a9363954b21c26996a6adf8be14c9cfd5a4e87e1
[gem5.git] / dev / sinic.cc
1 /*
2 * Copyright (c) 2004-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include <cstdio>
30 #include <deque>
31 #include <string>
32
33 #include "base/inet.hh"
34 #include "cpu/exec_context.hh"
35 #include "cpu/intr_control.hh"
36 #include "dev/etherlink.hh"
37 #include "dev/sinic.hh"
38 #include "dev/pciconfigall.hh"
39 #include "mem/bus/bus.hh"
40 #include "mem/bus/dma_interface.hh"
41 #include "mem/bus/pio_interface.hh"
42 #include "mem/bus/pio_interface_impl.hh"
43 #include "mem/functional/memory_control.hh"
44 #include "mem/functional/physical.hh"
45 #include "sim/builder.hh"
46 #include "sim/debug.hh"
47 #include "sim/eventq.hh"
48 #include "sim/host.hh"
49 #include "sim/stats.hh"
50 #include "targetarch/vtophys.hh"
51
52 using namespace Net;
53 using namespace TheISA;
54
55 namespace Sinic {
56
57 const char *RxStateStrings[] =
58 {
59 "rxIdle",
60 "rxFifoBlock",
61 "rxBeginCopy",
62 "rxCopy",
63 "rxCopyDone"
64 };
65
66 const char *TxStateStrings[] =
67 {
68 "txIdle",
69 "txFifoBlock",
70 "txBeginCopy",
71 "txCopy",
72 "txCopyDone"
73 };
74
75
76 ///////////////////////////////////////////////////////////////////////
77 //
78 // Sinic PCI Device
79 //
80 Base::Base(Params *p)
81 : PciDev(p), rxEnable(false), txEnable(false), clock(p->clock),
82 intrDelay(p->intr_delay), intrTick(0), cpuIntrEnable(false),
83 cpuPendingIntr(false), intrEvent(0), interface(NULL)
84 {
85 }
86
87 Device::Device(Params *p)
88 : Base(p), plat(p->plat), physmem(p->physmem),
89 rxFifo(p->rx_fifo_size), txFifo(p->tx_fifo_size),
90 rxKickTick(0), txKickTick(0),
91 txEvent(this), rxDmaEvent(this), txDmaEvent(this),
92 dmaReadDelay(p->dma_read_delay), dmaReadFactor(p->dma_read_factor),
93 dmaWriteDelay(p->dma_write_delay), dmaWriteFactor(p->dma_write_factor)
94 {
95 reset();
96
97 if (p->pio_bus) {
98 pioInterface = newPioInterface(p->name + ".pio", p->hier, p->pio_bus,
99 this, &Device::cacheAccess);
100 pioLatency = p->pio_latency * p->pio_bus->clockRate;
101 }
102
103 if (p->header_bus) {
104 if (p->payload_bus)
105 dmaInterface = new DMAInterface<Bus>(p->name + ".dma",
106 p->header_bus,
107 p->payload_bus, 1,
108 p->dma_no_allocate);
109 else
110 dmaInterface = new DMAInterface<Bus>(p->name + ".dma",
111 p->header_bus,
112 p->header_bus, 1,
113 p->dma_no_allocate);
114 } else if (p->payload_bus)
115 panic("must define a header bus if defining a payload bus");
116 }
117
118 Device::~Device()
119 {}
120
121 void
122 Device::regStats()
123 {
124 rxBytes
125 .name(name() + ".rxBytes")
126 .desc("Bytes Received")
127 .prereq(rxBytes)
128 ;
129
130 rxBandwidth
131 .name(name() + ".rxBandwidth")
132 .desc("Receive Bandwidth (bits/s)")
133 .precision(0)
134 .prereq(rxBytes)
135 ;
136
137 rxPackets
138 .name(name() + ".rxPackets")
139 .desc("Number of Packets Received")
140 .prereq(rxBytes)
141 ;
142
143 rxPacketRate
144 .name(name() + ".rxPPS")
145 .desc("Packet Reception Rate (packets/s)")
146 .precision(0)
147 .prereq(rxBytes)
148 ;
149
150 rxIpPackets
151 .name(name() + ".rxIpPackets")
152 .desc("Number of IP Packets Received")
153 .prereq(rxBytes)
154 ;
155
156 rxTcpPackets
157 .name(name() + ".rxTcpPackets")
158 .desc("Number of Packets Received")
159 .prereq(rxBytes)
160 ;
161
162 rxUdpPackets
163 .name(name() + ".rxUdpPackets")
164 .desc("Number of UDP Packets Received")
165 .prereq(rxBytes)
166 ;
167
168 rxIpChecksums
169 .name(name() + ".rxIpChecksums")
170 .desc("Number of rx IP Checksums done by device")
171 .precision(0)
172 .prereq(rxBytes)
173 ;
174
175 rxTcpChecksums
176 .name(name() + ".rxTcpChecksums")
177 .desc("Number of rx TCP Checksums done by device")
178 .precision(0)
179 .prereq(rxBytes)
180 ;
181
182 rxUdpChecksums
183 .name(name() + ".rxUdpChecksums")
184 .desc("Number of rx UDP Checksums done by device")
185 .precision(0)
186 .prereq(rxBytes)
187 ;
188
189 totBandwidth
190 .name(name() + ".totBandwidth")
191 .desc("Total Bandwidth (bits/s)")
192 .precision(0)
193 .prereq(totBytes)
194 ;
195
196 totPackets
197 .name(name() + ".totPackets")
198 .desc("Total Packets")
199 .precision(0)
200 .prereq(totBytes)
201 ;
202
203 totBytes
204 .name(name() + ".totBytes")
205 .desc("Total Bytes")
206 .precision(0)
207 .prereq(totBytes)
208 ;
209
210 totPacketRate
211 .name(name() + ".totPPS")
212 .desc("Total Tranmission Rate (packets/s)")
213 .precision(0)
214 .prereq(totBytes)
215 ;
216
217 txBytes
218 .name(name() + ".txBytes")
219 .desc("Bytes Transmitted")
220 .prereq(txBytes)
221 ;
222
223 txBandwidth
224 .name(name() + ".txBandwidth")
225 .desc("Transmit Bandwidth (bits/s)")
226 .precision(0)
227 .prereq(txBytes)
228 ;
229
230 txPackets
231 .name(name() + ".txPackets")
232 .desc("Number of Packets Transmitted")
233 .prereq(txBytes)
234 ;
235
236 txPacketRate
237 .name(name() + ".txPPS")
238 .desc("Packet Tranmission Rate (packets/s)")
239 .precision(0)
240 .prereq(txBytes)
241 ;
242
243 txIpPackets
244 .name(name() + ".txIpPackets")
245 .desc("Number of IP Packets Transmitted")
246 .prereq(txBytes)
247 ;
248
249 txTcpPackets
250 .name(name() + ".txTcpPackets")
251 .desc("Number of TCP Packets Transmitted")
252 .prereq(txBytes)
253 ;
254
255 txUdpPackets
256 .name(name() + ".txUdpPackets")
257 .desc("Number of Packets Transmitted")
258 .prereq(txBytes)
259 ;
260
261 txIpChecksums
262 .name(name() + ".txIpChecksums")
263 .desc("Number of tx IP Checksums done by device")
264 .precision(0)
265 .prereq(txBytes)
266 ;
267
268 txTcpChecksums
269 .name(name() + ".txTcpChecksums")
270 .desc("Number of tx TCP Checksums done by device")
271 .precision(0)
272 .prereq(txBytes)
273 ;
274
275 txUdpChecksums
276 .name(name() + ".txUdpChecksums")
277 .desc("Number of tx UDP Checksums done by device")
278 .precision(0)
279 .prereq(txBytes)
280 ;
281
282 txBandwidth = txBytes * Stats::constant(8) / simSeconds;
283 rxBandwidth = rxBytes * Stats::constant(8) / simSeconds;
284 totBandwidth = txBandwidth + rxBandwidth;
285 totBytes = txBytes + rxBytes;
286 totPackets = txPackets + rxPackets;
287 txPacketRate = txPackets / simSeconds;
288 rxPacketRate = rxPackets / simSeconds;
289 }
290
291 /**
292 * This is to write to the PCI general configuration registers
293 */
294 void
295 Device::writeConfig(int offset, int size, const uint8_t *data)
296 {
297 switch (offset) {
298 case PCI0_BASE_ADDR0:
299 // Need to catch writes to BARs to update the PIO interface
300 PciDev::writeConfig(offset, size, data);
301 if (BARAddrs[0] != 0) {
302 if (pioInterface)
303 pioInterface->addAddrRange(RangeSize(BARAddrs[0], BARSize[0]));
304
305 BARAddrs[0] &= EV5::PAddrUncachedMask;
306 }
307 break;
308
309 default:
310 PciDev::writeConfig(offset, size, data);
311 }
312 }
313
314 void
315 Device::prepareIO(int cpu, int index)
316 {
317 int size = virtualRegs.size();
318 if (index < size)
319 return;
320
321 virtualRegs.resize(index + 1);
322 for (int i = size; i <= index; ++i)
323 virtualRegs[i].rxPacket = rxFifo.end();
324 }
325
326 void
327 Device::prepareRead(int cpu, int index)
328 {
329 using namespace Regs;
330 prepareIO(cpu, index);
331
332 VirtualReg &vnic = virtualRegs[index];
333
334 // update rx registers
335 uint64_t rxdone = vnic.RxDone;
336 rxdone = set_RxDone_Packets(rxdone, rxFifo.packets());
337 regs.RxData = vnic.RxData;
338 regs.RxDone = rxdone;
339 regs.RxWait = rxdone;
340
341 // update tx regsiters
342 uint64_t txdone = vnic.TxDone;
343 txdone = set_TxDone_Packets(txdone, txFifo.packets());
344 txdone = set_TxDone_Full(txdone, txFifo.avail() < regs.TxMaxCopy);
345 txdone = set_TxDone_Low(txdone, txFifo.size() < regs.TxFifoMark);
346 regs.TxData = vnic.TxData;
347 regs.TxDone = txdone;
348 regs.TxWait = txdone;
349 }
350
351 void
352 Device::prepareWrite(int cpu, int index)
353 {
354 prepareIO(cpu, index);
355 }
356
357 /**
358 * I/O read of device register
359 */
360 Fault
361 Device::read(MemReqPtr &req, uint8_t *data)
362 {
363 assert(config.command & PCI_CMD_MSE);
364 Fault fault = readBar(req, data);
365
366 if (fault == MachineCheckFault) {
367 panic("address does not map to a BAR pa=%#x va=%#x size=%d",
368 req->paddr, req->vaddr, req->size);
369
370 return MachineCheckFault;
371 }
372
373 return fault;
374 }
375
376 Fault
377 Device::readBar0(MemReqPtr &req, Addr daddr, uint8_t *data)
378 {
379 int cpu = (req->xc->regs.ipr[TheISA::IPR_PALtemp16] >> 8) & 0xff;
380 Addr index = daddr >> Regs::VirtualShift;
381 Addr raddr = daddr & Regs::VirtualMask;
382
383 if (!regValid(raddr))
384 panic("invalid register: cpu=%d, da=%#x pa=%#x va=%#x size=%d",
385 cpu, daddr, req->paddr, req->vaddr, req->size);
386
387 const Regs::Info &info = regInfo(raddr);
388 if (!info.read)
389 panic("reading %s (write only): cpu=%d da=%#x pa=%#x va=%#x size=%d",
390 info.name, cpu, daddr, req->paddr, req->vaddr, req->size);
391
392 if (req->size != info.size)
393 panic("invalid size for reg %s: cpu=%d da=%#x pa=%#x va=%#x size=%d",
394 info.name, cpu, daddr, req->paddr, req->vaddr, req->size);
395
396 prepareRead(cpu, index);
397
398 uint64_t value = 0;
399 if (req->size == 4) {
400 uint32_t &reg = *(uint32_t *)data;
401 reg = regData32(raddr);
402 value = reg;
403 }
404
405 if (req->size == 8) {
406 uint64_t &reg = *(uint64_t *)data;
407 reg = regData64(raddr);
408 value = reg;
409 }
410
411 DPRINTF(EthernetPIO,
412 "read %s cpu=%d da=%#x pa=%#x va=%#x size=%d val=%#x\n",
413 info.name, cpu, daddr, req->paddr, req->vaddr, req->size, value);
414
415 // reading the interrupt status register has the side effect of
416 // clearing it
417 if (raddr == Regs::IntrStatus)
418 devIntrClear();
419
420 return NoFault;
421 }
422
423 /**
424 * IPR read of device register
425 */
426 Fault
427 Device::iprRead(Addr daddr, int cpu, uint64_t &result)
428 {
429 if (!regValid(daddr))
430 panic("invalid address: da=%#x", daddr);
431
432 const Regs::Info &info = regInfo(daddr);
433 if (!info.read)
434 panic("reading %s (write only): cpu=%d da=%#x", info.name, cpu, daddr);
435
436 DPRINTF(EthernetPIO, "IPR read %s: cpu=%d da=%#x\n",
437 info.name, cpu, daddr);
438
439 prepareRead(cpu, 0);
440
441 if (info.size == 4)
442 result = regData32(daddr);
443
444 if (info.size == 8)
445 result = regData64(daddr);
446
447 DPRINTF(EthernetPIO, "IPR read %s: cpu=%s da=%#x val=%#x\n",
448 info.name, cpu, result);
449
450 return NoFault;
451 }
452
453 /**
454 * I/O write of device register
455 */
456 Fault
457 Device::write(MemReqPtr &req, const uint8_t *data)
458 {
459 assert(config.command & PCI_CMD_MSE);
460 Fault fault = writeBar(req, data);
461
462 if (fault == MachineCheckFault) {
463 panic("address does not map to a BAR pa=%#x va=%#x size=%d",
464 req->paddr, req->vaddr, req->size);
465
466 return MachineCheckFault;
467 }
468
469 return fault;
470 }
471
472 Fault
473 Device::writeBar0(MemReqPtr &req, Addr daddr, const uint8_t *data)
474 {
475 int cpu = (req->xc->regs.ipr[TheISA::IPR_PALtemp16] >> 8) & 0xff;
476 Addr index = daddr >> Regs::VirtualShift;
477 Addr raddr = daddr & Regs::VirtualMask;
478
479 if (!regValid(raddr))
480 panic("invalid address: cpu=%d da=%#x pa=%#x va=%#x size=%d",
481 cpu, daddr, req->paddr, req->vaddr, req->size);
482
483 const Regs::Info &info = regInfo(raddr);
484 if (!info.write)
485 panic("writing %s (read only): cpu=%d da=%#x",
486 info.name, cpu, daddr);
487
488 if (req->size != info.size)
489 panic("invalid size for %s: cpu=%d da=%#x pa=%#x va=%#x size=%d",
490 info.name, cpu, daddr, req->paddr, req->vaddr, req->size);
491
492 uint32_t reg32 = *(uint32_t *)data;
493 uint64_t reg64 = *(uint64_t *)data;
494 VirtualReg &vnic = virtualRegs[index];
495
496 DPRINTF(EthernetPIO,
497 "write %s: cpu=%d val=%#x da=%#x pa=%#x va=%#x size=%d\n",
498 info.name, cpu, info.size == 4 ? reg32 : reg64, daddr,
499 req->paddr, req->vaddr, req->size);
500
501 prepareWrite(cpu, index);
502
503 switch (raddr) {
504 case Regs::Config:
505 changeConfig(reg32);
506 break;
507
508 case Regs::Command:
509 command(reg32);
510 break;
511
512 case Regs::IntrStatus:
513 devIntrClear(regs.IntrStatus & reg32);
514 break;
515
516 case Regs::IntrMask:
517 devIntrChangeMask(reg32);
518 break;
519
520 case Regs::RxData:
521 if (Regs::get_RxDone_Busy(vnic.RxDone))
522 panic("receive machine busy with another request! rxState=%s",
523 RxStateStrings[rxState]);
524
525 vnic.RxDone = Regs::RxDone_Busy;
526 vnic.RxData = reg64;
527 rxList.push_back(index);
528 if (rxEnable && rxState == rxIdle) {
529 rxState = rxFifoBlock;
530 rxKick();
531 }
532 break;
533
534 case Regs::TxData:
535 if (Regs::get_TxDone_Busy(vnic.TxDone))
536 panic("transmit machine busy with another request! txState=%s",
537 TxStateStrings[txState]);
538
539 vnic.TxDone = Regs::TxDone_Busy;
540 vnic.TxData = reg64;
541 if (txList.empty() || txList.front() != index)
542 txList.push_back(index);
543 if (txEnable && txState == txIdle && txList.front() == index) {
544 txState = txFifoBlock;
545 txKick();
546 }
547 break;
548 }
549
550 return NoFault;
551 }
552
553 void
554 Device::devIntrPost(uint32_t interrupts)
555 {
556 if ((interrupts & Regs::Intr_Res))
557 panic("Cannot set a reserved interrupt");
558
559 regs.IntrStatus |= interrupts;
560
561 DPRINTF(EthernetIntr,
562 "interrupt written to intStatus: intr=%#x status=%#x mask=%#x\n",
563 interrupts, regs.IntrStatus, regs.IntrMask);
564
565 interrupts = regs.IntrStatus & regs.IntrMask;
566
567 // Intr_RxHigh is special, we only signal it if we've emptied the fifo
568 // and then filled it above the high watermark
569 if (rxEmpty)
570 rxEmpty = false;
571 else
572 interrupts &= ~Regs::Intr_RxHigh;
573
574 // Intr_TxLow is special, we only signal it if we've filled up the fifo
575 // and then dropped below the low watermark
576 if (txFull)
577 txFull = false;
578 else
579 interrupts &= ~Regs::Intr_TxLow;
580
581 if (interrupts) {
582 Tick when = curTick;
583 if ((interrupts & Regs::Intr_NoDelay) == 0)
584 when += intrDelay;
585 cpuIntrPost(when);
586 }
587 }
588
589 void
590 Device::devIntrClear(uint32_t interrupts)
591 {
592 if ((interrupts & Regs::Intr_Res))
593 panic("Cannot clear a reserved interrupt");
594
595 regs.IntrStatus &= ~interrupts;
596
597 DPRINTF(EthernetIntr,
598 "interrupt cleared from intStatus: intr=%x status=%x mask=%x\n",
599 interrupts, regs.IntrStatus, regs.IntrMask);
600
601 if (!(regs.IntrStatus & regs.IntrMask))
602 cpuIntrClear();
603 }
604
605 void
606 Device::devIntrChangeMask(uint32_t newmask)
607 {
608 if (regs.IntrMask == newmask)
609 return;
610
611 regs.IntrMask = newmask;
612
613 DPRINTF(EthernetIntr,
614 "interrupt mask changed: intStatus=%x intMask=%x masked=%x\n",
615 regs.IntrStatus, regs.IntrMask, regs.IntrStatus & regs.IntrMask);
616
617 if (regs.IntrStatus & regs.IntrMask)
618 cpuIntrPost(curTick);
619 else
620 cpuIntrClear();
621 }
622
623 void
624 Base::cpuIntrPost(Tick when)
625 {
626 // If the interrupt you want to post is later than an interrupt
627 // already scheduled, just let it post in the coming one and don't
628 // schedule another.
629 // HOWEVER, must be sure that the scheduled intrTick is in the
630 // future (this was formerly the source of a bug)
631 /**
632 * @todo this warning should be removed and the intrTick code should
633 * be fixed.
634 */
635 assert(when >= curTick);
636 assert(intrTick >= curTick || intrTick == 0);
637 if (!cpuIntrEnable) {
638 DPRINTF(EthernetIntr, "interrupts not enabled.\n",
639 intrTick);
640 return;
641 }
642
643 if (when > intrTick && intrTick != 0) {
644 DPRINTF(EthernetIntr, "don't need to schedule event...intrTick=%d\n",
645 intrTick);
646 return;
647 }
648
649 intrTick = when;
650 if (intrTick < curTick) {
651 debug_break();
652 intrTick = curTick;
653 }
654
655 DPRINTF(EthernetIntr, "going to schedule an interrupt for intrTick=%d\n",
656 intrTick);
657
658 if (intrEvent)
659 intrEvent->squash();
660 intrEvent = new IntrEvent(this, true);
661 intrEvent->schedule(intrTick);
662 }
663
664 void
665 Base::cpuInterrupt()
666 {
667 assert(intrTick == curTick);
668
669 // Whether or not there's a pending interrupt, we don't care about
670 // it anymore
671 intrEvent = 0;
672 intrTick = 0;
673
674 // Don't send an interrupt if there's already one
675 if (cpuPendingIntr) {
676 DPRINTF(EthernetIntr,
677 "would send an interrupt now, but there's already pending\n");
678 } else {
679 // Send interrupt
680 cpuPendingIntr = true;
681
682 DPRINTF(EthernetIntr, "posting interrupt\n");
683 intrPost();
684 }
685 }
686
687 void
688 Base::cpuIntrClear()
689 {
690 if (!cpuPendingIntr)
691 return;
692
693 if (intrEvent) {
694 intrEvent->squash();
695 intrEvent = 0;
696 }
697
698 intrTick = 0;
699
700 cpuPendingIntr = false;
701
702 DPRINTF(EthernetIntr, "clearing cchip interrupt\n");
703 intrClear();
704 }
705
706 bool
707 Base::cpuIntrPending() const
708 { return cpuPendingIntr; }
709
710 void
711 Device::changeConfig(uint32_t newconf)
712 {
713 uint32_t changed = regs.Config ^ newconf;
714 if (!changed)
715 return;
716
717 regs.Config = newconf;
718
719 if ((changed & Regs::Config_IntEn)) {
720 cpuIntrEnable = regs.Config & Regs::Config_IntEn;
721 if (cpuIntrEnable) {
722 if (regs.IntrStatus & regs.IntrMask)
723 cpuIntrPost(curTick);
724 } else {
725 cpuIntrClear();
726 }
727 }
728
729 if ((changed & Regs::Config_TxEn)) {
730 txEnable = regs.Config & Regs::Config_TxEn;
731 if (txEnable)
732 txKick();
733 }
734
735 if ((changed & Regs::Config_RxEn)) {
736 rxEnable = regs.Config & Regs::Config_RxEn;
737 if (rxEnable)
738 rxKick();
739 }
740 }
741
742 void
743 Device::command(uint32_t command)
744 {
745 if (command & Regs::Command_Intr)
746 devIntrPost(Regs::Intr_Soft);
747
748 if (command & Regs::Command_Reset)
749 reset();
750 }
751
752 void
753 Device::reset()
754 {
755 using namespace Regs;
756
757 memset(&regs, 0, sizeof(regs));
758
759 regs.Config = 0;
760 if (params()->rx_thread)
761 regs.Config |= Config_RxThread;
762 if (params()->tx_thread)
763 regs.Config |= Config_TxThread;
764 regs.IntrMask = Intr_Soft | Intr_RxHigh | Intr_RxPacket | Intr_TxLow;
765 regs.RxMaxCopy = params()->rx_max_copy;
766 regs.TxMaxCopy = params()->tx_max_copy;
767 regs.RxMaxIntr = params()->rx_max_intr;
768 regs.RxFifoSize = params()->rx_fifo_size;
769 regs.TxFifoSize = params()->tx_fifo_size;
770 regs.RxFifoMark = params()->rx_fifo_threshold;
771 regs.TxFifoMark = params()->tx_fifo_threshold;
772 regs.HwAddr = params()->eaddr;
773
774 rxList.clear();
775 txList.clear();
776
777 rxState = rxIdle;
778 txState = txIdle;
779
780 rxFifo.clear();
781 rxFifoPtr = rxFifo.end();
782 txFifo.clear();
783 rxEmpty = false;
784 txFull = false;
785
786 int size = virtualRegs.size();
787 virtualRegs.clear();
788 virtualRegs.resize(size);
789 for (int i = 0; i < size; ++i)
790 virtualRegs[i].rxPacket = rxFifo.end();
791 }
792
793 void
794 Device::rxDmaCopy()
795 {
796 assert(rxState == rxCopy);
797 rxState = rxCopyDone;
798 physmem->dma_write(rxDmaAddr, (uint8_t *)rxDmaData, rxDmaLen);
799 DPRINTF(EthernetDMA, "rx dma write paddr=%#x len=%d\n",
800 rxDmaAddr, rxDmaLen);
801 DDUMP(EthernetData, rxDmaData, rxDmaLen);
802 }
803
804 void
805 Device::rxDmaDone()
806 {
807 rxDmaCopy();
808
809 // If the transmit state machine has a pending DMA, let it go first
810 if (txState == txBeginCopy)
811 txKick();
812
813 rxKick();
814 }
815
816 void
817 Device::rxKick()
818 {
819 VirtualReg *vnic;
820
821 DPRINTF(EthernetSM, "receive kick rxState=%s (rxFifo.size=%d)\n",
822 RxStateStrings[rxState], rxFifo.size());
823
824 if (rxKickTick > curTick) {
825 DPRINTF(EthernetSM, "receive kick exiting, can't run till %d\n",
826 rxKickTick);
827 return;
828 }
829
830 next:
831 if (rxState == rxIdle)
832 goto exit;
833
834 assert(!rxList.empty());
835 vnic = &virtualRegs[rxList.front()];
836
837 DPRINTF(EthernetSM, "processing rxState=%s for virtual nic %d\n",
838 RxStateStrings[rxState], rxList.front());
839
840 switch (rxState) {
841 case rxFifoBlock:
842 if (vnic->rxPacket != rxFifo.end()) {
843 rxState = rxBeginCopy;
844 break;
845 }
846
847 if (rxFifoPtr == rxFifo.end()) {
848 DPRINTF(EthernetSM, "receive waiting for data. Nothing to do.\n");
849 goto exit;
850 }
851
852 assert(!rxFifo.empty());
853
854 // Grab a new packet from the fifo.
855 vnic->rxPacket = rxFifoPtr++;
856 vnic->rxPacketOffset = 0;
857 vnic->rxPacketBytes = (*vnic->rxPacket)->length;
858 assert(vnic->rxPacketBytes);
859
860 vnic->rxDoneData = 0;
861 /* scope for variables */ {
862 IpPtr ip(*vnic->rxPacket);
863 if (ip) {
864 vnic->rxDoneData |= Regs::RxDone_IpPacket;
865 rxIpChecksums++;
866 if (cksum(ip) != 0) {
867 DPRINTF(EthernetCksum, "Rx IP Checksum Error\n");
868 vnic->rxDoneData |= Regs::RxDone_IpError;
869 }
870 TcpPtr tcp(ip);
871 UdpPtr udp(ip);
872 if (tcp) {
873 vnic->rxDoneData |= Regs::RxDone_TcpPacket;
874 rxTcpChecksums++;
875 if (cksum(tcp) != 0) {
876 DPRINTF(EthernetCksum, "Rx TCP Checksum Error\n");
877 vnic->rxDoneData |= Regs::RxDone_TcpError;
878 }
879 } else if (udp) {
880 vnic->rxDoneData |= Regs::RxDone_UdpPacket;
881 rxUdpChecksums++;
882 if (cksum(udp) != 0) {
883 DPRINTF(EthernetCksum, "Rx UDP Checksum Error\n");
884 vnic->rxDoneData |= Regs::RxDone_UdpError;
885 }
886 }
887 }
888 }
889 rxState = rxBeginCopy;
890 break;
891
892 case rxBeginCopy:
893 if (dmaInterface && dmaInterface->busy())
894 goto exit;
895
896 rxDmaAddr = plat->pciToDma(Regs::get_RxData_Addr(vnic->RxData));
897 rxDmaLen = min<int>(Regs::get_RxData_Len(vnic->RxData),
898 vnic->rxPacketBytes);
899 rxDmaData = (*vnic->rxPacket)->data + vnic->rxPacketOffset;
900 rxState = rxCopy;
901
902 if (dmaInterface) {
903 dmaInterface->doDMA(WriteInvalidate, rxDmaAddr, rxDmaLen,
904 curTick, &rxDmaEvent, true);
905 goto exit;
906 }
907
908 if (dmaWriteDelay != 0 || dmaWriteFactor != 0) {
909 Tick factor = ((rxDmaLen + ULL(63)) >> ULL(6)) * dmaWriteFactor;
910 Tick start = curTick + dmaWriteDelay + factor;
911 rxDmaEvent.schedule(start);
912 goto exit;
913 }
914
915 rxDmaCopy();
916 break;
917
918 case rxCopy:
919 DPRINTF(EthernetSM, "receive machine still copying\n");
920 goto exit;
921
922 case rxCopyDone:
923 vnic->RxDone = vnic->rxDoneData | rxDmaLen;
924 vnic->RxDone |= Regs::RxDone_Complete;
925
926 if (vnic->rxPacketBytes == rxDmaLen) {
927 DPRINTF(EthernetSM, "rxKick: packet complete on vnic %d\n",
928 rxList.front());
929 rxFifo.remove(vnic->rxPacket);
930 vnic->rxPacket = rxFifo.end();
931 } else {
932 vnic->RxDone |= Regs::RxDone_More;
933 vnic->rxPacketBytes -= rxDmaLen;
934 vnic->rxPacketOffset += rxDmaLen;
935 DPRINTF(EthernetSM,
936 "rxKick: packet not complete on vnic %d: %d bytes left\n",
937 rxList.front(), vnic->rxPacketBytes);
938 }
939
940 rxList.pop_front();
941 rxState = rxList.empty() ? rxIdle : rxFifoBlock;
942
943 if (rxFifo.empty()) {
944 devIntrPost(Regs::Intr_RxEmpty);
945 rxEmpty = true;
946 }
947
948 devIntrPost(Regs::Intr_RxDMA);
949 break;
950
951 default:
952 panic("Invalid rxState!");
953 }
954
955 DPRINTF(EthernetSM, "entering next rxState=%s\n",
956 RxStateStrings[rxState]);
957
958 goto next;
959
960 exit:
961 /**
962 * @todo do we want to schedule a future kick?
963 */
964 DPRINTF(EthernetSM, "rx state machine exited rxState=%s\n",
965 RxStateStrings[rxState]);
966 }
967
968 void
969 Device::txDmaCopy()
970 {
971 assert(txState == txCopy);
972 txState = txCopyDone;
973 physmem->dma_read((uint8_t *)txDmaData, txDmaAddr, txDmaLen);
974 DPRINTF(EthernetDMA, "tx dma read paddr=%#x len=%d\n",
975 txDmaAddr, txDmaLen);
976 DDUMP(EthernetData, txDmaData, txDmaLen);
977 }
978
979 void
980 Device::txDmaDone()
981 {
982 txDmaCopy();
983
984 // If the receive state machine has a pending DMA, let it go first
985 if (rxState == rxBeginCopy)
986 rxKick();
987
988 txKick();
989 }
990
991 void
992 Device::transmit()
993 {
994 if (txFifo.empty()) {
995 DPRINTF(Ethernet, "nothing to transmit\n");
996 return;
997 }
998
999 uint32_t interrupts;
1000 PacketPtr packet = txFifo.front();
1001 if (!interface->sendPacket(packet)) {
1002 DPRINTF(Ethernet, "Packet Transmit: failed txFifo available %d\n",
1003 txFifo.avail());
1004 goto reschedule;
1005 }
1006
1007 txFifo.pop();
1008 #if TRACING_ON
1009 if (DTRACE(Ethernet)) {
1010 IpPtr ip(packet);
1011 if (ip) {
1012 DPRINTF(Ethernet, "ID is %d\n", ip->id());
1013 TcpPtr tcp(ip);
1014 if (tcp) {
1015 DPRINTF(Ethernet, "Src Port=%d, Dest Port=%d\n",
1016 tcp->sport(), tcp->dport());
1017 }
1018 }
1019 }
1020 #endif
1021
1022 DDUMP(EthernetData, packet->data, packet->length);
1023 txBytes += packet->length;
1024 txPackets++;
1025
1026 DPRINTF(Ethernet, "Packet Transmit: successful txFifo Available %d\n",
1027 txFifo.avail());
1028
1029 interrupts = Regs::Intr_TxPacket;
1030 if (txFifo.size() < regs.TxFifoMark)
1031 interrupts |= Regs::Intr_TxLow;
1032 devIntrPost(interrupts);
1033
1034 reschedule:
1035 if (!txFifo.empty() && !txEvent.scheduled()) {
1036 DPRINTF(Ethernet, "reschedule transmit\n");
1037 txEvent.schedule(curTick + retryTime);
1038 }
1039 }
1040
1041 void
1042 Device::txKick()
1043 {
1044 VirtualReg *vnic;
1045 DPRINTF(EthernetSM, "transmit kick txState=%s (txFifo.size=%d)\n",
1046 TxStateStrings[txState], txFifo.size());
1047
1048 if (txKickTick > curTick) {
1049 DPRINTF(EthernetSM, "transmit kick exiting, can't run till %d\n",
1050 txKickTick);
1051 return;
1052 }
1053
1054 next:
1055 if (txState == txIdle)
1056 goto exit;
1057
1058 assert(!txList.empty());
1059 vnic = &virtualRegs[txList.front()];
1060
1061 switch (txState) {
1062 case txFifoBlock:
1063 assert(Regs::get_TxDone_Busy(vnic->TxData));
1064 if (!txPacket) {
1065 // Grab a new packet from the fifo.
1066 txPacket = new PacketData(16384);
1067 txPacketOffset = 0;
1068 }
1069
1070 if (txFifo.avail() - txPacket->length <
1071 Regs::get_TxData_Len(vnic->TxData)) {
1072 DPRINTF(EthernetSM, "transmit fifo full. Nothing to do.\n");
1073 goto exit;
1074 }
1075
1076 txState = txBeginCopy;
1077 break;
1078
1079 case txBeginCopy:
1080 if (dmaInterface && dmaInterface->busy())
1081 goto exit;
1082
1083 txDmaAddr = plat->pciToDma(Regs::get_TxData_Addr(vnic->TxData));
1084 txDmaLen = Regs::get_TxData_Len(vnic->TxData);
1085 txDmaData = txPacket->data + txPacketOffset;
1086 txState = txCopy;
1087
1088 if (dmaInterface) {
1089 dmaInterface->doDMA(Read, txDmaAddr, txDmaLen,
1090 curTick, &txDmaEvent, true);
1091 goto exit;
1092 }
1093
1094 if (dmaReadDelay != 0 || dmaReadFactor != 0) {
1095 Tick factor = ((txDmaLen + ULL(63)) >> ULL(6)) * dmaReadFactor;
1096 Tick start = curTick + dmaReadDelay + factor;
1097 txDmaEvent.schedule(start);
1098 goto exit;
1099 }
1100
1101 txDmaCopy();
1102 break;
1103
1104 case txCopy:
1105 DPRINTF(EthernetSM, "transmit machine still copying\n");
1106 goto exit;
1107
1108 case txCopyDone:
1109 vnic->TxDone = txDmaLen | Regs::TxDone_Complete;
1110 txPacket->length += txDmaLen;
1111 if ((vnic->TxData & Regs::TxData_More)) {
1112 txPacketOffset += txDmaLen;
1113 txState = txIdle;
1114 devIntrPost(Regs::Intr_TxDMA);
1115 break;
1116 }
1117
1118 assert(txPacket->length <= txFifo.avail());
1119 if ((vnic->TxData & Regs::TxData_Checksum)) {
1120 IpPtr ip(txPacket);
1121 if (ip) {
1122 TcpPtr tcp(ip);
1123 if (tcp) {
1124 tcp->sum(0);
1125 tcp->sum(cksum(tcp));
1126 txTcpChecksums++;
1127 }
1128
1129 UdpPtr udp(ip);
1130 if (udp) {
1131 udp->sum(0);
1132 udp->sum(cksum(udp));
1133 txUdpChecksums++;
1134 }
1135
1136 ip->sum(0);
1137 ip->sum(cksum(ip));
1138 txIpChecksums++;
1139 }
1140 }
1141
1142 txFifo.push(txPacket);
1143 if (txFifo.avail() < regs.TxMaxCopy) {
1144 devIntrPost(Regs::Intr_TxFull);
1145 txFull = true;
1146 }
1147 txPacket = 0;
1148 transmit();
1149 txList.pop_front();
1150 txState = txList.empty() ? txIdle : txFifoBlock;
1151 devIntrPost(Regs::Intr_TxDMA);
1152 break;
1153
1154 default:
1155 panic("Invalid txState!");
1156 }
1157
1158 DPRINTF(EthernetSM, "entering next txState=%s\n",
1159 TxStateStrings[txState]);
1160
1161 goto next;
1162
1163 exit:
1164 /**
1165 * @todo do we want to schedule a future kick?
1166 */
1167 DPRINTF(EthernetSM, "tx state machine exited txState=%s\n",
1168 TxStateStrings[txState]);
1169 }
1170
1171 void
1172 Device::transferDone()
1173 {
1174 if (txFifo.empty()) {
1175 DPRINTF(Ethernet, "transfer complete: txFifo empty...nothing to do\n");
1176 return;
1177 }
1178
1179 DPRINTF(Ethernet, "transfer complete: data in txFifo...schedule xmit\n");
1180
1181 if (txEvent.scheduled())
1182 txEvent.reschedule(curTick + cycles(1));
1183 else
1184 txEvent.schedule(curTick + cycles(1));
1185 }
1186
1187 bool
1188 Device::rxFilter(const PacketPtr &packet)
1189 {
1190 if (!Regs::get_Config_Filter(regs.Config))
1191 return false;
1192
1193 panic("receive filter not implemented\n");
1194 bool drop = true;
1195
1196 #if 0
1197 string type;
1198
1199 EthHdr *eth = packet->eth();
1200 if (eth->unicast()) {
1201 // If we're accepting all unicast addresses
1202 if (acceptUnicast)
1203 drop = false;
1204
1205 // If we make a perfect match
1206 if (acceptPerfect && params->eaddr == eth.dst())
1207 drop = false;
1208
1209 if (acceptArp && eth->type() == ETH_TYPE_ARP)
1210 drop = false;
1211
1212 } else if (eth->broadcast()) {
1213 // if we're accepting broadcasts
1214 if (acceptBroadcast)
1215 drop = false;
1216
1217 } else if (eth->multicast()) {
1218 // if we're accepting all multicasts
1219 if (acceptMulticast)
1220 drop = false;
1221
1222 }
1223
1224 if (drop) {
1225 DPRINTF(Ethernet, "rxFilter drop\n");
1226 DDUMP(EthernetData, packet->data, packet->length);
1227 }
1228 #endif
1229 return drop;
1230 }
1231
1232 bool
1233 Device::recvPacket(PacketPtr packet)
1234 {
1235 rxBytes += packet->length;
1236 rxPackets++;
1237
1238 DPRINTF(Ethernet, "Receiving packet from wire, rxFifo Available is %d\n",
1239 rxFifo.avail());
1240
1241 if (!rxEnable) {
1242 DPRINTF(Ethernet, "receive disabled...packet dropped\n");
1243 return true;
1244 }
1245
1246 if (rxFilter(packet)) {
1247 DPRINTF(Ethernet, "packet filtered...dropped\n");
1248 return true;
1249 }
1250
1251 if (rxFifo.size() >= regs.RxFifoMark)
1252 devIntrPost(Regs::Intr_RxHigh);
1253
1254 if (!rxFifo.push(packet)) {
1255 DPRINTF(Ethernet,
1256 "packet will not fit in receive buffer...packet dropped\n");
1257 return false;
1258 }
1259
1260 // If we were at the last element, back up one ot go to the new
1261 // last element of the list.
1262 if (rxFifoPtr == rxFifo.end())
1263 --rxFifoPtr;
1264
1265 devIntrPost(Regs::Intr_RxPacket);
1266 rxKick();
1267 return true;
1268 }
1269
1270 //=====================================================================
1271 //
1272 //
1273 void
1274 Base::serialize(ostream &os)
1275 {
1276 // Serialize the PciDev base class
1277 PciDev::serialize(os);
1278
1279 SERIALIZE_SCALAR(rxEnable);
1280 SERIALIZE_SCALAR(txEnable);
1281 SERIALIZE_SCALAR(cpuIntrEnable);
1282
1283 /*
1284 * Keep track of pending interrupt status.
1285 */
1286 SERIALIZE_SCALAR(intrTick);
1287 SERIALIZE_SCALAR(cpuPendingIntr);
1288 Tick intrEventTick = 0;
1289 if (intrEvent)
1290 intrEventTick = intrEvent->when();
1291 SERIALIZE_SCALAR(intrEventTick);
1292 }
1293
1294 void
1295 Base::unserialize(Checkpoint *cp, const std::string &section)
1296 {
1297 // Unserialize the PciDev base class
1298 PciDev::unserialize(cp, section);
1299
1300 UNSERIALIZE_SCALAR(rxEnable);
1301 UNSERIALIZE_SCALAR(txEnable);
1302 UNSERIALIZE_SCALAR(cpuIntrEnable);
1303
1304 /*
1305 * Keep track of pending interrupt status.
1306 */
1307 UNSERIALIZE_SCALAR(intrTick);
1308 UNSERIALIZE_SCALAR(cpuPendingIntr);
1309 Tick intrEventTick;
1310 UNSERIALIZE_SCALAR(intrEventTick);
1311 if (intrEventTick) {
1312 intrEvent = new IntrEvent(this, true);
1313 intrEvent->schedule(intrEventTick);
1314 }
1315 }
1316
1317 void
1318 Device::serialize(ostream &os)
1319 {
1320 // Serialize the PciDev base class
1321 Base::serialize(os);
1322
1323 if (rxState == rxCopy)
1324 panic("can't serialize with an in flight dma request rxState=%s",
1325 RxStateStrings[rxState]);
1326
1327 if (txState == txCopy)
1328 panic("can't serialize with an in flight dma request txState=%s",
1329 TxStateStrings[txState]);
1330
1331 /*
1332 * Serialize the device registers
1333 */
1334 SERIALIZE_SCALAR(regs.Config);
1335 SERIALIZE_SCALAR(regs.IntrStatus);
1336 SERIALIZE_SCALAR(regs.IntrMask);
1337 SERIALIZE_SCALAR(regs.RxMaxCopy);
1338 SERIALIZE_SCALAR(regs.TxMaxCopy);
1339 SERIALIZE_SCALAR(regs.RxMaxIntr);
1340 SERIALIZE_SCALAR(regs.RxData);
1341 SERIALIZE_SCALAR(regs.RxDone);
1342 SERIALIZE_SCALAR(regs.TxData);
1343 SERIALIZE_SCALAR(regs.TxDone);
1344
1345 /*
1346 * Serialize the virtual nic state
1347 */
1348 int virtualRegsSize = virtualRegs.size();
1349 SERIALIZE_SCALAR(virtualRegsSize);
1350 for (int i = 0; i < virtualRegsSize; ++i) {
1351 VirtualReg *vnic = &virtualRegs[i];
1352
1353 string reg = csprintf("vnic%d", i);
1354 paramOut(os, reg + ".RxData", vnic->RxData);
1355 paramOut(os, reg + ".RxDone", vnic->RxDone);
1356 paramOut(os, reg + ".TxData", vnic->TxData);
1357 paramOut(os, reg + ".TxDone", vnic->TxDone);
1358
1359 PacketFifo::iterator rxFifoPtr;
1360
1361 bool rxPacketExists = vnic->rxPacket != rxFifo.end();
1362 paramOut(os, reg + ".rxPacketExists", rxPacketExists);
1363 if (rxPacketExists) {
1364 int rxPacket = 0;
1365 PacketFifo::iterator i = rxFifo.begin();
1366 while (i != vnic->rxPacket) {
1367 assert(i != rxFifo.end());
1368 ++i;
1369 ++rxPacket;
1370 }
1371
1372 paramOut(os, reg + ".rxPacket", rxPacket);
1373 paramOut(os, reg + ".rxPacketOffset", vnic->rxPacketOffset);
1374 paramOut(os, reg + ".rxPacketBytes", vnic->rxPacketBytes);
1375 }
1376 paramOut(os, reg + ".rxDoneData", vnic->rxDoneData);
1377 }
1378
1379 VirtualList::iterator i, end;
1380 int count;
1381
1382 int rxListSize = rxList.size();
1383 SERIALIZE_SCALAR(rxListSize);
1384 for (count = 0, i = rxList.begin(), end = rxList.end(); i != end; ++i)
1385 paramOut(os, csprintf("rxList%d", count++), *i);
1386
1387 int txListSize = txList.size();
1388 SERIALIZE_SCALAR(txListSize);
1389 for (count = 0, i = txList.begin(), end = txList.end(); i != end; ++i)
1390 paramOut(os, csprintf("txList%d", count++), *i);
1391
1392 /*
1393 * Serialize rx state machine
1394 */
1395 int rxState = this->rxState;
1396 SERIALIZE_SCALAR(rxState);
1397 SERIALIZE_SCALAR(rxEmpty);
1398 rxFifo.serialize("rxFifo", os);
1399
1400 /*
1401 * Serialize tx state machine
1402 */
1403 int txState = this->txState;
1404 SERIALIZE_SCALAR(txState);
1405 SERIALIZE_SCALAR(txFull);
1406 txFifo.serialize("txFifo", os);
1407 bool txPacketExists = txPacket;
1408 SERIALIZE_SCALAR(txPacketExists);
1409 if (txPacketExists) {
1410 txPacket->serialize("txPacket", os);
1411 SERIALIZE_SCALAR(txPacketOffset);
1412 SERIALIZE_SCALAR(txPacketBytes);
1413 }
1414
1415 /*
1416 * If there's a pending transmit, store the time so we can
1417 * reschedule it later
1418 */
1419 Tick transmitTick = txEvent.scheduled() ? txEvent.when() - curTick : 0;
1420 SERIALIZE_SCALAR(transmitTick);
1421 }
1422
1423 void
1424 Device::unserialize(Checkpoint *cp, const std::string &section)
1425 {
1426 // Unserialize the PciDev base class
1427 Base::unserialize(cp, section);
1428
1429 /*
1430 * Unserialize the device registers
1431 */
1432 UNSERIALIZE_SCALAR(regs.Config);
1433 UNSERIALIZE_SCALAR(regs.IntrStatus);
1434 UNSERIALIZE_SCALAR(regs.IntrMask);
1435 UNSERIALIZE_SCALAR(regs.RxMaxCopy);
1436 UNSERIALIZE_SCALAR(regs.TxMaxCopy);
1437 UNSERIALIZE_SCALAR(regs.RxMaxIntr);
1438 UNSERIALIZE_SCALAR(regs.RxData);
1439 UNSERIALIZE_SCALAR(regs.RxDone);
1440 UNSERIALIZE_SCALAR(regs.TxData);
1441 UNSERIALIZE_SCALAR(regs.TxDone);
1442
1443 int rxListSize;
1444 UNSERIALIZE_SCALAR(rxListSize);
1445 rxList.clear();
1446 for (int i = 0; i < rxListSize; ++i) {
1447 int value;
1448 paramIn(cp, section, csprintf("rxList%d", i), value);
1449 rxList.push_back(value);
1450 }
1451
1452 int txListSize;
1453 UNSERIALIZE_SCALAR(txListSize);
1454 txList.clear();
1455 for (int i = 0; i < txListSize; ++i) {
1456 int value;
1457 paramIn(cp, section, csprintf("txList%d", i), value);
1458 txList.push_back(value);
1459 }
1460
1461 /*
1462 * Unserialize rx state machine
1463 */
1464 int rxState;
1465 UNSERIALIZE_SCALAR(rxState);
1466 UNSERIALIZE_SCALAR(rxEmpty);
1467 this->rxState = (RxState) rxState;
1468 rxFifo.unserialize("rxFifo", cp, section);
1469
1470 /*
1471 * Unserialize tx state machine
1472 */
1473 int txState;
1474 UNSERIALIZE_SCALAR(txState);
1475 UNSERIALIZE_SCALAR(txFull);
1476 this->txState = (TxState) txState;
1477 txFifo.unserialize("txFifo", cp, section);
1478 bool txPacketExists;
1479 UNSERIALIZE_SCALAR(txPacketExists);
1480 txPacket = 0;
1481 if (txPacketExists) {
1482 txPacket = new PacketData(16384);
1483 txPacket->unserialize("txPacket", cp, section);
1484 UNSERIALIZE_SCALAR(txPacketOffset);
1485 UNSERIALIZE_SCALAR(txPacketBytes);
1486 }
1487
1488 /*
1489 * unserialize the virtual nic registers/state
1490 *
1491 * this must be done after the unserialization of the rxFifo
1492 * because the packet iterators depend on the fifo being populated
1493 */
1494 int virtualRegsSize;
1495 UNSERIALIZE_SCALAR(virtualRegsSize);
1496 virtualRegs.clear();
1497 virtualRegs.resize(virtualRegsSize);
1498 for (int i = 0; i < virtualRegsSize; ++i) {
1499 VirtualReg *vnic = &virtualRegs[i];
1500 string reg = csprintf("vnic%d", i);
1501
1502 paramIn(cp, section, reg + ".RxData", vnic->RxData);
1503 paramIn(cp, section, reg + ".RxDone", vnic->RxDone);
1504 paramIn(cp, section, reg + ".TxData", vnic->TxData);
1505 paramIn(cp, section, reg + ".TxDone", vnic->TxDone);
1506
1507 bool rxPacketExists;
1508 paramIn(cp, section, reg + ".rxPacketExists", rxPacketExists);
1509 if (rxPacketExists) {
1510 int rxPacket;
1511 paramIn(cp, section, reg + ".rxPacket", rxPacket);
1512 vnic->rxPacket = rxFifo.begin();
1513 while (rxPacket--)
1514 ++vnic->rxPacket;
1515
1516 paramIn(cp, section, reg + ".rxPacketOffset",
1517 vnic->rxPacketOffset);
1518 paramIn(cp, section, reg + ".rxPacketBytes", vnic->rxPacketBytes);
1519 } else {
1520 vnic->rxPacket = rxFifo.end();
1521 }
1522 paramIn(cp, section, reg + ".rxDoneData", vnic->rxDoneData);
1523 }
1524
1525 /*
1526 * If there's a pending transmit, reschedule it now
1527 */
1528 Tick transmitTick;
1529 UNSERIALIZE_SCALAR(transmitTick);
1530 if (transmitTick)
1531 txEvent.schedule(curTick + transmitTick);
1532
1533 /*
1534 * re-add addrRanges to bus bridges
1535 */
1536 if (pioInterface) {
1537 pioInterface->addAddrRange(RangeSize(BARAddrs[0], BARSize[0]));
1538 pioInterface->addAddrRange(RangeSize(BARAddrs[1], BARSize[1]));
1539 }
1540 }
1541
1542 Tick
1543 Device::cacheAccess(MemReqPtr &req)
1544 {
1545 Addr daddr;
1546 int bar;
1547 if (!getBAR(req->paddr, daddr, bar))
1548 panic("address does not map to a BAR pa=%#x va=%#x size=%d",
1549 req->paddr, req->vaddr, req->size);
1550
1551 DPRINTF(EthernetPIO, "timing %s to paddr=%#x bar=%d daddr=%#x\n",
1552 req->cmd.toString(), req->paddr, bar, daddr);
1553
1554 return curTick + pioLatency;
1555 }
1556
1557 BEGIN_DECLARE_SIM_OBJECT_PARAMS(Interface)
1558
1559 SimObjectParam<EtherInt *> peer;
1560 SimObjectParam<Device *> device;
1561
1562 END_DECLARE_SIM_OBJECT_PARAMS(Interface)
1563
1564 BEGIN_INIT_SIM_OBJECT_PARAMS(Interface)
1565
1566 INIT_PARAM_DFLT(peer, "peer interface", NULL),
1567 INIT_PARAM(device, "Ethernet device of this interface")
1568
1569 END_INIT_SIM_OBJECT_PARAMS(Interface)
1570
1571 CREATE_SIM_OBJECT(Interface)
1572 {
1573 Interface *dev_int = new Interface(getInstanceName(), device);
1574
1575 EtherInt *p = (EtherInt *)peer;
1576 if (p) {
1577 dev_int->setPeer(p);
1578 p->setPeer(dev_int);
1579 }
1580
1581 return dev_int;
1582 }
1583
1584 REGISTER_SIM_OBJECT("SinicInt", Interface)
1585
1586
1587 BEGIN_DECLARE_SIM_OBJECT_PARAMS(Device)
1588
1589 Param<Tick> clock;
1590
1591 Param<Addr> addr;
1592 SimObjectParam<MemoryController *> mmu;
1593 SimObjectParam<PhysicalMemory *> physmem;
1594 SimObjectParam<PciConfigAll *> configspace;
1595 SimObjectParam<PciConfigData *> configdata;
1596 SimObjectParam<Platform *> platform;
1597 Param<uint32_t> pci_bus;
1598 Param<uint32_t> pci_dev;
1599 Param<uint32_t> pci_func;
1600
1601 SimObjectParam<HierParams *> hier;
1602 SimObjectParam<Bus*> pio_bus;
1603 SimObjectParam<Bus*> dma_bus;
1604 SimObjectParam<Bus*> payload_bus;
1605 Param<Tick> dma_read_delay;
1606 Param<Tick> dma_read_factor;
1607 Param<Tick> dma_write_delay;
1608 Param<Tick> dma_write_factor;
1609 Param<bool> dma_no_allocate;
1610 Param<Tick> pio_latency;
1611 Param<Tick> intr_delay;
1612
1613 Param<Tick> rx_delay;
1614 Param<Tick> tx_delay;
1615 Param<uint32_t> rx_max_copy;
1616 Param<uint32_t> tx_max_copy;
1617 Param<uint32_t> rx_max_intr;
1618 Param<uint32_t> rx_fifo_size;
1619 Param<uint32_t> tx_fifo_size;
1620 Param<uint32_t> rx_fifo_threshold;
1621 Param<uint32_t> tx_fifo_threshold;
1622
1623 Param<bool> rx_filter;
1624 Param<string> hardware_address;
1625 Param<bool> rx_thread;
1626 Param<bool> tx_thread;
1627
1628 END_DECLARE_SIM_OBJECT_PARAMS(Device)
1629
1630 BEGIN_INIT_SIM_OBJECT_PARAMS(Device)
1631
1632 INIT_PARAM(clock, "State machine cycle time"),
1633
1634 INIT_PARAM(addr, "Device Address"),
1635 INIT_PARAM(mmu, "Memory Controller"),
1636 INIT_PARAM(physmem, "Physical Memory"),
1637 INIT_PARAM(configspace, "PCI Configspace"),
1638 INIT_PARAM(configdata, "PCI Config data"),
1639 INIT_PARAM(platform, "Platform"),
1640 INIT_PARAM(pci_bus, "PCI bus"),
1641 INIT_PARAM(pci_dev, "PCI device number"),
1642 INIT_PARAM(pci_func, "PCI function code"),
1643
1644 INIT_PARAM(hier, "Hierarchy global variables"),
1645 INIT_PARAM(pio_bus, ""),
1646 INIT_PARAM(dma_bus, ""),
1647 INIT_PARAM(payload_bus, "The IO Bus to attach to for payload"),
1648 INIT_PARAM(dma_read_delay, "fixed delay for dma reads"),
1649 INIT_PARAM(dma_read_factor, "multiplier for dma reads"),
1650 INIT_PARAM(dma_write_delay, "fixed delay for dma writes"),
1651 INIT_PARAM(dma_write_factor, "multiplier for dma writes"),
1652 INIT_PARAM(dma_no_allocate, "Should we allocat on read in cache"),
1653 INIT_PARAM(pio_latency, "Programmed IO latency in bus cycles"),
1654 INIT_PARAM(intr_delay, "Interrupt Delay"),
1655
1656 INIT_PARAM(rx_delay, "Receive Delay"),
1657 INIT_PARAM(tx_delay, "Transmit Delay"),
1658 INIT_PARAM(rx_max_copy, "rx max copy"),
1659 INIT_PARAM(tx_max_copy, "rx max copy"),
1660 INIT_PARAM(rx_max_intr, "rx max intr"),
1661 INIT_PARAM(rx_fifo_size, "max size in bytes of rxFifo"),
1662 INIT_PARAM(tx_fifo_size, "max size in bytes of txFifo"),
1663 INIT_PARAM(rx_fifo_threshold, "max size in bytes of rxFifo"),
1664 INIT_PARAM(tx_fifo_threshold, "max size in bytes of txFifo"),
1665
1666 INIT_PARAM(rx_filter, "Enable Receive Filter"),
1667 INIT_PARAM(hardware_address, "Ethernet Hardware Address"),
1668 INIT_PARAM(rx_thread, ""),
1669 INIT_PARAM(tx_thread, "")
1670
1671 END_INIT_SIM_OBJECT_PARAMS(Device)
1672
1673
1674 CREATE_SIM_OBJECT(Device)
1675 {
1676 Device::Params *params = new Device::Params;
1677
1678 params->name = getInstanceName();
1679
1680 params->clock = clock;
1681
1682 params->mmu = mmu;
1683 params->physmem = physmem;
1684 params->configSpace = configspace;
1685 params->configData = configdata;
1686 params->plat = platform;
1687 params->busNum = pci_bus;
1688 params->deviceNum = pci_dev;
1689 params->functionNum = pci_func;
1690
1691 params->hier = hier;
1692 params->pio_bus = pio_bus;
1693 params->header_bus = dma_bus;
1694 params->payload_bus = payload_bus;
1695 params->dma_read_delay = dma_read_delay;
1696 params->dma_read_factor = dma_read_factor;
1697 params->dma_write_delay = dma_write_delay;
1698 params->dma_write_factor = dma_write_factor;
1699 params->dma_no_allocate = dma_no_allocate;
1700 params->pio_latency = pio_latency;
1701 params->intr_delay = intr_delay;
1702
1703 params->tx_delay = tx_delay;
1704 params->rx_delay = rx_delay;
1705 params->rx_max_copy = rx_max_copy;
1706 params->tx_max_copy = tx_max_copy;
1707 params->rx_max_intr = rx_max_intr;
1708 params->rx_fifo_size = rx_fifo_size;
1709 params->tx_fifo_size = tx_fifo_size;
1710 params->rx_fifo_threshold = rx_fifo_threshold;
1711 params->tx_fifo_threshold = tx_fifo_threshold;
1712
1713 params->rx_filter = rx_filter;
1714 params->eaddr = hardware_address;
1715 params->rx_thread = rx_thread;
1716 params->tx_thread = tx_thread;
1717
1718 return new Device(params);
1719 }
1720
1721 REGISTER_SIM_OBJECT("Sinic", Device)
1722
1723 /* namespace Sinic */ }