FALSE.
464 * Increment GC_gc_no if we succeed.
465 */
466 GC_bool GC_stopped_mark(stop_func)
467 GC_stop_func stop_func;
468 {
469 register int i;
470 int dummy;
471 # if defined(PRINTTIMES) || defined(CONDPRINT)
472 CLOCK_TYPE start_time, current_time;
473 # endif
474
475 # ifdef PRINTTIMES
476 GET_TIME(start_time);
477 # endif
478 # if defined(CONDPRINT) && !defined(PRINTTIMES)
479 if (GC_print_stats) GET_TIME(start_time);
480 # endif
481 # if defined(REGISTER_LIBRARIES_EARLY)
482 GC_cond_register_dynamic_libraries();
483 # endif
484 STOP_WORLD();
485 IF_THREADS(GC_world_stopped = TRUE);
486 # ifdef CONDPRINT
487 if (GC_print_stats) {
488 GC_printf1("--> Marking for collection %lu ",
489 (unsigned long) GC_gc_no + 1);
490 GC_printf2("after %lu allocd bytes + %lu wasted bytes\n",
491 (unsigned long) WORDS_TO_BYTES(GC_words_allocd),
492 (unsigned long) WORDS_TO_BYTES(GC_words_wasted));
493 }
494 # endif
495 # ifdef MAKE_BACK_GRAPH
496 if (GC_print_back_height) {
497 GC_build_back_graph();
498 }
499 # endif
500
501 /* Mark from all roots. */
502 /* Minimize junk left in my registers and on the stack */
503 GC_clear_a_few_frames();
504 GC_noop(0,0,0,0,0,0);
505 GC_initiate_gc();
506 for(i = 0;;i++) {
507 if ((*stop_func)()) {
508 # ifdef CONDPRINT
509 if (GC_print_stats) {
510 GC_printf0("Abandoned stopped marking after ");
511 GC_printf1("%lu iterations\n",
512 (unsigned long)i);
513 }
514 # endif
515 GC_deficit = i; /* Give the mutator a chance. */
516 IF_THREADS(GC_world_stopped = FALSE);
517 START_WORLD();
518 return(FALSE);
519 }
520 if (GC_mark_some((ptr_t)(&dummy))) break;
521 }
522
523 GC_gc_no++;
524 # ifdef PRINTSTATS
525 GC_printf2("Collection %lu reclaimed %ld bytes",
526 (unsigned long) GC_gc_no - 1,
527 (long)WORDS_TO_BYTES(GC_mem_found));
528 # else
529 # ifdef CONDPRINT
530 if (GC_print_stats) {
531 GC_printf1("Collection %lu finished", (unsigned long) GC_gc_no - 1);
532 }
533 # endif
534 # endif /* !PRINTSTATS */
535 # ifdef CONDPRINT
536 if (GC_print_stats) {
537 GC_printf1(" ---> heapsize = %lu bytes\n",
538 (unsigned long) GC_heapsize);
539 /* Printf arguments may be pushed in funny places. Clear the */
540 /* space. */
541 GC_printf0("");
542 }
543 # endif /* CONDPRINT */
544
545 /* Check all debugged objects for consistency */
546 if (GC_debugging_started) {
547 (*GC_check_heap)();
548 }
549
550 IF_THREADS(GC_world_stopped = FALSE);
551 START_WORLD();
552 # ifdef PRINTTIMES
553 GET_TIME(current_time);
554 GC_printf1("World-stopped marking took %lu msecs\n",
555 MS_TIME_DIFF(current_time,start_time));
556 # else
557 # ifdef CONDPRINT
558 if (GC_print_stats) {
559 GET_TIME(current_time);
560 GC_printf1("World-stopped marking took %lu msecs\n",
561 MS_TIME_DIFF(current_time,start_time));
562 }
563 # endif
564 # endif
565 return(TRUE);
566 }
567
568 /* Set all mark bits for the free list whose first entry is q */
569 #ifdef __STDC__
570 void GC_set_fl_marks(ptr_t q)
571 #else
572 void GC_set_fl_marks(q)
573 ptr_t q;
574 #endif
575 {
576 ptr_t p;
577 struct hblk * h, * last_h = 0;
578 hdr *hhdr;
579 int word_no;
580
581 for (p = q; p != 0; p = obj_link(p)){
582 h = HBLKPTR(p);
583 if (h != last_h) {
584 last_h = h;
585 hhdr = HDR(h);
586 }
587 word_no = (((word *)p) - ((word *)h));
588 set_mark_bit_from_hdr(hhdr, word_no);
589 }
590 }
591
592 /* Clear all mark bits for the free list whose first entry is q */
593 /* Decrement GC_mem_found by number of words on free list. */
594 #ifdef __STDC__
595 void GC_clear_fl_marks(ptr_t q)
596 #else
597 void GC_clear_fl_marks(q)
598 ptr_t q;
599 #endif
600 {
601 ptr_t p;
602 struct hblk * h, * last_h = 0;
603 hdr *hhdr;
604 int word_no;
605
606 for (p = q; p != 0; p = obj_link(p)){
607 h = HBLKPTR(p);
608 if (h != last_h) {
609 last_h = h;
610 hhdr = HDR(h);
611 }
612 word_no = (((word *)p) - ((word *)h));
613 clear_mark_bit_from_hdr(hhdr, word_no);
614 # ifdef GATHERSTATS
615 GC_mem_found -= hhdr -> hb_sz;
616 # endif
617 }
618 }
619
620 /* Finish up a collection. Assumes lock is held, signals are disabled, */
621 /* but the world is otherwise running. */
622 void GC_finish_collection()
623 {
624 # ifdef PRINTTIMES
625 CLOCK_TYPE start_time;
626 CLOCK_TYPE finalize_time;
627 CLOCK_TYPE done_time;
628
629 GET_TIME(start_time);
630 finalize_time = start_time;
631 # endif
632
633 # ifdef GATHERSTATS
634 GC_mem_found = 0;
635 # endif
636 # if defined(LINUX) && defined(__ELF__) && !defined(SMALL_CONFIG)
637 if (getenv("GC_PRINT_ADDRESS_MAP") != 0) {
638 GC_print_address_map();
639 }
640 # endif
641 COND_DUMP;
642 if (GC_find_leak) {
643 /* Mark all objects on the free list. All objects should be */
644 /* marked when we're done. */
645 {
646 register word size; /* current object size */
647 int kind;
648 ptr_t q;
649
650 for (kind = 0; kind < GC_n_kinds; kind++) {
651 for (size = 1; size <= MAXOBJSZ; size++) {
652 q = GC_obj_kinds[kind].ok_freelist[size];
653 if (q != 0) GC_set_fl_marks(q);
654 }
655 }
656 }
657 GC_start_reclaim(TRUE);
658 /* The above just checks; it doesn't really reclaim anything. */
659 }
660
661 GC_finalize();
662 # ifdef STUBBORN_ALLOC
663 GC_clean_changing_list();
664 # endif
665
666 # ifdef PRINTTIMES
667 GET_TIME(finalize_time);
668 # endif
669
670 if (GC_print_back_height) {
671 # ifdef MAKE_BACK_GRAPH
672 GC_traverse_back_graph();
673 # else
674 # ifndef SMALL_CONFIG
675 GC_err_printf0("Back height not available: "
676 "Rebuild collector with -DMAKE_BACK_GRAPH\n");
677 # endif
678 # endif
679 }
680
681 /* Clear free list mark bits, in case they got accidentally marked */
682 /* (or GC_find_leak is set and they were intentionally marked). */
683 /* Also subtract memory remaining from GC_mem_found count. */
684 /* Note that composite objects on free list are cleared. */
685 /* Thus accidentally marking a free list is not a problem; only */
686 /* objects on the list itself will be marked, and that's fixed here. */
687 {
688 register word size; /* current object size */
689 register ptr_t q; /* pointer to current object */
690 int kind;
691
692 for (kind = 0; kind < GC_n_kinds; kind++) {
693 for (size = 1; size <= MAXOBJSZ; size++) {
694 q = GC_obj_kinds[kind].ok_freelist[size];
695 if (q != 0) GC_clear_fl_marks(q);
696 }
697 }
698 }
699
700
701 # ifdef PRINTSTATS
702 GC_printf1("Bytes recovered before sweep - f.l. count = %ld\n",
703 (long)WORDS_TO_BYTES(GC_mem_found));
704 # endif
705 /* Reconstruct free lists to contain everything not marked */
706 GC_start_reclaim(FALSE);
707 if (GC_is_full_gc) {
708 GC_used_heap_size_after_full = USED_HEAP_SIZE;
709 GC_need_full_gc = FALSE;
710 } else {
711 GC_need_full_gc =
712 BYTES_TO_WORDS(USED_HEAP_SIZE - GC_used_heap_size_after_full)
713 > min_words_allocd();
714 }
715
716 # ifdef PRINTSTATS
717 GC_printf2(
718 "Immediately reclaimed %ld bytes in heap of size %lu bytes",
719 (long)WORDS_TO_BYTES(GC_mem_found),
720 (unsigned long)GC_heapsize);
721 # ifdef USE_MUNMAP
722 GC_printf1("(%lu unmapped)", GC_unmapped_bytes);
723 # endif
724 GC_printf2(
725 "\n%lu (atomic) + %lu (composite) collectable bytes in use\n",
726 (unsigned long)WORDS_TO_BYTES(GC_atomic_in_use),
727 (unsigned long)WORDS_TO_BYTES(GC_composite_in_use));
728 # endif
729
730 GC_n_attempts = 0;
731 GC_is_full_gc = FALSE;
732 /* Reset or increment counters for next cycle */
733 GC_words_allocd_before_gc += GC_words_allocd;
734 GC_non_gc_bytes_at_gc = GC_non_gc_bytes;
735 GC_words_allocd = 0;
736 GC_words_wasted = 0;
737 GC_mem_freed = 0;
738 GC_finalizer_mem_freed = 0;
739
740 # ifdef USE_MUNMAP
741 GC_unmap_old();
742 # endif
743 # ifdef PRINTTIMES
744 GET_TIME(done_time);
745 GC_printf2("Finalize + initiate sweep took %lu + %lu msecs\n",
746 MS_TIME_DIFF(finalize_time,start_time),
747 MS_TIME_DIFF(done_time,finalize_time));
748 # endif
749 }
750
751 /* Externally callable routine to invoke full, stop-world collection */
752 # if defined(__STDC__) || defined(__cplusplus)
753 int GC_try_to_collect(GC_stop_func stop_func)
754 # else
755 int GC_try_to_collect(stop_func)
756 GC_stop_func stop_func;
757 # endif
758 {
759 int result;
760 DCL_LOCK_STATE;
761
762 if (GC_debugging_started) GC_print_all_smashed();
763 GC_INVOKE_FINALIZERS();
764 DISABLE_SIGNALS();
765 LOCK();
766 ENTER_GC();
767 if (!GC_is_initialized) GC_init_inner();
768 /* Minimize junk left in my registers */
769 GC_noop(0,0,0,0,0,0);
770 result = (int)GC_try_to_collect_inner(stop_func);
771 EXIT_GC();
772 UNLOCK();
773 ENABLE_SIGNALS();
774 if(result) {
775 if (GC_debugging_started) GC_print_all_smashed();
776 GC_INVOKE_FINALIZERS();
777 }
778 return(result);
779 }
780
781 void GC_gcollect GC_PROTO(())
782 {
783 (void)GC_try_to_collect(GC_never_stop_func);
784 if (GC_have_errors) GC_print_all_errors();
785 }
786
787 word GC_n_heap_sects = 0; /* Number of sections currently in heap. */
788
789 /*
790 * Use the chunk of memory starting at p of size bytes as part of the heap.
791 * Assumes p is HBLKSIZE aligned, and bytes is a multiple of HBLKSIZE.
792 */
793 void GC_add_to_heap(p, bytes)
794 struct hblk *p;
795 word bytes;
796 {
797 word words;
798 hdr * phdr;
799
800 if (GC_n_heap_sects >= MAX_HEAP_SECTS) {
801 ABORT("Too many heap sections: Increase MAXHINCR or MAX_HEAP_SECTS");
802 }
803 phdr = GC_install_header(p);
804 if (0 == phdr) {
805 /* This is extremely unlikely. Can't add it. This will */
806 /* almost certainly result in a 0 return from the allocator, */
807 /* which is entirely appropriate. */
808 return;
809 }
810 GC_heap_sects[GC_n_heap_sects].hs_start = (ptr_t)p;
811 GC_heap_sects[GC_n_heap_sects].hs_bytes = bytes;
812 GC_n_heap_sects++;
813 words = BYTES_TO_WORDS(bytes);
814 phdr -> hb_sz = words;
815 phdr -> hb_map = (unsigned char *)1; /* A value != GC_invalid_map */
816 phdr -> hb_flags = 0;
817 GC_freehblk(p);
818 GC_heapsize += bytes;
819 if ((ptr_t)p <= (ptr_t)GC_least_plausible_heap_addr
820 || GC_least_plausible_heap_addr == 0) {
821 GC_least_plausible_heap_addr = (GC_PTR)((ptr_t)p - sizeof(word));
822 /* Making it a little smaller than necessary prevents */
823 /* us from getting a false hit from the variable */
824 /* itself. There's some unintentional reflection */
825 /* here. */
826 }
827 if ((ptr_t)p + bytes >= (ptr_t)GC_greatest_plausible_heap_addr) {
828 GC_greatest_plausible_heap_addr = (GC_PTR)((ptr_t)p + bytes);
829 }
830 }
831
832 # if !defined(NO_DEBUGGING)
833 void GC_print_heap_sects()
834 {
835 register unsigned i;
836
837 GC_printf1("Total heap size: %lu\n", (unsigned long) GC_heapsize);
838 for (i = 0; i < GC_n_heap_sects; i++) {
839 unsigned long start = (unsigned long) GC_heap_sects[i].hs_start;
840 unsigned long len = (unsigned long) GC_heap_sects[i].hs_bytes;
841 struct hblk *h;
842 unsigned nbl = 0;
843
844 GC_printf3("Section %ld from 0x%lx to 0x%lx ", (unsigned long)i,
845 start, (unsigned long)(start + len));
846 for (h = (struct hblk *)start; h < (struct hblk *)(start + len); h++) {
847 if (GC_is_black_listed(h, HBLKSIZE)) nbl++;
848 }
849 GC_printf2("%lu/%lu blacklisted\n", (unsigned long)nbl,
850 (unsigned long)(len/HBLKSIZE));
851 }
852 }
853 # endif
854
855 GC_PTR GC_least_plausible_heap_addr = (GC_PTR)ONES;
856 GC_PTR GC_greatest_plausible_heap_addr = 0;
857
858 ptr_t GC_max(x,y)
859 ptr_t x, y;
860 {
861 return(x > y? x : y);
862 }
863
864 ptr_t GC_min(x,y)
865 ptr_t x, y;
866 {
867 return(x < y? x : y);
868 }
869
870 # if defined(__STDC__) || defined(__cplusplus)
871 void GC_set_max_heap_size(GC_word n)
872 # else
873 void GC_set_max_heap_size(n)
874 GC_word n;
875 # endif
876 {
877 GC_max_heapsize = n;
878 }
879
880 GC_word GC_max_retries = 0;
881
882 /*
883 * this explicitly increases the size of the heap. It is used
884 * internally, but may also be invoked from GC_expand_hp by the user.
885 * The argument is in units of HBLKSIZE.
886 * Tiny values of n are rounded up.
887 * Returns FALSE on failure.
888 */
889 GC_bool GC_expand_hp_inner(n)
890 word n;
891 {
892 word bytes;
893 struct hblk * space;
894 word expansion_slop; /* Number of bytes by which we expect the */
895 /* heap to expand soon. */
896
897 if (n < MINHINCR) n = MINHINCR;
898 bytes = n * HBLKSIZE;
899 /* Make sure bytes is a multiple of GC_page_size */
900 {
901 word mask = GC_page_size - 1;
902 bytes += mask;
903 bytes &= ~mask;
904 }
905
906 if (GC_max_heapsize != 0 && GC_heapsize + bytes > GC_max_heapsize) {
907 /* Exceeded self-imposed limit */
908 return(FALSE);
909 }
910 space = GET_MEM(bytes);
911 if( space == 0 ) {
912 # ifdef CONDPRINT
913 if (GC_print_stats) {
914 GC_printf1("Failed to expand heap by %ld bytes\n",
915 (unsigned long)bytes);
916 }
917 # endif
918 return(FALSE);
919 }
920 # ifdef CONDPRINT
921 if (GC_print_stats) {
922 GC_printf2("Increasing heap size by %lu after %lu allocated bytes\n",
923 (unsigned long)bytes,
924 (unsigned long)WORDS_TO_BYTES(GC_words_allocd));
925 # ifdef UNDEFINED
926 GC_printf1("Root size = %lu\n", GC_root_size);
927 GC_print_block_list(); GC_print_hblkfreelist();
928 GC_printf0("\n");
929 # endif
930 }
931 # endif
932 expansion_slop = WORDS_TO_BYTES(min_words_allocd()) + 4*MAXHINCR*HBLKSIZE;
933 if (GC_last_heap_addr == 0 && !((word)space & SIGNB)
934 || GC_last_heap_addr != 0 && GC_last_heap_addr < (ptr_t)space) {
935 /* Assume the heap is growing up */
936 GC_greatest_plausible_heap_addr =
937 (GC_PTR)GC_max((ptr_t)GC_greatest_plausible_heap_addr,
938 (ptr_t)space + bytes + expansion_slop);
939 } else {
940 /* Heap is growing down */
941 GC_least_plausible_heap_addr =
942 (GC_PTR)GC_min((ptr_t)GC_least_plausible_heap_addr,
943 (ptr_t)space - expansion_slop);
944 }
945 # if defined(LARGE_CONFIG)
946 if (((ptr_t)GC_greatest_plausible_heap_addr <= (ptr_t)space + bytes
947 || (ptr_t)GC_least_plausible_heap_addr >= (ptr_t)space)
948 && GC_heapsize > 0) {
949 /* GC_add_to_heap will fix this, but ... */
950 WARN("Too close to address space limit: blacklisting ineffective\n", 0);
951 }
952 # endif
953 GC_prev_heap_addr = GC_last_heap_addr;
954 GC_last_heap_addr = (ptr_t)space;
955 GC_add_to_heap(space, bytes);
956 /* Force GC before we are likely to allocate past expansion_slop */
957 GC_collect_at_heapsize =
958 GC_heapsize + expansion_slop - 2*MAXHINCR*HBLKSIZE;
959 # if defined(LARGE_CONFIG)
960 if (GC_collect_at_heapsize < GC_heapsize /* wrapped */)
961 GC_collect_at_heapsize = (word)(-1);
962 # endif
963 return(TRUE);
964 }
965
966 /* Really returns a bool, but it's externally visible, so that's clumsy. */
967 /* Arguments is in bytes. */
968 # if defined(__STDC__) || defined(__cplusplus)
969 int GC_expand_hp(size_t bytes)
970 # else
971 int GC_expand_hp(bytes)
972 size_t bytes;
973 # endif
974 {
975 int result;
976 DCL_LOCK_STATE;
977
978 DISABLE_SIGNALS();
979 LOCK();
980 if (!GC_is_initialized) GC_init_inner();
981 result = (int)GC_expand_hp_inner(divHBLKSZ((word)bytes));
982 if (result) GC_requested_heapsize += bytes;
983 UNLOCK();
984 ENABLE_SIGNALS();
985 return(result);
986 }
987
988 unsigned GC_fail_count = 0;
989 /* How many consecutive GC/expansion failures? */
990 /* Reset by GC_allochblk. */
991
992 GC_bool GC_collect_or_expand(needed_blocks, ignore_off_page)
993 word needed_blocks;
994 GC_bool ignore_off_page;
995 {
996 if (!GC_incremental && !GC_dont_gc &&
997 (GC_dont_expand && GC_words_allocd > 0 || GC_should_collect())) {
998 GC_gcollect_inner();
999 } else {
1000 word blocks_to_get = GC_heapsize/(HBLKSIZE*GC_free_space_divisor)
1001 + needed_blocks;
1002
1003 if (blocks_to_get > MAXHINCR) {
1004 word slop;
1005
1006 if (ignore_off_page) {
1007 slop = 4;
1008 } else {
1009 slop = 2*divHBLKSZ(BL_LIMIT);
1010 if (slop > needed_blocks) slop = needed_blocks;
1011 }
1012 if (needed_blocks + slop > MAXHINCR) {
1013 blocks_to_get = needed_blocks + slop;
1014 } else {
1015 blocks_to_get = MAXHINCR;
1016 }
1017 }
1018 if (!GC_expand_hp_inner(blocks_to_get)
1019 && !GC_expand_hp_inner(needed_blocks)) {
1020 if (GC_fail_count++ < GC_max_retries) {
1021 WARN("Out of Memory! Trying to continue ...\n", 0);
1022 GC_gcollect_inner();
1023 } else {
1024 # if !defined(AMIGA) || !defined(GC_AMIGA_FASTALLOC)
1025 WARN("Out of Memory! Returning NIL!\n", 0);
1026 # endif
1027 return(FALSE);
1028 }
1029 } else {
1030 # ifdef CONDPRINT
1031 if (GC_fail_count && GC_print_stats) {
1032 GC_printf0("Memory available again ...\n");
1033 }
1034 # endif
1035 }
1036 }
1037 return(TRUE);
1038 }
1039
1040 /*
1041 * Make sure the object free list for sz is not empty.
1042 * Return a pointer to the first object on the free list.
1043 * The object MUST BE REMOVED FROM THE FREE LIST BY THE CALLER.
1044 * Assumes we hold the allocator lock and signals are disabled.
1045 *
1046 */
1047 ptr_t GC_allocobj(sz, kind)
1048 word sz;
1049 int kind;
1050 {
1051 ptr_t * flh = &(GC_obj_kinds[kind].ok_freelist[sz]);
1052 GC_bool tried_minor = FALSE;
1053
1054 if (sz == 0) return(0);
1055
1056 while (*flh == 0) {
1057 ENTER_GC();
1058 /* Do our share of marking work */
1059 if(TRUE_INCREMENTAL) GC_collect_a_little_inner(1);
1060 /* Sweep blocks for objects of this size */
1061 GC_continue_reclaim(sz, kind);
1062 EXIT_GC();
1063 if (*flh == 0) {
1064 GC_new_hblk(sz, kind);
1065 }
1066 if (*flh == 0) {
1067 ENTER_GC();
1068 if (GC_incremental && GC_time_limit == GC_TIME_UNLIMITED
1069 && ! tried_minor ) {
1070 GC_collect_a_little_inner(1);
1071 tried_minor = TRUE;
1072 } else {
1073 if (!GC_collect_or_expand((word)1,FALSE)) {
1074 EXIT_GC();
1075 return(0);
1076 }
1077 }
1078 EXIT_GC();
1079 }
1080 }
1081 /* Successful allocation; reset failure count. */
1082 GC_fail_count = 0;
1083
1084 return(*flh);
1085 }