arch-power: Simplify doubleword operand types
[gem5.git] / configs / common / HMC.py
1 # Copyright (c) 2012-2013 ARM Limited
2 # All rights reserved.
3 #
4 # The license below extends only to copyright in the software and shall
5 # not be construed as granting a license to any other intellectual
6 # property including but not limited to intellectual property relating
7 # to a hardware implementation of the functionality of the software
8 # licensed hereunder. You may use the software subject to the license
9 # terms below provided that you ensure that this notice is replicated
10 # unmodified and in its entirety in all distributions of the software,
11 # modified or unmodified, in source code or in binary form.
12 #
13 # Copyright (c) 2015 The University of Bologna
14 # All rights reserved.
15 #
16 # Redistribution and use in source and binary forms, with or without
17 # modification, are permitted provided that the following conditions are
18 # met: redistributions of source code must retain the above copyright
19 # notice, this list of conditions and the following disclaimer;
20 # redistributions in binary form must reproduce the above copyright
21 # notice, this list of conditions and the following disclaimer in the
22 # documentation and/or other materials provided with the distribution;
23 # neither the name of the copyright holders nor the names of its
24 # contributors may be used to endorse or promote products derived from
25 # this software without specific prior written permission.
26 #
27 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30 # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32 # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33 # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34 # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35 # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36 # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37 # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 #
39 # Authors: Erfan Azarkhish
40 # Abdul Mutaal Ahmad
41
42 # A Simplified model of a complete HMC device. Based on:
43 # [1] http://www.hybridmemorycube.org/specification-download/
44 # [2] High performance AXI-4.0 based interconnect for extensible smart memory
45 # cubes(E. Azarkhish et. al)
46 # [3] Low-Power Hybrid Memory Cubes With Link Power Management and Two-Level
47 # Prefetching (J. Ahn et. al)
48 # [4] Memory-centric system interconnect design with Hybrid Memory Cubes
49 # (G. Kim et. al)
50 # [5] Near Data Processing, Are we there yet? (M. Gokhale)
51 # http://www.cs.utah.edu/wondp/gokhale.pdf
52 # [6] openHMC - A Configurable Open-Source Hybrid Memory Cube Controller
53 # (J. Schmidt)
54 # [7] Hybrid Memory Cube performance characterization on data-centric
55 # workloads (M. Gokhale)
56 #
57 # This script builds a complete HMC device composed of vault controllers,
58 # serial links, the main internal crossbar, and an external hmc controller.
59 #
60 # - VAULT CONTROLLERS:
61 # Instances of the HMC_2500_1x32 class with their functionality specified in
62 # dram_ctrl.cc
63 #
64 # - THE MAIN XBAR:
65 # This component is simply an instance of the NoncoherentXBar class, and its
66 # parameters are tuned to [2].
67 #
68 # - SERIAL LINKS CONTROLLER:
69 # SerialLink is a simple variation of the Bridge class, with the ability to
70 # account for the latency of packet serialization and controller latency. We
71 # assume that the serializer component at the transmitter side does not need
72 # to receive the whole packet to start the serialization. But the
73 # deserializer waits for the complete packet to check its integrity first.
74 #
75 # * Bandwidth of the serial links is not modeled in the SerialLink component
76 # itself.
77 #
78 # * Latency of serial link controller is composed of SerDes latency + link
79 # controller
80 #
81 # * It is inferred from the standard [1] and the literature [3] that serial
82 # links share the same address range and packets can travel over any of
83 # them so a load distribution mechanism is required among them.
84 #
85 # -----------------------------------------
86 # | Host/HMC Controller |
87 # | ---------------------- |
88 # | | Link Aggregator | opt |
89 # | ---------------------- |
90 # | ---------------------- |
91 # | | Serial Link + Ser | * 4 |
92 # | ---------------------- |
93 # |---------------------------------------
94 # -----------------------------------------
95 # | Device
96 # | ---------------------- |
97 # | | Xbar | * 4 |
98 # | ---------------------- |
99 # | ---------------------- |
100 # | | Vault Controller | * 16 |
101 # | ---------------------- |
102 # | ---------------------- |
103 # | | Memory | |
104 # | ---------------------- |
105 # |---------------------------------------|
106 #
107 # In this version we have present 3 different HMC archiecture along with
108 # alongwith their corresponding test script.
109 #
110 # same: It has 4 crossbars in HMC memory. All the crossbars are connected
111 # to each other, providing complete memory range. This archicture also covers
112 # the added latency for sending a request to non-local vault(bridge in b/t
113 # crossbars). All the 4 serial links can access complete memory. So each
114 # link can be connected to separate processor.
115 #
116 # distributed: It has 4 crossbars inside the HMC. Crossbars are not
117 # connected.Through each crossbar only local vaults can be accessed. But to
118 # support this architecture we need a crossbar between serial links and
119 # processor.
120 #
121 # mixed: This is a hybrid architecture. It has 4 crossbars inside the HMC.
122 # 2 Crossbars are connected to only local vaults. From other 2 crossbar, a
123 # request can be forwarded to any other vault.
124
125 from __future__ import print_function
126 from __future__ import absolute_import
127
128 import argparse
129
130 import m5
131 from m5.objects import *
132 from m5.util import *
133
134
135 def add_options(parser):
136 # *****************************CROSSBAR PARAMETERS*************************
137 # Flit size of the main interconnect [1]
138 parser.add_argument("--xbar-width", default=32, action="store", type=int,
139 help="Data width of the main XBar (Bytes)")
140
141 # Clock frequency of the main interconnect [1]
142 # This crossbar, is placed on the logic-based of the HMC and it has its
143 # own voltage and clock domains, different from the DRAM dies or from the
144 # host.
145 parser.add_argument("--xbar-frequency", default='1GHz', type=str,
146 help="Clock Frequency of the main XBar")
147
148 # Arbitration latency of the HMC XBar [1]
149 parser.add_argument("--xbar-frontend-latency", default=1, action="store",
150 type=int, help="Arbitration latency of the XBar")
151
152 # Latency to forward a packet via the interconnect [1](two levels of FIFOs
153 # at the input and output of the inteconnect)
154 parser.add_argument("--xbar-forward-latency", default=2, action="store",
155 type=int, help="Forward latency of the XBar")
156
157 # Latency to forward a response via the interconnect [1](two levels of
158 # FIFOs at the input and output of the inteconnect)
159 parser.add_argument("--xbar-response-latency", default=2, action="store",
160 type=int, help="Response latency of the XBar")
161
162 # number of cross which connects 16 Vaults to serial link[7]
163 parser.add_argument("--number-mem-crossbar", default=4, action="store",
164 type=int, help="Number of crossbar in HMC")
165
166 # *****************************SERIAL LINK PARAMETERS**********************
167 # Number of serial links controllers [1]
168 parser.add_argument("--num-links-controllers", default=4, action="store",
169 type=int, help="Number of serial links")
170
171 # Number of packets (not flits) to store at the request side of the serial
172 # link. This number should be adjusted to achive required bandwidth
173 parser.add_argument("--link-buffer-size-req", default=10, action="store",
174 type=int, help="Number of packets to buffer at the\
175 request side of the serial link")
176
177 # Number of packets (not flits) to store at the response side of the serial
178 # link. This number should be adjusted to achive required bandwidth
179 parser.add_argument("--link-buffer-size-rsp", default=10, action="store",
180 type=int, help="Number of packets to buffer at the\
181 response side of the serial link")
182
183 # Latency of the serial link composed by SER/DES latency (1.6ns [4]) plus
184 # the PCB trace latency (3ns Estimated based on [5])
185 parser.add_argument("--link-latency", default='4.6ns', type=str,
186 help="Latency of the serial links")
187
188 # Clock frequency of the each serial link(SerDes) [1]
189 parser.add_argument("--link-frequency", default='10GHz', type=str,
190 help="Clock Frequency of the serial links")
191
192 # Clock frequency of serial link Controller[6]
193 # clk_hmc[Mhz]= num_lanes_per_link * lane_speed [Gbits/s] /
194 # data_path_width * 10^6
195 # clk_hmc[Mhz]= 16 * 10 Gbps / 256 * 10^6 = 625 Mhz
196 parser.add_argument("--link-controller-frequency", default='625MHz',
197 type=str, help="Clock Frequency of the link\
198 controller")
199
200 # Latency of the serial link controller to process the packets[1][6]
201 # (ClockDomain = 625 Mhz )
202 # used here for calculations only
203 parser.add_argument("--link-ctrl-latency", default=4, action="store",
204 type=int, help="The number of cycles required for the\
205 controller to process the packet")
206
207 # total_ctrl_latency = link_ctrl_latency + link_latency
208 # total_ctrl_latency = 4(Cycles) * 1.6 ns + 4.6 ns
209 parser.add_argument("--total-ctrl-latency", default='11ns', type=str,
210 help="The latency experienced by every packet\
211 regardless of size of packet")
212
213 # Number of parallel lanes in each serial link [1]
214 parser.add_argument("--num-lanes-per-link", default=16, action="store",
215 type=int, help="Number of lanes per each link")
216
217 # Number of serial links [1]
218 parser.add_argument("--num-serial-links", default=4, action="store",
219 type=int, help="Number of serial links")
220
221 # speed of each lane of serial link - SerDes serial interface 10 Gb/s
222 parser.add_argument("--serial-link-speed", default=10, action="store",
223 type=int, help="Gbs/s speed of each lane of serial\
224 link")
225
226 # address range for each of the serial links
227 parser.add_argument("--serial-link-addr-range", default='1GB', type=str,
228 help="memory range for each of the serial links.\
229 Default: 1GB")
230
231 # *****************************PERFORMANCE MONITORING*********************
232 # The main monitor behind the HMC Controller
233 parser.add_argument("--enable-global-monitor", action="store_true",
234 help="The main monitor behind the HMC Controller")
235
236 # The link performance monitors
237 parser.add_argument("--enable-link-monitor", action="store_true",
238 help="The link monitors")
239
240 # link aggregator enable - put a cross between buffers & links
241 parser.add_argument("--enable-link-aggr", action="store_true", help="The\
242 crossbar between port and Link Controller")
243
244 parser.add_argument("--enable-buff-div", action="store_true",
245 help="Memory Range of Buffer is ivided between total\
246 range")
247
248 # *****************************HMC ARCHITECTURE **************************
249 # Memory chunk for 16 vault - numbers of vault / number of crossbars
250 parser.add_argument("--mem-chunk", default=4, action="store", type=int,
251 help="Chunk of memory range for each cross bar in\
252 arch 0")
253
254 # size of req buffer within crossbar, used for modelling extra latency
255 # when the reuqest go to non-local vault
256 parser.add_argument("--xbar-buffer-size-req", default=10, action="store",
257 type=int, help="Number of packets to buffer at the\
258 request side of the crossbar")
259
260 # size of response buffer within crossbar, used for modelling extra latency
261 # when the response received from non-local vault
262 parser.add_argument("--xbar-buffer-size-resp", default=10, action="store",
263 type=int, help="Number of packets to buffer at the\
264 response side of the crossbar")
265 # HMC device architecture. It affects the HMC host controller as well
266 parser.add_argument("--arch", type=str, choices=["same", "distributed",
267 "mixed"], default="distributed", help="same: HMC with\
268 4 links, all with same range.\ndistributed: HMC with\
269 4 links with distributed range.\nmixed: mixed with\
270 same and distributed range.\nDefault: distributed")
271 # HMC device - number of vaults
272 parser.add_argument("--hmc-dev-num-vaults", default=16, action="store",
273 type=int, help="number of independent vaults within\
274 the HMC device. Note: each vault has a memory\
275 controller (valut controller)\nDefault: 16")
276 # HMC device - vault capacity or size
277 parser.add_argument("--hmc-dev-vault-size", default='256MB', type=str,
278 help="vault storage capacity in bytes. Default:\
279 256MB")
280 parser.add_argument("--mem-type", type=str, choices=["HMC_2500_1x32"],
281 default="HMC_2500_1x32", help="type of HMC memory to\
282 use. Default: HMC_2500_1x32")
283 parser.add_argument("--mem-channels", default=1, action="store", type=int,
284 help="Number of memory channels")
285 parser.add_argument("--mem-ranks", default=1, action="store", type=int,
286 help="Number of ranks to iterate across")
287 parser.add_argument("--burst-length", default=256, action="store",
288 type=int, help="burst length in bytes. Note: the\
289 cache line size will be set to this value.\nDefault:\
290 256")
291
292
293 # configure HMC host controller
294 def config_hmc_host_ctrl(opt, system):
295
296 # create HMC host controller
297 system.hmc_host = SubSystem()
298
299 # Create additional crossbar for arch1
300 if opt.arch == "distributed" or opt.arch == "mixed":
301 clk = '100GHz'
302 vd = VoltageDomain(voltage='1V')
303 # Create additional crossbar for arch1
304 system.membus = NoncoherentXBar(width=8)
305 system.membus.badaddr_responder = BadAddr()
306 system.membus.default = Self.badaddr_responder.pio
307 system.membus.width = 8
308 system.membus.frontend_latency = 3
309 system.membus.forward_latency = 4
310 system.membus.response_latency = 2
311 cd = SrcClockDomain(clock=clk, voltage_domain=vd)
312 system.membus.clk_domain = cd
313
314 # create memory ranges for the serial links
315 slar = convert.toMemorySize(opt.serial_link_addr_range)
316 # Memmory ranges of serial link for arch-0. Same as the ranges of vault
317 # controllers (4 vaults to 1 serial link)
318 if opt.arch == "same":
319 ser_ranges = [AddrRange(0, (4*slar)-1) for i in
320 range(opt.num_serial_links)]
321 # Memmory ranges of serial link for arch-1. Distributed range accross
322 # links
323 if opt.arch == "distributed":
324 ser_ranges = [AddrRange(i*slar, ((i+1)*slar)-1) for i in
325 range(opt.num_serial_links)]
326 # Memmory ranges of serial link for arch-2 'Mixed' address distribution
327 # over links
328 if opt.arch == "mixed":
329 ser_range0 = AddrRange(0, (1*slar)-1)
330 ser_range1 = AddrRange(1*slar, 2*slar-1)
331 ser_range2 = AddrRange(0, (4*slar)-1)
332 ser_range3 = AddrRange(0, (4*slar)-1)
333 ser_ranges = [ser_range0, ser_range1, ser_range2, ser_range3]
334
335 # Serial link Controller with 16 SerDes links at 10 Gbps with serial link
336 # ranges w.r.t to architecture
337 sl = [SerialLink(ranges=ser_ranges[i],
338 req_size=opt.link_buffer_size_req,
339 resp_size=opt.link_buffer_size_rsp,
340 num_lanes=opt.num_lanes_per_link,
341 link_speed=opt.serial_link_speed,
342 delay=opt.total_ctrl_latency) for i in
343 range(opt.num_serial_links)]
344 system.hmc_host.seriallink = sl
345
346 # enable global monitor
347 if opt.enable_global_monitor:
348 system.hmc_host.lmonitor = [CommMonitor() for i in
349 range(opt.num_serial_links)]
350
351 # set the clock frequency for serial link
352 for i in range(opt.num_serial_links):
353 clk = opt.link_controller_frequency
354 vd = VoltageDomain(voltage='1V')
355 scd = SrcClockDomain(clock=clk, voltage_domain=vd)
356 system.hmc_host.seriallink[i].clk_domain = scd
357
358 # Connect membus/traffic gen to Serial Link Controller for differrent HMC
359 # architectures
360 hh = system.hmc_host
361 if opt.arch == "distributed":
362 mb = system.membus
363 for i in range(opt.num_links_controllers):
364 if opt.enable_global_monitor:
365 mb.master = hh.lmonitor[i].slave
366 hh.lmonitor[i].master = hh.seriallink[i].slave
367 else:
368 mb.master = hh.seriallink[i].slave
369 if opt.arch == "mixed":
370 mb = system.membus
371 if opt.enable_global_monitor:
372 mb.master = hh.lmonitor[0].slave
373 hh.lmonitor[0].master = hh.seriallink[0].slave
374 mb.master = hh.lmonitor[1].slave
375 hh.lmonitor[1].master = hh.seriallink[1].slave
376 else:
377 mb.master = hh.seriallink[0].slave
378 mb.master = hh.seriallink[1].slave
379
380 if opt.arch == "same":
381 for i in range(opt.num_links_controllers):
382 if opt.enable_global_monitor:
383 hh.lmonitor[i].master = hh.seriallink[i].slave
384
385 return system
386
387
388 # Create an HMC device
389 def config_hmc_dev(opt, system, hmc_host):
390
391 # create HMC device
392 system.hmc_dev = SubSystem()
393
394 # create memory ranges for the vault controllers
395 arv = convert.toMemorySize(opt.hmc_dev_vault_size)
396 addr_ranges_vaults = [AddrRange(i*arv, ((i+1)*arv-1)) for i in
397 range(opt.hmc_dev_num_vaults)]
398 system.mem_ranges = addr_ranges_vaults
399
400 if opt.enable_link_monitor:
401 lm = [CommMonitor() for i in range(opt.num_links_controllers)]
402 system.hmc_dev.lmonitor = lm
403
404 # 4 HMC Crossbars located in its logic-base (LoB)
405 xb = [NoncoherentXBar(width=opt.xbar_width,
406 frontend_latency=opt.xbar_frontend_latency,
407 forward_latency=opt.xbar_forward_latency,
408 response_latency=opt.xbar_response_latency) for i in
409 range(opt.number_mem_crossbar)]
410 system.hmc_dev.xbar = xb
411
412 for i in range(opt.number_mem_crossbar):
413 clk = opt.xbar_frequency
414 vd = VoltageDomain(voltage='1V')
415 scd = SrcClockDomain(clock=clk, voltage_domain=vd)
416 system.hmc_dev.xbar[i].clk_domain = scd
417
418 # Attach 4 serial link to 4 crossbar/s
419 for i in range(opt.num_serial_links):
420 if opt.enable_link_monitor:
421 system.hmc_host.seriallink[i].master = \
422 system.hmc_dev.lmonitor[i].slave
423 system.hmc_dev.lmonitor[i].master = system.hmc_dev.xbar[i].slave
424 else:
425 system.hmc_host.seriallink[i].master = system.hmc_dev.xbar[i].slave
426
427 # Connecting xbar with each other for request arriving at the wrong xbar,
428 # then it will be forward to correct xbar. Bridge is used to connect xbars
429 if opt.arch == "same":
430 numx = len(system.hmc_dev.xbar)
431
432 # create a list of buffers
433 system.hmc_dev.buffers = [Bridge(req_size=opt.xbar_buffer_size_req,
434 resp_size=opt.xbar_buffer_size_resp)
435 for i in range(numx*(opt.mem_chunk-1))]
436
437 # Buffer iterator
438 it = iter(range(len(system.hmc_dev.buffers)))
439
440 # necesarry to add system_port to one of the xbar
441 system.system_port = system.hmc_dev.xbar[3].slave
442
443 # iterate over all the crossbars and connect them as required
444 for i in range(numx):
445 for j in range(numx):
446 # connect xbar to all other xbars except itself
447 if i != j:
448 # get the next index of buffer
449 index = it.next()
450
451 # Change the default values for ranges of bridge
452 system.hmc_dev.buffers[index].ranges = system.mem_ranges[
453 j * int(opt.mem_chunk):
454 (j + 1) * int(opt.mem_chunk)]
455
456 # Connect the bridge between corssbars
457 system.hmc_dev.xbar[i].master = system.hmc_dev.buffers[
458 index].slave
459 system.hmc_dev.buffers[
460 index].master = system.hmc_dev.xbar[j].slave
461 else:
462 # Don't connect the xbar to itself
463 pass
464
465 # Two crossbars are connected to all other crossbars-Other 2 vault
466 # can only direct traffic to it local vaults
467 if opt.arch == "mixed":
468 system.hmc_dev.buffer30 = Bridge(ranges=system.mem_ranges[0:4])
469 system.hmc_dev.xbar[3].master = system.hmc_dev.buffer30.slave
470 system.hmc_dev.buffer30.master = system.hmc_dev.xbar[0].slave
471
472 system.hmc_dev.buffer31 = Bridge(ranges=system.mem_ranges[4:8])
473 system.hmc_dev.xbar[3].master = system.hmc_dev.buffer31.slave
474 system.hmc_dev.buffer31.master = system.hmc_dev.xbar[1].slave
475
476 system.hmc_dev.buffer32 = Bridge(ranges=system.mem_ranges[8:12])
477 system.hmc_dev.xbar[3].master = system.hmc_dev.buffer32.slave
478 system.hmc_dev.buffer32.master = system.hmc_dev.xbar[2].slave
479
480 system.hmc_dev.buffer20 = Bridge(ranges=system.mem_ranges[0:4])
481 system.hmc_dev.xbar[2].master = system.hmc_dev.buffer20.slave
482 system.hmc_dev.buffer20.master = system.hmc_dev.xbar[0].slave
483
484 system.hmc_dev.buffer21 = Bridge(ranges=system.mem_ranges[4:8])
485 system.hmc_dev.xbar[2].master = system.hmc_dev.buffer21.slave
486 system.hmc_dev.buffer21.master = system.hmc_dev.xbar[1].slave
487
488 system.hmc_dev.buffer23 = Bridge(ranges=system.mem_ranges[12:16])
489 system.hmc_dev.xbar[2].master = system.hmc_dev.buffer23.slave
490 system.hmc_dev.buffer23.master = system.hmc_dev.xbar[3].slave