Add a commited loads event queue similar to the one for commited instructions.
[gem5.git] / cpu / simple_cpu / simple_cpu.cc
1 /*
2 * Copyright (c) 2003 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include <iostream>
30 #include <iomanip>
31 #include <list>
32 #include <sstream>
33 #include <string>
34
35 #include <stdio.h>
36 #include <stdlib.h>
37 #include <math.h>
38
39 #include "sim/host.hh"
40 #include "base/cprintf.hh"
41 #include "base/misc.hh"
42 #include "cpu/full_cpu/smt.hh"
43
44 #include "sim/annotation.hh"
45 #include "cpu/exec_context.hh"
46 #include "cpu/base_cpu.hh"
47 #include "sim/debug.hh"
48 #include "cpu/simple_cpu/simple_cpu.hh"
49 #include "base/inifile.hh"
50 #include "mem/mem_interface.hh"
51 #include "mem/base_mem.hh"
52 #include "cpu/static_inst.hh"
53
54 #ifdef FULL_SYSTEM
55 #include "mem/functional_mem/memory_control.hh"
56 #include "mem/functional_mem/physical_memory.hh"
57 #include "targetarch/alpha_memory.hh"
58 #include "sim/system.hh"
59 #else // !FULL_SYSTEM
60 #include "mem/functional_mem/functional_memory.hh"
61 #include "sim/prog.hh"
62 #include "eio/eio.hh"
63 #endif // FULL_SYSTEM
64
65 #include "cpu/exetrace.hh"
66 #include "base/trace.hh"
67 #include "sim/sim_events.hh"
68 #include "base/pollevent.hh"
69 #include "sim/sim_object.hh"
70 #include "sim/sim_stats.hh"
71
72 #include "base/range.hh"
73 #include "base/loader/symtab.hh"
74
75 #ifdef FULL_SYSTEM
76 #include "targetarch/vtophys.hh"
77 #include "dev/pciareg.h"
78 #include "base/remote_gdb.hh"
79 #include "dev/alpha_access.h"
80 #endif
81
82
83 using namespace std;
84
85 SimpleCPU::CacheCompletionEvent::CacheCompletionEvent(SimpleCPU *_cpu)
86 : Event(&mainEventQueue),
87 cpu(_cpu)
88 {
89 }
90
91 void SimpleCPU::CacheCompletionEvent::process()
92 {
93 cpu->processCacheCompletion();
94 }
95
96 const char *
97 SimpleCPU::CacheCompletionEvent::description()
98 {
99 return "cache completion event";
100 }
101
102 #ifdef FULL_SYSTEM
103 SimpleCPU::SimpleCPU(const string &_name,
104 System *_system,
105 Counter max_insts_any_thread,
106 Counter max_insts_all_threads,
107 Counter max_loads_any_thread,
108 Counter max_loads_all_threads,
109 AlphaItb *itb, AlphaDtb *dtb,
110 FunctionalMemory *mem,
111 MemInterface *icache_interface,
112 MemInterface *dcache_interface,
113 int cpu_id, Tick freq)
114 : BaseCPU(_name, /* number_of_threads */ 1,
115 max_insts_any_thread, max_insts_all_threads,
116 max_loads_any_thread, max_loads_all_threads,
117 _system, cpu_id, freq),
118 #else
119 SimpleCPU::SimpleCPU(const string &_name, Process *_process,
120 Counter max_insts_any_thread,
121 Counter max_insts_all_threads,
122 Counter max_loads_any_thread,
123 Counter max_loads_all_threads,
124 MemInterface *icache_interface,
125 MemInterface *dcache_interface)
126 : BaseCPU(_name, /* number_of_threads */ 1,
127 max_insts_any_thread, max_insts_all_threads,
128 max_loads_any_thread, max_loads_all_threads),
129 #endif
130 tickEvent(this), xc(NULL), cacheCompletionEvent(this)
131 {
132 #ifdef FULL_SYSTEM
133 xc = new ExecContext(this, 0, system, itb, dtb, mem, cpu_id);
134
135 _status = Running;
136 if (cpu_id != 0) {
137
138 xc->setStatus(ExecContext::Unallocated);
139
140 //Open a GDB debug session on port (7000 + the cpu_id)
141 (new GDBListener(new RemoteGDB(system, xc), 7000 + cpu_id))->listen();
142
143 AlphaISA::init(system->physmem, &xc->regs);
144
145 fault = Reset_Fault;
146
147 IntReg *ipr = xc->regs.ipr;
148 ipr[TheISA::IPR_MCSR] = 0x6;
149
150 AlphaISA::swap_palshadow(&xc->regs, true);
151
152 xc->regs.pc =
153 ipr[TheISA::IPR_PAL_BASE] + AlphaISA::fault_addr[fault];
154 xc->regs.npc = xc->regs.pc + sizeof(MachInst);
155
156 _status = Idle;
157 }
158 else {
159 system->init(xc);
160
161 // Reset the system
162 //
163 AlphaISA::init(system->physmem, &xc->regs);
164
165 fault = Reset_Fault;
166
167 IntReg *ipr = xc->regs.ipr;
168 ipr[TheISA::IPR_MCSR] = 0x6;
169
170 AlphaISA::swap_palshadow(&xc->regs, true);
171
172 xc->regs.pc = ipr[TheISA::IPR_PAL_BASE] + AlphaISA::fault_addr[fault];
173 xc->regs.npc = xc->regs.pc + sizeof(MachInst);
174
175 _status = Running;
176 tickEvent.schedule(0);
177 }
178
179 #else
180 xc = new ExecContext(this, /* thread_num */ 0, _process, /* asid */ 0);
181 fault = No_Fault;
182 if (xc->status() == ExecContext::Active) {
183 _status = Running;
184 tickEvent.schedule(0);
185 } else
186 _status = Idle;
187 #endif // !FULL_SYSTEM
188
189 icacheInterface = icache_interface;
190 dcacheInterface = dcache_interface;
191
192 memReq = new MemReq();
193 memReq->xc = xc;
194 memReq->asid = 0;
195
196 numInst = 0;
197 last_idle = 0;
198 lastIcacheStall = 0;
199 lastDcacheStall = 0;
200
201 contexts.push_back(xc);
202 }
203
204 SimpleCPU::~SimpleCPU()
205 {
206 }
207
208 void
209 SimpleCPU::regStats()
210 {
211 BaseCPU::regStats();
212
213 numInsts
214 .name(name() + ".num_insts")
215 .desc("Number of instructions executed")
216 ;
217
218 numMemRefs
219 .name(name() + ".num_refs")
220 .desc("Number of memory references")
221 ;
222
223 idleCycles
224 .name(name() + ".idle_cycles")
225 .desc("Number of idle cycles")
226 ;
227
228 idleFraction
229 .name(name() + ".idle_fraction")
230 .desc("Percentage of idle cycles")
231 ;
232
233 icacheStallCycles
234 .name(name() + ".icache_stall_cycles")
235 .desc("ICache total stall cycles")
236 .prereq(icacheStallCycles)
237 ;
238
239 dcacheStallCycles
240 .name(name() + ".dcache_stall_cycles")
241 .desc("DCache total stall cycles")
242 .prereq(dcacheStallCycles)
243 ;
244
245 idleFraction = idleCycles / simTicks;
246
247 numInsts = Statistics::scalar(numInst);
248 simInsts += numInsts;
249 }
250
251 void
252 SimpleCPU::serialize()
253 {
254 nameOut();
255
256 #ifdef FULL_SYSTEM
257 #if 0
258 // do we need this anymore?? egh
259 childOut("itb", xc->itb);
260 childOut("dtb", xc->dtb);
261 childOut("physmem", physmem);
262 #endif
263 #endif
264
265 for (int i = 0; i < NumIntRegs; i++) {
266 stringstream buf;
267 ccprintf(buf, "R%02d", i);
268 paramOut(buf.str(), xc->regs.intRegFile[i]);
269 }
270 for (int i = 0; i < NumFloatRegs; i++) {
271 stringstream buf;
272 ccprintf(buf, "F%02d", i);
273 paramOut(buf.str(), xc->regs.floatRegFile.d[i]);
274 }
275 // CPUTraitsType::serializeSpecialRegs(getProxy(), xc->regs);
276 }
277
278 void
279 SimpleCPU::unserialize(IniFile &db, const string &category, ConfigNode *node)
280 {
281 string data;
282
283 for (int i = 0; i < NumIntRegs; i++) {
284 stringstream buf;
285 ccprintf(buf, "R%02d", i);
286 db.findDefault(category, buf.str(), data);
287 to_number(data,xc->regs.intRegFile[i]);
288 }
289 for (int i = 0; i < NumFloatRegs; i++) {
290 stringstream buf;
291 ccprintf(buf, "F%02d", i);
292 db.findDefault(category, buf.str(), data);
293 xc->regs.floatRegFile.d[i] = strtod(data.c_str(),NULL);
294 }
295
296 // Read in Special registers
297
298 // CPUTraitsType::unserializeSpecialRegs(db,category,node,xc->regs);
299 }
300
301 void
302 change_thread_state(int thread_number, int activate, int priority)
303 {
304 }
305
306 // precise architected memory state accessor macros
307 template <class T>
308 Fault
309 SimpleCPU::read(Addr addr, T& data, unsigned flags)
310 {
311 memReq->reset(addr, sizeof(T), flags);
312
313 // translate to physical address
314 Fault fault = xc->translateDataReadReq(memReq);
315
316 // do functional access
317 if (fault == No_Fault)
318 fault = xc->read(memReq, data);
319
320 if (traceData) {
321 traceData->setAddr(addr);
322 if (fault == No_Fault)
323 traceData->setData(data);
324 }
325
326 // if we have a cache, do cache access too
327 if (fault == No_Fault && dcacheInterface) {
328 memReq->cmd = Read;
329 memReq->completionEvent = NULL;
330 memReq->time = curTick;
331 memReq->flags &= ~UNCACHEABLE;
332 MemAccessResult result = dcacheInterface->access(memReq);
333
334 // Ugly hack to get an event scheduled *only* if the access is
335 // a miss. We really should add first-class support for this
336 // at some point.
337 if (result != MA_HIT && dcacheInterface->doEvents) {
338 memReq->completionEvent = &cacheCompletionEvent;
339 setStatus(DcacheMissStall);
340 }
341 }
342
343 return fault;
344 }
345
346 #ifndef DOXYGEN_SHOULD_SKIP_THIS
347
348 template
349 Fault
350 SimpleCPU::read(Addr addr, uint64_t& data, unsigned flags);
351
352 template
353 Fault
354 SimpleCPU::read(Addr addr, uint32_t& data, unsigned flags);
355
356 template
357 Fault
358 SimpleCPU::read(Addr addr, uint16_t& data, unsigned flags);
359
360 template
361 Fault
362 SimpleCPU::read(Addr addr, uint8_t& data, unsigned flags);
363
364 #endif //DOXYGEN_SHOULD_SKIP_THIS
365
366 template<>
367 Fault
368 SimpleCPU::read(Addr addr, double& data, unsigned flags)
369 {
370 return read(addr, *(uint64_t*)&data, flags);
371 }
372
373 template<>
374 Fault
375 SimpleCPU::read(Addr addr, float& data, unsigned flags)
376 {
377 return read(addr, *(uint32_t*)&data, flags);
378 }
379
380
381 template<>
382 Fault
383 SimpleCPU::read(Addr addr, int32_t& data, unsigned flags)
384 {
385 return read(addr, (uint32_t&)data, flags);
386 }
387
388
389 template <class T>
390 Fault
391 SimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
392 {
393 if (traceData) {
394 traceData->setAddr(addr);
395 traceData->setData(data);
396 }
397
398 memReq->reset(addr, sizeof(T), flags);
399
400 // translate to physical address
401 Fault fault = xc->translateDataWriteReq(memReq);
402
403 // do functional access
404 if (fault == No_Fault)
405 fault = xc->write(memReq, data);
406
407 if (fault == No_Fault && dcacheInterface) {
408 memReq->cmd = Write;
409 memReq->data = (uint8_t *)&data;
410 memReq->completionEvent = NULL;
411 memReq->time = curTick;
412 memReq->flags &= ~UNCACHEABLE;
413 MemAccessResult result = dcacheInterface->access(memReq);
414
415 // Ugly hack to get an event scheduled *only* if the access is
416 // a miss. We really should add first-class support for this
417 // at some point.
418 if (result != MA_HIT && dcacheInterface->doEvents) {
419 memReq->completionEvent = &cacheCompletionEvent;
420 setStatus(DcacheMissStall);
421 }
422 }
423
424 if (res && (fault == No_Fault))
425 *res = memReq->result;
426
427 return fault;
428 }
429
430
431 #ifndef DOXYGEN_SHOULD_SKIP_THIS
432 template
433 Fault
434 SimpleCPU::write(uint64_t data, Addr addr, unsigned flags, uint64_t *res);
435
436 template
437 Fault
438 SimpleCPU::write(uint32_t data, Addr addr, unsigned flags, uint64_t *res);
439
440 template
441 Fault
442 SimpleCPU::write(uint16_t data, Addr addr, unsigned flags, uint64_t *res);
443
444 template
445 Fault
446 SimpleCPU::write(uint8_t data, Addr addr, unsigned flags, uint64_t *res);
447
448 #endif //DOXYGEN_SHOULD_SKIP_THIS
449
450 template<>
451 Fault
452 SimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
453 {
454 return write(*(uint64_t*)&data, addr, flags, res);
455 }
456
457 template<>
458 Fault
459 SimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
460 {
461 return write(*(uint32_t*)&data, addr, flags, res);
462 }
463
464
465 template<>
466 Fault
467 SimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
468 {
469 return write((uint32_t)data, addr, flags, res);
470 }
471
472
473 #ifdef FULL_SYSTEM
474 Addr
475 SimpleCPU::dbg_vtophys(Addr addr)
476 {
477 return vtophys(xc, addr);
478 }
479 #endif // FULL_SYSTEM
480
481 Tick save_cycle = 0;
482
483
484 void
485 SimpleCPU::processCacheCompletion()
486 {
487 switch (status()) {
488 case IcacheMissStall:
489 icacheStallCycles += curTick - lastIcacheStall;
490 setStatus(IcacheMissComplete);
491 break;
492 case DcacheMissStall:
493 dcacheStallCycles += curTick - lastDcacheStall;
494 setStatus(Running);
495 break;
496 default:
497 panic("SimpleCPU::processCacheCompletion: bad state");
498 break;
499 }
500 }
501
502 #ifdef FULL_SYSTEM
503 void
504 SimpleCPU::post_interrupt(int int_num, int index)
505 {
506 BaseCPU::post_interrupt(int_num, index);
507
508 if (xc->status() == ExecContext::Suspended) {
509 DPRINTF(IPI,"Suspended Processor awoke\n");
510 xc->setStatus(ExecContext::Active);
511 Annotate::Resume(xc);
512 }
513 }
514 #endif // FULL_SYSTEM
515
516 /* start simulation, program loaded, processor precise state initialized */
517 void
518 SimpleCPU::tick()
519 {
520 traceData = NULL;
521
522 #ifdef FULL_SYSTEM
523 if (fault == No_Fault && AlphaISA::check_interrupts &&
524 xc->cpu->check_interrupts() &&
525 !PC_PAL(xc->regs.pc) &&
526 status() != IcacheMissComplete) {
527 int ipl = 0;
528 int summary = 0;
529 AlphaISA::check_interrupts = 0;
530 IntReg *ipr = xc->regs.ipr;
531
532 if (xc->regs.ipr[TheISA::IPR_SIRR]) {
533 for (int i = TheISA::INTLEVEL_SOFTWARE_MIN;
534 i < TheISA::INTLEVEL_SOFTWARE_MAX; i++) {
535 if (ipr[TheISA::IPR_SIRR] & (ULL(1) << i)) {
536 // See table 4-19 of 21164 hardware reference
537 ipl = (i - TheISA::INTLEVEL_SOFTWARE_MIN) + 1;
538 summary |= (ULL(1) << i);
539 }
540 }
541 }
542
543 uint64_t interrupts = xc->cpu->intr_status();
544 for (int i = TheISA::INTLEVEL_EXTERNAL_MIN;
545 i < TheISA::INTLEVEL_EXTERNAL_MAX; i++) {
546 if (interrupts & (ULL(1) << i)) {
547 // See table 4-19 of 21164 hardware reference
548 ipl = i;
549 summary |= (ULL(1) << i);
550 }
551 }
552
553 if (ipr[TheISA::IPR_ASTRR])
554 panic("asynchronous traps not implemented\n");
555
556 if (ipl && ipl > xc->regs.ipr[TheISA::IPR_IPLR]) {
557 ipr[TheISA::IPR_ISR] = summary;
558 ipr[TheISA::IPR_INTID] = ipl;
559 xc->ev5_trap(Interrupt_Fault);
560
561 DPRINTF(Flow, "Interrupt! IPLR=%d ipl=%d summary=%x\n",
562 ipr[TheISA::IPR_IPLR], ipl, summary);
563 }
564 }
565 #endif
566
567 // maintain $r0 semantics
568 xc->regs.intRegFile[ZeroReg] = 0;
569 #ifdef TARGET_ALPHA
570 xc->regs.floatRegFile.d[ZeroReg] = 0.0;
571 #endif // TARGET_ALPHA
572
573 if (status() == IcacheMissComplete) {
574 // We've already fetched an instruction and were stalled on an
575 // I-cache miss. No need to fetch it again.
576
577 setStatus(Running);
578 }
579 else {
580 // Try to fetch an instruction
581
582 // set up memory request for instruction fetch
583 #ifdef FULL_SYSTEM
584 #define IFETCH_FLAGS(pc) ((pc) & 1) ? PHYSICAL : 0
585 #else
586 #define IFETCH_FLAGS(pc) 0
587 #endif
588
589 memReq->cmd = Read;
590 memReq->reset(xc->regs.pc & ~3, sizeof(uint32_t),
591 IFETCH_FLAGS(xc->regs.pc));
592
593 fault = xc->translateInstReq(memReq);
594
595 if (fault == No_Fault)
596 fault = xc->mem->read(memReq, inst);
597
598 if (icacheInterface && fault == No_Fault) {
599 memReq->completionEvent = NULL;
600
601 memReq->time = curTick;
602 memReq->flags &= ~UNCACHEABLE;
603 MemAccessResult result = icacheInterface->access(memReq);
604
605 // Ugly hack to get an event scheduled *only* if the access is
606 // a miss. We really should add first-class support for this
607 // at some point.
608 if (result != MA_HIT && icacheInterface->doEvents) {
609 memReq->completionEvent = &cacheCompletionEvent;
610 setStatus(IcacheMissStall);
611 return;
612 }
613 }
614 }
615
616 // If we've got a valid instruction (i.e., no fault on instruction
617 // fetch), then execute it.
618 if (fault == No_Fault) {
619
620 // keep an instruction count
621 numInst++;
622
623 // check for instruction-count-based events
624 comInsnEventQueue[0]->serviceEvents(numInst);
625
626 // decode the instruction
627 StaticInstPtr<TheISA> si(inst);
628
629 traceData = Trace::getInstRecord(curTick, xc, this, si,
630 xc->regs.pc);
631
632 #ifdef FULL_SYSTEM
633 xc->regs.opcode = (inst >> 26) & 0x3f;
634 xc->regs.ra = (inst >> 21) & 0x1f;
635 #endif // FULL_SYSTEM
636
637 xc->func_exe_insn++;
638
639 fault = si->execute(this, xc, traceData);
640
641 if (si->isMemRef()) {
642 numMemRefs++;
643 }
644
645 if (si->isLoad()) {
646 ++numLoad;
647 comLoadEventQueue[0]->serviceEvents(numLoad);
648 }
649
650 if (traceData)
651 traceData->finalize();
652
653 } // if (fault == No_Fault)
654
655 if (fault != No_Fault) {
656 #ifdef FULL_SYSTEM
657 xc->ev5_trap(fault);
658 #else // !FULL_SYSTEM
659 fatal("fault (%d) detected @ PC 0x%08p", fault, xc->regs.pc);
660 #endif // FULL_SYSTEM
661 }
662 else {
663 // go to the next instruction
664 xc->regs.pc = xc->regs.npc;
665 xc->regs.npc += sizeof(MachInst);
666 }
667
668 #ifdef FULL_SYSTEM
669 Addr oldpc;
670 do {
671 oldpc = xc->regs.pc;
672 system->pcEventQueue.service(xc);
673 } while (oldpc != xc->regs.pc);
674 #endif
675
676 assert(status() == Running ||
677 status() == Idle ||
678 status() == DcacheMissStall);
679
680 if (status() == Running && !tickEvent.scheduled())
681 tickEvent.schedule(curTick + 1);
682 }
683
684
685 ////////////////////////////////////////////////////////////////////////
686 //
687 // SimpleCPU Simulation Object
688 //
689 BEGIN_DECLARE_SIM_OBJECT_PARAMS(SimpleCPU)
690
691 Param<Counter> max_insts_any_thread;
692 Param<Counter> max_insts_all_threads;
693 Param<Counter> max_loads_any_thread;
694 Param<Counter> max_loads_all_threads;
695
696 #ifdef FULL_SYSTEM
697 SimObjectParam<AlphaItb *> itb;
698 SimObjectParam<AlphaDtb *> dtb;
699 SimObjectParam<FunctionalMemory *> mem;
700 SimObjectParam<System *> system;
701 Param<int> cpu_id;
702 Param<int> mult;
703 #else
704 SimObjectParam<Process *> workload;
705 #endif // FULL_SYSTEM
706
707 SimObjectParam<BaseMem *> icache;
708 SimObjectParam<BaseMem *> dcache;
709
710 END_DECLARE_SIM_OBJECT_PARAMS(SimpleCPU)
711
712 BEGIN_INIT_SIM_OBJECT_PARAMS(SimpleCPU)
713
714 INIT_PARAM_DFLT(max_insts_any_thread,
715 "terminate when any thread reaches this insn count",
716 0),
717 INIT_PARAM_DFLT(max_insts_all_threads,
718 "terminate when all threads have reached this insn count",
719 0),
720 INIT_PARAM_DFLT(max_loads_any_thread,
721 "terminate when any thread reaches this load count",
722 0),
723 INIT_PARAM_DFLT(max_loads_all_threads,
724 "terminate when all threads have reached this load count",
725 0),
726
727 #ifdef FULL_SYSTEM
728 INIT_PARAM(itb, "Instruction TLB"),
729 INIT_PARAM(dtb, "Data TLB"),
730 INIT_PARAM(mem, "memory"),
731 INIT_PARAM(system, "system object"),
732 INIT_PARAM_DFLT(cpu_id, "CPU identification number", 0),
733 INIT_PARAM_DFLT(mult, "system clock multiplier", 1),
734 #else
735 INIT_PARAM(workload, "processes to run"),
736 #endif // FULL_SYSTEM
737
738 INIT_PARAM_DFLT(icache, "L1 instruction cache object", NULL),
739 INIT_PARAM_DFLT(dcache, "L1 data cache object", NULL)
740
741 END_INIT_SIM_OBJECT_PARAMS(SimpleCPU)
742
743
744 CREATE_SIM_OBJECT(SimpleCPU)
745 {
746 #ifdef FULL_SYSTEM
747 if (mult != 1)
748 panic("processor clock multiplier must be 1\n");
749
750 return new SimpleCPU(getInstanceName(), system,
751 max_insts_any_thread, max_insts_all_threads,
752 max_loads_any_thread, max_loads_all_threads,
753 itb, dtb, mem,
754 (icache) ? icache->getInterface() : NULL,
755 (dcache) ? dcache->getInterface() : NULL,
756 cpu_id, ticksPerSecond * mult);
757 #else
758
759 return new SimpleCPU(getInstanceName(), workload,
760 max_insts_any_thread, max_insts_all_threads,
761 max_loads_any_thread, max_loads_all_threads,
762 icache->getInterface(), dcache->getInterface());
763
764 #endif // FULL_SYSTEM
765 }
766
767 REGISTER_SIM_OBJECT("SimpleCPU", SimpleCPU)