configure.ac (target_tools): Remove target-groff.
[gcc.git] / boehm-gc / os_dep.c
1 /*
2 * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
3 * Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
4 * Copyright (c) 1996-1999 by Silicon Graphics. All rights reserved.
5 * Copyright (c) 1999 by Hewlett-Packard Company. All rights reserved.
6 *
7 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
8 * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
9 *
10 * Permission is hereby granted to use or copy this program
11 * for any purpose, provided the above notices are retained on all copies.
12 * Permission to modify the code and to distribute modified code is granted,
13 * provided the above notices are retained, and a notice that the code was
14 * modified is included with the above copyright notice.
15 */
16
17 # include "private/gc_priv.h"
18
19 # if defined(LINUX) && !defined(POWERPC)
20 # include <linux/version.h>
21 # if (LINUX_VERSION_CODE <= 0x10400)
22 /* Ugly hack to get struct sigcontext_struct definition. Required */
23 /* for some early 1.3.X releases. Will hopefully go away soon. */
24 /* in some later Linux releases, asm/sigcontext.h may have to */
25 /* be included instead. */
26 # define __KERNEL__
27 # include <asm/signal.h>
28 # undef __KERNEL__
29 # else
30 /* Kernels prior to 2.1.1 defined struct sigcontext_struct instead of */
31 /* struct sigcontext. libc6 (glibc2) uses "struct sigcontext" in */
32 /* prototypes, so we have to include the top-level sigcontext.h to */
33 /* make sure the former gets defined to be the latter if appropriate. */
34 # include <features.h>
35 # if 2 <= __GLIBC__
36 # if 2 == __GLIBC__ && 0 == __GLIBC_MINOR__
37 /* glibc 2.1 no longer has sigcontext.h. But signal.h */
38 /* has the right declaration for glibc 2.1. */
39 # include <sigcontext.h>
40 # endif /* 0 == __GLIBC_MINOR__ */
41 # else /* not 2 <= __GLIBC__ */
42 /* libc5 doesn't have <sigcontext.h>: go directly with the kernel */
43 /* one. Check LINUX_VERSION_CODE to see which we should reference. */
44 # include <asm/sigcontext.h>
45 # endif /* 2 <= __GLIBC__ */
46 # endif
47 # endif
48 # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) && !defined(MACOS) \
49 && !defined(MSWINCE)
50 # include <sys/types.h>
51 # if !defined(MSWIN32) && !defined(SUNOS4)
52 # include <unistd.h>
53 # endif
54 # endif
55
56 # include <stdio.h>
57 # if defined(MSWINCE)
58 # define SIGSEGV 0 /* value is irrelevant */
59 # else
60 # include <signal.h>
61 # endif
62
63 #if defined(LINUX) || defined(LINUX_STACKBOTTOM)
64 # include <ctype.h>
65 #endif
66
67 /* Blatantly OS dependent routines, except for those that are related */
68 /* to dynamic loading. */
69
70 # if defined(HEURISTIC2) || defined(SEARCH_FOR_DATA_START)
71 # define NEED_FIND_LIMIT
72 # endif
73
74 # if !defined(STACKBOTTOM) && defined(HEURISTIC2)
75 # define NEED_FIND_LIMIT
76 # endif
77
78 # if (defined(SUNOS4) && defined(DYNAMIC_LOADING)) && !defined(PCR)
79 # define NEED_FIND_LIMIT
80 # endif
81
82 # if (defined(SVR4) || defined(AUX) || defined(DGUX) \
83 || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
84 # define NEED_FIND_LIMIT
85 # endif
86
87 #if defined(FREEBSD) && (defined(I386) || defined(X86_64) || defined(powerpc) || defined(__powerpc__))
88 # include <machine/trap.h>
89 # if !defined(PCR)
90 # define NEED_FIND_LIMIT
91 # endif
92 #endif
93
94 #if (defined(NETBSD) || defined(OPENBSD)) && defined(__ELF__) \
95 && !defined(NEED_FIND_LIMIT)
96 /* Used by GC_init_netbsd_elf() below. */
97 # define NEED_FIND_LIMIT
98 #endif
99
100 #ifdef NEED_FIND_LIMIT
101 # include <setjmp.h>
102 #endif
103
104 #ifdef AMIGA
105 # define GC_AMIGA_DEF
106 # include "AmigaOS.c"
107 # undef GC_AMIGA_DEF
108 #endif
109
110 #if defined(MSWIN32) || defined(MSWINCE) || defined(CYGWIN32)
111 # define WIN32_LEAN_AND_MEAN
112 # define NOSERVICE
113 # include <windows.h>
114 #endif
115
116 #ifdef MACOS
117 # include <Processes.h>
118 #endif
119
120 #ifdef IRIX5
121 # include <sys/uio.h>
122 # include <malloc.h> /* for locking */
123 #endif
124 #if defined(USE_MMAP) || defined(USE_MUNMAP)
125 # ifndef USE_MMAP
126 --> USE_MUNMAP requires USE_MMAP
127 # endif
128 # include <sys/types.h>
129 # include <sys/mman.h>
130 # include <sys/stat.h>
131 # include <errno.h>
132 #endif
133
134 #ifdef UNIX_LIKE
135 # include <fcntl.h>
136 # if defined(SUNOS5SIGS) && !defined(FREEBSD)
137 # include <sys/siginfo.h>
138 # endif
139 /* Define SETJMP and friends to be the version that restores */
140 /* the signal mask. */
141 # define SETJMP(env) sigsetjmp(env, 1)
142 # define LONGJMP(env, val) siglongjmp(env, val)
143 # define JMP_BUF sigjmp_buf
144 #else
145 # define SETJMP(env) setjmp(env)
146 # define LONGJMP(env, val) longjmp(env, val)
147 # define JMP_BUF jmp_buf
148 #endif
149
150 #ifdef DARWIN
151 /* for get_etext and friends */
152 #include <mach-o/getsect.h>
153 #endif
154
155 #ifdef DJGPP
156 /* Apparently necessary for djgpp 2.01. May cause problems with */
157 /* other versions. */
158 typedef long unsigned int caddr_t;
159 #endif
160
161 #ifdef PCR
162 # include "il/PCR_IL.h"
163 # include "th/PCR_ThCtl.h"
164 # include "mm/PCR_MM.h"
165 #endif
166
167 #if !defined(NO_EXECUTE_PERMISSION)
168 # define OPT_PROT_EXEC PROT_EXEC
169 #else
170 # define OPT_PROT_EXEC 0
171 #endif
172
173 #if defined(LINUX) && \
174 (defined(USE_PROC_FOR_LIBRARIES) || defined(IA64) || !defined(SMALL_CONFIG))
175
176 /* We need to parse /proc/self/maps, either to find dynamic libraries, */
177 /* and/or to find the register backing store base (IA64). Do it once */
178 /* here. */
179
180 #define READ read
181
182 /* Repeatedly perform a read call until the buffer is filled or */
183 /* we encounter EOF. */
184 ssize_t GC_repeat_read(int fd, char *buf, size_t count)
185 {
186 ssize_t num_read = 0;
187 ssize_t result;
188
189 while (num_read < count) {
190 result = READ(fd, buf + num_read, count - num_read);
191 if (result < 0) return result;
192 if (result == 0) break;
193 num_read += result;
194 }
195 return num_read;
196 }
197
198 /*
199 * Apply fn to a buffer containing the contents of /proc/self/maps.
200 * Return the result of fn or, if we failed, 0.
201 * We currently do nothing to /proc/self/maps other than simply read
202 * it. This code could be simplified if we could determine its size
203 * ahead of time.
204 */
205
206 word GC_apply_to_maps(word (*fn)(char *))
207 {
208 int f;
209 int result;
210 size_t maps_size = 4000; /* Initial guess. */
211 static char init_buf[1];
212 static char *maps_buf = init_buf;
213 static size_t maps_buf_sz = 1;
214
215 /* Read /proc/self/maps, growing maps_buf as necessary. */
216 /* Note that we may not allocate conventionally, and */
217 /* thus can't use stdio. */
218 do {
219 if (maps_size >= maps_buf_sz) {
220 /* Grow only by powers of 2, since we leak "too small" buffers. */
221 while (maps_size >= maps_buf_sz) maps_buf_sz *= 2;
222 maps_buf = GC_scratch_alloc(maps_buf_sz);
223 if (maps_buf == 0) return 0;
224 }
225 f = open("/proc/self/maps", O_RDONLY);
226 if (-1 == f) return 0;
227 maps_size = 0;
228 do {
229 result = GC_repeat_read(f, maps_buf, maps_buf_sz-1);
230 if (result <= 0) return 0;
231 maps_size += result;
232 } while (result == maps_buf_sz-1);
233 close(f);
234 } while (maps_size >= maps_buf_sz);
235 maps_buf[maps_size] = '\0';
236
237 /* Apply fn to result. */
238 return fn(maps_buf);
239 }
240
241 #endif /* Need GC_apply_to_maps */
242
243 #if defined(LINUX) && (defined(USE_PROC_FOR_LIBRARIES) || defined(IA64))
244 //
245 // GC_parse_map_entry parses an entry from /proc/self/maps so we can
246 // locate all writable data segments that belong to shared libraries.
247 // The format of one of these entries and the fields we care about
248 // is as follows:
249 // XXXXXXXX-XXXXXXXX r-xp 00000000 30:05 260537 name of mapping...\n
250 // ^^^^^^^^ ^^^^^^^^ ^^^^ ^^
251 // start end prot maj_dev
252 //
253 // Note that since about auguat 2003 kernels, the columns no longer have
254 // fixed offsets on 64-bit kernels. Hence we no longer rely on fixed offsets
255 // anywhere, which is safer anyway.
256 //
257
258 /*
259 * Assign various fields of the first line in buf_ptr to *start, *end,
260 * *prot_buf and *maj_dev. Only *prot_buf may be set for unwritable maps.
261 */
262 char *GC_parse_map_entry(char *buf_ptr, word *start, word *end,
263 char *prot_buf, unsigned int *maj_dev)
264 {
265 char *start_start, *end_start, *prot_start, *maj_dev_start;
266 char *p;
267 char *endp;
268
269 if (buf_ptr == NULL || *buf_ptr == '\0') {
270 return NULL;
271 }
272
273 p = buf_ptr;
274 while (isspace(*p)) ++p;
275 start_start = p;
276 GC_ASSERT(isxdigit(*start_start));
277 *start = strtoul(start_start, &endp, 16); p = endp;
278 GC_ASSERT(*p=='-');
279
280 ++p;
281 end_start = p;
282 GC_ASSERT(isxdigit(*end_start));
283 *end = strtoul(end_start, &endp, 16); p = endp;
284 GC_ASSERT(isspace(*p));
285
286 while (isspace(*p)) ++p;
287 prot_start = p;
288 GC_ASSERT(*prot_start == 'r' || *prot_start == '-');
289 memcpy(prot_buf, prot_start, 4);
290 prot_buf[4] = '\0';
291 if (prot_buf[1] == 'w') {/* we can skip the rest if it's not writable. */
292 /* Skip past protection field to offset field */
293 while (!isspace(*p)) ++p; while (isspace(*p)) ++p;
294 GC_ASSERT(isxdigit(*p));
295 /* Skip past offset field, which we ignore */
296 while (!isspace(*p)) ++p; while (isspace(*p)) ++p;
297 maj_dev_start = p;
298 GC_ASSERT(isxdigit(*maj_dev_start));
299 *maj_dev = strtoul(maj_dev_start, NULL, 16);
300 }
301
302 while (*p && *p++ != '\n');
303
304 return p;
305 }
306
307 #endif /* Need to parse /proc/self/maps. */
308
309 #if defined(SEARCH_FOR_DATA_START)
310 /* The I386 case can be handled without a search. The Alpha case */
311 /* used to be handled differently as well, but the rules changed */
312 /* for recent Linux versions. This seems to be the easiest way to */
313 /* cover all versions. */
314
315 # ifdef LINUX
316 /* Some Linux distributions arrange to define __data_start. Some */
317 /* define data_start as a weak symbol. The latter is technically */
318 /* broken, since the user program may define data_start, in which */
319 /* case we lose. Nonetheless, we try both, prefering __data_start. */
320 /* We assume gcc-compatible pragmas. */
321 # pragma weak __data_start
322 extern int __data_start[];
323 # pragma weak data_start
324 extern int data_start[];
325 # endif /* LINUX */
326 extern int _end[];
327
328 ptr_t GC_data_start;
329
330 void GC_init_linux_data_start()
331 {
332 extern ptr_t GC_find_limit();
333
334 # ifdef LINUX
335 /* Try the easy approaches first: */
336 if ((ptr_t)__data_start != 0) {
337 GC_data_start = (ptr_t)(__data_start);
338 return;
339 }
340 if ((ptr_t)data_start != 0) {
341 GC_data_start = (ptr_t)(data_start);
342 return;
343 }
344 # endif /* LINUX */
345 GC_data_start = GC_find_limit((ptr_t)(_end), FALSE);
346 }
347 #endif
348
349 # ifdef ECOS
350
351 # ifndef ECOS_GC_MEMORY_SIZE
352 # define ECOS_GC_MEMORY_SIZE (448 * 1024)
353 # endif /* ECOS_GC_MEMORY_SIZE */
354
355 // setjmp() function, as described in ANSI para 7.6.1.1
356 #undef SETJMP
357 #define SETJMP( __env__ ) hal_setjmp( __env__ )
358
359 // FIXME: This is a simple way of allocating memory which is
360 // compatible with ECOS early releases. Later releases use a more
361 // sophisticated means of allocating memory than this simple static
362 // allocator, but this method is at least bound to work.
363 static char memory[ECOS_GC_MEMORY_SIZE];
364 static char *brk = memory;
365
366 static void *tiny_sbrk(ptrdiff_t increment)
367 {
368 void *p = brk;
369
370 brk += increment;
371
372 if (brk > memory + sizeof memory)
373 {
374 brk -= increment;
375 return NULL;
376 }
377
378 return p;
379 }
380 #define sbrk tiny_sbrk
381 # endif /* ECOS */
382
383 #if (defined(NETBSD) || defined(OPENBSD)) && defined(__ELF__)
384 ptr_t GC_data_start;
385
386 void GC_init_netbsd_elf()
387 {
388 extern ptr_t GC_find_limit();
389 extern char **environ;
390 /* This may need to be environ, without the underscore, for */
391 /* some versions. */
392 GC_data_start = GC_find_limit((ptr_t)&environ, FALSE);
393 }
394 #endif
395
396 # ifdef OS2
397
398 # include <stddef.h>
399
400 # if !defined(__IBMC__) && !defined(__WATCOMC__) /* e.g. EMX */
401
402 struct exe_hdr {
403 unsigned short magic_number;
404 unsigned short padding[29];
405 long new_exe_offset;
406 };
407
408 #define E_MAGIC(x) (x).magic_number
409 #define EMAGIC 0x5A4D
410 #define E_LFANEW(x) (x).new_exe_offset
411
412 struct e32_exe {
413 unsigned char magic_number[2];
414 unsigned char byte_order;
415 unsigned char word_order;
416 unsigned long exe_format_level;
417 unsigned short cpu;
418 unsigned short os;
419 unsigned long padding1[13];
420 unsigned long object_table_offset;
421 unsigned long object_count;
422 unsigned long padding2[31];
423 };
424
425 #define E32_MAGIC1(x) (x).magic_number[0]
426 #define E32MAGIC1 'L'
427 #define E32_MAGIC2(x) (x).magic_number[1]
428 #define E32MAGIC2 'X'
429 #define E32_BORDER(x) (x).byte_order
430 #define E32LEBO 0
431 #define E32_WORDER(x) (x).word_order
432 #define E32LEWO 0
433 #define E32_CPU(x) (x).cpu
434 #define E32CPU286 1
435 #define E32_OBJTAB(x) (x).object_table_offset
436 #define E32_OBJCNT(x) (x).object_count
437
438 struct o32_obj {
439 unsigned long size;
440 unsigned long base;
441 unsigned long flags;
442 unsigned long pagemap;
443 unsigned long mapsize;
444 unsigned long reserved;
445 };
446
447 #define O32_FLAGS(x) (x).flags
448 #define OBJREAD 0x0001L
449 #define OBJWRITE 0x0002L
450 #define OBJINVALID 0x0080L
451 #define O32_SIZE(x) (x).size
452 #define O32_BASE(x) (x).base
453
454 # else /* IBM's compiler */
455
456 /* A kludge to get around what appears to be a header file bug */
457 # ifndef WORD
458 # define WORD unsigned short
459 # endif
460 # ifndef DWORD
461 # define DWORD unsigned long
462 # endif
463
464 # define EXE386 1
465 # include <newexe.h>
466 # include <exe386.h>
467
468 # endif /* __IBMC__ */
469
470 # define INCL_DOSEXCEPTIONS
471 # define INCL_DOSPROCESS
472 # define INCL_DOSERRORS
473 # define INCL_DOSMODULEMGR
474 # define INCL_DOSMEMMGR
475 # include <os2.h>
476
477
478 /* Disable and enable signals during nontrivial allocations */
479
480 void GC_disable_signals(void)
481 {
482 ULONG nest;
483
484 DosEnterMustComplete(&nest);
485 if (nest != 1) ABORT("nested GC_disable_signals");
486 }
487
488 void GC_enable_signals(void)
489 {
490 ULONG nest;
491
492 DosExitMustComplete(&nest);
493 if (nest != 0) ABORT("GC_enable_signals");
494 }
495
496
497 # else
498
499 # if !defined(PCR) && !defined(AMIGA) && !defined(MSWIN32) \
500 && !defined(MSWINCE) \
501 && !defined(MACOS) && !defined(DJGPP) && !defined(DOS4GW) \
502 && !defined(NOSYS) && !defined(ECOS)
503
504 # if defined(SIG_BLOCK)
505 /* Use POSIX/SYSV interface */
506 # define SIGSET_T sigset_t
507 # define SIG_DEL(set, signal) sigdelset(&(set), (signal))
508 # define SIG_FILL(set) sigfillset(&set)
509 # define SIGSETMASK(old, new) sigprocmask(SIG_SETMASK, &(new), &(old))
510 # elif defined(sigmask) && !defined(UTS4) && !defined(HURD)
511 /* Use the traditional BSD interface */
512 # define SIGSET_T int
513 # define SIG_DEL(set, signal) (set) &= ~(sigmask(signal))
514 # define SIG_FILL(set) (set) = 0x7fffffff
515 /* Setting the leading bit appears to provoke a bug in some */
516 /* longjmp implementations. Most systems appear not to have */
517 /* a signal 32. */
518 # define SIGSETMASK(old, new) (old) = sigsetmask(new)
519 # else
520 # error undetectable signal API
521 # endif
522
523 static GC_bool mask_initialized = FALSE;
524
525 static SIGSET_T new_mask;
526
527 static SIGSET_T old_mask;
528
529 static SIGSET_T dummy;
530
531 #if defined(PRINTSTATS) && !defined(THREADS)
532 # define CHECK_SIGNALS
533 int GC_sig_disabled = 0;
534 #endif
535
536 void GC_disable_signals()
537 {
538 if (!mask_initialized) {
539 SIG_FILL(new_mask);
540
541 SIG_DEL(new_mask, SIGSEGV);
542 SIG_DEL(new_mask, SIGILL);
543 SIG_DEL(new_mask, SIGQUIT);
544 # ifdef SIGBUS
545 SIG_DEL(new_mask, SIGBUS);
546 # endif
547 # ifdef SIGIOT
548 SIG_DEL(new_mask, SIGIOT);
549 # endif
550 # ifdef SIGEMT
551 SIG_DEL(new_mask, SIGEMT);
552 # endif
553 # ifdef SIGTRAP
554 SIG_DEL(new_mask, SIGTRAP);
555 # endif
556 mask_initialized = TRUE;
557 }
558 # ifdef CHECK_SIGNALS
559 if (GC_sig_disabled != 0) ABORT("Nested disables");
560 GC_sig_disabled++;
561 # endif
562 SIGSETMASK(old_mask,new_mask);
563 }
564
565 void GC_enable_signals()
566 {
567 # ifdef CHECK_SIGNALS
568 if (GC_sig_disabled != 1) ABORT("Unmatched enable");
569 GC_sig_disabled--;
570 # endif
571 SIGSETMASK(dummy,old_mask);
572 }
573
574 # endif /* !PCR */
575
576 # endif /*!OS/2 */
577
578 /* Ivan Demakov: simplest way (to me) */
579 #if defined (DOS4GW)
580 void GC_disable_signals() { }
581 void GC_enable_signals() { }
582 #endif
583
584 /* Find the page size */
585 word GC_page_size;
586
587 # if defined(MSWIN32) || defined(MSWINCE) || defined (CYGWIN32)
588 void GC_setpagesize()
589 {
590 GetSystemInfo(&GC_sysinfo);
591 GC_page_size = GC_sysinfo.dwPageSize;
592 }
593
594 # else
595 # if defined(MPROTECT_VDB) || defined(PROC_VDB) || defined(USE_MMAP) \
596 || defined(USE_MUNMAP)
597 void GC_setpagesize()
598 {
599 GC_page_size = GETPAGESIZE();
600 }
601 # else
602 /* It's acceptable to fake it. */
603 void GC_setpagesize()
604 {
605 GC_page_size = HBLKSIZE;
606 }
607 # endif
608 # endif
609
610 /*
611 * Find the base of the stack.
612 * Used only in single-threaded environment.
613 * With threads, GC_mark_roots needs to know how to do this.
614 * Called with allocator lock held.
615 */
616 # if defined(MSWIN32) || defined(MSWINCE)
617 # define is_writable(prot) ((prot) == PAGE_READWRITE \
618 || (prot) == PAGE_WRITECOPY \
619 || (prot) == PAGE_EXECUTE_READWRITE \
620 || (prot) == PAGE_EXECUTE_WRITECOPY)
621 /* Return the number of bytes that are writable starting at p. */
622 /* The pointer p is assumed to be page aligned. */
623 /* If base is not 0, *base becomes the beginning of the */
624 /* allocation region containing p. */
625 word GC_get_writable_length(ptr_t p, ptr_t *base)
626 {
627 MEMORY_BASIC_INFORMATION buf;
628 word result;
629 word protect;
630
631 result = VirtualQuery(p, &buf, sizeof(buf));
632 if (result != sizeof(buf)) ABORT("Weird VirtualQuery result");
633 if (base != 0) *base = (ptr_t)(buf.AllocationBase);
634 protect = (buf.Protect & ~(PAGE_GUARD | PAGE_NOCACHE));
635 if (!is_writable(protect)) {
636 return(0);
637 }
638 if (buf.State != MEM_COMMIT) return(0);
639 return(buf.RegionSize);
640 }
641
642 ptr_t GC_get_stack_base()
643 {
644 int dummy;
645 ptr_t sp = (ptr_t)(&dummy);
646 ptr_t trunc_sp = (ptr_t)((word)sp & ~(GC_page_size - 1));
647 word size = GC_get_writable_length(trunc_sp, 0);
648
649 return(trunc_sp + size);
650 }
651
652
653 # endif /* MS Windows */
654
655 # ifdef BEOS
656 # include <kernel/OS.h>
657 ptr_t GC_get_stack_base(){
658 thread_info th;
659 get_thread_info(find_thread(NULL),&th);
660 return th.stack_end;
661 }
662 # endif /* BEOS */
663
664
665 # ifdef OS2
666
667 ptr_t GC_get_stack_base()
668 {
669 PTIB ptib;
670 PPIB ppib;
671
672 if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
673 GC_err_printf0("DosGetInfoBlocks failed\n");
674 ABORT("DosGetInfoBlocks failed\n");
675 }
676 return((ptr_t)(ptib -> tib_pstacklimit));
677 }
678
679 # endif /* OS2 */
680
681 # ifdef AMIGA
682 # define GC_AMIGA_SB
683 # include "AmigaOS.c"
684 # undef GC_AMIGA_SB
685 # endif /* AMIGA */
686
687 # if defined(NEED_FIND_LIMIT) || defined(UNIX_LIKE)
688
689 # ifdef __STDC__
690 typedef void (*handler)(int);
691 # else
692 typedef void (*handler)();
693 # endif
694
695 # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1) \
696 || defined(HURD) || defined(NETBSD)
697 static struct sigaction old_segv_act;
698 # if defined(IRIX5) || defined(HPUX) \
699 || defined(HURD) || defined(NETBSD)
700 static struct sigaction old_bus_act;
701 # endif
702 # else
703 static handler old_segv_handler, old_bus_handler;
704 # endif
705
706 # ifdef __STDC__
707 void GC_set_and_save_fault_handler(handler h)
708 # else
709 void GC_set_and_save_fault_handler(h)
710 handler h;
711 # endif
712 {
713 # if defined(SUNOS5SIGS) || defined(IRIX5) \
714 || defined(OSF1) || defined(HURD) || defined(NETBSD)
715 struct sigaction act;
716
717 act.sa_handler = h;
718 # if 0 /* Was necessary for Solaris 2.3 and very temporary */
719 /* NetBSD bugs. */
720 act.sa_flags = SA_RESTART | SA_NODEFER;
721 # else
722 act.sa_flags = SA_RESTART;
723 # endif
724
725 (void) sigemptyset(&act.sa_mask);
726 # ifdef GC_IRIX_THREADS
727 /* Older versions have a bug related to retrieving and */
728 /* and setting a handler at the same time. */
729 (void) sigaction(SIGSEGV, 0, &old_segv_act);
730 (void) sigaction(SIGSEGV, &act, 0);
731 (void) sigaction(SIGBUS, 0, &old_bus_act);
732 (void) sigaction(SIGBUS, &act, 0);
733 # else
734 (void) sigaction(SIGSEGV, &act, &old_segv_act);
735 # if defined(IRIX5) \
736 || defined(HPUX) || defined(HURD) || defined(NETBSD)
737 /* Under Irix 5.x or HP/UX, we may get SIGBUS. */
738 /* Pthreads doesn't exist under Irix 5.x, so we */
739 /* don't have to worry in the threads case. */
740 (void) sigaction(SIGBUS, &act, &old_bus_act);
741 # endif
742 # endif /* GC_IRIX_THREADS */
743 # else
744 old_segv_handler = signal(SIGSEGV, h);
745 # ifdef SIGBUS
746 old_bus_handler = signal(SIGBUS, h);
747 # endif
748 # endif
749 }
750 # endif /* NEED_FIND_LIMIT || UNIX_LIKE */
751
752 # ifdef NEED_FIND_LIMIT
753 /* Some tools to implement HEURISTIC2 */
754 # define MIN_PAGE_SIZE 256 /* Smallest conceivable page size, bytes */
755 /* static */ JMP_BUF GC_jmp_buf;
756
757 /*ARGSUSED*/
758 void GC_fault_handler(sig)
759 int sig;
760 {
761 LONGJMP(GC_jmp_buf, 1);
762 }
763
764 void GC_setup_temporary_fault_handler()
765 {
766 GC_set_and_save_fault_handler(GC_fault_handler);
767 }
768
769 void GC_reset_fault_handler()
770 {
771 # if defined(SUNOS5SIGS) || defined(IRIX5) \
772 || defined(OSF1) || defined(HURD) || defined(NETBSD)
773 (void) sigaction(SIGSEGV, &old_segv_act, 0);
774 # if defined(IRIX5) \
775 || defined(HPUX) || defined(HURD) || defined(NETBSD)
776 (void) sigaction(SIGBUS, &old_bus_act, 0);
777 # endif
778 # else
779 (void) signal(SIGSEGV, old_segv_handler);
780 # ifdef SIGBUS
781 (void) signal(SIGBUS, old_bus_handler);
782 # endif
783 # endif
784 }
785
786 /* Return the first nonaddressible location > p (up) or */
787 /* the smallest location q s.t. [q,p) is addressable (!up). */
788 /* We assume that p (up) or p-1 (!up) is addressable. */
789 ptr_t GC_find_limit(p, up)
790 ptr_t p;
791 GC_bool up;
792 {
793 static VOLATILE ptr_t result;
794 /* Needs to be static, since otherwise it may not be */
795 /* preserved across the longjmp. Can safely be */
796 /* static since it's only called once, with the */
797 /* allocation lock held. */
798
799
800 GC_setup_temporary_fault_handler();
801 if (SETJMP(GC_jmp_buf) == 0) {
802 result = (ptr_t)(((word)(p))
803 & ~(MIN_PAGE_SIZE-1));
804 for (;;) {
805 if (up) {
806 result += MIN_PAGE_SIZE;
807 } else {
808 result -= MIN_PAGE_SIZE;
809 }
810 GC_noop1((word)(*result));
811 }
812 }
813 GC_reset_fault_handler();
814 if (!up) {
815 result += MIN_PAGE_SIZE;
816 }
817 return(result);
818 }
819 # endif
820
821 #if defined(ECOS) || defined(NOSYS)
822 ptr_t GC_get_stack_base()
823 {
824 return STACKBOTTOM;
825 }
826 #endif
827
828 #ifdef HPUX_STACKBOTTOM
829
830 #include <sys/param.h>
831 #include <sys/pstat.h>
832
833 ptr_t GC_get_register_stack_base(void)
834 {
835 struct pst_vm_status vm_status;
836
837 int i = 0;
838 while (pstat_getprocvm(&vm_status, sizeof(vm_status), 0, i++) == 1) {
839 if (vm_status.pst_type == PS_RSESTACK) {
840 return (ptr_t) vm_status.pst_vaddr;
841 }
842 }
843
844 /* old way to get the register stackbottom */
845 return (ptr_t)(((word)GC_stackbottom - BACKING_STORE_DISPLACEMENT - 1)
846 & ~(BACKING_STORE_ALIGNMENT - 1));
847 }
848
849 #endif /* HPUX_STACK_BOTTOM */
850
851 #ifdef LINUX_STACKBOTTOM
852
853 #include <sys/types.h>
854 #include <sys/stat.h>
855
856 # define STAT_SKIP 27 /* Number of fields preceding startstack */
857 /* field in /proc/self/stat */
858
859 #ifdef USE_LIBC_PRIVATES
860 # pragma weak __libc_stack_end
861 extern ptr_t __libc_stack_end;
862 #endif
863
864 # ifdef IA64
865 /* Try to read the backing store base from /proc/self/maps. */
866 /* We look for the writable mapping with a 0 major device, */
867 /* which is as close to our frame as possible, but below it.*/
868 static word backing_store_base_from_maps(char *maps)
869 {
870 char prot_buf[5];
871 char *buf_ptr = maps;
872 word start, end;
873 unsigned int maj_dev;
874 word current_best = 0;
875 word dummy;
876
877 for (;;) {
878 buf_ptr = GC_parse_map_entry(buf_ptr, &start, &end, prot_buf, &maj_dev);
879 if (buf_ptr == NULL) return current_best;
880 if (prot_buf[1] == 'w' && maj_dev == 0) {
881 if (end < (word)(&dummy) && start > current_best) current_best = start;
882 }
883 }
884 return current_best;
885 }
886
887 static word backing_store_base_from_proc(void)
888 {
889 return GC_apply_to_maps(backing_store_base_from_maps);
890 }
891
892 # ifdef USE_LIBC_PRIVATES
893 # pragma weak __libc_ia64_register_backing_store_base
894 extern ptr_t __libc_ia64_register_backing_store_base;
895 # endif
896
897 ptr_t GC_get_register_stack_base(void)
898 {
899 # ifdef USE_LIBC_PRIVATES
900 if (0 != &__libc_ia64_register_backing_store_base
901 && 0 != __libc_ia64_register_backing_store_base) {
902 /* Glibc 2.2.4 has a bug such that for dynamically linked */
903 /* executables __libc_ia64_register_backing_store_base is */
904 /* defined but uninitialized during constructor calls. */
905 /* Hence we check for both nonzero address and value. */
906 return __libc_ia64_register_backing_store_base;
907 }
908 # endif
909 word result = backing_store_base_from_proc();
910 if (0 == result) {
911 /* Use dumb heuristics. Works only for default configuration. */
912 result = (word)GC_stackbottom - BACKING_STORE_DISPLACEMENT;
913 result += BACKING_STORE_ALIGNMENT - 1;
914 result &= ~(BACKING_STORE_ALIGNMENT - 1);
915 /* Verify that it's at least readable. If not, we goofed. */
916 GC_noop1(*(word *)result);
917 }
918 return (ptr_t)result;
919 }
920 # endif
921
922 ptr_t GC_linux_stack_base(void)
923 {
924 /* We read the stack base value from /proc/self/stat. We do this */
925 /* using direct I/O system calls in order to avoid calling malloc */
926 /* in case REDIRECT_MALLOC is defined. */
927 # define STAT_BUF_SIZE 4096
928 # define STAT_READ read
929 /* Should probably call the real read, if read is wrapped. */
930 char stat_buf[STAT_BUF_SIZE];
931 int f;
932 char c;
933 word result = 0;
934 size_t i, buf_offset = 0;
935
936 /* First try the easy way. This should work for glibc 2.2 */
937 /* This fails in a prelinked ("prelink" command) executable */
938 /* since the correct value of __libc_stack_end never */
939 /* becomes visible to us. The second test works around */
940 /* this. */
941 # ifdef USE_LIBC_PRIVATES
942 if (0 != &__libc_stack_end && 0 != __libc_stack_end ) {
943 # ifdef IA64
944 /* Some versions of glibc set the address 16 bytes too */
945 /* low while the initialization code is running. */
946 if (((word)__libc_stack_end & 0xfff) + 0x10 < 0x1000) {
947 return __libc_stack_end + 0x10;
948 } /* Otherwise it's not safe to add 16 bytes and we fall */
949 /* back to using /proc. */
950 # else
951 # ifdef SPARC
952 /* Older versions of glibc for 64-bit Sparc do not set
953 * this variable correctly, it gets set to either zero
954 * or one.
955 */
956 if (__libc_stack_end != (ptr_t) (unsigned long)0x1)
957 return __libc_stack_end;
958 # else
959 return __libc_stack_end;
960 # endif
961 # endif
962 }
963 # endif
964 f = open("/proc/self/stat", O_RDONLY);
965 if (f < 0 || STAT_READ(f, stat_buf, STAT_BUF_SIZE) < 2 * STAT_SKIP) {
966 ABORT("Couldn't read /proc/self/stat");
967 }
968 c = stat_buf[buf_offset++];
969 /* Skip the required number of fields. This number is hopefully */
970 /* constant across all Linux implementations. */
971 for (i = 0; i < STAT_SKIP; ++i) {
972 while (isspace(c)) c = stat_buf[buf_offset++];
973 while (!isspace(c)) c = stat_buf[buf_offset++];
974 }
975 while (isspace(c)) c = stat_buf[buf_offset++];
976 while (isdigit(c)) {
977 result *= 10;
978 result += c - '0';
979 c = stat_buf[buf_offset++];
980 }
981 close(f);
982 if (result < 0x10000000) ABORT("Absurd stack bottom value");
983 return (ptr_t)result;
984 }
985
986 #endif /* LINUX_STACKBOTTOM */
987
988 #ifdef FREEBSD_STACKBOTTOM
989
990 /* This uses an undocumented sysctl call, but at least one expert */
991 /* believes it will stay. */
992
993 #include <unistd.h>
994 #include <sys/types.h>
995 #include <sys/sysctl.h>
996
997 ptr_t GC_freebsd_stack_base(void)
998 {
999 int nm[2] = {CTL_KERN, KERN_USRSTACK};
1000 ptr_t base;
1001 size_t len = sizeof(ptr_t);
1002 int r = sysctl(nm, 2, &base, &len, NULL, 0);
1003
1004 if (r) ABORT("Error getting stack base");
1005
1006 return base;
1007 }
1008
1009 #endif /* FREEBSD_STACKBOTTOM */
1010
1011 #if !defined(BEOS) && !defined(AMIGA) && !defined(MSWIN32) \
1012 && !defined(MSWINCE) && !defined(OS2) && !defined(NOSYS) && !defined(ECOS)
1013
1014 ptr_t GC_get_stack_base()
1015 {
1016 # if defined(HEURISTIC1) || defined(HEURISTIC2) || \
1017 defined(LINUX_STACKBOTTOM) || defined(FREEBSD_STACKBOTTOM)
1018 word dummy;
1019 ptr_t result;
1020 # endif
1021
1022 # define STACKBOTTOM_ALIGNMENT_M1 ((word)STACK_GRAN - 1)
1023
1024 # ifdef STACKBOTTOM
1025 return(STACKBOTTOM);
1026 # else
1027 # ifdef HEURISTIC1
1028 # ifdef STACK_GROWS_DOWN
1029 result = (ptr_t)((((word)(&dummy))
1030 + STACKBOTTOM_ALIGNMENT_M1)
1031 & ~STACKBOTTOM_ALIGNMENT_M1);
1032 # else
1033 result = (ptr_t)(((word)(&dummy))
1034 & ~STACKBOTTOM_ALIGNMENT_M1);
1035 # endif
1036 # endif /* HEURISTIC1 */
1037 # ifdef LINUX_STACKBOTTOM
1038 result = GC_linux_stack_base();
1039 # endif
1040 # ifdef FREEBSD_STACKBOTTOM
1041 result = GC_freebsd_stack_base();
1042 # endif
1043 # ifdef HEURISTIC2
1044 # ifdef STACK_GROWS_DOWN
1045 result = GC_find_limit((ptr_t)(&dummy), TRUE);
1046 # ifdef HEURISTIC2_LIMIT
1047 if (result > HEURISTIC2_LIMIT
1048 && (ptr_t)(&dummy) < HEURISTIC2_LIMIT) {
1049 result = HEURISTIC2_LIMIT;
1050 }
1051 # endif
1052 # else
1053 result = GC_find_limit((ptr_t)(&dummy), FALSE);
1054 # ifdef HEURISTIC2_LIMIT
1055 if (result < HEURISTIC2_LIMIT
1056 && (ptr_t)(&dummy) > HEURISTIC2_LIMIT) {
1057 result = HEURISTIC2_LIMIT;
1058 }
1059 # endif
1060 # endif
1061
1062 # endif /* HEURISTIC2 */
1063 # ifdef STACK_GROWS_DOWN
1064 if (result == 0) result = (ptr_t)(signed_word)(-sizeof(ptr_t));
1065 # endif
1066 return(result);
1067 # endif /* STACKBOTTOM */
1068 }
1069
1070 # endif /* ! AMIGA, !OS 2, ! MS Windows, !BEOS, !NOSYS, !ECOS */
1071
1072 /*
1073 * Register static data segment(s) as roots.
1074 * If more data segments are added later then they need to be registered
1075 * add that point (as we do with SunOS dynamic loading),
1076 * or GC_mark_roots needs to check for them (as we do with PCR).
1077 * Called with allocator lock held.
1078 */
1079
1080 # ifdef OS2
1081
1082 void GC_register_data_segments()
1083 {
1084 PTIB ptib;
1085 PPIB ppib;
1086 HMODULE module_handle;
1087 # define PBUFSIZ 512
1088 UCHAR path[PBUFSIZ];
1089 FILE * myexefile;
1090 struct exe_hdr hdrdos; /* MSDOS header. */
1091 struct e32_exe hdr386; /* Real header for my executable */
1092 struct o32_obj seg; /* Currrent segment */
1093 int nsegs;
1094
1095
1096 if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
1097 GC_err_printf0("DosGetInfoBlocks failed\n");
1098 ABORT("DosGetInfoBlocks failed\n");
1099 }
1100 module_handle = ppib -> pib_hmte;
1101 if (DosQueryModuleName(module_handle, PBUFSIZ, path) != NO_ERROR) {
1102 GC_err_printf0("DosQueryModuleName failed\n");
1103 ABORT("DosGetInfoBlocks failed\n");
1104 }
1105 myexefile = fopen(path, "rb");
1106 if (myexefile == 0) {
1107 GC_err_puts("Couldn't open executable ");
1108 GC_err_puts(path); GC_err_puts("\n");
1109 ABORT("Failed to open executable\n");
1110 }
1111 if (fread((char *)(&hdrdos), 1, sizeof hdrdos, myexefile) < sizeof hdrdos) {
1112 GC_err_puts("Couldn't read MSDOS header from ");
1113 GC_err_puts(path); GC_err_puts("\n");
1114 ABORT("Couldn't read MSDOS header");
1115 }
1116 if (E_MAGIC(hdrdos) != EMAGIC) {
1117 GC_err_puts("Executable has wrong DOS magic number: ");
1118 GC_err_puts(path); GC_err_puts("\n");
1119 ABORT("Bad DOS magic number");
1120 }
1121 if (fseek(myexefile, E_LFANEW(hdrdos), SEEK_SET) != 0) {
1122 GC_err_puts("Seek to new header failed in ");
1123 GC_err_puts(path); GC_err_puts("\n");
1124 ABORT("Bad DOS magic number");
1125 }
1126 if (fread((char *)(&hdr386), 1, sizeof hdr386, myexefile) < sizeof hdr386) {
1127 GC_err_puts("Couldn't read MSDOS header from ");
1128 GC_err_puts(path); GC_err_puts("\n");
1129 ABORT("Couldn't read OS/2 header");
1130 }
1131 if (E32_MAGIC1(hdr386) != E32MAGIC1 || E32_MAGIC2(hdr386) != E32MAGIC2) {
1132 GC_err_puts("Executable has wrong OS/2 magic number:");
1133 GC_err_puts(path); GC_err_puts("\n");
1134 ABORT("Bad OS/2 magic number");
1135 }
1136 if ( E32_BORDER(hdr386) != E32LEBO || E32_WORDER(hdr386) != E32LEWO) {
1137 GC_err_puts("Executable %s has wrong byte order: ");
1138 GC_err_puts(path); GC_err_puts("\n");
1139 ABORT("Bad byte order");
1140 }
1141 if ( E32_CPU(hdr386) == E32CPU286) {
1142 GC_err_puts("GC can't handle 80286 executables: ");
1143 GC_err_puts(path); GC_err_puts("\n");
1144 EXIT();
1145 }
1146 if (fseek(myexefile, E_LFANEW(hdrdos) + E32_OBJTAB(hdr386),
1147 SEEK_SET) != 0) {
1148 GC_err_puts("Seek to object table failed: ");
1149 GC_err_puts(path); GC_err_puts("\n");
1150 ABORT("Seek to object table failed");
1151 }
1152 for (nsegs = E32_OBJCNT(hdr386); nsegs > 0; nsegs--) {
1153 int flags;
1154 if (fread((char *)(&seg), 1, sizeof seg, myexefile) < sizeof seg) {
1155 GC_err_puts("Couldn't read obj table entry from ");
1156 GC_err_puts(path); GC_err_puts("\n");
1157 ABORT("Couldn't read obj table entry");
1158 }
1159 flags = O32_FLAGS(seg);
1160 if (!(flags & OBJWRITE)) continue;
1161 if (!(flags & OBJREAD)) continue;
1162 if (flags & OBJINVALID) {
1163 GC_err_printf0("Object with invalid pages?\n");
1164 continue;
1165 }
1166 GC_add_roots_inner(O32_BASE(seg), O32_BASE(seg)+O32_SIZE(seg), FALSE);
1167 }
1168 }
1169
1170 # else /* !OS2 */
1171
1172 # if defined(MSWIN32) || defined(MSWINCE) || defined (CYGWIN32)
1173
1174 # ifdef CYGWIN32
1175 # define GC_no_win32_dlls (FALSE)
1176 # endif
1177
1178 # ifdef MSWIN32
1179 /* Unfortunately, we have to handle win32s very differently from NT, */
1180 /* Since VirtualQuery has very different semantics. In particular, */
1181 /* under win32s a VirtualQuery call on an unmapped page returns an */
1182 /* invalid result. Under NT, GC_register_data_segments is a noop and */
1183 /* all real work is done by GC_register_dynamic_libraries. Under */
1184 /* win32s, we cannot find the data segments associated with dll's. */
1185 /* We register the main data segment here. */
1186 GC_bool GC_no_win32_dlls = FALSE;
1187 /* This used to be set for gcc, to avoid dealing with */
1188 /* the structured exception handling issues. But we now have */
1189 /* assembly code to do that right. */
1190 GC_bool GC_wnt = FALSE;
1191 /* This is a Windows NT derivative, i.e. NT, W2K, XP or later. */
1192
1193 void GC_init_win32()
1194 {
1195 /* if we're running under win32s, assume that no DLLs will be loaded */
1196 DWORD v = GetVersion();
1197 GC_wnt = !(v & 0x80000000);
1198 GC_no_win32_dlls |= ((!GC_wnt) && (v & 0xff) <= 3);
1199 }
1200
1201 /* Return the smallest address a such that VirtualQuery */
1202 /* returns correct results for all addresses between a and start. */
1203 /* Assumes VirtualQuery returns correct information for start. */
1204 ptr_t GC_least_described_address(ptr_t start)
1205 {
1206 MEMORY_BASIC_INFORMATION buf;
1207 DWORD result;
1208 LPVOID limit;
1209 ptr_t p;
1210 LPVOID q;
1211
1212 limit = GC_sysinfo.lpMinimumApplicationAddress;
1213 p = (ptr_t)((word)start & ~(GC_page_size - 1));
1214 for (;;) {
1215 q = (LPVOID)(p - GC_page_size);
1216 if ((ptr_t)q > (ptr_t)p /* underflow */ || q < limit) break;
1217 result = VirtualQuery(q, &buf, sizeof(buf));
1218 if (result != sizeof(buf) || buf.AllocationBase == 0) break;
1219 p = (ptr_t)(buf.AllocationBase);
1220 }
1221 return(p);
1222 }
1223 # endif
1224
1225 # ifndef REDIRECT_MALLOC
1226 /* We maintain a linked list of AllocationBase values that we know */
1227 /* correspond to malloc heap sections. Currently this is only called */
1228 /* during a GC. But there is some hope that for long running */
1229 /* programs we will eventually see most heap sections. */
1230
1231 /* In the long run, it would be more reliable to occasionally walk */
1232 /* the malloc heap with HeapWalk on the default heap. But that */
1233 /* apparently works only for NT-based Windows. */
1234
1235 /* In the long run, a better data structure would also be nice ... */
1236 struct GC_malloc_heap_list {
1237 void * allocation_base;
1238 struct GC_malloc_heap_list *next;
1239 } *GC_malloc_heap_l = 0;
1240
1241 /* Is p the base of one of the malloc heap sections we already know */
1242 /* about? */
1243 GC_bool GC_is_malloc_heap_base(ptr_t p)
1244 {
1245 struct GC_malloc_heap_list *q = GC_malloc_heap_l;
1246
1247 while (0 != q) {
1248 if (q -> allocation_base == p) return TRUE;
1249 q = q -> next;
1250 }
1251 return FALSE;
1252 }
1253
1254 void *GC_get_allocation_base(void *p)
1255 {
1256 MEMORY_BASIC_INFORMATION buf;
1257 DWORD result = VirtualQuery(p, &buf, sizeof(buf));
1258 if (result != sizeof(buf)) {
1259 ABORT("Weird VirtualQuery result");
1260 }
1261 return buf.AllocationBase;
1262 }
1263
1264 size_t GC_max_root_size = 100000; /* Appr. largest root size. */
1265
1266 void GC_add_current_malloc_heap()
1267 {
1268 struct GC_malloc_heap_list *new_l =
1269 malloc(sizeof(struct GC_malloc_heap_list));
1270 void * candidate = GC_get_allocation_base(new_l);
1271
1272 if (new_l == 0) return;
1273 if (GC_is_malloc_heap_base(candidate)) {
1274 /* Try a little harder to find malloc heap. */
1275 size_t req_size = 10000;
1276 do {
1277 void *p = malloc(req_size);
1278 if (0 == p) { free(new_l); return; }
1279 candidate = GC_get_allocation_base(p);
1280 free(p);
1281 req_size *= 2;
1282 } while (GC_is_malloc_heap_base(candidate)
1283 && req_size < GC_max_root_size/10 && req_size < 500000);
1284 if (GC_is_malloc_heap_base(candidate)) {
1285 free(new_l); return;
1286 }
1287 }
1288 # ifdef CONDPRINT
1289 if (GC_print_stats)
1290 GC_printf1("Found new system malloc AllocationBase at 0x%lx\n",
1291 candidate);
1292 # endif
1293 new_l -> allocation_base = candidate;
1294 new_l -> next = GC_malloc_heap_l;
1295 GC_malloc_heap_l = new_l;
1296 }
1297 # endif /* REDIRECT_MALLOC */
1298
1299 /* Is p the start of either the malloc heap, or of one of our */
1300 /* heap sections? */
1301 GC_bool GC_is_heap_base (ptr_t p)
1302 {
1303
1304 unsigned i;
1305
1306 # ifndef REDIRECT_MALLOC
1307 static word last_gc_no = -1;
1308
1309 if (last_gc_no != GC_gc_no) {
1310 GC_add_current_malloc_heap();
1311 last_gc_no = GC_gc_no;
1312 }
1313 if (GC_root_size > GC_max_root_size) GC_max_root_size = GC_root_size;
1314 if (GC_is_malloc_heap_base(p)) return TRUE;
1315 # endif
1316 for (i = 0; i < GC_n_heap_bases; i++) {
1317 if (GC_heap_bases[i] == p) return TRUE;
1318 }
1319 return FALSE ;
1320 }
1321
1322 # ifdef MSWIN32
1323 void GC_register_root_section(ptr_t static_root)
1324 {
1325 MEMORY_BASIC_INFORMATION buf;
1326 DWORD result;
1327 DWORD protect;
1328 LPVOID p;
1329 char * base;
1330 char * limit, * new_limit;
1331
1332 if (!GC_no_win32_dlls) return;
1333 p = base = limit = GC_least_described_address(static_root);
1334 while (p < GC_sysinfo.lpMaximumApplicationAddress) {
1335 result = VirtualQuery(p, &buf, sizeof(buf));
1336 if (result != sizeof(buf) || buf.AllocationBase == 0
1337 || GC_is_heap_base(buf.AllocationBase)) break;
1338 new_limit = (char *)p + buf.RegionSize;
1339 protect = buf.Protect;
1340 if (buf.State == MEM_COMMIT
1341 && is_writable(protect)) {
1342 if ((char *)p == limit) {
1343 limit = new_limit;
1344 } else {
1345 if (base != limit) GC_add_roots_inner(base, limit, FALSE);
1346 base = p;
1347 limit = new_limit;
1348 }
1349 }
1350 if (p > (LPVOID)new_limit /* overflow */) break;
1351 p = (LPVOID)new_limit;
1352 }
1353 if (base != limit) GC_add_roots_inner(base, limit, FALSE);
1354 }
1355 #endif
1356
1357 void GC_register_data_segments()
1358 {
1359 # ifdef MSWIN32
1360 static char dummy;
1361 GC_register_root_section((ptr_t)(&dummy));
1362 # endif
1363 }
1364
1365 # else /* !OS2 && !Windows */
1366
1367 # if (defined(SVR4) || defined(AUX) || defined(DGUX) \
1368 || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
1369 ptr_t GC_SysVGetDataStart(max_page_size, etext_addr)
1370 int max_page_size;
1371 int * etext_addr;
1372 {
1373 word text_end = ((word)(etext_addr) + sizeof(word) - 1)
1374 & ~(sizeof(word) - 1);
1375 /* etext rounded to word boundary */
1376 word next_page = ((text_end + (word)max_page_size - 1)
1377 & ~((word)max_page_size - 1));
1378 word page_offset = (text_end & ((word)max_page_size - 1));
1379 VOLATILE char * result = (char *)(next_page + page_offset);
1380 /* Note that this isnt equivalent to just adding */
1381 /* max_page_size to &etext if &etext is at a page boundary */
1382
1383 GC_setup_temporary_fault_handler();
1384 if (SETJMP(GC_jmp_buf) == 0) {
1385 /* Try writing to the address. */
1386 *result = *result;
1387 GC_reset_fault_handler();
1388 } else {
1389 GC_reset_fault_handler();
1390 /* We got here via a longjmp. The address is not readable. */
1391 /* This is known to happen under Solaris 2.4 + gcc, which place */
1392 /* string constants in the text segment, but after etext. */
1393 /* Use plan B. Note that we now know there is a gap between */
1394 /* text and data segments, so plan A bought us something. */
1395 result = (char *)GC_find_limit((ptr_t)(DATAEND), FALSE);
1396 }
1397 return((ptr_t)result);
1398 }
1399 # endif
1400
1401 # if defined(FREEBSD) && (defined(I386) || defined(X86_64) || defined(powerpc) || defined(__powerpc__)) && !defined(PCR)
1402 /* Its unclear whether this should be identical to the above, or */
1403 /* whether it should apply to non-X86 architectures. */
1404 /* For now we don't assume that there is always an empty page after */
1405 /* etext. But in some cases there actually seems to be slightly more. */
1406 /* This also deals with holes between read-only data and writable data. */
1407 ptr_t GC_FreeBSDGetDataStart(max_page_size, etext_addr)
1408 int max_page_size;
1409 int * etext_addr;
1410 {
1411 word text_end = ((word)(etext_addr) + sizeof(word) - 1)
1412 & ~(sizeof(word) - 1);
1413 /* etext rounded to word boundary */
1414 VOLATILE word next_page = (text_end + (word)max_page_size - 1)
1415 & ~((word)max_page_size - 1);
1416 VOLATILE ptr_t result = (ptr_t)text_end;
1417 GC_setup_temporary_fault_handler();
1418 if (SETJMP(GC_jmp_buf) == 0) {
1419 /* Try reading at the address. */
1420 /* This should happen before there is another thread. */
1421 for (; next_page < (word)(DATAEND); next_page += (word)max_page_size)
1422 *(VOLATILE char *)next_page;
1423 GC_reset_fault_handler();
1424 } else {
1425 GC_reset_fault_handler();
1426 /* As above, we go to plan B */
1427 result = GC_find_limit((ptr_t)(DATAEND), FALSE);
1428 }
1429 return(result);
1430 }
1431
1432 # endif
1433
1434
1435 #ifdef AMIGA
1436
1437 # define GC_AMIGA_DS
1438 # include "AmigaOS.c"
1439 # undef GC_AMIGA_DS
1440
1441 #else /* !OS2 && !Windows && !AMIGA */
1442
1443 void GC_register_data_segments()
1444 {
1445 # if !defined(PCR) && !defined(SRC_M3) && !defined(MACOS)
1446 # if defined(REDIRECT_MALLOC) && defined(GC_SOLARIS_THREADS)
1447 /* As of Solaris 2.3, the Solaris threads implementation */
1448 /* allocates the data structure for the initial thread with */
1449 /* sbrk at process startup. It needs to be scanned, so that */
1450 /* we don't lose some malloc allocated data structures */
1451 /* hanging from it. We're on thin ice here ... */
1452 extern caddr_t sbrk();
1453
1454 GC_add_roots_inner(DATASTART, (char *)sbrk(0), FALSE);
1455 # else
1456 GC_add_roots_inner(DATASTART, (char *)(DATAEND), FALSE);
1457 # if defined(DATASTART2)
1458 GC_add_roots_inner(DATASTART2, (char *)(DATAEND2), FALSE);
1459 # endif
1460 # endif
1461 # endif
1462 # if defined(MACOS)
1463 {
1464 # if defined(THINK_C)
1465 extern void* GC_MacGetDataStart(void);
1466 /* globals begin above stack and end at a5. */
1467 GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1468 (ptr_t)LMGetCurrentA5(), FALSE);
1469 # else
1470 # if defined(__MWERKS__)
1471 # if !__POWERPC__
1472 extern void* GC_MacGetDataStart(void);
1473 /* MATTHEW: Function to handle Far Globals (CW Pro 3) */
1474 # if __option(far_data)
1475 extern void* GC_MacGetDataEnd(void);
1476 # endif
1477 /* globals begin above stack and end at a5. */
1478 GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1479 (ptr_t)LMGetCurrentA5(), FALSE);
1480 /* MATTHEW: Handle Far Globals */
1481 # if __option(far_data)
1482 /* Far globals follow he QD globals: */
1483 GC_add_roots_inner((ptr_t)LMGetCurrentA5(),
1484 (ptr_t)GC_MacGetDataEnd(), FALSE);
1485 # endif
1486 # else
1487 extern char __data_start__[], __data_end__[];
1488 GC_add_roots_inner((ptr_t)&__data_start__,
1489 (ptr_t)&__data_end__, FALSE);
1490 # endif /* __POWERPC__ */
1491 # endif /* __MWERKS__ */
1492 # endif /* !THINK_C */
1493 }
1494 # endif /* MACOS */
1495
1496 /* Dynamic libraries are added at every collection, since they may */
1497 /* change. */
1498 }
1499
1500 # endif /* ! AMIGA */
1501 # endif /* ! MSWIN32 && ! MSWINCE*/
1502 # endif /* ! OS2 */
1503
1504 /*
1505 * Auxiliary routines for obtaining memory from OS.
1506 */
1507
1508 # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) \
1509 && !defined(MSWIN32) && !defined(MSWINCE) \
1510 && !defined(MACOS) && !defined(DOS4GW)
1511
1512 # ifdef SUNOS4
1513 extern caddr_t sbrk();
1514 # endif
1515 # ifdef __STDC__
1516 # define SBRK_ARG_T ptrdiff_t
1517 # else
1518 # define SBRK_ARG_T int
1519 # endif
1520
1521
1522 # if 0 && defined(RS6000) /* We now use mmap */
1523 /* The compiler seems to generate speculative reads one past the end of */
1524 /* an allocated object. Hence we need to make sure that the page */
1525 /* following the last heap page is also mapped. */
1526 ptr_t GC_unix_get_mem(bytes)
1527 word bytes;
1528 {
1529 caddr_t cur_brk = (caddr_t)sbrk(0);
1530 caddr_t result;
1531 SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1532 static caddr_t my_brk_val = 0;
1533
1534 if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1535 if (lsbs != 0) {
1536 if((caddr_t)(sbrk(GC_page_size - lsbs)) == (caddr_t)(-1)) return(0);
1537 }
1538 if (cur_brk == my_brk_val) {
1539 /* Use the extra block we allocated last time. */
1540 result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1541 if (result == (caddr_t)(-1)) return(0);
1542 result -= GC_page_size;
1543 } else {
1544 result = (ptr_t)sbrk(GC_page_size + (SBRK_ARG_T)bytes);
1545 if (result == (caddr_t)(-1)) return(0);
1546 }
1547 my_brk_val = result + bytes + GC_page_size; /* Always page aligned */
1548 return((ptr_t)result);
1549 }
1550
1551 #else /* Not RS6000 */
1552
1553 #if defined(USE_MMAP) || defined(USE_MUNMAP)
1554
1555 #ifdef USE_MMAP_FIXED
1556 # define GC_MMAP_FLAGS MAP_FIXED | MAP_PRIVATE
1557 /* Seems to yield better performance on Solaris 2, but can */
1558 /* be unreliable if something is already mapped at the address. */
1559 #else
1560 # define GC_MMAP_FLAGS MAP_PRIVATE
1561 #endif
1562
1563 #ifdef USE_MMAP_ANON
1564 # define zero_fd -1
1565 # if defined(MAP_ANONYMOUS)
1566 # define OPT_MAP_ANON MAP_ANONYMOUS
1567 # else
1568 # define OPT_MAP_ANON MAP_ANON
1569 # endif
1570 #else
1571 static int zero_fd;
1572 # define OPT_MAP_ANON 0
1573 #endif
1574
1575 #endif /* defined(USE_MMAP) || defined(USE_MUNMAP) */
1576
1577 #if defined(USE_MMAP)
1578 /* Tested only under Linux, IRIX5 and Solaris 2 */
1579
1580 #ifndef HEAP_START
1581 # define HEAP_START 0
1582 #endif
1583
1584 ptr_t GC_unix_get_mem(bytes)
1585 word bytes;
1586 {
1587 void *result;
1588 static ptr_t last_addr = HEAP_START;
1589
1590 # ifndef USE_MMAP_ANON
1591 static GC_bool initialized = FALSE;
1592
1593 if (!initialized) {
1594 zero_fd = open("/dev/zero", O_RDONLY);
1595 fcntl(zero_fd, F_SETFD, FD_CLOEXEC);
1596 initialized = TRUE;
1597 }
1598 # endif
1599
1600 if (bytes & (GC_page_size -1)) ABORT("Bad GET_MEM arg");
1601 result = mmap(last_addr, bytes, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
1602 GC_MMAP_FLAGS | OPT_MAP_ANON, zero_fd, 0/* offset */);
1603 if (result == MAP_FAILED) return(0);
1604 last_addr = (ptr_t)result + bytes + GC_page_size - 1;
1605 last_addr = (ptr_t)((word)last_addr & ~(GC_page_size - 1));
1606 # if !defined(LINUX)
1607 if (last_addr == 0) {
1608 /* Oops. We got the end of the address space. This isn't */
1609 /* usable by arbitrary C code, since one-past-end pointers */
1610 /* don't work, so we discard it and try again. */
1611 munmap(result, (size_t)(-GC_page_size) - (size_t)result);
1612 /* Leave last page mapped, so we can't repeat. */
1613 return GC_unix_get_mem(bytes);
1614 }
1615 # else
1616 GC_ASSERT(last_addr != 0);
1617 # endif
1618 return((ptr_t)result);
1619 }
1620
1621 #else /* Not RS6000, not USE_MMAP */
1622 ptr_t GC_unix_get_mem(bytes)
1623 word bytes;
1624 {
1625 ptr_t result;
1626 # ifdef IRIX5
1627 /* Bare sbrk isn't thread safe. Play by malloc rules. */
1628 /* The equivalent may be needed on other systems as well. */
1629 __LOCK_MALLOC();
1630 # endif
1631 {
1632 ptr_t cur_brk = (ptr_t)sbrk(0);
1633 SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1634
1635 if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1636 if (lsbs != 0) {
1637 if((ptr_t)sbrk(GC_page_size - lsbs) == (ptr_t)(-1)) return(0);
1638 }
1639 result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1640 if (result == (ptr_t)(-1)) result = 0;
1641 }
1642 # ifdef IRIX5
1643 __UNLOCK_MALLOC();
1644 # endif
1645 return(result);
1646 }
1647
1648 #endif /* Not USE_MMAP */
1649 #endif /* Not RS6000 */
1650
1651 # endif /* UN*X */
1652
1653 # ifdef OS2
1654
1655 void * os2_alloc(size_t bytes)
1656 {
1657 void * result;
1658
1659 if (DosAllocMem(&result, bytes, PAG_EXECUTE | PAG_READ |
1660 PAG_WRITE | PAG_COMMIT)
1661 != NO_ERROR) {
1662 return(0);
1663 }
1664 if (result == 0) return(os2_alloc(bytes));
1665 return(result);
1666 }
1667
1668 # endif /* OS2 */
1669
1670
1671 # if defined(MSWIN32) || defined(MSWINCE) || defined(CYGWIN32)
1672 SYSTEM_INFO GC_sysinfo;
1673 # endif
1674
1675 # if defined(MSWIN32) || defined(CYGWIN32)
1676
1677 word GC_n_heap_bases = 0;
1678
1679 # ifdef USE_GLOBAL_ALLOC
1680 # define GLOBAL_ALLOC_TEST 1
1681 # else
1682 # define GLOBAL_ALLOC_TEST GC_no_win32_dlls
1683 # endif
1684
1685 ptr_t GC_win32_get_mem(bytes)
1686 word bytes;
1687 {
1688 ptr_t result;
1689
1690 # ifdef CYGWIN32
1691 result = GC_unix_get_mem (bytes);
1692 # else
1693 if (GLOBAL_ALLOC_TEST) {
1694 /* VirtualAlloc doesn't like PAGE_EXECUTE_READWRITE. */
1695 /* There are also unconfirmed rumors of other */
1696 /* problems, so we dodge the issue. */
1697 result = (ptr_t) GlobalAlloc(0, bytes + HBLKSIZE);
1698 result = (ptr_t)(((word)result + HBLKSIZE) & ~(HBLKSIZE-1));
1699 } else {
1700 /* VirtualProtect only works on regions returned by a */
1701 /* single VirtualAlloc call. Thus we allocate one */
1702 /* extra page, which will prevent merging of blocks */
1703 /* in separate regions, and eliminate any temptation */
1704 /* to call VirtualProtect on a range spanning regions. */
1705 /* This wastes a small amount of memory, and risks */
1706 /* increased fragmentation. But better alternatives */
1707 /* would require effort. */
1708 result = (ptr_t) VirtualAlloc(NULL, bytes + 1,
1709 MEM_COMMIT | MEM_RESERVE,
1710 PAGE_EXECUTE_READWRITE);
1711 }
1712 #endif
1713 if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1714 /* If I read the documentation correctly, this can */
1715 /* only happen if HBLKSIZE > 64k or not a power of 2. */
1716 if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
1717 GC_heap_bases[GC_n_heap_bases++] = result;
1718 return(result);
1719 }
1720
1721 void GC_win32_free_heap ()
1722 {
1723 if (GC_no_win32_dlls) {
1724 while (GC_n_heap_bases > 0) {
1725 # ifdef CYGWIN32
1726 free (GC_heap_bases[--GC_n_heap_bases]);
1727 # else
1728 GlobalFree (GC_heap_bases[--GC_n_heap_bases]);
1729 # endif
1730 GC_heap_bases[GC_n_heap_bases] = 0;
1731 }
1732 }
1733 }
1734 # endif
1735
1736 #ifdef AMIGA
1737 # define GC_AMIGA_AM
1738 # include "AmigaOS.c"
1739 # undef GC_AMIGA_AM
1740 #endif
1741
1742
1743 # ifdef MSWINCE
1744 word GC_n_heap_bases = 0;
1745
1746 ptr_t GC_wince_get_mem(bytes)
1747 word bytes;
1748 {
1749 ptr_t result;
1750 word i;
1751
1752 /* Round up allocation size to multiple of page size */
1753 bytes = (bytes + GC_page_size-1) & ~(GC_page_size-1);
1754
1755 /* Try to find reserved, uncommitted pages */
1756 for (i = 0; i < GC_n_heap_bases; i++) {
1757 if (((word)(-(signed_word)GC_heap_lengths[i])
1758 & (GC_sysinfo.dwAllocationGranularity-1))
1759 >= bytes) {
1760 result = GC_heap_bases[i] + GC_heap_lengths[i];
1761 break;
1762 }
1763 }
1764
1765 if (i == GC_n_heap_bases) {
1766 /* Reserve more pages */
1767 word res_bytes = (bytes + GC_sysinfo.dwAllocationGranularity-1)
1768 & ~(GC_sysinfo.dwAllocationGranularity-1);
1769 /* If we ever support MPROTECT_VDB here, we will probably need to */
1770 /* ensure that res_bytes is strictly > bytes, so that VirtualProtect */
1771 /* never spans regions. It seems to be OK for a VirtualFree argument */
1772 /* to span regions, so we should be OK for now. */
1773 result = (ptr_t) VirtualAlloc(NULL, res_bytes,
1774 MEM_RESERVE | MEM_TOP_DOWN,
1775 PAGE_EXECUTE_READWRITE);
1776 if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1777 /* If I read the documentation correctly, this can */
1778 /* only happen if HBLKSIZE > 64k or not a power of 2. */
1779 if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
1780 GC_heap_bases[GC_n_heap_bases] = result;
1781 GC_heap_lengths[GC_n_heap_bases] = 0;
1782 GC_n_heap_bases++;
1783 }
1784
1785 /* Commit pages */
1786 result = (ptr_t) VirtualAlloc(result, bytes,
1787 MEM_COMMIT,
1788 PAGE_EXECUTE_READWRITE);
1789 if (result != NULL) {
1790 if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1791 GC_heap_lengths[i] += bytes;
1792 }
1793
1794 return(result);
1795 }
1796 # endif
1797
1798 #ifdef USE_MUNMAP
1799
1800 /* For now, this only works on Win32/WinCE and some Unix-like */
1801 /* systems. If you have something else, don't define */
1802 /* USE_MUNMAP. */
1803 /* We assume ANSI C to support this feature. */
1804
1805 #if !defined(MSWIN32) && !defined(MSWINCE)
1806
1807 #include <unistd.h>
1808 #include <sys/mman.h>
1809 #include <sys/stat.h>
1810 #include <sys/types.h>
1811
1812 #endif
1813
1814 /* Compute a page aligned starting address for the unmap */
1815 /* operation on a block of size bytes starting at start. */
1816 /* Return 0 if the block is too small to make this feasible. */
1817 ptr_t GC_unmap_start(ptr_t start, word bytes)
1818 {
1819 ptr_t result = start;
1820 /* Round start to next page boundary. */
1821 result += GC_page_size - 1;
1822 result = (ptr_t)((word)result & ~(GC_page_size - 1));
1823 if (result + GC_page_size > start + bytes) return 0;
1824 return result;
1825 }
1826
1827 /* Compute end address for an unmap operation on the indicated */
1828 /* block. */
1829 ptr_t GC_unmap_end(ptr_t start, word bytes)
1830 {
1831 ptr_t end_addr = start + bytes;
1832 end_addr = (ptr_t)((word)end_addr & ~(GC_page_size - 1));
1833 return end_addr;
1834 }
1835
1836 /* Under Win32/WinCE we commit (map) and decommit (unmap) */
1837 /* memory using VirtualAlloc and VirtualFree. These functions */
1838 /* work on individual allocations of virtual memory, made */
1839 /* previously using VirtualAlloc with the MEM_RESERVE flag. */
1840 /* The ranges we need to (de)commit may span several of these */
1841 /* allocations; therefore we use VirtualQuery to check */
1842 /* allocation lengths, and split up the range as necessary. */
1843
1844 /* We assume that GC_remap is called on exactly the same range */
1845 /* as a previous call to GC_unmap. It is safe to consistently */
1846 /* round the endpoints in both places. */
1847 void GC_unmap(ptr_t start, word bytes)
1848 {
1849 ptr_t start_addr = GC_unmap_start(start, bytes);
1850 ptr_t end_addr = GC_unmap_end(start, bytes);
1851 word len = end_addr - start_addr;
1852 if (0 == start_addr) return;
1853 # if defined(MSWIN32) || defined(MSWINCE)
1854 while (len != 0) {
1855 MEMORY_BASIC_INFORMATION mem_info;
1856 GC_word free_len;
1857 if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1858 != sizeof(mem_info))
1859 ABORT("Weird VirtualQuery result");
1860 free_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1861 if (!VirtualFree(start_addr, free_len, MEM_DECOMMIT))
1862 ABORT("VirtualFree failed");
1863 GC_unmapped_bytes += free_len;
1864 start_addr += free_len;
1865 len -= free_len;
1866 }
1867 # else
1868 /* We immediately remap it to prevent an intervening mmap from */
1869 /* accidentally grabbing the same address space. */
1870 {
1871 void * result;
1872 result = mmap(start_addr, len, PROT_NONE,
1873 MAP_PRIVATE | MAP_FIXED | OPT_MAP_ANON,
1874 zero_fd, 0/* offset */);
1875 if (result != (void *)start_addr) ABORT("mmap(...PROT_NONE...) failed");
1876 }
1877 GC_unmapped_bytes += len;
1878 # endif
1879 }
1880
1881
1882 void GC_remap(ptr_t start, word bytes)
1883 {
1884 ptr_t start_addr = GC_unmap_start(start, bytes);
1885 ptr_t end_addr = GC_unmap_end(start, bytes);
1886 word len = end_addr - start_addr;
1887
1888 # if defined(MSWIN32) || defined(MSWINCE)
1889 ptr_t result;
1890
1891 if (0 == start_addr) return;
1892 while (len != 0) {
1893 MEMORY_BASIC_INFORMATION mem_info;
1894 GC_word alloc_len;
1895 if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1896 != sizeof(mem_info))
1897 ABORT("Weird VirtualQuery result");
1898 alloc_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1899 result = VirtualAlloc(start_addr, alloc_len,
1900 MEM_COMMIT,
1901 PAGE_EXECUTE_READWRITE);
1902 if (result != start_addr) {
1903 ABORT("VirtualAlloc remapping failed");
1904 }
1905 GC_unmapped_bytes -= alloc_len;
1906 start_addr += alloc_len;
1907 len -= alloc_len;
1908 }
1909 # else
1910 /* It was already remapped with PROT_NONE. */
1911 int result;
1912
1913 if (0 == start_addr) return;
1914 result = mprotect(start_addr, len,
1915 PROT_READ | PROT_WRITE | OPT_PROT_EXEC);
1916 if (result != 0) {
1917 GC_err_printf3(
1918 "Mprotect failed at 0x%lx (length %ld) with errno %ld\n",
1919 start_addr, len, errno);
1920 ABORT("Mprotect remapping failed");
1921 }
1922 GC_unmapped_bytes -= len;
1923 # endif
1924 }
1925
1926 /* Two adjacent blocks have already been unmapped and are about to */
1927 /* be merged. Unmap the whole block. This typically requires */
1928 /* that we unmap a small section in the middle that was not previously */
1929 /* unmapped due to alignment constraints. */
1930 void GC_unmap_gap(ptr_t start1, word bytes1, ptr_t start2, word bytes2)
1931 {
1932 ptr_t start1_addr = GC_unmap_start(start1, bytes1);
1933 ptr_t end1_addr = GC_unmap_end(start1, bytes1);
1934 ptr_t start2_addr = GC_unmap_start(start2, bytes2);
1935 ptr_t end2_addr = GC_unmap_end(start2, bytes2);
1936 ptr_t start_addr = end1_addr;
1937 ptr_t end_addr = start2_addr;
1938 word len;
1939 GC_ASSERT(start1 + bytes1 == start2);
1940 if (0 == start1_addr) start_addr = GC_unmap_start(start1, bytes1 + bytes2);
1941 if (0 == start2_addr) end_addr = GC_unmap_end(start1, bytes1 + bytes2);
1942 if (0 == start_addr) return;
1943 len = end_addr - start_addr;
1944 # if defined(MSWIN32) || defined(MSWINCE)
1945 while (len != 0) {
1946 MEMORY_BASIC_INFORMATION mem_info;
1947 GC_word free_len;
1948 if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1949 != sizeof(mem_info))
1950 ABORT("Weird VirtualQuery result");
1951 free_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1952 if (!VirtualFree(start_addr, free_len, MEM_DECOMMIT))
1953 ABORT("VirtualFree failed");
1954 GC_unmapped_bytes += free_len;
1955 start_addr += free_len;
1956 len -= free_len;
1957 }
1958 # else
1959 if (len != 0 && munmap(start_addr, len) != 0) ABORT("munmap failed");
1960 GC_unmapped_bytes += len;
1961 # endif
1962 }
1963
1964 #endif /* USE_MUNMAP */
1965
1966 /* Routine for pushing any additional roots. In THREADS */
1967 /* environment, this is also responsible for marking from */
1968 /* thread stacks. */
1969 #ifndef THREADS
1970 void (*GC_push_other_roots)() = 0;
1971 #else /* THREADS */
1972
1973 # ifdef PCR
1974 PCR_ERes GC_push_thread_stack(PCR_Th_T *t, PCR_Any dummy)
1975 {
1976 struct PCR_ThCtl_TInfoRep info;
1977 PCR_ERes result;
1978
1979 info.ti_stkLow = info.ti_stkHi = 0;
1980 result = PCR_ThCtl_GetInfo(t, &info);
1981 GC_push_all_stack((ptr_t)(info.ti_stkLow), (ptr_t)(info.ti_stkHi));
1982 return(result);
1983 }
1984
1985 /* Push the contents of an old object. We treat this as stack */
1986 /* data only becasue that makes it robust against mark stack */
1987 /* overflow. */
1988 PCR_ERes GC_push_old_obj(void *p, size_t size, PCR_Any data)
1989 {
1990 GC_push_all_stack((ptr_t)p, (ptr_t)p + size);
1991 return(PCR_ERes_okay);
1992 }
1993
1994
1995 void GC_default_push_other_roots GC_PROTO((void))
1996 {
1997 /* Traverse data allocated by previous memory managers. */
1998 {
1999 extern struct PCR_MM_ProcsRep * GC_old_allocator;
2000
2001 if ((*(GC_old_allocator->mmp_enumerate))(PCR_Bool_false,
2002 GC_push_old_obj, 0)
2003 != PCR_ERes_okay) {
2004 ABORT("Old object enumeration failed");
2005 }
2006 }
2007 /* Traverse all thread stacks. */
2008 if (PCR_ERes_IsErr(
2009 PCR_ThCtl_ApplyToAllOtherThreads(GC_push_thread_stack,0))
2010 || PCR_ERes_IsErr(GC_push_thread_stack(PCR_Th_CurrThread(), 0))) {
2011 ABORT("Thread stack marking failed\n");
2012 }
2013 }
2014
2015 # endif /* PCR */
2016
2017 # ifdef SRC_M3
2018
2019 # ifdef ALL_INTERIOR_POINTERS
2020 --> misconfigured
2021 # endif
2022
2023 void GC_push_thread_structures GC_PROTO((void))
2024 {
2025 /* Not our responsibibility. */
2026 }
2027
2028 extern void ThreadF__ProcessStacks();
2029
2030 void GC_push_thread_stack(start, stop)
2031 word start, stop;
2032 {
2033 GC_push_all_stack((ptr_t)start, (ptr_t)stop + sizeof(word));
2034 }
2035
2036 /* Push routine with M3 specific calling convention. */
2037 GC_m3_push_root(dummy1, p, dummy2, dummy3)
2038 word *p;
2039 ptr_t dummy1, dummy2;
2040 int dummy3;
2041 {
2042 word q = *p;
2043
2044 GC_PUSH_ONE_STACK(q, p);
2045 }
2046
2047 /* M3 set equivalent to RTHeap.TracedRefTypes */
2048 typedef struct { int elts[1]; } RefTypeSet;
2049 RefTypeSet GC_TracedRefTypes = {{0x1}};
2050
2051 void GC_default_push_other_roots GC_PROTO((void))
2052 {
2053 /* Use the M3 provided routine for finding static roots. */
2054 /* This is a bit dubious, since it presumes no C roots. */
2055 /* We handle the collector roots explicitly in GC_push_roots */
2056 RTMain__GlobalMapProc(GC_m3_push_root, 0, GC_TracedRefTypes);
2057 if (GC_words_allocd > 0) {
2058 ThreadF__ProcessStacks(GC_push_thread_stack);
2059 }
2060 /* Otherwise this isn't absolutely necessary, and we have */
2061 /* startup ordering problems. */
2062 }
2063
2064 # endif /* SRC_M3 */
2065
2066 # if defined(GC_SOLARIS_THREADS) || defined(GC_PTHREADS) || \
2067 defined(GC_WIN32_THREADS)
2068
2069 extern void GC_push_all_stacks();
2070
2071 void GC_default_push_other_roots GC_PROTO((void))
2072 {
2073 GC_push_all_stacks();
2074 }
2075
2076 # endif /* GC_SOLARIS_THREADS || GC_PTHREADS */
2077
2078 void (*GC_push_other_roots) GC_PROTO((void)) = GC_default_push_other_roots;
2079
2080 #endif /* THREADS */
2081
2082 /*
2083 * Routines for accessing dirty bits on virtual pages.
2084 * We plan to eventually implement four strategies for doing so:
2085 * DEFAULT_VDB: A simple dummy implementation that treats every page
2086 * as possibly dirty. This makes incremental collection
2087 * useless, but the implementation is still correct.
2088 * PCR_VDB: Use PPCRs virtual dirty bit facility.
2089 * PROC_VDB: Use the /proc facility for reading dirty bits. Only
2090 * works under some SVR4 variants. Even then, it may be
2091 * too slow to be entirely satisfactory. Requires reading
2092 * dirty bits for entire address space. Implementations tend
2093 * to assume that the client is a (slow) debugger.
2094 * MPROTECT_VDB:Protect pages and then catch the faults to keep track of
2095 * dirtied pages. The implementation (and implementability)
2096 * is highly system dependent. This usually fails when system
2097 * calls write to a protected page. We prevent the read system
2098 * call from doing so. It is the clients responsibility to
2099 * make sure that other system calls are similarly protected
2100 * or write only to the stack.
2101 */
2102 GC_bool GC_dirty_maintained = FALSE;
2103
2104 # ifdef DEFAULT_VDB
2105
2106 /* All of the following assume the allocation lock is held, and */
2107 /* signals are disabled. */
2108
2109 /* The client asserts that unallocated pages in the heap are never */
2110 /* written. */
2111
2112 /* Initialize virtual dirty bit implementation. */
2113 void GC_dirty_init()
2114 {
2115 # ifdef PRINTSTATS
2116 GC_printf0("Initializing DEFAULT_VDB...\n");
2117 # endif
2118 GC_dirty_maintained = TRUE;
2119 }
2120
2121 /* Retrieve system dirty bits for heap to a local buffer. */
2122 /* Restore the systems notion of which pages are dirty. */
2123 void GC_read_dirty()
2124 {}
2125
2126 /* Is the HBLKSIZE sized page at h marked dirty in the local buffer? */
2127 /* If the actual page size is different, this returns TRUE if any */
2128 /* of the pages overlapping h are dirty. This routine may err on the */
2129 /* side of labelling pages as dirty (and this implementation does). */
2130 /*ARGSUSED*/
2131 GC_bool GC_page_was_dirty(h)
2132 struct hblk *h;
2133 {
2134 return(TRUE);
2135 }
2136
2137 /*
2138 * The following two routines are typically less crucial. They matter
2139 * most with large dynamic libraries, or if we can't accurately identify
2140 * stacks, e.g. under Solaris 2.X. Otherwise the following default
2141 * versions are adequate.
2142 */
2143
2144 /* Could any valid GC heap pointer ever have been written to this page? */
2145 /*ARGSUSED*/
2146 GC_bool GC_page_was_ever_dirty(h)
2147 struct hblk *h;
2148 {
2149 return(TRUE);
2150 }
2151
2152 /* Reset the n pages starting at h to "was never dirty" status. */
2153 void GC_is_fresh(h, n)
2154 struct hblk *h;
2155 word n;
2156 {
2157 }
2158
2159 /* A call that: */
2160 /* I) hints that [h, h+nblocks) is about to be written. */
2161 /* II) guarantees that protection is removed. */
2162 /* (I) may speed up some dirty bit implementations. */
2163 /* (II) may be essential if we need to ensure that */
2164 /* pointer-free system call buffers in the heap are */
2165 /* not protected. */
2166 /*ARGSUSED*/
2167 void GC_remove_protection(h, nblocks, is_ptrfree)
2168 struct hblk *h;
2169 word nblocks;
2170 GC_bool is_ptrfree;
2171 {
2172 }
2173
2174 # endif /* DEFAULT_VDB */
2175
2176
2177 # ifdef MPROTECT_VDB
2178
2179 /*
2180 * See DEFAULT_VDB for interface descriptions.
2181 */
2182
2183 /*
2184 * This implementation maintains dirty bits itself by catching write
2185 * faults and keeping track of them. We assume nobody else catches
2186 * SIGBUS or SIGSEGV. We assume no write faults occur in system calls.
2187 * This means that clients must ensure that system calls don't write
2188 * to the write-protected heap. Probably the best way to do this is to
2189 * ensure that system calls write at most to POINTERFREE objects in the
2190 * heap, and do even that only if we are on a platform on which those
2191 * are not protected. Another alternative is to wrap system calls
2192 * (see example for read below), but the current implementation holds
2193 * a lock across blocking calls, making it problematic for multithreaded
2194 * applications.
2195 * We assume the page size is a multiple of HBLKSIZE.
2196 * We prefer them to be the same. We avoid protecting POINTERFREE
2197 * objects only if they are the same.
2198 */
2199
2200 # if !defined(MSWIN32) && !defined(MSWINCE) && !defined(DARWIN)
2201
2202 # include <sys/mman.h>
2203 # include <signal.h>
2204 # include <sys/syscall.h>
2205
2206 # define PROTECT(addr, len) \
2207 if (mprotect((caddr_t)(addr), (size_t)(len), \
2208 PROT_READ | OPT_PROT_EXEC) < 0) { \
2209 ABORT("mprotect failed"); \
2210 }
2211 # define UNPROTECT(addr, len) \
2212 if (mprotect((caddr_t)(addr), (size_t)(len), \
2213 PROT_WRITE | PROT_READ | OPT_PROT_EXEC ) < 0) { \
2214 ABORT("un-mprotect failed"); \
2215 }
2216
2217 # else
2218
2219 # ifdef DARWIN
2220 /* Using vm_protect (mach syscall) over mprotect (BSD syscall) seems to
2221 decrease the likelihood of some of the problems described below. */
2222 #include <mach/vm_map.h>
2223 static mach_port_t GC_task_self;
2224 #define PROTECT(addr,len) \
2225 if(vm_protect(GC_task_self,(vm_address_t)(addr),(vm_size_t)(len), \
2226 FALSE,VM_PROT_READ) != KERN_SUCCESS) { \
2227 ABORT("vm_portect failed"); \
2228 }
2229 #define UNPROTECT(addr,len) \
2230 if(vm_protect(GC_task_self,(vm_address_t)(addr),(vm_size_t)(len), \
2231 FALSE,VM_PROT_READ|VM_PROT_WRITE) != KERN_SUCCESS) { \
2232 ABORT("vm_portect failed"); \
2233 }
2234 # else
2235
2236 # ifndef MSWINCE
2237 # include <signal.h>
2238 # endif
2239
2240 static DWORD protect_junk;
2241 # define PROTECT(addr, len) \
2242 if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READ, \
2243 &protect_junk)) { \
2244 DWORD last_error = GetLastError(); \
2245 GC_printf1("Last error code: %lx\n", last_error); \
2246 ABORT("VirtualProtect failed"); \
2247 }
2248 # define UNPROTECT(addr, len) \
2249 if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READWRITE, \
2250 &protect_junk)) { \
2251 ABORT("un-VirtualProtect failed"); \
2252 }
2253 # endif /* !DARWIN */
2254 # endif /* MSWIN32 || MSWINCE || DARWIN */
2255
2256 #if defined(SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2257 typedef void (* SIG_PF)();
2258 #endif /* SUNOS4 || (FREEBSD && !SUNOS5SIGS) */
2259
2260 #if defined(SUNOS5SIGS) || defined(OSF1) || defined(LINUX) \
2261 || defined(HURD)
2262 # ifdef __STDC__
2263 typedef void (* SIG_PF)(int);
2264 # else
2265 typedef void (* SIG_PF)();
2266 # endif
2267 #endif /* SUNOS5SIGS || OSF1 || LINUX || HURD */
2268
2269 #if defined(MSWIN32)
2270 typedef LPTOP_LEVEL_EXCEPTION_FILTER SIG_PF;
2271 # undef SIG_DFL
2272 # define SIG_DFL (LPTOP_LEVEL_EXCEPTION_FILTER) (-1)
2273 #endif
2274 #if defined(MSWINCE)
2275 typedef LONG (WINAPI *SIG_PF)(struct _EXCEPTION_POINTERS *);
2276 # undef SIG_DFL
2277 # define SIG_DFL (SIG_PF) (-1)
2278 #endif
2279
2280 #if defined(IRIX5) || defined(OSF1) || defined(HURD)
2281 typedef void (* REAL_SIG_PF)(int, int, struct sigcontext *);
2282 #endif /* IRIX5 || OSF1 || HURD */
2283
2284 #if defined(SUNOS5SIGS)
2285 # if defined(HPUX) || defined(FREEBSD)
2286 # define SIGINFO_T siginfo_t
2287 # else
2288 # define SIGINFO_T struct siginfo
2289 # endif
2290 # ifdef __STDC__
2291 typedef void (* REAL_SIG_PF)(int, SIGINFO_T *, void *);
2292 # else
2293 typedef void (* REAL_SIG_PF)();
2294 # endif
2295 #endif /* SUNOS5SIGS */
2296
2297 #if defined(LINUX)
2298 # if __GLIBC__ > 2 || __GLIBC__ == 2 && __GLIBC_MINOR__ >= 2
2299 typedef struct sigcontext s_c;
2300 # else /* glibc < 2.2 */
2301 # include <linux/version.h>
2302 # if (LINUX_VERSION_CODE >= 0x20100) && !defined(M68K) || defined(ALPHA) || defined(ARM32)
2303 typedef struct sigcontext s_c;
2304 # else
2305 typedef struct sigcontext_struct s_c;
2306 # endif
2307 # endif /* glibc < 2.2 */
2308 # if defined(ALPHA) || defined(M68K)
2309 typedef void (* REAL_SIG_PF)(int, int, s_c *);
2310 # else
2311 # if defined(IA64) || defined(HP_PA) || defined(X86_64)
2312 typedef void (* REAL_SIG_PF)(int, siginfo_t *, s_c *);
2313 /* FIXME: */
2314 /* According to SUSV3, the last argument should have type */
2315 /* void * or ucontext_t * */
2316 # else
2317 typedef void (* REAL_SIG_PF)(int, s_c);
2318 # endif
2319 # endif
2320 # ifdef ALPHA
2321 /* Retrieve fault address from sigcontext structure by decoding */
2322 /* instruction. */
2323 char * get_fault_addr(s_c *sc) {
2324 unsigned instr;
2325 word faultaddr;
2326
2327 instr = *((unsigned *)(sc->sc_pc));
2328 faultaddr = sc->sc_regs[(instr >> 16) & 0x1f];
2329 faultaddr += (word) (((int)instr << 16) >> 16);
2330 return (char *)faultaddr;
2331 }
2332 # endif /* !ALPHA */
2333 # endif /* LINUX */
2334
2335 #ifndef DARWIN
2336 SIG_PF GC_old_bus_handler;
2337 SIG_PF GC_old_segv_handler; /* Also old MSWIN32 ACCESS_VIOLATION filter */
2338 #endif /* !DARWIN */
2339
2340 #if defined(THREADS)
2341 /* We need to lock around the bitmap update in the write fault handler */
2342 /* in order to avoid the risk of losing a bit. We do this with a */
2343 /* test-and-set spin lock if we know how to do that. Otherwise we */
2344 /* check whether we are already in the handler and use the dumb but */
2345 /* safe fallback algorithm of setting all bits in the word. */
2346 /* Contention should be very rare, so we do the minimum to handle it */
2347 /* correctly. */
2348 #ifdef GC_TEST_AND_SET_DEFINED
2349 static VOLATILE unsigned int fault_handler_lock = 0;
2350 void async_set_pht_entry_from_index(VOLATILE page_hash_table db, int index) {
2351 while (GC_test_and_set(&fault_handler_lock)) {}
2352 /* Could also revert to set_pht_entry_from_index_safe if initial */
2353 /* GC_test_and_set fails. */
2354 set_pht_entry_from_index(db, index);
2355 GC_clear(&fault_handler_lock);
2356 }
2357 #else /* !GC_TEST_AND_SET_DEFINED */
2358 /* THIS IS INCORRECT! The dirty bit vector may be temporarily wrong, */
2359 /* just before we notice the conflict and correct it. We may end up */
2360 /* looking at it while it's wrong. But this requires contention */
2361 /* exactly when a GC is triggered, which seems far less likely to */
2362 /* fail than the old code, which had no reported failures. Thus we */
2363 /* leave it this way while we think of something better, or support */
2364 /* GC_test_and_set on the remaining platforms. */
2365 static VOLATILE word currently_updating = 0;
2366 void async_set_pht_entry_from_index(VOLATILE page_hash_table db, int index) {
2367 unsigned int update_dummy;
2368 currently_updating = (word)(&update_dummy);
2369 set_pht_entry_from_index(db, index);
2370 /* If we get contention in the 10 or so instruction window here, */
2371 /* and we get stopped by a GC between the two updates, we lose! */
2372 if (currently_updating != (word)(&update_dummy)) {
2373 set_pht_entry_from_index_safe(db, index);
2374 /* We claim that if two threads concurrently try to update the */
2375 /* dirty bit vector, the first one to execute UPDATE_START */
2376 /* will see it changed when UPDATE_END is executed. (Note that */
2377 /* &update_dummy must differ in two distinct threads.) It */
2378 /* will then execute set_pht_entry_from_index_safe, thus */
2379 /* returning us to a safe state, though not soon enough. */
2380 }
2381 }
2382 #endif /* !GC_TEST_AND_SET_DEFINED */
2383 #else /* !THREADS */
2384 # define async_set_pht_entry_from_index(db, index) \
2385 set_pht_entry_from_index(db, index)
2386 #endif /* !THREADS */
2387
2388 /*ARGSUSED*/
2389 #if !defined(DARWIN)
2390 # if defined (SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2391 void GC_write_fault_handler(sig, code, scp, addr)
2392 int sig, code;
2393 struct sigcontext *scp;
2394 char * addr;
2395 # ifdef SUNOS4
2396 # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
2397 # define CODE_OK (FC_CODE(code) == FC_PROT \
2398 || (FC_CODE(code) == FC_OBJERR \
2399 && FC_ERRNO(code) == FC_PROT))
2400 # endif
2401 # ifdef FREEBSD
2402 # define SIG_OK (sig == SIGBUS)
2403 # define CODE_OK TRUE
2404 # endif
2405 # endif /* SUNOS4 || (FREEBSD && !SUNOS5SIGS) */
2406
2407 # if defined(IRIX5) || defined(OSF1) || defined(HURD)
2408 # include <errno.h>
2409 void GC_write_fault_handler(int sig, int code, struct sigcontext *scp)
2410 # ifdef OSF1
2411 # define SIG_OK (sig == SIGSEGV)
2412 # define CODE_OK (code == 2 /* experimentally determined */)
2413 # endif
2414 # ifdef IRIX5
2415 # define SIG_OK (sig == SIGSEGV)
2416 # define CODE_OK (code == EACCES)
2417 # endif
2418 # ifdef HURD
2419 # define SIG_OK (sig == SIGBUS || sig == SIGSEGV)
2420 # define CODE_OK TRUE
2421 # endif
2422 # endif /* IRIX5 || OSF1 || HURD */
2423
2424 # if defined(LINUX)
2425 # if defined(ALPHA) || defined(M68K)
2426 void GC_write_fault_handler(int sig, int code, s_c * sc)
2427 # else
2428 # if defined(IA64) || defined(HP_PA) || defined(X86_64)
2429 void GC_write_fault_handler(int sig, siginfo_t * si, s_c * scp)
2430 # else
2431 # if defined(ARM32)
2432 void GC_write_fault_handler(int sig, int a2, int a3, int a4, s_c sc)
2433 # else
2434 void GC_write_fault_handler(int sig, s_c sc)
2435 # endif
2436 # endif
2437 # endif
2438 # define SIG_OK (sig == SIGSEGV)
2439 # define CODE_OK TRUE
2440 /* Empirically c.trapno == 14, on IA32, but is that useful? */
2441 /* Should probably consider alignment issues on other */
2442 /* architectures. */
2443 # endif /* LINUX */
2444
2445 # if defined(SUNOS5SIGS)
2446 # ifdef __STDC__
2447 void GC_write_fault_handler(int sig, SIGINFO_T *scp, void * context)
2448 # else
2449 void GC_write_fault_handler(sig, scp, context)
2450 int sig;
2451 SIGINFO_T *scp;
2452 void * context;
2453 # endif
2454 # ifdef HPUX
2455 # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
2456 # define CODE_OK (scp -> si_code == SEGV_ACCERR) \
2457 || (scp -> si_code == BUS_ADRERR) \
2458 || (scp -> si_code == BUS_UNKNOWN) \
2459 || (scp -> si_code == SEGV_UNKNOWN) \
2460 || (scp -> si_code == BUS_OBJERR)
2461 # else
2462 # ifdef FREEBSD
2463 # define SIG_OK (sig == SIGBUS)
2464 # define CODE_OK (scp -> si_code == BUS_PAGE_FAULT)
2465 # else
2466 # define SIG_OK (sig == SIGSEGV)
2467 # define CODE_OK (scp -> si_code == SEGV_ACCERR)
2468 # endif
2469 # endif
2470 # endif /* SUNOS5SIGS */
2471
2472 # if defined(MSWIN32) || defined(MSWINCE)
2473 LONG WINAPI GC_write_fault_handler(struct _EXCEPTION_POINTERS *exc_info)
2474 # define SIG_OK (exc_info -> ExceptionRecord -> ExceptionCode == \
2475 STATUS_ACCESS_VIOLATION)
2476 # define CODE_OK (exc_info -> ExceptionRecord -> ExceptionInformation[0] == 1)
2477 /* Write fault */
2478 # endif /* MSWIN32 || MSWINCE */
2479 {
2480 register unsigned i;
2481 # if defined(HURD)
2482 char *addr = (char *) code;
2483 # endif
2484 # ifdef IRIX5
2485 char * addr = (char *) (size_t) (scp -> sc_badvaddr);
2486 # endif
2487 # if defined(OSF1) && defined(ALPHA)
2488 char * addr = (char *) (scp -> sc_traparg_a0);
2489 # endif
2490 # ifdef SUNOS5SIGS
2491 char * addr = (char *) (scp -> si_addr);
2492 # endif
2493 # ifdef LINUX
2494 # if defined(I386)
2495 char * addr = (char *) (sc.cr2);
2496 # else
2497 # if defined(M68K)
2498 char * addr = NULL;
2499
2500 struct sigcontext *scp = (struct sigcontext *)(sc);
2501
2502 int format = (scp->sc_formatvec >> 12) & 0xf;
2503 unsigned long *framedata = (unsigned long *)(scp + 1);
2504 unsigned long ea;
2505
2506 if (format == 0xa || format == 0xb) {
2507 /* 68020/030 */
2508 ea = framedata[2];
2509 } else if (format == 7) {
2510 /* 68040 */
2511 ea = framedata[3];
2512 if (framedata[1] & 0x08000000) {
2513 /* correct addr on misaligned access */
2514 ea = (ea+4095)&(~4095);
2515 }
2516 } else if (format == 4) {
2517 /* 68060 */
2518 ea = framedata[0];
2519 if (framedata[1] & 0x08000000) {
2520 /* correct addr on misaligned access */
2521 ea = (ea+4095)&(~4095);
2522 }
2523 }
2524 addr = (char *)ea;
2525 # else
2526 # ifdef ALPHA
2527 char * addr = get_fault_addr(sc);
2528 # else
2529 # if defined(IA64) || defined(HP_PA) || defined(X86_64)
2530 char * addr = si -> si_addr;
2531 /* I believe this is claimed to work on all platforms for */
2532 /* Linux 2.3.47 and later. Hopefully we don't have to */
2533 /* worry about earlier kernels on IA64. */
2534 # else
2535 # if defined(POWERPC)
2536 char * addr = (char *) (sc.regs->dar);
2537 # else
2538 # if defined(ARM32)
2539 char * addr = (char *)sc.fault_address;
2540 # else
2541 # if defined(CRIS)
2542 char * addr = (char *)sc.regs.csraddr;
2543 # else
2544 --> architecture not supported
2545 # endif
2546 # endif
2547 # endif
2548 # endif
2549 # endif
2550 # endif
2551 # endif
2552 # endif
2553 # if defined(MSWIN32) || defined(MSWINCE)
2554 char * addr = (char *) (exc_info -> ExceptionRecord
2555 -> ExceptionInformation[1]);
2556 # define sig SIGSEGV
2557 # endif
2558
2559 if (SIG_OK && CODE_OK) {
2560 register struct hblk * h =
2561 (struct hblk *)((word)addr & ~(GC_page_size-1));
2562 GC_bool in_allocd_block;
2563
2564 # ifdef SUNOS5SIGS
2565 /* Address is only within the correct physical page. */
2566 in_allocd_block = FALSE;
2567 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
2568 if (HDR(h+i) != 0) {
2569 in_allocd_block = TRUE;
2570 }
2571 }
2572 # else
2573 in_allocd_block = (HDR(addr) != 0);
2574 # endif
2575 if (!in_allocd_block) {
2576 /* FIXME - We should make sure that we invoke the */
2577 /* old handler with the appropriate calling */
2578 /* sequence, which often depends on SA_SIGINFO. */
2579
2580 /* Heap blocks now begin and end on page boundaries */
2581 SIG_PF old_handler;
2582
2583 if (sig == SIGSEGV) {
2584 old_handler = GC_old_segv_handler;
2585 } else {
2586 old_handler = GC_old_bus_handler;
2587 }
2588 if (old_handler == SIG_DFL) {
2589 # if !defined(MSWIN32) && !defined(MSWINCE)
2590 GC_err_printf1("Segfault at 0x%lx\n", addr);
2591 ABORT("Unexpected bus error or segmentation fault");
2592 # else
2593 return(EXCEPTION_CONTINUE_SEARCH);
2594 # endif
2595 } else {
2596 # if defined (SUNOS4) \
2597 || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2598 (*old_handler) (sig, code, scp, addr);
2599 return;
2600 # endif
2601 # if defined (SUNOS5SIGS)
2602 /*
2603 * FIXME: For FreeBSD, this code should check if the
2604 * old signal handler used the traditional BSD style and
2605 * if so call it using that style.
2606 */
2607 (*(REAL_SIG_PF)old_handler) (sig, scp, context);
2608 return;
2609 # endif
2610 # if defined (LINUX)
2611 # if defined(ALPHA) || defined(M68K)
2612 (*(REAL_SIG_PF)old_handler) (sig, code, sc);
2613 # else
2614 # if defined(IA64) || defined(HP_PA) || defined(X86_64)
2615 (*(REAL_SIG_PF)old_handler) (sig, si, scp);
2616 # else
2617 (*(REAL_SIG_PF)old_handler) (sig, sc);
2618 # endif
2619 # endif
2620 return;
2621 # endif
2622 # if defined (IRIX5) || defined(OSF1) || defined(HURD)
2623 (*(REAL_SIG_PF)old_handler) (sig, code, scp);
2624 return;
2625 # endif
2626 # ifdef MSWIN32
2627 return((*old_handler)(exc_info));
2628 # endif
2629 }
2630 }
2631 UNPROTECT(h, GC_page_size);
2632 /* We need to make sure that no collection occurs between */
2633 /* the UNPROTECT and the setting of the dirty bit. Otherwise */
2634 /* a write by a third thread might go unnoticed. Reversing */
2635 /* the order is just as bad, since we would end up unprotecting */
2636 /* a page in a GC cycle during which it's not marked. */
2637 /* Currently we do this by disabling the thread stopping */
2638 /* signals while this handler is running. An alternative might */
2639 /* be to record the fact that we're about to unprotect, or */
2640 /* have just unprotected a page in the GC's thread structure, */
2641 /* and then to have the thread stopping code set the dirty */
2642 /* flag, if necessary. */
2643 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
2644 register int index = PHT_HASH(h+i);
2645
2646 async_set_pht_entry_from_index(GC_dirty_pages, index);
2647 }
2648 # if defined(OSF1)
2649 /* These reset the signal handler each time by default. */
2650 signal(SIGSEGV, (SIG_PF) GC_write_fault_handler);
2651 # endif
2652 /* The write may not take place before dirty bits are read. */
2653 /* But then we'll fault again ... */
2654 # if defined(MSWIN32) || defined(MSWINCE)
2655 return(EXCEPTION_CONTINUE_EXECUTION);
2656 # else
2657 return;
2658 # endif
2659 }
2660 #if defined(MSWIN32) || defined(MSWINCE)
2661 return EXCEPTION_CONTINUE_SEARCH;
2662 #else
2663 GC_err_printf1("Segfault at 0x%lx\n", addr);
2664 ABORT("Unexpected bus error or segmentation fault");
2665 #endif
2666 }
2667 #endif /* !DARWIN */
2668
2669 /*
2670 * We hold the allocation lock. We expect block h to be written
2671 * shortly. Ensure that all pages containing any part of the n hblks
2672 * starting at h are no longer protected. If is_ptrfree is false,
2673 * also ensure that they will subsequently appear to be dirty.
2674 */
2675 void GC_remove_protection(h, nblocks, is_ptrfree)
2676 struct hblk *h;
2677 word nblocks;
2678 GC_bool is_ptrfree;
2679 {
2680 struct hblk * h_trunc; /* Truncated to page boundary */
2681 struct hblk * h_end; /* Page boundary following block end */
2682 struct hblk * current;
2683 GC_bool found_clean;
2684
2685 if (!GC_dirty_maintained) return;
2686 h_trunc = (struct hblk *)((word)h & ~(GC_page_size-1));
2687 h_end = (struct hblk *)(((word)(h + nblocks) + GC_page_size-1)
2688 & ~(GC_page_size-1));
2689 found_clean = FALSE;
2690 for (current = h_trunc; current < h_end; ++current) {
2691 int index = PHT_HASH(current);
2692
2693 if (!is_ptrfree || current < h || current >= h + nblocks) {
2694 async_set_pht_entry_from_index(GC_dirty_pages, index);
2695 }
2696 }
2697 UNPROTECT(h_trunc, (ptr_t)h_end - (ptr_t)h_trunc);
2698 }
2699
2700 #if !defined(DARWIN)
2701 void GC_dirty_init()
2702 {
2703 # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(LINUX) || \
2704 defined(OSF1) || defined(HURD)
2705 struct sigaction act, oldact;
2706 /* We should probably specify SA_SIGINFO for Linux, and handle */
2707 /* the different architectures more uniformly. */
2708 # if defined(IRIX5) || defined(LINUX) && !defined(X86_64) \
2709 || defined(OSF1) || defined(HURD)
2710 act.sa_flags = SA_RESTART;
2711 act.sa_handler = (SIG_PF)GC_write_fault_handler;
2712 # else
2713 act.sa_flags = SA_RESTART | SA_SIGINFO;
2714 act.sa_sigaction = GC_write_fault_handler;
2715 # endif
2716 (void)sigemptyset(&act.sa_mask);
2717 # ifdef SIG_SUSPEND
2718 /* Arrange to postpone SIG_SUSPEND while we're in a write fault */
2719 /* handler. This effectively makes the handler atomic w.r.t. */
2720 /* stopping the world for GC. */
2721 (void)sigaddset(&act.sa_mask, SIG_SUSPEND);
2722 # endif /* SIG_SUSPEND */
2723 # endif
2724 # ifdef PRINTSTATS
2725 GC_printf0("Inititalizing mprotect virtual dirty bit implementation\n");
2726 # endif
2727 GC_dirty_maintained = TRUE;
2728 if (GC_page_size % HBLKSIZE != 0) {
2729 GC_err_printf0("Page size not multiple of HBLKSIZE\n");
2730 ABORT("Page size not multiple of HBLKSIZE");
2731 }
2732 # if defined(SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2733 GC_old_bus_handler = signal(SIGBUS, GC_write_fault_handler);
2734 if (GC_old_bus_handler == SIG_IGN) {
2735 GC_err_printf0("Previously ignored bus error!?");
2736 GC_old_bus_handler = SIG_DFL;
2737 }
2738 if (GC_old_bus_handler != SIG_DFL) {
2739 # ifdef PRINTSTATS
2740 GC_err_printf0("Replaced other SIGBUS handler\n");
2741 # endif
2742 }
2743 # endif
2744 # if defined(SUNOS4)
2745 GC_old_segv_handler = signal(SIGSEGV, (SIG_PF)GC_write_fault_handler);
2746 if (GC_old_segv_handler == SIG_IGN) {
2747 GC_err_printf0("Previously ignored segmentation violation!?");
2748 GC_old_segv_handler = SIG_DFL;
2749 }
2750 if (GC_old_segv_handler != SIG_DFL) {
2751 # ifdef PRINTSTATS
2752 GC_err_printf0("Replaced other SIGSEGV handler\n");
2753 # endif
2754 }
2755 # endif
2756 # if (defined(SUNOS5SIGS) && !defined(FREEBSD)) || defined(IRIX5) \
2757 || defined(LINUX) || defined(OSF1) || defined(HURD)
2758 /* SUNOS5SIGS includes HPUX */
2759 # if defined(GC_IRIX_THREADS)
2760 sigaction(SIGSEGV, 0, &oldact);
2761 sigaction(SIGSEGV, &act, 0);
2762 # else
2763 {
2764 int res = sigaction(SIGSEGV, &act, &oldact);
2765 if (res != 0) ABORT("Sigaction failed");
2766 }
2767 # endif
2768 # if defined(_sigargs) || defined(HURD) || !defined(SA_SIGINFO)
2769 /* This is Irix 5.x, not 6.x. Irix 5.x does not have */
2770 /* sa_sigaction. */
2771 GC_old_segv_handler = oldact.sa_handler;
2772 # else /* Irix 6.x or SUNOS5SIGS or LINUX */
2773 if (oldact.sa_flags & SA_SIGINFO) {
2774 GC_old_segv_handler = (SIG_PF)(oldact.sa_sigaction);
2775 } else {
2776 GC_old_segv_handler = oldact.sa_handler;
2777 }
2778 # endif
2779 if (GC_old_segv_handler == SIG_IGN) {
2780 GC_err_printf0("Previously ignored segmentation violation!?");
2781 GC_old_segv_handler = SIG_DFL;
2782 }
2783 if (GC_old_segv_handler != SIG_DFL) {
2784 # ifdef PRINTSTATS
2785 GC_err_printf0("Replaced other SIGSEGV handler\n");
2786 # endif
2787 }
2788 # endif /* (SUNOS5SIGS && !FREEBSD) || IRIX5 || LINUX || OSF1 || HURD */
2789 # if defined(HPUX) || defined(LINUX) || defined(HURD) \
2790 || (defined(FREEBSD) && defined(SUNOS5SIGS))
2791 sigaction(SIGBUS, &act, &oldact);
2792 GC_old_bus_handler = oldact.sa_handler;
2793 if (GC_old_bus_handler == SIG_IGN) {
2794 GC_err_printf0("Previously ignored bus error!?");
2795 GC_old_bus_handler = SIG_DFL;
2796 }
2797 if (GC_old_bus_handler != SIG_DFL) {
2798 # ifdef PRINTSTATS
2799 GC_err_printf0("Replaced other SIGBUS handler\n");
2800 # endif
2801 }
2802 # endif /* HPUX || LINUX || HURD || (FREEBSD && SUNOS5SIGS) */
2803 # if defined(MSWIN32)
2804 GC_old_segv_handler = SetUnhandledExceptionFilter(GC_write_fault_handler);
2805 if (GC_old_segv_handler != NULL) {
2806 # ifdef PRINTSTATS
2807 GC_err_printf0("Replaced other UnhandledExceptionFilter\n");
2808 # endif
2809 } else {
2810 GC_old_segv_handler = SIG_DFL;
2811 }
2812 # endif
2813 }
2814 #endif /* !DARWIN */
2815
2816 int GC_incremental_protection_needs()
2817 {
2818 if (GC_page_size == HBLKSIZE) {
2819 return GC_PROTECTS_POINTER_HEAP;
2820 } else {
2821 return GC_PROTECTS_POINTER_HEAP | GC_PROTECTS_PTRFREE_HEAP;
2822 }
2823 }
2824
2825 #define HAVE_INCREMENTAL_PROTECTION_NEEDS
2826
2827 #define IS_PTRFREE(hhdr) ((hhdr)->hb_descr == 0)
2828
2829 #define PAGE_ALIGNED(x) !((word)(x) & (GC_page_size - 1))
2830 void GC_protect_heap()
2831 {
2832 ptr_t start;
2833 word len;
2834 struct hblk * current;
2835 struct hblk * current_start; /* Start of block to be protected. */
2836 struct hblk * limit;
2837 unsigned i;
2838 GC_bool protect_all =
2839 (0 != (GC_incremental_protection_needs() & GC_PROTECTS_PTRFREE_HEAP));
2840 for (i = 0; i < GC_n_heap_sects; i++) {
2841 start = GC_heap_sects[i].hs_start;
2842 len = GC_heap_sects[i].hs_bytes;
2843 if (protect_all) {
2844 PROTECT(start, len);
2845 } else {
2846 GC_ASSERT(PAGE_ALIGNED(len))
2847 GC_ASSERT(PAGE_ALIGNED(start))
2848 current_start = current = (struct hblk *)start;
2849 limit = (struct hblk *)(start + len);
2850 while (current < limit) {
2851 hdr * hhdr;
2852 word nhblks;
2853 GC_bool is_ptrfree;
2854
2855 GC_ASSERT(PAGE_ALIGNED(current));
2856 GET_HDR(current, hhdr);
2857 if (IS_FORWARDING_ADDR_OR_NIL(hhdr)) {
2858 /* This can happen only if we're at the beginning of a */
2859 /* heap segment, and a block spans heap segments. */
2860 /* We will handle that block as part of the preceding */
2861 /* segment. */
2862 GC_ASSERT(current_start == current);
2863 current_start = ++current;
2864 continue;
2865 }
2866 if (HBLK_IS_FREE(hhdr)) {
2867 GC_ASSERT(PAGE_ALIGNED(hhdr -> hb_sz));
2868 nhblks = divHBLKSZ(hhdr -> hb_sz);
2869 is_ptrfree = TRUE; /* dirty on alloc */
2870 } else {
2871 nhblks = OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz);
2872 is_ptrfree = IS_PTRFREE(hhdr);
2873 }
2874 if (is_ptrfree) {
2875 if (current_start < current) {
2876 PROTECT(current_start, (ptr_t)current - (ptr_t)current_start);
2877 }
2878 current_start = (current += nhblks);
2879 } else {
2880 current += nhblks;
2881 }
2882 }
2883 if (current_start < current) {
2884 PROTECT(current_start, (ptr_t)current - (ptr_t)current_start);
2885 }
2886 }
2887 }
2888 }
2889
2890 /* We assume that either the world is stopped or its OK to lose dirty */
2891 /* bits while this is happenning (as in GC_enable_incremental). */
2892 void GC_read_dirty()
2893 {
2894 BCOPY((word *)GC_dirty_pages, GC_grungy_pages,
2895 (sizeof GC_dirty_pages));
2896 BZERO((word *)GC_dirty_pages, (sizeof GC_dirty_pages));
2897 GC_protect_heap();
2898 }
2899
2900 GC_bool GC_page_was_dirty(h)
2901 struct hblk * h;
2902 {
2903 register word index = PHT_HASH(h);
2904
2905 return(HDR(h) == 0 || get_pht_entry_from_index(GC_grungy_pages, index));
2906 }
2907
2908 /*
2909 * Acquiring the allocation lock here is dangerous, since this
2910 * can be called from within GC_call_with_alloc_lock, and the cord
2911 * package does so. On systems that allow nested lock acquisition, this
2912 * happens to work.
2913 * On other systems, SET_LOCK_HOLDER and friends must be suitably defined.
2914 */
2915
2916 static GC_bool syscall_acquired_lock = FALSE; /* Protected by GC lock. */
2917
2918 void GC_begin_syscall()
2919 {
2920 if (!I_HOLD_LOCK()) {
2921 LOCK();
2922 syscall_acquired_lock = TRUE;
2923 }
2924 }
2925
2926 void GC_end_syscall()
2927 {
2928 if (syscall_acquired_lock) {
2929 syscall_acquired_lock = FALSE;
2930 UNLOCK();
2931 }
2932 }
2933
2934 void GC_unprotect_range(addr, len)
2935 ptr_t addr;
2936 word len;
2937 {
2938 struct hblk * start_block;
2939 struct hblk * end_block;
2940 register struct hblk *h;
2941 ptr_t obj_start;
2942
2943 if (!GC_dirty_maintained) return;
2944 obj_start = GC_base(addr);
2945 if (obj_start == 0) return;
2946 if (GC_base(addr + len - 1) != obj_start) {
2947 ABORT("GC_unprotect_range(range bigger than object)");
2948 }
2949 start_block = (struct hblk *)((word)addr & ~(GC_page_size - 1));
2950 end_block = (struct hblk *)((word)(addr + len - 1) & ~(GC_page_size - 1));
2951 end_block += GC_page_size/HBLKSIZE - 1;
2952 for (h = start_block; h <= end_block; h++) {
2953 register word index = PHT_HASH(h);
2954
2955 async_set_pht_entry_from_index(GC_dirty_pages, index);
2956 }
2957 UNPROTECT(start_block,
2958 ((ptr_t)end_block - (ptr_t)start_block) + HBLKSIZE);
2959 }
2960
2961 #if 0
2962
2963 /* We no longer wrap read by default, since that was causing too many */
2964 /* problems. It is preferred that the client instead avoids writing */
2965 /* to the write-protected heap with a system call. */
2966 /* This still serves as sample code if you do want to wrap system calls.*/
2967
2968 #if !defined(MSWIN32) && !defined(MSWINCE) && !defined(GC_USE_LD_WRAP)
2969 /* Replacement for UNIX system call. */
2970 /* Other calls that write to the heap should be handled similarly. */
2971 /* Note that this doesn't work well for blocking reads: It will hold */
2972 /* the allocation lock for the entire duration of the call. Multithreaded */
2973 /* clients should really ensure that it won't block, either by setting */
2974 /* the descriptor nonblocking, or by calling select or poll first, to */
2975 /* make sure that input is available. */
2976 /* Another, preferred alternative is to ensure that system calls never */
2977 /* write to the protected heap (see above). */
2978 # if defined(__STDC__) && !defined(SUNOS4)
2979 # include <unistd.h>
2980 # include <sys/uio.h>
2981 ssize_t read(int fd, void *buf, size_t nbyte)
2982 # else
2983 # ifndef LINT
2984 int read(fd, buf, nbyte)
2985 # else
2986 int GC_read(fd, buf, nbyte)
2987 # endif
2988 int fd;
2989 char *buf;
2990 int nbyte;
2991 # endif
2992 {
2993 int result;
2994
2995 GC_begin_syscall();
2996 GC_unprotect_range(buf, (word)nbyte);
2997 # if defined(IRIX5) || defined(GC_LINUX_THREADS)
2998 /* Indirect system call may not always be easily available. */
2999 /* We could call _read, but that would interfere with the */
3000 /* libpthread interception of read. */
3001 /* On Linux, we have to be careful with the linuxthreads */
3002 /* read interception. */
3003 {
3004 struct iovec iov;
3005
3006 iov.iov_base = buf;
3007 iov.iov_len = nbyte;
3008 result = readv(fd, &iov, 1);
3009 }
3010 # else
3011 # if defined(HURD)
3012 result = __read(fd, buf, nbyte);
3013 # else
3014 /* The two zero args at the end of this list are because one
3015 IA-64 syscall() implementation actually requires six args
3016 to be passed, even though they aren't always used. */
3017 result = syscall(SYS_read, fd, buf, nbyte, 0, 0);
3018 # endif /* !HURD */
3019 # endif
3020 GC_end_syscall();
3021 return(result);
3022 }
3023 #endif /* !MSWIN32 && !MSWINCE && !GC_LINUX_THREADS */
3024
3025 #if defined(GC_USE_LD_WRAP) && !defined(THREADS)
3026 /* We use the GNU ld call wrapping facility. */
3027 /* This requires that the linker be invoked with "--wrap read". */
3028 /* This can be done by passing -Wl,"--wrap read" to gcc. */
3029 /* I'm not sure that this actually wraps whatever version of read */
3030 /* is called by stdio. That code also mentions __read. */
3031 # include <unistd.h>
3032 ssize_t __wrap_read(int fd, void *buf, size_t nbyte)
3033 {
3034 int result;
3035
3036 GC_begin_syscall();
3037 GC_unprotect_range(buf, (word)nbyte);
3038 result = __real_read(fd, buf, nbyte);
3039 GC_end_syscall();
3040 return(result);
3041 }
3042
3043 /* We should probably also do this for __read, or whatever stdio */
3044 /* actually calls. */
3045 #endif
3046
3047 #endif /* 0 */
3048
3049 /*ARGSUSED*/
3050 GC_bool GC_page_was_ever_dirty(h)
3051 struct hblk *h;
3052 {
3053 return(TRUE);
3054 }
3055
3056 /* Reset the n pages starting at h to "was never dirty" status. */
3057 /*ARGSUSED*/
3058 void GC_is_fresh(h, n)
3059 struct hblk *h;
3060 word n;
3061 {
3062 }
3063
3064 # endif /* MPROTECT_VDB */
3065
3066 # ifdef PROC_VDB
3067
3068 /*
3069 * See DEFAULT_VDB for interface descriptions.
3070 */
3071
3072 /*
3073 * This implementaion assumes a Solaris 2.X like /proc pseudo-file-system
3074 * from which we can read page modified bits. This facility is far from
3075 * optimal (e.g. we would like to get the info for only some of the
3076 * address space), but it avoids intercepting system calls.
3077 */
3078
3079 #include <errno.h>
3080 #include <sys/types.h>
3081 #include <sys/signal.h>
3082 #include <sys/fault.h>
3083 #include <sys/syscall.h>
3084 #include <sys/procfs.h>
3085 #include <sys/stat.h>
3086
3087 #define INITIAL_BUF_SZ 16384
3088 word GC_proc_buf_size = INITIAL_BUF_SZ;
3089 char *GC_proc_buf;
3090
3091 #ifdef GC_SOLARIS_THREADS
3092 /* We don't have exact sp values for threads. So we count on */
3093 /* occasionally declaring stack pages to be fresh. Thus we */
3094 /* need a real implementation of GC_is_fresh. We can't clear */
3095 /* entries in GC_written_pages, since that would declare all */
3096 /* pages with the given hash address to be fresh. */
3097 # define MAX_FRESH_PAGES 8*1024 /* Must be power of 2 */
3098 struct hblk ** GC_fresh_pages; /* A direct mapped cache. */
3099 /* Collisions are dropped. */
3100
3101 # define FRESH_PAGE_SLOT(h) (divHBLKSZ((word)(h)) & (MAX_FRESH_PAGES-1))
3102 # define ADD_FRESH_PAGE(h) \
3103 GC_fresh_pages[FRESH_PAGE_SLOT(h)] = (h)
3104 # define PAGE_IS_FRESH(h) \
3105 (GC_fresh_pages[FRESH_PAGE_SLOT(h)] == (h) && (h) != 0)
3106 #endif
3107
3108 /* Add all pages in pht2 to pht1 */
3109 void GC_or_pages(pht1, pht2)
3110 page_hash_table pht1, pht2;
3111 {
3112 register int i;
3113
3114 for (i = 0; i < PHT_SIZE; i++) pht1[i] |= pht2[i];
3115 }
3116
3117 int GC_proc_fd;
3118
3119 void GC_dirty_init()
3120 {
3121 int fd;
3122 char buf[30];
3123
3124 GC_dirty_maintained = TRUE;
3125 if (GC_words_allocd != 0 || GC_words_allocd_before_gc != 0) {
3126 register int i;
3127
3128 for (i = 0; i < PHT_SIZE; i++) GC_written_pages[i] = (word)(-1);
3129 # ifdef PRINTSTATS
3130 GC_printf1("Allocated words:%lu:all pages may have been written\n",
3131 (unsigned long)
3132 (GC_words_allocd + GC_words_allocd_before_gc));
3133 # endif
3134 }
3135 sprintf(buf, "/proc/%d", getpid());
3136 fd = open(buf, O_RDONLY);
3137 if (fd < 0) {
3138 ABORT("/proc open failed");
3139 }
3140 GC_proc_fd = syscall(SYS_ioctl, fd, PIOCOPENPD, 0);
3141 close(fd);
3142 syscall(SYS_fcntl, GC_proc_fd, F_SETFD, FD_CLOEXEC);
3143 if (GC_proc_fd < 0) {
3144 ABORT("/proc ioctl failed");
3145 }
3146 GC_proc_buf = GC_scratch_alloc(GC_proc_buf_size);
3147 # ifdef GC_SOLARIS_THREADS
3148 GC_fresh_pages = (struct hblk **)
3149 GC_scratch_alloc(MAX_FRESH_PAGES * sizeof (struct hblk *));
3150 if (GC_fresh_pages == 0) {
3151 GC_err_printf0("No space for fresh pages\n");
3152 EXIT();
3153 }
3154 BZERO(GC_fresh_pages, MAX_FRESH_PAGES * sizeof (struct hblk *));
3155 # endif
3156 }
3157
3158 /* Ignore write hints. They don't help us here. */
3159 /*ARGSUSED*/
3160 void GC_remove_protection(h, nblocks, is_ptrfree)
3161 struct hblk *h;
3162 word nblocks;
3163 GC_bool is_ptrfree;
3164 {
3165 }
3166
3167 #ifdef GC_SOLARIS_THREADS
3168 # define READ(fd,buf,nbytes) syscall(SYS_read, fd, buf, nbytes)
3169 #else
3170 # define READ(fd,buf,nbytes) read(fd, buf, nbytes)
3171 #endif
3172
3173 void GC_read_dirty()
3174 {
3175 unsigned long ps, np;
3176 int nmaps;
3177 ptr_t vaddr;
3178 struct prasmap * map;
3179 char * bufp;
3180 ptr_t current_addr, limit;
3181 int i;
3182 int dummy;
3183
3184 BZERO(GC_grungy_pages, (sizeof GC_grungy_pages));
3185
3186 bufp = GC_proc_buf;
3187 if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
3188 # ifdef PRINTSTATS
3189 GC_printf1("/proc read failed: GC_proc_buf_size = %lu\n",
3190 GC_proc_buf_size);
3191 # endif
3192 {
3193 /* Retry with larger buffer. */
3194 word new_size = 2 * GC_proc_buf_size;
3195 char * new_buf = GC_scratch_alloc(new_size);
3196
3197 if (new_buf != 0) {
3198 GC_proc_buf = bufp = new_buf;
3199 GC_proc_buf_size = new_size;
3200 }
3201 if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
3202 WARN("Insufficient space for /proc read\n", 0);
3203 /* Punt: */
3204 memset(GC_grungy_pages, 0xff, sizeof (page_hash_table));
3205 memset(GC_written_pages, 0xff, sizeof(page_hash_table));
3206 # ifdef GC_SOLARIS_THREADS
3207 BZERO(GC_fresh_pages,
3208 MAX_FRESH_PAGES * sizeof (struct hblk *));
3209 # endif
3210 return;
3211 }
3212 }
3213 }
3214 /* Copy dirty bits into GC_grungy_pages */
3215 nmaps = ((struct prpageheader *)bufp) -> pr_nmap;
3216 /* printf( "nmaps = %d, PG_REFERENCED = %d, PG_MODIFIED = %d\n",
3217 nmaps, PG_REFERENCED, PG_MODIFIED); */
3218 bufp = bufp + sizeof(struct prpageheader);
3219 for (i = 0; i < nmaps; i++) {
3220 map = (struct prasmap *)bufp;
3221 vaddr = (ptr_t)(map -> pr_vaddr);
3222 ps = map -> pr_pagesize;
3223 np = map -> pr_npage;
3224 /* printf("vaddr = 0x%X, ps = 0x%X, np = 0x%X\n", vaddr, ps, np); */
3225 limit = vaddr + ps * np;
3226 bufp += sizeof (struct prasmap);
3227 for (current_addr = vaddr;
3228 current_addr < limit; current_addr += ps){
3229 if ((*bufp++) & PG_MODIFIED) {
3230 register struct hblk * h = (struct hblk *) current_addr;
3231
3232 while ((ptr_t)h < current_addr + ps) {
3233 register word index = PHT_HASH(h);
3234
3235 set_pht_entry_from_index(GC_grungy_pages, index);
3236 # ifdef GC_SOLARIS_THREADS
3237 {
3238 register int slot = FRESH_PAGE_SLOT(h);
3239
3240 if (GC_fresh_pages[slot] == h) {
3241 GC_fresh_pages[slot] = 0;
3242 }
3243 }
3244 # endif
3245 h++;
3246 }
3247 }
3248 }
3249 bufp += sizeof(long) - 1;
3250 bufp = (char *)((unsigned long)bufp & ~(sizeof(long)-1));
3251 }
3252 /* Update GC_written_pages. */
3253 GC_or_pages(GC_written_pages, GC_grungy_pages);
3254 # ifdef GC_SOLARIS_THREADS
3255 /* Make sure that old stacks are considered completely clean */
3256 /* unless written again. */
3257 GC_old_stacks_are_fresh();
3258 # endif
3259 }
3260
3261 #undef READ
3262
3263 GC_bool GC_page_was_dirty(h)
3264 struct hblk *h;
3265 {
3266 register word index = PHT_HASH(h);
3267 register GC_bool result;
3268
3269 result = get_pht_entry_from_index(GC_grungy_pages, index);
3270 # ifdef GC_SOLARIS_THREADS
3271 if (result && PAGE_IS_FRESH(h)) result = FALSE;
3272 /* This happens only if page was declared fresh since */
3273 /* the read_dirty call, e.g. because it's in an unused */
3274 /* thread stack. It's OK to treat it as clean, in */
3275 /* that case. And it's consistent with */
3276 /* GC_page_was_ever_dirty. */
3277 # endif
3278 return(result);
3279 }
3280
3281 GC_bool GC_page_was_ever_dirty(h)
3282 struct hblk *h;
3283 {
3284 register word index = PHT_HASH(h);
3285 register GC_bool result;
3286
3287 result = get_pht_entry_from_index(GC_written_pages, index);
3288 # ifdef GC_SOLARIS_THREADS
3289 if (result && PAGE_IS_FRESH(h)) result = FALSE;
3290 # endif
3291 return(result);
3292 }
3293
3294 /* Caller holds allocation lock. */
3295 void GC_is_fresh(h, n)
3296 struct hblk *h;
3297 word n;
3298 {
3299
3300 register word index;
3301
3302 # ifdef GC_SOLARIS_THREADS
3303 register word i;
3304
3305 if (GC_fresh_pages != 0) {
3306 for (i = 0; i < n; i++) {
3307 ADD_FRESH_PAGE(h + i);
3308 }
3309 }
3310 # endif
3311 }
3312
3313 # endif /* PROC_VDB */
3314
3315
3316 # ifdef PCR_VDB
3317
3318 # include "vd/PCR_VD.h"
3319
3320 # define NPAGES (32*1024) /* 128 MB */
3321
3322 PCR_VD_DB GC_grungy_bits[NPAGES];
3323
3324 ptr_t GC_vd_base; /* Address corresponding to GC_grungy_bits[0] */
3325 /* HBLKSIZE aligned. */
3326
3327 void GC_dirty_init()
3328 {
3329 GC_dirty_maintained = TRUE;
3330 /* For the time being, we assume the heap generally grows up */
3331 GC_vd_base = GC_heap_sects[0].hs_start;
3332 if (GC_vd_base == 0) {
3333 ABORT("Bad initial heap segment");
3334 }
3335 if (PCR_VD_Start(HBLKSIZE, GC_vd_base, NPAGES*HBLKSIZE)
3336 != PCR_ERes_okay) {
3337 ABORT("dirty bit initialization failed");
3338 }
3339 }
3340
3341 void GC_read_dirty()
3342 {
3343 /* lazily enable dirty bits on newly added heap sects */
3344 {
3345 static int onhs = 0;
3346 int nhs = GC_n_heap_sects;
3347 for( ; onhs < nhs; onhs++ ) {
3348 PCR_VD_WriteProtectEnable(
3349 GC_heap_sects[onhs].hs_start,
3350 GC_heap_sects[onhs].hs_bytes );
3351 }
3352 }
3353
3354
3355 if (PCR_VD_Clear(GC_vd_base, NPAGES*HBLKSIZE, GC_grungy_bits)
3356 != PCR_ERes_okay) {
3357 ABORT("dirty bit read failed");
3358 }
3359 }
3360
3361 GC_bool GC_page_was_dirty(h)
3362 struct hblk *h;
3363 {
3364 if((ptr_t)h < GC_vd_base || (ptr_t)h >= GC_vd_base + NPAGES*HBLKSIZE) {
3365 return(TRUE);
3366 }
3367 return(GC_grungy_bits[h - (struct hblk *)GC_vd_base] & PCR_VD_DB_dirtyBit);
3368 }
3369
3370 /*ARGSUSED*/
3371 void GC_remove_protection(h, nblocks, is_ptrfree)
3372 struct hblk *h;
3373 word nblocks;
3374 GC_bool is_ptrfree;
3375 {
3376 PCR_VD_WriteProtectDisable(h, nblocks*HBLKSIZE);
3377 PCR_VD_WriteProtectEnable(h, nblocks*HBLKSIZE);
3378 }
3379
3380 # endif /* PCR_VDB */
3381
3382 #if defined(MPROTECT_VDB) && defined(DARWIN)
3383 /* The following sources were used as a *reference* for this exception handling
3384 code:
3385 1. Apple's mach/xnu documentation
3386 2. Timothy J. Wood's "Mach Exception Handlers 101" post to the
3387 omnigroup's macosx-dev list.
3388 www.omnigroup.com/mailman/archive/macosx-dev/2000-June/014178.html
3389 3. macosx-nat.c from Apple's GDB source code.
3390 */
3391
3392 /* The bug that caused all this trouble should now be fixed. This should
3393 eventually be removed if all goes well. */
3394 /* define BROKEN_EXCEPTION_HANDLING */
3395
3396 #include <mach/mach.h>
3397 #include <mach/mach_error.h>
3398 #include <mach/thread_status.h>
3399 #include <mach/exception.h>
3400 #include <mach/task.h>
3401 #include <pthread.h>
3402
3403 /* These are not defined in any header, although they are documented */
3404 extern boolean_t exc_server(mach_msg_header_t *,mach_msg_header_t *);
3405 extern kern_return_t exception_raise(
3406 mach_port_t,mach_port_t,mach_port_t,
3407 exception_type_t,exception_data_t,mach_msg_type_number_t);
3408 extern kern_return_t exception_raise_state(
3409 mach_port_t,mach_port_t,mach_port_t,
3410 exception_type_t,exception_data_t,mach_msg_type_number_t,
3411 thread_state_flavor_t*,thread_state_t,mach_msg_type_number_t,
3412 thread_state_t,mach_msg_type_number_t*);
3413 extern kern_return_t exception_raise_state_identity(
3414 mach_port_t,mach_port_t,mach_port_t,
3415 exception_type_t,exception_data_t,mach_msg_type_number_t,
3416 thread_state_flavor_t*,thread_state_t,mach_msg_type_number_t,
3417 thread_state_t,mach_msg_type_number_t*);
3418
3419
3420 #define MAX_EXCEPTION_PORTS 16
3421
3422 static struct {
3423 mach_msg_type_number_t count;
3424 exception_mask_t masks[MAX_EXCEPTION_PORTS];
3425 exception_handler_t ports[MAX_EXCEPTION_PORTS];
3426 exception_behavior_t behaviors[MAX_EXCEPTION_PORTS];
3427 thread_state_flavor_t flavors[MAX_EXCEPTION_PORTS];
3428 } GC_old_exc_ports;
3429
3430 static struct {
3431 mach_port_t exception;
3432 #if defined(THREADS)
3433 mach_port_t reply;
3434 #endif
3435 } GC_ports;
3436
3437 typedef struct {
3438 mach_msg_header_t head;
3439 } GC_msg_t;
3440
3441 typedef enum {
3442 GC_MP_NORMAL, GC_MP_DISCARDING, GC_MP_STOPPED
3443 } GC_mprotect_state_t;
3444
3445 /* FIXME: 1 and 2 seem to be safe to use in the msgh_id field,
3446 but it isn't documented. Use the source and see if they
3447 should be ok. */
3448 #define ID_STOP 1
3449 #define ID_RESUME 2
3450
3451 /* These values are only used on the reply port */
3452 #define ID_ACK 3
3453
3454 #if defined(THREADS)
3455
3456 GC_mprotect_state_t GC_mprotect_state;
3457
3458 /* The following should ONLY be called when the world is stopped */
3459 static void GC_mprotect_thread_notify(mach_msg_id_t id) {
3460 struct {
3461 GC_msg_t msg;
3462 mach_msg_trailer_t trailer;
3463 } buf;
3464 mach_msg_return_t r;
3465 /* remote, local */
3466 buf.msg.head.msgh_bits =
3467 MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND,0);
3468 buf.msg.head.msgh_size = sizeof(buf.msg);
3469 buf.msg.head.msgh_remote_port = GC_ports.exception;
3470 buf.msg.head.msgh_local_port = MACH_PORT_NULL;
3471 buf.msg.head.msgh_id = id;
3472
3473 r = mach_msg(
3474 &buf.msg.head,
3475 MACH_SEND_MSG|MACH_RCV_MSG|MACH_RCV_LARGE,
3476 sizeof(buf.msg),
3477 sizeof(buf),
3478 GC_ports.reply,
3479 MACH_MSG_TIMEOUT_NONE,
3480 MACH_PORT_NULL);
3481 if(r != MACH_MSG_SUCCESS)
3482 ABORT("mach_msg failed in GC_mprotect_thread_notify");
3483 if(buf.msg.head.msgh_id != ID_ACK)
3484 ABORT("invalid ack in GC_mprotect_thread_notify");
3485 }
3486
3487 /* Should only be called by the mprotect thread */
3488 static void GC_mprotect_thread_reply() {
3489 GC_msg_t msg;
3490 mach_msg_return_t r;
3491 /* remote, local */
3492 msg.head.msgh_bits =
3493 MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND,0);
3494 msg.head.msgh_size = sizeof(msg);
3495 msg.head.msgh_remote_port = GC_ports.reply;
3496 msg.head.msgh_local_port = MACH_PORT_NULL;
3497 msg.head.msgh_id = ID_ACK;
3498
3499 r = mach_msg(
3500 &msg.head,
3501 MACH_SEND_MSG,
3502 sizeof(msg),
3503 0,
3504 MACH_PORT_NULL,
3505 MACH_MSG_TIMEOUT_NONE,
3506 MACH_PORT_NULL);
3507 if(r != MACH_MSG_SUCCESS)
3508 ABORT("mach_msg failed in GC_mprotect_thread_reply");
3509 }
3510
3511 void GC_mprotect_stop() {
3512 GC_mprotect_thread_notify(ID_STOP);
3513 }
3514 void GC_mprotect_resume() {
3515 GC_mprotect_thread_notify(ID_RESUME);
3516 }
3517
3518 #else /* !THREADS */
3519 /* The compiler should optimize away any GC_mprotect_state computations */
3520 #define GC_mprotect_state GC_MP_NORMAL
3521 #endif
3522
3523 static void *GC_mprotect_thread(void *arg) {
3524 mach_msg_return_t r;
3525 /* These two structures contain some private kernel data. We don't need to
3526 access any of it so we don't bother defining a proper struct. The
3527 correct definitions are in the xnu source code. */
3528 struct {
3529 mach_msg_header_t head;
3530 char data[256];
3531 } reply;
3532 struct {
3533 mach_msg_header_t head;
3534 mach_msg_body_t msgh_body;
3535 char data[1024];
3536 } msg;
3537
3538 mach_msg_id_t id;
3539
3540 GC_darwin_register_mach_handler_thread(mach_thread_self());
3541
3542 for(;;) {
3543 r = mach_msg(
3544 &msg.head,
3545 MACH_RCV_MSG|MACH_RCV_LARGE|
3546 (GC_mprotect_state == GC_MP_DISCARDING ? MACH_RCV_TIMEOUT : 0),
3547 0,
3548 sizeof(msg),
3549 GC_ports.exception,
3550 GC_mprotect_state == GC_MP_DISCARDING ? 0 : MACH_MSG_TIMEOUT_NONE,
3551 MACH_PORT_NULL);
3552
3553 id = r == MACH_MSG_SUCCESS ? msg.head.msgh_id : -1;
3554
3555 #if defined(THREADS)
3556 if(GC_mprotect_state == GC_MP_DISCARDING) {
3557 if(r == MACH_RCV_TIMED_OUT) {
3558 GC_mprotect_state = GC_MP_STOPPED;
3559 GC_mprotect_thread_reply();
3560 continue;
3561 }
3562 if(r == MACH_MSG_SUCCESS && (id == ID_STOP || id == ID_RESUME))
3563 ABORT("out of order mprotect thread request");
3564 }
3565 #endif
3566
3567 if(r != MACH_MSG_SUCCESS) {
3568 GC_err_printf2("mach_msg failed with %d %s\n",
3569 (int)r,mach_error_string(r));
3570 ABORT("mach_msg failed");
3571 }
3572
3573 switch(id) {
3574 #if defined(THREADS)
3575 case ID_STOP:
3576 if(GC_mprotect_state != GC_MP_NORMAL)
3577 ABORT("Called mprotect_stop when state wasn't normal");
3578 GC_mprotect_state = GC_MP_DISCARDING;
3579 break;
3580 case ID_RESUME:
3581 if(GC_mprotect_state != GC_MP_STOPPED)
3582 ABORT("Called mprotect_resume when state wasn't stopped");
3583 GC_mprotect_state = GC_MP_NORMAL;
3584 GC_mprotect_thread_reply();
3585 break;
3586 #endif /* THREADS */
3587 default:
3588 /* Handle the message (calls catch_exception_raise) */
3589 if(!exc_server(&msg.head,&reply.head))
3590 ABORT("exc_server failed");
3591 /* Send the reply */
3592 r = mach_msg(
3593 &reply.head,
3594 MACH_SEND_MSG,
3595 reply.head.msgh_size,
3596 0,
3597 MACH_PORT_NULL,
3598 MACH_MSG_TIMEOUT_NONE,
3599 MACH_PORT_NULL);
3600 if(r != MACH_MSG_SUCCESS) {
3601 /* This will fail if the thread dies, but the thread shouldn't
3602 die... */
3603 #ifdef BROKEN_EXCEPTION_HANDLING
3604 GC_err_printf2(
3605 "mach_msg failed with %d %s while sending exc reply\n",
3606 (int)r,mach_error_string(r));
3607 #else
3608 ABORT("mach_msg failed while sending exception reply");
3609 #endif
3610 }
3611 } /* switch */
3612 } /* for(;;) */
3613 /* NOT REACHED */
3614 return NULL;
3615 }
3616
3617 /* All this SIGBUS code shouldn't be necessary. All protection faults should
3618 be going throught the mach exception handler. However, it seems a SIGBUS is
3619 occasionally sent for some unknown reason. Even more odd, it seems to be
3620 meaningless and safe to ignore. */
3621 #ifdef BROKEN_EXCEPTION_HANDLING
3622
3623 typedef void (* SIG_PF)();
3624 static SIG_PF GC_old_bus_handler;
3625
3626 /* Updates to this aren't atomic, but the SIGBUSs seem pretty rare.
3627 Even if this doesn't get updated property, it isn't really a problem */
3628 static int GC_sigbus_count;
3629
3630 static void GC_darwin_sigbus(int num,siginfo_t *sip,void *context) {
3631 if(num != SIGBUS) ABORT("Got a non-sigbus signal in the sigbus handler");
3632
3633 /* Ugh... some seem safe to ignore, but too many in a row probably means
3634 trouble. GC_sigbus_count is reset for each mach exception that is
3635 handled */
3636 if(GC_sigbus_count >= 8) {
3637 ABORT("Got more than 8 SIGBUSs in a row!");
3638 } else {
3639 GC_sigbus_count++;
3640 GC_err_printf0("GC: WARNING: Ignoring SIGBUS.\n");
3641 }
3642 }
3643 #endif /* BROKEN_EXCEPTION_HANDLING */
3644
3645 void GC_dirty_init() {
3646 kern_return_t r;
3647 mach_port_t me;
3648 pthread_t thread;
3649 pthread_attr_t attr;
3650 exception_mask_t mask;
3651
3652 # ifdef PRINTSTATS
3653 GC_printf0("Inititalizing mach/darwin mprotect virtual dirty bit "
3654 "implementation\n");
3655 # endif
3656 # ifdef BROKEN_EXCEPTION_HANDLING
3657 GC_err_printf0("GC: WARNING: Enabling workarounds for various darwin "
3658 "exception handling bugs.\n");
3659 # endif
3660 GC_dirty_maintained = TRUE;
3661 if (GC_page_size % HBLKSIZE != 0) {
3662 GC_err_printf0("Page size not multiple of HBLKSIZE\n");
3663 ABORT("Page size not multiple of HBLKSIZE");
3664 }
3665
3666 GC_task_self = me = mach_task_self();
3667
3668 r = mach_port_allocate(me,MACH_PORT_RIGHT_RECEIVE,&GC_ports.exception);
3669 if(r != KERN_SUCCESS) ABORT("mach_port_allocate failed (exception port)");
3670
3671 r = mach_port_insert_right(me,GC_ports.exception,GC_ports.exception,
3672 MACH_MSG_TYPE_MAKE_SEND);
3673 if(r != KERN_SUCCESS)
3674 ABORT("mach_port_insert_right failed (exception port)");
3675
3676 #if defined(THREADS)
3677 r = mach_port_allocate(me,MACH_PORT_RIGHT_RECEIVE,&GC_ports.reply);
3678 if(r != KERN_SUCCESS) ABORT("mach_port_allocate failed (reply port)");
3679 #endif
3680
3681 /* The exceptions we want to catch */
3682 mask = EXC_MASK_BAD_ACCESS;
3683
3684 r = task_get_exception_ports(
3685 me,
3686 mask,
3687 GC_old_exc_ports.masks,
3688 &GC_old_exc_ports.count,
3689 GC_old_exc_ports.ports,
3690 GC_old_exc_ports.behaviors,
3691 GC_old_exc_ports.flavors
3692 );
3693 if(r != KERN_SUCCESS) ABORT("task_get_exception_ports failed");
3694
3695 r = task_set_exception_ports(
3696 me,
3697 mask,
3698 GC_ports.exception,
3699 EXCEPTION_DEFAULT,
3700 GC_MACH_THREAD_STATE
3701 );
3702 if(r != KERN_SUCCESS) ABORT("task_set_exception_ports failed");
3703
3704 if(pthread_attr_init(&attr) != 0) ABORT("pthread_attr_init failed");
3705 if(pthread_attr_setdetachstate(&attr,PTHREAD_CREATE_DETACHED) != 0)
3706 ABORT("pthread_attr_setdetachedstate failed");
3707
3708 # undef pthread_create
3709 /* This will call the real pthread function, not our wrapper */
3710 if(pthread_create(&thread,&attr,GC_mprotect_thread,NULL) != 0)
3711 ABORT("pthread_create failed");
3712 pthread_attr_destroy(&attr);
3713
3714 /* Setup the sigbus handler for ignoring the meaningless SIGBUSs */
3715 #ifdef BROKEN_EXCEPTION_HANDLING
3716 {
3717 struct sigaction sa, oldsa;
3718 sa.sa_handler = (SIG_PF)GC_darwin_sigbus;
3719 sigemptyset(&sa.sa_mask);
3720 sa.sa_flags = SA_RESTART|SA_SIGINFO;
3721 if(sigaction(SIGBUS,&sa,&oldsa) < 0) ABORT("sigaction");
3722 GC_old_bus_handler = (SIG_PF)oldsa.sa_handler;
3723 if (GC_old_bus_handler != SIG_DFL) {
3724 # ifdef PRINTSTATS
3725 GC_err_printf0("Replaced other SIGBUS handler\n");
3726 # endif
3727 }
3728 }
3729 #endif /* BROKEN_EXCEPTION_HANDLING */
3730 }
3731
3732 /* The source code for Apple's GDB was used as a reference for the exception
3733 forwarding code. This code is similar to be GDB code only because there is
3734 only one way to do it. */
3735 static kern_return_t GC_forward_exception(
3736 mach_port_t thread,
3737 mach_port_t task,
3738 exception_type_t exception,
3739 exception_data_t data,
3740 mach_msg_type_number_t data_count
3741 ) {
3742 int i;
3743 kern_return_t r;
3744 mach_port_t port;
3745 exception_behavior_t behavior;
3746 thread_state_flavor_t flavor;
3747
3748 thread_state_t thread_state;
3749 mach_msg_type_number_t thread_state_count = THREAD_STATE_MAX;
3750
3751 for(i=0;i<GC_old_exc_ports.count;i++)
3752 if(GC_old_exc_ports.masks[i] & (1 << exception))
3753 break;
3754 if(i==GC_old_exc_ports.count) ABORT("No handler for exception!");
3755
3756 port = GC_old_exc_ports.ports[i];
3757 behavior = GC_old_exc_ports.behaviors[i];
3758 flavor = GC_old_exc_ports.flavors[i];
3759
3760 if(behavior != EXCEPTION_DEFAULT) {
3761 r = thread_get_state(thread,flavor,thread_state,&thread_state_count);
3762 if(r != KERN_SUCCESS)
3763 ABORT("thread_get_state failed in forward_exception");
3764 }
3765
3766 switch(behavior) {
3767 case EXCEPTION_DEFAULT:
3768 r = exception_raise(port,thread,task,exception,data,data_count);
3769 break;
3770 case EXCEPTION_STATE:
3771 r = exception_raise_state(port,thread,task,exception,data,
3772 data_count,&flavor,thread_state,thread_state_count,
3773 thread_state,&thread_state_count);
3774 break;
3775 case EXCEPTION_STATE_IDENTITY:
3776 r = exception_raise_state_identity(port,thread,task,exception,data,
3777 data_count,&flavor,thread_state,thread_state_count,
3778 thread_state,&thread_state_count);
3779 break;
3780 default:
3781 r = KERN_FAILURE; /* make gcc happy */
3782 ABORT("forward_exception: unknown behavior");
3783 break;
3784 }
3785
3786 if(behavior != EXCEPTION_DEFAULT) {
3787 r = thread_set_state(thread,flavor,thread_state,thread_state_count);
3788 if(r != KERN_SUCCESS)
3789 ABORT("thread_set_state failed in forward_exception");
3790 }
3791
3792 return r;
3793 }
3794
3795 #define FWD() GC_forward_exception(thread,task,exception,code,code_count)
3796
3797 /* This violates the namespace rules but there isn't anything that can be done
3798 about it. The exception handling stuff is hard coded to call this */
3799 kern_return_t
3800 catch_exception_raise(
3801 mach_port_t exception_port,mach_port_t thread,mach_port_t task,
3802 exception_type_t exception,exception_data_t code,
3803 mach_msg_type_number_t code_count
3804 ) {
3805 kern_return_t r;
3806 char *addr;
3807 struct hblk *h;
3808 int i;
3809 # if defined(POWERPC)
3810 # if CPP_WORDSZ == 32
3811 thread_state_flavor_t flavor = PPC_EXCEPTION_STATE;
3812 mach_msg_type_number_t exc_state_count = PPC_EXCEPTION_STATE_COUNT;
3813 ppc_exception_state_t exc_state;
3814 # else
3815 thread_state_flavor_t flavor = PPC_EXCEPTION_STATE64;
3816 mach_msg_type_number_t exc_state_count = PPC_EXCEPTION_STATE64_COUNT;
3817 ppc_exception_state64_t exc_state;
3818 # endif
3819 # elif defined(I386) || defined(X86_64)
3820 # if CPP_WORDSZ == 32
3821 thread_state_flavor_t flavor = x86_EXCEPTION_STATE32;
3822 mach_msg_type_number_t exc_state_count = x86_EXCEPTION_STATE32_COUNT;
3823 x86_exception_state32_t exc_state;
3824 # else
3825 thread_state_flavor_t flavor = x86_EXCEPTION_STATE64;
3826 mach_msg_type_number_t exc_state_count = x86_EXCEPTION_STATE64_COUNT;
3827 x86_exception_state64_t exc_state;
3828 # endif
3829 # else
3830 # error FIXME for non-ppc darwin
3831 # endif
3832
3833
3834 if(exception != EXC_BAD_ACCESS || code[0] != KERN_PROTECTION_FAILURE) {
3835 #ifdef DEBUG_EXCEPTION_HANDLING
3836 /* We aren't interested, pass it on to the old handler */
3837 GC_printf3("Exception: 0x%x Code: 0x%x 0x%x in catch....\n",
3838 exception,
3839 code_count > 0 ? code[0] : -1,
3840 code_count > 1 ? code[1] : -1);
3841 #endif
3842 return FWD();
3843 }
3844
3845 r = thread_get_state(thread,flavor,
3846 (natural_t*)&exc_state,&exc_state_count);
3847 if(r != KERN_SUCCESS) {
3848 /* The thread is supposed to be suspended while the exception handler
3849 is called. This shouldn't fail. */
3850 #ifdef BROKEN_EXCEPTION_HANDLING
3851 GC_err_printf0("thread_get_state failed in "
3852 "catch_exception_raise\n");
3853 return KERN_SUCCESS;
3854 #else
3855 ABORT("thread_get_state failed in catch_exception_raise");
3856 #endif
3857 }
3858
3859 /* This is the address that caused the fault */
3860 #if defined(POWERPC)
3861 addr = (char*) exc_state. THREAD_FLD(dar);
3862 #elif defined (I386) || defined (X86_64)
3863 addr = (char*) exc_state. THREAD_FLD(faultvaddr);
3864 #else
3865 # error FIXME for non POWERPC/I386
3866 #endif
3867
3868 if((HDR(addr)) == 0) {
3869 /* Ugh... just like the SIGBUS problem above, it seems we get a bogus
3870 KERN_PROTECTION_FAILURE every once and a while. We wait till we get
3871 a bunch in a row before doing anything about it. If a "real" fault
3872 ever occurres it'll just keep faulting over and over and we'll hit
3873 the limit pretty quickly. */
3874 #ifdef BROKEN_EXCEPTION_HANDLING
3875 static char *last_fault;
3876 static int last_fault_count;
3877
3878 if(addr != last_fault) {
3879 last_fault = addr;
3880 last_fault_count = 0;
3881 }
3882 if(++last_fault_count < 32) {
3883 if(last_fault_count == 1)
3884 GC_err_printf1(
3885 "GC: WARNING: Ignoring KERN_PROTECTION_FAILURE at %p\n",
3886 addr);
3887 return KERN_SUCCESS;
3888 }
3889
3890 GC_err_printf1("Unexpected KERN_PROTECTION_FAILURE at %p\n",addr);
3891 /* Can't pass it along to the signal handler because that is
3892 ignoring SIGBUS signals. We also shouldn't call ABORT here as
3893 signals don't always work too well from the exception handler. */
3894 GC_err_printf0("Aborting\n");
3895 exit(EXIT_FAILURE);
3896 #else /* BROKEN_EXCEPTION_HANDLING */
3897 /* Pass it along to the next exception handler
3898 (which should call SIGBUS/SIGSEGV) */
3899 return FWD();
3900 #endif /* !BROKEN_EXCEPTION_HANDLING */
3901 }
3902
3903 #ifdef BROKEN_EXCEPTION_HANDLING
3904 /* Reset the number of consecutive SIGBUSs */
3905 GC_sigbus_count = 0;
3906 #endif
3907
3908 if(GC_mprotect_state == GC_MP_NORMAL) { /* common case */
3909 h = (struct hblk*)((word)addr & ~(GC_page_size-1));
3910 UNPROTECT(h, GC_page_size);
3911 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
3912 register int index = PHT_HASH(h+i);
3913 async_set_pht_entry_from_index(GC_dirty_pages, index);
3914 }
3915 } else if(GC_mprotect_state == GC_MP_DISCARDING) {
3916 /* Lie to the thread for now. No sense UNPROTECT()ing the memory
3917 when we're just going to PROTECT() it again later. The thread
3918 will just fault again once it resumes */
3919 } else {
3920 /* Shouldn't happen, i don't think */
3921 GC_printf0("KERN_PROTECTION_FAILURE while world is stopped\n");
3922 return FWD();
3923 }
3924 return KERN_SUCCESS;
3925 }
3926 #undef FWD
3927
3928 /* These should never be called, but just in case... */
3929 kern_return_t catch_exception_raise_state(mach_port_name_t exception_port,
3930 int exception, exception_data_t code, mach_msg_type_number_t codeCnt,
3931 int flavor, thread_state_t old_state, int old_stateCnt,
3932 thread_state_t new_state, int new_stateCnt)
3933 {
3934 ABORT("catch_exception_raise_state");
3935 return(KERN_INVALID_ARGUMENT);
3936 }
3937 kern_return_t catch_exception_raise_state_identity(
3938 mach_port_name_t exception_port, mach_port_t thread, mach_port_t task,
3939 int exception, exception_data_t code, mach_msg_type_number_t codeCnt,
3940 int flavor, thread_state_t old_state, int old_stateCnt,
3941 thread_state_t new_state, int new_stateCnt)
3942 {
3943 ABORT("catch_exception_raise_state_identity");
3944 return(KERN_INVALID_ARGUMENT);
3945 }
3946
3947
3948 #endif /* DARWIN && MPROTECT_VDB */
3949
3950 # ifndef HAVE_INCREMENTAL_PROTECTION_NEEDS
3951 int GC_incremental_protection_needs()
3952 {
3953 return GC_PROTECTS_NONE;
3954 }
3955 # endif /* !HAVE_INCREMENTAL_PROTECTION_NEEDS */
3956
3957 /*
3958 * Call stack save code for debugging.
3959 * Should probably be in mach_dep.c, but that requires reorganization.
3960 */
3961
3962 /* I suspect the following works for most X86 *nix variants, so */
3963 /* long as the frame pointer is explicitly stored. In the case of gcc, */
3964 /* compiler flags (e.g. -fomit-frame-pointer) determine whether it is. */
3965 #if defined(I386) && defined(LINUX) && defined(SAVE_CALL_CHAIN)
3966 # include <features.h>
3967
3968 struct frame {
3969 struct frame *fr_savfp;
3970 long fr_savpc;
3971 long fr_arg[NARGS]; /* All the arguments go here. */
3972 };
3973 #endif
3974
3975 #if defined(SPARC)
3976 # if defined(LINUX)
3977 # include <features.h>
3978
3979 struct frame {
3980 long fr_local[8];
3981 long fr_arg[6];
3982 struct frame *fr_savfp;
3983 long fr_savpc;
3984 # ifndef __arch64__
3985 char *fr_stret;
3986 # endif
3987 long fr_argd[6];
3988 long fr_argx[0];
3989 };
3990 # else
3991 # if defined(SUNOS4)
3992 # include <machine/frame.h>
3993 # else
3994 # if defined (DRSNX)
3995 # include <sys/sparc/frame.h>
3996 # else
3997 # if defined(OPENBSD)
3998 # include <frame.h>
3999 # else
4000 # if defined(FREEBSD) || defined(NETBSD)
4001 # include <machine/frame.h>
4002 # else
4003 # include <sys/frame.h>
4004 # endif
4005 # endif
4006 # endif
4007 # endif
4008 # endif
4009 # if NARGS > 6
4010 --> We only know how to to get the first 6 arguments
4011 # endif
4012 #endif /* SPARC */
4013
4014 #ifdef NEED_CALLINFO
4015 /* Fill in the pc and argument information for up to NFRAMES of my */
4016 /* callers. Ignore my frame and my callers frame. */
4017
4018 #ifdef LINUX
4019 # include <unistd.h>
4020 #endif
4021
4022 #endif /* NEED_CALLINFO */
4023
4024 #if defined(GC_HAVE_BUILTIN_BACKTRACE)
4025 # include <execinfo.h>
4026 #endif
4027
4028 #ifdef SAVE_CALL_CHAIN
4029
4030 #if NARGS == 0 && NFRAMES % 2 == 0 /* No padding */ \
4031 && defined(GC_HAVE_BUILTIN_BACKTRACE)
4032
4033 #ifdef REDIRECT_MALLOC
4034 /* Deal with possible malloc calls in backtrace by omitting */
4035 /* the infinitely recursing backtrace. */
4036 # ifdef THREADS
4037 __thread /* If your compiler doesn't understand this */
4038 /* you could use something like pthread_getspecific. */
4039 # endif
4040 GC_in_save_callers = FALSE;
4041 #endif
4042
4043 void GC_save_callers (info)
4044 struct callinfo info[NFRAMES];
4045 {
4046 void * tmp_info[NFRAMES + 1];
4047 int npcs, i;
4048 # define IGNORE_FRAMES 1
4049
4050 /* We retrieve NFRAMES+1 pc values, but discard the first, since it */
4051 /* points to our own frame. */
4052 # ifdef REDIRECT_MALLOC
4053 if (GC_in_save_callers) {
4054 info[0].ci_pc = (word)(&GC_save_callers);
4055 for (i = 1; i < NFRAMES; ++i) info[i].ci_pc = 0;
4056 return;
4057 }
4058 GC_in_save_callers = TRUE;
4059 # endif
4060 GC_ASSERT(sizeof(struct callinfo) == sizeof(void *));
4061 npcs = backtrace((void **)tmp_info, NFRAMES + IGNORE_FRAMES);
4062 BCOPY(tmp_info+IGNORE_FRAMES, info, (npcs - IGNORE_FRAMES) * sizeof(void *));
4063 for (i = npcs - IGNORE_FRAMES; i < NFRAMES; ++i) info[i].ci_pc = 0;
4064 # ifdef REDIRECT_MALLOC
4065 GC_in_save_callers = FALSE;
4066 # endif
4067 }
4068
4069 #else /* No builtin backtrace; do it ourselves */
4070
4071 #if (defined(OPENBSD) || defined(NETBSD) || defined(FREEBSD)) && defined(SPARC)
4072 # define FR_SAVFP fr_fp
4073 # define FR_SAVPC fr_pc
4074 #else
4075 # define FR_SAVFP fr_savfp
4076 # define FR_SAVPC fr_savpc
4077 #endif
4078
4079 #if defined(SPARC) && (defined(__arch64__) || defined(__sparcv9))
4080 # define BIAS 2047
4081 #else
4082 # define BIAS 0
4083 #endif
4084
4085 void GC_save_callers (info)
4086 struct callinfo info[NFRAMES];
4087 {
4088 struct frame *frame;
4089 struct frame *fp;
4090 int nframes = 0;
4091 # ifdef I386
4092 /* We assume this is turned on only with gcc as the compiler. */
4093 asm("movl %%ebp,%0" : "=r"(frame));
4094 fp = frame;
4095 # else
4096 frame = (struct frame *) GC_save_regs_in_stack ();
4097 fp = (struct frame *)((long) frame -> FR_SAVFP + BIAS);
4098 #endif
4099
4100 for (; (!(fp HOTTER_THAN frame) && !(GC_stackbottom HOTTER_THAN (ptr_t)fp)
4101 && (nframes < NFRAMES));
4102 fp = (struct frame *)((long) fp -> FR_SAVFP + BIAS), nframes++) {
4103 register int i;
4104
4105 info[nframes].ci_pc = fp->FR_SAVPC;
4106 # if NARGS > 0
4107 for (i = 0; i < NARGS; i++) {
4108 info[nframes].ci_arg[i] = ~(fp->fr_arg[i]);
4109 }
4110 # endif /* NARGS > 0 */
4111 }
4112 if (nframes < NFRAMES) info[nframes].ci_pc = 0;
4113 }
4114
4115 #endif /* No builtin backtrace */
4116
4117 #endif /* SAVE_CALL_CHAIN */
4118
4119 #ifdef NEED_CALLINFO
4120
4121 /* Print info to stderr. We do NOT hold the allocation lock */
4122 void GC_print_callers (info)
4123 struct callinfo info[NFRAMES];
4124 {
4125 register int i;
4126 static int reentry_count = 0;
4127 GC_bool stop = FALSE;
4128
4129 /* FIXME: This should probably use a different lock, so that we */
4130 /* become callable with or without the allocation lock. */
4131 LOCK();
4132 ++reentry_count;
4133 UNLOCK();
4134
4135 # if NFRAMES == 1
4136 GC_err_printf0("\tCaller at allocation:\n");
4137 # else
4138 GC_err_printf0("\tCall chain at allocation:\n");
4139 # endif
4140 for (i = 0; i < NFRAMES && !stop ; i++) {
4141 if (info[i].ci_pc == 0) break;
4142 # if NARGS > 0
4143 {
4144 int j;
4145
4146 GC_err_printf0("\t\targs: ");
4147 for (j = 0; j < NARGS; j++) {
4148 if (j != 0) GC_err_printf0(", ");
4149 GC_err_printf2("%d (0x%X)", ~(info[i].ci_arg[j]),
4150 ~(info[i].ci_arg[j]));
4151 }
4152 GC_err_printf0("\n");
4153 }
4154 # endif
4155 if (reentry_count > 1) {
4156 /* We were called during an allocation during */
4157 /* a previous GC_print_callers call; punt. */
4158 GC_err_printf1("\t\t##PC##= 0x%lx\n", info[i].ci_pc);
4159 continue;
4160 }
4161 {
4162 # ifdef LINUX
4163 FILE *pipe;
4164 # endif
4165 # if defined(GC_HAVE_BUILTIN_BACKTRACE) \
4166 && !defined(GC_BACKTRACE_SYMBOLS_BROKEN)
4167 char **sym_name =
4168 backtrace_symbols((void **)(&(info[i].ci_pc)), 1);
4169 char *name = sym_name[0];
4170 # else
4171 char buf[40];
4172 char *name = buf;
4173 sprintf(buf, "##PC##= 0x%lx", info[i].ci_pc);
4174 # endif
4175 # if defined(LINUX) && !defined(SMALL_CONFIG)
4176 /* Try for a line number. */
4177 {
4178 # define EXE_SZ 100
4179 static char exe_name[EXE_SZ];
4180 # define CMD_SZ 200
4181 char cmd_buf[CMD_SZ];
4182 # define RESULT_SZ 200
4183 static char result_buf[RESULT_SZ];
4184 size_t result_len;
4185 char *old_preload;
4186 # define PRELOAD_SZ 200
4187 char preload_buf[PRELOAD_SZ];
4188 static GC_bool found_exe_name = FALSE;
4189 static GC_bool will_fail = FALSE;
4190 int ret_code;
4191 /* Try to get it via a hairy and expensive scheme. */
4192 /* First we get the name of the executable: */
4193 if (will_fail) goto out;
4194 if (!found_exe_name) {
4195 ret_code = readlink("/proc/self/exe", exe_name, EXE_SZ);
4196 if (ret_code < 0 || ret_code >= EXE_SZ
4197 || exe_name[0] != '/') {
4198 will_fail = TRUE; /* Dont try again. */
4199 goto out;
4200 }
4201 exe_name[ret_code] = '\0';
4202 found_exe_name = TRUE;
4203 }
4204 /* Then we use popen to start addr2line -e <exe> <addr> */
4205 /* There are faster ways to do this, but hopefully this */
4206 /* isn't time critical. */
4207 sprintf(cmd_buf, "/usr/bin/addr2line -f -e %s 0x%lx", exe_name,
4208 (unsigned long)info[i].ci_pc);
4209 old_preload = getenv ("LD_PRELOAD");
4210 if (0 != old_preload) {
4211 if (strlen (old_preload) >= PRELOAD_SZ) {
4212 will_fail = TRUE;
4213 goto out;
4214 }
4215 strcpy (preload_buf, old_preload);
4216 unsetenv ("LD_PRELOAD");
4217 }
4218 pipe = popen(cmd_buf, "r");
4219 if (0 != old_preload
4220 && 0 != setenv ("LD_PRELOAD", preload_buf, 0)) {
4221 WARN("Failed to reset LD_PRELOAD\n", 0);
4222 }
4223 if (pipe == NULL
4224 || (result_len = fread(result_buf, 1, RESULT_SZ - 1, pipe))
4225 == 0) {
4226 if (pipe != NULL) pclose(pipe);
4227 will_fail = TRUE;
4228 goto out;
4229 }
4230 if (result_buf[result_len - 1] == '\n') --result_len;
4231 result_buf[result_len] = 0;
4232 if (result_buf[0] == '?'
4233 || result_buf[result_len-2] == ':'
4234 && result_buf[result_len-1] == '0') {
4235 pclose(pipe);
4236 goto out;
4237 }
4238 /* Get rid of embedded newline, if any. Test for "main" */
4239 {
4240 char * nl = strchr(result_buf, '\n');
4241 if (nl != NULL && nl < result_buf + result_len) {
4242 *nl = ':';
4243 }
4244 if (strncmp(result_buf, "main", nl - result_buf) == 0) {
4245 stop = TRUE;
4246 }
4247 }
4248 if (result_len < RESULT_SZ - 25) {
4249 /* Add in hex address */
4250 sprintf(result_buf + result_len, " [0x%lx]",
4251 (unsigned long)info[i].ci_pc);
4252 }
4253 name = result_buf;
4254 pclose(pipe);
4255 out:;
4256 }
4257 # endif /* LINUX */
4258 GC_err_printf1("\t\t%s\n", name);
4259 # if defined(GC_HAVE_BUILTIN_BACKTRACE) \
4260 && !defined(GC_BACKTRACE_SYMBOLS_BROKEN)
4261 free(sym_name); /* May call GC_free; that's OK */
4262 # endif
4263 }
4264 }
4265 LOCK();
4266 --reentry_count;
4267 UNLOCK();
4268 }
4269
4270 #endif /* NEED_CALLINFO */
4271
4272
4273
4274 #if defined(LINUX) && defined(__ELF__) && !defined(SMALL_CONFIG)
4275
4276 /* Dump /proc/self/maps to GC_stderr, to enable looking up names for
4277 addresses in FIND_LEAK output. */
4278
4279 static word dump_maps(char *maps)
4280 {
4281 GC_err_write(maps, strlen(maps));
4282 return 1;
4283 }
4284
4285 void GC_print_address_map()
4286 {
4287 GC_err_printf0("---------- Begin address map ----------\n");
4288 GC_apply_to_maps(dump_maps);
4289 GC_err_printf0("---------- End address map ----------\n");
4290 }
4291
4292 #endif
4293
4294