Merge zizzer:/bk/m5 into isabel.reinhardt.house:/z/stever/bk2/m5
[gem5.git] / cpu / simple_cpu / simple_cpu.cc
1 /*
2 * Copyright (c) 2003 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include <cmath>
30 #include <cstdio>
31 #include <cstdlib>
32 #include <iostream>
33 #include <iomanip>
34 #include <list>
35 #include <sstream>
36 #include <string>
37
38 #include "base/cprintf.hh"
39 #include "base/inifile.hh"
40 #include "base/loader/symtab.hh"
41 #include "base/misc.hh"
42 #include "base/pollevent.hh"
43 #include "base/range.hh"
44 #include "base/trace.hh"
45 #include "cpu/base_cpu.hh"
46 #include "cpu/exec_context.hh"
47 #include "cpu/exetrace.hh"
48 #include "cpu/full_cpu/smt.hh"
49 #include "cpu/simple_cpu/simple_cpu.hh"
50 #include "cpu/static_inst.hh"
51 #include "mem/base_mem.hh"
52 #include "mem/mem_interface.hh"
53 #include "sim/annotation.hh"
54 #include "sim/builder.hh"
55 #include "sim/debug.hh"
56 #include "sim/host.hh"
57 #include "sim/sim_events.hh"
58 #include "sim/sim_object.hh"
59 #include "sim/sim_stats.hh"
60
61 #ifdef FULL_SYSTEM
62 #include "base/remote_gdb.hh"
63 #include "dev/alpha_access.h"
64 #include "dev/pciareg.h"
65 #include "mem/functional_mem/memory_control.hh"
66 #include "mem/functional_mem/physical_memory.hh"
67 #include "sim/system.hh"
68 #include "targetarch/alpha_memory.hh"
69 #include "targetarch/vtophys.hh"
70 #else // !FULL_SYSTEM
71 #include "eio/eio.hh"
72 #include "mem/functional_mem/functional_memory.hh"
73 #include "sim/prog.hh"
74 #endif // FULL_SYSTEM
75
76 using namespace std;
77
78 SimpleCPU::TickEvent::TickEvent(SimpleCPU *c)
79 : Event(&mainEventQueue, "SimpleCPU::TickEvent", 100), cpu(c)
80 {
81 }
82
83 void
84 SimpleCPU::TickEvent::process()
85 {
86 cpu->tick();
87 }
88
89 const char *
90 SimpleCPU::TickEvent::description()
91 {
92 return "SimpleCPU tick event";
93 }
94
95
96 SimpleCPU::CacheCompletionEvent::CacheCompletionEvent(SimpleCPU *_cpu)
97 : Event(&mainEventQueue, "SimpleCPU::CacheCompletionEvent"),
98 cpu(_cpu)
99 {
100 }
101
102 void SimpleCPU::CacheCompletionEvent::process()
103 {
104 cpu->processCacheCompletion();
105 }
106
107 const char *
108 SimpleCPU::CacheCompletionEvent::description()
109 {
110 return "SimpleCPU cache completion event";
111 }
112
113 #ifdef FULL_SYSTEM
114 SimpleCPU::SimpleCPU(const string &_name,
115 System *_system,
116 Counter max_insts_any_thread,
117 Counter max_insts_all_threads,
118 Counter max_loads_any_thread,
119 Counter max_loads_all_threads,
120 AlphaItb *itb, AlphaDtb *dtb,
121 FunctionalMemory *mem,
122 MemInterface *icache_interface,
123 MemInterface *dcache_interface,
124 Tick freq)
125 : BaseCPU(_name, /* number_of_threads */ 1,
126 max_insts_any_thread, max_insts_all_threads,
127 max_loads_any_thread, max_loads_all_threads,
128 _system, freq),
129 #else
130 SimpleCPU::SimpleCPU(const string &_name, Process *_process,
131 Counter max_insts_any_thread,
132 Counter max_insts_all_threads,
133 Counter max_loads_any_thread,
134 Counter max_loads_all_threads,
135 MemInterface *icache_interface,
136 MemInterface *dcache_interface)
137 : BaseCPU(_name, /* number_of_threads */ 1,
138 max_insts_any_thread, max_insts_all_threads,
139 max_loads_any_thread, max_loads_all_threads),
140 #endif
141 tickEvent(this), xc(NULL), cacheCompletionEvent(this)
142 {
143 _status = Idle;
144 #ifdef FULL_SYSTEM
145 xc = new ExecContext(this, 0, system, itb, dtb, mem);
146
147 // initialize CPU, including PC
148 TheISA::initCPU(&xc->regs);
149 #else
150 xc = new ExecContext(this, /* thread_num */ 0, _process, /* asid */ 0);
151 #endif // !FULL_SYSTEM
152
153 icacheInterface = icache_interface;
154 dcacheInterface = dcache_interface;
155
156 memReq = new MemReq();
157 memReq->xc = xc;
158 memReq->asid = 0;
159 memReq->data = new uint8_t[64];
160
161 numInst = 0;
162 numLoad = 0;
163 last_idle = 0;
164 lastIcacheStall = 0;
165 lastDcacheStall = 0;
166
167 execContexts.push_back(xc);
168 }
169
170 SimpleCPU::~SimpleCPU()
171 {
172 }
173
174
175 void
176 SimpleCPU::switchOut()
177 {
178 _status = SwitchedOut;
179 if (tickEvent.scheduled())
180 tickEvent.squash();
181 }
182
183
184 void
185 SimpleCPU::takeOverFrom(BaseCPU *oldCPU)
186 {
187 BaseCPU::takeOverFrom(oldCPU);
188
189 assert(!tickEvent.scheduled());
190
191 // if any of this CPU's ExecContexts are active, mark the CPU as
192 // running and schedule its tick event.
193 for (int i = 0; i < execContexts.size(); ++i) {
194 ExecContext *xc = execContexts[i];
195 if (xc->status() == ExecContext::Active && _status != Running) {
196 _status = Running;
197 tickEvent.schedule(curTick);
198 }
199 }
200
201 oldCPU->switchOut();
202 }
203
204
205 void
206 SimpleCPU::execCtxStatusChg(int thread_num) {
207 assert(thread_num == 0);
208 assert(xc);
209
210 if (xc->status() == ExecContext::Active)
211 setStatus(Running);
212 else
213 setStatus(Idle);
214 }
215
216
217 void
218 SimpleCPU::regStats()
219 {
220 BaseCPU::regStats();
221
222 numInsts
223 .name(name() + ".num_insts")
224 .desc("Number of instructions executed")
225 ;
226
227 numMemRefs
228 .name(name() + ".num_refs")
229 .desc("Number of memory references")
230 ;
231
232 idleCycles
233 .name(name() + ".idle_cycles")
234 .desc("Number of idle cycles")
235 ;
236
237 idleFraction
238 .name(name() + ".idle_fraction")
239 .desc("Percentage of idle cycles")
240 ;
241
242 icacheStallCycles
243 .name(name() + ".icache_stall_cycles")
244 .desc("ICache total stall cycles")
245 .prereq(icacheStallCycles)
246 ;
247
248 dcacheStallCycles
249 .name(name() + ".dcache_stall_cycles")
250 .desc("DCache total stall cycles")
251 .prereq(dcacheStallCycles)
252 ;
253
254 idleFraction = idleCycles / simTicks;
255
256 numInsts = Statistics::scalar(numInst);
257 simInsts += numInsts;
258 }
259
260 void
261 SimpleCPU::serialize(ostream &os)
262 {
263 SERIALIZE_ENUM(_status);
264 SERIALIZE_SCALAR(inst);
265 nameOut(os, csprintf("%s.xc", name()));
266 xc->serialize(os);
267 nameOut(os, csprintf("%s.tickEvent", name()));
268 tickEvent.serialize(os);
269 nameOut(os, csprintf("%s.cacheCompletionEvent", name()));
270 cacheCompletionEvent.serialize(os);
271 }
272
273 void
274 SimpleCPU::unserialize(Checkpoint *cp, const string &section)
275 {
276 UNSERIALIZE_ENUM(_status);
277 UNSERIALIZE_SCALAR(inst);
278 xc->unserialize(cp, csprintf("%s.xc", section));
279 tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
280 cacheCompletionEvent
281 .unserialize(cp, csprintf("%s.cacheCompletionEvent", section));
282 }
283
284 void
285 change_thread_state(int thread_number, int activate, int priority)
286 {
287 }
288
289 // precise architected memory state accessor macros
290 template <class T>
291 Fault
292 SimpleCPU::read(Addr addr, T& data, unsigned flags)
293 {
294 memReq->reset(addr, sizeof(T), flags);
295
296 // translate to physical address
297 Fault fault = xc->translateDataReadReq(memReq);
298
299 // do functional access
300 if (fault == No_Fault)
301 fault = xc->read(memReq, data);
302
303 if (traceData) {
304 traceData->setAddr(addr);
305 if (fault == No_Fault)
306 traceData->setData(data);
307 }
308
309 // if we have a cache, do cache access too
310 if (fault == No_Fault && dcacheInterface) {
311 memReq->cmd = Read;
312 memReq->completionEvent = NULL;
313 memReq->time = curTick;
314 memReq->flags &= ~UNCACHEABLE;
315 MemAccessResult result = dcacheInterface->access(memReq);
316
317 // Ugly hack to get an event scheduled *only* if the access is
318 // a miss. We really should add first-class support for this
319 // at some point.
320 if (result != MA_HIT && dcacheInterface->doEvents) {
321 memReq->completionEvent = &cacheCompletionEvent;
322 setStatus(DcacheMissStall);
323 }
324 }
325
326 return fault;
327 }
328
329 #ifndef DOXYGEN_SHOULD_SKIP_THIS
330
331 template
332 Fault
333 SimpleCPU::read(Addr addr, uint64_t& data, unsigned flags);
334
335 template
336 Fault
337 SimpleCPU::read(Addr addr, uint32_t& data, unsigned flags);
338
339 template
340 Fault
341 SimpleCPU::read(Addr addr, uint16_t& data, unsigned flags);
342
343 template
344 Fault
345 SimpleCPU::read(Addr addr, uint8_t& data, unsigned flags);
346
347 #endif //DOXYGEN_SHOULD_SKIP_THIS
348
349 template<>
350 Fault
351 SimpleCPU::read(Addr addr, double& data, unsigned flags)
352 {
353 return read(addr, *(uint64_t*)&data, flags);
354 }
355
356 template<>
357 Fault
358 SimpleCPU::read(Addr addr, float& data, unsigned flags)
359 {
360 return read(addr, *(uint32_t*)&data, flags);
361 }
362
363
364 template<>
365 Fault
366 SimpleCPU::read(Addr addr, int32_t& data, unsigned flags)
367 {
368 return read(addr, (uint32_t&)data, flags);
369 }
370
371
372 template <class T>
373 Fault
374 SimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
375 {
376 if (traceData) {
377 traceData->setAddr(addr);
378 traceData->setData(data);
379 }
380
381 memReq->reset(addr, sizeof(T), flags);
382
383 // translate to physical address
384 Fault fault = xc->translateDataWriteReq(memReq);
385
386 // do functional access
387 if (fault == No_Fault)
388 fault = xc->write(memReq, data);
389
390 if (fault == No_Fault && dcacheInterface) {
391 memReq->cmd = Write;
392 memcpy(memReq->data,(uint8_t *)&data,memReq->size);
393 memReq->completionEvent = NULL;
394 memReq->time = curTick;
395 memReq->flags &= ~UNCACHEABLE;
396 MemAccessResult result = dcacheInterface->access(memReq);
397
398 // Ugly hack to get an event scheduled *only* if the access is
399 // a miss. We really should add first-class support for this
400 // at some point.
401 if (result != MA_HIT && dcacheInterface->doEvents) {
402 memReq->completionEvent = &cacheCompletionEvent;
403 setStatus(DcacheMissStall);
404 }
405 }
406
407 if (res && (fault == No_Fault))
408 *res = memReq->result;
409
410 return fault;
411 }
412
413
414 #ifndef DOXYGEN_SHOULD_SKIP_THIS
415 template
416 Fault
417 SimpleCPU::write(uint64_t data, Addr addr, unsigned flags, uint64_t *res);
418
419 template
420 Fault
421 SimpleCPU::write(uint32_t data, Addr addr, unsigned flags, uint64_t *res);
422
423 template
424 Fault
425 SimpleCPU::write(uint16_t data, Addr addr, unsigned flags, uint64_t *res);
426
427 template
428 Fault
429 SimpleCPU::write(uint8_t data, Addr addr, unsigned flags, uint64_t *res);
430
431 #endif //DOXYGEN_SHOULD_SKIP_THIS
432
433 template<>
434 Fault
435 SimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
436 {
437 return write(*(uint64_t*)&data, addr, flags, res);
438 }
439
440 template<>
441 Fault
442 SimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
443 {
444 return write(*(uint32_t*)&data, addr, flags, res);
445 }
446
447
448 template<>
449 Fault
450 SimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
451 {
452 return write((uint32_t)data, addr, flags, res);
453 }
454
455
456 #ifdef FULL_SYSTEM
457 Addr
458 SimpleCPU::dbg_vtophys(Addr addr)
459 {
460 return vtophys(xc, addr);
461 }
462 #endif // FULL_SYSTEM
463
464 Tick save_cycle = 0;
465
466
467 void
468 SimpleCPU::processCacheCompletion()
469 {
470 switch (status()) {
471 case IcacheMissStall:
472 icacheStallCycles += curTick - lastIcacheStall;
473 setStatus(IcacheMissComplete);
474 break;
475 case DcacheMissStall:
476 dcacheStallCycles += curTick - lastDcacheStall;
477 setStatus(Running);
478 break;
479 case SwitchedOut:
480 // If this CPU has been switched out due to sampling/warm-up,
481 // ignore any further status changes (e.g., due to cache
482 // misses outstanding at the time of the switch).
483 return;
484 default:
485 panic("SimpleCPU::processCacheCompletion: bad state");
486 break;
487 }
488 }
489
490 #ifdef FULL_SYSTEM
491 void
492 SimpleCPU::post_interrupt(int int_num, int index)
493 {
494 BaseCPU::post_interrupt(int_num, index);
495
496 if (xc->status() == ExecContext::Suspended) {
497 DPRINTF(IPI,"Suspended Processor awoke\n");
498 xc->setStatus(ExecContext::Active);
499 Annotate::Resume(xc);
500 }
501 }
502 #endif // FULL_SYSTEM
503
504 /* start simulation, program loaded, processor precise state initialized */
505 void
506 SimpleCPU::tick()
507 {
508 traceData = NULL;
509
510 Fault fault = No_Fault;
511
512 #ifdef FULL_SYSTEM
513 if (AlphaISA::check_interrupts &&
514 xc->cpu->check_interrupts() &&
515 !PC_PAL(xc->regs.pc) &&
516 status() != IcacheMissComplete) {
517 int ipl = 0;
518 int summary = 0;
519 AlphaISA::check_interrupts = 0;
520 IntReg *ipr = xc->regs.ipr;
521
522 if (xc->regs.ipr[TheISA::IPR_SIRR]) {
523 for (int i = TheISA::INTLEVEL_SOFTWARE_MIN;
524 i < TheISA::INTLEVEL_SOFTWARE_MAX; i++) {
525 if (ipr[TheISA::IPR_SIRR] & (ULL(1) << i)) {
526 // See table 4-19 of 21164 hardware reference
527 ipl = (i - TheISA::INTLEVEL_SOFTWARE_MIN) + 1;
528 summary |= (ULL(1) << i);
529 }
530 }
531 }
532
533 uint64_t interrupts = xc->cpu->intr_status();
534 for (int i = TheISA::INTLEVEL_EXTERNAL_MIN;
535 i < TheISA::INTLEVEL_EXTERNAL_MAX; i++) {
536 if (interrupts & (ULL(1) << i)) {
537 // See table 4-19 of 21164 hardware reference
538 ipl = i;
539 summary |= (ULL(1) << i);
540 }
541 }
542
543 if (ipr[TheISA::IPR_ASTRR])
544 panic("asynchronous traps not implemented\n");
545
546 if (ipl && ipl > xc->regs.ipr[TheISA::IPR_IPLR]) {
547 ipr[TheISA::IPR_ISR] = summary;
548 ipr[TheISA::IPR_INTID] = ipl;
549 xc->ev5_trap(Interrupt_Fault);
550
551 DPRINTF(Flow, "Interrupt! IPLR=%d ipl=%d summary=%x\n",
552 ipr[TheISA::IPR_IPLR], ipl, summary);
553 }
554 }
555 #endif
556
557 // maintain $r0 semantics
558 xc->regs.intRegFile[ZeroReg] = 0;
559 #ifdef TARGET_ALPHA
560 xc->regs.floatRegFile.d[ZeroReg] = 0.0;
561 #endif // TARGET_ALPHA
562
563 if (status() == IcacheMissComplete) {
564 // We've already fetched an instruction and were stalled on an
565 // I-cache miss. No need to fetch it again.
566
567 setStatus(Running);
568 }
569 else {
570 // Try to fetch an instruction
571
572 // set up memory request for instruction fetch
573 #ifdef FULL_SYSTEM
574 #define IFETCH_FLAGS(pc) ((pc) & 1) ? PHYSICAL : 0
575 #else
576 #define IFETCH_FLAGS(pc) 0
577 #endif
578
579 memReq->cmd = Read;
580 memReq->reset(xc->regs.pc & ~3, sizeof(uint32_t),
581 IFETCH_FLAGS(xc->regs.pc));
582
583 fault = xc->translateInstReq(memReq);
584
585 if (fault == No_Fault)
586 fault = xc->mem->read(memReq, inst);
587
588 if (icacheInterface && fault == No_Fault) {
589 memReq->completionEvent = NULL;
590
591 memReq->time = curTick;
592 memReq->flags &= ~UNCACHEABLE;
593 MemAccessResult result = icacheInterface->access(memReq);
594
595 // Ugly hack to get an event scheduled *only* if the access is
596 // a miss. We really should add first-class support for this
597 // at some point.
598 if (result != MA_HIT && icacheInterface->doEvents) {
599 memReq->completionEvent = &cacheCompletionEvent;
600 setStatus(IcacheMissStall);
601 return;
602 }
603 }
604 }
605
606 // If we've got a valid instruction (i.e., no fault on instruction
607 // fetch), then execute it.
608 if (fault == No_Fault) {
609
610 // keep an instruction count
611 numInst++;
612
613 // check for instruction-count-based events
614 comInsnEventQueue[0]->serviceEvents(numInst);
615
616 // decode the instruction
617 StaticInstPtr<TheISA> si(inst);
618
619 traceData = Trace::getInstRecord(curTick, xc, this, si,
620 xc->regs.pc);
621
622 #ifdef FULL_SYSTEM
623 xc->regs.opcode = (inst >> 26) & 0x3f;
624 xc->regs.ra = (inst >> 21) & 0x1f;
625 #endif // FULL_SYSTEM
626
627 xc->func_exe_insn++;
628
629 fault = si->execute(this, xc, traceData);
630
631 if (si->isMemRef()) {
632 numMemRefs++;
633 }
634
635 if (si->isLoad()) {
636 ++numLoad;
637 comLoadEventQueue[0]->serviceEvents(numLoad);
638 }
639
640 if (traceData)
641 traceData->finalize();
642
643 } // if (fault == No_Fault)
644
645 if (fault != No_Fault) {
646 #ifdef FULL_SYSTEM
647 xc->ev5_trap(fault);
648 #else // !FULL_SYSTEM
649 fatal("fault (%d) detected @ PC 0x%08p", fault, xc->regs.pc);
650 #endif // FULL_SYSTEM
651 }
652 else {
653 // go to the next instruction
654 xc->regs.pc = xc->regs.npc;
655 xc->regs.npc += sizeof(MachInst);
656 }
657
658 #ifdef FULL_SYSTEM
659 Addr oldpc;
660 do {
661 oldpc = xc->regs.pc;
662 system->pcEventQueue.service(xc);
663 } while (oldpc != xc->regs.pc);
664 #endif
665
666 assert(status() == Running ||
667 status() == Idle ||
668 status() == DcacheMissStall);
669
670 if (status() == Running && !tickEvent.scheduled())
671 tickEvent.schedule(curTick + 1);
672 }
673
674
675 ////////////////////////////////////////////////////////////////////////
676 //
677 // SimpleCPU Simulation Object
678 //
679 BEGIN_DECLARE_SIM_OBJECT_PARAMS(SimpleCPU)
680
681 Param<Counter> max_insts_any_thread;
682 Param<Counter> max_insts_all_threads;
683 Param<Counter> max_loads_any_thread;
684 Param<Counter> max_loads_all_threads;
685
686 #ifdef FULL_SYSTEM
687 SimObjectParam<AlphaItb *> itb;
688 SimObjectParam<AlphaDtb *> dtb;
689 SimObjectParam<FunctionalMemory *> mem;
690 SimObjectParam<System *> system;
691 Param<int> mult;
692 #else
693 SimObjectParam<Process *> workload;
694 #endif // FULL_SYSTEM
695
696 SimObjectParam<BaseMem *> icache;
697 SimObjectParam<BaseMem *> dcache;
698
699 Param<bool> defer_registration;
700
701 END_DECLARE_SIM_OBJECT_PARAMS(SimpleCPU)
702
703 BEGIN_INIT_SIM_OBJECT_PARAMS(SimpleCPU)
704
705 INIT_PARAM_DFLT(max_insts_any_thread,
706 "terminate when any thread reaches this insn count",
707 0),
708 INIT_PARAM_DFLT(max_insts_all_threads,
709 "terminate when all threads have reached this insn count",
710 0),
711 INIT_PARAM_DFLT(max_loads_any_thread,
712 "terminate when any thread reaches this load count",
713 0),
714 INIT_PARAM_DFLT(max_loads_all_threads,
715 "terminate when all threads have reached this load count",
716 0),
717
718 #ifdef FULL_SYSTEM
719 INIT_PARAM(itb, "Instruction TLB"),
720 INIT_PARAM(dtb, "Data TLB"),
721 INIT_PARAM(mem, "memory"),
722 INIT_PARAM(system, "system object"),
723 INIT_PARAM_DFLT(mult, "system clock multiplier", 1),
724 #else
725 INIT_PARAM(workload, "processes to run"),
726 #endif // FULL_SYSTEM
727
728 INIT_PARAM_DFLT(icache, "L1 instruction cache object", NULL),
729 INIT_PARAM_DFLT(dcache, "L1 data cache object", NULL),
730 INIT_PARAM_DFLT(defer_registration, "defer registration with system "
731 "(for sampling)", false)
732
733 END_INIT_SIM_OBJECT_PARAMS(SimpleCPU)
734
735
736 CREATE_SIM_OBJECT(SimpleCPU)
737 {
738 SimpleCPU *cpu;
739 #ifdef FULL_SYSTEM
740 if (mult != 1)
741 panic("processor clock multiplier must be 1\n");
742
743 cpu = new SimpleCPU(getInstanceName(), system,
744 max_insts_any_thread, max_insts_all_threads,
745 max_loads_any_thread, max_loads_all_threads,
746 itb, dtb, mem,
747 (icache) ? icache->getInterface() : NULL,
748 (dcache) ? dcache->getInterface() : NULL,
749 ticksPerSecond * mult);
750 #else
751
752 cpu = new SimpleCPU(getInstanceName(), workload,
753 max_insts_any_thread, max_insts_all_threads,
754 max_loads_any_thread, max_loads_all_threads,
755 (icache) ? icache->getInterface() : NULL,
756 (dcache) ? dcache->getInterface() : NULL);
757
758 #endif // FULL_SYSTEM
759
760 if (!defer_registration) {
761 cpu->registerExecContexts();
762 }
763
764 return cpu;
765 }
766
767 REGISTER_SIM_OBJECT("SimpleCPU", SimpleCPU)