Merge zizzer.eecs.umich.edu:/z/m5/Bitkeeper/m5
[gem5.git] / cpu / o3 / inst_queue_impl.hh
1 /*
2 * Copyright (c) 2004-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 // Todo:
30 // Current ordering allows for 0 cycle added-to-scheduled. Could maybe fake
31 // it; either do in reverse order, or have added instructions put into a
32 // different ready queue that, in scheduleRreadyInsts(), gets put onto the
33 // normal ready queue. This would however give only a one cycle delay,
34 // but probably is more flexible to actually add in a delay parameter than
35 // just running it backwards.
36
37 #include <limits>
38 #include <vector>
39
40 #include "sim/root.hh"
41
42 #include "cpu/o3/inst_queue.hh"
43
44 // Either compile error or max int due to sign extension.
45 // Hack to avoid compile warnings.
46 const InstSeqNum MaxInstSeqNum = std::numeric_limits<InstSeqNum>::max();
47
48 template <class Impl>
49 InstructionQueue<Impl>::InstructionQueue(Params &params)
50 : memDepUnit(params),
51 numEntries(params.numIQEntries),
52 intWidth(params.executeIntWidth),
53 floatWidth(params.executeFloatWidth),
54 branchWidth(params.executeBranchWidth),
55 memoryWidth(params.executeMemoryWidth),
56 totalWidth(params.issueWidth),
57 numPhysIntRegs(params.numPhysIntRegs),
58 numPhysFloatRegs(params.numPhysFloatRegs),
59 commitToIEWDelay(params.commitToIEWDelay)
60 {
61 // Initialize the number of free IQ entries.
62 freeEntries = numEntries;
63
64 // Set the number of physical registers as the number of int + float
65 numPhysRegs = numPhysIntRegs + numPhysFloatRegs;
66
67 DPRINTF(IQ, "IQ: There are %i physical registers.\n", numPhysRegs);
68
69 //Create an entry for each physical register within the
70 //dependency graph.
71 dependGraph = new DependencyEntry[numPhysRegs];
72
73 // Resize the register scoreboard.
74 regScoreboard.resize(numPhysRegs);
75
76 // Initialize all the head pointers to point to NULL, and all the
77 // entries as unready.
78 // Note that in actuality, the registers corresponding to the logical
79 // registers start off as ready. However this doesn't matter for the
80 // IQ as the instruction should have been correctly told if those
81 // registers are ready in rename. Thus it can all be initialized as
82 // unready.
83 for (int i = 0; i < numPhysRegs; ++i)
84 {
85 dependGraph[i].next = NULL;
86 dependGraph[i].inst = NULL;
87 regScoreboard[i] = false;
88 }
89
90 }
91
92 template <class Impl>
93 void
94 InstructionQueue<Impl>::regStats()
95 {
96 iqInstsAdded
97 .name(name() + ".iqInstsAdded")
98 .desc("Number of instructions added to the IQ (excludes non-spec)")
99 .prereq(iqInstsAdded);
100
101 iqNonSpecInstsAdded
102 .name(name() + ".iqNonSpecInstsAdded")
103 .desc("Number of non-speculative instructions added to the IQ")
104 .prereq(iqNonSpecInstsAdded);
105
106 // iqIntInstsAdded;
107
108 iqIntInstsIssued
109 .name(name() + ".iqIntInstsIssued")
110 .desc("Number of integer instructions issued")
111 .prereq(iqIntInstsIssued);
112
113 // iqFloatInstsAdded;
114
115 iqFloatInstsIssued
116 .name(name() + ".iqFloatInstsIssued")
117 .desc("Number of float instructions issued")
118 .prereq(iqFloatInstsIssued);
119
120 // iqBranchInstsAdded;
121
122 iqBranchInstsIssued
123 .name(name() + ".iqBranchInstsIssued")
124 .desc("Number of branch instructions issued")
125 .prereq(iqBranchInstsIssued);
126
127 // iqMemInstsAdded;
128
129 iqMemInstsIssued
130 .name(name() + ".iqMemInstsIssued")
131 .desc("Number of memory instructions issued")
132 .prereq(iqMemInstsIssued);
133
134 // iqMiscInstsAdded;
135
136 iqMiscInstsIssued
137 .name(name() + ".iqMiscInstsIssued")
138 .desc("Number of miscellaneous instructions issued")
139 .prereq(iqMiscInstsIssued);
140
141 iqSquashedInstsIssued
142 .name(name() + ".iqSquashedInstsIssued")
143 .desc("Number of squashed instructions issued")
144 .prereq(iqSquashedInstsIssued);
145
146 iqLoopSquashStalls
147 .name(name() + ".iqLoopSquashStalls")
148 .desc("Number of times issue loop had to restart due to squashed "
149 "inst; mainly for profiling")
150 .prereq(iqLoopSquashStalls);
151
152 iqSquashedInstsExamined
153 .name(name() + ".iqSquashedInstsExamined")
154 .desc("Number of squashed instructions iterated over during squash;"
155 " mainly for profiling")
156 .prereq(iqSquashedInstsExamined);
157
158 iqSquashedOperandsExamined
159 .name(name() + ".iqSquashedOperandsExamined")
160 .desc("Number of squashed operands that are examined and possibly "
161 "removed from graph")
162 .prereq(iqSquashedOperandsExamined);
163
164 iqSquashedNonSpecRemoved
165 .name(name() + ".iqSquashedNonSpecRemoved")
166 .desc("Number of squashed non-spec instructions that were removed")
167 .prereq(iqSquashedNonSpecRemoved);
168
169 // Tell mem dependence unit to reg stats as well.
170 memDepUnit.regStats();
171 }
172
173 template <class Impl>
174 void
175 InstructionQueue<Impl>::setCPU(FullCPU *cpu_ptr)
176 {
177 cpu = cpu_ptr;
178
179 tail = cpu->instList.begin();
180 }
181
182 template <class Impl>
183 void
184 InstructionQueue<Impl>::setIssueToExecuteQueue(
185 TimeBuffer<IssueStruct> *i2e_ptr)
186 {
187 DPRINTF(IQ, "IQ: Set the issue to execute queue.\n");
188 issueToExecuteQueue = i2e_ptr;
189 }
190
191 template <class Impl>
192 void
193 InstructionQueue<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
194 {
195 DPRINTF(IQ, "IQ: Set the time buffer.\n");
196 timeBuffer = tb_ptr;
197
198 fromCommit = timeBuffer->getWire(-commitToIEWDelay);
199 }
200
201 template <class Impl>
202 unsigned
203 InstructionQueue<Impl>::numFreeEntries()
204 {
205 return freeEntries;
206 }
207
208 // Might want to do something more complex if it knows how many instructions
209 // will be issued this cycle.
210 template <class Impl>
211 bool
212 InstructionQueue<Impl>::isFull()
213 {
214 if (freeEntries == 0) {
215 return(true);
216 } else {
217 return(false);
218 }
219 }
220
221 template <class Impl>
222 void
223 InstructionQueue<Impl>::insert(DynInstPtr &new_inst)
224 {
225 // Make sure the instruction is valid
226 assert(new_inst);
227
228 DPRINTF(IQ, "IQ: Adding instruction PC %#x to the IQ.\n",
229 new_inst->readPC());
230
231 // Check if there are any free entries. Panic if there are none.
232 // Might want to have this return a fault in the future instead of
233 // panicing.
234 assert(freeEntries != 0);
235
236 // If the IQ currently has nothing in it, then there's a possibility
237 // that the tail iterator is invalid (might have been pointing at an
238 // instruction that was retired). Reset the tail iterator.
239 if (freeEntries == numEntries) {
240 tail = cpu->instList.begin();
241 }
242
243 // Move the tail iterator. Instructions may not have been issued
244 // to the IQ, so we may have to increment the iterator more than once.
245 while ((*tail) != new_inst) {
246 tail++;
247
248 // Make sure the tail iterator points at something legal.
249 assert(tail != cpu->instList.end());
250 }
251
252
253 // Decrease the number of free entries.
254 --freeEntries;
255
256 // Look through its source registers (physical regs), and mark any
257 // dependencies.
258 addToDependents(new_inst);
259
260 // Have this instruction set itself as the producer of its destination
261 // register(s).
262 createDependency(new_inst);
263
264 // If it's a memory instruction, add it to the memory dependency
265 // unit.
266 if (new_inst->isMemRef()) {
267 memDepUnit.insert(new_inst);
268 // Uh..forgot to look it up and put it on the proper dependency list
269 // if the instruction should not go yet.
270 } else {
271 // If the instruction is ready then add it to the ready list.
272 addIfReady(new_inst);
273 }
274
275 ++iqInstsAdded;
276
277 assert(freeEntries == (numEntries - countInsts()));
278 }
279
280 template <class Impl>
281 void
282 InstructionQueue<Impl>::insertNonSpec(DynInstPtr &inst)
283 {
284 nonSpecInsts[inst->seqNum] = inst;
285
286 // @todo: Clean up this code; can do it by setting inst as unable
287 // to issue, then calling normal insert on the inst.
288
289 // Make sure the instruction is valid
290 assert(inst);
291
292 DPRINTF(IQ, "IQ: Adding instruction PC %#x to the IQ.\n",
293 inst->readPC());
294
295 // Check if there are any free entries. Panic if there are none.
296 // Might want to have this return a fault in the future instead of
297 // panicing.
298 assert(freeEntries != 0);
299
300 // If the IQ currently has nothing in it, then there's a possibility
301 // that the tail iterator is invalid (might have been pointing at an
302 // instruction that was retired). Reset the tail iterator.
303 if (freeEntries == numEntries) {
304 tail = cpu->instList.begin();
305 }
306
307 // Move the tail iterator. Instructions may not have been issued
308 // to the IQ, so we may have to increment the iterator more than once.
309 while ((*tail) != inst) {
310 tail++;
311
312 // Make sure the tail iterator points at something legal.
313 assert(tail != cpu->instList.end());
314 }
315
316 // Decrease the number of free entries.
317 --freeEntries;
318
319 // Have this instruction set itself as the producer of its destination
320 // register(s).
321 createDependency(inst);
322
323 // If it's a memory instruction, add it to the memory dependency
324 // unit.
325 if (inst->isMemRef()) {
326 memDepUnit.insertNonSpec(inst);
327 }
328
329 ++iqNonSpecInstsAdded;
330 }
331
332 // Slightly hack function to advance the tail iterator in the case that
333 // the IEW stage issues an instruction that is not added to the IQ. This
334 // is needed in case a long chain of such instructions occurs.
335 // I don't think this is used anymore.
336 template <class Impl>
337 void
338 InstructionQueue<Impl>::advanceTail(DynInstPtr &inst)
339 {
340 // Make sure the instruction is valid
341 assert(inst);
342
343 DPRINTF(IQ, "IQ: Adding instruction PC %#x to the IQ.\n",
344 inst->readPC());
345
346 // Check if there are any free entries. Panic if there are none.
347 // Might want to have this return a fault in the future instead of
348 // panicing.
349 assert(freeEntries != 0);
350
351 // If the IQ currently has nothing in it, then there's a possibility
352 // that the tail iterator is invalid (might have been pointing at an
353 // instruction that was retired). Reset the tail iterator.
354 if (freeEntries == numEntries) {
355 tail = cpu->instList.begin();
356 }
357
358 // Move the tail iterator. Instructions may not have been issued
359 // to the IQ, so we may have to increment the iterator more than once.
360 while ((*tail) != inst) {
361 tail++;
362
363 // Make sure the tail iterator points at something legal.
364 assert(tail != cpu->instList.end());
365 }
366
367 assert(freeEntries <= numEntries);
368
369 // Have this instruction set itself as the producer of its destination
370 // register(s).
371 createDependency(inst);
372 }
373
374 // Need to make sure the number of float and integer instructions
375 // issued does not exceed the total issue bandwidth.
376 // @todo: Figure out a better way to remove the squashed items from the
377 // lists. Checking the top item of each list to see if it's squashed
378 // wastes time and forces jumps.
379 template <class Impl>
380 void
381 InstructionQueue<Impl>::scheduleReadyInsts()
382 {
383 DPRINTF(IQ, "IQ: Attempting to schedule ready instructions from "
384 "the IQ.\n");
385
386 int int_issued = 0;
387 int float_issued = 0;
388 int branch_issued = 0;
389 int memory_issued = 0;
390 int squashed_issued = 0;
391 int total_issued = 0;
392
393 IssueStruct *i2e_info = issueToExecuteQueue->access(0);
394
395 bool insts_available = !readyBranchInsts.empty() ||
396 !readyIntInsts.empty() ||
397 !readyFloatInsts.empty() ||
398 !memDepUnit.empty() ||
399 !readyMiscInsts.empty() ||
400 !squashedInsts.empty();
401
402 // Note: Requires a globally defined constant.
403 InstSeqNum oldest_inst = MaxInstSeqNum;
404 InstList list_with_oldest = None;
405
406 // Temporary values.
407 DynInstPtr int_head_inst;
408 DynInstPtr float_head_inst;
409 DynInstPtr branch_head_inst;
410 DynInstPtr mem_head_inst;
411 DynInstPtr misc_head_inst;
412 DynInstPtr squashed_head_inst;
413
414 // Somewhat nasty code to look at all of the lists where issuable
415 // instructions are located, and choose the oldest instruction among
416 // those lists. Consider a rewrite in the future.
417 while (insts_available && total_issued < totalWidth)
418 {
419 // Set this to false. Each if-block is required to set it to true
420 // if there were instructions available this check. This will cause
421 // this loop to run once more than necessary, but avoids extra calls.
422 insts_available = false;
423
424 oldest_inst = MaxInstSeqNum;
425
426 list_with_oldest = None;
427
428 if (!readyIntInsts.empty() &&
429 int_issued < intWidth) {
430
431 insts_available = true;
432
433 int_head_inst = readyIntInsts.top();
434
435 if (int_head_inst->isSquashed()) {
436 readyIntInsts.pop();
437
438 ++iqLoopSquashStalls;
439
440 continue;
441 }
442
443 oldest_inst = int_head_inst->seqNum;
444
445 list_with_oldest = Int;
446 }
447
448 if (!readyFloatInsts.empty() &&
449 float_issued < floatWidth) {
450
451 insts_available = true;
452
453 float_head_inst = readyFloatInsts.top();
454
455 if (float_head_inst->isSquashed()) {
456 readyFloatInsts.pop();
457
458 ++iqLoopSquashStalls;
459
460 continue;
461 } else if (float_head_inst->seqNum < oldest_inst) {
462 oldest_inst = float_head_inst->seqNum;
463
464 list_with_oldest = Float;
465 }
466 }
467
468 if (!readyBranchInsts.empty() &&
469 branch_issued < branchWidth) {
470
471 insts_available = true;
472
473 branch_head_inst = readyBranchInsts.top();
474
475 if (branch_head_inst->isSquashed()) {
476 readyBranchInsts.pop();
477
478 ++iqLoopSquashStalls;
479
480 continue;
481 } else if (branch_head_inst->seqNum < oldest_inst) {
482 oldest_inst = branch_head_inst->seqNum;
483
484 list_with_oldest = Branch;
485 }
486
487 }
488
489 if (!memDepUnit.empty() &&
490 memory_issued < memoryWidth) {
491
492 insts_available = true;
493
494 mem_head_inst = memDepUnit.top();
495
496 if (mem_head_inst->isSquashed()) {
497 memDepUnit.pop();
498
499 ++iqLoopSquashStalls;
500
501 continue;
502 } else if (mem_head_inst->seqNum < oldest_inst) {
503 oldest_inst = mem_head_inst->seqNum;
504
505 list_with_oldest = Memory;
506 }
507 }
508
509 if (!readyMiscInsts.empty()) {
510
511 insts_available = true;
512
513 misc_head_inst = readyMiscInsts.top();
514
515 if (misc_head_inst->isSquashed()) {
516 readyMiscInsts.pop();
517
518 ++iqLoopSquashStalls;
519
520 continue;
521 } else if (misc_head_inst->seqNum < oldest_inst) {
522 oldest_inst = misc_head_inst->seqNum;
523
524 list_with_oldest = Misc;
525 }
526 }
527
528 if (!squashedInsts.empty()) {
529
530 insts_available = true;
531
532 squashed_head_inst = squashedInsts.top();
533
534 if (squashed_head_inst->seqNum < oldest_inst) {
535 list_with_oldest = Squashed;
536 }
537
538 }
539
540 DynInstPtr issuing_inst = NULL;
541
542 switch (list_with_oldest) {
543 case None:
544 DPRINTF(IQ, "IQ: Not able to schedule any instructions. Issuing "
545 "inst is %#x.\n", issuing_inst);
546 break;
547
548 case Int:
549 issuing_inst = int_head_inst;
550 readyIntInsts.pop();
551 ++int_issued;
552 DPRINTF(IQ, "IQ: Issuing integer instruction PC %#x.\n",
553 issuing_inst->readPC());
554 break;
555
556 case Float:
557 issuing_inst = float_head_inst;
558 readyFloatInsts.pop();
559 ++float_issued;
560 DPRINTF(IQ, "IQ: Issuing float instruction PC %#x.\n",
561 issuing_inst->readPC());
562 break;
563
564 case Branch:
565 issuing_inst = branch_head_inst;
566 readyBranchInsts.pop();
567 ++branch_issued;
568 DPRINTF(IQ, "IQ: Issuing branch instruction PC %#x.\n",
569 issuing_inst->readPC());
570 break;
571
572 case Memory:
573 issuing_inst = mem_head_inst;
574
575 memDepUnit.pop();
576 ++memory_issued;
577 DPRINTF(IQ, "IQ: Issuing memory instruction PC %#x.\n",
578 issuing_inst->readPC());
579 break;
580
581 case Misc:
582 issuing_inst = misc_head_inst;
583 readyMiscInsts.pop();
584
585 ++iqMiscInstsIssued;
586
587 DPRINTF(IQ, "IQ: Issuing a miscellaneous instruction PC %#x.\n",
588 issuing_inst->readPC());
589 break;
590
591 case Squashed:
592 assert(0 && "Squashed insts should not issue any more!");
593 squashedInsts.pop();
594 // Set the squashed instruction as able to commit so that commit
595 // can just drop it from the ROB. This is a bit faked.
596 ++squashed_issued;
597 ++freeEntries;
598
599 DPRINTF(IQ, "IQ: Issuing squashed instruction PC %#x.\n",
600 squashed_head_inst->readPC());
601 break;
602 }
603
604 if (list_with_oldest != None && list_with_oldest != Squashed) {
605 i2e_info->insts[total_issued] = issuing_inst;
606 i2e_info->size++;
607
608 issuing_inst->setIssued();
609
610 ++freeEntries;
611 ++total_issued;
612 }
613
614 assert(freeEntries == (numEntries - countInsts()));
615 }
616
617 iqIntInstsIssued += int_issued;
618 iqFloatInstsIssued += float_issued;
619 iqBranchInstsIssued += branch_issued;
620 iqMemInstsIssued += memory_issued;
621 iqSquashedInstsIssued += squashed_issued;
622 }
623
624 template <class Impl>
625 void
626 InstructionQueue<Impl>::scheduleNonSpec(const InstSeqNum &inst)
627 {
628 DPRINTF(IQ, "IQ: Marking nonspeculative instruction with sequence "
629 "number %i as ready to execute.\n", inst);
630
631 non_spec_it_t inst_it = nonSpecInsts.find(inst);
632
633 assert(inst_it != nonSpecInsts.end());
634
635 // Mark this instruction as ready to issue.
636 (*inst_it).second->setCanIssue();
637
638 // Now schedule the instruction.
639 if (!(*inst_it).second->isMemRef()) {
640 addIfReady((*inst_it).second);
641 } else {
642 memDepUnit.nonSpecInstReady((*inst_it).second);
643 }
644
645 nonSpecInsts.erase(inst_it);
646 }
647
648 template <class Impl>
649 void
650 InstructionQueue<Impl>::wakeDependents(DynInstPtr &completed_inst)
651 {
652 DPRINTF(IQ, "IQ: Waking dependents of completed instruction.\n");
653 //Look at the physical destination register of the DynInst
654 //and look it up on the dependency graph. Then mark as ready
655 //any instructions within the instruction queue.
656 DependencyEntry *curr;
657
658 // Tell the memory dependence unit to wake any dependents on this
659 // instruction if it is a memory instruction.
660
661 if (completed_inst->isMemRef()) {
662 memDepUnit.wakeDependents(completed_inst);
663 }
664
665 for (int dest_reg_idx = 0;
666 dest_reg_idx < completed_inst->numDestRegs();
667 dest_reg_idx++)
668 {
669 PhysRegIndex dest_reg =
670 completed_inst->renamedDestRegIdx(dest_reg_idx);
671
672 // Special case of uniq or control registers. They are not
673 // handled by the IQ and thus have no dependency graph entry.
674 // @todo Figure out a cleaner way to handle this.
675 if (dest_reg >= numPhysRegs) {
676 continue;
677 }
678
679 DPRINTF(IQ, "IQ: Waking any dependents on register %i.\n",
680 (int) dest_reg);
681
682 //Maybe abstract this part into a function.
683 //Go through the dependency chain, marking the registers as ready
684 //within the waiting instructions.
685 while (dependGraph[dest_reg].next) {
686
687 curr = dependGraph[dest_reg].next;
688
689 DPRINTF(IQ, "IQ: Waking up a dependent instruction, PC%#x.\n",
690 curr->inst->readPC());
691
692 // Might want to give more information to the instruction
693 // so that it knows which of its source registers is ready.
694 // However that would mean that the dependency graph entries
695 // would need to hold the src_reg_idx.
696 curr->inst->markSrcRegReady();
697
698 addIfReady(curr->inst);
699
700 dependGraph[dest_reg].next = curr->next;
701
702 DependencyEntry::mem_alloc_counter--;
703
704 curr->inst = NULL;
705
706 delete curr;
707 }
708
709 // Reset the head node now that all of its dependents have been woken
710 // up.
711 dependGraph[dest_reg].next = NULL;
712 dependGraph[dest_reg].inst = NULL;
713
714 // Mark the scoreboard as having that register ready.
715 regScoreboard[dest_reg] = true;
716 }
717 }
718
719 template <class Impl>
720 void
721 InstructionQueue<Impl>::violation(DynInstPtr &store,
722 DynInstPtr &faulting_load)
723 {
724 memDepUnit.violation(store, faulting_load);
725 }
726
727 template <class Impl>
728 void
729 InstructionQueue<Impl>::squash()
730 {
731 DPRINTF(IQ, "IQ: Starting to squash instructions in the IQ.\n");
732
733 // Read instruction sequence number of last instruction out of the
734 // time buffer.
735 squashedSeqNum = fromCommit->commitInfo.doneSeqNum;
736
737 // Setup the squash iterator to point to the tail.
738 squashIt = tail;
739
740 // Call doSquash if there are insts in the IQ
741 if (freeEntries != numEntries) {
742 doSquash();
743 }
744
745 // Also tell the memory dependence unit to squash.
746 memDepUnit.squash(squashedSeqNum);
747 }
748
749 template <class Impl>
750 void
751 InstructionQueue<Impl>::doSquash()
752 {
753 // Make sure the squash iterator isn't pointing to nothing.
754 assert(squashIt != cpu->instList.end());
755 // Make sure the squashed sequence number is valid.
756 assert(squashedSeqNum != 0);
757
758 DPRINTF(IQ, "IQ: Squashing instructions in the IQ.\n");
759
760 // Squash any instructions younger than the squashed sequence number
761 // given.
762 while ((*squashIt)->seqNum > squashedSeqNum) {
763 DynInstPtr squashed_inst = (*squashIt);
764
765 // Only handle the instruction if it actually is in the IQ and
766 // hasn't already been squashed in the IQ.
767 if (!squashed_inst->isIssued() &&
768 !squashed_inst->isSquashedInIQ()) {
769
770 // Remove the instruction from the dependency list.
771 // Hack for now: These below don't add themselves to the
772 // dependency list, so don't try to remove them.
773 if (!squashed_inst->isNonSpeculative()/* &&
774 !squashed_inst->isStore()*/
775 ) {
776
777 for (int src_reg_idx = 0;
778 src_reg_idx < squashed_inst->numSrcRegs();
779 src_reg_idx++)
780 {
781 PhysRegIndex src_reg =
782 squashed_inst->renamedSrcRegIdx(src_reg_idx);
783
784 // Only remove it from the dependency graph if it was
785 // placed there in the first place.
786 // HACK: This assumes that instructions woken up from the
787 // dependency chain aren't informed that a specific src
788 // register has become ready. This may not always be true
789 // in the future.
790 if (!squashed_inst->isReadySrcRegIdx(src_reg_idx) &&
791 src_reg < numPhysRegs) {
792 dependGraph[src_reg].remove(squashed_inst);
793 }
794
795 ++iqSquashedOperandsExamined;
796 }
797
798 // Might want to remove producers as well.
799 } else {
800 nonSpecInsts[squashed_inst->seqNum] = NULL;
801
802 nonSpecInsts.erase(squashed_inst->seqNum);
803
804 ++iqSquashedNonSpecRemoved;
805 }
806
807 // Might want to also clear out the head of the dependency graph.
808
809 // Mark it as squashed within the IQ.
810 squashed_inst->setSquashedInIQ();
811
812 // squashedInsts.push(squashed_inst);
813 squashed_inst->setIssued();
814 squashed_inst->setCanCommit();
815
816 ++freeEntries;
817
818 DPRINTF(IQ, "IQ: Instruction PC %#x squashed.\n",
819 squashed_inst->readPC());
820 }
821
822 --squashIt;
823 ++iqSquashedInstsExamined;
824 }
825
826 assert(freeEntries <= numEntries);
827
828 if (freeEntries == numEntries) {
829 tail = cpu->instList.end();
830 }
831
832 }
833
834 template <class Impl>
835 void
836 InstructionQueue<Impl>::stopSquash()
837 {
838 // Clear up the squash variables to ensure that squashing doesn't
839 // get called improperly.
840 squashedSeqNum = 0;
841
842 squashIt = cpu->instList.end();
843 }
844
845 template <class Impl>
846 void
847 InstructionQueue<Impl>::DependencyEntry::insert(DynInstPtr &new_inst)
848 {
849 //Add this new, dependent instruction at the head of the dependency
850 //chain.
851
852 // First create the entry that will be added to the head of the
853 // dependency chain.
854 DependencyEntry *new_entry = new DependencyEntry;
855 new_entry->next = this->next;
856 new_entry->inst = new_inst;
857
858 // Then actually add it to the chain.
859 this->next = new_entry;
860
861 ++mem_alloc_counter;
862 }
863
864 template <class Impl>
865 void
866 InstructionQueue<Impl>::DependencyEntry::remove(DynInstPtr &inst_to_remove)
867 {
868 DependencyEntry *prev = this;
869 DependencyEntry *curr = this->next;
870
871 // Make sure curr isn't NULL. Because this instruction is being
872 // removed from a dependency list, it must have been placed there at
873 // an earlier time. The dependency chain should not be empty,
874 // unless the instruction dependent upon it is already ready.
875 if (curr == NULL) {
876 return;
877 }
878
879 // Find the instruction to remove within the dependency linked list.
880 while(curr->inst != inst_to_remove)
881 {
882 prev = curr;
883 curr = curr->next;
884
885 assert(curr != NULL);
886 }
887
888 // Now remove this instruction from the list.
889 prev->next = curr->next;
890
891 --mem_alloc_counter;
892
893 // Could push this off to the destructor of DependencyEntry
894 curr->inst = NULL;
895
896 delete curr;
897 }
898
899 template <class Impl>
900 bool
901 InstructionQueue<Impl>::addToDependents(DynInstPtr &new_inst)
902 {
903 // Loop through the instruction's source registers, adding
904 // them to the dependency list if they are not ready.
905 int8_t total_src_regs = new_inst->numSrcRegs();
906 bool return_val = false;
907
908 for (int src_reg_idx = 0;
909 src_reg_idx < total_src_regs;
910 src_reg_idx++)
911 {
912 // Only add it to the dependency graph if it's not ready.
913 if (!new_inst->isReadySrcRegIdx(src_reg_idx)) {
914 PhysRegIndex src_reg = new_inst->renamedSrcRegIdx(src_reg_idx);
915
916 // Check the IQ's scoreboard to make sure the register
917 // hasn't become ready while the instruction was in flight
918 // between stages. Only if it really isn't ready should
919 // it be added to the dependency graph.
920 if (src_reg >= numPhysRegs) {
921 continue;
922 } else if (regScoreboard[src_reg] == false) {
923 DPRINTF(IQ, "IQ: Instruction PC %#x has src reg %i that "
924 "is being added to the dependency chain.\n",
925 new_inst->readPC(), src_reg);
926
927 dependGraph[src_reg].insert(new_inst);
928
929 // Change the return value to indicate that something
930 // was added to the dependency graph.
931 return_val = true;
932 } else {
933 DPRINTF(IQ, "IQ: Instruction PC %#x has src reg %i that "
934 "became ready before it reached the IQ.\n",
935 new_inst->readPC(), src_reg);
936 // Mark a register ready within the instruction.
937 new_inst->markSrcRegReady();
938 }
939 }
940 }
941
942 return return_val;
943 }
944
945 template <class Impl>
946 void
947 InstructionQueue<Impl>::createDependency(DynInstPtr &new_inst)
948 {
949 //Actually nothing really needs to be marked when an
950 //instruction becomes the producer of a register's value,
951 //but for convenience a ptr to the producing instruction will
952 //be placed in the head node of the dependency links.
953 int8_t total_dest_regs = new_inst->numDestRegs();
954
955 for (int dest_reg_idx = 0;
956 dest_reg_idx < total_dest_regs;
957 dest_reg_idx++)
958 {
959 PhysRegIndex dest_reg = new_inst->renamedDestRegIdx(dest_reg_idx);
960
961 // Instructions that use the misc regs will have a reg number
962 // higher than the normal physical registers. In this case these
963 // registers are not renamed, and there is no need to track
964 // dependencies as these instructions must be executed at commit.
965 if (dest_reg >= numPhysRegs) {
966 continue;
967 }
968
969 dependGraph[dest_reg].inst = new_inst;
970
971 if (dependGraph[dest_reg].next) {
972 dumpDependGraph();
973 panic("IQ: Dependency graph not empty!");
974 }
975
976 // Mark the scoreboard to say it's not yet ready.
977 regScoreboard[dest_reg] = false;
978 }
979 }
980
981 template <class Impl>
982 void
983 InstructionQueue<Impl>::addIfReady(DynInstPtr &inst)
984 {
985 //If the instruction now has all of its source registers
986 // available, then add it to the list of ready instructions.
987 if (inst->readyToIssue()) {
988
989 //Add the instruction to the proper ready list.
990 if (inst->isControl()) {
991
992 DPRINTF(IQ, "IQ: Branch instruction is ready to issue, "
993 "putting it onto the ready list, PC %#x.\n",
994 inst->readPC());
995 readyBranchInsts.push(inst);
996
997 } else if (inst->isMemRef()) {
998
999 DPRINTF(IQ, "IQ: Checking if memory instruction can issue.\n");
1000
1001 // Message to the mem dependence unit that this instruction has
1002 // its registers ready.
1003
1004 memDepUnit.regsReady(inst);
1005
1006 #if 0
1007 if (memDepUnit.readyToIssue(inst)) {
1008 DPRINTF(IQ, "IQ: Memory instruction is ready to issue, "
1009 "putting it onto the ready list, PC %#x.\n",
1010 inst->readPC());
1011 readyMemInsts.push(inst);
1012 } else {
1013 // Make dependent on the store.
1014 // Will need some way to get the store instruction it should
1015 // be dependent upon; then when the store issues it can
1016 // put the instruction on the ready list.
1017 // Yet another tree?
1018 assert(0 && "Instruction has no way to actually issue");
1019 }
1020 #endif
1021
1022 } else if (inst->isInteger()) {
1023
1024 DPRINTF(IQ, "IQ: Integer instruction is ready to issue, "
1025 "putting it onto the ready list, PC %#x.\n",
1026 inst->readPC());
1027 readyIntInsts.push(inst);
1028
1029 } else if (inst->isFloating()) {
1030
1031 DPRINTF(IQ, "IQ: Floating instruction is ready to issue, "
1032 "putting it onto the ready list, PC %#x.\n",
1033 inst->readPC());
1034 readyFloatInsts.push(inst);
1035
1036 } else {
1037 DPRINTF(IQ, "IQ: Miscellaneous instruction is ready to issue, "
1038 "putting it onto the ready list, PC %#x..\n",
1039 inst->readPC());
1040
1041 readyMiscInsts.push(inst);
1042 }
1043 }
1044 }
1045
1046 /*
1047 * Caution, this function must not be called prior to tail being updated at
1048 * least once, otherwise it will fail the assertion. This is because
1049 * instList.begin() actually changes upon the insertion of an element into the
1050 * list when the list is empty.
1051 */
1052 template <class Impl>
1053 int
1054 InstructionQueue<Impl>::countInsts()
1055 {
1056 ListIt count_it = cpu->instList.begin();
1057 int total_insts = 0;
1058
1059 if (tail == cpu->instList.end())
1060 return 0;
1061
1062 while (count_it != tail) {
1063 if (!(*count_it)->isIssued()) {
1064 ++total_insts;
1065 }
1066
1067 ++count_it;
1068
1069 assert(count_it != cpu->instList.end());
1070 }
1071
1072 // Need to count the tail iterator as well.
1073 if (count_it != cpu->instList.end() &&
1074 (*count_it) &&
1075 !(*count_it)->isIssued()) {
1076 ++total_insts;
1077 }
1078
1079 return total_insts;
1080 }
1081
1082 template <class Impl>
1083 void
1084 InstructionQueue<Impl>::dumpDependGraph()
1085 {
1086 DependencyEntry *curr;
1087
1088 for (int i = 0; i < numPhysRegs; ++i)
1089 {
1090 curr = &dependGraph[i];
1091
1092 if (curr->inst) {
1093 cprintf("dependGraph[%i]: producer: %#x consumer: ", i,
1094 curr->inst->readPC());
1095 } else {
1096 cprintf("dependGraph[%i]: No producer. consumer: ", i);
1097 }
1098
1099 while (curr->next != NULL) {
1100 curr = curr->next;
1101
1102 cprintf("%#x ", curr->inst->readPC());
1103 }
1104
1105 cprintf("\n");
1106 }
1107 }
1108
1109 template <class Impl>
1110 void
1111 InstructionQueue<Impl>::dumpLists()
1112 {
1113 cprintf("Ready integer list size: %i\n", readyIntInsts.size());
1114
1115 cprintf("Ready float list size: %i\n", readyFloatInsts.size());
1116
1117 cprintf("Ready branch list size: %i\n", readyBranchInsts.size());
1118
1119 cprintf("Ready misc list size: %i\n", readyMiscInsts.size());
1120
1121 cprintf("Squashed list size: %i\n", squashedInsts.size());
1122
1123 cprintf("Non speculative list size: %i\n", nonSpecInsts.size());
1124
1125 non_spec_it_t non_spec_it = nonSpecInsts.begin();
1126
1127 cprintf("Non speculative list: ");
1128
1129 while (non_spec_it != nonSpecInsts.end()) {
1130 cprintf("%#x ", (*non_spec_it).second->readPC());
1131 ++non_spec_it;
1132 }
1133
1134 cprintf("\n");
1135
1136 }