Fix "PACKAGE_NAME redefined" errors.
[gcc.git] / boehm-gc / os_dep.c
1 /*
2 * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
3 * Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
4 * Copyright (c) 1996-1999 by Silicon Graphics. All rights reserved.
5 * Copyright (c) 1999 by Hewlett-Packard Company. All rights reserved.
6 *
7 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
8 * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
9 *
10 * Permission is hereby granted to use or copy this program
11 * for any purpose, provided the above notices are retained on all copies.
12 * Permission to modify the code and to distribute modified code is granted,
13 * provided the above notices are retained, and a notice that the code was
14 * modified is included with the above copyright notice.
15 */
16
17 # include "private/gc_priv.h"
18
19 # if defined(LINUX) && !defined(POWERPC)
20 # include <linux/version.h>
21 # if (LINUX_VERSION_CODE <= 0x10400)
22 /* Ugly hack to get struct sigcontext_struct definition. Required */
23 /* for some early 1.3.X releases. Will hopefully go away soon. */
24 /* in some later Linux releases, asm/sigcontext.h may have to */
25 /* be included instead. */
26 # define __KERNEL__
27 # include <asm/signal.h>
28 # undef __KERNEL__
29 # else
30 /* Kernels prior to 2.1.1 defined struct sigcontext_struct instead of */
31 /* struct sigcontext. libc6 (glibc2) uses "struct sigcontext" in */
32 /* prototypes, so we have to include the top-level sigcontext.h to */
33 /* make sure the former gets defined to be the latter if appropriate. */
34 # include <features.h>
35 # if 2 <= __GLIBC__
36 # if 2 == __GLIBC__ && 0 == __GLIBC_MINOR__
37 /* glibc 2.1 no longer has sigcontext.h. But signal.h */
38 /* has the right declaration for glibc 2.1. */
39 # include <sigcontext.h>
40 # endif /* 0 == __GLIBC_MINOR__ */
41 # else /* not 2 <= __GLIBC__ */
42 /* libc5 doesn't have <sigcontext.h>: go directly with the kernel */
43 /* one. Check LINUX_VERSION_CODE to see which we should reference. */
44 # include <asm/sigcontext.h>
45 # endif /* 2 <= __GLIBC__ */
46 # endif
47 # endif
48 # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) && !defined(MACOS) \
49 && !defined(MSWINCE)
50 # include <sys/types.h>
51 # if !defined(MSWIN32) && !defined(SUNOS4)
52 # include <unistd.h>
53 # endif
54 # endif
55
56 # include <stdio.h>
57 # if defined(MSWINCE)
58 # define SIGSEGV 0 /* value is irrelevant */
59 # else
60 # include <signal.h>
61 # endif
62
63 /* Blatantly OS dependent routines, except for those that are related */
64 /* to dynamic loading. */
65
66 # if defined(HEURISTIC2) || defined(SEARCH_FOR_DATA_START)
67 # define NEED_FIND_LIMIT
68 # endif
69
70 # if !defined(STACKBOTTOM) && defined(HEURISTIC2)
71 # define NEED_FIND_LIMIT
72 # endif
73
74 # if (defined(SUNOS4) && defined(DYNAMIC_LOADING)) && !defined(PCR)
75 # define NEED_FIND_LIMIT
76 # endif
77
78 # if (defined(SVR4) || defined(AUX) || defined(DGUX) \
79 || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
80 # define NEED_FIND_LIMIT
81 # endif
82
83 #if defined(FREEBSD) && defined(I386)
84 # include <machine/trap.h>
85 # if !defined(PCR)
86 # define NEED_FIND_LIMIT
87 # endif
88 #endif
89
90 #if (defined(NETBSD) || defined(OPENBSD)) && defined(__ELF__) \
91 && !defined(NEED_FIND_LIMIT)
92 /* Used by GC_init_netbsd_elf() below. */
93 # define NEED_FIND_LIMIT
94 #endif
95
96 #ifdef NEED_FIND_LIMIT
97 # include <setjmp.h>
98 #endif
99
100 #ifdef AMIGA
101 # define GC_AMIGA_DEF
102 # include "AmigaOS.c"
103 # undef GC_AMIGA_DEF
104 #endif
105
106 #if defined(MSWIN32) || defined(MSWINCE)
107 # define WIN32_LEAN_AND_MEAN
108 # define NOSERVICE
109 # include <windows.h>
110 #endif
111
112 #ifdef MACOS
113 # include <Processes.h>
114 #endif
115
116 #ifdef IRIX5
117 # include <sys/uio.h>
118 # include <malloc.h> /* for locking */
119 #endif
120 #if defined(USE_MMAP) || defined(USE_MUNMAP)
121 # ifndef USE_MMAP
122 --> USE_MUNMAP requires USE_MMAP
123 # endif
124 # include <sys/types.h>
125 # include <sys/mman.h>
126 # include <sys/stat.h>
127 # include <errno.h>
128 #endif
129
130 #ifdef UNIX_LIKE
131 # include <fcntl.h>
132 # if defined(SUNOS5SIGS) && !defined(FREEBSD)
133 # include <sys/siginfo.h>
134 # endif
135 /* Define SETJMP and friends to be the version that restores */
136 /* the signal mask. */
137 # define SETJMP(env) sigsetjmp(env, 1)
138 # define LONGJMP(env, val) siglongjmp(env, val)
139 # define JMP_BUF sigjmp_buf
140 #else
141 # define SETJMP(env) setjmp(env)
142 # define LONGJMP(env, val) longjmp(env, val)
143 # define JMP_BUF jmp_buf
144 #endif
145
146 #ifdef DARWIN
147 /* for get_etext and friends */
148 #include <mach-o/getsect.h>
149 #endif
150
151 #ifdef DJGPP
152 /* Apparently necessary for djgpp 2.01. May cause problems with */
153 /* other versions. */
154 typedef long unsigned int caddr_t;
155 #endif
156
157 #ifdef PCR
158 # include "il/PCR_IL.h"
159 # include "th/PCR_ThCtl.h"
160 # include "mm/PCR_MM.h"
161 #endif
162
163 #if !defined(NO_EXECUTE_PERMISSION)
164 # define OPT_PROT_EXEC PROT_EXEC
165 #else
166 # define OPT_PROT_EXEC 0
167 #endif
168
169 #if defined(LINUX) && \
170 (defined(USE_PROC_FOR_LIBRARIES) || defined(IA64) || !defined(SMALL_CONFIG))
171
172 /* We need to parse /proc/self/maps, either to find dynamic libraries, */
173 /* and/or to find the register backing store base (IA64). Do it once */
174 /* here. */
175
176 #define READ read
177
178 /* Repeatedly perform a read call until the buffer is filled or */
179 /* we encounter EOF. */
180 ssize_t GC_repeat_read(int fd, char *buf, size_t count)
181 {
182 ssize_t num_read = 0;
183 ssize_t result;
184
185 while (num_read < count) {
186 result = READ(fd, buf + num_read, count - num_read);
187 if (result < 0) return result;
188 if (result == 0) break;
189 num_read += result;
190 }
191 return num_read;
192 }
193
194 /*
195 * Apply fn to a buffer containing the contents of /proc/self/maps.
196 * Return the result of fn or, if we failed, 0.
197 * We currently do nothing to /proc/self/maps other than simply read
198 * it. This code could be simplified if we could determine its size
199 * ahead of time.
200 */
201
202 word GC_apply_to_maps(word (*fn)(char *))
203 {
204 int f;
205 int result;
206 size_t maps_size = 4000; /* Initial guess. */
207 static char init_buf[1];
208 static char *maps_buf = init_buf;
209 static size_t maps_buf_sz = 1;
210
211 /* Read /proc/self/maps, growing maps_buf as necessary. */
212 /* Note that we may not allocate conventionally, and */
213 /* thus can't use stdio. */
214 do {
215 if (maps_size >= maps_buf_sz) {
216 /* Grow only by powers of 2, since we leak "too small" buffers. */
217 while (maps_size >= maps_buf_sz) maps_buf_sz *= 2;
218 maps_buf = GC_scratch_alloc(maps_buf_sz);
219 if (maps_buf == 0) return 0;
220 }
221 f = open("/proc/self/maps", O_RDONLY);
222 if (-1 == f) return 0;
223 maps_size = 0;
224 do {
225 result = GC_repeat_read(f, maps_buf, maps_buf_sz-1);
226 if (result <= 0) return 0;
227 maps_size += result;
228 } while (result == maps_buf_sz-1);
229 close(f);
230 } while (maps_size >= maps_buf_sz);
231 maps_buf[maps_size] = '\0';
232
233 /* Apply fn to result. */
234 return fn(maps_buf);
235 }
236
237 #endif /* Need GC_apply_to_maps */
238
239 #if defined(LINUX) && (defined(USE_PROC_FOR_LIBRARIES) || defined(IA64))
240 //
241 // GC_parse_map_entry parses an entry from /proc/self/maps so we can
242 // locate all writable data segments that belong to shared libraries.
243 // The format of one of these entries and the fields we care about
244 // is as follows:
245 // XXXXXXXX-XXXXXXXX r-xp 00000000 30:05 260537 name of mapping...\n
246 // ^^^^^^^^ ^^^^^^^^ ^^^^ ^^
247 // start end prot maj_dev
248 // 0 9 18 32
249 //
250 // For 64 bit ABIs:
251 // 0 17 34 56
252 //
253 // The parser is called with a pointer to the entry and the return value
254 // is either NULL or is advanced to the next entry(the byte after the
255 // trailing '\n'.)
256 //
257 #if CPP_WORDSZ == 32
258 # define OFFSET_MAP_START 0
259 # define OFFSET_MAP_END 9
260 # define OFFSET_MAP_PROT 18
261 # define OFFSET_MAP_MAJDEV 32
262 # define ADDR_WIDTH 8
263 #endif
264
265 #if CPP_WORDSZ == 64
266 # define OFFSET_MAP_START 0
267 # define OFFSET_MAP_END 17
268 # define OFFSET_MAP_PROT 34
269 # define OFFSET_MAP_MAJDEV 56
270 # define ADDR_WIDTH 16
271 #endif
272
273 /*
274 * Assign various fields of the first line in buf_ptr to *start, *end,
275 * *prot_buf and *maj_dev. Only *prot_buf may be set for unwritable maps.
276 */
277 char *GC_parse_map_entry(char *buf_ptr, word *start, word *end,
278 char *prot_buf, unsigned int *maj_dev)
279 {
280 int i;
281 char *tok;
282
283 if (buf_ptr == NULL || *buf_ptr == '\0') {
284 return NULL;
285 }
286
287 memcpy(prot_buf, buf_ptr+OFFSET_MAP_PROT, 4);
288 /* do the protections first. */
289 prot_buf[4] = '\0';
290
291 if (prot_buf[1] == 'w') {/* we can skip all of this if it's not writable. */
292
293 tok = buf_ptr;
294 buf_ptr[OFFSET_MAP_START+ADDR_WIDTH] = '\0';
295 *start = strtoul(tok, NULL, 16);
296
297 tok = buf_ptr+OFFSET_MAP_END;
298 buf_ptr[OFFSET_MAP_END+ADDR_WIDTH] = '\0';
299 *end = strtoul(tok, NULL, 16);
300
301 buf_ptr += OFFSET_MAP_MAJDEV;
302 tok = buf_ptr;
303 while (*buf_ptr != ':') buf_ptr++;
304 *buf_ptr++ = '\0';
305 *maj_dev = strtoul(tok, NULL, 16);
306 }
307
308 while (*buf_ptr && *buf_ptr++ != '\n');
309
310 return buf_ptr;
311 }
312
313 #endif /* Need to parse /proc/self/maps. */
314
315 #if defined(SEARCH_FOR_DATA_START)
316 /* The I386 case can be handled without a search. The Alpha case */
317 /* used to be handled differently as well, but the rules changed */
318 /* for recent Linux versions. This seems to be the easiest way to */
319 /* cover all versions. */
320
321 # ifdef LINUX
322 /* Some Linux distributions arrange to define __data_start. Some */
323 /* define data_start as a weak symbol. The latter is technically */
324 /* broken, since the user program may define data_start, in which */
325 /* case we lose. Nonetheless, we try both, prefering __data_start. */
326 /* We assume gcc-compatible pragmas. */
327 # pragma weak __data_start
328 extern int __data_start[];
329 # pragma weak data_start
330 extern int data_start[];
331 # endif /* LINUX */
332 extern int _end[];
333
334 ptr_t GC_data_start;
335
336 void GC_init_linux_data_start()
337 {
338 extern ptr_t GC_find_limit();
339
340 # ifdef LINUX
341 /* Try the easy approaches first: */
342 if ((ptr_t)__data_start != 0) {
343 GC_data_start = (ptr_t)(__data_start);
344 return;
345 }
346 if ((ptr_t)data_start != 0) {
347 GC_data_start = (ptr_t)(data_start);
348 return;
349 }
350 # endif /* LINUX */
351 GC_data_start = GC_find_limit((ptr_t)(_end), FALSE);
352 }
353 #endif
354
355 # ifdef ECOS
356
357 # ifndef ECOS_GC_MEMORY_SIZE
358 # define ECOS_GC_MEMORY_SIZE (448 * 1024)
359 # endif /* ECOS_GC_MEMORY_SIZE */
360
361 // setjmp() function, as described in ANSI para 7.6.1.1
362 #undef SETJMP
363 #define SETJMP( __env__ ) hal_setjmp( __env__ )
364
365 // FIXME: This is a simple way of allocating memory which is
366 // compatible with ECOS early releases. Later releases use a more
367 // sophisticated means of allocating memory than this simple static
368 // allocator, but this method is at least bound to work.
369 static char memory[ECOS_GC_MEMORY_SIZE];
370 static char *brk = memory;
371
372 static void *tiny_sbrk(ptrdiff_t increment)
373 {
374 void *p = brk;
375
376 brk += increment;
377
378 if (brk > memory + sizeof memory)
379 {
380 brk -= increment;
381 return NULL;
382 }
383
384 return p;
385 }
386 #define sbrk tiny_sbrk
387 # endif /* ECOS */
388
389 #if (defined(NETBSD) || defined(OPENBSD)) && defined(__ELF__)
390 ptr_t GC_data_start;
391
392 void GC_init_netbsd_elf()
393 {
394 extern ptr_t GC_find_limit();
395 extern char **environ;
396 /* This may need to be environ, without the underscore, for */
397 /* some versions. */
398 GC_data_start = GC_find_limit((ptr_t)&environ, FALSE);
399 }
400 #endif
401
402 # ifdef OS2
403
404 # include <stddef.h>
405
406 # if !defined(__IBMC__) && !defined(__WATCOMC__) /* e.g. EMX */
407
408 struct exe_hdr {
409 unsigned short magic_number;
410 unsigned short padding[29];
411 long new_exe_offset;
412 };
413
414 #define E_MAGIC(x) (x).magic_number
415 #define EMAGIC 0x5A4D
416 #define E_LFANEW(x) (x).new_exe_offset
417
418 struct e32_exe {
419 unsigned char magic_number[2];
420 unsigned char byte_order;
421 unsigned char word_order;
422 unsigned long exe_format_level;
423 unsigned short cpu;
424 unsigned short os;
425 unsigned long padding1[13];
426 unsigned long object_table_offset;
427 unsigned long object_count;
428 unsigned long padding2[31];
429 };
430
431 #define E32_MAGIC1(x) (x).magic_number[0]
432 #define E32MAGIC1 'L'
433 #define E32_MAGIC2(x) (x).magic_number[1]
434 #define E32MAGIC2 'X'
435 #define E32_BORDER(x) (x).byte_order
436 #define E32LEBO 0
437 #define E32_WORDER(x) (x).word_order
438 #define E32LEWO 0
439 #define E32_CPU(x) (x).cpu
440 #define E32CPU286 1
441 #define E32_OBJTAB(x) (x).object_table_offset
442 #define E32_OBJCNT(x) (x).object_count
443
444 struct o32_obj {
445 unsigned long size;
446 unsigned long base;
447 unsigned long flags;
448 unsigned long pagemap;
449 unsigned long mapsize;
450 unsigned long reserved;
451 };
452
453 #define O32_FLAGS(x) (x).flags
454 #define OBJREAD 0x0001L
455 #define OBJWRITE 0x0002L
456 #define OBJINVALID 0x0080L
457 #define O32_SIZE(x) (x).size
458 #define O32_BASE(x) (x).base
459
460 # else /* IBM's compiler */
461
462 /* A kludge to get around what appears to be a header file bug */
463 # ifndef WORD
464 # define WORD unsigned short
465 # endif
466 # ifndef DWORD
467 # define DWORD unsigned long
468 # endif
469
470 # define EXE386 1
471 # include <newexe.h>
472 # include <exe386.h>
473
474 # endif /* __IBMC__ */
475
476 # define INCL_DOSEXCEPTIONS
477 # define INCL_DOSPROCESS
478 # define INCL_DOSERRORS
479 # define INCL_DOSMODULEMGR
480 # define INCL_DOSMEMMGR
481 # include <os2.h>
482
483
484 /* Disable and enable signals during nontrivial allocations */
485
486 void GC_disable_signals(void)
487 {
488 ULONG nest;
489
490 DosEnterMustComplete(&nest);
491 if (nest != 1) ABORT("nested GC_disable_signals");
492 }
493
494 void GC_enable_signals(void)
495 {
496 ULONG nest;
497
498 DosExitMustComplete(&nest);
499 if (nest != 0) ABORT("GC_enable_signals");
500 }
501
502
503 # else
504
505 # if !defined(PCR) && !defined(AMIGA) && !defined(MSWIN32) \
506 && !defined(MSWINCE) \
507 && !defined(MACOS) && !defined(DJGPP) && !defined(DOS4GW) \
508 && !defined(NOSYS) && !defined(ECOS)
509
510 # if defined(sigmask) && !defined(UTS4) && !defined(HURD)
511 /* Use the traditional BSD interface */
512 # define SIGSET_T int
513 # define SIG_DEL(set, signal) (set) &= ~(sigmask(signal))
514 # define SIG_FILL(set) (set) = 0x7fffffff
515 /* Setting the leading bit appears to provoke a bug in some */
516 /* longjmp implementations. Most systems appear not to have */
517 /* a signal 32. */
518 # define SIGSETMASK(old, new) (old) = sigsetmask(new)
519 # else
520 /* Use POSIX/SYSV interface */
521 # define SIGSET_T sigset_t
522 # define SIG_DEL(set, signal) sigdelset(&(set), (signal))
523 # define SIG_FILL(set) sigfillset(&set)
524 # define SIGSETMASK(old, new) sigprocmask(SIG_SETMASK, &(new), &(old))
525 # endif
526
527 static GC_bool mask_initialized = FALSE;
528
529 static SIGSET_T new_mask;
530
531 static SIGSET_T old_mask;
532
533 static SIGSET_T dummy;
534
535 #if defined(PRINTSTATS) && !defined(THREADS)
536 # define CHECK_SIGNALS
537 int GC_sig_disabled = 0;
538 #endif
539
540 void GC_disable_signals()
541 {
542 if (!mask_initialized) {
543 SIG_FILL(new_mask);
544
545 SIG_DEL(new_mask, SIGSEGV);
546 SIG_DEL(new_mask, SIGILL);
547 SIG_DEL(new_mask, SIGQUIT);
548 # ifdef SIGBUS
549 SIG_DEL(new_mask, SIGBUS);
550 # endif
551 # ifdef SIGIOT
552 SIG_DEL(new_mask, SIGIOT);
553 # endif
554 # ifdef SIGEMT
555 SIG_DEL(new_mask, SIGEMT);
556 # endif
557 # ifdef SIGTRAP
558 SIG_DEL(new_mask, SIGTRAP);
559 # endif
560 mask_initialized = TRUE;
561 }
562 # ifdef CHECK_SIGNALS
563 if (GC_sig_disabled != 0) ABORT("Nested disables");
564 GC_sig_disabled++;
565 # endif
566 SIGSETMASK(old_mask,new_mask);
567 }
568
569 void GC_enable_signals()
570 {
571 # ifdef CHECK_SIGNALS
572 if (GC_sig_disabled != 1) ABORT("Unmatched enable");
573 GC_sig_disabled--;
574 # endif
575 SIGSETMASK(dummy,old_mask);
576 }
577
578 # endif /* !PCR */
579
580 # endif /*!OS/2 */
581
582 /* Ivan Demakov: simplest way (to me) */
583 #if defined (DOS4GW)
584 void GC_disable_signals() { }
585 void GC_enable_signals() { }
586 #endif
587
588 /* Find the page size */
589 word GC_page_size;
590
591 # if defined(MSWIN32) || defined(MSWINCE)
592 void GC_setpagesize()
593 {
594 GetSystemInfo(&GC_sysinfo);
595 GC_page_size = GC_sysinfo.dwPageSize;
596 }
597
598 # else
599 # if defined(MPROTECT_VDB) || defined(PROC_VDB) || defined(USE_MMAP) \
600 || defined(USE_MUNMAP)
601 void GC_setpagesize()
602 {
603 GC_page_size = GETPAGESIZE();
604 }
605 # else
606 /* It's acceptable to fake it. */
607 void GC_setpagesize()
608 {
609 GC_page_size = HBLKSIZE;
610 }
611 # endif
612 # endif
613
614 /*
615 * Find the base of the stack.
616 * Used only in single-threaded environment.
617 * With threads, GC_mark_roots needs to know how to do this.
618 * Called with allocator lock held.
619 */
620 # if defined(MSWIN32) || defined(MSWINCE)
621 # define is_writable(prot) ((prot) == PAGE_READWRITE \
622 || (prot) == PAGE_WRITECOPY \
623 || (prot) == PAGE_EXECUTE_READWRITE \
624 || (prot) == PAGE_EXECUTE_WRITECOPY)
625 /* Return the number of bytes that are writable starting at p. */
626 /* The pointer p is assumed to be page aligned. */
627 /* If base is not 0, *base becomes the beginning of the */
628 /* allocation region containing p. */
629 word GC_get_writable_length(ptr_t p, ptr_t *base)
630 {
631 MEMORY_BASIC_INFORMATION buf;
632 word result;
633 word protect;
634
635 result = VirtualQuery(p, &buf, sizeof(buf));
636 if (result != sizeof(buf)) ABORT("Weird VirtualQuery result");
637 if (base != 0) *base = (ptr_t)(buf.AllocationBase);
638 protect = (buf.Protect & ~(PAGE_GUARD | PAGE_NOCACHE));
639 if (!is_writable(protect)) {
640 return(0);
641 }
642 if (buf.State != MEM_COMMIT) return(0);
643 return(buf.RegionSize);
644 }
645
646 ptr_t GC_get_stack_base()
647 {
648 int dummy;
649 ptr_t sp = (ptr_t)(&dummy);
650 ptr_t trunc_sp = (ptr_t)((word)sp & ~(GC_page_size - 1));
651 word size = GC_get_writable_length(trunc_sp, 0);
652
653 return(trunc_sp + size);
654 }
655
656
657 # endif /* MS Windows */
658
659 # ifdef BEOS
660 # include <kernel/OS.h>
661 ptr_t GC_get_stack_base(){
662 thread_info th;
663 get_thread_info(find_thread(NULL),&th);
664 return th.stack_end;
665 }
666 # endif /* BEOS */
667
668
669 # ifdef OS2
670
671 ptr_t GC_get_stack_base()
672 {
673 PTIB ptib;
674 PPIB ppib;
675
676 if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
677 GC_err_printf0("DosGetInfoBlocks failed\n");
678 ABORT("DosGetInfoBlocks failed\n");
679 }
680 return((ptr_t)(ptib -> tib_pstacklimit));
681 }
682
683 # endif /* OS2 */
684
685 # ifdef AMIGA
686 # define GC_AMIGA_SB
687 # include "AmigaOS.c"
688 # undef GC_AMIGA_SB
689 # endif /* AMIGA */
690
691 # if defined(NEED_FIND_LIMIT) || defined(UNIX_LIKE)
692
693 # ifdef __STDC__
694 typedef void (*handler)(int);
695 # else
696 typedef void (*handler)();
697 # endif
698
699 # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1) \
700 || defined(HURD) || defined(NETBSD)
701 static struct sigaction old_segv_act;
702 # if defined(_sigargs) /* !Irix6.x */ || defined(HPUX) \
703 || defined(HURD) || defined(NETBSD)
704 static struct sigaction old_bus_act;
705 # endif
706 # else
707 static handler old_segv_handler, old_bus_handler;
708 # endif
709
710 # ifdef __STDC__
711 void GC_set_and_save_fault_handler(handler h)
712 # else
713 void GC_set_and_save_fault_handler(h)
714 handler h;
715 # endif
716 {
717 # if defined(SUNOS5SIGS) || defined(IRIX5) \
718 || defined(OSF1) || defined(HURD) || defined(NETBSD)
719 struct sigaction act;
720
721 act.sa_handler = h;
722 # if 0 /* Was necessary for Solaris 2.3 and very temporary */
723 /* NetBSD bugs. */
724 act.sa_flags = SA_RESTART | SA_NODEFER;
725 # else
726 act.sa_flags = SA_RESTART;
727 # endif
728
729 (void) sigemptyset(&act.sa_mask);
730 # ifdef GC_IRIX_THREADS
731 /* Older versions have a bug related to retrieving and */
732 /* and setting a handler at the same time. */
733 (void) sigaction(SIGSEGV, 0, &old_segv_act);
734 (void) sigaction(SIGSEGV, &act, 0);
735 # else
736 (void) sigaction(SIGSEGV, &act, &old_segv_act);
737 # if defined(IRIX5) && defined(_sigargs) /* Irix 5.x, not 6.x */ \
738 || defined(HPUX) || defined(HURD) || defined(NETBSD)
739 /* Under Irix 5.x or HP/UX, we may get SIGBUS. */
740 /* Pthreads doesn't exist under Irix 5.x, so we */
741 /* don't have to worry in the threads case. */
742 (void) sigaction(SIGBUS, &act, &old_bus_act);
743 # endif
744 # endif /* GC_IRIX_THREADS */
745 # else
746 old_segv_handler = signal(SIGSEGV, h);
747 # ifdef SIGBUS
748 old_bus_handler = signal(SIGBUS, h);
749 # endif
750 # endif
751 }
752 # endif /* NEED_FIND_LIMIT || UNIX_LIKE */
753
754 # ifdef NEED_FIND_LIMIT
755 /* Some tools to implement HEURISTIC2 */
756 # define MIN_PAGE_SIZE 256 /* Smallest conceivable page size, bytes */
757 /* static */ JMP_BUF GC_jmp_buf;
758
759 /*ARGSUSED*/
760 void GC_fault_handler(sig)
761 int sig;
762 {
763 LONGJMP(GC_jmp_buf, 1);
764 }
765
766 void GC_setup_temporary_fault_handler()
767 {
768 GC_set_and_save_fault_handler(GC_fault_handler);
769 }
770
771 void GC_reset_fault_handler()
772 {
773 # if defined(SUNOS5SIGS) || defined(IRIX5) \
774 || defined(OSF1) || defined(HURD) || defined(NETBSD)
775 (void) sigaction(SIGSEGV, &old_segv_act, 0);
776 # if defined(IRIX5) && defined(_sigargs) /* Irix 5.x, not 6.x */ \
777 || defined(HPUX) || defined(HURD) || defined(NETBSD)
778 (void) sigaction(SIGBUS, &old_bus_act, 0);
779 # endif
780 # else
781 (void) signal(SIGSEGV, old_segv_handler);
782 # ifdef SIGBUS
783 (void) signal(SIGBUS, old_bus_handler);
784 # endif
785 # endif
786 }
787
788 /* Return the first nonaddressible location > p (up) or */
789 /* the smallest location q s.t. [q,p) is addressable (!up). */
790 /* We assume that p (up) or p-1 (!up) is addressable. */
791 ptr_t GC_find_limit(p, up)
792 ptr_t p;
793 GC_bool up;
794 {
795 static VOLATILE ptr_t result;
796 /* Needs to be static, since otherwise it may not be */
797 /* preserved across the longjmp. Can safely be */
798 /* static since it's only called once, with the */
799 /* allocation lock held. */
800
801
802 GC_setup_temporary_fault_handler();
803 if (SETJMP(GC_jmp_buf) == 0) {
804 result = (ptr_t)(((word)(p))
805 & ~(MIN_PAGE_SIZE-1));
806 for (;;) {
807 if (up) {
808 result += MIN_PAGE_SIZE;
809 } else {
810 result -= MIN_PAGE_SIZE;
811 }
812 GC_noop1((word)(*result));
813 }
814 }
815 GC_reset_fault_handler();
816 if (!up) {
817 result += MIN_PAGE_SIZE;
818 }
819 return(result);
820 }
821 # endif
822
823 #if defined(ECOS) || defined(NOSYS)
824 ptr_t GC_get_stack_base()
825 {
826 return STACKBOTTOM;
827 }
828 #endif
829
830 #ifdef HPUX_STACKBOTTOM
831
832 #include <sys/param.h>
833 #include <sys/pstat.h>
834
835 ptr_t GC_get_register_stack_base(void)
836 {
837 struct pst_vm_status vm_status;
838
839 int i = 0;
840 while (pstat_getprocvm(&vm_status, sizeof(vm_status), 0, i++) == 1) {
841 if (vm_status.pst_type == PS_RSESTACK) {
842 return (ptr_t) vm_status.pst_vaddr;
843 }
844 }
845
846 /* old way to get the register stackbottom */
847 return (ptr_t)(((word)GC_stackbottom - BACKING_STORE_DISPLACEMENT - 1)
848 & ~(BACKING_STORE_ALIGNMENT - 1));
849 }
850
851 #endif /* HPUX_STACK_BOTTOM */
852
853 #ifdef LINUX_STACKBOTTOM
854
855 #include <sys/types.h>
856 #include <sys/stat.h>
857 #include <ctype.h>
858
859 # define STAT_SKIP 27 /* Number of fields preceding startstack */
860 /* field in /proc/self/stat */
861
862 # pragma weak __libc_stack_end
863 extern ptr_t __libc_stack_end;
864
865 # ifdef IA64
866 /* Try to read the backing store base from /proc/self/maps. */
867 /* We look for the writable mapping with a 0 major device, */
868 /* which is as close to our frame as possible, but below it.*/
869 static word backing_store_base_from_maps(char *maps)
870 {
871 char prot_buf[5];
872 char *buf_ptr = maps;
873 word start, end;
874 unsigned int maj_dev;
875 word current_best = 0;
876 word dummy;
877
878 for (;;) {
879 buf_ptr = GC_parse_map_entry(buf_ptr, &start, &end, prot_buf, &maj_dev);
880 if (buf_ptr == NULL) return current_best;
881 if (prot_buf[1] == 'w' && maj_dev == 0) {
882 if (end < (word)(&dummy) && start > current_best) current_best = start;
883 }
884 }
885 return current_best;
886 }
887
888 static word backing_store_base_from_proc(void)
889 {
890 return GC_apply_to_maps(backing_store_base_from_maps);
891 }
892
893 # pragma weak __libc_ia64_register_backing_store_base
894 extern ptr_t __libc_ia64_register_backing_store_base;
895
896 ptr_t GC_get_register_stack_base(void)
897 {
898 if (0 != &__libc_ia64_register_backing_store_base
899 && 0 != __libc_ia64_register_backing_store_base) {
900 /* Glibc 2.2.4 has a bug such that for dynamically linked */
901 /* executables __libc_ia64_register_backing_store_base is */
902 /* defined but uninitialized during constructor calls. */
903 /* Hence we check for both nonzero address and value. */
904 return __libc_ia64_register_backing_store_base;
905 } else {
906 word result = backing_store_base_from_proc();
907 if (0 == result) {
908 /* Use dumb heuristics. Works only for default configuration. */
909 result = (word)GC_stackbottom - BACKING_STORE_DISPLACEMENT;
910 result += BACKING_STORE_ALIGNMENT - 1;
911 result &= ~(BACKING_STORE_ALIGNMENT - 1);
912 /* Verify that it's at least readable. If not, we goofed. */
913 GC_noop1(*(word *)result);
914 }
915 return (ptr_t)result;
916 }
917 }
918 # endif
919
920 ptr_t GC_linux_stack_base(void)
921 {
922 /* We read the stack base value from /proc/self/stat. We do this */
923 /* using direct I/O system calls in order to avoid calling malloc */
924 /* in case REDIRECT_MALLOC is defined. */
925 # define STAT_BUF_SIZE 4096
926 # define STAT_READ read
927 /* Should probably call the real read, if read is wrapped. */
928 char stat_buf[STAT_BUF_SIZE];
929 int f;
930 char c;
931 word result = 0;
932 size_t i, buf_offset = 0;
933
934 /* First try the easy way. This should work for glibc 2.2 */
935 /* This fails in a prelinked ("prelink" command) executable */
936 /* since the correct value of __libc_stack_end never */
937 /* becomes visible to us. The second test works around */
938 /* this. */
939 if (0 != &__libc_stack_end && 0 != __libc_stack_end ) {
940 # ifdef IA64
941 /* Some versions of glibc set the address 16 bytes too */
942 /* low while the initialization code is running. */
943 if (((word)__libc_stack_end & 0xfff) + 0x10 < 0x1000) {
944 return __libc_stack_end + 0x10;
945 } /* Otherwise it's not safe to add 16 bytes and we fall */
946 /* back to using /proc. */
947 # else
948 return __libc_stack_end;
949 # endif
950 }
951 f = open("/proc/self/stat", O_RDONLY);
952 if (f < 0 || STAT_READ(f, stat_buf, STAT_BUF_SIZE) < 2 * STAT_SKIP) {
953 ABORT("Couldn't read /proc/self/stat");
954 }
955 c = stat_buf[buf_offset++];
956 /* Skip the required number of fields. This number is hopefully */
957 /* constant across all Linux implementations. */
958 for (i = 0; i < STAT_SKIP; ++i) {
959 while (isspace(c)) c = stat_buf[buf_offset++];
960 while (!isspace(c)) c = stat_buf[buf_offset++];
961 }
962 while (isspace(c)) c = stat_buf[buf_offset++];
963 while (isdigit(c)) {
964 result *= 10;
965 result += c - '0';
966 c = stat_buf[buf_offset++];
967 }
968 close(f);
969 if (result < 0x10000000) ABORT("Absurd stack bottom value");
970 return (ptr_t)result;
971 }
972
973 #endif /* LINUX_STACKBOTTOM */
974
975 #ifdef FREEBSD_STACKBOTTOM
976
977 /* This uses an undocumented sysctl call, but at least one expert */
978 /* believes it will stay. */
979
980 #include <unistd.h>
981 #include <sys/types.h>
982 #include <sys/sysctl.h>
983
984 ptr_t GC_freebsd_stack_base(void)
985 {
986 int nm[2] = {CTL_KERN, KERN_USRSTACK};
987 ptr_t base;
988 size_t len = sizeof(ptr_t);
989 int r = sysctl(nm, 2, &base, &len, NULL, 0);
990
991 if (r) ABORT("Error getting stack base");
992
993 return base;
994 }
995
996 #endif /* FREEBSD_STACKBOTTOM */
997
998 #if !defined(BEOS) && !defined(AMIGA) && !defined(MSWIN32) \
999 && !defined(MSWINCE) && !defined(OS2) && !defined(NOSYS) && !defined(ECOS)
1000
1001 ptr_t GC_get_stack_base()
1002 {
1003 # if defined(HEURISTIC1) || defined(HEURISTIC2) || \
1004 defined(LINUX_STACKBOTTOM) || defined(FREEBSD_STACKBOTTOM)
1005 word dummy;
1006 ptr_t result;
1007 # endif
1008
1009 # define STACKBOTTOM_ALIGNMENT_M1 ((word)STACK_GRAN - 1)
1010
1011 # ifdef STACKBOTTOM
1012 return(STACKBOTTOM);
1013 # else
1014 # ifdef HEURISTIC1
1015 # ifdef STACK_GROWS_DOWN
1016 result = (ptr_t)((((word)(&dummy))
1017 + STACKBOTTOM_ALIGNMENT_M1)
1018 & ~STACKBOTTOM_ALIGNMENT_M1);
1019 # else
1020 result = (ptr_t)(((word)(&dummy))
1021 & ~STACKBOTTOM_ALIGNMENT_M1);
1022 # endif
1023 # endif /* HEURISTIC1 */
1024 # ifdef LINUX_STACKBOTTOM
1025 result = GC_linux_stack_base();
1026 # endif
1027 # ifdef FREEBSD_STACKBOTTOM
1028 result = GC_freebsd_stack_base();
1029 # endif
1030 # ifdef HEURISTIC2
1031 # ifdef STACK_GROWS_DOWN
1032 result = GC_find_limit((ptr_t)(&dummy), TRUE);
1033 # ifdef HEURISTIC2_LIMIT
1034 if (result > HEURISTIC2_LIMIT
1035 && (ptr_t)(&dummy) < HEURISTIC2_LIMIT) {
1036 result = HEURISTIC2_LIMIT;
1037 }
1038 # endif
1039 # else
1040 result = GC_find_limit((ptr_t)(&dummy), FALSE);
1041 # ifdef HEURISTIC2_LIMIT
1042 if (result < HEURISTIC2_LIMIT
1043 && (ptr_t)(&dummy) > HEURISTIC2_LIMIT) {
1044 result = HEURISTIC2_LIMIT;
1045 }
1046 # endif
1047 # endif
1048
1049 # endif /* HEURISTIC2 */
1050 # ifdef STACK_GROWS_DOWN
1051 if (result == 0) result = (ptr_t)(signed_word)(-sizeof(ptr_t));
1052 # endif
1053 return(result);
1054 # endif /* STACKBOTTOM */
1055 }
1056
1057 # endif /* ! AMIGA, !OS 2, ! MS Windows, !BEOS, !NOSYS, !ECOS */
1058
1059 /*
1060 * Register static data segment(s) as roots.
1061 * If more data segments are added later then they need to be registered
1062 * add that point (as we do with SunOS dynamic loading),
1063 * or GC_mark_roots needs to check for them (as we do with PCR).
1064 * Called with allocator lock held.
1065 */
1066
1067 # ifdef OS2
1068
1069 void GC_register_data_segments()
1070 {
1071 PTIB ptib;
1072 PPIB ppib;
1073 HMODULE module_handle;
1074 # define PBUFSIZ 512
1075 UCHAR path[PBUFSIZ];
1076 FILE * myexefile;
1077 struct exe_hdr hdrdos; /* MSDOS header. */
1078 struct e32_exe hdr386; /* Real header for my executable */
1079 struct o32_obj seg; /* Currrent segment */
1080 int nsegs;
1081
1082
1083 if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
1084 GC_err_printf0("DosGetInfoBlocks failed\n");
1085 ABORT("DosGetInfoBlocks failed\n");
1086 }
1087 module_handle = ppib -> pib_hmte;
1088 if (DosQueryModuleName(module_handle, PBUFSIZ, path) != NO_ERROR) {
1089 GC_err_printf0("DosQueryModuleName failed\n");
1090 ABORT("DosGetInfoBlocks failed\n");
1091 }
1092 myexefile = fopen(path, "rb");
1093 if (myexefile == 0) {
1094 GC_err_puts("Couldn't open executable ");
1095 GC_err_puts(path); GC_err_puts("\n");
1096 ABORT("Failed to open executable\n");
1097 }
1098 if (fread((char *)(&hdrdos), 1, sizeof hdrdos, myexefile) < sizeof hdrdos) {
1099 GC_err_puts("Couldn't read MSDOS header from ");
1100 GC_err_puts(path); GC_err_puts("\n");
1101 ABORT("Couldn't read MSDOS header");
1102 }
1103 if (E_MAGIC(hdrdos) != EMAGIC) {
1104 GC_err_puts("Executable has wrong DOS magic number: ");
1105 GC_err_puts(path); GC_err_puts("\n");
1106 ABORT("Bad DOS magic number");
1107 }
1108 if (fseek(myexefile, E_LFANEW(hdrdos), SEEK_SET) != 0) {
1109 GC_err_puts("Seek to new header failed in ");
1110 GC_err_puts(path); GC_err_puts("\n");
1111 ABORT("Bad DOS magic number");
1112 }
1113 if (fread((char *)(&hdr386), 1, sizeof hdr386, myexefile) < sizeof hdr386) {
1114 GC_err_puts("Couldn't read MSDOS header from ");
1115 GC_err_puts(path); GC_err_puts("\n");
1116 ABORT("Couldn't read OS/2 header");
1117 }
1118 if (E32_MAGIC1(hdr386) != E32MAGIC1 || E32_MAGIC2(hdr386) != E32MAGIC2) {
1119 GC_err_puts("Executable has wrong OS/2 magic number:");
1120 GC_err_puts(path); GC_err_puts("\n");
1121 ABORT("Bad OS/2 magic number");
1122 }
1123 if ( E32_BORDER(hdr386) != E32LEBO || E32_WORDER(hdr386) != E32LEWO) {
1124 GC_err_puts("Executable %s has wrong byte order: ");
1125 GC_err_puts(path); GC_err_puts("\n");
1126 ABORT("Bad byte order");
1127 }
1128 if ( E32_CPU(hdr386) == E32CPU286) {
1129 GC_err_puts("GC can't handle 80286 executables: ");
1130 GC_err_puts(path); GC_err_puts("\n");
1131 EXIT();
1132 }
1133 if (fseek(myexefile, E_LFANEW(hdrdos) + E32_OBJTAB(hdr386),
1134 SEEK_SET) != 0) {
1135 GC_err_puts("Seek to object table failed: ");
1136 GC_err_puts(path); GC_err_puts("\n");
1137 ABORT("Seek to object table failed");
1138 }
1139 for (nsegs = E32_OBJCNT(hdr386); nsegs > 0; nsegs--) {
1140 int flags;
1141 if (fread((char *)(&seg), 1, sizeof seg, myexefile) < sizeof seg) {
1142 GC_err_puts("Couldn't read obj table entry from ");
1143 GC_err_puts(path); GC_err_puts("\n");
1144 ABORT("Couldn't read obj table entry");
1145 }
1146 flags = O32_FLAGS(seg);
1147 if (!(flags & OBJWRITE)) continue;
1148 if (!(flags & OBJREAD)) continue;
1149 if (flags & OBJINVALID) {
1150 GC_err_printf0("Object with invalid pages?\n");
1151 continue;
1152 }
1153 GC_add_roots_inner(O32_BASE(seg), O32_BASE(seg)+O32_SIZE(seg), FALSE);
1154 }
1155 }
1156
1157 # else /* !OS2 */
1158
1159 # if defined(MSWIN32) || defined(MSWINCE)
1160
1161 # ifdef MSWIN32
1162 /* Unfortunately, we have to handle win32s very differently from NT, */
1163 /* Since VirtualQuery has very different semantics. In particular, */
1164 /* under win32s a VirtualQuery call on an unmapped page returns an */
1165 /* invalid result. Under NT, GC_register_data_segments is a noop and */
1166 /* all real work is done by GC_register_dynamic_libraries. Under */
1167 /* win32s, we cannot find the data segments associated with dll's. */
1168 /* We register the main data segment here. */
1169 GC_bool GC_no_win32_dlls = FALSE;
1170 /* This used to be set for gcc, to avoid dealing with */
1171 /* the structured exception handling issues. But we now have */
1172 /* assembly code to do that right. */
1173
1174 void GC_init_win32()
1175 {
1176 /* if we're running under win32s, assume that no DLLs will be loaded */
1177 DWORD v = GetVersion();
1178 GC_no_win32_dlls |= ((v & 0x80000000) && (v & 0xff) <= 3);
1179 }
1180
1181 /* Return the smallest address a such that VirtualQuery */
1182 /* returns correct results for all addresses between a and start. */
1183 /* Assumes VirtualQuery returns correct information for start. */
1184 ptr_t GC_least_described_address(ptr_t start)
1185 {
1186 MEMORY_BASIC_INFORMATION buf;
1187 DWORD result;
1188 LPVOID limit;
1189 ptr_t p;
1190 LPVOID q;
1191
1192 limit = GC_sysinfo.lpMinimumApplicationAddress;
1193 p = (ptr_t)((word)start & ~(GC_page_size - 1));
1194 for (;;) {
1195 q = (LPVOID)(p - GC_page_size);
1196 if ((ptr_t)q > (ptr_t)p /* underflow */ || q < limit) break;
1197 result = VirtualQuery(q, &buf, sizeof(buf));
1198 if (result != sizeof(buf) || buf.AllocationBase == 0) break;
1199 p = (ptr_t)(buf.AllocationBase);
1200 }
1201 return(p);
1202 }
1203 # endif
1204
1205 # ifndef REDIRECT_MALLOC
1206 /* We maintain a linked list of AllocationBase values that we know */
1207 /* correspond to malloc heap sections. Currently this is only called */
1208 /* during a GC. But there is some hope that for long running */
1209 /* programs we will eventually see most heap sections. */
1210
1211 /* In the long run, it would be more reliable to occasionally walk */
1212 /* the malloc heap with HeapWalk on the default heap. But that */
1213 /* apparently works only for NT-based Windows. */
1214
1215 /* In the long run, a better data structure would also be nice ... */
1216 struct GC_malloc_heap_list {
1217 void * allocation_base;
1218 struct GC_malloc_heap_list *next;
1219 } *GC_malloc_heap_l = 0;
1220
1221 /* Is p the base of one of the malloc heap sections we already know */
1222 /* about? */
1223 GC_bool GC_is_malloc_heap_base(ptr_t p)
1224 {
1225 struct GC_malloc_heap_list *q = GC_malloc_heap_l;
1226
1227 while (0 != q) {
1228 if (q -> allocation_base == p) return TRUE;
1229 q = q -> next;
1230 }
1231 return FALSE;
1232 }
1233
1234 void *GC_get_allocation_base(void *p)
1235 {
1236 MEMORY_BASIC_INFORMATION buf;
1237 DWORD result = VirtualQuery(p, &buf, sizeof(buf));
1238 if (result != sizeof(buf)) {
1239 ABORT("Weird VirtualQuery result");
1240 }
1241 return buf.AllocationBase;
1242 }
1243
1244 size_t GC_max_root_size = 100000; /* Appr. largest root size. */
1245
1246 void GC_add_current_malloc_heap()
1247 {
1248 struct GC_malloc_heap_list *new_l =
1249 malloc(sizeof(struct GC_malloc_heap_list));
1250 void * candidate = GC_get_allocation_base(new_l);
1251
1252 if (new_l == 0) return;
1253 if (GC_is_malloc_heap_base(candidate)) {
1254 /* Try a little harder to find malloc heap. */
1255 size_t req_size = 10000;
1256 do {
1257 void *p = malloc(req_size);
1258 if (0 == p) { free(new_l); return; }
1259 candidate = GC_get_allocation_base(p);
1260 free(p);
1261 req_size *= 2;
1262 } while (GC_is_malloc_heap_base(candidate)
1263 && req_size < GC_max_root_size/10 && req_size < 500000);
1264 if (GC_is_malloc_heap_base(candidate)) {
1265 free(new_l); return;
1266 }
1267 }
1268 # ifdef CONDPRINT
1269 if (GC_print_stats)
1270 GC_printf1("Found new system malloc AllocationBase at 0x%lx\n",
1271 candidate);
1272 # endif
1273 new_l -> allocation_base = candidate;
1274 new_l -> next = GC_malloc_heap_l;
1275 GC_malloc_heap_l = new_l;
1276 }
1277 # endif /* REDIRECT_MALLOC */
1278
1279 /* Is p the start of either the malloc heap, or of one of our */
1280 /* heap sections? */
1281 GC_bool GC_is_heap_base (ptr_t p)
1282 {
1283
1284 unsigned i;
1285
1286 # ifndef REDIRECT_MALLOC
1287 static word last_gc_no = -1;
1288
1289 if (last_gc_no != GC_gc_no) {
1290 GC_add_current_malloc_heap();
1291 last_gc_no = GC_gc_no;
1292 }
1293 if (GC_root_size > GC_max_root_size) GC_max_root_size = GC_root_size;
1294 if (GC_is_malloc_heap_base(p)) return TRUE;
1295 # endif
1296 for (i = 0; i < GC_n_heap_bases; i++) {
1297 if (GC_heap_bases[i] == p) return TRUE;
1298 }
1299 return FALSE ;
1300 }
1301
1302 # ifdef MSWIN32
1303 void GC_register_root_section(ptr_t static_root)
1304 {
1305 MEMORY_BASIC_INFORMATION buf;
1306 DWORD result;
1307 DWORD protect;
1308 LPVOID p;
1309 char * base;
1310 char * limit, * new_limit;
1311
1312 if (!GC_no_win32_dlls) return;
1313 p = base = limit = GC_least_described_address(static_root);
1314 while (p < GC_sysinfo.lpMaximumApplicationAddress) {
1315 result = VirtualQuery(p, &buf, sizeof(buf));
1316 if (result != sizeof(buf) || buf.AllocationBase == 0
1317 || GC_is_heap_base(buf.AllocationBase)) break;
1318 new_limit = (char *)p + buf.RegionSize;
1319 protect = buf.Protect;
1320 if (buf.State == MEM_COMMIT
1321 && is_writable(protect)) {
1322 if ((char *)p == limit) {
1323 limit = new_limit;
1324 } else {
1325 if (base != limit) GC_add_roots_inner(base, limit, FALSE);
1326 base = p;
1327 limit = new_limit;
1328 }
1329 }
1330 if (p > (LPVOID)new_limit /* overflow */) break;
1331 p = (LPVOID)new_limit;
1332 }
1333 if (base != limit) GC_add_roots_inner(base, limit, FALSE);
1334 }
1335 #endif
1336
1337 void GC_register_data_segments()
1338 {
1339 # ifdef MSWIN32
1340 static char dummy;
1341 GC_register_root_section((ptr_t)(&dummy));
1342 # endif
1343 }
1344
1345 # else /* !OS2 && !Windows */
1346
1347 # if (defined(SVR4) || defined(AUX) || defined(DGUX) \
1348 || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
1349 ptr_t GC_SysVGetDataStart(max_page_size, etext_addr)
1350 int max_page_size;
1351 int * etext_addr;
1352 {
1353 word text_end = ((word)(etext_addr) + sizeof(word) - 1)
1354 & ~(sizeof(word) - 1);
1355 /* etext rounded to word boundary */
1356 word next_page = ((text_end + (word)max_page_size - 1)
1357 & ~((word)max_page_size - 1));
1358 word page_offset = (text_end & ((word)max_page_size - 1));
1359 VOLATILE char * result = (char *)(next_page + page_offset);
1360 /* Note that this isnt equivalent to just adding */
1361 /* max_page_size to &etext if &etext is at a page boundary */
1362
1363 GC_setup_temporary_fault_handler();
1364 if (SETJMP(GC_jmp_buf) == 0) {
1365 /* Try writing to the address. */
1366 *result = *result;
1367 GC_reset_fault_handler();
1368 } else {
1369 GC_reset_fault_handler();
1370 /* We got here via a longjmp. The address is not readable. */
1371 /* This is known to happen under Solaris 2.4 + gcc, which place */
1372 /* string constants in the text segment, but after etext. */
1373 /* Use plan B. Note that we now know there is a gap between */
1374 /* text and data segments, so plan A bought us something. */
1375 result = (char *)GC_find_limit((ptr_t)(DATAEND), FALSE);
1376 }
1377 return((ptr_t)result);
1378 }
1379 # endif
1380
1381 # if defined(FREEBSD) && defined(I386) && !defined(PCR)
1382 /* Its unclear whether this should be identical to the above, or */
1383 /* whether it should apply to non-X86 architectures. */
1384 /* For now we don't assume that there is always an empty page after */
1385 /* etext. But in some cases there actually seems to be slightly more. */
1386 /* This also deals with holes between read-only data and writable data. */
1387 ptr_t GC_FreeBSDGetDataStart(max_page_size, etext_addr)
1388 int max_page_size;
1389 int * etext_addr;
1390 {
1391 word text_end = ((word)(etext_addr) + sizeof(word) - 1)
1392 & ~(sizeof(word) - 1);
1393 /* etext rounded to word boundary */
1394 VOLATILE word next_page = (text_end + (word)max_page_size - 1)
1395 & ~((word)max_page_size - 1);
1396 VOLATILE ptr_t result = (ptr_t)text_end;
1397 GC_setup_temporary_fault_handler();
1398 if (SETJMP(GC_jmp_buf) == 0) {
1399 /* Try reading at the address. */
1400 /* This should happen before there is another thread. */
1401 for (; next_page < (word)(DATAEND); next_page += (word)max_page_size)
1402 *(VOLATILE char *)next_page;
1403 GC_reset_fault_handler();
1404 } else {
1405 GC_reset_fault_handler();
1406 /* As above, we go to plan B */
1407 result = GC_find_limit((ptr_t)(DATAEND), FALSE);
1408 }
1409 return(result);
1410 }
1411
1412 # endif
1413
1414
1415 #ifdef AMIGA
1416
1417 # define GC_AMIGA_DS
1418 # include "AmigaOS.c"
1419 # undef GC_AMIGA_DS
1420
1421 #else /* !OS2 && !Windows && !AMIGA */
1422
1423 void GC_register_data_segments()
1424 {
1425 # if !defined(PCR) && !defined(SRC_M3) && !defined(MACOS)
1426 # if defined(REDIRECT_MALLOC) && defined(GC_SOLARIS_THREADS)
1427 /* As of Solaris 2.3, the Solaris threads implementation */
1428 /* allocates the data structure for the initial thread with */
1429 /* sbrk at process startup. It needs to be scanned, so that */
1430 /* we don't lose some malloc allocated data structures */
1431 /* hanging from it. We're on thin ice here ... */
1432 extern caddr_t sbrk();
1433
1434 GC_add_roots_inner(DATASTART, (char *)sbrk(0), FALSE);
1435 # else
1436 GC_add_roots_inner(DATASTART, (char *)(DATAEND), FALSE);
1437 # if defined(DATASTART2)
1438 GC_add_roots_inner(DATASTART2, (char *)(DATAEND2), FALSE);
1439 # endif
1440 # endif
1441 # endif
1442 # if defined(MACOS)
1443 {
1444 # if defined(THINK_C)
1445 extern void* GC_MacGetDataStart(void);
1446 /* globals begin above stack and end at a5. */
1447 GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1448 (ptr_t)LMGetCurrentA5(), FALSE);
1449 # else
1450 # if defined(__MWERKS__)
1451 # if !__POWERPC__
1452 extern void* GC_MacGetDataStart(void);
1453 /* MATTHEW: Function to handle Far Globals (CW Pro 3) */
1454 # if __option(far_data)
1455 extern void* GC_MacGetDataEnd(void);
1456 # endif
1457 /* globals begin above stack and end at a5. */
1458 GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1459 (ptr_t)LMGetCurrentA5(), FALSE);
1460 /* MATTHEW: Handle Far Globals */
1461 # if __option(far_data)
1462 /* Far globals follow he QD globals: */
1463 GC_add_roots_inner((ptr_t)LMGetCurrentA5(),
1464 (ptr_t)GC_MacGetDataEnd(), FALSE);
1465 # endif
1466 # else
1467 extern char __data_start__[], __data_end__[];
1468 GC_add_roots_inner((ptr_t)&__data_start__,
1469 (ptr_t)&__data_end__, FALSE);
1470 # endif /* __POWERPC__ */
1471 # endif /* __MWERKS__ */
1472 # endif /* !THINK_C */
1473 }
1474 # endif /* MACOS */
1475
1476 /* Dynamic libraries are added at every collection, since they may */
1477 /* change. */
1478 }
1479
1480 # endif /* ! AMIGA */
1481 # endif /* ! MSWIN32 && ! MSWINCE*/
1482 # endif /* ! OS2 */
1483
1484 /*
1485 * Auxiliary routines for obtaining memory from OS.
1486 */
1487
1488 # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) \
1489 && !defined(MSWIN32) && !defined(MSWINCE) \
1490 && !defined(MACOS) && !defined(DOS4GW)
1491
1492 # ifdef SUNOS4
1493 extern caddr_t sbrk();
1494 # endif
1495 # ifdef __STDC__
1496 # define SBRK_ARG_T ptrdiff_t
1497 # else
1498 # define SBRK_ARG_T int
1499 # endif
1500
1501
1502 # ifdef RS6000
1503 /* The compiler seems to generate speculative reads one past the end of */
1504 /* an allocated object. Hence we need to make sure that the page */
1505 /* following the last heap page is also mapped. */
1506 ptr_t GC_unix_get_mem(bytes)
1507 word bytes;
1508 {
1509 caddr_t cur_brk = (caddr_t)sbrk(0);
1510 caddr_t result;
1511 SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1512 static caddr_t my_brk_val = 0;
1513
1514 if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1515 if (lsbs != 0) {
1516 if((caddr_t)(sbrk(GC_page_size - lsbs)) == (caddr_t)(-1)) return(0);
1517 }
1518 if (cur_brk == my_brk_val) {
1519 /* Use the extra block we allocated last time. */
1520 result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1521 if (result == (caddr_t)(-1)) return(0);
1522 result -= GC_page_size;
1523 } else {
1524 result = (ptr_t)sbrk(GC_page_size + (SBRK_ARG_T)bytes);
1525 if (result == (caddr_t)(-1)) return(0);
1526 }
1527 my_brk_val = result + bytes + GC_page_size; /* Always page aligned */
1528 return((ptr_t)result);
1529 }
1530
1531 #else /* Not RS6000 */
1532
1533 #if defined(USE_MMAP) || defined(USE_MUNMAP)
1534
1535 #ifdef USE_MMAP_FIXED
1536 # define GC_MMAP_FLAGS MAP_FIXED | MAP_PRIVATE
1537 /* Seems to yield better performance on Solaris 2, but can */
1538 /* be unreliable if something is already mapped at the address. */
1539 #else
1540 # define GC_MMAP_FLAGS MAP_PRIVATE
1541 #endif
1542
1543 #ifdef USE_MMAP_ANON
1544 # define zero_fd -1
1545 # if defined(MAP_ANONYMOUS)
1546 # define OPT_MAP_ANON MAP_ANONYMOUS
1547 # else
1548 # define OPT_MAP_ANON MAP_ANON
1549 # endif
1550 #else
1551 static int zero_fd;
1552 # define OPT_MAP_ANON 0
1553 #endif
1554
1555 #endif /* defined(USE_MMAP) || defined(USE_MUNMAP) */
1556
1557 #if defined(USE_MMAP)
1558 /* Tested only under Linux, IRIX5 and Solaris 2 */
1559
1560 #ifndef HEAP_START
1561 # define HEAP_START 0
1562 #endif
1563
1564 ptr_t GC_unix_get_mem(bytes)
1565 word bytes;
1566 {
1567 void *result;
1568 static ptr_t last_addr = HEAP_START;
1569
1570 # ifndef USE_MMAP_ANON
1571 static GC_bool initialized = FALSE;
1572
1573 if (!initialized) {
1574 zero_fd = open("/dev/zero", O_RDONLY);
1575 fcntl(zero_fd, F_SETFD, FD_CLOEXEC);
1576 initialized = TRUE;
1577 }
1578 # endif
1579
1580 if (bytes & (GC_page_size -1)) ABORT("Bad GET_MEM arg");
1581 result = mmap(last_addr, bytes, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
1582 GC_MMAP_FLAGS | OPT_MAP_ANON, zero_fd, 0/* offset */);
1583 if (result == MAP_FAILED) return(0);
1584 last_addr = (ptr_t)result + bytes + GC_page_size - 1;
1585 last_addr = (ptr_t)((word)last_addr & ~(GC_page_size - 1));
1586 # if !defined(LINUX)
1587 if (last_addr == 0) {
1588 /* Oops. We got the end of the address space. This isn't */
1589 /* usable by arbitrary C code, since one-past-end pointers */
1590 /* don't work, so we discard it and try again. */
1591 munmap(result, (size_t)(-GC_page_size) - (size_t)result);
1592 /* Leave last page mapped, so we can't repeat. */
1593 return GC_unix_get_mem(bytes);
1594 }
1595 # else
1596 GC_ASSERT(last_addr != 0);
1597 # endif
1598 return((ptr_t)result);
1599 }
1600
1601 #else /* Not RS6000, not USE_MMAP */
1602 ptr_t GC_unix_get_mem(bytes)
1603 word bytes;
1604 {
1605 ptr_t result;
1606 # ifdef IRIX5
1607 /* Bare sbrk isn't thread safe. Play by malloc rules. */
1608 /* The equivalent may be needed on other systems as well. */
1609 __LOCK_MALLOC();
1610 # endif
1611 {
1612 ptr_t cur_brk = (ptr_t)sbrk(0);
1613 SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1614
1615 if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1616 if (lsbs != 0) {
1617 if((ptr_t)sbrk(GC_page_size - lsbs) == (ptr_t)(-1)) return(0);
1618 }
1619 result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1620 if (result == (ptr_t)(-1)) result = 0;
1621 }
1622 # ifdef IRIX5
1623 __UNLOCK_MALLOC();
1624 # endif
1625 return(result);
1626 }
1627
1628 #endif /* Not USE_MMAP */
1629 #endif /* Not RS6000 */
1630
1631 # endif /* UN*X */
1632
1633 # ifdef OS2
1634
1635 void * os2_alloc(size_t bytes)
1636 {
1637 void * result;
1638
1639 if (DosAllocMem(&result, bytes, PAG_EXECUTE | PAG_READ |
1640 PAG_WRITE | PAG_COMMIT)
1641 != NO_ERROR) {
1642 return(0);
1643 }
1644 if (result == 0) return(os2_alloc(bytes));
1645 return(result);
1646 }
1647
1648 # endif /* OS2 */
1649
1650
1651 # if defined(MSWIN32) || defined(MSWINCE)
1652 SYSTEM_INFO GC_sysinfo;
1653 # endif
1654
1655 # ifdef MSWIN32
1656
1657 # ifdef USE_GLOBAL_ALLOC
1658 # define GLOBAL_ALLOC_TEST 1
1659 # else
1660 # define GLOBAL_ALLOC_TEST GC_no_win32_dlls
1661 # endif
1662
1663 word GC_n_heap_bases = 0;
1664
1665 ptr_t GC_win32_get_mem(bytes)
1666 word bytes;
1667 {
1668 ptr_t result;
1669
1670 if (GLOBAL_ALLOC_TEST) {
1671 /* VirtualAlloc doesn't like PAGE_EXECUTE_READWRITE. */
1672 /* There are also unconfirmed rumors of other */
1673 /* problems, so we dodge the issue. */
1674 result = (ptr_t) GlobalAlloc(0, bytes + HBLKSIZE);
1675 result = (ptr_t)(((word)result + HBLKSIZE) & ~(HBLKSIZE-1));
1676 } else {
1677 /* VirtualProtect only works on regions returned by a */
1678 /* single VirtualAlloc call. Thus we allocate one */
1679 /* extra page, which will prevent merging of blocks */
1680 /* in separate regions, and eliminate any temptation */
1681 /* to call VirtualProtect on a range spanning regions. */
1682 /* This wastes a small amount of memory, and risks */
1683 /* increased fragmentation. But better alternatives */
1684 /* would require effort. */
1685 result = (ptr_t) VirtualAlloc(NULL, bytes + 1,
1686 MEM_COMMIT | MEM_RESERVE,
1687 PAGE_EXECUTE_READWRITE);
1688 }
1689 if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1690 /* If I read the documentation correctly, this can */
1691 /* only happen if HBLKSIZE > 64k or not a power of 2. */
1692 if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
1693 GC_heap_bases[GC_n_heap_bases++] = result;
1694 return(result);
1695 }
1696
1697 void GC_win32_free_heap ()
1698 {
1699 if (GC_no_win32_dlls) {
1700 while (GC_n_heap_bases > 0) {
1701 GlobalFree (GC_heap_bases[--GC_n_heap_bases]);
1702 GC_heap_bases[GC_n_heap_bases] = 0;
1703 }
1704 }
1705 }
1706 # endif
1707
1708 #ifdef AMIGA
1709 # define GC_AMIGA_AM
1710 # include "AmigaOS.c"
1711 # undef GC_AMIGA_AM
1712 #endif
1713
1714
1715 # ifdef MSWINCE
1716 word GC_n_heap_bases = 0;
1717
1718 ptr_t GC_wince_get_mem(bytes)
1719 word bytes;
1720 {
1721 ptr_t result;
1722 word i;
1723
1724 /* Round up allocation size to multiple of page size */
1725 bytes = (bytes + GC_page_size-1) & ~(GC_page_size-1);
1726
1727 /* Try to find reserved, uncommitted pages */
1728 for (i = 0; i < GC_n_heap_bases; i++) {
1729 if (((word)(-(signed_word)GC_heap_lengths[i])
1730 & (GC_sysinfo.dwAllocationGranularity-1))
1731 >= bytes) {
1732 result = GC_heap_bases[i] + GC_heap_lengths[i];
1733 break;
1734 }
1735 }
1736
1737 if (i == GC_n_heap_bases) {
1738 /* Reserve more pages */
1739 word res_bytes = (bytes + GC_sysinfo.dwAllocationGranularity-1)
1740 & ~(GC_sysinfo.dwAllocationGranularity-1);
1741 /* If we ever support MPROTECT_VDB here, we will probably need to */
1742 /* ensure that res_bytes is strictly > bytes, so that VirtualProtect */
1743 /* never spans regions. It seems to be OK for a VirtualFree argument */
1744 /* to span regions, so we should be OK for now. */
1745 result = (ptr_t) VirtualAlloc(NULL, res_bytes,
1746 MEM_RESERVE | MEM_TOP_DOWN,
1747 PAGE_EXECUTE_READWRITE);
1748 if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1749 /* If I read the documentation correctly, this can */
1750 /* only happen if HBLKSIZE > 64k or not a power of 2. */
1751 if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
1752 GC_heap_bases[GC_n_heap_bases] = result;
1753 GC_heap_lengths[GC_n_heap_bases] = 0;
1754 GC_n_heap_bases++;
1755 }
1756
1757 /* Commit pages */
1758 result = (ptr_t) VirtualAlloc(result, bytes,
1759 MEM_COMMIT,
1760 PAGE_EXECUTE_READWRITE);
1761 if (result != NULL) {
1762 if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1763 GC_heap_lengths[i] += bytes;
1764 }
1765
1766 return(result);
1767 }
1768 # endif
1769
1770 #ifdef USE_MUNMAP
1771
1772 /* For now, this only works on Win32/WinCE and some Unix-like */
1773 /* systems. If you have something else, don't define */
1774 /* USE_MUNMAP. */
1775 /* We assume ANSI C to support this feature. */
1776
1777 #if !defined(MSWIN32) && !defined(MSWINCE)
1778
1779 #include <unistd.h>
1780 #include <sys/mman.h>
1781 #include <sys/stat.h>
1782 #include <sys/types.h>
1783
1784 #endif
1785
1786 /* Compute a page aligned starting address for the unmap */
1787 /* operation on a block of size bytes starting at start. */
1788 /* Return 0 if the block is too small to make this feasible. */
1789 ptr_t GC_unmap_start(ptr_t start, word bytes)
1790 {
1791 ptr_t result = start;
1792 /* Round start to next page boundary. */
1793 result += GC_page_size - 1;
1794 result = (ptr_t)((word)result & ~(GC_page_size - 1));
1795 if (result + GC_page_size > start + bytes) return 0;
1796 return result;
1797 }
1798
1799 /* Compute end address for an unmap operation on the indicated */
1800 /* block. */
1801 ptr_t GC_unmap_end(ptr_t start, word bytes)
1802 {
1803 ptr_t end_addr = start + bytes;
1804 end_addr = (ptr_t)((word)end_addr & ~(GC_page_size - 1));
1805 return end_addr;
1806 }
1807
1808 /* Under Win32/WinCE we commit (map) and decommit (unmap) */
1809 /* memory using VirtualAlloc and VirtualFree. These functions */
1810 /* work on individual allocations of virtual memory, made */
1811 /* previously using VirtualAlloc with the MEM_RESERVE flag. */
1812 /* The ranges we need to (de)commit may span several of these */
1813 /* allocations; therefore we use VirtualQuery to check */
1814 /* allocation lengths, and split up the range as necessary. */
1815
1816 /* We assume that GC_remap is called on exactly the same range */
1817 /* as a previous call to GC_unmap. It is safe to consistently */
1818 /* round the endpoints in both places. */
1819 void GC_unmap(ptr_t start, word bytes)
1820 {
1821 ptr_t start_addr = GC_unmap_start(start, bytes);
1822 ptr_t end_addr = GC_unmap_end(start, bytes);
1823 word len = end_addr - start_addr;
1824 if (0 == start_addr) return;
1825 # if defined(MSWIN32) || defined(MSWINCE)
1826 while (len != 0) {
1827 MEMORY_BASIC_INFORMATION mem_info;
1828 GC_word free_len;
1829 if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1830 != sizeof(mem_info))
1831 ABORT("Weird VirtualQuery result");
1832 free_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1833 if (!VirtualFree(start_addr, free_len, MEM_DECOMMIT))
1834 ABORT("VirtualFree failed");
1835 GC_unmapped_bytes += free_len;
1836 start_addr += free_len;
1837 len -= free_len;
1838 }
1839 # else
1840 /* We immediately remap it to prevent an intervening mmap from */
1841 /* accidentally grabbing the same address space. */
1842 {
1843 void * result;
1844 result = mmap(start_addr, len, PROT_NONE,
1845 MAP_PRIVATE | MAP_FIXED | OPT_MAP_ANON,
1846 zero_fd, 0/* offset */);
1847 if (result != (void *)start_addr) ABORT("mmap(...PROT_NONE...) failed");
1848 }
1849 GC_unmapped_bytes += len;
1850 # endif
1851 }
1852
1853
1854 void GC_remap(ptr_t start, word bytes)
1855 {
1856 ptr_t start_addr = GC_unmap_start(start, bytes);
1857 ptr_t end_addr = GC_unmap_end(start, bytes);
1858 word len = end_addr - start_addr;
1859
1860 # if defined(MSWIN32) || defined(MSWINCE)
1861 ptr_t result;
1862
1863 if (0 == start_addr) return;
1864 while (len != 0) {
1865 MEMORY_BASIC_INFORMATION mem_info;
1866 GC_word alloc_len;
1867 if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1868 != sizeof(mem_info))
1869 ABORT("Weird VirtualQuery result");
1870 alloc_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1871 result = VirtualAlloc(start_addr, alloc_len,
1872 MEM_COMMIT,
1873 PAGE_EXECUTE_READWRITE);
1874 if (result != start_addr) {
1875 ABORT("VirtualAlloc remapping failed");
1876 }
1877 GC_unmapped_bytes -= alloc_len;
1878 start_addr += alloc_len;
1879 len -= alloc_len;
1880 }
1881 # else
1882 /* It was already remapped with PROT_NONE. */
1883 int result;
1884
1885 if (0 == start_addr) return;
1886 result = mprotect(start_addr, len,
1887 PROT_READ | PROT_WRITE | OPT_PROT_EXEC);
1888 if (result != 0) {
1889 GC_err_printf3(
1890 "Mprotect failed at 0x%lx (length %ld) with errno %ld\n",
1891 start_addr, len, errno);
1892 ABORT("Mprotect remapping failed");
1893 }
1894 GC_unmapped_bytes -= len;
1895 # endif
1896 }
1897
1898 /* Two adjacent blocks have already been unmapped and are about to */
1899 /* be merged. Unmap the whole block. This typically requires */
1900 /* that we unmap a small section in the middle that was not previously */
1901 /* unmapped due to alignment constraints. */
1902 void GC_unmap_gap(ptr_t start1, word bytes1, ptr_t start2, word bytes2)
1903 {
1904 ptr_t start1_addr = GC_unmap_start(start1, bytes1);
1905 ptr_t end1_addr = GC_unmap_end(start1, bytes1);
1906 ptr_t start2_addr = GC_unmap_start(start2, bytes2);
1907 ptr_t end2_addr = GC_unmap_end(start2, bytes2);
1908 ptr_t start_addr = end1_addr;
1909 ptr_t end_addr = start2_addr;
1910 word len;
1911 GC_ASSERT(start1 + bytes1 == start2);
1912 if (0 == start1_addr) start_addr = GC_unmap_start(start1, bytes1 + bytes2);
1913 if (0 == start2_addr) end_addr = GC_unmap_end(start1, bytes1 + bytes2);
1914 if (0 == start_addr) return;
1915 len = end_addr - start_addr;
1916 # if defined(MSWIN32) || defined(MSWINCE)
1917 while (len != 0) {
1918 MEMORY_BASIC_INFORMATION mem_info;
1919 GC_word free_len;
1920 if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1921 != sizeof(mem_info))
1922 ABORT("Weird VirtualQuery result");
1923 free_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1924 if (!VirtualFree(start_addr, free_len, MEM_DECOMMIT))
1925 ABORT("VirtualFree failed");
1926 GC_unmapped_bytes += free_len;
1927 start_addr += free_len;
1928 len -= free_len;
1929 }
1930 # else
1931 if (len != 0 && munmap(start_addr, len) != 0) ABORT("munmap failed");
1932 GC_unmapped_bytes += len;
1933 # endif
1934 }
1935
1936 #endif /* USE_MUNMAP */
1937
1938 /* Routine for pushing any additional roots. In THREADS */
1939 /* environment, this is also responsible for marking from */
1940 /* thread stacks. */
1941 #ifndef THREADS
1942 void (*GC_push_other_roots)() = 0;
1943 #else /* THREADS */
1944
1945 # ifdef PCR
1946 PCR_ERes GC_push_thread_stack(PCR_Th_T *t, PCR_Any dummy)
1947 {
1948 struct PCR_ThCtl_TInfoRep info;
1949 PCR_ERes result;
1950
1951 info.ti_stkLow = info.ti_stkHi = 0;
1952 result = PCR_ThCtl_GetInfo(t, &info);
1953 GC_push_all_stack((ptr_t)(info.ti_stkLow), (ptr_t)(info.ti_stkHi));
1954 return(result);
1955 }
1956
1957 /* Push the contents of an old object. We treat this as stack */
1958 /* data only becasue that makes it robust against mark stack */
1959 /* overflow. */
1960 PCR_ERes GC_push_old_obj(void *p, size_t size, PCR_Any data)
1961 {
1962 GC_push_all_stack((ptr_t)p, (ptr_t)p + size);
1963 return(PCR_ERes_okay);
1964 }
1965
1966
1967 void GC_default_push_other_roots GC_PROTO((void))
1968 {
1969 /* Traverse data allocated by previous memory managers. */
1970 {
1971 extern struct PCR_MM_ProcsRep * GC_old_allocator;
1972
1973 if ((*(GC_old_allocator->mmp_enumerate))(PCR_Bool_false,
1974 GC_push_old_obj, 0)
1975 != PCR_ERes_okay) {
1976 ABORT("Old object enumeration failed");
1977 }
1978 }
1979 /* Traverse all thread stacks. */
1980 if (PCR_ERes_IsErr(
1981 PCR_ThCtl_ApplyToAllOtherThreads(GC_push_thread_stack,0))
1982 || PCR_ERes_IsErr(GC_push_thread_stack(PCR_Th_CurrThread(), 0))) {
1983 ABORT("Thread stack marking failed\n");
1984 }
1985 }
1986
1987 # endif /* PCR */
1988
1989 # ifdef SRC_M3
1990
1991 # ifdef ALL_INTERIOR_POINTERS
1992 --> misconfigured
1993 # endif
1994
1995 void GC_push_thread_structures GC_PROTO((void))
1996 {
1997 /* Not our responsibibility. */
1998 }
1999
2000 extern void ThreadF__ProcessStacks();
2001
2002 void GC_push_thread_stack(start, stop)
2003 word start, stop;
2004 {
2005 GC_push_all_stack((ptr_t)start, (ptr_t)stop + sizeof(word));
2006 }
2007
2008 /* Push routine with M3 specific calling convention. */
2009 GC_m3_push_root(dummy1, p, dummy2, dummy3)
2010 word *p;
2011 ptr_t dummy1, dummy2;
2012 int dummy3;
2013 {
2014 word q = *p;
2015
2016 GC_PUSH_ONE_STACK(q, p);
2017 }
2018
2019 /* M3 set equivalent to RTHeap.TracedRefTypes */
2020 typedef struct { int elts[1]; } RefTypeSet;
2021 RefTypeSet GC_TracedRefTypes = {{0x1}};
2022
2023 void GC_default_push_other_roots GC_PROTO((void))
2024 {
2025 /* Use the M3 provided routine for finding static roots. */
2026 /* This is a bit dubious, since it presumes no C roots. */
2027 /* We handle the collector roots explicitly in GC_push_roots */
2028 RTMain__GlobalMapProc(GC_m3_push_root, 0, GC_TracedRefTypes);
2029 if (GC_words_allocd > 0) {
2030 ThreadF__ProcessStacks(GC_push_thread_stack);
2031 }
2032 /* Otherwise this isn't absolutely necessary, and we have */
2033 /* startup ordering problems. */
2034 }
2035
2036 # endif /* SRC_M3 */
2037
2038 # if defined(GC_SOLARIS_THREADS) || defined(GC_PTHREADS) || \
2039 defined(GC_WIN32_THREADS)
2040
2041 extern void GC_push_all_stacks();
2042
2043 void GC_default_push_other_roots GC_PROTO((void))
2044 {
2045 GC_push_all_stacks();
2046 }
2047
2048 # endif /* GC_SOLARIS_THREADS || GC_PTHREADS */
2049
2050 void (*GC_push_other_roots) GC_PROTO((void)) = GC_default_push_other_roots;
2051
2052 #endif /* THREADS */
2053
2054 /*
2055 * Routines for accessing dirty bits on virtual pages.
2056 * We plan to eventually implement four strategies for doing so:
2057 * DEFAULT_VDB: A simple dummy implementation that treats every page
2058 * as possibly dirty. This makes incremental collection
2059 * useless, but the implementation is still correct.
2060 * PCR_VDB: Use PPCRs virtual dirty bit facility.
2061 * PROC_VDB: Use the /proc facility for reading dirty bits. Only
2062 * works under some SVR4 variants. Even then, it may be
2063 * too slow to be entirely satisfactory. Requires reading
2064 * dirty bits for entire address space. Implementations tend
2065 * to assume that the client is a (slow) debugger.
2066 * MPROTECT_VDB:Protect pages and then catch the faults to keep track of
2067 * dirtied pages. The implementation (and implementability)
2068 * is highly system dependent. This usually fails when system
2069 * calls write to a protected page. We prevent the read system
2070 * call from doing so. It is the clients responsibility to
2071 * make sure that other system calls are similarly protected
2072 * or write only to the stack.
2073 */
2074 GC_bool GC_dirty_maintained = FALSE;
2075
2076 # ifdef DEFAULT_VDB
2077
2078 /* All of the following assume the allocation lock is held, and */
2079 /* signals are disabled. */
2080
2081 /* The client asserts that unallocated pages in the heap are never */
2082 /* written. */
2083
2084 /* Initialize virtual dirty bit implementation. */
2085 void GC_dirty_init()
2086 {
2087 # ifdef PRINTSTATS
2088 GC_printf0("Initializing DEFAULT_VDB...\n");
2089 # endif
2090 GC_dirty_maintained = TRUE;
2091 }
2092
2093 /* Retrieve system dirty bits for heap to a local buffer. */
2094 /* Restore the systems notion of which pages are dirty. */
2095 void GC_read_dirty()
2096 {}
2097
2098 /* Is the HBLKSIZE sized page at h marked dirty in the local buffer? */
2099 /* If the actual page size is different, this returns TRUE if any */
2100 /* of the pages overlapping h are dirty. This routine may err on the */
2101 /* side of labelling pages as dirty (and this implementation does). */
2102 /*ARGSUSED*/
2103 GC_bool GC_page_was_dirty(h)
2104 struct hblk *h;
2105 {
2106 return(TRUE);
2107 }
2108
2109 /*
2110 * The following two routines are typically less crucial. They matter
2111 * most with large dynamic libraries, or if we can't accurately identify
2112 * stacks, e.g. under Solaris 2.X. Otherwise the following default
2113 * versions are adequate.
2114 */
2115
2116 /* Could any valid GC heap pointer ever have been written to this page? */
2117 /*ARGSUSED*/
2118 GC_bool GC_page_was_ever_dirty(h)
2119 struct hblk *h;
2120 {
2121 return(TRUE);
2122 }
2123
2124 /* Reset the n pages starting at h to "was never dirty" status. */
2125 void GC_is_fresh(h, n)
2126 struct hblk *h;
2127 word n;
2128 {
2129 }
2130
2131 /* A call that: */
2132 /* I) hints that [h, h+nblocks) is about to be written. */
2133 /* II) guarantees that protection is removed. */
2134 /* (I) may speed up some dirty bit implementations. */
2135 /* (II) may be essential if we need to ensure that */
2136 /* pointer-free system call buffers in the heap are */
2137 /* not protected. */
2138 /*ARGSUSED*/
2139 void GC_remove_protection(h, nblocks, is_ptrfree)
2140 struct hblk *h;
2141 word nblocks;
2142 GC_bool is_ptrfree;
2143 {
2144 }
2145
2146 # endif /* DEFAULT_VDB */
2147
2148
2149 # ifdef MPROTECT_VDB
2150
2151 /*
2152 * See DEFAULT_VDB for interface descriptions.
2153 */
2154
2155 /*
2156 * This implementation maintains dirty bits itself by catching write
2157 * faults and keeping track of them. We assume nobody else catches
2158 * SIGBUS or SIGSEGV. We assume no write faults occur in system calls.
2159 * This means that clients must ensure that system calls don't write
2160 * to the write-protected heap. Probably the best way to do this is to
2161 * ensure that system calls write at most to POINTERFREE objects in the
2162 * heap, and do even that only if we are on a platform on which those
2163 * are not protected. Another alternative is to wrap system calls
2164 * (see example for read below), but the current implementation holds
2165 * a lock across blocking calls, making it problematic for multithreaded
2166 * applications.
2167 * We assume the page size is a multiple of HBLKSIZE.
2168 * We prefer them to be the same. We avoid protecting POINTERFREE
2169 * objects only if they are the same.
2170 */
2171
2172 # if !defined(MSWIN32) && !defined(MSWINCE) && !defined(DARWIN)
2173
2174 # include <sys/mman.h>
2175 # include <signal.h>
2176 # include <sys/syscall.h>
2177
2178 # define PROTECT(addr, len) \
2179 if (mprotect((caddr_t)(addr), (size_t)(len), \
2180 PROT_READ | OPT_PROT_EXEC) < 0) { \
2181 ABORT("mprotect failed"); \
2182 }
2183 # define UNPROTECT(addr, len) \
2184 if (mprotect((caddr_t)(addr), (size_t)(len), \
2185 PROT_WRITE | PROT_READ | OPT_PROT_EXEC ) < 0) { \
2186 ABORT("un-mprotect failed"); \
2187 }
2188
2189 # else
2190
2191 # ifdef DARWIN
2192 /* Using vm_protect (mach syscall) over mprotect (BSD syscall) seems to
2193 decrease the likelihood of some of the problems described below. */
2194 #include <mach/vm_map.h>
2195 static mach_port_t GC_task_self;
2196 #define PROTECT(addr,len) \
2197 if(vm_protect(GC_task_self,(vm_address_t)(addr),(vm_size_t)(len), \
2198 FALSE,VM_PROT_READ) != KERN_SUCCESS) { \
2199 ABORT("vm_portect failed"); \
2200 }
2201 #define UNPROTECT(addr,len) \
2202 if(vm_protect(GC_task_self,(vm_address_t)(addr),(vm_size_t)(len), \
2203 FALSE,VM_PROT_READ|VM_PROT_WRITE) != KERN_SUCCESS) { \
2204 ABORT("vm_portect failed"); \
2205 }
2206 # else
2207
2208 # ifndef MSWINCE
2209 # include <signal.h>
2210 # endif
2211
2212 static DWORD protect_junk;
2213 # define PROTECT(addr, len) \
2214 if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READ, \
2215 &protect_junk)) { \
2216 DWORD last_error = GetLastError(); \
2217 GC_printf1("Last error code: %lx\n", last_error); \
2218 ABORT("VirtualProtect failed"); \
2219 }
2220 # define UNPROTECT(addr, len) \
2221 if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READWRITE, \
2222 &protect_junk)) { \
2223 ABORT("un-VirtualProtect failed"); \
2224 }
2225 # endif /* !DARWIN */
2226 # endif /* MSWIN32 || MSWINCE || DARWIN */
2227
2228 #if defined(SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2229 typedef void (* SIG_PF)();
2230 #endif /* SUNOS4 || (FREEBSD && !SUNOS5SIGS) */
2231
2232 #if defined(SUNOS5SIGS) || defined(OSF1) || defined(LINUX) \
2233 || defined(HURD)
2234 # ifdef __STDC__
2235 typedef void (* SIG_PF)(int);
2236 # else
2237 typedef void (* SIG_PF)();
2238 # endif
2239 #endif /* SUNOS5SIGS || OSF1 || LINUX || HURD */
2240
2241 #if defined(MSWIN32)
2242 typedef LPTOP_LEVEL_EXCEPTION_FILTER SIG_PF;
2243 # undef SIG_DFL
2244 # define SIG_DFL (LPTOP_LEVEL_EXCEPTION_FILTER) (-1)
2245 #endif
2246 #if defined(MSWINCE)
2247 typedef LONG (WINAPI *SIG_PF)(struct _EXCEPTION_POINTERS *);
2248 # undef SIG_DFL
2249 # define SIG_DFL (SIG_PF) (-1)
2250 #endif
2251
2252 #if defined(IRIX5) || defined(OSF1) || defined(HURD)
2253 typedef void (* REAL_SIG_PF)(int, int, struct sigcontext *);
2254 #endif /* IRIX5 || OSF1 || HURD */
2255
2256 #if defined(SUNOS5SIGS)
2257 # if defined(HPUX) || defined(FREEBSD)
2258 # define SIGINFO_T siginfo_t
2259 # else
2260 # define SIGINFO_T struct siginfo
2261 # endif
2262 # ifdef __STDC__
2263 typedef void (* REAL_SIG_PF)(int, SIGINFO_T *, void *);
2264 # else
2265 typedef void (* REAL_SIG_PF)();
2266 # endif
2267 #endif /* SUNOS5SIGS */
2268
2269 #if defined(LINUX)
2270 # if __GLIBC__ > 2 || __GLIBC__ == 2 && __GLIBC_MINOR__ >= 2
2271 typedef struct sigcontext s_c;
2272 # else /* glibc < 2.2 */
2273 # include <linux/version.h>
2274 # if (LINUX_VERSION_CODE >= 0x20100) && !defined(M68K) || defined(ALPHA) || defined(ARM32)
2275 typedef struct sigcontext s_c;
2276 # else
2277 typedef struct sigcontext_struct s_c;
2278 # endif
2279 # endif /* glibc < 2.2 */
2280 # if defined(ALPHA) || defined(M68K)
2281 typedef void (* REAL_SIG_PF)(int, int, s_c *);
2282 # else
2283 # if defined(IA64) || defined(HP_PA) || defined(X86_64)
2284 typedef void (* REAL_SIG_PF)(int, siginfo_t *, s_c *);
2285 /* FIXME: */
2286 /* According to SUSV3, the last argument should have type */
2287 /* void * or ucontext_t * */
2288 # else
2289 typedef void (* REAL_SIG_PF)(int, s_c);
2290 # endif
2291 # endif
2292 # ifdef ALPHA
2293 /* Retrieve fault address from sigcontext structure by decoding */
2294 /* instruction. */
2295 char * get_fault_addr(s_c *sc) {
2296 unsigned instr;
2297 word faultaddr;
2298
2299 instr = *((unsigned *)(sc->sc_pc));
2300 faultaddr = sc->sc_regs[(instr >> 16) & 0x1f];
2301 faultaddr += (word) (((int)instr << 16) >> 16);
2302 return (char *)faultaddr;
2303 }
2304 # endif /* !ALPHA */
2305 # endif /* LINUX */
2306
2307 #ifndef DARWIN
2308 SIG_PF GC_old_bus_handler;
2309 SIG_PF GC_old_segv_handler; /* Also old MSWIN32 ACCESS_VIOLATION filter */
2310 #endif /* !DARWIN */
2311
2312 #if defined(THREADS)
2313 /* We need to lock around the bitmap update in the write fault handler */
2314 /* in order to avoid the risk of losing a bit. We do this with a */
2315 /* test-and-set spin lock if we know how to do that. Otherwise we */
2316 /* check whether we are already in the handler and use the dumb but */
2317 /* safe fallback algorithm of setting all bits in the word. */
2318 /* Contention should be very rare, so we do the minimum to handle it */
2319 /* correctly. */
2320 #ifdef GC_TEST_AND_SET_DEFINED
2321 static VOLATILE unsigned int fault_handler_lock = 0;
2322 void async_set_pht_entry_from_index(VOLATILE page_hash_table db, int index) {
2323 while (GC_test_and_set(&fault_handler_lock)) {}
2324 /* Could also revert to set_pht_entry_from_index_safe if initial */
2325 /* GC_test_and_set fails. */
2326 set_pht_entry_from_index(db, index);
2327 GC_clear(&fault_handler_lock);
2328 }
2329 #else /* !GC_TEST_AND_SET_DEFINED */
2330 /* THIS IS INCORRECT! The dirty bit vector may be temporarily wrong, */
2331 /* just before we notice the conflict and correct it. We may end up */
2332 /* looking at it while it's wrong. But this requires contention */
2333 /* exactly when a GC is triggered, which seems far less likely to */
2334 /* fail than the old code, which had no reported failures. Thus we */
2335 /* leave it this way while we think of something better, or support */
2336 /* GC_test_and_set on the remaining platforms. */
2337 static VOLATILE word currently_updating = 0;
2338 void async_set_pht_entry_from_index(VOLATILE page_hash_table db, int index) {
2339 unsigned int update_dummy;
2340 currently_updating = (word)(&update_dummy);
2341 set_pht_entry_from_index(db, index);
2342 /* If we get contention in the 10 or so instruction window here, */
2343 /* and we get stopped by a GC between the two updates, we lose! */
2344 if (currently_updating != (word)(&update_dummy)) {
2345 set_pht_entry_from_index_safe(db, index);
2346 /* We claim that if two threads concurrently try to update the */
2347 /* dirty bit vector, the first one to execute UPDATE_START */
2348 /* will see it changed when UPDATE_END is executed. (Note that */
2349 /* &update_dummy must differ in two distinct threads.) It */
2350 /* will then execute set_pht_entry_from_index_safe, thus */
2351 /* returning us to a safe state, though not soon enough. */
2352 }
2353 }
2354 #endif /* !GC_TEST_AND_SET_DEFINED */
2355 #else /* !THREADS */
2356 # define async_set_pht_entry_from_index(db, index) \
2357 set_pht_entry_from_index(db, index)
2358 #endif /* !THREADS */
2359
2360 /*ARGSUSED*/
2361 #if !defined(DARWIN)
2362 # if defined (SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2363 void GC_write_fault_handler(sig, code, scp, addr)
2364 int sig, code;
2365 struct sigcontext *scp;
2366 char * addr;
2367 # ifdef SUNOS4
2368 # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
2369 # define CODE_OK (FC_CODE(code) == FC_PROT \
2370 || (FC_CODE(code) == FC_OBJERR \
2371 && FC_ERRNO(code) == FC_PROT))
2372 # endif
2373 # ifdef FREEBSD
2374 # define SIG_OK (sig == SIGBUS)
2375 # define CODE_OK (code == BUS_PAGE_FAULT)
2376 # endif
2377 # endif /* SUNOS4 || (FREEBSD && !SUNOS5SIGS) */
2378
2379 # if defined(IRIX5) || defined(OSF1) || defined(HURD)
2380 # include <errno.h>
2381 void GC_write_fault_handler(int sig, int code, struct sigcontext *scp)
2382 # ifdef OSF1
2383 # define SIG_OK (sig == SIGSEGV)
2384 # define CODE_OK (code == 2 /* experimentally determined */)
2385 # endif
2386 # ifdef IRIX5
2387 # define SIG_OK (sig == SIGSEGV)
2388 # define CODE_OK (code == EACCES)
2389 # endif
2390 # ifdef HURD
2391 # define SIG_OK (sig == SIGBUS || sig == SIGSEGV)
2392 # define CODE_OK TRUE
2393 # endif
2394 # endif /* IRIX5 || OSF1 || HURD */
2395
2396 # if defined(LINUX)
2397 # if defined(ALPHA) || defined(M68K)
2398 void GC_write_fault_handler(int sig, int code, s_c * sc)
2399 # else
2400 # if defined(IA64) || defined(HP_PA) || defined(X86_64)
2401 void GC_write_fault_handler(int sig, siginfo_t * si, s_c * scp)
2402 # else
2403 # if defined(ARM32)
2404 void GC_write_fault_handler(int sig, int a2, int a3, int a4, s_c sc)
2405 # else
2406 void GC_write_fault_handler(int sig, s_c sc)
2407 # endif
2408 # endif
2409 # endif
2410 # define SIG_OK (sig == SIGSEGV)
2411 # define CODE_OK TRUE
2412 /* Empirically c.trapno == 14, on IA32, but is that useful? */
2413 /* Should probably consider alignment issues on other */
2414 /* architectures. */
2415 # endif /* LINUX */
2416
2417 # if defined(SUNOS5SIGS)
2418 # ifdef __STDC__
2419 void GC_write_fault_handler(int sig, SIGINFO_T *scp, void * context)
2420 # else
2421 void GC_write_fault_handler(sig, scp, context)
2422 int sig;
2423 SIGINFO_T *scp;
2424 void * context;
2425 # endif
2426 # ifdef HPUX
2427 # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
2428 # define CODE_OK (scp -> si_code == SEGV_ACCERR) \
2429 || (scp -> si_code == BUS_ADRERR) \
2430 || (scp -> si_code == BUS_UNKNOWN) \
2431 || (scp -> si_code == SEGV_UNKNOWN) \
2432 || (scp -> si_code == BUS_OBJERR)
2433 # else
2434 # ifdef FREEBSD
2435 # define SIG_OK (sig == SIGBUS)
2436 # define CODE_OK (scp -> si_code == BUS_PAGE_FAULT)
2437 # else
2438 # define SIG_OK (sig == SIGSEGV)
2439 # define CODE_OK (scp -> si_code == SEGV_ACCERR)
2440 # endif
2441 # endif
2442 # endif /* SUNOS5SIGS */
2443
2444 # if defined(MSWIN32) || defined(MSWINCE)
2445 LONG WINAPI GC_write_fault_handler(struct _EXCEPTION_POINTERS *exc_info)
2446 # define SIG_OK (exc_info -> ExceptionRecord -> ExceptionCode == \
2447 STATUS_ACCESS_VIOLATION)
2448 # define CODE_OK (exc_info -> ExceptionRecord -> ExceptionInformation[0] == 1)
2449 /* Write fault */
2450 # endif /* MSWIN32 || MSWINCE */
2451 {
2452 register unsigned i;
2453 # if defined(HURD)
2454 char *addr = (char *) code;
2455 # endif
2456 # ifdef IRIX5
2457 char * addr = (char *) (size_t) (scp -> sc_badvaddr);
2458 # endif
2459 # if defined(OSF1) && defined(ALPHA)
2460 char * addr = (char *) (scp -> sc_traparg_a0);
2461 # endif
2462 # ifdef SUNOS5SIGS
2463 char * addr = (char *) (scp -> si_addr);
2464 # endif
2465 # ifdef LINUX
2466 # if defined(I386)
2467 char * addr = (char *) (sc.cr2);
2468 # else
2469 # if defined(M68K)
2470 char * addr = NULL;
2471
2472 struct sigcontext *scp = (struct sigcontext *)(sc);
2473
2474 int format = (scp->sc_formatvec >> 12) & 0xf;
2475 unsigned long *framedata = (unsigned long *)(scp + 1);
2476 unsigned long ea;
2477
2478 if (format == 0xa || format == 0xb) {
2479 /* 68020/030 */
2480 ea = framedata[2];
2481 } else if (format == 7) {
2482 /* 68040 */
2483 ea = framedata[3];
2484 if (framedata[1] & 0x08000000) {
2485 /* correct addr on misaligned access */
2486 ea = (ea+4095)&(~4095);
2487 }
2488 } else if (format == 4) {
2489 /* 68060 */
2490 ea = framedata[0];
2491 if (framedata[1] & 0x08000000) {
2492 /* correct addr on misaligned access */
2493 ea = (ea+4095)&(~4095);
2494 }
2495 }
2496 addr = (char *)ea;
2497 # else
2498 # ifdef ALPHA
2499 char * addr = get_fault_addr(sc);
2500 # else
2501 # if defined(IA64) || defined(HP_PA) || defined(X86_64)
2502 char * addr = si -> si_addr;
2503 /* I believe this is claimed to work on all platforms for */
2504 /* Linux 2.3.47 and later. Hopefully we don't have to */
2505 /* worry about earlier kernels on IA64. */
2506 # else
2507 # if defined(POWERPC)
2508 char * addr = (char *) (sc.regs->dar);
2509 # else
2510 # if defined(ARM32)
2511 char * addr = (char *)sc.fault_address;
2512 # else
2513 --> architecture not supported
2514 # endif
2515 # endif
2516 # endif
2517 # endif
2518 # endif
2519 # endif
2520 # endif
2521 # if defined(MSWIN32) || defined(MSWINCE)
2522 char * addr = (char *) (exc_info -> ExceptionRecord
2523 -> ExceptionInformation[1]);
2524 # define sig SIGSEGV
2525 # endif
2526
2527 if (SIG_OK && CODE_OK) {
2528 register struct hblk * h =
2529 (struct hblk *)((word)addr & ~(GC_page_size-1));
2530 GC_bool in_allocd_block;
2531
2532 # ifdef SUNOS5SIGS
2533 /* Address is only within the correct physical page. */
2534 in_allocd_block = FALSE;
2535 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
2536 if (HDR(h+i) != 0) {
2537 in_allocd_block = TRUE;
2538 }
2539 }
2540 # else
2541 in_allocd_block = (HDR(addr) != 0);
2542 # endif
2543 if (!in_allocd_block) {
2544 /* FIXME - We should make sure that we invoke the */
2545 /* old handler with the appropriate calling */
2546 /* sequence, which often depends on SA_SIGINFO. */
2547
2548 /* Heap blocks now begin and end on page boundaries */
2549 SIG_PF old_handler;
2550
2551 if (sig == SIGSEGV) {
2552 old_handler = GC_old_segv_handler;
2553 } else {
2554 old_handler = GC_old_bus_handler;
2555 }
2556 if (old_handler == SIG_DFL) {
2557 # if !defined(MSWIN32) && !defined(MSWINCE)
2558 GC_err_printf1("Segfault at 0x%lx\n", addr);
2559 ABORT("Unexpected bus error or segmentation fault");
2560 # else
2561 return(EXCEPTION_CONTINUE_SEARCH);
2562 # endif
2563 } else {
2564 # if defined (SUNOS4) \
2565 || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2566 (*old_handler) (sig, code, scp, addr);
2567 return;
2568 # endif
2569 # if defined (SUNOS5SIGS)
2570 /*
2571 * FIXME: For FreeBSD, this code should check if the
2572 * old signal handler used the traditional BSD style and
2573 * if so call it using that style.
2574 */
2575 (*(REAL_SIG_PF)old_handler) (sig, scp, context);
2576 return;
2577 # endif
2578 # if defined (LINUX)
2579 # if defined(ALPHA) || defined(M68K)
2580 (*(REAL_SIG_PF)old_handler) (sig, code, sc);
2581 # else
2582 # if defined(IA64) || defined(HP_PA) || defined(X86_64)
2583 (*(REAL_SIG_PF)old_handler) (sig, si, scp);
2584 # else
2585 (*(REAL_SIG_PF)old_handler) (sig, sc);
2586 # endif
2587 # endif
2588 return;
2589 # endif
2590 # if defined (IRIX5) || defined(OSF1) || defined(HURD)
2591 (*(REAL_SIG_PF)old_handler) (sig, code, scp);
2592 return;
2593 # endif
2594 # ifdef MSWIN32
2595 return((*old_handler)(exc_info));
2596 # endif
2597 }
2598 }
2599 UNPROTECT(h, GC_page_size);
2600 /* We need to make sure that no collection occurs between */
2601 /* the UNPROTECT and the setting of the dirty bit. Otherwise */
2602 /* a write by a third thread might go unnoticed. Reversing */
2603 /* the order is just as bad, since we would end up unprotecting */
2604 /* a page in a GC cycle during which it's not marked. */
2605 /* Currently we do this by disabling the thread stopping */
2606 /* signals while this handler is running. An alternative might */
2607 /* be to record the fact that we're about to unprotect, or */
2608 /* have just unprotected a page in the GC's thread structure, */
2609 /* and then to have the thread stopping code set the dirty */
2610 /* flag, if necessary. */
2611 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
2612 register int index = PHT_HASH(h+i);
2613
2614 async_set_pht_entry_from_index(GC_dirty_pages, index);
2615 }
2616 # if defined(OSF1)
2617 /* These reset the signal handler each time by default. */
2618 signal(SIGSEGV, (SIG_PF) GC_write_fault_handler);
2619 # endif
2620 /* The write may not take place before dirty bits are read. */
2621 /* But then we'll fault again ... */
2622 # if defined(MSWIN32) || defined(MSWINCE)
2623 return(EXCEPTION_CONTINUE_EXECUTION);
2624 # else
2625 return;
2626 # endif
2627 }
2628 #if defined(MSWIN32) || defined(MSWINCE)
2629 return EXCEPTION_CONTINUE_SEARCH;
2630 #else
2631 GC_err_printf1("Segfault at 0x%lx\n", addr);
2632 ABORT("Unexpected bus error or segmentation fault");
2633 #endif
2634 }
2635 #endif /* !DARWIN */
2636
2637 /*
2638 * We hold the allocation lock. We expect block h to be written
2639 * shortly. Ensure that all pages containing any part of the n hblks
2640 * starting at h are no longer protected. If is_ptrfree is false,
2641 * also ensure that they will subsequently appear to be dirty.
2642 */
2643 void GC_remove_protection(h, nblocks, is_ptrfree)
2644 struct hblk *h;
2645 word nblocks;
2646 GC_bool is_ptrfree;
2647 {
2648 struct hblk * h_trunc; /* Truncated to page boundary */
2649 struct hblk * h_end; /* Page boundary following block end */
2650 struct hblk * current;
2651 GC_bool found_clean;
2652
2653 if (!GC_dirty_maintained) return;
2654 h_trunc = (struct hblk *)((word)h & ~(GC_page_size-1));
2655 h_end = (struct hblk *)(((word)(h + nblocks) + GC_page_size-1)
2656 & ~(GC_page_size-1));
2657 found_clean = FALSE;
2658 for (current = h_trunc; current < h_end; ++current) {
2659 int index = PHT_HASH(current);
2660
2661 if (!is_ptrfree || current < h || current >= h + nblocks) {
2662 async_set_pht_entry_from_index(GC_dirty_pages, index);
2663 }
2664 }
2665 UNPROTECT(h_trunc, (ptr_t)h_end - (ptr_t)h_trunc);
2666 }
2667
2668 #if !defined(DARWIN)
2669 void GC_dirty_init()
2670 {
2671 # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(LINUX) || \
2672 defined(OSF1) || defined(HURD)
2673 struct sigaction act, oldact;
2674 /* We should probably specify SA_SIGINFO for Linux, and handle */
2675 /* the different architectures more uniformly. */
2676 # if defined(IRIX5) || defined(LINUX) && !defined(X86_64) \
2677 || defined(OSF1) || defined(HURD)
2678 act.sa_flags = SA_RESTART;
2679 act.sa_handler = (SIG_PF)GC_write_fault_handler;
2680 # else
2681 act.sa_flags = SA_RESTART | SA_SIGINFO;
2682 act.sa_sigaction = GC_write_fault_handler;
2683 # endif
2684 (void)sigemptyset(&act.sa_mask);
2685 # ifdef SIG_SUSPEND
2686 /* Arrange to postpone SIG_SUSPEND while we're in a write fault */
2687 /* handler. This effectively makes the handler atomic w.r.t. */
2688 /* stopping the world for GC. */
2689 (void)sigaddset(&act.sa_mask, SIG_SUSPEND);
2690 # endif /* SIG_SUSPEND */
2691 # endif
2692 # ifdef PRINTSTATS
2693 GC_printf0("Inititalizing mprotect virtual dirty bit implementation\n");
2694 # endif
2695 GC_dirty_maintained = TRUE;
2696 if (GC_page_size % HBLKSIZE != 0) {
2697 GC_err_printf0("Page size not multiple of HBLKSIZE\n");
2698 ABORT("Page size not multiple of HBLKSIZE");
2699 }
2700 # if defined(SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2701 GC_old_bus_handler = signal(SIGBUS, GC_write_fault_handler);
2702 if (GC_old_bus_handler == SIG_IGN) {
2703 GC_err_printf0("Previously ignored bus error!?");
2704 GC_old_bus_handler = SIG_DFL;
2705 }
2706 if (GC_old_bus_handler != SIG_DFL) {
2707 # ifdef PRINTSTATS
2708 GC_err_printf0("Replaced other SIGBUS handler\n");
2709 # endif
2710 }
2711 # endif
2712 # if defined(SUNOS4)
2713 GC_old_segv_handler = signal(SIGSEGV, (SIG_PF)GC_write_fault_handler);
2714 if (GC_old_segv_handler == SIG_IGN) {
2715 GC_err_printf0("Previously ignored segmentation violation!?");
2716 GC_old_segv_handler = SIG_DFL;
2717 }
2718 if (GC_old_segv_handler != SIG_DFL) {
2719 # ifdef PRINTSTATS
2720 GC_err_printf0("Replaced other SIGSEGV handler\n");
2721 # endif
2722 }
2723 # endif
2724 # if (defined(SUNOS5SIGS) && !defined(FREEBSD)) || defined(IRIX5) \
2725 || defined(LINUX) || defined(OSF1) || defined(HURD)
2726 /* SUNOS5SIGS includes HPUX */
2727 # if defined(GC_IRIX_THREADS)
2728 sigaction(SIGSEGV, 0, &oldact);
2729 sigaction(SIGSEGV, &act, 0);
2730 # else
2731 {
2732 int res = sigaction(SIGSEGV, &act, &oldact);
2733 if (res != 0) ABORT("Sigaction failed");
2734 }
2735 # endif
2736 # if defined(_sigargs) || defined(HURD) || !defined(SA_SIGINFO)
2737 /* This is Irix 5.x, not 6.x. Irix 5.x does not have */
2738 /* sa_sigaction. */
2739 GC_old_segv_handler = oldact.sa_handler;
2740 # else /* Irix 6.x or SUNOS5SIGS or LINUX */
2741 if (oldact.sa_flags & SA_SIGINFO) {
2742 GC_old_segv_handler = (SIG_PF)(oldact.sa_sigaction);
2743 } else {
2744 GC_old_segv_handler = oldact.sa_handler;
2745 }
2746 # endif
2747 if (GC_old_segv_handler == SIG_IGN) {
2748 GC_err_printf0("Previously ignored segmentation violation!?");
2749 GC_old_segv_handler = SIG_DFL;
2750 }
2751 if (GC_old_segv_handler != SIG_DFL) {
2752 # ifdef PRINTSTATS
2753 GC_err_printf0("Replaced other SIGSEGV handler\n");
2754 # endif
2755 }
2756 # endif /* (SUNOS5SIGS && !FREEBSD) || IRIX5 || LINUX || OSF1 || HURD */
2757 # if defined(HPUX) || defined(LINUX) || defined(HURD) \
2758 || (defined(FREEBSD) && defined(SUNOS5SIGS))
2759 sigaction(SIGBUS, &act, &oldact);
2760 GC_old_bus_handler = oldact.sa_handler;
2761 if (GC_old_bus_handler == SIG_IGN) {
2762 GC_err_printf0("Previously ignored bus error!?");
2763 GC_old_bus_handler = SIG_DFL;
2764 }
2765 if (GC_old_bus_handler != SIG_DFL) {
2766 # ifdef PRINTSTATS
2767 GC_err_printf0("Replaced other SIGBUS handler\n");
2768 # endif
2769 }
2770 # endif /* HPUX || LINUX || HURD || (FREEBSD && SUNOS5SIGS) */
2771 # if defined(MSWIN32)
2772 GC_old_segv_handler = SetUnhandledExceptionFilter(GC_write_fault_handler);
2773 if (GC_old_segv_handler != NULL) {
2774 # ifdef PRINTSTATS
2775 GC_err_printf0("Replaced other UnhandledExceptionFilter\n");
2776 # endif
2777 } else {
2778 GC_old_segv_handler = SIG_DFL;
2779 }
2780 # endif
2781 }
2782 #endif /* !DARWIN */
2783
2784 int GC_incremental_protection_needs()
2785 {
2786 if (GC_page_size == HBLKSIZE) {
2787 return GC_PROTECTS_POINTER_HEAP;
2788 } else {
2789 return GC_PROTECTS_POINTER_HEAP | GC_PROTECTS_PTRFREE_HEAP;
2790 }
2791 }
2792
2793 #define HAVE_INCREMENTAL_PROTECTION_NEEDS
2794
2795 #define IS_PTRFREE(hhdr) ((hhdr)->hb_descr == 0)
2796
2797 #define PAGE_ALIGNED(x) !((word)(x) & (GC_page_size - 1))
2798 void GC_protect_heap()
2799 {
2800 ptr_t start;
2801 word len;
2802 struct hblk * current;
2803 struct hblk * current_start; /* Start of block to be protected. */
2804 struct hblk * limit;
2805 unsigned i;
2806 GC_bool protect_all =
2807 (0 != (GC_incremental_protection_needs() & GC_PROTECTS_PTRFREE_HEAP));
2808 for (i = 0; i < GC_n_heap_sects; i++) {
2809 start = GC_heap_sects[i].hs_start;
2810 len = GC_heap_sects[i].hs_bytes;
2811 if (protect_all) {
2812 PROTECT(start, len);
2813 } else {
2814 GC_ASSERT(PAGE_ALIGNED(len))
2815 GC_ASSERT(PAGE_ALIGNED(start))
2816 current_start = current = (struct hblk *)start;
2817 limit = (struct hblk *)(start + len);
2818 while (current < limit) {
2819 hdr * hhdr;
2820 word nhblks;
2821 GC_bool is_ptrfree;
2822
2823 GC_ASSERT(PAGE_ALIGNED(current));
2824 GET_HDR(current, hhdr);
2825 if (IS_FORWARDING_ADDR_OR_NIL(hhdr)) {
2826 /* This can happen only if we're at the beginning of a */
2827 /* heap segment, and a block spans heap segments. */
2828 /* We will handle that block as part of the preceding */
2829 /* segment. */
2830 GC_ASSERT(current_start == current);
2831 current_start = ++current;
2832 continue;
2833 }
2834 if (HBLK_IS_FREE(hhdr)) {
2835 GC_ASSERT(PAGE_ALIGNED(hhdr -> hb_sz));
2836 nhblks = divHBLKSZ(hhdr -> hb_sz);
2837 is_ptrfree = TRUE; /* dirty on alloc */
2838 } else {
2839 nhblks = OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz);
2840 is_ptrfree = IS_PTRFREE(hhdr);
2841 }
2842 if (is_ptrfree) {
2843 if (current_start < current) {
2844 PROTECT(current_start, (ptr_t)current - (ptr_t)current_start);
2845 }
2846 current_start = (current += nhblks);
2847 } else {
2848 current += nhblks;
2849 }
2850 }
2851 if (current_start < current) {
2852 PROTECT(current_start, (ptr_t)current - (ptr_t)current_start);
2853 }
2854 }
2855 }
2856 }
2857
2858 /* We assume that either the world is stopped or its OK to lose dirty */
2859 /* bits while this is happenning (as in GC_enable_incremental). */
2860 void GC_read_dirty()
2861 {
2862 BCOPY((word *)GC_dirty_pages, GC_grungy_pages,
2863 (sizeof GC_dirty_pages));
2864 BZERO((word *)GC_dirty_pages, (sizeof GC_dirty_pages));
2865 GC_protect_heap();
2866 }
2867
2868 GC_bool GC_page_was_dirty(h)
2869 struct hblk * h;
2870 {
2871 register word index = PHT_HASH(h);
2872
2873 return(HDR(h) == 0 || get_pht_entry_from_index(GC_grungy_pages, index));
2874 }
2875
2876 /*
2877 * Acquiring the allocation lock here is dangerous, since this
2878 * can be called from within GC_call_with_alloc_lock, and the cord
2879 * package does so. On systems that allow nested lock acquisition, this
2880 * happens to work.
2881 * On other systems, SET_LOCK_HOLDER and friends must be suitably defined.
2882 */
2883
2884 static GC_bool syscall_acquired_lock = FALSE; /* Protected by GC lock. */
2885
2886 void GC_begin_syscall()
2887 {
2888 if (!I_HOLD_LOCK()) {
2889 LOCK();
2890 syscall_acquired_lock = TRUE;
2891 }
2892 }
2893
2894 void GC_end_syscall()
2895 {
2896 if (syscall_acquired_lock) {
2897 syscall_acquired_lock = FALSE;
2898 UNLOCK();
2899 }
2900 }
2901
2902 void GC_unprotect_range(addr, len)
2903 ptr_t addr;
2904 word len;
2905 {
2906 struct hblk * start_block;
2907 struct hblk * end_block;
2908 register struct hblk *h;
2909 ptr_t obj_start;
2910
2911 if (!GC_dirty_maintained) return;
2912 obj_start = GC_base(addr);
2913 if (obj_start == 0) return;
2914 if (GC_base(addr + len - 1) != obj_start) {
2915 ABORT("GC_unprotect_range(range bigger than object)");
2916 }
2917 start_block = (struct hblk *)((word)addr & ~(GC_page_size - 1));
2918 end_block = (struct hblk *)((word)(addr + len - 1) & ~(GC_page_size - 1));
2919 end_block += GC_page_size/HBLKSIZE - 1;
2920 for (h = start_block; h <= end_block; h++) {
2921 register word index = PHT_HASH(h);
2922
2923 async_set_pht_entry_from_index(GC_dirty_pages, index);
2924 }
2925 UNPROTECT(start_block,
2926 ((ptr_t)end_block - (ptr_t)start_block) + HBLKSIZE);
2927 }
2928
2929 #if 0
2930
2931 /* We no longer wrap read by default, since that was causing too many */
2932 /* problems. It is preferred that the client instead avoids writing */
2933 /* to the write-protected heap with a system call. */
2934 /* This still serves as sample code if you do want to wrap system calls.*/
2935
2936 #if !defined(MSWIN32) && !defined(MSWINCE) && !defined(GC_USE_LD_WRAP)
2937 /* Replacement for UNIX system call. */
2938 /* Other calls that write to the heap should be handled similarly. */
2939 /* Note that this doesn't work well for blocking reads: It will hold */
2940 /* the allocation lock for the entire duration of the call. Multithreaded */
2941 /* clients should really ensure that it won't block, either by setting */
2942 /* the descriptor nonblocking, or by calling select or poll first, to */
2943 /* make sure that input is available. */
2944 /* Another, preferred alternative is to ensure that system calls never */
2945 /* write to the protected heap (see above). */
2946 # if defined(__STDC__) && !defined(SUNOS4)
2947 # include <unistd.h>
2948 # include <sys/uio.h>
2949 ssize_t read(int fd, void *buf, size_t nbyte)
2950 # else
2951 # ifndef LINT
2952 int read(fd, buf, nbyte)
2953 # else
2954 int GC_read(fd, buf, nbyte)
2955 # endif
2956 int fd;
2957 char *buf;
2958 int nbyte;
2959 # endif
2960 {
2961 int result;
2962
2963 GC_begin_syscall();
2964 GC_unprotect_range(buf, (word)nbyte);
2965 # if defined(IRIX5) || defined(GC_LINUX_THREADS)
2966 /* Indirect system call may not always be easily available. */
2967 /* We could call _read, but that would interfere with the */
2968 /* libpthread interception of read. */
2969 /* On Linux, we have to be careful with the linuxthreads */
2970 /* read interception. */
2971 {
2972 struct iovec iov;
2973
2974 iov.iov_base = buf;
2975 iov.iov_len = nbyte;
2976 result = readv(fd, &iov, 1);
2977 }
2978 # else
2979 # if defined(HURD)
2980 result = __read(fd, buf, nbyte);
2981 # else
2982 /* The two zero args at the end of this list are because one
2983 IA-64 syscall() implementation actually requires six args
2984 to be passed, even though they aren't always used. */
2985 result = syscall(SYS_read, fd, buf, nbyte, 0, 0);
2986 # endif /* !HURD */
2987 # endif
2988 GC_end_syscall();
2989 return(result);
2990 }
2991 #endif /* !MSWIN32 && !MSWINCE && !GC_LINUX_THREADS */
2992
2993 #if defined(GC_USE_LD_WRAP) && !defined(THREADS)
2994 /* We use the GNU ld call wrapping facility. */
2995 /* This requires that the linker be invoked with "--wrap read". */
2996 /* This can be done by passing -Wl,"--wrap read" to gcc. */
2997 /* I'm not sure that this actually wraps whatever version of read */
2998 /* is called by stdio. That code also mentions __read. */
2999 # include <unistd.h>
3000 ssize_t __wrap_read(int fd, void *buf, size_t nbyte)
3001 {
3002 int result;
3003
3004 GC_begin_syscall();
3005 GC_unprotect_range(buf, (word)nbyte);
3006 result = __real_read(fd, buf, nbyte);
3007 GC_end_syscall();
3008 return(result);
3009 }
3010
3011 /* We should probably also do this for __read, or whatever stdio */
3012 /* actually calls. */
3013 #endif
3014
3015 #endif /* 0 */
3016
3017 /*ARGSUSED*/
3018 GC_bool GC_page_was_ever_dirty(h)
3019 struct hblk *h;
3020 {
3021 return(TRUE);
3022 }
3023
3024 /* Reset the n pages starting at h to "was never dirty" status. */
3025 /*ARGSUSED*/
3026 void GC_is_fresh(h, n)
3027 struct hblk *h;
3028 word n;
3029 {
3030 }
3031
3032 # endif /* MPROTECT_VDB */
3033
3034 # ifdef PROC_VDB
3035
3036 /*
3037 * See DEFAULT_VDB for interface descriptions.
3038 */
3039
3040 /*
3041 * This implementaion assumes a Solaris 2.X like /proc pseudo-file-system
3042 * from which we can read page modified bits. This facility is far from
3043 * optimal (e.g. we would like to get the info for only some of the
3044 * address space), but it avoids intercepting system calls.
3045 */
3046
3047 #include <errno.h>
3048 #include <sys/types.h>
3049 #include <sys/signal.h>
3050 #include <sys/fault.h>
3051 #include <sys/syscall.h>
3052 #include <sys/procfs.h>
3053 #include <sys/stat.h>
3054
3055 #define INITIAL_BUF_SZ 16384
3056 word GC_proc_buf_size = INITIAL_BUF_SZ;
3057 char *GC_proc_buf;
3058
3059 #ifdef GC_SOLARIS_THREADS
3060 /* We don't have exact sp values for threads. So we count on */
3061 /* occasionally declaring stack pages to be fresh. Thus we */
3062 /* need a real implementation of GC_is_fresh. We can't clear */
3063 /* entries in GC_written_pages, since that would declare all */
3064 /* pages with the given hash address to be fresh. */
3065 # define MAX_FRESH_PAGES 8*1024 /* Must be power of 2 */
3066 struct hblk ** GC_fresh_pages; /* A direct mapped cache. */
3067 /* Collisions are dropped. */
3068
3069 # define FRESH_PAGE_SLOT(h) (divHBLKSZ((word)(h)) & (MAX_FRESH_PAGES-1))
3070 # define ADD_FRESH_PAGE(h) \
3071 GC_fresh_pages[FRESH_PAGE_SLOT(h)] = (h)
3072 # define PAGE_IS_FRESH(h) \
3073 (GC_fresh_pages[FRESH_PAGE_SLOT(h)] == (h) && (h) != 0)
3074 #endif
3075
3076 /* Add all pages in pht2 to pht1 */
3077 void GC_or_pages(pht1, pht2)
3078 page_hash_table pht1, pht2;
3079 {
3080 register int i;
3081
3082 for (i = 0; i < PHT_SIZE; i++) pht1[i] |= pht2[i];
3083 }
3084
3085 int GC_proc_fd;
3086
3087 void GC_dirty_init()
3088 {
3089 int fd;
3090 char buf[30];
3091
3092 GC_dirty_maintained = TRUE;
3093 if (GC_words_allocd != 0 || GC_words_allocd_before_gc != 0) {
3094 register int i;
3095
3096 for (i = 0; i < PHT_SIZE; i++) GC_written_pages[i] = (word)(-1);
3097 # ifdef PRINTSTATS
3098 GC_printf1("Allocated words:%lu:all pages may have been written\n",
3099 (unsigned long)
3100 (GC_words_allocd + GC_words_allocd_before_gc));
3101 # endif
3102 }
3103 sprintf(buf, "/proc/%d", getpid());
3104 fd = open(buf, O_RDONLY);
3105 if (fd < 0) {
3106 ABORT("/proc open failed");
3107 }
3108 GC_proc_fd = syscall(SYS_ioctl, fd, PIOCOPENPD, 0);
3109 close(fd);
3110 syscall(SYS_fcntl, GC_proc_fd, F_SETFD, FD_CLOEXEC);
3111 if (GC_proc_fd < 0) {
3112 ABORT("/proc ioctl failed");
3113 }
3114 GC_proc_buf = GC_scratch_alloc(GC_proc_buf_size);
3115 # ifdef GC_SOLARIS_THREADS
3116 GC_fresh_pages = (struct hblk **)
3117 GC_scratch_alloc(MAX_FRESH_PAGES * sizeof (struct hblk *));
3118 if (GC_fresh_pages == 0) {
3119 GC_err_printf0("No space for fresh pages\n");
3120 EXIT();
3121 }
3122 BZERO(GC_fresh_pages, MAX_FRESH_PAGES * sizeof (struct hblk *));
3123 # endif
3124 }
3125
3126 /* Ignore write hints. They don't help us here. */
3127 /*ARGSUSED*/
3128 void GC_remove_protection(h, nblocks, is_ptrfree)
3129 struct hblk *h;
3130 word nblocks;
3131 GC_bool is_ptrfree;
3132 {
3133 }
3134
3135 #ifdef GC_SOLARIS_THREADS
3136 # define READ(fd,buf,nbytes) syscall(SYS_read, fd, buf, nbytes)
3137 #else
3138 # define READ(fd,buf,nbytes) read(fd, buf, nbytes)
3139 #endif
3140
3141 void GC_read_dirty()
3142 {
3143 unsigned long ps, np;
3144 int nmaps;
3145 ptr_t vaddr;
3146 struct prasmap * map;
3147 char * bufp;
3148 ptr_t current_addr, limit;
3149 int i;
3150 int dummy;
3151
3152 BZERO(GC_grungy_pages, (sizeof GC_grungy_pages));
3153
3154 bufp = GC_proc_buf;
3155 if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
3156 # ifdef PRINTSTATS
3157 GC_printf1("/proc read failed: GC_proc_buf_size = %lu\n",
3158 GC_proc_buf_size);
3159 # endif
3160 {
3161 /* Retry with larger buffer. */
3162 word new_size = 2 * GC_proc_buf_size;
3163 char * new_buf = GC_scratch_alloc(new_size);
3164
3165 if (new_buf != 0) {
3166 GC_proc_buf = bufp = new_buf;
3167 GC_proc_buf_size = new_size;
3168 }
3169 if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
3170 WARN("Insufficient space for /proc read\n", 0);
3171 /* Punt: */
3172 memset(GC_grungy_pages, 0xff, sizeof (page_hash_table));
3173 memset(GC_written_pages, 0xff, sizeof(page_hash_table));
3174 # ifdef GC_SOLARIS_THREADS
3175 BZERO(GC_fresh_pages,
3176 MAX_FRESH_PAGES * sizeof (struct hblk *));
3177 # endif
3178 return;
3179 }
3180 }
3181 }
3182 /* Copy dirty bits into GC_grungy_pages */
3183 nmaps = ((struct prpageheader *)bufp) -> pr_nmap;
3184 /* printf( "nmaps = %d, PG_REFERENCED = %d, PG_MODIFIED = %d\n",
3185 nmaps, PG_REFERENCED, PG_MODIFIED); */
3186 bufp = bufp + sizeof(struct prpageheader);
3187 for (i = 0; i < nmaps; i++) {
3188 map = (struct prasmap *)bufp;
3189 vaddr = (ptr_t)(map -> pr_vaddr);
3190 ps = map -> pr_pagesize;
3191 np = map -> pr_npage;
3192 /* printf("vaddr = 0x%X, ps = 0x%X, np = 0x%X\n", vaddr, ps, np); */
3193 limit = vaddr + ps * np;
3194 bufp += sizeof (struct prasmap);
3195 for (current_addr = vaddr;
3196 current_addr < limit; current_addr += ps){
3197 if ((*bufp++) & PG_MODIFIED) {
3198 register struct hblk * h = (struct hblk *) current_addr;
3199
3200 while ((ptr_t)h < current_addr + ps) {
3201 register word index = PHT_HASH(h);
3202
3203 set_pht_entry_from_index(GC_grungy_pages, index);
3204 # ifdef GC_SOLARIS_THREADS
3205 {
3206 register int slot = FRESH_PAGE_SLOT(h);
3207
3208 if (GC_fresh_pages[slot] == h) {
3209 GC_fresh_pages[slot] = 0;
3210 }
3211 }
3212 # endif
3213 h++;
3214 }
3215 }
3216 }
3217 bufp += sizeof(long) - 1;
3218 bufp = (char *)((unsigned long)bufp & ~(sizeof(long)-1));
3219 }
3220 /* Update GC_written_pages. */
3221 GC_or_pages(GC_written_pages, GC_grungy_pages);
3222 # ifdef GC_SOLARIS_THREADS
3223 /* Make sure that old stacks are considered completely clean */
3224 /* unless written again. */
3225 GC_old_stacks_are_fresh();
3226 # endif
3227 }
3228
3229 #undef READ
3230
3231 GC_bool GC_page_was_dirty(h)
3232 struct hblk *h;
3233 {
3234 register word index = PHT_HASH(h);
3235 register GC_bool result;
3236
3237 result = get_pht_entry_from_index(GC_grungy_pages, index);
3238 # ifdef GC_SOLARIS_THREADS
3239 if (result && PAGE_IS_FRESH(h)) result = FALSE;
3240 /* This happens only if page was declared fresh since */
3241 /* the read_dirty call, e.g. because it's in an unused */
3242 /* thread stack. It's OK to treat it as clean, in */
3243 /* that case. And it's consistent with */
3244 /* GC_page_was_ever_dirty. */
3245 # endif
3246 return(result);
3247 }
3248
3249 GC_bool GC_page_was_ever_dirty(h)
3250 struct hblk *h;
3251 {
3252 register word index = PHT_HASH(h);
3253 register GC_bool result;
3254
3255 result = get_pht_entry_from_index(GC_written_pages, index);
3256 # ifdef GC_SOLARIS_THREADS
3257 if (result && PAGE_IS_FRESH(h)) result = FALSE;
3258 # endif
3259 return(result);
3260 }
3261
3262 /* Caller holds allocation lock. */
3263 void GC_is_fresh(h, n)
3264 struct hblk *h;
3265 word n;
3266 {
3267
3268 register word index;
3269
3270 # ifdef GC_SOLARIS_THREADS
3271 register word i;
3272
3273 if (GC_fresh_pages != 0) {
3274 for (i = 0; i < n; i++) {
3275 ADD_FRESH_PAGE(h + i);
3276 }
3277 }
3278 # endif
3279 }
3280
3281 # endif /* PROC_VDB */
3282
3283
3284 # ifdef PCR_VDB
3285
3286 # include "vd/PCR_VD.h"
3287
3288 # define NPAGES (32*1024) /* 128 MB */
3289
3290 PCR_VD_DB GC_grungy_bits[NPAGES];
3291
3292 ptr_t GC_vd_base; /* Address corresponding to GC_grungy_bits[0] */
3293 /* HBLKSIZE aligned. */
3294
3295 void GC_dirty_init()
3296 {
3297 GC_dirty_maintained = TRUE;
3298 /* For the time being, we assume the heap generally grows up */
3299 GC_vd_base = GC_heap_sects[0].hs_start;
3300 if (GC_vd_base == 0) {
3301 ABORT("Bad initial heap segment");
3302 }
3303 if (PCR_VD_Start(HBLKSIZE, GC_vd_base, NPAGES*HBLKSIZE)
3304 != PCR_ERes_okay) {
3305 ABORT("dirty bit initialization failed");
3306 }
3307 }
3308
3309 void GC_read_dirty()
3310 {
3311 /* lazily enable dirty bits on newly added heap sects */
3312 {
3313 static int onhs = 0;
3314 int nhs = GC_n_heap_sects;
3315 for( ; onhs < nhs; onhs++ ) {
3316 PCR_VD_WriteProtectEnable(
3317 GC_heap_sects[onhs].hs_start,
3318 GC_heap_sects[onhs].hs_bytes );
3319 }
3320 }
3321
3322
3323 if (PCR_VD_Clear(GC_vd_base, NPAGES*HBLKSIZE, GC_grungy_bits)
3324 != PCR_ERes_okay) {
3325 ABORT("dirty bit read failed");
3326 }
3327 }
3328
3329 GC_bool GC_page_was_dirty(h)
3330 struct hblk *h;
3331 {
3332 if((ptr_t)h < GC_vd_base || (ptr_t)h >= GC_vd_base + NPAGES*HBLKSIZE) {
3333 return(TRUE);
3334 }
3335 return(GC_grungy_bits[h - (struct hblk *)GC_vd_base] & PCR_VD_DB_dirtyBit);
3336 }
3337
3338 /*ARGSUSED*/
3339 void GC_remove_protection(h, nblocks, is_ptrfree)
3340 struct hblk *h;
3341 word nblocks;
3342 GC_bool is_ptrfree;
3343 {
3344 PCR_VD_WriteProtectDisable(h, nblocks*HBLKSIZE);
3345 PCR_VD_WriteProtectEnable(h, nblocks*HBLKSIZE);
3346 }
3347
3348 # endif /* PCR_VDB */
3349
3350 #if defined(MPROTECT_VDB) && defined(DARWIN)
3351 /* The following sources were used as a *reference* for this exception handling
3352 code:
3353 1. Apple's mach/xnu documentation
3354 2. Timothy J. Wood's "Mach Exception Handlers 101" post to the
3355 omnigroup's macosx-dev list.
3356 www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
3357 3. macosx-nat.c from Apple's GDB source code.
3358 */
3359
3360 /* The bug that caused all this trouble should now be fixed. This should
3361 eventually be removed if all goes well. */
3362 /* define BROKEN_EXCEPTION_HANDLING */
3363
3364 #include <mach/mach.h>
3365 #include <mach/mach_error.h>
3366 #include <mach/thread_status.h>
3367 #include <mach/exception.h>
3368 #include <mach/task.h>
3369 #include <pthread.h>
3370
3371 /* These are not defined in any header, although they are documented */
3372 extern boolean_t exc_server(mach_msg_header_t *,mach_msg_header_t *);
3373 extern kern_return_t exception_raise(
3374 mach_port_t,mach_port_t,mach_port_t,
3375 exception_type_t,exception_data_t,mach_msg_type_number_t);
3376 extern kern_return_t exception_raise_state(
3377 mach_port_t,mach_port_t,mach_port_t,
3378 exception_type_t,exception_data_t,mach_msg_type_number_t,
3379 thread_state_flavor_t*,thread_state_t,mach_msg_type_number_t,
3380 thread_state_t,mach_msg_type_number_t*);
3381 extern kern_return_t exception_raise_state_identity(
3382 mach_port_t,mach_port_t,mach_port_t,
3383 exception_type_t,exception_data_t,mach_msg_type_number_t,
3384 thread_state_flavor_t*,thread_state_t,mach_msg_type_number_t,
3385 thread_state_t,mach_msg_type_number_t*);
3386
3387
3388 #define MAX_EXCEPTION_PORTS 16
3389
3390 static struct {
3391 mach_msg_type_number_t count;
3392 exception_mask_t masks[MAX_EXCEPTION_PORTS];
3393 exception_handler_t ports[MAX_EXCEPTION_PORTS];
3394 exception_behavior_t behaviors[MAX_EXCEPTION_PORTS];
3395 thread_state_flavor_t flavors[MAX_EXCEPTION_PORTS];
3396 } GC_old_exc_ports;
3397
3398 static struct {
3399 mach_port_t exception;
3400 #if defined(THREADS)
3401 mach_port_t reply;
3402 #endif
3403 } GC_ports;
3404
3405 typedef struct {
3406 mach_msg_header_t head;
3407 } GC_msg_t;
3408
3409 typedef enum {
3410 GC_MP_NORMAL, GC_MP_DISCARDING, GC_MP_STOPPED
3411 } GC_mprotect_state_t;
3412
3413 /* FIXME: 1 and 2 seem to be safe to use in the msgh_id field,
3414 but it isn't documented. Use the source and see if they
3415 should be ok. */
3416 #define ID_STOP 1
3417 #define ID_RESUME 2
3418
3419 /* These values are only used on the reply port */
3420 #define ID_ACK 3
3421
3422 #if defined(THREADS)
3423
3424 GC_mprotect_state_t GC_mprotect_state;
3425
3426 /* The following should ONLY be called when the world is stopped */
3427 static void GC_mprotect_thread_notify(mach_msg_id_t id) {
3428 struct {
3429 GC_msg_t msg;
3430 mach_msg_trailer_t trailer;
3431 } buf;
3432 mach_msg_return_t r;
3433 /* remote, local */
3434 buf.msg.head.msgh_bits =
3435 MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND,0);
3436 buf.msg.head.msgh_size = sizeof(buf.msg);
3437 buf.msg.head.msgh_remote_port = GC_ports.exception;
3438 buf.msg.head.msgh_local_port = MACH_PORT_NULL;
3439 buf.msg.head.msgh_id = id;
3440
3441 r = mach_msg(
3442 &buf.msg.head,
3443 MACH_SEND_MSG|MACH_RCV_MSG|MACH_RCV_LARGE,
3444 sizeof(buf.msg),
3445 sizeof(buf),
3446 GC_ports.reply,
3447 MACH_MSG_TIMEOUT_NONE,
3448 MACH_PORT_NULL);
3449 if(r != MACH_MSG_SUCCESS)
3450 ABORT("mach_msg failed in GC_mprotect_thread_notify");
3451 if(buf.msg.head.msgh_id != ID_ACK)
3452 ABORT("invalid ack in GC_mprotect_thread_notify");
3453 }
3454
3455 /* Should only be called by the mprotect thread */
3456 static void GC_mprotect_thread_reply() {
3457 GC_msg_t msg;
3458 mach_msg_return_t r;
3459 /* remote, local */
3460 msg.head.msgh_bits =
3461 MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND,0);
3462 msg.head.msgh_size = sizeof(msg);
3463 msg.head.msgh_remote_port = GC_ports.reply;
3464 msg.head.msgh_local_port = MACH_PORT_NULL;
3465 msg.head.msgh_id = ID_ACK;
3466
3467 r = mach_msg(
3468 &msg.head,
3469 MACH_SEND_MSG,
3470 sizeof(msg),
3471 0,
3472 MACH_PORT_NULL,
3473 MACH_MSG_TIMEOUT_NONE,
3474 MACH_PORT_NULL);
3475 if(r != MACH_MSG_SUCCESS)
3476 ABORT("mach_msg failed in GC_mprotect_thread_reply");
3477 }
3478
3479 void GC_mprotect_stop() {
3480 GC_mprotect_thread_notify(ID_STOP);
3481 }
3482 void GC_mprotect_resume() {
3483 GC_mprotect_thread_notify(ID_RESUME);
3484 }
3485
3486 #else /* !THREADS */
3487 /* The compiler should optimize away any GC_mprotect_state computations */
3488 #define GC_mprotect_state GC_MP_NORMAL
3489 #endif
3490
3491 static void *GC_mprotect_thread(void *arg) {
3492 mach_msg_return_t r;
3493 /* These two structures contain some private kernel data. We don't need to
3494 access any of it so we don't bother defining a proper struct. The
3495 correct definitions are in the xnu source code. */
3496 struct {
3497 mach_msg_header_t head;
3498 char data[256];
3499 } reply;
3500 struct {
3501 mach_msg_header_t head;
3502 mach_msg_body_t msgh_body;
3503 char data[1024];
3504 } msg;
3505
3506 mach_msg_id_t id;
3507
3508 GC_darwin_register_mach_handler_thread(mach_thread_self());
3509
3510 for(;;) {
3511 r = mach_msg(
3512 &msg.head,
3513 MACH_RCV_MSG|MACH_RCV_LARGE|
3514 (GC_mprotect_state == GC_MP_DISCARDING ? MACH_RCV_TIMEOUT : 0),
3515 0,
3516 sizeof(msg),
3517 GC_ports.exception,
3518 GC_mprotect_state == GC_MP_DISCARDING ? 0 : MACH_MSG_TIMEOUT_NONE,
3519 MACH_PORT_NULL);
3520
3521 id = r == MACH_MSG_SUCCESS ? msg.head.msgh_id : -1;
3522
3523 #if defined(THREADS)
3524 if(GC_mprotect_state == GC_MP_DISCARDING) {
3525 if(r == MACH_RCV_TIMED_OUT) {
3526 GC_mprotect_state = GC_MP_STOPPED;
3527 GC_mprotect_thread_reply();
3528 continue;
3529 }
3530 if(r == MACH_MSG_SUCCESS && (id == ID_STOP || id == ID_RESUME))
3531 ABORT("out of order mprotect thread request");
3532 }
3533 #endif
3534
3535 if(r != MACH_MSG_SUCCESS) {
3536 GC_err_printf2("mach_msg failed with %d %s\n",
3537 (int)r,mach_error_string(r));
3538 ABORT("mach_msg failed");
3539 }
3540
3541 switch(id) {
3542 #if defined(THREADS)
3543 case ID_STOP:
3544 if(GC_mprotect_state != GC_MP_NORMAL)
3545 ABORT("Called mprotect_stop when state wasn't normal");
3546 GC_mprotect_state = GC_MP_DISCARDING;
3547 break;
3548 case ID_RESUME:
3549 if(GC_mprotect_state != GC_MP_STOPPED)
3550 ABORT("Called mprotect_resume when state wasn't stopped");
3551 GC_mprotect_state = GC_MP_NORMAL;
3552 GC_mprotect_thread_reply();
3553 break;
3554 #endif /* THREADS */
3555 default:
3556 /* Handle the message (calls catch_exception_raise) */
3557 if(!exc_server(&msg.head,&reply.head))
3558 ABORT("exc_server failed");
3559 /* Send the reply */
3560 r = mach_msg(
3561 &reply.head,
3562 MACH_SEND_MSG,
3563 reply.head.msgh_size,
3564 0,
3565 MACH_PORT_NULL,
3566 MACH_MSG_TIMEOUT_NONE,
3567 MACH_PORT_NULL);
3568 if(r != MACH_MSG_SUCCESS) {
3569 /* This will fail if the thread dies, but the thread shouldn't
3570 die... */
3571 #ifdef BROKEN_EXCEPTION_HANDLING
3572 GC_err_printf2(
3573 "mach_msg failed with %d %s while sending exc reply\n",
3574 (int)r,mach_error_string(r));
3575 #else
3576 ABORT("mach_msg failed while sending exception reply");
3577 #endif
3578 }
3579 } /* switch */
3580 } /* for(;;) */
3581 /* NOT REACHED */
3582 return NULL;
3583 }
3584
3585 /* All this SIGBUS code shouldn't be necessary. All protection faults should
3586 be going throught the mach exception handler. However, it seems a SIGBUS is
3587 occasionally sent for some unknown reason. Even more odd, it seems to be
3588 meaningless and safe to ignore. */
3589 #ifdef BROKEN_EXCEPTION_HANDLING
3590
3591 typedef void (* SIG_PF)();
3592 static SIG_PF GC_old_bus_handler;
3593
3594 /* Updates to this aren't atomic, but the SIGBUSs seem pretty rare.
3595 Even if this doesn't get updated property, it isn't really a problem */
3596 static int GC_sigbus_count;
3597
3598 static void GC_darwin_sigbus(int num,siginfo_t *sip,void *context) {
3599 if(num != SIGBUS) ABORT("Got a non-sigbus signal in the sigbus handler");
3600
3601 /* Ugh... some seem safe to ignore, but too many in a row probably means
3602 trouble. GC_sigbus_count is reset for each mach exception that is
3603 handled */
3604 if(GC_sigbus_count >= 8) {
3605 ABORT("Got more than 8 SIGBUSs in a row!");
3606 } else {
3607 GC_sigbus_count++;
3608 GC_err_printf0("GC: WARNING: Ignoring SIGBUS.\n");
3609 }
3610 }
3611 #endif /* BROKEN_EXCEPTION_HANDLING */
3612
3613 void GC_dirty_init() {
3614 kern_return_t r;
3615 mach_port_t me;
3616 pthread_t thread;
3617 pthread_attr_t attr;
3618 exception_mask_t mask;
3619
3620 # ifdef PRINTSTATS
3621 GC_printf0("Inititalizing mach/darwin mprotect virtual dirty bit "
3622 "implementation\n");
3623 # endif
3624 # ifdef BROKEN_EXCEPTION_HANDLING
3625 GC_err_printf0("GC: WARNING: Enabling workarounds for various darwin "
3626 "exception handling bugs.\n");
3627 # endif
3628 GC_dirty_maintained = TRUE;
3629 if (GC_page_size % HBLKSIZE != 0) {
3630 GC_err_printf0("Page size not multiple of HBLKSIZE\n");
3631 ABORT("Page size not multiple of HBLKSIZE");
3632 }
3633
3634 GC_task_self = me = mach_task_self();
3635
3636 r = mach_port_allocate(me,MACH_PORT_RIGHT_RECEIVE,&GC_ports.exception);
3637 if(r != KERN_SUCCESS) ABORT("mach_port_allocate failed (exception port)");
3638
3639 r = mach_port_insert_right(me,GC_ports.exception,GC_ports.exception,
3640 MACH_MSG_TYPE_MAKE_SEND);
3641 if(r != KERN_SUCCESS)
3642 ABORT("mach_port_insert_right failed (exception port)");
3643
3644 #if defined(THREADS)
3645 r = mach_port_allocate(me,MACH_PORT_RIGHT_RECEIVE,&GC_ports.reply);
3646 if(r != KERN_SUCCESS) ABORT("mach_port_allocate failed (reply port)");
3647 #endif
3648
3649 /* The exceptions we want to catch */
3650 mask = EXC_MASK_BAD_ACCESS;
3651
3652 r = task_get_exception_ports(
3653 me,
3654 mask,
3655 GC_old_exc_ports.masks,
3656 &GC_old_exc_ports.count,
3657 GC_old_exc_ports.ports,
3658 GC_old_exc_ports.behaviors,
3659 GC_old_exc_ports.flavors
3660 );
3661 if(r != KERN_SUCCESS) ABORT("task_get_exception_ports failed");
3662
3663 r = task_set_exception_ports(
3664 me,
3665 mask,
3666 GC_ports.exception,
3667 EXCEPTION_DEFAULT,
3668 MACHINE_THREAD_STATE
3669 );
3670 if(r != KERN_SUCCESS) ABORT("task_set_exception_ports failed");
3671
3672 if(pthread_attr_init(&attr) != 0) ABORT("pthread_attr_init failed");
3673 if(pthread_attr_setdetachstate(&attr,PTHREAD_CREATE_DETACHED) != 0)
3674 ABORT("pthread_attr_setdetachedstate failed");
3675
3676 # undef pthread_create
3677 /* This will call the real pthread function, not our wrapper */
3678 if(pthread_create(&thread,&attr,GC_mprotect_thread,NULL) != 0)
3679 ABORT("pthread_create failed");
3680 pthread_attr_destroy(&attr);
3681
3682 /* Setup the sigbus handler for ignoring the meaningless SIGBUSs */
3683 #ifdef BROKEN_EXCEPTION_HANDLING
3684 {
3685 struct sigaction sa, oldsa;
3686 sa.sa_handler = (SIG_PF)GC_darwin_sigbus;
3687 sigemptyset(&sa.sa_mask);
3688 sa.sa_flags = SA_RESTART|SA_SIGINFO;
3689 if(sigaction(SIGBUS,&sa,&oldsa) < 0) ABORT("sigaction");
3690 GC_old_bus_handler = (SIG_PF)oldsa.sa_handler;
3691 if (GC_old_bus_handler != SIG_DFL) {
3692 # ifdef PRINTSTATS
3693 GC_err_printf0("Replaced other SIGBUS handler\n");
3694 # endif
3695 }
3696 }
3697 #endif /* BROKEN_EXCEPTION_HANDLING */
3698 }
3699
3700 /* The source code for Apple's GDB was used as a reference for the exception
3701 forwarding code. This code is similar to be GDB code only because there is
3702 only one way to do it. */
3703 static kern_return_t GC_forward_exception(
3704 mach_port_t thread,
3705 mach_port_t task,
3706 exception_type_t exception,
3707 exception_data_t data,
3708 mach_msg_type_number_t data_count
3709 ) {
3710 int i;
3711 kern_return_t r;
3712 mach_port_t port;
3713 exception_behavior_t behavior;
3714 thread_state_flavor_t flavor;
3715
3716 thread_state_data_t thread_state;
3717 mach_msg_type_number_t thread_state_count = THREAD_STATE_MAX;
3718
3719 for(i=0;i<GC_old_exc_ports.count;i++)
3720 if(GC_old_exc_ports.masks[i] & (1 << exception))
3721 break;
3722 if(i==GC_old_exc_ports.count) ABORT("No handler for exception!");
3723
3724 port = GC_old_exc_ports.ports[i];
3725 behavior = GC_old_exc_ports.behaviors[i];
3726 flavor = GC_old_exc_ports.flavors[i];
3727
3728 if(behavior != EXCEPTION_DEFAULT) {
3729 r = thread_get_state(thread,flavor,thread_state,&thread_state_count);
3730 if(r != KERN_SUCCESS)
3731 ABORT("thread_get_state failed in forward_exception");
3732 }
3733
3734 switch(behavior) {
3735 case EXCEPTION_DEFAULT:
3736 r = exception_raise(port,thread,task,exception,data,data_count);
3737 break;
3738 case EXCEPTION_STATE:
3739 r = exception_raise_state(port,thread,task,exception,data,
3740 data_count,&flavor,thread_state,thread_state_count,
3741 thread_state,&thread_state_count);
3742 break;
3743 case EXCEPTION_STATE_IDENTITY:
3744 r = exception_raise_state_identity(port,thread,task,exception,data,
3745 data_count,&flavor,thread_state,thread_state_count,
3746 thread_state,&thread_state_count);
3747 break;
3748 default:
3749 r = KERN_FAILURE; /* make gcc happy */
3750 ABORT("forward_exception: unknown behavior");
3751 break;
3752 }
3753
3754 if(behavior != EXCEPTION_DEFAULT) {
3755 r = thread_set_state(thread,flavor,thread_state,thread_state_count);
3756 if(r != KERN_SUCCESS)
3757 ABORT("thread_set_state failed in forward_exception");
3758 }
3759
3760 return r;
3761 }
3762
3763 #define FWD() GC_forward_exception(thread,task,exception,code,code_count)
3764
3765 /* This violates the namespace rules but there isn't anything that can be done
3766 about it. The exception handling stuff is hard coded to call this */
3767 kern_return_t
3768 catch_exception_raise(
3769 mach_port_t exception_port,mach_port_t thread,mach_port_t task,
3770 exception_type_t exception,exception_data_t code,
3771 mach_msg_type_number_t code_count
3772 ) {
3773 kern_return_t r;
3774 char *addr;
3775 struct hblk *h;
3776 int i;
3777 #ifdef POWERPC
3778 thread_state_flavor_t flavor = PPC_EXCEPTION_STATE;
3779 mach_msg_type_number_t exc_state_count = PPC_EXCEPTION_STATE_COUNT;
3780 ppc_exception_state_t exc_state;
3781 #else
3782 # error FIXME for non-ppc darwin
3783 #endif
3784
3785
3786 if(exception != EXC_BAD_ACCESS || code[0] != KERN_PROTECTION_FAILURE) {
3787 #ifdef DEBUG_EXCEPTION_HANDLING
3788 /* We aren't interested, pass it on to the old handler */
3789 GC_printf3("Exception: 0x%x Code: 0x%x 0x%x in catch....\n",
3790 exception,
3791 code_count > 0 ? code[0] : -1,
3792 code_count > 1 ? code[1] : -1);
3793 #endif
3794 return FWD();
3795 }
3796
3797 r = thread_get_state(thread,flavor,
3798 (natural_t*)&exc_state,&exc_state_count);
3799 if(r != KERN_SUCCESS) {
3800 /* The thread is supposed to be suspended while the exception handler
3801 is called. This shouldn't fail. */
3802 #ifdef BROKEN_EXCEPTION_HANDLING
3803 GC_err_printf0("thread_get_state failed in "
3804 "catch_exception_raise\n");
3805 return KERN_SUCCESS;
3806 #else
3807 ABORT("thread_get_state failed in catch_exception_raise");
3808 #endif
3809 }
3810
3811 /* This is the address that caused the fault */
3812 addr = (char*) exc_state.dar;
3813
3814 if((HDR(addr)) == 0) {
3815 /* Ugh... just like the SIGBUS problem above, it seems we get a bogus
3816 KERN_PROTECTION_FAILURE every once and a while. We wait till we get
3817 a bunch in a row before doing anything about it. If a "real" fault
3818 ever occurres it'll just keep faulting over and over and we'll hit
3819 the limit pretty quickly. */
3820 #ifdef BROKEN_EXCEPTION_HANDLING
3821 static char *last_fault;
3822 static int last_fault_count;
3823
3824 if(addr != last_fault) {
3825 last_fault = addr;
3826 last_fault_count = 0;
3827 }
3828 if(++last_fault_count < 32) {
3829 if(last_fault_count == 1)
3830 GC_err_printf1(
3831 "GC: WARNING: Ignoring KERN_PROTECTION_FAILURE at %p\n",
3832 addr);
3833 return KERN_SUCCESS;
3834 }
3835
3836 GC_err_printf1("Unexpected KERN_PROTECTION_FAILURE at %p\n",addr);
3837 /* Can't pass it along to the signal handler because that is
3838 ignoring SIGBUS signals. We also shouldn't call ABORT here as
3839 signals don't always work too well from the exception handler. */
3840 GC_err_printf0("Aborting\n");
3841 exit(EXIT_FAILURE);
3842 #else /* BROKEN_EXCEPTION_HANDLING */
3843 /* Pass it along to the next exception handler
3844 (which should call SIGBUS/SIGSEGV) */
3845 return FWD();
3846 #endif /* !BROKEN_EXCEPTION_HANDLING */
3847 }
3848
3849 #ifdef BROKEN_EXCEPTION_HANDLING
3850 /* Reset the number of consecutive SIGBUSs */
3851 GC_sigbus_count = 0;
3852 #endif
3853
3854 if(GC_mprotect_state == GC_MP_NORMAL) { /* common case */
3855 h = (struct hblk*)((word)addr & ~(GC_page_size-1));
3856 UNPROTECT(h, GC_page_size);
3857 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
3858 register int index = PHT_HASH(h+i);
3859 async_set_pht_entry_from_index(GC_dirty_pages, index);
3860 }
3861 } else if(GC_mprotect_state == GC_MP_DISCARDING) {
3862 /* Lie to the thread for now. No sense UNPROTECT()ing the memory
3863 when we're just going to PROTECT() it again later. The thread
3864 will just fault again once it resumes */
3865 } else {
3866 /* Shouldn't happen, i don't think */
3867 GC_printf0("KERN_PROTECTION_FAILURE while world is stopped\n");
3868 return FWD();
3869 }
3870 return KERN_SUCCESS;
3871 }
3872 #undef FWD
3873
3874 /* These should never be called, but just in case... */
3875 kern_return_t catch_exception_raise_state(mach_port_name_t exception_port,
3876 int exception, exception_data_t code, mach_msg_type_number_t codeCnt,
3877 int flavor, thread_state_t old_state, int old_stateCnt,
3878 thread_state_t new_state, int new_stateCnt)
3879 {
3880 ABORT("catch_exception_raise_state");
3881 return(KERN_INVALID_ARGUMENT);
3882 }
3883 kern_return_t catch_exception_raise_state_identity(
3884 mach_port_name_t exception_port, mach_port_t thread, mach_port_t task,
3885 int exception, exception_data_t code, mach_msg_type_number_t codeCnt,
3886 int flavor, thread_state_t old_state, int old_stateCnt,
3887 thread_state_t new_state, int new_stateCnt)
3888 {
3889 ABORT("catch_exception_raise_state_identity");
3890 return(KERN_INVALID_ARGUMENT);
3891 }
3892
3893
3894 #endif /* DARWIN && MPROTECT_VDB */
3895
3896 # ifndef HAVE_INCREMENTAL_PROTECTION_NEEDS
3897 int GC_incremental_protection_needs()
3898 {
3899 return GC_PROTECTS_NONE;
3900 }
3901 # endif /* !HAVE_INCREMENTAL_PROTECTION_NEEDS */
3902
3903 /*
3904 * Call stack save code for debugging.
3905 * Should probably be in mach_dep.c, but that requires reorganization.
3906 */
3907
3908 /* I suspect the following works for most X86 *nix variants, so */
3909 /* long as the frame pointer is explicitly stored. In the case of gcc, */
3910 /* compiler flags (e.g. -fomit-frame-pointer) determine whether it is. */
3911 #if defined(I386) && defined(LINUX) && defined(SAVE_CALL_CHAIN)
3912 # include <features.h>
3913
3914 struct frame {
3915 struct frame *fr_savfp;
3916 long fr_savpc;
3917 long fr_arg[NARGS]; /* All the arguments go here. */
3918 };
3919 #endif
3920
3921 #if defined(SPARC)
3922 # if defined(LINUX)
3923 # include <features.h>
3924
3925 struct frame {
3926 long fr_local[8];
3927 long fr_arg[6];
3928 struct frame *fr_savfp;
3929 long fr_savpc;
3930 # ifndef __arch64__
3931 char *fr_stret;
3932 # endif
3933 long fr_argd[6];
3934 long fr_argx[0];
3935 };
3936 # else
3937 # if defined(SUNOS4)
3938 # include <machine/frame.h>
3939 # else
3940 # if defined (DRSNX)
3941 # include <sys/sparc/frame.h>
3942 # else
3943 # if defined(OPENBSD) || defined(NETBSD)
3944 # include <frame.h>
3945 # else
3946 # include <sys/frame.h>
3947 # endif
3948 # endif
3949 # endif
3950 # endif
3951 # if NARGS > 6
3952 --> We only know how to to get the first 6 arguments
3953 # endif
3954 #endif /* SPARC */
3955
3956 #ifdef NEED_CALLINFO
3957 /* Fill in the pc and argument information for up to NFRAMES of my */
3958 /* callers. Ignore my frame and my callers frame. */
3959
3960 #ifdef LINUX
3961 # include <unistd.h>
3962 #endif
3963
3964 #endif /* NEED_CALLINFO */
3965
3966 #if defined(GC_HAVE_BUILTIN_BACKTRACE)
3967 # include <execinfo.h>
3968 #endif
3969
3970 #ifdef SAVE_CALL_CHAIN
3971
3972 #if NARGS == 0 && NFRAMES % 2 == 0 /* No padding */ \
3973 && defined(GC_HAVE_BUILTIN_BACKTRACE)
3974
3975 void GC_save_callers (info)
3976 struct callinfo info[NFRAMES];
3977 {
3978 void * tmp_info[NFRAMES + 1];
3979 int npcs, i;
3980 # define IGNORE_FRAMES 1
3981
3982 /* We retrieve NFRAMES+1 pc values, but discard the first, since it */
3983 /* points to our own frame. */
3984 GC_ASSERT(sizeof(struct callinfo) == sizeof(void *));
3985 npcs = backtrace((void **)tmp_info, NFRAMES + IGNORE_FRAMES);
3986 BCOPY(tmp_info+IGNORE_FRAMES, info, (npcs - IGNORE_FRAMES) * sizeof(void *));
3987 for (i = npcs - IGNORE_FRAMES; i < NFRAMES; ++i) info[i].ci_pc = 0;
3988 }
3989
3990 #else /* No builtin backtrace; do it ourselves */
3991
3992 #if (defined(OPENBSD) || defined(NETBSD)) && defined(SPARC)
3993 # define FR_SAVFP fr_fp
3994 # define FR_SAVPC fr_pc
3995 #else
3996 # define FR_SAVFP fr_savfp
3997 # define FR_SAVPC fr_savpc
3998 #endif
3999
4000 #if defined(SPARC) && (defined(__arch64__) || defined(__sparcv9))
4001 # define BIAS 2047
4002 #else
4003 # define BIAS 0
4004 #endif
4005
4006 void GC_save_callers (info)
4007 struct callinfo info[NFRAMES];
4008 {
4009 struct frame *frame;
4010 struct frame *fp;
4011 int nframes = 0;
4012 # ifdef I386
4013 /* We assume this is turned on only with gcc as the compiler. */
4014 asm("movl %%ebp,%0" : "=r"(frame));
4015 fp = frame;
4016 # else
4017 frame = (struct frame *) GC_save_regs_in_stack ();
4018 fp = (struct frame *)((long) frame -> FR_SAVFP + BIAS);
4019 #endif
4020
4021 for (; (!(fp HOTTER_THAN frame) && !(GC_stackbottom HOTTER_THAN (ptr_t)fp)
4022 && (nframes < NFRAMES));
4023 fp = (struct frame *)((long) fp -> FR_SAVFP + BIAS), nframes++) {
4024 register int i;
4025
4026 info[nframes].ci_pc = fp->FR_SAVPC;
4027 # if NARGS > 0
4028 for (i = 0; i < NARGS; i++) {
4029 info[nframes].ci_arg[i] = ~(fp->fr_arg[i]);
4030 }
4031 # endif /* NARGS > 0 */
4032 }
4033 if (nframes < NFRAMES) info[nframes].ci_pc = 0;
4034 }
4035
4036 #endif /* No builtin backtrace */
4037
4038 #endif /* SAVE_CALL_CHAIN */
4039
4040 #ifdef NEED_CALLINFO
4041
4042 /* Print info to stderr. We do NOT hold the allocation lock */
4043 void GC_print_callers (info)
4044 struct callinfo info[NFRAMES];
4045 {
4046 register int i;
4047 static int reentry_count = 0;
4048 GC_bool stop = FALSE;
4049
4050 /* FIXME: This should probably use a different lock, so that we */
4051 /* become callable with or without the allocation lock. */
4052 LOCK();
4053 ++reentry_count;
4054 UNLOCK();
4055
4056 # if NFRAMES == 1
4057 GC_err_printf0("\tCaller at allocation:\n");
4058 # else
4059 GC_err_printf0("\tCall chain at allocation:\n");
4060 # endif
4061 for (i = 0; i < NFRAMES && !stop ; i++) {
4062 if (info[i].ci_pc == 0) break;
4063 # if NARGS > 0
4064 {
4065 int j;
4066
4067 GC_err_printf0("\t\targs: ");
4068 for (j = 0; j < NARGS; j++) {
4069 if (j != 0) GC_err_printf0(", ");
4070 GC_err_printf2("%d (0x%X)", ~(info[i].ci_arg[j]),
4071 ~(info[i].ci_arg[j]));
4072 }
4073 GC_err_printf0("\n");
4074 }
4075 # endif
4076 if (reentry_count > 1) {
4077 /* We were called during an allocation during */
4078 /* a previous GC_print_callers call; punt. */
4079 GC_err_printf1("\t\t##PC##= 0x%lx\n", info[i].ci_pc);
4080 continue;
4081 }
4082 {
4083 # ifdef LINUX
4084 FILE *pipe;
4085 # endif
4086 # if defined(GC_HAVE_BUILTIN_BACKTRACE) \
4087 && !defined(GC_BACKTRACE_SYMBOLS_BROKEN)
4088 char **sym_name =
4089 backtrace_symbols((void **)(&(info[i].ci_pc)), 1);
4090 char *name = sym_name[0];
4091 # else
4092 char buf[40];
4093 char *name = buf;
4094 sprintf(buf, "##PC##= 0x%lx", info[i].ci_pc);
4095 # endif
4096 # if defined(LINUX) && !defined(SMALL_CONFIG)
4097 /* Try for a line number. */
4098 {
4099 # define EXE_SZ 100
4100 static char exe_name[EXE_SZ];
4101 # define CMD_SZ 200
4102 char cmd_buf[CMD_SZ];
4103 # define RESULT_SZ 200
4104 static char result_buf[RESULT_SZ];
4105 size_t result_len;
4106 char *old_preload;
4107 # define PRELOAD_SZ 200
4108 char preload_buf[PRELOAD_SZ];
4109 static GC_bool found_exe_name = FALSE;
4110 static GC_bool will_fail = FALSE;
4111 int ret_code;
4112 /* Try to get it via a hairy and expensive scheme. */
4113 /* First we get the name of the executable: */
4114 if (will_fail) goto out;
4115 if (!found_exe_name) {
4116 ret_code = readlink("/proc/self/exe", exe_name, EXE_SZ);
4117 if (ret_code < 0 || ret_code >= EXE_SZ
4118 || exe_name[0] != '/') {
4119 will_fail = TRUE; /* Dont try again. */
4120 goto out;
4121 }
4122 exe_name[ret_code] = '\0';
4123 found_exe_name = TRUE;
4124 }
4125 /* Then we use popen to start addr2line -e <exe> <addr> */
4126 /* There are faster ways to do this, but hopefully this */
4127 /* isn't time critical. */
4128 sprintf(cmd_buf, "/usr/bin/addr2line -f -e %s 0x%lx", exe_name,
4129 (unsigned long)info[i].ci_pc);
4130 old_preload = getenv ("LD_PRELOAD");
4131 if (0 != old_preload) {
4132 if (strlen (old_preload) >= PRELOAD_SZ) {
4133 will_fail = TRUE;
4134 goto out;
4135 }
4136 strcpy (preload_buf, old_preload);
4137 unsetenv ("LD_PRELOAD");
4138 }
4139 pipe = popen(cmd_buf, "r");
4140 if (0 != old_preload
4141 && 0 != setenv ("LD_PRELOAD", preload_buf, 0)) {
4142 WARN("Failed to reset LD_PRELOAD\n", 0);
4143 }
4144 if (pipe == NULL
4145 || (result_len = fread(result_buf, 1, RESULT_SZ - 1, pipe))
4146 == 0) {
4147 if (pipe != NULL) pclose(pipe);
4148 will_fail = TRUE;
4149 goto out;
4150 }
4151 if (result_buf[result_len - 1] == '\n') --result_len;
4152 result_buf[result_len] = 0;
4153 if (result_buf[0] == '?'
4154 || result_buf[result_len-2] == ':'
4155 && result_buf[result_len-1] == '0') {
4156 pclose(pipe);
4157 goto out;
4158 }
4159 /* Get rid of embedded newline, if any. Test for "main" */
4160 {
4161 char * nl = strchr(result_buf, '\n');
4162 if (nl != NULL && nl < result_buf + result_len) {
4163 *nl = ':';
4164 }
4165 if (strncmp(result_buf, "main", nl - result_buf) == 0) {
4166 stop = TRUE;
4167 }
4168 }
4169 if (result_len < RESULT_SZ - 25) {
4170 /* Add in hex address */
4171 sprintf(result_buf + result_len, " [0x%lx]",
4172 (unsigned long)info[i].ci_pc);
4173 }
4174 name = result_buf;
4175 pclose(pipe);
4176 out:;
4177 }
4178 # endif /* LINUX */
4179 GC_err_printf1("\t\t%s\n", name);
4180 # if defined(GC_HAVE_BUILTIN_BACKTRACE) \
4181 && !defined(GC_BACKTRACE_SYMBOLS_BROKEN)
4182 free(sym_name); /* May call GC_free; that's OK */
4183 # endif
4184 }
4185 }
4186 LOCK();
4187 --reentry_count;
4188 UNLOCK();
4189 }
4190
4191 #endif /* NEED_CALLINFO */
4192
4193
4194
4195 #if defined(LINUX) && defined(__ELF__) && !defined(SMALL_CONFIG)
4196
4197 /* Dump /proc/self/maps to GC_stderr, to enable looking up names for
4198 addresses in FIND_LEAK output. */
4199
4200 static word dump_maps(char *maps)
4201 {
4202 GC_err_write(maps, strlen(maps));
4203 return 1;
4204 }
4205
4206 void GC_print_address_map()
4207 {
4208 GC_err_printf0("---------- Begin address map ----------\n");
4209 GC_apply_to_maps(dump_maps);
4210 GC_err_printf0("---------- End address map ----------\n");
4211 }
4212
4213 #endif
4214
4215