Little fixes to make more of the stats reset correctly.
[gem5.git] / cpu / simple_cpu / simple_cpu.cc
1 /*
2 * Copyright (c) 2003 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include <cmath>
30 #include <cstdio>
31 #include <cstdlib>
32 #include <iostream>
33 #include <iomanip>
34 #include <list>
35 #include <sstream>
36 #include <string>
37
38 #include "base/cprintf.hh"
39 #include "base/inifile.hh"
40 #include "base/loader/symtab.hh"
41 #include "base/misc.hh"
42 #include "base/pollevent.hh"
43 #include "base/range.hh"
44 #include "base/trace.hh"
45 #include "cpu/base_cpu.hh"
46 #include "cpu/exec_context.hh"
47 #include "cpu/exetrace.hh"
48 #include "cpu/full_cpu/smt.hh"
49 #include "cpu/simple_cpu/simple_cpu.hh"
50 #include "cpu/static_inst.hh"
51 #include "mem/base_mem.hh"
52 #include "mem/mem_interface.hh"
53 #include "sim/annotation.hh"
54 #include "sim/builder.hh"
55 #include "sim/debug.hh"
56 #include "sim/host.hh"
57 #include "sim/sim_events.hh"
58 #include "sim/sim_object.hh"
59 #include "sim/sim_stats.hh"
60
61 #ifdef FULL_SYSTEM
62 #include "base/remote_gdb.hh"
63 #include "dev/alpha_access.h"
64 #include "dev/pciareg.h"
65 #include "mem/functional_mem/memory_control.hh"
66 #include "mem/functional_mem/physical_memory.hh"
67 #include "sim/system.hh"
68 #include "targetarch/alpha_memory.hh"
69 #include "targetarch/vtophys.hh"
70 #else // !FULL_SYSTEM
71 #include "eio/eio.hh"
72 #include "mem/functional_mem/functional_memory.hh"
73 #include "sim/prog.hh"
74 #endif // FULL_SYSTEM
75
76 using namespace std;
77
78 SimpleCPU::TickEvent::TickEvent(SimpleCPU *c)
79 : Event(&mainEventQueue, 100), cpu(c)
80 {
81 }
82
83 void
84 SimpleCPU::TickEvent::process()
85 {
86 cpu->tick();
87 }
88
89 const char *
90 SimpleCPU::TickEvent::description()
91 {
92 return "SimpleCPU tick event";
93 }
94
95
96 SimpleCPU::CacheCompletionEvent::CacheCompletionEvent(SimpleCPU *_cpu)
97 : Event(&mainEventQueue),
98 cpu(_cpu)
99 {
100 }
101
102 void SimpleCPU::CacheCompletionEvent::process()
103 {
104 cpu->processCacheCompletion();
105 }
106
107 const char *
108 SimpleCPU::CacheCompletionEvent::description()
109 {
110 return "SimpleCPU cache completion event";
111 }
112
113 #ifdef FULL_SYSTEM
114 SimpleCPU::SimpleCPU(const string &_name,
115 System *_system,
116 Counter max_insts_any_thread,
117 Counter max_insts_all_threads,
118 Counter max_loads_any_thread,
119 Counter max_loads_all_threads,
120 AlphaItb *itb, AlphaDtb *dtb,
121 FunctionalMemory *mem,
122 MemInterface *icache_interface,
123 MemInterface *dcache_interface,
124 Tick freq)
125 : BaseCPU(_name, /* number_of_threads */ 1,
126 max_insts_any_thread, max_insts_all_threads,
127 max_loads_any_thread, max_loads_all_threads,
128 _system, freq),
129 #else
130 SimpleCPU::SimpleCPU(const string &_name, Process *_process,
131 Counter max_insts_any_thread,
132 Counter max_insts_all_threads,
133 Counter max_loads_any_thread,
134 Counter max_loads_all_threads,
135 MemInterface *icache_interface,
136 MemInterface *dcache_interface)
137 : BaseCPU(_name, /* number_of_threads */ 1,
138 max_insts_any_thread, max_insts_all_threads,
139 max_loads_any_thread, max_loads_all_threads),
140 #endif
141 tickEvent(this), xc(NULL), cacheCompletionEvent(this)
142 {
143 _status = Idle;
144 #ifdef FULL_SYSTEM
145 xc = new ExecContext(this, 0, system, itb, dtb, mem);
146
147 // initialize CPU, including PC
148 TheISA::initCPU(&xc->regs);
149 #else
150 xc = new ExecContext(this, /* thread_num */ 0, _process, /* asid */ 0);
151 #endif // !FULL_SYSTEM
152
153 icacheInterface = icache_interface;
154 dcacheInterface = dcache_interface;
155
156 memReq = new MemReq();
157 memReq->xc = xc;
158 memReq->asid = 0;
159 memReq->data = new uint8_t[64];
160
161 numInst = 0;
162 startNumInst = 0;
163 numLoad = 0;
164 startNumLoad = 0;
165 lastIcacheStall = 0;
166 lastDcacheStall = 0;
167
168 execContexts.push_back(xc);
169 }
170
171 SimpleCPU::~SimpleCPU()
172 {
173 }
174
175 void
176 SimpleCPU::switchOut()
177 {
178 _status = SwitchedOut;
179 if (tickEvent.scheduled())
180 tickEvent.squash();
181 }
182
183
184 void
185 SimpleCPU::takeOverFrom(BaseCPU *oldCPU)
186 {
187 BaseCPU::takeOverFrom(oldCPU);
188
189 assert(!tickEvent.scheduled());
190
191 // if any of this CPU's ExecContexts are active, mark the CPU as
192 // running and schedule its tick event.
193 for (int i = 0; i < execContexts.size(); ++i) {
194 ExecContext *xc = execContexts[i];
195 if (xc->status() == ExecContext::Active && _status != Running) {
196 _status = Running;
197 tickEvent.schedule(curTick);
198 }
199 }
200
201 oldCPU->switchOut();
202 }
203
204
205 void
206 SimpleCPU::execCtxStatusChg(int thread_num) {
207 assert(thread_num == 0);
208 assert(xc);
209
210 if (xc->status() == ExecContext::Active)
211 setStatus(Running);
212 else
213 setStatus(Idle);
214 }
215
216
217 void
218 SimpleCPU::regStats()
219 {
220 using namespace Statistics;
221
222 BaseCPU::regStats();
223
224 numInsts
225 .name(name() + ".num_insts")
226 .desc("Number of instructions executed")
227 ;
228
229 numMemRefs
230 .name(name() + ".num_refs")
231 .desc("Number of memory references")
232 ;
233
234 idleFraction
235 .name(name() + ".idle_fraction")
236 .desc("Percentage of idle cycles")
237 ;
238
239 icacheStallCycles
240 .name(name() + ".icache_stall_cycles")
241 .desc("ICache total stall cycles")
242 .prereq(icacheStallCycles)
243 ;
244
245 dcacheStallCycles
246 .name(name() + ".dcache_stall_cycles")
247 .desc("DCache total stall cycles")
248 .prereq(dcacheStallCycles)
249 ;
250
251 numInsts = Statistics::scalar(numInst) - Statistics::scalar(startNumInst);
252 simInsts += numInsts;
253 }
254
255 void
256 SimpleCPU::resetStats()
257 {
258 startNumInst = numInst;
259 }
260
261 void
262 SimpleCPU::serialize(ostream &os)
263 {
264 SERIALIZE_ENUM(_status);
265 SERIALIZE_SCALAR(inst);
266 nameOut(os, csprintf("%s.xc", name()));
267 xc->serialize(os);
268 nameOut(os, csprintf("%s.tickEvent", name()));
269 tickEvent.serialize(os);
270 nameOut(os, csprintf("%s.cacheCompletionEvent", name()));
271 cacheCompletionEvent.serialize(os);
272 }
273
274 void
275 SimpleCPU::unserialize(Checkpoint *cp, const string &section)
276 {
277 UNSERIALIZE_ENUM(_status);
278 UNSERIALIZE_SCALAR(inst);
279 xc->unserialize(cp, csprintf("%s.xc", section));
280 tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
281 cacheCompletionEvent
282 .unserialize(cp, csprintf("%s.cacheCompletionEvent", section));
283 }
284
285 void
286 change_thread_state(int thread_number, int activate, int priority)
287 {
288 }
289
290 // precise architected memory state accessor macros
291 template <class T>
292 Fault
293 SimpleCPU::read(Addr addr, T& data, unsigned flags)
294 {
295 memReq->reset(addr, sizeof(T), flags);
296
297 // translate to physical address
298 Fault fault = xc->translateDataReadReq(memReq);
299
300 // do functional access
301 if (fault == No_Fault)
302 fault = xc->read(memReq, data);
303
304 if (traceData) {
305 traceData->setAddr(addr);
306 if (fault == No_Fault)
307 traceData->setData(data);
308 }
309
310 // if we have a cache, do cache access too
311 if (fault == No_Fault && dcacheInterface) {
312 memReq->cmd = Read;
313 memReq->completionEvent = NULL;
314 memReq->time = curTick;
315 memReq->flags &= ~UNCACHEABLE;
316 MemAccessResult result = dcacheInterface->access(memReq);
317
318 // Ugly hack to get an event scheduled *only* if the access is
319 // a miss. We really should add first-class support for this
320 // at some point.
321 if (result != MA_HIT && dcacheInterface->doEvents) {
322 memReq->completionEvent = &cacheCompletionEvent;
323 setStatus(DcacheMissStall);
324 }
325 }
326
327 return fault;
328 }
329
330 #ifndef DOXYGEN_SHOULD_SKIP_THIS
331
332 template
333 Fault
334 SimpleCPU::read(Addr addr, uint64_t& data, unsigned flags);
335
336 template
337 Fault
338 SimpleCPU::read(Addr addr, uint32_t& data, unsigned flags);
339
340 template
341 Fault
342 SimpleCPU::read(Addr addr, uint16_t& data, unsigned flags);
343
344 template
345 Fault
346 SimpleCPU::read(Addr addr, uint8_t& data, unsigned flags);
347
348 #endif //DOXYGEN_SHOULD_SKIP_THIS
349
350 template<>
351 Fault
352 SimpleCPU::read(Addr addr, double& data, unsigned flags)
353 {
354 return read(addr, *(uint64_t*)&data, flags);
355 }
356
357 template<>
358 Fault
359 SimpleCPU::read(Addr addr, float& data, unsigned flags)
360 {
361 return read(addr, *(uint32_t*)&data, flags);
362 }
363
364
365 template<>
366 Fault
367 SimpleCPU::read(Addr addr, int32_t& data, unsigned flags)
368 {
369 return read(addr, (uint32_t&)data, flags);
370 }
371
372
373 template <class T>
374 Fault
375 SimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
376 {
377 if (traceData) {
378 traceData->setAddr(addr);
379 traceData->setData(data);
380 }
381
382 memReq->reset(addr, sizeof(T), flags);
383
384 // translate to physical address
385 Fault fault = xc->translateDataWriteReq(memReq);
386
387 // do functional access
388 if (fault == No_Fault)
389 fault = xc->write(memReq, data);
390
391 if (fault == No_Fault && dcacheInterface) {
392 memReq->cmd = Write;
393 memcpy(memReq->data,(uint8_t *)&data,memReq->size);
394 memReq->completionEvent = NULL;
395 memReq->time = curTick;
396 memReq->flags &= ~UNCACHEABLE;
397 MemAccessResult result = dcacheInterface->access(memReq);
398
399 // Ugly hack to get an event scheduled *only* if the access is
400 // a miss. We really should add first-class support for this
401 // at some point.
402 if (result != MA_HIT && dcacheInterface->doEvents) {
403 memReq->completionEvent = &cacheCompletionEvent;
404 setStatus(DcacheMissStall);
405 }
406 }
407
408 if (res && (fault == No_Fault))
409 *res = memReq->result;
410
411 return fault;
412 }
413
414
415 #ifndef DOXYGEN_SHOULD_SKIP_THIS
416 template
417 Fault
418 SimpleCPU::write(uint64_t data, Addr addr, unsigned flags, uint64_t *res);
419
420 template
421 Fault
422 SimpleCPU::write(uint32_t data, Addr addr, unsigned flags, uint64_t *res);
423
424 template
425 Fault
426 SimpleCPU::write(uint16_t data, Addr addr, unsigned flags, uint64_t *res);
427
428 template
429 Fault
430 SimpleCPU::write(uint8_t data, Addr addr, unsigned flags, uint64_t *res);
431
432 #endif //DOXYGEN_SHOULD_SKIP_THIS
433
434 template<>
435 Fault
436 SimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
437 {
438 return write(*(uint64_t*)&data, addr, flags, res);
439 }
440
441 template<>
442 Fault
443 SimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
444 {
445 return write(*(uint32_t*)&data, addr, flags, res);
446 }
447
448
449 template<>
450 Fault
451 SimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
452 {
453 return write((uint32_t)data, addr, flags, res);
454 }
455
456
457 #ifdef FULL_SYSTEM
458 Addr
459 SimpleCPU::dbg_vtophys(Addr addr)
460 {
461 return vtophys(xc, addr);
462 }
463 #endif // FULL_SYSTEM
464
465 Tick save_cycle = 0;
466
467
468 void
469 SimpleCPU::processCacheCompletion()
470 {
471 switch (status()) {
472 case IcacheMissStall:
473 icacheStallCycles += curTick - lastIcacheStall;
474 setStatus(IcacheMissComplete);
475 break;
476 case DcacheMissStall:
477 dcacheStallCycles += curTick - lastDcacheStall;
478 setStatus(Running);
479 break;
480 case SwitchedOut:
481 // If this CPU has been switched out due to sampling/warm-up,
482 // ignore any further status changes (e.g., due to cache
483 // misses outstanding at the time of the switch).
484 return;
485 default:
486 panic("SimpleCPU::processCacheCompletion: bad state");
487 break;
488 }
489 }
490
491 #ifdef FULL_SYSTEM
492 void
493 SimpleCPU::post_interrupt(int int_num, int index)
494 {
495 BaseCPU::post_interrupt(int_num, index);
496
497 if (xc->status() == ExecContext::Suspended) {
498 DPRINTF(IPI,"Suspended Processor awoke\n");
499 xc->setStatus(ExecContext::Active);
500 Annotate::Resume(xc);
501 }
502 }
503 #endif // FULL_SYSTEM
504
505 /* start simulation, program loaded, processor precise state initialized */
506 void
507 SimpleCPU::tick()
508 {
509 traceData = NULL;
510
511 Fault fault = No_Fault;
512
513 #ifdef FULL_SYSTEM
514 if (AlphaISA::check_interrupts &&
515 xc->cpu->check_interrupts() &&
516 !PC_PAL(xc->regs.pc) &&
517 status() != IcacheMissComplete) {
518 int ipl = 0;
519 int summary = 0;
520 AlphaISA::check_interrupts = 0;
521 IntReg *ipr = xc->regs.ipr;
522
523 if (xc->regs.ipr[TheISA::IPR_SIRR]) {
524 for (int i = TheISA::INTLEVEL_SOFTWARE_MIN;
525 i < TheISA::INTLEVEL_SOFTWARE_MAX; i++) {
526 if (ipr[TheISA::IPR_SIRR] & (ULL(1) << i)) {
527 // See table 4-19 of 21164 hardware reference
528 ipl = (i - TheISA::INTLEVEL_SOFTWARE_MIN) + 1;
529 summary |= (ULL(1) << i);
530 }
531 }
532 }
533
534 uint64_t interrupts = xc->cpu->intr_status();
535 for (int i = TheISA::INTLEVEL_EXTERNAL_MIN;
536 i < TheISA::INTLEVEL_EXTERNAL_MAX; i++) {
537 if (interrupts & (ULL(1) << i)) {
538 // See table 4-19 of 21164 hardware reference
539 ipl = i;
540 summary |= (ULL(1) << i);
541 }
542 }
543
544 if (ipr[TheISA::IPR_ASTRR])
545 panic("asynchronous traps not implemented\n");
546
547 if (ipl && ipl > xc->regs.ipr[TheISA::IPR_IPLR]) {
548 ipr[TheISA::IPR_ISR] = summary;
549 ipr[TheISA::IPR_INTID] = ipl;
550 xc->ev5_trap(Interrupt_Fault);
551
552 DPRINTF(Flow, "Interrupt! IPLR=%d ipl=%d summary=%x\n",
553 ipr[TheISA::IPR_IPLR], ipl, summary);
554 }
555 }
556 #endif
557
558 // maintain $r0 semantics
559 xc->regs.intRegFile[ZeroReg] = 0;
560 #ifdef TARGET_ALPHA
561 xc->regs.floatRegFile.d[ZeroReg] = 0.0;
562 #endif // TARGET_ALPHA
563
564 if (status() == IcacheMissComplete) {
565 // We've already fetched an instruction and were stalled on an
566 // I-cache miss. No need to fetch it again.
567
568 setStatus(Running);
569 }
570 else {
571 // Try to fetch an instruction
572
573 // set up memory request for instruction fetch
574 #ifdef FULL_SYSTEM
575 #define IFETCH_FLAGS(pc) ((pc) & 1) ? PHYSICAL : 0
576 #else
577 #define IFETCH_FLAGS(pc) 0
578 #endif
579
580 memReq->cmd = Read;
581 memReq->reset(xc->regs.pc & ~3, sizeof(uint32_t),
582 IFETCH_FLAGS(xc->regs.pc));
583
584 fault = xc->translateInstReq(memReq);
585
586 if (fault == No_Fault)
587 fault = xc->mem->read(memReq, inst);
588
589 if (icacheInterface && fault == No_Fault) {
590 memReq->completionEvent = NULL;
591
592 memReq->time = curTick;
593 memReq->flags &= ~UNCACHEABLE;
594 MemAccessResult result = icacheInterface->access(memReq);
595
596 // Ugly hack to get an event scheduled *only* if the access is
597 // a miss. We really should add first-class support for this
598 // at some point.
599 if (result != MA_HIT && icacheInterface->doEvents) {
600 memReq->completionEvent = &cacheCompletionEvent;
601 setStatus(IcacheMissStall);
602 return;
603 }
604 }
605 }
606
607 // If we've got a valid instruction (i.e., no fault on instruction
608 // fetch), then execute it.
609 if (fault == No_Fault) {
610
611 // keep an instruction count
612 numInst++;
613
614 // check for instruction-count-based events
615 comInsnEventQueue[0]->serviceEvents(numInst);
616
617 // decode the instruction
618 StaticInstPtr<TheISA> si(inst);
619
620 traceData = Trace::getInstRecord(curTick, xc, this, si,
621 xc->regs.pc);
622
623 #ifdef FULL_SYSTEM
624 xc->regs.opcode = (inst >> 26) & 0x3f;
625 xc->regs.ra = (inst >> 21) & 0x1f;
626 #endif // FULL_SYSTEM
627
628 xc->func_exe_insn++;
629
630 fault = si->execute(this, xc, traceData);
631 #ifdef FS_MEASURE
632 if (!(xc->misspeculating()) && (xc->system->bin)) {
633 SWContext *ctx = xc->swCtx;
634 if (ctx && !ctx->callStack.empty()) {
635 if (si->isCall()) {
636 ctx->calls++;
637 }
638 if (si->isReturn()) {
639 if (ctx->calls == 0) {
640 fnCall *top = ctx->callStack.top();
641 DPRINTF(TCPIP, "Removing %s from callstack.\n", top->name);
642 delete top;
643 ctx->callStack.pop();
644 if (ctx->callStack.empty())
645 xc->system->nonPath->activate();
646 else
647 ctx->callStack.top()->myBin->activate();
648
649 xc->system->dumpState(xc);
650 } else {
651 ctx->calls--;
652 }
653 }
654 }
655 }
656 #endif
657 if (si->isMemRef()) {
658 numMemRefs++;
659 }
660
661 if (si->isLoad()) {
662 ++numLoad;
663 comLoadEventQueue[0]->serviceEvents(numLoad);
664 }
665
666 if (traceData)
667 traceData->finalize();
668
669 } // if (fault == No_Fault)
670
671 if (fault != No_Fault) {
672 #ifdef FULL_SYSTEM
673 xc->ev5_trap(fault);
674 #else // !FULL_SYSTEM
675 fatal("fault (%d) detected @ PC 0x%08p", fault, xc->regs.pc);
676 #endif // FULL_SYSTEM
677 }
678 else {
679 // go to the next instruction
680 xc->regs.pc = xc->regs.npc;
681 xc->regs.npc += sizeof(MachInst);
682 }
683
684 #ifdef FULL_SYSTEM
685 Addr oldpc;
686 do {
687 oldpc = xc->regs.pc;
688 system->pcEventQueue.service(xc);
689 } while (oldpc != xc->regs.pc);
690 #endif
691
692 assert(status() == Running ||
693 status() == Idle ||
694 status() == DcacheMissStall);
695
696 if (status() == Running && !tickEvent.scheduled())
697 tickEvent.schedule(curTick + 1);
698 }
699
700
701 ////////////////////////////////////////////////////////////////////////
702 //
703 // SimpleCPU Simulation Object
704 //
705 BEGIN_DECLARE_SIM_OBJECT_PARAMS(SimpleCPU)
706
707 Param<Counter> max_insts_any_thread;
708 Param<Counter> max_insts_all_threads;
709 Param<Counter> max_loads_any_thread;
710 Param<Counter> max_loads_all_threads;
711
712 #ifdef FULL_SYSTEM
713 SimObjectParam<AlphaItb *> itb;
714 SimObjectParam<AlphaDtb *> dtb;
715 SimObjectParam<FunctionalMemory *> mem;
716 SimObjectParam<System *> system;
717 Param<int> mult;
718 #else
719 SimObjectParam<Process *> workload;
720 #endif // FULL_SYSTEM
721
722 SimObjectParam<BaseMem *> icache;
723 SimObjectParam<BaseMem *> dcache;
724
725 Param<bool> defer_registration;
726
727 END_DECLARE_SIM_OBJECT_PARAMS(SimpleCPU)
728
729 BEGIN_INIT_SIM_OBJECT_PARAMS(SimpleCPU)
730
731 INIT_PARAM_DFLT(max_insts_any_thread,
732 "terminate when any thread reaches this insn count",
733 0),
734 INIT_PARAM_DFLT(max_insts_all_threads,
735 "terminate when all threads have reached this insn count",
736 0),
737 INIT_PARAM_DFLT(max_loads_any_thread,
738 "terminate when any thread reaches this load count",
739 0),
740 INIT_PARAM_DFLT(max_loads_all_threads,
741 "terminate when all threads have reached this load count",
742 0),
743
744 #ifdef FULL_SYSTEM
745 INIT_PARAM(itb, "Instruction TLB"),
746 INIT_PARAM(dtb, "Data TLB"),
747 INIT_PARAM(mem, "memory"),
748 INIT_PARAM(system, "system object"),
749 INIT_PARAM_DFLT(mult, "system clock multiplier", 1),
750 #else
751 INIT_PARAM(workload, "processes to run"),
752 #endif // FULL_SYSTEM
753
754 INIT_PARAM_DFLT(icache, "L1 instruction cache object", NULL),
755 INIT_PARAM_DFLT(dcache, "L1 data cache object", NULL),
756 INIT_PARAM_DFLT(defer_registration, "defer registration with system "
757 "(for sampling)", false)
758
759 END_INIT_SIM_OBJECT_PARAMS(SimpleCPU)
760
761
762 CREATE_SIM_OBJECT(SimpleCPU)
763 {
764 SimpleCPU *cpu;
765 #ifdef FULL_SYSTEM
766 if (mult != 1)
767 panic("processor clock multiplier must be 1\n");
768
769 cpu = new SimpleCPU(getInstanceName(), system,
770 max_insts_any_thread, max_insts_all_threads,
771 max_loads_any_thread, max_loads_all_threads,
772 itb, dtb, mem,
773 (icache) ? icache->getInterface() : NULL,
774 (dcache) ? dcache->getInterface() : NULL,
775 ticksPerSecond * mult);
776 #else
777
778 cpu = new SimpleCPU(getInstanceName(), workload,
779 max_insts_any_thread, max_insts_all_threads,
780 max_loads_any_thread, max_loads_all_threads,
781 (icache) ? icache->getInterface() : NULL,
782 (dcache) ? dcache->getInterface() : NULL);
783
784 #endif // FULL_SYSTEM
785
786 if (!defer_registration) {
787 cpu->registerExecContexts();
788 }
789
790 return cpu;
791 }
792
793 REGISTER_SIM_OBJECT("SimpleCPU", SimpleCPU)