Merge zizzer.eecs.umich.edu:/m5/Bitkeeper/linux
[gem5.git] / cpu / exec_context.hh
1 /*
2 * Copyright (c) 2003 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #ifndef __EXEC_CONTEXT_HH__
30 #define __EXEC_CONTEXT_HH__
31
32 #include "sim/host.hh"
33 #include "mem/mem_req.hh"
34 #include "sim/serialize.hh"
35
36 // forward declaration: see functional_memory.hh
37 class FunctionalMemory;
38 class PhysicalMemory;
39 class BaseCPU;
40
41 #ifdef FULL_SYSTEM
42
43 #include "targetarch/alpha_memory.hh"
44 class MemoryController;
45
46 #include "kern/tru64/kernel_stats.hh"
47 #include "sim/system.hh"
48
49 #ifdef FS_MEASURE
50 #include "sim/sw_context.hh"
51 #endif
52
53 #else // !FULL_SYSTEM
54
55 #include "sim/process.hh"
56
57 #endif // FULL_SYSTEM
58
59 //
60 // The ExecContext object represents a functional context for
61 // instruction execution. It incorporates everything required for
62 // architecture-level functional simulation of a single thread.
63 //
64
65 class ExecContext
66 {
67 public:
68 enum Status
69 {
70 /// Initialized but not running yet. All CPUs start in
71 /// this state, but most transition to Active on cycle 1.
72 /// In MP or SMT systems, non-primary contexts will stay
73 /// in this state until a thread is assigned to them.
74 Unallocated,
75
76 /// Running. Instructions should be executed only when
77 /// the context is in this state.
78 Active,
79
80 /// Temporarily inactive. Entered while waiting for
81 /// synchronization, etc.
82 Suspended,
83
84 /// Permanently shut down. Entered when target executes
85 /// m5exit pseudo-instruction. When all contexts enter
86 /// this state, the simulation will terminate.
87 Halted
88 };
89
90 private:
91 Status _status;
92
93 public:
94 Status status() const { return _status; }
95
96 /// Set the status to Active. Optional delay indicates number of
97 /// cycles to wait before beginning execution.
98 void activate(int delay = 1);
99
100 /// Set the status to Suspended.
101 void suspend();
102
103 /// Set the status to Unallocated.
104 void deallocate();
105
106 /// Set the status to Halted.
107 void halt();
108
109 #ifdef FULL_SYSTEM
110 public:
111 KernelStats kernelStats;
112 #endif
113
114 public:
115 RegFile regs; // correct-path register context
116
117 // pointer to CPU associated with this context
118 BaseCPU *cpu;
119
120 // Index of hardware thread context on the CPU that this represents.
121 int thread_num;
122
123 // ID of this context w.r.t. the System or Process object to which
124 // it belongs. For full-system mode, this is the system CPU ID.
125 int cpu_id;
126
127 #ifdef FULL_SYSTEM
128
129 FunctionalMemory *mem;
130 AlphaItb *itb;
131 AlphaDtb *dtb;
132 System *system;
133
134 // the following two fields are redundant, since we can always
135 // look them up through the system pointer, but we'll leave them
136 // here for now for convenience
137 MemoryController *memCtrl;
138 PhysicalMemory *physmem;
139
140 #ifdef FS_MEASURE
141 SWContext *swCtx;
142 #endif
143
144 #else
145 Process *process;
146
147 FunctionalMemory *mem; // functional storage for process address space
148
149 // Address space ID. Note that this is used for TIMING cache
150 // simulation only; all functional memory accesses should use
151 // one of the FunctionalMemory pointers above.
152 short asid;
153
154 #endif
155
156
157 /*
158 * number of executed instructions, for matching with syscall trace
159 * points in EIO files.
160 */
161 Counter func_exe_inst;
162
163 //
164 // Count failed store conditionals so we can warn of apparent
165 // application deadlock situations.
166 unsigned storeCondFailures;
167
168 // constructor: initialize context from given process structure
169 #ifdef FULL_SYSTEM
170 ExecContext(BaseCPU *_cpu, int _thread_num, System *_system,
171 AlphaItb *_itb, AlphaDtb *_dtb, FunctionalMemory *_dem);
172 #else
173 ExecContext(BaseCPU *_cpu, int _thread_num, Process *_process, int _asid);
174 ExecContext(BaseCPU *_cpu, int _thread_num, FunctionalMemory *_mem,
175 int _asid);
176 #endif
177 virtual ~ExecContext() {}
178
179 virtual void takeOverFrom(ExecContext *oldContext);
180
181 void regStats(const std::string &name);
182
183 void serialize(std::ostream &os);
184 void unserialize(Checkpoint *cp, const std::string &section);
185
186 #ifdef FULL_SYSTEM
187 bool validInstAddr(Addr addr) { return true; }
188 bool validDataAddr(Addr addr) { return true; }
189 int getInstAsid() { return ITB_ASN_ASN(regs.ipr[TheISA::IPR_ITB_ASN]); }
190 int getDataAsid() { return DTB_ASN_ASN(regs.ipr[TheISA::IPR_DTB_ASN]); }
191
192 Fault translateInstReq(MemReqPtr &req)
193 {
194 return itb->translate(req);
195 }
196
197 Fault translateDataReadReq(MemReqPtr &req)
198 {
199 return dtb->translate(req, false);
200 }
201
202 Fault translateDataWriteReq(MemReqPtr &req)
203 {
204 return dtb->translate(req, true);
205 }
206
207 #else
208 bool validInstAddr(Addr addr)
209 { return process->validInstAddr(addr); }
210
211 bool validDataAddr(Addr addr)
212 { return process->validDataAddr(addr); }
213
214 int getInstAsid() { return asid; }
215 int getDataAsid() { return asid; }
216
217 Fault dummyTranslation(MemReqPtr &req)
218 {
219 #if 0
220 assert((req->vaddr >> 48 & 0xffff) == 0);
221 #endif
222
223 // put the asid in the upper 16 bits of the paddr
224 req->paddr = req->vaddr & ~((Addr)0xffff << sizeof(Addr) * 8 - 16);
225 req->paddr = req->paddr | (Addr)req->asid << sizeof(Addr) * 8 - 16;
226 return No_Fault;
227 }
228 Fault translateInstReq(MemReqPtr &req)
229 {
230 return dummyTranslation(req);
231 }
232 Fault translateDataReadReq(MemReqPtr &req)
233 {
234 return dummyTranslation(req);
235 }
236 Fault translateDataWriteReq(MemReqPtr &req)
237 {
238 return dummyTranslation(req);
239 }
240
241 #endif
242
243 template <class T>
244 Fault read(MemReqPtr &req, T &data)
245 {
246 #if defined(TARGET_ALPHA) && defined(FULL_SYSTEM)
247 if (req->flags & LOCKED) {
248 MiscRegFile *cregs = &req->xc->regs.miscRegs;
249 cregs->lock_addr = req->paddr;
250 cregs->lock_flag = true;
251 }
252 #endif
253 return mem->read(req, data);
254 }
255
256 template <class T>
257 Fault write(MemReqPtr &req, T &data)
258 {
259 #if defined(TARGET_ALPHA) && defined(FULL_SYSTEM)
260
261 MiscRegFile *cregs;
262
263 // If this is a store conditional, act appropriately
264 if (req->flags & LOCKED) {
265 cregs = &req->xc->regs.miscRegs;
266
267 if (req->flags & UNCACHEABLE) {
268 // Don't update result register (see stq_c in isa_desc)
269 req->result = 2;
270 req->xc->storeCondFailures = 0;//Needed? [RGD]
271 } else {
272 req->result = cregs->lock_flag;
273 if (!cregs->lock_flag ||
274 ((cregs->lock_addr & ~0xf) != (req->paddr & ~0xf))) {
275 cregs->lock_flag = false;
276 if (((++req->xc->storeCondFailures) % 100000) == 0) {
277 std::cerr << "Warning: "
278 << req->xc->storeCondFailures
279 << " consecutive store conditional failures "
280 << "on cpu " << req->xc->cpu_id
281 << std::endl;
282 }
283 return No_Fault;
284 }
285 else req->xc->storeCondFailures = 0;
286 }
287 }
288
289 // Need to clear any locked flags on other proccessors for
290 // this address. Only do this for succsful Store Conditionals
291 // and all other stores (WH64?). Unsuccessful Store
292 // Conditionals would have returned above, and wouldn't fall
293 // through.
294 for (int i = 0; i < system->execContexts.size(); i++){
295 cregs = &system->execContexts[i]->regs.miscRegs;
296 if ((cregs->lock_addr & ~0xf) == (req->paddr & ~0xf)) {
297 cregs->lock_flag = false;
298 }
299 }
300
301 #endif
302 return mem->write(req, data);
303 }
304
305 virtual bool misspeculating();
306
307
308 //
309 // New accessors for new decoder.
310 //
311 uint64_t readIntReg(int reg_idx)
312 {
313 return regs.intRegFile[reg_idx];
314 }
315
316 float readFloatRegSingle(int reg_idx)
317 {
318 return (float)regs.floatRegFile.d[reg_idx];
319 }
320
321 double readFloatRegDouble(int reg_idx)
322 {
323 return regs.floatRegFile.d[reg_idx];
324 }
325
326 uint64_t readFloatRegInt(int reg_idx)
327 {
328 return regs.floatRegFile.q[reg_idx];
329 }
330
331 void setIntReg(int reg_idx, uint64_t val)
332 {
333 regs.intRegFile[reg_idx] = val;
334 }
335
336 void setFloatRegSingle(int reg_idx, float val)
337 {
338 regs.floatRegFile.d[reg_idx] = (double)val;
339 }
340
341 void setFloatRegDouble(int reg_idx, double val)
342 {
343 regs.floatRegFile.d[reg_idx] = val;
344 }
345
346 void setFloatRegInt(int reg_idx, uint64_t val)
347 {
348 regs.floatRegFile.q[reg_idx] = val;
349 }
350
351 uint64_t readPC()
352 {
353 return regs.pc;
354 }
355
356 void setNextPC(uint64_t val)
357 {
358 regs.npc = val;
359 }
360
361 uint64_t readUniq()
362 {
363 return regs.miscRegs.uniq;
364 }
365
366 void setUniq(uint64_t val)
367 {
368 regs.miscRegs.uniq = val;
369 }
370
371 uint64_t readFpcr()
372 {
373 return regs.miscRegs.fpcr;
374 }
375
376 void setFpcr(uint64_t val)
377 {
378 regs.miscRegs.fpcr = val;
379 }
380
381 #ifdef FULL_SYSTEM
382 uint64_t readIpr(int idx, Fault &fault);
383 Fault setIpr(int idx, uint64_t val);
384 Fault hwrei();
385 void ev5_trap(Fault fault);
386 bool simPalCheck(int palFunc);
387 #endif
388
389 #ifndef FULL_SYSTEM
390 IntReg getSyscallArg(int i)
391 {
392 return regs.intRegFile[ArgumentReg0 + i];
393 }
394
395 // used to shift args for indirect syscall
396 void setSyscallArg(int i, IntReg val)
397 {
398 regs.intRegFile[ArgumentReg0 + i] = val;
399 }
400
401 void setSyscallReturn(int64_t return_value)
402 {
403 // check for error condition. Alpha syscall convention is to
404 // indicate success/failure in reg a3 (r19) and put the
405 // return value itself in the standard return value reg (v0).
406 const int RegA3 = 19; // only place this is used
407 if (return_value >= 0) {
408 // no error
409 regs.intRegFile[RegA3] = 0;
410 regs.intRegFile[ReturnValueReg] = return_value;
411 } else {
412 // got an error, return details
413 regs.intRegFile[RegA3] = (IntReg) -1;
414 regs.intRegFile[ReturnValueReg] = -return_value;
415 }
416 }
417
418 void syscall()
419 {
420 process->syscall(this);
421 }
422 #endif
423 };
424
425
426 // for non-speculative execution context, spec_mode is always false
427 inline bool
428 ExecContext::misspeculating()
429 {
430 return false;
431 }
432
433 #endif // __EXEC_CONTEXT_HH__